WorldWideScience

Sample records for technological education center

  1. Graduate Automotive Technology Education (GATE) Center

    Energy Technology Data Exchange (ETDEWEB)

    Jeffrey Hodgson; David Irick

    2005-09-30

    The Graduate Automotive Technology Education (GATE) Center at the University of Tennessee, Knoxville has completed its sixth year of operation. During this period the Center has involved thirteen GATE Fellows and ten GATE Research Assistants in preparing them to contribute to advanced automotive technologies in the center's focus area: hybrid drive trains and control systems. Eighteen GATE students have graduated, and three have completed their course work requirements. Nine faculty members from three departments in the College of Engineering have been involved in the GATE Center. In addition to the impact that the Center has had on the students and faculty involved, the presence of the center has led to the acquisition of resources that probably would not have been obtained if the GATE Center had not existed. Significant industry interaction such as internships, equipment donations, and support for GATE students has been realized. The value of the total resources brought to the university (including related research contracts) exceeds $4,000,000. Problem areas are discussed in the hope that future activities may benefit from the operation of the current program.

  2. The Advanced Technology Environmental Education Center Summer Fellows Institute.

    Science.gov (United States)

    Depken, Diane E.; Zeman, Catherine L.; Lensch, Ellen Kabat; Brown, Edward J.

    2002-01-01

    Describes the background, activities, and outcomes of the Advanced Technology Environmental Education Center (ATEEC) and its Summer Fellows Institutes as a model for disciplinary and cross-disciplinary infusion of environmental science and technology content, curriculum, and methods into the classroom. Presents experiences, themes, and activities…

  3. Scientific and educational center "space systems and technology"

    Science.gov (United States)

    Kovalev, I. V.; Loginov, Y. Y.; Zelenkov, P. V.

    2015-10-01

    The issues of engineers training in the aerospace university on the base of Scientific and Educational Center "Space Systems and Technology" are discussed. In order to improve the quality of education in the Siberian State Aerospace University the research work of students, as well as the practice- oriented training of engineers are introduced in the educational process. It was made possible as a result of joint efforts of university with research institutes of the Russian Academy of Science and industrial enterprises. The university experience in this area promotes the development of a new methods and forms of educational activities, including the project-oriented learning technologies, identifying promising areas of specialization and training of highly skilled engineers for aerospace industry and other institutions. It also allows you to coordinate the work of departments and other units of the university to provide the educational process in workshops and departments of the industrial enterprises in accordance with the needs of the target training. Within the framework of scientific and education center the students perform researches, diploma works and master's theses; the postgraduates are trained in advanced scientific and technical areas of enterprise development.

  4. The Efficiency and Effectiveness of the K-12 Energy Technology Education Promotion Centers in Taiwan

    Science.gov (United States)

    Lee, Lung-Sheng

    2013-01-01

    In order to promote energy literacy for graders K-12, the Ministry of Education (MOE) in Taiwan initiated a K-12 Energy Technology Education Project in September 2010. This 40-month project has one project office affiliated to a university, and 18 promotion centers affiliated to 18 schools--including 5 regional centers for upper-secondary schools…

  5. The Center for Research and Evaluation in the Application of Technology to Education.

    Science.gov (United States)

    Rubin, David P.; Weisgerber, Robert A.

    1985-01-01

    The Center for Research and Development in the Application of Technology to Education project identifies effective uses of new technologies for the learning disabled. Areas investigated include effective instructional design principles, program design strategies, adjusting technology for individual learners, software development, and use of…

  6. Graduate Automotive Technology Education (GATE) Program: Center of Automotive Technology Excellence in Advanced Hybrid Vehicle Technology at West Virginia University

    Energy Technology Data Exchange (ETDEWEB)

    Nigle N. Clark

    2006-12-31

    This report summarizes the technical and educational achievements of the Graduate Automotive Technology Education (GATE) Center at West Virginia University (WVU), which was created to emphasize Advanced Hybrid Vehicle Technology. The Center has supported the graduate studies of 17 students in the Department of Mechanical and Aerospace Engineering and the Lane Department of Computer Science and Electrical Engineering. These students have addressed topics such as hybrid modeling, construction of a hybrid sport utility vehicle (in conjunction with the FutureTruck program), a MEMS-based sensor, on-board data acquisition for hybrid design optimization, linear engine design and engine emissions. Courses have been developed in Hybrid Vehicle Design, Mobile Source Powerplants, Advanced Vehicle Propulsion, Power Electronics for Automotive Applications and Sensors for Automotive Applications, and have been responsible for 396 hours of graduate student coursework. The GATE program also enhanced the WVU participation in the U.S. Department of Energy Student Design Competitions, in particular FutureTruck and Challenge X. The GATE support for hybrid vehicle technology enhanced understanding of hybrid vehicle design and testing at WVU and encouraged the development of a research agenda in heavy-duty hybrid vehicles. As a result, WVU has now completed three programs in hybrid transit bus emissions characterization, and WVU faculty are leading the Transportation Research Board effort to define life cycle costs for hybrid transit buses. Research and enrollment records show that approximately 100 graduate students have benefited substantially from the hybrid vehicle GATE program at WVU.

  7. NASA Education and Educational Technologies Exemplified by the Space Weather Action Center Program

    Science.gov (United States)

    Reis, Norma Teresinha Oliveira; André, Claudio; Cline, Troy D.; Eastman, Timothy E.; Maher, Margaret J.; Mayo, Louis A.; Lewis, Elaine M.

    We explore here the Space Weather Action Center (SWAC) Program, as an example of NASA initiatives in education. Many human activities in space can be disrupted by space weather. The main objective of this program is to enable students to produce space weather forecasts by accessing current NASA data. Implementation of the SWAC Program requires: technological resources, online materials, and systematic work. Instructional guides, materials and methods are explained on the Space Weather Action Center Web site (http://sunearthday.nasa.gov/swac). Ultimately, students’ forecasts can be presented through a variety of accessible media including inexpensive video editing software and/or already existing school-based broadcast studios. This cross-curricular program is targeted to middle and high school and can be applied in almost all educational contexts as the number of schools with computer and internet access increases worldwide. SWAC is a pioneer initiative that contributes to fostering student interest in STEM and promotes their intellectual autonomy. Through SWAC, they get to act like real scientists by accessing, analyzing, recording, and communicating space weather forecasts in a professional approach.

  8. The National Space Science and Technology Center's Education and Public Outreach Program

    Science.gov (United States)

    Cox, G. N.; Denson, R. L.

    2004-12-01

    The objective of the National Space Science and Technology Center's (NSSTC) Education and Public Outreach program (EPO) is to support K-20 education by coalescing academic, government, and business constituents awareness, implementing best business/education practices, and providing stewardship over funds and programs that promote a symbiotic relationship among these entities, specifically in the area of K-20 Science, Technology, Engineering, and Mathematics (STEM) education. NSSTC EPO Program's long-term objective is to showcase its effective community-based integrated stakeholder model in support of STEM education and to expand its influence across the Southeast region for scaling ultimately across the United States. The Education and Public Outreach program (EPO) is coordinated by a supporting arm of the NSSTC Administrative Council called the EPO Council (EPOC). The EPOC is funded through federal, state, and private grants, donations, and in-kind contributions. It is comprised of representatives of NSSTC Research Centers, both educators and scientists from the Alabama Space Science and Technology Alliance (SSTA) member institutions, the Alabama Space Grant Consortium and the NASA Marshall Space Flight Center's (MSFC) Education Office. Through its affiliation with MSFC and the SSTA - a consortium of Alabama's research universities that comprise the NSSTC, EPO fosters the education and development of the next generation of Alabama scientists and engineers by coordinating activities at the K-20 level in cooperation with the Alabama Department of Education, the Alabama Commission on Higher Education, and Alabama's businesses and industries. The EPO program's primary objective is to be Alabama's premiere organization in uniting academia, government, and private industry by way of providing its support to the State and Federal Departments of Education involved in systemic STEM education reform, workforce development, and innovative uses of technology. The NSSTC EPO

  9. Personalized Integrated Educational System: Technology Functions for the Learner- Centered Paradigm of Education

    Science.gov (United States)

    Reigeluth, Charles M.; Aslan, Sinem; Chen, Zengguan; Dutta, Pratima; Huh, Yeol; Lee, Dabae; Lin, Chun-Yi; Lu, Ya-Huei; Min, Mina; Tan, Verily; Watson, Sunnie Lee; Watson, William R.

    2015-01-01

    The learner-centered paradigm of instruction differs in such fundamental ways from the teacher-centered paradigm that it requires technology to serve very different functions. In 2006, a research team at Indiana University began to work on identifying those functions and published their results in 2008. Subsequently, the team elaborated and…

  10. Factors predicting the use of technology: findings from the Center for Research and Education on Aging and Technology Enhancement (CREATE).

    Science.gov (United States)

    Czaja, Sara J; Charness, Neil; Fisk, Arthur D; Hertzog, Christopher; Nair, Sankaran N; Rogers, Wendy A; Sharit, Joseph

    2006-06-01

    The successful adoption of technology is becoming increasingly important to functional independence. The present article reports findings from the Center for Research and Education on Aging and Technology Enhancement (CREATE) on the use of technology among community-dwelling adults. The sample included 1,204 individuals ranging in age from 18-91 years. All participants completed a battery that included measures of demographic characteristics, self-rated health, experience with technology, attitudes toward computers, and component cognitive abilities. Findings indicate that the older adults were less likely than younger adults to use technology in general, computers, and the World Wide Web. The results also indicate that computer anxiety, fluid intelligence, and crystallized intelligence were important predictors of the use of technology. The relationship between age and adoption of technology was mediated by cognitive abilities, computer self-efficacy, and computer anxiety. These findings are discussed in terms of training strategies to promote technology adoption.

  11. Mississippi Technology Transfer Center

    Science.gov (United States)

    1987-01-01

    The Mississippi Technology Transfer Center at the John C. Stennis Space Center in Hancock County, Miss., was officially dedicated in 1987. The center is home to several state agencies as well as the Center For Higher Learning.

  12. Graduate Automotive Technology Education (GATE) Center for Hybrid Electric Drivetrains and Control Strategies

    Energy Technology Data Exchange (ETDEWEB)

    David Holloway

    2005-09-30

    Beginning the fall semester of 1999, The University of Maryland, Departments of Mechanical and Electrical Engineering and the Institute for Systems Research served as a U.S. Department of Energy (USDOE) Graduate Automotive Technology Education (GATE) Center for Hybrid Electric Drivetrains and Control Strategies. A key goal was to produce a graduate level education program that educated and prepared students to address the technical challenges of designing and developing hybrid electric vehicles, as they progressed into the workforce. A second goal was to produce research that fostered the advancement of hybrid electric vehicles, their controls, and other related automotive technologies. Participation ended at the University of Maryland after the 2004 fall semester. Four graduate courses were developed and taught during the course of this time, two of which evolved into annually-taught undergraduate courses, namely Vehicle Dynamics and Control Systems Laboratory. Five faculty members from Mechanical Engineering, Electrical Engineering, and the Institute for Systems Research participated. Four Ph.D. degrees (two directly supported and two indirectly supported) and seven Master's degrees in Mechanical Engineering resulted from the research conducted. Research topics included thermoelectric waste heat recovery, fuel cell modeling, pre- and post-transmission hybrid powertrain control and integration, hybrid transmission design, H{sub 2}-doped combustion, and vehicle dynamics. Many of the participating students accepted positions in the automotive industry or government laboratories involved in automotive technology work after graduation. This report discusses the participating faculty, the courses developed and taught, research conducted, the students directly and indirectly supported, and the publication list. Based on this collection of information, the University of Maryland firmly believes that the key goal of the program was met and that the majority of the

  13. "Infotonics Technology Center"

    Energy Technology Data Exchange (ETDEWEB)

    Fritzemeier, L. [Infotonics Technology Center Inc., Canandaigua, NY (United States); Boysel, M. B. [Infotonics Technology Center Inc., Canandaigua, NY (United States); Smith, D. R. [Infotonics Technology Center Inc., Canandaigua, NY (United States)

    2004-09-30

    During this grant period July 15, 2002 thru September 30, 2004, the Infotonics Technology Center developed the critical infrastructure and technical expertise necessary to accelerate the development of sensors, alternative lighting and power sources, and other specific subtopics of interest to Department of Energy. Infotonics fosters collaboration among industry, universities and government and operates as a national center of excellence to drive photonics and microsystems development and commercialization. A main goal of the Center is to establish a unique, world-class research and development facility. A state-of-the-art microsystems prototype and pilot fabrication facility was established to enable rapid commercialization of new products of particular interest to DOE. The Center has three primary areas of photonics and microsystems competency: device research and engineering, packaging and assembly, and prototype and pilot-scale fabrication. Center activities focused on next generation optical communication networks, advanced imaging and information sensors and systems, micro-fluidic systems, assembly and packaging technologies, and biochemical sensors. With targeted research programs guided by the wealth of expertise of Infotonics business and scientific staff, the fabrication and packaging facility supports and accelerates innovative technology development of special interest to DOE in support of its mission and strategic defense, energy, and science goals.

  14. Update and Expansion of the Center of Automotive Technology Excellence Under the Graduate Automotive Technology Education (GATE) Program at the University of Tennessee, Knoxville

    Energy Technology Data Exchange (ETDEWEB)

    Irick, David

    2012-08-30

    The Graduate Automotive Technology Education (GATE) Center at the University of Tennessee, Knoxville has completed its seventh year of operation under this agreement, its thirteenth year in total. During this period the Center has involved eleven GATE Fellows and three GATE Research Assistants in preparing them to contribute to advanced automotive technologies in the center’s focus area: Advanced Hybrid Propulsion and Control Systems. In addition to the impact that the Center has had on the students and faculty involved, the presence of the center has led to the acquisition of resources that probably would not have been obtained if the GATE Center had not existed. Significant industry interaction such as equipment donations, and support for GATE students has been realized. The value of the total resources brought to the university (including related research contracts) exceeds $2,000,000.

  15. Practical Education Support to Foster Engineers at Manufacturing and Engineering Design Center in Muroran Institute of Technology

    Science.gov (United States)

    Kazama, Toshiharu; Hanajima, Naohiko; Shimizu, Kazumichi; Satoh, Kohki

    To foster engineers with creative power, Muroran Institute of Technology established Manufacturing and Engineering Design Center (MEDeC) that concentrates on Monozukuri. MEDeC consists of three project groups : i) Education Support Group provides educational support for practical training classes on and off campus and PDCA (plan-do-check-action) -conscious engineering design education related to Monozukuri ; ii) Fundamental Manufacturing Research Group carries out nurture research into fundamental and innovative technology of machining and manufacturing, and iii) Regional Cooperation Group coordinates the activities in cooperation with bureau, schools and industries in and around Muroran City. MEDeC has a fully integrated collection of machine tools and hand tools for manufacturing, an atelier, a tatara workplace, implements for measurement and related equipment designed for practically teaching state-of-the-practice manufacturing methods.

  16. Energetics Manufacturing Technology Center (EMTC)

    Data.gov (United States)

    Federal Laboratory Consortium — The Energetics Manufacturing Technology Center (EMTC), established in 1994 by the Office of Naval Research (ONR) Manufacturing Technology (ManTech) Program, is Navy...

  17. Research Center for Optical Physics: Education and Technology for the 21st Century

    Science.gov (United States)

    2003-01-01

    During the past eleven years since its inception, RCOP has excelled in its two primary goals: 1) training of the scientists and engineers needed for the twenty-first century with special emphasis on underrepresented citizens and 2) research and technological development in areas of relevance to NASA. In the category of research training, as of May 2003, RCOP produced 36 Bachelors degrees, 25 Masters degrees, and 13 Doctoral degrees. Of these, all 36 Bachelors degrees, 16 of the Masters degrees and 9 of the Doctoral degrees were awarded to African Americans. Four of the Doctoral graduates and one of the Masters graduates are working at NASA Field Centers. RCOP has also provided research experiences to 130 undergraduate students and 22 high school students through a number of outreach programs held during the summer and the academic year. RCOP has also been crucial to the development of the Ph.D. program in physics at Hampton University by providing high quality research training and technical electives required for a Doctoral degree in physics. RCOP has also excelled in research and technological development. Since 1992, RCOP researchers have leveraged over 8 million dollars in additional research funding, published 152 papers in refereed journals and proceedings, and given 125 presentations at refereed international conferences in the United States and eight other countries. RCOP also developed numerous collaborations with other research centers, universities and industries. In recognition of this outstanding work, RCOP is the first research center in the United States invited to join the Joint Open Laboratory for Laser Crystals and Precise Laser Systems headed by Dr. Alexander Kaminiskii of the Russian Academy of Sciences.

  18. The working out of architectural concept for a new type public building — multi-information and education center by using information technologies and mathematical models

    Directory of Open Access Journals (Sweden)

    Михаил Владимирович Боровиков

    2012-12-01

    Full Text Available Architectural concept of multifunctional information and educational center and its implementation is given in the author's project. Advanced information technology and mathematical models used in the development of the author project.

  19. Solar Technology Center

    Energy Technology Data Exchange (ETDEWEB)

    Boehm, Bob

    2011-04-27

    The Department of Energy, Golden Field Office, awarded a grant to the UNLV Research Foundation (UNLVRF) on August 1, 2005 to develop a solar and renewable energy information center. The Solar Technology Center (STC) is to be developed in two phases, with Phase I consisting of all activities necessary to determine feasibility of the project, including design and engineering, identification of land access issues and permitting necessary to determine project viability without permanently disturbing the project site, and completion of a National Environmental Policy Act (NEPA) Environmental Assessment. Phase II is the installation of infrastructure and related structures, which leads to commencement of operations of the STC. The STC is located in the Boulder City designated 3,000-acre Eldorado Valley Energy Zone, approximately 15 miles southwest of downtown Boulder City and fronting on Eldorado Valley Drive. The 33-acre vacant parcel has been leased to the Nevada Test Site Development Corporation (NTSDC) by Boulder City to accommodate a planned facility that will be synergistic with present and planned energy projects in the Zone. The parcel will be developed by the UNLVRF. The NTSDC is the economic development arm of the UNLVRF. UNLVRF will be the entity responsible for overseeing the lease and the development project to assure compliance with the lease stipulations established by Boulder City. The STC will be operated and maintained by University of Nevada, Las Vegas (UNLV) and its Center for Energy Research (UNLV-CER). Land parcels in the Eldorado Valley Energy Zone near the 33-acre lease are committed to the construction and operation of an electrical grid connected solar energy production facility. Other projects supporting renewable and solar technologies have been developed within the energy zone, with several more developments in the horizon.

  20. National Center for Engineering and Technology Education: The Overall Impact of the NCETE Is to Strengthen the Nation's Capacity to Deliver Effective Engineering and Technology Education in the K-12 Schools

    Science.gov (United States)

    Hailey, Christine E.; Erekson, Thomas; Becker, Kurt; Thomas, Maurice

    2005-01-01

    The National Science Foundation established the Centers for Learning and Teaching (CLT) program to address national needs in the science, technology, engineering, and mathematics (STEM) workforce. NSF recognized two problems, the large number of educators expected to retire over the next decade, and the growing number of educators inadequately…

  1. Developing and Sustaining a Science and Technology Center Education Program: "Inquiry" as a Means for Organizational Change and Institutional Legitimacy

    Science.gov (United States)

    Ball, T.; Hunter, L.

    2010-12-01

    Formal organizations have become ubiquitous in contemporary society and since so many of us spend so much of our daily lives working, learning, and socializing in them it is important to understand not only how they govern our interactions but also how we can incite (and sustain) organizational change. This is especially true for STEM education; learning about science, technology, engineering or mathematics rarely occurs outside of formal settings and educators need to be aware of how learning goals, priorities and practices are permeable to the institutional processes that structure sponsoring organizations. Adopting a historical perspective, this paper reports on organizational changes at the Center for Adaptive Optics in relation to an emerging emphasis on inquiry learning. The results of our analysis show how the inquiry model functioned as a boundary object and was instrumental in transforming members' expectations and assumptions about educational practice in STEM while securing the institutional legitimacy of the CfAO as a whole. Our findings can inform the advancement of educational initiatives within the STEM research community and are particularly useful in relation to concerns around accommodating and integrating individuals from non-dominant backgrounds.

  2. Alternative Evaluation Designs for Data-Centered Technology-Based Geoscience Education Projects

    Science.gov (United States)

    Zalles, D. R.

    2012-12-01

    This paper will present different strategies for how to evaluate contrasting K-12 geoscience classroom-based interventions with different goals, leveraging the first author's experiences as principal investigator of four NSF and NASA-funded geoscience education projects. Results will also be reported. Each project had its own distinctive features but all had in common the broad goal of bringing to high school classrooms uses of real place-based geospatial data to study the relationships of Earth system phenomena to climate change and sustainability. The first project's goal was to produce templates and exemplars for curriculum and assessment designs around studying contrasting geoscience topics with different data sets and forms of data representation. The project produced a near transfer performance assessment task in which students who studied climate trends in Phoenix turned their attention to climate in Chicago. The evaluation looked at the technical quality of the assessment instrument as measured by inter-rater reliability. It then analyzed the assessment results against student responses to the instructional tasks about Phoenix. The evaluation proved useful in pinpointing areas of student strength and weakness on different inquiry tasks, from simple map interpretation to analysis of contrasting claims about what the data indicate. The goal of the second project was to produce an exemplar curriculum unit that bridges Western science and traditional American Indian ecological knowledge for student learning and skill building about local environmental sustainability issues. The evaluation looked at the extent to which Western and traditional perspectives were incorporated into the design of the curriculum. The curriculum was not constructed with a separate assessment, yet evidence centered design was utilized to extrapolate from the exemplar unit templates for future instructional and assessment tasks around other places, other sustainability problems, and

  3. Report on enhancing young scholars in science and technology the Center for Excellence in Education

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-30

    The present stock and flow of highly talented young persons engaged in the global discovery and application of science and technology are critical to the future pace of innovation. Historically, the world`s largest reservoirs of scientists and engineers have been in the Western economies. Overtime, however, Asia has begun to build equivalent pools of scientists and engineers among their university graduates. According to 1993 data from the National Science Foundation and the UNESCO World Science Report, Germany leads all economies with a 67% ratio of science and engineering degrees to total first university degrees compared to the United States with a distant fifth place at 32% behind Italy, Mexico and Poland. If the nation is to keep its scientific and technological prowess, it must capture its very best talent in the science and technology fields. The question is then raised as to the source within the United States of the science and technology talent pool. While between 1978 and 1991 there was an overall decline in male participation in undergraduate (-9%) and graduate degrees (-12%), the number of women receiving undergraduate (+8%) and graduate degrees (+34%) rose dramatically. These numbers are encouraging for women`s participation overall, however, women earn only a small percentage of physical science and engineering degrees. Why are there so few women in mathematics, engineering, and the physical sciences? The answers are complex and begin early in a woman`s exposure to science and mathematics. This report presents results on a study of careers of alumni from the Research Science Institute. Investigations were concerned with the timing of decision processes concerned with the sciences and math and factors that influenced people to turn away from or proceed with careers in science and math.

  4. Investigating "The Coolest School in America": A Study of a Learner-Centered School and Educational Technology in the Information Age

    Science.gov (United States)

    Aslan, Sinem

    2012-01-01

    The primary purpose of this study was to improve existing design theories for characteristics of an information-age school and roles that educational technology should serve for key stakeholders in such schools. In addition to this primary purpose, this study explored how learner-centered instruction and assessment were implemented in an…

  5. 2017 Technology Showcase | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    The 2017 Technology Showcase is an inaugural, half-day event that will showcase technologies developed by the National Cancer Institute's Center for Cancer Research (CCR) and the Frederick National Laboratory for Cancer Research (FNLCR). The goal of the Showcase is to encourage startup company formation, technology licensing, and public-private collaborations. It will introduce the Frederick community to the regional technology development stakeholders, as well as highlight available resources. WHO SHOULD ATTEND: Prospective investors, established companies, educators, those looking to commercialize technologies, and all interested stakeholders. | [google6f4cd5334ac394ab.html

  6. Morgantown Energy Technology Center, technology summary

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    This document has been prepared by the DOE Environmental Management (EM) Office of Technology Development (OTD) to highlight its research, development, demonstration, testing, and evaluation activities funded through the Morgantown Energy Technology Center (METC). Technologies and processes described have the potential to enhance DOE`s cleanup and waste management efforts, as well as improve US industry`s competitiveness in global environmental markets. METC`s R&D programs are focused on commercialization of technologies that will be carried out in the private sector. META has solicited two PRDAs for EM. The first, in the area of groundwater and soil technologies, resulted in twenty-one contact awards to private sector and university technology developers. The second PRDA solicited novel decontamination and decommissioning technologies and resulted in eighteen contract awards. In addition to the PRDAs, METC solicited the first EM ROA in 1993. The ROA solicited research in a broad range of EM-related topics including in situ remediation, characterization, sensors, and monitoring technologies, efficient separation technologies, mixed waste treatment technologies, and robotics. This document describes these technology development activities.

  7. HEMISPHERIC CENTER FOR ENVIRONMENTAL TECHNOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    M.A. Ebadian

    1999-10-31

    The Deactivation and Decommissioning (D&D) Technology Assessment Program (TAP) was developed to provide detailed, comparable data for environmental technologies and to disseminate this data to D&D professionals in a manner that will facilitate the review and selection of technologies to perform decontamination and decommissioning. The objectives for this project include the following: Determine technology needs through review of the Site Technology Coordination Group (STCG) information and other applicable websites and needs databases; Perform a detailed review of industries that perform similar activities as those required in D&D operations to identify additional technologies; Define the technology assessment program for characterization and waste management problem sets; Define the data management program for characterization, dismantlement, and waste management problem sets; Evaluate baseline and innovative technologies under standard test conditions at Florida International University's Hemispheric Center for Environmental Technology (FIU-HCET) and other locations and collect data in the areas of performance, cost, health and safety, operations and maintenance, and primary and secondary waste generation; Continue to locate, verify, and incorporate technology performance data from other sources into the multimedia information system; and Develop the conceptual design for a dismantlement technology decision analysis tool for dismantlement technologies.

  8. An International Development Technology Center

    Science.gov (United States)

    Morgan, Robert P.

    1969-01-01

    Main focus of the Center is "the application of science and technology to the solution of problems faced by people in less-developed areas of the world. Adapted from paper presented at ASEE Annual Meeting, The Pennsylvania State University, June, 1969. (Author/WM)

  9. Educational technology in medical education.

    Science.gov (United States)

    Han, Heeyoung; Resch, David S; Kovach, Regina A

    2013-01-01

    This article aims to review the past practices of educational technology and envision future directions for medical education. The discussion starts with a historical review of definitions and perspectives of educational technology, in which the authors propose that educators adopt a broader process-oriented understanding of educational technology. Future directions of e-learning, simulation, and health information technology are discussed based on a systems view of the technological process. As new technologies continue to arise, this process-oriented understanding and outcome-based expectations of educational technology should be embraced. With this view, educational technology should be valued in terms of how well the technological process informs and facilitates learning, and the acquisition and maintenance of clinical expertise.

  10. Educational Technology in China

    Science.gov (United States)

    Meifeng, Liu; Jinjiao, Lv; Cui, Kang

    2010-01-01

    This paper elaborates the two different academic views of the identity of educational technology in China at the current time--advanced-technology-oriented cognition, known as Electrifying Education, and problem-solving-oriented cognition, known as Educational Technology. It addresses five main modes of educational technology in China: as a…

  11. NCI Technology Transfer Center | TTC

    Science.gov (United States)

    The National Cancer Institute’s Technology Transfer Center (TTC) facilitates partnerships between the NIH research laboratories and external partners. With specialized teams, TTC guides the interactions of our partners from the point of discovery to patenting, from invention development to licensing. We play a key role in helping to accelerate development of cutting-edge research by connecting our partners to NIH’s world-class researchers, facilities, and knowledge.

  12. The ConocoPhillips Center for a Sustainable WE2ST (Water-Energy Education, Science, and Technology): Lessons Learned from an Innovative Research-Education-Outreach Center at Colorado School of Mines

    Science.gov (United States)

    Hogue, T. S.; Blaine, A. C.; Martin, A. C.

    2016-12-01

    The ConocoPhillips Center for a Sustainable WE2ST (Water-Energy Education, Science, and Technology) is a testament to the power of collaboration and innovation. WE2ST began as a partnership between ConocoPhillips (foundation gift) and the Colorado School of Mines (CSM) with the goal of fostering solutions to water-energy challenges via education, research and outreach. The WE2ST center is a training ground for the next generation of water-energy-social scientists and engineers and is a natural fit for CSM, which is known for its expertise in water resources, water treatment technologies, petroleum engineering, geosciences, and hydrology. WE2ST has nine contributing faculty researchers that combine to create a web of expertise on sustainable energy and water resources. This research benefits unconventional energy producers, water-reliant stakeholders and the general public. Areas of focus for research include water sources (quality and quantity), integrated water-energy solution viability and risk, and social-corporate responsibility. The WE2ST Center currently provides annual support for 8-9 Graduate Fellows and 13 Undergraduate Scholars. Top-tier graduate students are recruited nationally and funded similar to an NSF Graduate Research Fellowship (GRF). Undergraduate Scholars are also recruited from across the CSM campus to gain experience in faculty laboratories and on research teams. All WE2ST students receive extensive professional skills training, leadership development, communication skills training, networking opportunities in the water-energy industries, and outreach opportunities in the community. The corner stone of the WE2ST Center is a focus on communication with the public. Both in social science research teams and in general interactions with the public, WE2ST seeks to be "an honest broker" amidst a very passionate and complex topic. WE2ST research is communicated by presentations at technical conferences, talking with people at public gatherings

  13. Center for Advanced Separation Technology

    Energy Technology Data Exchange (ETDEWEB)

    Honaker, Rick

    2013-09-30

    The U.S. is the largest producer of mining products in the world. In 2011, U.S. mining operations contributed a total of $232 billion to the nation’s GDP plus $138 billion in labor income. Of this the coal mining industry contributed a total of $97.5 billion to GDP plus $53 billion in labor income. Despite these contributions, the industry has not been well supported with research and development funds as compared to mining industries in other countries. To overcome this problem, the Center for Advanced Separation Technologies (CAST) was established to develop technologies that can be used by the U.S. mining industry to create new products, reduce production costs, and meet environmental regulations. Originally set up by Virginia Tech and West Virginia University, CAST is now a five-university consortium – Virginia Tech, West Virginia University, University of Kentucky, University of Utah and Montana Tech, - that is supported through U.S. DOE Cooperative Agreement No. DE-FE0000699, Center for Advanced Separation Technology. Much of the research to be conducted with Cooperative Agreement funds will be longer term, high-risk, basic research and will be carried out in two broad areas: Advanced Pre-Combustion Clean Coal Technologies and Gas-Gas Separations. Distribution of funds is handled via competitive solicitation of research proposals through Site Coordinators at the five member universities. These were reviewed and the selected proposals were forwarded these to the DOE/NETL Project Officer for final review and approval. The successful projects are listed below by category, along with abstracts from their final reports.

  14. Human-Centered Design Bill of Rights for Educators.

    Science.gov (United States)

    Sugar, William A.

    This paper presents a potential solution to encourage technology adoption and integration within schools by proposing a human-centered technology "bill of rights" for educators. The intention of this bill of rights it to influence educators' beliefs towards technology and to enable educators to confront with confidence the seemingly…

  15. Gallaudet University, Laurent Clerc National Deaf Education Center

    Science.gov (United States)

    Subscribe Resources For Families New to Deaf Education Online Networks Odyssey Magazine Publications Shared Reading Project Cochlear Implant Education Center Products Info To Go American Sign Language Assistive Technology ...

  16. Education, Technology and Health Literacy

    DEFF Research Database (Denmark)

    Lindgren, Kurt; Sølling, Ina Koldkjær; Carøe, Per

    2015-01-01

    Abstract The purpose of this study is to develop an interdisciplinary learning environment between education in technology, business, and nursing. This collaboration contributes to the creation of a natural interest and motivation for welfare technology. The aim of establishing an interaction...... as a theoretical and practical learning center. The mission of the Student Academy is to support and facilitate education in order to maintain and upgrade knowledge and skills in information technology and information management in relation to e-health and Health Literacy. The Student Academy inspires students...

  17. Technology in Education

    Science.gov (United States)

    Roden, Kasi

    2011-01-01

    This paper was written to support a position on using technology in education. The purpose of this study was to support the use of technology in education by synthesizing previous research. A variety of sources including books and journal articles were studied in order to compile an overview of the benefits of using technology in elementary,…

  18. Education Technology Success Stories

    Science.gov (United States)

    West, Darrell M.; Bleiberg, Joshua

    2013-01-01

    Advances in technology are enabling dramatic changes in education content, delivery, and accessibility. Throughout history, new technologies have facilitated the exponential growth of human knowledge. In the early twentieth century, the focus was on the use of radios in education. But since then, innovators have seen technology as a way to improve…

  19. Franchising Technology Education: Issues and Implications.

    Science.gov (United States)

    Daniel, Dan; Newcomer, Cynthia

    1993-01-01

    Describes educational technology franchises that sell services to students, either through schools or directly through retail centers, to educate them about and with technology. Topics addressed include the emphasis on personalized instruction; cooperative learning; curriculum; cost effectiveness; site-based management in public education; and…

  20. Center for Nanoscale Science and Technology

    Science.gov (United States)

    NIST Center for Nanoscale Science and Technology (Program website, free access)   Currently there is no database matching your keyword search, but the NIST Center for Nanoscale Science and Technology website may be of interest. The Center for Nanoscale Science and Technology enables science and industry by providing essential measurement methods, instrumentation, and standards to support all phases of nanotechnology development, from discovery to production.

  1. Building Technologies Research and Integration Center (BTRIC)

    Data.gov (United States)

    Federal Laboratory Consortium — The Building Technologies Research and Integration Center (BTRIC), in the Energy and Transportation Science Division (ETSD) of Oak Ridge National Laboratory (ORNL),...

  2. Search Technologies | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    Our team of technology transfer specialists has specialized training in invention reporting, patenting, patent strategy, executing technology transfer agreements and marketing. TTC is comprised of professionals with diverse legal, scientific, and business/marketing expertise. Most of our staff hold doctorate-level technical and/or legal training.

  3. Available Technologies | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    Our team of technology transfer specialists has specialized training in invention reporting, patenting, patent strategy, executing technology transfer agreements and marketing. TTC is comprised of professionals with diverse legal, scientific, and business/marketing expertise. Most of our staff hold doctorate-level technical and/or legal training.

  4. HEMISPHERIC CENTER FOR ENVIRONMENTAL TECHNOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    M.A. Ebadian

    1999-04-30

    The final data package has been completed for the Mississippi State University, DIAL FTP Wall Depth Removal Characterization Technology. The package has been sent to DIAL for comments. Work is progressing on completing the transfer of glove boxes and tanks from Rocky Flats to FIU-HCET for the purpose of performing size reduction technology assessments. Vendors are being identified and security measures are being put in place to meet the High Risk Property criteria required by Rocky Flats. The FIU-HCET Technology Assessment Program has been included as one of 11 verification programs across the US and Canada described in the Interstate Technology Regulatory Cooperation (ITRC) document, ''Multi-state Evaluation of Elements Important to the Verification of Remediation Technologies'', dated January 1999. FIU-HCET will also participate in a panel discussion on technology verification programs at the International Environmental Technology Expo '99.

  5. Technology based Education System

    DEFF Research Database (Denmark)

    Kant Hiran, Kamal; Doshi, Ruchi; Henten, Anders

    2016-01-01

    Abstract - Education plays a very important role for the development of the country. Education has multiple dimensions from schooling to higher education and research. In all these domains, there is invariably a need for technology based teaching and learning tools are highly demanded in the acad...

  6. CAD/BIM Technology Center

    Data.gov (United States)

    Federal Laboratory Consortium — Supporting Better Decisions in Facility, Infrastructure, and Environment Management Access to technology tools to model structures before they are built can provide...

  7. HEMISPHERIC CENTER FOR ENVIRONMENTAL TECHNOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    M.A. Ebadian

    1999-05-31

    The programming and website for the advanced Technology Information System (TIS) have been completed. Over and above the LSDDP-TIS, the new system provides information on DOE's baseline technologies, technology data contained in DOE's databases, technologies assessed at FIU-HCET Technology Assessment Program (TAP), as well as links to other selected D&D sites with valuable technology information. The new name for the website is Gateway for Environmental Technology (GET). A super-vacuum type blasting system was tested for decontamination of 12-in pipe internal surfaces. The system operates on compressed air and propels grit media at high speed at wall surfaces. It is equipped with a vacuum system for collecting grit, dust, and debris. This technology was selected for further development. The electret ion chamber (EIC) system for measurement of alpha contamination on surfaces has been calibrated and is ready for demonstration and deployment. FIU-HCET is working with representatives from Fernald, Oak Ridge, Rocky Flats, and Savannah River to procure a demonstration and deployment site. Final arrangements are ongoing for the mock-up design for the glove box and tank size reduction technology assessments, including designing of support bases for tanks, a piping support system, and a mobilization plan for glove boxes and tanks from storage site to the PermaCon.

  8. CAD/BIM Technology Center

    Data.gov (United States)

    Federal Laboratory Consortium — Supporting Better Decisions in Facility, Infrastructure, and Environment ManagementAccess to technology tools to model structures before they are built can provide...

  9. HEMISPHERIC CENTER FOR ENVIRONMENTAL TECHNOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    M.A. Ebadian

    1999-01-31

    FIU-HCET participated in an ICT meeting at Mound during the second week of December and presented a brief videotape of the testing of the Robotic Climber technology. During this meeting, FIU-HCET proposed the TechXtract technology for possible testing at Mound and agreed to develop a five-page proposal for review by team members. FIU-HCET provided assistance to Bartlett Inc. and General Lasertronics Corporation in developing a proposal for a Program Opportunity Notice (PON). The proposal was submitted by these companies on January 5, 1999. The search for new equipment dismantlement technologies is continuing. The following vendors have responded to requests for demonstration: LUMONICS, Laser Solutions technology; CRYO-BEAM, Cryogenic cutting technology; Waterjet Technology Association, Waterjet Cutting technology; and DIAJET, Waterjet Cutting technology. Based on the tasks done in FY98, FIU-HCET is working closely with Numatec Hanford Corporation (NHC) and Pacific Northwest National Laboratory (PNNL) to revise the plan and scope of work of the pipeline plugging project in FY99, which involves activities of lab-scale flow loop experiments and a large-scale demonstration test bed.

  10. Advanced technologies for Mission Control Centers

    Science.gov (United States)

    Dalton, John T.; Hughes, Peter M.

    1991-01-01

    Advance technologies for Mission Control Centers are presented in the form of the viewgraphs. The following subject areas are covered: technology needs; current technology efforts at GSFC (human-machine interface development, object oriented software development, expert systems, knowledge-based software engineering environments, and high performance VLSI telemetry systems); and test beds.

  11. KSC Education Technology Research and Development Plan

    Science.gov (United States)

    Odell, Michael R. L.

    2003-01-01

    Educational technology is facilitating new approaches to teaching and learning science, technology, engineering, and mathematics (STEM) education. Cognitive research is beginning to inform educators about how students learn providing a basis for design of more effective learning environments incorporating technology. At the same time, access to computers, the Internet and other technology tools are becoming common features in K-20 classrooms. Encouraged by these developments, STEM educators are transforming traditional STEM education into active learning environments that hold the promise of enhancing learning. This document illustrates the use of technology in STEM education today, identifies possible areas of development, links this development to the NASA Strategic Plan, and makes recommendations for the Kennedy Space Center (KSC) Education Office for consideration in the research, development, and design of new educational technologies and applications.

  12. What Is A Teacher Education Center?

    Science.gov (United States)

    O'Gorman, David E.

    The introductory portion of this report defines teacher education centers and briefly describes their developmental continuum. A synthesis of documents concerning student teaching and teacher education centers is followed by a list of features differentiating conventional programs, student teaching centers, and teacher education centers.…

  13. Educational technology, reimagined.

    Science.gov (United States)

    Eisenberg, Michael

    2010-01-01

    "Educational technology" is often equated in the popular imagination with "computers in the schools." But technology is much more than merely computers, and education is much more than mere schooling. The landscape of child-accessible technologies is blossoming in all sorts of directions: tools for communication, for physical construction and fabrication, and for human-computer interaction. These new systems and artifacts allow educational designers to think much more creatively about when and where learning takes place in children's lives, both within and outside the classroom.

  14. Education, Technology and Health Literacy

    DEFF Research Database (Denmark)

    Lindgren, Kurt; Sølling, Ina Koldkjær; Carøe, Per;

    2015-01-01

    The purpose of this study is to develop an interdisciplinary learning environment between education in technology, business, and nursing. This collaboration contributes to the creation of a natural interest and motivation for welfare technology. The aim of establishing an interaction between the 3...... as a theoretical and practical learning center. The mission of the Student Academy is to support and facilitate education in order to maintain and upgrade knowledge and skills in information technology and information management in relation to e-health and Health Literacy. The Student Academy inspires students...... areas of expertise is to create an understanding for each other's skills and cultural differences. Futhermore enabling future talents to gain knowledge and skills to improve Health Literacy among senior citizens. Based on a holistic view on welfare technology a Student Academy was created...

  15. HEMISPHERIC CENTER FOR ENVIRONMENTAL TECHNOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    M.A. Ebadian

    1999-07-31

    FIU-HCET personnel visited the Special Technologies Laboratory (STL) for discussions with the Principal Investigator (PI) of Laser Induced Fluorescence Imaging (LIFI) and for training in LIFI. Mr. Peter Gibbons, Tanks Retrieval Technology Integration Manager, visited FIU-HCET on July 20, 1999. Mr. Gibbons inspected the pipeline unplugging experimental facility at the HCET testing field. The detailed test bed construction, testing plan, and plugging material specifications were discussed.

  16. Advanced Technology for Engineering Education

    Science.gov (United States)

    Noor, Ahmed K. (Compiler); Malone, John B. (Compiler)

    1998-01-01

    This document contains the proceedings of the Workshop on Advanced Technology for Engineering Education, held at the Peninsula Graduate Engineering Center, Hampton, Virginia, February 24-25, 1998. The workshop was jointly sponsored by the University of Virginia's Center for Advanced Computational Technology and NASA. Workshop attendees came from NASA, other government agencies, industry and universities. The objectives of the workshop were to assess the status of advanced technologies for engineering education and to explore the possibility of forming a consortium of interested individuals/universities for curriculum reform and development using advanced technologies. The presentations covered novel delivery systems and several implementations of new technologies for engineering education. Certain materials and products are identified in this publication in order to specify adequately the materials and products that were investigated in the research effort. In no case does such identification imply recommendation or endorsement of products by NASA, nor does it imply that the materials and products are the only ones or the best ones available for this purpose. In many cases equivalent materials and products are available and would probably produce equivalent results.

  17. Lessons of Educational Technology

    Directory of Open Access Journals (Sweden)

    Manuela Repetto

    2006-01-01

    Full Text Available Reception of the book "Lessons of Educational Technology." The book contains materials work in certain aspects relevant to the formation of a teacher who is able to meet the challenges of society 'knowledge.

  18. HEMISPHERIC CENTER FOR ENVIRONMENTAL TECHNOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    M.A. Ebadian

    1999-03-30

    A vendor was selected for the diamond wire technology demonstration scheduled for this summer at Princeton Plasma Physics Laboratory (PPPL). A team consisting of personnel from FIU-HCET, PPPL, and AEA Technology reviewed the submitted bids. FIU-HCET will contract this vendor. At the SRS Ninth ICT teleconference, the ICT team discussed the status of the following demonstrations: LRAD; x-ray, K-edge; Strippable Coatings; Thermal Spray Vitrification; Cutting/Shearing/Dismantlement/Size Reduction; and Electrets. The LRAD demo is complete, and the x-ray/K-edge, Strippable Coatings, and Electrets demos are ongoing. The Asbestos and Thermal Spray Vitrification demos require more laboratory testing. The Cutting/Shearing/Dismantlement/Size Reduction demo is undergoing procurement. Five FIU-HCET staff members took the 1S0 14000 environmental auditor training course February 22-26, 1999, given by ASC. The test plan for the Facility Dismantlement Technology Assessment is finished and ready for internal review.

  19. Savannah River Technology Center, monthly report

    Energy Technology Data Exchange (ETDEWEB)

    1994-04-01

    This is the monthly report to detail the research currently being conducted at the Savannah River Technology Center. The areas of research are in Tritium, Seperation processes, Environmental Engineering, and Waste Management.

  20. Savannah River Technology Center monthly report

    Energy Technology Data Exchange (ETDEWEB)

    1992-10-01

    This document contains many small reports from personnel at the technology center under the umbrella topics of reactors, tritium, separations, environment, waste management, and general engineering. Progress and accomplishments are given.

  1. NASA(Field Center Based) Technology Commercialization Centers

    Science.gov (United States)

    1995-01-01

    Under the direction of the IC(sup 2) Institute, the Johnson Technology Commercialization Center has met or exceeded all planned milestones and metrics during the first two and a half years of the NTCC program. The Center has established itself as an agent for technology transfer and economic development in- the Clear Lake community, and is positioned to continue as a stand-alone operation. This report presents data on the experimental JTCC program, including all objective measures tracked over its duration. While the metrics are all positive, the data indicates a shortage of NASA technologies with strong commercial potential, barriers to the identification and transfer of technologies which may have potential, and small financial return to NASA via royalty-bearing licenses. The Center has not yet reached the goal of self-sufficiency based on rental income, and remains dependent on NASA funding. The most important issues raised by the report are the need for broader and deeper community participation in the Center, technology sourcing beyond JSC, and the form of future funding which will be appropriate.

  2. Technology and Educational Structure

    Science.gov (United States)

    Boocock, Sarane S.

    2012-01-01

    Most current debate on instructional technology is characterized either by grandiose speculation on the salvation of education through automation (without specification of "what" and "how" technological innovations will actually be introduced in specific classroom situations, and how the changes will be financed), or by jargon-filled hairsplitting…

  3. Educational Technology Funding Models

    Science.gov (United States)

    Mark, Amy E.

    2008-01-01

    Library and cross-disciplinary literature all stress the increasing importance of instructional technology in higher education. However, there is a dearth of articles detailing funding for library instructional technology. The bulk of library literature on funding for these projects focuses on one-time grant opportunities and on the architecture…

  4. The Educational Technology Myth

    Science.gov (United States)

    Stansfield, David

    2012-01-01

    If one wants to teach youth to think, one has to restrain himself from doing all their thinking for them. One has to refrain from specifying in advance what they are going to think. Yet, this is just what educational technologists are consistently guilty of doing. Educational technology is committed to excluding the possibility of anything new or…

  5. HEMISPHERIC CENTER FOR ENVIRONMENTAL TECHNOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    M.A.Ebadian

    1999-02-28

    Search for decontamination technologies to be assessed at FIU-HCET continues. Bartlett Nuclear Inc. returned to FIU-HCET on February 15-19, 1999, to complete the demonstration of coating removal from concrete ceiling and aggressive contamination removal on uncoated concrete wall using their Robotic Climber. The design of test beds for large-scale technology demonstration of blockage locating and pipe unplugging has undergone major revision. The lab-scale test loop is also under modification. A new sampling system using isokinetic principles and consisting of thermistors, flow controller, and Wheatstone bridge will be installed on the flow loop. FIU-HCET International Coordinator attended the VII Steering Committee meeting in Lima, Peru, on February 11-12, 1999, and successfully introduced the Interactive Communication Website. Additional agenda items on the Website were proposed by the Steering Committee for upcoming committee meetings and working groups.

  6. HEMISPHERIC CENTER FOR ENVIRONMENTAL TECHNOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    M.A. Ebadian

    1999-06-30

    To enhance the measurement capability of EICs to alpha spectrometry, measurements at FIU-HCET were performed on different energy alpha sources, and response factors of ST electrets in 960-mL chamber were determined. Earlier, EIC was considered as only a charge-integrating device without spectrometric capability. This is a potentially significant development accomplished by FIU-HCET. It could appreciably lower the current cost of spectral characterization. FIU-HCET has been invited to participate in the Operating Engineers' National Hazmat program's assessment of the Mini Mitter, commercially known as the VitalSense{trademark} Telemetric Monitoring System. This evaluation is scheduled for early July 1999. Additional health and safety technology evaluations, in which FIU-HCET will also participate, are also scheduled for later in the summer. The Technology Information System (TIS), MISD, and DASD are now complete and accessible through the Internet website http://www.DandD.org/tis.

  7. HEMISPHERIC CENTER FOR ENVIRONMENTAL TECHNOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    M.A. Ebadian

    1999-09-30

    The Princeton Plasma Physics Laboratory (PPPL) demonstration of the diamond wire cutting technology on the surrogate of the Tokamak Fusion Test Reactor (TFTR), Figure 1, was performed from August 23-September 3, 1999. The plated diamond wire, Figure 2, was successful in cutting through all components of the TFTR surrogate including stainless steel, inconel and graphite. The demonstration tested three different void fill materials (mortar with sand, Rheocell-15, and foam) and three cooling systems (water, air, and liquid nitrogen). The optimum combination was determined to be the use of the low-density concrete void fill, Rheocell-15 with an average density of 52 lbs/ft{sup 3}, using a water coolant. However, the liquid nitrogen performed better than expected with only minor problems and was considered to be a successful demonstration of the Bluegrass Concrete Cutting, Inc. proprietary liquid-nitrogen coolant system. Data from the demonstration is being calculated and a summary of the technology demonstration will be included in the October monthly report. An ITSR will be written comparing the diamond wire saw to the plasma arc (baseline) technology. The MTR Chemical Protective Suit, a proprietary new suit from Kimberly Clark, was evaluated from 8/9/99 to 8/12/99 at Beaver, WV. This particular suit was tested on subjects performing three different tasks: climbing through a horizontal confined space, vertical confined space (pit), and loading and unloading material using a wheel barrow. Multiple test subjects performed each task for 20 minutes each. Performance of the innovative suit was compared to two commonly used types of protective clothing. Vital statistics, including body temperature and heart rate, were continuously monitored and recorded by an authorized physician. A summary of the demonstration will be included in the October monthly report. Along with the MTR Chemical Protective Suit, the VitalSense{trademark} Telemetric Monitoring System from Mini Mitter

  8. Technologies for Learner-Centered Feedback

    Science.gov (United States)

    Costello, Jane; Crane, Daph

    2013-01-01

    As the number, type, and use of technologies to support learning increases, so do the opportunities for using these technologies for feedback. Learner-centered feedback is a core to the teaching-learning process. It is related to assessment in describing how learners perform in their learning, their gain in knowledge, skills, and attitudes.…

  9. Center for Assistive Technology & Environmental Access

    Science.gov (United States)

    ... new address and college name * The Center for Assistive Technology and Environmental Access Georgia Institute of Technology (GT) College of Design 512 Means St., Suite 300, Atlanta, GA 30332-0156 (for shipping, please use 30318) U.S.A. Phone: 404-894-4960 (v/tty) ... | Privacy Agreement

  10. Join TTC! | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    The NCI Technology Transfer Center (TTC) offers a unique opportunity for training through the NCI TTC Fellowship program. TTC also has a unit dedicated to marketing these research opportunities and their underlying technologies to potential collaborators and licensees. | [google6f4cd5334ac394ab.html

  11. HEMISPHERIC CENTER FOR ENVIRONMENTAL TECHNOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    M.A. Ebadian

    2000-01-31

    The Online Measurement of Decontamination project team received a commitment for a demonstration in May from the Sacramento (California) Municipal Utility District (SMUD) Rancho Seco site. Since this site is a member of the DOE Commercial Utilities Consortium, the demonstration will fulfill the DOE and commercial technology demonstration requirements. Discussion on deployment of the Integrated Vertical and Overhead Decontamination (IVOD) System at Rancho Seco was conducted; date for deployment tentatively scheduled for early spring. Based upon fictional requirements from SRS for a shiny monitor in a high-level waste tank, FIU-HCET developed and delivered a draft slurry monitor design and draft test plan. Experiments measuring slurry settling time for SRS slurry simulant at 10 wt% have been completed on FIU-HCET'S flow loop with SRS dip. The completed design package of the test mockup for evaluating Non-Intrusive Location of Buried Items Technologies was sent to Fluor Fernald and the Operating Engineers National Hazmat Program for review. Comments are due at the end of January. Preliminary experiments to determine size distribution of aerosols generated during metal cutting were performed. A 1/4-inch-thick iron plate was cut using a plasma arc torch, and the size distribution of airborne particles was measured using a multistage impactor. Per request of DOE-Ohio, FIU-HCET participated in a weeklong value engineering study for the characterization, decontamination, and dismantlement of their critical path facility.

  12. Satisloh centering technology developments past to present

    Science.gov (United States)

    Leitz, Ernst Michael; Moos, Steffen

    2015-10-01

    The centering of an optical lens is the grinding of its edge profile or contour in relationship to its optical axis. This is required to ensure that the lens vertex and radial centers are accurately positioned within an optical system. Centering influences the imaging performance and contrast of an optical system. Historically, lens centering has been a purely manual process. Along its 62 years of assembling centering machines, Satisloh introduced several technological milestones to improve the accuracy and quality of this process. During this time more than 2.500 centering machines were assembled. The development went from bell clamping and diamond grinding to Laser alignment, exchange chuckor -spindle systems, to multi axis CNC machines with integrated metrology and automatic loading systems. With the new centering machine C300, several improvements for the clamping and grinding process were introduced. These improvements include a user friendly software to support the operator, a coolant manifold and "force grinding" technology to ensure excellent grinding quality and process stability. They also include an air bearing directly driven centering spindle to provide a large working range of lenses made of all optical materials and diameters from below 10 mm to 300 mm. The clamping force can be programmed between 7 N and 1200 N to safely center lenses made of delicate materials. The smaller C50 centering machine for lenses below 50 mm diameter is available with an optional CNC loading system for automated production.

  13. Technological transfer to the education

    Directory of Open Access Journals (Sweden)

    Enrique Melamed-Varela

    2016-12-01

    Full Text Available One of the most efficient strategies related to generation of differentiation factors which contribute to stability and sustainability in time as well as the  momentum of technological development in different territories is represented by the growth in scientific, technological and innovative development based on the structure of economic systems. Education is considered a fundamental element because it is the essence in the formation and fortification of the capacities, skills and competencies in human capital. This is needed for the management of research projects, development and innovation that will contribute to technology transfer and the progress of scientific knowledge that is encouraged from the inside of the organizational structures of the national economic sectors One of the most influential and conceptual tendencies of economic thinking in the countries (Gomez, Ibagón& Forero, 2014 are represented by the theories based on endogenous development in Latin America.  In addition,  the scientific development of a nation brewing from a process of internal learning and strengthening of the technical and technological capabilities that support the processes of education and research as generators of knowledge (Amar &Diazgranados, 2006, this principle is supported by Mazzucato´s (2014 theory,  who considers states as  capable of generating a platform for enabling capabilities of resources for the scientific and technological development entrepreneurs ;fact that are continuously supported by education. Starting from this series of concepts, the following question arises: do different levels of modern educational institutions use technological access? It must be taken into account that the scientific and technological progress results of the research, development and innovation (RDI is not indifferent for educational organizations, an activity that is mostly awarded to the universities and technological development centers (Ortiz, 2012

  14. Centers for manufacturing technology: Industrial Advisory Committee Review

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-01

    An advisory committee, composed of senior managers form industrial- sector companies and major manufacturing trade associations and representatives from appropriate educational institutions, meets semi-annually to review and advise the Oak Ridge Centers for Manufacturing Technology (ORCMT) on its economic security program. Individual papers have been indexed separately for the database.

  15. Tablet Technologies and Education

    OpenAIRE

    Heidi L. Schnackenberg

    2013-01-01

    Recently, tablet technologies have grown tremendously in popularity. They lend themselves to a myriad of learning modalities and therefore may be well suited to use in schools and universities. While teachers work to find useful applications for tablets, students have already begun using them at home and, in secondary and higher education, in classes. Unfortunately, sometimes when students use tablets for courses they play with “apps,” rather than using the technology as a useful and powerful...

  16. Advanced Technological Education Survey 2010 Fact Sheet

    Science.gov (United States)

    Wingate, Lori; Westine, Carl; Gullickson, Arlen

    2010-01-01

    This fact sheet summarizes data gathered in the 2010 survey of National Science Foundation (NSF) Advanced Technological Education (ATE) grant recipients. Conducted by EvaluATE, the evaluation resource center for the ATE program located at The Evaluation Center at Western Michigan University, this was the eleventh annual survey of ATE projects and…

  17. Advanced Technological Education Survey 2012 Fact Sheet

    Science.gov (United States)

    Wingate, Lori; Smith, Corey; Westine, Carl; Gullickson, Arlen

    2012-01-01

    This fact sheet summarizes data gathered in the 2012 survey of National Science Foundation (NSF) Advanced Technological Education (ATE) grant recipients. Conducted by EvaluATE, the evaluation resource center for the ATE program located at The Evaluation Center at Western Michigan University, this was the thirteenth annual survey of ATE projects…

  18. Advanced Technological Education Survey 2011 Fact Sheet

    Science.gov (United States)

    Wingate, Lori; Westine, Carl; Gullickson, Arlen

    2011-01-01

    This fact sheet summarizes data gathered in the 2011 survey of National Science Foundation (NSF) Advanced Technological Education (ATE) grant recipients. Conducted by EvaluATE, the evaluation resource center for the ATE program located at The Evaluation Center at Western Michigan University, this was the twelfth annual survey of ATE projects and…

  19. CROSSCUTTING TECHNOLOGY DEVELOPMENT AT THE CENTER FOR ADVANCED SEPARATION TECHNOLOGIES

    Energy Technology Data Exchange (ETDEWEB)

    Christopher E. Hull

    2006-05-15

    This Technical Progress Report describes progress made on the twenty nine subprojects awarded in the second year of Cooperative Agreement DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. This work is summarized in the body of the main report: the individual sub-project Technical Progress Reports are attached as Appendices.

  20. CROSSCUTTING TECHNOLOGY DEVELOPMENT AT THE CENTER FOR ADVANCED SEPARATION TECHNOLOGIES

    Energy Technology Data Exchange (ETDEWEB)

    Christopher E. Hull

    2005-11-04

    This Technical Progress Report describes progress made on the twenty nine subprojects awarded in the second year of Cooperative Agreement DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. This work is summarized in the body of the main report: the individual sub-project Technical Progress Reports are attached as Appendices.

  1. Crosscutting Technology Development at the Center for Advanced Separation Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Christopher E. Hull

    2006-09-30

    This Technical Progress Report describes progress made on the twenty nine subprojects awarded in the second year of Cooperative Agreement DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. This work is summarized in the body of the main report: the individual sub-project Technical Progress Reports are attached as Appendices.

  2. Center for Coastline Security Technology, Year 3

    Science.gov (United States)

    2008-05-01

    Figure 2.6.8: Close-Up Photograph of RPUUV Tail Section. Figure 2.6.9: Force and moments applied on a hydrofoil . Figure 2.6.10: The NACA 21016... hydrofoil profile. Florida Atlantic University 4/28/08 Page 10 Center for Coastline Security Technology Year Three-Final Report Figure...as a 3D wing with a NACA 21016 hydrofoil profile (Figure 2.6.10) held by 3 cylinders (Figure 2.6.8). Center for Coastline Security Technology Year

  3. Technologies for learner-centered feedback

    Directory of Open Access Journals (Sweden)

    Jane Costello

    2013-09-01

    Full Text Available As the number, type, and use of technologies to support learning increases, so do the opportunities for using these technologies for feedback. Learner-centered feedback is a core to the teaching-learning process. It is related to assessment in describing how learners perform in their learning, their gain in knowledge, skills, and attitudes. Feedback, types of feedback, guidelines for effective learner-centered feedback, and feedback’s relationship to assessment are presented. Methods of providing feedback, for example, automated, audio scribe pens, digital audio, etc., and the related technologies are described. Technologies that allow instructors to make informed decisions about the use of various methods for feedback are discussed.

  4. TECHNOLOGY IN EDUCATION.

    Science.gov (United States)

    TONDOW, MURRAY

    PAPERS ON THE PRESENT AND FUTURE USE OF TECHNOLOGY IN EDUCATION IS PRESENTED. HARRY F. SILBERMAN, IN "EVALUATIVE CRITERIA FOR AUTOMATED TEACHING PROGRAMS," PRESENTS COMMENTS, CRITERIA, AND TABLES ON AUTOMATED TEACHING PROGRAMS. HE DESCRIBES EXPERIMENTS ON THE EFFECTIVENESS OF BRANCHING AND FIXED SEQUENCE PROGRAMS, ON A FOLLOWUP…

  5. Educational Technology Leadership

    Science.gov (United States)

    McLeod, Scott

    2008-01-01

    As districts look at the millennials in their classrooms and plan for the most effective educational strategies to reach them, it is clear that technology can enable learning in ways that never before have been possible. It is also clear that this generation grew up with tools and techniques that are well integrated with their lifestyles. To these…

  6. TECHNOLOGY IN EDUCATION.

    Science.gov (United States)

    TONDOW, MURRAY

    PAPERS ON THE PRESENT AND FUTURE USE OF TECHNOLOGY IN EDUCATION IS PRESENTED. HARRY F. SILBERMAN, IN "EVALUATIVE CRITERIA FOR AUTOMATED TEACHING PROGRAMS," PRESENTS COMMENTS, CRITERIA, AND TABLES ON AUTOMATED TEACHING PROGRAMS. HE DESCRIBES EXPERIMENTS ON THE EFFECTIVENESS OF BRANCHING AND FIXED SEQUENCE PROGRAMS, ON A FOLLOWUP…

  7. Educational Technology Leadership

    Science.gov (United States)

    McLeod, Scott

    2008-01-01

    As districts look at the millennials in their classrooms and plan for the most effective educational strategies to reach them, it is clear that technology can enable learning in ways that never before have been possible. It is also clear that this generation grew up with tools and techniques that are well integrated with their lifestyles. To these…

  8. Technology and Nursing Education.

    Science.gov (United States)

    Neighbors, Marianne; Eldred, Evelyn E.

    1993-01-01

    A study to isolate some of the complex skills that nurses are expected to perform in current practice identified 54 skills and surveyed 167 staff nurses and 53 nurse executives to classify the expected level of performance for a new graduate. Results indicated that educators bear responsibility for learning about technology and incorporating it…

  9. Positive Education Program's Day Treatment Centers

    Science.gov (United States)

    Fecser, Frank A.

    2003-01-01

    The Positive Education Program in Cleveland, Ohio, is grounded in the Re-EDucation philosophy and serves more than 700 students with emotional and behavioral disorders in eight day treatment centers. The centers blend special education with mental health in a school environment in which students and families are both supported and challenged as…

  10. License Agreements | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    Since the government cannot engage in the development, manufacture, and sale of products, the NCI Technology Transfer Center (TTC) makes its discoveries (and discoveries from nine other NIH Institutes) available to organizations that can assist in the further development and commercialization of these basic science discoveries, to convert them into public health benefits. | [google6f4cd5334ac394ab.html

  11. About TTC | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    The National Cancer Institute’s Technology Transfer Center (TTC) facilitates partnerships between the NIH research laboratories and external partners, and helping to accelerate development of cutting-edge research by connecting our partners to NIH’s world-class facilities, resources, and discoveries. Contact us to learn more. | [google6f4cd5334ac394ab.html

  12. Optimizing Low Temperature Diesel Combustion (LTC-D) "FreedomCAR and Vehicle Technologies Program Solicitation for University Research and Graduate Automotice Technology Education (GATE) Centers of Excellence"

    Energy Technology Data Exchange (ETDEWEB)

    Rolf Reitz; P. Farrell; D. Foster; J. Ghandhi; C. Rutland; S. Sanders

    2009-07-31

    The engine industry is currently facing severe emissions mandates. Pollutant emissions from mobile sources are a major source of concern. For example, US EPA mandates require emissions of particulate and nitrogen oxides (NOx) from heavy-duty diesel engine exhaust to drop at least 90 percent between 1998 and 2010. Effective analysis of the combustion process is required to guide the selection of technologies for future development since exhaust after-treatment solutions are not currently available that can meet the required emission reduction goals. The goal of this project is to develop methods to optimize and control Low Temperature Combustion Diesel technologies (LTC-D) that offers the potential of nearly eliminating engine NOx and particulate emissions at reduced cost over traditional methods by controlling pollutant emissions in-cylinder. The work was divided into 5 Tasks, featuring experimental and modeling components: 1.) Fundamental understanding of LTC-D and advanced model development, 2.) Experimental investigation of LTC-D combustion control concepts, 3.) Application of detailed models for optimization of LTC-D combustion and emissions, 4.) Impact of heat transfer and spray impingement on LTC-D combustion, and 5.) Transient engine control with mixed-mode combustion. As described in the final report (December 2008), outcomes from the research included providing guidelines to the engine and energy industries for achieving optimal low temperature combustion operation through using advanced fuel injection strategies, and the potential to extend low temperature operation through manipulation of fuel characteristics. In addition, recommendations were made for improved combustion chamber geometries that are matched to injection sprays and that minimize wall fuel films. The role of fuel-air mixing, fuel characteristics, fuel spray/wall impingement and heat transfer on LTC-D engine control were revealed. Methods were proposed for transient engine operation during

  13. Marshall Space Flight Center Technology Investments Overview

    Science.gov (United States)

    Tinker, Mike

    2014-01-01

    NASA is moving forward with prioritized technology investments that will support NASA's exploration and science missions, while benefiting other Government agencies and the U.S. aerospace enterprise. center dotThe plan provides the guidance for NASA's space technology investments during the next four years, within the context of a 20-year horizon center dotThis plan will help ensure that NASA develops technologies that enable its 4 goals to: 1.Sustain and extend human activities in space, 2.Explore the structure, origin, and evolution of the solar system, and search for life past and present, 3.Expand our understanding of the Earth and the universe and have a direct and measurable impact on how we work and live, and 4.Energize domestic space enterprise and extend benefits of space for the Nation.

  14. Special Education through Neighbourhood Centers in Algeria.

    Science.gov (United States)

    Boucebci, Mahfoud

    1981-01-01

    The article provides a survey of special education needs in Algeria with emphasis on the role of neighborhood centers which involve parents in the education of mentally handicapped children. Journal availability: see EC 133 861. (DB)

  15. Lateral Thinking and Technology Education.

    Science.gov (United States)

    Waks, Shlomo

    1997-01-01

    Presents an analysis of technology education and its relevance to lateral thinking. Discusses prospects for utilizing technology education as a platform and a contextual domain for nurturing lateral thinking. Argues that technology education is an appropriate environment for developing complementary incorporation of vertical and lateral thinking.…

  16. Os Centros Federais de Educação Tecnológica e o ensino superior: duas lógicas em confronto The federal centers of technological education and higher education: two confronting logics

    Directory of Open Access Journals (Sweden)

    Maria Ciavatta

    2006-10-01

    Full Text Available O sentido educacional que os Centros Federais de Educação Tecnológica assumem ao se tornarem, progressivamente, instituições de ensino superior, exige que se defina que ser humano se quer formar e a que finalidades se destina a educação. Cabe ainda uma reflexão sobre a questão da técnica, da ciência e da tecnologia e sua relação com o trabalho e a educação. Tendo como horizonte uma visão de totalidade social dos fenômenos, nas múltiplas relações que estabelecem, portanto, na sua complexidade, trataremos do tema proposto em sua dimensão histórica e política. Primeiro, refletimos sobre o significado da técnica e sua relação com o conhecimento, a ciência e as tecnologias. A seguir, trataremos dos termos cidadão produtivo e/ou emancipado e da estrutura social brasileira e suas grandes desigualdades. Por último, da questão da universidade, da produção do conhecimento e de sua relação com o ensino médio e a formação de tecnólogos em nível superior.As the Federal Centers of Technological Education gradually become higher education institutions the educational meaning they assume requires a definition of which human being we want to form and what purposes education serves. A reflection about the issue of technique, science and technology and their relation to work and education is also needed. Seeking a vision of social totality of the phenomena, in their multiple relations, therefore, in their complexity, we tackle the proposed subject in its historical and political dimension. We first reflect on the meaning of technique and its relation to knowledge, science and technologies. We then approach the terms productive and/or emancipated citizen and the Brazilian social structure, marked by great inequalities. Finally, we raise the issues of universities and production of knowledge and their relation to senior high school and the education of technologists on a higher level.

  17. Investigating "The Coolest School in America": How Technology Is Used in a Learner-Centered School

    Science.gov (United States)

    Aslan, Sinem; Reigeluth, Charles M.

    2016-01-01

    Reigeluth et al. ("Educ Technol" 48(6):32-39, 2008) proposed major and secondary functions for educational technology systems for the learner-centered paradigm of education. However, the functions proposed should be formatively evaluated and revised using a variety of cases to develop a better understanding of how technology can support…

  18. Center for Renewable Energy and Alternative Transportation Technologies (CREATT)

    Energy Technology Data Exchange (ETDEWEB)

    Mackin, Thomas

    2012-06-30

    The Center for Renewable Energy and Alternative Transportation Technologies (CREATT) was established to advance the state of the art in knowledge and education on critical technologies that support a renewable energy future. Our research and education efforts have focused on alternative energy systems, energy storage systems, and research on battery and hybrid energy storage systems.This report details the Center's progress in the following specific areas: Development of a battery laboratory; Development of a demonstration system for compressed air energy storage; Development of electric propulsion test systems; Battery storage systems; Thermal management of battery packs; and Construction of a micro-grid to support real-world performance monitoring of a renewable energy system.

  19. The Hydrogen Technology Center at Wyle Laboratories

    Science.gov (United States)

    Wheelock, H.; Smith, D.; Frazier, J.

    1990-10-01

    A deactivated storable propellant test area with numerous test cells, large open concrete pads of up to 65-ft length, and two enclosed metal storage buildings, has been converted into a Hydrogen Technology Center. The conversion strategy involved extensive use of modified surplus equipment, well established testing technologies, and innovative engineering to obviate long-delivery time items. Simple, high heat flux water-to-cryogen heat exchangers are used to generate ambient temperature H2 and N gas. Hydrogen-fueled combustors were designed and fabricated to power the specialized heat exchangers required to support high-temperature hydrogen experiments. The facility has operated productively and safely since October, 1988.

  20. Career and Technology Center Honors Julie Hartman | Poster

    Science.gov (United States)

    By Carolynne Keenan, Contributing Writer On May 7, Julie Hartman was honored by the Frederick County Career and Technology Center (CTC) for her support of the CTC’s Biomedical Sciences Program. As an education program specialist for Outreach and Special Programs at NCI at Frederick, Hartman is responsible for NCI at Frederick’s participation in the program, which is designed to offer Frederick County high school students hands-on, practical laboratory experience beyond the typical classroom setting. 

  1. Exploration of mobile educational technology

    OpenAIRE

    Hosny, W.

    2007-01-01

    Recent advances in mobile and wireless technology could be utilised to enhance the delivery of educational programmes. The use of this technology is known as “Mobile Education”. Mobile education technology provides unique opportunities for educators to flexibly deliver their educational material to learners via mobile services anywhere at any time. Moreover, the material delivered could be adapted to the learners’ needs and preferences. Examples of mobile devices which could be used in mobile...

  2. Mission & Role | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    The NCI TTC serves as the focal point for implementing the Federal Technology Transfer Act to utilize patents as incentive for commercial development of technologies and to establish research collaborations and licensing among academia, federal laboratories, non-profit organizations, and industry. The TTC supports technology development activities for the National Cancer Institute and nine other NIH Institutes and Centers. TTC staff negotiate co-development agreements and licenses with universities, non-profit organizations, and pharmaceutical and biotechnology companies to ensure compliance with Federal statutes, regulations and the policies of the National Institutes of Health. TTC also reviews employee invention reports and makes recommendations concerning filing of domestic and foreign patent applications. | [google6f4cd5334ac394ab.html

  3. CLOUD TECHNOLOGY IN EDUCATION

    Directory of Open Access Journals (Sweden)

    Alexander N. Dukkardt

    2014-01-01

    Full Text Available This article is devoted to the review of main features of cloud computing that can be used in education. Particular attention is paid to those learning and supportive tasks, that can be greatly improved in the case of the using of cloud services. Several ways to implement this approach are proposed, based on widely accepted models of providing cloud services. Nevertheless, the authors have not ignored currently existing problems of cloud technologies , identifying the most dangerous risks and their impact on the core business processes of the university. 

  4. Disruptive Technologies in Higher Education

    Science.gov (United States)

    Flavin, Michael

    2012-01-01

    This paper analyses the role of "disruptive" innovative technologies in higher education. In this country and elsewhere, Higher Education Institutions (HEIs) have invested significant sums in learning technologies, with Virtual Learning Environments (VLEs) being more or less universal, but these technologies have not been universally…

  5. Hydrogen Technology Education Workshop Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    None

    2002-12-01

    This document outlines activities for educating key target audiences, as suggested by workshop participants. Held December 4-5, 2002, the Hydrogen Technology Education Workshop kicked off a new education effort coordinated by the Hydrogen, Fuel Cells, & Infrastructure Technologies Program of the Office of Energy Efficiency and Renewable Energy.

  6. Improving Technology and Engineering Education

    Science.gov (United States)

    Tech Directions, 2013

    2013-01-01

    Improving Technology and Engineering Education for All Students: A Plan of Action is the theme of this year's International Technology and Engineering Educators Association (ITEEA) annual conference, which meets March 7-9 in Columbus, OH. The theme is aligned with ITEEA's 2012-15 Strategic Plan: Investing in People as Educational Change Agents.…

  7. CROSSCUTTING TECHNOLOGY DEVELOPMENT AT THE CENTER FOR ADVANCED SEPARATION TECHNOLOGIES

    Energy Technology Data Exchange (ETDEWEB)

    Hugh W. Rimmer

    2004-05-12

    This Technical Progress Report describes progress made on the seventeen subprojects awarded in the first year of Cooperative Agreement DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. This work is summarized in the body of the main report: the individual sub-project Technical Progress Reports are attached as Appendices. Due to the time taken up by the solicitation/selection process, these cover the initial 6-month period of project activity only. The U.S. is the largest producer of mining products in the world. In 1999, U.S. mining operations produced $66.7 billion worth of raw materials that contributed a total of $533 billion to the nation's wealth. Despite these contributions, the mining industry has not been well supported with research and development funds as compared to mining industries in other countries. To overcome this problem, the Center for Advanced Separation Technologies (CAST) was established to develop technologies that can be used by the U.S. mining industry to create new products, reduce production costs, and meet environmental regulations. Originally set up by Virginia Tech and West Virginia University, this endeavor has been expanded into a seven-university consortium--Virginia Tech, West Virginia University, University of Kentucky, University of Utah, Montana Tech, New Mexico Tech and University of Nevada, Reno--that is supported through U.S. DOE Cooperative Agreement No. DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. Much of the research to be conducted with Cooperative Agreement funds will be longer-term, high-risk, basic research and will be carried out in five broad areas: (1) Solid-solid separation (2) Solid-liquid separation (3) Chemical/Biological Extraction (4) Modeling and Control, and (5) Environmental Control.

  8. Network technologies in development of information and educational environment of supplementary education of children (a report on the results of a federal pilot site on the base of Children's Creativity Center with the study of applied economics

    Directory of Open Access Journals (Sweden)

    Raisa Artemova

    2014-06-01

    Full Text Available The authors describe the results of experimental work with in Children's Creativity Center with the study of applied economics on the use of information and communication resources in the system of the supplementary education of children.

  9. User-centered Technologies For Blind Children

    Directory of Open Access Journals (Sweden)

    Jaime Sánchez

    2008-01-01

    Full Text Available The purpose of this paper is to review, summarize, and illustrate research work involving four audio-based games created within a user-centered design methodology through successive usability tasks and evaluations. These games were designed by considering the mental model of blind children and their styles of interaction to perceive and process data and information. The goal of these games was to enhance the cognitive development of spatial structures, memory, haptic perception, mathematical skills, navigation and orientation, and problem solving of blind children. Findings indicate significant improvements in learning and cognition from using audio-based tools specially tailored for the blind. That is, technologies for blind children, carefully tailored through user-centered design approaches, can make a significant contribution to cognitive development of these children. This paper contributes new insight into the design and implementation of audio-based virtual environments to facilitate learning and cognition in blind children.

  10. Educational technology and the new technologies

    NARCIS (Netherlands)

    Verhagen, Pløn W.; Plomp, Tjeerd

    1989-01-01

    Like everywhere in our culture, new technologies gradually penetrate the field of education. This may be seen as a problem area, which asks for appropriate, actions by teachers, curriculum experts, instructional designers and others. As "technology" seems to be the main issue,one may quation whether

  11. CENTER FOR ADVANCED SEPARATION TECHNOLOGY (CAST) PROGRAM

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Roe-Hoan; Hull, Christopher

    2014-09-30

    The U.S. is the largest producer of mining products in the world. In 2011, U.S. mining operations contributed a total of $232 billion to the nation’s GDP plus $138 billion in labor income. Of this the coal mining industry contributed a total of $97.5 billion to GDP plus $53 billion in labor income. Despite these contributions, the industry has not been well supported with research and development funds as compared to mining industries in other countries. To overcome this problem, the Center for Advanced Separation Technologies (CAST) was established to develop technologies that can be used by the U.S. mining industry to create new products, reduce production costs, and meet environmental regulations.

  12. Technological literacy and innovation education

    DEFF Research Database (Denmark)

    Hansbøl, Mikala

    2014-01-01

    , and a heavy digitization of the health care sector. These developments have actualized the fundamental question of how new technologies change and challenge the professions and their professional relationships? As one way to deal with this question, health education programmes have begun to focus...... on innovation education and educational activities fostering technological literacy. While focus on technological literacy has often (historically) taken a functionalist direction, and mainly been related to ICT and development of non- vocational curricula, more recent developments of approaches...

  13. Emerging technologies in physics education

    CERN Document Server

    Krusberg, Z A C

    2007-01-01

    Three emerging technologies in physics education are evaluated from the interdisciplinary perspective of cognitive science and physics education research. The technologies - Physlet Physics, the Andes Intelligent Tutoring System (ITS), and Microcomputer-Based Laboratory (MBL) Tools - are assessed particularly in terms of their potential at promoting conceptual change, developing expert-like problem-solving skills, and achieving the goals of the traditional physics laboratory. Pedagogical methods to maximize the potential of each educational technology are suggested.

  14. Disruptive technologies in higher education

    OpenAIRE

    Flavin, Michael

    2012-01-01

    This paper analyses the role of ‘‘disruptive’’ innovative technologies in higher education. In this country and elsewhere, Higher Education Institutions (HEIs) have invested significant sums in learning technologies, with Virtual Learning Environments (VLEs) being more or less universal, but these technologies have not been universally adopted and used by students and staff. Instead, other technologies not owned or controlled by HEIs are widely used to support learning and teaching. According...

  15. Publications in academic medical centers: technology-facilitated culture clash.

    Science.gov (United States)

    Berner, Eta S

    2014-05-01

    Academic culture has a set of norms, expectations, and values that are sometimes tacit and sometimes very explicit. In medical school and other health professions educational settings, probably the most common norm includes placing a high value on peer-reviewed research publications, which are seen as the major evidence of scholarly productivity. Other features of academic culture include encouraging junior faculty and graduate students to share their research results at professional conferences and lecturing with slides as a major way to convey information. Major values that faculty share with journal editors include responsible conduct of research and proper attribution of others' words and ideas. Medical school faculty also value technology and are often quick to embrace technological advances that can assist them in their teaching and research. This article addresses the effects of technology on three aspects of academic culture: education, presentations at professional meetings, and research publications.The technologies discussed include online instruction, dissemination of conference proceedings on the Internet, plagiarism-detection software, and new technologies deployed by the National Center for Biotechnology Information, the home of PubMed. The author describes how the ease of deploying new technologies without faculty changing their norms and behavior in the areas of teaching and research can lead to conflicts of values among key stakeholders in the academic medical community, including faculty, journal editors, and professional associations. The implications of these conflicts and strategies for managing them are discussed.

  16. Reform of the Teacher-centered Education

    Institute of Scientific and Technical Information of China (English)

    李小艳

    2014-01-01

    Education will be truly effective only when it is specifically designed to meet the individual needs and interests of each student. As a teacher, I am very clear that the traditional student-centered way of teaching needs reforming. A teacher-centered class is a typical traditional passive class.No doubt it is a natural product of the deep-rooted examination-oriented education.

  17. Empowerment Foster Children Youth Education Centers

    OpenAIRE

    Karina Szafrańska

    2016-01-01

    Youth Educational Centers (YEC) are open social rehabilitation institutions for socially maladjusted adolescents who are placed in such centres by court order. The wards who become self-dependent and return to their usual destructive upbringing environments give cause for concern. There is a risk that various social rehabilitation and educational measures taken in the center will be undone. If a person is to function well, they need to be provided with necessary assistance during the so-calle...

  18. Learner Centered Software Design to Empower Physiology Education

    OpenAIRE

    2003-01-01

    Misconceptions in physiology undermine students’ knowledge. New uses of technology in education offer interesting alternatives to correct these problems. This poster presents a design strategy based in user-centered design and the result of such process: an interactive program to support learning of respiratory physiology. This is an ongoing project, and future efforts will measure the effectiveness of this design tool in medical education.

  19. Project of space research and technology center in Engelhardt astronomical observatory

    Science.gov (United States)

    Nefedyev, Y.; Gusev, A.; Sherstukov, O.; Kascheev, R.; Zagretdinov, R.

    2012-09-01

    Today on the basis of Engelhardt astronomical observatory (EAO) is created Space research and technology center as consistent with Program for expansion of the Kazan University. The Centre has the following missions: • EDUCATION • SCIENCE • ASTRONOMICAL TOURISM

  20. Tiger Team Assessment, Energy Technology Engineering Center

    Energy Technology Data Exchange (ETDEWEB)

    1991-04-01

    The Office Special Projects within the Office of Environment, Safety, and Health (EH) has the responsibility to conduct Tiger Team Assessments for the Secretary of Energy. This report presents the assessment of the buildings, facilities, and activities under the DOE/Rockwell Contract No. DE-AM03-76SF00700 for the Energy Technology Engineering Center (ETEC) and of other DOE-owned buildings and facilities at the Santa Susana Field Laboratory (SSFL) site in southeastern Ventura County, California, not covered under Contract No. DE-AM03-76SF00700, but constructed over the years under various other contracts between DOE and Rockwell International. ETEC is an engineering development complex operated for DOE by the Rocketdyne Division of Rockwell International Corporation. ETEC is located within SSFL on land owned by Rockwell. The balance of the SSFL complex is owned and operated by Rocketdyne, with the exception of a 42-acre parcel owned by the National Aeronautics and Space Administration (NASA). The primary mission of ETEC is to provide engineering, testing, and development of components related to liquid metals technology and to conduct applied engineering development of emerging energy technologies.

  1. Technology Education Professional Enhancement Project

    Science.gov (United States)

    Hughes, Thomas A., Jr.

    1996-01-01

    The two goals of this project are: the use of integrative field of aerospace technology to enhance the content and instruction delivered by math, science, and technology teachers through the development of a new publication entitled NASA Technology Today, and to develop a rationale and structure for the study of technology, which establishes the foundation for developing technology education standards and programs of the future.

  2. Reform of the Teacher-centered Education

    Institute of Scientific and Technical Information of China (English)

    李小艳

    2014-01-01

    Education will be truly effective only when it is specifically designed to meet the individual needs and interests of each student. As a teacher, I am very clear that the traditional student-centered way of teaching needs reforming. A teachercentered class is a typical traditional passive class. No doubt it is a natural product of the deep-rooted examination-oriented education.

  3. Ubiquitous Computing Technologies in Education

    Science.gov (United States)

    Hwang, Gwo-Jen; Wu, Ting-Ting; Chen, Yen-Jung

    2007-01-01

    The prosperous development of wireless communication and sensor technologies has attracted the attention of researchers from both computer and education fields. Various investigations have been made for applying the new technologies to education purposes, such that more active and adaptive learning activities can be conducted in the real world.…

  4. Technology Education and the Arts

    Science.gov (United States)

    Roman, Harry T.

    2009-01-01

    One hears quite frequently how the arts continually suffer in the academic day. Many long-time technology education champions certainly know what this is all about; but there may be some ways to use technology education to bring the arts into the classroom. This article offers a series of activities and suggestions that will help students better…

  5. Towards an Alternative Educational Technology.

    Science.gov (United States)

    Mansfield, Roger; Nunan, E. E.

    1978-01-01

    Outlines an alternative form of educational technology based on an analysis of criticism levelled at the subject, both from within and without. Article contends that the future of educational technology rests on an expansion of its concerns, rather than a refinement or modification of its existing content. (Author)

  6. Emerging Technologies in Physics Education

    Science.gov (United States)

    Krusberg, Zosia A. C.

    2007-01-01

    Three emerging technologies in physics education are evaluated from the interdisciplinary perspective of cognitive science and physics education research. The technologies--Physlet Physics, the Andes Intelligent Tutoring System (ITS), and Microcomputer-Based Laboratory (MBL) Tools--are assessed particularly in terms of their potential at promoting…

  7. Technology for Education and Learning

    CERN Document Server

    2012 international conference on Technology for Education and Learning (ICTEL 2012)

    2012-01-01

    This volume contains 108 selected papers presented at the 2012 international conference on Technology for Education and Learning (ICTEL 2012), Macau, China, March 1-2, 2012. The conference brought together researchers working in various different areas of Technology for Education and Learning with a main emphasis on technology for business and economy in order to foster international collaborations and exchange of new ideas. This proceedings book has its focus on Technology for Economy, Finance and Education representing some of the major subareas presented at the conference.

  8. CROSSCUTTING TECHNOLOGY DEVELOPMENT AT THE CENTER FOR ADVANCED SEPARATION TECHNOLOGIES

    Energy Technology Data Exchange (ETDEWEB)

    Christopher E. Hull

    2005-01-20

    The U.S. is the largest producer of mining products in the world. In 2003, U.S. mining operations produced $57 billion worth of raw materials that contributed a total of $564 billion to the nation's wealth. Despite these contributions, the mining industry has not been well supported with research and development funds as compared to mining industries in other countries. To overcome this problem, the Center for Advanced Separation Technologies (CAST) was established to develop technologies that can be used by the U.S. mining industry to create new products, reduce production costs, and meet environmental regulations. Much of the research to be conducted with Cooperative Agreement funds will be longer-term, high-risk, basic research and will be carried out in five broad areas: (1) Solid-solid separation; (2) Solid-liquid separation; (3) Chemical/Biological Extraction; (4) Modeling and Control; and (5) Environmental Control.

  9. Scientific Data Management Center for Enabling Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Vouk, Mladen A.

    2013-01-15

    Managing scientific data has been identified by the scientific community as one of the most important emerging needs because of the sheer volume and increasing complexity of data being collected. Effectively generating, managing, and analyzing this information requires a comprehensive, end-to-end approach to data management that encompasses all of the stages from the initial data acquisition to the final analysis of the data. Fortunately, the data management problems encountered by most scientific domains are common enough to be addressed through shared technology solutions. Based on community input, we have identified three significant requirements. First, more efficient access to storage systems is needed. In particular, parallel file system and I/O system improvements are needed to write and read large volumes of data without slowing a simulation, analysis, or visualization engine. These processes are complicated by the fact that scientific data are structured differently for specific application domains, and are stored in specialized file formats. Second, scientists require technologies to facilitate better understanding of their data, in particular the ability to effectively perform complex data analysis and searches over extremely large data sets. Specialized feature discovery and statistical analysis techniques are needed before the data can be understood or visualized. Furthermore, interactive analysis requires techniques for efficiently selecting subsets of the data. Finally, generating the data, collecting and storing the results, keeping track of data provenance, data post-processing, and analysis of results is a tedious, fragmented process. Tools for automation of this process in a robust, tractable, and recoverable fashion are required to enhance scientific exploration. The SDM center was established under the SciDAC program to address these issues. The SciDAC-1 Scientific Data Management (SDM) Center succeeded in bringing an initial set of advanced

  10. Crosscutting Technology Development at the Center for Advanced Separation Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Christopher Hull

    2009-10-31

    The U.S. is the largest producer of mining products in the world. In 2003, U.S. mining operations produced $57 billion worth of raw materials that contributed a total of $564 billion to the nation's wealth. Despite these contributions, the mining industry has not been well supported with research and development funds as compared to mining industries in other countries. To overcome this problem, the Center for Advanced Separation Technologies (CAST) was established to develop technologies that can be used by the U.S. mining industry to create new products, reduce production costs, and meet environmental regulations. Originally set up by Virginia Tech and West Virginia University, this endeavor has been expanded into a seven-university consortium -- Virginia Tech, West Virginia University, University of Kentucky, University of Utah, Montana Tech, New Mexico Tech and University of Nevada, Reno - that is supported through U.S. DOE Cooperative Agreement No. DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. Much of the research to be conducted with Cooperative Agreement funds will be longer-term, high-risk, basic research and will be carried out in five broad areas: (1) Solid-solid separation; (2) Solid-liquid separation; (3) Chemical/biological extraction; (4) Modeling and control; and (5) Environmental control. Distribution of funds is handled via competitive solicitation of research proposals through Site Coordinators at the seven member universities. These were first reviewed and ranked by a group of technical reviewers (selected primarily from industry). Based on these reviews, and an assessment of overall program requirements, the CAST Technical Committee made an initial selection/ranking of proposals and forwarded these to the DOE/NETL Project Officer for final review and approval. The successful projects are listed by category, along with brief abstracts of their aims and objectives.

  11. Faculty Adoption of Educational Technology

    Science.gov (United States)

    Moser, Franziska Zellweger

    2007-01-01

    Although faculty support has been identified as a critical factor in the success of educational-technology programs, many people involved in such efforts underestimate the complexities of integrating technology into teaching. In this article, the author proposes an adoption cycle to help tackle the complex issue of technology adoption for…

  12. Assistive Technology and Mathematics Education

    Science.gov (United States)

    Akpan, Joseph P.; Beard, Lawrence A.

    2014-01-01

    Educators and caregivers now have the opportunity to individualize and differentiate instructions with many technological devices never before available. Assistive Technology is being introduced in the classroom at all levels as a tool for teachers to help deliver instruction to all students. Assistive Technology is widely used to ensure…

  13. Computer Technology and Nursing Education.

    Science.gov (United States)

    Southern Council on Collegiate Education for Nursing, Atlanta, GA.

    The influences of computer technology on college nursing education programs and health care delivery systems are discussed in eight papers. The use of computers is considered, with attention to clinical care, nursing education and continuing education, administration, and research. Attention is also directed to basic computer terminology, computer…

  14. Disruptive technologies in higher education

    Directory of Open Access Journals (Sweden)

    Michael Flavin

    2012-08-01

    Full Text Available This paper analyses the role of “disruptive” innovative technologies in higher education. In this country and elsewhere, Higher Education Institutions (HEIs have invested significant sums in learning technologies, with Virtual Learning Environments (VLEs being more or less universal, but these technologies have not been universally adopted and used by students and staff. Instead, other technologies not owned or controlled by HEIs are widely used to support learning and teaching. According to Christensen's theory of Disruptive Innovation, these disruptive technologies are not designed explicitly to support learning and teaching in higher education, but have educational potential. This study uses Activity Theory and Expansive Learning to analyse data regarding the impact of disruptive technologies. The data were obtained through a questionnaire survey about awareness and use of technologies, and through observation and interviews, exploring participants’ actual practice. The survey answers tended to endorse Disruptive Innovation theory, with participants establishing meanings for technologies through their use of them, rather than in keeping with a designer's intentions. Observation revealed that learners use a narrow range of technologies to support learning, but with a tendency to use resources other than those supplied by their HEIs. Interviews showed that participants use simple and convenient technologies to support their learning and teaching. This study identifies a contradiction between learning technologies made available by HEIs, and technologies used in practice. There is no evidence to suggest that a wide range of technologies is being used to support learning and teaching. Instead, a small range of technologies is being used for a wide range of tasks. Students and lecturers are not dependent on their HEIs to support learning and teaching. Instead, they self-select technologies, with use weighted towards established brands. The

  15. Center for Design-Based STEM Education

    Science.gov (United States)

    2013-10-31

    education strategy that has been proven to effectively engage a broad constituency in STEM. STEM (Science, Technology, Engineering, and Math ); Education...ACTIVITIES COMPLETED Over the past two years, a team of NYSCI instructors, researchers, educational specialists , along with a core advisory group of...teachers in two Summer Design Institutes through which our professional development specialists provided the participants with a variety of design

  16. Motion sensor technologies in education

    Directory of Open Access Journals (Sweden)

    T. Bratitsis

    2014-05-01

    Full Text Available This paper attempts to raise a discussion regarding motion sensor technologies, mainly seen as peripherals of contemporary video game consoles, by examining their exploitation within educational context. An overview of the existing literature is presented, while attempting to categorize the educational approaches which involve motion sensor technologies, in two parts. The first one concerns the education of people with special needs. The utilization of motion sensor technologies, incorporated by game consoles, in the education of such people is examined. The second one refers to various educational approaches in regular education, under which not so many research approaches, but many teaching ideas can be found. The aim of the paper is to serve as a reference point for every individual/group, willing to explore the Sensor-Based Games Based Learning (SBGBL research area, by providing a complete and structured literature review.

  17. Implementing Educational Technology in Higher Education:

    Directory of Open Access Journals (Sweden)

    Cynthia C. Roberts

    2008-01-01

    Full Text Available Although the move toward implementing technology in higher education is driven by an increasing number of competitors as well as student demand, there is still considerable resistance to embracing it. Adoption of technology requires more that merely installing a product. This paper outlines a framework for a strategic change process that can be utilized by educators for the purpose of the selection as well as successful implementation of educational technologies within their setting, in particular, online course management systems. The four steps of this process include strategic analysis, strategy making, strategic plan design, and strategic plan implementation. The choice to embrace a new system and the extent and speed of its implementation depends upon internal factors such as resources, organizational culture, faculty readiness, anticipated degree of resistance, and the degree of variance from the status quo. A case from the author’s experience provides one example of how the use of distance learning technology was strategically implemented.

  18. Examining the Challenges of Learner-Centered Education

    Science.gov (United States)

    Aslan, Sinem; Reigeluth, Charles M.

    2016-01-01

    Learner-centered education has been touted as an improvement over teacher-centered educational systems. However, educators and researchers need to be cautious about its problems, in addition to considering its benefits. The authors set out to identify challenges to learner-centered education through the eyes of educators in a truly…

  19. Distance Education in Technological Age

    Directory of Open Access Journals (Sweden)

    R .C. SHARMA

    2005-04-01

    Full Text Available Distance Education in Technological AgeRomesh Verma (Editor, New Delhi: Anmol Publications, 2005, ISBN 81-261-2210-2, pp. 419 Reviewed by R C SHARMARegional DirectorIndira Gandhi National Open University-INDIA The advancements in information and communication technologies have brought significant changes in the way the open and distance learning are provided to the learners. The impact of such changes is quite visible in both developed and developing countries. Switching over to online mode, joining hands with private initiatives and making a presence in foreign waters, are some of the hallmarks of the open and distance education (ODE institutions in developing countries. The compilation of twenty six essays on themes as applicable to ODE has resulted in the book, “Distance Education in Technological Age”. These essays follow a progressive style of narration, starting from describing conceptual framework of distance education, how the distance education was emerged on the global scene and in India, and then goes on to discuss emergence of online distance education and research aspects in ODE. The initial four chapters provide a detailed account of historical development and growth of distance education in India and State Open University and National Open University Model in India . Student support services are pivot to any distance education and much of its success depends on how well the support services are provided. These are discussed from national and international perspective. The issues of collaborative learning, learning on demand, life long learning, learning-unlearning and re-learning model and strategic alliances have also given due space by the authors. An assortment of technologies like communication technology, domestic technology, information technology, mass media and entertainment technology, media technology and educational technology give an idea of how these technologies are being adopted in the open universities. The study

  20. TECHNOLOGY OF EDUCATIONAL EVENTS DESIGNING

    Directory of Open Access Journals (Sweden)

    N. V. Volkova

    2017-01-01

    Full Text Available The aim of the article is to prove and disclose the essence of the author’s technology of educational events designing.Methodology and methods of research. Methodological basis of work is humanitarian approach. The method of pedagogical modeling was used for the model development of educational events influence on pedagogical activity formation. The content analysis of texts descriptions, case-study method, expert estimations of event projects were applied as the main methods of efficiency confirmation of the technology of educational events design.Results and scientific novelty. The characteristics of an educational event are emphasized by means of an empirical way: opening (what a person opens for himself; generation (a result of a personal action; and participation in creation of something "new" (new communications, relations and experience. The structure of technology of educational events design including work with concepts (an educational event, substantial and procedural components is presented. The technology of educational events designing is considered as the process of the well-grounded choice of designing technologies, mutual activity, pedagogical communication, components of educational activity: contents, methods, means, and organizational forms depending on educational aims due to age-specific peculiarities of participants of the educational event. The main conditions providing successful use of the technology are the involvement into joint cognitive activity of all its participants and importance of the events for each of them that qualitatively change the nature of a cognitive process and generate real transformations of the reality.Practical significance. The author’s experience in teaching testifies to introduction of the module «Technology of Design of Educational Events» into the basic educational subject-module «Design Competence of the Teacher» (degree program «Pedagogical Education», considering this module as

  1. Computers: Educational Technology Paradox?

    Science.gov (United States)

    Hashim, Hajah Rugayah Hj.; Mustapha, Wan Narita

    2005-01-01

    As we move further into the new millennium, the need to involve and adapt learners with new technology have been the main aim of many institutions of higher learning in Malaysia. The involvement of the government in huge technology-based projects like the Multimedia Super Corridor Highway (MSC) and one of its flagships, the Smart Schools have…

  2. Center for Global Health announces grants to support portable technologies

    Science.gov (United States)

    NCI's Center for Global Health announced grants that will support the development and validation of low-cost, portable technologies. These technologies have the potential to improve early detection, diagnosis, and non-invasive or minimally invasive treatm

  3. Educational Technology Policy in Israel

    Science.gov (United States)

    Slakmon, Benzi

    2017-01-01

    The study examines Israel's educational technology policy in light of the coming-of-age of ICT. The study shows the ways it has been developing, and identifies two major shifts which have occurred in recent years: the introduction of the national educational cloud, and the enabling of the "bring your own device" (BYOD) policy. The way…

  4. Educational Technology Policy in Israel

    Science.gov (United States)

    Slakmon, Benzi

    2017-01-01

    The study examines Israel's educational technology policy in light of the coming-of-age of ICT. The study shows the ways it has been developing, and identifies two major shifts which have occurred in recent years: the introduction of the national educational cloud, and the enabling of the "bring your own device" (BYOD) policy. The way…

  5. Art Education Technology: Digital Storytelling

    Science.gov (United States)

    Chung, Sheng Kuan

    2007-01-01

    The application of digital storytelling to art education is an interdisciplinary, inquiry-based, hands-on project that integrates the arts, education, local communities, technology, and storytelling. Through digital storytelling, students develop and apply multiliteracy skills, aesthetic sensitivities, and critical faculties to address greater…

  6. Applied technology center business plan and market survey

    Science.gov (United States)

    Hodgin, Robert F.; Marchesini, Roberto

    1990-01-01

    Business plan and market survey for the Applied Technology Center (ATC), computer technology transfer and development non-profit corporation, is presented. The mission of the ATC is to stimulate innovation in state-of-the-art and leading edge computer based technology. The ATC encourages the practical utilization of late-breaking computer technologies by firms of all variety.

  7. Attitudes of teachers education centers to special education inclusion

    Directory of Open Access Journals (Sweden)

    M.ª del Carmen PEGALAJAR PALOMINO

    2014-10-01

    Full Text Available This research aims to analyze the attitudes and perceptions towards inclusive education teacher that practices in special education centers in Andalusia. The paper has used a descriptive methodology, a total of 428 participating teachers and using data collection a semi structured questionnaire developed ad hoc. The results show how teachers of special education centers in Andalusia consider inclusive education as a pillar in education, while defining the mode of schooling in special education institutions as an educational response to students aimed at improving their quality of life and achieve greater personal independence and function in daily life activities. They also consider that the students enrolled in these schools has higher educational needs in the field of health, cognitive and social. It stands out even the existence of statistically significant differences in attitudes and perceptions of teachers as they have developed or no practical training related to the field of inclusive education during their initial training, being more favorable in the case of those without such training. Thus, we want to know the perceptions of these teachers on inclusive education to establish proposals for improvement in teacher education that lead to the development of a process of quality teaching and learning for pupils with severe and permanent disabilities.

  8. CRITICAL COMMUNICATION PEDAGOGY AT EDUCATIONAL CENTERS

    Directory of Open Access Journals (Sweden)

    Roseli de Mello

    2009-11-01

    Full Text Available Educational researches and proposals should be founded on successful theoriesand projects recognized by the international scientific community. Based on thispremise, we describe Learning Communities as an educational proposal that involvesthe implementation of theoretical perspectives with a dialogic and critical approachaimed at quality learning for everyone and at overcoming situations of inequality andexclusion.To this end, this article is structured into two distinct parts. The first discusses severaltheoretical proposals (while also contemplating interdisciplinarity from the perspectiveof critical communication. The second part describes the educational experience of theEscuela de Personas Adultas of La Verneda de Sant Martí, the first Learning Community,as well as the processes to bring about the transformation of educational centers inLearning Communities, a proposal that is being disseminated by different countriesbased on the standpoint of critical communication pedagogy.

  9. Multimedia technologies in education.

    Science.gov (United States)

    Liaskos, Joseph; Diomidus, Marianna

    2002-01-01

    In general multimedia is the combination of visual and audio representations. These representations could include elements of texts, graphic arts, sound, animation, and video. However, multimedia is restricted in such systems where information is digitalized and is processed by a computer. Interactive multimedia and hypermedia consist of multimedia applications that the user has more active role. Education is perhaps the most useful destination for multimedia and the place where multimedia has the most effective applications, as it enriches the learning process. Multimedia both in nursing education and in medical informatics education has several applications as well. A multimedia project can be developed even as a "stand alone" application (on CD-ROM), or on World Wide Web pages on Internet. However several technical constraints exist for developing multimedia applications on Internet. For developing multimedia projects we need hardware and software, talent and skill. The software requirements for multimedia development consist of one or more authoring systems and various editing applications for text, images, sounds and video. In this chapter different software tools for creating multimedia applications are presented. In the last part of this chapter, two examples of multimedia educational training programs are discussed. Both are "stand alone" applications (CD-ROMs). The first, examines several aspects of the electronic patient record by using videos, audio descriptions, lectures and glossary, while the second one presents several topics regarding epidemiology and epidemiological research by using graphics, sound and animation.

  10. The Cost of Change in Technology Education.

    Science.gov (United States)

    Pullias, Dave

    1987-01-01

    The author states that two costs will be involved in the coming change in technology education: financial and personal. He questions what group of educators will teach technology education in the future. (CH)

  11. Empowerment Foster Children Youth Education Centers

    Directory of Open Access Journals (Sweden)

    Karina Szafrańska

    2016-12-01

    Full Text Available Youth Educational Centers (YEC are open social rehabilitation institutions for socially maladjusted adolescents who are placed in such centres by court order. The wards who become self-dependent and return to their usual destructive upbringing environments give cause for concern. There is a risk that various social rehabilitation and educational measures taken in the center will be undone. If a person is to function well, they need to be provided with necessary assistance during the so-called self-empowerment process that will prepare them to function in society. This article is to draw attention to the impact of the YEC aiming at the self-empowerment of wards, exampled by the “Trampolina” project by the Orionist Farthers (YEC, Barska Street in Warsaw and the project of forming and running the “Damy radę” (We will manage empowerment group at the YEC in Radzionków.

  12. CROSSCUTTING TECHNOLOGY DEVELOPMENT AT THE CENTER FOR ADVANCED SEPARATION TECHNOLOGIES

    Energy Technology Data Exchange (ETDEWEB)

    Hugh W. Rimmer

    2003-11-15

    The U.S. is the largest producer of mining products in the world. In 1999, U.S. mining operations produced $66.7 billion worth of raw materials that contributed a total of $533 billion to the nation's wealth. Despite these contributions, the mining industry has not been well supported with research and development funds as compared to mining industries in other countries. To overcome this problem, the Center for Advanced Separation Technologies (CAST) was established to develop technologies that can be used by the U.S. mining industry to create new products, reduce production costs, and meet environmental regulations. Much of the research to be conducted with Cooperative Agreement funds will be longer-term, high-risk, basic research and will be carried out in five broad areas: (a) Solid-solid separation (b) Solid-liquid separation (c) Chemical/Biological Extraction (d) Modeling and Control, and (e) Environmental Control. Distribution of funds is being handled via competitive solicitation of research proposals through Site Coordinators at the seven member universities. The first of these solicitations, referred to as the CAST II-Round 1 RFP, was issued on October 28, 2002. Thirty-eight proposals were received by the December 10, 2002 deadline for this RFP-eleven (11) Solid-Solid Separation, seven (7) Solid-Liquid Separation, ten (10) Chemical/Biological Extraction, six (6) Modeling & Control and four (4) Environmental Control. These were first reviewed and ranked by a group of technical reviewers (selected primarily from industry). Based on these reviews, and an assessment of overall program requirements, the CAST Technical Committee made an initial selection/ranking of proposals and forwarded these to the DOE/NETL Project Officer for final review and approval. This process took some 7 months to complete but 17 projects (one joint) were in place at the constituent universities (three at Virginia Tech, two at West Virginia University, three at University of

  13. NASA University Research Centers Technical Advances in Aeronautics, Space Sciences and Technology, Earth Systems Sciences, Global Hydrology, and Education. Volumes 2 and 3

    Science.gov (United States)

    Coleman, Tommy L. (Editor); White, Bettie (Editor); Goodman, Steven (Editor); Sakimoto, P. (Editor); Randolph, Lynwood (Editor); Rickman, Doug (Editor)

    1998-01-01

    This volume chronicles the proceedings of the 1998 NASA University Research Centers Technical Conference (URC-TC '98), held on February 22-25, 1998, in Huntsville, Alabama. The University Research Centers (URCS) are multidisciplinary research units established by NASA at 11 Historically Black Colleges or Universities (HBCU's) and 3 Other Minority Universities (OMU's) to conduct research work in areas of interest to NASA. The URC Technical Conferences bring together the faculty members and students from the URC's with representatives from other universities, NASA, and the aerospace industry to discuss recent advances in their fields.

  14. Emerging Technologies: Applications and Implications for School Library Media Centers.

    Science.gov (United States)

    Craver, Kathleen W.

    This paper examines emerging information technologies and their implications for school library media centers. Because of the fluctuating situation regarding new innovations, only emerging technologies that specialists believe will occur within the next 5 to 10 years are discussed. For each technology mentioned, a brief description is given…

  15. The Extent of Educational Technology's Influence on Contemporary Educational Practices

    OpenAIRE

    Kim, Bradford-Watts

    2005-01-01

    This paper investigates how advances in educational technologies have influenced contemporary educational practices.It discusses the nature of educational technology, the limitations imposed by the digital divide and other factors of uptake, and the factors leading to successful implementation of educational technologies.The extent of influence is then discussed,together with the probable implications for educational sites for the future.

  16. Inauguration of the Stoll Fashion & Technology Center

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    @@ On April 1st 2009 the new Stoll Fashion & Technology showroom will be opened in New York.The new showroom is situated in the heart of the Garment District of Manhattan,New York and will present the opportunity to gain hands-on experience to the services of the Stoll Fashion & Technology world.The highlight of the inauguration at the 15.000 square feet showroom will be the introduction to the reinvented service approach as well as innovative projects under the Stoll Fashion & Technology Company.

  17. Higher Education Reforms: Between Centers and Peripheries

    Directory of Open Access Journals (Sweden)

    Pavel Zgaga

    2014-06-01

    Full Text Available The main purpose of this article is to offer—within the perspective of the past two decades—a reflection on the higher education reform in the region consisting of Slovenia and seven countries of the so-called Western Balkans. The main question is what are the main characteristics of the higher education reforms in these countries after 1990, and what was their relationship to international processes and developments in the field of higher education policy. In particular, we will focus on the emergence of politicization and privatization of higher education, the implementation of the Bologna Process, and the dichotomy of international norms and local identities. Within the latter, we will discuss the relationship between centers and peripheries in the context of higher education policies. On this basis we will finally critically examine the question whether, in the context of modern development of higher education, peripheral countries now play only the role of a kind of ‘policy colonies’.

  18. Marshall Space Flight Center ECLSS technology activities

    Science.gov (United States)

    Wieland, Paul

    1990-01-01

    Viewgraphs on Environmental Control and Life Support System (ECLSS) technology activities are presented. Topics covered include: analytical development; ECLSS modeling approach; example of water reclamation modeling needs; and hardware development and testing.

  19. Biological Semiconductors | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    The National Cancer Institute's Cancer Diagnostic Program and the Food and Drug Administration's Center for Devices and Radiological Health is seeking statements of capability or interest from parties interested in collaborative research to further develop, evaluate, or commercialize biological semiconductors as diagnostic sensors.

  20. Constructivism, Education, Science, and Technology

    Science.gov (United States)

    Boudourides, Moses A.

    2003-01-01

    The purpose of this paper is to present a brief review of the various streams of constructivism in studies of education, society, science and technology. It is intended to present a number of answers to the question (what really is constructivism?) in the context of various disciplines from the humanities and the sciences (both natural and…

  1. The Tribe of Educational Technologies

    Science.gov (United States)

    Al Lily, Abdulrahman Essa

    2014-01-01

    This article looks into the claim that the international academic community of educational technologies seems to have functioned in a "tribal" way, having formed themselves around tribe-like patterns. It therefore addresses the research question: What are these claimed tribe-like practices that such a community exhibits? This question is…

  2. Virtual Technologies Trends in Education

    Science.gov (United States)

    Martín-Gutiérrez, Jorge; Mora, Carlos Efrén; Añorbe-Díaz, Beatriz; González-Marrero, Antonio

    2017-01-01

    Virtual reality captures people's attention. This technology has been applied in many sectors such as medicine, industry, education, video games, or tourism. Perhaps its biggest area of interest has been leisure and entertainment. Regardless the sector, the introduction of virtual or augmented reality had several constraints: it was expensive, it…

  3. Technology for Education. IDRA Focus.

    Science.gov (United States)

    IDRA Newsletter, 1998

    1998-01-01

    This theme issue includes five articles that focus on technology for education to benefit all students, including limited-English-proficient, minority, economically disadvantaged, and at-risk students. "Coca-Cola Valued Youth Program Students Meet Peers Via Video Conference" (Linda Cantu, Leticia Lopez-De La Garza) describes how at-risk…

  4. Health Educational Potentials of Technologies

    DEFF Research Database (Denmark)

    Magnussen, Rikke; Aagaard-Hansen, Jens

    2012-01-01

    The field of health promotion technology has been in an exponential growth in recent years and smart phone applications, exer-games and self-monitoring devices has become part of fitness activities and health education. In this work-in-progress-paper theoretical perspectives for categorising...

  5. Robot Technology: Implications for Education.

    Science.gov (United States)

    Post, Paul E.; And Others

    1988-01-01

    Provides an introduction to robotic technology, and describes current robot models. Three ways of using robots in education are discussed--as exemplars of other processes, as objects of instruction, and as prosthetic aids--and selection criteria are outlined. (17 references) (CLB)

  6. Geospatial Technology in Geography Education

    NARCIS (Netherlands)

    Muniz Solari, Osvaldo; Demirci, A.; van der Schee, J.A.

    2015-01-01

    The book is presented as an important starting point for new research in Geography Education (GE) related to the use and application of geospatial technologies (GSTs). For this purpose, the selection of topics was based on central ideas to GE in its relationship with GSTs. The process of geospatial

  7. Geospatial Technology in Geography Education

    NARCIS (Netherlands)

    Muniz Solari, Osvaldo; Demirci, A.; van der Schee, J.A.

    2015-01-01

    The book is presented as an important starting point for new research in Geography Education (GE) related to the use and application of geospatial technologies (GSTs). For this purpose, the selection of topics was based on central ideas to GE in its relationship with GSTs. The process of geospatial

  8. Linking information technology in education

    Directory of Open Access Journals (Sweden)

    Humberto Jaime Pérez Gutierrez

    2014-02-01

    Full Text Available It is attempted in this paper, show a clear and concise point involved the new technologies of computer science in education, and how these affect the preparation of teachers, overcoming the wide and deep stretch that separates computer specialists teachers of any subject, learners and the interaction between them.

  9. Virtual Technologies Trends in Education

    Science.gov (United States)

    Martín-Gutiérrez, Jorge; Mora, Carlos Efrén; Añorbe-Díaz, Beatriz; González-Marrero, Antonio

    2017-01-01

    Virtual reality captures people's attention. This technology has been applied in many sectors such as medicine, industry, education, video games, or tourism. Perhaps its biggest area of interest has been leisure and entertainment. Regardless the sector, the introduction of virtual or augmented reality had several constraints: it was expensive, it…

  10. Mobile Technology and Liberal Education

    Science.gov (United States)

    Rossing, Jonathan P.

    2012-01-01

    In this article, the author offers reflections on the impact of mobile technology for liberal education. These reflections are based on his own experience of incorporating iPads in his communication courses during the 2010-2011 academic year. As a member of an interdisciplinary faculty learning community on the use of mobile tablets, he explored…

  11. Compendium of Education Technology Research Funded by NCER and NCSER: 2002-2014. NCER 2017-0001

    Science.gov (United States)

    Yamaguchi, Ryoko; Hall, Adam

    2017-01-01

    Between 2002 and 2014, the Institute of Education Sciences (Institute) supported over 400 projects focused on education technology through the National Center for Education Research (NCER) and the National Center for Special Education Research (NCSER). The majority of this work has been funded through Education Technology research topics of NCER…

  12. Education 3.0: Breaking the Mold with Technology

    Science.gov (United States)

    Watson, William R.; Watson, Sunnie Lee; Reigeluth, Charles M.

    2015-01-01

    In order to meet the needs of today's knowledge economy, education needs to move beyond the industrial age approach of treating all learners as if they are the same and adopt a learner-centered model of education suitable for the information age. To support this model, a new and transformative technology is needed that focuses on mastery and…

  13. Education 3.0: Breaking the Mold with Technology

    Science.gov (United States)

    Watson, William R.; Watson, Sunnie Lee; Reigeluth, Charles M.

    2015-01-01

    In order to meet the needs of today's knowledge economy, education needs to move beyond the industrial age approach of treating all learners as if they are the same and adopt a learner-centered model of education suitable for the information age. To support this model, a new and transformative technology is needed that focuses on mastery and…

  14. Second leader named at Center for Geospatial Information Technology

    OpenAIRE

    Trulove, Susan

    2006-01-01

    Stephen Prisley of Blacksburg, associate professor of forestry in the College of Natural Resources at Virginia Tech, will become the director of the university's Center for Geospatial Information Technology (CGIT) as of May 15.

  15. EDUCATIONAL TECHNOLOGIES TO EMPOWER HIGHER EDUCATION

    Directory of Open Access Journals (Sweden)

    J. C.V. Garzón

    2014-08-01

    Full Text Available Introduction and objectives: The New Media Consortium (NMC Horizon Project defines educational technology in a broad sense as tools and resources that are used to improve teaching, learning, and creative inquiry. Each technology has been carefully researched and framed in the context of its potential impact on higher education. Within the Horizon Project there are currently seven categories of technologies, tools, and strategies for their use that the NMC monitors continuously. All they have the potential to foster real changes in education, particularly in the development of progressive pedagogies and learning strategies; the organization of teachers’ work; and the arrangement and delivery of content. Following the recommendations of NMC experts panel, we design an application named Augmented Reality Metabolic Pathways (ARMET in order to improve motivation and to promote student interactivity to the development of skills needed to learn the metabolic pathways. Materials and methods: The ARMET app was developed using Unity, 3D molecules obtained from Protein Data Bank and ChemSpider-chemical structure database, the usage data are stored into a database (MySQL and are analyzed using the statistical software R. Results and conclusions: ARMET mixes several technologies out of seven categories recommend in the NMC Horizon Report: Mobile app, Bring Your Own Device, Flipped Classroom, Learning Analytics and Augmented Reality. The principal criterion for the inclusion of those technologies into the app was its potential relevance to teaching and learning biochemistry. ARMET is available for iOS and Android platforms, and includes PDF files with a set of cards, the game board and classroom worksheet’s. The students and teachers can register for free. Teachers can create classes and track student performance. ARMET collects data for personalizing learning experiences addressing the challenge to build better pedagogical tools to establish effective

  16. Data Curation Education in Research Centers (DCERC)

    Science.gov (United States)

    Marlino, M. R.; Mayernik, M. S.; Kelly, K.; Allard, S.; Tenopir, C.; Palmer, C.; Varvel, V. E., Jr.

    2012-12-01

    Digital data both enable and constrain scientific research. Scientists are enabled by digital data to develop new research methods, utilize new data sources, and investigate new topics, but they also face new data collection, management, and preservation burdens. The current data workforce consists primarily of scientists who receive little formal training in data management and data managers who are typically educated through on-the-job training. The Data Curation Education in Research Centers (DCERC) program is investigating a new model for educating data professionals to contribute to scientific research. DCERC is a collaboration between the University of Illinois at Urbana-Champaign Graduate School of Library and Information Science, the University of Tennessee School of Information Sciences, and the National Center for Atmospheric Research. The program is organized around a foundations course in data curation and provides field experiences in research and data centers for both master's and doctoral students. This presentation will outline the aims and the structure of the DCERC program and discuss results and lessons learned from the first set of summer internships in 2012. Four masters students participated and worked with both data mentors and science mentors, gaining first hand experiences in the issues, methods, and challenges of scientific data curation. They engaged in a diverse set of topics, including climate model metadata, observational data management workflows, and data cleaning, documentation, and ingest processes within a data archive. The students learned current data management practices and challenges while developing expertise and conducting research. They also made important contributions to NCAR data and science teams by evaluating data management workflows and processes, preparing data sets to be archived, and developing recommendations for particular data management activities. The master's student interns will return in summer of 2013

  17. Use of Educational Technology in Promoting Distance Education

    Science.gov (United States)

    Rashid, Muhammad; Elahi, Uzma

    2012-01-01

    Educational technology plays an important role in distance education system. By adapting new communication educational technologies in distance educational programmes their quality could be ensured. Instructions conducted through the use of technologies which significantly or completely eliminate the traditional face to face communication between…

  18. A feasibility study for a manufacturing technology deployment center

    Energy Technology Data Exchange (ETDEWEB)

    1994-10-31

    The Automation & Robotics Research Institute (ARRI) and the Texas Engineering Extension Service (TEEX) were funded by the U.S. Department of Energy to determine the feasibility of a regional industrial technology institute to be located at the Superconducting Super Collider (SSC) Central Facility in Waxahachie, Texas. In response to this opportunity, ARRI and TEEX teamed with the DOE Kansas City Plant (managed by Allied Signal, Inc.), Los Alamos National Laboratory (managed by the University of California), Vought Aircraft Company, National Center for Manufacturing Sciences (NCMS), SSC Laboratory, KPMG Peat Marwick, Dallas County Community College, Navarro Community College, Texas Department of Commerce (TDOC), Texas Manufacturing Assistance Center (TMAC), Oklahoma Center for the Advancement of Science and Technology, Arkansas Science and Technology Authority, Louisiana Productivity Center, and the NASA Mid-Continent Technology Transfer Center (MCTTC) to develop a series of options, perform the feasibility analysis and secure industrial reviews of the selected concepts. The final report for this study is presented in three sections: Executive Summary, Business Plan, and Technical Plan. The results from the analysis of the proposed concept support the recommendation of creating a regional technology alliance formed by the states of Texas, New Mexico, Oklahoma, Arkansas and Louisiana through the conversion of the SSC Central facility into a Manufacturing Technology Deployment Center (MTDC).

  19. Dick and Jane and Technology Education.

    Science.gov (United States)

    Roman, Harry T.

    2002-01-01

    Science education and technology education have a common lineage. Contrary to prevailing beliefs, technology involves both process and content. It cuts across and unifies curricula and should be taught across all grade levels. (JOW)

  20. 2017 Technology Showcase Presentations | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    Presentations from the 2017 Technology Showcase by NIH Intramural Research Program scientists held at Frederick National Laboratories for Cancer Research on June 7, 2017. | [google6f4cd5334ac394ab.html

  1. Marshall Space Flight Center Research and Technology Report 2016

    Science.gov (United States)

    Tinker, M. L.; Abney, M. B. (Compiler); Reynolds, D. W. (Compiler); Morris, H. C. (Compiler)

    2017-01-01

    Marshall Space Flight Center is essential to human space exploration and our work is a catalyst for ongoing technological development. As we address the challenges facing human deep space exploration, we advance new technologies and applications here on Earth, expand scientific knowledge and discovery, create new economic opportunities, and continue to lead global space exploration.

  2. Evaluating an Assistive Technology Resource Center in Taiwan

    Science.gov (United States)

    Ho, Hua-Kuo

    2010-01-01

    The purpose of this article is intended to present the procedure and outcomes of an evaluation of the Assistive Technology Resource Center in a city of Taiwan. The evaluation was initiated by Chiayi City Government through inviting three professionals in the field of assistive technology as evaluators. For the purpose of evaluation, the Executive…

  3. SciDAC Visualization and Analytics Center for Enabling Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Joy, Kenneth I. [Univ. of California, Davis, CA (United States)

    2014-09-14

    This project focuses on leveraging scientific visualization and analytics software technology as an enabling technology for increasing scientific productivity and insight. Advances in computational technology have resulted in an "information big bang," which in turn has created a significant data understanding challenge. This challenge is widely acknowledged to be one of the primary bottlenecks in contemporary science. The vision for our Center is to respond directly to that challenge by adapting, extending, creating when necessary and deploying visualization and data understanding technologies for our science stakeholders. Using an organizational model as a Visualization and Analytics Center for Enabling Technologies (VACET), we are well positioned to be responsive to the needs of a diverse set of scientific stakeholders in a coordinated fashion using a range of visualization, mathematics, statistics, computer and computational science and data management technologies.

  4. Russian Ural and Siberian Media Education Centers

    Directory of Open Access Journals (Sweden)

    Alexander Fedorov

    2014-12-01

    Full Text Available The comparative analysis of the models and functions of the media education centres showed that despite having some definite differences and peculiarities, they have the following common features: - differentiated financing resources (public financing, grants, business organizations, etc. and regional media information support; - presence of famous Russian media teachers heading the media education centres; - a target audience of a wide age-specific and professional range (with the predominance of students of different educational institutions, teachers, media experts; - the chief aim of a media education centre is multi-aspect, as a rule, but in the whole, it can be generalized under a common assertion – development of the audience’s media competence. And under media competence of a person we mean a sum-total of an individual’s motives, knowledge, skills, abilities (indicators: motivation, contact, information, perception, interpretation/evaluation, activity, and creativity to select, use, critically analyze, evaluate, create and spread media texts of different types, forms and genres, and to analyze complex phenomena of media functioning in the society. - the objectives of the media education centres are also varied, but in the whole, there predominate the objectives aimed at developing media competence of different social groups: development of the audience’s skills to find, transfer, accept, and create media information (media texts using television, video, computer and multi-media technologies; teaching the audience to acquire and critically analyze media information; delivering courses in media education for teachers; support of festival, film club and amateur film movements and others.

  5. Thesaurus Dataset of Educational Technology in Chinese

    Science.gov (United States)

    Wu, Linjing; Liu, Qingtang; Zhao, Gang; Huang, Huan; Huang, Tao

    2015-01-01

    The thesaurus dataset of educational technology is a knowledge description of educational technology in Chinese. The aims of this thesaurus were to collect the subject terms in the domain of educational technology, facilitate the standardization of terminology and promote the communication between Chinese researchers and scholars from various…

  6. Evaluation and Assessment in Educational Information Technology.

    Science.gov (United States)

    Liu, Leping, Ed.; Johnson, D. LaMont, Ed.; Maddux, Cleborne D., Ed.; Henderson, Norma J., Ed.

    This book contains the following articles on evaluating and assessing educational information technology: (1) "Assessing Learning in the New Age of Information Technology in Education" (Leping Liu, D. LaMont Johnson, Cleborne D. Maddux, and Norma J. Henderson); (2) "Instruments for Assessing the Impact of Technology in Education" (Rhonda…

  7. The promises of educational technology: a reassessment

    NARCIS (Netherlands)

    Ely, Donald P.; Plomp, T.

    1986-01-01

    The claims made for educational technology have not always been realized. Many programmes in education based on media and technology have produced useful documentation and supportive research; others have failed. The current, comprehensive definition of educational technology is a helpful key to

  8. Technology Transfer Center to Assume Patenting and Licensing Responsibilities | Poster

    Science.gov (United States)

    The NCI Technology Transfer Center (TTC) is undergoing a reorganization that will bring patenting and licensing responsibilities to the Shady Grove and Frederick offices by October 2015. The reorganization is a result of an effort begun in 2014 by NIH to improve the organizational structure of technology transfer at NIH to meet the rapid rate of change within science, technology, and industry, and to better align the science and laboratory goals with the licensing and patenting process.

  9. Technology Transfer Center to Assume Patenting and Licensing Responsibilities | Poster

    Science.gov (United States)

    The NCI Technology Transfer Center (TTC) is undergoing a reorganization that will bring patenting and licensing responsibilities to the Shady Grove and Frederick offices by October 2015. The reorganization is a result of an effort begun in 2014 by NIH to improve the organizational structure of technology transfer at NIH to meet the rapid rate of change within science, technology, and industry, and to better align the science and laboratory goals with the licensing and patenting process.

  10. Technology and Student Learning: Toward a Learner-Centered Teaching Model

    Science.gov (United States)

    Keengwe, Jared; Onchwari, Grace; Onchwari, Jacqueline

    2009-01-01

    There is need to reform teacher education programs through the creation of active learning environments that support and improve the depth and scope of student learning. Specifically, teachers should provide intellectually powerful, learner-centered, and technology-rich environments for students without undermining sound pedagogical practices.…

  11. 77 FR 43131 - Designation of the Center for Innovation and Technology Cooperation (CITC), Pentane Chemistry...

    Science.gov (United States)

    2012-07-23

    ... Designation of the Center for Innovation and Technology Cooperation (CITC), Pentane Chemistry Industries (PCI... of the Center for Innovation and Technology Cooperation (CITC), Pentane Chemistry Industries (PCI... determined that the Center for Innovation and Technology Cooperation (CITC), Pentane Chemistry Industries...

  12. 77 FR 43368 - Navistar Truck Development and Technology Center, a Subsidiary of Navistar International...

    Science.gov (United States)

    2012-07-24

    ... Employment and Training Administration Navistar Truck Development and Technology Center, a Subsidiary of... October 20, 2011, applicable to workers of Navistar International Truck Development and Technology Center... Truck Development and Technology Center, a Subsidiary of Navistar International Corporation,...

  13. The Central San Joaquin Valley Area Health Education Center

    Science.gov (United States)

    Rosinski, Edwin F.

    1978-01-01

    With federal financial support, an area health education center was established in the central San Joaquin Valley of California. The center is a cooperative health sciences education and health care program organized by the University of California and some of the educational and health care institutions of the valley. The center's goals include providing and improving primary health care education, and improving the distribution of health personnel. These goals are achieved through the cooperative development of a number of independent and interdependent activities. An extensive evaluation of the Area Health Education Center has shown that it is a highly effective program. PMID:664636

  14. Opportunities of artistic and technological training in non-formal education

    Directory of Open Access Journals (Sweden)

    Natalya Ivkina

    2015-04-01

    Full Text Available The paper deals with questions concerning the organization of art and technological training in the situation of informal education; experience including application of information technologies and network services in the work of the Center work.

  15. The potential of RFID technology in Blood Center processes.

    Science.gov (United States)

    Kebo, V; Klement, P; Cermáková, Z; Gottfried, J; Sommerová, M; Palecek, A

    2010-01-01

    Current RFID technology deployment is limited by safety, procedural and physical limitations in healthcare field. It is important to define and ensure safe operation of technologies without actual deployment in real operation. Potential problems could arise due to the consequences of technical and physical characteristics of RFID technology and its improper location. This article deals with manipulation of blood products and the definition of suitable places for radio identification. Each suitable place must undergo laboratory experiments and tests. The results can provide a convenient base for defining efficient and safe deployment of RFID technology in Blood Centers with substantial financial savings for Czech healthcare.

  16. Sustainable Technology Research and Demonstration Center for Earth Structures

    Directory of Open Access Journals (Sweden)

    Judy Ueda

    2012-10-01

    Full Text Available This is a discussion paper that the authors presented at the International Workshop on Rammed Earth Materials and Sustainable Structures and Hakka Tulou Forum 2011: Structures of Sustainability, 28–31 October 2011, Xiamen University, China. A Sustainable Technology Research and Demonstration Center for Earth Structures is proposed to study, preserve, advance, promote, and implement rammed earth structures. The Center concept including the objectives, scope of activities and benefits of the proposed center are outlined. The Center for Alternative Technology in Wales, UK has been examined as a good base model along with a few successful environmental sustainability initiatives in China. The funding options to establish the proposed center have been discussed. The breadth of activities ultimately depends on funding capability. It is believed that the proposed center development will require significant government support at the initial stage but once corporate sponsorships are in place, the proposed center will potentially become self-supporting. The strategies, for the establishment of the proposed center are also addressed.

  17. Understanding Technology Literacy: A Framework for Evaluating Educational Technology Integration

    Science.gov (United States)

    Davies, Randall S.

    2011-01-01

    Federal legislation in the United States currently mandates that technology be integrated into school curricula because of the popular belief that learning is enhanced through the use of technology. The challenge for educators is to understand how best to teach with technology while developing the technological expertise of their students. This…

  18. A Delphi forecast of technology in education

    Science.gov (United States)

    Robinson, B. E.

    1973-01-01

    The results are reported of a Delphi forecast of the utilization and social impacts of large-scale educational telecommunications technology. The focus is on both forecasting methodology and educational technology. The various methods of forecasting used by futurists are analyzed from the perspective of the most appropriate method for a prognosticator of educational technology, and review and critical analysis are presented of previous forecasts and studies. Graphic responses, summarized comments, and a scenario of education in 1990 are presented.

  19. Wilberforce Power Technology in Education Program

    Science.gov (United States)

    Gordon, Edward M.; Buffinger, D. R.; Hehemann, D. G.; Breen, M. L.; Raffaelle, R. P.

    1999-01-01

    The Wilberforce Power Technology in Education Program is a multipart program. Three key parts of this program will be described. They are: (1) WISE-The Wilberforce Summer Intensive Experience. This annual offering is an educational program which is designed to provide both background reinforcement and a focus on study skills to give the participants a boost in their academic performance throughout their academic careers. It is offered to entering Wilberforce students. Those students who take advantage of WISE learn to improve important skills which enable them to work at higher levels in mathematics, science and engineering courses throughout their college careers, but most notably in the first year of college study. (2) Apply technology to reaming. This is being done in several ways including creating an electronic chemistry text with hypertext links to a glossary to help the students deal with the large new vocabulary required to describe and understand chemistry. It is also being done by converting lecture materials for the Biochemistry class to PowerPoint format. Technology is also being applied to learning by exploring simulation software of scientific instrumentation. (3) Wilberforce participation in collaborative research with NASA's John H. Glenn Research Center at Lewis Field. This research has focused on two areas in the past year. The first of these is the deposition of solar cell materials. A second area involves the development of polymeric materials for incorporation into thin film batteries.

  20. Current Trends in Higher Education Technology: Simulation

    Science.gov (United States)

    Damewood, Andrea M.

    2016-01-01

    This paper is focused on how technology in use changes over time, and the current trend of simulation technology as a supported classroom technology. Simulation-based training as a learning tool is discussed within the context of adult learning theories, as is the technology used and how today's higher education technology administrators support…

  1. Overview of Stirling Technology Research at NASA Glenn Research Center

    Science.gov (United States)

    Wilson, Scott D.; Schifer, Nicholas A.; Williams, Zachary D.; Metscher, Jonathan F.

    2016-01-01

    Stirling Radioisotope Power Systems (RPSs) are under development to provide power on future space science missions where robotic spacecraft will orbit, fly by, land, or rove using less than a quarter of the plutonium the currently available RPS uses to produce about the same power. NASA Glenn Research Center's newly formulated Stirling Cycle Technology Development Project (SCTDP) continues development of Stirling-based systems and subsystems, which include a flight-like generator and related housing assembly, controller, and convertors. The project also develops less mature technologies under Stirling Technology Research, with a focus on demonstration in representative environments to increase the technology readiness level (TRL). Matured technologies are evaluated for selection in future generator designs. Stirling Technology Research tasks focus on a wide variety of objectives, including increasing temperature capability to enable new environments, reducing generator mass and/or size, improving reliability and system fault tolerance, and developing alternative designs. The task objectives and status are summarized.

  2. Educational technologies in health sciences libraries: teaching technology skills.

    Science.gov (United States)

    Hurst, Emily J

    2014-01-01

    As technology rapidly changes, libraries remain go-to points for education and technology skill development. In academic health sciences libraries, trends suggest librarians provide more training on technology topics than ever before. While education and training have always been roles for librarians, providing technology training on new mobile devices and emerging systems requires class creation and training capabilities that are new to many librarians. To appeal to their users, many health sciences librarians are interested in developing technology-based classes. This column explores the question: what skills are necessary for developing and teaching technology in an academic health sciences library setting?

  3. Early Learning and Educational Technology Policy Brief

    Science.gov (United States)

    Lee, Joan

    2016-01-01

    Recognizing the growth of technology use in early learning settings, the U.S. Department of Education and U.S. Department of Health and Human Services collaborated in the development of the "Early Learning and Educational Technology Policy Brief" to promote developmentally appropriate use of technology in homes and early learning…

  4. New Theoretical Approach Integrated Education and Technology

    Science.gov (United States)

    Ding, Gang

    2010-01-01

    The paper focuses on exploring new theoretical approach in education with development of online learning technology, from e-learning to u-learning and virtual reality technology, and points out possibilities such as constructing a new teaching ecological system, ubiquitous educational awareness with ubiquitous technology, and changing the…

  5. Educational Technology: Definition of the Problem.

    Science.gov (United States)

    Razavi, Hossein

    1978-01-01

    An analysis of the evolution of educational technology demonstrates that the expansion of the concept has been unavoidable. A definition of educational technology as an economic approach to the micro and macro planning of education is introduced, and problems and guidelines for implementation in developing countries are discussed. (Author/JEG)

  6. Educational Technology: Effective Leadership and Current Initiatives

    Science.gov (United States)

    Courville, Keith

    2011-01-01

    (Purpose) This article describes the basis for effective educational technology leadership and a few of the current initiatives and impacts that are a result of the aforementioned effective leadership. (Findings) Topics addressed in this paper include: (1) the role of the educational technology leader in an educational setting; (2) an examination…

  7. Educational Technology in the Crystal Ball.

    Science.gov (United States)

    Langham-Johnson, Shirley

    This paper predicts that microelectronic circuitry will have an impact on education comparable to that of the industrial revolution or the invention of the printing press. Present conditions influencing educational technology and trends are considered in light of five considerations: (1) recent redefinitions of what educational technology is; (2)…

  8. Cases on Technology Integration in Mathematics Education

    Science.gov (United States)

    Polly, Drew, Ed.

    2015-01-01

    Common Core education standards establish a clear set of specific ideas and skills that all students should be able to comprehend at each grade level. In an effort to meet these standards, educators are turning to technology for improved learning outcomes. "Cases on Technology Integration in Mathematics Education" provides a compilation…

  9. Examining the Nature of Technology Graduate Education

    Science.gov (United States)

    Hartman, Nathan; Sarapin, Marvin; Bertoline, Gary; Sarapin, Susan H.

    2009-01-01

    The purpose of this paper is twofold. This work presents a general discussion of the theoretical foundation for graduate education in technology followed by specific applications of research activities within graduate education in technology. This paper represents the authors' view of the role of graduate education in (a) advancing the knowledge…

  10. An Educator's Guide to Communication Satellite Technology.

    Science.gov (United States)

    Polcyn, Kenneth A.

    Recent developments in the area of sophisticated communications technology present challenges to the imagination of every educator. This guide provides educational planners with an awareness and understanding of communication satellite technology, its current uses, and some of the tentative plans for educational experimentation. The first part…

  11. A Contemporary Preservice Technology Education Program

    Science.gov (United States)

    Flanigan, Rod; Becker, Kurt; Stewardson, Gary

    2012-01-01

    In order to teach engineering education, today's engineering and technology education teachers must be equipped with lesson plans to teach engineering design, among other principles, to the 6th-12th grade levels. At Utah State University (USU), curriculum has been developed for preservice engineering and technology education teachers that…

  12. Toward Sustainable Practices in Technology Education

    Science.gov (United States)

    Elshof, Leo

    2009-01-01

    This paper discusses the problematic relationship between technology education, consumption and environmental sustainability. The emerging global sustainability crisis demands an educational response that moves beyond mere "tinkering" with classroom practices, toward technology education which embraces life cycle thinking and "eco-innovation". It…

  13. Virtually Nursing: Emerging Technologies in Nursing Education.

    Science.gov (United States)

    Foronda, Cynthia L; Alfes, Celeste M; Dev, Parvati; Kleinheksel, A J; Nelson, Douglas A; OʼDonnell, John M; Samosky, Joseph T

    Augmented reality and virtual simulation technologies in nursing education are burgeoning. Preliminary evidence suggests that these innovative pedagogical approaches are effective. The aim of this article is to present 6 newly emerged products and systems that may improve nursing education. Technologies may present opportunities to improve teaching efforts, better engage students, and transform nursing education.

  14. Studying Innovation Technologies in Modern Education

    Science.gov (United States)

    Stukalenko, Nina M.; Zhakhina, Bariya B.; Kukubaeva, Asiya K.; Smagulova, Nurgul K.; Kazhibaeva, Gulden K.

    2016-01-01

    In modern society, innovation technologies expand to almost every field of human activity, including such wide field as education. Due to integrating innovation technologies into the educational process practice, this phenomenon gained special significance within improvement and modernization of the established educational system. Currently, the…

  15. Effective Technology Integration Shows New Frontiers in Education

    Science.gov (United States)

    Paoletti, Franco; Carlucci, Lisa Marie

    2007-11-01

    In this ever-changing world, technology is affecting how people view learning and the overall educational process. For an educator, the successful implementation of technology can be one of the most effective tools in the classroom. The introduction of virtual simulations of real life situations into what was once considered a teacher-centered classroom, allows the educator to meet the complex differentiated needs of a multi-faced student population. In this modified classroom, the focus naturally shifts on the students and their interaction with the rest of the class and beyond. Effective integration of technology literally opens a window onto the outside world providing students with increased motivation and with the necessary expertise to enter the workforce or successfully pursue higher education. This work analyzes the impact of technology, the methodologies currently in use, advantages and disadvantages, providing examples on how to successfully implement effective programs under budgetary constraints.

  16. Massachusetts Institute of Technology, Plasma Fusion Center, Technical Research Programs

    Energy Technology Data Exchange (ETDEWEB)

    Davidson, Ronald C.

    1980-08-01

    A review is given of the technical programs carried out by the Plasma Fusion Center. The major divisions of work areas are applied plasma research, confinement experiments, fusion technology and engineering, and fusion systems. Some objectives and results of each program are described. (MOW)

  17. SAVANNAH RIVER TECHNOLOGY CENTER MONTHLY REPORT AUGUST 1992

    Energy Technology Data Exchange (ETDEWEB)

    Ferrell, J.M.

    1999-06-21

    'This monthly report summarizes Programs and Accomplishments of the Savannah River Technology Center in support of activities at the Savannah River Site. The following categories are addressed: Reactor, Tritium, Separations, Environmental, Waste Management, General, and Items of Interest.'

  18. Sino-Swiss center for cassava technology launched in Shanghai

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ Under the joint sponsorship of the Shanghai Institutes for Biological Sciences (SIBS) and Swiss Federal Institute of Technology (ETH Zurich), the Shanghai Center for Cassava Biotechnology (SCCB) has been established at the Shanghai Institute of Plant Physiology and Ecology(SIPE), SIBS.

  19. Integrating technology education concepts into China's educational system

    Science.gov (United States)

    Yang, Faxian

    The problem of this study was to develop a strategy for integrating technology education concepts within the Chinese mathematics and science curricula. The researcher used a case study as the basic methodology. It included three methods for collecting data: literature review, field study in junior and senior secondary schools in America and China, and interviews with experienced educators who were familiar with the status of technology education programs in the selected countries. The data came from the following areas: Japan, Taiwan, the United Kingdom, China, and five states in the United States: Illinois, Iowa, Maryland, Massachusetts, and New York. The researcher summarized each state and country's educational data, identified the advantages and disadvantages of their current technology education program, and identified the major concepts within each program. The process determined that identified concepts would be readily acceptable into the current Chinese educational system. Modernization of, industry, agriculture, science and technology, and defense have been recent objectives of the Chinese government. Therefore, Chinese understanding of technology, or technology education, became important for the country. However, traditional thought and culture curb the implementation of technology education within China's current education system. The proposed solution was to integrate technology education concepts into China's mathematics and science curricula. The purpose of the integration was to put new thoughts and methods into the current educational structure. It was concluded that the proposed model and interventions would allow Chinese educators to carry out the integration into China's education system.

  20. PRODUCTIVE EDUCATIONAL TECHNOLOGIES IN TEACHING FOREGN LANGUAGE AND CULTURE

    Directory of Open Access Journals (Sweden)

    Svetlana Vladimirovna Sannikova

    2013-11-01

    Full Text Available This article is devoted to looking for productive educational technologies in learning a foreign language and culture with the use of ICT-based on the student-centered strategy that implements the method of projects.DOI: http://dx.doi.org/10.12731/2218-7405-2013-7-47

  1. User-centered design and interactive health technologies for patients.

    Science.gov (United States)

    De Vito Dabbs, Annette; Myers, Brad A; Mc Curry, Kenneth R; Dunbar-Jacob, Jacqueline; Hawkins, Robert P; Begey, Alex; Dew, Mary Amanda

    2009-01-01

    Despite recommendations that patients be involved in the design and testing of health technologies, few reports describe how to involve patients in systematic and meaningful ways to ensure that applications are customized to meet their needs. User-centered design is an approach that involves end users throughout the development process so that technologies support tasks, are easy to operate, and are of value to users. In this article, we provide an overview of user-centered design and use the development of Pocket Personal Assistant for Tracking Health (Pocket PATH) to illustrate how these principles and techniques were applied to involve patients in the development of this interactive health technology. Involving patient-users in the design and testing ensured functionality and usability, therefore increasing the likelihood of promoting the intended health outcomes.

  2. Finding the Education in Educational Technology with Early Learners

    Science.gov (United States)

    McManis, Lilla Dale; Gunnewig, Susan B.

    2012-01-01

    As many educators and parents have observed, today's children are exposed to advanced technology at an early age, with tablets, e-readers, and smartphones being some prevalent choices. Experiences with technology can pave the way for unprecedented learning opportunities. However, without an education component, technology cannot reach its full…

  3. Physical Education Teacher's Attitudes towards Philosophy of Education and Technology

    Science.gov (United States)

    Turkeli, Anil; Senel, Omer

    2016-01-01

    The current study was carried out to find out the attitudes of physical education teachers towards educational philosophy and technology, and to determine the relationship between the philosophy of education that they adopt and their attitudes toward technology. With this aim, the study was conducted on 22 female and 69 male physical education…

  4. It's TIME for Technology: The Technology in Mathematics Education Project

    Science.gov (United States)

    Hardy, Michael

    2008-01-01

    This article describes the impact that the Technology in Mathematics Education (TIME) Project had on participating middle level and secondary mathematics teachers' preparedness to teach through technology. Results indicate that the TIME Project positively impacted participants' perceptions of their knowledge of technological resources and methods…

  5. The Technological Dimension of Educational Technology in Europe

    Science.gov (United States)

    Dimitriadis, Yannis

    2012-01-01

    This article describes some of the main technological trends and issues of the European landscape of research and innovation in educational technology. Although several innovative technologies (tools, architectures, platforms, or approaches) emerge, such as intelligent support to personalization, collaboration or adaptation in mobile, game-based,…

  6. Technology Enhanced Learning in Design and Technology Education

    Science.gov (United States)

    Page, Tom; Thorsteinsson, Gisli

    2007-01-01

    The focus of this literature review addresses the opportunities that new media can have for design and technology education at the university level. Advances in public and technology interaction has changed drastically with the impact of New Media and Information and Communication Technologies (ICTs). This research investigates the role of New…

  7. Educator Competencies for Personalized, Learner-Centered Teaching

    Science.gov (United States)

    Wolfe, Rebecca E.; Poon, Jennifer Davis

    2015-01-01

    Learner-centered approaches have captured the imagination and loyalty of educators since the time of Dewey and the Progressive Movement, yet they have never been implemented at scale. What marks this era as different is the renewed interest in personalized, learner-centered education of today. It builds from a powerful combination of economic,…

  8. Adult Education in Radiologic Technology: A Review.

    Science.gov (United States)

    Dowd, Steven B.

    In almost all its aspects, radiologic technology education is adult education. Boyle's (1981) adult learning model has four components: (1) the learner in terms of motivation; (2) learning as a change process; (3) the experiential role of education; and (4) the facilitative role of the educator. Andragogy, as defined by Knowles (1977, 1980), is a…

  9. Women Technology Leaders: Gender Issues in Higher Education Information Technology

    Science.gov (United States)

    Drury, Marilyn

    2011-01-01

    Women working in higher education information technology (IT) organizations and those seeking leadership positions in these organizations face a double challenge in overcoming the traditionally male-dominated environments of higher education and IT. Three women higher education chief information officers (CIOs) provided their perspectives,…

  10. Social Adjustment of At-Risk Technology Education Students

    Science.gov (United States)

    Ernst, Jeremy V.; Moye, Johnny J.

    2013-01-01

    Individual technology education students' subgroup dynamic informs progressions of research while apprising technology teacher educators and classroom technology education teachers of intricate differences between students. Recognition of these differences help educators realize that classroom structure, instruction, and activities must be…

  11. Virginia Tech creates Caribbean center for education and research

    OpenAIRE

    Felker, Susan B.

    2006-01-01

    Virginia Tech has established a research, education, and outreach center in the Caribbean that will serve as part of a broad strategy to create international centers of scholarship around the world. The Caribbean Center for Education and Research (CCER) in Punta Cana, on the eastern tip of the Dominican Republic, will allow Virginia Tech faculty to conduct research as well as instruct students on biodiversity, environmental and social sustainability, global issues in natural resources, and ho...

  12. 76 FR 11498 - Submission for OMB Review; Comment Request; Generic Submission of Technology Transfer Center (TTC...

    Science.gov (United States)

    2011-03-02

    ... Submission of Technology Transfer Center (TTC) External Customer Satisfaction Surveys (NCI) SUMMARY: Under... control number. Proposed Collection: Title: Generic Submission of Technology Transfer Center (TTC... collaborations and alliances with the NIH. The needs of external technology transfer customers and stakeholders...

  13. First optical education center in Japan established by cooperation between academia and industry

    Science.gov (United States)

    Yatagai, Toyohiko

    2014-07-01

    At the present of the 21st century, optical technology became what must be in our life. If there is no optical technology, we cannot use optical equipments such as the camera, microscopes, DVD, LEDs and laser diodes (LDs). Optics is also the leading part in the most advanced scientific field. It is clear that the organization which does education and research is required in such a very important area. Unfortunately, there was no such organization in Japan. The education and research of light have been individually done in various faculties of universities, various research institutes, and many companies. However, our country is now placed in severer surroundings, such as the globalization of our living, the accelerated competition in research and development. This is one of the reasons why Utsunomiya University has established Center for Optical Research and Education (CORE) in 2007. To contribute to optical technology and further development of optical industry, "Center for Optical Research and Education (CORE), Utsunomiya University" promotes education and research in the field of the optical science and technology cooperatively with industry, academia and the government. Currently, 6 full professors, 21 cooperative professors, 2 visiting professors and 7 post-doctoral researchers and about 40 students are joined with CORE. Many research projects with industries, the local government of Tochigi as well as Japanese government. Optical Innovation Center has established in CORE by supporting of Japan Science and Technology Agency in 2011 to develop advanced optical technologies for local companies.

  14. Learner-centered education in gerontology and geriatrics.

    Science.gov (United States)

    Wood, Joan B

    2008-01-01

    This article serves as an introduction to the special issue on learner-centered education in gerontology and geriatrics. The author discusses the origin of the special issue in a preconference workshop sponsored by the Association for Gerontology in Higher Education at the Annual Scientific Meeting of the Gerontological Society of America in 2006, introduces the concept of learner-centered education, and briefly describes the articles in the special issue.

  15. SciDAC visualization and analytics center for enabling technology

    Energy Technology Data Exchange (ETDEWEB)

    Bethel, E Wes [Computing Sciences Division, Lawrence Berkeley National Laboratory, The University of California, Berkeley, CA 94720-8139 (United States); Johnson, Chris [Scientific Computing and Imaging Institute, University of Utah, 72 S. Central Campus Drive, Salt Lake City, UT 84112 (United States); Joy, Ken [Institute for Data Analysis and Visualization, University of California, One Shields Avenue, Davis, CA 95616-8562 (United States); Ahern, Sean [National Center for Computational Sciences, Oak Ridge National Laboratory, One Bethel Valley Road, PO Box 2008 MS-6016, Oak Ridge, TN 37831 (United States); Pascucci, Valerio [Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, PO Box 808, L-561, Livermore, CA 94551 (United States); Childs, Hank [Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, PO Box 808, L-561, Livermore, CA 94551 (United States); Cohen, Jonathan; Duchaineau, Mark [Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, PO Box 808, L-561, Livermore, CA 94551 (United States); Hamann, Bernd [Institute for Data Analysis and Visualization, University of California, One Shields Avenue, Davis, CA 95616-8562 (United States); Hansen, Charles; Parker, Steven; Silva, Claudio; Sanderson, Allen; Tricoche, Xavier [Scientific Computing and Imaging Institute, University of Utah, 72 S. Central Campus Drive, Salt Lake City, UT 84112 (United States); Laney, Dan [Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, PO Box 808, L-561, Livermore, CA 94551 (United States); Lindstrom, Peter [Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, PO Box 808, L-561, Livermore, CA 94551 (United States); Meredith, Jeremy; Ostrouchov, George [National Center for Computational Sciences, Oak Ridge National Laboratory, One Bethel Valley Road, PO Box 2008 MS-6016, Oak Ridge, TN 37831 (United States)

    2007-07-15

    The Visualization and Analytics Center for Enabling Technologies (VACET) focuses on leveraging scientific visualization and analytics software technology as an enabling technology for increasing scientific productivity and insight. Advances in computational technology have resulted in an 'information big bang,' which in turn has created a significant data understanding challenge. This challenge is widely acknowledged to be one of the primary bottlenecks in contemporary science. The vision of VACET is to adapt, extend, create when necessary, and deploy visual data analysis solutions that are responsive to the needs of DOE's computational and experimental scientists. Our center is engineered to be directly responsive to those needs and to deliver solutions for use in DOE's large open computing facilities. The research and development directly target data understanding problems provided by our scientific application stakeholders. VACET draws from a diverse set of visualization technology ranging from production quality applications and application frameworks to state-of-the-art algorithms for visualization, analysis, analytics, data manipulation, and data management.

  16. Educational Technologies: Impact on Learning and Frustration

    Science.gov (United States)

    Hove, M. Christina; Corcoran, Kevin J.

    2008-01-01

    Educators are increasingly using educational technologies at the postsecondary level although little research has investigated the effects of such technologies on learning. Our research explored the effects of traditional lecture, slide-show-supplemented lecture, and virtual learning environment (VLE) on learning and frustration among college…

  17. The Changing Nature of Educational Technology Programs

    Science.gov (United States)

    Spector, J. Michael

    2015-01-01

    The many changes in educational technologies have been well documented in both the professional and popular literature. What is less well documented is the changing nature of programs that prepare individuals for careers in the broad multi-disciplinary field of educational technology. This article is a first attempt to look at how educational…

  18. Relationships between Teacher Characteristics and Educational Technology

    Science.gov (United States)

    Schulze, Kurt Ronald

    2014-01-01

    Too often, teachers are using educational technology resources for administrative purposes instead of using these resources in a constructivist manner to enhance student learning. The study site was well behind the national average in overall educational technology use categories. The purpose of this explanatory correlational research was to…

  19. Best Practices of Leadership in Educational Technology

    Science.gov (United States)

    Brown, Loren

    2014-01-01

    Leadership in Educational Technology is a relatively new field that is changing as fast as technology itself. Success for an educational leader includes maintaining a firm grasp of how to diagnose the needs of a district, a school, or a classroom while aligning policies, procedures, and protocols into a format that will empower the individual…

  20. Historiography in Graduate Technology Teacher Education

    Science.gov (United States)

    Flowers, Jim; Hunt, Brian

    2012-01-01

    A proposal is made suggesting the inclusion of historiography (i.e., historical research and the writing of history) into graduate technology teacher education. In particular, a strategy is forwarded to have graduate students in technology teacher education, who are working at schools in different locations, conduct historical research and write…

  1. A Model Technology Educator: Thomas A. Edison

    Science.gov (United States)

    Pretzer, William S.; Rogers, George E.; Bush, Jeffery

    2007-01-01

    Reflecting back over a century ago to the small village of Menlo Park, New Jersey provides insight into a remarkable visionary and an exceptional role model for today's problem-solving and design-focused technology educator: Thomas A. Edison, inventor, innovator, and model technology educator. Since Edison could not simply apply existing knowledge…

  2. Dehumanization: An Overview of Educational Technology's Critics.

    Science.gov (United States)

    Hewitt, Geoff

    Almost since its inception, the word "dehumanization" has caused apprehension, especially as the words relate to educational technology. This paper is a brief analysis of educational technology's critics from the late 1950s through present time; it also serves as a study of how their rhetoric has affected the structure of elementary and…

  3. Aligning Technology Education Teaching with Brain Development

    Science.gov (United States)

    Katsioloudis, Petros

    2015-01-01

    This exploratory study was designed to determine if there is a level of alignment between technology education curriculum and theories of intellectual development. The researcher compared Epstein's Brain Growth Theory and Piaget's Status of Intellectual Development with technology education curriculum from Australia, England, and the United…

  4. Cedo; Center for Educational Development Overseas.

    Science.gov (United States)

    Center for Educational Development Overseas, London (England).

    The Centre for Educational Development Overseas (CEDO) was created in Britain in 1970 to assist developing nations with modernization and innovation in education. CEDO has aided both formal and informal education projects in several nations including Brazil, India, Ethiopia, Malaysia, and Tonga. Aid is usually offered in response to requests from…

  5. Suited for Spacewalking: A Teacher's Guide with Activities for Technology Education, Mathematics, and Science

    Science.gov (United States)

    Vogt, Gregory L.; George, Jane A. (Editor)

    1998-01-01

    A Teacher's Guide with Activities for Technology Education, Mathematics, and Science National Aeronautics and Space Administration Office of Human Resources and Education Education Division Washington, DC Education Working Group NASA Johnson Space Center Houston, Texas This publication is in the Public Domain and is not protected by copyright. Permission is not required for duplication.

  6. Establishment of the Center for Biomedical Technology Innovation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-12-15

    The report discussed the following topics: (1) Orthopedic Devices; (2) Hybrid Vector and Method Resulting in Protein Overproduction by Eukaryotic Cells; (3) Surgical Simulator; (4) CBTI (Center for Biomedical Technology Innovation) as an Incubator for Start-up Companies; (5) Voice-activated, computer-assisted surgical robotics; (6) Through transmission ultrasonic 3-D holography for diagnostic imaging; (7) CBTI's Scibermed{trademark} Virtual Institute (SVI); and (8) Laser Oxygenation Tomography.

  7. ESTABLISHMENT OF THE CENTER FOR ADVANCED SEPARATION TECHNOLOGIES

    Energy Technology Data Exchange (ETDEWEB)

    Hugh W. Rimmer

    2003-07-01

    Technical Progress Report describes progress made on the eight sub-projects awarded in the first year of Cooperative Agreement DE-FC26-01NT41091: Establishment of the Center for Advanced Separation Technologies. This work is summarized in the body of the main report: the individual sub-project Technical Progress Reports are attached as Appendices. Due to the time taken up by the solicitation/selection process, these cover the initial 6-month period of activity only.

  8. Establishment of the Center for Advanced Separation Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Christopher E. Hull

    2006-09-30

    This Final Technical Report covers the eight sub-projects awarded in the first year and the five projects awarded in the second year of Cooperative Agreement DE-FC26-01NT41091: Establishment of the Center for Advanced Separation Technologies. This work is summarized in the body of the main report: the individual sub-project Technical Progress Reports are attached as Appendices.

  9. The Multistability of Technological Breakdowns in Education

    DEFF Research Database (Denmark)

    Andersen, Bjarke Lindsø; Tafdrup, Oliver Alexander

    2017-01-01

    technological breakdowns become a more and more ubiquitous phenomenon due to the rapid increase of technological artefacts utilized for educational purposes (Riis, 2012). The breakdowns impact the educational practice with consequences ranging from creating small obstacles to rendering it impossible to conduct......Introduction Everyone who is involved with modern technological artefacts such as computers, software and tablets has experienced situations where the artefacts suddenly cease to function properly. This is commonly known as a technological breakdown. Within education and the praxis of teaching...

  10. Center for BioBased Binders and Pollution Reduction Technology

    Energy Technology Data Exchange (ETDEWEB)

    Thiel, Jerry [Univ. of Northern Iowa, Cedar Falls, IA (United States)

    2013-07-01

    Funding will support the continuation of the Center for Advanced Bio-based Binders and Pollution Reduction Technology Center (CABB) in the development of bio-based polymers and emission reduction technologies for the metal casting industry. Since the formation of the center several new polymers based on agricultural materials have been developed. These new materials have show decreases in hazardous air pollutants, phenol and formaldehyde as much as 50 to 80% respectively. The polymers termed bio-polymers show a great potential to utilize current renewable agricultural resources to replace petroleum based products and reduce our dependence on importing of foreign oil. The agricultural technology has shown drastic reductions in the emission of hazardous air pollutants and volatile organic compounds and requires further development to maintain competitive costs and productivity. The project will also research new and improved inorganic binders that promise to eliminate hazardous emissions from foundry casting operations and allow for the beneficial reuse of the materials and avoiding the burdening of overcrowded landfills.

  11. Qualitative Research Methods in Education and Educational Technology. Research Methods for Educational Technology

    Science.gov (United States)

    Willis, Jerry W.

    2008-01-01

    "Qualitative Research Methods in Education and Educational Technology" was written for students and scholars interested in exploring the many qualitative methods developed over the last 50 years in the social sciences. The book does not stop, however, at the boundaries of the social sciences. Social scientists now consume and use research methods…

  12. Whatever became of educational technology? the implications for teacher education

    Directory of Open Access Journals (Sweden)

    Colin Latchem

    2013-12-01

    Full Text Available The paper explores the reasons for educational technology principles and practices not being more widely accepted and successfully applied in everyday teaching and learning. It argues that these are: an over-emphasis on new technology; a failure to learn from the lessons of the past; and a lack of meta-analysis and collaborative research to evidence the benefits. The paper also brings out the point that the literature fails to acknowledge the important role of educational technology in informal learning and non-formal education. It concludes with recommendations for future research into the broader aspects of educational technology and the employment of more longitudinal and collaborative action research and the nature of pre- service, in-service and postgraduate teacher education in educational technology.

  13. USE OF EDUCATIONAL TECHNOLOGY IN PROMOTING DISTANCE EDUCATION

    Directory of Open Access Journals (Sweden)

    Muhammad RASHID

    2012-01-01

    Full Text Available Educational technology plays an important role in distance education system. By adapting new communication educational technologies in distance educational programmes their quality could be ensured. Instructions conducted through the use of technologies which significantly or completely eliminate the traditional face to face communication between teacher and students lead to distance education. Now a days, media such as computer, artificial satellites, digital libraries, telephones, radio and television broadcasting and other technologies are presenting their potential for the purpose. Audio, video and print materials provide the base while internet is becoming cheap, fast and effective medium. Immense resources are already available on the web. In addition, technology is rushing to bring in revolution in the filed of distance education. So in future, positive changes can be apprehended.

  14. Educational Technology and Development of Education.

    Science.gov (United States)

    Dieuzeide, Henri

    The activities of International Education Year enable us to assess the recent spectacular expansion of world education, and the results are scarcely encouraging. There is a growing rift in the industrial nations between educational systems and societies, which is breaking down the school's monopoly as a source of knowledge. If the developing…

  15. Technological Developments in Networking, Education and Automation

    CERN Document Server

    Elleithy, Khaled; Iskander, Magued; Kapila, Vikram; Karim, Mohammad A; Mahmood, Ausif

    2010-01-01

    "Technological Developments in Networking, Education and Automation" includes a set of rigorously reviewed world-class manuscripts addressing and detailing state-of-the-art research projects in the following areas: Computer Networks: Access Technologies, Medium Access Control, Network architectures and Equipment, Optical Networks and Switching, Telecommunication Technology, and Ultra Wideband Communications. Engineering Education and Online Learning: including development of courses and systems for engineering, technical and liberal studies programs; online laboratories; intelligent

  16. What Is Technology Education? A Review of the "Official Curriculum"

    Science.gov (United States)

    Brown, Ryan A.; Brown, Joshua W.

    2010-01-01

    Technology education, not to be confused with educational technology, has an "official curriculum." This article explores this "official curriculum" and answers the following questions; what are the goals of technology education, what should technology education look like in classrooms, and why technology education is important. This article…

  17. Technology and Online Education: Models for Change

    Science.gov (United States)

    Cook, Catherine W.; Sonnenberg, Christian

    2014-01-01

    This paper contends that technology changes advance online education. A number of mobile computing and transformative technologies will be examined and incorporated into a descriptive study. The object of the study will be to design innovative mobile awareness models seeking to understand technology changes for mobile devices and how they can be…

  18. Ethical Issues in Technology Education in Taiwan

    Science.gov (United States)

    Lin, Kuen-Yi

    2007-01-01

    A significant trend in technology education has shown internationally widespread acceptance with the increasing needs of developing students' technological literacy on both the elementary and secondary level from manual training to basic competency. Therefore, more and more countries have developed their national technology standards in order to…

  19. Identifying Advanced Technologies for Education's Future.

    Science.gov (United States)

    Moore, Gwendolyn B.; Yin, Robert K.

    A study to determine how three advanced technologies might be applied to the needs of special education students helped inspire the development of a new method for identifying such applications. This new method, named the "Hybrid Approach," combines features of the two traditional methods: technology-push and demand-pull. Technology-push involves…

  20. Technology and Environmental Education: An Integrated Curriculum

    Science.gov (United States)

    Willis, Jana M.; Weiser, Brenda

    2005-01-01

    Preparing teacher candidates to integrate technology into their future classrooms effectively requires experience in instructional planning that utilizes technology to enhance student learning. Teacher candidates need to work with curriculum that supports a variety of technologies. Using Project Learning Tree and environmental education (EE),…

  1. Introducing Mobile Technology in Graduate Professional Education

    Science.gov (United States)

    Anand, Gopesh; Chhajed, Dilip; Hong, Seung Won; Scagnoli, Norma

    2014-01-01

    The insertion of mobile technology in educational settings is becoming more prevalent, making it important to understand the effectiveness of such technology in enhancing students' learning and engagement. This article is based on research conducted to study the effects of the use of mobile technology--specifically iPads--by students in a graduate…

  2. Technology Teacher Education through a Constructivist Approach

    Science.gov (United States)

    Fox-Turnbull, Wendy; Snape, Paul

    2011-01-01

    This paper reviews literature on constructivist learning theories relevant to and evident in teacher education in a New Zealand university. These theories are illustrated within an authentic technology education context which involves students from a primary teacher-education degree programme. It investigates how a practical activity, based on…

  3. Armstrong Flight Research Center Research Technology and Engineering Report 2015

    Science.gov (United States)

    Voracek, David F.

    2016-01-01

    I am honored to endorse the 2015 Neil A. Armstrong Flight Research Center’s Research, Technology, and Engineering Report. The talented researchers, engineers, and scientists at Armstrong are continuing a long, rich legacy of creating innovative approaches to solving some of the difficult problems and challenges facing NASA and the aerospace community.Projects at NASA Armstrong advance technologies that will improve aerodynamic efficiency, increase fuel economy, reduce emissions and aircraft noise, and enable the integration of unmanned aircraft into the national airspace. The work represented in this report highlights the Center’s agility to develop technologies supporting each of NASA’s core missions and, more importantly, technologies that are preparing us for the future of aviation and space exploration.We are excited about our role in NASA’s mission to develop transformative aviation capabilities and open new markets for industry. One of our key strengths is the ability to rapidly move emerging techniques and technologies into flight evaluation so that we can quickly identify their strengths, shortcomings, and potential applications.This report presents a brief summary of the technology work of the Center. It also contains contact information for the associated technologists responsible for the work. Don’t hesitate to contact them for more information or for collaboration ideas.

  4. PERSON-CENTERED AND PERSON-ACTIVITY APPROACH AS A BASIS OF INTEGRATIVE LANGUAGE TEACHING TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    Yulia N. KARPOVA

    2015-01-01

    Full Text Available The article touches upon one of the most acute and complex problems of the modern Russian society the problem of reforming the current system of professional education. The author emphasizes the fact that person – centered and person-activity approach should be the key elements in higher education system modernization as a student personality and his future professional activity should be highlighted in the process of education and upbringing. The author has developed and successfully implemented the integrative language teaching technology, which unites both linguistic and religious knowledge. The article provides a detailed description of the main stages of the process of the technology introduction, the literature and the video materials that were used in the course of the technology implementation in the educational process, as well as formulates conclusions at each stage of its implementation. The effectiveness of the integrative language teaching technology has been proven and is defined by the author as the effect of pedagogical synergy of mutual interaction of several disciplines, characterized by the fact that the influence of the tech nology use exceeds the influence exerted by each discipline as the component of the educational process taken separately.

  5. Career and Technology Center Guides Students in Real-Life Careers | Poster

    Science.gov (United States)

    By Carolynne Keenan, Contributing Writer Frederick County Public School students have a unique opportunity—a chance to get a real-world, hands-on experience in biomedical science and biotechnology before they even graduate from high school, thanks to the Frederick County Career and Technology Center (CTC). Several years ago, the CTC established its biomedical sciences program with a curriculum from Project Lead the Way (PLTW), a nonprofit, nationwide developer of science, technology, engineering, and mathematics (STEM) education in elementary, middle, and high schools.

  6. Educational Technology and Distance Supervision in Counselor Education

    Science.gov (United States)

    Carlisle, Robert Milton; Hays, Danica G.; Pribesh, Shana L.; Wood, Chris T.

    2017-01-01

    The authors used a nonexperimental descriptive design to examine the prevalence of distance supervision in counselor education programs, educational technology used in supervision, training on technology in supervision, and participants' (N = 673) perceptions of legal and ethical compliance. Program policies are recommended to guide the training…

  7. Robotic Technology Efforts at the NASA/Johnson Space Center

    Science.gov (United States)

    Diftler, Ron

    2017-01-01

    The NASA/Johnson Space Center has been developing robotic systems in support of space exploration for more than two decades. The goal of the Center's Robotic Systems Technology Branch is to design and build hardware and software to assist astronauts in performing their mission. These systems include: rovers, humanoid robots, inspection devices and wearable robotics. Inspection systems provide external views of space vehicles to search for surface damage and also maneuver inside restricted areas to verify proper connections. New concepts in human and robotic rovers offer solutions for navigating difficult terrain expected in future planetary missions. An important objective for humanoid robots is to relieve the crew of "dull, dirty or dangerous" tasks allowing them more time to perform their important science and exploration missions. Wearable robotics one of the Center's newest development areas can provide crew with low mass exercise capability and also augment an astronaut's strength while wearing a space suit. This presentation will describe the robotic technology and prototypes developed at the Johnson Space Center that are the basis for future flight systems. An overview of inspection robots will show their operation on the ground and in-orbit. Rovers with independent wheel modules, crab steering, and active suspension are able to climb over large obstacles, and nimbly maneuver around others. Humanoid robots, including the First Humanoid Robot in Space: Robonaut 2, demonstrate capabilities that will lead to robotic caretakers for human habitats in space, and on Mars. The Center's Wearable Robotics Lab supports work in assistive and sensing devices, including exoskeletons, force measuring shoes, and grasp assist gloves.

  8. Environment Assessment for the Construction of a Visitor/Education Center at NASA Stennis Space Center

    Science.gov (United States)

    Kennedy, Carolyn D.

    2006-01-01

    This document is an environmental assessment that examines the environmental impacts of a proposed plan to clear land and to construct a building for the operation of a Visitor/Education Center at a location next to the Mississippi Welcome Center on Interstate 10 along highway 607 in Hancock County Mississippi.

  9. Enhancing Prospective Teachers' Coordination of Center and Spread: A Window into Teacher Education Material Development

    Science.gov (United States)

    Lee, Hollylynne S.; Lee, J. Todd

    2011-01-01

    This paper describes a development and evaluation process used to create teacher education materials that help prepare middle and secondary mathematics teachers to teach data analysis and probability concepts with technology tools. One aspect of statistical reasoning needed for teaching is the ability to coordinate understandings of center and…

  10. Center for Urban Environmental Research and Education (CUERE)

    Data.gov (United States)

    Federal Laboratory Consortium — The Center for Urban Environmental Research and Education (CUERE) at UMBC was created in 2001 with initial support from the U.S. Environmental Protection Agency and...

  11. Learning and Teaching Centers: Hubs of Educational Reform.

    Science.gov (United States)

    Singer, Susan R.

    2002-01-01

    Provides an overview of the history and future direction of campus learning and teaching centers, and discusses how they serve as repositories of institutional memory and catalysts of campus conversations about critical educational issues. (EV)

  12. From STEM to STEAM: Toward a Human-Centered Education

    Science.gov (United States)

    Boy, Guy A.

    2013-01-01

    The 20th century was based on local linear engineering of complicated systems. We made cars, airplanes and chemical plants for example. The 21st century has opened a new basis for holistic non-linear design of complex systems, such as the Internet, air traffic management and nanotechnologies. Complexity, interconnectivity, interaction and communication are major attributes of our evolving society. But, more interestingly, we have started to understand that chaos theories may be more important than reductionism, to better understand and thrive on our planet. Systems need to be investigated and tested as wholes, which requires a cross-disciplinary approach and new conceptual principles and tools. Consequently, schools cannot continue to teach isolated disciplines based on simple reductionism. Science; Technology, Engineering, and Mathematics (STEM) should be integrated together with the Arts1 to promote creativity together with rationalization, and move to STEAM (with an "A" for Arts). This new concept emphasizes the possibility of longer-term socio-technical futures instead of short-term financial predictions that currently lead to uncontrolled economies. Human-centered design (HCD) can contribute to improving STEAM education technologies, systems and practices. HCD not only provides tools and techniques to build useful and usable things, but also an integrated approach to learning by doing, expressing and critiquing, exploring possible futures, and understanding complex systems.

  13. Technology, open education and a resilient higher education

    OpenAIRE

    Hall, Richard; Winn, Joss

    2010-01-01

    The place of technology in the development of coherent educational responses to environmental and socio-economic= disruption is here placed under scrutiny. One emerging area of interest is the role of technology in addressing more complex learning futures, and more especially in facilitating individual and social resilience, or the ability to manage and overcome disruption. However, the extent to which higher education practitioners can utilise technology to this end is framed by their approa...

  14. NASA Johnson Space Center SBIR STTR Program Technology Innovations

    Science.gov (United States)

    Krishen, Kumar

    2007-01-01

    The Small Business Innovation Research (SBIR) Program increases opportunities for small businesses to participate in research and development (R&D), increases employment, and improves U.S. competitiveness. Specifically the program stimulates U.S. technological innovation by using small businesses to meet federal R&D needs, increasing private-sector commercialization of innovations derived from federal R&D, and fostering and encouraging the participation of socially disadvantaged businesses. In 2000, the Small Business Technology Transfer (STTR) Program extended and strengthened the SBIR Program, increasing its emphasis on pursuing commercial applications by awarding contracts to small business concerns for cooperative R&D with a nonprofit research institution. Modeled after the SBIR Program, STTR is nevertheless a separately funded activity. Technologies that have resulted from the Johnson Space Center SBIR STTR Program include: a device for regenerating iodinated resin beds; laser-assisted in-situ keratomileusis or LASIK; a miniature physiological monitoring device capable of collecting and analyzing a multitude of real-time signals to transmit medical data from remote locations to medical centers for diagnosis and intervention; a new thermal management system for fibers and fabrics giving rise to new line of garments and thermal-enhancing environments; and a highly electropositive material that attracts and retains electronegative particles in water.

  15. Educational technologies in the system of managerial staff mentoring

    Directory of Open Access Journals (Sweden)

    L. P. Gancharik

    2016-01-01

    organizations.Today, the full range of human activities entrusted to the personnel service of organizations. Educational institutions are involved only in the process of learning and, as a rule, stand apart from the rest of the personnel requirements of organizations (according to the principle: “We gave you the knowledge, and then you are by yourself…”. It is practically impossible to create a large-scale system of continuous development of managerial staff in the organizations without continuous interaction of personnel services in organizations, and educational institutions that have, both human and educational technologies.It is proposed to extend the learning process of the educational institutions in the state bodies and organizations through a system of cascading mentoring based on telecommunication technologies. The structure of the e-learning system provides means of creation, management and delivery of the content, means of organizing the learning process and interaction support of the participants. E-learning system provides system view of the educational process, when the main unit is not the academic discipline, and the formed administrative competence, around which the complex process of interaction between students, lecturers, learners and educational institutions exists. In the Academy of Management this interaction is carried out using the remote control SharePoint LMS learning system, which provides the high-quality implementation of the educational process. In the cascade mentoring system the distance learning is based on the modern telecommunication technologies and means of remote access to the distributed databases and knowledge of scientific, technical and educational information. The most promising model in this area is the open education, the dominant trend in the development of which becomes the student-centered learning model, taking into account the individual, personal qualities of each student and is based on the advanced pedagogical and

  16. Using modern information technologies in continuing education

    Directory of Open Access Journals (Sweden)

    Магомедхан Магомедович Ниматулаев

    2012-06-01

    Full Text Available Article opens problems of formation of system of continuous education and improvement of professional skill for effective realization of professional work of the teacher in the conditions of use of modern information technology. Possibilities and necessities of use of information-communication technologies, Web-technologies for an intensification and giving of additional dynamics to educational process are considered. In this connection new forms and methods of the organization of educational activity for development and perfection of this activity are defined.

  17. Game-like Technology Innovation Education

    DEFF Research Database (Denmark)

    Magnussen, Rikke

    2011-01-01

    scenario designed for technology education in grades 7 - 9 in Danish schools. In the paper, methodological challenges of doing design-based research into technology innovation education are discussed. The preliminary results from the first studies of a game-inspired technology innovation camp are also......  The aim of this paper is to discuss the first results and methodological challenges and perspectives of designing game-inspired scenarios for implementation of innovation processes into schools' science education. This paper comprises and report on a case study of a game-inspired innovation...

  18. The Learning Center; A Sphere for Nontraditional Approaches to Education.

    Science.gov (United States)

    Peterson, Gary T.

    This book is designed to give administrators and faculty a model to follow in developing and maintaining a Learning Center of any size at any educational level, from preschool to college. Basic to the Learning Center concept presented here are the following four services: (1) a multimedia library, (2) audiovisual services, (3) nontraditional…

  19. Alternative treatment technology information center computer database system

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, D. [Environmental Protection Agency, Edison, NJ (United States)

    1995-10-01

    The Alternative Treatment Technology Information Center (ATTIC) computer database system was developed pursuant to the 1986 Superfund law amendments. It provides up-to-date information on innovative treatment technologies to clean up hazardous waste sites. ATTIC v2.0 provides access to several independent databases as well as a mechanism for retrieving full-text documents of key literature. It can be accessed with a personal computer and modem 24 hours a day, and there are no user fees. ATTIC provides {open_quotes}one-stop shopping{close_quotes} for information on alternative treatment options by accessing several databases: (1) treatment technology database; this contains abstracts from the literature on all types of treatment technologies, including biological, chemical, physical, and thermal methods. The best literature as viewed by experts is highlighted. (2) treatability study database; this provides performance information on technologies to remove contaminants from wastewaters and soils. It is derived from treatability studies. This database is available through ATTIC or separately as a disk that can be mailed to you. (3) underground storage tank database; this presents information on underground storage tank corrective actions, surface spills, emergency response, and remedial actions. (4) oil/chemical spill database; this provides abstracts on treatment and disposal of spilled oil and chemicals. In addition to these separate databases, ATTIC allows immediate access to other disk-based systems such as the Vendor Information System for Innovative Treatment Technologies (VISITT) and the Bioremediation in the Field Search System (BFSS). The user may download these programs to their own PC via a high-speed modem. Also via modem, users are able to download entire documents through the ATTIC system. Currently, about fifty publications are available, including Superfund Innovative Technology Evaluation (SITE) program documents.

  20. Bring Your Own Technology (BYOT to Education

    Directory of Open Access Journals (Sweden)

    Joseph M. Woodside

    2014-06-01

    Full Text Available In an effort to reduce costs and increase worker satisfaction, many businesses have implemented a concept known as Bring Your Own Device (BYOD or Bring Your Own Technology (BYOT. Similarly, many school districts are beginning to implement BYOT policies and programs to improve educational learning opportunities for students who have a wide variety of technology devices. BYOT allow districts with limited budgets enable usage of technology while improving student engagement. This paper explores the technology devices, and educational implications of policies, device management, security and included components.

  1. Educational Technology Classics: The Science Teacher and Educational Technology

    Science.gov (United States)

    Harbeck, Richard M.

    2015-01-01

    The science teacher is the key person who has the commitment and the responsibility for carrying out any brand of science education. All of the investments, predictions, and expressions of concern will have little effect on the accomplishment of the broad goals of science education if these are not reflected in the situations in which learning…

  2. Emerging educational technologies: Tensions and synergy

    Directory of Open Access Journals (Sweden)

    J. Michael Spector

    2014-01-01

    Full Text Available A review of high level sources with regard to new and emerging technologies was conducted. Three technologies, according to these sources, appear especially promising: (a massive open online courses (MOOCs, (b personalized learning, and (c game-based learning. This paper will review information from the US National Science Foundation, the US Department of Education, the New Media Consortium, and two European Networks of Excellence with regard to new and emerging technologies. A critique will then be provided using established principles pertaining to learning and instruction and a recommended curriculum for advanced learning technologies. The general result is that it appears that some educational technology advocates are overstating the likelihood of these three technologies having a significant and sustained impact in the near future, although there are promising aspects to each of these technologies in the long term.

  3. The 1991 research and technology report, Goddard Space Flight Center

    Science.gov (United States)

    Soffen, Gerald (Editor); Ottenstein, Howard (Editor); Montgomery, Harry (Editor); Truszkowski, Walter (Editor); Frost, Kenneth (Editor); Sullivan, Walter (Editor); Boyle, Charles (Editor)

    1991-01-01

    The 1991 Research and Technology Report for Goddard Space Flight Center is presented. Research covered areas such as (1) earth sciences including upper atmosphere, lower atmosphere, oceans, hydrology, and global studies; (2) space sciences including solar studies, planetary studies, Astro-1, gamma ray investigations, and astrophysics; (3) flight projects; (4) engineering including robotics, mechanical engineering, electronics, imaging and optics, thermal and cryogenic studies, and balloons; and (5) ground systems, networks, and communications including data and networks, TDRSS, mission planning and scheduling, and software development and test.

  4. The Impact of Technology on Education

    Science.gov (United States)

    Lagowski, J. J.

    1995-08-01

    Near the top of the list of critical issues in education is the appropriate use of technology in the educational process. It is clear that some type of investment in educational technology, specifically interactive computing, is essential for nearly all institutions, and indeed, many have made some purchases already. Despite that fact, the leadership of educational institutions face a complex set of problems in this regard. What portion of a (probably) shrinking budget should be allocated to this expanding area? Which options from a growing array of technological choices are the most appropriate for a particular environment? Which of these options are essentials, and which are luxuries? What sorts of technology will benefit students the most? What is needed now in order to keep from falling (even further) behind a few years hence? The pressure to do something is great, and it is often exacerbated by arguments of efficiency that have little foundation in fact. For example, suggestions are often made that an investment in educational technology will help handle more students. This point of view may ultimately prevail, but little evidence on this point is currently available. Indeed, it appears that more faculty/staff effort is required to bring interactive technology into students' hands in a meaningful way. Often ignored is the amount of training necessary for a spectrum of novice users. Another argument often made is that empowering students with interactive technology will somehow lessen pressure on the current (classical) library operation. Presumably, this effect will come about through access to the Internet resources. As currently constituted, the Internet carries information of widely varying quality, ranging from the systematic holdings of many of the fine libraries of the world to outright garbage (from an intellectual point of view). Information on the Internet (other than that from libraries) is often unedited or unorganized to the extent that potential

  5. Educational Resources Information Center (ERIC) File Partition Study: Final Report.

    Science.gov (United States)

    Hull, Cynthia C.; Wanger, Judith

    A study to provide the National Center for Educational Communication (NCE) with information that could be useful in making the ERIC data base more relevant to the needs of educators and more efficiently usable by them is discussed. Specific purposes of this project were to use an empirical field-survey study as an armature around which to: (1)…

  6. Education and public outreach at the SIRTF science center

    Science.gov (United States)

    Daou, D.

    2002-01-01

    Communicating the world of infrared astronomy to the public is the main vocation of the Education and Public Outreach Office of the SIRTF Science Center; but certainly not its only goal. In the past few years we have created a wide variety of educational products that explains the infrared as well as the multi-wavelength universe.

  7. Photobioreactor: Biotechnology for the Technology Education Classroom.

    Science.gov (United States)

    Dunham, Trey; Wells, John; White, Karissa

    2002-01-01

    Describes a problem scenario involving photobioreactors and presents materials and resources, student project activities, and teaching and evaluation methods for use in the technology education classroom. (Contains 14 references.) (SK)

  8. National Wind Technology Center sitewide, Golden, CO: Environmental assessment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-11-01

    The National Renewable Energy Laboratory (NREL), the nation`s primary solar and renewable energy research laboratory, proposes to expand its wind technology research and development program activities at its National Wind Technology Center (NWTC) near Golden, Colorado. NWTC is an existing wind energy research facility operated by NREL for the US Department of Energy (DOE). Proposed activities include the construction and reuse of buildings and facilities, installation of up to 20 wind turbine test sites, improvements in infrastructure, and subsequent research activities, technology testing, and site operations. In addition to wind turbine test activities, NWTC may be used to support other NREL program activities and small-scale demonstration projects. This document assesses potential consequences to resources within the physical, biological, and human environment, including potential impacts to: air quality, geology and soils, water resources, biological resources, cultural and historic resources, socioeconomic resources, land use, visual resources, noise environment, hazardous materials and waste management, and health and safety conditions. Comment letters were received from several agencies in response to the scoping and predecisional draft reviews. The comments have been incorporated as appropriate into the document with full text of the letters contained in the Appendices. Additionally, information from the Rocky Flats Environmental Technology Site on going sitewide assessment of potential environmental impacts has been reviewed and discussed by representatives of both parties and incorporated into the document as appropriate.

  9. The Savannah River Technology Center environmental monitoring field test platform

    Energy Technology Data Exchange (ETDEWEB)

    Rossabi, J.

    1993-03-05

    Nearly all industrial facilities have been responsible for introducing synthetic chemicals into the environment. The Savannah River Site is no exception. Several areas at the site have been contaminated by chlorinated volatile organic chemicals. Because of the persistence and refractory nature of these contaminants, a complete clean up of the site will take many years. A major focus of the mission of the Environmental Sciences Section of the Savannah River Technology Center is to develop better, faster, and less expensive methods for characterizing, monitoring, and remediating the subsurface. These new methods can then be applied directly at the Savannah River Site and at other contaminated areas in the United States and throughout the world. The Environmental Sciences Section has hosted field testing of many different monitoring technologies over the past two years primarily as a result of the Integrated Demonstration Program sponsored by the Department of Energy`s Office of Technology Development. This paper provides an overview of some of the technologies that have been demonstrated at the site and briefly discusses the applicability of these techniques.

  10. Distance education: turf and technology.

    Science.gov (United States)

    Pickard, M R

    1992-07-01

    Distance learning fits with the mission and strategic plan of the University of Texas at Arlington. We believe these educational opportunities in nursing are highly desirable. The Board of Nurse Examiners for the State of Texas has approved this project and the Texas Higher Education Coordinating Board has approved it as a pilot project. The school will continue evaluation and creative problem-solving in the use of distance education.

  11. PROJECT CENTERED COMPETENCE RELATED EDUCATION OF ENGINEERS

    NARCIS (Netherlands)

    Kollenburg, Peter van; Bakker, Reinder; Bouten, Coert

    2007-01-01

    ABSTRACT It has become a topic at Dutch educational institutes to feel not only responsible for improvement of theoretical and practical skills, but also of 'competences' in a wider sense. The curriculum of the Fontys University of Applied Sciences (32.000 students) and especially the Electrical and

  12. Educational Cognitive Technologies as Human Adaptation Strategies

    Directory of Open Access Journals (Sweden)

    Marja Nesterova

    2017-07-01

    Full Text Available Modernity is characterized by profound changes in all spheres of human life caused by the global transformations on macro and micro levels of social reality. These changes allow us to speak about the present as the era of civilizational transition in the mode of uncertainty. Therefore, this situation demands qualitative transformations of human adaptive strategies and educational technologies accordingly. The dominant role in the dynamics of pedagogics and andragogy’s landscape belongs to transformative learning. The transformative learning theory is considered as the relevant approach to education of the individual, which is able to become an autonomous communicative actor of the social complexity. The article considers the cognitive technologies of social cohesion development and perspectives of their implementation in the educational dimension. In addition to implementing the principles of inclusion, equity in education, an important factor for improving social cohesion, stability and unity of society is the development of cognitive educational technologies. The key factors and foundations for the cognitive educational technologies are transversal competencies. They create the conditions for civil, public dialogue, non-violent type of communication. These “21st century skills” are extremely important for better human adaptation. One of the aspects and roots of social adaptation is social cohesion. Mutual determinations and connections between social cohesion development and transversal competences have been shown. The perspective direction of further researches is to find a methodological base for the further development of cognitive education technologies and platform for realization of innovative services for educational programs. New educational paradigm offers the concept of human adaptation as cognitive effectiveness and how to reach it through educational technologies. The article includes topics of creative thinking, teambuilding

  13. Model of Providing Assistive Technologies in Special Education Schools.

    Science.gov (United States)

    Lersilp, Suchitporn; Putthinoi, Supawadee; Chakpitak, Nopasit

    2015-05-14

    Most students diagnosed with disabilities in Thai special education schools received assistive technologies, but this did not guarantee the greatest benefits. The purpose of this study was to survey the provision, use and needs of assistive technologies, as well as the perspectives of key informants regarding a model of providing them in special education schools. The participants were selected by the purposive sampling method, and they comprised 120 students with visual, physical, hearing or intellectual disabilities from four special education schools in Chiang Mai, Thailand; and 24 key informants such as parents or caregivers, teachers, school principals and school therapists. The instruments consisted of an assistive technology checklist and a semi-structured interview. Results showed that a category of assistive technologies was provided for students with disabilities, with the highest being "services", followed by "media" and then "facilities". Furthermore, mostly students with physical disabilities were provided with assistive technologies, but those with visual disabilities needed it more. Finally, the model of providing assistive technologies was composed of 5 components: Collaboration; Holistic perspective; Independent management of schools; Learning systems and a production manual for users; and Development of an assistive technology center, driven by 3 major sources such as Government and Private organizations, and Schools.

  14. Research and technology, fiscal year 1986, Marshall Space Flight Center

    Science.gov (United States)

    1986-01-01

    The Marshall Space Flight Center is continuing its vigorous efforts in space-related research and technology. Extensive activities in advanced studies have led to the approval of the Orbital Maneuvering Vehicle as a new start. Significant progress was made in definition studies of liquid rocket engine systems for future space transportation needs and the conceptualization of advanced laucnch vehicles. The space systems definition studies have brought the Advanced X-ray Astrophysics Facility and Gravity Probe-B to a high degree of maturity. Both are ready for project implementation. Also discussed include significant advances in low gravity sciences, solar terrestrial physics, high energy astrophysics, atmospheric sciences, propulsion systems, and on the critical element of the Space Shuttle Main Engine in particular. The goals of improving the productivity of high-cost repetitive operations on reusable transportation systems, and extending the useful life of such systems are examined. The research and technology highlighted provides a foundation for progress on the Hubble Space Telescope, the Space Station, all elements of the Space Transportation System, and the many other projects assigned to this Center.

  15. Geospatial Technology in Geography Education

    Science.gov (United States)

    DeMers, Michael N.

    2016-01-01

    Depending on how you determine the starting point for the technology driving geographic information systems (GIS) and remote sensing, it is well over fifty years old now. During the first years of its existence in the early 1960s, the new technology benefited relatively few students who attended the handful of college programs that were actually…

  16. Communication Technology for Adult Education.

    Science.gov (United States)

    Rehman, S.

    1979-01-01

    The author draws attention to the quantitative and qualitative targets set for achievement by the National Adult Education Programme in India. She recommends a thorough and extensive use of educational media, not merely for motivational purposes, but for raising awareness and training the large numbers of instructors required to run the program.…

  17. Leveraging Technology for Educational Inclusion

    Science.gov (United States)

    Subramaniam, Sudha; Subramaniam, Radha

    2017-01-01

    The divides created by inequalities of income, lopsided growth and by the vicious circle of poverty has ensnared learning and delayed the planned strategies for educational inclusion. India's eighth Five-Year Plan prioritised and allocated increased funding for education with focus on reach-out to the remote interiors and rural India. However,…

  18. Development of a National Center for Hydrogen Technology. A Summary Report of Activities Completed at the National Center for Hydrogen Technology - Year 6

    Energy Technology Data Exchange (ETDEWEB)

    Holmes, Michael [Univ. of North Dakota, Grand Forks, ND (United States)

    2012-08-01

    The Energy & Environmental Research Center (EERC) located in Grand Forks, North Dakota, has operated the National Center for Hydrogen Technology (NCHT) since 2005 under a Cooperative Agreement with the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL). The EERC has a long history of hydrogen generation and utilization from fossil fuels, and under the NCHT Program, the EERC has accelerated its research on hydrogen generation and utilization topics. Since the NCHT's inception, the EERC has received more than $65 million in funding for hydrogen-related projects ($24 million for projects in the NCHT, which includes federal and corporate partner development funds) involving more than 85 partners (27 with the NCHT). The NCHT Program's nine activities span a broad range of technologies that align well with the Advanced Fuels Program goals and, specifically, those described in the Hydrogen from Coal Program research, development, and demonstration (RD&D) plan that refers to realistic testing of technologies at adequate scale, process intensification, and contaminant control. A number of projects have been completed that range from technical feasibility of several hydrogen generation and utilization technologies to public and technical education and outreach tools. Projects under the NCHT have produced hydrogen from natural gas, coal, liquid hydrocarbons, and biomass. The hydrogen or syngas generated by these processes has also been purified in many of these instances or burned directly for power generation. Also, several activities are still undergoing research, development, demonstration, and commercialization at the NCHT. This report provides a summary overview of the projects completed in Year 6 of the NCHT. Individual activity reports are referenced as a source of detailed information on each activity.

  19. Social media, new technologies and history education

    NARCIS (Netherlands)

    Ribbens, Kees; Haydn, Terry; Carretero, Mario; Berger, Stefan; Grever, Maria

    This chapter explores the implications of recent developments in technology and social media, having a significant impact on the way in which young people learn history in schools and outside schools. New technology not only has a positive influence on education, it also has unintended negative

  20. Basic Principles in Holistic Technology Education.

    Science.gov (United States)

    Seemann, Kurt

    2003-01-01

    Outlines principles for holistic technology education by examining the following: (1) knowing and understanding through practical engagement with technology; (2) dialectics and praxis; and (3) the work of Dewey, Hegel, Feuerbach, and Marx. Identifies four interconnected factors: humans, applied setting, environment, and tools. (Contains 20…

  1. Introducing Educational Technologies to Teachers: Experience Report

    Science.gov (United States)

    Thota, Neena; Negreiros, Joao G. M.

    2015-01-01

    The dramatic rise in use of digital media has changed the way learning is taking place and has led to new ways to teach with digital technologies. In this article, we describe the experiences of teaching a course that introduces educational technologies to teachers in Macau. The course design is based on connectivism, a learning theory for the…

  2. Trends and Research Issues in Educational Technology

    Science.gov (United States)

    Spector, J. Michael

    2013-01-01

    If one looks back at the last 50 years or so at educational technologies, one will notice several things. First, the pace of innovation has increased dramatically with many developments in the application of digital technologies to learning and instruction, following by a few years developments in the sciences and engineering disciplines that are…

  3. Introducing Technology Education at the Elementary Level

    Science.gov (United States)

    McKnight, Sean

    2012-01-01

    Many school districts are seeing a need to introduce technology education to students at the elementary level. Pennsylvania's Penn Manor School District is one of them. Pennsylvania has updated science and technology standards for grades 3-8, and after several conversations the author had with elementary principals and the assistant superintendent…

  4. Educational Perspectives on Digital Communications Technologies

    Science.gov (United States)

    Brett, Clare

    2009-01-01

    This article examines key issues in how new technologies are impacting upon how we teach, learn and collaborate, and uses an educational research project called GRAIL (Graduate Researcher's Academic Identity Online) under development to illustrate some fundamental issues in adopting new technologies. A significant challenge to the effective use of…

  5. Virtual Education: Guidelines for Using Games Technology

    Science.gov (United States)

    Schofield, Damian

    2014-01-01

    Advanced three-dimensional virtual environment technology, similar to that used by the film and computer games industry, can allow educational developers to rapidly create realistic online virtual environments. This technology has been used to generate a range of interactive Virtual Reality (VR) learning environments across a spectrum of…

  6. Adult Education Technology in the Golden State.

    Science.gov (United States)

    Fleischman, John; Kilbert, Gerald H.

    1993-01-01

    Educational technology applications in California include (1) OTAN's Online Communication System--electronic mail and an information database; (2) Educard, a computer chip card for storing and retrieving student information; and (3) staff development via satellite in Los Angeles County Schools' Educational Telecommunications Network. (SK)

  7. Getting Your Counselor to Support Technology Education

    Science.gov (United States)

    Preble, Brian C.

    2016-01-01

    Is there a disconnect between counselors and educators in technology and vocational education? What is counseling, and what is a school counselor's role in a secondary school setting? How can one work with his or her guidance staff to ensure that students better understand your course offerings? The development of relationships, knowledge, and…

  8. European teachers and new educational technology

    Directory of Open Access Journals (Sweden)

    Manuela Repetto

    2005-01-01

    Full Text Available Analysis of the current status on initial and in-service teachers' use of ICT for education in Europe. The paper describes the results of an analysis conducted in uTeacher, a European project devoted to developing a European Framework on teachers' skills in using new technologies for education.

  9. Information Technologies (ITs) in Medical Education.

    Science.gov (United States)

    Masic, Izet; Pandza, Haris; Toromanovic, Selim; Masic, Fedja; Sivic, Suad; Zunic, Lejla; Masic, Zlatan

    2011-09-01

    Advances in medicine in recent decades are in significant correlation with the advances in the information technology. Modern information technologies (IT) have enabled faster, more reliable and comprehensive data collection. These technologies have started to create a large number of irrelevant information, which represents a limiting factor and a real growing gap, between the medical knowledge on one hand, and the ability of doctors to follow its growth on the other. Furthermore, in our environment, the term technology is generally reserved for its technical component. Education means, learning, teaching, or the process of acquiring skills or behavior modification through various exercises. Traditionally, medical education meant the oral, practical and more passive transferring of knowledge and skills from the educators to students and health professionals. For the clinical disciplines, of special importance are the principles, such as, "learning at bedside," aided by the medical literature. In doing so, these techniques enable students to contact with their teachers, and to refer to the appropriate literature. The disadvantage of these educational methods is in the fact, that teachers often do not have enough time. Additionally they are not very convenient to the horizontal and vertical integration of teaching, create weak or almost no self education, as well as, low skill levels and poor integration of education with a real social environment. In this paper authors describe application of modern IT in medical education - their advantages and disadvantages comparing with traditional ways of education.

  10. Information-Technology Based Physics Education

    Science.gov (United States)

    Kim, J. S.; Lee, K. H.

    2001-04-01

    Developing countries emphasize expansion of the educated population but demand for quality improvement follows later. Current science education reform is driven in part by post cold war restructuring of the global economy and associated focus on the education of a more scientifically literate society, due to the industrial change from labor-intensive to high-technology type, and the societal change inherent in the present information era. Industry needs employees of broad and flexible background with inter disciplinary training, engineers with better physics training, and well trained physicists. Education researches have proved that active-learning based methods are superior to the traditional methods and the information technology (IT) has lot to offer in this. Use of IT for improving physics education is briefly discussed with prospects for collaboration in the Asia-Pacific region via Asian Physics Education Network (ASPEN), UNESCO University Foundation Course in Physics (UUFCP), etc.

  11. Emerging educational technologies: Tensions and synergy

    OpenAIRE

    J. Michael Spector

    2014-01-01

    A review of high level sources with regard to new and emerging technologies was conducted. Three technologies, according to these sources, appear especially promising: (a) massive open online courses (MOOCs), (b) personalized learning, and (c) game-based learning. This paper will review information from the US National Science Foundation, the US Department of Education, the New Media Consortium, and two European Networks of Excellence with regard to new and emerging technologies. A critique w...

  12. Bring Your Own Technology (BYOT) to Education

    OpenAIRE

    2014-01-01

    In an effort to reduce costs and increase worker satisfaction, many businesses have implemented a concept known as Bring Your Own Device (BYOD) or Bring Your Own Technology (BYOT). Similarly, many school districts are beginning to implement BYOT policies and programs to improve educational learning opportunities for students who have a wide variety of technology devices. BYOT allow districts with limited budgets enable usage of technology while improving student engagement. This paper explore...

  13. The National Center of Evaluation for Higher Education (CENEVAL) and the External Evaluation of Mexican Education

    National Research Council Canada - National Science Library

    Antonio Gago Huguet

    2000-01-01

    The National Center for the Evaluation of Higher Education (CENEVAL) has developed and set in motion a series of examinations which permits the evaluation of students when they complete their Bachelor’s level education...

  14. Advanced Stirling Technology Development at NASA Glenn Research Center

    Science.gov (United States)

    Shaltens, Richard K.; Wong, Wayne A.

    2007-01-01

    The NASA Glenn Research Center has been developing advanced energy-conversion technologies for use with both radioisotope power systems and fission surface power systems for many decades. Under NASA's Science Mission Directorate, Planetary Science Theme, Technology Program, Glenn is developing the next generation of advanced Stirling convertors (ASCs) for use in the Department of Energy/Lockheed Martin Advanced Stirling Radioisotope Generator (ASRG). The next-generation power-conversion technologies require high efficiency and high specific power (watts electric per kilogram) to meet future mission requirements to use less of the Department of Energy's plutonium-fueled general-purpose heat source modules and reduce system mass. Important goals include long-life (greater than 14-yr) reliability and scalability so that these systems can be considered for a variety of future applications and missions including outer-planet missions and continual operation on the surface of Mars. This paper provides an update of the history and status of the ASC being developed for Glenn by Sunpower Inc. of Athens, Ohio.

  15. Editorial: Technology for higher education, adult learning and human performance

    Directory of Open Access Journals (Sweden)

    Minhong Wang

    2013-09-01

    Full Text Available This special issue is dedicated to technology-enabled approaches for improving higher education, adult learning, and human performance. Improvement of learning and human development for sustainable development has been recognized as a key strategy for individuals, institutions, and organizations to strengthen their competitive advantages. It becomes crucial to help adult learners and knowledge workers to improve their self-directed and life-long learning capabilities. Meanwhile, advances in technology have been increasingly enabling and facilitating learning and knowledge-related initiatives.. They have largely extended learning opportunities through the provision of resource-rich and learner-centered environment, computer-based learning support, and expanded social interactions and networks. Papers in this special issue are representative of ongoing research on integration of technology with learning for innovation and sustainable development in higher education institutions and organizational and community environments.

  16. INFORMATION TECHNOLOGY AND COMMUNICATION IN NURSING EDUCATION

    Directory of Open Access Journals (Sweden)

    C. R. B. Costa

    2014-07-01

    Full Text Available The use of information and communication technologies in education, transforms not only the way we communicate, but also work, decide and think, as well as allows you to create rich, complex and diversified learning situations, through sharing the tasks between teachers and students , providing an interactive, continuous and lifelong learning. The paper aims to reflect on the importance of the use of information and communication technologies in higher education and show the potential in promoting changes and challenges for teachers of undergraduate nursing course. This is a literary review concerning the issue at hand, in the period from February to March 2014. The result indicates that the resources of information and communication technologies are strategies for the education of future nurses and promote the changing process for teachers , providing quality education to students and understanding that we must seek new opportunities to build a new style of training.

  17. Composites Manufacturing Education and Technology Facility Expedites Manufacturing Innovation

    Energy Technology Data Exchange (ETDEWEB)

    2017-01-01

    The Composites Manufacturing Education and Technology facility (CoMET) at the National Wind Technology Center at the National Renewable Energy Laboratory (NREL) paves the way for innovative wind turbine components and accelerated manufacturing. Available for use by industry partners and university researchers, the 10,000-square-foot facility expands NREL's composite manufacturing research capabilities by enabling researchers to design, prototype, and test composite wind turbine blades and other components -- and then manufacture them onsite. Designed to work in conjunction with NREL's design, analysis, and structural testing capabilities, the CoMET facility expedites manufacturing innovation.

  18. Building a Regional Science Education Infrastructure: The Accomplishments of the Sanford Science Education Center

    Science.gov (United States)

    Inverness Research, 2016

    2016-01-01

    For the past five years, the education and outreach effort of the Sanford Underground Research Facility has been supported by a grant from the National Science Foundation (NSF) to plan, develop, prototype, and prioritize the suite of educational outreach activities of the lab. Now known as the Sanford Science Education Center (SSEC), education and…

  19. Informational technologies in modern educational structure

    Science.gov (United States)

    Fedyanin, A. B.

    2017-01-01

    The article represents the structure of informational technologies complex that is applied in modern school education, describes the most important educational methods, shows the results of their implementation. It represents the forms and methods of educational process informative support usage, examined in respects of different aspects of their using that take into account also the psychological features of students. A range of anxious facts and dangerous trends connected with the usage and distribution of the informational technologies that are to be taken into account in the educational process of informatization is also indicated in the article. Materials of the article are based on the experience of many years in operation and development of the informational educational sphere on the basis of secondary school of the physics and mathematics specialization.

  20. Influencing Technology Education Teachers to Accept Teaching Positions

    Science.gov (United States)

    Steinke, Luke Joseph; Putnam, Alvin Robert

    2008-01-01

    Technology education is facing a significant teacher shortage. The purpose of this study was to address the technology education teacher shortage by examining the factors that influence technology education teachers to accept teaching positions. The population for the study consisted of technology education teachers and administrators. A survey…

  1. Tertiary Educators' Perceptions of and Attitudes Toward Emerging Educational Technologies.

    Science.gov (United States)

    Boddy, Greg

    1997-01-01

    Reports survey of University of Newcastle (Australia) nursing faculty concerning perceptions of new educational technologies. Respondents were more familiar with or had useful knowledge of CD-ROM technology and video conferencing; these were seen as potentially most useful. Lack of knowledge, display/delivery equipment, and the time-consuming…

  2. Implementing Educational Technology in Higher Education: A Strategic Approach

    Science.gov (United States)

    Roberts, Cynthia

    2008-01-01

    Although the move toward implementing technology in higher education is driven by an increasing number of competitors as well as student demand, there is still considerable resistance to embracing it. Adoption of technology requires more that merely installing a product. This paper outlines a framework for a strategic change process that can be…

  3. Integrating Educational Technologies into Teacher Education: A Case Study

    Science.gov (United States)

    Rawlins, Peter; Kehrwald, Benjamin

    2014-01-01

    This article is a case study of an integrated, experiential approach to improving pre-service teachers' understanding and use of educational technologies in one New Zealand teacher education programme. The study examines the context, design and implementation of a learning activity which integrated student-centred approaches, experiential…

  4. Integrating Educational Technologies into Teacher Education: A Case Study

    Science.gov (United States)

    Rawlins, Peter; Kehrwald, Benjamin

    2014-01-01

    This article is a case study of an integrated, experiential approach to improving pre-service teachers' understanding and use of educational technologies in one New Zealand teacher education programme. The study examines the context, design and implementation of a learning activity which integrated student-centred approaches, experiential…

  5. Development of a national center for hydrogen technology. A summary report of activities completed at the national center hydrogen technology from 2005 to 2010

    Energy Technology Data Exchange (ETDEWEB)

    Holmes, Michael J. [Univ. of North Dakota, Grand Forks, ND (United States)

    2011-06-01

    The Energy & Environmental Research Center (EERC) located in Grand Forks, North Dakota, has operated the National Center for Hydrogen Technology® (NCHT®) since 2005 under a Cooperative Agreement with the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL). The EERC has a long history of hydrogen generation and utilization from fossil fuels, and under the NCHT Program, the EERC has accelerated its research of hydrogen generation and utilization topics. Since the NCHT's inception, the EERC has received more than $65 million in funding of hydrogen-related projects ($20 million for the NCHT project which includes federal and corporate development partner funds) involving more than 85 partners (27 with the NCHT). The NCHT project's 19 activities span a broad range of technologies that align well with the Advanced Fuels Program goals and, specifically, those described in the Hydrogen from Coal Program research, development, and demonstration (RD&D) plan. A number of projects have been completed which range from technical feasibility of several hydrogen generation and utilization technologies to public and technical education and outreach tools. Projects under the NCHT have produced hydrogen from natural gas, coal, liquid hydrocarbons, and biomass. The hydrogen or syngas generated by these processes has also been purified to transportation-grade quality in many of these instances or burned directly for power generation. Also, several activities are still undergoing research, development, demonstration, and commercialization at the NCHT. This report provides a summary overview of the projects completed in the first 5 years of the NCHT. Individual activity reports are referenced as a source of detailed information on each activity.

  6. [Activities of Goddard Earth Sciences and Technology Center, Maryland University

    Science.gov (United States)

    2003-01-01

    The Goddard Space Flight Center (GSFC) is recognized as a world leader in the application of remote sensing and modeling aimed at improving knowledge of the Earth system. The Goddard Earth Sciences Directorate plays a central role in NASA's Earth Observing System and the U.S. Global Change Research Program. Goddard Earth Sciences and Technology (GEST) is organized as a cooperative agreement with the GSFC to promote excellence in the Earth sciences, and is a consortium of universities and corporations (University of Maryland Baltimore County, Howard University, Hampton University, Caelum Research Corporation and Northrop Grumman Corporation). The aim of this new program is to attract and introduce promising students in their first or second year of graduate studies to Oceanography and Earth system science career options through hands-on instrumentation research experiences on coastal processes at NASA's Wallops Flight Facility on the Eastern Shore of Virginia.

  7. An organizational survey of the Pittsburgh Energy Technology Center

    Energy Technology Data Exchange (ETDEWEB)

    Stock, D.A.; Shurberg, D.A.; Haber, S.B.

    1991-09-01

    An Organizational Survey (OS) was administrated at the Pittsburgh Energy Technology Center (PETC) that queried employees on the subjects of organizational culture, various aspects of communications, employee commitment, work group cohesion, coordination of work, environmental, safety, and health concerns, hazardous nature of work, safety and overall job satisfaction. The purpose of the OS is to measure in a quantitative and objective way the notion of culture''; that is, the values attitudes, and beliefs of the individuals working within the organization. In addition, through the OS, a broad sample of individuals can be reached that would probably not be interviewed or observed during the course of a typical assessment. The OS also provides a descriptive profile of the organization at one point in time that can then be compared to a profile taken at a different point in time to assess changes in the culture of the organization.

  8. An organizational survey of the Pittsburgh Energy Technology Center

    Energy Technology Data Exchange (ETDEWEB)

    Stock, D.A.; Shurberg, D.A.; Haber, S.B.

    1991-09-01

    An Organizational Survey (OS) was administrated at the Pittsburgh Energy Technology Center (PETC) that queried employees on the subjects of organizational culture, various aspects of communications, employee commitment, work group cohesion, coordination of work, environmental, safety, and health concerns, hazardous nature of work, safety and overall job satisfaction. The purpose of the OS is to measure in a quantitative and objective way the notion of ``culture``; that is, the values attitudes, and beliefs of the individuals working within the organization. In addition, through the OS, a broad sample of individuals can be reached that would probably not be interviewed or observed during the course of a typical assessment. The OS also provides a descriptive profile of the organization at one point in time that can then be compared to a profile taken at a different point in time to assess changes in the culture of the organization.

  9. Center for Technology for Advanced Scientific Component Software (TASCS)

    Energy Technology Data Exchange (ETDEWEB)

    Damevski, Kostadin [Virginia State Univ., Petersburg, VA (United States)

    2009-03-30

    A resounding success of the Scientific Discover through Advanced Computing (SciDAC) program is that high-performance computational science is now universally recognized as a critical aspect of scientific discovery [71], complementing both theoretical and experimental research. As scientific communities prepare to exploit unprecedened computing capabilities of emerging leadership-class machines for multi-model simulations at the extreme scale [72], it is more important than ever to address the technical and social challenges of geographically distributed teams that combine expertise in domain science, applied mathematics, and computer science to build robust and flexible codes that can incorporate changes over time. The Center for Technology for Advanced Scientific Component Software (TASCS) tackles these issues by exploiting component-based software development to facilitate collaborative hig-performance scientific computing.

  10. Development of a National Center for Hydrogen Technology

    Energy Technology Data Exchange (ETDEWEB)

    Jay C. Almlie; Bruce Wood; Rich Schlupp

    2007-03-01

    In November 2005, the Energy & Environmental Research Center (EERC), ePowerSynergies, Inc. (ePSI), and Resurfice Corporation teamed to develop, produce, and demonstrate the world's first and only fuel cell-powered ice resurfacer. The goals of this project were: {sm_bullet} To educate the public on the readiness, practicality, and safety of fuel cells powered by hydrogen fuel and {sm_bullet} To establish a commercialization pathway in an early-adopter, niche market. The vehicle was developed and produced in a short 3-month span. The vehicle made its world debut at U.S. Senator Byron Dorgan's (D-ND) 2005 Hydrogen Energy Action Summit. Subsequently, the vehicle toured North America appearing at numerous public events and conferences, receiving much attention from international media outlets.

  11. Integrating Technology in STEM Education

    Directory of Open Access Journals (Sweden)

    Priya Chacko

    2015-03-01

    Full Text Available Students have access to the Internet at their fingertips via e-tablets and smart phones. However, the STEM fields are struggling to remain relevant in students’ lives outside the classroom. In an effort to improve high school science curricula and to keep students engaged in the classroom, we developed a technology-rich bioengineering summer program for high school students in grades 9-12. The program utilized touch screen technology in conjunction with hands-on experiments and traditional lecturing to create an entertaining, relevant, and effective classroom experience.

  12. Touch technologies in primary education

    DEFF Research Database (Denmark)

    Davidsen, Jacob

    This paper presents findings from a longitude project on children‘s use of interactive touchscreens in classroom-settings. By exploring and analysing interaction among pairs, children‘s collaborative activities are under study, and it is highlighted how touch technologies invites for a more...

  13. Technology in Education: Research Says!!

    Science.gov (United States)

    Canuel, Ron

    2011-01-01

    A large amount of research existed in the field of technology in the classroom; however, almost all was focused on the impact of desktop computers and the infamous "school computer room". However, the activities in a classroom represent a multitude of behaviours and interventions, including personal dynamics, classroom management and…

  14. Equity, Technology, and Educational Policy.

    Science.gov (United States)

    Barnett, Marguerite Ross

    1984-01-01

    Argues that three key themes seem to define the Reagan administration's educational policy: (1) contraction of the public sphere and of the definition of what constitutes the legitimate public interest; (2) social triage; and (3) individualism and privatization of public life. (CMG)

  15. Perceptions of Discipline-Based Art Education and the Getty Center for Education in the Arts.

    Science.gov (United States)

    Dobbs, Stephen Mark

    This position paper clarifies the goals of the Getty Center for Education in the Arts and its views on discipline-based art education (DBAE). The paper addresses and refutes misconceptions inherent in the following perceptions: (1) The Getty Center invented DBAE; (2) DBAE is a Specific Curriculum; (3) DBAE requires equal time and attention for…

  16. Education resources of the National Center for Biotechnology Information

    OpenAIRE

    Cooper, Peter S.; Lipshultz, Dawn; Matten, Wayne T.; McGinnis, Scott D.; Pechous, Steven; Romiti, Monica L.; Tao, Tao; Valjavec-Gratian, Majda; Sayers, Eric W.

    2010-01-01

    The National Center for Biotechnology Information (NCBI) hosts 39 literature and molecular biology databases containing almost half a billion records. As the complexity of these data and associated resources and tools continues to expand, so does the need for educational resources to help investigators, clinicians, information specialists and the general public make use of the wealth of public data available at the NCBI. This review describes the educational resources available at NCBI via th...

  17. Share| The Need for Person-Centered Education

    Directory of Open Access Journals (Sweden)

    Alberto Zucconi

    2016-10-01

    Full Text Available We, the children of the Anthropocene Era, are entering the 4th industrial revolution and the impact is going to be pervasive and of greater magnitude compared to the previous industrial revolutions. The incoming changes, approaching at an accelerating speed, will be impacting everything and everybody and blurring the lines between the physical, digital, and biological spheres; they will affect the bio-psycho-social dimensions, our narratives and even what it means to be human. If we are not farsighted and do not plan effectively, the results could be very problematic for all life forms on Earth. If we manage the 4th industrial revolution with the same blindness and forms of denial with which we managed the previous industrial revolutions, the negative effects will be exponential. But we are not impotent; we can manage this revolution wisely, increase the positive effects and mitigate the negative ones since technology is designed, made and managed by us. We cannot afford to be naïve and just hope that technology will automatically improve our lives; new and effective tools for understanding and governing such epochal changes are needed apart from the need for facilitating awareness in all stakeholders about the dangers and opportunities offered by the incoming changes. Effective forms of education are crucial. The fourth revolution could be an unprecedented success if we are able to manage complex processes and at the same time assure that each innovation will not only bring change but also foster a more humane, sustainable, peaceful and prosperous future for all. For effective governance, we need effective tools. One much-needed tool is the clear understanding of the crucial role played by the processes by which we humans construe experiences of ourselves, of others and other life forms. In other words, most of us still think we live in a unidimensional reality, but we live in a socially construed consensus reality, ignoring which may create

  18. Career Education in Colleges of Technology (KOSEN)

    Science.gov (United States)

    Hasegawa, Jun

    Present situations and problems of a career education in Colleges of Technology (KOSEN) , which were founded in almost fifty years ago by a strong support and demand from industry, are discussed in this article. Education programs in KOSEN have been designed aiming to foster creative and practical engineers and keeping close relationships with needs of industry. Consequently, essences of the career education have actually involved in the education programs with continuing improvements. Recently, KOSEN has been attaching special importance to engineering design educations. And as for Co-op educations, very active and excellent promotions have done in many KOSEN. Also, participations of KOSEN students to internship have been very good and they could have very important experiences.

  19. Information Literacy Education on College of Technology at Kyushu Area

    Science.gov (United States)

    Kozono, Kazutake; Ikeda, Naomitsu; Irie, Hiroki; Fujimoto, Yoichi; Oshima, Shunsuke; Murayama, Koichi; Taguchi, Hirotsugu

    Recently, the importance of an engineering education increases by the development of the information technology (IT) . Development of the information literacy education is important to deal with new IT in the education on college of technology. Our group investigated the current state of information literacy education on college of technology at Kyushu area and the secondary education. In addition, we investigated about the talent whom the industrial world requested. From these investigation results, this paper proposed cooperation with the elementary and secondary education, enhancement of intellectual property education, introduction of information ethics education, introduction of career education and enhancement of PBL to information literacy education on college of technology.

  20. Technologies for Inclusive Education: Beyond Traditional Integration Approaches. Advances in Educational Technologies and Instructional Design

    Science.gov (United States)

    Barres, David Griol; Carrion, Zoraida Callejas; Lopez-Cozar Delgado, Ramon

    2013-01-01

    By providing students with the opportunities to receive a high quality education regardless of their social or cultural background, inclusive education is a new area that goes beyond traditional integration approaches. These approaches hope to provide the educative system with the ability to adapt to the diversity of its students. Technologies for…

  1. Technologies for Inclusive Education: Beyond Traditional Integration Approaches. Advances in Educational Technologies and Instructional Design

    Science.gov (United States)

    Barres, David Griol; Carrion, Zoraida Callejas; Lopez-Cozar Delgado, Ramon

    2013-01-01

    By providing students with the opportunities to receive a high quality education regardless of their social or cultural background, inclusive education is a new area that goes beyond traditional integration approaches. These approaches hope to provide the educative system with the ability to adapt to the diversity of its students. Technologies for…

  2. TABLET (MOBILE TECHNOLOGY FOR PROFESSIONAL MUSIC EDUCATION

    Directory of Open Access Journals (Sweden)

    Gorbunova Irina B.

    2016-12-01

    Full Text Available The article highlights issues associated with the introduction of cloud-centric and tablet (mobile devices in music education, use of which confronts the teacher-musician fundamentally new challenges. So, it's a development of practical teaching skills with the assistance of modern technology, a search of approaches to the organization of educational process, a creation of conditions for the continuity between traditional music learning and information technologies in educational process. Authors give the characteristics of cloud computing and the perspective of its use in music schools (distance learning, sharing, cloud services, etc.. Also you can see in this article the overview of some mobile applications (for OS Android and iOS and their use in the educational process.

  3. Research on Technology and Physics Education

    Science.gov (United States)

    Bonham, Scott

    2010-10-01

    From Facebook to smart phones, technology is an integral part of our student's lives. For better or for worse, technology has become nearly inescapable in the classroom, enhancing instruction, distracting students, or simply complicating life. As good teachers we want to harness the power we have available to impact our students, but it is getting harder as the pace of technological change accelerates. How can we make good choices in which technologies to invest time and resources in to use effectively? Do some technologies make more of a difference in student learning? In this talk we will look at research studies looking at technology use in the physics classroom---both my work and that of others---and their impact on student learning. Examples will include computers in the laboratory, web-based homework, and different forms of electronic communication. From these examples, I will draw some general principles for effective educational technology and physics education. Technology is simply a tool; the key is how we use those tools to help our students develop their abilities and understanding.

  4. Problems and possibilities of using telephone technology in education

    Directory of Open Access Journals (Sweden)

    Danilović Mirčeta S.

    2002-01-01

    Full Text Available The paper explores the possibilities of using telephone technology in educational process. It is emphasized how valuable audio-teleconference and tutorial teaching are by means of telephone technology but skepticism is also expressed concerning the possibilities of using this type of technology in our educational system. The causes for such skepticism are mostly to be found in our economic conditions, inadequacy of material sources and technical problems i.e. underdeveloped telephone networks. Telephone technology is not suitable for work with a whole class. It is primarily intended for one-to-one teaching, in the USA most often called 'tutorship'. Accordingly, 'telephone tutorship' is the most widespread form of telephone application in the teaching process. When it is being accomplished, a student (user has only to have a telephone at home or that public phone network is operating and he/she can communicate with his/her 'tutor', (teacher. 'A tutor' can be at home and communicate with his/her students or at a local learning center wherefrom he/she can communicate with a student. Students can also be at their local learning center or at home.

  5. Completion of Green Building by Korea Institute of Energy Research - Energy{center_dot}Conservation{center_dot}Environmental Technology

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sang Dong [Korea Institute of Energy Research, Taejon (Korea)

    2001-04-01

    Korea Institute of Energy Research (KIER), which was fully aware that the effective utilization of energy could not only save energy but also reduce the environmental pollution due to a combustion exhaust gas, has built and operated 'the Ultra Energy Saving Building' whose energy consumption was only a fifth of general buildings as a example. KIER has started to research the project for the technology development and spread of Green Building in 'Enertech 21' - the most important research program of 1994 year - and has constructed the central building of the Institute with only the current available technology since the early of 1997 year, via researches by a step. Finally, KIER held the ceremony for the completion of Green Building in March sixth. This building is not just the first green building in Korea but also the representative building of energy environment research center, which will be marked out for a model for the domestic construction and construction industry in future. Therefore, this building has functions of exhibition, publicity, education, and experimentation for the building researchers as well as the office and researching place that is original function of this building. 4 figs., 5 tabs.

  6. Residential Environmental Education Center Program Evaluation: An Ongoing Challenge

    Science.gov (United States)

    Bourke, Nicholas; Buskist, Connie; Herron, Julie

    2014-01-01

    Residential environmental education centers (REECs) have been criticized for their lack of quality program evaluation. However, the last national study done on the practices of REECs was Chenery and Hammerman's (1985) research. This article presents the results of a national survey of directors of REECs (n = 114) that gives insight into the…

  7. The Career Education Center: A Program with Potential

    Science.gov (United States)

    Ilivicky, Martin

    1976-01-01

    The Project Redesign grant proposal, developed by the faculty of William Cullen Bryant High School, was responsible for the initiation of a comprehensive career education program. That program and the Careers Center and Career Guidance Service were the focus of this article. (Author/RK)

  8. Child-Centered Education for Pacific-Rim Cultures?

    Science.gov (United States)

    Jackson, Peter W.

    1998-01-01

    Argues for a cautious approach to transplanting theory from one culture to another, particularly considering the case for applying Friedrich Froebel's child-centered theory to early childhood education in Pacific Rim cultures. Uses a historical approach to distinguish three distinct versions of the theory, the Christian, the Progressive, and the…

  9. Teachers' Adoptation Level of Student Centered Education Approach

    Science.gov (United States)

    Arseven, Zeynep; Sahin, Seyma; Kiliç, Abdurrahman

    2016-01-01

    The aim of this study is to identify how far the student centered education approach is applied in the primary, middle and high schools in Düzce. Explanatory design which is one type of mixed research methods and "sequential mixed methods sampling" were used in the study. 685 teachers constitute the research sample of the quantitative…

  10. Bilingual Baby: Foreign Language Intervention in Madrid's Infant Education Centers

    Science.gov (United States)

    Ferjan Ramirez, Naja; Kuhl, Patricia

    2017-01-01

    The first years of life represent a unique window of opportunity for foreign language learning. However, key questions are: How much and what kind of foreign language exposure is needed to ignite learning? We conducted a foreign language (English) intervention in four public Infant Education Centers in Madrid, Spain. Intervention children (N =…

  11. Rice University: Building an Academic Center for Nonprofit Education

    Science.gov (United States)

    Seaworth, Angela

    2012-01-01

    According to the author, the setting for their nonprofit education center was close to ideal: Support from a dean who cares deeply about nonprofit organizations; encouragement from the university and its renewed focus on reaching beyond its walls on the eve of its centennial; and a generous gift from alumni who have been affiliated with the…

  12. Creating a Learner-Centered Teacher Education Program.

    Science.gov (United States)

    Altan, Mustafa Zulkuf; Trombly, Christine

    2001-01-01

    Explains how and why a learner-centered classroom was created in a teacher education program. Success was partly the result of involving students in the teaching process and was aided by slowly implementing new techniques and thereby adapting students so they would understand lesson objectives, value communicative tasks, generate activities,…

  13. Educational Specifications for Center for Trainable Mentally Retarded.

    Science.gov (United States)

    Alachua County Schools, Gainesville, FL.

    Educational specifications for a center for trainable mentally handicapped children are outlined. Philosophy and objectives and discernable curriculum trends for the future are provided. The site (planning, development, playground area, pupil transportation), the program (what the teacher does, what the student does or way of work, size of groups,…

  14. Center of Discovery I Study Guide. Education 302.

    Science.gov (United States)

    Cain, Robert B.; And Others

    This study guide contains the objectives, design, and evaluation in plan for Center of Discovery I, and lists topics, directives, and basic readings and in-depth references and the self-tests for an 11-week program of independent study within the first of four education courses in a 2-year program. The major part of the guide is devoted to a…

  15. The Center for Coastal Studies: Sustainable Development Education in Mexico

    Science.gov (United States)

    Ollervides, F.; Farrell, T.

    2007-01-01

    Purpose: The purpose of this paper is to present The School for Field Studies-Center for Coastal Studies (SFS-CCS) as a success story in sustainable development education. This success is based on a unique academic model, which incorporates sustainable development opportunities and challenges faced by the local community into the program…

  16. Creating Educational Technology Curricula for Advanced Studies in Learning Technology

    Directory of Open Access Journals (Sweden)

    Minoru Nakayama

    2016-08-01

    Full Text Available Curriculum design and content are key factors in the area of human resource development. To examine the possibility of using a collaboration of Human Computer Interaction (HCI and Educational Technology (ET to develop innovative improvements to the education system, the curricula of these two areas of study were lexically analyzed and compared. As a further example, the curriculum of a joint course in HCI and ET was also lexically analyzed and the contents were examined. These analyses can be used as references in the development of human resources for use in advanced learning environments.

  17. 76 FR 35474 - UAW-Chrysler Technical Training Center, Technology Training Joint Programs Staff, Including On...

    Science.gov (United States)

    2011-06-17

    ..., Detroit, MI; UAW-Chrysler Technical Training Center, Technology Training Joint Programs Staff, Including... Center, Technology Training Joint Programs Staff, Detroit, Michigan (TA-W-71,047) and Warren, Michigan..., Technology Training Joint Programs Staff. The Department has determined that these workers were...

  18. Health science center faculty attitudes towards interprofessional education and teamwork.

    Science.gov (United States)

    Gary, Jodie C; Gosselin, Kevin; Bentley, Regina

    2017-10-12

    The attitudes of faculty towards interprofessional education (IPE) and teamwork impact the education of health professions education (HPE) students. This paper reports on a study evaluating attitudes from health professions educators towards IPE and teamwork at one academic health science center (HSC) where modest IPE initiatives have commenced. Drawing from the results of a previous investigation, this study was conducted to examine current attitudes of the faculty responsible for the training of future healthcare professionals. Survey data were collected to evaluate attitudes from HSC faculty, dentistry, nursing, medicine, pharmacy and public health. In general, positive HSC faculty attitudes towards interprofessional learning, education, and teamwork were significantly predicted by those affiliated with the component of nursing. Faculty development aimed at changing attitudes and increasing understanding of IPE and teamwork are critical. Results of this study serve as an underpinning to leverage strengths and evaluate weakness in initiating IPE.

  19. Health Information Technology Adoption in California Community Health Centers

    Science.gov (United States)

    Kim, Katherine K.; Rudin, Robert S.; Wilson, Machelle D.

    2016-01-01

    Objectives National and state initiatives to spur adoption of electronic health record (EHR) use and health information exchange (HIE) among providers in rural and underserved communities have been in place for 15 years. Our goal was to systematically assess the impact of these initiatives by quantifying the level of adoption and key factors associated with adoption among community health centers (CHCs) in California. Study Design Cross-sectional statewide survey. Methods We conducted a telephone survey of all California primary care CHCs from August to September 2013. Multiple logistic regressions were fit to test for associations between various practice characteristics and adoption of EHRs, Meaningful Use (MU)–certified EHRs, and HIE. For the multivariable model, we included those variables which were significant at the P = .10 level in the univariate tests. Results We received responses from 194 CHCs (73.5% response rate). Adoption of any EHRs (80.3%) and MU–certified EHRs (94.6% of those with an EHR) was very high. Adoption of HIE is substantial (48.7%) and took place within a few years (mean = 2.61 years; SD = 2.01). More than half (54.7%) of CHCs are able to receive data into the EHR, indicating some level of interoperability. Patient engagement capacity is moderate, with 21.6% offering a personal health record, and 55.2% electronic visit summaries. Rural location and belonging to a multi-site clinic organization both increase the odds of adoption of EHRs, HIE, and electronic visit summary, with odds ratios ranging from 0.63 to 3.28 (all P values <.05). Conclusions Greater adoption of health information technology (IT) in rural areas may be the result of both federal and state investments. As CHCs lack access to capital for investments, continued support of technology infrastructure may be needed for them to further leverage health IT to improve healthcare. PMID:26760431

  20. Technological competencies in cardiovascular nursing education

    Directory of Open Access Journals (Sweden)

    Rika Miyahara Kobayashi

    2015-12-01

    Full Text Available Abstract OBJECTIVE To identify the perception of the coordinators of the Specialization Courses in Cardiovascular Nursing about inserting content from Information and Communication Technology (ICT and analyze them in relation to the technological competencies and regarding its applicability, relevance and importance in assisting, teaching and management. METHOD Descriptive study with 10 coordinators of the Specialization course in Cardiologic Nursing, who replied to the questionnaire for the development of technological competency adapted from the Technology Initiative Guidelines Education Reforms (TIGER, and analyzed using the Delphi technique for obtaining consensus and scored according to the relevance, pertinence and applicability using Likert scale according to degree of agreement. RESULTS Six courses developed ICT content. The contents of the TIGER were considered relevant, pertinent and applicable. CONCLUSION The coordinators recognize the need for technological competencies of the Cardiovascular Nurse for healthcare applicability.

  1. [Technological competencies in cardiovascular nursing education].

    Science.gov (United States)

    Kobayashi, Rika Miyahara; Leite, Maria Madalena Januário

    2015-12-01

    To identify the perception of the coordinators of the Specialization Courses in Cardiovascular Nursing about inserting content from Information and Communication Technology (ICT) and analyze them in relation to the technological competencies and regarding its applicability, relevance and importance in assisting, teaching and management. Descriptive study with 10 coordinators of the Specialization course in Cardiologic Nursing, who replied to the questionnaire for the development of technological competency adapted from the Technology Initiative Guidelines Education Reforms (TIGER), and analyzed using the Delphi technique for obtaining consensus and scored according to the relevance, pertinence and applicability using Likert scale according to degree of agreement. Six courses developed ICT content. The contents of the TIGER were considered relevant, pertinent and applicable. The coordinators recognize the need for technological competencies of the Cardiovascular Nurse for healthcare applicability.

  2. Technology Transfer from University-Based Research Centers: The University of New Mexico Experience.

    Science.gov (United States)

    Rogers, Everett M.; Hall, Brad; Hashimoto, Michio; Steffensen, Morten; Speakman, Kristen L.; Timko, Molly K.

    1999-01-01

    A study of 55 research centers at the University of New Mexico investigated the nature of the typical center, why funding has risen during the 1990s, reasons for founding the centers, the director's role, how university-based research centers transfer technology to private companies and other organizations, and what determines program…

  3. Technology-Based Healthcare for Nursing Education Within The Netherlands: Past, Present and Future.

    Science.gov (United States)

    Koster, Ybranda; van Houwelingen, Cornelis T M

    2017-01-01

    At the present time, nearly all Dutch nursing schools are searching for suitable ways to implement technology-based healthcare in their curriculum. Some Universities chose elective education, others a mandatory solution. Several studies were executed to determine competencies needed by nurses in order to work with technology-based healthcare. In 2016 a nationwide new curriculum for nurses has been published. Providing technology-based healthcare is included under the core competencies of this new curriculum. All baccalaureate nursing educational institutes must implement this new curriculum at the start of 2016 which will have a huge impact on the implementation of technology-based healthcare in the education programs. In the future, technology centers from Universities will collaborate and specialize, partner with technology companies and crossovers between information and communication technology and healthcare education will be expanded.

  4. Gender-Based Motivational Differences in Technology Education

    Science.gov (United States)

    Virtanen, Sonja; Räikkönen, Eija; Ikonen, Pasi

    2015-01-01

    Because of a deeply gendered history of craft education in Finland, technology education has a strong gender-related dependence. In order to motivate girls into pursuing technological studies and to enable them to see their own potential in technology, gender sensitive approaches should be developed in technology education. This study explores…

  5. Technology Education Teacher Supply and Demand--A Critical Situation

    Science.gov (United States)

    Moye, Johnny J.

    2009-01-01

    Technology education is an excellent format to integrate science, technology, engineering, and mathematics (STEM) studies by employing problem-based learning activities. However, the benefits of technology education are still generally "misunderstood by the public." The effects of technology education on increased student mathematics abilities…

  6. Defining the Greatest Need for Educational Technology.

    Science.gov (United States)

    Hayes, Jeanne; Bybee, Dennis L.

    1995-01-01

    The student-per-computer ratio identifies school districts with the greatest need for educational technology. Figures compare 12-year student-per-computer trends in K-12 public schools and rank the states with the greatest need. Results indicate that California, Illinois, Tennessee, Ohio, and Pennsylvania have districts in the greatest need…

  7. 3D Laser Scanning in Technology Education.

    Science.gov (United States)

    Flowers, Jim

    2000-01-01

    A three-dimensional laser scanner can be used as a tool for design and problem solving in technology education. A hands-on experience can enhance learning by captivating students' interest and empowering them with creative tools. (Author/JOW)

  8. Innovations in Telecommunications Technology: Implications for Education.

    Science.gov (United States)

    Korman, Frank

    A survey of literature and information sources disclosed the overall trends for telecommunications technology in education. This report describes both hardware and software aspects of these trends. Hardware trends include microminiaturization, increased message transmission capacity, interactive information flow, more complex and complete…

  9. TECHcitement: Advances in Technological Education, 2004

    Science.gov (United States)

    American Association of Community Colleges (NJ1), 2004

    2004-01-01

    This edition of "TECHcitement" contains the following articles: (1) ATE Program Leads to Student Success; (2) Doing Whatever It Takes for Aquaculture; (3) The Bridge to Biotech; (4) Girls See What They Can Do With Technology at Camp; (5) Students Advancing Solutions to Business Problems; (6) CREATE Recreates Technical Education in California; (7)…

  10. Educational Technology Research in a VUCA World

    Science.gov (United States)

    Reeves, Thomas C.; Reeves, Patricia M.

    2015-01-01

    The status of educational technology research in a VUCA world is examined. The acronym, VUCA, stands for "Volatility" (rapidly changing contexts and conditions), "Uncertainty" (information missing that is critical to problem solving), "Complexity" (multiple factors difficult to categorize or control), and…

  11. Educational Technology: A Presupposition of Equality?

    Science.gov (United States)

    Orlando, Joanne

    2014-01-01

    The work of philosopher Jacques Rancière is used conceptually and methodologically to frame an exploration of the driving interests in educational technology policy and the sanctioning of particular discursive constructions of pedagogy that result. In line with Rancière's thinking, the starting point for this analysis is that of equality--that…

  12. Vocabulary Development in Technology and Engineering Education

    Science.gov (United States)

    Klink, Pamela; Loveland, Thomas

    2015-01-01

    Some students have trouble performing well on summative tests in technology and engineering education. This is largely due to the students' inability to apply the terms to real-world scenarios (Baker, Simmons, & Kameenui, 1995). Exams often provide situational questions and, with these, critical-thinking skills are required. Students may lack…

  13. Information Technology and Undergraduate Medical Education.

    Science.gov (United States)

    Masys, Daniel R.

    1989-01-01

    Hewlett-Packard Corporation grant enabled Harvard Medical School to begin using computer technology in medical educational applications. Hardware and software selection, integration into the curriculum, teaching the use of computers, cost, successful applications, knowledge base access, simulations, video and graphics teaching programs, and…

  14. Promoting Innovative Methods in Technology Education

    Science.gov (United States)

    Al-Nasra, Moayyad M.

    2012-01-01

    The engineering profession is very sensitive to the new changes in the engineering job market demand. The engineering job market is changing in a much faster rate than the engineering/engineering technology education. A 13-year study will be presented. The study focuses on the factors affecting the survival rate, student academic performance,…

  15. The Role of Conversation in Technology Education

    Science.gov (United States)

    Fox-Turnbull, Wendy

    2010-01-01

    This article investigates recent literature in the area of classroom conversation and dialogue with the aim of gaining a better understanding of the role that classroom conversation and dialogue plays in learning. It also investigates literature on the constructivist, collaborative nature of technology education and suggests that to enhance our…

  16. Educational Technology: A Presupposition of Equality?

    Science.gov (United States)

    Orlando, Joanne

    2014-01-01

    The work of philosopher Jacques Rancière is used conceptually and methodologically to frame an exploration of the driving interests in educational technology policy and the sanctioning of particular discursive constructions of pedagogy that result. In line with Rancière's thinking, the starting point for this analysis is that of…

  17. Educational Technology and the Learning Process

    Science.gov (United States)

    Gagne, Robert M.

    1974-01-01

    Suggests how the "things of learning" can be employed to promote learning by first examining learning as it occurs in education, focusing on categories of learning outcomes; and then deriving some guidelines about the use of hardware technology as an aid to instruction. (JM)

  18. Using Citation Network Analysis in Educational Technology

    Science.gov (United States)

    Cho, Yonjoo; Park, Sunyoung

    2012-01-01

    Previous reviews in the field of Educational Technology (ET) have revealed some publication patterns according to authors, institutions, and affiliations. However, those previous reviews focused only on the rankings of individual authors and institutions, and did not provide qualitative details on relations and networks of scholars and scholarly…

  19. Environmental Survey preliminary report, Pittsburgh Energy Technology Center, Pittsburgh, Pennsylvania

    Energy Technology Data Exchange (ETDEWEB)

    1988-09-01

    This report presents the preliminary findings from the first phase of the Environmental Survey of the US Department of Energy (DOE) Pittsburgh Energy Technology Center (PETC) conducted December 7--11, 1987. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual team specialists are outside experts being supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with PETC. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. This phase of the Survey involves the review of existing site environmental data, observations of the operations carried on at PETC, and interviews with site personnel. The Survey team developed a Sampling and Analysis (S A) Plan to assist in further assessing certain environmental problems identified during its on-site Survey activities at PETC. The S A Plan will be executed by the Oak Ridge National Laboratory (ORNL). When completed, the Plan's results will be incorporated into the PETC Survey findings for inclusion into the Environmental Survey Summary Report. 64 refs., 23 figs., 29 tabs.

  20. Technology evaluation center assessment synopsis: full-field digital mammography.

    Science.gov (United States)

    Rothenberg, Barbara M; Ziegler, Kathleen M; Aronson, Naomi

    2006-08-01

    Full-field digital mammography (FFDM) is proposed as an alternative to screen-film mammography (SFM). The ability to separate and optimize the acquisition, storage, and display of images may allow greater visualization of breast cancers at equal or lower radiation doses, especially in younger women and those with denser breasts. This is a synopsis of a systematic review by the Blue Cross Blue Shield Association Technology Evaluation Center. This updated systematic review primarily incorporated the results of the ACR Imaging Network(R) Digital Mammographic Imaging Screening Trial (DMIST), which provided results on 42,760 asymptomatic women who underwent both FFDM and SFM and showed with reasonable certainty that there was no difference in the accuracy of the 2 modalities for asymptomatic women in general, with some advantages of FFDM in certain subgroups. There were no strong, new studies on the use of digital mammography compared with film mammography in a diagnostic population. However, the DMIST results indicated that tumors detected by FFDM, but not by SFM, were likely to be invasive carcinomas or medium-grade to high-grade ductal carcinoma in situ. On the basis of the suppositions that these are the cancers of greatest interest and the ones more likely to be found in a diagnostic population and that the diagnostic population may be younger on average than the screening population, it was concluded that there is sufficient evidence to support the use of FFDM for diagnostic purposes.

  1. Turbine Inflow Characterization at the National Wind Technology Center: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Clifton, A.; Schreck, S.; Scott, G.; Kelley, N.; Lundquist, J.

    2012-01-01

    Utility-scale wind turbines operate in dynamic flows that can vary significantly over timescales from less than a second to several years. To better understand the inflow to utility-scale turbines, two inflow towers were installed and commissioned at the National Renewable Energy Laboratory's (NREL) National Wind Technology Center near Boulder, Colorado, in 2011. These towers are 135 m tall and instrumented with a combination of sonic anemometers, cup anemometers, wind vanes, and temperature measurements to characterize the inflow wind speed and direction, turbulence, stability and thermal stratification to two utility-scale turbines. Herein, we present variations in mean and turbulent wind parameters with height, atmospheric stability, and as a function of wind direction that could be important for turbine operation as well as persistence of turbine wakes. Wind speed, turbulence intensity, and dissipation are all factors that affect turbine performance. Our results shown that these all vary with height across the rotor disk, demonstrating the importance of measuring atmospheric conditions that influence wind turbine performance at multiple heights in the rotor disk, rather than relying on extrapolation from lower levels.

  2. Technology utilization in a non-urban region: Further impact and technique of the Technology Use Studies Center

    Science.gov (United States)

    1976-01-01

    Updated information is given pertaining to Technology Use Studies Center (TUSC) clients who are those that receive/use information as disseminated by the center. The client information is presented as a continuation of client data as set forth in the center's previous annual report.

  3. University Center of Excellence for Photovoltaics Research and Education: Annual report

    Energy Technology Data Exchange (ETDEWEB)

    Rohatgi, A.; Crotty, G.; Cai, L.; Sana, P.; Doolittle, A.; Ropp, M.; Krygowski, T.; Narasimha, S. [Georgia Inst. of Tech., Atlanta, GA (United States). School of Electrical and Computer Engineering

    1995-09-01

    This is a second annual report since the University Center of Excellence for Photovoltaics Research and Education was established at Georgia Tech. The major focus of the center is crystalline silicon, and the mission of the Center is to improve the fundamental understanding of the science and technology of advanced photovoltaic devices and materials, to fabricate high-efficiency cells, and develop low-cost processes, to provide training and enrich the equational experience of students in this field, and to increase US competitiveness by providing guidelines to industry and DOE to achieve cost-effective and high-efficiency photovoltaic devices. This report outlines the work of the Center from July 1993--June 1994.

  4. Space Design for the Acitc Educational technology Office Area Using a Workplace neighborhood Concept

    OpenAIRE

    Zhu, Ping

    1997-01-01

    Today, the workplace is undergoing dramatic changes, featuring increased team activities and informal interactions. The work place neighborhood is a design concept derived from a city planning theory that may solve the workplace design problems arising from these changes, and provided a focus for this project. The Educational Technology office area of the Advanced Communication and Information Technology Center...

  5. Organizing Educational Activity of a Pupil on the Basis of Learning Technologies

    Science.gov (United States)

    Sibgatullina, Tatiana V.; Selivanova, Olga G.

    2016-01-01

    A pupil is in the center of contemporary educational process, and the educational process requires some reorganization, which adds topicality to this paper. The paper considers how pupils use learning technologies helping them to achieve certain personally and socially important goals. The main research method is the method of a pedagogical…

  6. Creencias del profesorado sobre el significado de la tecnología en la enseñanza: influencia para su inserción en los centros docentes andaluces. [Teacher beliefs on the significance of technology in education: the influence for inclusion in the andalusian teaching centers].

    Directory of Open Access Journals (Sweden)

    Boza, Ángel

    2010-06-01

    Full Text Available This work shows results of an R & D Project of MCYT in Andalusian ICT Centers and its impact on teaching and learning processes. We conducted a survey to investigate the teachers´ beliefs about technology in education and its influence in the classroom. The data obtained provide evidence that we are close to the initial hypothesis, partially confirming that teacher beliefs about technology’s significance in education is related to its frequency and use as well as perceptions of organizational and curricular integration, and technological education and training. Este trabajo muestra resultados parciales de un Proyecto I+D de Ministerio de Ciencia y Tecnología español sobre centros TICs andaluces y sus repercusiones en los procesos de enseñanza-aprendizaje. Nos planteamos mediante encuesta indagar en las creencias del profesorado sobre la tecnología en la educación, su influencia en los procesos de aula. Los datos obtenidos nos aportan indicios que nos aproximan a la hipótesis inicial, confirmando parcialmente que las creencias que el profesorado tiene sobre el significado de las tecnologías en la educación se encuentran relacionadas con su frecuencia y uso, sus percepciones sobre la integración organizativa y curricular, y con su formación y capacitación tecnológica.

  7. Discovering Interdisciplinary Uses of Online Technologies in Higher Education

    Directory of Open Access Journals (Sweden)

    Mary Caton-Rosser

    2014-06-01

    Full Text Available Recent research shows both students and professors rushing to adapt learning and teaching activities accessing ever-upgrading digital and social media formats like Facebook, Twitter, YouTube, Pinterest and Prezi. Many institutions of higher education are embracing social media as viable, student-centered-classroom communication tools in a full range of subject disciplines, as well as in emerging interdisciplinary activities that prepare students for current trends in the job force. The new communication channels offer students a direct voice in discussion of topics of subject matter and current events, avenues for expedited exchange of information, and also introduction to skills needed to operate mobile computing devices, such as tablets and portable hand-held devices. The advancing tools of online technology are also being used creatively in general communication across college campuses in higher education following standardized-use policies. The use of social media, for example, is effective in recruiting and interacting with prospective students and their parents or in expedited sharing of news or updated policies and procedures. The current endorsement of new technologies in various higher-education settings aligns with historical enthusiasm in education for interactive classroom dialogue. Over the years, progressive and pragmatic educators, such as John Dewey, Paulo Freire, Elliot Eisner and Larry Cuban have promoted interactive, inclusive pedagogical communication and experiential education since the early 1900s to the present. For the past year-and-a-half, three faculty members at Black Hills State University have been conducting qualitative and quantitative research on the use of digital and social media in higher education. Since the beginning, the central goal has been to create awareness of digital technologies and social media as inter-subjective tools. More recently, the focus has become measurement of the learning experience and

  8. International Conference on Computers and Advanced Technology in Education

    CERN Document Server

    Advanced Information Technology in Education

    2012-01-01

    The volume includes a set of selected papers extended and revised from the 2011 International Conference on Computers and Advanced Technology in Education. With the development of computers and advanced technology, the human social activities are changing basically. Education, especially the education reforms in different countries, has been experiencing the great help from the computers and advanced technology. Generally speaking, education is a field which needs more information, while the computers, advanced technology and internet are a good information provider. Also, with the aid of the computer and advanced technology, persons can make the education an effective combination. Therefore, computers and advanced technology should be regarded as an important media in the modern education. Volume Advanced Information Technology in Education is to provide a forum for researchers, educators, engineers, and government officials involved in the general areas of computers and advanced technology in education to d...

  9. George C. Marshall Space Flight Center Research and Technology Report 2014

    Science.gov (United States)

    Keys, A. S. (Compiler); Tinker, M. L. (Compiler); Sivak, A. D. (Compiler)

    2015-01-01

    Many of NASA's missions would not be possible if it were not for the investments made in research advancements and technology development efforts. The technologies developed at Marshall Space Flight Center contribute to NASA's strategic array of missions through technology development and accomplishments. The scientists, researchers, and technologists of Marshall Space Flight Center who are working these enabling technology efforts are facilitating NASA's ability to fulfill the ambitious goals of innovation, exploration, and discovery.

  10. Inclusive Educative Technologies, for people with disabilities

    Science.gov (United States)

    Echenique, AM; Graffigna, JP; Pérez, E.; López, N.; Piccinini, D.; Fernández, H.; Garcés, A.

    2016-04-01

    The conventional educational environment imposes barriers to education for people with disabilities, limiting their rights, which is a non-discriminative education. In turn, hampers their access to other rights and creates huge obstacles to realize their potential and participate effectively in their communities. In this sense Assistive Technology provides alternative solutions, in order to compensate for a lost or diminished ability. Thus the necessary assistance is provided to perform tasks, including those related to education, improving the inclusion. In this paper some researches had been made in the Gabinete de TecnologiaMedica, in the Facultad de Ingenieria of the Universidad Nacional de San Juan in order to solve this problem. The researchers are classified by type of disability; sensory (visual and auditory) or motor. They have been designed, developed and experienced through various prototypes that have given satisfactory results. It had been published in national and international congresses of high relevance.

  11. Towards Discursive Education: Philosophy, Technology, and Modern Education

    Science.gov (United States)

    Erneling, Christina E.

    2010-01-01

    As technology continues to advance, the use of computers and the Internet in educational environments has immensely increased. But just how effective has their use been in enhancing children's learning? In this thought-provoking book, Christina E. Erneling conducts a thorough investigation of scholarly journals articles on how computers and the…

  12. Towards Discursive Education: Philosophy, Technology, and Modern Education

    Science.gov (United States)

    Erneling, Christina E.

    2010-01-01

    As technology continues to advance, the use of computers and the Internet in educational environments has immensely increased. But just how effective has their use been in enhancing children's learning? In this thought-provoking book, Christina E. Erneling conducts a thorough investigation of scholarly journals articles on how computers and the…

  13. Planning nuclear energy centers under technological and demand uncertainty

    Energy Technology Data Exchange (ETDEWEB)

    Meier, P.M.; Palmedo, P.F.

    1976-01-01

    The question considered is whether new nuclear power plants should be located in nuclear energy centers, or ''power parks'' with co-located fabrication and reprocessing facilities. That issue has been addressed in a recent study by the Nuclear Regulatory Commission and remains under investigation at Brookhaven and elsewhere. So far, however, the advisability of this policy has been analyzed primarily within the framework of a single view of the future. Suggestions of the types of questions that should be asked regarding this policy if it is properly to be viewed as an example of decision making under uncertainty are made. It is concluded that ''A consideration of the various uncertainties involved in the question of dispersed vs. remote siting of energy facilities introduces a number of new elements into the analysis. On balance those considerations provide somewhat greater support for the clustered concept. The NEC approach seems to provide somewhat greater flexibility in accomodating possible future electricity generating technologies. Increased regulatory and construction efficiencies possible in an NEC reduces the impact of demand uncertainty as does the lower costs associated with construction acceleration or deceleration.'' It is also noted that, in the final analysis, ''it is the public's perception of the relative costs and benefits of a measure that determine the acceptability or unacceptability of a particular innovation,'' not the engineer's cost/benefit analysis. It is further noted that if the analysis can identify limits on analytical methods and models, it will not make the job of energy decision-making any easier, but it may make the process more responsive to its impact on society. (MCW)

  14. Patient-Centered Cancer Care Programs in Italy: Benchmarking Global Patient Education Initiatives.

    Science.gov (United States)

    Truccolo, Ivana; Cipolat Mis, Chiara; Cervo, Silvia; Dal Maso, Luigino; Bongiovanni, Marilena; Bearz, Alessandra; Sartor, Ivana; Baldo, Paolo; Ferrarin, Emanuela; Fratino, Lucia; Mascarin, Maurizio; Roncadin, Mario; Annunziata, Maria Antonietta; Muzzatti, Barbara; De Paoli, Paolo

    2016-06-01

    In Italy, educational programs for cancer patients are currently provided by the national government, scientific societies, and patient advocate organizations. Several gaps limit their effectiveness, including the lack of coordinated efforts, poor involvement of patient feedback in the planning of programs, as well as a lack of resources on innovative cancer-related topics. This process is parallel to a strong shift in the attitude of patients towards health in general and taking charge of their own health conditions in particular. The National Cancer Institute in the USA and the Organization of European Cancer Institutes encourage comprehensive cancer centers in providing educational programs conceived to overcome these gaps. The goal of this paper is to identify and describe the key elements necessary to develop a global patient education program and provide recommendations for strategies with practical examples for implementation in the daily activities of cancer institutes. A multidisciplinary committee was established for patient education, including patient representatives as equal partners, to define, implement, verify, and evaluate the fundamental steps for establishing a comprehensive education program. Six essential topics were identified for the program: appropriate communication of cancer epidemiology, clinical trial information, new therapeutic technologies, support in the use of medicines, psycho-oncological interventions, age-personalized approaches, and training programs for healthcare providers. Integration of these topics along with patient feedback is the key to a successful model for educational programs. An integrated educational program can transform a comprehensive cancer center to an institution that provides research and care for and with patients.

  15. Factors Influencing the Development of Entrepreneurial Education in Iran's Applied-Scientific Educational Centers for Agriculture

    Directory of Open Access Journals (Sweden)

    Baharak Azizi

    2010-01-01

    Full Text Available Problem statement: An understanding of factors influencing entrepreneurial education in Iran’s applied-scientific educational centers for agriculture is crucial for creating the new opportunities for students and encouraging them to involve in entrepreneurial activity. The purpose of this study was twofold. First, it determined the key factors that influence entrepreneurial education in Iran’s applied-scientific educational centers for agriculture. Second, the study examined relationship of these factors with developing entrepreneurial education. Approach: The research in terms of nature is a kind of quantitative research and in terms of goal is applied research, in terms of controlling the variables is descriptive and correlation kind, which has been carried out in a survey way. Statistical population of the study consisted of 19255 students for applied-scientific education in agriculture in Iran. Based on the classification of the Ministry of Agriculture which has divided these centers into five regions, sample taking has been conducted using stratified proportionate random sampling technique. Sample size for the students is 355 people using Cochran formula. Considering the entire size of the sample, some 291 questionnaires have been returned. Results: The results of the ordinal factor analysis showed the classification of the factors into five latent variables. The variables were classified into managerial, economical, social, technical and regulatory. The basic idea of factor analysis was to found a set of latent variables that contain the same information. The classic factor analysis assumed that, both observed and the latent variables were continuous variables. But, in practice, the observed variables were often ordinal. Spearman coefficient showed that there was relationship between economical, social, technical, regulatory and managerial factors and perception of students about entrepreneurial education. Conclusion: Entrepreneurial

  16. [Beginning of the Microbiology education in Chile: formation centers].

    Science.gov (United States)

    Osorio, Carlos

    2015-08-01

    The first Chair of Microbiology in Chile was created in the School of Medicine of the Cañadilla at the University of Chile in 1892. Dr. Alejandro del Río Soto Aguilar was its first Professor. For almost three decades it was the only educational center for microbiologists in Chile. Among them were the first Professors of the new School of Medicine of the Catholic University of Chile and of the University of Concepción.

  17. Staying connected: online education engagement and retention using educational technology tools.

    Science.gov (United States)

    Salazar, Jose

    2010-01-01

    The objective of this article is to inform educators about the use of currently available educational technology tools to promote student retention, engagement and interaction in online courses. Educational technology tools include content management systems, podcasts, video lecture capture technology and electronic discussion boards. Successful use of educational technology tools requires planning, organization and use of effective learning strategies.

  18. Multicultural awareness and technology in higher education: global perspectives

    NARCIS (Netherlands)

    Issa, Tomayess; Isaias, Pedro; Kommers, Petrus A.M.

    2014-01-01

    This book encompasses information on the effects of international students' exchanges in higher education through e-learning technologies, providing the latest teaching and learning methods, technologies, and approaches in the higher education sector worldwide

  19. Information and Communication Technologies in Engineering Education

    Directory of Open Access Journals (Sweden)

    Maldague Xavier

    2016-01-01

    Full Text Available In the emerging digital era it is difficult to train highly-skilled, competent specialists without the use of information and communication technology (ICT. The use of ICT in education increases the motivation to learn, stimulates cognitive activity and independent work, facilitates information exchange, enables interactive communication between teachers and students, and improves learning outcomes. This paper reviews the literature regarding the use of ICTs in education, explores their advantages and challenges, and surveys first-year students at the Institute of Non-Destructive Testing, National Research Tomsk Polytechnic University to determine their attitude toward ICT in foreign language learning.

  20. A Review of Technology Education in Ireland; a Changing Technological Environment Promoting Design Activity

    Science.gov (United States)

    Leahy, Keelin; Phelan, Pat

    2014-01-01

    In Ireland, Technology Education's structure and organisation across the levels of education is not delivered or governed in a coherent manner. Technology Education in primary level education, for students between 5 and 12 years of age, does not explicitly exist as a separate subject. In primary level education, Social, Environmental and…

  1. A Review of Technology Education in Ireland; a Changing Technological Environment Promoting Design Activity

    Science.gov (United States)

    Leahy, Keelin; Phelan, Pat

    2014-01-01

    In Ireland, Technology Education's structure and organisation across the levels of education is not delivered or governed in a coherent manner. Technology Education in primary level education, for students between 5 and 12 years of age, does not explicitly exist as a separate subject. In primary level education, Social, Environmental and…

  2. Reflections on Preparing Educators to Evaluate the Efficacy of Educational Technology: An Interview with Joseph South

    Science.gov (United States)

    Bull, Glen; Spector, J. Michael; Persichitte, Kay; Meiers, Ellen

    2017-01-01

    Joseph South, an educational researcher, technology consultant, and former director of the U.S. Office of Educational Technology participated in a research initiative on Educational Technology Efficacy Research organized by the Jefferson Education Accelerator, Digital Promise, and the Curry School of Education at the University of Virginia. The…

  3. An Educational Plan for Nursing Staff in the Procedural Treatment Unit of the Sulpizio Cardiovascular Center.

    Science.gov (United States)

    Lee, Esther; Daugherty, JoAnn

    2016-04-01

    Professional education for health practitioners is a continuum which commences with the first year professional school until the cessation of a professional career. This article draws on the theories and models developed by experts in curriculum design, teaching, and learning evaluation to better understand the intricacies and challenges of instructional design. Selected models, in particular Malcolm Knowles and the World Health Organization report served as a compass and benchmark to illuminate, guide, and evaluate the impact, process, contents, and outcomes of an educational program for the stakeholders. The aim of this educational program is to ensure that learners develop the knowledge, skills, and attitudes to deliver competent and quality patient-centered care. Multimodal teaching strategies are essential to meet the diverse needs of staff. Utilization of technology such as intranet and mobile applications helps to deliver educational content in a cost-effective manner. Program evaluation determines the effectiveness of teaching and helps to define ongoing needs of staff.

  4. Integrating professional education, research and extensionin irrigated agriculture technology centers Integração ensino profissional-pesquisa-extensão rural através de centros de tecnologia em agricultura irrigada

    Directory of Open Access Journals (Sweden)

    Jadir A Rosa

    2011-12-01

    Full Text Available With the objective to stimulate the use of irrigation and the electric energy fee reduction during night time program granted by the 2004 Federal law, the Government of the state of Paraná, Brazil launched the Night Irrigation Program - NPI. Beyond this discount, the farmer that adheres to NPI will get additional benefits, as completion of the electric grid without cost, subsidized financing of equipment, technical assistance, support with environmental farm compliance, and the possibility of replacing the entire pump energy matrix. As part of the NPI strategy of action, installation of learning centers for irrigation technology was planned in agricultural schools, thus contributing both to improve technical professional training in agriculture, and for the dissemination of knowledge in irrigated agriculture, in order to increase agricultural productivity.Com o objetivo de estimular o uso da irrigação e utilizando-se de descontos na tarifa de energia elétrica concedidos por lei federal, em 2004, o Governo do Paraná lançou o Programa de Irrigação Noturna - NPI. Além de descontos, o agricultor que aderir ao NPI contará com outros benefícios, como complementação da rede elétrica sem custo, financiamento subsidiado de equipamentos, assistência técnica oficial, facilitação quanto à adequação ambiental da propriedade, possibilidade de substituição da matriz energética do conjunto moto bomba. Como parte da estratégia de ação do NPI, previu-se a instalação de centros irradiadores da tecnologia da irrigação em vários colégios agrícolas, contribuindo, desta forma, tanto para a melhoria na formação do profissional técnico em agropecuária quanto para a disseminação dos conhecimentos em agricultura irrigada, visando ao aumento da produtividade agrícola.

  5. "Flipping" educational technology professional development for K-12 educators

    Science.gov (United States)

    Spencer, Daniel

    As the demand for more effective professional development increases in K-12 schools, trainers must adjust their training methods to meet the needs of their teacher learners. Just as lecture-heavy, teacher-centered instruction only meet the learning needs of a small minority of students, "sit and get" professional development rarely results in the teachers gaining the skills and confidence necessary to use technology effectively in their instruction. To resolve the frustrations of teachers related to ineffective professional development, a "Flipped PD" training model was developed based on the learning needs of adult learners, the integration of technological, pedagogical, and content knowledge (TPACK), learning activities, and the Flipped Classroom concept. Under this model, training shifts from a passive, trainer-centered format, to an active, learner-centered format where teachers learn to use technology in their classrooms by first focusing on pedagogical issues, then choosing the options that work best for addressing those issues in their unique situation, and completing "learn-by-doing" projects. Those who participate in "Flipped PD" style trainings tend to have more confidence upon completion that they can use the tools they were trained on in their teaching, as well as believe that the PD was engaging and a good use of their time.

  6. Nordic science and technology entrepreneurship education

    DEFF Research Database (Denmark)

    Warhuus, Jan P.; Basaiawmoit, Rajiv Vaid

    As a university discipline, entrepreneurship education (EEd) has moved from whether it can be taught, to what and how it should be taught (Kuratko 2005) and beyond the walls of the business school (Hindle 2007), where a need for a tailored, disciplinary approach is becoming apparent. Within science......, findings, and knowledge. The objective of this paper is to decode this tacit knowledge within Nordic science and technology institutions, and use it to provide guidance for future EEd program designs and improvements....

  7. Assessing Community Informatics: A Review of Methodological Approaches for Evaluating Community Networks and Community Technology Centers.

    Science.gov (United States)

    O'Neil, Dara

    2002-01-01

    Analyzes the emerging community informatics evaluation literature to develop an understanding of the indicators used to gauge project impacts in community networks and community technology centers. The study finds that community networks and community technology center assessments fall into five key areas: strong democracy; social capital;…

  8. Culturelogical senses of activity in anthropic technologies of higher education

    Directory of Open Access Journals (Sweden)

    Dmitriev S.V.

    2010-04-01

    Full Text Available Technology of the educational teaching motive actions is examined in a theory and practice of higher education. The role of modern educational technologies is rotined in professional preparation of students. «Humanism conversion» of educational technologies is offered. It is rotined that authentic sense of educational activity of man is finding by him itself (achievement of authenticness with itself. On the basis of it is creative realization in professional labour.

  9. Programmes of Educational Technology in China: Looking Backward, Thinking Forward

    Science.gov (United States)

    Fuyin, Xu; Jianli, Jiao

    2010-01-01

    There is a history of programmes in educational technology in colleges and universities in China going back about 70 years. This paper briefly reviews the developmental history of the educational technology programme in China, elaborates the status-quo of the programme and looks ahead into the future trends of educational technology development in…

  10. Quality and Characteristics of Recent Research in Technology Education

    Science.gov (United States)

    Johnson, Scott D.; Daugherty, Jenny

    2008-01-01

    The focus of research in technology education has evolved throughout its history as the field changed from industrial arts to technology education (Spencer & Rogers, 2006). With the move to technology education, the field has begun to broaden its focus to better understand the teaching, learning, curriculum, and policy implications of preparing…

  11. Applying Sustainable Systems Development Approach to Educational Technology Systems

    Science.gov (United States)

    Huang, Albert

    2012-01-01

    Information technology (IT) is an essential part of modern education. The roles and contributions of technology to education have been thoroughly documented in academic and professional literature. Despite the benefits, the use of educational technology systems (ETS) also creates a significant impact on the environment, primarily due to energy…

  12. Emerging Technologies Landscape on Education. A review

    Directory of Open Access Journals (Sweden)

    Luis de la Fuente Valentin

    2013-09-01

    Full Text Available This paper presents a desk research that analysed available recent studies in the field of Technology Enhanced Learning. The desk research is focused on work produced in the frame of FP6 and FP7 European programs, in the area of Information and Communication Technologies. It concentrates in technologies that support existing forms of learning, and also in technologies that enhance new learning paradigms. This approach includes already adopted and successfully piloted technologies. The elaboration of the desk research had three main parts: firstly, the collection of documents from CORDIS and other institutions related to TEL research; secondly, the identification of relevant terms appearing in those documents and the elaboration of a thesaurus; and thirdly, a quantitative analysis of each term occurrences. Many of the identified technologies belong to the fields of interactive multimedia, Human-computer Interaction and-or related to recommendation and learning analytics. This study becomes a thorough review of the current state of these fields through the actual development of R&D European projects. This research, will be used as a basis to better understand the evolution of the sector, and to focus future research efforts on these sectors and their application to education.

  13. Microcomputers in Education: An Annotated Bibliography of Educational Resources Center Materials.

    Science.gov (United States)

    Leavy, Rebecca S.

    This annotated bibliography is a listing of both book and non-book materials in the collection at the Educational Resources Center at Western Kentucky University that relate to using microcomputers in education. These materials are primarily concerned with locating, selecting, and evaluating appropriate software; implementation of a microcomputer…

  14. Design and Discovery in Educational Assessment: Evidence-Centered Design, Psychometrics, and Educational Data Mining

    Science.gov (United States)

    Mislevy, Robert J.; Behrens, John T.; Dicerbo, Kristen E.; Levy, Roy

    2012-01-01

    "Evidence-centered design" (ECD) is a comprehensive framework for describing the conceptual, computational and inferential elements of educational assessment. It emphasizes the importance of articulating inferences one wants to make and the evidence needed to support those inferences. At first blush, ECD and "educational data…

  15. A Case Study of Spirituality in Senior Center Education: Qualitative Research in Adult Education

    Science.gov (United States)

    Demarse, Laura

    2016-01-01

    This article presents a case study on the role of spirituality in adult education at a suburban senior center located in the southeast region of the country. The purpose of the case study was to understand the deeply personal role of spirituality in adult education as seen through teaching seniors and examine the personal manifestation of…

  16. New information technologies for an innovative education

    Directory of Open Access Journals (Sweden)

    Ion Smeureanu

    2011-12-01

    Full Text Available Information technology has a powerful impact on learning and the central idea of the current e-learning technologies is to provide users the ability to use and reuse of learning objects, which must be compatible with the learning management systems and with any other future technology from that field. The success of new learning technologies is related to student-centered learning approach, on skills which will be acquired as a result of learning. Their establishment is in close accordance with the didactic objectives of teaching the lessons. From informatics point of view the content to be taught in terms of components-based learning, which the existing software components are assembled into an application in such a way that they interact to get a predefined functionality. The components can react depending on the architecture where they are assembled. According to semantic model, the learning components can be assembled by manually, so as to provide a great opportunity for both students and teachers to exercise their creativity and vision. New information technologies, as component-oriented programming or service-oriented architecture, allow the easy handling and composition of learning objects even by non specialists, teachers who prepare their lessons according to their vision, or students who can practice the knowledge acquired solving the variants of problems studied.

  17. Distance Education at Silesian University of Technology

    Directory of Open Access Journals (Sweden)

    Piotr Klosowski

    2008-12-01

    Full Text Available This paper presents Distance Learning Platform used by Silesian University of Technology. Distance Learning Platform is based on modular object-oriented dynamic learning environment, represents LMS (Learning Management Systems technology, a software package designed to help educators create quality online courses. Currently on Distance Learning Platform at Silesian University of Technology are available over 520 online courses created for students of twelve University's faculties. Number of Distance Learning Platform users exceeds 12000. Distance Learning Platform works as typically asynchronous e-learning service, but in the future more synchronous e-learning services will be added. Distance Learning Platform has great potential to create a successful elearning experience by providing a plethora of excellent tools that can be used to enhance conventional classroom instruction, in hybrid courses, or any distance learning arrangements.

  18. First languages and las technologies for education

    Directory of Open Access Journals (Sweden)

    Julio VERA VILA

    2013-12-01

    Full Text Available This article is a reflection on how each human being’s learning process and the cultural development of our species are connected to the possibility of translating reality –what we think, what we feel, our interaction- a system of signs that, having shared meanings, enrich our intrapersonal and interpersonal communication. Spoken language was the first technology but being well prepared genetically for it, we learn it through immersion; the rest of them, from written language to hypermedia, have to be well taught and even better learned.We conclude by highlighting the necessity of taking advantage of the benefits provided by the new technologies available nowadays in order to overcome the digital divide, without forgetting others such as literacy acquisition, which are the base of new technologies. Therefore we need a theory and practice of education which comprises its complexity and avoids simplistic reductionism.  

  19. Distance Education at Silesian University of Technology

    Directory of Open Access Journals (Sweden)

    Piotr Klosowski

    2008-12-01

    Full Text Available This paper presents Distance Learning Platform used by Silesian University of Technology. Distance Learning Platform is based on modular object-oriented dynamic learning environment, represents LMS (Learning Management Systems technology, a software package designed to help educators create quality online courses. Currently on Distance Learning Platform at Silesian University of Technology are available over 520 online courses created for students of twelve University's faculties. Number of Distance Learning Platform users exceeds 12000. Distance Learning Platform works as typically asynchronous e-learning service, but in the future more synchronous e-learning services will be added. Distance Learning Platform has great potential to create a successful elearning experience by providing a plethora of excellent tools that can be used to enhance conventional classroom instruction, in hybrid courses, or any distance learning arrangements.

  20. Revolution in Communication Technologies: Impact on Distance Education

    Science.gov (United States)

    Rajesh, M.

    2015-01-01

    Information and Communication Technologies have transformed the way the world lives and thinks. Education, especially, Distance Education is no different. While the technologies per se are an important factor, the social milieus in which these technologies are implemented are equally important. Technological convergence in the Indian context…

  1. Discursive Constructions of "Teacher" in an Educational Technology Journal

    Science.gov (United States)

    McDonald, Jenny; Loke, Swee-Kin

    2016-01-01

    The integration of technology with teaching and learning is a significant area of research in the educational technology field. Teachers play an instrumental role in technology integration, and many teacher-related factors have been identified that predict technology use and integration in educational settings. How teachers are represented in the…

  2. Essential Concepts of Engineering Design Curriculum in Secondary Technology Education

    Science.gov (United States)

    Wicklein, Robert; Smith, Phillip Cameron, Jr.; Kim, Soo Jung

    2009-01-01

    Technology education is a field of study that seeks to promote technological literacy for all students. Wright and Lauda defined technology education as a program designed to help students "develop an understanding and competence in designing, producing, and using technological products and systems, and in assessing the appropriateness of…

  3. Analysis of Engineering Content within Technology Education Programs

    Science.gov (United States)

    Fantz, Todd D.; Katsioloudis, Petros J.

    2011-01-01

    In order to effectively teach engineering, technology teachers need to be taught engineering content, concepts, and related pedagogy. Some researchers posit that technology education programs may not have enough content to prepare technology teachers to teach engineering design. Certain technology teacher education programs have responded by…

  4. Technology and Higher Education in America for the Next Decade.

    Science.gov (United States)

    Friedman, Edward A.

    1979-01-01

    The impact of technology on higher education from increasingly complex computers and technological systems will cause higher education to include technological courses in the liberal arts curriculum, prepare liberal arts students for careers in nontraditional areas in which technology is an important component, and broaden the base of engineering…

  5. Mobile Learning and Integration of Mobile Technologies in Education

    Science.gov (United States)

    Keengwe, Jared; Bhargava, Malini

    2014-01-01

    Mobile technologies have a huge potential to transform education provided these technologies are designed and implemented in such a way that they are relevant to the social and cultural context of learning. Clearly, the application, implementation, and design of mobile technology in the global educational context pose technological and…

  6. STEM-Based Computational Modeling for Technology Education

    Science.gov (United States)

    Clark, Aaron C.; Ernst, Jeremy V.

    2008-01-01

    According to professionals in education, change is an ever-present and evolving process. With transformation in education at both state and national levels, technology education must determine a position in this climate of change. This paper reflects the views on the future of technology education based on an ongoing research project. The purpose…

  7. Beyond Change Blindness: Embracing the Technology Revolution in Higher Education

    Science.gov (United States)

    Sutton, Kimberly Kode; DeSantis, Josh

    2017-01-01

    The pace of education technology innovation outpaces many professors' abilities to thoughtfully integrate new tools in their teaching practice. This poses challenges for higher education faculty as well as those responsible for planning professional development in higher education. This article explores recent trends in education technology and…

  8. The Facilitating University: Positioning Next Generation Educational Technology

    NARCIS (Netherlands)

    Van der Zanden, A.H.W.

    2009-01-01

    Higher education is directly and indirectly subjected to pressures of diminishing subsidies, increasing student populations, heterogeneity, shorter knowledge and product lifecycles, labour demands, proliferation of technology, and new educational approaches and practices. Higher education must chang

  9. Approaches to Research on Teacher Education and Technology. Society for Technology and Teacher Education Monograph Series. No. 1.

    Science.gov (United States)

    Waxman, Hersholt C., Ed.; Bright, George W., Ed.

    This document addresses the use of technology to enrich education. Twelve papers discuss research programs and perspectives and methods of research in technology and teacher education. Titles are: "Research Methods and Paradigms in Technology and Teacher Education" (Hersholt C. Waxman and George W. Bright); "Past and Future Stages in Educational…

  10. Technology System Architecture for Web–Based Education

    Directory of Open Access Journals (Sweden)

    A. Canales–Cruz

    2009-04-01

    Full Text Available In this paper a new architecture for development of Web–Based Education systems is presented. The se systems are centered in the learner and adapted to their personals needs in intelligent form. The architecture is based on the IEEE 1484 LTSA (Learning Technology System Architecture specification and it assembles to software development and instructional design patterns. On the one hand, the software development pattern is supported under a Multi–Agents System, it employs the methods and technical of the Domain Engineering for development of IRLCOO (Intelligent Reusable Learning Components Object Oriented. IRLCOO are a special type of Sharable Content Object according to SCORM (Sharable Content Object Reusable Model. On the other hand, the instructional design pattern incorporates a mental model as the Conceptual Maps to transmit, build and generate appropriate knowledge to this educational environment type.

  11. Educational outreach at the NSF Engineering Research Center for Data Storage Systems

    Science.gov (United States)

    Williams, James E., Jr.

    1996-07-01

    An aspect of the National Science Foundation Engineering Research Center in Data Storage Systems (DSSC) program that is valued by our sponsors is the way we use our different educational programs to impact the data storage industry in a positive fashion. The most common way to teach data storage materials is in classes that are offered as part of the Carnegie Mellon curriculum. Another way the DSSC attempts to educate students is through outreach programs such as the NSF Research Experiences for Undergraduates and Young Scholars programs, both of which have been very successful and place emphasis and including women, under represented minorities and disable d students. The Center has also established cooperative outreach partnerships which serve to both educate students and benefit the industry. One example is the cooperative program we have had with the Magnetics Technology Centre at the National University of Singapore to help strengthen their research and educational efforts to benefit U.S. data storage companies with plants in Singapore. In addition, the Center has started a program that will help train outstanding students from technical institutes to increase their value as technicians to the data storage industry when they graduate.

  12. Quiet or Questioning? Students' Discussion Behaviors in Student-Centered Education across Cultures

    Science.gov (United States)

    Frambach, Janneke M.; Driessen, Erik W.; Beh, Philip; van der Vleuten, Cees P. M.

    2014-01-01

    A tool used in student-centered education is discussion among students in small learning groups. The Western origin of student-centered education, coupled with cross-cultural differences in communication styles, may detract from its cross-cultural applicability. This study investigates how in student-centered education, students' cultural…

  13. 75 FR 26272 - Final Environmental Impact Statement; Environmental Education Center, Yosemite National Park...

    Science.gov (United States)

    2010-05-11

    ... National Park Service Final Environmental Impact Statement; Environmental Education Center, Yosemite... Environmental Impact Statement for development of a new environmental education center in Yosemite National Park... practical the NPS will begin to implement development of a new environmental education center at...

  14. Education resources of the National Center for Biotechnology Information.

    Science.gov (United States)

    Cooper, Peter S; Lipshultz, Dawn; Matten, Wayne T; McGinnis, Scott D; Pechous, Steven; Romiti, Monica L; Tao, Tao; Valjavec-Gratian, Majda; Sayers, Eric W

    2010-11-01

    The National Center for Biotechnology Information (NCBI) hosts 39 literature and molecular biology databases containing almost half a billion records. As the complexity of these data and associated resources and tools continues to expand, so does the need for educational resources to help investigators, clinicians, information specialists and the general public make use of the wealth of public data available at the NCBI. This review describes the educational resources available at NCBI via the NCBI Education page (www.ncbi.nlm.nih.gov/Education/). These resources include materials designed for new users, such as About NCBI and the NCBI Guide, as well as documentation, Frequently Asked Questions (FAQs) and writings on the NCBI Bookshelf such as the NCBI Help Manual and the NCBI Handbook. NCBI also provides teaching materials such as tutorials, problem sets and educational tools such as the Amino Acid Explorer, PSSM Viewer and Ebot. NCBI also offers training programs including the Discovery Workshops, webinars and tutorials at conferences. To help users keep up-to-date, NCBI produces the online NCBI News and offers RSS feeds and mailing lists, along with a presence on Facebook, Twitter and YouTube.

  15. Moscow Media Education Centers for Non-professionals in the Media Fields

    Directory of Open Access Journals (Sweden)

    Alexander Fedorov

    2013-01-01

    Full Text Available The analysis of the basic media education models used in Moscow media education centers has shown that nowadays the synthetic media education models are most typical; they are based on the synthesis of the sociocultural, educational and informational, practical and utilitarian models. And they lean towards the maximum usage of media education potential depending on the aims and objectives; they are characterized by variability, and the capacity to entirely or partially integrate into the education process. The suggested media education technology is based as a rule on blocks or modules of creative and role play/gaming assignments for the teachers to use both in school and out-of-school activities. An important peculiarity of the analyzed models is that they have a wide field of application: schools, universities, institutions of additional education and leisure activity. Media studies may be organized in the form of lessons, optional classes, and special courses integrated into different school subjects, or used in school societies.

  16. Sun-Earth Day - Teaching Heliophysics Through Education Technology

    Science.gov (United States)

    Thieman, J.; Cline, T.; Lewis, E.

    2010-01-01

    Sun-Earth Day (SED) is an Education and Outreach program supported by the U.S, National Aeronautics and Space Administration (NASA). The intent of the program is to teach students and the general public about Heliophysics (the science of the study of the Sun, how it varies, and how solar dynamics affect the rest of the solar system, especially the Earth). The program was begun ten years ago. Each year since that time a particular day has been designated as "Sun-Earth Day ,,. Usually the day of the spring equinox (March 20 or 21) is Sun-Earth Day, but other days have been used as well. Each year a theme is chosen relating to Heliophysics and events reflecting that theme are planned not only for Sun-Earth Day, but for the entire year. From the very beginning educational technology was emphasized in the events in order to effectively reach wide audiences with the SED message. The main approach has been to have a "webcast" related to each year's theme, often from a location that supports the theme as well. For example, a webcast took place from the Mayan pyramids at Chichen Itza, Mexico to highlight the theme of "Ancient Observatories, Timeless Knowledge". Webcasts were not the only technology employed, however. Many of the themes centered on the dynamic nature of the Sun and the effects that solar storms can have on interplanetary space and in our day-to-day life on Earth. Activities for tracking when solar storms happen and how they affect the Earth were developed and brought together in an educational package called Space Weather Action Centers. This project is explained in more detail in another presentation in this session being given by Norma Teresinha Oliveira Reis. Recent Sun-Earth Days have utilized "social networking" technologies to reach widespread groups on the internet. Podcasts, Vodcasts, Facebook, Twitter, and Second Life are the types of network technologies being employed now. The NASA Distance learning Network is another method for bringing Sun

  17. Integration of educational and scientific-technological areas during the process of education of aerospace engineers

    Science.gov (United States)

    Mayorova, Vera

    2011-09-01

    National priorities, defined by modern state of high-tech industries, demand adequate problem solving of training professionals possessing required modern qualifications. Modern tendencies of the development of aerospace technologies, harsh competition in the market of space services and expansion of international cooperation for implementation of space projects, demand sharp increase of the scientific/technical level and competitiveness of the developed projects. Especially important is to be able to solve technological problems, which in turn define the cost and quality attributes of the designed item, as well as the ability to utilize the most modern design principles. Training of highly efficient, creative professionals who are capable of generating and implementing new ideas is a very important factor driving not only the development of national economy and industry, but also enriching the human capital of the country. Moscow State Technical University named after N.E. Bauman developed and successfully implemented the project-oriented technology of professional training for aerospace industry. It assumes a multitude of forms, methodologies and organizational events, which allow preparing the specialists - on the basis of integration of scientific/technological and educational environment - who are adapted to the conditions of the intellectual market. The Youth Space Center of the University is the base where graduate and post-graduate students attend unique lectures as a part of the facultative course "Applied Cosmonautics", participate in annual International Youth Science School "Space Development: Theory and Practice" and develop innovative technical projects aimed at creation of real-life space hardware. Microsatellite technologies are being developed in Bauman University through various projects, which are implemented in a coordinated manner by way of accomplishing the following steps: development of small-size satellites by universities, using them as

  18. Development and Implementation of the Midwest Geological Sequestration Consortium CO2-Technology Transfer Center

    Energy Technology Data Exchange (ETDEWEB)

    Greenberg, Sallie E. [Univ. of Illinois, Champaign, IL (United States)

    2015-06-30

    In 2009, the Illinois State Geological Survey (ISGS), in collaboration with the Midwest Geological Sequestration Consortium (MGSC), created a regional technology training center to disseminate carbon capture and sequestration (CCS) technology gained through leadership and participation in regional carbon sequestration projects. This technology training center was titled and branded as the Sequestration Training and Education Program (STEP). Over the last six years STEP has provided local, regional, national, and international education and training opportunities for engineers, geologists, service providers, regulators, executives, K-12 students, K-12 educators, undergraduate students, graduate students, university and community college faculty members, and participants of community programs and functions, community organizations, and others. The goal for STEP educational programs has been on knowledge sharing and capacity building to stimulate economic recovery and development by training personnel for commercial CCS projects. STEP has worked with local, national and international professional organizations and regional experts to leverage existing training opportunities and provide stand-alone training. This report gives detailed information on STEP activities during the grant period (2009-2015).

  19. Critical Thinking as a Cognitive Educational Technology

    Directory of Open Access Journals (Sweden)

    Brylina Irina V.

    2016-01-01

    Full Text Available The article deals with higher education issues related to the formation of students’ intellectual work skills. The research objective of the paper was to consider critical thinking as a cognitive technology in education. In this regard, the didactic and structural approaches to the study of critical thinking do not contradict one another: each approach is a logical complement of the other and reveals certain aspects of the complex concept of critical thinking, giving emphasis to the argument, which is a tool, used both in critical and dogmatic thinking. By the general competence we mean principles of thinking, the ability to produce a reasoned piece of oral and written language, understanding and analysis of philosophical issues, considering the essence and value of the information. Among the professional competencies, the following should be listed: the ability to reconsider the gathered experience critically, the ability to collect, process, and interpret the data of modern research, to form judgments about the value and impact of the professional activity. The logical competence draws focused attention to the critical argument, regarding it throughout the course Logic. It is concluded that critical thinking can be seen as a cognitive educational technology for the formation of logical competence.

  20. ANALYSING THE USABILITY OF ICT AND E-SERVICES FOR EDUCATIONAL PURPOSES AT THE SCHOOL OF KEMI RECEPTION CENTER

    OpenAIRE

    2015-01-01

    Education is the most important means that can be used to change and develop the world. Information and Communication Technology is one of the most innovative and progressive arena in today’s world. The objective of this study is to analyse teachers’ and students’ ability to use Information and Communication Technology and e-services to perform the required activities for teaching and learning purposes at the School of Kemi Reception Center. Exploratory research on literature and e-so...

  1. What Is Educational Technology? An Inquiry into the Meaning, Use, and Reciprocity of Technology

    Science.gov (United States)

    Lakhana, Arun

    2014-01-01

    This position paper explores the ambiguity of technology, toward refined understanding of Educational Technology. The purpose of education is described by John Dewey as growing, or habitual learning. Two philosophical conceptions of technology are reviewed. Dewey positions inquiry as a technology that creates knowledge. Val Dusek offers a…

  2. Technology and Early Childhood Education: A Technology Integration Professional Development Model for Practicing Teachers

    Science.gov (United States)

    Keengwe, Jared; Onchwari, Grace

    2009-01-01

    Despite the promise of technology in education, many practicing teachers are faced with multiple challenges of effectively integrating technology into their classroom instruction. Additionally, teachers who are successful incorporating educational technology into their instruction recognize that although technology tools have the potential to help…

  3. VLSI Technology: Impact and Promise. Identifying Emerging Issues and Trends in Technology for Special Education.

    Science.gov (United States)

    Bayoumi, Magdy

    As part of a 3-year study to identify emerging issues and trends in technology for special education, this paper addresses the implications of very large scale integrated (VLSI) technology. The first section reviews the development of educational technology, particularly microelectronics technology, from the 1950s to the present. The implications…

  4. Factors Predicting Nurse Educators' Acceptance and Use of Educational Technology in Classroom Instruction

    Science.gov (United States)

    Cleveland, Sandra D.

    2014-01-01

    Nurse educators may express a willingness to use educational technology, but they may not have the belief or ability to carry out the technology use in the classroom. The following non-experimental, quantitative study examined factors that predict nurse educators' willingness to accept and use educational technology in the classroom. The sample…

  5. Education for Sustainable Development: Current Discourses and Practices and Their Relevance to Technology Education

    Science.gov (United States)

    Leal Filho, Walter; Manolas, Evangelos; Pace, Paul

    2009-01-01

    Technology education is a well-established field of knowledge whose applications have many ramifications. For example, technology education may be used as a tool in meeting the challenges of sustainable development. However, the usefulness of technology education to the sustainability debate as a whole and to education for sustainable development…

  6. New Perspectives: Technology Teacher Education and Engineering Design

    OpenAIRE

    Hill, Roger B.

    2006-01-01

    Initiatives to integrate engineering design within the field of technology education are increasingly evident (Lewis, 2005; Wicklein, 2006). Alliances between technology education and engineering were prominent in the development of the Standards for Technological Literacy (International Technology Education Association, 2000), and leaders from both disciplines have expressed support for the outcomes described in the Standards (Bybee, 2000; Council of the National Academy of Engineering, 2000...

  7. Personalized Learning and the Future of Educational Technology

    OpenAIRE

    Karpicke, Jeffrey D.

    2014-01-01

    Recent advances in the cognitive science of learning have important implications for instructional practices at all levels of education. Educational technology is becoming pervasive, yet very little of it is designed around principles of learning from cognitive science. This talk discusses current trends in educational technologies, including personalized online learning systems and MOOCs, and how new advanced learning technologies will impact education in the future.

  8. Self-management of change processes in educational centers

    Directory of Open Access Journals (Sweden)

    María Inés Vázquez

    2013-04-01

    Full Text Available This paper addresses the self-management processes of change, referring to a series of processes that take place in education centers undergoing change. The perspective from which the approach is proposed is educational management. The evidences integrated into the document are the result of a study conducted in Uruguay, which involved seven primary, secondary, and technical schools. The approach used has been the study of multiple cases with the intention of analyzing the phenomenon in specific contexts, integrating the possibility of studying it from a global perspective. The overall objective was to achieve greater understanding of the self-evaluation and change processes in schools. Within the specific objectives we highlight: to identify the possible links between self-assessment and decision making

  9. Renal Cancer Biomarkers | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    The National Cancer Institute's Laboratory of Proteomics and Analytical Technologies is seeking statements of capability or interest from parties interested in collaborative research to further develop, evaluate, or commercialize diagnostic, therapeutic and prognostic cancer biomarkers from clinical specimens.

  10. Nordic science and technology entrepreneurship education

    DEFF Research Database (Denmark)

    Warhuus, Jan P.; Basaiawmoit, Rajiv Vaid

    As a university discipline, entrepreneurship education (EEd) has moved from whether it can be taught, to what and how it should be taught (Kuratko 2005) and beyond the walls of the business school (Hindle 2007), where a need for a tailored, disciplinary approach is becoming apparent. Within science......, technology, engineering, and mathematics (STEM) EEd, tacit knowledge of what works and why is growing, while reflections to activate this knowledge are often kept local or reported to the EEd community as single cases, which are difficult compare and contrast for the purpose of deriving cross-case patterns......, findings, and knowledge. The objective of this paper is to decode this tacit knowledge within Nordic science and technology institutions, and use it to provide guidance for future EEd program designs and improvements....

  11. Connecting Critical Theory of Technology to Educational Studies

    Science.gov (United States)

    Kruger-Ross, Matthew James

    2013-01-01

    In this article, I explore how transformative learning theory, an approach to educating drawn from adult education, can be used to provide access to the critical theory of technology for educators. Rather than focusing primarily on K-12 teachers and educational systems or higher education and other postsecondary instruction, I connect learning as…

  12. Connecting Critical Theory of Technology to Educational Studies

    Science.gov (United States)

    Kruger-Ross, Matthew James

    2013-01-01

    In this article, I explore how transformative learning theory, an approach to educating drawn from adult education, can be used to provide access to the critical theory of technology for educators. Rather than focusing primarily on K-12 teachers and educational systems or higher education and other postsecondary instruction, I connect learning as…

  13. Potential of information technology in dental education.

    Science.gov (United States)

    Mattheos, N; Stefanovic, N; Apse, P; Attstrom, R; Buchanan, J; Brown, P; Camilleri, A; Care, R; Fabrikant, E; Gundersen, S; Honkala, S; Johnson, L; Jonas, I; Kavadella, A; Moreira, J; Peroz, I; Perryer, D G; Seemann, R; Tansy, M; Thomas, H F; Tsuruta, J; Uribe, S; Urtane, I; Walsh, T F; Zimmerman, J; Walmsley, A D

    2008-02-01

    The use of information technology (IT) in dentistry is far ranging. In order to produce a working document for the dental educator, this paper focuses on those methods where IT can assist in the education and competence development of dental students and dentists (e.g. e-learning, distance learning, simulations and computer-based assessment). Web pages and other information-gathering devices have become an essential part of our daily life, as they provide extensive information on all aspects of our society. This is mirrored in dental education where there are many different tools available, as listed in this report. IT offers added value to traditional teaching methods and examples are provided. In spite of the continuing debate on the learning effectiveness of e-learning applications, students request such approaches as an adjunct to the traditional delivery of learning materials. Faculty require support to enable them to effectively use the technology to the benefit of their students. This support should be provided by the institution and it is suggested that, where possible, institutions should appoint an e-learning champion with good interpersonal skills to support and encourage faculty change. From a global prospective, all students and faculty should have access to e-learning tools. This report encourages open access to e-learning material, platforms and programs. The quality of such learning materials must have well defined learning objectives and involve peer review to ensure content validity, accuracy, currency, the use of evidence-based data and the use of best practices. To ensure that the developers' intellectual rights are protected, the original content needs to be secure from unauthorized changes. Strategies and recommendations on how to improve the quality of e-learning are outlined. In the area of assessment, traditional examination schemes can be enriched by IT, whilst the Internet can provide many innovative approaches. Future trends in IT will

  14. Uptake of Space Technologies - An Educational Programme

    Science.gov (United States)

    Bacai, Hina; Zolotikova, Svetlana; Young, Mandy; Cowsill, Rhys; Wells, Alan; Monks, Paul; Archibald, Alexandra; Smith, Teresa

    2013-04-01

    Earth Observation data and remote sensing technologies have been maturing into useful tools that can be utilised by local authorities and businesses to aid in activates such as monitoring climate change trends and managing agricultural land and water uses. The European Earth observation programme Copernicus, previously known as GMES (Global Monitoring for Environment and Security), provides the means to collect and process multi-source EO and environmental data that supports policy developments at the European level. At the regional and local level, the Copernicus programme has been initiated through Regional Contact Office (RCO), which provide knowledge, training, and access to expertise both locally and at a European level through the network of RCOs established across Europe in the DORIS_Net (Downstream Observatory organised by Regions active In Space - Network) project (Grant Agreement No. 262789 Coordination and support action (Coordinating) FP7 SPA.2010.1.1-07 "Fostering downstream activities and links with regions"). In the East Midlands UK RCO, educational and training workshops and modules have been organised to highlight the wider range of tools and application available to businesses and local authorities in the region. Engagement with businesses and LRA highlighted the need to have a tiered system of training to build awareness prior to investigating innovative solutions and space technology uses for societal benefits. In this paper we outline education and training programmes which have been developed at G-STEP (GMES - Science and Technology Education Partnership), University of Leicester, UK to open up the Copernicus programme through the Regional Contact Office to downstream users such as local businesses and LRAs. Innovative methods to introduce the operational uses of Space technologies in real cases through e-learning modules and web-based tools will be described and examples of good practice for educational training in these sectors will be

  15. TUBSAT-1, satellite technology for educational purposes

    Science.gov (United States)

    Ginati, A.

    1988-01-01

    TUBSAT-1 (Technical University of Berlin Satellite) is an experimental low-cost satellite within the NASA Get Away Special (GAS) program. This project is being financed by the German BMFT (Federal Ministry for Research and Technology), mainly for student education. The dimensions and weight are determined by GAS requirements and the satellite will be ejected from the space shuttle into an approximately 300-km circular orbit. It is a sun/star oriented satellite with an additional spin stabilization mode. The first planned payload is to be used for observing flight paths of migratory birds from northern Europe to southern Africa and back.

  16. Technological Middle Level Education in Mexico

    Directory of Open Access Journals (Sweden)

    Silvia Cruz Prieto

    2014-02-01

    Full Text Available Technological middle level education in Mexico trains young people between 15 to 18 years old to continue higher studies or to enter the labor market. It serves about 807,433 students through its 755 campuses with an educational model that has a focus on developing competences. High School Educational Reform, in operation since 2008, has initiated some programs to serve students, with the aim of reducing dropout rates. It also has implemented innovative management and information systems. In 2013, an educational reform was begun with an orientation to working conditions, focusing on the evaluation of school administrators and teachers. Received: 25/09/2013 / Accepted: 03/10/2013How to reference this articleCruz Prieto, S., Egido, I. (2014. La Educación Tecnológica de Nivel Medio Superior en México. Foro de Educación, 12(16, pp. 99-121. doi: http://dx.doi.org/10.14516/fde.2014.012.016.004

  17. Information for Our Partners | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    NCI TTC CRADA PAYMENT OPTIONS: Electronic Payments by Wire Transfer via Fedwire, Mail a check to the Institute or Center, or Automated Clearing House (ACH)/Electronic Funds Transfer (ETF) payments via Pay.gov (NCI ONLY). | [google6f4cd5334ac394ab.html

  18. Improving the life science (biology) laboratory education experience: From an instructor-centered to a learner-centered educational environment

    Science.gov (United States)

    Stevens, Marcella Liffick

    The component parts of the educational experience in a freshman biology laboratory course could be improved if the knowledge, skills, and personality of the students could be integrated with the instructor's. Lack of integration of instruction with learning often results in students unwilling or unable to learn content and to transfer it to future courses. This research examined the component parts of instruction and learning for a freshman biology laboratory class and provided an alternative approach to the traditional experience in this lab. Outcome assessment revealed that students experiencing a learner-centered lab responded differently to instruction than students in the traditional lab did and expressed more of a learning orientation and awareness. Not all methods used were successful but course evaluations demonstrated an increased awareness of the learning process among students in the learner-centered lab. The alternative group indicated differences specifically directed toward learning, more often than the traditional group did.

  19. Cancer Center Website Rankings in the USA: Expanding Benchmarks and Standards for Effective Public Outreach and Education.

    Science.gov (United States)

    Huerta, Timothy R; Walker, Daniel M; Ford, Eric W

    2017-06-01

    The 68 National Cancer Institute (NCI)-designated comprehensive and cancer centers have been tasked with leading the campaign in the fight against cancer, as well as providing education and outreach to the public. Therefore, it is important for these organizations to have an effective online presence to disseminate information and engage patients. The purpose of this study was to assess both the functionality and usability of cancer centers' websites. The 68 center web domains were evaluated using two separate but complementary approaches. First, a webcrawler was used to score each website on five dimensions: accessibility, content, marketing, technology, and usability. Rankings on each dimension and an average ranking were calculated for all 68 centers. Second, a three-reader system was used to determine a list of all functionalities present on the websites. Both webcrawler scores and functionality prevalence were compared across center type. No differences were observed in webcrawler scores between comprehensive and cancer centers. Mean scores on all dimensions ranged between 5.47 and 7.09. For the functionality assessment, 64 unique functions were determined and categorized into 12 domains, with the average center possessing less than 50 % of the functions. This census assessment of NCI centers' websites suggests the need for improvement to capitalize on new dissemination platforms available online. Progress in development of this technology can help achieve the goals of public education and outreach to a broad audience. This paper presents performance guidelines evaluated against best-demonstrated practice to facilitate social media use improvement.

  20. Disaster preparedness education and a Midwest Regional Poison Center.

    Science.gov (United States)

    Lehman-Huskamp, Kathy; Rebmann, Terri; Walter, Frank G; Weber, Julie; Scalzo, Anthony

    2010-01-01

    To assess knowledge and comfort related to disaster preparedness and response gained and retained from a disaster medicine workshop given to Certified Specialists in Poison Information (CSPI). A pilot study with a pre-post intervention design. A Midwest Regional Poison Center. All CSPIs employed at the participating Poison Center (N = 27) were recruited. Participation ranged from 44 percent (n = 12) for the 4-month postworkshop knowledge quiz to 78 percent (n = 21) for the preworkshop survey. A disaster medicine workshop was given to the CSPIs. Quizzes and surveys were done preworkshop and then repeated at 1 week, 4 months, and 14 months postworkshop. CSPI knowledge and comfort pertaining to disaster-related calls. CSPIs' comfort levels with calls regarding major chemical or nuclear/radiation disasters significantly increased and stayed elevated during all follow-up periods [Kruskal-Wallis chi2 (3) = 13.1, p = 0.01]. The average preworkshop quiz score was 58.2 percent. A statistically significant increase in mean quiz score was demonstrated amongst preworkshop and postworkshop scores at all tested time intervals (F = 18.8, p educational competencies for CSPIs and disaster response would help to standardize this much needed education.

  1. The incidence of technological stress among baccalaureate nurse educators using technology during course preparation and delivery.

    Science.gov (United States)

    Burke, Mary S

    2009-01-01

    The concept of technology-related stress was first introduced in the 1980s when computers became more prevalent in the business and academic world. Nurse educators have been impacted by the rapid changes in technology in recent years. A review of the literature revealed no research studies that have been conducted to investigate the incidence of technological stress among nurse educators. The purpose of this descriptive-correlational study was to describe the technological stressors that Louisiana baccalaureate nurse educators experienced while teaching nursing theory courses. A researcher-developed questionnaire, the nurse educator technostress scale (NETS) was administered to a census sample of 311 baccalaureate nurse educators in Louisiana. Findings revealed that Louisiana baccalaureate nurse educators are experiencing technological stress. The variable, perceived administrative support for use of technology in the classroom, was a significant predictor in a regression model predicting Louisiana baccalaureate nurse educators' technological stress (F=14.157, p<.001).

  2. The New Space Weather Action Center; the Next Level on Space Weather Education

    Science.gov (United States)

    Collado-Vega, Y. M.; Lewis, E. M.; Cline, T. D.; MacDonald, E.

    2016-12-01

    The Space Weather Action Center (SWAC) provides access for students to near real-time space weather data, and a set of easy instructions and well-defined protocols that allow them to correctly interpret such data. It is a student centered approach to teaching science and technology in classrooms, as students are encouraged to act like real scientists by accessing, collecting, analyzing, recording, and communicating space weather forecasts. Integration and implementation of several programs will enhance and provide a rich education experience for students' grades 5-16. We will enhance the existing data and tutorials available using the Integrated Space Weather Analysis (iSWA) tool created by the Community Coordinated Modeling Center (CCMC) at NASA GSFC. iSWA is a flexible, turn-key, customer-configurable, Web-based dissemination system for NASA-relevant space weather information that combines data based on the most advanced space weather models available through the CCMC with concurrent space environment information. This tool provides an additional component by the use of videos and still imagery from different sources as a tool for educators to effectively show what happens during an eruption from the surface of the Sun. We will also update content on the net result of space weather forecasting that the public can experience by including Aurorasaurus, a well established, growing, modern, innovative, interdisciplinary citizen science project centered around the public's visibility of the northern lights with mobile applications via the use of social media connections.

  3. Marshall Space Flight Center Research and Technology Report 2015

    Science.gov (United States)

    Keys, A. S. (Compiler); Tinker, M. L. (Compiler); Sivak, A. D. (Compiler); Morris, H. C. (Compiler)

    2015-01-01

    The investments in technology development we made in 2015 not only support the Agency's current missions, but they will also enable new missions. Some of these projects will allow us to develop an in-space architecture for human space exploration; Marshall employees are developing and testing cutting-edge propulsion solutions that will propel humans in-space and land them on Mars. Others are working on technologies that could support a deep space habitat, which will be critical to enable humans to live and work in deep space and on other worlds. Still others are maturing technologies that will help new scientific instruments study the outer edge of the universe-instruments that will provide valuable information as we seek to explore the outer planets and search for life.

  4. Educational Media and Technology Yearbook, 1992. Volume 18.

    Science.gov (United States)

    Ely, Donald P., Ed.; Minor, Barbara B., Ed.

    The Educational Media and Technology Yearbook (EMTY) is designed to provide media and instructional technology professionals with an up-to-date, single-source overview and assessment of the field of educational technology. Each volume addresses current issues, notes trends, and provides current listings of and background information about the…

  5. Emerging Technologies: An Overview of Practices in Distance Education

    Science.gov (United States)

    Hussain, Irshad

    2007-01-01

    In contemporary society, information technologies and communication technologies (ICTs) are playing crucial role in dissemination of knowledge and information the world over. Universities/ higher education institutions, particularly distance education universities in developed countries are making best use of these technologies for effective and…

  6. Creating Technology-Enriched Classrooms: Implementational Challenges in Turkish Education

    Science.gov (United States)

    Kurt, Serhat

    2014-01-01

    This paper provides an overview of the status of educational technology in Turkey. In the face of severe social and economic challenges, many developing nations, including Turkey, are looking to education as a potential remedy. Recognizing that in an increasingly technology-dependent world, information and communications technology skills and…

  7. The Time Is Now! Creating Technology Competencies for Teacher Educators

    Science.gov (United States)

    Foulger, Teresa S.; Graziano, Kevin J.; Slykhuis, David; Schmidt-Crawford, Denise; Trust, Torrey

    2016-01-01

    The way preservice teachers learn to use technology within their practice varies widely depending on the learning opportunities available (e.g., technology-infused teacher preparation program vs. standalone education technology course), and the knowledge, skills, and attitudes of the teacher educators within their teacher preparation programs.…

  8. Gateways to Positioning Information and Communication Technology in Accounting Education

    Science.gov (United States)

    Rhodes, N.

    2012-01-01

    In terms of technology, accounting education has not evolved to the extent required by industry and has created a gap in the knowledge and skills of accounting graduates. This article reports on how an educational research tool assisted in finding a place for information and communication technology in accounting education. This article also…

  9. Instructional Technology Practices in Developmental Education in Texas

    Science.gov (United States)

    Martirosyan, Nara M.; Kennon, J. Lindsey; Saxon, D. Patrick; Edmonson, Stacey L.; Skidmore, Susan T.

    2017-01-01

    The purpose of this study was to examine the current state of technology integration in developmental education in Texas higher education. Analyzing survey data from developmental education faculty members in 70 2- and 4-year colleges in Texas, researchers identified instructor-reported best instructional technology practices in developmental…

  10. Gateways to Positioning Information and Communication Technology in Accounting Education

    Science.gov (United States)

    Rhodes, N.

    2012-01-01

    In terms of technology, accounting education has not evolved to the extent required by industry and has created a gap in the knowledge and skills of accounting graduates. This article reports on how an educational research tool assisted in finding a place for information and communication technology in accounting education. This article also…

  11. Intended and Unintended Consequences of Educational Technology on Social Inequality

    Science.gov (United States)

    Tawfik, Andrew A.; Reeves, Todd D.; Stich, Amy

    2016-01-01

    While much has been written in the field of educational technology regarding educational excellence and efficiency, less attention has been paid to issues of equity. Along these lines, the field of educational technology often does not address key equity problems such as academic achievement and attainment gaps, and inequality of educational…

  12. Teaching Engineering Habits of Mind in Technology Education

    Science.gov (United States)

    Loveland, Thomas; Dunn, Derrek

    2014-01-01

    With a new emphasis on the inclusion of engineering content and practices in technology education, attention has focused on what engineering content should be taught and assessed in technology education. The National Academy of Engineering (2010) proposed three general principles for K-12 engineering education in "Standards for K-12…

  13. Revolutionizing Arts Education in K-12 Classrooms through Technological Integration

    Science.gov (United States)

    Lemon, Narelle, Ed.

    2015-01-01

    Educational technologies are becoming more commonplace across the K-12 curriculum. In particular, the use of innovative digital technology is expanding the potential of arts education, presenting new opportunities--and challenges--to both curricular design and pedagogical practice. "Revolutionizing Arts Education in K-12 Classrooms through…

  14. Instructional Technology Practices in Developmental Education in Texas

    Science.gov (United States)

    Martirosyan, Nara M.; Kennon, J. Lindsey; Saxon, D. Patrick; Edmonson, Stacey L.; Skidmore, Susan T.

    2017-01-01

    The purpose of this study was to examine the current state of technology integration in developmental education in Texas higher education. Analyzing survey data from developmental education faculty members in 70 2- and 4-year colleges in Texas, researchers identified instructor-reported best instructional technology practices in developmental…

  15. STEM and Technology Education: International State-of-the-Art

    Science.gov (United States)

    Ritz, John M.; Fan, Szu-Chun

    2015-01-01

    This paper reports the perceptions of 20 international technology education scholars on their country's involvement in science, technology, engineering, and mathematics (STEM) education. Survey research was used to obtain data. It was found that the concept of STEM education is being discussed differently by nations. Some consider STEM education…

  16. Engaging Students Regarding Special Needs in Technology and Engineering Education

    Science.gov (United States)

    White, David W.

    2015-01-01

    In 1984, James Buffer and Michael Scott produced the book "Special Needs Guide for Technology Education" (Buffer and Scott, 1984). This was a pivotal offering insofar as it set the stage for technology education educators, at the time, to think about and be provided with information regarding students with special needs in their…

  17. Pentexonomy: A Multi-Dimensional Taxonomy of Educational Online Technologies

    Science.gov (United States)

    Tuapawa, Kimberley; Sher, William; Gu, Ning

    2014-01-01

    Educational online technologies (EOTs) have revolutionised the delivery of online education, making a large contribution towards the global increase in demand for higher learning. Educationalists have striven to adapt through knowledge development and application of online tools, but making educationally sound choices about technology has proved…

  18. The Application of Augmented Reality Technology in Food Professional Education

    OpenAIRE

    Wei Shan

    2015-01-01

    This study presents the application of augmented reality technology in food professional education, combining with the current situation of applying virtual reality education, analyzes the problems existing in the virtual reality application in food professional education, puts forward some suggestions and finally prospects the developing trend of the technology of virtual reality now.

  19. Teaching Engineering Habits of Mind in Technology Education

    Science.gov (United States)

    Loveland, Thomas; Dunn, Derrek

    2014-01-01

    With a new emphasis on the inclusion of engineering content and practices in technology education, attention has focused on what engineering content should be taught and assessed in technology education. The National Academy of Engineering (2010) proposed three general principles for K-12 engineering education in "Standards for K-12…

  20. ICT and Web Technology Based Innovations in Education Sector

    Science.gov (United States)

    Sangeeta Namdev, Dhamdhere

    2012-01-01

    ICT made real magic and drastic changes in all service sectors along with higher education and library practices and services. The academic environment is changing from formal education to distance and online learning mode because of ICT. Web technology and mobile technology has made great impact on education sector. The role of Open Access,…

  1. Integrating Educational Technologies into the Culinary Classroom and Instructional Kitchen

    Science.gov (United States)

    Glass, Samuel

    2005-01-01

    The integration of educational technologies has and will continue to change the nature of education. From the advent of the printed word to the current use of computer assisted teaching and learning, the use of technology is an integral part of modern day realities and approaches to education. The purpose of this paper is to review some of the…

  2. Challenges and prospects of using information technologies in higher education

    Directory of Open Access Journals (Sweden)

    Frolov Alexander

    2016-01-01

    Full Text Available The considerable attention is paid to information technologies in system of the higher education now. Using the latest technology, software and hardware in the learning process allows achieving high outcomes quality of study. The article deals with modern teaching technologies, including distance learning technology, case-technology, which is already used in practice in higher education. There remain unresolved issues of effective use of new learning technologies, the quality of the used software and hardware. The perspective directions of development of informatization of education are defined.

  3. Educational Technology Research Journals: "Australasian Journal of Educational Technology," 2003-2012

    Science.gov (United States)

    Hadlock, Camey Andersen; Clegg, J. Aleta; Hickman, Garrett R.; Huyett, Sabrina Lynn; Jensen, Hyrum C.; West, Richard E.

    2014-01-01

    The authors analyzed all research articles in the "Australasian Journal of Educational Technology" from 2003 to 2012 to determine the types of research methodologies published, major contributing authors, and most frequently referenced keywords, abstract terms, and cited articles. During this decade, the majority of articles published…

  4. Educational Technology Research Journals: "Journal of Technology and Teacher Education," 2001-2010

    Science.gov (United States)

    Cottle, Karen; Juncker, Janeel; Aitken, Meghan; West, Richard E.

    2012-01-01

    In this study, the authors examined the "Journal of Technology and Teacher Education" to determine research trends from the past decade (2001-2010). Topical (via EBSCO subject term analysis), article types, and authorship trends were all analyzed. A few of "JTATE"'s seminal articles were also identified using "Publish or Perish." Findings were…

  5. Educational Technology Research Journals: "Journal of Technology and Teacher Education," 2001-2010

    Science.gov (United States)

    Cottle, Karen; Juncker, Janeel; Aitken, Meghan; West, Richard E.

    2012-01-01

    In this study, the authors examined the "Journal of Technology and Teacher Education" to determine research trends from the past decade (2001-2010). Topical (via EBSCO subject term analysis), article types, and authorship trends were all analyzed. A few of "JTATE"'s seminal articles were also identified using "Publish or Perish." Findings were…

  6. Educational Technology Research Journals: "International Journal of Technology and Design Education", 2005-2014

    Science.gov (United States)

    Christensen, James M.; Jones, Brian; Cooper, Jessica Rose; McAllister, Laura; Ware, Mark B.; West, Richard E.

    2015-01-01

    This study examines the trends of the "International Journal of Technology and Design Education" over the past decade (2005-2014). The researchers looked at trends in article topics, research methods, authorship, and article citations by analyzing keyword frequencies, performing word counts of article titles, classifying studies…

  7. The Employee Invention Report (EIR) | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    After making a unique, non-obvious, and useful discovery, NIH researchers must immediately contact their Laboratory or Branch Chief and inform him or her of a possible invention, and then consult with your NCI TTC Technology Transfer Manager about submitting an Employee Invention Report (EIR) Form. | [google6f4cd5334ac394ab.html

  8. Managing Information Technology in Academic Medical Centers: A "Multicultural" Experience.

    Science.gov (United States)

    Friedman, Charles P.; Corn, Milton; Krumrey, Arthur; Perry, David R.; Stevens, Ronald H.

    1998-01-01

    Examines how beliefs and concerns of academic medicine's diverse professional cultures affect management of information technology. Two scenarios, one dealing with standardization of desktop personal computers and the other with publication of syllabi on an institutional intranet, form the basis for an exercise in which four prototypical members…

  9. Water Reclamation Technology Development at Johnson Space Center

    Science.gov (United States)

    Callahan, Michael R.; Pickering, Karen

    2014-01-01

    Who We Are: A staff of approximately 14 BS, MS, and PhD-Level Engineers and Scientists with experience in Aerospace, Civil, Environmental, and Mechanical Engineering, Chemistry, Physical Science and Water Pollution Microbiology. Our Primary Objective: To develop the next generation water recovery system technologies that will support NASA's long duration missions beyond low-earth orbit.

  10. Mouse Xenograft Model for Mesothelioma | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    The National Cancer Institute is seeking parties interested in collaborative research to co-develop, evaluate, or commercialize a new mouse model for monoclonal antibodies and immunoconjugates that target malignant mesotheliomas. Applications of the technology include models for screening compounds as potential therapeutics for mesothelioma and for studying the pathology of mesothelioma.

  11. Co-Development Agreements | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    The National Cancer Institute's TTC uses three different co-development agreements to help industry and academia interact and partner with National Institutes of Health laboratories and scientists to support technology development activities. | [google6f4cd5334ac394ab.html

  12. Analysis of Alternatives (AoA) of Open Colllaboration and Research Capabilities Collaboratipon in Research and Engineering in Advanced Technology and Education and High-Performance Computing Innovation Center (HPCIC) on the LVOC.

    Energy Technology Data Exchange (ETDEWEB)

    Vrieling, P. Douglas [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2016-01-01

    The Livermore Valley Open Campus (LVOC), a joint initiative of the National Nuclear Security Administration (NNSA), Lawrence Livermore National Laboratory (LLNL), and Sandia National Laboratories (SNL), enhances the national security missions of NNSA by promoting greater collaboration between world-class scientists at the national security laboratories, and their partners in industry and academia. Strengthening the science, technology, and engineering (ST&E) base of our nation is one of the NNSA’s top goals. By conducting coordinated and collaborative programs, LVOC enhances both the NNSA and the broader national science and technology base, and helps to ensure the health of core capabilities at LLNL and SNL. These capabilities must remain strong to enable the laboratories to execute their primary mission for NNSA.

  13. The National Center of Evaluation for Higher Education (CENEVAL) and the External Evaluation of Mexican Education

    OpenAIRE

    Antonio Gago Huguet

    2000-01-01

    The National Center for the Evaluation of Higher Education (CENEVAL) has developed and set in motion a series of examinations which permits the evaluation of students when they complete their Bachelor’s level education. The General Examination for Bachelor’s Degree Graduates (EGEL) explores the essential knowledge and abilities required to begin professional practice. The claims in favor of applying the EGEL exam stand on its usefulness as an external evaluation instrument which permits s...

  14. The National Center of Evaluation for Higher Education (CENEVAL) and the External Evaluation of Mexican Education

    OpenAIRE

    Antonio Gago Huguet

    2000-01-01

    The National Center for the Evaluation of Higher Education (CENEVAL) has developed and set in motion a series of examinations which permits the evaluation of students when they complete their Bachelor’s level education. The General Examination for Bachelor’s Degree Graduates (EGEL) explores the essential knowledge and abilities required to begin professional practice. The claims in favor of applying the EGEL exam stand on its usefulness as an external evaluation instrument which permits s...

  15. National Fuel Cell Technology Evaluation Center (NFCTEC); (NREL) National Renewable Energy Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Kurtz, Jennifer; Sprik, Sam

    2014-03-11

    This presentation gives an overview of the National Fuel Cell Technology Evaluation Center (NFCTEC), describes how NFCTEC benefits the hydrogen and fuel cell community, and introduces a new fuel cell cost/price aggregation project.

  16. K-8 Teachers Using Mobile Technology as a Student Centered Instructional Tool

    Science.gov (United States)

    Durbin, Annette L.

    2013-01-01

    Mobile technology is increasing its presence in the educational environment. The public school district in this study has made great strides improving technology usage in schools with updated hardware, extensive district-wide infrastructure, a technology plan, and professional development. While the district has been successful in some areas, like…

  17. Chinese Telephone Number-Input Technology and Its Applications in a Customer Service Call Center

    Institute of Scientific and Technical Information of China (English)

    罗仁; 许晓革; 兰德品; 郭盛芳

    2002-01-01

    The Chinese intelligence input technology, its applications, and a customer serv ice call center system are developed. This technology can be used both in stan dard English telephone number-input keyboard and in Chinese telephone number- input keyboard .And authors develop sophisticated technologies including "Pinyi n" (the Chinese p honetic alphabet ) encoding technology of phonetic symbol code and formal symbo l code of Chinese character structure, phrase encoding technology, input technol ogy of whole sentence intelligence encoding and input technology of Chinese tele phone number encoding.

  18. 76 FR 39811 - International Center for Technology Assessment and the Center for Food Safety; Noxious Weed...

    Science.gov (United States)

    2011-07-07

    ... Assessment and the Center for Food Safety; Noxious Weed Status of Kentucky Bluegrass Genetically Engineered... engineered for tolerance to the herbicide glyphosate should not be listed as a Federal noxious weed and... noxious weeds. Our decision is based on our analysis of available scientific data, our weed risk...

  19. Enhancing STEM Education at Minority and Underrepresented Institutions through the Center for Applied Atmospheric Research and Education (CAARE)

    Science.gov (United States)

    Estes, M. G., Jr.; Griffin, R.; Al-Hamdan, M. Z.; Estes, S. M.; Crosson, W. L.; Chiao, S.

    2016-12-01

    Funding from The NASA MUREP Institutional Research Opportunity (MIRO) Program established the Center for Applied Atmospheric Research and Education (CAARE) to promote STEM literacy and enhance the capability to support NASA's Earth Science Mission Directorate. Through CAARE opportunities for STEM students at minority and underserved institutions were provided to enhance their undergraduate education with summer internship experiences at NASA Centers. The University of Alabama in Huntsville and the Universities Space Research Association scientists developed internship opportunities for students in applied atmospheric research at the National Space Science and Technology Center near the NASA Marshall Space Flight Center. Project opportunities focused on the use of NASA remotely sensed data, geospatial technologies and statistical analyses to evaluate problems related to urban heat islands and air quality. Students received training in the fundamentals of remote sensing and geospatial analysis to establish a foundation from which to pursue research projects. An approach was designed for the students to work initially in groups and then focus on individual projects in the latter part of the ten week internship. Working in groups benefitted the transition of the students from their respective academic institutions to the NASA work environment and provided the students with useful professional experience in a collegial environment. As knowledge was gained through the group project and areas of interest identified the students were able to explore further research questions of interest, evaluate research applications and determine the benefits of using NASA remotely sensed data. Students found that urban heat islands (UHI) did exist in both San Jose, CA and Huntsville, AL and methods to evaluate the magnitude of the UHI seasonally, diurnally and spatially were explored. Regression models of PM 2.5 based on remotely-sensed aerosol optical depth and meteorological data

  20. BEHAVIOUR OF STONE FACADES IN URBAN CENTERS INNOVATIVE BUILDING TECHNOLOGIES

    Directory of Open Access Journals (Sweden)

    Antonio Monaco

    1990-12-01

    Full Text Available An innovative technology using stone and granite as exterior sheeting of modern steel and concrete tall buildings is presented, Granites are chosen for the indubitable superior durability in any wheather and polluted atmosfere condition. But to guarantee durability stone sheets have to be mounted in such a way as to avoid any inner irregular stress. In particular stresses from deformation of the main structure must not be trasmitted to the exterior sheeting. Moreover an all-proof wheather barrier has to be incorporated in the factory builded sheeting panel. The innovative technology allowing use of granite and stone in facing of tall buildings is here presented along with two very important realisations: The North Tower in Genoa and the Canary Wharf in London.