WorldWideScience

Sample records for technologies energy prospective

  1. Renewable Energy: Markets and Prospects by Technology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    This information paper accompanies the IEA publication Deploying Renewables 2011: Best and Future Policy Practice (IEA, 2011a). It provides more detailed data and analysis, and explores the markets, policies and prospects for a number of renewable energy technologies. This paper provides a discussion of ten technology areas: bioenergy for electricity and heat, biofuels, geothermal energy, hydro energy, ocean energy, solar energy (solar photovoltaics, concentrating solar power, and solar heating), and wind energy (onshore and offshore). Each technology discussion includes: the current technical and market status; the current costs of energy production and cost trends; the policy environment; the potential and projections for the future; and an analysis of the prospects and key hurdles to future expansion.

  2. Prospective of the nuclear energy, technological tendency

    International Nuclear Information System (INIS)

    Cruz F, G. De la; Salaices A, M.

    2004-01-01

    The world's concern about the energy supply in the near future, has had as an answer diverse proposals in which two multinational initiatives are highlighted, that of the International Project on Nuclear Innovative Reactors and Fuel Cycles (INPRO) and that of the Generation-l V International Forum (GIF). Both initiatives direct their efforts to the development of new technologies in nuclear energy that would satisfy the energy requirements of the future. In this article, an analysis based on a) the available information on these technologies, b) a joint study (IEA/OECD/IAEA) on the new technologies regarding its capacity to confront the current challenges of the nuclear energy, and c) the authors' experience and knowledge about the phenomenology, design and security of nuclear facilities, is presented. Moreover, the technologies that, in the authors' opinion, will have the better possibilities to compete successfully in the energy markets and could be one of the viable options to satisfy the energy demands of the future, are described. (Author)

  3. Technology utilization and energy efficiency: Lessons learned and future prospects

    International Nuclear Information System (INIS)

    Rosenberg, N.

    1992-01-01

    The concept of energy efficiency within the context of economic and environmental policy making is quite complex. Relatively poor economic performance ratings can weaken the validity of some energy supply systems which tend to reduce energy inputs for specific volumes of output, but don't minimize total cost per unit product; and industry is often slow to adopt new technologies, even those proven to reduce total costs. In this paper, the problems connected with growth in energy requirements in relation to product are first examined within the context of world economic performance history. Three key elements are shown to explain the differences in energy intensity and consumption typology among various countries, i.e., availability of energy sources, prices and government policies. Reference is made to the the role of recent energy prices and policies in the United States whose industrialization has been directly connected with the vast availability of some energy sources. In delineating possible future energy scenarios, the paper cites the strong influence of long term capital investment on the timing of the introduction of energy efficient technologies into industrial process schemes. It illustrates the necessity for flexibility in new energy strategies which are to take advantage the opportunities offered by a wide range of alternative energy sources now being made available through technological innovation

  4. Renewable energy technologies in Australia: research, status and prospects

    International Nuclear Information System (INIS)

    Bruce, G.R.

    2006-01-01

    In support of environmental goals - principally reductions in greenhouse gas emissions from the energy sector - Australian Federal and State governments have put in place a range of measures to support the deployment of increasing levels of renewable energy products and services. These market-making mechanisms complement Australia's leadership in a wide range of technologies for stationary energy applications of renewable energy, including photovoltaics, electricity storage, concentrating solar power, small wind turbines, energy efficiency products, hot dry rock geothermal and wave power. Industry is responding to these market and technology opportunities, and associated policy measures to support their growth, with the aim of growing a sizeable renewable energy sector that delivers economically competitive solutions for Australian and export markets. (author)

  5. The prospects and trends of nuclear energy technology in China

    International Nuclear Information System (INIS)

    Jiang Shengjie

    1989-09-01

    Assurance of reliable and economic energy supply under conditions acceptable to the environment and transportation is one of the major prerequisites for achieving the ultimate goal of quadrupling the national gross annual value of industry and agriculture by the end of this century in China. The statistical data on energy and electricity usage and socioeconomic development in China show clearly the necessity for developing nuclear power station in this century, and for developing advanced nuclear energy technology in the next century, this paper gives a summary description of the nuclear power development plan by 2000, as well as the trends of nuclear energy technology in the future of China. Before the year 2000 there will be approximately 10 nuclear power reactors with a total net capacity of 6700 MWe connected into the grid and 5 nuclear power reactors with net capacity of 5000 MWe under construction. From now on, great attention is being paid to developing advanced nuclear reactor systems, and there are several types of reactors to be taken into account: High-Temperature Gas Cooled Reactor, Fast Breeder Reactor and Hybrid Fusion-Fission Reactor. At all stages of nuclear power development particular emphasis is being given for enhancing reactor safety and measuring operational reliability. Supply of nuclear fuels based on self-reliance is our inherent policy. China is undertaking to set up a fully integrated advanced nuclear fuel cycle, adapted to the nuclear power development. With the decommissioning of some nuclear facilities set up during the 1960's, the R and D program is being considered on the following topics: decommissioning safety assessment, robotic remote handling, decommissioning waste treatment environment evaluation methodology and cost analysis. 2 refs, 2 tabs

  6. Energy prospects for industry

    Energy Technology Data Exchange (ETDEWEB)

    Hartley, P P; Roberts, G F.I.; Thomas, V E; Davies, D; Crow, L M

    1983-01-01

    Contents: Electricity today and tomorrow; Gas--supply prospects for the future; Petroleum based energy--the UK perspective; Future markets for coal; Flexibility--the key to Dunlop's energy strategy; Energy conservation in Alcan; Present and future energy patterns in Courtaulds PLC; New energy technology for the quarrying industry.

  7. Energy prospects

    International Nuclear Information System (INIS)

    Lyall, K.

    1991-01-01

    The Business Council of Australia's study on Prospects for Improved Energy Efficiency and the Application of Renewable Energy Resources is summarised. The study estimates that replacement of all off-peak electric units in Australia with solar gas boosted systems would reduce electricity consumption for residential water heating by approximately 25% and almost halve carbon dioxide emissions resulting from residential water heating. Furthermore, substitution of all water heating units in Australia with solar gas systems would reduce total emissions by about 80%. The study concludes that while substitution on such a scale could not readily be achieved even within several decades, the estimates do indicate the significant benefits that might be realised by a long term program. 2 refs., 3 tabs

  8. The implications of technological learning on the prospects of specific renewable energy technologies in Europe

    International Nuclear Information System (INIS)

    Uyterlinde, M.A.; De Vries, H.J.; Junginger, H.M.

    2005-05-01

    The objective of this chapter is to examine the impact of technological learning on the diffusion of specific renewable energy technologies into the electricity market of the EU-25 until 2020, using a market simulation model (ADMIRE REBUS). It is assumed that from 2012 a harmonized trading system for renewable energy certificates will be implemented. Also it is assumed that a target of 24% renewable electricity (RES-E) in 2020 is set and met. By comparing optimistic and pessimistic endogenous technological learning scenarios, it is found that the diffusion of onshore wind energy into the market is relatively robust, regardless of technological development. However the diffusion rates of offshore wind energy and biomass gasification greatly depend on their technological development. Competition between these two options and already existing biomass combustion options largely determines the overall costs of electricity from renewables and the choice of technologies for the individual member countries. In the optimistic learning scenario, in 2020 the market price for RES-E is 1 euroct/kWh lower than in the pessimistic scenario (about 7 vs. 8 euroct/kWh). As a result, the total expenditures for RES-E market stimulation are 30% lower in the optimistic scenario. For comparison, instead of introducing a harmonized trading system, also continuation of present policies to support renewables was evaluated, assuming that the member states of the EU can fulfil their ambition levels only by exploiting their domestic renewable energy potentials (i.e. exclusion of international trade). This would require many member states to use their offshore wind potential, making the diffusion of offshore wind much less dependent on both the rate of technological learning and competition from biomass options, compared to the harmonization policy scenario

  9. Implications of technological learning on the prospects for renewable energy technologies in Europe

    International Nuclear Information System (INIS)

    Uyterlinde, Martine A.; Junginger, Martin; Vries, Hage J. de; Faaij, Andre P.C.; Turkenburg, Wim C.

    2007-01-01

    The objective of this article is to examine the consequences of technological developments on the market diffusion of different renewable electricity technologies in the EU-25 until 2020, using a market simulation model (ADMIRE REBUS). It is assumed that from 2012 a harmonized trading system will be implemented, and a target of 24% renewable electricity (RES-E) in 2020 is set and met. By comparing optimistic and pessimistic endogenous technological learning scenarios, it is found that diffusion of onshore wind energy is relatively robust, regardless of technological development, but diffusion rates of offshore wind energy and biomass gasification greatly depend on their technological development. Competition between these two options and (existing) biomass combustion options largely determines the overall costs of electricity from renewables and the choice of technologies for the individual member countries. In the optimistic scenario, in 2020 the market price for RES-E is 1 Euro ct/kWh lower than in the pessimistic scenario (about 7 vs. 8 Euro ct/kWh). As a result, total RES-E production costs are 19% lower, and total governmental expenditures for RES-market stimulation are 30% lower in the optimistic scenario

  10. Communication to the Academy of Technologies: Energy prospective for the 21. century

    International Nuclear Information System (INIS)

    Castillon, P.

    2004-01-01

    After a presentation of the problematic and challenging context (increasing energy demand, fossil resource depletion, pollution and environment protection), this report proposes a prospective overview of the possible, unavoidable or required evolutions for fossil energy consumption and resources (coal, oil, natural gas, struggle against CO 2 emissions), for energy savings (in dwellings and transports), for renewable energies, for the nuclear energy (fears and scenarios). Then, the authors try to make a synthesis of this energy prospective by defining an ideal energy, identifying the impact of the different energy sources on public health, and the risks and assets of the different energy sources. They analyse the attitudes and trends which can be observed in different countries, and describe the context created by international agreements and negotiations. Finally, they discuss the development of tools and researches for prospective studies. Extended information is also presented in appendices on these different issues

  11. Microalgal hydrogen production: prospects of an essential technology for a clean and sustainable energy economy.

    Science.gov (United States)

    Bayro-Kaiser, Vinzenz; Nelson, Nathan

    2017-09-01

    Modern energy production is required to undergo a dramatic transformation. It will have to replace fossil fuel use by a sustainable and clean energy economy while meeting the growing world energy needs. This review analyzes the current energy sector, available energy sources, and energy conversion technologies. Solar energy is the only energy source with the potential to fully replace fossil fuels, and hydrogen is a crucial energy carrier for ensuring energy availability across the globe. The importance of photosynthetic hydrogen production for a solar-powered hydrogen economy is highlighted and the development and potential of this technology are discussed. Much successful research for improved photosynthetic hydrogen production under laboratory conditions has been reported, and attempts are underway to develop upscale systems. We suggest that a process of integrating these achievements into one system to strive for efficient sustainable energy conversion is already justified. Pursuing this goal may lead to a mature technology for industrial deployment.

  12. Prospective of Societal and Environmental Benefits of Piezoelectric Technology in Road Energy Harvesting

    Directory of Open Access Journals (Sweden)

    Lubinda F. Walubita

    2018-02-01

    Full Text Available Road energy harvesting is an ingenious horizon for clean and renewable energy production. The concept is very compatible with current traffic trends and the ongoing depletion of natural resources. Yet, the idea of harvesting roadway energy is still in its genesis, and only a few real-time implementation projects have been reported in the literature. This review article summarizes the current state of the art in road energy harvesting technology, with a focus on piezoelectric systems, including an analysis of the impact of the technology from social and environmental standpoints. Based on an extensive desktop review study, this article provides a comprehensive insight into roadway energy harvesting technologies. Specifically, the article discusses the societal and environmental benefits of road energy harvesting technologies, as well as the challenges. The study outlined the meaningful benefits that positively align with the concept of sustainability. Overall, the literature findings indicate that the expansion of the roadway energy harvesting technology to a large practical scale is feasible, but such an undertaking should be wisely weighed from broader perspectives. Ultimately, the article provides a positive outlook of the potential contributions of road energy harvesting technologies to the ongoing energy and environmental challenges of human society.

  13. Eco-development and energy efficient technologies in Russia: prospects and reality

    Science.gov (United States)

    Kurakova, Oksana

    2017-10-01

    The article highlights the concept of eco-standards in Russia, and discusses new technologies that allow to build energy-efficient houses in the form of countryside real estate. Special attention is given to the principle of heat production based on the use of individual facilities, power centers mini thermal power plants, as well as to ways to reduce water consumption at home. Presents analysis of the advantages projects “built-to-suit” for the introduction of the energy efficient technologies. Justified idea and principles of “green construction” in Russia in the real estate market. Conclusion about the effectiveness of the use, opportunities and development of energy efficient technologies.

  14. The prospects of renewable energy technologies for rural electrification: A review from Nepal

    International Nuclear Information System (INIS)

    Gurung, Anup; Kumar Ghimeray, Amal; Hassan, Sedky H.A.

    2012-01-01

    Utilization of renewable energy technologies remains one of the major energy policies throughout the world. These technologies are proven to be successful for electrifying rural communities, especially in developing countries. Realizing the benefits of renewable energy sources, the Government of Nepal has initiated the production and distribution of renewable energy technologies in recent years, mainly to electrify rural communities. Although these technologies are suitable for providing electricity in isolated and remote rural areas, their implementation programs have not been successful as expected. This review provides broad-spectrum view about the energy situation in Nepal and highlights the current policies and subsidies for the optimal utilization of renewable energy resources in isolated and poor rural communities. In addition, major promotional barriers for their implementation in Nepal have been discussed. - Highlights: ► Nepal has enormous potential of renewable energy sources. ► Till date only small fraction of renewable energy sources has been exploited. ► However, renewable energy technologies seem to be promising options for rural electrification.

  15. Energy Technology.

    Science.gov (United States)

    Eaton, William W.

    Reviewed are technological problems faced in energy production including locating, recovering, developing, storing, and distributing energy in clean, convenient, economical, and environmentally satisfactory manners. The energy resources of coal, oil, natural gas, hydroelectric power, nuclear energy, solar energy, geothermal energy, winds, tides,…

  16. Expectations for prospective applications of new beam technology to atomic energy research

    International Nuclear Information System (INIS)

    Tomimasu, Takio; Yamazaki, Tetsuo; Tanaka, Ryuichi; Tanigawa, Shoichiro; Konashi, Kenji; Mizumoti, Motoharu.

    1991-01-01

    Recently, the new beam technology based on high energy electron beam, for example free electron laser, low speed positrons and so on, has developed remarkably. Moreover, also in the field of ion beams, toward the utilization of further high level, the plans of using micro-beams, heightening energy, increasing electric current and so on are in progress. In near future, it is expected that the advanced application of such new beam technology expands more and more in the fields of materials, physical properties, isotope separation, biology, medical science, medical treatment and so on. In this report, placing emphasis on the examples of application, the development and application of new beam technology are described. Takasaki ion accelerators for advanced radiation application in Japan Atomic Energy Research Institute, the generation of low speed positrons and the utilization for physical property studies, the annihilation treatment of long life radioactive nuclides, and the generation of free electron laser and its application are reported. (K.I.)

  17. Energy, technology and climatic policy: the world perspectives at the 2030 prospect. Key messages

    International Nuclear Information System (INIS)

    2003-01-01

    This paper comments the different points of the reference scenario described in the WETO study (World energy, technology and climate policy outlook). This scenario describes a world energy situation, assuming a continuation of the present day trends and structural changes. A comment is made for each of the following aspects of the scenario: world energy demand, share of fossil fuels in the world energy supplies, world CO 2 emissions, petroleum reserves, world petroleum, gas and coal productions, petroleum and gas prices trend, end-use energy demand, power production and natural gas share in power generation. Then, the document analyses the impact of changes linked with hydrocarbon resources and technology developments: reduction of hydrocarbon resources, increase of gas resources, acceleration of technological developments in power generation. A third part analyzes the natural gas market of the European Union in a world perspective: market, reserves, demand, supply risks. Finally, the last part presents the impact of environmental policies in the case of a CO 2 tax and in the case of a carbon abatement scenario. (J.S.)

  18. Hydrogen as Future Energy Carrier: The ENEA Point of View on Technology and Application Prospects

    Directory of Open Access Journals (Sweden)

    Marina Ronchetti

    2009-03-01

    Full Text Available Hydrogen and fuel cells should reduce costs and increase reliability and durability to compete in the energy market. A considerable long term effort is necessary for research, development and demonstration of adequate solutions; important programs in this sense are carried out in the main industrialized countries, with the involvement of many industries, research structures and stakeholders. In such framework a relevant role is played in Italy by ENEA (Italian Agency for New Technologies, Energy and Environment. In the paper the main aspects related to the possible hydrogen role in the future society are addressed, according to ENEA perspectives.

  19. Prospects of geothermal energy

    International Nuclear Information System (INIS)

    Manzella, A.; Bianchi, A.

    2008-01-01

    Geothermal energy has great potential as a renewable energy with low environmental impact, the use of heat pumps is becoming established in Italy but the national contributions are still modest when compared to other nations. Mature technologies could double the installed geothermal power in Italy at 2020. [it

  20. Geothermal energy technology

    Energy Technology Data Exchange (ETDEWEB)

    1977-01-01

    Geothermal energy research and development by the Sunshine Project is subdivided into five major categories: exploration and exploitation technology, hot-water power generation technology, volcanic power generation technology, environmental conservation and multi-use technology, and equipment materials research. The programs are being carried out by various National Research Institutes, universities, and private industry. During 1976 and 1977, studies were made of the extent of resources, reservoir structure, ground water movement, and neotectonics at the Onikobe and Hachimantai geothermal fields. Studies to be performed in the near future include the use of new prospecting methods, including artificial magnetotellurics, heat balance calculation, brightspot techniques, and remote sensing, as well as laboratory studies of the physical, mechanical, and chemical properties of rock. Studies are continuing in the areas of ore formation in geothermal environments, hot-dry-rock drilling and fracturing, large scale prospecting technology, high temperature-pressure drilling muds and well cements, and arsenic removal techniques.

  1. Prospects at high energies

    International Nuclear Information System (INIS)

    Quigg, C.

    1988-11-01

    I discuss some possibilities for neutrino experiments in the fixed-target environment of the SPS, Tevatron, and UNK, with their primary proton beams of 0.4, 0.9, and 3.0 TeV. The emphasis is on unfinished business: issues that have been recognized for some time, but not yet resolved. Then I turn to prospects for proton-proton colliders to explore the 1-TeV scale. I review the motivation for new physics in the neighborhood of 1 TeV and mention some discovery possibilities for high-energy, high-luminosity hadron colliders and the implications they would have for neutrino physics. I raise the possibility of the direct study of neutrino interactions in hadron colliders. I close with a report on the status of the SSC project. 38 refs., 17 figs

  2. Energy consumption and technological developments

    International Nuclear Information System (INIS)

    Okorokov, V.R.

    1990-02-01

    The paper determines an outline of the world energy prospects based on principal trends of the development of energy consumption analysed over the long past period. According to the author's conclusion the development of energy systems will be determined in the nearest future (30 - 40 years) by contemporary energy technologies based on the exploitation of traditional energy resources but in the far future technologies based on the exploitation of thermonuclear and solar energy will play the decisive role. (author)

  3. Energy intensities: Prospects and potential

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    In the previous chapter, the author described how rising activity levels and structural change are pushing toward higher energy use in many sectors and regions, especially in the developing countries. The extent to which more activity leads to greater energy use will depend on the energy intensity of end-use activities. In this chapter, the author presents an overview of the potential for intensity reductions in each sector over the next 10-20 years. It is not the author's intent to describe in detail the various technologies that could be employed to improve energy efficiency, which has been done by others (see, for example, Lovins ampersand Lovins, 1991; Goldembert et al., 1987). Rather, he discusses the key factors that will shape future energy intensities in different parts of the world, and gives a sense for the changes that could be attained if greater attention were given to accelerate efficiency improvement. The prospects for energy intensities, and the potential for reduction, vary among sectors and parts of the world. In the majority of cases, intensities are tending to decline as new equipment and facilities come into use and improvements are made on existing stocks. The effect of stock turnover will be especially strong in the developing countries, where stocks are growing at a rapid pace, and the Former East Bloc, where much of the existing industrial plant will eventually be retired and replaced with more modern facilities. While reductions in energy intensity are likely in most areas, there is a large divergence between the technical and economic potential for reducing energy intensities and the direction in which present trends are moving. In the next chapter, the author presents scenarios that illustrate where trends are pointing, and what could be achieved if improving energy efficiency were a focus of public policies. 53 refs., 4 figs., 2 tabs

  4. Prospects for Accelerator Technology

    Science.gov (United States)

    Todd, Alan

    2011-02-01

    Accelerator technology today is a greater than US$5 billion per annum business. Development of higher-performance technology with improved reliability that delivers reduced system size and life cycle cost is expected to significantly increase the total accelerator technology market and open up new application sales. Potential future directions are identified and pitfalls in new market penetration are considered. Both of the present big market segments, medical radiation therapy units and semiconductor ion implanters, are approaching the "maturity" phase of their product cycles, where incremental development rather than paradigm shifts is the norm, but they should continue to dominate commercial sales for some time. It is anticipated that large discovery-science accelerators will continue to provide a specialty market beset by the unpredictable cycles resulting from the scale of the projects themselves, coupled with external political and economic drivers. Although fraught with differing market entry difficulties, the security and environmental markets, together with new, as yet unrealized, industrial material processing applications, are expected to provide the bulk of future commercial accelerator technology growth.

  5. World energy prospects

    International Nuclear Information System (INIS)

    Ruttley, E.

    1983-01-01

    The purpose of this paper is to show that the real basis for energy projection has changed by little and that we should not be deluded by the present apparent glut of certain primary energy resources, nor by excess electricity generation into believing that the fundamentals of the energy problem have changed. Not the energy problem, but the economics have changed. Various aspects of energy, including energy demand, energy conversion, energy consumption, energy policy, as well as different sources of energy are discussed. The question is asked whether these resources would be able to supply in the energy demand

  6. The role of information and communication technologies (ICTs) in household energy consumption-prospects for the UK

    Energy Technology Data Exchange (ETDEWEB)

    Martiskainen, M.; Coburn, J. [Sussex Energy Group, SPRU (Science and Technology Policy Research), University of Sussex, Freeman Centre, Falmer, Brighton, East Sussex, BN1 9QE (United Kingdom)

    2011-03-15

    Growing concerns about climate change and energy security have led to a strong focus on energy demand reduction and energy efficiency within United Kingdom (UK) energy policy. At the same time, information and communication technologies (ICTs) have become pervasive in society and this has brought with it new policy options which use them as enabling technologies. One such policy option planned for implementation in the UK is the use of smart meters and real-time displays to encourage people to become more aware of their energy consumption and possibly change their energy-related behaviours. Smart meters and display units by definition link individuals, technologies and society, and their effectiveness is influenced by a range of factors. Ten semi-structured stakeholder interviews with industry, government and academia and a review of literature were conducted in order to identify which factors are most likely to contribute to the effectiveness of implementing smart meters and real-time displays in the UK. Further analysis showed a number of key themes and perspectives on behavioural change, particularly as they relate to household electricity use and the role of smart meters in the UK energy policy, including the role of ICTs in energy demand reduction more generally.

  7. Offshore wind energy prospects

    International Nuclear Information System (INIS)

    Gaudiosi, Gaetano

    1999-01-01

    In last two years offshore wind energy is becoming a focal point of national and non national organisations particularly after the limitations of fossil fuel consumption, adopted by many developed countries after Kyoto conference at the end of 1997 on global climate change. North Europe is particularly interested in offshore for the limited land areas still available, due to the intensive use of its territory and its today high wind capacity. Really the total wind capacity in Europe could increase from the 1997 value of 4450 MW up to 40 000 MW within 2010, according the White Paper 1997 of the European Commission; a significant percentage (25%) could be sited offshore up to 10 000 MW, because of close saturation of the land sites at that time. World wind capacity could increase from the 1997 value of 7200 MW up to 60 000 MW within 2010 with a good percentage (20%) offshore 12 000 MW. In last seven years wind capacity in shallow water of coastal areas has reached 34 MW. Five wind farms are functioning in the internal seas of Netherlands, Denmark, Sweden; however such siting is mostly to be considered as semi-offshore condition. Wind farms in real offshore sites, open seas with waves and water depth over 10 m, are now proposed in North Sea at 10-20 km off the coasts of Netherlands, Denmark using large size wind turbine (1-2 MW). In 1997 an offshore proposal was supported in Netherlands by Greenpeace after the OWEMES '97 seminar, held in Italy on offshore wind in the spring 1997. A review is presented in the paper of European offshore wind programs with trends in technology, economics and siting effects. (Author)

  8. Energy, controversies and prospects

    International Nuclear Information System (INIS)

    Bertholet, J.-L.; Garbely, M.; Lachal, B.; Romerio, F.; Weber, W.

    2003-01-01

    The energy debate raises deep controversies, as discussions on climate change or electricity markets' deregulation show. In this context, it is very difficult for the citizen to express himself in referendums and for the decision maker to slice between various options. Experts themselves deliver controversial evaluations and interest groups can benefit from them to suggest their own solution. This book enables to get a better insight and better understand energy-related controversies and the environmental and socio-economic impacts of energy. It deals with topics as complex and politically extreme as the exhaustion of fossil fuels, climate change, ionising radiations, renewable energy sources, energy consumption in Southern countries and the reorganisation of electricity markets. It starts with an article on the precaution principle and it ends with a glance on the future, devoted to education in the field of efficient energy use [fr

  9. Overview of energy/hydrogen storage: state-of-the-art of the technologies and prospects for nanomaterials

    International Nuclear Information System (INIS)

    Conte, M.; Prosini, P.P.; Passerini, S.

    2004-01-01

    A sustainable energy economy will be demanding primary energy sources, preferably renewable and mainly domestically available, using energy carriers, such as hydrogen and electricity, able to solve environmental problems and to assure adequate energy security. Instrumental to such goals will be the research and development of storage systems with performance characteristics compatible with major application requirements. Lithium or nickel are replacing lead in batteries, in order to better meet the extremely varying technical and economical requirements in fast growing conventional and new applications. Moreover, few technologies now permit to store hydrogen by modifying its physical state in gaseous or liquid form. The variety of hydrogen needs in the energy systems and in the vehicular sector is justifying the effort on solid state (metal hydrides and carbon nanostructures) or chemical systems (chemical hydrides). In this overview, emphasis is given to the major achievements in the field of electrical energy and hydrogen storage, in relation to the technological goals, which have been proposed in the major public research and collaborative programs throughout the world

  10. Soviet energy export prospects

    Energy Technology Data Exchange (ETDEWEB)

    Scanlan, Tony

    1991-05-01

    The Soviet Union produces 20% of world energy but since 1988 this is in decline. Awakening consumerism and a sea-change in the structure of foreign trade and internal investment are placing this key industry into unprecedented uncertainty. The difference between success and failure goes beyond the 1988 peak of six million barrels daily of exports in oil equivalent. The article quantifies the key areas of energy uncertainty as equal in volume to total OPEC output and sees the long-term changes of success more than ever dependent on coordinated planning and investment as well as on market reality. (Author).

  11. Prospects of the international energy market

    International Nuclear Information System (INIS)

    Schneider, H.K.

    1977-01-01

    The findings of two studies on the international prospects of energy development are discussed: 1) Energy: Global Prospects 1985-2000. Report of the Workshop on Alternative Energy Strategies (WAES) and 2) World Energy Outlook, a recent OECD energy study which is a supplement to the Energy prospects to 1985 study, which was completed in 1974. (UA) [de

  12. Renewable energy prospects for implementation

    CERN Document Server

    Jackson, Tim

    1993-01-01

    Renewable Energy: Prospects for Implementation contains papers that were originally commissioned by the journal Energy Policy for a series on renewable energy appearing between January 1991 to September 1992. In view of the fast-changing demands on conventional energy supply to meet environmental imperatives, it seemed timely to reproduce here a selection of those papers with a new introduction and a revised concluding chapter by the Editor of the series, Dr Tim Jackson, a research fellow with the Stockholm Environment Institute. The book is organized into four parts. The papers in Part I

  13. Production of clean energy by anaerobic digestion of phytomass - New prospects for a global warming amelioration technology

    Energy Technology Data Exchange (ETDEWEB)

    Abbasi, Tasneem; Abbasi, S.A. [Centre for Pollution Control and Energy Technology, Pondicherry University, Chinakalapet, Puducherry 605014 (India)

    2010-08-15

    Anaerobic digestion of animal dung generated combustible gas - this fact has been known since over 130 years and has been gainfully utilized in generating clean energy in the form of methane-rich 'biogas'. During 1970s it was found that aquatic weeds and other phytomass, if anaerobically digested, also produced similarly combustible 'bio' gas. It raised great hopes that anaerobic digestion of phytomass will also enable generation of biogas that too on a much larger scale than is possible with animal manure. This, it was hoped, would also provide a means for utilizing weeds, crop wastes, and biodegradable municipal solid waste which otherwise cause environmental pollution. It appeared to be a 'no lose' possibility; it was hoped that soon the problems of weeds (and other biosolid wastes) as well as energy shortage, would vanish. At that time there was little realization of the global warming (GW) potential of methane nor of the fact that natural degradation of phytomass in the environment is causing massive quantities of GW gas emission. Hence, at that time, the potential benefits from anaerobic digestion of phytomass were perceived only in terms of pollution control and energy generation. But four decades have since elapsed and there is still no economically viable technology with which weeds and phytowastes can be gainfully converted to energy. This paper takes a look at what has happened and why. It also points towards the possibility of success finally emerging on the horizon. It would, hopefully, give a fresh impetus to the entire field of biomethanation R and D because all 'methane capture' technologies also indirectly contribute to very significant reduction in global warming. (author)

  14. Renewable energy development and prospects in Australia

    International Nuclear Information System (INIS)

    Ahmad Zahedi

    2000-01-01

    Development of renewable energies in Australia is still in its infancy and will require active support by government, utilities and financing institutions to ensure a steady growth. Much has been done to increase the utilisation of renewable energies in the energy supply, but much still remains to be done, especially in the areas of promotion, demonstration, training and technology transfer. This process will lead to meeting the energy needs of the population in rural areas and to contributing to a suitable development of the region during the next century. Australia is endowed with a wealth of renewable energy resources that hold great promise for addressing a host of important environmental, employment and socioeconomic issues. Australia has a set of climate, geographic and other factors that provide favourable conditions for many specific renewable energy applications. The objectives of this paper is to look at the current situation of renewable energies in Australia, opportunities, constraints, current projects, available potential and future prospects. (Author)

  15. Asteroids. Prospective energy and material resources

    Energy Technology Data Exchange (ETDEWEB)

    Badescu, Viorel (ed.) [Bucharest Polytechnic Univ. (Romania). Candida Oancea Institute

    2013-11-01

    Recent research on Prospective Energy and Material Resources on Asteroids. Carefully edited book dedicated to Asteroids prospective energy and material resources. Written by leading experts in the field. The Earth has limited material and energy resources while these resources in space are virtually unlimited. Further development of humanity will require going beyond our planet and exploring of extraterrestrial resources and sources of unlimited power. Thus far, all missions to asteroids have been motivated by scientific exploration. However, given recent advancements in various space technologies, mining asteroids for resources is becoming ever more feasible. A significant portion of asteroids value is derived from their location; the required resources do not need to be lifted at a great expense from the surface of the Earth. Resources derived from Asteroid not only can be brought back to Earth but could also be used to sustain human exploration of space and permanent settlements in space. This book investigates asteroids' prospective energy and material resources. It is a collection of topics related to asteroid exploration, and utilization. It presents past and future technologies and solutions to old problems that could become reality in our life time. The book therefore is a great source of condensed information for specialists involved in current and impending asteroid-related activities and a good starting point for space researchers, inventors, technologists and potential investors. Written for researchers, engineers, and businessmen interested in asteroids' exploration and exploitation.

  16. Prospects for power plant technology

    International Nuclear Information System (INIS)

    Schilling, H.D.

    1993-01-01

    Careful conservation of resources in the enlarged context of the rational utilization of energy, the environment and capital will determine future power plant technology. The mainstays will be the further development of power plant concepts based on fossil (predominantly coal) and nuclear fuels; world-wide, also regenerative and CO 2 -free hydro-electric power will play a role. Rapid conversion of the available potential requires clear, long-term stable and reliable political framework conditions for the release of the necessary entrepreneurial forces. (orig.) [de

  17. Prospects for the SMR Technology

    International Nuclear Information System (INIS)

    Tavron, B.; Marouani, D. R.

    2014-01-01

    The nuclear power industry which suffered from prolonged recession has got additional slowdown by the Fukushima nuclear accident. Nuclear safety and security concerns together with cheap fossil fuel alternatives are among main reasons for this recession. Small Modular Reactor (SMR) technologies which feature enhanced safety, security and economics features may restore confidence in nuclear power and lead the nuclear energy renaissance. SMR unit sizes (up to 300MWe), match common existing oil, coal and gas unit sizes and present the environmentally suitable candidate for replacing old polluting plants. Moreover, SMR unit sizes and their enhanced load following capabilities match well future electricity system requirements

  18. Energy research and energy technology

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    Research and development in the field of energy technologies was and still is a rational necessity of our time. However, the current point of main effort has shifted from security of supply to environmental compatibility and safety of the technological processes used. Nuclear fusion is not expected to provide an extension of currently available energy resources until the middle of the next century. Its technological translation will be measured by the same conditions and issues of political acceptance that are relevant to nuclear technology today. Approaches in the major research establishments to studies of regenerative energy systems as elements of modern energy management have led to research and development programs on solar and hydrogen technologies as well as energy storage. The percentage these systems might achieve in a secured energy supply of European national economies is controversial yet today. In the future, the Arbeitsgemeinschaft Grossforschungseinrichtungen (AGF) (Cooperative of Major Research Establishments) will predominantly focus on nuclear safety research and on areas of nuclear waste disposal, which will continue to be a national task even after a reorganization of cooperation in Europe. In addition, they will above all assume tasks of nuclear plant safety research within international cooperation programs based on government agreements, in order to maintain access for the Federal Republic of Germany to an advancing development of nuclear technology in a concurrent partnership with other countries. (orig./HSCH) [de

  19. Energy in developing countries: prospects and problems

    International Nuclear Information System (INIS)

    Baum, V.

    1977-01-01

    This paper analyses requirements for primary energy and electric power in the developing countries in the light of projections of population and economic growth. It evaluates the availability of indigenous energy resources and focuses on input requirements (capital, technology, trained personnel) for accelerated energy development; it reviews possible supplies for such inputs from domestic sources, transnational corporations, multilateral institutions, and through co-operation among the developing countries themselves and between the developing and the developed countries. The paper analyses the findings of the United Nations study ''The Future of the World Economy. A Study on the Impact of the Prospective Economic Issues and Policies on the International Development Strategy'' as far as they relate to energy and the developing countries in the light of the objectives of the Declaration on the Establishment of a New International Economic Order

  20. Promoting renewable energy technologies

    International Nuclear Information System (INIS)

    Grenaa Jensen, S.

    2004-06-01

    Technologies using renewable energy sources are receiving increasing interest from both public authorities and power producing companies, mainly because of the environmental advantages they procure in comparison with conventional energy sources. These technologies can be substitution for conventional energy sources and limit damage to the environment. Furthermore, several of the renewable energy technologies satisfy an increasing political goal of self-sufficiency within energy production. The subject of this thesis is promotion of renewable technologies. The primary goal is to increase understanding on how technological development takes place, and establish a theoretical framework that can assist in the construction of policy strategies including instruments for promotion of renewable energy technologies. Technological development is analysed by through quantitative and qualitative methods. (BA)

  1. Asteroids prospective energy and material resources

    CERN Document Server

    2013-01-01

    The Earth has limited material and energy resources while these resources in space are virtually unlimited. Further development of humanity will require going beyond our planet and exploring of extraterrestrial resources and sources of unlimited power.   Thus far, all missions to asteroids have been motivated by scientific exploration. However, given recent advancements in various space technologies, mining asteroids for resources is becoming ever more feasible. A significant portion of asteroids value is derived from their location; the required resources do not need to be lifted at a great expense from the surface of the Earth.   Resources derived from Asteroid not only can be brought back to Earth but could also be used to sustain human exploration of space and permanent settlements in space.   This book investigates asteroids' prospective energy and material resources. It is a collection of topics related to asteroid exploration, and utilization. It presents past and future technologies and solutions t...

  2. Promoting renewable energy technologies

    DEFF Research Database (Denmark)

    Olsen, O.J.; Skytte, K.

    2004-01-01

    % of its annual electricity production. In this paper, we present and discuss the Danish experience as a case of promoting renewable energy technologies. The development path of the two technologies has been very different. Wind power is considered an outright success with fast deployment to decreasing...... technology and its particular context, it is possible to formulate some general principles that can help to create an effective and efficient policy for promoting new renewable energy technologies....

  3. Distributed Energy Technology Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Distributed Energy Technologies Laboratory (DETL) is an extension of the power electronics testing capabilities of the Photovoltaic System Evaluation Laboratory...

  4. Moon Prospective Energy and Material Resources

    CERN Document Server

    2012-01-01

    The Earth has limited material and energy resources. Further development of the humanity will require going beyond our planet for mining and use of extraterrestrial mineral resources and search of power sources. The exploitation of the natural resources of the Moon is a first natural step on this direction. Lunar materials may contribute to the betterment of conditions of people on Earth but they also may be used to establish permanent settlements on the Moon. This will allow developing new technologies, systems and flight operation techniques to continue space exploration.   In fact, a new branch of human civilization could be established permanently on Moon in the next century. But, meantime, an inventory and proper social assessment of Moon’s prospective energy and material resources is required. This book investigates the possibilities and limitations of various systems supplying manned bases on Moon with energy and other vital resources. The book collects together recent proposals and innovative optio...

  5. Prospective teachers information and communication technology metaphors

    Directory of Open Access Journals (Sweden)

    Ömür Akdemir

    2015-04-01

    Full Text Available Determination of the perceptions of the prospective teachers for the Information and Communications Technology (ICT terms have a remarkable potential to provide input for technology integration plans and ICT trainings. Within this context, the purpose of this study is to discover the metaphors constructed by prospective teachers for the ICT terms. Data were gathered from 180 prospective teachers through survey. 977 valid metaphors constructed by the participants were grouped into conceptual categories for the six ICT terms. The most common conceptual categories are “developing and changing” for technology, “making life easy” for computers and search engines, “limitless and endless” for the Internet, “means of communication” for social networks, and “addictive items” for video games. Future research should concentrate on investigating the match and mismatches between intended use of the ICT tools and the perception of the prospective teachers.

  6. Renewable Energy Technology

    Science.gov (United States)

    Daugherty, Michael K.; Carter, Vinson R.

    2010-01-01

    In many ways the field of renewable energy technology is being introduced to a society that has little knowledge or background with anything beyond traditional exhaustible forms of energy and power. Dotson (2009) noted that the real challenge is to inform and educate the citizenry of the renewable energy potential through the development of…

  7. Energy and technology review

    International Nuclear Information System (INIS)

    Quirk, W.J.; Bookless, W.A.

    1994-05-01

    The Lawrence Livermore National Laboratory, operated by the University of California for the United States Department of Energy, was established in 1952 to do research on nuclear weapons and magnetic fusion energy. Since then, in response to new national needs, we have added other major programs, including technology transfer, laser science (fusion, isotope separation, materials processing), biology and biotechnology, environmental research and remediation, arms control and nonproliferation, advanced defense technology, and applied energy technology. These programs, in turn, require research in basic scientific disciplines, including chemistry and materials science, computing science and technology, engineering, and physics. The Laboratory also carries out a variety of projects for other federal agencies. Energy and Technology Review is published monthly to report on unclassified work in all our programs. This issue reviews work performed in the areas of modified retoring for waste treatment and underground stripping to remove contamination

  8. Technology Roadmaps: Wind Energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    Wind energy is perhaps the most advanced of the 'new' renewable energy technologies, but there is still much work to be done. This roadmap identifies the key tasks that must be undertaken in order to achieve a vision of over 2 000 GW of wind energy capacity by 2050. Governments, industry, research institutions and the wider energy sector will need to work together to achieve this goal. Best technology and policy practice must be identified and exchanged with emerging economy partners, to enable the most cost-effective and beneficial development.

  9. Technology Roadmap: Energy Storage

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-03-01

    Energy storage technologies are valuable components in most energy systems and could be an important tool in achieving a low-carbon future. These technologies allow for the decoupling of energy supply and demand, in essence providing a valuable resource to system operators. There are many cases where energy storage deployment is competitive or near-competitive in today's energy system. However, regulatory and market conditions are frequently ill-equipped to compensate storage for the suite of services that it can provide. Furthermore, some technologies are still too expensive relative to other competing technologies (e.g. flexible generation and new transmission lines in electricity systems). One of the key goals of this new roadmap is to understand and communicate the value of energy storage to energy system stakeholders. This will include concepts that address the current status of deployment and predicted evolution in the context of current and future energy system needs by using a ''systems perspective'' rather than looking at storage technologies in isolation.

  10. Department of energy technology

    International Nuclear Information System (INIS)

    1983-04-01

    The general development of the Department of Energy Technology at Risoe during 1982 is presented, and the activities within the major subject fields are described in some detail. List of staff, publications and computer programs are included. (author)

  11. Prospect of nuclear application in food technology

    Energy Technology Data Exchange (ETDEWEB)

    Maha, M [National Atomic Energy Agency, Jakarta (Indonesia). Pasar Djumat Research Centre

    1982-04-01

    Irradiation changes the normal living process of cells and the structure of molecules. It is good for food preservation because it kills off many of the microorganisms in the product and makes the remainder more sensitive to antimicrobial factors prevailing after the radiation treatment. It offers more benefits than conventional preservation in that it increases storage stability and quality of foodstuffs with the minimum use of energy. Good storage quality gives way to wider distribution of food, alleviates the world's food shortage, and improves food supplies. Research proved that irradiation increased the quality of subtropical fruits, spices, fish, and meat. No refrigeration is needed to store meat, poultry and fish preserved by the combination of irradiation and mild heat treatment. Nuclear technology can also be applied to destroy harmful insects, to sterilize food, to inhibit the sprouting of root crops, and to control ripening in stored fruits and vegetables. Based on the above potentials of irradiation, the prospect of nuclear application in food technology is promising.

  12. Technology Roadmaps: Nuclear Energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    This nuclear energy roadmap has been prepared jointly by the IEA and the OECD Nuclear Energy Agency (NEA). Unlike most other low-carbon energy sources, nuclear energy is a mature technology that has been in use for more than 50 years. The latest designs for nuclear power plants build on this experience to offer enhanced safety and performance, and are ready for wider deployment over the next few years. Several countries are reactivating dormant nuclear programmes, while others are considering nuclear for the first time. China in particular is already embarking on a rapid nuclear expansion. In the longer term, there is great potential for new developments in nuclear energy technology to enhance nuclear's role in a sustainable energy future.

  13. Microelectronics in energy technology

    Energy Technology Data Exchange (ETDEWEB)

    Oeding, D; Jesse, G

    1984-07-01

    This meeting, which will take place on the 16th and 17th of October 1984 at the Old Opera House at Frankfurt on Main, in the context of the VDE Congress, will consist of 14 lectures on the state of the application of microelectronics to energy technology, and give its participants information on and a chance for discussion of this subject. The meeting will cover the following subjects: Microelectronics in energy supply undertakings; Microelectronics in the automation of power stations; Microelectronics in switchgear and transmission networks; Microelectronics in measurement technology; Microelectronics in lighting technology; Microelectronics in drive technology; Microelectronics in railway technology. The following shortened versions of these lectures are intended to motivate people to visit this event and to prepare contributions to and questions for the discussions.

  14. New energy technologies. Report

    International Nuclear Information System (INIS)

    2004-01-01

    This report on the new energy technologies has been written by a working group on request of the French ministry of economy, finances and industry, of the ministry of ecology and sustainable development, of the ministry of research and new technologies and of the ministry of industry. The mission of the working group is to identify goals and priority ways for the French and European research about the new technologies of energy and to propose some recommendations about the evolution of research incentive and sustain systems in order to reach these goals. The working group has taken into consideration the overall stakes linked with energy and not only the climatic change. About this last point, only the carbon dioxide emissions have been considered because they represent 90% of the greenhouse gases emissions linked with the energy sector. A diagnosis is made first about the present day context inside which the new technologies will have to fit with. Using this diagnosis, the research topics and projects to be considered as priorities for the short-, medium- and long-term have been identified: energy efficiency in transports, in dwellings/tertiary buildings and in the industry, development for the first half of the 21. century of an energy mix combining nuclear, fossil-fuels and renewable energy sources. (J.S.)

  15. Genipa americana L.: technological prospecting

    Directory of Open Access Journals (Sweden)

    Selma Maria Santos Moura

    2016-10-01

    Full Text Available Genipap is a tall tree (10 to 15 meters, found in humid tropical regions, common in brazilian northeastern. Its scientific name is Genipa americana L., jenipapo comes from the Tupi-Guarani jandipap, which means fruit that serves to paint. It features straight stem, dark green leaves, golden-yellow flowers and fruit in the form of ovoid berry, has light brown pulp surrounding seeds in the center. In food, its fruit is edible natural and in the preparation of sweets, soft drinks and wine. It is rich in iron, vitamins B1, B2, B5 and C, calcium and carbohydrates. In popular culture have medicinal indications for the treatment of diseases. When green, the fruit provides a blue juice widely used as a colorant, transparent at first, which becomes black when oxidized, has consistency of ink and body in contact with the skin, it leaves stains that disappear after a week or more spontaneously. The objective of this research was to carry out technology foresight regarding Genipa americana L., to present an overview of the technologies developed related to the theme. For that held a patent search on the basis of the European Patent Office, World Intellectual Property Organization, United States Patent and Trademark Office and the National Institute of Industrial Property. Using the Genipa americana L. keyword were registered 88 patents, when added the word dye 5 patent were found and no request when the search was conducted using Genipa americana L. and cell. Brazil recorded a lower number of patents found in the USA and Japan, with the years 2010, 2011 and 2015, which showed a higher number. Integrated actions should be taken to encourage development institutions to research in order to enable an environment conducive to the generation of innovations, making Brazil a more competitive country in the technological point of view.

  16. USSR energy efficiency and prospects

    International Nuclear Information System (INIS)

    Sinyak, Y.

    1991-06-01

    The U.S.S.R. is the largest energy producer and the second largest energy consumer in the world. Its share of global energy use reached above 17% in 1988. The soviet energy system is characterized by low efficiency and high per capita energy consumption, although there are some reasons justifying the greater U.S.S.R. energy use per unit of product output than in other industrialized countries. The present energy-savings potential is approximately equal to one-half of the domestic energy consumption. Improvements in energy efficiency at all levels of the national economy are now considered to be the primary goal of national energy policy for the next couple of decades. Being endowed with abundant natural gas resources, the U.S.S.R. will count on this energy source in the future to improve its energy efficiency, reduce expenses and cope with air pollution. After 2005-2010, stabilized primary energy consumption may be reached or there may even be a decline of total energy use. The U.S.S.R. could reduce CO 2 emissions by 20% by 2030 but with substantial negative impacts on GNP growth. Required improvements in the Soviet energy system depend on changes in energy management, including reduction of the role of centralized planning, decentralization and privatization of energy-producing facilities, energy-price reforms, reshaping of investment patterns, reduction in military expenditures, etc. (author)

  17. Potentials and market prospects of wind energy in Vojvodina

    Directory of Open Access Journals (Sweden)

    Katić Vladimir A.

    2012-01-01

    Full Text Available The paper presents an overview of the wind energy potentials, technologies and market prospects in the Autonomous Province of Vojvodina, the region of Serbia with the most suitable location for exploitation of wind energy. The main characteristics of the region have been presented regarding wind energy and electric, road, railway and waterway infrastructure. The wind farm interconnection with the public grid is explained. The most suitable locations for the wind farms are presented, with present situation and future prospects of wind market in Vojvodina.

  18. Drying and energy technologies

    CERN Document Server

    Lima, A

    2016-01-01

    This book provides a comprehensive overview of essential topics related to conventional and advanced drying and energy technologies, especially motivated by increased industry and academic interest. The main topics discussed are: theory and applications of drying, emerging topics in drying technology, innovations and trends in drying, thermo-hydro-chemical-mechanical behaviors of porous materials in drying, and drying equipment and energy. Since the topics covered are inter- and multi-disciplinary, the book offers an excellent source of information for engineers, energy specialists, scientists, researchers, graduate students, and leaders of industrial companies. This book is divided into several chapters focusing on the engineering, science and technology applied in essential industrial processes used for raw materials and products.

  19. Moon. Prospective energy and material resources

    Energy Technology Data Exchange (ETDEWEB)

    Badescu, Viorel (ed.) [Polytechnic Univ. of Bucharest (Romania). Candida Oancea Inst.

    2012-07-01

    The Earth has limited material and energy resources. Further development of the humanity will require going beyond our planet for mining and use of extraterrestrial mineral resources and search of power sources. The exploitation of the natural resources of the Moon is a first natural step on this direction. Lunar materials may contribute to the betterment of conditions of people on Earth but they also may be used to establish permanent settlements on the Moon. This will allow developing new technologies, systems and flight operation techniques to continue space exploration. In fact, a new branch of human civilization could be established permanently on Moon in the next century. But, meantime, an inventory and proper social assessment of Moon's prospective energy and material resources is required. This book investigates the possibilities and limitations of various systems supplying manned bases on Moon with energy and other vital resources. The book collects together recent proposals and innovative options and solutions. It is a useful source of condensed information for specialists involved in current and impending Moon-related activities and a good starting point for young researchers. (orig.)

  20. New energy technologies

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt-Kuester, W J; Wagner, H F

    1977-01-01

    In the Federal Republic of Germany, analyses and forecasts of the energy supply and energy consumption have revealed five major sectors in which extensive R and D activities should be carried out: nuclear energy, coal technology, the utilization of solar energy, techniques for the economical use of energy, and nuclear fusion. Of these sectors, only nuclear energy will be able to make a major contribution to our energy supply both in the near future and over a longer period. The available capacity for mining the large deposits of coal in the Federal Republic of Germany can be increased only gradually and will therefore not make an appreciable contribution until a later date. Another fact to be considered is that a rapidly expanding utilization of this source of energy entails very heavy pollution of the environment. The utilization of solar energy in Central Europe will probably be possible only for supplying warm water for industry and for heating buildings. In the long term, solar energy will contribute only a small percentage of energy to the supply required by the Federal Republic of Germany. Intensive efforts are being made to develop technologies for the more economical use of energy. The priorities in this sector are the installation of district heating systems using waste heat from power stations, and the improved heat insulation of houses. It is not anticipated that the technical utilization of nuclear fusion will be introduced before the end of this century. Nonetheless, this source of energy still constitutes a possibility offering an extremely great potential in the long term, with the result that every effort is being made to put it to good use. The work being carried out in this field in the Federal Republic of Germany is being closely coordinated with the relevant activities undertaken by the other member countries of the European Community.

  1. Energy, technology, development

    Energy Technology Data Exchange (ETDEWEB)

    Goldemberg, J [Ministerio da Educacao, Brasilia (Brazil)

    1992-02-01

    Energy and technology are essential ingredients of development, it is only through their use that it became possible to sustain a population of almost 5 billion on Earth. The challenges to eradicate poverty and underdevelopment in developing countries in the face of strong population increases can only be successfully met with the use of advanced technology, leapfrogging the path followed in the past by today's industrialized countries. It is shown in the paper that energy consumption can be decoupled from economic development. Such possibility will contribute significantly in achieving sustainable development. 10 refs., 4 figs., 3 tabs.

  2. Hydrokinetic Energy Conversion Systems: Prospects and ...

    African Journals Online (AJOL)

    Being also a variant of the small hydropower scheme, which are usually site specific, much of the studies done on the technology are suited to specific sites and the peculiar hydrology of those localities. This paper, thus, explores this new emerging technology and its prospects, potentials, challenges and frameworks for its ...

  3. Energy and technology review

    International Nuclear Information System (INIS)

    Carr, R.B.; Bathgate, M.B.; Crawford, R.B.; McCaleb, C.S.; Prono, J.K.

    1976-05-01

    The chief objective of LLL's biomedical and environmental research program is to enlarge mankind's understanding of the implications of energy-related chemical and radioactive effluents in the biosphere. The effluents are studied at their sources, during transport through the environment, and at impact on critical resources, important ecosystems, and man himself. We are pursuing several projects to acquire such knowledge in time to guide the development of energy technologies toward safe, reasonable, and optimal choices

  4. Energy and technology review

    Energy Technology Data Exchange (ETDEWEB)

    Carr, R.B.; Bathgate, M.B.; Crawford, R.B.; McCaleb, C.S.; Prono, J.K. (eds.)

    1976-05-01

    The chief objective of LLL's biomedical and environmental research program is to enlarge mankind's understanding of the implications of energy-related chemical and radioactive effluents in the biosphere. The effluents are studied at their sources, during transport through the environment, and at impact on critical resources, important ecosystems, and man himself. We are pursuing several projects to acquire such knowledge in time to guide the development of energy technologies toward safe, reasonable, and optimal choices.

  5. HYDROKINETIC ENERGY CONVERSION SYSTEMS: PROSPECTS ...

    African Journals Online (AJOL)

    eobe

    Hydrokinetic energy conversion systems utilize the kinetic energy of flowing water bodies with little or no head to generate ... generator. ... Its principle of operation is analogous to that of wind ..... Crisis-solar and wind power systems, 2009,.

  6. EDITORIAL: Renewing energy technology Renewing energy technology

    Science.gov (United States)

    Demming, Anna

    2011-06-01

    Renewable energy is now a mainstream concern among businesses and governments across the world, and could be considered a characteristic preoccupation of our time. It is interesting to note that many of the energy technologies currently being developed date back to very different eras, and even predate the industrial revolution. The fuel cell was first invented as long ago as 1838 by the Swiss--German chemist Christian Friedrich Schönbein [1], and the idea of harnessing solar power dates back to ancient Greece [2]. The enduring fascination with new means of harnessing energy is no doubt linked to man's innate delight in expending it, whether it be to satisfy the drive of curiosity, or from a hunger for entertainment, or to power automated labour-saving devices. But this must be galvanized by the sustained ability to improve device performance, unearthing original science, and asking new questions, for example regarding the durability of photovoltaic devices [3]. As in so many fields, advances in hydrogen storage technology for fuel cells have benefited significantly from nanotechnology. The idea is that the kinetics of hydrogen uptake and release may be reduced by decreasing the particle size. An understanding of how effective this may be has been hampered by limited knowledge of the way the thermodynamics are affected by atom or molecule cluster size. Detailed calculations of individual atoms in clusters are limited by computational resources as to the number of atoms that can studied, and other innovative approaches that deal with force fields derived by extrapolating the difference between the properties of clusters and bulk matter require labour-intensive modifications when extending such studies to new materials. In [4], researchers in the US use an alternative approach, considering the nanoparticle as having the same crystal structure as the bulk but relaxing the few layers of atoms near the surface. The favourable features of nanostructures for catalysis

  7. Nuclear energy achievements and prospects

    International Nuclear Information System (INIS)

    Lewiner, Colette

    1992-01-01

    Within half a century nuclear energy achieved very successful results. Only for European Community, nuclear energy represents 30% in electricity generation. At this stage, one state that the nuclear energy winning cards are competitiveness and Gentleness to the environment. Those winning cards will still be master cards for the 21st century, provided nuclear energy handles rigorously: Safety in concept and operation of power plants; radioactive waste management, and communication

  8. France: energy prospects for 2050

    International Nuclear Information System (INIS)

    Acket, C.; Bacher, P.

    2005-01-01

    This study analyzes 4 simple energy policy scenarios and their impact on the abatement of carbon dioxide emissions. The first scenario considers the same consumption rates as today and assumes that no oil and gas shortage and no environmental policy pressure will lead to a significant abatement of CO 2 emissions. Two other extreme scenarios, on the contrary, consider a maximum reduction of the use of fossil fuels, one with the development of nuclear energy and the other without. The last scenario is intermediate between the extreme ones and considers the development of renewable energy sources and the implementation of important energy saving. The backward analysis of these scenarios indicates that nuclear energy and the development of renewable energies is necessary to reach the CO 2 abatement goals expected for 2050 and that energy saving must be a priority. (J.S.)

  9. Nuclear energy technology

    Science.gov (United States)

    Buden, David

    1992-01-01

    An overview of space nuclear energy technologies is presented. The development and characteristics of radioisotope thermoelectric generators (RTG's) and space nuclear power reactors are discussed. In addition, the policy and issues related to public safety and the use of nuclear power sources in space are addressed.

  10. Energy and technology review

    Energy Technology Data Exchange (ETDEWEB)

    1984-03-01

    The Lawrence Livermore National Laboratory publishes the Energy and Technology Review Monthly. This periodical reviews progress mode is selected programs at the laboratory. This issue includes articles on in-situ coal gasification, on chromosomal aberrations in human sperm, on high speed cell sorting and on supercomputers.

  11. Energy and technology review

    International Nuclear Information System (INIS)

    Carr, R.B.; McCleb, C.S.; Prono, J.K.

    1976-01-01

    Brief discussions of research progress on the following topics are given: (1) lasers and laser applications, (2) advanced energy systems, (3) science and technology, and (4) national security. Some experiments on the in-flight laser irradiation of ammonia pellets are discussed

  12. Energy and technology review

    International Nuclear Information System (INIS)

    1984-03-01

    The Lawrence Livermore National Laboratory publishes the Energy and Technology Review Monthly. This periodical reviews progress mode is selected programs at the laboratory. This issue includes articles on in-situ coal gasification, on chromosomal aberrations in human sperm, on high speed cell sorting and on supercomputers

  13. Clean energy utilization technology

    International Nuclear Information System (INIS)

    Honma, Takuya

    1992-01-01

    The technical development of clean energy including the utilization of solar energy was begun in 1973 at the time of the oil crisis, and about 20 years elapsed. Also in Japan, the electric power buying system by electric power companies for solar light electric power and wind electric power has been started in 1992, namely their value as a merchandise was recognized. As for these two technologies, the works of making the international standards and JIS were begun. The range of clean energy or natural energy is wide, and its kinds are many. The utilization of solar heat and the electric power generation utilizing waves, tide and geotherm already reached the stage of practical use. Generally in order to practically use new energy, the problem of price must be solved, but the price is largely dependent on the degree of spread. Also the reliability, durability and safety must be ensured, and the easiness of use, effectiveness and trouble-saving maintenance and operation are required. For the purpose, it is important to packaging those skillfully in a system. The cases of intelligent natural energy systems are shown. Solar light and wind electric power generation systems and the technology of transporting clean energy are described. (K.I.)

  14. Nuclear energy prospects to 2000

    International Nuclear Information System (INIS)

    1982-01-01

    This report describes the potential and trends of electricity use in OECD-countries as the main parameter of nuclear power development, including oil displacement and future generation mix, gives a most recent assessment of nuclear power growth to the year 2000, deals with supply and demand considerations covering the whole fuel cycle, assesses the impact of the nuclear contribution on the overall energy situation according to three energy scenarios and the consequences of a possible nuclear shortfall, and finally reviews other factors influencing nuclear energy growth such as security of supply, economics of nuclear power production as wells as public and utility confidence in nuclear power

  15. Energy and technology review

    Energy Technology Data Exchange (ETDEWEB)

    Stowers, I.F.; Crawford, R.B.; Esser, M.A.; Lien, P.L.; O' Neal, E.; Van Dyke, P. (eds.)

    1982-07-01

    The state of the laboratory address by LLNL Director Roger Batzel is summarized, and a breakdown of the laboratory funding is given. The Livermore defense-related committment is described, including the design and development of advanced nuclear weapons as well as research in inertial confinement fusion, nonnuclear ordnance, and particle beam technology. LLNL is also applying its scientific and engineering resources to the dual challenge of meeting future energy needs without degrading the quality of the biosphere. Some representative examples are given of the supporting groups vital for providing the specialized expertise and new technologies required by the laboratory's major research programs. (GHT)

  16. Energy and technology review

    International Nuclear Information System (INIS)

    Stowers, I.F.; Crawford, R.B.; Esser, M.A.; Lien, P.L.; O'Neal, E.; Van Dyke, P.

    1982-07-01

    The state of the laboratory address by LLNL Director Roger Batzel is summarized, and a breakdown of the laboratory funding is given. The Livermore defense-related committment is described, including the design and development of advanced nuclear weapons as well as research in inertial confinement fusion, nonnuclear ordnance, and particle beam technology. LLNL is also applying its scientific and engineering resources to the dual challenge of meeting future energy needs without degrading the quality of the biosphere. Some representative examples are given of the supporting groups vital for providing the specialized expertise and new technologies required by the laboratory's major research programs

  17. New energy technologies report

    International Nuclear Information System (INIS)

    2004-01-01

    This report presents the conclusions of the working group, decided by the french government to identify the objectives and main axis for the french and european research on the new energy technologies and to propose recommendations on the assistance implemented to reach these objectives. The three main recommendations that the group drawn concern: the importance of the research and development on the energy conservation; a priority on the renewable energies, the sequestration and the nuclear power; the importance of the France for the research programs on the hydrogen, the fuel cells, the photovoltaic, the electric power networks and storage, the production of liquid fuels from fossil fuels, the underground geothermal energy, the fusion and the offshore wind power. (A.L.B.)

  18. The UFE Prospective scenarios for energy demand

    International Nuclear Information System (INIS)

    2013-01-01

    After an overview of the French energy consumption in 2011 (final energy consumption, distribution of CO 2 emissions related to energy consumption), this Power Point presentation proposes graphs and figures illustrating UFE's prospective scenarios for energy demand. The objective is to foresee energy demand in 2050, to study the impact of possible actions on energy demand, and to assess the impact on greenhouse gas emissions. Hypotheses relate to demographic evolution, economic growth, energy intensity evolution, energy efficiency, and use transfers. Factors of evolution of energy demand are discussed: relationship between demography and energy consumption, new uses of electricity (notably with TICs), relationship between energy intensity and economic growth. Actions on demand are discussed. The results of different scenarios of technical evolution are presented

  19. Energy prospects in the Netherlands

    Energy Technology Data Exchange (ETDEWEB)

    Latzko, D.G.H.

    1976-12-01

    The world situation on energy supplies is surveyed briefly, including problems that might arise concerning production and transport; then, the energy situation in the Netherlands is treated. For the purpose of this article, only relevant primary sources of energy, those whose large-scale utilization had been demonstrated to date, viz., fossil fuels, hydroelectric power, uranium in light-water reactors, and solar radiation came up for discussion. For the pronounced growth in total consumption the model proposed by A.A. De Boer (Econ. Statist. Rep., 59, No. 2954, 469-71(1974)) and inspired by the Dutch economist Prof. Tinbergen was adopted. This model assumes a gradual decrease in the annual growth to 1 or 2 percent about the year 2012. On the basis of this model, meeting the resultant demand for energy until the turn of the century is investigated.

  20. Prospect for inertial fusion energy

    International Nuclear Information System (INIS)

    Yamanaka, C.

    1994-01-01

    This paper presents recent inertial fusion experiments at Osaka. The inertial fusion energy reactor used for these experiments was designed according to some principles based on environmental, social and safety considerations. (TEC). 1 fig., 1 ref

  1. World Energy Prospects and Challenges

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    In recent years, demand for energy has surged. This unrelenting increase has helped fuel global economic growth but placed considerable pressure on suppliers buffeted by geopolitics, violent weather conditions and other potentially disruptive factors.

  2. Energy conservation technologies

    Energy Technology Data Exchange (ETDEWEB)

    Courtright, H.A. [Electric Power Research Inst., Palo Alto, CA (United States)

    1993-12-31

    The conservation of energy through the efficiency improvement of existing end-uses and the development of new technologies to replace less efficient systems is an important component of the overall effort to reduce greenhouse gases which may contribute to global climate change. Even though uncertainties exist on the degree and causes of global warming, efficiency improvements in end-use applications remain in the best interest of utilities, their customers and society because efficiency improvements not only reduce environmental exposures but also contribute to industrial productivity, business cost reductions and consumer savings in energy costs.

  3. The prospective uses of solar energy

    International Nuclear Information System (INIS)

    Masi, M.; Carra, S.

    2007-01-01

    Some aspects inherent the prospective uses of solar energy as renewable energy source are here addressed with particular reference to the technical and economical aspects affecting its use of today and tomorrow. It emerges that neither technical nor availability limitation exist for the extensive use of that primary energy source, but only limitations of economical nature that are indeed under resolution with the installation volumes increase [it

  4. Energy and technology review

    International Nuclear Information System (INIS)

    Brown, P.S.

    1983-06-01

    Research activities at Lawrence Livermore National Laboratory are described in the Energy and Technology Review. This issue includes articles on measuring chromosome changes in people exposed to cigarette smoke, sloshing-ion experiments in the tandem mirror experiment, aluminum-air battery development, and a speech by Edward Teller on national defense. Abstracts of the first three have been prepared separately for the data base

  5. Energy and technology review

    Energy Technology Data Exchange (ETDEWEB)

    Brown, P.S. (ed.)

    1983-06-01

    Research activities at Lawrence Livermore National Laboratory are described in the Energy and Technology Review. This issue includes articles on measuring chromosome changes in people exposed to cigarette smoke, sloshing-ion experiments in the tandem mirror experiment, aluminum-air battery development, and a speech by Edward Teller on national defense. Abstracts of the first three have been prepared separately for the data base. (GHT)

  6. Energy scenarios: a prospective outlook

    International Nuclear Information System (INIS)

    Salomon, Thierry; Claustre, Raphael; Charru, Madeleine; Sukov, Stephane; Marignac, Yves; Fink, Meike; Bibas, Ruben; Le Saux, Gildas

    2011-01-01

    A set of articles discusses the use of energy scenarios: how useful they can be to describe a possible future and even to gather the involved actors, how they have been used in France in the past (for planning or prediction purposes, with sometimes some over-assessed or contradictory results, without considering any decline of nuclear energy, or by setting an impossible equation in the case of the Grenelle de l'Environnement), how the scenario framework impacts its content (depending on the approach type: standard, optimization, bottom-up, top-down, or hybrid). It also discusses the issue of choice of hypotheses on growth-based and de-growth-based scenarios, outlines how energy saving is a key for a sustainable evolution. Two German scenarios regarding electricity production (centralisation or decentralisation) and French regional scenarios for Nord-Pas-de-Calais are then briefly discussed

  7. Geothermal energy - availability - economy - prospects

    International Nuclear Information System (INIS)

    Kappelmeyer, O.

    1992-01-01

    The heat contained in the earth's crust represents an inexhaustible reservoir of energy on the technical scale, which is available at all times of day and at all seasons. In the volcanically active zones, the earth's heat is used industrially: Worldwide, the electrical power of geothermal powerstations is about 5000 MW; in addition, about 10,000 MW are used for direct thermal applications (heating) in regions with normal geothermal conditions. The geothermal power plants have been expanded at an annual rate of 12.2% since 1970. In many developing countries, the geothermal energy is the most important home source of energy for electricity generation. In Europe, in the Paris Basin, hot groundwater is pumped from a depth of about 2 km and is used for heating blocks of flats. In France as a whole, about 170,000 flats have been supplied with heat and hot water from underground for more than a decade. (orig./DG) [de

  8. Geothermal Energy: Prospects and Problems

    Science.gov (United States)

    Ritter, William W.

    1973-01-01

    An examination of geothermal energy as a means of increasing the United States power resources with minimal pollution problems. Developed and planned geothermal-electric power installations around the world, capacities, installation dates, etc., are reviewed. Environmental impact, problems, etc. are discussed. (LK)

  9. Economic aspects of advanced energy technologies

    International Nuclear Information System (INIS)

    Ramakumar, R.; Rodriguez, A.P.; Venkata, S.S.

    1993-01-01

    Advanced energy technologies span a wide variety of resources, techniques, and end-user requirements. Economic considerations are major factors that shape their harnessing and utilization. A discussion of the basic factors in the economic arena is presented, with particular emphasis on renewable energy technologies--photovoltaics, solar-thermal, wind-electric conversion, biomass utilization, hydro, and tidal and wave energy systems. The following are essential to determine appropriate energy system topologies: proper resource-need matching with an eye on the quality of energy requirements, integrated use of several resources and technologies, and a comprehensive consideration which includes prospecting, collection, conversion, transportation, distribution, storage and reconversion, end use, and subsequent waste management aspects. A few case studies are included to apprise the reader of the status of some of the key technologies and systems

  10. The technological prospective of the nuclear sector

    International Nuclear Information System (INIS)

    Schapira, J.P.; Bergeron, J.; Simon, A.; Thomas, J.B.

    2000-06-01

    This prospective analysis of the nuclear park for the period 200-2050 is particularly devoted to scenario of the park evolution, allowing a gradually control of the plutonium inventory and as the same time the minimization of long life radioactive wastes production as the plutonium content. Scenario with multi-recycling illustrate the long dated interest of the reprocessing to acquire and keep the control of the plutonium inventory and decrease the volume and the possible radiotoxicity of ultimate wastes and to optimize the use of natural energy resources in the perspective of the nuclear energy contribution to the sustainable development. (A.L.B.)

  11. Geothermal Energy and its Prospects in Lithuania

    International Nuclear Information System (INIS)

    Radeckas, B.

    1995-01-01

    Data on the geothermal resources in lithuania and on their prospective usage are presented. The analysis covers water horizons of the geothermal anomaly in West Lithuania and their hydrogeology. The energy of the 3 km thick geothermal source was evaluated. Technical and economical possibilities of using geothermal energy in West Lithuania are described. Some aspects of the investment and of the project of a geothermal power plant in Klaipeda are considered. (author). 6 refs., 6 tabs., 2 figs

  12. Superconductivity in energy technologies

    International Nuclear Information System (INIS)

    1990-01-01

    Four years after the sensational discovery the purpose of this book is to show the current state of the art, the technical-physical concepts and new aspects of the technical application and use of superconductors, in the field of energy technologies. The book will focus primarily on the following topics: general introductions; materials: requirements, properties, manufacture, processing; cryotechnology; machines, cables, switches, transformers; energy storage; magnetic engineering for fusion, transport and mass separation; magnets for particle accelerators; promotional activities, economy, patents. This book has been written by and for scientists and engineers working in industry, large-scale research institutions, universities and other research and application fields to help further their knowledge in this field. Apart from the current state of the art, the book also describes future application and development possibilities for the superconductor in power engineering. (orig.)

  13. Finnish energy technology programmes 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-01

    The Finnish Technology Development Centre (Tekes) is responsible for the financing of research and development in the field of energy production technology. A considerable part of the financing goes to technology programmes. Each technology programme involves major Finnish institutions - companies, research institutes, universities and other relevant interests. Many of the energy technology programmes running in 1998 were launched collectively in 1993 and will be completed at the end of 1998. They are complemented by a number of other energy-related technology programmes, each with a timetable of its own. Because energy production technology is horizontal by nature, it is closely connected with research and development in other fields, too, and is an important aspect in several other Tekes technology programmes. For this reason this brochure also presents technology programmes where energy is only one of the aspects considered but which nevertheless contribute considerably to research and development in the energy production sector

  14. Enabling technologies for industrial energy demand management

    International Nuclear Information System (INIS)

    Dyer, Caroline H.; Hammond, Geoffrey P.; Jones, Craig I.; McKenna, Russell C.

    2008-01-01

    This state-of-science review sets out to provide an indicative assessment of enabling technologies for reducing UK industrial energy demand and carbon emissions to 2050. In the short term, i.e. the period that will rely on current or existing technologies, the road map and priorities are clear. A variety of available technologies will lead to energy demand reduction in industrial processes, boiler operation, compressed air usage, electric motor efficiency, heating and lighting, and ancillary uses such as transport. The prospects for the commercial exploitation of innovative technologies by the middle of the 21st century are more speculative. Emphasis is therefore placed on the range of technology assessment methods that are likely to provide policy makers with a guide to progress in the development of high-temperature processes, improved materials, process integration and intensification, and improved industrial process control and monitoring. Key among the appraisal methods applicable to the energy sector is thermodynamic analysis, making use of energy, exergy and 'exergoeconomic' techniques. Technical and economic barriers will limit the improvement potential to perhaps a 30% cut in industrial energy use, which would make a significant contribution to reducing energy demand and carbon emissions in UK industry. Non-technological drivers for, and barriers to, the take-up of innovative, low-carbon energy technologies for industry are also outlined

  15. Energy and technology review

    Energy Technology Data Exchange (ETDEWEB)

    Poggio, A.J. (ed.)

    1988-10-01

    This issue of Energy and Technology Review contains: Neutron Penumbral Imaging of Laser-Fusion Targets--using our new penumbral-imaging diagnostic, we have obtained the first images that can be used to measure directly the deuterium-tritium burn region in laser-driven fusion targets; Computed Tomography for Nondestructive Evaluation--various computed tomography systems and computational techniques are used in nondestructive evaluation; Three-Dimensional Image Analysis for Studying Nuclear Chromatin Structure--we have developed an optic-electronic system for acquiring cross-sectional views of cell nuclei, and computer codes to analyze these images and reconstruct the three-dimensional structures they represent; Imaging in the Nuclear Test Program--advanced techniques produce images of unprecedented detail and resolution from Nevada Test Site data; and Computational X-Ray Holography--visible-light experiments and numerically simulated holograms test our ideas about an x-ray microscope for biological research.

  16. Prospects for sustainable energy: a critical assessment

    International Nuclear Information System (INIS)

    Cassedy, E.S. Jr

    2000-04-01

    This book explores the historical origins, technical features, marketability, and environmental impacts of the complete range of sustainable energy technologies: solar, biomass, wind, hydropower, geothermal power, ocean-energy sources, solar-derived hydrogen fuel, and energy storage. The aim is to inform policy analysts and decision makers of the options available for sustainable energy production. The book is therefore written so as to be accessible to an audience from a broad range of backgrounds and scientific training. It will also be a valuable supplementary text for advanced courses in environmental studies, energy economics and policy, and engineering

  17. Key energy technologies for Europe

    International Nuclear Information System (INIS)

    Holst Joergensen, Birte

    2005-09-01

    The report is part of the work undertaken by the High-Level Expert Group to prepare a report on emerging science and technology trends and the implications for EU and Member State research policies. The outline of the report is: 1) In the introductory section, energy technologies are defined and for analytical reasons further narrowed down; 2) The description of the socio-economic challenges facing Europe in the energy field is based on the analysis made by the International Energy Agency going back to 1970 and with forecasts to 2030. Both the world situation and the European situation are described. This section also contains an overview of the main EU policy responses to energy. Both EU energy R and D as well as Member State energy R and D resources are described in view of international efforts; 3) The description of the science and technology base is made for selected energy technologies, including energy efficiency, biomass, hydrogen, and fuel cells, photovoltaics, clean fossil fuel technologies and CO 2 capture and storage, nuclear fission and fusion. When possible, a SWOT is made for each technology and finally summarised; 4) The forward look highlights some of the key problems and uncertainties related to the future energy situation. Examples of recent energy foresights are given, including national energy foresights in Sweden and the UK as well as links to a number of regional and national foresights and roadmaps; 5) Appendix 1 contains a short description of key international organisations dealing with energy technologies and energy research. (ln)

  18. Global energy and technology trends

    International Nuclear Information System (INIS)

    Rogner, Hans-Holger

    2008-01-01

    from the world's nuclear power reactors has continued to climb steadily, although the amount of new nuclear capacity coming on line each year has dropped substanially since its peak in 1980s. Looking ahead to nuclear power's prospects in the new century, four features stand out: (1) new nuclear power plants are not being built fast enough to maintain nuclear power's 16% share of global electricity generation; (2) current expansion, as well as near-term and long term growth prospects, are centered in Asia; (3) but 2002 also saw some signs of revitalized growth in Western Europe and North america, where growth has stagnated because of economics, market liberalization, and excess capacity; (4) long-term projections for nuclear power, particularly in the event of international agreement to significantly limit greenhouse gas (GHG) emissions, are more bullish than near term trends. The key determining factor will be economics. In considering how to meet the world's growing need for enegy, it is important to recognize that each country is unique in itself and that every country uses a mix of energy supplies because: (1) different technologies are needed to meet diferent needs, e.g. for baseload power in contrast to peak power, or for meeting concentrated demand in megacities in contrast to that required by small users in remote areas; (2) evolution of the energy supply is uneven, and new technologies replace older ones in fits and starts and with overlaps; (3) different investors choose different technologies based on different requirements and perceptions about profitability and risk; (4) fast growing countries like China may need to expand all energy sources simultaneously just to keep up with growing demand. Moreover, the right mix for each country depends partly on how fast a country's energy demand is growing; on the country's energy resources and alternatives; on the available financing options and whether the investment is in a deregulated market that values rapid

  19. New energy technologies part 2, storage and low emission technologies

    International Nuclear Information System (INIS)

    Sabonnadiere, J.C.

    2007-01-01

    After a first volume devoted to renewable energy sources, this second volume follows the first one and starts with a detailed presentation of energy storage means and technologies. This first chapter is followed by a prospective presentation of innovative concepts in the domain of nuclear energy. A detailed analysis of cogeneration systems, which aim at optimizing the efficiency of heat generation facilities by the adjunction of a power generation unit, allows to outline the advantages and limitations of this process. The next two chapters deal with the development of hydrogen industry as energy vector and with its application to power generation using fuel cells in several domains of use. Content: - forewords: electric power, the new paradigm, the decentralized generation, the energy conversion means; - chapter 1: energy storage, applications in relation with the electricity vector (energy density, storage problems, storage systems); - chapter 2: nuclear fission today and tomorrow, from rebirth to technological jump (2006 energy green book, keeping all energy options opened); nuclear energy in the world: 50 years of industrial experience; main actors: common needs, international vision and strategic instruments; at the eve of a technological jump: research challenges and governmental initiatives; generation 2 (today): safety of supplies and respect of the environment; generation 3 (2010): rebirth with continuous improvements; generation 4 (2040): technological jump to satisfy new needs; education and training: general goals; conclusion: nuclear power as part of the solution for a sustainable energy mix; - chapter 3: cogeneration (estimation of cogeneration potential, environmental impact, conclusions and perspectives); - chapter 4: hydrogen as energy vector (context, energy vector of the future, hydrogen generation, transport, distribution and storage; applications of hydrogen-energy, risks, standards, regulations and acceptability; hydrogen economics; hydrogen

  20. Prospects of Anaerobic Digestion Technology in China

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    As the world's largest developing country, China must face the problem of managing municipal solid waste, and the challenge of organic waste disposal is even more serious. Considering the characteristics of traditional waste disposal technologies and the subsequent secondary pollution, anaerobic digestion has various advantages such as reduction in the land needed for disposal and preservation of environmental quality. In light of the energy crisis, this paper focuses on the potential production of biogas from biowaste through anaerobic digestion processes, the problems incurred by the waste collection system, and the efficiency of the anaerobic digestion process. Use of biogas in a combined heat and power cogeneration system is also discussed. Finally, the advantages of anaerobic digestion technology for the Chinese market are summarized. The anaerobic digestion is suggested to be a promising treating technology for the organic wastes in China.

  1. Gas-Fired Distributed Energy Resource Technology Characterizations

    Energy Technology Data Exchange (ETDEWEB)

    Goldstein, L.; Hedman, B.; Knowles, D.; Freedman, S. I.; Woods, R.; Schweizer, T.

    2003-11-01

    The U. S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) is directing substantial programs in the development and encouragement of new energy technologies. Among them are renewable energy and distributed energy resource technologies. As part of its ongoing effort to document the status and potential of these technologies, DOE EERE directed the National Renewable Energy Laboratory to lead an effort to develop and publish Distributed Energy Technology Characterizations (TCs) that would provide both the department and energy community with a consistent and objective set of cost and performance data in prospective electric-power generation applications in the United States. Toward that goal, DOE/EERE - joined by the Electric Power Research Institute (EPRI) - published the Renewable Energy Technology Characterizations in December 1997.As a follow-up, DOE EERE - joined by the Gas Research Institute - is now publishing this document, Gas-Fired Distributed Energy Resource Technology Characterizations.

  2. Characterizing emerging industrial technologies in energy models

    Energy Technology Data Exchange (ETDEWEB)

    Laitner, John A. (Skip); Worrell, Ernst; Galitsky, Christina; Hanson, Donald A.

    2003-07-29

    Conservation supply curves are a common tool in economic analysis. As such, they provide an important opportunity to include a non-linear representation of technology and technological change in economy-wide models. Because supply curves are closely related to production isoquants, we explore the possibility of using bottom-up technology assessments to inform top-down representations of energy models of the U.S. economy. Based on a recent report by LBNL and ACEEE on emerging industrial technologies within the United States, we have constructed a supply curve for 54 such technologies for the year 2015. Each of the selected technologies has been assessed with respect to energy efficiency characteristics, likely energy savings by 2015, economics, and environmental performance, as well as needs for further development or implementation of the technology. The technical potential for primary energy savings of the 54 identified technologies is equal to 3.54 Quads, or 8.4 percent of the assume d2015 industrial energy consumption. Based on the supply curve, assuming a discount rate of 15 percent and 2015 prices as forecasted in the Annual Energy Outlook2002, we estimate the economic potential to be 2.66 Quads - or 6.3 percent of the assumed forecast consumption for 2015. In addition, we further estimate how much these industrial technologies might contribute to standard reference case projections, and how much additional energy savings might be available assuming a different mix of policies and incentives. Finally, we review the prospects for integrating the findings of this and similar studies into standard economic models. Although further work needs to be completed to provide the necessary link between supply curves and production isoquants, it is hoped that this link will be a useful starting point for discussion with developers of energy-economic models.

  3. Appendix A: Energy storage technologies

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2009-01-18

    The project financial evaluation section of the Renewable Energy Technology Characterizations describes structures and models to support the technical and economic status of emerging renewable energy options for electricity supply.

  4. Progress in sustainable energy technologies

    CERN Document Server

    Dincer, Ibrahim; Kucuk, Haydar

    2014-01-01

    This multi-disciplinary volume presents information on the state-of-the-art in sustainable energy technologies key to tackling the world's energy challenges and achieving environmentally benign solutions. Its unique amalgamation of the latest technical information, research findings and examples of successfully applied new developments in the area of sustainable energy will be of keen interest to engineers, students, practitioners, scientists and researchers working with sustainable energy technologies. Problem statements, projections, new concepts, models, experiments, measurements and simula

  5. Renewable energy in India: Historical developments and prospects

    International Nuclear Information System (INIS)

    Bhattacharya, S.C.; Jana, Chinmoy

    2009-01-01

    Promoting renewable energy in India has assumed great importance in recent years in view of high growth rate of energy consumption, high share of coal in domestic energy demand, heavy dependence on imports for meeting demands for petroleum fuels and volatility of world oil market. A number of renewable energy technologies (RETs) are now well established in the country. The technology that has achieved the most dramatic growth rate and success is wind energy; India ranks fourth in the world in terms of total installed capacity. India hosts the world's largest small gasifier programme and second largest biogas programme. After many years of slow growth, demand for solar water heaters appears to be gaining momentum. Small hydro has been growing in India at a slow but steady pace. Installation of some of the technologies appears to have slowed down in recent years; these include improved cooking stoves (ICSs) and solar photovoltaic (PV) systems. In spite of many successes, the overall growth of renewable energy in India has remained rather slow. A number of factors are likely to boost the future prospects of renewable energy in the country; these include global pressure and voluntary targets for greenhouse gas emission reduction, a possible future oil crisis, intensification of rural electrification program, and import of hydropower from neighbouring countries.

  6. Hydrogen energy technology

    International Nuclear Information System (INIS)

    Morovic, T.; Pilhar, R.; Witt, B.

    1988-01-01

    A comprehensive assessment of different energy systems from the economic point of view has to be based on data showing all relevant costs incurred and benefits drawn by the society from the use of such energy systems, i.e. internal costs and benefits visible to the energy consumer as prices paid for power supplied, as well as external costs and benefits. External costs or benefits of energy systems cover among other items employment or wage standard effects, energy-induced environmental impacts, public expenditure for pollution abatement and mitigation of risks and effects of accidents, and the user costs connected with the exploitation of reserves, which are not rated high enough to really reflect and demonstrate the factor of depletion of non-renewable energy sources, as e.g. fossil reserves. Damage to the natural and social environment induced by anthropogenous air pollutants up to about 90% counts among external costs of energy conversion and utilisation. Such damage is considered to be the main factor of external energy costs, while the external benefits of energy systems currently are rated to be relatively unsignificant. This means that an internalisation of external costs would drive up current prices of non-renewable energy sources, which in turn would boost up the economics of renewable energy sources, and the hydrogen produced with their energy. Other advantages attributed to most of the renewable energy sources and to hydrogen energy systems are better environmental compatibility, and no user costs. (orig.) [de

  7. Save energy of 21{sup st} century in public welfare section. Practical technology and future prospect; Minsei bumon ni okeru 21seiki no sho energy. Jitsuyoka gijutsu to shorai tenbo

    Energy Technology Data Exchange (ETDEWEB)

    Nakagami, H. [Jyu Kankyo Research Inst., Inc. Tokyo (Japan)

    1998-01-01

    Only 2 years left for 20th century. This 100 years, population increased 3 times, actual GNP became 42 times higher, energy consumption was increased to 52 times and amount of CO{sub 2} generation has been 31 times higher. Even at present after 20 years of second oil chock, consumption of energy and amount of CO{sub 2} generation are in a increasing trend. Among them, in public welfare section, energy consumption is increasing along with the transportation section. In residence, increase in energy demand is due to the improvement of residential environment, wide application of home electrical appliances, and increase in official energy demand is due to wider floor space, wide use of OA equipments, automatic vender machines. On the other hand, energy saving of air conditioning, refrigerator, television and so forth has been progressed widely. However, progress of these save energy technologies also is not sufficient to cope with the speed of energy consumption. Results differ with the progress of technology development, speed of its wide use and so forth, however, reduction of generation of CO{sub 2} to a 1990 level in public welfare section is very difficult. General measures like perfect technology development, economical aid, advertisement and so forth are in demand

  8. Industrial energy conservation technology

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, P.S.; Williams, M.A. (eds.)

    1980-01-01

    A separate abstract was prepared for each of the 60 papers included in this volume, all of which will appear in Energy Research Abstracts (ERA); 21 were selected for Energy Abstracts for Policy Analysis (EAPA). (MCW)

  9. Energy and technology review

    Energy Technology Data Exchange (ETDEWEB)

    Selden, R.W.

    1977-05-01

    Topics covered include: geothermal energy development at LLL, energy conversion engineering, continuing education at LLL, and the Western states uranium resource survey. Separate abstracts were prepared for 3 sections. (MCG)

  10. Industrial Energy Conservation Technology

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    A separate abstract was prepared for each of the 55 papers presented in this volume, all of which will appear in Energy Research Abstracts (ERA); 18 were selected for Energy Abstracts for Policy Analysis (EAPA). (MCW)

  11. Morgantown Energy Technology Center, technology summary

    International Nuclear Information System (INIS)

    1994-06-01

    This document has been prepared by the DOE Environmental Management (EM) Office of Technology Development (OTD) to highlight its research, development, demonstration, testing, and evaluation activities funded through the Morgantown Energy Technology Center (METC). Technologies and processes described have the potential to enhance DOE's cleanup and waste management efforts, as well as improve US industry's competitiveness in global environmental markets. METC's R ampersand D programs are focused on commercialization of technologies that will be carried out in the private sector. META has solicited two PRDAs for EM. The first, in the area of groundwater and soil technologies, resulted in twenty-one contact awards to private sector and university technology developers. The second PRDA solicited novel decontamination and decommissioning technologies and resulted in eighteen contract awards. In addition to the PRDAs, METC solicited the first EM ROA in 1993. The ROA solicited research in a broad range of EM-related topics including in situ remediation, characterization, sensors, and monitoring technologies, efficient separation technologies, mixed waste treatment technologies, and robotics. This document describes these technology development activities

  12. Emerging wind energy technologies

    DEFF Research Database (Denmark)

    Rasmussen, Flemming; Grivel, Jean-Claude; Faber, Michael Havbro

    2014-01-01

    This chapter will discuss emerging technologies that are expected to continue the development of the wind sector to embrace new markets and to become even more competitive.......This chapter will discuss emerging technologies that are expected to continue the development of the wind sector to embrace new markets and to become even more competitive....

  13. Marine renewable energies: prospective foresight study for 2030

    International Nuclear Information System (INIS)

    Paillard, M.; Lacroix, D.; Lamblin, V.

    2009-01-01

    The ocean is a huge reservoir of renewable energy sources, such as wind, currents, tides, waves, marine biomass, thermal energy, osmotic power, and so on. Like other maritime nations in Europe, France enjoys significant potential to develop these energy sources, especially overseas. In March 2007, Ifremer's chairman launched a prospective foresight study on these energies for the time horizon of 2030. With support from the Futuribles consulting group, twenty French partners representing the main stakeholders in the sector carried out this work. Their objective was to identify the technologies, specify the socio-economic prerequisites for them to emerge and be competitive and assess their respective impacts on power sources and the environment. What was learned from this study can be applied well beyond France, at a time when a European maritime strategy is taking shape. (authors)

  14. Prospects of High Energy Laboratory Astrophysics

    International Nuclear Information System (INIS)

    Ng, Johnny S.T.; SLAC

    2006-01-01

    Ultra high energy cosmic rays (UHECR) have been observed but their sources and production mechanisms are yet to be understood. We envision a laboratory astrophysics program that will contribute to the understanding of cosmic accelerators with efforts to: (1) test and calibrate UHECR observational techniques, and (2) elucidate the underlying physics of cosmic acceleration through laboratory experiments and computer simulations. Innovative experiments belonging to the first category have already been done at the SLAC FFTB. Results on air fluorescence yields from the FLASH experiment are reviewed. Proposed future accelerator facilities can provided unprecedented high-energy-densities in a regime relevant to cosmic acceleration studies and accessible in a terrestrial environment for the first time. We review recent simulation studies of nonlinear plasma dynamics that could give rise to cosmic acceleration, and discuss prospects for experimental investigation of the underlying mechanisms

  15. World energy prospects: to where trends lead?

    International Nuclear Information System (INIS)

    2005-01-01

    This conference was organized after the publication by the International Energy Agency (IEA) of the 2004 World Energy Outlook (WEO) study. The WEO study presented two projection scenarios, a tendentious one and an alternate one, but both unacceptable. Two presentations were given, followed by a debate with the participants. This document gathers the transparencies of the presentations and a summary of the presentations and of the debate. The first presentation by Fatih Birol, Chief Economist at the IEA, is entitled 'World Energy Outlook 2004'. It describes the two scenarios: Global Energy Trends and Strategic Challenges, Oil Markets, European Union Energy Outlook, An Alternative Policy Scenario, Summary and Conclusions. The conclusions are as follows: - On current policies, world energy needs will be almost 60% higher in 2030 than now; - Energy resources are more than adequate to meet demand until 2030 and well beyond; - But projected market trends raise serious concerns: increased vulnerability to supply disruptions, rising CO 2 emissions, huge energy-investment needs, persistent energy poverty; - More vigorous policies would save energy and reduce emissions significantly; - But a truly sustainable energy system will call for faster technology development and deployment; - Urgent and decisive government action is needed. The second presentation by Jean-Marie Chevalier (Paris 9 Dauphine Univ.) is entitled 'IEA Outlook 2004: some important innovations'. It analyzes the following points: the sustainability of demand projections, the role of nuclear energy and its possible re-launching, the key-role of energy efficiency, the access to energy of deprived people; the new articulation of powers: what are the remnants of a national energy policy, what is the European vision of energy: diversification, security of supplies, energy efficiency, abatement of greenhouse gas emissions; the need for a worldwide regulation. It presents also: the world energy environment: the

  16. Key energy technologies for Europe

    Energy Technology Data Exchange (ETDEWEB)

    Holst Joergensen, Birte

    2005-09-01

    The report is part of the work undertaken by the High-Level Expert Group to prepare a report on emerging science and technology trends and the implications for EU and Member State research policies. The outline of the report is: 1) In the introductory section, energy technologies are defined and for analytical reasons further narrowed down; 2) The description of the socio-economic challenges facing Europe in the energy field is based on the analysis made by the International Energy Agency going back to 1970 and with forecasts to 2030. Both the world situation and the European situation are described. This section also contains an overview of the main EU policy responses to energy. Both EU energy R and D as well as Member State energy R and D resources are described in view of international efforts; 3) The description of the science and technology base is made for selected energy technologies, including energy efficiency, biomass, hydrogen, and fuel cells, photovoltaics, clean fossil fuel technologies and CO{sub 2} capture and storage, nuclear fission and fusion. When possible, a SWOT is made for each technology and finally summarised; 4) The forward look highlights some of the key problems and uncertainties related to the future energy situation. Examples of recent energy foresights are given, including national energy foresights in Sweden and the UK as well as links to a number of regional and national foresights and roadmaps; 5) Appendix 1 contains a short description of key international organisations dealing with energy technologies and energy research. (ln)

  17. Energy and technology review

    International Nuclear Information System (INIS)

    1981-10-01

    Research is described in three areas, high-technology design of unconventional, nonnuclear weapons, a model for analyzing special nuclear materials safeguards decisions, and a nuclear weapons accident exercise (NUWAX-81)

  18. Energy technology evaluation report: Energy security

    Science.gov (United States)

    Koopman, R.; Lamont, A.; Schock, R.

    1992-09-01

    Energy security was identified in the National Energy Strategy (NES) as a major issue for the Department of Energy (DOE). As part of a process designed by the DOE to identify technologies important to implementing the NES, an expert working group was convened to consider which technologies can best contribute to reducing the nation's economic vulnerability to future disruptions of world oil supplies, the working definition of energy security. Other working groups were established to deal with economic growth, environmental quality, and technical foundations. Energy Security working group members were chosen to represent as broad a spectrum of energy supply and end-use technologies as possible and were selected for their established reputations as experienced experts with an ability to be objective. The time available for this evaluation was very short. The group evaluated technologies using criteria taken from the NES which can be summarized for energy security as follows: diversifying sources of world oil supply so as to decrease the increasing monopoly status of the Persian Gulf region; reducing the importance of oil use in the US economy to diminish the impact of future disruptions in oil supply; and increasing the preparedness of the US to deal with oil supply disruptions by having alternatives available at a known price. The result of the first phase of the evaluation process was the identification of technology groups determined to be clearly important for reducing US vulnerability to oil supply disruptions. The important technologies were mostly within the high leverage areas of oil and gas supply and transportation demand but also included hydrogen utilization, biomass, diversion resistant nuclear power, and substitute industrial feedstocks.

  19. Prospects for inertial fusion as an energy source

    International Nuclear Information System (INIS)

    Hogan, W.J.

    1989-01-01

    Progress in the Inertial Confinement Fusion (ICF) Program has been very rapid in the last few years. Target physics experiments with laboratory lasers and in underground nuclear tests have shown that the drive conditions necessary to achieve high gain can be achieved in the laboratory with a pulse-shaped driver of about 10 MJ. Requirements and designs for a Laboratory Microfusion Facility (LMF) have been formulated. Research on driver technology necessary for an ICF reactor is making progress. Prospects for ICF as an energy source are very promising. 11 refs., 5 figs

  20. Inner solar system prospective energy and material resources

    CERN Document Server

    Zacny, Kris

    2015-01-01

    This book investigates Venus and Mercury prospective energy and material resources. It is a collection of topics related to exploration and utilization of these bodies. It presents past and future technologies and solutions to old problems that could become reality in our life time. The book therefore is a great source of condensed information for specialists interested in current and impending Venus and Mercury related activities and a good starting point for space researchers, inventors, technologists and potential investors.   Written for researchers, engineers, and businessmen interested in Venus and Mercury exploration and exploitation.

  1. Energy and Technology Review

    International Nuclear Information System (INIS)

    1984-05-01

    Three articles and two briefs discuss ongoing research at Lawrence Livermore National Laboratory. Topics in this issue include: construction of human chromosome library (brief); dispersion of liquified gases (brief); magma evolution; energy flow diagrams; and computer simulation of particulate flow

  2. Strategy and Prospects for Nuclear Energy in Europe

    International Nuclear Information System (INIS)

    Upson, P. C.

    1998-01-01

    Nuclear power has, for many years, played a vital role in helping the European Union meet its energy and environmental objectives. Today, however, power station construction programmes are at a virtual standstill, with little or no prospect of a restart in the foreseeable future; some member states have, in fact, taken the decision to phase out nuclear when plants currently operating reach the end of their life, if not before. Against this unpromising background, the nuclear industry is taking vigorous steps to improve its competitiveness, ensure the safety of nuclear plants operating in parts of East Europe, win business in a challenging export market and develop new technology that will build on already high standards of plant performance and safety. In reviewing the situation, the author touches upon the factors and circumstances that are likely to impact favourably or unfavourably on the industry's efforts to secure its long-term future and ends by summing up the prospects for success. (author)

  3. Energy and Technology Review

    Energy Technology Data Exchange (ETDEWEB)

    Bookless, W.A.; McElroy, L.; Wheatcraft, D.; Middleton, C.; Shang, S. [eds.

    1994-10-01

    Two articles are included: the industrial computing initiative, and artificial hip joints (applying weapons expertise to medical technology). Three research highlights (briefs) are included: KEN project (face recognition), modeling groundwater flow and chemical migration, and gas and oil national information infrastructure.

  4. Energy and Technology Review

    International Nuclear Information System (INIS)

    Bookless, W.A.; McElroy, L.; Wheatcraft, D.; Middleton, C.; Shang, S.

    1994-10-01

    Two articles are included: the industrial computing initiative, and artificial hip joints (applying weapons expertise to medical technology). Three research highlights (briefs) are included: KEN project (face recognition), modeling groundwater flow and chemical migration, and gas and oil national information infrastructure

  5. Poverty or progress: energy problems and prospects

    Energy Technology Data Exchange (ETDEWEB)

    Gair, G F

    1977-12-25

    In a review of the presentations at the International Energy Agency meet in Paris in the fall of 1977, the author noted that 19 developed nations agreed on a program of 12 principles to provide the positive response that must be made to meet the energy problem. To succeed, the principles must reflect themselves as quickly as possible in the development of national policies--greater effort in conservation and efficient use of energy; new impetus into research and development; progressive easing of dependence upon imported oil; programs for greater public support for and involvement in energy economies. New Zealand signed participation in a wind energy research project and will support one in coal technology. It did not actively support nuclear energy development. With the depletion of liquid fuels for transportation purposes, problems are cited. New Zealand does have abundant geothermal and hydro as static energy supplies. New Zealand must make plans for domestic exploration for petroleum to cut down on the cost of imported oil. Plans for substantially increasing indigenous coal production and increasing natural gas supplies are reviewed. It is also the government's hope that the larger elements of the South Island manufactured gas industry can be maintained by the use of liquefied petroleum gas as a feedstock, providing that satisfactory transport and pricing can be arranged. (MCW)

  6. Technology development and application research of remote sensing in uranium geological prospecting

    International Nuclear Information System (INIS)

    Liu Dechang; Dong Xiuzhen; Wang Zitao

    2012-01-01

    From the application, the concept, the theory study and application effect, this article discusses technology development and application research of remote sensing in uranium geological prospecting. The prospecting way from 'information prospecting' to 'theoretical prospecting' to 'simulated prospecting' to 'technology prospecting' with remote sensing is provided and achieved significant prospecting effect. (authors)

  7. Bringing solutions to big challenges. Energy - climate - technology (ECT)

    International Nuclear Information System (INIS)

    2008-01-01

    The conference contains 45 presentations within the sections integrated policy and strategic perspectives on energy, climate change and technology, energy efficiency with prospects and measures, climate change and challenges for offshore energy and technology, possibilities for technology utilization, nuclear technology developments including some papers on thorium utilization, ethics of energy resource use and climate change, challenges and possibilities for the Western Norway and sustainability and security in an ECT-context. Some economic aspects are discussed as well. 16 of the 45 papers have been indexed for the database (tk)

  8. Renewable energy sources cost benefit analysis and prospects for Italy

    International Nuclear Information System (INIS)

    Ariemma, A.; Montanino, G.

    1992-01-01

    In light of Italy's over-dependency on imported oil, and due to this nation's commitment to the pursuit of the strict environmental protection policies of the European Communities, ENEL (the Italian National Electricity Board) has become actively involved in research efforts aimed at the commercialization of renewable energy sources - photovoltaic, wind, biomass, and mini-hydraulic. Through the use of energy production cost estimates based on current and near- future levels of technological advancement, this paper assesses prospects for the different sources. The advantages and disadvantages of each source in its use as a suitable complementary energy supply satisfying specific sets of constraints regarding siting, weather, capital and operating costs, maintenance, etc., are pointed out. In comparing the various alternatives, the paper also considers environmental benefits and commercialization feasibility in terms of time and outlay

  9. New energy technology

    Energy Technology Data Exchange (ETDEWEB)

    Michrowski, A [ed.

    1990-01-01

    A conference was held to exchange information on energy systems which draw on natural supply, do not release residue, are inexpensive, and are universally applicable. Some of these systems are still in the theoretical stage and derive from research on the vacuum of space-time, magnetic fields, and ether physics. Papers were presented on fundamentals of zero-point energy or electrogravitational systems, propulsion systems relying on inertial forces, solar collectors, improved internal combustion engines and electric motors, solar cells, aneutronic (nonradioactive) nuclear power development, charged-aerosol air purifiers, and wireless transmission of electrical power. Separate abstracts have been prepared for 16 papers from this conference.

  10. Gas and energy technology 2006

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-05-15

    Norway has a long tradition as an energy producing nation. No other country administers equally large quantities of energy compared to the number of inhabitants. Norway faces great challenges concerning the ambitions of utilizing natural gas power and living up to its Kyoto protocol pledges. Tekna would like to contribute to increased knowledge about natural gas and energy, its possibilities and technical challenges. Topics treated include carrying and employing natural gas, aspects of technology, energy and environment, hydrogen as energy carrier, as well as other energy alternatives, CO{sub 2} capture and the value chain connected to it.

  11. Energy and technology review

    International Nuclear Information System (INIS)

    1982-08-01

    Three areas of research are discussed: microcomputer technology applied to inspecting machined parts to determine roundness in ultraprecision measurements; development of an electrolytic technique for preparing dinitrogen pentoxide as a potentially less expensive step in the large-scale synthesis of the explosive HMX; and the application of frequency conversion to short wavelengths in the Novette and Nova lasers to improve the performance of inertial-confinement fusion targets

  12. Wind energy technology developments

    DEFF Research Database (Denmark)

    Madsen, Peter Hauge; Hansen, Morten Hartvig; Pedersen, Niels Leergaard

    2014-01-01

    turbine blades and towers are very large series-produced components, which costs and quality are strongly dependent on the manufacturing methods. The industrial wind energy sector is well developed in Denmark, and the competitive advantage of the Danish sector and the potential for job creation...

  13. Energy and technology review

    Energy Technology Data Exchange (ETDEWEB)

    Quirk, W.J.; Canada, J.; de Vore, L.; Gleason, K.; Kirvel, R.D.; Kroopnick, H.; McElroy, L.

    1994-04-01

    This issue highlights the Lawrence Livermore National Laboratory`s 1993 accomplishments in our mission areas and core programs: economic competitiveness, national security, energy, the environment, lasers, biology and biotechnology, engineering, physics, chemistry, materials science, computers and computing, and science and math education. Secondary topics include: nonproliferation, arms control, international security, environmental remediation, and waste management.

  14. Energy and technology review

    International Nuclear Information System (INIS)

    1981-05-01

    Research programs at LLNL are reviewed. This issue discusses validation of the pulsed-power design for FXR, the NOVA plasma shutter, thermal control of the MFTF superconducting magnet, a low-energy x-ray spectrometer for pulsed-source diagnostics, micromachining, the electronics engineer's design station, and brazing with a laser microtorch

  15. Technology and energy at school

    International Nuclear Information System (INIS)

    Hawkes, N.

    1994-01-01

    The teaching of technology and energy in schools requires more than simply the transfer of information. Public attitudes towards technology often contain unacknowledged contradictions, and research has shown that programmes for greater public understanding of science depend for their success on context, motivation, and on the source of the information. Exploration of the methods of science, its motivations and its limitations, should provide the basis for teaching nuclear energy in schools

  16. Energy, environment and technological innovation

    Directory of Open Access Journals (Sweden)

    Fernando José Pereira da Costa

    2015-08-01

    Full Text Available The development problems can not be addressed without taking account of the environmental and energy issues, as well as the intimate relationship and the intense interaction between the two. In fact, the energy issue can not be analyzed separately from environmental issues, nor the advances in technological innovation, integrating dynamic-systemic way and so positioning address the issue of the development model to set the bulge the transition process experienced by the world since the seventies of the twentieth century. This transition, in turn, implies the passage of Paradigm of Fossil Fuels to Renewable Energy also called the Paradigm of renewable sources of energy, not just holding the energy problem, but towards to environmental and technological components. It is within this relatively slow and long process, instigator of high levels of volatility, turbulence inducing and motor of technological innovation, which is (re raises the question of the development model that defines how a new model/style development.

  17. Advanced technologies and atomic energy

    International Nuclear Information System (INIS)

    1995-01-01

    The expert committee on the research 'Application of advanced technologies to nuclear power' started the activities in fiscal year 1994 as one of the expert research committees of Atomic Energy Society of Japan. The objective of its foundation is to investigate the information on the advanced technologies related to atomic energy and to promote their practice. In this fiscal year, the advanced technologies in the fields of system and safety, materials and measurement were taken up. The second committee meeting was held in March, 1995. In this report, the contents of the lectures at the committee meeting and the symposium are compiled. The topics in the symposium were the meaning of advanced technologies, the advanced technologies and atomic energy, human factors and control and safety systems, robot technology and microtechnology, and functionally gradient materials. Lectures were given at two committee meetings on the development of atomic energy that has come to the turning point, the development of advanced technologies centering around ULSI, the present problems of structural fine ceramics and countermeasures of JFCC, the material analysis using laser plasma soft X-ray, and the fullerene research of advanced technology development in Power Reactor and Nuclear Fuel Development Corporation. (K.I.)

  18. Energy and technology review

    International Nuclear Information System (INIS)

    1983-10-01

    Three review articles are presented. The first describes the Lawrence Livermore Laboratory role in the research and development of oil-shale retorting technology through its studies of the relevant chemical and physical processes, mathematical models, and new retorting concepts. Second is a discussion of investigation of properties of dense molecular fluids at high pressures and temperatures to improve understanding of high-explosive behavior, giant-planet structure, and hydrodynamic shock interactions. Third, by totally computerizing the triple-quadrupole mass spectrometer system, the laboratory has produced a general-purpose instrument of unrivaled speed, selectivity, and adaptability for the analysis and identification of trace organic constituents in complex chemical mixtures

  19. Energy and technology review

    Energy Technology Data Exchange (ETDEWEB)

    1983-10-01

    Three review articles are presented. The first describes the Lawrence Livermore Laboratory role in the research and development of oil-shale retorting technology through its studies of the relevant chemical and physical processes, mathematical models, and new retorting concepts. Second is a discussion of investigation of properties of dense molecular fluids at high pressures and temperatures to improve understanding of high-explosive behavior, giant-planet structure, and hydrodynamic shock interactions. Third, by totally computerizing the triple-quadrupole mass spectrometer system, the laboratory has produced a general-purpose instrument of unrivaled speed, selectivity, and adaptability for the analysis and identification of trace organic constituents in complex chemical mixtures. (GHT)

  20. Wind energy. Market prospects to 2006

    International Nuclear Information System (INIS)

    Huckle, R.

    2002-01-01

    Renewable energy is becoming an increasingly significant source in the energy portfolio of most countries. Several sources of renewable energy are now being pursued commercially and wind energy is the most advanced in terms of installed electricity generation capacity. Of all types of renewable energy wind energy is the one with which there is the greatest experience - wind wheels and windmills have been used in various forms for hundreds of years. Chapter 1 is an introduction to the market study. Chapter 2 begins with a review of the wind energy industry. Topics included here are the case for wind energy (sustainability, security, non-polluting etc), market structure (the relationship between developers, operators, manufacturers, consortia etc) and environmental issues. This is followed by a discussion of the wind energy market for major countries in terms of installed wind power capacity. Within each country market there is an account of government policy, major wind energy programmes, major projects with information on developers and wind turbine manufacturers. A market analysis is given which includes an economic review, wind energy targets (where they exist) and forecasts to 2006. Chapter 3 is a review of wind turbine applications covering electricity generation for public supply networks, stand alone/community applications, water pumping and water desalination. Chapter 4 provides the basic principles of wind turbine operation and associated technologies. A brief account is given of the development of wind turbines and the main components such as the tower, rotor blades, gearbox, generator and electrical controls. Electricity generation and control are outlined and the challenge of electricity storage is also discussed. Meteorological factors (wind speed etc) and the move towards off-shore wind farms are also covered. Chapter 5 contains profiles of leading wind project developers and wind turbine manufacturers. A selection of existing and proposed wind farms

  1. Estimation of the resource and technological prospective of biomass as renewable energy in Mexico (Annexe 2 in 'A vision of year 2030 on the use of the renewable energies in Mexico'); Estimacion del recurso y prospectiva tecnologica de la biomasa como energetico renovable en Mexico (Anexo 2 en 'Una vision al 2030 de la utilizacion de las energias renovables en Mexico')

    Energy Technology Data Exchange (ETDEWEB)

    Masera, Omar R [Centro de Investigaciones en Ecosistemas, Universidad Nacional Autonoma de Mexico, D.F.(Mexico); Agullon, Javier; Gamino, Benjamin [Instituto de Ingenieria, Universidad Nacional Autonoma de Mexico, D.F.(Mexico)

    2005-08-15

    The work that next appears is a first effort towards the estimation of the resource and technological prospective of the biomass energy as renewable energy in Mexico. It tries to give an overview considering the present situation of energy plantations, production of alcohol from biomass as well as of the production of agricultural remainders, at worldwide scale as well as in our country. The report includes very general estimations of the of biomass resource, production costs, technological analyses, costs of investment and production of energy and technological prospective to 25 years in each one of the previously mentioned headings. [Spanish] El trabajo que a continuacion se presenta es un primer esfuerzo hacia la estimacion del recurso y prospectiva tecnologica de la biomasa como energetico renovable en Mexico. Pretende dar un panorama general estimando la situacion actual de plantaciones energeticas, de produccion de alcoholes a partir de biomasa asi como de produccion de residuos agricolas, tanto a escala mundial como en nuestro pais. El informe abarca estimaciones muy generales del recurso de biomasa, costos de produccion, analisis tecnologicos, costos de inversion y de produccion de energia y prospectiva tecnologica a 25 anos en cada uno de los rubros mencionados anteriormente.

  2. NASA energy technology applications program

    Energy Technology Data Exchange (ETDEWEB)

    1980-07-05

    The NASA Energy Technology Applications Program is reviewed. This program covers the following points: 1. wind generation of electricity; 2. photovoltaic solar cells; 3. satellite power systems; 4. direct solar heating and cooling; 5. solar thermal power plants; 6. energy storage; 7. advanced ground propulsion; 8. stationary on-site power supply; 9. advanced coal extraction; 10. magnetic heat pump; 11. aeronautics.

  3. New energy technologies 4. Energy management and energy efficiency

    International Nuclear Information System (INIS)

    Sabonnadiere, J.C.; Caire, R.; Raison, B.; Quenard, D.; Verneau, G.; Zissis, G.

    2007-01-01

    This forth tome of the new energy technologies handbook is devoted to energy management and to the improvement of energy efficiency. The energy management by decentralized generation insertion and network-driven load control, analyzes the insertion and management means of small power generation in distribution networks and the means for load management by the network with the aim of saving energy and limiting peak loads. The second part, devoted to energy efficiency presents in a detailed way the technologies allowing an optimal management of energy in buildings and leading to the implementation of positive energy buildings. A special chapter treats of energy saving using new lighting technologies in the private and public sectors. Content: 1 - decentralized power generation - impacts and solutions: threat or opportunity; deregulation; emerging generation means; impact of decentralized generation on power networks; elements of solution; 2 - mastery of energy demand - loads control by the network: stakes of loads control; choice of loads to be controlled; communication needs; measurements and controls for loads control; model and algorithm needs for loads control. A better energy efficiency: 3 - towards positive energy buildings: key data for Europe; how to convert fossil energy consuming buildings into low-energy consuming and even energy generating buildings; the Minergie brand; the PassivHaus or 'passive house' label; the zero-energy house/zero-energy home (ZEH); the zero-energy building (ZEB); the positive energy house; comparison between the three Minergie/PassivHaus/ZEH types of houses; beyond the positive energy building; 4 - light sources and lighting systems - from technology to energy saving: lighting yesterday and today; light sources and energy conversion; energy saving in the domain of lighting: study of some type-cases; what future for light sources. (J.S.)

  4. Energy and Technology Review

    International Nuclear Information System (INIS)

    1986-02-01

    A specialized laser amplifier for use with velocity-measuring systems is described which makes possible detailed measurements of explosion-driven targets extending over long times. The experimental and diagnostic facilities of the Bunker 801 project enables sensitive and thorough hydrodynamics tests on the high-explosive components of nuclear devices. An improved spectrometry system has been developed covering the energy range from 0.025 eV to 20 MeV for use in radiation monitoring, and a new material is being tested for the neutron dosimeter worn with identification badges

  5. Prospects of renewable-energy sources in Pakistan

    International Nuclear Information System (INIS)

    Zaigham, N.A.; Nayyar, Z.A.

    2005-01-01

    Pakistan, despite the enormous potential of its energy resources, remains energy- deficient and has to rely heavily on imports to satisfy its needs. Moreover, a very large part of the rural areas does not have the electrification facilities, because they are either too remote and/or too expensive to connect to the national grid. Pakistan obtains its energy requirements from a variety of traditional and commercial sources. Share of various primary energy-sources in energy-supply mix remained during last few years as oil: 43.5%, gas: 41.5%, LPG: 0.3%, coal: 4.5%, hydro-electricity: 9.2%, and nuclear electricity: 1.1%. The electric-power generation included 71.9% thermal, 25.2% hydel and 2.9% nuclear. While there is no prospect for Pakistan to reach self-sufficiency in hydrocarbons, a good option is the exploitation and utilization of the huge coal-reserves of Thar and the other renewable energy sources. Pakistan has wide spectrum of high potential renewable energy sources, conventional as well as non-conventional, which have not been adequately explored, exploited and developed. 'Thus, the primary energy supplies today are not enough to meet even the present demand. So, Pakistan, like other developing countries of the region, is facing a serious challenge of energy deficit. The development of the renewable energy sources can play an important role in meeting this challenge. Present observations, based on reviewing the geological setup, geographical position, climatological cycles and the agricultural/industrial/ urbanization activities, reveal that there are bright prospects for the exploitation of various renewable-energy sources, which include mega and macro/micro-hydel, biomass, biogas, wind, solar, co-generation, city and other solid wastes, utilization of low-head canal levels, sea wave and tide and geothermal energies etc. Technologically, all these renewable-energy sources are viable and consequently suited to efforts for poverty alleviation and cleaner

  6. Alternative energy technology

    International Nuclear Information System (INIS)

    Khan, M.B.; Khan, M.Z.; Javed, A.; Bahadur, A.; Hussain, T.

    2011-01-01

    The paper cites three practical propositions to furnish viable green energy in the Biofuels, Clean Coal Processes, and Windmill sectors. We share our experience on indigenous fabrication of 500 W, 1.5 m windmill rotors with a hub height of 6.0 m above ground level as part of NUST-AERO-Fiber Tech outreach industrial link project. Mirror process with matching receptacles is used to fabricate the windmill rotors according to NACA aero foil profile. Full scale load-deflection/bending stiffness tests are conducted using simulated aerodynamic load with incremental loading. An avg. bending stiffness of 14.85 KN/m and mean displacement of 21.17 mm for the maximum applied load of 0.35 KN is recorded at a loading rate of 0.05 KN/sec. for a full scale load range of 25 KN. These results demonstrate that the manufactured composite rotors had adequate structural integrity, subsequently verified in actual windmill operation at 400 rpm. The installed windmill now adorns the skyline of NUST. Fast Track liquid bio fuels are produced from non-edible crop oil using bimodal nano materials. In a process developed at SCME NUST, a conversion to bio diesel time of 5 min. at 25 deg. C is achieved compared to 90 min. at 70 deg. C for the conventional hydroxide catalyst route. The process parameters, characterization and evaluation testing are presented. (author)

  7. Geothermal energy utilization and technology

    CERN Document Server

    Dickson, Mary H; Fanelli, Mario

    2013-01-01

    Geothermal energy refers to the heat contained within the Earth that generates geological phenomena on a planetary scale. Today, this term is often associated with man's efforts to tap into this vast energy source. Geothermal Energy: utilization and technology is a detailed reference text, describing the various methods and technologies used to exploit the earth's heat. Beginning with an overview of geothermal energy and the state of the art, leading international experts in the field cover the main applications of geothermal energy, including: electricity generation space and district heating space cooling greenhouse heating aquaculture industrial applications The final third of the book focuses upon environmental impact and economic, financial and legal considerations, providing a comprehensive review of these topics. Each chapter is written by a different author, but to a set style, beginning with aims and objectives and ending with references, self-assessment questions and answers. Case studies are includ...

  8. Good prospects for green energy in Romania

    Directory of Open Access Journals (Sweden)

    Mariana Papatulica

    2013-05-01

    Full Text Available EU has to attain the strategic objectives for 2020: 20% of energy from renewable sources, cutting the emissions of greenhouse gases by 20% and diminishing the dependence on imported fuels, that is why in the last years European Commission has decided that MS should increase the flexibility of programs to promote green energy and cut subsidies. Although wind and solar energy have become more competitive in terms of cost in the last two decades, many production technologies need to be improved, also storage and transport capacities. Romania has an important potential of renewable energy resources and has introduced a functional mechanism for supporting their development based on a system of mandatory quotas for electricity, combined with trading a number of green certificates, but all the costs are transferred to the consumers.This system may carry an overcompensation for the investors and also an excessive burden on the consumers. Most investments were made in wind and hydro, the fewest in solar and biomass. Market liberalization may create more competition and stimulate the investments in different renewable resources.

  9. Integration with Energy Harvesting Technology

    Directory of Open Access Journals (Sweden)

    S. Williams

    2012-11-01

    Full Text Available This paper reports on the design and implementation of a wireless sensor communication system with a low power consumption that allows it to be integrated with the energy harvesting technology. The system design and implementation focus on reducing the power consumption at three levels: hardware, software and data transmission. The reduction in power consumption, at hardware level in particular, is mainly achieved through the introduction of an energy-aware interface (EAI that ensures a smart inter-correlated management of the energy flow. The resulted system satisfies the requirements of a wireless sensor structure that possesses the energy autonomous capability.

  10. Commercialization of sustainable energy technologies

    International Nuclear Information System (INIS)

    Balachandra, P.; Kristle Nathan, Hippu Salk; Reddy, B. Sudhakara

    2010-01-01

    Commercialization efforts to diffuse sustainable energy technologies (SETs) have so far remained as the biggest challenge in the field of renewable energy and energy efficiency. Limited success of diffusion through government driven pathways urges the need for market based approaches. This paper reviews the existing state of commercialization of SETs in the backdrop of the basic theory of technology diffusion. The different SETs in India are positioned in the technology diffusion map to reflect their slow state of commercialization. The dynamics of SET market is analysed to identify the issues, barriers and stakeholders in the process of SET commercialization. By upgrading the 'potential adopters' to 'techno-entrepreneurs', the study presents the mechanisms for adopting a private sector driven 'business model' approach for successful diffusion of SETs. This is expected to integrate the processes of market transformation and entrepreneurship development with innovative regulatory, marketing, financing, incentive and delivery mechanisms leading to SET commercialization. (author)

  11. Technological trends in energy industry

    International Nuclear Information System (INIS)

    Martin Moyano, R.

    1995-01-01

    According to the usual meaning, technological trends are determined by main companies and leading countries with capacity for the development and marketing of technology. Presently, those trends are addressed to: the development of cleaner and more efficient process for fossil fuels utilization (atmospheric and pressurized fluidized beds, integrated gasification in combined cycle, advanced combined cycles, etc), the development of safer and more economic nuclear reactors; the efficiency increase in both generation and utilisation of energy, including demand side management and distribution automation; and the reduction of cost of renewable energies. Singular points of these trends are: the progress in communication technologies (optical fibre, trucking systems, etc.); the fuel cells; the supercritical boilers; the passive reactors; the nuclear fusion; the superconductivity; etc. Spain belongs to the developed countries but suffer of certain technology shortages that places it in a special situation. (Author)

  12. Energy technology perspectives - scenarios and strategies to 2050

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-11-03

    At their 2005 summit in Gleneagles, G8 leaders confronted questions of energy security and supply and lowering of CO{sub 2} emissions and decided to act with resolve and urgency. They called upon the International Energy Agency to provide advice on scenarios and strategies for a clean and secure energy future. Energy Technology Perspectives is a response to the G8 request. This work demonstrates how energy technologies can make a difference in a series of global scenarios to 2050. It reviews in detail the status and prospects of key energy technologies in electricity generation, buildings, industry and transport. It assesses ways the world can enhance energy security and contain growth in CO{sub 2} emissions by using a portfolio of current and emerging technologies. Major strategic elements of a successful portfolio are energy efficiency, CO{sub 2} capture and storage, renewables and nuclear power. 110 figs., 4 annexes.

  13. Energy technology perspectives: scenarios and strategies to 2050 [Russian version

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    At their 2005 summit in Gleneagles, G8 leaders confronted questions of energy security and supply and lowering of CO{sub 2} emissions and decided to act with resolve and urgency. They called upon the International Energy Agency to provide advice on scenarios and strategies for a clean and secure energy future. Energy Technology Perspectives is a response to the G8 request. This work demonstrates how energy technologies can make a difference in a series of global scenarios to 2050. It reviews in detail the status and prospects of key energy technologies in electricity generation, buildings, industry and transport. It assesses ways the world can enhance energy security and contain growth in CO{sub 2} emissions by using a portfolio of current and emerging technologies. Major strategic elements of a successful portfolio are energy efficiency, CO{sub 2} capture and storage, renewables and nuclear power. 110 figs., 4 annexes.

  14. Energy conversion and utilization technologies

    International Nuclear Information System (INIS)

    1988-01-01

    The DOE Energy Conversion and Utilization Technologies (ECUT) Program continues its efforts to expand the generic knowledge base in emerging technological areas that support energy conservation initiatives by both the DOE end-use sector programs and US private industry. ECUT addresses specific problems associated with the efficiency limits and capabilities to use alternative fuels in energy conversion and end-use. Research is aimed at understanding and improving techniques, processes, and materials that push the thermodynamic efficiency of energy conversion and usage beyond the state of the art. Research programs cover the following areas: combustion, thermal sciences, materials, catalysis and biocatalysis, and tribology. Six sections describe the status of direct contact heat exchange; the ECUT biocatalysis project; a computerized tribology information system; ceramic surface modification; simulation of internal combustion engine processes; and materials-by-design. These six sections have been indexed separately for inclusion on the database. (CK)

  15. Prospects for high energy heavy ion accelerators

    International Nuclear Information System (INIS)

    Leemann, C.

    1979-03-01

    The acceleration of heavy ions to relativistic energies (T greater than or equal to 1 GeV/amu) at the beam intensities required for fundamental research falls clearly in the domain of synchrotons. Up to date, such beams have been obtained from machines originally designed as proton acccelerators by means of modified RF-programs, improved vacuum and, most importantly, altered or entirely new injector systems. Similarly, for the future, substantial changes in synchrotron design itself are not foreseen, but rather the judicious application and development of presently known principles and technologies and a choice of parameters optimized with respect to the peculiarities of heavy ions. The low charge to mass ratio, q/A, of very heavy ions demands that superconducting magnets be considered in the interest of the highest energies for a given machine size. Injector brightness will continue to be of highest importance, and although space charge effects such as tune shifts will be increased by a factor q 2 /A compared with protons, advances in linac current and brightness, rather than substantially higher energies are required to best utilize a given synchrotron acceptance. However, high yeilds of fully stripped, very heavy ions demand energies of a few hundred MeV/amu, thus indicating the need for a booster synchrotron, although for entirely different reasons than in proton facilities. Finally, should we consider colliding beams, the high charge of heavy ions will impose severe current limitations and put high demands on system design with regard to such quantities as e.g., wall impedances or the ion induced gas desorption rate, and advanced concepts such as low β insertions with suppressed dispersion and very small crossing angles will be essential to the achievement of useful luminosities

  16. Energy in France. Present status and prospects

    International Nuclear Information System (INIS)

    2012-07-01

    This brochure, edited by ADEME, the French office for energy management and sustainable development, gives a basic but comprehensive outlook of the energy situation in France: the importance of energy and its various forms; the production and transformation of energy (energy sources, production means, other sources of energy); the transport and the distribution of energy (transportation systems, energy losses, the case of electric power transportation and distribution systems), energy utilization (demand and supply, energy management), the energy policy (historical aspects, the nowadays energy policy and its transition towards a sustainable and renewable energy policy

  17. Renewable Energy: Markets and Prospects by Regions

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    This information paper accompanies the IEA publication Deploying Renewables 2011: Best and Future Policy Practice (IEA, 2011a). It provides more detailed data and analysis on policies for Deploying Renewables and is intended to complement the main publication. This information paper provides an in-depth account of the regional markets and policy trends in all six focus regions; 56 countries in total. Each region is discussed with regards to: recent market developments in the electricity, heat and transport sector; policy developments; IEA projections; an analysis of the mid-term (2030) potential of renewable energy technologies in these regions; and an analysis of the strategic drivers underpinning the deployment of RE in each region.

  18. Production Situation and Technology Prospect of Medical Isotopes

    Directory of Open Access Journals (Sweden)

    GAO Feng;LIN Li;LIU Yu-hao;MA Xing-jun

    2016-10-01

    Full Text Available The isotope production technology was overviewed, including traditional and newest technology. The current situation of medical isotope production was introduced. The problems faced by isotope supply and demand were analyzed. The future development trend of medical isotopes and technology prospect were put forward. As the most populous country, nuclear medicine develops rapidly, however, domestic isotope mainly relies on imports. The highly productive and relatively safe MIPR is expected to be an effective way to breakthrough the bottleneck of the development of nuclear medicine. Traditional isotope production technologies with reactor can be improved. It's urgent to research and promote new isotope production technologies with reactor. Those technologies which do not depend on reactor will have a bright market prospects.

  19. Health risks of energy technologies

    International Nuclear Information System (INIS)

    Travis, C.C.; Etnier, E.L.

    1983-01-01

    This volume examines occupational, public health, and environmental risks of the coal fuel cycle, the nuclear fuel cycle, and unconventional energy technologies. The 6 chapters explore in detail the relationship between energy economics and risk analysis, assess the problems of applying traditional cost-benefit analysis to long-term environmental problems (such as global carbon dioxide levels), and consider questions about the public's perception and acceptance of risk. Also included is an examination of the global risks associated with current and proposed levels of energy production and comsumption from all major sources. A separate abstract was prepared for each of the 6 chapters; all are included in Energy Abstracts for Policy Analysis (EAPA) and four in Energy Research Abstracts

  20. Technology in Hospitality Industry: Prospects and Challenges

    OpenAIRE

    Kansakar, Prasanna; Munir, Arslan; Shabani, Neda

    2017-01-01

    The leisure and hospitality industry is one of the driving forces of the global economy. The widespread adoption of new technologies in this industry over recent years has fundamentally reshaped the way in which services are provided and received. In this paper, we explore some of the state-of-the-art technologies currently employed in the hospitality industry and how they are improving guest experiences and changing the hospitality service platform. We also envision some potential future hos...

  1. The place of quantitative energy models in a prospective approach

    International Nuclear Information System (INIS)

    Taverdet-Popiolek, N.

    2009-01-01

    Futurology above all depends on having the right mind set. Gaston Berger summarizes the prospective approach in 5 five main thrusts: prepare for the distant future, be open-minded (have a systems and multidisciplinary approach), carry out in-depth analyzes (draw out actors which are really determinant or the future, as well as established shed trends), take risks (imagine risky but flexible projects) and finally think about humanity, futurology being a technique at the service of man to help him build a desirable future. On the other hand, forecasting is based on quantified models so as to deduce 'conclusions' about the future. In the field of energy, models are used to draw up scenarios which allow, for instance, measuring medium or long term effects of energy policies on greenhouse gas emissions or global welfare. Scenarios are shaped by the model's inputs (parameters, sets of assumptions) and outputs. Resorting to a model or projecting by scenario is useful in a prospective approach as it ensures coherence for most of the variables that have been identified through systems analysis and that the mind on its own has difficulty to grasp. Interpretation of each scenario must be carried out in the light o the underlying framework of assumptions (the backdrop), developed during the prospective stage. When the horizon is far away (very long-term), the worlds imagined by the futurologist contain breaks (technological, behavioural and organizational) which are hard to integrate into the models. It is here that the main limit for the use of models in futurology is located. (author)

  2. The prospect of nuclear application in food technology

    International Nuclear Information System (INIS)

    Maha, Munsiah

    1982-01-01

    Irradiation changes the normal living process of cells and the structure of molecules. It is good for food preservation because it kills off many of the microorganisms in the product and makes the remainder more sensitive to antimicrobial factors prevailing after the radiation treatment. It offers more benefits than conventional preservation in that it increases storage stability and quality of foodstuffs with the minimum use of energy. Good storage quality gives way to wider distribution of food, alleviates the world's food shortage, and improves food supplies. Research proved that irradiation increased the quality of subtropical fruits, spices, fish, and meat. No refrigeration is needed to store meat, poultry and fish preserved by the combination of irradiation and mild heat treatment. Nuclear technology can also be applied to destroy harmful insects, to sterilize food, to inhibit the sprouting of root crops, and to control ripening in stored fruits and vegetables. Based on the above potentials of irradiation, the prospect of nuclear application in food technology is promising. (RUW)

  3. Tidal energy - a technology review

    International Nuclear Information System (INIS)

    Price, R.

    1991-01-01

    The tides are caused by gravitational attraction of the sun and the moon acting upon the world's oceans. This creates a clean renewable form of energy which can in principle be tapped for the benefit of mankind. This paper reviews the status of tidal energy, including the magnitude of the resource, the technology which is available for its extraction, the economics, possible environmental effects and non-technical barriers to its implementation. Although the total energy flux of the tides is large, at about 2 TW, in practice only a very small fraction of this total potential can be utilised in the foreseeable future. This is because the energy is spread diffusely over a wide area, requiring large and expensive plant for its collection, and is often available remote from centres of consumption. The best mechanism for exploiting tidal energy is to employ estuarine barrages at suitable sites with high tidal ranges. The technology is relatively mature and components are commercially available now. Also, many of the best sites for implementation have been identified. However, the pace and extent of commercial exploitation of tidal energy is likely to be significantly influenced, both by the treatment of environmental costs of competing fossil fuels, and by the availability of construction capital at modest real interest rates. The largest projects could require the involvement of national governments if they are to succeed. (author) 8 figs., 2 tabs., 19 refs

  4. High energy beam manufacturing technologies

    International Nuclear Information System (INIS)

    Geskin, E.S.; Leu, M.C.

    1989-01-01

    Technological progress continues to enable us to utilize ever widening ranges of physical and chemical conditions for material processing. The increasing cost of energy, raw materials and environmental control make implementation of advanced technologies inevitable. One of the principal avenues in the development of material processing is the increase of the intensity, accuracy, flexibility and stability of energy flow to the processing site. The use of different forms of energy beams is an effective way to meet these sometimes incompatible requirements. The first important technological applications of high energy beams were welding and flame cutting. Subsequently a number of different kinds of beams have been used to solve different problems of part geometry control and improvement of surface characteristics. Properties and applications of different specific beams were subjects of a number of fundamental studies. It is important now to develop a generic theory of beam based manufacturing. The creation of a theory dealing with general principles of beam generation and beam-material interaction will enhance manufacturing science as well as practice. For example, such a theory will provide a format approach for selection and integration of different kinds of beams for a particular application. And obviously, this theory will enable us to integrate the knowledge bases of different manufacturing technologies. The War of the Worlds by H. G. Wells, as well as a number of more technical, although less exciting, publications demonstrate both the feasibility and effectiveness of the generic approach to the description of beam oriented technology. Without any attempt to compete with Wells, we still hope that this volume will contribute to the creation of the theory of beam oriented manufacturing

  5. Works carried out by DGEMP about energy prospects for 2030-2050

    International Nuclear Information System (INIS)

    2005-01-01

    The 2004 year has been rich in publications and analyses about energy prospects. The French general direction of energy and raw materials (DGEMP) from the Ministry of Economy, Finances and Industry, has organized a round table on June 30, 2004 in order to present and compare different energy scenarios at the 2030 and 2050 prospects. The aim is to evaluate the available modeling system and to prepare the reflexions to implement. This paper presents: the limitations of a long-term energy prospect and the main hypotheses made, and the main results of the prospective studies carried out by DGEMP at the 2030 and 2050 prospects. The conclusions of this study is that there exists forbidden actions (postponing the implementation of energy saving actions, consuming fossil-fuels for thermal and power generation purposes and keeping petroleum preponderance in transportation), necessary actions (increase of energy efficiency in all sectors, saving peak-use power, changing transportation habits, developing nuclear and renewable energies), and some technology rupture needs (low emission technologies, power storage and hydrogen uses, CO 2 captation and sequestration). (J.S.)

  6. Key energy technologies for Europe

    DEFF Research Database (Denmark)

    Jørgensen, B.H.

    2005-01-01

    This report on key energy technologies is part of the work undertaken by the High-Level Expert Group to prepare a report on emerging science and technology trends and the implications for EU and Member State research policies. Senior Scientist BirteHolst Jørgensen, Risø National Laboratory...... contributed by Scientific Officer Edgar Thielmann, DG TREN, Head of Department Hans Larsen, RisøNational Laboratory, Senior Asset Manager Aksel Hauge Pedersen, DONG VE, Consultant Timon Wehnert, IZT-Berlin, and Senior Scientist Martine Uyterlinde, ECN...

  7. Worldwide energy prospects and nuclear contribution

    International Nuclear Information System (INIS)

    1999-04-01

    With a growing up worldwide population and a better standard of living, the global energy consumption will rise. The CO 2 emissions will increase too because of todays share of fossil fuels in the energy sources. This paper analyzes the possible contribution of nuclear energy in this context: economical and environmental aspects, political aspects (distribution of energy resources, energy dependence), energy efficiency, reduction of CO 2 emissions. (J.S.)

  8. Grid Technologies: scientific and industrial prospects

    CERN Multimedia

    2002-01-01

    On Friday 27th, 17:00-21:00, CERN will for the first time be host to the popular 'First Tuesday Geneva' events for entrepreneurs, investors and all those interested in how new technologies will impact industry. Organised by the non-profit group Rezonance, these evening events typically attract over 300 persons, and combine a series of short presentations on a hot topic with an informal networking session. The topic for this 'First Tuesday@CERN' is Grid Technologies. Over the last year, the concept of a Grid of geographically distributed computers providing huge computing resources 'on tap' to companies and institutions has led to a great deal of interest and activity from major computer hardware and software companies. The session is hosted by the CERN openlab for DataGrid applications, a recently established industrial partnership on Grid technologies, and will profile both CERN's activities in this emerging field and those of some key industrial players. Speakers include: Hans Hoffmann: CERN, The LHC a...

  9. Energy technologies and energy efficiency in economic modelling

    DEFF Research Database (Denmark)

    Klinge Jacobsen, Henrik

    1998-01-01

    This paper discusses different approaches to incorporating energy technologies and technological development in energy-economic models. Technological development is a very important issue in long-term energy demand projections and in environmental analyses. Different assumptions on technological ...... of renewable energy and especially wind power will increase the rate of efficiency improvement. A technologically based model in this case indirectly makes the energy efficiency endogenous in the aggregate energy-economy model....... technological development. This paper examines the effect on aggregate energy efficiency of using technological models to describe a number of specific technologies and of incorporating these models in an economic model. Different effects from the technology representation are illustrated. Vintage effects...... illustrates the dependence of average efficiencies and productivity on capacity utilisation rates. In the long run regulation induced by environmental policies are also very important for the improvement of aggregate energy efficiency in the energy supply sector. A Danish policy to increase the share...

  10. Energy: global prospects 1985-2000

    International Nuclear Information System (INIS)

    Wilson, C.L.

    1978-01-01

    The results from the evaluation of global energy resources up to year 2000, done by the Group of Energetic Strategy of Energy Studies are presented. The studies were concentrated in the fuel supply and demand for the next 25 years, such as: petroleum, natural gas, coal and nuclear energy. The national and international energy policy are studied. (E.G.) [pt

  11. Rural renewable energy (prospects) in Estonia

    Energy Technology Data Exchange (ETDEWEB)

    Tomson, T. [Estonian Energy Research Institute, Tallinn (Estonia); Kaeaermann, L. [Estonian National Maritime Board, Tallinn (Estonia); Raesaar, P. [Tallinn Technological University, Tallinn (Estonia)

    1997-12-31

    Total potential share of renewables (biomass, wind, hydropower and solar) in Estonia is 35 %. Total real share (wood, wood chips) of renewables is only about 4.5 % (1995). The constrains and prospects of the development are discussed. The attention is focused on rural conditions

  12. Rural renewable energy (prospects) in Estonia

    Energy Technology Data Exchange (ETDEWEB)

    Tomson, T [Estonian Energy Research Institute, Tallinn (Estonia); Kaeaermann, L [Estonian National Maritime Board, Tallinn (Estonia); Raesaar, P [Tallinn Technological University, Tallinn (Estonia)

    1998-12-31

    Total potential share of renewables (biomass, wind, hydropower and solar) in Estonia is 35 %. Total real share (wood, wood chips) of renewables is only about 4.5 % (1995). The constrains and prospects of the development are discussed. The attention is focused on rural conditions

  13. Gradual prospects of development of railway energy

    Directory of Open Access Journals (Sweden)

    Eliseev V.A.

    2017-08-01

    Full Text Available in the analytical review of the Energy Strategy of the RZD Holding, the target indicators of its activities are set out and the tasks of the energy policy are listed. At the identified stages of the strategy implementation, the identified priorities, benchmarks and development mechanisms were noted. The relation of the strategy to the regulatory state regulations and documents is shown, and the domestic railroad train energy – to save energy and improve the country's energy efficiency.

  14. New energy technologies in Singapore

    International Nuclear Information System (INIS)

    2009-01-01

    Singapore is considered as an interesting example: this country has become the third world oil refining centre and the first Asian oil trade place, but has also implemented a series of strategic measures to promote a sustainable development. The Singapore Green Plan was launched in 1992 and defines important objectives in terms of reduction of carbon emissions, of water consumption, of improvement of waste management services, and so on. This policy results in investments in experimental programs for the development of new energy technologies. This paper presents the public actors (institutions and public agencies) and their projects, the academic projects and programs, and the private sector projects. These programs and projects are concerning the search for clean energies, the development of the solar capacity, various renewable energies, or the automotive industry (projects conducted by Bosch, Renault and Nissan, Daimler, this last one on biofuels)

  15. Nuclear energy: A female technology

    International Nuclear Information System (INIS)

    Tennenbaum, J.

    1994-01-01

    Amongst the important scientific and technological revolutions of history there is none in which women have played such a substantial and many-sided role as in the development of nuclear energy. The birth of nuclear energy is not only due to Marie Curie and Lise Meitner but also to a large number of courageous 'nuclear women' who decided against all sorts of prejudices and resistances in favour of a life in research. Therefore the revolution of the atom has also become the greatest breakthrough of women in natural sciences. This double revolution is the subject of this book. Here the history of nuclear energy itself is dealt with documented with the original work and personal memories of different persons - mainly women - who have been substantially involved in this development. (orig./HP) [de

  16. SIHTI - Energy and environmental technology

    International Nuclear Information System (INIS)

    Estlander, A.; Pietilae, S.

    1993-01-01

    The research and development program SIHTI was carried out during 1991-1992, mainly concentrating on energy and environmental technology. SIHTI focused on examining emissions from various sources of energy in all stages of the production chain. The objective was to create new methods and equipment, with which the environmental drawbacks of energy production can be reduced. Also a development work aiming at reduced traffic emissions was included in the program. Totally the program included 53 projects, which were divided into the following subsections: energy production, traffic, fuel chains and other projects. In the energy production projects the main attention was paid to reduction of sulphur dioxide, nitrogen oxide and particulate emissions. Furthermore waste utilization and possibilities of reducing carbon dioxide emissions were studied. The traffic study was focused on developing of more environmental-friendly liquid fuels. The research of emissions at low ambient temperatures was developed to an international level. Further the use of gases and the rape seed oil ester as traffic fuel was studied in practical tests. In the fuel chain study the emissions from the most important fuel chains were examined all the way from the purchase of the primary energy to the final end product. Methods for further reduction of water discharges from peat production were developed. The other projects were concentrated on modelling development, environmental impact assessment and emission surveys

  17. Energy. Economics - politics - technology. Energie. Wirtschaft - Politik - Technik

    Energy Technology Data Exchange (ETDEWEB)

    Kruppa, A; Mielenhausen, E; Kallweit, J H; Schlueter, H; Schenkel, J; Vohwinkel, F; Streckel, S; Brockmann, H W

    1978-01-01

    The themes of the various aspects of the energy sector collected in this volume and discussed by different authors are: Energy policy, energy demand-research and forecasts, energy supplies, new technologies for future energy supply, generation of electrical energy by nuclear power stations, effect on the environment of energy plants, legal problems of site planning, and the authorisation of energy plants.

  18. Overview and future prospects of laser plasma propulsion technology

    International Nuclear Information System (INIS)

    Zheng Zhiyuan; Lu Xin; Zhang Jie

    2003-01-01

    Due to its high cost, low efficiency, complex operation and unsatisfactory recycling, traditional rocket propulsion by chemical fuels has hindered the exploration of outer space to further limits. With the rapid development of laser and space technology, the new technology of laser propulsion exhibits unique advantages and prospects. The mechanism and current development of laser plasma propulsion are reviewed, with mention of the technical problems and focus issues of laser plasma in micro-flight propulsion

  19. Future implications of China's energy-technology choices

    International Nuclear Information System (INIS)

    Larson, E.D.; Wu Zongxin; DeLaquil, Pat; Chen Wenying; Gao Pengfei

    2003-01-01

    This paper summarizes an assessment of future energy-technology strategies for China that explored the prospects for China to continue its social and economic development while ensuring national energy-supply security and promoting environmental sustainability over the next 50 years. The MARKAL energy-system modeling tool was used to build a model of China's energy system representing all sectors of the economy and including both energy conversion and end-use technologies. Different scenarios for the evolution of the energy system from 1995 to 2050 were explored, enabling insights to be gained into different energy development choices. The analysis indicates a business-as-usual strategy that relies on coal combustion technologies would not be able to meet all environmental and energy security goals. However, an advanced technology strategy emphasizing (1) coal gasification technologies co-producing electricity and clean liquid and gaseous energy carriers (polygeneration), with below-ground storage of some captured CO 2 ; (2) expanded use of renewable energy sources (especially wind and modern biomass); and (3) end-use efficiency would enable China to continue social and economic development through at least the next 50 years while ensuring security of energy supply and improved local and global environmental quality. Surprisingly, even when significant limitations on carbon emissions were stipulated, the model calculated that an advanced energy technology strategy using our technology-cost assumptions would not incur a higher cumulative (1995-2050) total discounted energy system cost than the business-as-usual strategy. To realize such an advanced technology strategy, China will need policies and programs that encourage the development, demonstration and commercialization of advanced clean energy conversion technologies and that support aggressive end-use energy efficiency improvements

  20. Technology data for energy plants

    Energy Technology Data Exchange (ETDEWEB)

    2010-06-15

    The Danish Energy Agency and Energinet.dk, the Danish electricity transmission and system operator, have at regular intervals published a catalogue of energy producing technologies. The previous edition was published in March 2005. This report presents the results of the most recent update. The primary objective of publishing a technology catalogue is to establish a uniform, commonly accepted and up-to-date basis for energy planning activities, such as future outlooks, evaluations of security of supply and environmental impacts, climate change evaluations, and technical and economic analyses, e.g. on the framework conditions for the development and deployment of certain classes of technologies. With this scope in mind, it has not been the intention to establish a comprehensive catalogue, including all main gasification technologies or all types of electric batteries. Only selected, representative, technologies are included, to enable generic comparisons of e.g. thermal gasification versus combustion of biomass and electricity storage in batteries versus hydro-pumped storage. It has finally been the intention to offer the catalogue for the international audience, as a contribution to similar initiatives aiming at forming a public and concerted knowledge base for international analyses and negotiations. A guiding principle for developing the catalogue has been to rely primarily on well-documented and public information, secondarily on invited expert advice. Since many experts are reluctant in estimating future quantitative performance data, the data tables are not complete, in the sense that most data tables show several blank spaces. This approach has been chosen in order to achieve data, which to some extent are equivalently reliable, rather than to risk a largely incoherent data set including unfounded guesstimates. The ambition of the present publication has been to reduce the level of inconsistency to a minimum without compromising the fact that the real world

  1. Innovation in nuclear energy technology

    International Nuclear Information System (INIS)

    Dujardin, Th.; Bertel, E.; Kwang Seok, Lee; Foskolos, K.

    2007-01-01

    Innovation has been a driving force for the success of nuclear energy and remains essential for its sustainable future. Many research and development programmes focus on enhancing the performance of power plants in operation, current fuel design and characteristics, and fuel cycle processes used in existing facilities. Generally performed under the leadership of the industry. Some innovation programmes focus on evolutionary reactors and fuel cycles, derived from systems of the current generation. Such programmes aim at achieving significant improvements, in the field of economics or resource management for example, in the medium term. Often, they are undertaken by the industry with some governmental support as they require basic research together with technological development and adaptation. Finally, large programmes, often undertaken in an international, intergovernmental framework are devoted to design and development of a new generation of systems meeting the goals of sustainable development in the long term. Driving forces for nuclear innovation vary depending on the target technology, the national framework and the international context surrounding the research programme. However, all driving factors can be grouped in three categories: market drivers, political drivers and technology drivers. Globally, innovation in the nuclear energy sector is a success story but is a lengthy process that requires careful planning and adequate funding to produce successful outcomes

  2. Energy conservation prospects through electric load management

    Energy Technology Data Exchange (ETDEWEB)

    El-Shirbeeny, E H.T.

    1984-04-01

    In this paper, concepts of electric load management are discussed for effective energy conservation. It is shown that the conservation program must be comprehensive to provide solutions to the problems facing the electric consumer, the electric utility and the society by reducing the rate of growth of energy consumption and power system peak demand requirements. The impact of energy management programs on electric energy conservation is examined, with emphasis on efficiency, storage, cogeneration and controls with computers.

  3. Current Renewable Energy Technologies and Future Projections

    Energy Technology Data Exchange (ETDEWEB)

    Allison, Stephen W [ORNL; Lapsa, Melissa Voss [ORNL; Ward, Christina D [ORNL; Smith, Barton [ORNL; Grubb, Kimberly R [ORNL; Lee, Russell [ORNL

    2007-05-01

    The generally acknowledged sources of renewable energy are wind, geothermal, biomass, solar, hydropower, and hydrogen. Renewable energy technologies are crucial to the production and utilization of energy from these regenerative and virtually inexhaustible sources. Furthermore, renewable energy technologies provide benefits beyond the establishment of sustainable energy resources. For example, these technologies produce negligible amounts of greenhouse gases and other pollutants in providing energy, and they exploit domestically available energy sources, thereby reducing our dependence on both the importation of fossil fuels and the use of nuclear fuels. The market price of renewable energy technologies does not reflect the economic value of these added benefits.

  4. IEA Energy Technology Essentials: Biofuel Production

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-01-15

    The IEA Energy Technology Essentials series offers concise four-page updates on the different technologies for producing, transporting and using energy. Biofuel Production is the topic covered in this edition.

  5. Advances in wind energy conversion technology

    CERN Document Server

    Sathyajith, Mathew

    2011-01-01

    The technology of generating energy from wind has significantly changed during the past five years. The book brings together all the latest aspects of wind energy conversion technology - from wind resource analysis to grid integration of generated electricity.

  6. IEA Energy Technology Essentials: Nuclear Power

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-03-15

    The IEA Energy Technology Essentials series offers concise four-page updates on the different technologies for producing, transporting and using energy. Nuclear power is the topic covered in this edition.

  7. IEA Energy Technology Essentials: Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-04-15

    The IEA Energy Technology Essentials series offers concise four-page updates on the different technologies for producing, transporting and using energy. Fuel cells is the topic covered in this edition.

  8. Long-range prospects of world energy demands and future energy sources

    International Nuclear Information System (INIS)

    Kozaki, Yasuji

    1998-01-01

    The long-range prospects for world energy demands are reviewed, and the major factors which are influential in relation to energy demands are discussed. The potential for various kinds of conventional and new energy sources such as fossil fuels, solar energies, nuclear fission, and fusion energies to need future energy demands is also discussed. (author)

  9. Biomass torrefaction technology: Techno-economic status and future prospects

    International Nuclear Information System (INIS)

    Batidzirai, B.; Mignot, A.P.R.; Schakel, W.B.; Junginger, H.M.; Faaij, A.P.C.

    2013-01-01

    Torrefaction is a promising bioenergy pre-treatment technology, with potential to make a major contribution to the commodification of biomass. However, there is limited scientific knowledge on the techno-economic performance of torrefaction. This study therefore improves available knowledge on torrefaction by providing detailed insights into state of the art prospects of the commercial utilisation of torrefaction technology over time. Focussing on and based on the current status of the compact moving bed reactor, we identify process performance characteristics such as thermal efficiency and mass yield and discuss their determining factors through analysis of mass and energy balances. This study has shown that woody biomass can be torrefied with a thermal and mass efficiency of 94% and 48% respectively (on a dry ash free basis). For straw, the corresponding theoretical energetic efficiency is 96% and mass efficiency is 65%. In the long term, the technical performance of torrefaction processes is expected to improve and energy efficiencies are expected to be at least 97% as optimal torgas use and efficient heat transfer are realised. Short term production costs for woody biomass TOPs (torrefied pellets) are estimated to be between 3.3 and 4.8 US$/GJ LHV , falling to 2.1–5.1 US$/GJ LHV in the long term. At such cost levels, torrefied pellets would become competitive with traditional pellets. For full commercialisation, torrefaction reactors still require to be optimised. Of importance to torrefaction system performance is the achievement of consistent and homogeneous, fully hydrophobic and stable product, capable of utilising different feedstocks, at desired end-use energy densities. - Highlights: • Woody biomass torrefaction thermal efficiency is 94% and mass efficiency is 48% on a daf basis. • Straw theoretical torrefaction energetic efficiency is 96% and mass efficiency is 65%. • Current woody TOPs production costs are between 3.3 and 4.8 US$/GJ LHV , 50

  10. History, Status and Prospects on Development of Pyroprocess Technology

    International Nuclear Information System (INIS)

    Kim, Eung Ho; Lee, Han Soo; Park, Geunil; Seo, Chungseok; Ko, Wonil; Kim, Hodong; Choi, Jongwon

    2013-01-01

    The objective of this study is to evaluate prospects for a practical use of pyroprocess through analysis of current issues and status of pyroprocess technology development being performed at domestic and abroad. Following Fukushima accident, awareness about nuclear safety is further increasing and problems on safe management of used nuclear fuel has emerged as well. So, nuclear industrialized countries are developing recycling technology of used nuclear fuel, significantly reducing used fuel inventory that have cumulated. In this respects, there is a need to comprehensively summarize the technology developed at KAERI until now. In addition to, the current issues of pyroprocess for future R and D are suggested

  11. Wind energy in Italy: state of the art and prospects

    International Nuclear Information System (INIS)

    Togni, S.

    2009-01-01

    Among renewable energy sources wind energy has the greatest potential as well as good prospects even in occupational terms. Yet a solution is still to be found to problems related to plant authorization procedures, inadequacy of the national electric grid, regularisation of trading authorisation procedures. [it

  12. Nuclear energy : Present situation and future prospects

    International Nuclear Information System (INIS)

    Gray, J.E.

    1986-01-01

    In 1953, President Eisenhower announced the U.S. ''Atoms for Peace'' program. After slightly more than 30 years, there are in operation, under construction or on order more than 400,000 MW of commercial nuclear power generation capacity located in 35 nations, representing a total investment around a trillion U.S. dollars. The situation is noteworthy in terms of the rate of technical development, deployment and transfer, the magnitude of the financial investment, economic benefits, the favorable impact on public health and safety, and the usual and positive character of cooperation among all concerned. The fundamentals of nuclear power generation with regard to economics, safety and environmental impact are likely to favor the increased use of nuclear power. The future prospect of the nuclear power in the U.S. also will be clarified positively. In many ways, U.S. commercial nuclear power continues to benefit from the Navy nuclear propulsion program. The prospect of supply demand situation in the conversion, enrichment and fabrication of uranium fuel is explained. The amount of spent fuel arising in OECD countries and their storage capability up to 2000 are shown, and the storage capability projected is well in excess. (Kako, I.)

  13. Sustainability, energy technologies, and ethics

    Energy Technology Data Exchange (ETDEWEB)

    Matson, R.J. [National Renewable Energy Lab., Golden, CO (United States); Carasso, M.

    1999-01-01

    A study of the economic, social-political, and environmental consequences of using renewable energy technologies (RETs, e.g., photovoltaics, wind, solar thermal, biofuels) as compared to those of conventional energy technologies (CETs e.g., oil, coal, gas) would show that RETs are singularly consistent with a whole ethic that is implicit in the concept of sustainability. This paper argues for sustainability as an ethical, as well as a pragmatic, imperative and for RETs as an integral part of this imperative. It brings to the fore some of the specific current economic, political, and environmental assumptions and practices that are inconsistent with both sustainability and with a rapid deployment of RETs. Reflecting an emerging planetary awareness and a pressing need to come to terms with intra- and intergenerational equity, the concept of sustainability explicitly entails the right of future generations to the same opportunity of access to a healthy ecological future and the finite endowment of the Earth`s resources as that of the present generation. (Author)

  14. Moonlight project promotes energy-saving technology

    Science.gov (United States)

    Ishihara, A.

    1986-01-01

    In promoting energy saving, development of energy conservation technologies aimed at raising energy efficiency in the fields of energy conversion, its transportation, its storage, and its consumption is considered, along with enactment of legal actions urging rational use of energies and implementation of an enlightenment campaign for energy conservation to play a crucial role. Under the Moonlight Project, technical development is at present being centered around the following six pillars: (1) large scale energy saving technology; (2) pioneering and fundamental energy saving technology; (3) international cooperative research project; (4) research and survey of energy saving technology; (5) energy saving technology development by private industry; and (6) promotion of energy saving through standardization. Heat pumps, magnetohydrodynamic generators and fuel cells are discussed.

  15. International energy technology collaboration: benefits and achievements

    International Nuclear Information System (INIS)

    1996-01-01

    The IEA Energy Technology Collaboration Programme facilitates international collaboration on energy technology research, development and deployment. More than 30 countries are involved in Europe, America, Asia, Australasia and Africa. The aim is to accelerate the development and deployment of new energy technologies to meet energy security, environmental and economic development goals. Costs and resources are shared among participating governments, utilities, corporations and universities. By co-operating, they avoid unproductive duplication and maximize the benefits from research budgets. The IEA Programme results every year in hundreds of publications which disseminate information about the latest energy technology developments and their commercial utilisation. The IEA Energy Technology Collaboration Programme operates through a series of agreements among governments. This report details the activities and achievements of all 41 agreements, covering energy technology information centres and Research and Development projects in fossil fuels, renewable energy efficient end-use, and nuclear fusion technologies. (authors). 58 refs., 9 tabs

  16. India's nuclear energy programme: prospects and challenges

    International Nuclear Information System (INIS)

    Gupta, Arvind

    2011-01-01

    India has announced ambitious plans to expand its nuclear energy programme nearly 15 fold in the next 20 years, from the current 4,500 MWe to about 62,000 MWe by 2032. By 2020, India's Department of Atomic Energy (DAE) plans to install 20,000 MWe of nuclear power generation capacity (the fifth largest in the world). The department has plans beyond 2030 too. According to these plans India will have the capacity to produce 275 GWe (Giga Watt of electricity) of nuclear power by the year 2052. The DAE's projections are summarised. This is a truly ambitious plan. Without sufficient quantities of energy, India cannot hope to become a global power. Its dream of registering eight to nine per cent economic growth per annum will remain just that, a dream. Even with such ambitious plans on the nuclear energy front, the share of nuclear power in the overall energy mix will remain small. Currently nuclear energy constitutes only about three per cent of the total energy consumed in India. If the current projections are realised, the share of nuclear energy in the total energy output will still be about 20 per cent. India takes pride in its nuclear programme. Over the years, successive governments have fully supported the DAE's plans. This support is likely to continue in the future. In fact, following the Indo-US civil nuclear deal and the Nuclear Suppliers Group (NSG) waiver in 2008, the mood in India has turned upbeat. India is now getting integrated into the global nuclear regime even though it has not signed the Nuclear Non Proliferation Treaty (NNPT). The NSG waiver has, however, allowed India to enter into civil nuclear cooperation with several countries

  17. Arctic Energy Technology Development Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Sukumar Bandopadhyay; Charles Chamberlin; Robert Chaney; Gang Chen; Godwin Chukwu; James Clough; Steve Colt; Anthony Covescek; Robert Crosby; Abhijit Dandekar; Paul Decker; Brandon Galloway; Rajive Ganguli; Catherine Hanks; Rich Haut; Kristie Hilton; Larry Hinzman; Gwen Holdman; Kristie Holland; Robert Hunter; Ron Johnson; Thomas Johnson; Doug Kame; Mikhail Kaneveskly; Tristan Kenny; Santanu Khataniar; Abhijeet Kulkami; Peter Lehman; Mary Beth Leigh; Jenn-Tai Liang; Michael Lilly; Chuen-Sen Lin; Paul Martin; Pete McGrail; Dan Miller; Debasmita Misra; Nagendra Nagabhushana; David Ogbe; Amanda Osborne; Antoinette Owen; Sharish Patil; Rocky Reifenstuhl; Doug Reynolds; Eric Robertson; Todd Schaef; Jack Schmid; Yuri Shur; Arion Tussing; Jack Walker; Katey Walter; Shannon Watson; Daniel White; Gregory White; Mark White; Richard Wies; Tom Williams; Dennis Witmer; Craig Wollard; Tao Zhu

    2008-12-31

    The Arctic Energy Technology Development Laboratory was created by the University of Alaska Fairbanks in response to a congressionally mandated funding opportunity through the U.S. Department of Energy (DOE), specifically to encourage research partnerships between the university, the Alaskan energy industry, and the DOE. The enabling legislation permitted research in a broad variety of topics particularly of interest to Alaska, including providing more efficient and economical electrical power generation in rural villages, as well as research in coal, oil, and gas. The contract was managed as a cooperative research agreement, with active project monitoring and management from the DOE. In the eight years of this partnership, approximately 30 projects were funded and completed. These projects, which were selected using an industry panel of Alaskan energy industry engineers and managers, cover a wide range of topics, such as diesel engine efficiency, fuel cells, coal combustion, methane gas hydrates, heavy oil recovery, and water issues associated with ice road construction in the oil fields of the North Slope. Each project was managed as a separate DOE contract, and the final technical report for each completed project is included with this final report. The intent of this process was to address the energy research needs of Alaska and to develop research capability at the university. As such, the intent from the beginning of this process was to encourage development of partnerships and skills that would permit a transition to direct competitive funding opportunities managed from funding sources. This project has succeeded at both the individual project level and at the institutional development level, as many of the researchers at the university are currently submitting proposals to funding agencies, with some success.

  18. Technology Learning Ratios in Global Energy Models

    International Nuclear Information System (INIS)

    Varela, M.

    2001-01-01

    The process of introduction of a new technology supposes that while its production and utilisation increases, also its operation improves and its investment costs and production decreases. The accumulation of experience and learning of a new technology increase in parallel with the increase of its market share. This process is represented by the technological learning curves and the energy sector is not detached from this process of substitution of old technologies by new ones. The present paper carries out a brief revision of the main energy models that include the technology dynamics (learning). The energy scenarios, developed by global energy models, assume that the characteristics of the technologies are variables with time. But this trend is incorporated in a exogenous way in these energy models, that is to say, it is only a time function. This practice is applied to the cost indicators of the technology such as the specific investment costs or to the efficiency of the energy technologies. In the last years, the new concept of endogenous technological learning has been integrated within these global energy models. This paper examines the concept of technological learning in global energy models. It also analyses the technological dynamics of the energy system including the endogenous modelling of the process of technological progress. Finally, it makes a comparison of several of the most used global energy models (MARKAL, MESSAGE and ERIS) and, more concretely, about the use these models make of the concept of technological learning. (Author) 17 refs

  19. Nuclear Energy Principles, Practices, and Prospects

    CERN Document Server

    Bodansky, David

    2008-01-01

    The world faces serious difficulties in obtaining the energy that will be needed in coming decades for a growing population, especially given the problem of climate change caused by fossil fuel use. This book presents a view of nuclear energy as an important carbon-free energy option. It discusses the nuclear fuel cycle, the types of reactors used today and proposed for the future, nuclear waste disposal, reactor accidents and reactor safety, nuclear weapon proliferation, and the cost of electric power. To provide background for these discussions, the book begins with chapters on the history of the development and use of nuclear energy, the health effects of ionizing radiation, and the basic physics principles of reactor operation. The text has been rewritten and substantially expanded for this edition, to reflect changes that have taken place in the eight years since the publication of the first edition and to provide greater coverage of key topics. These include the Yucca Mountain repository plans, designs ...

  20. Nuclear energy and its future prospects

    International Nuclear Information System (INIS)

    Fells, I.

    1981-01-01

    The most difficult task for the nuclear industry to cope with is education of the public and the politicians in such manner that the emotional reaction resulting from insufficient information is replaced by critical, well-balanced consideration of the hazards and benefits associated with nuclear energy. Only if this is achieved the influential politicians can, according to the author, represent public opinion and set up an acceptable energy strategy. (orig.) [de

  1. Solar Energy Technologies Office Fact Sheet

    Energy Technology Data Exchange (ETDEWEB)

    Solar Energy Technologies Office

    2018-03-13

    The U.S. Department of Energy Solar Energy Technologies Office (SETO) supports early-stage research and development to improve the affordability, reliability, and performance of solar technologies on the grid. The office invests in innovative research efforts that securely integrate more solar energy into the grid, enhance the use and storage of solar energy, and lower solar electricity costs.

  2. Energy Policy is Technology Politics The Hydrogen Energy Case

    International Nuclear Information System (INIS)

    Carl-Jochen Winter

    2006-01-01

    Germany's energy supply status shows both an accumulation of unsatisfactory sustainabilities putting the nation's energy security at risk, and a hopeful sign: The nation's supply dependency on foreign sources and the accordingly unavoidable price dictate the nation suffers under is almost life risking; the technological skill, however, of the nation's researchers, engineers, and industry materializes in a good percentage of the indigenous and the world's energy conversion technology market. Exemplified with the up and coming hydrogen energy economy this paper tries to advocate the 21. century energy credo: energy policy is energy technology politics! Energy source thinking and acting is 19. and 20. century, energy efficient conversion technology thinking and acting is 21. century. Hydrogen energy is on the verge of becoming the centre-field of world energy interest. Hydrogen energy is key for the de-carbonization and, thus, sustainabilization of fossil fuels, and as a storage and transport means for the introduction of so far un-operational huge renewable sources into the world energy market. - What is most important is hydrogen's thermodynamic ability to exergize the energy scheme: hydrogen makes more technical work (exergy) out of less primary energy! Hydrogen adds value. Hydrogen energy and, in particular, hydrogen energy technologies, are to become part of Germany's national energy identity; accordingly, national energy policy as energy technology politics needs to grow in the nation's awareness as common sense! Otherwise Germany seems ill-equipped energetically, and its well-being hangs in the balance. (author)

  3. Analysis of the prospects of solar energy and other alternative energy sources in Ukraine

    OpenAIRE

    Mogylko, O.

    2010-01-01

    The need to develop an alternative energy sources in Ukraine to increase energy efficiency and energy security it is explained in the article. The international experience of development of solar energy are analyzed. The prospects and other alternative energy sources in Ukraine are defined. The conclusions and recommendations to address the problems are identified.

  4. Review and prospects of Atomic Energy Law

    International Nuclear Information System (INIS)

    Hartkopf, G.

    1983-01-01

    At the 7th German Symposium on Atomic Energy Law which took place on March 16th, 1983 in Goettingen the Undersecretary of State of the Federal Ministery of the Interior, Dr. Guenter Hartkopf, delivered the opening speech. The speech deals with the conditions set by constitutional law and ethics, improvement of nuclear liability, guide line for incident response, participation of the public in licensing procedures under atomic energy law, necessary measures to prevent damage, the concept of waste management. Also in future the safety of the citizens has absolute priority. (orig./HSCH) [de

  5. Nuclear power prospects in the context of energy trends

    International Nuclear Information System (INIS)

    Bertel, E.; Wilmer, P.

    2000-01-01

    In order to put the prospects for nuclear energy development into perspective, a brief presentation is given of the overall trends in energy demand and supply world-wide. Key issues and factors affecting energy policies and choices between alternative sources are highlighted with emphasis on the electricity sector which is the main market for nuclear energy in short and medium terms. The role that nuclear energy could play in future energy mixes and challenges for nuclear energy development are elaborated. This presentation is based on statistical data and analytical work published by OECD Nuclear Energy Agency, as well as by other authoritative international sources such as International Energy Agency (IEA), the World Energy Council (WEC), and the International Institute of Applied Systems Analysis (ILASA)

  6. System and prospects of China's intercity rail transit technology

    Science.gov (United States)

    Gong, Ming

    2018-06-01

    City clusters and metropolitan areas in China are flourishing in the midst of the deepening urbanization in the country, thereby resulting in the emergence of intercity rail transit. Intercity railways connect mainline and urban railways for an integrated regional transportation system that underpins and leads the development of city clusters and metropolitan areas. This study explores the development mode and service characteristics of intercity rail transit, as well as proposes overviews on this system and prospects of its future technology in China.

  7. Seismic characterisation for geothermal energy prospecting

    NARCIS (Netherlands)

    Huck, A.; Groot, P. de; Simmelink, E.; Vandeweijer, V.P.; Willemsen, A.

    2009-01-01

    The city of The Hague intends to use geothermal energy to heat approx. 4000 houses in a planned urban development area called The Hague South-West. This paper describes the application of advanced seismic interpretation workflows to help positioning a geothermal doublet consisting of one injector -

  8. Energy technology sources, systems and frontier conversion

    CERN Document Server

    Ohta, Tokio

    1994-01-01

    This book provides a concise and technical overview of energy technology: the sources of energy, energy systems and frontier conversion. As well as serving as a basic reference book for professional scientists and students of energy, it is intended for scientists and policy makers in other disciplines (including practising engineers, biologists, physicists, economists and managers in energy related industries) who need an up-to-date and authoritative guide to the field of energy technology.Energy systems and their elemental technologies are introduced and evaluated from the view point

  9. The prospect of laser fusion energy

    International Nuclear Information System (INIS)

    Yamanaka, C.

    2000-01-01

    The inertial confinement fusion research has developed remarkably in these 30 years, which enables us to scope the inertial fusion energy in the next century. The recent progress in the ICF is briefly reviewed. The GEKKO XII n d glass laser has succeeded to get the long cherished world's purpose that was to compress a D-T fuel up to 1000 times the normal density. The neutron yield was some what less than the expected value. The MJ laser system is under construction expecting to ignite and bum a fuel. The alternative way is to use a PW short pulse laser for the fast ignition. The inertial fusion energy strategy is described with economic overviews on IFE power plants. Various applications of IFE are summarized. (author)

  10. New Prospects in High Energy Astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Blandford, Roger; /KIPAC, Menlo Park

    2011-11-15

    Recent discoveries using TeV, X-ray and radio telescopes as well as Ultra High Energy Cosmic Ray arrays are leading to new insights into longstanding puzzles in high energy astrophysics. Many of these insights come from combining observations throughout the electromagnetic and other spectra as well as evidence assembled from different types of source to propose general principles. Issues discussed in this general overview include methods of accelerating relativistic particles, and amplifying magnetic field, the dynamics of relativistic outflows and the nature of the prime movers that power them. Observational approaches to distinguishing hadronic, leptonic and electromagnetic outflows and emission mechanisms are discussed along with probes of the velocity field and the confinement mechanisms. Observations with GLAST promise to be very prescriptive for addressing these problems.

  11. Energy from plants: problems and prospects

    Energy Technology Data Exchange (ETDEWEB)

    Khoshoo, T.N.

    1982-01-01

    This article contains the presidential address to the Section of Botany (VI). After an introduction and a brief account of the process and efficiency of photosynthesis, the address describes terrestrial and aquatic biomass, biological hydrogen production and bioconversion (the conversion of biomass and organic wastes into energy and also into fertilizers, food and chemicals). The section on terrestial biomass is with particular reference to India and examines fuel plantations, the possibility of covered energy farms (such as the growth of alfalfa in greenhouses), the production of agricultural alcohol, the use of vegetable oils as fuel, the production and use of jojoba (Simmondsia chinensis) wax, and hydrocarbon producing plants (rubber, Euphorbia spp., various Leguminosae etc.).

  12. Dark energy: Recent observations and future prospects

    International Nuclear Information System (INIS)

    Perlmutter, Saul

    2003-01-01

    Dark energy presents us with a challenging puzzle: understanding the new element of physics evident in the acceleration of the expansion of the universe. Type Ia supernovae first detected this acceleration and have been instrumental in breaking the matter dominated universe paradigm, measuring the current acceleration of the expansion, and probing back to the decelerating phase. To further study the nature of dark energy requires understanding of systematic errors entering into any cosmological probe. Type Ia supernovae provide simple, transparent tracers of the expansion history of the universe, and the sources of systematic uncertainties in the supernova measurement have been identified. We briefly review the progress to date and examine the promise of future surveys with large numbers of supernovae and well bounded systematics

  13. Advancing clean energy technology in Canada

    International Nuclear Information System (INIS)

    Munro, G.

    2011-01-01

    This paper discusses the development of clean energy technology in Canada. Energy is a major source of Canadian prosperity. Energy means more to Canada than any other industrialized country. It is the only OECD country with growing oil production. Canada is a stable and secure energy supplier and a major consumer. Promoting clean energy is a priority to make progress in multiple areas.

  14. The technological prospective of non nuclear channels; La prospective technologique des filieres non nucleaires

    Energy Technology Data Exchange (ETDEWEB)

    Claverie, M.; Clement, D.; Girard, C

    2000-07-15

    This prospective study concerns the electric power demand in 2050. It examines the three non nuclear sectors of production: the natural gas combined cycle power plants, the wind turbines among the renewable energies and the cogeneration electric power - heat in the ternary and building sector. The necessity of the network adaptation to the european competition and the decentralized production of electric power will suppose new investments of transport and storage. (A.L.B.)

  15. Nuclear science and technology: perspective prospects for Philippine development

    International Nuclear Information System (INIS)

    Aleta, C.R.

    1996-01-01

    The paper provides some historical perspectives on nuclear energy utilization and development in the Philippines. Highlights on applications in agriculture, medicine, industry, environment and regulations are mentioned. Current activities include gamma sterilization, food irradiation, sterile insect technique for pest eradication, medical applications, isotope techniques, radiation protection activities and nuclear power. Prospective contribution of national development through the use of radiation and nuclear techniques include those for water resources assessment, environmental and pollution studies, electricity generation and nuclear desalination. The regulatory aspects in support of the nuclear energy development are also discussed. (author)

  16. Energy Technology Perspectives 2012: Executive Summary

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-09-05

    Energy Technology Perspectives (ETP) is the International Energy Agency's most ambitious publication on new developments in energy technology. It demonstrates how technologies -- from electric vehicles to smart grids -- can make a decisive difference in achieving the objective of limiting the global temperature rise to 2 C and enhancing energy security. ETP 2012 presents scenarios and strategies to 2050, with the aim of guiding decision makers on energy trends and what needs to be done to build a clean, secure and competitive energy future.

  17. Life cycle assessment of ocean energy technologies

    OpenAIRE

    UIHLEIN ANDREAS

    2015-01-01

    Purpose Oceans offer a vast amount of renewable energy. Tidal and wave energy devices are currently the most advanced conduits of ocean energy. To date, only a few life cycle assessments for ocean energy have been carried out for ocean energy. This study analyses ocean energy devices, including all technologies currently being proposed, in order to gain a better understanding of their environmental impacts and explore how they can contribute to a more sustainable energy supply. Methods...

  18. Prospects for local community wind energy projects in the UK

    International Nuclear Information System (INIS)

    Taylor, Derek; Open Univ., Milton Keynes

    1993-01-01

    This paper examines the prospects for local community wind energy projects in the UK. After explaining the advantages of such projects compared to purely commercial developments, the scale and funding for the projects are discussed. It is argued that such projects are beneficial both financially to individual members and also to the local rural economies particularly in deprived regions. (UK)

  19. New technologies of the energy 1. The renewable energies

    International Nuclear Information System (INIS)

    Sabonnadiere, J.C.

    2006-01-01

    This book, devoted to the renewable energies, is the first of three volumes taking stock on the new technologies of the energy situation. The first part presents the solar energy (thermal photovoltaic and thermodynamic), completed by a chapter on the wind energy. An important part is devoted to new hydraulic energies with the sea energies and the very little hydroelectricity and in particular the exploitation of the energy of the drinking water and wastes water pipelines. (A.L.B.)

  20. Cogeneration – development and prospect in Polish energy sector

    Directory of Open Access Journals (Sweden)

    Matuszewska Dominika

    2017-01-01

    Full Text Available Next 10-15 years are crucial for condition of Polish energy sector in light of challenges arising mainly from increasing demand for electric energy, need of reducing greenhouse gases emissions and shutdowns of old units. In this situation cogeneration can be one of the most rational way to meet those circumstances. This paper analyzes present development of cogeneration in Poland and its prospect for future.

  1. Emerging technologies in electricity generation : an energy market assessment

    International Nuclear Information System (INIS)

    2006-03-01

    Canada's National Energy Board (NEB) monitors the supply of electricity as well as its demand in both domestic and export markets. It monitors the main drivers affecting current trends in generation, demand, prices, infrastructure additions, and inter-regional and international trade. This document presented an assessment of renewable and other emerging technologies that are considered to have significant promise and increased application in Canada over the longer term. It provided comprehensive information on the status and prospects for these technologies, related issues and regional perspectives. Alternative and renewable resources and demand management are becoming more important in addressing air quality issues and supply adequacy. In preparation of this report, staff at the NEB participated in a series of informal meetings with electric utilities, independent power producers, provincial energy regulators, power system operators and those engaged in technology development. The report involved on-site information gathering at wind farms, small hydro facilities, biomass, solar and geothermal operations and other facilities associated with emerging energy technologies such as fuel cells and ocean energy. Clean coal technologies that refer to methods by which emissions from coal-fired generation can be reduced were also evaluated. It was noted that the prospects for emerging technologies vary among the provinces and territories depending on regional resources, provincial government policies and strategies regarding fuel preferences. It was noted that currently in Canada, only 3 per cent of the installed generating capacity consists of emerging technologies. This low penetration is due to the low cost of electricity derived from conventional sources and to the structure of the industry in which large publicly owned utilities have historically opted for large central generating stations. It was suggested that the large increase in fossil fuel prices, public concern

  2. Renewable Energy Programmes in India: Status and Future Prospects

    International Nuclear Information System (INIS)

    Agarwal, Ram Kumar

    2010-09-01

    Renewable energy sources and technologies have potential to provide solutions to the long-standing energy problems being faced by the developing countries. The renewable energy sources like wind energy, solar energy, biomass energy and fuel cell technology can be used to overcome energy shortage in India. To meet the energy requirement for such a fast growing economy, India will require an assured supply of 3-4 times more energy than the total energy consumed today. The renewable energy is one of the options to meet this requirement. India is increasingly adopting responsible renewable energy techniques and taking positive steps towards carbon emissions, cleaning the air and ensuring a more sustainable future. In India, from the last two and half decades there has been a vigorous pursuit of activities relating to research, development, demonstration, production and application of a variety of renewable energy technologies for use in different sectors. In this paper, efforts have been made to summarize the availability, current status, major achievements and future potentials of renewable energy options in India. This paper also assesses specific policy interventions for overcoming the barriers and enhancing deployment of renewable energy devices for the future. (author)

  3. A roadmap for nuclear energy technology

    Science.gov (United States)

    Sofu, Tanju

    2018-01-01

    The prospects for the future use of nuclear energy worldwide can best be understood within the context of global population growth, urbanization, rising energy need and associated pollution concerns. As the world continues to urbanize, sustainable development challenges are expected to be concentrated in cities of the lower-middle-income countries where the pace of urbanization is fastest. As these countries continue their trajectory of economic development, their energy need will also outpace their population growth adding to the increased demand for electricity. OECD IEA's energy system deployment pathway foresees doubling of the current global nuclear capacity by 2050 to reduce the impact of rapid urbanization. The pending "retirement cliff" of the existing U.S. nuclear fleet, representing over 60 percent of the nation's emission-free electricity, also poses a large economic and environmental challenge. To meet the challenge, the U.S. DOE has developed the vision and strategy for development and deployment of advanced reactors. As part of that vision, the U.S. government pursues programs that aim to expand the use of nuclear power by supporting sustainability of the existing nuclear fleet, deploying new water-cooled large and small modular reactors to enable nuclear energy to help meet the energy security and climate change goals, conducting R&D for advanced reactor technologies with alternative coolants, and developing sustainable nuclear fuel cycle strategies. Since the current path relying heavily on water-cooled reactors and "once-through" fuel cycle is not sustainable, next generation nuclear energy systems under consideration aim for significant advances over existing and evolutionary water-cooled reactors. Among the spectrum of advanced reactor options, closed-fuel-cycle systems using reactors with fast-neutron spectrum to meet the sustainability goals offer the most attractive alternatives. However, unless the new public-private partnership models emerge

  4. Emerging energy-efficient technologies for industry

    International Nuclear Information System (INIS)

    Worrell, Ernst; Martin, Nathan; Price, Lynn; Ruth, Michael; Elliott, Neal; Shipley, Anna; Thorn, Jennifer

    2001-01-01

    For this study, we identified about 175 emerging energy-efficient technologies in industry, of which we characterized 54 in detail. While many profiles of individual emerging technologies are available, few reports have attempted to impose a standardized approach to the evaluation of the technologies. This study provides a way to review technologies in an independent manner, based on information on energy savings, economic, non-energy benefits, major market barriers, likelihood of success, and suggested next steps to accelerate deployment of each of the analyzed technologies. There are many interesting lessons to be learned from further investigation of technologies identified in our preliminary screening analysis. The detailed assessments of the 54 technologies are useful to evaluate claims made by developers, as well as to evaluate market potentials for the United States or specific regions. In this report we show that many new technologies are ready to enter the market place, or are currently under development, demonstrating that the United States is not running out of technologies to improve energy efficiency and economic and environmental performance, and will not run out in the future. The study shows that many of the technologies have important non-energy benefits, ranging from reduced environmental impact to improved productivity. Several technologies have reduced capital costs compared to the current technology used by those industries. Non-energy benefits such as these are frequently a motivating factor in bringing technologies such as these to market. Further evaluation of the profiled technologies is still needed. In particular, further quantifying the non-energy benefits based on the experience from technology users in the field is important. Interactive effects and inter-technology competition have not been accounted for and ideally should be included in any type of integrated technology scenario, for it may help to better evaluate market

  5. Emerging energy-efficient industrial technologies

    Energy Technology Data Exchange (ETDEWEB)

    Martin, N.; Worrell, E.; Ruth, M.; Price, L.; Elliott, R.N.; Shipley, A.M.; Thorne, J.

    2000-10-01

    U.S. industry consumes approximately 37 percent of the nation's energy to produce 24 percent of the nation's GDP. Increasingly, industry is confronted with the challenge of moving toward a cleaner, more sustainable path of production and consumption, while increasing global competitiveness. Technology will be essential for meeting these challenges. At some point, businesses are faced with investment in new capital stock. At this decision point, new and emerging technologies compete for capital investment alongside more established or mature technologies. Understanding the dynamics of the decision-making process is important to perceive what drives technology change and the overall effect on industrial energy use. The assessment of emerging energy-efficient industrial technologies can be useful for: (1) identifying R&D projects; (2) identifying potential technologies for market transformation activities; (3) providing common information on technologies to a broad audience of policy-makers; and (4) offering new insights into technology development and energy efficiency potentials. With the support of PG&E Co., NYSERDA, DOE, EPA, NEEA, and the Iowa Energy Center, staff from LBNL and ACEEE produced this assessment of emerging energy-efficient industrial technologies. The goal was to collect information on a broad array of potentially significant emerging energy-efficient industrial technologies and carefully characterize a sub-group of approximately 50 key technologies. Our use of the term ''emerging'' denotes technologies that are both pre-commercial but near commercialization, and technologies that have already entered the market but have less than 5 percent of current market share. We also have chosen technologies that are energy-efficient (i.e., use less energy than existing technologies and practices to produce the same product), and may have additional ''non-energy benefits.'' These benefits are as important (if

  6. Biomass for energy - small scale technologies

    Energy Technology Data Exchange (ETDEWEB)

    Salvesen, F.; Joergensen, P.F. [KanEnergi, Rud (Norway)

    1997-12-31

    The bioenergy markets and potential in EU region, the different types of biofuels, the energy technology, and the relevant applications of these for small-scale energy production are reviewed in this presentation

  7. Energy conservation employing membrane-based technology

    International Nuclear Information System (INIS)

    Narayanan, C.M.

    1993-01-01

    Membranes based processes, if properly adapted to industrial processes have good potential with regard to optimisation and economisation of energy consumption. The specific benefits of MBT (membrane based technology) as an energy conservation methodology are highlighted. (author). 6 refs

  8. Biomass for energy - small scale technologies

    Energy Technology Data Exchange (ETDEWEB)

    Salvesen, F; Joergensen, P F [KanEnergi, Rud (Norway)

    1998-12-31

    The bioenergy markets and potential in EU region, the different types of biofuels, the energy technology, and the relevant applications of these for small-scale energy production are reviewed in this presentation

  9. The new energy technologies in Australia

    International Nuclear Information System (INIS)

    Le Gleuher, M.; Farhi, R.

    2005-06-01

    The large dependence of Australia on the fossil fuels leads to an great emission of carbon dioxide. The Australia is thus the first greenhouse gases emitter per habitant, in the world. In spite of its sufficient fossil fuels reserves, the Australia increases its production of clean energies and the research programs in the domain of the new energies technology. After a presentation of the australia situation, the authors detail the government measures in favor of the new energy technologies and the situation of the hydroelectricity, the wind energy, the wave and tidal energy, the biomass, the biofuels, the solar energy, the ''clean'' coal, the hydrogen and the geothermal energy. (A.L.B.)

  10. Estimation of the resource and technological prospective of biomass as renewable energy in Mexico (Annexe 2 in 'A vision of year 2030 on the use of the renewable energies in Mexico'); Estimacion del recurso y prospectiva tecnologica de la biomasa como energetico renovable en Mexico (Anexo 2 en 'Una vision al 2030 de la utilizacion de las energias renovables en Mexico')

    Energy Technology Data Exchange (ETDEWEB)

    Masera, Omar R [Centro de Investigaciones en Ecosistemas, Universidad Nacional Autonoma de Mexico, D.F.(Mexico); Agullon, Javier; Gamino, Benjamin [Instituto de Ingenieria, Universidad Nacional Autonoma de Mexico, D.F.(Mexico)

    2005-08-15

    The work that next appears is a first effort towards the estimation of the resource and technological prospective of the biomass energy as renewable energy in Mexico. It tries to give an overview considering the present situation of energy plantations, production of alcohol from biomass as well as of the production of agricultural remainders, at worldwide scale as well as in our country. The report includes very general estimations of the of biomass resource, production costs, technological analyses, costs of investment and production of energy and technological prospective to 25 years in each one of the previously mentioned headings. [Spanish] El trabajo que a continuacion se presenta es un primer esfuerzo hacia la estimacion del recurso y prospectiva tecnologica de la biomasa como energetico renovable en Mexico. Pretende dar un panorama general estimando la situacion actual de plantaciones energeticas, de produccion de alcoholes a partir de biomasa asi como de produccion de residuos agricolas, tanto a escala mundial como en nuestro pais. El informe abarca estimaciones muy generales del recurso de biomasa, costos de produccion, analisis tecnologicos, costos de inversion y de produccion de energia y prospectiva tecnologica a 25 anos en cada uno de los rubros mencionados anteriormente.

  11. Residential/commercial market for energy technologies

    Energy Technology Data Exchange (ETDEWEB)

    Glesk, M M

    1979-08-01

    The residential/commercial market sector, particularly as it relates to energy technologies, is described. Buildings account for about 25% of the total energy consumed in the US. Market response to energy technologies is influenced by several considerations. Some considerations discussed are: industry characteristics; market sectors; energy-consumption characeristics; industry forecasts; and market influences. Market acceptance may be slow or nonexistent, the technology may have little impact on energy consumption, and redesign or modification may be necessary to overcome belatedly perceived market barriers. 7 figures, 20 tables.

  12. Fossil energy waste management. Technology status report

    Energy Technology Data Exchange (ETDEWEB)

    Bossart, S.J.; Newman, D.A.

    1995-02-01

    This report describes the current status and recent accomplishments of the Fossil Energy Waste Management (FE WM) projects sponsored by the Morgantown Energy Technology Center (METC) of the US Department of Energy (DOE). The primary goal of the Waste Management Program is to identify and develop optimal strategies to manage solid by-products from advanced coal technologies for the purpose of ensuring the competitiveness of advanced coal technologies as a future energy source. The projects in the Fossil Energy Waste Management Program are divided into three types of activities: Waste Characterization, Disposal Technologies, and Utilization Technologies. This technology status report includes a discussion on barriers to increased use of coal by-products. Also, the major technical and nontechnical challenges currently being addressed by the FE WM program are discussed. A bibliography of 96 citations and a list of project contacts is included if the reader is interested in obtaining additional information about the FE WM program.

  13. Future prospects for renewable energy sources in a global frame

    International Nuclear Information System (INIS)

    Lund, P.

    1992-06-01

    The objective of this study has been to evaluate the possibilities of some new energy sources (solar, wind) in the future world energy supply. We intend to prepare future projections accounting for limitations in infrastructure, time and material inputs. One underlying assumption in the analyses is that new technologies will see an early market introduction in the near future which would continue up to year 2020. During these 30 years, there will still be technological developments leading to a much better manufacturability, mass production, and hence reduced costs. In year 2020, the industrial and economic infrastructure of new energy sources would be mature for a major penetration into the world energy market starting to substitute existing energy sources mainly for environmental reasons. This scenario will be suported by more factual information and data in the following chapters. Each new energy technology will be handled separately. (Quittner)

  14. Energy Climate Change - Challenges and Prospects of the EU Policy

    International Nuclear Information System (INIS)

    Blecic, P.; Bosnjakovic, B.; Frankovic, B.

    2013-01-01

    The paper discusses the main challenges and prospects of EU policy in the field of energy and climate change, without going into technical details, but establishes the main themes of sustainability: economy, environment and new jobs. It describes the foundations and the objectives of the current EU energy policy, and the reasons why the current approach to reduction of greenhouse gases emissions is disappointing. Also, the question is whether EU will achieve the renewable energy goals for the year 2020. The security of energy supply and availability is also considered, especially in view of high dependence on import energy in the today fragmented market. For the way forward to mid-century, the targets to year 2030 are of critical importance. Also, the paper gives an overview of the state of renewable energy and greenhouse gas emissions in Croatia.(author)

  15. Renewable energy technology acceptance in Peninsular Malaysia

    International Nuclear Information System (INIS)

    Kardooni, Roozbeh; Yusoff, Sumiani Binti; Kari, Fatimah Binti

    2016-01-01

    Despite various policies, renewable energy resources have not been developed in Malaysia. This study investigates the factors that influence renewable energy technology acceptance in Peninsular Malaysia and attempts to show the impact of cost and knowledge on the perceived ease of use and perceived usefulness of renewable energy technology. The results show that cost of renewable energy has an indirect effect on attitudes towards using renewable energy through the associated impact on the perceived ease of use and perceived usefulness. The results also indicate that public knowledge in Peninsular Malaysia does not affect perceived ease of use, although the positive impact of knowledge on perceived usefulness is supported. Furthermore, our results show that the current business environment in Peninsular Malaysia does not support the adoption of renewable energy technology, and thus, renewable energy technology is not commercially viable in Peninsular Malaysia. Additionally, the population of Peninsular Malaysia associates the use of renewable energy with a high level of effort and therefore has a negative attitude towards the use of renewable energy technology. There is, therefore, a definite need to pay more attention to the role of public perception and awareness in the successes and failures of renewable energy policy. - Highlights: • Public acceptance is an essential element in the diffusion of renewable energy. • Perceived ease of use and perceived usefulness affect intention to use renewables. • It is important to reduce the cost of renewable energy, particularly for end users. • Renewable energy policies should address issues of public perception and awareness.

  16. Socio-economic research for innovative energy technologies

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, Yuichi [Tokyo Univ., High Temperature Plasma Center, Kashiwa, Chiba (Japan); Okano, Kunihiko [Central Research Inst. of Electric Power Industry, Tokyo (Japan)

    2006-10-15

    In the 21st century global environment and energy issues become very important, and this is characterized by the long-term (in the scale of a few tens years) and world-wide issue. In addition, future prospect of these issues might be quite uncertain, and scientific prediction could be very difficult. For these issues vigorous researches and various efforts have been carried out from various aspects; e.g., world-wide discussion such as COP3 in Kyoto, promotion of the energy-saving technology and so on. Development of environment-friendly energy has been promoted, and new innovative technologies are explored. Nuclear fusion is, of course, a promising candidate. While, there might be some criticism for nuclear fusion from the socio-economic aspect; e.g., it would take long time and huge cost for the fusion reactor development. In addition, other innovative energy technologies might have their own criticism, as well. Therefore, socio-economic research might be indispensable for future energy resources. At first we have selected six items as for the characteristics, which might be important for future energy resources; i.e., energy resource, environmental load, economics, reliability/stability, flexibility on operation and safety/security. Concerning to innovative energy technologies, we have nominated seven candidates; i.e., advanced coal technology with CO2 recovery system, SOFC top combined cycle, solar power, wind power, space solar power station, advanced fission and fusion. Based on questionnaires for ordinary people and fusion scientists, we have tried to assess the fusion energy development, comparing with other innovative energy technologies. (author)

  17. Energy conservation potential of surface modification technologies

    Energy Technology Data Exchange (ETDEWEB)

    Le, H.K.; Horne, D.M.; Silberglitt, R.S.

    1985-09-01

    This report assesses the energy conservation impact of surface modification technologies on the metalworking industries. The energy conservation impact of surface modification technologies on the metalworking industries is assessed by estimating their friction and wear tribological sinks and the subsequent reduction in these sinks when surface modified tools are used. Ion implantation, coatings, and laser and electron beam surface modifications are considered.

  18. Advanced Energy Validated Photovoltaic Inverter Technology at NREL | Energy

    Science.gov (United States)

    Inverter Technology at NREL Advanced Energy Industries-NREL's first partner at the Energy Systems Integration Facility (ESIF)-validated its advanced photovoltaic (PV) inverter technology using the ESIF's computer screen in a laboratory, with power inverter hardware in the background Photo by Dennis Schroeder

  19. Solar energy: Technology and applications

    Science.gov (United States)

    Williams, J. R.

    1974-01-01

    It is pointed out that in 1970 the total energy consumed in the U.S. was equal to the energy of sunlight received by only 0.15% of the land area of the continental U.S. The utilization of solar energy might, therefore, provide an approach for solving the energy crisis produced by the consumption of irreplaceable fossil fuels at a steadily increasing rate. Questions regarding the availability of solar energy are discussed along with the design of solar energy collectors and various approaches for heating houses and buildings by utilizing solar radiation. Other subjects considered are related to the heating of water partly or entirely with solar energy, the design of air conditioning systems based on the use of solar energy, electric power generation by a solar thermal and a photovoltaic approach, solar total energy systems, industrial and agricultural applications of solar energy, solar stills, the utilization of ocean thermal power, power systems based on the use of wind, and solar-energy power systems making use of geosynchronous power plants.

  20. Power Technologies Energy Data Book - Fourth Edition

    Energy Technology Data Exchange (ETDEWEB)

    Aabakken, J.

    2006-08-01

    This report, prepared by NREL's Strategic Energy Analysis Center, includes up-to-date information on power technologies, including complete technology profiles. The data book also contains charts on electricity restructuring, power technology forecasts, electricity supply, electricity capability, electricity generation, electricity demand, prices, economic indicators, environmental indicators, and conversion factors.

  1. Technology assessment of solar energy utilization

    Science.gov (United States)

    Jaeger, F.

    1985-11-01

    The general objectives and methods of Technology Assessment (TA) are outlined. Typical analysis steps of a TA for solar energy are reviewed: description of the technology and its further development; identification of impact areas; analysis of boundary conditions and definition of scenarios; market penetration of solar technologies; projection of consequences in areas of impact; and assessment of impacts and identification of options for action.

  2. Power Technologies Energy Data Book - Third Edition

    Energy Technology Data Exchange (ETDEWEB)

    Aabakken, J.

    2005-04-01

    This report, prepared by NREL's Energy Analysis Office, includes up-to-date information on power technologies, including complete technology profiles. The data book also contains charts on electricity restructuring, power technology forecasts, electricity supply, electricity capability, electricity generation, electricity demand, prices, economic indicators, environmental indicators, and conversion factors.

  3. Solar Energy: Its Technologies and Applications

    Science.gov (United States)

    Auh, P. C.

    1978-06-01

    Solar heat, as a potential source of clean energy, is available to all of us. Extensive R and D efforts are being made to effectively utilize this renewable energy source. A variety of different technologies for utilizing solar energy have been proven to be technically feasible. Here, some of the most promising technologies and their applications are briefly described. These are: Solar Heating and Cooling of Buildings (SHACOB), Solar Thermal Energy Conversion (STC), Wind Energy Conversion (WECS), Bioconversion to Fuels (BCF), Ocean Thermal Energy Conversion (OTEC), and Photovoltaic Electric Power Systems (PEPS). Special emphasis is placed on the discussion of the SHACOB technologies, since the technologies are being expeditiously developed for the near commercialization.

  4. Energy conversion technology by chemical processes

    Energy Technology Data Exchange (ETDEWEB)

    Oh, I W; Yoon, K S; Cho, B W [Korea Inst. of Science and Technology, Seoul (Korea, Republic of); and others

    1996-12-01

    The sharp increase in energy usage according to the industry development has resulted in deficiency of energy resources and severe pollution problems. Therefore, development of the effective way of energy usage and energy resources of low pollution is needed. Development of the energy conversion technology by chemical processes is also indispensable, which will replace the pollutant-producing and inefficient mechanical energy conversion technologies. Energy conversion technology by chemical processes directly converts chemical energy to electrical one, or converts heat energy to chemical one followed by heat storage. The technology includes batteries, fuel cells, and energy storage system. The are still many problems on performance, safety, and manufacturing of the secondary battery which is highly demanded in electronics, communication, and computer industries. To overcome these problems, key components such as carbon electrode, metal oxide electrode, and solid polymer electrolyte are developed in this study, followed by the fabrication of the lithium secondary battery. Polymer electrolyte fuel cell, as an advanced power generating apparatus with high efficiency, no pollution, and no noise, has many applications such as zero-emission vehicles, on-site power plants, and military purposes. After fabricating the cell components and operating the single cells, the fundamental technologies in polymer electrolyte fuel cell are established in this study. Energy storage technology provides the safe and regular heat energy, irrespective of the change of the heat energy sources, adjusts time gap between consumption and supply, and upgrades and concentrates low grade heat energy. In this study, useful chemical reactions for efficient storage and transport are investigated and the chemical heat storage technology are developed. (author) 41 refs., 90 figs., 20 tabs.

  5. Prospects for coal and clean coal technology in the Philippines

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-03-15

    This report examines the current energy outlook for the Philippines in regard not only to coal but also other energy resources. The history of the power sector, current state of play and future plans to meet the increasing energy demand from a growing population are discussed. There is also analysis of the trends for coal demand and production, imports and exports of coal and the types of coal-fired power stations that have been built. This includes examination of the legislation involving coal and the promotion of clean coal technologies.

  6. Energy technology review, July--August 1991

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, K.C. (ed.)

    1991-01-01

    This issue of Energy Technology Review'' gives the annual review of the programs at Lawrence Livermore National Laboratory. This State of the Laboratory issue includes discussions of all major programs: Defense Systems; Laser Research; Magnetic Fusion Energy; Energy and Earth Sciences; Environmental Technology Program; Biomedical and Environmental Science; Engineering; Physics; Chemistry and Materials Science; Computations; and Administrative and Institutional Services. An index is also given of the 1991 achievements with contact names and telephone number.

  7. Fourteenth National Industrial Energy Technology Conference: Proceedings

    International Nuclear Information System (INIS)

    1992-01-01

    Presented are many short articles on various aspects of energy production, use, and conservation in industry. The impacts of energy efficient equipment, recycling, pollution regulations, and energy auditing are discussed. The topics covered include: New generation sources and transmission issues, superconductivity applications, integrated resource planning, electro technology research, equipment and process improvement, environmental improvement, electric utility management, and recent European technology and conservation opportunities. Individual papers are indexed separately

  8. Renewable energy technologies and its adaptation in an urban environment

    Energy Technology Data Exchange (ETDEWEB)

    Thampi, K. Ravindranathan, E-mail: ravindranathan.thampi@ucd.ie; Byrne, Owen, E-mail: ravindranathan.thampi@ucd.ie; Surolia, Praveen K., E-mail: ravindranathan.thampi@ucd.ie [SFI Strategic Research Cluster in Solar Energy Conversion, School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin 4 (Ireland)

    2014-01-28

    This general article is based on the inaugural talk delivered at the opening of OMTAT 2013 conference. It notes that the integration of renewable energy sources into living and transport sectors presents a daunting task, still. In spite of the fact that the earth and its atmosphere continually receive 1.7 × 10{sup 17} watts of radiation from the sun, in the portfolio of sustainable and environment friendly energy options, which is about 16% of the world’s energy consumption and mostly met by biomass, only a paltry 0.04% is accredited to solar. First and second generation solar cells offer mature technologies for applications. The most important difficulty with regards to integration with structures is not only the additional cost, but also the lack of sufficient knowledge in managing the available energy smartly and efficiently. The incorporation of PV as a part of building fabric greatly reduces the overall costs compared with retrofitting. BIPV (Building Integrated photovoltaic) is a critical technology for establishing aesthetically pleasing solar structures. Infusing PV and building elements is greatly simplified with some of the second generation thin film technologies now manufactured as flexible panels. The same holds true for 3{sup rd} generation technologies under development such as, and dye- and quantum dot- sensitized solar cells. Additionally, these technologies offer transparent or translucent solar cells for incorporation into windows and skylights. This review deals with the present state of solar cell technologies suitable for BIPV and the status of BIPV applications and its future prospects.

  9. Automation technology saves 30% energy; Automatisierungstechnik spart 30% Energie ein

    Energy Technology Data Exchange (ETDEWEB)

    Klinkow, Torsten; Meyer, Michael [Wago Kontakttechnik GmbH und Co. KG, Minden (Germany)

    2013-04-01

    A systematic energy management is in more demand than ever in order to reduce the increasing energy costs. What used to be a difficult puzzle consisting of different technology components in the early days is today easier to solve by means of a standardized and cost-effective automation technology. With its IO system, Wago Kontakttechnik GmbH and Co. KG (Minden, Federal Republic of Germany) supplies a complete and coordinated portfolio for the energy efficiency.

  10. Industrial prospects for the optimized use of U, Pu and Th for sustainable nuclear energy deployment

    International Nuclear Information System (INIS)

    Durpel, Luc Van Den; Guesdon, Bernard; Lecomte, Michel; Greneche, Dominique

    2010-01-01

    'Nuclear energy is part of a sustainable energy future' is a conclusion which is increasingly reached by a variety of energy scenario studies by world-renown institutions such as the IAEA, OECD/IEA and OECD/NEA, World Energy Council, and also reached by different national energy assessment reports. Nuclear does own various unique features that make this energy technology a prime candidate to fulfill a large part of our energy needs, beyond today's use of nuclear energy for our electricity needs. The previous 'wave' of nuclear energy deployment since the 1970's was, and still is, governed by the use of 235 U as main driver to spur this deployment of nuclear energy with gradually the introduction of the U/Pu -cycle in the thermal neutron spectrum reactor park (essentially LWR-technology). Technological progress and good economics of the U/Pu - cycle and especially the economic competitiveness of the LWR's have made this U/Pu-cycle essentially the standard worldwide. Fast spectrum reactors (FRs) haven't yet been developed at sufficient large and industrial scale to make full benefit of the U/Pu-cycle and there are no prospects that the world would massively turn to such FRs in the immediate future. On the verge of a second wave of nuclear deployment, increasing interest is and has to be given to synergies between various nuclear reactor technologies and especially the global nuclear fuel cycle as enabler towards sustainable nuclear energy deployment. Those synergies aim at a reduced reliance on natural uranium resources, continued good economic competitiveness of nuclear energy in local markets, safe and nonproliferant use of nuclear energy, and a reduction of ultimate wastes to be disposed of. This paper provides an overview of various avenues towards sustainable nuclear energy deployment and perspectives from the nuclear industry leader AREVA. (author)

  11. Technological Aspects of Russian Energy Diplomacy

    Directory of Open Access Journals (Sweden)

    Stanislaw Z. Zhiznin

    2016-01-01

    Full Text Available In the present study we examined the impact of technology on the development of world energy in the world, as well as on the development of international energy relations. The important role of international cooperation in the field of energy technologies as a key factor in the development and global deployment of energy technologies in the industry. The most effective technology in the world of multilateral cooperation under the auspices of the International Energy Agency (IEA and other international organizations. It allows the joint efforts of the countries concerned to develop new technologies, test them and implement in production. For Russia, it is very important, because at the moment our country is not only a leading exporter of energy resources, but also has a significant impact on global energy security. At the same time Russia's FEC requires urgent and serious modernization through the development and introduction of innovative technologies on the basis of the study of international experience. Therefore the question of modernization of Russian fuel and energy complex has an international character. One way to accelerate the process of modernization of the organization is a public-private partnership that will largely depend on the nature and possibilities of Russian energy diplomacy, given the geopolitical and economic realities in connection with the sanctions imposed by Western countries against our country.

  12. Technological Change during the Energy Transition

    NARCIS (Netherlands)

    van der Meijden, G.C.; Smulders, J.A.

    2014-01-01

    The energy transition from fossil fuels to alternative energy sources has important consequences for technological change and resource extraction. We examine these consequences by incorporating a non-renewable resource and an alternative energy source in a market economy model of endogenous growth

  13. TECHNOLOGICAL CHANGE during the ENERGY TRANSITION

    NARCIS (Netherlands)

    van der Meijden, Gerard; Smulders, Sjak

    2018-01-01

    The energy transition from fossil fuels to alternative energy sources has important consequences for technological change and resource extraction. We examine these consequences by incorporating a nonrenewable resource and an alternative energy source in a market economy model of endogenous growth

  14. Technological Change During the Energy Transition

    NARCIS (Netherlands)

    van der Meijden, G.C.; Smulders, Sjak A.

    2014-01-01

    The energy transition from fossil fuels to alternative energy sources has important consequences for technological change and resource extraction. We examine these consequences by incorporating a non-renewable resource and an alternative energy source in a market economy model of endogenous growth

  15. Renewable Energy Generation in India: Present Scenario and Future Prospects

    DEFF Research Database (Denmark)

    Singh, Sri Niwas; Singh, Bharat; Østergaard, Jacob

    2009-01-01

    The development of Renewable Energy Sources (RES) is necessary for the sustainable development of any country due to depleting fossil fuel level, climbing fossil fuel prices across the world and more recently pressure for reduction emission level. In India, several schemes and policies are launched...... by the government to support the use of RES to achieve energy security and self-sufficiency. This paper discusses the present scenario and future prospects of RES in India. Various schemes such as financial assistance, tax holiday etc for promoting RESs development and utilization are also discussed. The present...

  16. Learning in renewable energy technology development

    International Nuclear Information System (INIS)

    Junginger, M.

    2005-01-01

    The main objectives of this thesis are: to investigate technological change and cost reduction for a number of renewable electricity technologies by means of the experience curve approach; to address related methodological issues in the experience curve approach, and, based on these insights; and to analyze the implications for achieving the Dutch renewable electricity targets for the year 2020 within a European context. In order to meet these objectives, a number of research questions have been formulated: What are the most promising renewable electricity technologies for the Netherlands until 2020 under different technological, economic and environmental conditions?; To what extent is the current use of the experience curve approach to investigate renewable energy technology development sound, what are differences in the utilization of this approach and what are possible pitfalls?; How can the experience curve approach be used to describe the potential development of partially new energy technologies, such as offshore wind energy? Is it possible to describe biomass fuel supply chains with experience curves? What are the possibilities and limits of the experience curve approach when describing non-modular technologies such as large (biomass) energy plants?; What are the main learning mechanisms behind the cost reduction of the investigated technologies?; and How can differences in the technological progress of renewable electricity options influence the market diffusion of renewable electricity technologies, and what implications can varying technological development and policy have on the implementation of renewable electricity technologies in the Netherlands? The development of different renewable energy technologies is investigated by means of some case studies. The possible effects of varying technological development in combination with different policy backgrounds are illustrated for the Netherlands. The thesis focuses mainly on the development of investment

  17. Nordic Energy Technologies : Enabling a sustainable Nordic energy future

    Energy Technology Data Exchange (ETDEWEB)

    Vik, Amund; Smith, Benjamin

    2009-10-15

    A high current Nordic competence in energy technology and an increased need for funding and international cooperation in the field are the main messages of the report. This report summarizes results from 7 different research projects relating to policies for energy technology, funded by Nordic Energy Research for the period 2007-2008, and provides an analysis of the Nordic innovation systems in the energy sector. The Nordic countries possess a high level of competence in the field of renewable energy technologies. Of the total installed capacity comprises a large share of renewable energy, and Nordic technology companies play an important role in the international market. Especially distinguished wind energy, both in view of the installed power and a global technology sales. Public funding for energy research has experienced a significant decline since the oil crisis of the 1970s, although the figures in recent years has increased a bit. According to the IEA, it will require a significant increase in funding to reduce greenhouse gas emissions and limit further climate change. The third point highlighted in the report is the importance of international cooperation in energy research. Nordic and international cooperation is necessary in order to reduce duplication and create the synergy needed if we are to achieve our ambitious policy objectives in the climate and energy issue. (AG)

  18. Market penetration of energy supply technologies

    Science.gov (United States)

    Condap, R. J.

    1980-03-01

    Techniques to incorporate the concepts of profit-induced growth and risk aversion into policy-oriented optimization models of the domestic energy sector are examined. After reviewing the pertinent market penetration literature, simple mathematical programs in which the introduction of new energy technologies is constrained primarily by the reinvestment of profits are formulated. The main results involve the convergence behavior of technology production levels under various assumptions about the form of the energy demand function. Next, profitability growth constraints are embedded in a full-scale model of U.S. energy-economy interactions. A rapidly convergent algorithm is developed to utilize optimal shadow prices in the computation of profitability for individual technologies. Allowance is made for additional policy variables such as government funding and taxation. The result is an optimal deployment schedule for current and future energy technologies which is consistent with the sector's ability to finance capacity expansion.

  19. Energy efficiency and human activity: Past trends, future prospects

    International Nuclear Information System (INIS)

    Schipper, L.; Meyers, S.; Howarth, R.B.; Steiner, R.

    1992-01-01

    This book, sponsored by the Stockholm Environmental Institute (SEI), presents a detailed analysis of changes in world energy use over the past twenty years. It considers the future prospects of energy demand, and discusses ways of restraining growth in consumption in order to meet environmental and economic development goals. Based on a decade of research by the authors and their colleagues at Lawrence Berkeley Laboratory in collaboration with the SEI, it presents information on energy use and the forces shaping it in the industrial, developing, and formerly planned economies. Looking separately at industry, passenger travel, freight transport, and the residential and service sectors, the authors describe the impact on energy use of growth in activity, structural change, and change in energy intensities, and discuss the role of energy prices and energy conservation policies in the industrial countries and the former Soviet Union. The book presents an overview of the potential for improving energy efficiency, and discusses the policies that could help realize the potential. While calling for strong action by governments and the private sector, the authors stress the importance of considering the full range of factors that will shape realization of the energy efficiency potential around the world

  20. Energy Accumulation by Hydrogen Technologies

    Directory of Open Access Journals (Sweden)

    Jiřina Čermáková

    2012-01-01

    Full Text Available Photovoltaic power plants as a renewable energy source have been receiving rapidly growing attention in the Czech Republic and in the other EU countries. This rapid development of photovoltaic sources is having a negative effect on the electricity power system control, because they depend on the weather conditions and provide a variable and unreliable supply of electric power. One way to reduce this effect is by accumulating electricity in hydrogen. The aim of this paper is to introduce hydrogen as a tool for regulating photovoltaic energy in island mode. A configuration has been designed for connecting households with the photovoltaic hybrid system, and a simulation model has been made in order to check the validity of this system. The simulation results provide energy flows and have been used for optimal sizing of real devices. An appropriate system can deliver energy in a stand-alone installation.

  1. Battery Technology Stores Clean Energy

    Science.gov (United States)

    2008-01-01

    Headquartered in Fremont, California, Deeya Energy Inc. is now bringing its flow batteries to commercial customers around the world after working with former Marshall Space Flight Center scientist, Lawrence Thaller. Deeya's liquid-cell batteries have higher power capability than Thaller's original design, are less expensive than lead-acid batteries, are a clean energy alternative, and are 10 to 20 times less expensive than nickel-metal hydride batteries, lithium-ion batteries, and fuel cell options.

  2. Cosmic Visions Dark Energy: Technology

    Energy Technology Data Exchange (ETDEWEB)

    Dodelson, Scott [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Heitmann, Katrin [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Hirata, Chris [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Honscheid, Klaus [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Roodman, Aaron [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Seljak, Uroš [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Slosar, Anže [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Trodden, Mark [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2016-04-26

    A strong instrumentation and detector R&D program has enabled the current generation of cosmic frontier surveys. A small investment in R&D will continue to pay dividends and enable new probes to investigate the accelerated expansion of the universe. Instrumentation and detector R&D provide critical training opportunities for future generations of experimentalists, skills that are important across the entire Department of Energy High Energy Physics program.

  3. Market introduction of renewable energy technologies

    International Nuclear Information System (INIS)

    1997-01-01

    On 11 and 12 November 1997 the VDI Society for Energy Technology (VDI-GET) held a congress in Neuss on the ''Market introduction of renewable energy technologies'' The focal topics of the congress were as follows: market analyses for renewable energy technologies, the development of markets at home and abroad, and the framework conditions governing market introduction. Specifically it dealt with the market effects of national and international introduction measures, promotion programmes and their efficiency, the legal framework conditions governing market introduction, advanced and supplementary training, market-oriented research (e.g., for cost reduction), and improved marketing [de

  4. Hawai‘i Distributed Energy Resource Technologies for Energy Security

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2012-09-30

    HNEI has conducted research to address a number of issues important to move Hawai‘i to greater use of intermittent renewable and distributed energy resource (DER) technologies in order to facilitate greater use of Hawai‘i's indigenous renewable energy resources. Efforts have been concentrated on the Islands of Hawai‘i, Maui, and O‘ahu, focusing in three areas of endeavor: 1) Energy Modeling and Scenario Analysis (previously called Energy Road mapping); 2) Research, Development, and Validation of Renewable DER and Microgrid Technologies; and 3) Analysis and Policy. These efforts focused on analysis of the island energy systems and development of specific candidate technologies for future insertion into an integrated energy system, which would lead to a more robust transmission and distribution system in the state of Hawai‘i and eventually elsewhere in the nation.

  5. Energy-storage technologies and electricity generation

    International Nuclear Information System (INIS)

    Hall, Peter J.; Bain, Euan J.

    2008-01-01

    As the contribution of electricity generated from renewable sources (wind, wave and solar) grows, the inherent intermittency of supply from such generating technologies must be addressed by a step-change in energy storage. Furthermore, the continuously developing demands of contemporary applications require the design of versatile energy-storage/power supply systems offering wide ranges of power density and energy density. As no single energy-storage technology has this capability, systems will comprise combinations of technologies such as electrochemical supercapacitors, flow batteries, lithium-ion batteries, superconducting magnetic energy storage (SMES) and kinetic energy storage. The evolution of the electrochemical supercapacitor is largely dependent on the development of optimised electrode materials (tailored to the chosen electrolyte) and electrolytes. Similarly, the development of lithium-ion battery technology requires fundamental research in materials science aimed at delivering new electrodes and electrolytes. Lithium-ion technology has significant potential, and a step-change is required in order to promote the technology from the portable electronics market into high-duty applications. Flow-battery development is largely concerned with safety and operability. However, opportunities exist to improve electrode technology yielding larger power densities. The main barriers to overcome with regard to the development of SMES technology are those related to high-temperature superconductors in terms of their granular, anisotropic nature. Materials development is essential for the successful evolution of flywheel technology. Given the appropriate research effort, the key scientific advances required in order to successfully develop energy-storage technologies generally represent realistic goals that may be achieved by 2050

  6. Information technology in pediatric practice: Current state and prospects

    Directory of Open Access Journals (Sweden)

    B. A. Kobrinsky

    2016-01-01

    Full Text Available In the preceding developmental period, information technologies in pediatrics found rather wide application in various fields (prophylactic examinations, diagnosis, electronic medical records, and specialized registers. At present, there are clearly prospects that are associated with transition to e-health and person-centered data integration. Electronic health records in their modular construction will ensure the formation of a variety of problem-oriented registers based on primary information entered once. Portable electronic devices intended for home use, by transferring the data to processing centers and physicians, will ensure constant monitoring of the health of certain contingents of children and responsiveness of critical changes of monitored physiological parameters. Built-in EHR assisted decision support system will serve as a guide for physicians in the diagnosis and treatment of children, which is particularly important to choose medicines.

  7. Emerging electrochemical energy conversion and storage technologies

    Science.gov (United States)

    Badwal, Sukhvinder P. S.; Giddey, Sarbjit S.; Munnings, Christopher; Bhatt, Anand I.; Hollenkamp, Anthony F.

    2014-01-01

    Electrochemical cells and systems play a key role in a wide range of industry sectors. These devices are critical enabling technologies for renewable energy; energy management, conservation, and storage; pollution control/monitoring; and greenhouse gas reduction. A large number of electrochemical energy technologies have been developed in the past. These systems continue to be optimized in terms of cost, life time, and performance, leading to their continued expansion into existing and emerging market sectors. The more established technologies such as deep-cycle batteries and sensors are being joined by emerging technologies such as fuel cells, large format lithium-ion batteries, electrochemical reactors; ion transport membranes and supercapacitors. This growing demand (multi billion dollars) for electrochemical energy systems along with the increasing maturity of a number of technologies is having a significant effect on the global research and development effort which is increasing in both in size and depth. A number of new technologies, which will have substantial impact on the environment and the way we produce and utilize energy, are under development. This paper presents an overview of several emerging electrochemical energy technologies along with a discussion some of the key technical challenges. PMID:25309898

  8. Energy technology and American democratic values

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, G.M.

    1988-01-01

    Today, the benefits of liberal democracy have increasingly been cast into doubt. The debate over alternative energy policies illustrates the problems associated with liberal democracy. For many, it is the realization that energy choices and the selection of social and political values amount to much the same thing. Simply put, energy policy decisions, and the concomitant energy technologies, carry implications of an ethical, social and political nature. The argument of the social and political effects of energy technology flows from the more general thesis that all forms of technological practice condition social and political relations. That is, technological systems, beyond performing the specific functions for which they were designed, act upon and influence social and political arrangements. Seen in this light, energy technologies are as important to the promotion and preservation of this country's political values as are its institutions and laws. Further, there is evidence to suggest that this country's cherished democratic value of freedom is slowly being eclipsed by the values attendant to corporate capitalism and its singular pursuit of growth. It is this dominance of economic values over political values which provides the environment within which the technological debate is waged. Ultimately, tracing the historic linkage between property and liberty, it is concluded that the preservation of our freedom require new thinking regarding the present configuration of ownership patterns. The questions surrounding energy policy serve to illuminate these concerns.

  9. The Analysis of the Chosen Internal Condition and Prospects of Romania’s Energy Security

    Directory of Open Access Journals (Sweden)

    Rutka Michał

    2017-03-01

    Full Text Available In the age of high pace of technological, economic and social development, stable and uninterrupted energy supply is one of the key components determining the economic sovereignty of the state, its position in international relations, and the quality of human life. Every economy around the world is heavily dependent on its energy sector. Consequently, ensuring energy security is currently one of the most important determinant of every country’s national security and the purpose of its security policy. In this article we focus on Romania’s energy security internal condition and prospects. Our main goal is to present actual state and prospects of Romanian energy sector. In order to achieve that goal, we decided to use various methods, such as descriptive analysis, document analysis and comparative analysis. The article has two parts. The first part consists of a description of energy sources and infrastructure used by Romanian economy. The second part is an analysis of possible chances and threats for both energy sector and energy security level.

  10. Wind Energy: Trends And Enabling Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Devabhaktuni, Vijay; Alam, Mansoor; Boyapati, Premchand; Chandna, Pankaj; Kumar, Ashok; Lack, Lewis; Nims, Douglas; Wang, Lingfeng

    2010-09-15

    With attention now focused on the damaging impact of greenhouse gases, wind energy is rapidly emerging as a low carbon, resource efficient, cost-effective sustainable technology in many parts of the world. Despite higher economic costs, offshore appears to be the next big step in wind energy development alternative because of the space scarcity for installation of onshore wind turbine. This paper presents the importance of off-shore wind energy, the wind farm layout design, the off-shore wind turbine technological developments, the role of sensors and the smart grid, and the challenges and future trends of wind energy.

  11. Predictive Power of Prospective Physical Education Teachers' Attitudes towards Educational Technologies for Their Technological Pedagogical Content Knowledge

    Science.gov (United States)

    Varol, Yaprak Kalemoglu

    2015-01-01

    The aim of the research is to determine the predictive power of prospective physical education teachers' attitudes towards educational technologies for their technological pedagogical content knowledge. In this study, a relational research model was used on a study group that consisted of 529 (M[subscript age]=21.49, SD=1.44) prospective physical…

  12. Wood biomass gasification: Technology assessment and prospects in developing countries

    International Nuclear Information System (INIS)

    Salvadego, C.

    1992-05-01

    This investigation of the technical-economic feasibility of the development and use of wood biomass gasification plants to help meet the energy requirements of developing countries covers the following aspects: resource availability and production; gasification technologies and biomass gasification plant typology; plant operating, maintenance and safety requirements; the use of the biomass derived gas in internal combustion engines and boilers; and the nature of energy requirements in developing countries. The paper concludes with a progress report on biomass gasification research programs being carried out in developing countries world-wide

  13. The Oil Security Metrics Model: A Tool for Evaluating the Prospective Oil Security Benefits of DOE's Energy Efficiency and Renewable Energy R&D Programs

    Energy Technology Data Exchange (ETDEWEB)

    Greene, David L [ORNL; Leiby, Paul Newsome [ORNL

    2006-05-01

    Energy technology R&D is a cornerstone of U.S. energy policy. Understanding the potential for energy technology R&D to solve the nation's energy problems is critical to formulating a successful R&D program. In light of this, the U.S. Congress requested the National Research Council (NRC) to undertake both retrospective and prospective assessments of the Department of Energy's (DOE's) Energy Efficiency and Fossil Energy Research programs (NRC, 2001; NRC, 2005). ("The Congress continued to express its interest in R&D benefits assessment by providing funds for the NRC to build on the retrospective methodology to develop a methodology for assessing prospective benefits." NRC, 2005, p. ES-2) In 2004, the NRC Committee on Prospective Benefits of DOE's Energy Efficiency and Fossil Energy R&D Programs published a report recommending a new framework and principles for prospective benefits assessment. The Committee explicitly deferred the issue of estimating security benefits to future work. Recognizing the need for a rigorous framework for assessing the energy security benefits of its R&D programs, the DOE's Office of Energy Efficiency and Renewable Energy (EERE) developed a framework and approach for defining energy security metrics for R&D programs to use in gauging the energy security benefits of their programs (Lee, 2005). This report describes methods for estimating the prospective oil security benefits of EERE's R&D programs that are consistent with the methodologies of the NRC (2005) Committee and that build on Lee's (2005) framework. Its objective is to define and implement a method that makes use of the NRC's typology of prospective benefits and methodological framework, satisfies the NRC's criteria for prospective benefits evaluation, and permits measurement of that portion of the prospective energy security benefits of EERE's R&D portfolio related to oil. While the Oil Security Metrics (OSM) methodology described

  14. Institute for Energy Technology, Annual Report 1981

    International Nuclear Information System (INIS)

    1982-03-01

    The annual report gives a brief account of the activities of Institute for Energy Technology and presents a fairly comprehensive anasis of the budgetary dispositions in 1981 and, for comparison, 1980. (RF)

  15. Hawaii Energy and Environmental Technologies (HEET) Initiative

    National Research Council Canada - National Science Library

    Rocheleau, Richard E; Moore, Robert M; Turn, Scott Q; Antal, Jr., Michael J; Cooney, Michael J; Liaw, Bor-Yann; Masutani, Stephen M

    2007-01-01

    This report covers efforts by the Hawaii Natural Energy Institute of the University of Hawaii under the ONR-funded HEET Initiative that addresses critical technology needs for exploration/utilization...

  16. Cooperative technology development: An approach to advancing energy technology

    International Nuclear Information System (INIS)

    Stern, T.

    1989-09-01

    Technology development requires an enormous financial investment over a long period of time. Scarce national and corporate resources, the result of highly competitive markets, decreased profit margins, wide currency fluctuations, and growing debt, often preclude continuous development of energy technology by single entities, i.e., corporations, institutions, or nations. Although the energy needs of the developed world are generally being met by existing institutions, it is becoming increasingly clear that existing capital formation and technology transfer structures have failed to aid developing nations in meeting their growing electricity needs. This paper will describe a method for meeting the electricity needs of the developing world through technology transfer and international cooperative technology development. The role of nuclear power and the advanced passive plant design will be discussed. (author)

  17. Technology Development Prospects for the Indian Power Sector

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    The Indian power sector will face numerous challenges over the next four decades. More than one third of India's population currently do not have access to electricity. Urgent action is needed to overcome this problem of energy poverty. At the same time rapid economic growth is projected to increase electricity demand by fivefold to sixfold between now and 2050. Massive investments will be needed to meet this increased demand, but this will also create unique opportunities to transform the power sector towards a low-carbon future. This Information Paper presents in more detail the analysis for India published in Energy Technology Perspectives 2010. The paper investigates the best way of achieving deep CO2 emission cuts in the Indian power system while allowing the Indian economy to continue growing and meeting the challenge of alleviating energy poverty. It does so from a techno-economic perspective - building on detailed resource and technology data for India - and identifies the key power sector technologies needed for India to realise such a transition.

  18. Study of Tandem Accelerator Technology and Its Prospects

    International Nuclear Information System (INIS)

    Sigit-Hariyanto; Sudjatmoko; Djoko-S-Pudjorahardjo; Suryadi; Widdi-Usada; Suprapto; Djasiman; Tono-Wibowo; Agus-Purwadi

    2000-01-01

    Tandem accelerator is an ion acceleration tool in which negative ions injected in the accelerator tube and stripped to become positive ions, then accelerated by electrostatic high voltage such that its energy is multiplied. In this paper, we describe the prospect of accelerator application briefly in agriculture and biotechnology, industry, health and medicine, environment fields. Technical study on tandem accelerator included SNICS and alphatross ion sources, acceleration system and stripper system. The study result for many kinds of negative ions and its current which should be injected in the accelerator tube and the output of tandem accelerator H + , and the distribution of C + , Ni + , Au + , Br + ion on varying charge state is shown. (author)

  19. Social assessment on fusion energy technology

    International Nuclear Information System (INIS)

    Nemoto, Kazuyasu

    1981-01-01

    In regard to the research and development for fusion energy technologies which are still in the stage of demonstrating scientific availability, it is necessary to accumulate the demonstrations of economic and environmental availability through the demonstration of technological availability. The purpose of this report is to examine how the society can utilize the new fusion energy technology. The technical characteristics of fusion energy system were analyzed in two aspects, namely the production techniques of thermal energy and electric energy. Also on the social characteristics in the fuel cycle stage of fusion reactors, the comparative analysis with existing fission reactors was carried out. Then, prediction and evaluation were made what change of social cycle fusion power generation causes on the social system formalized as a socio-ecological model. Moreover, the restricting factors to be the institutional obstacles to the application of fusion energy system to the society were analyzed from three levels of the decision making on energy policy. Since the convertor of fusion energy system is steam power generation system similar to existing system, the contents and properties of the social cycle change in the American society to which such new energy technology is applied are not much different even if the conversion will be made in future. (Kako, I.)

  20. Emerging energy technologies impacts and policy implications

    International Nuclear Information System (INIS)

    Grubb, M.

    1992-01-01

    Technical change is a key factor in the energy world. Failure to recognize the potential for technical change, and the pace at which it may occur, has limited the accuracy and usefulness of past energy projections. conversely, programs to develop and deploy advanced energy technologies have often proved disappointing in the face of technical and commercial obstacles. This book examines important new and emerging energy technologies, and the mechanisms by which they may develop and enter the market. The project concentrates on the potential and probable role of selected energy technologies-which are in existence and likely to be of rapidly growing importance over the next decade-and the way in which market conditions and policy environment may affect their implementation

  1. Energy management under policy and technology uncertainty

    International Nuclear Information System (INIS)

    Tylock, Steven M.; Seager, Thomas P.; Snell, Jeff; Bennett, Erin R.; Sweet, Don

    2012-01-01

    Energy managers in public agencies are subject to multiple and sometimes conflicting policy objectives regarding cost, environmental, and security concerns associated with alternative energy technologies. Making infrastructure investment decisions requires balancing different distributions of risks and benefits that are far from clear. For example, managers at permanent Army installations must incorporate Congressional legislative objectives, executive orders, Department of Defense directives, state laws and regulations, local restrictions, and multiple stakeholder concerns when undertaking new energy initiatives. Moreover, uncertainty with regard to alternative energy technologies is typically much greater than that associated with traditional technologies, both because the technologies themselves are continuously evolving and because the intermittent nature of many renewable technologies makes a certain level of uncertainty irreducible. This paper describes a novel stochastic multi-attribute analytic approach that allows users to explore different priorities or weighting schemes in combination with uncertainties related to technology performance. To illustrate the utility of this approach for understanding conflicting policy or stakeholder perspectives, prioritizing the need for more information, and making investment decisions, we apply this approach to an energy technology decision problem representative of a permanent military base. Highlights: ► Incorporate disparate criteria with uncertain performance. ► Analyze decisions with contrasting stakeholder positions. ► Interactively compare alternatives based on uncertain weighting. ► User friendly multi-criteria decision analysis (MCDA) tool.

  2. Development of technologies for solar energy utilization

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    With relation to the development of photovoltaic power systems for practical use, studies were made on thin-substrate polycrystalline solar cells and thin-film solar cells as manufacturing technology for solar cells for practical use. The technological development for super-high efficiency solar cells was also being advanced. Besides, the research and development have been conducted of evaluation technology for photovoltaic power systems and systems to utilize the photovoltaic power generation and peripheral technologies. The demonstrative research on photovoltaic power systems was continued. The international cooperative research on photovoltaic power systems was also made. The development of a manufacturing system for compound semiconductors for solar cells was carried out. As to the development of solar energy system technologies for industrial use, a study of elemental technologies was first made, and next the development of an advanced heat process type solar energy system was commenced. In addition, the research on passive solar systems was made. An investigational study was carried out of technologies for solar cities and solar energy snow melting systems. As international joint projects, studies were made of solar heat timber/cacao drying plants, etc. The paper also commented on projects for international cooperation for the technological development of solar energy utilization systems. 26 figs., 15 tabs.

  3. Gas and energy technology 2006

    International Nuclear Information System (INIS)

    2006-05-01

    The conference Energy21 is a yearly event gathering young people working in the oil sector or students in subjects related to the business to meet and network. Presentations are given by young people working in the industry, describing their experiences from working in the sector. The oil sector's history and forecast about the future of the Norwegian oil sector are also topics discussed (ml)

  4. Nuclear energy and nuclear technology

    International Nuclear Information System (INIS)

    Luescher, E.

    1982-01-01

    This book originated in the training courses for teachers of grammar- and secondary schools in Dillingen (Bavaria). The aim of these courses is to become informed about the latest state in one field of physics. The lectures are well-known experts in the respective fields. In the latest study (1980) of the National Academy of Sciences the experts came to the conclusion that without further development nuclear power plants the utilization of too much coal would become necessary and involve irreversible environmental damage (see chapter 6). There are two important obstacles impeding the further extension of nuclear energy. The first problem to be solved is the processing and storage of radioactive waste. This is a more technical task and can be treated in a satisfactory way. The second obstacle is less easy to take as the population has to be convinced that a nuclear power plant can be operated with almost unbelievable safety (see chapter 5) and be shut down safely in the case of incidents. The most promising possibility of controlled nuclear fusion as energy source is still many decades- if feasible at all- away from being performed (see chapter. 7). In the Soviet Union 25% of the electric energy production shall be proceed from nuclear power plants by the year 1990. (orig./GL) [de

  5. Prospects for nuclear energy in Kenya under vision 2030

    International Nuclear Information System (INIS)

    Shadrack, A. K.

    2012-01-01

    Overcoming energy poverty is one of Kenya's greatest challenges. Majority of Kenyans currently have no access to modern energy services and technologies. The challenge is thus to find appropriate and reliable solutions for providing energy sources for social and economic development. This study intends to focus on the development of nuclear power technology under the Kenya 2030 vision. This research project intends to investigate the advancement stages that Kenya has undertaken towards the implementation of nuclear power plants. A background review of nuclear energy in Kenya, and nuclear environments, have been reviewed and projected through the 2030 vision. The study will provide a useful starting point for policy makers interested in the state of the ecosystem

  6. Technology Roadmaps: Solar photovoltaic energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    Solar PV power is a commercially available and reliable technology with a significant potential for long-term growth in nearly all world regions. This roadmap estimates that by 2050, PV will provide around 11% of global electricity production and avoid 2.3 gigatonnes (Gt) of CO2 emissions per year. Achieving this roadmap's vision will require an effective, long-term and balanced policy effort in the next decade to allow for optimal technology progress, cost reduction and ramp-up of industrial manufacturing for mass deployment. Governments will need to provide long-term targets and supporting policies to build confidence for investments in manufacturing capacity and deployment of PV systems. PV will achieve grid parity -- i.e. competitiveness with electricity grid retail prices -- by 2020 in many regions. As grid parity is achieved, the policy framework should evolve towards fostering self-sustained markets, with the progressive phase-out of economic incentives, but maintaining grid access guarantees and sustained R&D support.

  7. Technology Roadmaps: Solar photovoltaic energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    Solar PV power is a commercially available and reliable technology with a significant potential for long-term growth in nearly all world regions. This roadmap estimates that by 2050, PV will provide around 11% of global electricity production and avoid 2.3 gigatonnes (Gt) of CO2 emissions per year. Achieving this roadmap's vision will require an effective, long-term and balanced policy effort in the next decade to allow for optimal technology progress, cost reduction and ramp-up of industrial manufacturing for mass deployment. Governments will need to provide long-term targets and supporting policies to build confidence for investments in manufacturing capacity and deployment of PV systems. PV will achieve grid parity -- i.e. competitiveness with electricity grid retail prices -- by 2020 in many regions. As grid parity is achieved, the policy framework should evolve towards fostering self-sustained markets, with the progressive phase-out of economic incentives, but maintaining grid access guarantees and sustained R&D support.

  8. Advanced nuclear energy analysis technology

    International Nuclear Information System (INIS)

    Gauntt, Randall O.; Murata, Kenneth K.; Romero, Vicente Josce; Young, Michael Francis; Rochau, Gary Eugene

    2004-01-01

    A two-year effort focused on applying ASCI technology developed for the analysis of weapons systems to the state-of-the-art accident analysis of a nuclear reactor system was proposed. The Sandia SIERRA parallel computing platform for ASCI codes includes high-fidelity thermal, fluids, and structural codes whose coupling through SIERRA can be specifically tailored to the particular problem at hand to analyze complex multiphysics problems. Presently, however, the suite lacks several physics modules unique to the analysis of nuclear reactors. The NRC MELCOR code, not presently part of SIERRA, was developed to analyze severe accidents in present-technology reactor systems. We attempted to: (1) evaluate the SIERRA code suite for its current applicability to the analysis of next generation nuclear reactors, and the feasibility of implementing MELCOR models into the SIERRA suite, (2) examine the possibility of augmenting ASCI codes or alternatives by coupling to the MELCOR code, or portions thereof, to address physics particular to nuclear reactor issues, especially those facing next generation reactor designs, and (3) apply the coupled code set to a demonstration problem involving a nuclear reactor system. We were successful in completing the first two in sufficient detail to determine that an extensive demonstration problem was not feasible at this time. In the future, completion of this research would demonstrate the feasibility of performing high fidelity and rapid analyses of safety and design issues needed to support the development of next generation power reactor systems

  9. The status and prospect of new energy and renewable energy in China

    Science.gov (United States)

    Qin, Jiaxi

    2018-06-01

    Renewable energy is an important part of the energy supply system. At present, the scale of global renewable energy development and utilization continues to expand, and application costs are rapidly declining. The development of renewable energy has become the core content of many countries in promoting energy transformation and an important method to deal with the climate change. It is also a revolution in China's energy production and consumption and a promotion of energy. This article focuses on the status of the development of new energy and renewable energy in China. After analyzing the problems in China's development and understanding the related policies, we look forward to the prospects of China's future and renewable energy sources.

  10. Prospects and applicability of wave energy for South Africa

    Science.gov (United States)

    Lavidas, George; Venugopal, Vengatesan

    2018-03-01

    Renewable energy offers significant opportunities for electricity diversification. South Africa belongs to the group of developing nations and encompasses a lot of potential for renewable energy developments. Currently, the majority of its electricity production originates from fossil fuels; however, incorporation of clean coal technologies will aid in reaching the assigned targets. This study offers a long-term wave power quantification analysis with a numerical wave model. The investigation includes long-term resource assessment in the region, variability, seasonal and monthly wave energy content. Locations with high-energy content but low variability pose an opportunity that can contribute in the alleviation of energy poverty. Application of wave converters depends on the combination of complex terms. The study presents resource levels and the joint distributions, which indicate suitability for converter selection. Depending on the region of interest, these characteristics change. Thus, this resource assessment adds knowledge on wave power and optimal consideration for wave energy applicability.

  11. West African Power Pool: Planning and Prospects for Renewable Energy

    Energy Technology Data Exchange (ETDEWEB)

    Miketa, Asami [IRENA, Bonn (Germany); Merven, Bruno [Energy Research Centre, Univ. of Cape Town (South Africa)

    2013-06-25

    With the energy systems of many African countries dominated by fossil-fuel sources that are vulnerable to global price volatility, regional and intra-continental power systems with high shares of renewable energy can provide least-cost option to support continued economic growth and address the continent’s acute energy access problem. Unlocking Africa’s huge renewable energy potential could help to take many people out of poverty, while ensuring the uptake of sustainable technologies for the continent’s long-term development. The report examines a ''renewable scenario'' based on a modelling tool developed by IRENA and tested with assistance from the Economic Community of West African States (ECOWAS). Initial results from the ECOWAS Renewable Energy Planning (EREP) model for continental ECOWAS countries show that the share of renewable technologies in the region could increase from the current 22% of electricity generation to as much as 52% in 2030, provided that the cost of these technologies continues to fall and fossil fuel prices continue to rise. In this scenario, nearly half of the envisaged capacity additions between 2010 and 2030 would be with renewable technologies. Analysis using EREP – along with a similar model developed for Southern Africa – can provide valuable input for regional dialogue and energy projects such as the East and Southern Africa Clean Energy Corridor and the Programme for Infrastructure and Development in Africa (PIDA). IRENA, together with partner organisations, has started plans to set up capacity building and development support for energy system modelling and planning for greater integration of renewables in Africa. IRENA is also completing a similar model and study for East Africa and intends to extend this work to Central and North Africa.

  12. New energy technologies. Research program proposition

    International Nuclear Information System (INIS)

    2005-02-01

    This document presents the most promising program propositions of research and development and the public financing needed for their realization. The concerned technologies are: the hydrogen and the fuel cell PAN-H, the separation and the storage of the CO 2 , the photovoltaic solar electricity, the PREBAT program of the building energy recovery and the bio-energies. (A.L.B.)

  13. High-energy pion beams: Problems and prospects

    International Nuclear Information System (INIS)

    Chrien, R.E.

    1992-01-01

    The investigation of relatively unexplored research areas with high energy pion beams requires new facilities. Presently existing meson factories such as LAMPF, TRIUMF and PSI provide insufficient pion fluxes above the 3,3 resonance region for access to topics such as strangeness production with the (π, K) reaction, baryon resonances, rare meson decays, and nuclear studies with penetrating pion beams. The problems and prospects of useful beams for these studies will be reviewed, both for existing facilities such as the AGS and KEK, and for possible future facilities like KAON and PILAC

  14. Technologies of Selective Energy Supply at Evaporation of Food Solutes

    Directory of Open Access Journals (Sweden)

    Burdo O.G.

    2017-04-01

    Full Text Available The aim of the research is to create innovative evaporating equipment that can produce concentrates with a high content of solids, with a low level of thermal effects on raw materials. The significance of the solution of technological problems of the key process of food technologies - concentration of liquid solutions (juices, extracts, etc. is shown. Problems and scientific contradictions are formulated and the hypothesis on using of electromagnetic energy sources for direct energy transfer to solution’s moisture has been offered. The prospects of such an energy effect are proved by the energy management methods. The schemes of fuel energy conversion for the conventional thermal concentration technology and the innovative plant based on the electromagnetic energy generators are presented. By means of the similarity theory the obtained model is transformed to the criterial one depicted kinetic of evaporation process at the electromagnetic field action. The dimensionless capacity of the plant is expressed by the dependence between the Energetic effect number and relative moisture content. The scheme of automated experimental system for study of the evaporation process in the microwave field is shown. The experimental results of juice evaporation are presented. It has been demonstrated that the technologies of selective energy supply represent an effective tool for improvement of juice concentration evaporative plants. The main result of the research is design of the evaporator that allows reaching juice concentrates with °brix 95 at the temperature as low as 35 °С, i.e. 2…3 times superior than traditional technologies.

  15. Finnish energy technologies for the future

    International Nuclear Information System (INIS)

    2007-01-01

    The global energy sector is going through major changes: the need for energy is growing explosively, while at the same time climate change is forcing US to find new, and cleaner, ways to generate energy. Finland is one of the forerunners in energy technology development, partly because of its northern location and partly thanks to efficient innovations. A network of centres of expertise was established in Finland in 1994 to boost the competitiveness and internationalisation of Finnish industry and, consequently, that of the EU region. During the expertise centre programme period 2007-2013, substantial resources will be allocated to efficient utilisation of top level expertise in thirteen selected clusters of expertise. The energy cluster, focusing on developing energy technologies for the future, is one of these

  16. Energy & Technology Review, March 1994

    Energy Technology Data Exchange (ETDEWEB)

    Quirk, W.J.; Canada, J.; de Vore, L.; Gleason, K.; Kirvel, R.D.; Kroopnick, H.; McElroy, L.; Van Dyke, P. [eds.

    1994-03-01

    This monthly report of research activities at Lawrence Livermore Laboratory highlights three different research programs. First, the Forensic Science Center supports a broad range of analytical techniques that focus on detecting and analyzing chemical, biological, and nuclear species. Analyses are useful in the areas of nonproliferation, counterterrorism, and law enforcement. Second, starting in 1977, the laboratory initiated a series of studies to understand a high incidence of melanoma among employees. Continued study shows that mortality from this disease has decreased from the levels seen in the 1980`s. Third, to help coordinate the laboratory`s diverse research projects that can provide better healthcare tools to the public, the lab is creating the new Center for Healthcare Technologies.

  17. A Review of Energy Storage Technologies

    DEFF Research Database (Denmark)

    Connolly, David

    2010-01-01

    A brief examination into the energy storage techniques currently available for the integration of fluctuating renewable energy was carried out. These included Pumped Hydroelectric Energy Storage (PHES), Underground Pumped Hydroelectric Energy Storage (UPHES), Compressed Air Energy Storage (CAES...... than PHES depending on the availability of suitable sites. FBES could also be utilised in the future for the integration of wind, but it may not have the scale required to exist along with electric vehicles. The remaining technologies will most likely be used for their current applications...

  18. The status and prospects of nuclear reactor technology development

    International Nuclear Information System (INIS)

    Juhn, P.E.

    2001-01-01

    Nuclear power is a proven technology which currently contributes about 16% to the world electricity supply and, to a much lesser extent, to heat supply in some countries. Nuclear Power is economically competitive with fossil fuels for base load electricity generation in many countries, and is one of the commercially proven energy supply options that could be extended in the future to reduce environmental burdens, especially greenhouse gas emissions, from the electricity sector. Over the past five decades, nearly ten thousand reactor-years of operating experience have been accumulated with current nuclear power plants. However, nuclear power is currently at a cross-road. There are no new nuclear power construction projects in most parts of the world, except some countries in East Asia and Eastern Europe. The main issues are economic competitiveness with cheap gas plants and public concerns on nuclear waste disposal and safety. Strong economic growth and the shrinking of existing electricity over-capacities could favour nuclear power. Since nuclear power emits no greenhouse gases to the environment, its development could be further accelerated by a breakthrough in innovative nuclear reactor technology development. Great attention also needs to be paid to the design of new nuclear reactors, which are modularized and faster to construct, thus reducing capital investment and construction period, and thereby improving their overall economics and their compatibility with the infrastructure of, in particular, developing countries, where new energy demands are expected. This paper discusses the future world energy outlook, challenges for and progresses on nuclear power; overview of new nuclear reactor technology development; and the role of the International Atomic Energy Agency (IAEA) in the development of new innovative nuclear reactors. (author)

  19. Evaluating Internal Technological Capabilities in Energy Companies

    Directory of Open Access Journals (Sweden)

    Mingook Lee

    2016-03-01

    Full Text Available As global competition increases, technological capability must be evaluated objectively as one of the most important factors for predominance in technological competition and to ensure sustainable business excellence. Most existing capability evaluation models utilize either quantitative methods, such as patent analysis, or qualitative methods, such as expert panels. Accordingly, they may be in danger of reflecting only fragmentary aspects of technological capabilities, and produce inconsistent results when different models are used. To solve these problems, this paper proposes a comprehensive framework for evaluating technological capabilities in energy companies by considering the complex properties of technological knowledge. For this purpose, we first explored various factors affecting technological capabilities and divided the factors into three categories: individual, organizational, and technology competitiveness. Second, we identified appropriate evaluation items for each category to measure the technological capability. Finally, by using a hybrid approach of qualitative and quantitative methods, we developed an evaluation method for each item and suggested a method to combine the results. The proposed framework was then verified with an energy generation and supply company to investigate its practicality. As one of the earliest attempts to evaluate multi-faceted technological capabilities, the suggested model can support technology and strategic planning.

  20. Technology and the diffusion of renewable energy

    International Nuclear Information System (INIS)

    Popp, David; Hascic, Ivan; Medhi, Neelakshi

    2011-01-01

    We consider investment in wind, solar photovoltaic, geothermal, and electricity from biomass and waste across 26 OECD countries from 1991 to 2004. Using the PATSTAT database, we obtain a comprehensive list of patents for each of these technologies throughout the world, which we use to assess the impact of technological change on investment in renewable energy capacity. We consider four alternative methods for counting patents, using two possible filters: weighting patents by patent family size and including only patent applications filed in multiple countries. For each patent count, we create knowledge stocks representing the global technological frontier. We find that technological advances do lead to greater investment, but the effect is small. Investments in other carbon-free energy sources, such as hydropower and nuclear power, serve as substitutes for renewable energy. Comparing the effectiveness of our four patent counts, we find that both using only patents filed in multiple countries and weighting by family size improve the fit of the model.

  1. The export of Dutch solar energy technology

    International Nuclear Information System (INIS)

    2000-01-01

    The use of solar energy technology is on the up. In 1997 circa 8000 solar energy systems were installed in the Netherlands, compared to 100 systems in 1988. Solar energy installations, manufactured in the Netherlands, are also sold and installed in other European countries. The market grows by 55% per year. An overview is given of the principles and components of installed and exported solar heating systems, with special attention for the drain-back system

  2. Energy Technology Division research summary 2004

    International Nuclear Information System (INIS)

    Poeppel, R. B.; Shack, W. J.

    2004-01-01

    The Energy Technology (ET) Division provides materials and engineering technology support to a wide range of programs important to the US Department of Energy (DOE). The Division's capabilities are generally applied to technical issues associated with energy systems, biomedical engineering, transportation, and homeland security. Research related to the operational safety of commercial light water nuclear reactors (LWRs) for the US Nuclear Regulatory Commission (NRC) remains another significant area of interest for the Division. The pie chart below summarizes the ET sources of funding for FY 2004

  3. Southern African Power Pool: Planning and Prospects for Renewable Energy

    Energy Technology Data Exchange (ETDEWEB)

    Miketa, Asami [IRENA, Bonn (Germany); Merven, Bruno [Energy Research Centre, Univ. of Cape Town (South Africa)

    2013-06-25

    With the energy systems of many African countries dominated by fossil-fuel sources that are vulnerable to global price volatility, regional and intra-continental power systems with high shares of renewable energy can provide least-cost option to support continued economic growth and address the continent’s acute energy access problem. Unlocking Africa’s huge renewable energy potential could help to take many people out of poverty, while ensuring the uptake of sustainable technologies for the continent’s long-term development. The report examines the ''renewable scenario'' based on a modelling tool developed by IRENA and tested in cooperation with the South African National Energy Development Institute (SANEDI) and the Southern African Development Community (SADC). Initial results from the System Planning and Test (SPLAT) model show that the share of renewable technologies in Southern Africa could increase from the current 10% to as much as 46% in 2030, with 20% of decentralised capacity coming from renewable sources and nearly 80% of the envisaged capacity additions between 2010 and 2030 being provided by renewable energy technologies. Deployment and export of hydropower from the Democratic Republic of Congo’s Inga hydropower project to the SADC region would significantly reduce average electricity generation costs. Analysis using SPLAT – along with a similar model developed for West Africa – can provide valuable input for regional dialogue and energy projects such as the East and Southern Africa Clean Energy Corridor and the Programme for Infrastructure and Development in Africa (PIDA). IRENA, together with partner organisations, has started plans to set up capacity building and development support for energy system modelling and planning for greater integration of renewables in Africa. IRENA is also completing a similar model and study for East Africa and intends to extend this work to Central and North Africa.

  4. Wood for energy production. Technology - environment - economy

    International Nuclear Information System (INIS)

    Serup, H.; Falster, H.; Gamborg, C.

    1999-01-01

    'Wood for Energy Production', 2nd edition, is a readily understood guide to the application of wood in the Danish energy supply. The first edition was named 'Wood Chips for Energy Production'. It describes the wood fuel from forest to consumer and provides a concise introduction to technological, environmental, and financial matters concerning heating systems for farms, institutions, district heating plants, and CHP plants. The individual sections deal with both conventional, well known technology, as well as the most recent technological advances in the field of CHP production. The purpose of this publication is to reach the largest possible audiance, and it is designed so that the layman may find its background information of special relevance. 'Wood for Energy Production' is also available in German and Danish. (au)

  5. Directed-energy process technology efforts

    Science.gov (United States)

    Alexander, P.

    1985-01-01

    A summary of directed-energy process technology for solar cells was presented. This technology is defined as directing energy or mass to specific areas on solar cells to produce a desired effect in contrast to exposing a cell to a thermal or mass flow environment. Some of these second generation processing techniques are: ion implantation; microwave-enhanced chemical vapor deposition; rapid thermal processing; and the use of lasers for cutting, assisting in metallization, assisting in deposition, and drive-in of liquid dopants. Advantages of directed energy techniques are: surface heating resulting in the bulk of the cell material being cooler and unchanged; better process control yields; better junction profiles, junction depths, and metal sintering; lower energy consumption during processing and smaller factory space requirements. These advantages should result in higher-efficiency cells at lower costs. The results of the numerous contracted efforts were presented as well as the application potentials of these new technologies.

  6. Wood for energy production. Technology - environment - economy

    Energy Technology Data Exchange (ETDEWEB)

    Serup, H.; Falster, H.; Gamborg, C. [and others

    1999-10-01

    `Wood for Energy Production`, 2nd edition, is a readily understood guide to the application of wood in the Danish energy supply. The first edition was named `Wood Chips for Energy Production`. It describes the wood fuel from forest to consumer and provides a concise introduction to technological, environmental, and financial matters concerning heating systems for farms, institutions, district heating plants, and CHP plants. The individual sections deal with both conventional, well known technology, as well as the most recent technological advances in the field of CHP production. The purpose of this publication is to reach the largest possible audiance, and it is designed so that the layman may find its background information of special relevance. `Wood for Energy Production` is also available in German and Danish. (au)

  7. Wind Energy Workforce Development: Engineering, Science, & Technology

    Energy Technology Data Exchange (ETDEWEB)

    Lesieutre, George A.; Stewart, Susan W.; Bridgen, Marc

    2013-03-29

    Broadly, this project involved the development and delivery of a new curriculum in wind energy engineering at the Pennsylvania State University; this includes enhancement of the Renewable Energy program at the Pennsylvania College of Technology. The new curricula at Penn State includes addition of wind energy-focused material in more than five existing courses in aerospace engineering, mechanical engineering, engineering science and mechanics and energy engineering, as well as three new online graduate courses. The online graduate courses represent a stand-alone Graduate Certificate in Wind Energy, and provide the core of a Wind Energy Option in an online intercollege professional Masters degree in Renewable Energy and Sustainability Systems. The Pennsylvania College of Technology erected a 10 kilowatt Xzeres wind turbine that is dedicated to educating the renewable energy workforce. The entire construction process was incorporated into the Renewable Energy A.A.S. degree program, the Building Science and Sustainable Design B.S. program, and other construction-related coursework throughout the School of Construction and Design Technologies. Follow-on outcomes include additional non-credit opportunities as well as secondary school career readiness events, community outreach activities, and public awareness postings.

  8. Electric energy storage - Overview of technologies

    International Nuclear Information System (INIS)

    Boye, Henri

    2013-01-01

    Energy storage is a challenging and costly process, as electricity can only be stored by conversion into other forms of energy (e.g. potential, thermal, chemical or magnetic energy). The grids must be precisely balanced in real time and it must be made sure that the cost of electricity is the lowest possible. Storage of electricity has many advantages, in centralized mass storages used for the management of the transmission network, or in decentralized storages of smaller dimensions. This article presents an overview of the storage technologies: mechanical storage in hydroelectric and pumped storage power stations, compressed air energy storage (CAES), flywheels accumulating kinetic energy, electrochemical batteries with various technologies, traditional lead acid batteries, lithium ion, sodium sulfur (NaS) and others, including vehicle to grid, sensible heat thermal storage, superconducting magnetic energy storage (SMES), super-capacitors, conversion into hydrogen... The different technologies are compared in terms of cost and level of maturity. The development of intermittent renewable energies will result in a growing need for mechanisms to regulate energy flow and innovative energy storage solutions seem well positioned to develop. (author)

  9. Soft energy technology hope or illusion

    International Nuclear Information System (INIS)

    Seifritz, W.

    1980-01-01

    Both in the press and in TV, increasingly more voices are calling to turn away from large technology, especially to do without nuclear energy. Well-known representatives of this movement are A. Lovins in the USA, R. Jungk and K. Traube in the Federal Republic of Germany. They make attempts to convince the public that the future problems of energy supply can be solved by saving energy and utilizing alternative energy sources such as solar energy and wind energy. They fight against the 'hard' technology and its main representatives, the large industry because these, in their opinion, desise growth and material wealth at the cost of a healthy environment thus causing a progressing intellectual, cultural, and emotional impoverishment of mankind. Instead of these, they want to use a 'smooth' technology which is thought to lead to a deceuhalisation with more humanity, liberality, and justice. The author shows here that, as far as the potential and the effects of a utilization of alternative energy sources are concerned, these people wake expectations which cannot be fulfilled for technical reasons. But there is something even worse: These utopic expectations lead to an ideology which might result in destroying the fundaments of utilizing the doubtlessly existing potential of the alternative energy sources, especially the often praised renewability of solar energy utilization. (orig.) [de

  10. Life cycle emissions from renewable energy technologies

    International Nuclear Information System (INIS)

    Bates, J.; Watkiss, P.; Thorpe, T.

    1997-01-01

    This paper presents the methodology used in the ETSU review, together with the detailed results for three of the technologies studied: wind turbines, photovoltaic systems and small, stand-alone solar thermal systems. These emissions are then compared with those calculated for both other renewables and fossil fuel technology on a similar life cycle basis. The life cycle emissions associated with renewable energy technology vary considerably. They are lowest for those technologies where the renewable resource has been concentrated in some way (e.g. over distance in the case of wind and hydro, or over time in the case of energy crops). Wind turbines have amongst the lowest emissions of all renewables and are lower than those for fossil fuel generation, often by over an order of magnitude. Photovoltaics and solar thermal systems have the highest life cycle emissions of all the renewable energy technologies under review. However, their emissions of most pollutants are also much lower than those associated with fossil fuel technologies. In addition, the emissions associated with PV are likely to fall further in the future as the conversion efficiency of PV cells increases and manufacturing technology switches to thin film technologies, which are less energy intensive. Combining the assessments of life cycle emissions of renewables with predictions made by the World Energy Council (WEC) of their future deployment has allowed estimates to be made of amount by which renewables could reduce the future global emissions of carbon dioxide, sulphur dioxide and nitrogen oxides. It estimated that under the WEC's 'Ecologically Driven' scenario, renewables might lead to significant reductions of between 3650 and 8375 Mt in annual CO 2 emissions depending on the fossil fuel technology they are assumed to displace. (author)

  11. Wave energy for the 21st century: status and prospects

    International Nuclear Information System (INIS)

    Thorpe, Tom

    2000-01-01

    This article reviews the current technical and commercial status of wave energy, and discusses the design of near shore devices such as the 2MW OSPREY, and offshore devices including the McCabe wave pump, the Ocean Power Technology Wave Energy Converter, the Archimedes Wave Swing, the Pelamis, and wave energy schemes under development by other commercial firms. The predicted generating costs, the potential market, environmental impacts, and institution factors such as planning and consent, grid connection,and safety in design and operation are considered. The operating principles of an oscillating water column, and some promising offshore devices are illustrated

  12. Energy efficient technologies for the mining industry

    Energy Technology Data Exchange (ETDEWEB)

    Klein, B.; Bamber, A.; Weatherwax, T.; Dozdiak, J.; Nadolski, S.; Roufail, R.; Parry, J.; Roufail, R.; Tong, L.; Hall, R. [British Columbia Univ., Vancouver, BC (Canada). Centre for Environmental Research in Minerals, Metals and Materials, Norman B. Keevil Inst. of Mining Engineering

    2010-07-01

    Mining in British Columbia is the second largest industrial electricity consumer. This presentation highlighted methods to help the mining industry reduce their energy requirements by limiting waste and improving efficiency. The measures are aimed at optimizing energy-use and efficiency in mining and processing and identifying opportunities and methods of improving this efficiency. Energy conservation in comminution and beneficiation is a primary focus of research activities at the University of British Columbia (UBC). The objective is to reduce energy usage in metal mines by 20 per cent overall. Open pit copper, gold and molybdenum mines are being targeted. Projects underway at UBC were outlined, with particular reference to energy usage, recovery and alternative energy sources; preconcentration; reducing energy usage from comminution in sorting, high pressure grinding rolls and high speed stirred mills; Hydromet; other energy efficient technologies such as control and flotation; and carbon dioxide sequestration. Studies were conducted at various mining facilities, including mines in Sudbury, Ontario. tabs., figs.

  13. Solar energy – new photovoltaic technologies

    DEFF Research Database (Denmark)

    Sommer-Larsen, Peter

    2009-01-01

    Solar energy technologies directly convert sunlight into electricity and heat, or power chemical reactions that convert simple molecules into synthetic chemicals and fuels. The sun is by far the most abundant source of energy, and a sustainable society will need to rely on solar energy as one...... of its major energy sources. Solar energy is a focus point in many strategies for a sustainable energy supply. The European Commission’s Strategic Energy Plan (SET-plan) envisages a Solar Europe Initiative, where photovoltaics and concentrated solar power (CSP) supply as much power as wind mills...... in the future. Much focus is directed towards photovoltaics presently. Installation of solar cell occurs at an unprecedented pace and the expectations of the photovoltaics industry are high: a total PV capacity of 40 GW by 2012 as reported by a recent study. The talk progresses from general solar energy topics...

  14. Policies for the Energy Technology Innovation System (ETIS)

    NARCIS (Netherlands)

    Grubler, A.; Aguayo, F.; Gallagher, K.; Hekkert, M.P.; Jiang, K.; Mytelka, L.; Neij, L.; Nemet, G.; Wilson, C.

    2012-01-01

    Innovation and technological change are integral to the energy system transformations described in the Global Energy Assessment (GEA) pathways. Energy technology innovations range from incremental improvements to radical breakthroughs and from technologies and infrastructure to social institutions

  15. Risoe energy report 6. Future options for energy technologies

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Hans; Soenderberg Petersen, L [eds.

    2007-11-15

    Fossil fuels provide about 80% of the global energy demand, and this will continue to be the situation for decades to come. In the European Community we are facing two major energy challenges. The first is sustainability, and the second is security of supply, since Europe is becoming more dependent on imported fuels. These challenges are the starting point for the present Risoe Energy Report 6. It gives an overview of the energy scene together with trends and emerging energy technologies. The report presents status and trends for energy technologies seen from a Danish and European perspective from three points of view: security of supply, climate change and industrial perspectives. The report addresses energy supply technologies, efficiency improvements and transport. The report is volume 6 in a series of reports covering energy issues at global, regional and national levels. The individual chapters of the report have been written by staff members from the Technical University of Denmark and Risoe National Laboratory together with leading Danish and international experts. The report is based on the latest research results from Risoe National Laboratory, Technical University of Denmark, together with available internationally recognized scientific material, and is fully referenced and refereed by renowned experts. Information on current developments is taken from the most up-to-date and authoritative sources available. Our target groups are colleagues, collaborating partners, customers, funding organizations, the Danish government and international organizations including the European Union, the International Energy Agency and the United Nations. (au)

  16. Energy Sector of Russia’s Far East in 2050 Perspective: Technological Aspect

    Directory of Open Access Journals (Sweden)

    Dyomina O. V.

    2012-06-01

    Full Text Available Advanced energy technologies are analyzed: energy generation from fossil fuels, energy production from renewable sources, and nuclear power industry in the world, in Russia and the Russian Far East. It is shown that the high provision with internal energy resources and high prices in the world energy markets hamper the development of energy technologies in Russia: research and development in the field of generation based on traditional and renewable energy sources are aimed at improving the facilities, reducing the unit cost and operating costs; global leadership is only possible in nuclear technology. Prospects for the use of energy technologies in the Russian Far East will be determined by the conditions of extraction of fossil fuels and the related energy production

  17. Renewable energy technologies: costs and markets

    International Nuclear Information System (INIS)

    Nitsch, J.; Langniss, O.

    1997-01-01

    A prominent feature of renewable energy utilisation is the magnitude of renewable energy that is physically available worldwide. The present paper attempts an economic valuation of development strategies for renewable energy sources (RES) on the basis of the past development of RES markets. It comes to the conclusion that if current energy prices remain largely unchanged, it will be necessary to promote RES technologies differentially according to the technique and type of energy employed or to provide start-up funding. The more probable a long-term increase in energy prices becomes, the greater will be the proportion of successfully promoted technologies. Energy taxes on exhaustible or environmentally harmful energy carriers and other instruments to this end would contribute greatly to the attractivity of RES investment both in terms of national economy and from the viewpoint of the private investor. Renewable energies will play an important role in the hardware and services sectors of the energy market in the decades to come. Long-term promotion of market introduction programmes and unequivocal energy-political aims on the part of the government are needed if the German industry is to have a share in this growing market and be able to offer internationally competitive products [de

  18. Technology unlocks tar sands energy

    Energy Technology Data Exchange (ETDEWEB)

    Law, C

    1967-09-25

    Tar sand processing technology has been developed primarily in the categories of extraction techniques and in-situ processing. In October, a $235 million venture into tar sand processing will be inspected by visitors from many points on the globe. A synthetic crude of premium quality will be flowing through a 16-in. pipeline from the Tar Island plant site of Great Canadian Oil Sands to Edmonton. This processing plant uses an extractive mining technique. The tar sand pay zone in this area averages approximately 150 ft in thickness with a 50-ft overburden. It has been estimated that the tar sands cannot be exploited when the formation thickness is less than 100 ft and overburden exceeds the same amount. This indicates that extraction techniques can only be used to recover approximately 15% of the tar sand deposits. An in-situ recovery technique developed by Shell of Canada is discussed in detail. In essence it is selective hydraulic fracturing, followed by the injection of emulsifying chemicals and steam.

  19. Creating prospective value chains for renewable road transport energy sources up to 2050 in Nordic Countries

    DEFF Research Database (Denmark)

    Wessberg, Nina; Leinonen, Anna; Tuominen, Anu

    2013-01-01

    If the Nordic energy and transport sectors are to meet the 2050 energy and climate policy targets, major systemic changes are necessary. Along with new technologies, changes are required also in other societal functions such as business models and consumer habits. The transition requires...... cooperation between public and private actors. This paper discusses the paradigm change towards 2050 Nordic road transport system based on renewable energy. More precisely, it proposes an approach for creation and analysis of prospective value networks up to the year 2050. The value networks arise from three...... application with a set of practical tools to support development of implementation strategies and policy programmes in the fields of energy and transport....

  20. Caspian energy and legal disputes: prospects for settlement

    Energy Technology Data Exchange (ETDEWEB)

    Ogutcu, Mehmet

    2003-07-01

    This paper aims to provide an overview of the Caspian energy prospects and politics on the global scene with a particular emphasis on the legal disputes and their impact on business operations. It also elaborates on the investment environment, the geopolitical stakes and country positions for each key player as they relate to the legal arguments that are randomly advanced according to the perceived national interests. Turkey position as a consumer, transit country and security provider for Caspian energy shipments in relation to other major players active in the region is also of special interest to the paper. The paper puts forth a series of ideas for reaching a settlement of the disputes in the Caspian region. (author)

  1. Caspian energy and legal disputes: prospects for settlement

    International Nuclear Information System (INIS)

    Ogutcu, Mehmet

    2003-01-01

    This paper aims to provide an overview of the Caspian energy prospects and politics on the global scene with a particular emphasis on the legal disputes and their impact on business operations. It also elaborates on the investment environment, the geopolitical stakes and country positions for each key player as they relate to the legal arguments that are randomly advanced according to the perceived national interests. Turkey position as a consumer, transit country and security provider for Caspian energy shipments in relation to other major players active in the region is also of special interest to the paper. The paper puts forth a series of ideas for reaching a settlement of the disputes in the Caspian region. (author)

  2. Hydrogen Storage Technologies for Future Energy Systems.

    Science.gov (United States)

    Preuster, Patrick; Alekseev, Alexander; Wasserscheid, Peter

    2017-06-07

    Future energy systems will be determined by the increasing relevance of solar and wind energy. Crude oil and gas prices are expected to increase in the long run, and penalties for CO 2 emissions will become a relevant economic factor. Solar- and wind-powered electricity will become significantly cheaper, such that hydrogen produced from electrolysis will be competitively priced against hydrogen manufactured from natural gas. However, to handle the unsteadiness of system input from fluctuating energy sources, energy storage technologies that cover the full scale of power (in megawatts) and energy storage amounts (in megawatt hours) are required. Hydrogen, in particular, is a promising secondary energy vector for storing, transporting, and distributing large and very large amounts of energy at the gigawatt-hour and terawatt-hour scales. However, we also discuss energy storage at the 120-200-kWh scale, for example, for onboard hydrogen storage in fuel cell vehicles using compressed hydrogen storage. This article focuses on the characteristics and development potential of hydrogen storage technologies in light of such a changing energy system and its related challenges. Technological factors that influence the dynamics, flexibility, and operating costs of unsteady operation are therefore highlighted in particular. Moreover, the potential for using renewable hydrogen in the mobility sector, industrial production, and the heat market is discussed, as this potential may determine to a significant extent the future economic value of hydrogen storage technology as it applies to other industries. This evaluation elucidates known and well-established options for hydrogen storage and may guide the development and direction of newer, less developed technologies.

  3. International energy technology collaboration and climate change mitigation. Case study 1. Concentrating Solar Power Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Philibert, C. [Energy and Environment Division, International Energy Agency IEA, Paris (France)

    2004-07-01

    international collaboration by describing the globalisation of the economy and current efforts of technology collaboration and transfer. Finally, it considers various ways to strengthen international energy technology collaboration. This paper is one of six case-studies designed in an effort to provide practical insights on the role international technology collaboration could play to achieve the objectives of the UNFCCC. They will all consider the past achievements of international technology collaboration, and the role it could play in helping to develop and disseminate new technologies in the future: what worked, what did not work and why, and what lessons might be drawn from past experiences. Most case studies consider energy technologies that could help mitigate greenhouse gas emissions. A few others consider areas not directly related to greenhouse gas emissions but where international technology collaboration has proven particularly successful in the past. This case study reviews past and current experience in international collaboration in the field of concentrating solar technologies in order to identify lessons that may be relevant for more general climate-friendly technology collaboration. It presents concentrating solar technologies in their current status, recent achievements and development prospects. It analyses the present successes and failures of different forms of international collaboration in this field, and draws lessons for further elaboration of international technology collaboration in addressing climate change.

  4. New energy technologies 3 - Geothermal and biomass energies

    International Nuclear Information System (INIS)

    Sabonnadiere, J.C.; Alazard-Toux, N.; His, S.; Douard, F.; Duplan, J.L.; Monot, F.; Jaudin, F.; Le Bel, L.; Labeyrie, P.

    2007-01-01

    This third tome of the new energy technologies handbook is devoted to two energy sources today in strong development: geothermal energy and biomass fuels. It gives an exhaustive overview of the exploitation of both energy sources. Geothermal energy is presented under its most common aspects. First, the heat pumps which encounter a revival of interest in the present-day context, and the use of geothermal energy in collective space heating applications. Finally, the power generation of geothermal origin for which big projects exist today. The biomass energies are presented through their three complementary aspects which are: the biofuels, in the hypothesis of a substitutes to fossil fuels, the biogas, mainly produced in agricultural-type facilities, and finally the wood-fuel which is an essential part of biomass energy. Content: Forewords; geothermal energy: 1 - geothermal energy generation, heat pumps, direct heat generation, power generation. Biomass: 2 - biofuels: share of biofuels in the energy context, present and future industries, economic and environmental status of biofuel production industries; 3 - biogas: renewable natural gas, involuntary bio-gases, man-controlled biogas generation, history of methanation, anaerobic digestion facilities or biogas units, biogas uses, stakes of renewable natural gas; 4 - energy generation from wood: overview of wood fuels, principles of wood-energy conversion, wood-fueled thermal energy generators. (J.S.)

  5. Impact of the technological change on energy technology. [In German

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, H

    1976-01-01

    The development of electrical engineering, and its contribution and importance to energy supply are briefly reviewed. Starting with the specific characteristics of electric current as an energy carrier, the close interaction between possibilities for using electric power and innovations in the field of equipment production are explained and illustrated with examples. Further, it is shown how progress in other disciplines influence the technological development of electric power generation, tansmission, distribution, and use.

  6. Market penetration rates of new energy technologies

    International Nuclear Information System (INIS)

    Lund, Peter

    2006-01-01

    The market penetration rates of 11 different new energy technologies were studied covering energy production and end-use technologies. The penetration rates were determined by fitting observed market data to an epidemical diffusion model. The analyses show that the exponential penetration rates of new energy technologies may vary from 4 up to over 40%/yr. The corresponding take-over times from a 1% to 50% share of the estimated market potential may vary from less than 10 to 70 years. The lower rate is often associated with larger energy impacts. Short take-over times less than 25 years seem to be mainly associated with end-use technologies. Public policies and subsides have an important effect on the penetration. Some technologies penetrate fast without major support explained by technology maturity and competitive prices, e.g. compact fluorescent lamps show a 24.2%/yr growth rate globally. The penetration rates determined exhibit some uncertainty as penetration has not always proceeded close to saturation. The study indicates a decreasing penetration rate with increasing time or market share. If the market history is short, a temporally decreasing functional form for the penetration rate coefficient could be used to anticipate the probable behavior

  7. Progress in high-energy laser technology

    International Nuclear Information System (INIS)

    Miyanaga, Noriaki; Kitagawa, Yoneyoshi; Nakatsuka, Masahiro; Kanabe, Tadashi; Okuda, Isao

    2005-01-01

    The technological development of high-energy lasers is one of the key issues in laser fusion research. This paper reviews several technologies on the Nd:glass laser and KrF excimer laser that are being used in the current laser fusion experiments and related plasma experiments. Based on the GEKKO laser technology, a new high-energy Nd: glass laser system, which can deliver energy from 10 kJ (boad-band operation) to 20 kJ (narrow-band operation), is under construction. The key topics in KrF laser development are improved efficiency and repetitive operation, which aim at the development of a laser driven for fusion reactor. Ultra-intense-laser technology is also very important for fast ignition research. The key technology for obtaining the petawatt output with high beam quality is reviewed. Regarding the uniform laser irradiation required for high-density compression, the beam-smoothing methods on the GEKKO XII laser are reviewed. Finally, we discuss the present status of MJ-class lasers throughout the world, and summarize by presenting the feasibility of various applications of the high-energy lasers to a wide range of scientific and technological fields. (author)

  8. Energy technologies at the cutting edge: international energy technology collaboration IEA Implementing Agreements

    Energy Technology Data Exchange (ETDEWEB)

    Pottinger, C. (ed.)

    2007-05-15

    Ensuring energy security and addressing climate change issues in a cost-effective way are the main challenges of energy policies and in the longer term will be solved only through technology cooperation. To encourage collaborative efforts to meet these energy challenges, the IEA created a legal contract - Implementing Agreement - and a system of standard rules and regulations. This allows interested member and non-member governments or other organisations to pool resources and to foster the research, development and deployment of particular technologies. For more than 30 years, this international technology collaboration has been a fundamental building block in facilitating progress of new or improved energy technologies. There are now 41 Implementing Agreements. This is the third in the series of publications highlighting the recent results and achievements of the IEA Implementing Agreements. This document is arranged in the following sections: Cross-cutting activities (sub-sectioned: Climate technology initiative; Energy Technology Data Eexchange; and Energy technology systems analysis programme); End-use technologies (sub-sectioned: Buildings; Electricity; Industry; and Transport; Fossil fuels (sub-sectioned: Clean Coal Centre; Enhanced oil recovery Fluidized bed conversion; Greenhouse Gas R & D; Multiphase flow sciences); Fusion power; Renewable energies and hydrogen; and For more information (including detail on the IEA energy technology network; IEA Secretariat Implementing Agreement support; and IEA framework. Addresses are given for the Implementing Agreements. The publication is based on core input from the Implementing Agreement Executive Committee.

  9. Scientific challenges in sustainable energy technology

    Science.gov (United States)

    Lewis, Nathan

    2006-04-01

    We describe and evaluate the technical, political, and economic challenges involved with widespread adoption of renewable energy technologies. First, we estimate fossil fuel resources and reserves and, together with the current and projected global primary power production rates, estimate the remaining years of oil, gas, and coal. We then compare the conventional price of fossil energy with that from renewable energy technologies (wind, solar thermal, solar electric, biomass, hydroelectric, and geothermal) to evaluate the potential for a transition to renewable energy in the next 20-50 years. Secondly, we evaluate - per the Intergovernmental Panel on Climate Change - the greenhouse constraint on carbon-based power consumption as an unpriced externality to fossil-fuel use, considering global population growth, increased global gross domestic product, and increased energy efficiency per unit GDP. This constraint is projected to drive the demand for carbon-free power well beyond that produced by conventional supply/demand pricing tradeoffs, to levels far greater than current renewable energy demand. Thirdly, we evaluate the level and timescale of R&D investment needed to produce the required quantity of carbon-free power by the 2050 timeframe. Fourth, we evaluate the energy potential of various renewable energy resources to ascertain which resources are adequately available globally to support the projected demand. Fifth, we evaluate the challenges to the chemical sciences to enable the cost-effective production of carbon-free power required. Finally, we discuss the effects of a change in primary power technology on the energy supply infrastructure and discuss the impact of such a change on the modes of energy consumption by the energy consumer and additional demands on the chemical sciences to support such a transition in energy supply.

  10. Solar energy photovoltaic technology: proficiency and performance

    International Nuclear Information System (INIS)

    2006-01-01

    Total is committed to making the best possible of the planet's fossil fuel reserves while fostering the emergence of other solutions, notably by developing effective alternatives. Total involves in photovoltaics when it founded in 1983 Total Energies, renamed Tenesol in 2005, a world leader in the design and installation of photovoltaic solar power systems. This document presents Total's activities in the domain: the global challenge of energy sources and the environment, the energy collecting by photovoltaic electricity, the silicon technology for cell production, solar panels and systems to distribute energy, research and development to secure the future. (A.L.B.)

  11. Energy intake and sources of energy intake in the European Prospective Investigation into Cancer and Nutrition

    NARCIS (Netherlands)

    Ocke, M. C.; Larranaga, N.; Grioni, S.; van den Berg, S. W.; Ferrari, P.; Salvini, S.; Benetou, V.; Linseisen, J.; Wirfalt, E.; Rinaldi, S.; Jenab, M.; Halkjaer, J.; Jakobsen, M. U.; Niravong, M.; Clavel-Chapelon, F.; Kaaks, R.; Bergmann, M.; Moutsiou, E.; Trichopoulou, A.; Lauria, C.; Sacerdote, C.; Bueno-de-Mesquita, H. B.; Peeters, P. H. M.; Hjartaker, A.; Parr, C. L.; Tormo, M. J.; Sanchez, M. J.; Manjer, J.; Hellstrom, V.; Mulligan, A.; Spencer, E. A.; Riboli, E.; Bingham, S.; Slimani, N.

    Objectives: To describe energy intake and its macronutrient and food sources among 27 regions in 10 countries participating in the European Prospective Investigation into Cancer and Nutrition (EPIC) study. Methods: Between 1995 and 2000, 36 034 subjects aged 35-74 years were administered a

  12. Sustainable electric energy supply by decentralized alternative energy technologies

    Energy Technology Data Exchange (ETDEWEB)

    Zahedi, A., E-mail: Ahmad.Zahedi@jcu.edu.au [James Cook University, Queensland (Australia). School of Engineering and Physical Sciences

    2010-07-01

    The most available and affordable sources of energy in today's economic structure are fossil fuels, namely, oil, gas, and coal. Fossil fuels are non-renewable, have limited reserves, and have serious environmental problems associated with their use. Coal and nuclear energy are used in central and bulky power stations to produce electricity, and then this electricity is delivered to customers via expensive transmission lines and distribution systems. Delivering electric power via transmission and distribution lines to the electricity users is associated with high electric power losses. These power losses are costly burdens on power suppliers and users. One of the advantages of decentralized generation (DG) is that DG is capable of minimizing power losses because electric power is generated at the demand site. The world is facing two major energy-related issues, short term and long term. These issues are (i) not having enough and secure supplies of energy at affordable prices and (ii) environmental damages caused by consuming too much energy in an unsustainable way. A significant amount of the current world energy comes from limited resources, which when used, cannot be replaced. Hence the energy production and consumption do not seem to be sustainable, and also carries the threat of severe and irreversible damages to the environment including climate change.The price of energy is increasing and there are no evidences suggesting that this trend will reverse. To compensate for this price increase we need to develop and use high energy efficient technologies and focusing on energy technologies using renewable sources with less energy conversion chains, such as solar and wind. The world has the potential to expand its capacity of clean, renewable, and sustainable energy to offset a significant amount of greenhouse gas emissions from conventional power use. The increasing utilization of alternative sources such as hydro, biomass, geothermal, ocean energy, solar and

  13. Norwegian focus on new energy technology

    International Nuclear Information System (INIS)

    Bull-Hansen, Eivind

    2001-01-01

    Norsk Hydro Technology Ventures, a venture capital fund recently set up by Norsk Hydro, will raise equity capital to companies that are developing promising new projects on new energy technology or to investment funds promoting such projects. Norsk Hydro will withdraw from the investments when the projects have reached commercialization or are listed on the stock exchange. There is a well-developed market for venture capital in the energy sector and a strong international competition for investments in good projects. The sharp environmental focus on fossil fuels and climate gases has boosted the research on new energy technologies. Another and more important factor is the fact that modern society with its heavy dependence on the computer is vulnerable to power failure

  14. Inter-technology knowledge spillovers for energy technologies

    International Nuclear Information System (INIS)

    Nemet, Gregory F.

    2012-01-01

    Both anecdotal evidence and the innovation literature indicate that important advances in energy technology have made use of knowledge originating in other technological areas. This study uses the set of U.S. patents granted from 1976 to 2006 to assess the role of knowledge acquired from outside each energy patent's technological classification. It identifies the effect of external knowledge on the forward citation frequency of energy patents. The results support the claim above. Regression coefficients on citations to external prior art are positive and significant. Further, the effect of external citations is significantly larger than that of other types of citations. Conversely, citations to prior art that is technologically near have a negative effect on forward citation frequency. These results are robust across several alternative specifications and definitions of whether each flow of knowledge is external. Important energy patents have drawn heavily from external prior art categorized as chemical, electronics, and electrical; they cite very little prior art from computers, communications, and medical inventions.

  15. Technological learning in energy-environment-economy modelling: A survey

    International Nuclear Information System (INIS)

    Kahouli-Brahmi, Sondes

    2008-01-01

    This paper aims at providing an overview and a critical analysis of the technological learning concept and its incorporation in energy-environment-economy models. A special emphasis is put on surveying and discussing, through the so-called learning curve, both studies estimating learning rates in the energy field and studies incorporating endogenous technological learning in bottom-up and top-down models. The survey of learning rate estimations gives special attention to interpreting and explaining the sources of variability of estimated rates, which is shown to be mainly inherent in R and D expenditures, the problem of omitted variable bias, the endogeneity relationship and the role of spillovers. Large-scale models survey show that, despite some methodological and computational complexity related to the non-linearity and the non-convexity associated with the learning curve incorporation, results of the numerous modelling experiments give several new insights with regard to the analysis of the prospects of specific technological options and their cost decrease potential (bottom-up models), and with regard to the analysis of strategic considerations, especially inherent in the innovation and energy diffusion process, in particular the energy sector's endogenous responses to environment policy instruments (top-down models)

  16. Renewable energy-driven innovative energy-efficient desalination technologies

    KAUST Repository

    Ghaffour, Noreddine

    2014-04-13

    Globally, the Kingdom of Saudi Arabia (KSA) desalinates the largest capacity of seawater but through energy-intensive thermal processes such as multi-stage flash (MSF) distillation (>10 kW h per m3 of desalinated water, including electrical and thermal energies). In other regions where fossil energy is more expensive and not subsidized, seawater reverse osmosis (SWRO) is the most common desalination technology but it is still energy-intensive (3-4 kW h_e/m3). Both processes therefore lead to the emission of significant amounts of greenhouse gases (GHGs). Moreover, MSF and SWRO technologies are most often used for large desalination facilities serving urban centers with centralized water distribution systems and power grids. While renewable energy (RE) sources could be used to serve centralized systems in urban centers and thus provide an opportunity to make desalination greener, they are mostly used to serve rural communities off of the grid. In the KSA, solar and geothermal energy are of most relevance in terms of local conditions. Our group is focusing on developing new desalination processes, adsorption desalination (AD) and membrane distillation (MD), which can be driven by waste heat, geothermal or solar energy. A demonstration solar-powered AD facility has been constructed and a life cycle assessment showed that a specific energy consumption of <1.5 kW h_e/m3 is possible. An innovative hybrid approach has also been explored which would combine solar and geothermal energy using an alternating 12-h cycle to reduce the probability of depleting the heat source within the geothermal reservoir and provide the most effective use of RE without the need for energy storage. This paper highlights the use of RE for desalination in KSA with a focus on our group\\'s contribution in developing innovative low energy-driven desalination technologies. © 2014 Elsevier Ltd. All rights reserved.

  17. Renewable energy-driven innovative energy-efficient desalination technologies

    KAUST Repository

    Ghaffour, NorEddine; Lattemann, Sabine; Missimer, Thomas M.; Ng, Kim Choon; Sinha, Shahnawaz; Amy, Gary L.

    2014-01-01

    Globally, the Kingdom of Saudi Arabia (KSA) desalinates the largest capacity of seawater but through energy-intensive thermal processes such as multi-stage flash (MSF) distillation (>10 kW h per m3 of desalinated water, including electrical and thermal energies). In other regions where fossil energy is more expensive and not subsidized, seawater reverse osmosis (SWRO) is the most common desalination technology but it is still energy-intensive (3-4 kW h_e/m3). Both processes therefore lead to the emission of significant amounts of greenhouse gases (GHGs). Moreover, MSF and SWRO technologies are most often used for large desalination facilities serving urban centers with centralized water distribution systems and power grids. While renewable energy (RE) sources could be used to serve centralized systems in urban centers and thus provide an opportunity to make desalination greener, they are mostly used to serve rural communities off of the grid. In the KSA, solar and geothermal energy are of most relevance in terms of local conditions. Our group is focusing on developing new desalination processes, adsorption desalination (AD) and membrane distillation (MD), which can be driven by waste heat, geothermal or solar energy. A demonstration solar-powered AD facility has been constructed and a life cycle assessment showed that a specific energy consumption of <1.5 kW h_e/m3 is possible. An innovative hybrid approach has also been explored which would combine solar and geothermal energy using an alternating 12-h cycle to reduce the probability of depleting the heat source within the geothermal reservoir and provide the most effective use of RE without the need for energy storage. This paper highlights the use of RE for desalination in KSA with a focus on our group's contribution in developing innovative low energy-driven desalination technologies. © 2014 Elsevier Ltd. All rights reserved.

  18. Energy technology transfer to developing countries

    International Nuclear Information System (INIS)

    Goldemberg, J.

    1991-01-01

    This paper gives some examples of how technology transfer can successfully be given to third world countries to allow them to benefit in their quest for economic growth and better standards of living through reduced energy consumption and environmental pollution. It also suggests methods by which obstacles such as high investment costs, lack of information, market demand, etc., can be overcome in order to motivate technological transfer by industrialized countries

  19. Market penetration of new energy technologies

    Energy Technology Data Exchange (ETDEWEB)

    Packey, D.J.

    1993-02-01

    This report examines the characteristics, advantages, disadvantages, and, for some, the mathematical formulas of forecasting methods that can be used to forecast the market penetration of renewable energy technologies. Among the methods studied are subjective estimation, market surveys, historical analogy models, cost models, diffusion models, time-series models, and econometric models. Some of these forecasting methods are more effective than others at different developmental stages of new technologies.

  20. Nuclear energy technology transfer: the security barriers

    International Nuclear Information System (INIS)

    Rinne, R.L.

    1975-08-01

    The problems presented by security considerations to the transfer of nuclear energy technology are examined. In the case of fusion, the national security barrier associated with the laser and E-beam approaches is discussed; for fission, the international security requirements, due to the possibility of the theft or diversion of special nuclear materials or sabotage of nuclear facilities, are highlighted. The paper outlines the nuclear fuel cycle and terrorist threat, examples of security barriers, and the current approaches to transferring technology. (auth)

  1. Renewable energy-driven innovative energy-efficient desalination technologies

    International Nuclear Information System (INIS)

    Ghaffour, Noreddine; Lattemann, Sabine; Missimer, Thomas; Ng, Kim Choon; Sinha, Shahnawaz; Amy, Gary

    2014-01-01

    Highlights: • Renewable energy-driven desalination technologies are highlighted. • Solar, geothermal, and wind energy sources were explored. • An innovative hybrid approach (combined solar–geothermal) has also been explored. • Innovative desalination technologies developed by our group are discussed. • Climate change and GHG emissions from desalination are also discussed. - Abstract: Globally, the Kingdom of Saudi Arabia (KSA) desalinates the largest capacity of seawater but through energy-intensive thermal processes such as multi-stage flash (MSF) distillation (>10 kW h per m 3 of desalinated water, including electrical and thermal energies). In other regions where fossil energy is more expensive and not subsidized, seawater reverse osmosis (SWRO) is the most common desalination technology but it is still energy-intensive (3–4 kW h e /m 3 ). Both processes therefore lead to the emission of significant amounts of greenhouse gases (GHGs). Moreover, MSF and SWRO technologies are most often used for large desalination facilities serving urban centers with centralized water distribution systems and power grids. While renewable energy (RE) sources could be used to serve centralized systems in urban centers and thus provide an opportunity to make desalination greener, they are mostly used to serve rural communities off of the grid. In the KSA, solar and geothermal energy are of most relevance in terms of local conditions. Our group is focusing on developing new desalination processes, adsorption desalination (AD) and membrane distillation (MD), which can be driven by waste heat, geothermal or solar energy. A demonstration solar-powered AD facility has been constructed and a life cycle assessment showed that a specific energy consumption of <1.5 kW h e /m 3 is possible. An innovative hybrid approach has also been explored which would combine solar and geothermal energy using an alternating 12-h cycle to reduce the probability of depleting the heat source

  2. Engineering in the 21st century. [aerospace technology prospects

    Science.gov (United States)

    Mccarthy, J. F., Jr.

    1978-01-01

    A description is presented of the nature of the aerospace technology system that might be expected by the 21st century from a reasonable evolution of the current resources and capabilities. An aerospace employment outlook is provided. The years 1977 and 1978 seem to be marking the beginning of a period of stability and moderate growth in the aerospace industry. Aerospace research and development employment increased to 70,000 in 1977 and is now occupying a near-constant 18% share of the total research and development work force. The changing job environment is considered along with the future of aerospace education. It is found that one trend is toward a more interdisciplinary education. Most trend setters in engineering education recognize that the really challenging engineering problems invariably require the judicious exercise of several disciplines for their solution. Some future trends in aerospace technology are discussed. By the year 2000 space technology will have achieved major advances in four areas, including management of information, transportation, space structures, and energy.

  3. SIHTI 2 - Energy and environmental technology

    International Nuclear Information System (INIS)

    Saviharju, K.; Johansson, A.

    1993-01-01

    The programme is divided into system and technology parts. The aim of system studies is to determine, on the basis of lifecycle analyses, long-term environmental-technological aims for various fields (energy, industry) and to find out an optimum strategy for reaching these aims. The analysis will give data on emission reduction costs and on fields, where technical improvements are required, and will determine the limits set by environmental factors for future technical development. Environmental impacts will be discussed from national and economic viewpoints. Technological development is dependent on new ideas. The aim is to indicate possibilities for reducing emissions from energy use of peat and wood, for low-emission production at least on one industrial field (wood-processing industry), to establish emission measuring and control methods, to indicate utilization alternatives for solid matter separated at power plants, and to find out operable alternatives for the energy use of wastes. Other ventures of significance will also be financed: survey of 'new' emissions and development of their measuring and purification methods. The field of the programme will be divided into synergic sub-fields: systematics of emission chains, fields of operation (energy and environment problems in the wood-processing industries), development of flue gas purification technology, measuring and control technology, by-products of power plants, emissions from peat production, etc

  4. Status and prospects of nuclear energy development in Vietnam

    International Nuclear Information System (INIS)

    Tan, Vuong Huu

    2006-01-01

    In Vietnam, nuclear energy has been used in non-power applications for more than 80 years. Health care is a field of the most popular applications of nuclear energy. Every year, hundreds of thousands of people have been diagnosed and treated using nuclear technologies such as radiotherapy, nuclear medicine. In agricultural sector, radiation mutation breeding techniques have been used successfully in creating high quality varieties of rice, soybean, and have made an active contribution in the food security program of the country. The radiation technology has been applied in preservation and pasteurization of some kinds of food, and in production of bio-promoters, hydro gels, etc. The nuclear techniques such as NDT, NCS, and TRACER have been applied in various industries, geology, environment, etc. Recently, the TRACER technique has been used in the management and exploitation of groundwater in Hochiminh City and the Capital of Hanoi. However, effectiveness and scale of non-power applications of nuclear energy is still moderated, does not meet the potential and demand. The studies of nuclear power introduction to Vietnam been carried out for many years and show its necessity and feasibility for the country. Awareness of the advantages of nuclear energy utilization, the Vietnam Government assigned the Ministry of Science and Technology to formulate the long-term strategy for peaceful utilization of nuclear energy in co-operation with other governmental agencies. On 3rd of January 2006, the Prime Minister has approved the long-term strategy for peaceful utilization of nuclear energy. The goal of the strategy is to set up and develop a nuclear technology industry with high contribution to the socio-economic development as well as the enhancement of the science and technology capability of the country. In order to implement the strategy, main solutions have been proposed: Strengthening and perfecting the organizational and management system; Formulation of nuclear legal

  5. Status and prospects of nuclear energy development in Vietnam

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Vuong Huu [Vietnam Atomic Energy Commission, Hanoi (Viet Nam)

    2006-04-15

    In Vietnam, nuclear energy has been used in non-power applications for more than 80 years. Health care is a field of the most popular applications of nuclear energy. Every year, hundreds of thousands of people have been diagnosed and treated using nuclear technologies such as radiotherapy, nuclear medicine. In agricultural sector, radiation mutation breeding techniques have been used successfully in creating high quality varieties of rice, soybean, and have made an active contribution in the food security program of the country. The radiation technology has been applied in preservation and pasteurization of some kinds of food, and in production of bio-promoters, hydro gels, etc. The nuclear techniques such as NDT, NCS, and TRACER have been applied in various industries, geology, environment, etc. Recently, the TRACER technique has been used in the management and exploitation of groundwater in Hochiminh City and the Capital of Hanoi. However, effectiveness and scale of non-power applications of nuclear energy is still moderated, does not meet the potential and demand. The studies of nuclear power introduction to Vietnam been carried out for many years and show its necessity and feasibility for the country. Awareness of the advantages of nuclear energy utilization, the Vietnam Government assigned the Ministry of Science and Technology to formulate the long-term strategy for peaceful utilization of nuclear energy in co-operation with other governmental agencies. On 3rd of January 2006, the Prime Minister has approved the long-term strategy for peaceful utilization of nuclear energy. The goal of the strategy is to set up and develop a nuclear technology industry with high contribution to the socio-economic development as well as the enhancement of the science and technology capability of the country. In order to implement the strategy, main solutions have been proposed: Strengthening and perfecting the organizational and management system; Formulation of nuclear legal

  6. Rational use of energy. Finnish technology cases

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-11-01

    This publication has been produced within the THERMIE B project `Interactive Promotion of Energy Technologies between Finland and Other EUCountries and to Estonia` (STR-0622-95-FI) as carried out for DG XVII of the European Commission. MOTIVA of Finntech Finnish Technology Ltd Oy has acted as the project co-ordinating body, with Ekono B.E., Ekono Energy Ltd and Friedemann and Johnson Consultants GmbH as partners. The main aim of the second phase of the project, as documented here, was to produce a publication in English on Finnish energy technologies, primarily in the building, industry and traffic sectors. The target distribution for this publication is primarily the EU countries through public and commercial information networks. During the work, the latest information on Finnish energy technologies has been collected, reviewed, screened and analysed in relation to the THERMIE programme. The following presentation consists of descriptions of case technologies; their background, technical aspects and energy saving potentials where applicable. The three RUE sectors; buildings, industry and traffic, are put forward in separate chapters. The building sector concentrates mostly in different control systems. New lighting and heating systems increase energy savings both in the large industrial sites and in private homes. In the industry sector new enhanced processes are introduced along with new products to increase energy efficiency. Traffic sector concentrates in traffic control and reducing exhaust gas emissions by new systems and programmes. The aim in Finland is to reduce exhaust gas emissions both by controlling the traffic efficiently and by developing fuels with lower emission levels. A lot is being done by educating the drivers and the public in efficient driving methods

  7. Geothermal energy, what technologies for what purposes?

    International Nuclear Information System (INIS)

    2008-01-01

    This book, fully illustrated and rich of concrete examples, takes stock of the different technologies implemented today to use the Earth's heat: geothermal heat pumps for domestic, tertiary and collective residential uses, geothermal district heating networks and geothermal power plants for power generation. This overview is completed by a description of the future perspectives offered by this renewable energy source in the World and in France in terms of energy independence and technological innovation: geo-cooling, hybrid systems, absorption heat pumps or stimulated geothermal systems. (J.S.)

  8. Clean fuel technology for world energy security

    Energy Technology Data Exchange (ETDEWEB)

    Sunjay, Sunjay

    2010-09-15

    Clean fuel technology is the integral part of geoengineering and green engineering with a view to global warming mitigation. Optimal utilization of natural resources coal and integration of coal & associated fuels with hydrocarbon exploration and development activities is pertinent task before geoscientist with evergreen energy vision with a view to energy security & sustainable development. Value added technologies Coal gasification,underground coal gasification & surface coal gasification converts solid coal into a gas that can be used for power generation, chemical production, as well as the option of being converted into liquid fuels.

  9. Alternative Technologies for Biofuels Production in Kraft Pulp Mills—Potential and Prospects

    Directory of Open Access Journals (Sweden)

    Esa Vakkilainen

    2012-07-01

    Full Text Available The current global conditions provide the pulp mill new opportunities beyond the traditional production of cellulose. Due to stricter environmental regulations, volatility of oil price, energy policies and also the global competitiveness, the challenges for the pulp industry are many. They range from replacing fossil fuels with renewable energy sources to the export of biofuels, chemicals and biomaterials through the implementation of biorefineries. In spite of the enhanced maturity of various bio and thermo-chemical conversion processes, the economic viability becomes an impediment when considering the effective implementation on an industrial scale. In the case of kraft pulp mills, favorable conditions for biofuels production can be created due to the availability of wood residues and generation of black liquor. The objective of this article is to give an overview of the technologies related to the production of alternative biofuels in the kraft pulp mills and discuss their potential and prospects in the present and future scenario.

  10. Dynamics of energy technologies and global change

    International Nuclear Information System (INIS)

    Grubler, A.; Nakicenovic, N.; Victor, D.G.

    1999-01-01

    Technological choices largely determine the long-term characteristics of industrial society, including impacts on the natural environment. However, the treatment of technology in existing models that are used to project economic and environmental futures remains highly stylized. Based on work over two decades at IIASA, we present a useful typology for technology analysis and discuss methods that can be used to analyze the impact of technological changes on the global environment, especially global warming. Our focus is energy technologies, the main source of many atmospheric environmental problems. We show that much improved treatment of technology is possible with a combination of historical analysis and new modeling techniques. In the historical record, we identify characteristic 'learning rates' that allow simple quantified characterization of the improvement in cost and performance due to cumulative experience and investments. We also identify patterns, processes and timescales that typify the diffusion of new technologies in competitive markets. Technologies that are long-lived and are components of interlocking networks typically require the longest time to diffuse and co-evolve with other technologies in the network; such network effects yield high barriers to entry even for superior competitors. These simple observations allow three improvements to modeling of technological change and its consequences for global environmental change. One is that the replacement of long-lived infrastructures over time has also replaced the fuels that power the economy to yield progressively more energy per unit of carbon pollution - from coal to oil to gas. Such replacement has 'decarbonized' the global primary energy supply 0.3% per year. In contrast, most baseline projections for emissions of carbon, the chief cause of global warming, ignore this robust historical trend and show Iittle or no decarbonization. A second improvement is that by incorporating learning curves and

  11. NEDO's white paper on renewable energy technologies

    International Nuclear Information System (INIS)

    2010-01-01

    This document proposes a synthesis of a 'white paper' published by the Japanese institution NEDO (New Energy and Industrial Technology Development Organization) on the development of technologies in the field of renewable energies. For the various considered energies, this report gives indications of the world market recent evolutions, of Japanese productions and objectives in terms of productions and costs. The different energies treated in this report are: solar photovoltaic, wind, biomass, solar thermal, waves, seas, hydraulic, geothermal, hot springs, snow and ice, sea currents, electricity production by thermo-electrical effect or by piezoelectric modules, reuse of heat produced by factories, use of the thermal gradient between air and water, intelligent communities and networks

  12. Data on development of new energy technologies

    Science.gov (United States)

    1994-03-01

    The paper compiles data on the trend of development of new energy technologies into a book. By category, renewable energy is solar energy, wind power generation, geothermal power generation, ocean energy, and biomass. As a category of fuel form conversion, cited are coal liquefaction/gasification, coal gasification combined cycle power generation, and natural gas liquefaction/decarbonization. The other categories are cogeneration by fuel cell and ceramic gas turbine, district heat supply system, power load leveling technology, transportation-use substitution-fuel vehicle, and others (Stirling engine, superconducting power generator, etc.). The data are systematically compiled on essential principles, transition of introduction, objectives of introduction, status of production, cost, development schedule, performance, etc. The paper also deals with the related legislation system, developmental organizations, and a menu for power companies' buying surplus power.

  13. Promoting exports in the energy technology area

    International Nuclear Information System (INIS)

    Iten, R.; Oettli, B.; Jochem, E.; Mannsbart, W.

    2001-01-01

    This report for the Swiss Federal Office of Energy (SFOE) examines the position of Switzerland as a leader in the investment goods markets for energy-efficiency products and for technologies for using renewable forms of energy. The report quotes figures for exports in these areas and discusses the difficulty of extracting useful data on these products from normal statistical data. Analyses made by a group of experts from the export-oriented technology field, energy service providers and representatives of export promotion institutions are presented and figures are quoted for various product categories. Factors promoting the competitiveness of Swiss products are discussed as well as those impeding it. An analysis of export potential is presented and measures to promote export are discussed. The report also discusses the aids and promotion activities that are considered necessary by companies in the field and the macro-economic perspectives of increased export promotion

  14. A personal history: Technology to energy strategy

    International Nuclear Information System (INIS)

    Starr, C.

    1995-01-01

    This personal history spans a half century of participation in the frontiers of applies science and engineering ranging from the nuclear weapons project of World War II, through the development of nuclear power, engineering education, and risk analysis, to today's energy research and development. In each of these areas, this account describes some of the exciting opportunities for technology to contribute to society's welfare, as well as the difficulties and constraints imposed by society's institutional and political systems. The recounting of these experiences in energy research and development illustrates the importance of embracing social values, cultures, and environmental views into the technologic design of energy options. The global importance of energy in a rapidly changing and unpredictable world suggests a strategy for the future based on these experiences which emphasizes the value of applied research and development on a full spectrum of potential options

  15. Wind Energy Conversion Systems Technology and Trends

    CERN Document Server

    2012-01-01

    Wind Energy Conversion System covers the technological progress of wind energy conversion systems, along with potential future trends. It includes recently developed wind energy conversion systems such as multi-converter operation of variable-speed wind generators, lightning protection schemes, voltage flicker mitigation and prediction schemes for advanced control of wind generators. Modeling and control strategies of variable speed wind generators are discussed, together with the frequency converter topologies suitable for grid integration. Wind Energy Conversion System also describes offshore farm technologies including multi-terminal topology and space-based wind observation schemes, as well as both AC and DC based wind farm topologies. The stability and reliability of wind farms are discussed, and grid integration issues are examined in the context of the most recent industry guidelines. Wind power smoothing, one of the big challenges for transmission system operators, is a particular focus. Fault ride th...

  16. Energy Harvesting from Aerodynamic Instabilities: Current prospect and Future Trends

    Science.gov (United States)

    Bashir, M.; Rajendran, P.; Khan, S. A.

    2018-01-01

    This paper evaluates the layout and advancement of energy harvesting based on aerodynamic instabilities of an aircraft. Vibration and thermoelectric energy harvesters are substantiated as most suitable alternative low-power sources for aerospace applications. Furthermore, the facility associated with the aircraft applications in harvesting the mechanical vibrations and converting it to electric energy has fascinated the researchers. These devices are designed as an alternative to a battery-based solution especially for small aircrafts, wireless structural health monitoring for aircraft systems, and harvester plates employed in UAVs to enhance the endurance and operational flight missions. We will emphasize on various sources of energy harvesting that are designed to come from aerodynamic flow-induced vibrations, specific attention is then given at those technologies that may offer, today or in the near future, a potential benefit to reduce both the cost and emissions of the aviation industry. The advancements achieved in the energy harvesting based on aerodynamic instabilities show very good scope for many piezoelectric harvesters in the field of aerospace, specifically green aviation technology in the future.

  17. Present and prospective role of wind energy in electricity supply

    International Nuclear Information System (INIS)

    Sesto, E.; Ancona, D.F.

    1995-01-01

    Information is provided on world-wide wind energy applications for the production of electricity and the various factors driving the wind turbine market: technology improvements and cost reduction, national research, incentives, utility and public acceptance. Possible restraints to (noise, aesthetics) and benefits (especially in isolated systems) from wind plant integration in utility systems are considered, as well as the use of stand-alone wind systems. Some possible forecasts on the role of wind energy in the next two decades are also given. 4 refs., 2 figs., 1 tab

  18. Emerging Energy-Efficient Technologies in Buildings Technology Characterizations for Energy Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Hadley, SW

    2004-10-11

    The energy use in America's commercial and residential building sectors is large and growing. Over 38 quadrillion Btus (Quads) of primary energy were consumed in 2002, representing 39% of total U.S. energy consumption. While the energy use in buildings is expected to grow to 52 Quads by 2025, a large number of energy-related technologies exist that could curtail this increase. In recent years, improvements in such items as high efficiency refrigerators, compact fluorescent lights, high-SEER air conditioners, and improved building shells have all contributed to reducing energy use. Hundreds of other technology improvements have and will continue to improve the energy use in buildings. While many technologies are well understood and are gradually penetrating the market, more advanced technologies will be introduced in the future. The pace and extent of these advances can be improved through state and federal R&D. This report focuses on the long-term potential for energy-efficiency improvement in buildings. Five promising technologies have been selected for description to give an idea of the wide range of possibilities. They address the major areas of energy use in buildings: space conditioning (33% of building use), water heating (9%), and lighting (16%). Besides describing energy-using technologies (solid-state lighting and geothermal heat pumps), the report also discusses energy-saving building shell improvements (smart roofs) and the integration of multiple energy service technologies (CHP packaged systems and triple function heat pumps) to create synergistic savings. Finally, information technologies that can improve the efficiency of building operations are discussed. The report demonstrates that the United States is not running out of technologies to improve energy efficiency and economic and environmental performance, and will not run out in the future. The five technology areas alone can potentially result in total primary energy savings of between 2 and

  19. Fifteenth National Industrial Energy Technology Conference: Proceedings

    International Nuclear Information System (INIS)

    1993-01-01

    This year's conference, as in the past, allows upper-level energy managers, plant engineers, utility representatives, suppliers, and industrial consultants to present and discuss novel and innovative ideas on how to reduce costs effectively and improve utilization of resources. Papers are presented on topics that include: Win-win strategies for stability and growth and future success, new generation resources and transmission issues, industry and utilities working together, paper industry innovations, improving energy efficiency, industrial customers and electric utilities regulations, industrial electro technologies for energy conservation and environmental improvement, advances in motors and machinery, industrial energy audits, industrial energy auditing, process improvements, case studies of energy losses, and industrial heat pump applications. Individual papers are indexed separately

  20. Nuclear Hybrid Energy Systems: Imperatives, Prospects, and Challenges

    International Nuclear Information System (INIS)

    Aumeier, Steven E.

    2010-01-01

    As global population reaches an expected 8 billion people by 2030, primary energy consumption is expected to increase by almost 40% from approximately 520 exajoules consumed today to almost 740 exajoules. Much of this increase is expected to come from non-Organization for Economic Cooperation and Development (OECD) nations, and Asia specifically. In these economies, energy used for transportation is expected to grow substantially, as is industrial, commercial and to a lesser degree residential energy use, creating considerable pressure on global and local energy markets. The magnitude and timing of growth in energy consumption likely will create a global imperative to deploy energy production technologies that balance the three pillars of energy security: (1) economic stability - related to the affordability of energy products, stability and predictability in their price, and the efficient and effective deployment of global capital resources in their development; (2) environmental sustainability - related to minimizing the negative impacts of energy production to air, land, and water systems and advancing the long-term viability of using a particular resource in a way that does not limit future generations ability to prosper; (3) resource security - related to the ability to access energy resources and products where and when necessary, in an affordable and predictable manner. One approach to meeting these objectives is hybrid energy systems (HES). Broadly described, HES are energy product production plants that take two or more energy resource inputs (typically includes both carbon and non-carbon based sources) and produce two or more energy products (e.g. electricity, liquid transportation fuels, industrial chemicals) in an integrated plant. Nuclear energy integration into HES offers intriguing potential, particularly if smaller (<300 MWe) reactors are available. Although the concept of using nuclear energy in a variety of non-electrical process applications is

  1. The problem of valuing new energy technologies

    International Nuclear Information System (INIS)

    Awerbuch, Shimon.

    1996-01-01

    A brief editorial outlines the concepts and challenges facing the valuation of modular, renewable energy technologies which are covered in a special issue of ''Energy Policy''. The main problem is the narrowness of the traditional discounted cash flow analysis for valuing such projects when some of the benefits (e.g. flexibility, financial risk, reduction in overhead and indirect costs) are not fully recognized at the outset. (UK)

  2. Understanding China's renewable energy technology exports

    International Nuclear Information System (INIS)

    Liu, Jialu; Goldstein, Don

    2013-01-01

    China became a major player in renewable energy (RE) technology during the 2000s. Chinese solar PV cell and module makers quickly dominated global sales in that industry, while the country's wind turbine producers became poised for significant exports after capturing their rapidly growing home market. In countries like the US, Chinese RE technology strength has been met with claims of excessive governmental support of exports. This study examines to what extent Chinese firms' solar PV and wind technology successes have been enabled by policy supports, and whether those policies appear to have been driven by broader goals versus RE export promotion per se. The evidence suggests that governmental policy toward both wind and solar originated in a push for export-competitive Chinese companies. But the specifics differed substantially due to the particular requirements of building technological capabilities in each: export readiness necessitated substantial support for domestic installation of wind but not solar PV power. The findings also suggest that as the decade of the 2000s progressed, environmental goals played an increasing role alongside export promotion in motivating and shaping Chinese RE technology policies. - Highlights: ► Export policy in the rise of Chinese renewable energy technologies is studied. ► Policy supported wind turbine firms' capabilities via domestic uptake, not exports. ► Pre-2009 solar module exports enjoyed, but did not depend on, export subsidies. ► Renewables development also fit wider technology and environmental policy goals.

  3. Energy saving screw compressor technology; Energiebesparende schroefcompressortechnologie

    Energy Technology Data Exchange (ETDEWEB)

    Moeller, A. [RefComp, Lonigo (Italy); Neus, M. [Delta Technics Engineering, Breda (Netherlands)

    2011-03-15

    Smart solutions to reduce the energy consumption are continuously part of investigation in the refrigeration technology. This article subscribed the technology on which way energy can be saved at the operation of screw compressors which are used in air conditioners and refrigerating machinery. The combination of frequency control and Vi-control (intrinsic volumetric ratio) such as researched in the laboratory of RefComp is for the user attractive because the energy efficiency during part load operation is much better. Smart uses of thermodynamics, electric technology and electronic control are the basics of these applications. According to the manufacturer's information it is possible with these new generation screw compressors to save approx. 26% energy in comparison with the standard screw compressor. [Dutch] In dit artikel wordt de technologie omschreven waarmee veel energie bespaard kan worden bij schroefcompressoren die worden gebruikt in airconditioningsystemen en koel- en vriesinstallaties. De combinatie van frequentieregeling en Vi- regeling (Vi is de intrinsieke volumetrische verhouding) zoals onderzocht in het laboratorium van RefComp biedt de gebruiker veel voordelen doordat de energie-efficintie van de compressor tijdens deellast enorm wordt verbeterd. Slim gebruik van thermodynamika, elektrotechniek en elektronica vormen de basis van deze toepassing. Volgens de fabrikant kan met deze nieuwe generatie schroefcompressoren circa 26 procent op het energiegebruik tijdens deellast worden bespaard in vergelijking met de standaard serie schroefcompressoren.

  4. Energy Technology Division research summary - 1999.

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-31

    The Energy Technology Division provides materials and engineering technology support to a wide range of programs important to the US Department of Energy. As shown on the preceding page, the Division is organized into ten sections, five with concentrations in the materials area and five in engineering technology. Materials expertise includes fabrication, mechanical properties, corrosion, friction and lubrication, and irradiation effects. Our major engineering strengths are in heat and mass flow, sensors and instrumentation, nondestructive testing, transportation, and electromechanics and superconductivity applications. The Division Safety Coordinator, Environmental Compliance Officers, Quality Assurance Representative, Financial Administrator, and Communication Coordinator report directly to the Division Director. The Division Director is personally responsible for cultural diversity and is a member of the Laboratory-wide Cultural Diversity Advisory Committee. The Division's capabilities are generally applied to issues associated with energy production, transportation, utilization, or conservation, or with environmental issues linked to energy. As shown in the organization chart on the next page, the Division reports administratively to the Associate Laboratory Director (ALD) for Energy and Environmental Science and Technology (EEST) through the General Manager for Environmental and Industrial Technologies. While most of our programs are under the purview of the EEST ALD, we also have had programs funded under every one of the ALDs. Some of our research in superconductivity is funded through the Physical Research Program ALD. We also continue to work on a number of nuclear-energy-related programs under the ALD for Engineering Research. Detailed descriptions of our programs on a section-by-section basis are provided in the remainder of this book.

  5. The status and prospects of radiation application technology in Korea

    International Nuclear Information System (INIS)

    Sung-Kee, Jo

    2010-01-01

    Full text : This article describes the Nuclear age in Korea which began in 1959 when Korea Atomic Energy Research Institute (KAERI) was first established. Since then, Korea became one of the leading countries in the world nuclear technology and industry. In Korea, 20 nuclear power plants are currently in operation, which produced 34.1% of total electricity in 2009. Furthermore, 8 nuclear power plants are under construction. Eventually, Korea succeeded in exporting nuclear power plant to United Arab Emirates and research reactor to Jordan in 2009. The nuclear application can be divided into two fields. The first one is nuclear power production, and the other is radiation application. Due to the governmental promotion policy, the research activity on radiation and RI application is greatly rising in Korea. Korea Atomic Energy Research Institute (KAERI) and Korea Institute of Radiological and Medical Sciences (KIRAMS) are two leading research institutes in this field. KAERI is conducting RI production and neutron research by using research reactor, and radiation application research such as radiation processing, biotechnological and agricultural application, and cyclotron application. KIRAMS is dedicated to the research on the medical application of radiation. Advanced Radiation Technology Institute (ARTI), constructed in 2006 as a sub organization of KAERI, is a major research institute for radiation application to material engineering, agriculture, biotechnology, environmental technology, and cyclotron beam application. ARTI is equipped with various radiation facilities such as Co-60 irradiation facility (490 kCi and 3 kCi), gamma phytotron, gamma cell, electron beam irradiator, ion implanter, and 30 MeV cyclotron. In material engineering field, new industrial and biomedical materials (carbon fiber filament, composite electrolyte, fuel cell membrane, hydrogels) are developed by radiation processing of polymer materials. In agricultural area, new plant varieties

  6. Prospects of biomass energy in Bangladesh: an alternative development

    International Nuclear Information System (INIS)

    Salahuddin, Ahmed

    1998-01-01

    Biomass plays an important and complex role in the lives of the people of rural Bangladesh, where more than 80 per cent of the country's population live. The problems relating to biomass do not have to do merely with the question of supply of wood, or of food or of fuel; the problems are linked to competition in the variegations of land-use and to differing end-uses of by-products that may compete with or complement each other. The paper discusses the present pattern and amount of biomass consumption with a view to assessing the future prospect of biomass supply in meeting various needs. Regarding biomass energy supply, several important conclusions can be drawn: a) the energy consumption pattern in Bangladesh is characterized by heavy dependence on traditional fuel; b) the domestic sector uses 80 per cent of the total biomass fuel and c) in the industrial sector, about 76 per cent of the energy used consists of biomass fuel, mainly for processing agricultural products. Several observations are made pertaining to different sectors of biomass fuel demand. (author)

  7. Household appliances using solar energy technology

    International Nuclear Information System (INIS)

    Gul, H.

    2000-01-01

    Many solar energy technologies are now sufficiently developed to make it possible to use these to replace some of our conventional energy sources, but still need improvement and reduction in cost. It is, therefore, necessary to focus attention on household uses of solar energy. This paper describes the recent developments and current position in respect of several such devices, which include; solar cooker, with curved concentrator, Panel Cooker, Solar Dryer, solar water heater, Solar Still, Solar Water Pump, Solar Water Disinfection, Solar space Heating and greenhouse solar Reflectors, Development and Extension activities on these should be taken up at various levels. (author)

  8. Essays on Energy Technology Innovation Policy

    Science.gov (United States)

    Chan, Gabriel Angelo Sherak

    Motivated by global climate change, enhancing innovation systems for energy technologies is seen as one of the largest public policy challenges of the near future. The role of policy in enhancing energy innovation systems takes several forms: public provision of research and develop funding, facilitating the private sector's capability to develop new technologies, and creating incentives for private actors to adopt innovative and appropriate technologies. This dissertation explores research questions that span this range of policies to develop insights in how energy technology innovation policy can be reformed in the face of climate change. The first chapter of this dissertation explores how decision making to allocate public research and development funding could be improved through the integration of expert technology forecasts. I present a framework to evaluate and optimize the U.S. Department of Energy's research and development portfolio of applied energy projects, accounting for spillovers from technical complimentary and competition for the same market share. This project integrates one of the largest and most comprehensive sets of expert elicitations on energy technologies (Anadon et al., 2014b) in a benefit evaluation framework. This work entailed developing a new method for probability distribution sampling that accommodates the information that can be provided by expert elicitations. The results of this project show that public research and development in energy storage and solar photovoltaic technologies has the greatest marginal returns to economic surplus, but the methodology developed in this chapter is broadly applicable to other public and private R&D-sponsoring organizations. The second chapter of this dissertation explores how policies to transfer technologies from federally funded research laboratories to commercialization partners, largely private firms, create knowledge spillovers that lead to further innovation. In this chapter, I study the U

  9. Energy harvesting through piezoelectricity - technology foresight

    DEFF Research Database (Denmark)

    Laumann, Felix; Sørensen, Mette Møller; Hansen, Tina Mølholm

    2017-01-01

    scientific articles. In contrast to this, is found a low level of ability to convert the technology from academia to commercialization. A decision making model is proposed including a requirement for better understanding of niches, niche definitions and configuration of energy harvesting design...

  10. World Energy Resources and New Technologies

    Science.gov (United States)

    Szmyd, Janusz S.

    2016-01-01

    The development of civilisation is linked inextricably with growing demand for electricity. Thus, the still-rapid increase in the level of utilisation of natural resources, including fossil fuels, leaves it more and more urgent that conventional energy technologies and the potential of the renewable energy sources be made subject to re-evaluation. It is estimated that last 200 years have seen use made of more than 50% of the available natural resources. Equally, if economic forecasts prove accurate, for at least several more decades, oil, natural gas and coal will go on being the basic primary energy sources. The alternative solution represented by nuclear energy remains a cause of considerable public concern, while the potential for use to be made of renewable energy sources is seen to be very much dependent on local environmental conditions. For this reason, it is necessary to emphasise the impact of research that focuses on the further sharpening-up of energy efficiency, as well as actions aimed at increasing society's awareness of the relevant issues. The history of recent centuries has shown that rapid economic and social transformation followed on from the industrial and technological revolutions, which is to say revolutions made possible by the development of power-supply technologies. While the 19th century was "the age of steam" or of coal, and the 20th century the era of oil and gas, the question now concerns the name that will at some point come to be associated with the 21st century. In this paper, the subjects of discussion are primary energy consumption and energy resources, though three international projects on the global scale are also presented, i.e. ITER, Hydrates and DESERTEC. These projects demonstrate new scientific and technical possibilities, though it is unlikely that commercialisation would prove feasible before 2050. Research should thus be focused on raising energy efficiency. The development of high-efficiency technologies that

  11. Status and prospects of fuel cell technology in Europe

    International Nuclear Information System (INIS)

    Van Dijkum

    1998-01-01

    Fuel Cells attract a lot of press attention today and an some example of a recent press heading is: ''Orders for Onsi's fuel cells hit $111 million''. The principle of fuel cell technology is explained and examples of realized applications given. In short: fuel cells can be used everywhere where power (and heat) is needed. Regarding the status of fuel cells, Europe is way behind Japan and the US. The 15 PAFC-200 kWe units in operation in Europe (worldwide > 90 units) produced 46,796 MWhe during 296,704 cumulative operating hours with an availability % over 70.00. The world record on continuous operation is held by Japan with 9,478 hours reached at 14th September 1996 and two PAFC-units passed their 40,000 hours of cumulative operation (US and Japan). In Japan, market enabling support is continued with subsidies of one third of the costs for 7 PAFC-units. In the Netherlands, Energy Distribution Companies test their tubular 100 kWe SOFC-unit. During 1,335 hours of continuous operation, the unit produced 165 MWhe in total at 3rd March. EnergieNed, CLC/Ansaldo and Gastec evaluated changes for co-generation and small power production with packaged fuel cell power plants in EU and EFTA countries. In general the authors concluded that implementation of fuel cell power plants in all EU and EFTA countries will be probably possible with today' s technical regulations. On might wonder: What has fuel cell technology to offer in one of the most efficient and low-priced gas economies in Europe, the Netherlands. An example of efficient energy use are greenhouses with artificial lighting and CO 2 -fertilization and energy (heat) storage device. Applying relatively favorable depreciation periods and (utility) interest rate, a PAFC 200 kWe generates just a positive return (IRR = 1.7 % after taxes and subsidies) when part of a gas-engine capacity is replaced

  12. An approach to prospective consequential life cycle assessment and net energy analysis of distributed electricity generation

    International Nuclear Information System (INIS)

    Jones, Christopher; Gilbert, Paul; Raugei, Marco; Mander, Sarah; Leccisi, Enrica

    2017-01-01

    Increasing distributed renewable electricity generation is one of a number of technology pathways available to policy makers to meet environmental and other sustainability goals. Determining the efficacy of such a pathway for a national electricity system implies evaluating whole system change in future scenarios. Life cycle assessment (LCA) and net energy analysis (NEA) are two methodologies suitable for prospective and consequential analysis of energy performance and associated impacts. This paper discusses the benefits and limitations of prospective and consequential LCA and NEA analysis of distributed generation. It concludes that a combined LCA and NEA approach is a valuable tool for decision makers if a number of recommendations are addressed. Static and dynamic temporal allocation are both needed for a fair comparison of distributed renewables with thermal power stations to account for their different impact profiles over time. The trade-offs between comprehensiveness and uncertainty in consequential analysis should be acknowledged, with system boundary expansion and system simulation models limited to those clearly justified by the research goal. The results of this approach are explorative, rather than for accounting purposes; this interpretive remit, and the assumptions in scenarios and system models on which results are contingent, must be clear to end users. - Highlights: • A common LCA and NEA framework for prospective, consequential analysis is discussed. • Approach to combined LCA and NEA of distributed generation scenarios is proposed. • Static and dynamic temporal allocation needed to assess distributed generation uptake.

  13. Vehicle Technologies and Fuel Cell Technologies Program: Prospective Benefits Assessment Report for Fiscal Year 2016

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, T. S. [Argonne National Lab. (ANL), Argonne, IL (United States); Taylor, C. H. [TA Engineering, Inc., Catonsville, MD (United States); Moore, J. S. [TA Engineering, Inc., Catonsville, MD (United States); Ward, J. [United States Department of Energy, Washington, DC (United States). Office of Energy Efficiency and Renewable Energy

    2016-02-23

    Under a diverse set of programs, the Vehicle Technologies and Fuel Cell Technologies offices of DOE’s Office of Energy Efficiency and Renewable Energy invest in research, development, demonstration, and deployment of advanced vehicle, hydrogen production, delivery and storage, and fuel cell technologies. This report estimates the benefits of successfully developing and deploying these technologies (a “Program Success” case) relative to a base case (the “No Program” case). The Program Success case represents the future with completely successful deployment of Vehicle Technologies Office (VTO) and Fuel Cell Technologies Office (FCTO) technologies. The No Program case represents a future in which there is no contribution after FY 2016 by the VTO or FCTO to these technologies. The benefits of advanced vehicle, hydrogen production, delivery and storage, and fuel cell technologies were estimated on the basis of differences in fuel use, primary energy use, and greenhouse gas (GHG) emissions from light-, medium- and heavy-duty vehicles, including energy and emissions from fuel production, between the base case and the Program Success case. Improvements in fuel economy of various vehicle types, growth in the stock of fuel cell vehicles and other advanced technology vehicles, and decreased GHG intensity of hydrogen production and delivery in the Program Success case over the No Program case were projected to result in savings in petroleum use and GHG emissions. Benefits were disaggregated by individual program technology areas, which included the FCTO program and the VTO subprograms of batteries and electric drives; advanced combustion engines; fuels and lubricants; materials (for reduction in vehicle mass, or “lightweighting”); and, for medium- and heavy-duty vehicles, reduction in rolling and aerodynamic resistance. Projections for the Program Success case indicate that by 2035, the average fuel economy of on-road, light-duty vehicle stock could be 47% to 76

  14. Development of coal energy utilization technologies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    Coal liquefaction produces new and clean energy by performing hydrogenation, decomposition and liquefaction on coal under high temperatures and pressures. NEDO has been developing bituminous coal liquefaction technologies by using a 150-t/d pilot plant. It has also developed quality improving and utilization technologies for liquefied coal, whose practical use is expected. For developing coal gasification technologies, construction is in progress for a 200-t/d pilot plant for spouted bed gasification power generation. NEDO intends to develop coal gasification composite cycle power generation with high efficiency and of environment harmonious type. This paper summarizes the results obtained during fiscal 1994. It also dwells on technologies to manufacture hydrogen from coal. It further describes development of technologies to manufacture methane and substituting natural gas (SNG) by hydrogenating and gasifying coal. The ARCH process can select three operation modes depending on which of SNG yield, thermal efficiency or BTX yield is targeted. With respect to promotion of coal utilization technologies, description is given on surveys on development of next generation technologies for coal utilization, and clean coal technology promotion projects. International coal utilization and application projects are also described. 9 figs., 3 tabs.

  15. Pilot project of atomic energy technology record

    International Nuclear Information System (INIS)

    Song, K. C.; Kim, Y. I.; Kim, Y. G.

    2011-12-01

    Project of the Atomic Energy Technology Record is the project that summarizes and records in each category as a whole summary from the background to the performance at all fields of nuclear science technology which researched and developed at KAERI. This project includes Data and Document Management System(DDMS) that will be the system to collect, organize and preserve various records occurred in each research and development process. To achieve these goals, many problems should be solved to establish technology records process, such as issues about investigation status of technology records in KAERI, understanding and collection records, set-up project system and selection target field, definition standards and range of target records. This is a research report on the arrangement of research contents and results about pilot project which records whole nuclear technology researched and developed at KAERI in each category. Section 2 summarizes the overview of this pilot project and the current status of technology records in domestic and overseas, and from Section 3 to Section 6 summarize contents and results which performed in this project. Section 3 summarizes making TOC(Table of Content) and technology records, Section 4 summarizes sectoral templates, Section 5 summarizes writing detailed plan of technology records, and Section 6 summarizes Standard Document Numbering System(SDNS). Conclusions of this report are described in Section 7

  16. Values and Technologies in Energy Savings

    DEFF Research Database (Denmark)

    Nørgård, Jørgen Stig

    2000-01-01

    of this saving can cause what is called the rebound effect, which reduces the savings obtained from the technology. Ways to avoid this effect are suggested, and they require value changes, primarly around frugality, consumption, and hard-working. There are indications that some of the necessary changes are well......The chapter is based on the assumption, that technology improvement is not sufficient to achieve a sustainable world community. Changes in people´s values are necessary. A simple model suggest how values, together with basic needs and with the environmental and societal frames, determine people......´s behavioural pattern and lifestyles. Deliberate changes in social values are illustrated by a historical example. From the side of technology the basic principles in the economy of energy savings are briefly described. The marginally profitable energy savings provides an economic saving. The application...

  17. Technology assessment of wind energy conversion systems

    Energy Technology Data Exchange (ETDEWEB)

    Meier, B. W.; Merson, T. J.

    1980-09-01

    Environmental data for wind energy conversion systems (WECSs) have been generated in support of the Technology Assessment of Solar Energy (TASE) program. Two candidates have been chosen to characterize the WECS that might be deployed if this technology makes a significant contribution to the national energy requirements. One WECS is a large machine of 1.5-MW-rated capacity that can be used by utilities. The other WECS is a small machine that is characteristic of units that might be used to meet residential or small business energy requirements. Energy storage systems are discussed for each machine to address the intermittent nature of wind power. Many types of WECSs are being studied and a brief review of the technology is included to give background for choosing horizontal axis designs for this study. Cost estimates have been made for both large and small systems as required for input to the Strategic Environmental Assessment Simulation (SEAS) computer program. Material requirements, based on current generation WECSs, are discussed and a general discussion of environmental impacts associated with WECS deployment is presented.

  18. Prospect on nuclear energy and promotion strategy for next 50 years

    International Nuclear Information System (INIS)

    Lee, Chang Gun

    1996-10-01

    This book describes prospect for nuclear energy and promotion strategy for next 50 years, which has four part ; summary, prospect on nuclear energy for next 50 years with wealth, quality of the life and energy, available energy, future power and energy, nuclear power except as using energy, promotion strategy for nuclear energy for next 50 year with current situation and the rule of nuclear energy in the future, international situation and effect on environment, nuclear reactor and strategy for nuclear fuel cycle, international, institutional and social problems, using nuclear energy except power, precondition for international use of nuclear power, use of nuclear energy for extra field and conclusion.

  19. Renewable energy technologies and the European industry

    International Nuclear Information System (INIS)

    Whiteley, M.; Bess, M.

    2000-01-01

    The European renewable energy industry has the potential to be a world leader. This has been achieved within the European region for specific technologies, through a set of policy activities at a national and regional level, driven primarily by employment, energy self-sufficiency and industrial competitiveness. Using the experience gained in recent years, European industry has the opportunity to continue to expand its horizons on a worldwide level. Through the use of the SAFIRE rational energy model, an assessment has been made of the future penetration of renewable energy within Europe and the effects on these socio-economic factors. In conjunction with these outputs, assessments of the worldwide markets for wind, photovoltaics, solar thermal plant and biomass have been assessed. A case study of the Danish wind industry is used as a prime example of a success story from which the learning opportunities are replicated to other industries, so that the European renewable energy industry can achieve its potential. (orig.)

  20. Trends in Wind Energy Technology Development

    DEFF Research Database (Denmark)

    Rasmussen, Flemming; Madsen, Peter Hauge; Tande, John O.

    2011-01-01

    . The huge potential of wind, the rapid development of the technology and the impressive growth of the industry justify the perception that wind energy is changing its role to become the future backbone of a secure global energy supply. Between the mid-1980s, when the wind industry took off, and 2005 wind......Text Over the past 25 years global wind energy capacity has doubled every three years, corresponding to a tenfold expansion every decade. By the end of 2010 global installed wind capacity was approximately 200 GW and in 2011 is expected to produce about 2% of global electricity consumption...... turbine technology has seen rapid development, leading to impressive increases in the size of turbines, with corresponding cost reductions. From 2005 to 2009 the industry’s focus seems to have been on increasing manufacturing capacity, meeting market demand and making wind turbines more reliable...

  1. Environmental impacts from the solar energy technologies

    International Nuclear Information System (INIS)

    Tsoutsos, Theocharis; Frantzeskaki, Niki; Gekas, Vassilis

    2005-01-01

    Solar energy systems (photovoltaics, solar thermal, solar power) provide significant environmental benefits in comparison to the conventional energy sources, thus contributing, to the sustainable development of human activities. Sometimes however, their wide scale deployment has to face potential negative environmental implications. These potential problems seem to be a strong barrier for a further dissemination of these systems in some consumers. To cope with these problems this paper presents an overview of an Environmental Impact Assessment. We assess the potential environmental intrusions in order to ameliorate them with new technological innovations and good practices in the future power systems. The analysis provides the potential burdens to the environment, which include - during the construction, the installation and the demolition phases, as well as especially in the case of the central solar technologies - noise and visual intrusion, greenhouse gas emissions, water and soil pollution, energy consumption, labour accidents, impact on archaeological sites or on sensitive ecosystems, negative and positive socio-economic effects

  2. Clean energy technologies : perspectives and recent progress

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, G. [Natural Resources Canada, Ottawa, ON (Canada). Office of Energy Research and Development

    2006-07-01

    There is a need to move toward a bio-based economy that offers new ways of thinking and new approaches to energy consumption and use. Bioenergy technologies can complement highly efficient fossil fuels with renewable and sustainable alternatives to achieve improved health and air quality, while reducing greenhouse gases. Perspectives on the bio-based economy and recent progress in bioenergy technologies were addressed in this presentation. The purpose was to explore the opportunities and challenges of using biomass for energy systems in industrial settings. The presentation provided information on current research being undertaken in bioenergy in the agricultural and forest fibre industries. Information on the Canadian Biomass Innovation Network (CBIN), which consists of federal researchers, program managers, policy makers and expert advisors and on its thermochemical energy systems were discussed in detail. CBIN's mission, vision, priorities, outputs, and funding were identified. Thermochemical conversion research under CBIN relates to combustion, gasification, and pyrolysis. tabs., figs.

  3. Solar sorptive cooling. Technologies, user requirements, practical experience, future prospects

    Energy Technology Data Exchange (ETDEWEB)

    Treffinger, P. [DLR Deutsches Zentrum fuer Luft- und Raumfahrt e.V., Hardthausen (Germany); Hertlein, H.P. [eds.] [Forschungsverbund Sonnenenergie, Koeln (Germany)

    1998-09-01

    Sorptive cooling techniques permit the use of low-temperature solar heat, i.e. a renewable energy of low cost and world-wide availability. The Forschungsverbund Sonnenenergie intends to develop solar sorptive cooling technologies to the prototype stage and, in cooperation with the solar industry and its end users, to promote practical application in air conditioning of buildings and cold storage of food. The workshop presents an outline of the state of development of solar sorptive cooling from the view of users and developers. Exemplary solar cooling systems are described, and the potential of open and closed sorptive processes is assessed. Future central activities will be defined in an intensive discussion between planners, producers, users and developers. [German] Der Einsatz von Sorptionstechniken zur Kaelteerzeugung erlaubt es, als treibende Solarenergie Niedertemperatur-Solarwaerme einzusetzen, also eine regenerative Energie mit sehr geringen Kosten und weltweiter Verfuegbarkeit. Der Forschungsverbund Sonnenenergie hat sich als Aufgabe gestellt, die Techniken der solaren Sorptionskuehlung bis zum Prototyp zu entwickeln und mit Industrie und Nutzern die praktische Anwendung voranzubringen. Die Anwendungsfelder sind die Klimatisierung von Gebaeuden und die Kaltlagerung von Lebensmitteln. Der Workshop gibt einen Ueberblick zum Entwicklungsstand der solaren Sorptionskuehlung aus der Sicht der Anwender und Entwickler. Bereits ausgefuehrte Beispiele zur solaren Kuehlung werden vorgestellt und das Potential geschlossener und offener Sorptionsverfahren angegeben. In intensiver Diskussion zwischen Planern, Herstellern, Nutzern und Entwicklern sollen kuenftige Arbeitsschwerpunkte herausgearbeitet werden. (orig.)

  4. Energy Flexometer: Transactive Energy-Based Internet of Things Technology

    Directory of Open Access Journals (Sweden)

    Muhammad Babar

    2018-03-01

    Full Text Available Effective Energy Management with an active Demand Response (DR is crucial for future smart energy system. Increasing number of Distributed Energy Resources (DER, local microgrids and prosumers have an essential and real influence on present power distribution system and generate new challenges in power, energy and demand management. A relatively new paradigm in this field is transactive energy (TE, with its value and market-based economic and technical mechanisms to control energy flows. Due to a distributed structure of present and future power system, the Internet of Things (IoT environment is needed to fully explore flexibility potential from the end-users and prosumers, to offer a bid to involved actors of the smart energy system. In this paper, new approach to connect the market-driven (bottom-up DR program with current demand-driven (top-down energy management system (EMS is presented. Authors consider multi-agent system (MAS to realize the approach and introduce a concept and standardize the design of new Energy Flexometer. It is proposed as a fundamental agent in the method. Three different functional blocks have been designed and presented as an IoT platform logical interface according to the LonWorks technology. An evaluation study has been performed as well. Results presented in the paper prove the proposed concept and design.

  5. Energy intake and sources of energy intake in the European Prospective Investigation into Cancer and Nutrition.

    Science.gov (United States)

    Ocké, M C; Larrañaga, N; Grioni, S; van den Berg, S W; Ferrari, P; Salvini, S; Benetou, V; Linseisen, J; Wirfält, E; Rinaldi, S; Jenab, M; Halkjaer, J; Jakobsen, M U; Niravong, M; Clavel-Chapelon, F; Kaaks, R; Bergmann, M; Moutsiou, E; Trichopoulou, A; Lauria, C; Sacerdote, C; Bueno-de-Mesquita, H B; Peeters, P H M; Hjartåker, A; Parr, C L; Tormo, M J; Sanchez, M J; Manjer, J; Hellstrom, V; Mulligan, A; Spencer, E A; Riboli, E; Bingham, S; Slimani, N

    2009-11-01

    To describe energy intake and its macronutrient and food sources among 27 regions in 10 countries participating in the European Prospective Investigation into Cancer and Nutrition (EPIC) study. Between 1995 and 2000, 36 034 subjects aged 35-74 years were administered a standardized 24-h dietary recall. Intakes of macronutrients (g/day) and energy (kcal/day) were estimated using standardized national nutrient databases. Mean intakes were weighted by season and day of the week and were adjusted for age, height and weight, after stratification by gender. Extreme low- and high-energy reporters were identified using Goldberg's cutoff points (ratio of energy intake and estimated basal metabolic rate 2.72), and their effects on macronutrient and energy intakes were studied. Low-energy reporting was more prevalent in women than in men. The exclusion of extreme-energy reporters substantially lowered the EPIC-wide range in mean energy intake from 2196-2877 to 2309-2866 kcal among men. For women, these ranges were 1659-2070 and 1873-2108 kcal. There was no north-south gradient in energy intake or in the prevalence of low-energy reporting. In most centres, cereals and cereal products were the largest contributors to energy intake. The food groups meat, dairy products and fats and oils were also important energy sources. In many centres, the highest mean energy intakes were observed on Saturdays. These data highlight and quantify the variations and similarities in energy intake and sources of energy intake among 10 European countries. The prevalence of low-energy reporting indicates that the study of energy intake is hampered by the problem of underreporting.

  6. Practical applications of interactive voice technologies: Some accomplishments and prospects

    Science.gov (United States)

    Grady, Michael W.; Hicklin, M. B.; Porter, J. E.

    1977-01-01

    A technology assessment of the application of computers and electronics to complex systems is presented. Three existing systems which utilize voice technology (speech recognition and speech generation) are described. Future directions in voice technology are also described.

  7. Prospective Teachers’ Tendencies to Utilize From the Facilities of Contemporary Educational Technology

    OpenAIRE

    Gizem SAYGILI; Teoman İsmail KESERCİOĞLU

    2015-01-01

    In terms of effectiveness and efficiency, it is important to determine the views of prospective teachers related to taking advantage of the facilities of contemporary educational technology. This study which aims to identify prospective teachers’ attitudes towards computer-assisted learning was conducted with 140 prospective teachers (86 female, 54 male) who have been attending pedagogical formation education at Süleyman Demirel University in the 2013 academic year. In this study, in eight di...

  8. The United States Department of Energy Office of Industrial Technology`s Technology Benefits Recording System

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, K.R.; Moore, N.L.

    1994-09-01

    The U.S. Department of Energy (DOE) Office of Industrial Technology`s (OIT`s) Technology Benefits Recording System (TBRS) was developed by Pacific Northwest Laboratory (PNL). The TBRS is used to organize and maintain records of the benefits accrued from the use of technologies developed with the assistance of OIT. OIT has had a sustained emphasis on technology deployment. While individual program managers have specific technology deployment goals for each of their ongoing programs, the Office has also established a separate Technology Deployment Division whose mission is to assist program managers and research and development partners commercialize technologies. As part of this effort, the Technology Deployment Division developed an energy-tracking task which has been performed by PNL since 1977. The goal of the energy-tracking task is to accurately assess the energy savings impact of OIT-developed technologies. In previous years, information on OIT-sponsored technologies existed in a variety of forms--first as a hardcopy, then electronically in several spreadsheet formats that existed in multiple software programs. The TBRS was created in 1993 for OIT and was based on information collected in all previous years from numerous industrial contacts, vendors, and plants that have installed OIT-sponsored technologies. The TBRS contains information on technologies commercialized between 1977 and the present, as well as information on emerging technologies in the late development/early commercialization stage of the technology life cycle. For each technology, details on the number of units sold and the energy saved are available on a year-by-year basis. Information regarding environmental benefits, productivity and competitiveness benefits, or impact that the technology may have had on employment is also available.

  9. Prospective thorium fuels for future nuclear energy generation

    International Nuclear Information System (INIS)

    Lainetti, Paulo E.O.

    2017-01-01

    In the beginning of the Nuclear Era, many countries were interested on thorium, particularly during the 1950 1970 periods. Nevertheless, since its discovery almost two centuries ago, the use of thorium has been restricted to gas mantles employed in gas lighting. The future world energy needs will increase and, even if we assumed a conservative contribution of nuclear generation, it will be occur a significant increasing in the uranium prices, taking into account that uranium, as used in the present thermal reactors, is a finite resource. Nowadays approximately the worldwide yearly requirement of uranium for about 435 nuclear reactors in operation is 65,000 metric t. Therefore, alternative solutions for future must be developed. Thorium is nearly three times more abundant than uranium in The Earth's crust. Despite thorium is not a fissile material, 232 Th can be converted to 233 U (fissile) more efficiently than 238 U to 239 Pu. Besides this, thorium is an environment alternative energy source and also inherently resistant to proliferation.. Many countries had initiated research on thorium in the past, Nevertheless, the interest evanesced due new uranium resources discoveries and availability of enriched uranium at low prices from obsolete weapons. Some papers evaluate the thorium resources in Brazil over 1.200.000 metric t. Then, the thorium alternative must be seriously considered in Brazil for strategic reasons. A brief history of thorium and its utilization are presented, besides a very short discussion about prospective thorium nuclear fuels for the next generation of nuclear reactors. (author)

  10. Dual energy radiography using active detector technology

    International Nuclear Information System (INIS)

    Seibert, J.A.; Poage, T.F.; Alvarez, R.E.

    1996-01-01

    A new technology has been implemented using an open-quotes active-detectorclose quotes comprised of two computed radiography (CR) imaging plates in a sandwich geometry for dual-energy radiography. This detector allows excellent energy separation, short exposure time, and high signal to noise ratio (SNR) for clinically robust open-quotes bone-onlyclose quotes and open-quotes soft-tissue onlyclose quotes images with minimum patient motion. Energy separation is achieved by two separate exposures at widely different kVp's: the high energy (120 kVp + 1.5 mm Cu filter) exposure is initiated first, followed by a short burst of intense light to erase the latent image on the front plate, and then a 50 kVp (low energy) exposure. A personal computer interfaced to the x-ray generator, filter wheel, and active detector system orchestrates the acquisition sequence within a time period of 150 msec. The front and back plates are processed using a CR readout algorithm with fixed speed and wide dynamic range. open-quotes Bone-onlyclose quotes and open-quotes soft-tissue onlyclose quotes images are calculated by geometric alignment of the two images and application of dual energy decomposition algorithms on a pixel by pixel basis. Resultant images of a calibration phantom demonstrate an increase of SNR 2 / dose by ∼73 times when compared to a single exposure open-quotes passive-detectorclose quotes comprised of CR imaging plates, and an ∼8 fold increase compared to a screen-film dual-energy cassette comprised of different phosphor compounds. In conclusion, dual energy imaging with open-quotes active detectorclose quotes technology is clinically feasible and can provide substantial improvements over conventional methods for dual-energy radiography

  11. Green Energy Outlook in Europe. Strategic prospects to 2010

    International Nuclear Information System (INIS)

    2002-07-01

    As the successor to last years' report The Green Energy Outlook 2001 by Reuters Business Insight, this new report focuses on the opportunities that are opening across Europe. In particular the report evaluates the implications of trading in a harmonised green energy market and how certification and labelling will affect trading strategies. Renewable energy is rapidly becoming an important commodity. The report forecasts a green certificate market of over 20 to 30 billion Euro in 2010, largely driven by environmental policy and the increasing viability of green technologies. The impact of new policies and key issues such as certification and labeling are significant factors of the current European renewable energy market. This report evaluates the current market and identifies the main areas for growth and development to 2010. The latest market research and analysis, detailed country profiles, key players' strategies and recommendations for success in the expanding and evolving market make this report a must for every company and government with interest in the renewable energy market

  12. Mesoporous materials for clean energy technologies.

    Science.gov (United States)

    Linares, Noemi; Silvestre-Albero, Ana M; Serrano, Elena; Silvestre-Albero, Joaquín; García-Martínez, Javier

    2014-11-21

    Alternative energy technologies are greatly hindered by significant limitations in materials science. From low activity to poor stability, and from mineral scarcity to high cost, the current materials are not able to cope with the significant challenges of clean energy technologies. However, recent advances in the preparation of nanomaterials, porous solids, and nanostructured solids are providing hope in the race for a better, cleaner energy production. The present contribution critically reviews the development and role of mesoporosity in a wide range of technologies, as this provides for critical improvements in accessibility, the dispersion of the active phase and a higher surface area. Relevant examples of the development of mesoporosity by a wide range of techniques are provided, including the preparation of hierarchical structures with pore systems in different scale ranges. Mesoporosity plays a significant role in catalysis, especially in the most challenging processes where bulky molecules, like those obtained from biomass or highly unreactive species, such as CO2 should be transformed into most valuable products. Furthermore, mesoporous materials also play a significant role as electrodes in fuel and solar cells and in thermoelectric devices, technologies which are benefiting from improved accessibility and a better dispersion of materials with controlled porosity.

  13. Interactions of energy technology development and new energy exploitation with water technology development in China

    International Nuclear Information System (INIS)

    Liang, Sai; Zhang, Tianzhu

    2011-01-01

    Interactions of energy policies with water technology development in China are investigated using a hybrid input-output model and scenario analysis. The implementation of energy policies and water technology development can produce co-benefits for each other. Water saving potential of energy technology development is much larger than that of new energy exploitation. From the viewpoint of proportions of water saving co-benefits of energy policies, energy sectors benefit the most. From the viewpoint of proportions of energy saving and CO 2 mitigation co-benefits of water technology development, water sector benefits the most. Moreover, economic sectors are classified into four categories concerning co-benefits on water saving, energy saving and CO 2 mitigation. Sectors in categories 1 and 2 have big direct co-benefits. Thus, they can take additional responsibility for water and energy saving and CO 2 mitigation. If China implements life cycle materials management, sectors in category 3 can also take additional responsibility for water and energy saving and CO 2 mitigation. Sectors in category 4 have few co-benefits from both direct and accumulative perspectives. Thus, putting additional responsibility on sectors in category 4 might produce pressure for their economic development. -- Highlights: ► Energy policies and water technology development can produce co-benefits for each other. ► For proportions of water saving co-benefits of energy policies, energy sectors benefit the most. ► For proportions of energy saving and CO 2 mitigation co-benefits of water policy, water sector benefits the most. ► China’s economic sectors are classified into four categories for policy implementation at sector scale.

  14. Dynamics of energy systems: Methods of analysing technology change

    Energy Technology Data Exchange (ETDEWEB)

    Neij, Lena

    1999-05-01

    Technology change will have a central role in achieving a sustainable energy system. This calls for methods of analysing the dynamics of energy systems in view of technology change and policy instruments for effecting and accelerating technology change. In this thesis, such methods have been developed, applied, and assessed. Two types of methods have been considered, methods of analysing and projecting the dynamics of future technology change and methods of evaluating policy instruments effecting technology change, i.e. market transformation programmes. Two methods are focused on analysing the dynamics of future technology change; vintage models and experience curves. Vintage models, which allow for complex analysis of annual streams of energy and technological investments, are applied to the analysis of the time dynamics of electricity demand for lighting and air-distribution in Sweden. The results of the analyses show that the Swedish electricity demand for these purposes could decrease over time, relative to a reference scenario, if policy instruments are used. Experience curves are used to provide insight into the prospects of diffusion of wind turbines and photo voltaic (PV) modules due to cost reduction. The results show potential for considerable cost reduction for wind-generated electricity, which, in turn, could lead to major diffusion of wind turbines. The results also show that major diffusion of PV modules, and a reduction of PV generated electricity down to the level of conventional base-load electricity, will depend on large investments in bringing the costs down (through R D and D, market incentives and investments in niche markets) or the introduction of new generations of PV modules (e.g. high-efficiency mass-produced thin-film cells). Moreover, a model has been developed for the evaluation of market transformation programmes, i.e. policy instruments that effect technology change and the introduction and commercialisation of energy

  15. Nordic energy technology scoreboard. Full version

    Energy Technology Data Exchange (ETDEWEB)

    Kiltkou, Antje; Iversen, Eric; Scortato, Lisa

    2010-07-01

    The Nordic Energy Technology Scoreboard provides a tool for understanding the state of low-carbon energy technology development in the Nordic region. It assesses the five Nordic countries of Denmark, Finland, Iceland, Norway and Sweden, alongside reference countries and regions including: The United Kingdom, Germany, Spain, Portugal, France, Italy, the Netherlands, Austria, USA, Japan and the EU 27. It focuses on five low-carbon energy technologies: Wind, photovoltaic (PV) solar, bio-fuels, geothermal, and carbon capture and storage (CCS). This scoreboard was developed as a pilot project with a limited scope of technologies, countries and indicators. In addition to providing a tool for decision-makers, it aimed to act as a catalyst for the future development of scoreboards and a vehicle to promote better data collection. Low-carbon energy technologies are not easy to measure. This is due to a variety of factors that much be kept in account when developing scoreboards for this purpose. Many low-carbon technologies are still at immature stages of development. Sound comparable data requires common definitions and standards to be adopted before collection can even take place. This process often lags behind the development of low-carbon technologies, and there are therefore considerable data availability and categorisation issues. The diversity of technologies and their different stages of development hamper comparability. The IEA classifies low-carbon technologies into three categories. The most mature includes hydropower, onshore wind, biomass CHP, and geothermal energy, the second most mature includes PV solar and offshore wind power, while the least mature includes concentrating solar power, CCS and ocean energy. This is problematic as less mature technologies are underrepresented in later stages of the innovation system. Many low-carbon technologies are systemic, meaning progress in developing one technology may hinge on developments in a connected technology

  16. Towards a European Energy Technology Policy - The European Strategic Energy Technology Plan (Set-Plan)

    International Nuclear Information System (INIS)

    Mercier, A.; Petric, H.; Peteves, E.

    2008-01-01

    The transition to a low carbon economy will take decades and affect the entire economy. There is a timely opportunity for investment in energy infrastructure. However, decisions to invest in technologies that are fully aligned with policy and society priorities do not necessarily come naturally, although it will profoundly affect the level of sustainability of the European energy system for decades to come. Technology development needs to be accelerated and prioritized at the highest level of the European policy agenda. This is the essence of the European Strategic Energy Technology Plan (SET-Plan). The SET-Plan makes concrete proposals for action to establish an energy technology policy for Europe, with a new mind-set for planning and working together and to foster science for transforming energy technologies to achieve EU energy and climate change goals for 2020, and to contribute to the worldwide transition to a low carbon economy by 2050. This paper gives an overview of the SET-Plan initiative and highlights its latest developments. It emphasises the importance of information in support of decision-making for investing in the development of low carbon technologies and shows the first results of the technology mapping undertaken by the newly established Information System of the SET-Plan (SETIS).(author)

  17. Project of Atomic Energy Technology Record

    International Nuclear Information System (INIS)

    Song, K. C.; Ko, Y. C.; Kwon, K. C.

    2012-12-01

    Project of the Atomic Energy Technology Record is the project that summarizes and records whole process, from the background to the performance, of each category in all fields of nuclear science technology which have been researched and developed at KAERI. This project includes development of Data And Documents Advanced at KAERI. This project includes development of Data And Documents Advanced Management System(DADAMS) to collect, organize and preserve various records occurred in each research and development process. In addition, it means the whole records related to nuclear science technology for the past, present and future. This report summarizes research contents and results of 'Project of Atomic Energy Technology Record'. Section 2 summarizes the theoretical background, the current status of records management in KAERI and the overview of this project. And Section 3 to 6 summarize contents and results performed in this project. Section 3 is about the process of sectoral technology record, Section 4 summarizes the process of Information Strategy Master Plan(ISMP), Section 5 summarizes the development of Data And Documents Advanced Management System(DADAMS) and Section 6 summarizes the process of collecting, organizing and digitalizing of records

  18. Transition to distributed energy generation in Finland: Prospects and barriers

    International Nuclear Information System (INIS)

    Ruggiero, Salvatore; Varho, Vilja; Rikkonen, Pasi

    2015-01-01

    Small-scale distributed energy generation is expected to play an important role in helping Finland increase its energy self-sufficiency. However, the overall strategy to date for promoting distributed energy remains unclear. It is not yet well understood which factors promote the growth of the distributed energy sector and what barriers need to be removed. In this article we present the results of a questionnaire directed at a panel of 26 experts from the distributed energy value chain and 15 semi-structured interviews with industry and non-industry representatives. We investigated, from a sociotechnical transition perspective, the possibilities and challenges of the transition to distributed energy in Finland through 2025. The results show that a shift to a prosperous future for distributed energy is possible if permit procedures, ease of grid connection, and taxation laws are improved in the electricity sector and new business concepts are introduced in the heat sector. In contrast to other European countries, the transition in Finland is expected to take place through a market-based approach favoring investment-focused measures. We conclude that incentive-based schemes alone, whatever they may be, will be insufficient to create significant growth in Finland without institutional change, removal of barriers, and the engagement of key actors. - Highlights: • We examine the possibilities and challenges of the transition to DE in Finland. • Technological niches are emerging both in the heat and electricity sector. • Business model innovation is evident only in the electricity sector. • Removing barriers and developing new business models will accelerate the transition.

  19. Energy Science and Technology Software Center

    Energy Technology Data Exchange (ETDEWEB)

    Kidd, E.M.

    1995-03-01

    The Energy Science and Technology Software Center (ESTSC), is the U.S. Department of Energy`s (DOE) centralized software management facility. It is operated under contract for the DOE Office of Scientific and Technical Information (OSTI) and is located in Oak Ridge, Tennessee. The ESTSC is authorized by DOE and the U.S. Nuclear Regulatory Commission (NRC) to license and distribute DOE-and NRC-sponsored software developed by national laboratories and other facilities and by contractors of DOE and NRC. ESTSC also has selected software from the Nuclear Energy Agency (NEA) of the Organisation for Economic Cooperation and Development (OECD) through a software exchange agreement that DOE has with the agency.

  20. Energy - Resources, technologies and power issues

    International Nuclear Information System (INIS)

    Mazzucchi, Nicolas

    2017-01-01

    For a better understanding of complex relationships between States, enterprises and international bodies, the author proposes a detailed analysis of power issues which structure the energy sector at the world level. He first considers the energy policy of a country as a result of an arbitration between three main concerns (access to energy, energy security, and struggle against climate change) which are differently addressed depending on consumption and production profiles of the country, and on its geographic and political characteristics. The author then proposes a synthetic overview of this landscape by analysing the history of exploitation of different energy sources (oil, coal, gas, uranium) and by proposing a regional analysis of resources. In the next part, he addresses various aspects of energy transports (bottlenecks of sea transport, trans-national grids, geopolitical restructuring of pipelines in front of the development of new LNG terminals). Then, for different regions, he describes the various modes of energy consumption, and challenges related to the transformation of this consumption due to the emergence of renewable energies. He analyses and discusses international mechanisms which underlie energy markets, and power issues which govern them. He shows that nuclear and renewable energies in fact strengthen the dependence on strategic materials and on technological companies. A chapter proposes an analysis of relationships between three prevailing actors in the elaboration of energy policies (enterprises, State and civil society) with their reciprocal influences, moments of collaboration, and information exchange or withholding. The last chapter addresses the study of power rivalries in the elaboration of policies for the struggle against climate change, and proposes a critical review of international organisations which square them

  1. Future costs of key low-carbon energy technologies: Harmonization and aggregation of energy technology expert elicitation data

    International Nuclear Information System (INIS)

    Baker, Erin; Bosetti, Valentina; Anadon, Laura Diaz; Henrion, Max; Aleluia Reis, Lara

    2015-01-01

    In this paper we standardize, compare, and aggregate results from thirteen surveys of technology experts, performed over a period of five years using a range of different methodologies, but all aiming at eliciting expert judgment on the future cost of five key energy technologies and how future costs might be influenced by public R&D investments. To enable researchers and policy makers to use the wealth of collective knowledge obtained through these expert elicitations we develop and present a set of assumptions to harmonize them. We also aggregate expert estimates within each study and across studies to facilitate the comparison. The analysis showed that, as expected, technology costs are expected to go down by 2030 with increasing levels of R&D investments, but that there is not a high level of agreement between individual experts or between studies regarding the technology areas that would benefit the most from R&D investments. This indicates that further study of prospective cost data may be useful to further inform R&D investments. We also found that the contributions of additional studies to the variance of costs in one technology area differed by technology area, suggesting that (barring new information about the downsides of particular forms of elicitations) there may be value in not only including a diverse and relatively large group of experts, but also in using different methods to collect estimates. - Highlights: • Harmonization of unique dataset on probabilistic evolution of key energy technologies. • Expectations about the impact of public R&D investments on future costs. • Highlighting the key uncertainties and a lack of consensus on cost evolution

  2. Innovation, Diffusion, and Regulation in Energy Technologies

    Science.gov (United States)

    Fetter, Theodore Robert

    The innovation and diffusion of new technologies is one of the central concerns of economics. New inventions or technological combinations do not spring fully formed into the world; as firms encounter and learn about new technologies they experiment, refine, and learn about them, improving productivity (and sometimes earning economic rents). Understanding the processes by which firms learn, and how these processes interact with regulations, is fundamental to understanding the emergence of new technologies, their contribution to growth, and the interaction of innovation and regulation. This dissertation addresses how firms learn and respond to regulations in the context of emerging technologies. Within this framework, I address several questions. When production inputs are socially controversial, do firms respond to disclosure laws by voluntarily constraining their inputs? Do these public disclosure laws facilitate knowledge transmission across firms, and if so, what are the implications for public welfare - for instance, do the gains from trade outweigh any effects of reduced incentives for innovation? I study these questions in the context of hydraulic fracturing, though the results offer insight for more general settings. Panning out to a much broader view, I also explore how energy-related technologies - in both generation and consumption - diffuse across national boundaries over time, and whether innovation and diffusion of energy-efficient technologies has led to more or less energy-efficient economic growth. In my first paper, I contribute to improved understanding of the conditions in which information-based regulations, which are increasingly common in multiple policy domains, decrease externalities such as environmental pollution. Specifically, I test whether information disclosure regulations applied to hydraulic fracturing chemicals caused firms to decrease their use of toxic inputs. Prior to these mandatory disclosure laws, some operators voluntarily

  3. Environmental protection technologies and prospect for uranium mining and metallurgy in China

    International Nuclear Information System (INIS)

    Pan Yingjie

    2002-01-01

    Based on practices of production and environmental protection of China's uranium mining and metallurgy, control and protection of the three wastes in uranium mining and metallurgy are discussed. Prospects for environmental protection technologies of uranium mining and metallurgy is made

  4. Separations Technology for Clean Water and Energy

    Energy Technology Data Exchange (ETDEWEB)

    Jarvinen, Gordon D [Los Alamos National Laboratory

    2012-06-22

    Providing clean water and energy for about nine billion people on the earth by midcentury is a daunting challenge. Major investments in efficiency of energy and water use and deployment of all economical energy sources will be needed. Separations technology has an important role to play in producing both clean energy and water. Some examples are carbon dioxide capture and sequestration from fossil energy power plants and advanced nuclear fuel cycle scemes. Membrane separations systems are under development to improve the economics of carbon capture that would be required at a huge scale. For nuclear fuel cycles, only the PUREX liquid-liquid extraction process has been deployed on a large scale to recover uranium and plutonium from used fuel. Most current R and D on separations technology for used nuclear fuel focuses on ehhancements to a PUREX-type plant to recover the minor actinides (neptunium, americiu, and curium) and more efficiently disposition the fission products. Are there more efficient routes to recycle the actinides on the horizon? Some new approaches and barriers to development will be briefly reviewed.

  5. Technology assessment of geothermal energy resource development

    Energy Technology Data Exchange (ETDEWEB)

    1975-04-15

    Geothermal state-of-the-art is described including geothermal resources, technology, and institutional, legal, and environmental considerations. The way geothermal energy may evolve in the United States is described; a series of plausible scenarios and the factors and policies which control the rate of growth of the resource are presented. The potential primary and higher order impacts of geothermal energy are explored, including effects on the economy and society, cities and dwellings, environmental, and on institutions affected by it. Numerical and methodological detail is included in appendices. (MHR)

  6. Summary of solar energy technology characterizations

    Energy Technology Data Exchange (ETDEWEB)

    D' Alessio, Dr., Gregory J.; Blaunstein, Dr., Robert R.

    1980-09-01

    This report summarizes the design, operating, energy, environmental, and economic characteristics of 38 model solar systems used in the Technology Assessment of Solar Energy Systems Project including solar heating and cooling of buildings, agricultural and industrial process heat, solar electric conversion, and industrial biomass systems. The generic systems designs utilized in this report were based on systems studies and mission analyses performed by the DOE National Laboratories and the MITRE Corporation. The purpose of those studies were to formulate materials and engineering cost data and performance data of solar equipment once mass produced.

  7. The new energy technologies in Australia; Les nouvelles technologies de l'energie en Australie

    Energy Technology Data Exchange (ETDEWEB)

    Le Gleuher, M.; Farhi, R

    2005-06-15

    The large dependence of Australia on the fossil fuels leads to an great emission of carbon dioxide. The Australia is thus the first greenhouse gases emitter per habitant, in the world. In spite of its sufficient fossil fuels reserves, the Australia increases its production of clean energies and the research programs in the domain of the new energies technology. After a presentation of the australia situation, the authors detail the government measures in favor of the new energy technologies and the situation of the hydroelectricity, the wind energy, the wave and tidal energy, the biomass, the biofuels, the solar energy, the ''clean'' coal, the hydrogen and the geothermal energy. (A.L.B.)

  8. Smart City Energy Interconnection Technology Framework Preliminary Research

    Science.gov (United States)

    Zheng, Guotai; Zhao, Baoguo; Zhao, Xin; Li, Hao; Huo, Xianxu; Li, Wen; Xia, Yu

    2018-01-01

    to improve urban energy efficiency, improve the absorptive ratio of new energy resources and renewable energy sources, and reduce environmental pollution and other energy supply and consumption technology framework matched with future energy restriction conditions and applied technology level are required to be studied. Relative to traditional energy supply system, advanced information technology-based “Energy Internet” technical framework may give play to energy integrated application and load side interactive technology advantages, as a whole optimize energy supply and consumption and improve the overall utilization efficiency of energy.

  9. Economic-energy-environment analysis of prospective sugarcane bioethanol production in Brazil

    International Nuclear Information System (INIS)

    Lopes de Carvalho, Ariovaldo; Antunes, Carlos Henggeler; Freire, Fausto

    2016-01-01

    Highlights: • A Hybrid IO-MOLP model is formulated for energy-economic-environmental analysis. • Scenarios for sugarcane cultivation and 1st- and 2nd-generation bioethanol production. • Higher energy use and GHG emissions due to chemicals in 2G processes. • Lower overall employment level in the 1G + 2G scenarios compared to the 1G scenario. • Policies and technological choices should consider direct and indirect effects of 2G. - Abstract: Bioethanol from sugarcane can be produced using first-generation (1G) or second-generation (2G) technologies. 2G technologies can increase the capacity of production per sugarcane mass input and are expected to have a key role in future reductions of environmental impacts of sugarcane bioethanol. A hybrid Input-Output (IO) framework is developed for Brazil coupling the System of National Accounts and the National Energy Balance, which is extended to assess Greenhouse Gas (GHG) emissions. Life-cycle based estimates for two sugarcane cultivation systems, two 1G and eight 2G bioethanol production scenarios, are coupled in the IO framework. A multi-objective linear programming (MOLP) model is formulated based on this framework for energy-economic-environmental analysis of the Brazilian economic system and domestic bioethanol supply in prospective scenarios. Twenty-four solutions are computed: four “extreme” solutions resulting from the individual optimization of each objective function (GDP, employment level, total energy consumption and total GHG emissions - 1G scenario), ten compromise solutions minimizing the distance of the feasible region to the ideal solution (1G, 1G-optimized and prospective 1G + 2G scenarios), and ten solutions maximizing the total bioethanol production (1G, 1G-optimized and prospective 1G + 2G scenarios). Higher diesel oil and lubricants consumption in the mechanical harvesting process has counterbalanced the positive effects of more efficient trucks leading to higher energy consumption and GHG

  10. Ch. 37, Inertial Fusion Energy Technology

    International Nuclear Information System (INIS)

    Moses, E.

    2010-01-01

    Nuclear fission, nuclear fusion, and renewable energy (including biofuels) are the only energy sources capable of satisfying the Earth's need for power for the next century and beyond without the negative environmental impacts of fossil fuels. Substantially increasing the use of nuclear fission and renewable energy now could help reduce dependency on fossil fuels, but nuclear fusion has the potential of becoming the ultimate base-load energy source. Fusion is an attractive fuel source because it is virtually inexhaustible, widely available, and lacks proliferation concerns. It also has a greatly reduced waste impact, and no danger of runaway reactions or meltdowns. The substantial environmental, commercial, and security benefits of fusion continue to motivate the research needed to make fusion power a reality. Replicating the fusion reactions that power the sun and stars to meet Earth's energy needs has been a long-sought scientific and engineering challenge. In fact, this technological challenge is arguably the most difficult ever undertaken. Even after roughly 60 years of worldwide research, much more remains to be learned. the magnitude of the task has caused some to declare that fusion is 20 years away, and always will be. This glib criticism ignores the enormous progress that has occurred during those decades, progress inboth scientific understanding and essential technologies that has enabled experiments producing significant amounts of fusion energy. For example, more than 15 megawatts of fusion power was produced in a pulse of about half a second. Practical fusion power plants will need to produce higher powers averaged over much longer periods of time. In addition, the most efficient experiments to date have required using about 50% more energy than the resulting fusion reaction generated. That is, there was no net energy gain, which is essential if fusion energy is to be a viable source of electricity. The simplest fusion fuels, the heavy isotopes of

  11. Future prospects in dermatologic applications of lasers, nanotechnology, and other new technologies.

    Science.gov (United States)

    Boixeda, P; Feltes, F; Santiago, J L; Paoli, J

    2015-04-01

    We review novel technologies with diagnostic and therapeutic applications in dermatology. Among the diagnostic techniques that promise to become part of dermatologic practice in the future are optical coherence tomography, multiphoton laser scanning microscopy, Raman spectroscopy, thermography, and 7-T magnetic resonance imaging. Advances in therapy include novel light-based treatments, such as those applying lasers to new targets and in new wavelengths. Devices for home therapy are also appearing. We comment on the therapeutic uses of plasma, ultrasound, radiofrequency energy, total reflection amplification of spontaneous emission of radiation, light stimulation, and transepidermal drug delivery. Finally, we mention some basic developments in nanotechnology with prospects for future application in dermatology. Copyright © 2014 Elsevier España, S.L.U. and AEDV. All rights reserved.

  12. Energy Technology Division research summary 1997

    International Nuclear Information System (INIS)

    1997-01-01

    The Energy Technology Division provides materials and engineering technology support to a wide range of programs important to the US Department of Energy. As shown on the preceding page, the Division is organized into ten sections, five with concentrations in the materials area and five in engineering technology. Materials expertise includes fabrication, mechanical properties, corrosion, friction and lubrication, and irradiation effects. Our major engineering strengths are in heat and mass flow, sensors and instrumentation, nondestructive testing, transportation, and electromechanics and superconductivity applications. The Division Safety Coordinator, Environmental Compliance Officers, Quality Assurance Representative, Financial Administrator, and Communication Coordinator report directly to the Division Director. The Division Director is personally responsible for cultural diversity and is a member of the Laboratory-wide Cultural Diversity Advisory Committee. The Division's capabilities are generally applied to issues associated with energy production, transportation, utilization or conservation, or with environmental issues linked to energy. As shown in the organization chart on the next page, the Division reports administratively to the Associate Laboratory Director (ALD) for Energy and Environmental Science and Technology (EEST) through the General Manager for Environmental and Industrial Technologies. While most of our programs are under the purview of the EEST ALD, we also have had programs funded under every one of the ALDs. Some of our research in superconductivity is funded through the Physical Research Program ALD. We also continue to work on a number of nuclear-energy-related programs under the ALD for Engineering Research. Detailed descriptions of our programs on a section-by-section basis are provided in the remainder of this book. This Overview highlights some major trends. Research related to the operational safety of commercial light water nuclear

  13. Energy Technology Division research summary 1997.

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-10-21

    The Energy Technology Division provides materials and engineering technology support to a wide range of programs important to the US Department of Energy. As shown on the preceding page, the Division is organized into ten sections, five with concentrations in the materials area and five in engineering technology. Materials expertise includes fabrication, mechanical properties, corrosion, friction and lubrication, and irradiation effects. Our major engineering strengths are in heat and mass flow, sensors and instrumentation, nondestructive testing, transportation, and electromechanics and superconductivity applications. The Division Safety Coordinator, Environmental Compliance Officers, Quality Assurance Representative, Financial Administrator, and Communication Coordinator report directly to the Division Director. The Division Director is personally responsible for cultural diversity and is a member of the Laboratory-wide Cultural Diversity Advisory Committee. The Division's capabilities are generally applied to issues associated with energy production, transportation, utilization or conservation, or with environmental issues linked to energy. As shown in the organization chart on the next page, the Division reports administratively to the Associate Laboratory Director (ALD) for Energy and Environmental Science and Technology (EEST) through the General Manager for Environmental and Industrial Technologies. While most of our programs are under the purview of the EEST ALD, we also have had programs funded under every one of the ALDs. Some of our research in superconductivity is funded through the Physical Research Program ALD. We also continue to work on a number of nuclear-energy-related programs under the ALD for Engineering Research. Detailed descriptions of our programs on a section-by-section basis are provided in the remainder of this book. This Overview highlights some major trends. Research related to the operational safety of commercial light water

  14. Energy Savings Potential of Radiative Cooling Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, Nicholas [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wang, Weimin [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Alvine, Kyle J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Katipamula, Srinivas [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-11-30

    Pacific Northwest National Laboratory (PNNL), with funding from the U.S. Department of Energy’s (DOE’s) Building Technologies Program (BTP), conducted a study to estimate, through simulation, the potential cooling energy savings that could be achieved through novel approaches to capturing free radiative cooling in buildings, particularly photonic ‘selective emittance’ materials. This report documents the results of that study.

  15. Tiger Team Assessment, Energy Technology Engineering Center

    Energy Technology Data Exchange (ETDEWEB)

    1991-04-01

    The Office Special Projects within the Office of Environment, Safety, and Health (EH) has the responsibility to conduct Tiger Team Assessments for the Secretary of Energy. This report presents the assessment of the buildings, facilities, and activities under the DOE/Rockwell Contract No. DE-AM03-76SF00700 for the Energy Technology Engineering Center (ETEC) and of other DOE-owned buildings and facilities at the Santa Susana Field Laboratory (SSFL) site in southeastern Ventura County, California, not covered under Contract No. DE-AM03-76SF00700, but constructed over the years under various other contracts between DOE and Rockwell International. ETEC is an engineering development complex operated for DOE by the Rocketdyne Division of Rockwell International Corporation. ETEC is located within SSFL on land owned by Rockwell. The balance of the SSFL complex is owned and operated by Rocketdyne, with the exception of a 42-acre parcel owned by the National Aeronautics and Space Administration (NASA). The primary mission of ETEC is to provide engineering, testing, and development of components related to liquid metals technology and to conduct applied engineering development of emerging energy technologies.

  16. Environmental consequences of new energy technology

    International Nuclear Information System (INIS)

    Svensson, Torbjoern

    1991-09-01

    This report summarises and assesses the environmental consequences associated with new energy technologies, with particular emphasis on their use for space heating supplies in the built environment. In the case of solar heating, it is primarily the processes associated with the production of the necessary materials and ground use requirements that can adversely affect the environment. There is also a certain risk associated with the leakage of heat transfer fluid. For heat stores, problem areas are primarily those associated with heating of the ground, discharge of foreign substances in connection with water treatment and conflicts of other users of ground water. The main adverse effects of heat pumps are their emissions of CFCs, which damage the ozone layer, utilisation of certain types of heat sources and the need to provide primary energy for mechanical drive of the pumps. All three of these new energy technologies are regarded as having less environmental consequences than conventional alternatives, although this assumes a change to less hazardous working media in heat pumps. A mutual comparison of the three technologies indicates that solar heating and heat stores have somewhat better environmental characteristics than heat pumps

  17. Tiger Team Assessment, Energy Technology Engineering Center

    International Nuclear Information System (INIS)

    1991-04-01

    The Office Special Projects within the Office of Environment, Safety, and Health (EH) has the responsibility to conduct Tiger Team Assessments for the Secretary of Energy. This report presents the assessment of the buildings, facilities, and activities under the DOE/Rockwell Contract No. DE-AM03-76SF00700 for the Energy Technology Engineering Center (ETEC) and of other DOE-owned buildings and facilities at the Santa Susana Field Laboratory (SSFL) site in southeastern Ventura County, California, not covered under Contract No. DE-AM03-76SF00700, but constructed over the years under various other contracts between DOE and Rockwell International. ETEC is an engineering development complex operated for DOE by the Rocketdyne Division of Rockwell International Corporation. ETEC is located within SSFL on land owned by Rockwell. The balance of the SSFL complex is owned and operated by Rocketdyne, with the exception of a 42-acre parcel owned by the National Aeronautics and Space Administration (NASA). The primary mission of ETEC is to provide engineering, testing, and development of components related to liquid metals technology and to conduct applied engineering development of emerging energy technologies

  18. Prospects of biomethanation technology in the Indian context. A pragmatic approach

    Energy Technology Data Exchange (ETDEWEB)

    Ambulkar, A.R.; Shekdar, A.V. [Solid Waste Management Division, National Environmental Engineering Research Institute, Nehru Marg, Nagpur 440 020 (India)

    2004-01-01

    Energy has a major economical and political role as an important resource traded worldwide. Energy consumption in the developed countries has been more or less stabilized whereas in developing countries like India it is increasing at a high rate. The Government is looking forward to Biomethanation Technology (BT) as a secondary source of energy by utilizing industrial, agricultural and municipal wastes. A large amount of money is being invested in this direction with various projects under implementation and many to follow them. Hence the long-term sustainability of the technology needs to be judged. In this paper the prevailing situation is analyzed in keeping with the prospects and problems associated with BT in India. The paper discusses the technical feasibility, operational stability and commercial viability of BT in India. Various potential merits of BT like reduction in land requirement for disposal, preservation of environmental quality, etc., are also reviewed. A comparative study of researches related to the performance of various anaerobic digesters in different developed countries has been carried out wherein various fractions of municipal solid waste (MSW) have been utilized. To understand the technical feasibility in the Indian context, a comparison is made between the characteristics of Indian waste and the wastes under study. Further problems of the operational stability and commercial viability of BT in India have also been discussed. Against this background, developmental plans covering issues in the formulation of national policy, improvements in collection and transportation systems, marketing strategy, funds allocation, etc. have been outlined to establish BT in India. With the growing energy crisis supplemented by environmental concerns, BT can serve as a potential waste-to-energy generation alternative.

  19. Challenges and prospects of using information technologies in higher education

    Directory of Open Access Journals (Sweden)

    Frolov Alexander

    2016-01-01

    Full Text Available The considerable attention is paid to information technologies in system of the higher education now. Using the latest technology, software and hardware in the learning process allows achieving high outcomes quality of study. The article deals with modern teaching technologies, including distance learning technology, case-technology, which is already used in practice in higher education. There remain unresolved issues of effective use of new learning technologies, the quality of the used software and hardware. The perspective directions of development of informatization of education are defined.

  20. Technology selection for hydrogen production using nuclear energy

    International Nuclear Information System (INIS)

    Siti Alimah; Erlan Dewita

    2008-01-01

    The NPP can either be used to produce electricity, or as heat source for non-electric applications (cogeneration). High Temperature Reactor (HTR) with high outlet coolant temperature around 900~1000 o C, is a reactor type potential for cogeneration purposes such as hydrogen production and other chemical industry processes that need high heat. Considering the national energy policy that a balanced arrangement of renewable and unrenewable natural resources has to be made to keep environmental conservation for the sake of society prosperity in the future, hydrogen gas production using nuclear heat is an appropriate choice. Hydrogen gas is a new energy which is environmentally friendly that it is a prospecting alternative energy source in the future. Within the study, a comparison of three processes of hydrogen gas production covering electrolysis, steam reforming and sulfur-iodine cycle, have been conducted. The parameters that considered are the production cost, capital cost and energy cost, technological status, the independence of fossil fuel, the environmental friendly aspect, as well as the efficiency and the independence of corrosion-resistance material. The study result showed that hydrogen gas production by steam reforming is a better process compared to electrolysis and sulfur-iodine process. Therefore, steam reforming process can be a good choice for hydrogen gas production using nuclear energy in Indonesia. (author)

  1. International prospects for clean coal technologies (Focus on Asia)

    Energy Technology Data Exchange (ETDEWEB)

    Gallaspy, D.T. [Southern Energy, Inc., Atlanta, GA (United States)

    1997-12-31

    The purpose of this paper is to propose Asia as a focus market for commercialization of CCT`s; describe the principles for successful penetration of CCT`s in the international market; and summarize prospects for CCT`s in Asia and other international markets. The paper outlines the following: Southern Company`s clean coal commitment; acquisition of Consolidated Electric Power Asia (CEPA); the prospects for CCT`s internationally; requirements for CCT`s widespread commercialization; CEPA`s application of CCT`s; and gas turbine power plants as a perfect example of a commercialization driver.

  2. Prospective analysis agriculture energy 2030. Agriculture and the challenges of energy - Synthesis

    International Nuclear Information System (INIS)

    Vert, Julien; Portet, Fabienne; Even, Marie-Aude; Herault, Bruno; Laisney, Celine; Mahe, Thuriane

    2010-01-01

    The present overview document contains the main results of the Agriculture Energy 2030 prospective study, based on the work of the group led by the CEP [Centre d'etudes et de prospective/Centre for studies and strategic foresight] at the Ministry of Agriculture, Food, Fisheries, Rural Affairs and Spatial Planning. Energy in agriculture is all too often seen as a purely cyclical problem whereas it is a major issue for the future due to its economic consequences for agricultural holdings, its links with environmental and climatic issues, and its influence on food supply chains and spatial planning. Based on the scenario method, this analysis initially involved describing the whole range of links between agriculture and energy in France and organising them into a system of variables before going on to draw up an inventory of the knowledge available. Starting out from this diagnostic approach, the group constructed four scenarios over the period to 2030: 'Regionalization and sobriety to confront the crisis', 'Twin track agriculture and energy realism', 'Health Agriculture with no major energy constraints' and 'Ecological agriculture and energy savings'. These scenarios do not form an exhaustive panorama of all possible developments of the agriculture-energy system - they are rather formalised images of what the future might hold. However, quantification and comparison of the scenarios has led to the identification of major room for progress in energy efficiency in French farming. By helping gain greater awareness of future difficulties and issues or, conversely, opportunities to be grasped, these scenarios provided input for the strategic analysis phase, the concluding stage of this exercise, and the identification of general objectives and levers for public action. (authors)

  3. Prospective of the solar thermal technologies through concentration for the generation of electrical energy (Annexe 4 in 'A vision of year 2030 on the use of the renewable energies in Mexico'); Prospectiva de las tecnologias termosolares a concentracion para la generacion de potencia electrica (Anexo 4 en 'Una vision al 2030 de la utilizacion de las energias renovables en Mexico')

    Energy Technology Data Exchange (ETDEWEB)

    Ramos Berumen, Carlos [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)

    2005-08-15

    In this document are presented the technical-economical the present state of the technologies with electricity generation purposes at worldwide level and the technological prospective for the next years. At present it is estimated that in most of the power scenarios at worldwide level the situation will continue with a strong dependency in fossil fuels. The future dynamics of the energy procurement will depend on diverse factors such as energy efficiency, the international norms and regulations derived of the environmental impact and prices of the primary energy sources. The countries of the first world are developing new technologies of compatible character with the environment, with self-consumption intentions and with the vision of establishing new markets of export towards developing countries. In this context, several countries have established R y D programs for the generation of electricity through solar systems using the thermodynamic conversion. [Spanish] En este documento se presenta el estado actual tecnico-economico de las tecnologias con propositos de generacion de electricidad a nivel mundial y la prospectiva tecnologica para los proximos anos. En la actualidad se estima que en la mayoria de los escenarios energeticos a nivel mundial la situacion continuara con una fuerte dependencia de los combustibles fosiles. La dinamica futura del suministro de energia dependera de diversos factores como la eficiencia energetica, las normas y regulaciones derivadas del impacto ambiental y los precios internacionales de los energeticos. Los paises del primer mundo estan desarrollando nuevas tecnologias de caracter compatible con el medio ambiente, con propositos de autoconsumo y con la vision de establecer nuevos mercados de exportacion hacia paises en desarrollo. En este contexto, varios paises han establecido programas de Investigacion y Desarrollo para la generacion de electricidad a traves de sistemas solares utilizando la conversion termodinamica.

  4. Prospective thorium fuels for future nuclear energy generation

    Energy Technology Data Exchange (ETDEWEB)

    Lainetti, Paulo E.O., E-mail: lainetti@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2017-07-01

    In the beginning of the Nuclear Era, many countries were interested on thorium, particularly during the 1950 1970 periods. Nevertheless, since its discovery almost two centuries ago, the use of thorium has been restricted to gas mantles employed in gas lighting. The future world energy needs will increase and, even if we assumed a conservative contribution of nuclear generation, it will be occur a significant increasing in the uranium prices, taking into account that uranium, as used in the present thermal reactors, is a finite resource. Nowadays approximately the worldwide yearly requirement of uranium for about 435 nuclear reactors in operation is 65,000 metric t. Therefore, alternative solutions for future must be developed. Thorium is nearly three times more abundant than uranium in The Earth's crust. Despite thorium is not a fissile material, {sup 232}Th can be converted to {sup 233}U (fissile) more efficiently than {sup 238}U to {sup 239}Pu. Besides this, thorium is an environment alternative energy source and also inherently resistant to proliferation.. Many countries had initiated research on thorium in the past, Nevertheless, the interest evanesced due new uranium resources discoveries and availability of enriched uranium at low prices from obsolete weapons. Some papers evaluate the thorium resources in Brazil over 1.200.000 metric t. Then, the thorium alternative must be seriously considered in Brazil for strategic reasons. A brief history of thorium and its utilization are presented, besides a very short discussion about prospective thorium nuclear fuels for the next generation of nuclear reactors. (author)

  5. Changing prospects for nuclear energy in the United States

    International Nuclear Information System (INIS)

    McFarlane, H.F.

    2005-01-01

    'President Bush is the most pro-nuclear President since Eisenhower.' These are the words of Clay Sell, a fellow Texan and the recently appointed Deputy Secretary of Energy at last week's American Nuclear Society meeting in San Diego. Greenpeace founder Patrick Moore recently testified before Congress, saying 'There is now a great deal of scientific evidence showing nuclear power to be an environmentally sound and safe choice.' There is bi-partisan congressional support of financial incentives for U.S. industry to invest in technologies that will produce energy without producing large amounts of greenhouse gases - and at long last nuclear's role has been recognized. The improving situation in the U.S. is dynamic; all that I can do here today is to provide a snapshot of the evolving outlook for nuclear energy. If you will bear with me, I will try to highlight what is going on in the U.S. power industry, R and D, education, nuclear policy, space exploration and of course the American Nuclear Society. As most of you know, the outlook for the U.S. nuclear program in the late 1990's was bleak. Most energy analysts were predicting that plants would shut down at the end of their license period. The Advanced Light Water Reactor Program was completed in the mid-1990's. Most prognosticators figured that these evolutionary reactor designs would not be built in the U.S. At best, would be built offshore, in Asia and the Pacific Rim. Nuclear engineering education programs faced declining enrollments. Both the programs and their research reactors were being closed. At the same time, the Government's investment in nuclear energy research and development declined officially to zero, kept alive only under the guise of necessary nuclear waste management R and D. But what a difference just a few years can make. (author)

  6. Student Outreach With Renewable Energy Technology

    Science.gov (United States)

    Clark, Eric B. (Technical Monitor); Buffinger, D.; Fuller, C.; Kalu, A.

    2003-01-01

    The Student Outreach with Renewable Energy Technology (SORET) program is a joint grant that involves a collaboration between three HBCU's (Central State University, Savannah State University, and Wilberforce University) and NASA John H. Glenn Research Center at Lewis Field. The overall goal of the grant is to increase the interest of minority students in the technical disciplines, to encourage participating minority students to continue their undergraduate study in these disciplines, and to promote graduate school to these students. As a part of SORET, Central State University has developed an undergraduate research associates program over the past two years. As part of this program, students are required to take special laboratory courses offered at Wilberforce University that involve the application of renewable energy systems. The course requires the students to design, construct, and install a renewable energy project. In addition to the applied renewable energy course, Central State University provided four undergraduate research associates the opportunity to participate in summer internships at Texas Southern University (Renewable Energy Environmental Protection Program) and the Cleveland African-American Museum (Renewable Energy Summer Camp for High School Students) an activity co sponsored by NASA and the Cleveland African-American Museum. Savannah State University held a high school summer program with a theme of the Direct Impact of Science on Our Every Day Lives. The purpose of the institute was to whet the interest of students in science, mathematics, engineering, and technology (SMET) by demonstrating the effectiveness of science to address real world problems. The 2001 institute involved the design and installation of a PV water pumping system at the Center for Advanced Water Technology and Energy Systems at Savannah State. Both high school students and undergraduates contributed to this project. Wilberforce University has used NASA support to provide

  7. Educational and technological approaches to renewable energy

    Energy Technology Data Exchange (ETDEWEB)

    Leal Filho, Walter; Gottwald, Julia (eds.)

    2012-07-01

    This book documents and disseminates a number of educational and technological approaches to renewable energy, with a special emphasis on European and Latin American experiences, but also presenting experiences from other parts of the world. It was prepared as part of the project JELARE (Joint European-Latin American Universities Renewable Energy Project), undertaken as part of the ALFA III Programme of the European Commission involving countries in Latin America (e.g. Bolivia, Brazil, Chile, Guatemala) as well as in Europe (Germany and Latvia). Thanks to its approach and structure, this book will prove useful to all those dedicated to the development of the renewable energy sector, especially those concerned with the problems posed by lack of expertise and lack of training in this field.

  8. Straw for energy production. Technology - Environment - Economy

    Energy Technology Data Exchange (ETDEWEB)

    Nikolaisen, L.; Nielsen, C.; Larsen, M.G.; Nielsen, V.; Zielke, U.; Kristensen, J.K.; Holm-Christensen, B.

    1998-12-31

    `Straw for Energy Production`, second edition, provides a readily accessible background information of special relevance to the use of straw in the Danish energy supply. Technical, environmental, and economic aspects are described in respect of boiler plants for farms, district heating plants, and combined heat and power plants (CHP). The individual sections deal with both well-known, tested technology and the most recent advances in the field of CHP production. This publication is designed with the purpose of reaching the largest possible numbers of people and so adapted that it provides a valuable aid and gives the non-professional, general reader a thorough knowledge of the subject. `Straw for Energy Production` is also available in German and Danish. (au)

  9. The petrochemical industry and its energy use. Prospects for the Dutch energy intensive industry

    International Nuclear Information System (INIS)

    Gielen, D.J.; Vos, D.; Van Dril, A.W.N.

    1996-04-01

    The current state and the future of the Dutch petrochemical industry are discussed. First, its current energy use, technology and its markets are analysed. Competitiveness of Dutch and Western European producers compared to foreign producers is shown. Main technological developments and other key issues (e.g. environmental issues) are discussed. Based on this analysis, a future scenario is derived for petrochemical industrial energy use for the period 2000-2015. This case study can be divided into an analysis of the current situation (Chapter 2-6) and alternatives for production and energy consumption of the Dutch petrochemical industry within its Western European context (Chapter 7-11). Chapter 2 analyses the current production structure and the historical developments. Chapter 3 discusses current technologies. Chapter 4 analyses markets for Dutch petrochemical products. Chapter 5 analyses the industry economics in the Netherlands in terms of costs and revenues. Chapter 6 provides information on institutional factors that influence industrial activities. Chapter 7 discusses global competition with special emphasis on competition for the European market. Chapter 8 analyses potential technology shifts. In Chapter 9, data from the preceding chapters on markets, competition, structure and technology are combined to compare competing production options. This is followed by a sensitivity analysis in Chapter 10. Based on a production volume forecast and the development of energy intensity of production, energy consumption of the Dutch petrochemical industry is forecast in Chapter 11. Finally, Chapter 12 provides conclusions and policy recommendations. 24 figs., 48 tabs., 103 refs., 2 appendices

  10. Prospects for carbon capture and sequestration technologies assuming their technological learning

    International Nuclear Information System (INIS)

    Riahi, Keywan; Rubin, Edward S.; Schrattenholzer, Leo

    2004-01-01

    This paper analyzes potentials of carbon capture and sequestration technologies (CCS) in a set of long-term energy-economic-environmental scenarios based on alternative assumptions for technological progress of CCS. In order to get a reasonable guide to future technological progress in managing CO 2 emissions, we review past experience in controlling sulfur dioxide emissions (SO 2 ) from power plants. By doing so, we quantify a 'learning curve' for CCS, which describes the relationship between the improvement of costs due to accumulation of experience in CCS construction. We incorporate the learning curve into the energy modeling framework MESSAGE-MACRO and develop greenhouse gas emissions scenarios of economic, demographic, and energy demand development, where alternative policy cases lead to the stabilization of atmospheric CO 2 concentrations at 550 parts per million by volume (ppmv) by the end of the 21st century. Due to the assumed technological learning, costs of the emissions reduction for CCS drop rapidly and in parallel with the massive introduction of CCS on the global scale. Compared to scenarios based on static cost assumptions for CCS, the contribution of carbon sequestration is about 50 percent higher in the case of learning resulting in cumulative sequestration of CO 2 ranging from 150 to 250 billion (10 9 ) tons carbon during the 21st century. The results illustrate that carbon capture and sequestration is one of the obvious priority candidates for long-term technology policies and enhanced R and D efforts to hedge against the risk associated with high environmental impacts of climate change

  11. Technological, economic and financial prospects of carbon dioxide capture in the cement industry

    International Nuclear Information System (INIS)

    Li, Jia; Tharakan, Pradeep; Macdonald, Douglas; Liang, Xi

    2013-01-01

    Cement is the second largest anthropogenic emission source, contributing approximately 7% of global CO 2 emissions. Carbon dioxide capture and storage (CCS) technology is considered by the International Energy Agency (IEA) as an essential technology capable of reducing CO 2 emissions in the cement sector by 56% by 2050. The study compares CO 2 capture technologies for the cement manufacturing process and analyses the economic and financial issues in deploying CO 2 capture in the cement industry. Post-combustion capture with chemical absorption is regarded as a proven technology to capture CO 2 from the calcination process. Oxyfuel is less mature but Oxyfuel partial capture—which only recycles O 2 /CO 2 gas in the precalciner—is estimated to be more economic than post-combustion capture. Carbonate looping technologies are not yet commercial, but they have theoretical advantages in terms of energy consumption. In contrast with coal-fired power plants, CO 2 capture in the cement industry benefits from a higher concentration of CO 2 in the flue gas, but the benefit is offset by higher SO x and NO x levels and the smaller scale of emissions from each plant. Concerning the prospects for financing cement plant CO 2 capture, large cement manufacturers on average have a higher ROE (return on equity) and lower debt ratio, thus a higher discount rate should be considered for the cost analysis than in power plants. IEA estimates that the incremental cost for deploying CCS to decarbonise the global cement sector is in the range US$350–840 billion. The cost estimates for deploying state-of-the art post-combustion CO 2 capture technologies in cement plants are above $60 to avoid each tonne of CO 2 emissions. However, the expectation is that the current market can only provide a minority of financial support for CO 2 capture in cement plants. Public financial support and/or CO 2 utilisation will be essential to trigger large-scale CCS demonstration projects in the cement

  12. Evaluation of Energy Use in Public Housing in Lagos, Nigeria: Prospects for Renewable Energy Sources

    Directory of Open Access Journals (Sweden)

    Isidore Chukwunweike Ezema

    2016-02-01

    Full Text Available Even though domestic energy can be from either renewable or non-renewable sources, the former is preferred because of its role in reducing both the operational energy intensity and carbon footprint. Given the positive role renewable energy plays in the energy mix, this paper examined the pattern of operational energy use with particular reference to the renewable and non-renewable energy content in medium and high density public residential buildings in Lagos, Nigeria. A survey research method was adopted for primary data collection while data analysis was by descriptive statistics. The study found that renewable energy use in the residential units is very low. In contrast, there was high dependence of the occupants on non-renewable direct fuel combustion through the use of fossil fuel-driven privately-owned electricity generators for electricity supply as a result of the inadequate supply from the national grid. In addition to the relatively high operational energy intensity observed in the studied buildings, the findings have implications for the safety, health and wellbeing of the building occupants as well as for carbon emissions from the buildings and for overall environmental sustainability. Recommendations to increase renewable energy use in new buildings and as retrofits in existing buildings were made. Article History: Received Oct 18, 2015; Received in revised form January 14, 2016; Accepted January 30, 2016; Available online How to Cite This Article: Ezema, I.C., Olotuah, A.O., and Fagbenle, O.I, S. (2016 Evaluation of Energy Use in Public Housing in Lagos, Nigeria: Prospects for Renewable Energy Sources. Int. Journal of Renewable Energy Development, 5(1,15-24. http://dx.doi.org/10.14710/ijred.5.1.15-24 

  13. A real options evaluation model for the diffusion prospects of new renewable power generation technologies

    International Nuclear Information System (INIS)

    Kumbaroglu, Guerkan; Madlener, Reinhard; Demirel, Mustafa

    2008-01-01

    This study presents a policy planning model that integrates learning curve information on renewable power generation technologies into a dynamic programming formulation featuring real options analysis. The model recursively evaluates a set of investment alternatives on a year-by-year basis, thereby taking into account that the flexibility to delay an irreversible investment expenditure can profoundly affect the diffusion prospects of renewable power generation technologies. Price uncertainty is introduced through stochastic processes for the average wholesale price of electricity and for input fuel prices. Demand for electricity is assumed to be increasingly price-sensitive, as the electricity market deregulation proceeds, reflecting new options of consumers to react to electricity price changes (such as time-of-use pricing, unbundled electricity services, and choice of supplier). The empirical analysis is based on data for the Turkish electricity supply industry. Apart from general implications for policy-making, it provides some interesting insights about the impact of uncertainty and technical change on the diffusion of various emerging renewable energy technologies

  14. Essays in energy, environment and technological change

    Science.gov (United States)

    Zhou, Yichen Christy

    This dissertation studies technological change in the context of energy and environmental economics. Technology plays a key role in reducing greenhouse gas emissions from the transportation sector. Chapter 1 estimates a structural model of the car industry that allows for endogenous product characteristics to investigate how gasoline taxes, R&D subsidies and competition affect fuel efficiency and vehicle prices in the medium-run, both through car-makers' decisions to adopt technologies and through their investments in knowledge capital. I use technology adoption and automotive patents data for 1986-2006 to estimate this model. I show that 92% of fuel efficiency improvements between 1986 and 2006 were driven by technology adoption, while the role of knowledge capital is largely to reduce the marginal production costs of fuel-efficient cars. A counterfactual predicts that an additional 1/gallon gasoline tax in 2006 would have increased the technology adoption rate, and raised average fuel efficiency by 0.47 miles/gallon, twice the annual fuel efficiency improvement in 2003-2006. An R&D subsidy that would reduce the marginal cost of knowledge capital by 25% in 2006 would have raised investment in knowledge capital. This subsidy would have raised fuel efficiency only by 0.06 miles/gallon in 2006, but would have increased variable profits by 2.3 billion over all firms that year. Passenger vehicle fuel economy standards in the United States will require substantial improvements in new vehicle fuel economy over the next decade. Economic theory suggests that vehicle manufacturers adopt greater fuel-saving technologies for vehicles with larger market size. Chapter 2 documents a strong connection between market size, measured by sales, and technology adoption. Using variation consumer demographics and purchasing pattern to account for the endogeneity of market size, we find that a 10 percent increase in market size raises vehicle fuel efficiency by 0.3 percent, as compared

  15. New energy technologies. Report; Nouvelles technologies de l'energie. Rapport

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This report on the new energy technologies has been written by a working group on request of the French ministry of economy, finances and industry, of the ministry of ecology and sustainable development, of the ministry of research and new technologies and of the ministry of industry. The mission of the working group is to identify goals and priority ways for the French and European research about the new technologies of energy and to propose some recommendations about the evolution of research incentive and sustain systems in order to reach these goals. The working group has taken into consideration the overall stakes linked with energy and not only the climatic change. About this last point, only the carbon dioxide emissions have been considered because they represent 90% of the greenhouse gases emissions linked with the energy sector. A diagnosis is made first about the present day context inside which the new technologies will have to fit with. Using this diagnosis, the research topics and projects to be considered as priorities for the short-, medium- and long-term have been identified: energy efficiency in transports, in dwellings/tertiary buildings and in the industry, development for the first half of the 21. century of an energy mix combining nuclear, fossil-fuels and renewable energy sources. (J.S.)

  16. New energy technologies. Report; Nouvelles technologies de l'energie. Rapport

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This report on the new energy technologies has been written by a working group on request of the French ministry of economy, finances and industry, of the ministry of ecology and sustainable development, of the ministry of research and new technologies and of the ministry of industry. The mission of the working group is to identify goals and priority ways for the French and European research about the new technologies of energy and to propose some recommendations about the evolution of research incentive and sustain systems in order to reach these goals. The working group has taken into consideration the overall stakes linked with energy and not only the climatic change. About this last point, only the carbon dioxide emissions have been considered because they represent 90% of the greenhouse gases emissions linked with the energy sector. A diagnosis is made first about the present day context inside which the new technologies will have to fit with. Using this diagnosis, the research topics and projects to be considered as priorities for the short-, medium- and long-term have been identified: energy efficiency in transports, in dwellings/tertiary buildings and in the industry, development for the first half of the 21. century of an energy mix combining nuclear, fossil-fuels and renewable energy sources. (J.S.)

  17. Prospective conceptual qualification of hybrid centrifugation/distillator for 6LI nuclear fusion technology scaled supply demands

    International Nuclear Information System (INIS)

    Sedano, L.; Herranz, J. L.; Casado, J. L.; Castro, P.; Xiberta, J.

    2013-01-01

    The change in the demand for exploitation of lithium as a resource appears during the last decade, related to the development of the ion-Li batteries market and with the requirements of Nuclear Fusion fuels (deuterium and lithium) as coming energy option. A prospective analysis of synergistic demands of both markets, in its technical and in its economic aspects appears of prospective interest. The civil market 6 Li/ 7 Li enrichment demand is analyzed. Specific technological developments permitting on-line production according to demand is discussed. A [centrifugation /thermal diffusion / combined distillation] technique is selected and qualified as technologically viable option for scaled production of litiated-forms. A conceptual design of a production plant is finally proposed according to the new technical capability.

  18. The development and diffusion of renewable energy technologies in Norway and Denmark

    DEFF Research Database (Denmark)

    Klitkou, Antje; Jørgensen, Birte Holst

    2011-01-01

    By applying the technological innovation systems concept this paper compares two case studies on the development and diffusion of renewable energy technologies: the case of solar photovoltaics in Norway and offshore wind in Denmark. Both cases show a high activity level, in terms of RD......&D and industrial deployment. Both cases illustrate the contribution to energy security of supply as well as prospects for business opportunities on global markets. The focus of the paper is on what stimulates the development and diffusion of new renewable technologies, asking: Which framework conditions facilitate...

  19. Energy Technology Division research summary 2001

    International Nuclear Information System (INIS)

    2001-01-01

    The Energy Technology Division provides materials and engineering technology support to a wide range of programs important to the U.S. Department of Energy. As shown on the preceding page, the Division is organized into eight sections, four with concentrations in the materials area and four in engineering technology. Materials expertise includes fabrication, mechanical properties, corrosion, friction and lubrication, and irradiation effects. Our major engineering strengths are in heat and mass flow, sensors and instrumentation, nondestructive testing, transportation, and electromechanics and superconductivity applications. The Division Safety Coordinator, Environmental Compliance Officer, Quality Assurance Representative, Financial Administrator, and Communication Coordinator report directly to the Division Director. The Division Director is personally responsible for cultural diversity and is a member of the Laboratory-wide Cultural Diversity Advisory Committee. This Overview highlights some major ET research areas. Research related to the operational safety of commercial light water nuclear reactors (LWRs) for the U.S. Nuclear Regulatory Commission (NRC) remains a significant area of interest for the Division. We currently have programs on environmentally assisted cracking, steam generator integrity, and the integrity of high-burnup fuel during loss-of-coolant accidents. The bulk of the NRC research work is carried out by three ET sections: Corrosion and Mechanics of Materials; Irradiation Performance; and Sensors, Instrumentation, and Nondestructive Evaluation

  20. Development of fuel and energy storage technologies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    Development of fuel cell power plants is intended of high-efficiency power generation using such fuels with less air pollution as natural gas, methanol and coal gas. The closest to commercialization is phosphoric acid fuel cells, and the high in efficiency and rich in fuel diversity is molten carbonate fuel cells. The development is intended to cover a wide scope from solid electrolyte fuel cells to solid polymer electrolyte fuel cells. For new battery power storage systems, development is focused on discrete battery energy storage technologies of fixed type and mobile type (such as electric vehicles). The ceramic gas turbine technology development is purposed for improving thermal efficiency and reducing pollutants. Small-scale gas turbines for cogeneration will also be developed. Development of superconduction power application technologies is intended to serve for efficient and stable power supply by dealing with capacity increase and increase in power distribution distance due to increase in power demand. In the operations to improve the spread and general promotion systems for electric vehicles, load leveling is expected by utilizing and storing nighttime electric power. Descriptions are given also on economical city systems which utilize wide-area energy. 30 figs., 7 tabs.

  1. Technology innovation in an integrated energy economy

    International Nuclear Information System (INIS)

    Isaacs, E.

    2006-01-01

    A discussion on technology innovation in an integrated energy economy was presented. The mission, mandate and strategy of the Alberta Research Institute was first presented, followed by a discussion on oil supply needs based on historic demand. The presentation then addressed what might happen as oil demand and supply peak. A comparison of conventional versus unconventional resources was included along with a chart illustrating Alberta's contribution to total global reserves. Other topics addressed in the presentation in chart format included: natural gas requirements and natural gas use in oil sands; marketable gas production and the number of producing gas wells; Alberta's natural gas situation; and net United States imports of natural gas. Options for reducing natural gas consumption in oil sand production processes were also identified. These included steam assisted gravity drainage; solvent processes, electrical heating, combustion, nuclear, geothermal, and gasification processes. Advantages and disadvantages of replacing natural gas through gasification were presented. Last, the presentation provided an unconventional gas technology roadmap and discussed an innovative energy technology program. It was concluded that there are no clear cut options for replacing the huge amount of natural gas needed in the expanding oil sands sector. tabs., figs

  2. Technology innovation in an integrated energy economy

    Energy Technology Data Exchange (ETDEWEB)

    Isaacs, E. [Alberta Energy Research Inst., Edmonton, AB (Canada)

    2006-07-01

    A discussion on technology innovation in an integrated energy economy was presented. The mission, mandate and strategy of the Alberta Research Institute was first presented, followed by a discussion on oil supply needs based on historic demand. The presentation then addressed what might happen as oil demand and supply peak. A comparison of conventional versus unconventional resources was included along with a chart illustrating Alberta's contribution to total global reserves. Other topics addressed in the presentation in chart format included: natural gas requirements and natural gas use in oil sands; marketable gas production and the number of producing gas wells; Alberta's natural gas situation; and net United States imports of natural gas. Options for reducing natural gas consumption in oil sand production processes were also identified. These included steam assisted gravity drainage; solvent processes, electrical heating, combustion, nuclear, geothermal, and gasification processes. Advantages and disadvantages of replacing natural gas through gasification were presented. Last, the presentation provided an unconventional gas technology roadmap and discussed an innovative energy technology program. It was concluded that there are no clear cut options for replacing the huge amount of natural gas needed in the expanding oil sands sector. tabs., figs.

  3. Nuclear technologies for local energy systems

    International Nuclear Information System (INIS)

    McDonnell, F.N.; Lynch, G.F.

    1990-03-01

    If nuclear energy is to realize its full potential as a safe and cost-effective alternative to fossil fuels, applications beyond those that are currently being serviced by large, central nuclear power stations must be identified and appropriate reactors developed. The Canadian program on reactor systems for local energy supply is at the forefront of these developments. This program emphasizes design simplicity, low power density and fuel rating, reliance on natural processes, passive systems, and reduced reliance on operator action. The first product, the SLOWPOKE Energy System, is a 10 MW heat source specifically designed to provide hot water to satisfy the needs of local heating systems for building complexes, institutions and municipal district heating systems. A demonstration heating reactor has been constructed at the Whiteshell Nuclear Research Establishment in Manitoba and has been undergoing an extensive test program since first operation in 1987 July. Based on the knowledge learned from the design, construction, licensing and operational testing of this facility, the design of the 10 MW commercial-size unit is well advanced, and Atomic Energy of Canada Limited is prepared to commit the construction of the first commercial unit. Although the technical demonstration of the concept is important, it is recognized that another crucial element is the public and regulatory acceptance of small nuclear systems in urban areas. The decision by a community to commit the construction of a SLOWPOKE Energy System brings to a sharp focus the current public apprehension about nuclear technologies

  4. Agreement Technologies for Energy Optimization at Home.

    Science.gov (United States)

    González-Briones, Alfonso; Chamoso, Pablo; De La Prieta, Fernando; Demazeau, Yves; Corchado, Juan M

    2018-05-19

    Nowadays, it is becoming increasingly common to deploy sensors in public buildings or homes with the aim of obtaining data from the environment and taking decisions that help to save energy. Many of the current state-of-the-art systems make decisions considering solely the environmental factors that cause the consumption of energy. These systems are successful at optimizing energy consumption; however, they do not adapt to the preferences of users and their comfort. Any system that is to be used by end-users should consider factors that affect their wellbeing. Thus, this article proposes an energy-saving system, which apart from considering the environmental conditions also adapts to the preferences of inhabitants. The architecture is based on a Multi-Agent System (MAS), its agents use Agreement Technologies (AT) to perform a negotiation process between the comfort preferences of the users and the degree of optimization that the system can achieve according to these preferences. A case study was conducted in an office building, showing that the proposed system achieved average energy savings of 17.15%.

  5. Energy prospects of France at the 2020-2050 vista. Reports of the Energy Commission working groups presided over by Jean Syrota - Volume 2

    International Nuclear Information System (INIS)

    2008-01-01

    The two volumes of the Energy prospects of France at the 2020-2050 vista present the works carried out by the Energy commission, implemented in May 2006 by the Centre of Strategic Analysis and gathering the different actors in concern: representatives, social partners, national and European administrations, operators and industrialists, consumer associations, research organizations, etc.. The first volume is a synthesis while this second volume reprints the integral content of the five working group reports. This collective work fits inside a series of studies that the public authorities have periodically launched on the energy question. They have led to the elaboration of energy policies, still dominated by the hydrocarbon prices: ambitious and rigorous during high price eras, non-obstructive and relaxed during low price eras. Todays, the global warming dominates the energy policy. In this context, a large-scale and permanent new policy has become mandatory to reduce as quickly as possible the CO 2 emissions linked to the satisfaction of energy needs. It must definitely fit with the European framework as well. The Energy Commission recommends that France prevails upon the European Union to adopt a highly voluntaristic policy of greenhouse gases abatement at the 2050 prospects based on a fair share among the member states of the efforts to be achieved. This document includes a prospective analysis of the geopolitical situation, evaluates the technological efforts to come and lists some consistent action proposals for France and the European and national scale. (J.S.)

  6. Nuclear energy in the United States: prospects, designs and implications

    International Nuclear Information System (INIS)

    Olds, F.C.

    1981-01-01

    Only an American, an old observer of the American scene, could make an analysis in depth of so complex a subject. The author bases his arguments on statistics and documents available to the public but, his conclusions only reflect his own personal opinion on the energy future of the United States. He shows the difficulties that the development of the nuclear programme has come up against since 1977 and the predictable economic and political effects. A new policy slows down the technological transfer, brings back into question the 'peaceful atom' and makes the task all the easier for the antinuclear movement. The nuclear future and public opinion after the Three Mile Island accident is an ever burning issue [fr

  7. Clearer view of U.S. energy prospects

    International Nuclear Information System (INIS)

    Balzhiser, R.E.

    1982-01-01

    This is a brief review of technological and economic events in the last decade and provides a forecast for the next decade (1980's). The prices of all forms of energy have risen at rates significantly above that of inflation. The average price of crude oil in industrialized countries set the pace from mid-1973 to early 1981, with real price increases that averaged 24% per year. Over this same period, nuclear power has fallen from a state of euphoria to one where its survival in the U.S. is now in question. Coal, with its domestic abundance, would have been expected to benefit from these events, but its market attractiveness has been diminished by the rapidly escalating environmental requirements associated with its use. Given the price of oil, the plight of nuclear, and the problems of coal, natural gas became increasingly attractive at its low regulated prices, but its use has actually declined over the last decade. 9 refs

  8. Future Prospects: Ionization Radiation Processing Technology. Chapter 12

    International Nuclear Information System (INIS)

    Rida Tajau

    2017-01-01

    This final chapter concluded that the ionizing radiation processing technology was potentially used to develop new and advanced products. The new advanced products which been discussed was HBPUA, printing ink, PSA, hydrogel, bioplastic, SWA, CNT, RVNRL and others. With this new innovative technology, it will develop the country's economy and increase the productivity of manufacturing industry, medical, science and technology and also strenghten the social science field.

  9. Demonstration of EnergyNest thermal energy storage (TES) technology

    Science.gov (United States)

    Hoivik, Nils; Greiner, Christopher; Tirado, Eva Bellido; Barragan, Juan; Bergan, Pâl; Skeie, Geir; Blanco, Pablo; Calvet, Nicolas

    2017-06-01

    This paper presents the experimental results from the EnergyNest 2 × 500 kWhth thermal energy storage (TES) pilot system installed at Masdar Institute of Science & Technology Solar Platform. Measured data are shown and compared to simulations using a specially developed computer program to verify the stability and performance of the TES. The TES is based on a solid-state concrete storage medium (HEATCRETE®) with integrated steel tube heat exchangers cast into the concrete. The unique concrete recipe used in the TES has been developed in collaboration with Heidelberg Cement; this material has significantly higher thermal conductivity compared to regular concrete implying very effective heat transfer, at the same time being chemically stable up to 450 °C. The demonstrated and measured performance of the TES matches the predictions based on simulations, and proves the operational feasibility of the EnergyNest concrete-based TES. A further case study is analyzed where a large-scale TES system presented in this article is compared to two-tank indirect molten salt technology.

  10. Nuclear energy: current situation and prospects to 2020.

    Science.gov (United States)

    Ion, Sue

    2007-04-15

    For close to half a century nuclear fission has been providing reliable supplies of electricity to the UK, with virtually no emissions of carbon dioxide. Over that period, the UK nuclear industry has avoided the emission of over one and a half billion tonnes of CO2. Yet no nuclear plant has been built in the UK for over two decades even though many of the stations in our current fleet are now within a decade or so of the end of their lifetime. Without new plants being ordered soon, the UK's nuclear capacity will decline dramatically, from 23% today to 3% post-2020--just as considerations of supply security and climate change are becoming increasingly important. Elsewhere in the world, many countries such as China, India, Japan, South Korea, Finland and France are building new stations. Other countries such as the USA, South Africa, and some nations that currently do not have nuclear stations (such as Indonesia and Poland) are making preparations for future nuclear stations. Globally capacity factors for nuclear plants are higher than they have ever been, averaging around 85% and with the best stations achieving well over 90%. Lifetime can be 60 years. That the economics of such stations compete well with other technologies is well founded and easily verifiable--especially in the face of rising fossil fuel prices and the pricing in of costs for CO2 emissions--both of which stand to improve the economics of nuclear energy still further. Waste volumes arising from modern plants are just a fraction of those of some earlier stations, and the technologies are in place to deal with them safely and effectively. Following recent reviews and international developments, there is growing confidence that internationally available competitive designs of nuclear plant will provide part of the solution to the UK's long-term energy needs.

  11. Industrial applications of low energy accelerator technologies

    International Nuclear Information System (INIS)

    Park, Jae Won; Kim, Hyung Jin; Kim, Jun Yeon; Lee, Jae Sang; Yeo, Sun Mog; Lee, Ji Ah

    2008-05-01

    Industrial application researches utilizing a beam extracting unit and an accelerator with an energy less than 3 MeV have been conducted. Although a number of industrial application areas exist, a few research items had been selected for this project, which include the gemstone coloration and the surface modifications of metals/polymers. In the case of gemstone coloration, the green/yellow colored diamond by a proton beam irradiation and blue color emitting sapphire utilizing Co ion implantation are being evaluated as the high potential for commercialization. And, the band gap structures as a result of impurities' doping was calculated with density functional theory (DFT) and it was found to be well consistent with experimental results. The surface modification of stainless juice extracting gears have been successful and patented, resulting in a technology transfer to the company. The reduction in the detachment of the metallic elements during juice extracting as a results of ion beam surface modification is expected to be broadly applicable to the other relevant industrial materials and parts. In the case of gemstone coloration, it is estimated to be one of the highest commercially valuable items because of its extremely low processing expense. The research results have been successful and is worth while transferring the technologies to the industrial sectors. During the second phase research, 6 SCI papers have been published and 9 patents have been submitted and 3 patents have been registered. 1 technology has been transferred to the company for industrialization and 1 technology is pending for a transference

  12. Modular, Reconfigurable, High-Energy Technology Development

    Science.gov (United States)

    Carrington, Connie; Howell, Joe

    2006-01-01

    The Modular, Reconfigurable High-Energy (MRHE) Technology Demonstrator project was to have been a series of ground-based demonstrations to mature critical technologies needed for in-space assembly of a highpower high-voltage modular spacecraft in low Earth orbit, enabling the development of future modular solar-powered exploration cargo-transport vehicles and infrastructure. MRHE was a project in the High Energy Space Systems (HESS) Program, within NASA's Exploration Systems Research and Technology (ESR&T) Program. NASA participants included Marshall Space Flight Center (MSFC), the Jet Propulsion Laboratory (JPL), and Glenn Research Center (GRC). Contractor participants were the Boeing Phantom Works in Huntsville, AL, Lockheed Martin Advanced Technology Center in Palo Alto, CA, ENTECH, Inc. in Keller, TX, and the University of AL Huntsville (UAH). MRHE's technical objectives were to mature: (a) lightweight, efficient, high-voltage, radiation-resistant solar power generation (SPG) technologies; (b) innovative, lightweight, efficient thermal management systems; (c) efficient, 100kW-class, high-voltage power delivery systems from an SPG to an electric thruster system; (d) autonomous rendezvous and docking technology for in-space assembly of modular, reconfigurable spacecraft; (e) robotic assembly of modular space systems; and (f) modular, reconfigurable distributed avionics technologies. Maturation of these technologies was to be implemented through a series of increasingly-inclusive laboratory demonstrations that would have integrated and demonstrated two systems-of-systems: (a) the autonomous rendezvous and docking of modular spacecraft with deployable structures, robotic assembly, reconfiguration both during assembly and (b) the development and integration of an advanced thermal heat pipe and a high-voltage power delivery system with a representative lightweight high-voltage SPG array. In addition, an integrated simulation testbed would have been developed

  13. IEA Energy Technology Essentials: Biomass for Power Generation and CHP

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-01-15

    The IEA Energy Technology Essentials series offers concise four-page updates on the different technologies for producing, transporting and using energy. Biomass for Power Generation and CHP is the topic covered in this edition.

  14. 太阳能热泵联合干燥技术在农副产品中应用与展望%Application and Prospect on the Technology of Combined Drying for Solar Energy and Heat Pump in Agricultural and Sideline Products

    Institute of Scientific and Technical Information of China (English)

    白旭升; 李保国; 朱传辉; 苏树强

    2017-01-01

    Drying was widely used in processing industries such as industry of agriculture, food and aquatic products. A wide range of solar energy can be taken full advantage of by the combined drying for solar energy and heat pump devices, meanwhile some problems of solar energy for the instability, easily affected by weather and other factors would be solved and it had broad application prospects. In addition, the combined drying for solar energy and heat pump devices were gradually promoted and applied because of its energy saving, improving the quality of the dried product and other factors in drying industry. The purpose of this paper is to comprehensively expound the drying mode of combined drying for solar energy and heat pump, and its application situation on the drying industries such as timber, agricultural products was reviewed. Besides, the research and development trend of combined drying for solar energy and heat pump were put forward. It can be used to direct the selection of drying technology.%干燥技术被广泛应用于农业、食品和水产品等加工领域.太阳能热泵联合干燥装置既能充分利用广泛的太阳能资源,同时又能解决太阳能不稳定、易受天气影响等因素,具有广阔的应用前景;又因其节能,改善干燥产品品质等因素,而逐渐被干燥行业所推广应用.阐述了太阳能热泵联合干燥的工作模式,综述了太阳能热泵联合干燥在木材、农副产品等行业的应用现状,并提出了太阳能热泵联合干燥技术的现存问题和发展展望,可为干燥技术的选择提供参考.

  15. Renewable energy technologies for electricity generation

    International Nuclear Information System (INIS)

    Thorpe, T.W.

    1993-01-01

    The output of electricity supplied by some renewable sources cannot be easily predicted in advance because of their dependence on naturally varying phenomena (e.g. wind or sunshine). To accommodate this variability within the grid, additional amounts of conventional plant might be maintained in reserve, which would add to the overall system cost. This paper examines some aspects of renewable energy technologies for electricity generation as well as factors to be considered in the incorporation of renewables within a grid. 7 refs, 3 figs, 2 tabs

  16. Energy prospects for the Mediterranean area through 2030: a sustainable energy future requires a real energy transition

    International Nuclear Information System (INIS)

    Ben Jannet-Allal, H.

    2012-01-01

    The Mediterranean Energy Observatory (MEO), an association of the main energy companies around the Mediterranean, celebrated its 20. anniversary last October. For that occasion, the organisation published a special edition of its magazine GEM, Global Energy for the Mediterranean, which, apart from covering the history of the association, presents an in-depth analysis of the Mediterranean energy market in 2011 and its prospects going out to 2030. This collective assessment, undertaken by a team from MEG, benefited from the expertise of several members of the organization, as well as the inputs from well-known experts from the energy sector. The same survey has also been reviewed in the May 2012 issue of the specialist publication Medenergie. This article has been drawn from that study. (author)

  17. Prospects for the Use of Mobile Technologies in Science Education

    Science.gov (United States)

    Avraamidou, Lucy

    2008-01-01

    During the past few years there have been great strides in the advancement of technology with the rise of mobile devices leading to an era characterized by the instant access to and mobility of information. Mobile technologies have more recently been used in a variety of educational settings for a variety of purposes and educational goals.…

  18. Nanoporous metals for advanced energy technologies

    CERN Document Server

    Ding, Yi

    2016-01-01

    This book covers the state-of-the-art research in nanoporous metals for potential applications in advanced energy fields, including proton exchange membrane fuel cells, Li batteries (Li ion, Li-S, and Li-O2), and supercapacitors. The related structural design and performance of nanoporous metals as well as possible mechanisms and challenges are fully addressed. The formation mechanisms of nanoporous metals during dealloying, the microstructures of nanoporous metals and characterization methods, as well as miscrostructural regulation of nanoporous metals through alloy design of precursors and surface diffusion control are also covered in detail. This is an ideal book for researchers, engineers, graduate students, and government/industry officers who are in charge of R&D investments and strategy related to energy technologies.

  19. Future of nuclear energy technology in Switzerland

    International Nuclear Information System (INIS)

    Tiberini, A.; Brogli, R.; Jermann, M.; Alder, H.P.; Stratton, R.W.; Troyon, F.

    1988-01-01

    Despite the present gloom surrounding the nuclear option for electricity and heat generation, there are still people in Switzerland in industry, research, banking and even politics willing and capable to think in terms of long-range projections. The basis for these projections is the belief that a well-functioning and prosperous society always needs large and reliable sources of acceptably priced energy, which must be generated with a high respect for the necessity of a clean environment. Being aware of the current low acceptance level of the nuclear option, efforts to keep this option open are directed to achieving the following goals: to maintain and improve the country's capabilities to safely operate the four existing nuclear power plants of Beznau (twin units), Muehleberg, Goesgen and Leibstadt; to keep the capability of extending the applications of nuclear energy technology. In practice, this could be in the fields of district heating, fusion, and advanced power reactors

  20. Status and prospect of radiation processing technology in Malaysia

    Energy Technology Data Exchange (ETDEWEB)

    Khairul Zaman Hj. Mohd Dahlan; Nahrul Khair Alang Md Rashid [Malaysian Institute for Nuclear Technology Research (MINT), Bangi, Selangor Darul Ehsan (Malaysia)

    2001-03-01

    Radiation processing technology in Malaysia is gaining acceptance by the local industry. The technology has proven to enhance the industrial efficiency, productivity and improve product quality and competitiveness. For many years, variety of radiation crosslinkable materials based on synthetic polymers have been produced either in the form of thermoplastic resins, polymer blends or composites. Today, effort is being focused towards producing environmentally friendly and biodegradable materials using natural polymers. The government of Malaysia through the Malaysian Institute for Nuclear Technology Research (MINT) has developed research program to utilize indigenous materials such as natural rubber, palm oil and polysaccharide. Radiation processing technology is used to process (crosslink/grafting/curing) the materials at a competitive cost. This technology can be applied in several industrial sectors such as automobile, aerospace, construction and healthcare. (author)

  1. Status and prospect of radiation processing technology in Malaysia

    International Nuclear Information System (INIS)

    Khairul Zaman Hj Mohd Dahlan; Nahrul Khair Alang Md Rashid

    2001-01-01

    Radiation processing technology in Malaysia is gaining acceptance by the local industry. The technology has proven to enhance the industrial efficiency, productivity and improve product quality and competitiveness. For many years, variety of radiation crosslinkable materials based on synthetic polymers have been produced either in the form of thermoplastic resins, polymer blends or composites. Today, effort is being focused towards producing environmentally friendly and biodegradable materials using natural polymers. The government of Malaysia through the Malaysian Institute for Nuclear Technology Research (MINT) has developed research program to utilize indigenous materials such as natural rubber, palm oil and polysaccharide. Radiation processing technology is used to process (crosslink/grafting/curing) the materials at a competitive cost. This technology can be applied in several industrial sectors such as automobile, aerospace, construction and healthcare. (author)

  2. Transformation towards a Renewable Energy System in Brazil and Mexico—Technological and Structural Options for Latin America

    OpenAIRE

    Sonja Simon; Tobias Naegler; Hans Christian Gils

    2018-01-01

    Newly industrialized countries face major challenges to comply with the Paris Treaty targets as economic growth and prosperity lead to increasing energy demand. Our paper analyses technological and structural options in terms of energy efficiency and renewable energies for a massive reduction of energy-related CO2 emissions in Latin America. Brazil and Mexico share similar growth prospects but differ significantly with respect to renewable energy potentials. We identify, how this leads to dif...

  3. Biomass energy conversion: conventional and advanced technologies

    Energy Technology Data Exchange (ETDEWEB)

    Young, B C; Hauserman, W B [Energy and Environmental Research Center, University of North Dakota, Grand Forks, ND (United States)

    1995-12-01

    Increasing interest in biomass energy conversion in recent years has focused attention on enhancing the efficiency of technologies converting biomass fuels into heat and power, their capital and operating costs and their environmental emissions. Conventional combustion systems, such as fixed-bed or grate units and entrainment units, deliver lower efficiencies (<25%) than modem coal-fired combustors (30-35%). The gasification of biomass will improve energy conversion efficiency and yield products useful for heat and power generation and chemical synthesis. Advanced biomass gasification technologies using pressurized fluidized-bed systems, including those incorporating hot-gas clean-up for feeding gas turbines or fuel cells, are being demonstrated. However, many biomass gasification processes are derivatives of coal gasification technologies and do not exploit the unique properties of biomass. This paper examines some existing and upcoming technologies for converting biomass into electric power or heat. Small-scale 1-30 MWe units are emphasized, but brief reference is made to larger and smaller systems, including those that bum coal-biomass mixtures and gasifiers that feed pilot-fuelled diesel engines. Promising advanced systems, such as a biomass integrated gasifier/gas turbine (BIG/GT) with combined-cycle operation and a biomass gasifier coupled to a fuel cell, giving cycle efficiencies approaching 50% are also described. These advanced gasifiers, typically fluid-bed designs, may be pressurized and can use a wide variety of biomass materials to generate electricity, process steam and chemical products such as methanol. Low-cost, disposable catalysts are becoming available for hot-gas clean-up (enhanced gas composition) for turbine and fuel cell systems. The advantages, limitations and relative costs of various biomass gasifier systems are briefly discussed. The paper identifies the best known biomass power projects and includes some information on proposed and

  4. Biomass energy conversion: conventional and advanced technologies

    International Nuclear Information System (INIS)

    Young, B.C.; Hauserman, W.B.

    1995-01-01

    Increasing interest in biomass energy conversion in recent years has focused attention on enhancing the efficiency of technologies converting biomass fuels into heat and power, their capital and operating costs and their environmental emissions. Conventional combustion systems, such as fixed-bed or grate units and entrainment units, deliver lower efficiencies (<25%) than modem coal-fired combustors (30-35%). The gasification of biomass will improve energy conversion efficiency and yield products useful for heat and power generation and chemical synthesis. Advanced biomass gasification technologies using pressurized fluidized-bed systems, including those incorporating hot-gas clean-up for feeding gas turbines or fuel cells, are being demonstrated. However, many biomass gasification processes are derivatives of coal gasification technologies and do not exploit the unique properties of biomass. This paper examines some existing and upcoming technologies for converting biomass into electric power or heat. Small-scale 1-30 MWe units are emphasized, but brief reference is made to larger and smaller systems, including those that bum coal-biomass mixtures and gasifiers that feed pilot-fuelled diesel engines. Promising advanced systems, such as a biomass integrated gasifier/gas turbine (BIG/GT) with combined-cycle operation and a biomass gasifier coupled to a fuel cell, giving cycle efficiencies approaching 50% are also described. These advanced gasifiers, typically fluid-bed designs, may be pressurized and can use a wide variety of biomass materials to generate electricity, process steam and chemical products such as methanol. Low-cost, disposable catalysts are becoming available for hot-gas clean-up (enhanced gas composition) for turbine and fuel cell systems. The advantages, limitations and relative costs of various biomass gasifier systems are briefly discussed. The paper identifies the best known biomass power projects and includes some information on proposed and

  5. Energy Choices. Choices for future technology development

    International Nuclear Information System (INIS)

    Billfalk, Lennart; Haegermark, Harald

    2009-03-01

    In the next few years political decisions lie ahead in Sweden and the EU regarding the detailed formulation of the EU's so-called 20-20-20 targets and accompanying EU directives. Talks on a new international post-2012 climate agreement are imminent. The EU targets involve reducing emissions of greenhouse gases by 20 per cent, increasing the proportion of renewable energy by 20 per cent and improving energy efficiency by 20 per cent - all by the year 2020. According to the analysis of the consequences of the targets that the Technology Development Group has commissioned, the reduction in carbon dioxide in the stationary energy system in the Nordic region will be 40 per cent, not 20 per cent, if all the EU targets are to be achieved. The biggest socio-economic cost is associated with achieving the efficiency target, followed by the costs associated with achieving the renewable energy target and the CO 2 target. On the basis of this analysis and compilations about technology development, we want to highlight the following important key issues: Does Sweden want to have the option of nuclear power in the future or not? How to choose good policy instruments for new electricity production and networks? How best to reduce the carbon dioxide emissions of the transport sector and how to develop control and incentive measures that promote such a development? We are proposing the following: Carry out a more in-depth analysis of the consequences of the EU targets, so that the policy instruments produce the best combination as regards climate, economy and security of supply. To achieve the EU targets would require large investments in electricity production, particularly renewable energy, and in electricity networks. Internationally harmonized policy instruments and other incentive measures are required in order for the necessary investments to take place. The policy instruments have to provide a level playing field for all players in the energy sector. The large investments

  6. Solar energy utilizing technology for future cities

    Energy Technology Data Exchange (ETDEWEB)

    Mori, Kei

    1987-11-20

    This report proposes solar energy utilizing technologies for future cities, centering on a system that uses Fresnel lenses and optical fiber cables. This system selects out beams in the visible range and the energy can be sent to end terminals constantly as long as sunlight is available. Optical energy is concentrated 4,000-fold. The system can provide long-distance projection of parallel rays. It will be helpful for efficient utilization of light in cities and can increase the degree of freedom in carrying out urban development. The total efficiency for the introduction into optical fiber can be up to 40 percent. With no heating coil incorporated, there is no danger of fire. The standard size of a light condenser is 2 m in dome diameter and 2.5 m in height. Auxiliary artificial light is used for backup purposes when it is cloudy. Heat pumps operating on solar thermal energy are employed to maintain air conditioning for 24 hours a day in order to ensure the establishment of an environment where residential areas exist in the neighborhood of office areas. Seven automatic solar light collection and transfer systems are currently in practical use at the Arc Hills building. The combination of Fresnel lens and optical fiber is more than six times as high in efficiency as a reflecting mirror. (5 figs, 3 tabs, 8 photos, 6 refs)

  7. Commercialization of aquifer thermal energy storage technology

    Energy Technology Data Exchange (ETDEWEB)

    Hattrup, M.P.; Weijo, R.O.

    1989-09-01

    Pacific Northwest Laboratory (PNL) conducted this study for the US Department of Energy's (DOE) Office of Energy Storage and Distribution. The purpose of the study was to develop and screen a list of potential entry market applications for aquifer thermal energy storage (ATES). Several initial screening criteria were used to identify promising ATES applications. These include the existence of an energy availability/usage mismatch, the existence of many similar applications or commercial sites, the ability to utilize proven technology, the type of location, market characteristics, the size of and access to capital investment, and the number of decision makers involved. The in-depth analysis identified several additional screening criteria to consider in the selection of an entry market application. This analysis revealed that the best initial applications for ATES are those where reliability is acceptable, and relatively high temperatures are allowable. Although chill storage was the primary focus of this study, applications that are good candidates for heat ATES were also of special interest. 11 refs., 3 tabs.

  8. Application status and prospect of X-ray lithography technology

    International Nuclear Information System (INIS)

    Xie Changqing; Chen Dapeng; Liu Ming; Ye Tianchun; Yi Futing

    2004-01-01

    Because of its many merits, such as high resolution, large depth of focus, large field size, high throughput, large process latitude, easy extendibility to 50 nm and below ground rule, and so on, the Proximity X-ray Lithography (PXL) is very attractive for the 100 nm and smaller ground rule integrated circuit manufacturing. In this paper, the international research and development status of PXL is briefly introduced firstly, and both its application status and prospect in nanoelectronics research, Monolithic Microwave Integrated Circuits (MMIC) production and silicon-based Ultra Large Scale Integrated Circuits (ULSIC) production are described, and the recent research progress in home PXL is also presented briefly. (authors)

  9. Energy, society and environment. Technology for a sustainable future

    International Nuclear Information System (INIS)

    Elliott, D.

    1997-04-01

    Energy, Society and Environment examines energy and energy use, and the interactions between technology, society and the environment. The book is clearly structured to examine; Key environmental issues, and the harmful impacts of energy use; New technological solutions to environmental problems; Implementation of possible solutions, and Implications for society in developing a sustainable approach to energy use. Social processes and strategic solutions to problems are located within a clear, technological context with topical case studies. (UK)

  10. The prospects of nuclear energy in the economy of the European Economic Community by 2000

    International Nuclear Information System (INIS)

    Swadzba, S.

    1987-01-01

    The forecast for nuclear energy in the EEC countries by 2000 on the base of the growth of national income and energy demand is presented. There are discussed the prospects of electric energy production and the part of nuclear energy in it asa well as the expected share of nuclear energy in the consumption and in the production of primary energy. A short appraisal of these forecasts is presented. 5 tabs. (author)

  11. Technological development and prospect of alkaline fuel cells

    International Nuclear Information System (INIS)

    Meng Ni; Michael KH Leung; Dennis YC Leung

    2006-01-01

    This paper reviewed the technological development of alkaline fuel cell (AFC). Although the technology was popular in 1970's and 1980's, there has been a decline in AFC research over the past decade, mainly due to the poisoning of CO 2 . Continuous efforts have demonstrated that CO 2 concentration could be reduced to an acceptable level by a number of viable methods such as absorption, adsorption, electrochemical process, electrolyte circulation, use of liquid hydrogen, and use of solid anionic exchange membranes. Literature survey showed that AFC lifetime could achieve up to 5000 hours. In addition, the use of ammonia as a fuel for AFC was identified as a promising technology. Comparison between AFC and proton exchange membrane fuel cell (PEMFC) was presented to evaluate the AFC technology and its economics. The present review and assessment showed the promise of AFC for the coming hydrogen economy and sustainable development. (authors)

  12. Electric energy savings from new technologies

    Energy Technology Data Exchange (ETDEWEB)

    Moe, R.J.; Harrer, B.J.; Kellogg, M.A.; Lyke, A.J.; Imhoff, K.L.; Fisher, Z.J.

    1986-01-01

    Purpose of the report is to provide information about the electricity-saving potential of new technologies to OCEP that it can use in developing alternative long-term projections of US electricity consumption. Low-, base-, and high-case scenarios of the electricity savings for ten technologies were prepared. The total projected annual savings for the year 2000 for all ten technologies were 137 billion kilowatt hours (BkWh), 279 BkWh, and 470 BkWh, respectively, for the three cases. The magnitude of these savings projections can be gauged by comparing them to the Department's reference case projection for the 1985 National Energy Policy Plan. In the Department's reference case, total consumption in 2000 is projected to be 3319 BkWh. Thus, the savings projected here represent between 4% and 14% of total consumption projected for 2000. Because approximately 75% of the base-case estimate of savings are already incorporated into the reference forecast, reducing projected electricity consumption from what it otherwise would have been, the savings estimated here should not be directly subtracted from the reference forecast.

  13. FORMING ORGANIZATIONAL SKILLS OF PROSPECTIVE TEACHERS OF THE HUMANITIES USING INFORMATION AND COMMUNICATION TECHNOLOGIES

    OpenAIRE

    Olena A. Zymovets

    2014-01-01

    The article deals with the problem of formation of prospective humanitarian teachers’ organizational skills in the Information Society. The author defines organizational skills of prospective teachers of the Humanities, specifies the types of these skills taking into consideration the requirements of the Information Society and focuses on the role of Information and Communication Technologies in the process of their formation. The author suggests the system of ICT-oriented tasks for the forma...

  14. Research with respect to environmental-friendly energy prospects: experiences with energy system models

    International Nuclear Information System (INIS)

    Kram, T.

    1994-01-01

    The costs and the effects of four basic options with respect to the reduction of CO 2 -emissions are evaluated. The dominant strategy for the nuclear option consists in the substitution of fossil fuel by nuclear energy. At a 50 percent reduction of CO 2 emissions, heating by natural gas is replaced electric power and conventional cars will be replaced by cars. In the carbon dioxide fixation option, fossil fuel remains the dominant energy vector. In this option, CO 2 emissions can be reduced by replacing coal by natural gas, and by introducing carbon dioxide fixation technology in power plants. The option renewable energy sources favours the use of off-shore wind energy and biogas, resulting in a reduction of carbon dioxide emissions up to 40 percent. Higher reduction rates can only be achieved by the use of more expensive technologies such as geothermal and solar energy. In the option rational use of energy, the reduction of carbon dioxide emissions is achieved by energy saving and, among others, the use of fuel cells. The results of the modelling can contribute to identify the most effective or cost-efficient options in view of reducing carbon dioxide emissions. It is concluded that energy saving alone can not contribute to considerable carbon dioxide emission reductions. Carbon dioxide fixations is technically feasible and appears to be the cheapest option. The substitution of fossil fuel by nuclear energy is only cost-efficient for traditional markets. The public acceptance of nuclear energy, its risks and the disposal of radioactive waste have also to be taken into account. (A.S.)

  15. Nuclear energy prospects and uranium resources in Latin America

    International Nuclear Information System (INIS)

    Polliart, A.J.; Barretto, P.M.C.

    1976-01-01

    Nuclear power and other major technological applications of nuclear energy will become of interest to a growing number of Latin American countries as their demand for electricity rises because of the expansion of industry. Nevertheless, for many years to come, the chief benefits that atomic energy can bring to Latin America will take the form of applying nuclear science techniques in medicine, water resources development and agricultural research. The medical applications are widely known and the water resources applications are highly specialized. The agricultural applications are many, but generally less well known, and this is one reason why the Agency is devoting a special meeting of the Conference to a review of the use of nuclear science techniques in agricultural research, food production and food preservation. Latin America is the only region of the world in which substantial progress has been made towards what is now known as a nuclear-weapon-free zone - in other words, a zone in which no country possesses or seeks to possess the capacity to make nuclear weapons or other nuclear explosive devices, or permits such weapons on its territory. This has been achieved partly by the operation of Treaties and partly by the policy of individual Governments. The nuclear-weapon-free status is partly reflected in safeguards agreements with the Agency. In this way, the countries of the region are avoiding the vast waste of scarce resources that a nuclear weapons programme entails and, particularly, of scarce scientific manpower and technological skill, which they urgently need for their own peaceful development. The Agency safeguards thus provide international assurance that the nuclear programmes of the countries concerned will not be diverted to nuclear weapons or other nuclear explosives. In this way the Agency's safeguards contribute to security and peace in the region. It is obviously of interest to all countries in the region that this de facto nuclear

  16. Energy Storage Technology Development for Space Exploration

    Science.gov (United States)

    Mercer, Carolyn R.; Jankovsky, Amy L.; Reid, Concha M.; Miller, Thomas B.; Hoberecht, Mark A.

    2011-01-01

    The National Aeronautics and Space Administration is developing battery and fuel cell technology to meet the expected energy storage needs of human exploration systems. Improving battery performance and safety for human missions enhances a number of exploration systems, including un-tethered extravehicular activity suits and transportation systems including landers and rovers. Similarly, improved fuel cell and electrolyzer systems can reduce mass and increase the reliability of electrical power, oxygen, and water generation for crewed vehicles, depots and outposts. To achieve this, NASA is developing non-flow-through proton-exchange-membrane fuel cell stacks, and electrolyzers coupled with low permeability membranes for high pressure operation. The primary advantage of this technology set is the reduction of ancillary parts in the balance-of-plant fewer pumps, separators and related components should result in fewer failure modes and hence a higher probability of achieving very reliable operation, and reduced parasitic power losses enable smaller reactant tanks and therefore systems with lower mass and volume. Key accomplishments over the past year include the fabrication and testing of several robust, small-scale non-flow-through fuel cell stacks that have demonstrated proof-of-concept. NASA is also developing advanced lithium-ion battery cells, targeting cell-level safety and very high specific energy and energy density. Key accomplishments include the development of silicon composite anodes, lithiatedmixed- metal-oxide cathodes, low-flammability electrolytes, and cell-incorporated safety devices that promise to substantially improve battery performance while providing a high level of safety.

  17. Geospatial Technologies to Improve Urban Energy Efficiency

    Directory of Open Access Journals (Sweden)

    Bharanidharan Hemachandran

    2011-07-01

    Full Text Available The HEAT (Home Energy Assessment Technologies pilot project is a FREE Geoweb mapping service, designed to empower the urban energy efficiency movement by allowing residents to visualize the amount and location of waste heat leaving their homes and communities as easily as clicking on their house in Google Maps. HEAT incorporates Geospatial solutions for residential waste heat monitoring using Geographic Object-Based Image Analysis (GEOBIA and Canadian built Thermal Airborne Broadband Imager technology (TABI-320 to provide users with timely, in-depth, easy to use, location-specific waste-heat information; as well as opportunities to save their money and reduce their green-house-gas emissions. We first report on the HEAT Phase I pilot project which evaluates 368 residences in the Brentwood community of Calgary, Alberta, Canada, and describe the development and implementation of interactive waste heat maps, energy use models, a Hot Spot tool able to view the 6+ hottest locations on each home and a new HEAT Score for inter-city waste heat comparisons. We then describe current challenges, lessons learned and new solutions as we begin Phase II and scale from 368 to 300,000+ homes with the newly developed TABI-1800. Specifically, we introduce a new object-based mosaicing strategy, an adaptation of Emissivity Modulation to correct for emissivity differences, a new Thermal Urban Road Normalization (TURN technique to correct for scene-wide microclimatic variation. We also describe a new Carbon Score and opportunities to update city cadastral errors with automatically defined thermal house objects.

  18. Technology Road-map - Nuclear Energy. 2015 edition

    International Nuclear Information System (INIS)

    Houssin, Didier; Dujardin, Thierry; Cameron, Ron; Tam, Cecilia; Paillere, Henri; Baroni, Marco; Bromhead, Amos; Baritaud, Manual; Cometto, Marco; Gaghen, Rebecca; Herzog, Antoine; Remme, Uwe; Urso, Maria-Elena; Vance, Robert

    2015-01-01

    -carbon electricity in OECD countries and second at global level. Nuclear can play a key role in lowering emissions from the power sector, while improving security of energy supply, supporting fuel diversity and providing large-scale electricity at stable production costs. In the 2D scenario, global installed capacity would need to more than double from current levels of 396 GW to reach 930 GW in 2050, with nuclear power representing 17% of global electricity production. The near-term outlook for nuclear energy has been impacted in many countries by the Fukushima Daiichi nuclear power plant (NPP) accident. Although the accident caused no direct radiation-induced casualties, it raised concerns over the safety of NPPs and led to a drop in public acceptance, as well as changes in energy policies in some countries. However, in the medium to long term, prospects for nuclear energy remain positive. A total of 72 reactors were under construction at the beginning of 2014, the highest number in 25 years. Nuclear safety remains the highest priority for the nuclear sector. Regulators have a major role to play to ensure that all operations are carried out with the highest levels of safety. Safety culture must be promoted at all levels in the nuclear sector and especially in newcomer countries. Governments have a role to play in ensuring a stable, long-term investment framework that allows capital-intensive projects to be developed and provides adequate electricity prices over the long term. Governments should also continue to support nuclear R and D, especially in the area of nuclear safety, advanced fuel cycles, waste management and innovative designs. Nuclear energy is a mature low-carbon technology, which has followed a trend towards increased safety levels and power output to benefit from economies of scale. This trajectory has come with an increased cost for Generation III reactors compared with previous generations. Small modular reactors (SMRs) could extend the market for nuclear energy

  19. The German energy policy. Future prospects and new economic opportunities

    International Nuclear Information System (INIS)

    Persem, Melanie

    2013-01-01

    This document presents some key information and figures about the German energy policy: share of renewable energy sources in the German energy mix by 2050, societal commitments of citizens, towns and regions as pillars of the energy transition, research and innovation: the keys of a successful energy transition in Germany, the coalition contract and the 2014-2017 government priorities, a safe, affordable and ecological energy transition, renewable energies guidance towards market economy, grids as central and vital elements of the energy transition, the electricity market and the new framework for renewable energies, new economic models to be exploited for smart grids, a change of paradigm with 'smart markets'

  20. Energy Assurance: Essential Energy Technologies for Climate Protection and Energy Security

    Energy Technology Data Exchange (ETDEWEB)

    Greene, David L [ORNL; Boudreaux, Philip R [ORNL; Dean, David Jarvis [ORNL; Fulkerson, William [University of Tennessee, Knoxville (UTK); Gaddis, Abigail [University of Tennessee, Knoxville (UTK); Graham, Robin Lambert [ORNL; Graves, Ronald L [ORNL; Hopson, Dr Janet L [University of Tennessee, Knoxville (UTK); Hughes, Patrick [ORNL; Lapsa, Melissa Voss [ORNL; Mason, Thom [ORNL; Standaert, Robert F [ORNL; Wilbanks, Thomas J [ORNL; Zucker, Alexander [ORNL

    2009-12-01

    We present and apply a new method for analyzing the significance of advanced technology for achieving two important national energy goals: climate protection and energy security. Quantitative metrics for U.S. greenhouse gas emissions in 2050 and oil independence in 2030 are specified, and the impacts of 11 sets of energy technologies are analyzed using a model that employs the Kaya identity and incorporates the uncertainty of technological breakthroughs. The goals examined are a 50% to 80% reduction in CO2 emissions from energy use by 2050 and increased domestic hydrocarbon fuels supply and decreased demand that sum to 11 mmbd by 2030. The latter is intended to insure that the economic costs of oil dependence are not more than 1% of U.S. GDP with 95% probability by 2030. Perhaps the most important implication of the analysis is that meeting both energy goals requires a high probability of success (much greater than even odds) for all 11 technologies. Two technologies appear to be indispensable for accomplishment of both goals: carbon capture and storage, and advanced fossil liquid fuels. For reducing CO2 by more than 50% by 2050, biomass energy and electric drive (fuel cell or battery powered) vehicles also appear to be necessary. Every one of the 11 technologies has a powerful influence on the probability of achieving national energy goals. From the perspective of technology policy, conflict between the CO2 mitigation and energy security is negligible. These general results appear to be robust to a wide range of technology impact estimates; they are substantially unchanged by a Monte Carlo simulation that allows the impacts of technologies to vary by 20%.

  1. Economic reassessment of energy technologies with risk-management techniques

    International Nuclear Information System (INIS)

    Mohr, Markus; Unger, Hermann

    1999-01-01

    A new approach for the reassessment of modern energy technologies is discussed. This mainly addresses renewable-energy systems, like photovoltaics or wind converters. A new number called the 'Marginal Energy Risk Price (MERP) for Hedging' is introduced. (Author)

  2. Africa's technology options for renewable energy production and distribution

    CSIR Research Space (South Africa)

    Amigun, B

    2011-12-01

    Full Text Available This chapter presents a critical appraisal of Africa's modern energy technologies for renewable energy. It highlights issues of scale and location-specific attributes. A critical review of different renewable energies is presented, the state...

  3. Considerations on long-term energy prospects in Italy

    Energy Technology Data Exchange (ETDEWEB)

    Campos Venuti, G; Frullani, S; Tabet, E; Vecchia, P

    1977-11-07

    The different implications of alternative energy sources (nuclear, fusion, and solar) for Italy are discussed from the environmental, economic, and political viewpoint. Natural limits to the increase of energy production and some energy conservation measures are also considered.

  4. Excavation Technology for Hard Rock - Problems and Prospects

    International Nuclear Information System (INIS)

    Gillani, S.T.A.; Butt, N.

    2009-01-01

    Civil engineering projects have greatly benefited from the mechanical excavation of hard rock technology. Mining industry, on the other hand, is still searching for major breakthroughs to mechanize and then automate the winning of ore and drivage of access tunnels in its metalliferous sector. The aim of this study is to extend the scope of drag bits for road headers in hard rock cutting. Various factors that can impose limitations on the potential applications of drag bits in hard rock mining are investigated and discussed along with alternative technology options. (author)

  5. Promoting clean energy technology entrepreneurship: The role of external context

    International Nuclear Information System (INIS)

    Malen, Joel; Marcus, Alfred A.

    2017-01-01

    This study examines how political, social and economic factors influence clean energy technology entrepreneurship (CETE). Government policies supporting clean energy technology development and the development of markets for clean energy create opportunities for CETE. However, the extent to which such opportunities lead to the emergence of new clean energy businesses depends on a favorable external context promoting CETE. This study employs a novel dataset combining indicators of the policy and social context of CETE with information on clean energy technology startup firms in the USA to provide empirical evidence that technological and market conditions supporting clean energy induce more extensive CETE under contexts where local attention to clean energy issues and successful firms commercializing clean energy technologies are more prominent. By establishing that CETE is contingent upon a supportive local environment as well as technology and market opportunities, the study holds relevance for policy makers and clean energy technology firms. - Highlights: • Influence of political, social and economic factors on clean energy technology entrepreneurship (CETE). • CETE more prominent with clean energy technology availability. • Greater when local attention interacts with technology availability and market opportunities. • Greater when local firms successfully commercialize technologies. • Novel dataset and Arellano-Bond dynamic panel estimation.

  6. Maker Cultures and the Prospects for Technological Action.

    Science.gov (United States)

    Nascimento, Susana; Pólvora, Alexandre

    2018-06-01

    Supported by easier and cheaper access to tools and expanding communities, maker cultures are pointing towards the ideas of (almost) everyone designing, creating, producing and distributing renewed, new and improved products, machines, things or artefacts. A careful analysis of the assumptions and challenges of maker cultures emphasizes the relevance of what may be called technological action, that is, active and critical interventions regarding the purposes and applications of technologies within ordinary lives, thus countering the deterministic trends of current directions of technology. In such transformative potential, we will explore a set of elements what is and could be technological action through snapshots of maker cultures based on the empirical research conducted in three particular contexts: the Fab Lab Network, Maker Media core outputs and initiatives such as Maker Faires, and the Open Source Hardware Association (OSHWA). Elements such as control and empowerment through material engagement, openness and sharing, and social, cultural, political and ethical values of the common good in topics such as diversity, sustainability and transparency, are critically analysed.

  7. Teaching Undergraduate Mathematics Using CAS Technology: Issues and Prospects

    Science.gov (United States)

    Tobin, Patrick C.; Weiss, Vida

    2016-01-01

    The use of handheld CAS technology in undergraduate mathematics courses in Australia is paradoxically shrinking under sustained disapproval or disdain from the professional mathematics community. Mathematics education specialists argue with their mathematics colleagues over a range of issues in course development and this use of CAS or even…

  8. Plant cell technologies in space: Background, strategies and prospects

    Science.gov (United States)

    Kirkorian, A. D.; Scheld, H. W.

    1987-01-01

    An attempt is made to summarize work in plant cell technologies in space. The evolution of concepts and the general principles of plant tissue culture are discussed. The potential for production of high value secondary products by plant cells and differentiated tissue in automated, precisely controlled bioreactors is discussed. The general course of the development of the literature on plant tissue culture is highlighted.

  9. Technology in Education: Its Prospects and Its Promises.

    Science.gov (United States)

    Senese, Donald J.

    The impact of advanced technology has increased computer usage at all levels as evidenced by the popularity of video games, increased interest on the part of students using computers to enhance learning, and business/school partnerships forming with such companies as Digital Equipment Corporation, International Business Machines, and Tandy/Radio…

  10. Energy Technologies Research and Education Initiative

    Energy Technology Data Exchange (ETDEWEB)

    Ghassemi, Abbas [New Mexico State Univ., Las Cruces, NM (United States); Ranade, Satish [New Mexico State Univ., Las Cruces, NM (United States)

    2014-12-31

    For this project, the intended goal of the microgrid component was to investigate issues in policy and technology that would drive higher penetration of renewable energy, and to demonstrate implementation in a utility system. The work accomplished on modeling the dynamics of photovoltaic (PV) penetration can be expanded for practical application. Using such a tool those involved in public policy can examine what the effect of a particular policy initiative, e.g., renewable portfolio standards (RPS) requirements, might be in terms of the desired targets. The work in the area of microgrid design, protection, and operation is fundamental to the development of microgrids. In particular the “Energy Delivery” paradigm provides new opportunities and business models for utilities. Ultimately, Energy Delivery could accrue significant benefits in terms of costs and resiliency. The experimental microgrid will support continued research and allow the demonstration of technology for better integration of renewables. The algal biofuels component of the project was developed to enhance the test facility and to investigate the technical and economic feasibility of a commercial-scale geothermal algal biofuels operation for replication elsewhere in the arid Southwest. The project was housed at New Mexico State University’s (NMSU’s) Geothermal Aquaculture Facility (GAF) and a design for the inoculation train and algae grow-out process was developed. The facility was upgraded with modifications to existing electrical, plumbing and structural components on the GAF and surrounding grounds. The research work was conducted on biomass-processing, harvesting, dewatering, and extraction. Additionally, research was conducted to determine viability of using low-cost, wastewater from municipal treatment plants in the cultivation units as make-up water and as a source of nutrients, including nitrogen and soluble phosphorus. Data was collected on inputs and outputs, growth evaluation and

  11. Ballistic Aspects of Feasibility for Prospective Satellite Navigation Technologies

    Directory of Open Access Journals (Sweden)

    L. N. Lysenko

    2015-01-01

    Full Text Available When modeling the operating processes of ballistics and navigation support it is expedient to make decomposition of the general problem of coordinate-time and navigation support into the typical options of its engineering implementation.As the satellite navigation technologies the paper considers inter-satellite measurement and autonomous navigation mode of differential correction. It also assesses the possibility of their application to improve the accuracy of navigation determinations.Technologies using inter-satellite measurement tools such as GLONASS / GPS equipment, equipment of inter-satellite radio link, astro-optical space based devices are an independent class of navigation technologies.However, each of these options has both advantages and disadvantages that affect the eva luation of the appropriateness and feasibility of their use.The paper separately considers the problem of increasing survivability of space systems and conservation of ground control complex due to introduction of requirements to ensure the independent functioning of spacecraft and application of technologies of ballistics and navigation support, supposing to involve minimum means of automated ground control complex for these purposes.Currently, there is a completely developed theory of autonomous navigation based on astronomical positional gauges, which are used as onboard optical sensors of orientation and stabilization systems.To date, the differential navigation mode is, virtually, the only approach that can allow the olution of tasks in terms of increased accuracy, but with some restrictions.The implementation of differential mode of treatment is carried out through the creation of differential subsystems of the satellite navigation systems. These subsystems are usually divided into wide-range, regional and local ones.Analysis of ballistic aspects to implement discussed navigation technologies allowed us to identify constraints for improving accuracy to define

  12. A review and future prospects of renewable energy in the global energy system

    Institute of Scientific and Technical Information of China (English)

    D Yogi GOSWAMI; John & Naida Ramil Professor; Co-Director

    2008-01-01

    Global energy consumption in the last half century has rapidly increased and is expected to continue to grow over the next 50 years, however, with significant differences. The past increase was stimulated by relatively "cheap" fossil fuels and increased rates of industrialization in North America, Europe and Japan; yet while energy consumption in these countries continues to increase, additional factors make the picture for the next 50 years more complex. These additional complicating factors include China and India's rapid increase in energy use as they represent about a third of the world's population; the expected depletion of oil resources in the near future; and, the effect of human activities on global climate change. On the positive side, the renewable energy (RE) technologies of wind, bio-fuels, solar thermal and photovoltaics (PV) are finally showing maturity and the ultimate promise of cost competitiveness.

  13. SNETP – Sustainable Nuclear Energy Technology Platform

    Energy Technology Data Exchange (ETDEWEB)

    Aït Abderrahim, Hamid

    2016-07-01

    SNETP is one of the EU’s official European Technology & Innovation Platforms established to implement the SET-Plan. SNETP and its pillars gather more than 120 European stakeholders involved in the research and innovation, deployment and operation of nuclear fission reactors and fuel cycle facilities: industry, research centres, universities, technical safety organisations, small and medium enterprises, service providers, non-governmental organisations. Despite industrial competition, SNETP has achieved efficient collaboration between its stakeholders. It has developed a common vision on the future contribution of nuclear fission energy in Europe, with the publication of a Vision Report, a Strategic Research & Innovation Agenda (two editions) and a Deployment Strategy report. It issued also a dedicated report on the R&D topics related to safety issues triggered by the Fukushima accident.

  14. Wind energy. Energy technologies in national, European and global perspective

    International Nuclear Information System (INIS)

    Hauge Madsen, P.; Bjerregaard, E.T.D.

    2002-01-01

    According to a recent study, global wind generating capacity increased by some 6800 MW in 2001, an annual growth of just over half the corresponding figure for 2000. 2001 was the third consecutive year in which new wind power capacity exceeded new nuclear power capacity, showing the maturity of wind power technology. Total installed wind power worldwide by the end of 2001 was close to 25.000 MW. Germany, Spain and Denmark are the main players, accounting for 56% of the world's capacity increase in 2001 and a total cumulative installed capacity of 14.750 MW, or 59% of the global total. The USA and India are also significant users of wind power; in 2001 the USA added 1700 MW of new installed capacity to become the world's second-largest market for wind power. The report Wind Force 10 outlines a scenario in which wind power provides 10% of the world's electricity by 2020, corresponding to a total installed capacity of 1200 GW. Risoe's System Analysis Department has looked at the possible future costs of electricity produced by wind turbines compared to conventional power. A learning curve analysis of historical data results in a progress ratio of 0,85. This means that for every doubling of the installed capacity, the cost of wind-generated electricity is reduced by 15%. Until recently the main driver for wind power has been a concern for greenhouse gases. Security of energy supply has now become an important issue, however, especially in Europe and the USA. Wind power plants can be erected at short notice and in a modular fashion that allows capacity to be added as required. The European Commission has supported wind power by sponsoring international research co-operation between institutes, universities and equipment manufacturers. The IEA supports worldwide co-operation, and has recently issued a report on the longterm R and D needs of wind energy. Denmark has, mainly financed by the Danish Energy Agency, taken part in the IEA's R and D Wind international co

  15. Wind energy. Energy technologies in national, European and global perspective

    Energy Technology Data Exchange (ETDEWEB)

    Hauge Madsen, P.; Bjerregaard, E.T.D. [Risoe National Lab., Wind Energy Dept., Roskilde (Denmark)

    2002-10-01

    According to a recent study, global wind generating capacity increased by some 6800 MW in 2001, an annual growth of just over half the corresponding figure for 2000. 2001 was the third consecutive year in which new wind power capacity exceeded new nuclear power capacity, showing the maturity of wind power technology. Total installed wind power worldwide by the end of 2001 was close to 25.000 MW. Germany, Spain and Denmark are the main players, accounting for 56% of the world's capacity increase in 2001 and a total cumulative installed capacity of 14.750 MW, or 59% of the global total. The USA and India are also significant users of wind power; in 2001 the USA added 1700 MW of new installed capacity to become the world's second-largest market for wind power. The report Wind Force 10 outlines a scenario in which wind power provides 10% of the world's electricity by 2020, corresponding to a total installed capacity of 1200 GW. Risoe's System Analysis Department has looked at the possible future costs of electricity produced by wind turbines compared to conventional power. A learning curve analysis of historical data results in a progress ratio of 0,85. This means that for every doubling of the installed capacity, the cost of wind-generated electricity is reduced by 15%. Until recently the main driver for wind power has been a concern for greenhouse gases. Security of energy supply has now become an important issue, however, especially in Europe and the USA. Wind power plants can be erected at short notice and in a modular fashion that allows capacity to be added as required. The European Commission has supported wind power by sponsoring international research co-operation between institutes, universities and equipment manufacturers. The IEA supports worldwide co-operation, and has recently issued a report on the longterm R and D needs of wind energy. Denmark has, mainly financed by the Danish Energy Agency, taken part in the IEA's R and D Wind

  16. Rethinking EU energy security considering past trends and future prospects

    NARCIS (Netherlands)

    Amineh, Mehdi P.; Crijns - Graus, Wina

    2014-01-01

    EU energy policy objectives are directed at three highly interdependent areas: energy supply security, competitiveness and decarbonization to prevent climate change. In this paper, we focus on the issue of energy supply security. Security of energy supply for the immediate and medium-term future is

  17. 2030 worldwide energy prospects: to where trends lead us?

    International Nuclear Information System (INIS)

    2005-01-01

    This document makes a synthesis of the presentations given at the February 2005 energy policy conference about the world energy trends, jointly organized by the IEA and the general direction of energy and raw materials (DGEMP): world energy trends, presented by F. Birol (global energy trends and strategic challenges, world reference scenario of primary energy consumption, petroleum: key-questions and uncertainties, application of IEA's reference scenario to the European Union (of 25), alternate scenario for the whole world); second intervention presented by J.M. Chevalier (new articulation of powers, towards a world energy environment); debate with the participants. The slides of the 2 presentations are given in appendix. (J.S.)

  18. Deployment Effects of Marin Renewable Energy Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Brian Polagye; Mirko Previsic

    2010-06-17

    Given proper care in siting, design, deployment, operation and maintenance, marine and hydrokinetic technologies could become one of the more environmentally benign sources of electricity generation. In order to accelerate the adoption of these emerging hydrokinetic and marine energy technologies, navigational and environmental concerns must be identified and addressed. All developing hydrokinetic projects involve a wide variety of stakeholders. One of the key issues that site developers face as they engage with this range of stakeholders is that many of the possible conflicts (e.g., shipping and fishing) and environmental issues are not well-understood, due to a lack of technical certainty. In September 2008, re vision consulting, LLC was selected by the Department of Energy (DoE) to apply a scenario-based approach to the emerging wave and tidal technology sectors in order to evaluate the impact of these technologies on the marine environment and potentially conflicting uses. The project’s scope of work includes the establishment of baseline scenarios for wave and tidal power conversion at potential future deployment sites. The scenarios will capture variations in technical approaches and deployment scales to properly identify and characterize environmental impacts and navigational effects. The goal of the project is to provide all stakeholders with an improved understanding of the potential effects of these emerging technologies and focus all stakeholders onto the critical issues that need to be addressed. This groundwork will also help in streamlining siting and associated permitting processes, which are considered key hurdles for the industry’s development in the U.S. today. Re vision is coordinating its efforts with two other project teams funded by DoE which are focused on regulatory and navigational issues. The results of this study are structured into three reports: 1. Wave power scenario description 2. Tidal power scenario description 3. Framework for

  19. Deployment Effects of Marine Renewable Energy Technologies: Wave Energy Scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Mirko Previsic

    2010-06-17

    Given proper care in siting, design, deployment, operation and maintenance, wave energy conversion could become one of the more environmentally benign sources of electricity generation. In order to accelerate the adoption of these emerging hydrokinetic and marine energy technologies, navigational and environmental concerns must be identified and addressed. All developing hydrokinetic projects involve a wide variety of stakeholders. One of the key issues that site developers face as they engage with this range of stakeholders is that, due to a lack of technical certainty, many of the possible conflicts (e.g., shipping and fishing) and environmental issues are not well-understood,. In September 2008, re vision consulting, LLC was selected by the Department of Energy (DoE) to apply a scenario-based assessment to the emerging hydrokinetic technology sector in order to evaluate the potential impact of these technologies on the marine environment and navigation constraints. The project’s scope of work includes the establishment of baseline scenarios for wave and tidal power conversion at potential future deployment sites. The scenarios capture variations in technical approaches and deployment scales to properly identify and characterize environmental effects and navigational effects. The goal of the project is to provide all stakeholders with an improved understanding of the potential range of technical attributes and potential effects of these emerging technologies and focus all stakeholders on the critical issues that need to be addressed. By identifying and addressing navigational and environmental concerns in the early stages of the industry’s development, serious mistakes that could potentially derail industry-wide development can be avoided. This groundwork will also help in streamlining siting and associated permitting processes, which are considered key hurdles for the industry’s development in the U.S. today. Re vision is coordinating its efforts with two

  20. Moulded Pulp Manufacturing: Overview and Prospects for the Process Technology

    DEFF Research Database (Denmark)

    Didone, Mattia; Saxena, Prateek; Meijer, Ellen Brilhuis

    2017-01-01

    Eco-friendly packaging such as moulded pulp products have gained commercial importance in the recent years. However, it remains a greatly under-researched area, and there is an arising need to consolidate the best practices from research and industry in order to increase its implementation....... Moreover, based on the latest research in the field, an innovative drying technique that utilizes concepts derived from impulse drying is presented, and the implementation of this process technology is discussed....