WorldWideScience

Sample records for techno-economic analyses showed

  1. Techno-economic Study

    DEFF Research Database (Denmark)

    Sigurdsson, Halldór Matthias; Point, J.C.; Million, P.

    A techno-economic model for analysing and comparing broadband deployment strategies has been established. The resulting simulation model can compare Capital Expenditure (CAPEX) of dominating broadband technologies in different types of demographic areas. The study reveals the competitiveness...

  2. The Importance of using Discounted Cash Flow Methodology in Techno-economic Analyses of Energy and Chemical Production Plants

    Directory of Open Access Journals (Sweden)

    Zorka Novak Pintarič

    2017-06-01

    Full Text Available This paper demonstrates the correct application of discounted cash flow methodology forevaluating and designing energy and chemical production plants. Such processes usuallycorrespond to capital intensive long-term projects. Simple economic criteria, like theprofit or production cost are insufficient for this type of decision making because they donot take into account the time value of money and underestimate the profitabilities of theevaluated plants. This paper shows that some of those criteria based on the discountedcash flows establish suitable compromises between long-term cash flow generation andprofitability. As several alternative options are usually evaluated in parallel, it is shownhow to rank mutually exclusive alternatives properly and how to select the best optionfrom among them. Two large-scale case studies demonstrate that using discounted cashflow methodology can result in substantially different decisions than non-discountedcriteria, however, these decisions are affected by several input parameters.

  3. Report and analysis of techno-economic issues within SII Chain projects

    DEFF Research Database (Denmark)

    Takhokorpi, Markku; Falch, Morten; Skouby, Knud Erik

    1997-01-01

    This document reports the finings related to techno-economic issues within the SII-trial projects and analyses profitability of various proposed networked multimedia architectures.......This document reports the finings related to techno-economic issues within the SII-trial projects and analyses profitability of various proposed networked multimedia architectures....

  4. A techno-economic review of thermochemical cellulosic biofuel pathways.

    Science.gov (United States)

    Brown, Tristan R

    2015-02-01

    Recent advances in the thermochemical processing of biomass have resulted in efforts to commercialize several cellulosic biofuel pathways. Until commercial-scale production is achieved, however, techno-economic analysis is a useful methodology for quantifying the economic competitiveness of these pathways with petroleum, providing one indication of their long-term feasibility under the U.S. revised Renewable Fuel Standard. This review paper covers techno-economic analyses of thermochemical cellulosic biofuel pathways in the open literature, discusses and compares their results, and recommends the adoption of additional analytical methodologies that will increase the value of future pathway analyses. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Techno-Economics & Life Cycle Assessment (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, A.; Davis, R.

    2011-12-01

    This presentation provides an overview of the techno-economic analysis (TEA) and life cycle assessment (LCA) capabilities at the National Renewable Energy Laboratory (NREL) and describes the value of working with NREL on TEA and LCA.

  6. Process modelling and techno-economic analysis of natural gas combined cycle integrated with calcium looping

    Directory of Open Access Journals (Sweden)

    Erans María

    2016-01-01

    Full Text Available Calcium looping (CaL is promising for large-scale CO2 capture in the power generation and industrial sectors due to the cheap sorbent used and the relatively low energy penalties achieved with this process. Because of the high operating temperatures the heat utilisation is a major advantage of the process, since a significant amount of power can be generated from it. However, this increases its complexity and capital costs. Therefore, not only the energy efficiency performance is important for these cycles, but also the capital costs must be taken into account, i.e. techno-economic analyses are required in order to determine which parameters and configurations are optimal to enhance technology viability in different integration scenarios. In this study the integration scenarios of CaL cycles and natural gas combined cycles (NGCC are explored. The process models of the NGCC and CaL capture plant are developed to explore the most promising scenarios for NGCC-CaL integration with regards to efficiency penalties. Two scenarios are analysed in detail, and show that the system with heat recovery steam generator (HRSG before and after the capture plant exhibited better performance of 49.1% efficiency compared with that of 45.7% when only one HRSG is located after the capture plant. However, the techno-economic analyses showed that the more energy efficient case, with two HRSGs, implies relatively higher cost of electricity (COE, 44.1€/MWh, when compared to that of the reference plant system (33.1€/MWh. The predicted cost of CO2 avoided for the case with two HRSGS is 29.3 €/ton CO2.

  7. Comparative techno-economic assessment and LCA of selected integrated sugarcane-based biorefineries.

    Science.gov (United States)

    Gnansounou, Edgard; Vaskan, Pavel; Pachón, Elia Ruiz

    2015-11-01

    This work addresses the economic and environmental performance of integrated biorefineries based on sugarcane juice and residues. Four multiproduct scenarios were considered; two from sugar mills and the others from ethanol distilleries. They are integrated biorefineries producing first (1G) and second (2G) generation ethanol, sugar, molasses (for animal feed) and electricity in the context of Brazil. The scenarios were analysed and compared using techno-economic value-based approach and LCA methodology. The results show that the best economic configuration is provided by a scenario with largest ethanol production while the best environmental performance is presented by a scenario with full integration sugar - 1G2G ethanol production. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Techno-Economics of Residential Broadband Deployment

    DEFF Research Database (Denmark)

    Sigurdsson, Halldor Matthias

    2007-01-01

    as much profit as possible from their previous investments. However, the operators are not restricted by these considerations, and they will often choose a fiber-to-the home solution (FTTH, Fiber-to-the-Home), which will offer a far more substantial data capacity in the long run. The choice of the proper...... broadband deployment strategy is depending on a complexed set of parameters, and there is a demand for precise techno-economic cost models estimating financial feasibility. The existing cost models do not consider the dynamic developments in the market caused by competition. The PhD thesis has a profound...... analysis of the transmission requirements of future broadband services and the technical parameters with importance for the deployment strategy. The framework of the project is interdisciplinary and combines a solid technological knowledge about telecom networks and services with economic and telecom...

  9. Techno-economic feasibility of waste biorefinery

    DEFF Research Database (Denmark)

    Shahzad, Khurram; Narodoslawsky, Michael; Sagir, Muhammad

    2017-01-01

    The utilization of industrial waste streams as input materials for bio-mediated production processes constitutes a current R&D objective not only to reduce process costs at the input side but in parallel, to minimize hazardous environmental emissions. In this context, the EU-funded project ANIMPOL...... elaborated a process for the production of polyhydroxyalkanoate (PHA) biopolymers starting from diverse waste streams of the animal processing industry. This article provides a detailed economic analysis of PHA production from this waste biorefinery concept, encompassing the utilization of low......-quality biodiesel, offal material and meat and bone meal (MBM). Techno-economic analysis reveals that PHA production cost varies from 1.41 €/kg to 1.64 €/kg when considering offal on the one hand as waste, or, on the other hand, accounting its market price, while calculating with fixed costs for the co...

  10. Techno-economic analysis of biofuel production considering logistic configurations.

    Science.gov (United States)

    Li, Qi; Hu, Guiping

    2016-04-01

    In the study, a techno-economic analysis method considering logistic configurations is proposed. The economic feasibility of a low temperature biomass gasification pathway and an integrated pathway with fast pyrolysis and bio-oil gasification are evaluated and compared with the proposed method in Iowa. The results show that both pathways are profitable, biomass gasification pathway could achieve an Internal Rate of Return (IRR) of 10.00% by building a single biorefinery and integrated bio-oil gasification pathway could achieve an IRR of 3.32% by applying decentralized supply chain structure. A Monte-Carlo simulation considering interactions among parameters is also proposed and conducted, which indicates that both pathways are at high risk currently. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Stochastic techno-economic analysis of alcohol-to-jet fuel production

    OpenAIRE

    Yao, Guolin; Tyner, Wallace E.; Staples, Mark Douglas; Malina, Robert

    2016-01-01

    Background: Alcohol-to-jet (ATJ) is one of the technical feasible biofuel technologies. It produces jet fuel from sugary, starchy, and lignocellulosic biomass, such as sugarcane, corn grain, and switchgrass, via fermentation of sugars to ethanol or other alcohols. This study assesses the ATJ biofuel production pathway for these three biomass feedstocks, and advances existing techno-economic analyses of biofuels in three ways. First, we incorporate technical uncertainty for all by-products and...

  12. Techno-Economic Assessment of Four CO2 Storage Sites

    Directory of Open Access Journals (Sweden)

    Gruson J.-F.

    2015-04-01

    features that explain the high estimated costs. For the Italian site, the short duration of CO2 injection associated with a low injection rate makes the CO2 project comparable to a demo project. The Norwegian site is an offshore site located in a virgin area with high infrastructure costs and a combination of injection duration and injection rate that makes the derived costs very sensitive to the discount rate. Table 1. Summary of the cost range in Euro per tonne (discount rate at 8% €/t CO2 Equivalent storage cost at 8% DR Injectivity (Mt CO2/year Injection duration (year Base case Base case Base case UK 11.4 5 20 Denmark 3.2 1.5 40 Norway 26.6 1 40 Italy 29 1 10 The results for both UK and Danish sites confirm therefore the value range calculated by the European Technology Platform for Zero Emission Fossil Fuel Power Plants (ZEP. The main uncertainties in the costs are linked both to the choice of economic parameters (e.g. injected quantities, contingencies and to the technical choice of operations. This has been studied by sensitivity analyses: for example, if an injection rate is halved and the injection duration is doubled, the Equivalent Storage Cost (ESC increases by 23% (UK case at 8% DR. Introducing a water production well and water treatment facilities also increases the ESC by 23%, at least on an onshore site. Techno-economic assessments were basically carried out using an 8% discount rate. For projects of long lifetime such a rate severely discounts the late cash flow, especially after 40 years, so that a discount rate of around 4% more in logic of public investment. Compared to other studies, it has to be noted that the scope of the SiteChar analysis does not consider compression and pumping cost, nor transportation cost. This simplifies the techno-economic evaluation but it may not adequately reflect the specific conditions of the individual developments and, hence, distort the comparison between different cases. Lastly, techno-economic evaluation poses

  13. Parametric sensitivity analysis for techno-economic parameters in Indian power sector

    International Nuclear Information System (INIS)

    Mallah, Subhash; Bansal, N.K.

    2011-01-01

    Sensitivity analysis is a technique that evaluates the model response to changes in input assumptions. Due to uncertain prices of primary fuels in the world market, Government regulations for sustainability and various other technical parameters there is a need to analyze the techno-economic parameters which play an important role in policy formulations. This paper examines the variations in technical as well as economic parameters that can mostly affect the energy policy of India. MARKAL energy simulation model has been used to analyze the uncertainty in all techno-economic parameters. Various ranges of input parameters are adopted from previous studies. The results show that at lower discount rate coal is the least preferred technology and correspondingly carbon emission reduction. With increased gas and nuclear fuel prices they disappear from the allocations of energy mix.

  14. An updated comprehensive techno-economic analysis of algae biodiesel.

    Science.gov (United States)

    Nagarajan, Sanjay; Chou, Siaw Kiang; Cao, Shenyan; Wu, Chen; Zhou, Zhi

    2013-10-01

    Algae biodiesel is a promising but expensive alternative fuel to petro-diesel. To overcome cost barriers, detailed cost analyses are needed. A decade-old cost analysis by the U.S. National Renewable Energy Laboratory indicated that the costs of algae biodiesel were in the range of $0.53-0.85/L (2012 USD values). However, the cost of land and transesterification were just roughly estimated. In this study, an updated comprehensive techno-economic analysis was conducted with optimized processes and improved cost estimations. Latest process improvement, quotes from vendors, government databases, and other relevant data sources were used to calculate the updated algal biodiesel costs, and the final costs of biodiesel are in the range of $0.42-0.97/L. Additional improvements on cost-effective biodiesel production around the globe to cultivate algae was also recommended. Overall, the calculated costs seem promising, suggesting that a single step biodiesel production process is close to commercial reality. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Techno-economic feasibility analysis of solar photovoltaic power generation for buildings

    International Nuclear Information System (INIS)

    Zhang, Xiongwen; Li, Menyu; Ge, Yuanfei; Li, Guojun

    2016-01-01

    Highlights: • A model for optimal component sizes of hybrid energy system (HES) is presented. • The techno-economic feasibility of PV for building in context of China is studied. • The use of PV reduces COE by 46% for customers in the commercial building. • The use of PV increases COE by 9.55% for customers in the residential building. - Abstract: The Building Added PV (BAPV) plays an important role for developing green buildings. This work conducts a techno-economic feasibility study of BAPV for commercial and residential building hybrid energy systems (HES). A component sizing model based on the optimal power dispatch simulations with the objective of minimum cost of energy (COE) is used to determine the component sizes of HES. The techno-economic performances of two HES composed of BAPV and batteries for residential and commercial buildings are investigated. The results show that the use of BAPV in the commercial building HES can reduce the electricity bill for customers owing to the government subsidies on PV as well as due to the similar characteristics of the load profile as to the solar radiation profile. However, due to temporal dislocation between the load and solar radiation patterns, the use of PV in the residential building HES may significantly increase the initial capital cost and replacement cost of battery, resulting in the COE of the residential building HES with BAPV even higher than the residential electricity price. The techno-economic performances of battery (e.g., the lifetime and capital cost) have more effect on the COE of the residential building HES than that of PV.

  16. Techno-economic analysis and comparison of coal based olefins processes

    International Nuclear Information System (INIS)

    Xiang, Dong; Yang, Siyu; Qian, Yu

    2016-01-01

    Highlights: • The coal based Fischer–Tropsch-to-olefins (CFTO) process is proposed and analyzed. • The CFTO suffers from lower energy efficiency and serious CO 2 emissions. • Approaches for improving techno-economic performance of the CFTO are obtained. - Abstract: Traditional olefins production is heavily dependent on oil. In the background of the scarcity of oil and richness of coal in China, olefins production from coal has been attracting more attention of the chemical process industry. The first coal based methanol-to-olefins (CMTO) plant has been commercialized in China. For shorter process route and lower capital cost, Fischer–Fropsch has been put forward in the last few years. The coal based Fischer–Tropsch-to-olefins (CFTO) process is designed in this paper and then its techno-economic and environmental performance was detailed studied in this paper, in comparison with the CMTO. Results show that at the present olefins selectivity, the CFTO suffers from relative lower energy efficiency and higher CO 2 emissions. In economic aspect, the capital investment and product cost of the CFTO are roughly equivalent to that of the CMTO. Although the conversion route of the CFTO is shorter, its techno-economic performance is still inferior to that of the CMTO. It is also found that increase of olefins selectivity by cracking oil or decrease of CO 2 selectivity by improving catalyst could significantly improve the performance of the CFTO.

  17. Renewable hydrocarbon fuels from hydrothermal liquefaction: A techno-economic analysis

    DEFF Research Database (Denmark)

    Pedersen, Thomas Helmer; Hansen, Nick Høy; Pérez, Oscar Miralles

    2018-01-01

    This study demonstrates the economic feasibility of producing renewable transportation drop-in fuels from lignocellulosic biomass through hydrothermal liquefaction and upgrading. An Aspen Plus® process model is developed based on extensive experimental data to document a techno-economic assessment...... by thermal cracking and hydroprocessing. Results show that a minimum fuel selling price (MFSP) of 1.14 $ per liter of gasoline equivalent (LGE) can be obtained. In Scenario II, only wood is used as feedstock, which reduces the MFSP to 0.82 $/LGE. Scenario III is also based on a pure wood feedstock...

  18. Techno-economic analysis of key renewable energy technologies (PV, CSP and wind)

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez Guevara, H.; Tuebke, A. [Joint Research Centre JRC, Institute for Prospective Technological Studies IPTS, Sevilla (Spain); Folkerts, W. [Ecofys, Utrecht (Netherlands); Brizard, N. [Enerdata, Lyon (France); Lako, P. [Unit Policy Studies, Energy research Centre of the Netherlands ECN, Petten (Netherlands)

    2011-09-15

    This report shows the results of a techno-economic analysis of key renewable energy technologies: Solar Photovoltaics (PV), Concentrating Solar Power (CSP), and Wind Energy Technologies (wind). For this purpose, bottom-up company-data were collected, market supply and demand factors addressed, the regulatory framework examined, and EU industry compared against its main competitors. Personal interviews with 10 key industrialists from these sectors were undertaken to generate first-hand feedback from companies. The information generated was validated in a workshop with selected study participants, industrialists and policymakers.

  19. Bioethanol production from forestry residues: A comparative techno-economic analysis

    International Nuclear Information System (INIS)

    Frankó, Balázs; Galbe, Mats; Wallberg, Ola

    2016-01-01

    Highlights: • A proposed cellulosic ethanol biorefinery in Sweden was simulated with Aspen Plus. • Forestry residues with different bark contents were evaluated as raw materials. • The bark content negatively influenced the minimum ethanol selling price. • Sensitivity analyses were performed to assess the influence of raw material cost. - Abstract: A techno-economic analysis was conducted to assess the feasibility of using forestry residues with different bark contents for bioethanol production. A proposed cellulosic ethanol biorefinery in Sweden was simulated with Aspen Plus. The plant was assumed to convert different forestry assortments (sawdust and shavings, fuel logs, early thinnings, tops and branches, hog fuel and pulpwood) to ethanol, pellets, biogas and electricity. The intention was not to obtain absolute ethanol production costs for future facilities, but to assess and compare the future potential of utilizing different forestry residues for bioethanol production. The same plant design and operating conditions were assumed in all cases, and the effect of including bark on the whole conversion process, especially how it influenced the ethanol production cost, was studied. While the energy efficiency (not including district heating) obtained for the whole process was between 67 and 69% regardless of the raw material used, the ethanol production cost differed considerably; the minimum ethanol selling price ranging from 0.77 to 1.52 USD/L. Under the basic assumptions, all the forestry residues apart from sawdust and shavings exhibited a negative net present value at current market prices. The profitability decreased with increasing bark content of the raw material. Sensitivity analyses showed that, at current market prices, the utilization of bark-containing forestry residues will not provide significant cost improvement compared with pulpwood unless the conversion of cellulose and hemicellulose to monomeric sugars is improved.

  20. Techno-Economic Analysis of a Secondary Air Stripper Process

    Energy Technology Data Exchange (ETDEWEB)

    Heberle, J.R. [Electric Power Research Inst. (EPRI), Palo Alto, CA (United States); Nikolic, Heather [Center for Applied Energy Research, University of Kentucky, Lexington, KY (United States); Thompson, Jesse [Center for Applied Energy Research, University of Kentucky, Lexington, KY (United States); Liu, Kunlei [Center for Applied Energy Research, University of Kentucky, Lexington, KY (United States); Pinkerton, Lora L. [WorleyParsons, Reading, PA (United States); Brubaker, David [WorleyParsons, Reading, PA (United States); Simpson, James C. [WorleyParsons, Reading, PA (United States); Wu, Song [Mitsubishi Hitachi Power Systems America, Inc, Basking Ridge, NJ (United States); Bhown, Abhoyjit S. [Electric Power Research Inst. (EPRI), Palo Alto, CA (United States)

    2017-08-22

    We present results of an initial techno-economic assessment on a post-combustion CO2 capture process developed by the Center for Applied Energy Research (CAER) at the University of Kentucky using Mitsubishi Hitachi Power Systems’ H3-1 aqueous amine solvent. The analysis is based on data collected at a 0.7 MWe pilot unit combined with laboratory data and process simulations. The process adds a secondary air stripper to a conventional solvent process, which increases the cyclic loading of the solvent in two ways. First, air strips additional CO2 from the solvent downstream of the conventional steam-heated thermal stripper. This extra stripping of CO2 reduces the lean loading entering the absorber. Second, the CO2-enriched air is then sent to the boiler for use as secondary air. This recycling of CO2 results in a higher concentration of CO2 in the flue gas sent to the absorber, and hence a higher rich loading of the solvent exiting the absorber. A process model was incorporated into a full-scale supercritical pulverized coal power plant model to determine the plant performance and heat and mass balances. The performance and heat and mass balance data were used to size equipment and develop cost estimates for capital and operating costs. Lifecycle costs were considered through a levelized cost of electricity (LCOE) assessment based on the capital cost estimate and modeled performance. The results of the simulations show that the CAER process yields a regeneration energy of 3.12 GJ/t CO2, a $53.05/t CO2 capture cost, and LCOE of $174.59/MWh. This compares to the U.S. Department of Energy’s projected costs (Case 10) of regeneration energy of 3.58 GJ/t CO2 , a $61.31/t CO2 capture cost, and LCOE of $189.59/MWh. For H3-1, the CAER process results in a regeneration energy of 2.62 GJ/tCO2 with a stripper pressure of 5.2 bar, a capture cost of $46.93/t CO2, and an LCOE of $164.33/MWh.

  1. Identifying techno-economic criteria in PLC/BPL applications and commercialization

    Energy Technology Data Exchange (ETDEWEB)

    Brown, P.A. [White Box Associates Ltd., Lancaster (United Kingdom)

    2005-07-01

    Several techno-economic research and commercialization issues for power line communications (PLC) and broadband over power lines (BPL) were reviewed in this conference panel presentation by way of a number of personal computer based spreadsheet modelling examples. These examples illustrate the dependencies, interactivity, and trends in a variety of related techno-economic data. The presentation identified some criteria such as dimensioning of network, reach, repeaters, customers, bandwidth provisioning, and return on investment. An illustration of a theoretical and practical network infrastructure was provided. In addition, a typical medium voltage electricity distribution network in North America and a North American distribution substation were illustrated. Distribution components were shown in picture format. Other illustrations included low voltage transformers and secondary distribution, a typical underground service entrance, and a pad mount distribution transformer. Customer densities in Europe and Asia and North America per low voltage transformer were provided. The presentation then discussed network trade-offs versus system characteristics. A single PLC substation cell topography was provided and propagation models were presented. Field strength regression was also analysed. The presentation addressed the issue of multiple PLC substation cells, the incremental increase in noise floor, service penetration, bandwidth provisioning, and a review of BPL expenditures and profits. 7 tabs., 6 figs.

  2. A techno-economic approach to plant life management

    International Nuclear Information System (INIS)

    Morland, E.; Tomkins, B.; Irvine, N.M.

    1994-01-01

    This paper discusses the need for changing priorities in plant life management. Following a brief review of the major world-wide trends which are affecting plant life management, the fundamental nature of the plant life management process itself is considered. It is suggested that a consistent approach to the management of economic and safety risk can provide a mechanism for continuous improvement of the process. One such approach, Techno-Economic Ageing and Maintenance Management - TEAMM, is described. The tool required for this process are discussed and examples given of its application to ageing plant and evaluation of life extension. 2 figs

  3. Techno-economic analysis of supercritical carbon dioxide power blocks

    Science.gov (United States)

    Meybodi, Mehdi Aghaei; Beath, Andrew; Gwynn-Jones, Stephen; Veeraragavan, Anand; Gurgenci, Hal; Hooman, Kamel

    2017-06-01

    Developing highly efficient power blocks holds the key to enhancing the cost competitiveness of Concentration Solar Thermal (CST) technologies. Supercritical CO2 (sCO2) Brayton cycles have proved promising in providing equivalent or higher cycle efficiency than supercritical or superheated steam cycles at temperatures and scales relevant for Australian CST applications. In this study, a techno-economic methodology is developed using a stochastic approach to determine the ranges for the cost and performance of different components of central receiver power plants utilizing sCO2 power blocks that are necessary to meet the Australian Solar Thermal Initiative (ASTRI) final LCOE target of 12 c/kWh.

  4. Techno-economic feasibility analysis of solar thermal systems

    International Nuclear Information System (INIS)

    Kumar, S.; Tiwari, G.N.; Sinha, S.

    1993-01-01

    This communication introduces the basic concepts for techno-economic feasibility assessment of various solar thermal systems in a dynamic and market oriented economic environment. An analytical expression for calculating the payback period is derived by assuming a non-linear increase in maintenance cost and incorporating subsidy and salvage values. Further, a method is evolved to ascertain the lifetime of the system for an optimal return on investment mode, incorporating capital inflation during the lifetime and a non-linear increase in maintenance cost. The results for the payback period have been used, along with the lifetime, to optimize the cost of the system. (author)

  5. Techno-Economic, Sustainability & Environmental Impact Diagnosis (TESED) Framework

    DEFF Research Database (Denmark)

    Loureiro da Costa Lira Gargalo, Carina; Carvalho, Ana; Matos, Henrique A.

    2014-01-01

    Nowadays, companies are looking for new sustainable design alternatives that improve their original processes.To assesst he best designalternative, economic aspects have been the preferred indicators. However, environmental and social concerns should also be included in the decision process so...... that truly sustainable design alternatives can befound.This work proposes a framework,called ‘Techno-Economic Sustainability Environmental Impact Diagnosis’ (TESED) that allows users to assess chemical/biochemical processes in a product oriented analysis.TESED is asystematic and generic approach that can...

  6. Techno-Economic Analysis of Biogas Utilization as an Alternative Fuel

    Directory of Open Access Journals (Sweden)

    Merry Indahsari Devi

    2014-07-01

    Full Text Available This paper will discuss the feasibility and economic analysis of biogas energy as a supply for the diesel engine generator. The techno-economic analysis was performed by using three parameters which are Net Present Value (NPV, Internal Rate of Return (IRR, and Payback Period (PP as the feasibility indicators of the biogas power plant project. Calculation of substitution was obtained from the comparison between data of diesel engine using diesel fuel and dual-fuel with biogas. Economic calculations include the substitution percentage of diesel fuel by biogas for dual-fuel. Meanwhile, the calculation of savings was based on the ratio of energy content between diesel fuel and biogas. The eventual outcome is determined using economic comparison between the use of diesel fuel and dual-fuel mode. Feasibility shows that the pilot plant of 1 to 6 kWh using diesel fuel and dual-fuel are not feasible while techno-economic parameter analysis shows that NPV<0, IRR

  7. Load Management in Residential Buildings Considering Techno-Economic and Environmental Aspects

    Energy Technology Data Exchange (ETDEWEB)

    Abaravicius, Juozas

    2004-12-01

    Load problems in electricity markets occur both on the supply and demand side and can have technical, economic and even political causes. Commonly, such problems have been solved by expanding production and/or distribution capacity, importing electricity or by load management. Load management is a techno-economic measure for harmonizing the relations between supply and demand sides, optimizing power generation and transmission and increasing security of supply. Interest in load management differs depending on the perspective of the actors involved: from customer, utility, or producer to state policy maker. The problem of load demand and load management in residential sector is in this thesis approached from different perspectives, i.e. technical, economic, and environmental. The study does not go deep into detailed analyses of each perspective, but rather aims to establish and analyze the links between them. This trans-disciplinary approach is the key methodological moment used in the research work performed by the research group for load management in buildings at the Lund Institute of Technology. The key objective of this study is to analyze load demand variation and load management possibilities in residential sector, particularly detached and semi-detached houses, to experimentally test and analyze the conditions and potential of direct load management from customer and utility viewpoint. Techno-economic and environmental aspects are investigated. The study was performed in collaboration with one electric utility in Southern Sweden. Ten electric-heated houses were equipped with extra meters, enabling hourly load measurements for heating, hot water and total electricity use. Household heating and hot water systems were controlled by the utility using an existing remote reading and monitoring system. The residents noticed some of the control periods, although they didn't express any larger discomfort. The experiments proved that direct load management might

  8. Techno-economic analysis of biomethanol production via hybrid steam reforming of glycerol with natural gas

    NARCIS (Netherlands)

    Balegedde Ramachandran, P.; Oudenhoven, Stijn; Kersten, Sascha R.A.; van Rossum, G.; van der Ham, Aloysius G.J.

    2013-01-01

    The present article deals with the techno-economic assessment of the hybrid steam reforming (HSR) process of glycerol (obtained via transesterification) together with natural gas to produce biomethanol via the synthesis gas route. In this techno-economic assessment, a model is developed in the

  9. Approach to increasing techno-economic effects of ventilation in uranium mines

    International Nuclear Information System (INIS)

    Zhou Xinhuo

    1989-01-01

    The main factors affecting techno-economic effects of ventilation in uranium mines are discussed in this paper. Under the conditions of technical feasibility and economic rationality, the method of economic analysis for ventilation and radiation protection in uranium mines is proposed. The technically feasible and economically reasonable suggestions are presented for increasing the techno-economic effects of ventilation in uranium mines

  10. Concise Approach for Determining the Optimal Annual Capacity Shortage Percentage using Techno-Economic Feasibility Parameters of PV Power System

    Science.gov (United States)

    Alghoul, M. A.; Ali, Amer; Kannanaikal, F. V.; Amin, N.; Sopian, K.

    2017-11-01

    PV power systems have been commercially available and widely used for decades. The performance of a reliable PV system that fulfils the expectations requires correct input data and careful design. Inaccurate input data of the techno-economic feasibility would affect the size, cost aspects, stability and performance of PV power system on the long run. The annual capacity shortage is one of the main input data that should be selected with careful attention. The aim of this study is to reveal the effect of different annual capacity shortages on the techno-economic feasibility parameters and determining the optimal value for Baghdad city location using HOMER simulation tool. Six values of annual capacity shortage percentages (0%, 1%, 2%, 3%, 4%, and 5%), and wide daily load profile range (10 kWh - 100 kWh) are implemented. The optimal annual capacity shortage is the value that always "wins" when each techno-economic feasibility parameter is at its optimal/ reasonable criteria. The results showed that the optimal annual capacity shortage that reduces significantly the cost of PV power system while keeping the PV system with reasonable technical feasibility is 3%. This capacity shortage value can be carried as a reference value in future works for Baghdad city location. Using this approach of analysis at other locations, annual capacity shortage can be always offered as a reference value for those locations.

  11. Stochastic techno-economic analysis of alcohol-to-jet fuel production.

    Science.gov (United States)

    Yao, Guolin; Staples, Mark D; Malina, Robert; Tyner, Wallace E

    2017-01-01

    Alcohol-to-jet (ATJ) is one of the technical feasible biofuel technologies. It produces jet fuel from sugary, starchy, and lignocellulosic biomass, such as sugarcane, corn grain, and switchgrass, via fermentation of sugars to ethanol or other alcohols. This study assesses the ATJ biofuel production pathway for these three biomass feedstocks, and advances existing techno-economic analyses of biofuels in three ways. First, we incorporate technical uncertainty for all by-products and co-products though statistical linkages between conversion efficiencies and input and output levels. Second, future price uncertainty is based on case-by-case time-series estimation, and a local sensitivity analysis is conducted with respect to each uncertain variable. Third, breakeven price distributions are developed to communicate the inherent uncertainty in breakeven price. This research also considers uncertainties in utility input requirements, fuel and by-product outputs, as well as price uncertainties for all major inputs, products, and co-products. All analyses are done from the perspective of a private firm. The stochastic dominance results of net present values (NPV) and breakeven price distributions show that sugarcane is the lowest cost feedstock over the entire range of uncertainty with the least risks, followed by corn grain and switchgrass, with the mean breakeven jet fuel prices being $0.96/L ($3.65/gal), $1.01/L ($3.84/gal), and $1.38/L ($5.21/gal), respectively. The variation of revenues from by-products in corn grain pathway can significantly impact its profitability. Sensitivity analyses show that technical uncertainty significantly impacts breakeven price and NPV distributions. Technical uncertainty is critical in determining the economic performance of the ATJ fuel pathway. Technical uncertainty needs to be considered in future economic analyses. The variation of revenues from by-products plays a significant role in profitability. With the distribution of breakeven

  12. A techno-economic comparison of rural electrification based on solar home systems and PV microgrids

    International Nuclear Information System (INIS)

    Chaurey, A.; Kandpal, T.C.

    2010-01-01

    Solar home systems are typically used for providing basic electricity services to rural households that are not connected to electric grid. Off-grid PV power plants with their own distribution network (micro/minigrids) are also being considered for rural electrification. A techno-economic comparison of the two options to facilitate a choice between them is presented in this study on the basis of annualised life cycle costs (ALCC) for same type of loads and load patterns for varying number of households and varying length and costs of distribution network. The results highlight that microgrid is generally a more economic option for a village having a flat geographic terrain and more than 500 densely located households using 3-4 low power appliances (e.g. 9 W CFLs) for an average of 4 h daily. The study analyses the viability of the two options from the perspectives of the user, an energy service company and the society.

  13. Techno-economic analysis of a local district heating plant under fuel flexibility and performance

    DEFF Research Database (Denmark)

    Rudra, Souman; Rosendahl, Lasse

    2017-01-01

    Brovst is a small district in Denmark. This paper analyses the use of local renewable resources in the district heating systems of Brovst. The present use of fossil fuels in the Brovst district heating plant (DHP) represents an increasing environmental and climate-related load. Therefore......, an investigation has been made to reduce the use of fossil fuels for district heating system and make use of the local renewable resources (biogas, solar, and heat pump) for district heating purposes. In this article, the techno-economic assessment is achieved through the development of a suite of models......PRO, which has been used to analyze the integration of a large-scale energy system into the domestic district heating system. A model of the current work on the basis of information from the Brovst plant (using fossil fuel) is established and named as a reference option. Then, four other options...

  14. Techno-economic assessment and comparison of CO2 capture technologies for industrial processes: Preliminary results for the iron and steel sector

    NARCIS (Netherlands)

    Kuramochi, T.|info:eu-repo/dai/nl/304838683; Ramírez Ramírez, C.A.|info:eu-repo/dai/nl/284852414; Turkenburg, W.C.|info:eu-repo/dai/nl/073416355; Faaij, A.P.C.|info:eu-repo/dai/nl/10685903X

    2011-01-01

    This paper presents the methodology and the preliminary results of a techno-economic assessment of CCS implementation on the iron and steel sector. The results show that for the short-mid term, a CO2 avoidance cost of less than 50 €/tonne at a CO2 avoidance rate of around 50% are possible by

  15. Techno-economic analysis of bioenergy systems; Bioenergiasysteemien teknistaloudellinen analyysi. IEA Bioenergy Agreement Techno-economic Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Solantausta, Y.

    1995-12-31

    The objectives of the IEA Bioenergy Technoeconomic Analysis Activity are: To promote development of thermochemical biomass conversion methods by carrying out selected site specific feasibility studies in participating countries. Both agricultural and woody biomasses will be converted either into electricity or boiler fuels. To compare advanced technologies to commercial alternatives based on techno-economic basis to establish future development needs. To facilitate information exchange between participants on relevant basic process issues. Five countries (Finland, Canada, USA, Norway, Austria) are participating to the Activity. Initially two feasibility studies are planned for each country. Each study has three common elements: site specific, technical, and economic data. The site specific cases are described below in short. Products in the cases are electricity, heat and fuel oil. Total of two cases per country are planned

  16. Techno-economic assessment of catalytic gasification of biomass powders for methanol production.

    Science.gov (United States)

    Carvalho, Lara; Furusjö, Erik; Kirtania, Kawnish; Wetterlund, Elisabeth; Lundgren, Joakim; Anheden, Marie; Wolf, Jens

    2017-08-01

    This study evaluated the techno-economic performance and potential benefits of methanol production through catalytic gasification of forest residues and lignin. The results showed that while catalytic gasification enables increased cold gas efficiencies and methanol yields compared to non-catalytic gasification, the additional pre-treatment energy and loss of electricity production result in small or no system efficiency improvements. The resulting required methanol selling prices (90-130€/MWh) are comparable with production costs for other biofuels. It is concluded that catalytic gasification of forest residues can be an attractive option as it provides operational advantages at production costs comparable to non-catalytic gasification. The addition of lignin would require lignin costs below 25€/MWh to be economically beneficial. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Techno-economic analysis of a coal-fired CHP based combined heating system with gas-fired boilers for peak load compensation

    International Nuclear Information System (INIS)

    Wang Haichao; Jiao Wenling; Lahdelma, Risto; Zou Pinghua

    2011-01-01

    Combined heat and power (CHP) plants dominate the heating market in China. With the ongoing energy structure reformation and increasing environmental concerns, we propose gas-fired boilers to be deployed in underperforming heating substations of heating networks for peak load compensation, in order to improve both energy efficiency and environmental sustainability. However, due to the relatively high price of gas, techno-economic analysis is required for evaluating different combined heating scenarios, characterized by basic heat load ratio (β). Therefore, we employ the dynamic economics and annual cost method to develop a techno-economic model for computing the net heating cost of the system, considering the current state of the art of cogeneration systems in China. The net heating cost is defined as the investment costs and operations costs of the system subtracted by revenues from power generation. We demonstrate the model in a real-life combined heating system of Daqing, China. The results show that the minimum net heating cost can be realized at β=0.75 with a cost reduction of 16.8% compared to coal heating alone. Since fuel cost is the dominating factor, sensitivity analyses on coal and gas prices are discussed subsequently. - Highlights: ► Combined heating systems comply with the energy structure reformation in China. ► We consider the current state of the art of cogeneration systems in China. ► Combined heating systems can be economically more feasible and sustainable. ► The net heating cost of a combined heating system is more sensitive to coal price. ► The optimal basic heat load ratio is more easily influenced by gas price.

  18. Techno-economic and resource analysis of hydroprocessed renewable jet fuel.

    Science.gov (United States)

    Tao, Ling; Milbrandt, Anelia; Zhang, Yanan; Wang, Wei-Cheng

    2017-01-01

    Biomass-derived jet fuel is an alternative jet fuel (AJF) showing promise of reducing the dependence on fossil fuel and greenhouse gas emissions. Hydroprocessed esters and fatty acids (HEFA) concept is also known as one of the pathways for producing bio jet fuel. HEFA fuel was approved by the American Society for Testing and Materials in 2011, and can be blended up to 50% with conventional jet fuel. Since then, several HEFA economic and life-cycle assessments have been published in literature. However, there have been limited analyses on feedstock availability, composition, and their impact on hydrocarbon yield (particularly jet blendstock yield) and overall process economics. This study examines over 20 oil feedstocks, their geographic distribution and production levels, oil yield, prices, and chemical composition. The results of our compositional analysis indicate that most oils contain mainly C 16 and C 18 fatty acids except pennycress, yellow grease, and mustard, which contain higher values and thus would require hydrocracking to improve jet fuel production. Coconut oil has a large content of shorter carbon fatty acids, making it a good feedstock candidate for renewable gasoline instead of jet substitutes' production. Techno-economic analysis (TEA) was performed for five selected oil feedstocks-camelina, pennycress, jatropha, castor bean, and yellow grease-using the HEFA process concept. The resource analysis indicates that oil crops currently grown in the United States (namely soybean) have relatively low oil yield when compared to oil crops grown in other parts of the world, such as palm, coconut, and jatropha. Also, non-terrestrial oil sources, such as animal fats and greases, have relatively lower prices than terrestrial oil crops. The minimum jet fuel selling price for these five resources ranges between $3.8 and $11.0 per gallon. The results of our TEA and resource studies indicate the key cost drivers for a biorefinery converting oil to jet hydrocarbons

  19. A Techno-Economic Optimization of the Power Conversion System of a Very High Temperature Reactor

    International Nuclear Information System (INIS)

    Mansilla, Christine; Dumas, Michel; Werkoff, Francois

    2006-01-01

    Generation IV nuclear reactors will not be implemented unless they enable lower production costs than with the current systems. In such a context a techno-economic optimization method was developed and then applied to the power conversion system of a very high temperature reactor. Techno-economic optimization consists in minimizing an objective function that depends on technical variables and economic ones. The advantage of the techno-economic optimization is that it can take into account both investment costs and operating costs. A techno-economic model was implemented in a specific optimization software named Vizir, which is based on genetic algorithms. The calculation of the thermodynamic cycle is performed by a software named Tugaz. The results are the values of the decision variables that lead to a minimum cost, according to the model. The total production cost is evaluated. The influence of the various variables and constraints is also pointed out. (authors)

  20. Techno-Economic Analysis of Biofuel Production from Macroalgae (Seaweed

    Directory of Open Access Journals (Sweden)

    Mohsen Soleymani

    2017-11-01

    Full Text Available A techno-economic evaluation of bioenergy production from macroalgae was carried out in this study. Six different scenarios were examined for the production of different energy products and by-products. Seaweed was produced either via the longline method or the grid method. Final products of these scenarios were either ethanol from fermentation, or electricity from anaerobic digestion (AD. By-products were digestate for AD, and animal feed, or electricity and digestate, for the fermentation pathway. Bioenergy breakeven selling prices were investigated according to the cost components and the feedstock supply chain, while suggestions for potential optimization of costs were provided. The lowest production level of dry seaweed to meet 0.93 ($/L for ethanol fuel and 0.07 $/kW-h for electricity was found to be 0.68 and 3.7 million tonnes (dry basis, respectively. At the moment, biofuel production from seaweed has been determined not to be economically feasible, but achieving economic production may be possible by lowering production costs and increasing the area under cultivation.

  1. The techno-economic study of innovative reactor IRIS-350

    International Nuclear Information System (INIS)

    Sahala M-Lumbanraja; Rr-Arum P-Rijanti; Imam Bustori

    2005-01-01

    Disturbance of security of electricity supply in Indonesia, especially In Jawa-Madura-Bali grid system should be addressed wisely. The disturbance in electricity supply may be resulted from the rise of hydrocarbon fuel prices as well as only a few of power plants in operation. This problem may impose negative effect to the national socioeconomic system. NPP maybe come one of viable options to support the security of electricity supply, and therefore. Some studies regarding the feasibility of NPP operation in Indonesia should be done. This study on techno-economic of an Innovative reactor IRIS-350 is aimed to access technical and economical aspects of the reactor. IRIS-350(International Reactor Innovative and Secure)Is an advanced light water cooled modular reactor being developed by an International consortium led by Westinghouse. This reactor is based on simplified operation & maintenance, enhanced safety, easy to Inspect, short construction time, small Investment cost, competitive generating cost, and easily suited to the Infrastructures. IRIS main characteristic is integral reactor concept, being all the major reactor coolant system components located Inside the pressure vessel. IRIS-350 reactor is very interesting if operated in Indonesia because investment cost less than the large NPP type, but the national participation is very small. (author)

  2. Techno-Economic Analysis of Biofuel Production from Macroalgae (Seaweed).

    Science.gov (United States)

    Soleymani, Mohsen; Rosentrater, Kurt A

    2017-11-26

    A techno-economic evaluation of bioenergy production from macroalgae was carried out in this study. Six different scenarios were examined for the production of different energy products and by-products. Seaweed was produced either via the longline method or the grid method. Final products of these scenarios were either ethanol from fermentation, or electricity from anaerobic digestion (AD). By-products were digestate for AD, and animal feed, or electricity and digestate, for the fermentation pathway. Bioenergy breakeven selling prices were investigated according to the cost components and the feedstock supply chain, while suggestions for potential optimization of costs were provided. The lowest production level of dry seaweed to meet 0.93 ($/L) for ethanol fuel and 0.07 $/kW-h for electricity was found to be 0.68 and 3.7 million tonnes (dry basis), respectively. At the moment, biofuel production from seaweed has been determined not to be economically feasible, but achieving economic production may be possible by lowering production costs and increasing the area under cultivation.

  3. Techno-Economic Analysis of Biofuel Production from Macroalgae (Seaweed)

    Science.gov (United States)

    Soleymani, Mohsen

    2017-01-01

    A techno-economic evaluation of bioenergy production from macroalgae was carried out in this study. Six different scenarios were examined for the production of different energy products and by-products. Seaweed was produced either via the longline method or the grid method. Final products of these scenarios were either ethanol from fermentation, or electricity from anaerobic digestion (AD). By-products were digestate for AD, and animal feed, or electricity and digestate, for the fermentation pathway. Bioenergy breakeven selling prices were investigated according to the cost components and the feedstock supply chain, while suggestions for potential optimization of costs were provided. The lowest production level of dry seaweed to meet 0.93 ($/L) for ethanol fuel and 0.07 $/kW-h for electricity was found to be 0.68 and 3.7 million tonnes (dry basis), respectively. At the moment, biofuel production from seaweed has been determined not to be economically feasible, but achieving economic production may be possible by lowering production costs and increasing the area under cultivation. PMID:29186857

  4. Storing energy for cooling demand management in tropical climates: A techno-economic comparison between different energy storage technologies

    International Nuclear Information System (INIS)

    Comodi, Gabriele; Carducci, Francesco; Sze, Jia Yin; Balamurugan, Nagarajan; Romagnoli, Alessandro

    2017-01-01

    This paper addresses the role of energy storage in cooling applications. Cold energy storage technologies addressed are: Li-Ion batteries (Li-Ion EES), sensible heat thermal energy storage (SHTES); phase change material (PCM TES), compressed air energy storage (CAES) and liquid air energy storage (LAES). Batteries and CAES are electrical storage systems which run the cooling systems; SHTES and PCM TES are thermal storage systems which directly store cold energy; LAES is assessed as a hybrid storage system which provides both electricity (for cooling) and cold energy. A hybrid quantitative-qualitative comparison is presented. Quantitative comparison was investigated for different sizes of daily cooling energy demand and three different tariff scenarios. A techno-economic analysis was performed to show the suitability of the different storage systems at different scales. Three parameters were used (Pay-back period, Savings-per-energy-unit and levelized-cost-of-energy) to analyze and compare the different scenarios. The qualitative analysis was based on five comparison criteria (Complexity, Technology Readiness Level, Sustainability, Flexibility and Safety). Results showed the importance of weighing the pros and cons of each technology to select a suitable cold energy storage system. Techno-economic analysis highlighted the fundamental role of tariff scenario: a greater difference between peak and off-peak electricity tariff leads to a shorter payback period of each technology. - Highlights: • Techno-economic evaluation of energy storage solutions for cooling applications. • Comparison between five energy storage (EES, SHTES, PCM, CAES, LAES) is performed. • Qualitative and quantitative performance parameters were used for the analysis. • LAES/PCM can be valid alternatives to more established technologies EES, SHTES, CAES. • Tariffs, price arbitrage and investment cost play a key role in energy storage spread.

  5. A finite element model for estimating the techno-economic performance of the building-integrated photovoltaic blind

    International Nuclear Information System (INIS)

    Park, Hyo Seon; Koo, Choongwan; Hong, Taehoon; Oh, Jeongyoon; Jeong, Kwangbok

    2016-01-01

    Highlights: • A FEM was developed to estimate the techno-economic performance of the BIPB. • The mean absolute percentage error of the FEM 4-node BIPB was determined to be 4.54%. • In implementing the BIPB with the GC incl.SREC plan, it was superior to the others. • Users can understand the operating mechanism of the proposed model (FEM 4-node BIPB). • The proposed model can be extended to any other country in the global environment. - Abstract: This study aims to develop the four-node-based finite element model for estimating the techno-economic performance of the building-integrated photovoltaic blind (FEM 4-node BIPB), which can be used by decision-maker in the early design phase. In developing the proposed model, this study uses various research methodologies such as energy simulation, finite element method, life cycle cost analysis, policy analysis, and visual basic application. Compared to the simulation results, the mean absolute percentage error of the proposed model was determined to be 4.54%, showing that the prediction accuracy of the proposed model was found to be excellent. Furthermore, the practical application was conducted for the ‘S’ elementary school facility in South Korea, which allows potential readers to easily and clearly understand the operating mechanism of the proposed model as well as its usability and extendability. The proposed model can be used to conduct the detailed analysis of the techno-economic performance of the BIPB by the type of utilization plan and to determine the optimal strategy for maximizing the value of the investment. Furthermore, the proposed research framework can be extended to any other technology, industry, and country in the global environment.

  6. Twistact techno-economic analysis for wind turbine applications.

    Energy Technology Data Exchange (ETDEWEB)

    Naughton, Brian Thomas [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Koplow, Jeffrey P. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Vanness, Justin William [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Sethuraman, Latha [National Renewable Energy Lab. (NREL), Golden, CO (United States); Maness, Michael [National Renewable Energy Lab. (NREL), Golden, CO (United States); Dykes, Katherine [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-09-01

    This report is the final deliverable for a techno-economic analysis of the Sandia National Laboratories-developed Twistact rotary electrical conductor. The U.S. Department of Energy Wind Energy Technologies Office supported a team of researchers at Sandia National Laboratories and the National Renewable Energy Laboratory to evaluate the potential of the Twistact technology to serve as a viable replacement to rare-earth materials used in permanent-magnet direct-drive wind turbine generators. This report compares three detailed generator models, two as baseline technologies and a third incorporating the Twistact technology. These models are then used to calculate the levelized cost of energy (LCOE) for three comparable offshore wind plants using the three generator topologies. The National Renewable Energy Laboratorys techno-economic analysis indicates that Twistact technology can be used to design low-maintenance, brush-free, and wire-wound (instead of rare-earth-element (REE) permanent-magnet), direct-drive wind turbine generators without a significant change in LCOE and generation efficiency. Twistact technology acts as a hedge against sources of uncertain costs for direct-drive generators. On the one hand, for permanent-magnet direct-drive (PMDD) generators, the long-term price of REEs may increase due to increases in future demand, from electric vehicles and other technologies, whereas the supply remains limited and geographically concentrated. The potential higher prices in the future adversely affect the cost competitiveness of PMDD generators and may thwart industry investment in the development of the technology for wind turbine applications. Twistact technology can eliminate industry risk around the uncertainty of REE price and availability. Traditional wire-wound direct-drive generators experience reliability issues and higher maintenance costs because of the wear on the contact brushes necessary for field excitation. The brushes experience

  7. Techno-economic study of different alternatives for biodiesel production

    Energy Technology Data Exchange (ETDEWEB)

    Marchetti, J.M.; Miguel, V.U.; Errazu, A.F. [Planta Piloto de Ingenieria Quimica (UNS-CONICET), Camino Carrindanga Km. 7 (8000) Bahia Blanca (Argentina)

    2008-08-15

    Biodiesel has become an attractive diesel fuel substitute due to its environmental benefits since it can be made from renewable resource. However, the high costs surrounding biodiesel production remains the main problem in making it competitive in the fuel market either as a blend or as a neat fuel. More than 80% of the production cost is associated with the feedstock itself and consequently, efforts are focused on developing technologies capable of using lower-cost feedstocks, such as recycled cooking oils and wastes from animal or vegetable oil processing operations. The main issue with spent oils is the high level of free fatty acids found in the recycled materials. The conventional technology employs sodium methoxide as a homogeneous base catalyst for the transesterification reaction and illustrates the drawbacks in working with feedstocks that contain high levels of free fatty acids. On the other hand, homogeneous acidic catalysts are being used for exactly such feedstocks. Both acid and basic homogeneous catalyzed processes require downstream purification equipment to neutralize the catalyst and to purify the biodiesel as well as the glycerol. Recent studies have been conducted to employ heterogeneous catalysts, such acidic or basic solid resins, or immobilized lipases. These catalysts will allow the use of different feedstocks that will permit operation at lower investment costs and will require less downstream process equipment. A conceptual design of these alternative production plants has been done with a techno-economic analysis in order to compare these alternatives. A process simulator was employed to carry out the conceptual design and simulation of each technology. Using these models it was possible to analyze different scenarios and to evaluate productivity, raw material consumption, economic competitiveness, and environmental impacts of each process. (author)

  8. Techno-Economic Analysis of Bioethanol Production from Lignocellulosic Biomass in China: Dilute-Acid Pretreatment and Enzymatic Hydrolysis of Corn Stover

    OpenAIRE

    Zhao, Lili; Zhang, Xiliang; Xu, Jie; Ou, Xunmin; Chang, Shiyan; Wu, Maorong

    2015-01-01

    Lignocellulosic biomass-based ethanol is categorized as 2 nd generation bioethanol in the advanced biofuel portfolio. To make sound incentive policy proposals for the Chinese government and to develop guidance for research and development and industrialization of the technology, the paper reports careful techno-economic and sensitivity analyses performed to estimate the current competitiveness of the bioethanol and identify key components which have the greatest impact on its plant-gate price...

  9. Techno-Economic Evaluation of Solar Irrigation Plants Installed in Bangladesh

    Directory of Open Access Journals (Sweden)

    Najmul Hoque

    2016-02-01

    Full Text Available In the summer season, irrigation sector in Bangladesh suffers a lot due to the country wide electricity crisis. Solar pump offers a clean and simple alternative to the conventional fuel fired engine or grid electricity driven pump in this regard to resolve the issue. In this paper, the techno-economic analyses of solar irrigation plants installed in Bangladesh are evaluated.  It was observed that systems were running around 70% to 80% of the rated power which was quite acceptable. A 10 hp pump was able to pump 600 liter of water per minute which was also satisfactory to irrigate the land. Average operating time was found to be 8 hour/day. It was found that the overall efficiency of the systems were in between 11.39% to 16.52% whereas the typical average value of lit/Wp/year was 9200. On the other hand, the cost of irrigation to cultivate paddy in 0.161 hectares’ land for one season was 1,750 BDT by solar irrigation which was found to be lower than that of other available modes. This charge for grid electricity based irrigation was about 3,000 to 3500 BDT per 0.161 hectares’ and 2,300 to 2,600 BDT per 0.161 hectares’ for diesel engine based irrigation. According to the current financial scheme (15% equity investment, 35% credit support and remaining 50% from government through IDCOL the average value of payback period was 5.43 years, NPV in the range from 7 to 15% and IRR was 18%. By considering 100% equity investment, however, these projects were not economically attractive. The payback period for this case was about 18 years. Study also revealed that each solar irrigation plant reduces 42.8 kg of CO2 emission per day compare to diesel engine operated pump and 2566.24 kg/day compared to grid electricity operated pump. A comprehensive effort from the Government as well as from all the stakeholders is required for further expansion of solar irrigation plants in Bangladesh. Article History: Received Sept 05, 2015; Received in revised form

  10. Karachi Nuclear Power Plant (KANUPP): As case study for techno-economic assessment of nuclear power coupled with water desalination

    International Nuclear Information System (INIS)

    Khan, Salah Ud-Din; Khan, Shahab Ud-Din

    2017-01-01

    This paper is focused on the development of technical and economical prospective of Karachi Nuclear Power Plant (KANUPP) in terms of various desalination technologies. During the first phase, an initial research contingency to desalination technologies already running at KANUPP was discussed and evaluated for economic assessment. In the next phase, mathematical model was developed for calculating various parameters of desalination technologies. During this step, simulation model from IAEA (International Atomic Energy Agency) named as DEEP & DE-TOP were used for calculating various desalination techniques including Reverse osmosis (RO), Multi effect desalination (MED), Multi stage desalination (MSF) and also for coupled technologies i.e., RO+MED and R0+MSF. Different parameters including capital/water cost and thermal desalination parameters were calculated for coupled desalination technologies for KANUPP. Number of stages for coupled KANUPP desalination plant in terms of experimental and computational analysis were carried out. The calculation shows that water cost for each coupled desalination technologies have varying trends. The objective of the research was to developed technical and economical viable model for coupled nuclear reactor desalination system. The research gives an indication to developed experimentally viable KANUPP desalination plant. - Highlights: • Techno-economic analysis of KANUPP for various desalination technologies. • Mathematical model development for calculating various desalination techniques. • Calculation shows that water cost for each coupled technologies have varying trends. • Viable techno-economical model for coupled nuclear reactor desalination system. • Solution for experimentally viable coupled KANUPP desalination plant.

  11. Biomass torrefaction technology: Techno-economic status and future prospects

    International Nuclear Information System (INIS)

    Batidzirai, B.; Mignot, A.P.R.; Schakel, W.B.; Junginger, H.M.; Faaij, A.P.C.

    2013-01-01

    Torrefaction is a promising bioenergy pre-treatment technology, with potential to make a major contribution to the commodification of biomass. However, there is limited scientific knowledge on the techno-economic performance of torrefaction. This study therefore improves available knowledge on torrefaction by providing detailed insights into state of the art prospects of the commercial utilisation of torrefaction technology over time. Focussing on and based on the current status of the compact moving bed reactor, we identify process performance characteristics such as thermal efficiency and mass yield and discuss their determining factors through analysis of mass and energy balances. This study has shown that woody biomass can be torrefied with a thermal and mass efficiency of 94% and 48% respectively (on a dry ash free basis). For straw, the corresponding theoretical energetic efficiency is 96% and mass efficiency is 65%. In the long term, the technical performance of torrefaction processes is expected to improve and energy efficiencies are expected to be at least 97% as optimal torgas use and efficient heat transfer are realised. Short term production costs for woody biomass TOPs (torrefied pellets) are estimated to be between 3.3 and 4.8 US$/GJ LHV , falling to 2.1–5.1 US$/GJ LHV in the long term. At such cost levels, torrefied pellets would become competitive with traditional pellets. For full commercialisation, torrefaction reactors still require to be optimised. Of importance to torrefaction system performance is the achievement of consistent and homogeneous, fully hydrophobic and stable product, capable of utilising different feedstocks, at desired end-use energy densities. - Highlights: • Woody biomass torrefaction thermal efficiency is 94% and mass efficiency is 48% on a daf basis. • Straw theoretical torrefaction energetic efficiency is 96% and mass efficiency is 65%. • Current woody TOPs production costs are between 3.3 and 4.8 US$/GJ LHV , 50

  12. Techno-economic analysis of the coal-to-olefins process in comparison with the oil-to-olefins process

    International Nuclear Information System (INIS)

    Xiang, Dong; Qian, Yu; Man, Yi; Yang, Siyu

    2014-01-01

    Highlights: • Present the opportunities and challenges of coal-to-olefins (CTO) development. • Conduct a techno-economic analysis on CTO compared with oil-to-olefins (OTO). • Suggest approaches for improving energy efficiency and economic performance of CTO. • Analyze effects of plant scale, feedstock price, CO 2 tax on CTO and OTO. - Abstract: Olefins are one of the most important oil derivatives widely used in industry. To reduce the dependence of olefins industry on oil, China is increasing the production of olefins from alternative energy resources, especially from coal. This study is concerned with the opportunities and obstacles of coal-to-olefins development, and focuses on making an overall techno-economic analysis of a coal-to-olefins plant with the capacity of 0.7 Mt/a olefins. Comparison is made with a 1.5 Mt/a oil-to-olefins plant based on three criteria including energy efficiency, capital investment, and product cost. It was found that the coal-based olefins process show prominent advantage in product cost because of the low price of its feedstock. However, it suffers from the limitations of higher capital investment, lower energy efficiency, and higher emissions. The effects of production scale, raw material price, and carbon tax were varied for the two production routes, and thus the operational regions were found for the coal-to-olefins process to be competitive

  13. Techno-economic Assessment of Integrated Hydrothermal Liquefaction and Combined Heat and Power Production from Lignocellulose Residues

    Directory of Open Access Journals (Sweden)

    Mohamed Magdeldin

    2018-03-01

    Full Text Available Waste biomass as a mean for global carbon dioxide emissions mitigation remains under-utilized. This is mainly due to the low calorific value of virgin feedstock, characterized generally with high moisture content. Aqueous processing, namely hydrothermal liquefaction in subcritical water conditions, has been demonstrated experimentally to thermally densify solid lignocellulose into liquid fuels without the pre-requisite and energy consuming drying step. This study presents a techno-economic evaluation of an integrated hydrothermal liquefaction system with downstream combined heat and power production from forest residues. The utilization of the liquefaction by-products and waste heat from the elevated processing conditions, coupled with the chemical upgrading of the feedstock enables the poly-generation of biocrude, electricity and district heat. The plant thermal efficiency increases by 3.5 to 4.6% compared to the conventional direct combustion case. The economic assessment showed that the minimum selling price of biocrude, based on present co-products market prices, hinders commercialization and ranges between 138 EUR to 178 EUR per MWh. A sensitivity analysis and detailed discussion on the techno-economic assessment results are presented for the different process integration and market case scenarios.

  14. Techno economic analysis of a wind-photovoltaic-biomass hybrid renewable energy system for rural electrification: A case study of Kallar Kahar

    DEFF Research Database (Denmark)

    Ahmad, Jameel; Imran, Muhammad; Khalid, Abdullah

    2018-01-01

    system. The total load has been optimally shared among generated power through wind, photovoltaic and biomass resources and surplus power is supplied to the national grid in case of low local demand of the load. The results of techno-economic feasibility study show that hybrid power system can generate......This paper focuses on the techno-economic feasibility of a grid-tied hybrid microgrid system for local inhabitants of Kallar Kahar near Chakwal city of Punjab province in Pakistan and investigates the potential for electricity generation through hybrid wind, photovoltaic and biomass system...... more than 50 MW. The cost of energy based on peak load demand profiles are considered for both residential and commercial sectors. The cost of hybrid system for peak load of 73.6 MW is 180.2 million USD and levelized cost of energy is 0.05744 $/kWh....

  15. A techno-economic analysis of aquaculture business in Ogun State, Nigeria

    Science.gov (United States)

    Kareem, R. O.; Williams, S. B.

    2009-05-01

    Fish supplies 25% of the total protein source in developing countries. A techno-economic analysis was performed for developing a good business proposal for aquaculture loans to enhance aquaculture development in Nigeria. A case study of catfish Clarias gariepinus framing was conducted in Abeokuta North Local Government of Ogun State, Nigeria. The results show that the fixed cost is N18 338 per year, and the variable cost is N459 700 per year, accounting for the largest amount of the total; therefore, a profit of N43 289 per month can be made. Sensitivity analysis was performed to assess any risk(s) that associated with unfavorable changes in government policy with particular reference to monetary policy. Positive net present value shows that the investment in fish farm is economically feasible and the net investment ratio is 3.52. Also, the benefit-cost ratio is 2.17. The internal rate of return (IRR) is 21% showing that the enterprise is able to offset the interest being charged on the loan. It is therefore worthwhile to invest into fish farm business in the study area. The study suggests that to better sustain the local aquaculture business, the government should create a good conducive environment to foster development of the fish farming. Government intervention is urgently needed to solve problems such as in traditional land tenure, grant credit facilities and subsidies, to enhance the aquacultural development in the country.

  16. Techno-Economic Analysis of Biochemical Scenarios for Production of Cellulosic Ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Kazi, F. K.; Fortman, J.; Anex, R.; Kothandaraman, G.; Hsu, D.; Aden, A.; Dutta, A.

    2010-06-01

    A techno-economic analysis on the production of cellulosic ethanol by fermentation was conducted to understand the viability of liquid biofuel production processes within the next 5-8 years. Initially, 35 technologies were reviewed, then a two-step down selection was performed to choose scenarios to be evaluated in a more detailed economic analysis. The lignocellulosic ethanol process was selected because it is well studied and portions of the process have been tested at pilot scales. Seven process variations were selected and examined in detail. Process designs were constrained to public data published in 2007 or earlier, without projecting for future process improvements. Economic analysis was performed for an 'nth plant' (mature technology) to obtain total investment and product value (PV). Sensitivity analysis was performed on PV to assess the impact of variations in process and economic parameters. Results show that the modeled dilute acid pretreatment process without any downstream process variation had the lowest PV of $3.40/gal of ethanol ($5.15/gallon of gasoline equivalent) in 2007 dollars. Sensitivity analysis shows that PV is most sensitive to feedstock and enzyme costs.

  17. Techno-economic and life-cycle assessment of an attached growth algal biorefinery.

    Science.gov (United States)

    Barlow, Jay; Sims, Ronald C; Quinn, Jason C

    2016-11-01

    This study examined the sustainability of generating renewable diesel via hydrothermal liquefaction (HTL) of biomass from a rotating algal biofilm reactor. Pilot-scale growth studies and laboratory-scale HTL experiments were used to validate an engineering system model. The engineering system model served as the foundation to evaluate the economic feasibility and environmental impact of the system at full scale. Techno-economic results indicate that biomass feedstock costs dominated the minimum fuel selling price (MFSP), with a base case of $104.31per gallon. Life-cycle assessment results show a base-case global warming potential (GWP) of 80gCO2-eMJ(-1) and net energy ratio (NER) of 1.65 based on a well-to-product system boundary. Optimization of the system reduces MFSP, GWP and NER to $11.90Gal(-1), -44gCO2-eMJ(-1), and 0.33, respectively. The systems-level impacts of integrating algae cultivation with wastewater treatment were found to significantly reduce environmental impact. Sensitivity analysis showed that algal productivity most significantly affected fuel selling price, emphasizing the importance of optimizing biomass productivity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Techno-economic assessment of Levulinic Acid Plant from Sorghum Bicolor in Indonesia

    Science.gov (United States)

    Gozan, M.; Ryan, B.; Krisnandi, Y.

    2018-04-01

    The increasing need of energy is one of the main energy security issues in Indonesia. Hence, alternative energy is needed. Levulinic acid (LA) is among chemical platform used in the synthesis for avariety of high-value materials, such as fuels and commodity chemicals. It is predicted that global LA market demand to reach 3.1 tons in 2016. This study examines industrial processdesign and economic analysis for LA production in Indonesia.Sorghum bicolor was used as feed because of its high cellulose, low lignin contents and availability in Indonesia. The conventional economic problem from biomass based production was diminished sincethe valuable waste from pretreatment processwas sold to otherindustry.This plant was recommended to be built in an industrial estate area in Jawa Timur (East Java) province. Results from simulation using SuperPro Designer 9.0 was used for the techno-economic assessment.The plant assessment showed that the minimum production capacity was 7.7 ton per day to achieve an internal rate of return (IRR) and payback period (PBP) values of 19.61% and 3.93 years, respectively. Sensitivity analysis showed that product selling price was the most predominant factor for IRR, NPV, PBP and ROI. Raw material and water had low effects on those economic parameters. These values indicated that LA plant was feasible to be built in Indonesia.

  19. Techno-economic comparison of combined cycle gas turbines with advanced membrane configuration and MEA solvent at part load conditions

    NARCIS (Netherlands)

    Van Der Spek, Mijndert; Bonalumi, Davide; Manzolini, Giampaolo; Ramirez, Andrea; Faaij, André P.C.

    2018-01-01

    This work compares the part load techno-economic performance of CO2 capture from a CCGT using a membrane configuration with selective CO2 recycle and using MEA solvent, under the assumption of flexible power plant dispatch. This is the first time that the techno-economic performance of CO2 capture

  20. Techno-economic feasibility of food irradiation in Ghana

    International Nuclear Information System (INIS)

    Appiah, V.; Nketsia-Tabiri, J.; Bansa, D.; Montford, K.G.; Sakyi Dawson, E.; Alhassan, R.; Edwards, J.

    2002-01-01

    The major causes of spoilage in the post-harvest handling of yam were identified as poor harvest, storage and transportation conditions and physiological damage. The effect of gamma irradiation on yam and maize storage and their functionality in the Ghanaian food system were determined. Results indicated that all unirradiated yams sprouted by the 3rd month of storage. Gamma irradiation at a dose of 120-130 Gy effectively inhibited sprouting of yams for 6 months under ambient conditions. There was less rotting in yams stored on the barn compared to those stored on the ground and less rotting in the irradiated yam stored on the barn. Food products from irradiated yams were judged better in quality than those from unirradiated ones. Semi-commercial studies on radiation preservation of maize were conducted with the view to determining the effect of radiation treatment on the physico-chemical and functional properties as well as the microbiological quality of maize. The study also investigated techno-economic feasibility of radiation preservation of maize in Ghana and consumer attitudes towards foods such as 'Ga kenkey' and 'Fanti kenkey' prepared from irradiated maize. In the first study 127 bags of 50kg maize were used. Maize was repacked in 5-kg consumer packs made from 0.003mm thick polyethylene bags. Ten of the consumer packs were put into woven polypropylene sacks to make up 50kg bag of maize. Eighty-seven bags of maize were irradiated to a minimum of 2.6 and maximum of 5.6 kGy gamma radiation. Both the irradiated and the unirradiated maize were stored for six months in a commercial warehouse. Results indicated that the moisture content (7.2-7.8%), free fatty acid (<0.1%) and peroxide value (35-40 mEq/kg fat) of the maize were stable during storage. The initial mould count of 100-156 cfu/g decreased to 30-43 cfu/g; Aspergillus oryzae and Asp. tamari were identified. Sitophilus sp. was the predominant insect in the control but was replaced by Rhyzopertha sp. in the

  1. Techno-economic analysis of wood biomass boilers for the greenhouse industry

    International Nuclear Information System (INIS)

    Chau, J.; Sowlati, T.; Sokhansanj, S.; Preto, F.; Melin, S.; Bi, X.

    2009-01-01

    The objective of this study is to perform a techno-economic analysis on a typical wood pellet and wood residue boiler for generation of heat to an average-sized greenhouse in British Columbia. The variables analyzed included greenhouse size and structure, boiler efficiency, fuel types, and source of carbon dioxide (CO 2 ) for crop fertilization. The net present value (NPV) show that installing a wood pellet or a wood residue boiler to provide 40% of the annual heat demand is more economical than using a natural gas boiler to provide all the heat at a discount rate of 10%. For an assumed lifespan of 25 years, a wood pellet boiler system could generate NPV of C$259,311 without electrostatic precipitator (ESP) and C$74,695 with ESP, respectively. While, installing a wood residue boiler with or without an ESP could provide NPV of C$919,922 or C$1,104,538, respectively. Using a wood biomass boiler could also eliminate over 3000 tonne CO 2 equivalents of greenhouse gases annually. Wood biomass combustion generates more particulate matters than natural gas combustion. However, an advanced emission control system could significantly reduce particulate matters emission from wood biomass combustion which would bring the particulate emission to a relatively similar level as for natural gas

  2. Techno-Economic Investigation of Solar Powered Electric Auto-Rickshaw for a Sustainable Transport System

    Directory of Open Access Journals (Sweden)

    K. S. Reddy

    2017-05-01

    Full Text Available Technologies influencing alternative means of transportation have been expanding in recent years due to increasing urbanization and motorization. In this paper, a solar powered electric auto-rickshaw (SPEA is designed and developed for Indian conditions. The vehicle developed is comprehensively analyzed techno-economically for its viability in the Indian market. The performance analysis of SPEA results in an optimal charging rate of 2 kWh per day with an average solar irradiance of 325 W/m2 on a typical sunny day. The discharging characteristics are studied based on different loading conditions. The vehicle achieved a maximum speed of 21.69 km/h with battery discharge rate of 296 W at 90 kg load and also reached a maximum discharge rate of 540 W at 390 kg loading with a maximum speed of 12.11 km/h. Environmental analysis of SPEA indicated that the yearly CO2 emissions of 1777 kg, 1987 kg and 1938 kg from using Compressed Natural Gas, Liquefied Petroleum Gas and gasoline engines respectively can be mitigated using SPEA. The financial analysis of SPEA concluded that the investor’s payback duration is 24.44% less compared to a gasoline-run vehicle. Socio-Economic analysis of SPEA discussed its significant advantages and showed 15.74% and 0.85% increase in yearly income over gasoline driven and battery driven vehicles.

  3. Techno-economic and profitability analysis of food waste biorefineries at European level.

    Science.gov (United States)

    Cristóbal, Jorge; Caldeira, Carla; Corrado, Sara; Sala, Serenella

    2018-03-07

    Food waste represents a potential source to produce value-added materials replacing the use of virgin ones. However, the use of food waste as feedstock in biorefineries is still at an early stage of development and studies assessing its economic viability at large scale are lacking in the literature. This paper presents a techno-economic and profitability analysis of four food waste biorefineries that use wastes from tomato, potato, orange, and olive processing as feedstock. The study includes the assessment of potentially available quantities of those waste flows in Europe. Due to the low technology readiness level of this kind of biorefineries, a screening methodology to estimate the investment and manufacturing costs as well as two profitability ratios (the return on investment and the payback time) was adopted. Results show that not all the waste feedstocks have the same potential. The most profitable options are those related to implementing fewer plants, namely concentrating the production and capitalising on economies of scale while being at risk of increasing externalities, e.g. due to logistics of the feedstocks. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Techno-economical Analysis of High Level Waste Storage and Disposal Options

    International Nuclear Information System (INIS)

    Bace, M.; Trontl, K.; Vrankic, K.

    2002-01-01

    Global warming and instability of gas and oil prices are redefining the role of nuclear energy in electrical energy production. A production of high-level radioactive waste (HLW), during the nuclear power plant operation and a danger of high level waste mitigation to the environment are considered by the public as a main obstacle of accepting the nuclear option. As economical and technical aspects of the back end of fuel cycle will affect the nuclear energy acceptance the techno-economical analysis of different methods for high level waste storage and disposal has to be performed. The aim of this paper is to present technical and economical characteristics of different HLW storage and disposal technologies. The final choice of a particular HLW management method is closely connected to the selection of a fuel cycle type: open or closed. Wet and dry temporary storage has been analyzed including different types of spent fuel pool capacity increase methods, different pool location (at reactor site and away from reactor site) as well as casks and vault system of dry storage. Since deep geological deposition is the only disposal method with a realistic potential, we focused our attention on that disposal technology. Special attention has been given to the new idea of international and regional disposal location. The analysis showed that a coexistence of different storage methods and deep geological deposition is expected in the future, regardless of the fuel cycle type. (author)

  5. Techno-Economic Comparison of Onshore and Offshore Underground Coal Gasification End-Product Competitiveness

    Directory of Open Access Journals (Sweden)

    Natalie Christine Nakaten

    2017-10-01

    Full Text Available Underground Coal Gasification (UCG enables the utilisation of coal reserves that are currently not economically exploitable due to complex geological boundary conditions. Hereby, UCG produces a high-calorific synthesis gas that can be used for generation of electricity, fuels and chemical feedstock. The present study aims to identify economically competitive, site-specific end-use options for onshore and offshore produced UCG synthesis gas, taking into account the capture and storage (CCS and/or utilisation (CCU of resulting CO 2 . Modelling results show that boundary conditions that favour electricity, methanol and ammonia production expose low costs for air separation, high synthesis gas calorific values and H 2 /N 2 shares as well as low CO 2 portions of max. 10%. Hereby, a gasification agent ratio of more than 30% oxygen by volume is not favourable from economic and environmental viewpoints. Compared to the costs of an offshore platform with its technical equipment, offshore drilling costs are negligible. Thus, uncertainties related to parameters influenced by drilling costs are also negligible. In summary, techno-economic process modelling results reveal that scenarios with high CO 2 emissions are the most cost-intensive ones, offshore UCG-CCS/CCU costs are twice as high as the onshore ones, and yet all investigated scenarios except from offshore ammonia production are competitive on the European market.

  6. SPECIFICATION AND TECHNO ECONOMIC ANALYSIS FOR PLANT WITH RENEWABLE ENERGY SOURCES

    Directory of Open Access Journals (Sweden)

    Ljiljana Stošić Mihajlović

    2015-01-01

    Full Text Available The topic of this seminar paper are techno economic specification and analysis of systems with renewable energy sources. Necessary technological innovations in the manufacturing of renewable energy and economic control to produce enough energy and that this has a negative impact on the ecology and economy.

  7. Educating Silicon Valley: Corporate Education Reform and the Reproduction of the Techno-Economic Revolution

    Science.gov (United States)

    Williamson, Ben

    2017-01-01

    Silicon Valley's high-tech companies, tech-philanthropists, startups, and culture of venture capital are "the centre of a techno-economic revolution" that is "now spreading outwards across the world, with major societal effects and implications" (Duff 2016, 5). In this article, Ben Williamson traces and maps how education is…

  8. Techno-economic assessment of the production of bio-based chemicals from glutamic acid

    NARCIS (Netherlands)

    Lammens, T.M.; Gangarapu, S.; Franssen, M.C.R.; Scott, E.L.; Sanders, J.P.M.

    2012-01-01

    In this review, possible process steps for the production of bio-based industrial chemicals from glutamic acid are described, including a techno-economic assessment of all processes. The products under investigation were those that were shown to be synthesized from glutamic acid on lab-scale, namely

  9. Utilization of eucalyptus for bioelectricity production in brazil via fast pyrolysis: a techno-economic analysis

    Science.gov (United States)

    In this study, a process model of a 2000 metric ton per day (MTPD) eucalyptus Tail Gas Reactive Pyrolysis (TGRP) and electricity generation plant was developed and simulated in SimSci Pro/II software for the purpose of evaluating its techno-economic viability in Brazil. Two scenarios were compared b...

  10. Pyrolysis of forest residues: an approach to techno-economics for bio-fuel production

    Science.gov (United States)

    The techno-economics for producing liquid fuels from Maine forest residues were determined from a combination of: (1) laboratory experiments at USDA-ARS’s Eastern Regional Research Center using hog fuel (a secondary woody residue produced from mill byproducts such as sawdust, bark and shavings) as a...

  11. Unravelling uncertainty and variability in early stage techno-economic assessments of carbon capture technologies

    NARCIS (Netherlands)

    van der Spek, Mijndert; Sanchez Fernandez, Eva; Eldrup, Nils Henrik; Skagestad, Ragnhild; Ramirez, Andrea; Faaij, André

    2017-01-01

    This paper addresses the uncertainty and variability in techno-economic studies of carbon capture technologies, based on a detailed comparison of the results of different studies on postcombustion CO2 capture with advanced amines, and on an in-depth uncertainty analysis using a combination of

  12. Techno-Economic Analysis of Bioethanol Production from Lignocellulosic Biomass in China: Dilute-Acid Pretreatment and Enzymatic Hydrolysis of Corn Stover

    Directory of Open Access Journals (Sweden)

    Lili Zhao

    2015-05-01

    Full Text Available Lignocellulosic biomass-based ethanol is categorized as 2nd generation bioethanol in the advanced biofuel portfolio. To make sound incentive policy proposals for the Chinese government and to develop guidance for research and development and industrialization of the technology, the paper reports careful techno-economic and sensitivity analyses performed to estimate the current competitiveness of the bioethanol and identify key components which have the greatest impact on its plant-gate price (PGP. Two models were developed for the research, including the Bioethanol PGP Assessment Model (BPAM and the Feedstock Cost Estimation Model (FCEM. Results show that the PGP of the bioethanol ranges $4.68–$6.05/gal (9,550–12,356 yuan/t. The key components that contribute most to bioethanol PGP include the conversion rate of cellulose to glucose, the ratio of five-carbon sugars converted to ethanol, feedstock cost, and enzyme loading, etc. Lignocellulosic ethanol is currently unable to compete with fossil gasoline, therefore incentive policies are necessary to promote its development. It is suggested that the consumption tax be exempted, the value added tax (VAT be refunded upon collection, and feed-in tariff for excess electricity (byproduct be implemented to facilitate the industrialization of the technology. A minimum direct subsidy of $1.20/gal EtOH (2,500 yuan/t EtOH is also proposed for consideration.

  13. Modelling and sequential simulation of multi-tubular metallic membrane and techno-economics of a hydrogen production process employing thin-layer membrane reactor

    KAUST Repository

    Shafiee, Alireza

    2016-09-24

    A theoretical model for multi-tubular palladium-based membrane is proposed in this paper and validated against experimental data for two different sized membrane modules that operate at high temperatures. The model is used in a sequential simulation format to describe and analyse pure hydrogen and hydrogen binary mixture separations, and then extended to simulate an industrial scale membrane unit. This model is used as a sub-routine within an ASPEN Plus model to simulate a membrane reactor in a steam reforming hydrogen production plant. A techno-economic analysis is then conducted using the validated model for a plant producing 300 TPD of hydrogen. The plant utilises a thin (2.5 μm) defect-free and selective layer (Pd75Ag25 alloy) membrane reactor. The economic sensitivity analysis results show usefulness in finding the optimum operating condition that achieves minimum hydrogen production cost at break-even point. A hydrogen production cost of 1.98 $/kg is estimated while the cost of the thin-layer selective membrane is found to constitute 29% of total process capital cost. These results indicate the competiveness of this thin-layer membrane process against conventional methods of hydrogen production. © 2016 Hydrogen Energy Publications LLC

  14. Techno-Economic Analysis of Solar Absorption Cooling for Commercial buildings in India

    Directory of Open Access Journals (Sweden)

    Muthalagappan Narayanan

    2017-11-01

    Full Text Available Space cooling and heating always tends to be a major part of the primary energy usage. By using fossil fuel electricity for these purposes, the situation becomes even worse. One of the major electricity consumptions in India is air conditioning. There are a lot of different technologies and few researchers have come up with a debate between solar absorption cooling and PV electric cooling. In a previous paper, PV electric cooling was studied and now as a continuation, this paper focuses on solar thermal absorption cooling systems and their application in commercial/office buildings in India. A typical Indian commercial building is taken for the simulation in TRNSYS. Through this simulation, the feasibility and operational strategy of the system is analysed, after which parametric study and economic analysis of the system is done. When compared with the expenses for a traditional air conditioner unit, this solar absorption cooling will take 13.6 years to pay back and will take 15.5 years to payback the price of itself and there after all the extra money are savings or profit.  Although the place chosen for this study is one of the typical tropical place in India, this payback might vary with different places, climate and the cooling demand. Article History: Received May 12th 2017; Received in revised form August 15th 2017; Accepted 1st Sept 2017; Available online How to Cite This Article: Narayanan, M. (2017. Techno-Economic Analysis of Solar Absorption Cooling for Commercial Buildings in India.  International Journal of Renewable Energy Development, 6(3, 253-262. https://doi.org/10.14710/ijred.6.3.253-262

  15. The potential of geological storage of CO2 in Austria: a techno-economic assessment

    Science.gov (United States)

    Brüstle, Anna Katharina; Welkenhuysen, Kris; Bottig, Magdalena; Piessens, Kris; Ramirez, Andrea; Swenner, Rudy

    2014-05-01

    An impressive two-third or about 40GWh/y of electricity in Austria is produced from renewable energy sources, in particular hydro energy. For the remaining part the country depends on fossil fuels, which together with iron & steel production form the most CO2 intensive industries in Austria with a combined emission of just over 20Mt/y. According to the IEA, CO2 capture and geological storage (CCS) can reduce the global CO2 emission until 2050 by 17%. A correct assessment of CCS needs to start with the storage potential. Prior to this study, only general estimates of the theoretical capacity of Austrian reservoirs were available, thus, up until now, the realistic potential for CCS technology has not been assessed. Both for policy and industry, an assessment of the matched capacity is required, which is the capacity that actually will be used in CCS projects. This hurdle can be taken by applying a recently developed methodology (Welkenhuysen et al., 2013). This policy support system (PSS) consists of two parts, PSS Explorer and PSS III simulator. In brief, the methodology is based on expert judgements of potential reservoirs. These assessments can provide the best available data, including the expert's experience and possibly confidential data, without disclosing specific data. The geo-techno-economic calculation scheme PSS Explorer uses the expert input to calculate for each individual reservoir an assessment of the practical capacity (as probability density functions), in function of an acceptable price for storage. This practical capacity can then be used by the techno-economic PSS III simulator to perform advanced source-sink matching until 2050 and thus provide the matched reservoir capacity. The analysed reservoirs are 7 active or abandoned oil and gas reservoirs in Austria. The simulation of the electricity and iron & steel sector of Austria resulted in the estimation of the geological storage potential, taking into account geological, technological and

  16. Assessing current and future techno-economic potential of concentrated solar power and photovoltaic electricity generation

    International Nuclear Information System (INIS)

    Köberle, Alexandre C.; Gernaat, David E.H.J.; Vuuren, Detlef P. van

    2015-01-01

    CSP and PV technologies represent energy sources with large potentials. We present cost-supply curves for both technologies using a consistent methodology for 26 regions, based on geoexplicit information on solar radiation, land cover type and slope, exploring individual potential and interdependencies. For present day, both CSP and PV supply curves start at $0.18/kWh, in North Africa, South America, and Australia. Applying accepted learning rates to official capacity targets, we project prices to drop to $0.11/kWh for both technologies by 2050. In an alternative “fast-learning” scenario, generation costs drop to $0.06–0.07/kWh for CSP, and $0.09/kWh for PV. Competition between them for best areas is explored along with sensitivities of their techno-economic potentials to land use restrictions and land cover type. CSP was found to be more competitive in desert sites with highest direct solar radiation. PV was a clear winner in humid tropical regions, and temperate northern hemisphere. Elsewhere, no clear winner emerged, highlighting the importance of competition in assessments of potentials. Our results show there is ample potential globally for both technologies even accounting for land use restrictions, but stronger support for RD&D and higher investments are needed to make CSP and PV cost-competitive with established power technologies by 2050. - Highlights: • A consistent assessment of global potential for CSP and PV, with cost-supply curves for 26 regions. • Combined global CSP and PV potential below US$0.35/kWh estimated at 135,128 TWh per year. • Competition for same land-based solar resource implies that potentials cannot be added. • Attractive areas are MENA, Northern Chile, Australia, China and Southwestern USA. • Costs are projected to go down over time, reaching US$0.06–0.11/KWh for attractive sites in 2050

  17. Shedding light on solar technologies-A techno-economic assessment and its policy implications

    International Nuclear Information System (INIS)

    Peters, Michael; Schmidt, Tobias S.; Wiederkehr, David; Schneider, Malte

    2011-01-01

    Solar power technologies will have to become a major pillar in the world's future energy system to combat climate change and resource depletion. However, it is unclear which solar technology is and will prove most viable. Therefore, a comprehensive comparative assessment of solar technologies along the key quantitative and qualitative competitiveness criteria is needed. Based on a literature review and detailed techno-economic modeling for 2010 and 2020 in five locations, we provide such an assessment for the three currently leading large-scale solar technologies. We show that today these technologies cannot yet compete with conventional forms of power generation but approach competitiveness around 2020 in favorable locations. Furthermore, from a global perspective we find that none of the solar technologies emerges as a clear winner and that cost of storing energy differs by technology and can change the order of competitiveness in some instances. Importantly, the competitiveness of the different technologies varies considerably across locations due to differences in, e.g., solar resource and discount rates. Based on this analysis, we discuss policy implications with regard to fostering the diffusion of solar technologies while increasing the efficiency of policy support through an adequate geographical allocation of solar technologies. - Highlights: → We conduct a comprehensive comparative assessment of solar technologies (CSP/PV). → While solar technologies approach competitiveness in 2020, no clear winner emerges. → Solar resource and discount rate heavily impact competitiveness of solar technologies. → Adequate geographical allocation of solar technologies increases policy efficiency. → Focus on key cost down levers and strategic co-benefits of solar technologies needed.

  18. A techno-economic analysis of cost savings for retrofitting industrial aerial coolers with variable frequency drives

    International Nuclear Information System (INIS)

    Miller, Patrick; Olateju, Babatunde; Kumar, Amit

    2012-01-01

    Highlights: ► Techno-economic models were developed to assess the retrofitting of aerial coolers. ► The IRR for retrofitting with VFDs exceeds 10% for motor sizes above 20 hp. ► The IRR reaches a maximum of 220% for a cooler with fifty, 250 hp motors. ► The simple payback becomes less than 1 year for motors larger than 120 hp. ► Ambient temperature and location affects the profitability of VFD investment. - Abstract: A techno-economic model was created in order to develop curves that show the typical annual energy savings, rate of return, and payback for retrofitting aerial coolers with variable frequency drives (VFDs) for up to 50 motors, motor sizes from 4 to 186 kW (5–250 hp), and varying climate conditions. The cost savings due to installing a VFD depends on the reduction in energy used, as well as the reduction in power demand, the capital cost of the VFD, installation cost of the VFD, change in operating cost, and cost of electricity. The geographic locations examined in this report were Fort McMurray, Calgary, Vancouver, and Thunder Bay. This study found that the IRR increases rapidly with motor size, becomes greater than 10% at a motor size of approximately 15 kW, and may be as high as 220% (for the case of fifty, 186 kW motors). The IRR is sensitive to the number of fan motors retrofitted with VFDs, however the sensitivity rapidly declines as the number of motors is increased beyond five. The simple payback period becomes less than 1 year and nearly independent of number of motors and motor size for motors larger than 90 kW. Ambient temperature and geographic location affect the profitability of the investment, although the IRR only changes by approximately 4%.

  19. Conceptual design and techno-economic evaluation of efficient oil shale refinery processes ingratiated with oil and gas products upgradation

    International Nuclear Information System (INIS)

    Yang, Qingchun; Qian, Yu; Zhou, Huairong; Yang, Siyu

    2016-01-01

    Highlights: • Three integrated oil shale refinery processes are proposed. • Techno-economic performance of three proposed processes is conducted and compared. • Competitiveness of the three proposed processes is investigated at different scenarios. • A development direction for oil shale refinery industry is suggested. - Abstract: Compared with the petrochemical industry, oil shale refinery industry is still relatively backward and has many shortcomings, such as poor quality of shale oil, inefficient utilization of retorting gas, and the unsatisfactory economic performance. In the situation of the low oil price, many oil shale refinery plants are forced to stop or cut production. Thus, oil shale industry is facing a severe problem. How to relieve monetary loss or turn it into profits? This paper proposes three integrated oil shale refinery processes: an integrated with hydrogen production from retorting gas, an integrated with hydrogenation of shale oil, and an integrated with hydrogen production and oil hydrogenation. The techno-economic performance of the three different processes is conducted and compared with that of a conventional oil shale process. Results show the exergy destruction ratio of the oil shale process integrated with hydrogen production from retorting gas is the least, 41.6%, followed by the oil shale process integrated with hydrogen production and oil hydrogenation, 45.9%. Furthermore, these two proposed processes have the best economic performance. Especially they can turn losses of the conventional oil shale process into profits at the situation of low oil price. The oil shale process integrated with hydrogen production from retorting gas is recommended to the oil shale plants which use the oil shale with oil content lower than 12.9%, while the plants using oil shale with oil content higher than 12.9% are better to select the oil shale process integrated with hydrogen production and oil hydrogenation.

  20. Microbial community-based polyhydroxyalkanoates (PHAs) production from wastewater : Techno-economic analysis and ex-ante environmental assessment

    NARCIS (Netherlands)

    Fernandez Dacosta, Cora; Posada, John A.; Kleerebezem, Robbert; Cuellar, Maria C.; Ramirez, Andrea

    2015-01-01

    This work investigates the potential for polyhydroxybutyrate (PHB) production from wastewater, from a techno-economic and an environmental perspective, examining scale-up opportunities and bottlenecks prior to commercialisation. Conceptual process design, economic, environmental impacts and

  1. Techno-economic Assessment of Biomass Pellets for Power Generation in India

    OpenAIRE

    Purohit, P.; Chaturvedi, V.

    2016-01-01

    Biomass pellet production has increased considerably in recent years, mainly due to the demand created by policies and bioenergy-use targets in the European Union (EU). Global biomass pellet production was 24.1 million tonne (Mt) in 2014. In this study, a preliminary attempt has been made to assess the techno-economic feasibility of biomass pellets for electricity generation in India produced from biomass surplus available from agriculture and forestry/wasteland. Biomass surplus availability ...

  2. Techno-economic study on conversion of SAFARI-1 to LEU silicide fuel

    International Nuclear Information System (INIS)

    Ball, G.; Malherbe, F.J.

    2004-01-01

    This paper marks the conclusion of the techno-economic study into the conversion of SAFARI-1 reactor in South Africa to LEU silicide fuel. Several different fuel types were studied and their characteristics compared to the current HEU fuel. The technical feasibility of operating SAFARI-1 with the different fuels as well as the overall economic impact of the fuels is discussed and conclusions drawn.(author)

  3. Techno-economic analysis of biofuel production via bio-oil zeolite upgrading: An evaluation of two catalyst regeneration systems

    OpenAIRE

    Shemfe, Mobolaji; Gu, Sai; Fidalgo, B

    2017-01-01

    Biofuels have been identified as a mid-term greenhouse gas (GHG) emissions abatement solution for decarbonising the transport sector. This study examines the techno-economic analysis of biofuel production via biomass fast pyrolysis and subsequent bio-oil upgrading via zeolite cracking. The aim of this study is to compare the techno-economic feasibility of two conceptual catalyst regeneration configurations for the zeolite cracking process: (i) a two-stage regenerator operating sequentially in...

  4. Towards low carbon business park energy systems: Classification of techno-economic energy models

    International Nuclear Information System (INIS)

    Timmerman, Jonas; Vandevelde, Lieven; Van Eetvelde, Greet

    2014-01-01

    To mitigate climate destabilisation, human-induced greenhouse gas emissions urgently need to be curbed. A major share of these emissions originates from the industry and energy sectors. Hence, a low carbon shift in industrial and business park energy systems is called for. Low carbon business parks minimise energy-related carbon dioxide emissions by maximal exploitation of local renewable energy production, enhanced energy efficiency, and inter-firm heat exchange, combined in a collective energy system. The holistic approach of techno-economic energy models facilitates the design of such systems, while yielding an optimal trade-off between energetic, economic and environmental performances. However, no models custom-tailored for industrial park energy systems are detected in literature. In this paper, existing energy model classifications are scanned for adequate model characteristics and accordingly, a confined number of models are selected and described. Subsequently, a practical typology is proposed, existing of energy system evolution, optimisation, simulation, accounting and integration models, and key model features are compared. Finally, important features for a business park energy model are identified. - Highlights: • A holistic perspective on (low carbon) business park energy systems is introduced. • A new categorisation of techno-economic energy models is proposed. • Model characteristics are described per model category. • Essential model features for business park energy system modelling are identified. • A strategy towards a techno-economic energy model for business parks is proposed

  5. Techno-economic Comparison of Geological Disposal of Carbon Dioxide and Radioactive Waste

    International Nuclear Information System (INIS)

    2014-12-01

    The reduction of greenhouse gas emissions is an important prerequisite for sustainable development. The energy sector is a major contributor to such emissions, which are mostly from fossil fuel fired power plants acting as point sources of carbon dioxide (CO 2 ) discharges. For the last twenty years, the new technology of carbon capture and storage, which mitigates CO 2 emissions, has been considered in many IAEA Member States. This technology involves the removal of CO 2 from the combustion process and its disposal in geological formations, such as depleted oil or gas fields, saline aquifers or unmineable coal seams. A large scale energy supply option with low CO 2 emissions is nuclear power. The high level radioactive waste produced during nuclear power plant operation and decommissioning as well as in nuclear fuel reprocessing is also planned to be disposed of in deep geological formations. To further research and development in these areas and to compare and learn from the planning, development and implementation of these two underground waste disposal concepts, the IAEA launched the coordinated research project (CRP) Techno-economic Comparison of Ultimate Disposal Facilities for Carbon Dioxide and Radioactive Waste. The project started in 2008 and was completed in 2012. The project established an international network of nine institutions from nine IAEA Member States, representing both developing and developed countries. The CRP results compared the geological disposal facilities in the following areas: geology, environmental impacts, risk and safety assessment, monitoring, cost estimation, public perception, policy, regulation and institutions. This publication documents the outcome of the CRP and is structured into thematic chapters, covering areas analysed. Each chapter was prepared under the guidance of a lead author and involved co-authors from different Member States with diverse expertise in related areas. Participants drew on the results of earlier

  6. Techno-economic evaluation of biodiesel production from waste cooking oil--a case study of Hong Kong.

    Science.gov (United States)

    Karmee, Sanjib Kumar; Patria, Raffel Dharma; Lin, Carol Sze Ki

    2015-02-18

    Fossil fuel shortage is a major challenge worldwide. Therefore, research is currently underway to investigate potential renewable energy sources. Biodiesel is one of the major renewable energy sources that can be obtained from oils and fats by transesterification. However, biodiesel obtained from vegetable oils as feedstock is expensive. Thus, an alternative and inexpensive feedstock such as waste cooking oil (WCO) can be used as feedstock for biodiesel production. In this project, techno-economic analyses were performed on the biodiesel production in Hong Kong using WCO as a feedstock. Three different catalysts such as acid, base, and lipase were evaluated for the biodiesel production from WCO. These economic analyses were then compared to determine the most cost-effective method for the biodiesel production. The internal rate of return (IRR) sensitivity analyses on the WCO price and biodiesel price variation are performed. Acid was found to be the most cost-effective catalyst for the biodiesel production; whereas, lipase was the most expensive catalyst for biodiesel production. In the IRR sensitivity analyses, the acid catalyst can also acquire acceptable IRR despite the variation of the WCO and biodiesel prices.

  7. Techno-Economic Evaluation of Biodiesel Production from Waste Cooking Oil—A Case Study of Hong Kong

    Science.gov (United States)

    Karmee, Sanjib Kumar; Patria, Raffel Dharma; Lin, Carol Sze Ki

    2015-01-01

    Fossil fuel shortage is a major challenge worldwide. Therefore, research is currently underway to investigate potential renewable energy sources. Biodiesel is one of the major renewable energy sources that can be obtained from oils and fats by transesterification. However, biodiesel obtained from vegetable oils as feedstock is expensive. Thus, an alternative and inexpensive feedstock such as waste cooking oil (WCO) can be used as feedstock for biodiesel production. In this project, techno-economic analyses were performed on the biodiesel production in Hong Kong using WCO as a feedstock. Three different catalysts such as acid, base, and lipase were evaluated for the biodiesel production from WCO. These economic analyses were then compared to determine the most cost-effective method for the biodiesel production. The internal rate of return (IRR) sensitivity analyses on the WCO price and biodiesel price variation are performed. Acid was found to be the most cost-effective catalyst for the biodiesel production; whereas, lipase was the most expensive catalyst for biodiesel production. In the IRR sensitivity analyses, the acid catalyst can also acquire acceptable IRR despite the variation of the WCO and biodiesel prices. PMID:25809602

  8. Techno-Economic Evaluation of Biodiesel Production from Waste Cooking Oil—A Case Study of Hong Kong

    Directory of Open Access Journals (Sweden)

    Sanjib Kumar Karmee

    2015-02-01

    Full Text Available Fossil fuel shortage is a major challenge worldwide. Therefore, research is currently underway to investigate potential renewable energy sources. Biodiesel is one of the major renewable energy sources that can be obtained from oils and fats by transesterification. However, biodiesel obtained from vegetable oils as feedstock is expensive. Thus, an alternative and inexpensive feedstock such as waste cooking oil (WCO can be used as feedstock for biodiesel production. In this project, techno-economic analyses were performed on the biodiesel production in Hong Kong using WCO as a feedstock. Three different catalysts such as acid, base, and lipase were evaluated for the biodiesel production from WCO. These economic analyses were then compared to determine the most cost-effective method for the biodiesel production. The internal rate of return (IRR sensitivity analyses on the WCO price and biodiesel price variation are performed. Acid was found to be the most cost-effective catalyst for the biodiesel production; whereas, lipase was the most expensive catalyst for biodiesel production. In the IRR sensitivity analyses, the acid catalyst can also acquire acceptable IRR despite the variation of the WCO and biodiesel prices.

  9. Techno-economic analysis of decentralized biomass processing depots.

    Science.gov (United States)

    Lamers, Patrick; Roni, Mohammad S; Tumuluru, Jaya S; Jacobson, Jacob J; Cafferty, Kara G; Hansen, Jason K; Kenney, Kevin; Teymouri, Farzaneh; Bals, Bryan

    2015-10-01

    Decentralized biomass processing facilities, known as biomass depots, may be necessary to achieve feedstock cost, quantity, and quality required to grow the future U.S. bioeconomy. In this paper, we assess three distinct depot configurations for technical difference and economic performance. The depot designs were chosen to compare and contrast a suite of capabilities that a depot could perform ranging from conventional pelleting to sophisticated pretreatment technologies. Our economic analyses indicate that depot processing costs are likely to range from ∼US$30 to US$63 per dry metric tonne (Mg), depending upon the specific technology implemented and the energy consumption for processing equipment such as grinders and dryers. We conclude that the benefits of integrating depots into the overall biomass feedstock supply chain will outweigh depot processing costs and that incorporation of this technology should be aggressively pursued. Copyright © 2015. Published by Elsevier Ltd.

  10. Techno-economic optimization for the design of solar chimney power plants

    International Nuclear Information System (INIS)

    Ali, Babkir

    2017-01-01

    Highlights: • Chimney height and collector area of different designs were optimized. • Simple actual and minimum payback periods were developed. • Comparative assessment was conducted for different designs configuration. • Effects of uncertain parameters on the payback period were studied. - Abstract: This paper aims to propose a methodology for optimization of solar chimney power plants taking into account the techno-economic parameters. The indicator used for optimization is the comparison between the actual achieved simple payback period for the design and the minimum possible (optimum) simple payback period as a reference. An optimization model was executed for different twelve designs in the range 5–200 MW to cover reinforced concrete chimney, sloped collector, and floating chimney. The height of the chimney was optimized and the associated collector area was calculated accordingly. Relationships between payback periods, electricity price, and the peak power capacity of each power plant were developed. The resulted payback periods for the floating chimney power plants were the shortest compared to the other studied designs. For a solar chimney power plant with 100 MW at electricity price 0.10 USD/kWh, the simple payback period for the reference case was 4.29 years for floating chimney design compared to 23.47 and 16.88 years for reinforced concrete chimney and sloped collector design, respectively. After design optimization for 100 MW power plant of each of reinforced concrete, sloped collector, and floating chimney, a save of 19.63, 2.22, and 2.24 million USD, respectively from the initial cost of the reference case is achieved. Sensitivity analysis was conducted in this study to evaluate the impacts of varied running cost, solar radiation, and electricity price on the payback periods of solar chimney power plant. Floating chimney design is still performing after applying the highest ratio of annual running cost to the annual revenue. The

  11. Techno-economic performance of marine capture fisheries

    National Research Council Canada - National Science Library

    Tietze, Uwe

    2001-01-01

    .... Most types of vessels, i.e. 92 out of the 108 types of vessels covered by the study, or 85 percent, showed a net profit after deducting the cost of depreciation and prices paid to producers as compared to the previous study period...

  12. Techno-economic packaging of palm wine preservation and bottling ...

    African Journals Online (AJOL)

    Projected cash flow is positive in year one i.e. N5,329,960.00 while the projected balance sheet shows that the net worth of the project is N19,904,010.00 in year one and N41,887,370.00 in ... Internal Rate of Return (IRR) is above 45%. The Net Present Value (NPV) at 25% is estimated at N3, 143,100.00. The Debt Service ...

  13. Techno-Economic Analysis of Biofuels Production Based on Gasification

    Energy Technology Data Exchange (ETDEWEB)

    Swanson, R. M.; Platon, A.; Satrio, J. A.; Brown, R. C.; Hsu, D. D.

    2010-11-01

    This study compares capital and production costs of two biomass-to-liquid production plants based on gasification. The first biorefinery scenario is an oxygen-fed, low-temperature (870?C), non-slagging, fluidized bed gasifier. The second scenario is an oxygen-fed, high-temperature (1,300?C), slagging, entrained flow gasifier. Both are followed by catalytic Fischer-Tropsch synthesis and hydroprocessing to naphtha-range (gasoline blend stock) and distillate-range (diesel blend stock) liquid fractions. Process modeling software (Aspen Plus) is utilized to organize the mass and energy streams and cost estimation software is used to generate equipment costs. Economic analysis is performed to estimate the capital investment and operating costs. Results show that the total capital investment required for nth plant scenarios is $610 million and $500 million for high-temperature and low-temperature scenarios, respectively. Product value (PV) for the high-temperature and low-temperature scenarios is estimated to be $4.30 and $4.80 per gallon of gasoline equivalent (GGE), respectively, based on a feedstock cost of $75 per dry short ton. Sensitivity analysis is also performed on process and economic parameters. This analysis shows that total capital investment and feedstock cost are among the most influential parameters affecting the PV.

  14. Methanol production via pressurized entrained flow biomass gasification – Techno-economic comparison of integrated vs. stand-alone production

    International Nuclear Information System (INIS)

    Andersson, Jim; Lundgren, Joakim; Marklund, Magnus

    2014-01-01

    The main objective with this work was to investigate techno-economically the opportunity for integrated gasification-based biomass-to-methanol production in an existing chemical pulp and paper mill. Three different system configurations using the pressurized entrained flow biomass gasification (PEBG) technology were studied, one stand-alone plant, one where the bark boiler in the mill was replaced by a PEBG unit and one with a co-integration of a black liquor gasifier operated in parallel with a PEBG unit. The cases were analysed in terms of overall energy efficiency (calculated as electricity-equivalents) and process economics. The economics was assessed under the current as well as possible future energy market conditions. An economic policy support was found to be necessary to make the methanol production competitive under all market scenarios. In a future energy market, integrating a PEBG unit to replace the bark boiler was the most beneficial case from an economic point of view. In this case the methanol production cost was reduced in the range of 11–18 Euro per MWh compared to the stand-alone case. The overall plant efficiency increased approximately 7%-units compared to the original operation of the mill and the non-integrated stand-alone case. In the case with co-integration of the two parallel gasifiers, an equal increase of the system efficiency was achieved, but the economic benefit was not as apparent. Under similar conditions as the current market and when methanol was sold to replace fossil gasoline, co-integration of the two parallel gasifiers was the best alternative based on received IRR. - Highlights: • Techno-economic results regarding integration of methanol synthesis processes in a pulp and paper mill are presented. • The overall energy efficiency increases in integrated methanol production systems compared to stand-alone production units. • The economics of the integrated system improves compared to stand-alone alternatives. • Tax

  15. Effect of Different Solar Radiation Data Sources on the Variation of Techno-Economic Feasibility of PV Power System

    Science.gov (United States)

    Alghoul, M. A.; Ali, Amer; Kannanaikal, F. V.; Amin, N.; Aljaafar, A. A.; Kadhim, Mohammed; Sopian, K.

    2017-11-01

    The aim of this study is to evaluate the variation in techno-economic feasibility of PV power system under different data sources of solar radiation. HOMER simulation tool is used to predict the techno-economic feasibility parameters of PV power system in Baghdad city, Iraq located at (33.3128° N, 44.3615° E) as a case study. Four data sources of solar radiation, different annual capacity shortages percentage (0, 2.5, 5, and 7.5), and wide range of daily load profile (10-100 kWh/day) are implemented. The analyzed parameters of the techno-economic feasibility are COE (/kWh), PV array power capacity (kW), PV electrical production (kWh/year), No. of batteries and battery lifetime (year). The main results of the study revealed the followings: (1) solar radiation from different data sources caused observed to significant variation in the values of the techno-economic feasibility parameters; therefore, careful attention must be paid to ensure the use of an accurate solar input data; (2) Average solar radiation from different data sources can be recommended as a reasonable input data; (3) it is observed that as the size and of PV power system increases, the effect of different data sources of solar radiation increases and causes significant variation in the values of the techno-economic feasibility parameters.

  16. Techno-economic analysis for the evaluation of three UCG synthesis gas end use approaches

    Science.gov (United States)

    Nakaten, Natalie; Kempka, Thomas; Burchart-Korol, Dorota; Krawczyk, Piotr; Kapusta, Krzysztof; Stańczyk, Krzysztof

    2016-04-01

    Underground coal gasification (UCG) enables the utilization of coal reserves that are economically not exploitable because of complex geological boundary conditions. In the present study we investigate UCG as a potential economic approach for conversion of deep-seated coals into a synthesis gas and its application within three different utilization options. Related to geological boundary conditions and the chosen gasification agent, UCG synthesis gas composes of varying methane, hydrogen, nitrogen, carbon monoxide and carbon dioxide amounts. In accordance to its calorific value, the processed UCG synthesis gas can be utilized in different manners, as for electricity generation in a combined cycle power plant or for feedstock production making use of its various chemical components. In the present study we analyze UCG synthesis gas utilization economics in the context of clean electricity generation with an integrated carbon capture and storage process (CCS) as well as synthetic fuel and fertilizer production (Kempka et al., 2010) based on a gas composition achieved during an in situ UCG trial in the Wieczorek Mine. Hereby, we also consider chemical feedstock production in order to mitigate CO2 emissions. Within a sensitivity analysis of UCG synthesis gas calorific value variations, we produce a range of capital and operational expenditure bandwidths that allow for an economic assessment of different synthesis gas end use approaches. To carry out the integrated techno-economic assessment of the coupled systems and the sensitivity analysis, we adapted the techno-economic UCG-CCS model developed by Nakaten et al. (2014). Our techno-economic modeling results demonstrate that the calorific value has a high impact on the economics of UCG synthesis gas utilization. In the underlying study, the synthesis gas is not suitable for an economic competitive electricity generation, due to the relatively low calorific value of 4.5 MJ/Nm³. To be a profitable option for electricity

  17. A framework for techno-economic & environmental sustainability analysis by risk assessment for conceptual process evaluation

    DEFF Research Database (Denmark)

    Loureiro da Costa Lira Gargalo, Carina; Sin, Gürkan; Carvalho, Ana

    2016-01-01

    The need to achieve a sustainable process performance has become increasingly important in order to keep a competitive advantage in the global markets. Development of comprehensive and systematic methods to accomplish this goal is the subject of this work. To this end, a multi-level framework...... for techno-economic and environmental sustainability analysis through risk assessment is proposed for the early-stage design and screening of conceptual process alternatives. The alternatives within the design space are analyzed following the framework’s work-flow, which targets the following: (i) quantify...

  18. Electricity from Wind for Off-Grid Applications in Bangladesh: A Techno-Economic Assessment

    Directory of Open Access Journals (Sweden)

    Md. Mustafizur Rahman

    2017-03-01

      Keywords: GHG emission, cost of electricity, off-grid, wind energy, electricity generation. Article History: Received October 15th 2016; Received in revised form January 26th 2017; Accepted February 4th 2017; Available online How to Cite This Article: Rahman, M.M., Baky, M.A.H, and Islam, A.K.M.S. (2017 Electricity from Wind for Off-Grid Applications in Bangladesh: A Techno-Economic Assessment. International Journal of Renewable Energy Develeopment, 6(1, 55-64. http://dx.doi.org/10.14710/ijred.6.1.55-64

  19. Techno-Economic Analysis of Bioconversion of Methane into Biofuel and Biochemical (Poster)

    Energy Technology Data Exchange (ETDEWEB)

    Fei, Q.; Tao, L.; Pienkos, P .T.; Guarnieri, M.; Palou-Rivera, I.

    2014-10-01

    In light of the relatively low price of natural gas and increasing demands of liquid transportation fuels and high-value chemicals, attention has begun to turn to novel biocatalyst for conversion of methane (CH4) into biofuels and biochemicals [1]. A techno-economic analysis (TEA) was performed for an integrated biorefinery process using biological conversion of methane, such as carbon yield, process efficiency, productivity (both lipid and acid), natural gas and other raw material prices, etc. This analysis is aimed to identify research challenges as well provide guidance for technology development.

  20. Techno-economic analysis of organosolv pretreatment process from lignocellulosic biomass

    DEFF Research Database (Denmark)

    Rodrigues Gurgel da Silva, Andrè; Errico, Massimiliano; Rong, Ben-Guang

    2018-01-01

    Lignocellulosic ethanol is a promising alternative to replace liquid fossil fuels for the transportation sector in the near future. Organosolv pretreatment has been tested as a method for separating lignin from the biomass and commercializing it as a biopolymer. Based on published laboratory scale...... data, we propose a feasible process flowsheet for organosolv pretreatment. Simulation of the pretreatment process provided mass and energy balances for a techno-economic analysis, and the values were compared with the most prevalent and mature pretreatment method: diluted acid. Organosolv pretreatment...

  1. Techno-economic analysis and optimization of the heat recovery of utility boiler flue gas

    International Nuclear Information System (INIS)

    Xu, Gang; Huang, Shengwei; Yang, Yongping; Wu, Ying; Zhang, Kai; Xu, Cheng

    2013-01-01

    Highlights: • Four typical flue gas heat recovery schemes are quantitatively analyzed. • The analysis considers thermodynamic, heat transfer and hydrodynamics factors. • Techno-economic analysis and optimization design are carried out. • High-stage steam substitute scheme obtains better energy-saving effect. • Large heat transfer area and high flue gas resistances weaken overall performance. - Abstract: Coal-fired power plants in China consume nearly half of available coals, and the resulting CO 2 emissions cover over 40% of total national emissions. Therefore, reducing the energy expenditure of coal-fired power plants is of great significance to China’s energy security and greenhouse gas reduction programs. For coal-fired power plants, the temperature of a boiler’s exhaust gas reaches 120–150 °C or even higher. The thermal energy of boiler’s exhaust accounts for approximately 3–8% of the total energy of fuel input. Given these factors, we conducted a techno-economic analysis and optimization design of the heat recovery system using boiler exhaust gas. This research is conformed to the principles of thermodynamic, heat transfer, and hydrodynamics. Based on the data from an existing 1000 MW typical power generation unit in China, four typical flue gas heat recovery schemes are quantitatively analyzed from the thermodynamics perspective. The impacts of flue gas heat recovery on net work output and standard coal consumption rate of various schemes are performed. Furthermore, the transfer area of heat recovery exchanger and the draft fan work increment due to the flue gas pressure drop are analyzed. Finally, a techno-economic analysis of the heat recovery schemes is conducted, and some recommendations on optimization design parameters are proposed, with full consideration of various factors such as the decrease on fuel cost due to energy conservation as well as the investment cost of heat recovery retrofitting. The results revealed that, high

  2. Techno-economic and environmental analysis of low carbon energy technologies: Indian perspective

    Energy Technology Data Exchange (ETDEWEB)

    Saha, Vijay Prakash; Kumar, Rahul; Kumar, Manish; Deswal, Surinder; Chandna, Pankaj

    2010-09-15

    In this paper, techno-economic and an environmental investigation and analysis of Low Carbon Technologies (LCTs) has been presented, with special emphasis on India. The paper identify, analyze and recommend, on the basis of available and collected / collated information and data, the promising and potential low carbon energy technology options suited to Indian conditions for grid connected power generation. The evaluation criteria adopted include - emission reduction potential, technological feasibility, and economic viability; and on its basis recommend a detailed action plan and strategy for guiding future research and development with a more focused approach considering current Indian policy framework.

  3. Techno-economic analysis of integrated onshore and offshore UCG-CCS systems to produce electricity, SNG and urea

    Science.gov (United States)

    Nakaten, Natalie; Kapusta, Krzysztof; Burchart-Korol, Dorota; Kempka, Thomas

    2017-04-01

    Underground coal gasification (UCG) enables the utilization of coal reserves that are economically not exploitable because of complex geological boundary conditions. In the present study, we investigate site-specific commercial-scale onshore and offshore UCG-systems combined with carbon capture and storage (CCS) in line with electricity, synthetic natural gas (SNG) and fertilizer (urea) production based on data of in-situ trail undertaken at the Wieczorek coal mine (Silesian Basin, Poland) [1] and ex-situ tests on different Polish coals. Hereby, techno-economic modeling approaches according to Kempka et al. [2] and Nakaten et al. [3] have been applied to determine onshore and offshore levelized end-use product costs as well as cost bandwidths resulting from economical, technical and geological uncertainties. Our analysis results show that the investigated onshore UCG end-use options are by 3 % (SNG), 27 % (electricity) and 47 % (urea) lower than the according market prices, and thus competitive on the Polish energy market. However, due to high costs for the offshore platform and the related infrastructure, offshore UCG end-use products are not economic in view of the EU raw materials and energy market. For UCG-CCS systems, a relevant approach to decrease production costs is a precise management of the oxidizer composition: an oxygen ratio below 30 % by volume and a high UCG-to-syngas conversion efficiency favor the economics of electricity and SNG production, whereby cost-effective urea production under the given boundary conditions is characterized by high CO2 and H2 ratios in the synthesis gas composition. As drilling costs have a limited share on total levelized production costs of 3 % in maximum, uncertainties related to model input parameters affected by drilling costs, e.g., UCG reactor width, are negligible. From our techno-economic modeling results, we conclude that competitiveness of the investigated onshore UCG-CCS end-use options will be even more

  4. An investigation of the techno-economic impact of internal combustion engine based cogeneration systems on the energy requirements and greenhouse gas emissions of the Canadian housing stock

    International Nuclear Information System (INIS)

    Asaee, S. Rasoul; Ugursal, V. Ismet; Beausoleil-Morrison, Ian

    2015-01-01

    This study provides a techno-economic evaluation of retrofitting internal combustion engine (ICE) based cogeneration systems in the Canadian housing stock (CHS). The study was conducted using the Canadian Hybrid Residential End-Use Energy and GHG Emissions Model (CHREM). CHREM includes close to 17,000 unique house files that are statistically representative of the Canadian housing stock. The cogeneration system performance was evaluated using a high resolution integrated building performance simulation software. It is assumed that the ICE cogeneration system is retrofitted into all houses that currently use a central space heating system and have a suitable basement or crawl space. The GHG emission intensity factor associated with marginal electricity generation in each province is used to estimate the annual GHG emissions reduction due to the cogeneration system retrofit. The results show that cogeneration retrofit yields 13% energy savings in the CHS. While the annual GHG emissions would increase in some provinces due to cogeneration retrofits, the total GHG emissions of the CHS would be reduced by 35%. The economic analysis indicates that ICE cogeneration system retrofits may provide an economically feasible opportunity to approach net/nearly zero energy status for existing Canadian houses. - Highlights: • Techno-economic evaluation ICE cogeneration systems for Canadian housing is reported. • ICE cogeneration retrofit could yield 13% annual energy savings in Canadian housing. • Annual GHG emissions of Canadian housing could decrease by 35% with ICE cogeneration. • But, in some provinces, GHG emissions would increase as a result of ICE cogeneration

  5. Using life cycle assessment and techno-economic analysis in a real options framework to inform the design of algal biofuel production facilities.

    Science.gov (United States)

    Kern, Jordan D; Hise, Adam M; Characklis, Greg W; Gerlach, Robin; Viamajala, Sridhar; Gardner, Robert D

    2017-02-01

    This study investigates the use of "real options analysis" (ROA) to quantify the value of greater product flexibility at algal biofuel production facilities. A deterministic optimization framework is integrated with a combined life cycle assessment/techno-economic analysis model and subjected to an ensemble of 30-year commodity price trajectories. Profits are maximized for two competing plant configurations: 1) one that sells lipid-extracted algae as animal feed only; and 2) one that can sell lipid-extracted algae as feed or use it to recover nutrients and energy, due to an up-front investment in anaerobic digestion/combined heat and power. Results show that added investment in plant flexibility does not result in an improvement in net present value, because current feed meal prices discourage use of lipid-extracted algae for nutrient and energy recovery. However, this study demonstrates that ROA provides many useful insights regarding plant design that cannot be captured via traditional techno-economic modeling. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Life cycle, techno-economic and dynamic simulation assessment of bioelectrochemical systems: A case of formic acid synthesis.

    Science.gov (United States)

    Shemfe, Mobolaji; Gadkari, Siddharth; Yu, Eileen; Rasul, Shahid; Scott, Keith; Head, Ian M; Gu, Sai; Sadhukhan, Jhuma

    2018-05-01

    A novel framework, integrating dynamic simulation (DS), life cycle assessment (LCA) and techno-economic assessment (TEA) of a bioelectrochemical system (BES), has been developed to study for the first time wastewater treatment by removal of chemical oxygen demand (COD) by oxidation in anode and thereby harvesting electron and proton for carbon dioxide reduction reaction or reuse to produce products in cathode. Increases in initial COD and applied potential increase COD removal and production (in this case formic acid) rates. DS correlations are used in LCA and TEA for holistic performance analyses. The cost of production of HCOOH is €0.015-0.005 g -1 for its production rate of 0.094-0.26 kg yr -1 and a COD removal rate of 0.038-0.106 kg yr -1 . The life cycle (LC) benefits by avoiding fossil-based formic acid production (93%) and electricity for wastewater treatment (12%) outweigh LC costs of operation and assemblage of BES (-5%), giving a net 61MJkg -1 HCOOH saving. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. Techno-economic optimization of a scaled-up solar concentrator combined with CSPonD thermal energy storage

    Science.gov (United States)

    Musi, Richard; Grange, Benjamin; Diago, Miguel; Topel, Monika; Armstrong, Peter; Slocum, Alexander; Calvet, Nicolas

    2017-06-01

    A molten salt direct absorption receiver, CSPonD, used to simultaneously collect and store thermal energy is being tested by Masdar Institute and MIT in Abu Dhabi, UAE. Whilst a research-scale prototype has been combined with a beam-down tower in Abu Dhabi, the original design coupled the receiver with a hillside heliostat field. With respect to a conventional power-tower setup, a hillside solar field presents the advantages of eliminating tower costs, heat tracing equipment, and high-pressure pumps. This analysis considers the industrial viability of the CSPonD concept by modeling a 10 MWe up-scaled version of a molten salt direct absorption receiver combined with a hillside heliostat field. Five different slope angles are initially simulated to determine the optimum choice using a combination of lowest LCOE and highest IRR, and sensitivity analyses are carried out based on thermal energy storage duration, power output, and feed-in tariff price. Finally, multi-objective optimization is undertaken to determine a Pareto front representing optimum cases. The study indicates that a 40° slope and a combination of 14 h thermal energy storage with a 40-50 MWe power output provide the best techno-economic results. By selecting one simulated result and using a feed-in tariff of 0.25 /kWh, a competitive IRR of 15.01 % can be achieved.

  8. Techno-Economic Analysis of a Concentrating Solar Power Plant Using Reduction/Oxidation Metal Oxides for Thermochemical Energy Storage

    Science.gov (United States)

    Lopes, Mariana

    Concentrating Solar Power (CSP) plant technology can produce reliable and dispatchable electric power from an intermittent solar resource. Recent advances in thermochemical energy storage (TCES) can offer further improvements to increase off-sun operating hours, improve system efficiency, and the reduce cost of delivered electricity. This work describes a 111.7 MWe CSP plant with TCES using a mixed ionic-electronic conducting metal oxide, CAM28, as both the heat transfer and thermal energy storage media. Turbine inlet temperatures reach 1200 °C in the combined cycle power block. A techno-economic model of the CSP system is developed to evaluate design considerations to meet targets for low-cost and renewable power with 6-14 hours of dispatchable storage for off-sun power generation. Hourly solar insolation data is used for Barstow, California, USA. Baseline design parameters include a 6-hour storage capacity and a 1.8 solar multiple. Sensitivity analyses are performed to evaluate the effect of engineering parameters on total installed cost, generation capacity, and levelized cost of electricity (LCOE). Calculated results indicate a full-scale 111.7 MWe system at 274 million in installed cost can generate 507 GWh per year at a levelized cost of 0.071 per kWh. Expected improvements to design, performance, and costs illustrate options to reduce energy costs to less than $0.06 per kWh.

  9. A comprehensive techno-economic and power quality analysis of a remote PV-diesel system in Australia

    Directory of Open Access Journals (Sweden)

    Jamal Taskin

    2017-01-01

    Full Text Available Presently, the world is considering the integration of small, medium and large-scale PV systems into both urban and remote rural electricity networks. This sees a transition towards a 100% renewable energy based electricity supply from the current conventional fossil fuel based electricity supply. Australia has a significant electricity generation potential from solar PV resources which also encourages the uptake of PV-battery hybrid systems. Australian utilities operating in the isolated and remote areas are now seriously considering the integration of solar PV systems as a long-term solution to reduce costs and facilitate sustainable electricity generation. This would also defer expensive grid extension to supply electricity to these dispersed remote communities. This study aims to model and optimise a remote Australian PV-diesel system incorporated with high levels of PV penetration and battery storage and investigate the system power quality issues. The study includes system component optimisation and techno-economic analysis which considers the outcomes regarding the cost of energy (AUD$/kWh, fuel savings potential and environmental impacts. Power quality issues have been explored by analysing the response of fast frequency-responsive (FFR battery storage. The overall study has found that higher levels of PV penetration integrated with the current diesel operated system provides a comprehensive and efficient electricity supply and FFR Li-ion batteries can mitigate transient power quality issues and maintain system frequency within acceptable limits.

  10. Assessing the techno-economics of modular hybrid solar thermal systems

    Science.gov (United States)

    Lim, Jin Han; Chinnici, Alfonso; Dally, Bassam; Nathan, Graham

    2017-06-01

    A techno-economic assessment was performed on modular hybrid solar thermal (in particular, solar power tower) systems with combustion from natural gas as backup to provide a continuous supply of electricity. Two different configurations were compared, i.e. a Hybrid Solar Receiver Combustor (HSRC), in which the functions of a solar cavity receiver and a combustor are integrated into a single device, and a Solar Gas Hybrid (SGH), which is a reference hybrid solar thermal system with a standalone solar-only cavity receiver and a backup boiler. The techno-economic benefits were assessed by varying the size of the modular components, i.e. the heliostat field and the solar receivers. It was found that for modularization to be cost effective requires more than the increased learning from higher production of a larger number of smaller units, such as access to alternative, lower-cost manufacturing methods and/or the use of a low melting point Heat Transfer Fluid (HTF) such as sodium to reduce parasitic losses. In particular, for a plant with 30 units of 1MWth modules, the Levelized Cost of Electricity is competitive compared with a single unit of 30MWth after ˜100 plants are installed for both the HSRC and SGH if the systems employ the use of sodium as the heat transfer fluid.

  11. Techno-economic analysis for brewer's spent grains use on a biorefinery concept: the Brazilian case.

    Science.gov (United States)

    Mussatto, Solange I; Moncada, Jonathan; Roberto, Inês C; Cardona, Carlos A

    2013-11-01

    A techno-economic analysis for use of brewer's spent grains (BSG) on a biorefinery concept for the Brazilian case is presented. Four scenarios based on different levels of heat and mass integration for the production of xylitol, lactic acid, activated carbon and phenolic acids are shown. A simulation procedure using the software Aspen Plus and experimental yields was used. Such procedure served as basis for the techno-economic and environmental assessment according to the Brazilian conditions. Full mass integration on water and full energy integration was the configuration with the best economic and environmental performance. For this case, the obtained economic margin was 62.25%, the potential environmental impact was 0.012 PEI/kg products, and the carbon footprint of the processing stage represented 0.96 kg CO2-e/kg of BSG. This result served as basis to draw recommendations on the technological, economic and environmental feasibility for implementation of such type of biorefinery in Brazil. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Techno-economic evaluation for the heat integration of vaporisation cold energy in natural gas processing

    International Nuclear Information System (INIS)

    Koku, Oludolapo; Perry, Simon; Kim, Jin-Kuk

    2014-01-01

    Highlights: • Development of thermal integration modelling framework for the utilisation of LNG cold energy. • Feasibility study for various design options for the integration of low-temperature cold energy. • Provision of a design approach for achieving efficient use of cold energy in LNG terminals. • Understanding of techno-economic impacts associated with the thermal integration of LNG cold energy. - Abstract: This paper addresses a conceptual study investigating the techno-economic feasibility for the thermal Integration of LNG cold vaporisation energy in power generation applications. In conventional regasification systems, this valuable LNG cold energy is often being wasted to ambient heat sources, representing a thermodynamic inefficient process with a significant thermal impact on the local environment. A combined facility consisting of a non-integrated Combined Cycle Power Plant (CCPP) and an LNG receiving terminal employing traditional Open Rack Vaporisers (ORV) technology, has been modelled, as a base case. Retrofit strategies for the integration of LNG cold energy have been investigated, and their impacts on power production and system efficiency are systematically compared. Retrofit design options considered in this work include the use of a propane Rankine cycle coupled with the direct expansion of natural gas, the integration of a closed-loop water cycle or open-loop water circuit with a steam Rankine cycle, and the facilitation of integrated air cooling for a gas turbine

  13. Techno-Economic Feasibility of Small Scale Hydropower in Ethiopia: The Case of the Kulfo River, in Southern Ethiopia

    Directory of Open Access Journals (Sweden)

    Zelalem Girma

    2016-01-01

    Full Text Available This paper presents the technical and economic feasibility of grid connected small scale hydropower construction in selected site of the Kulfo River in southern Ethiopia. In doing so the paper presents the general overview of Ethiopia electric power situation; small scale hydropower situation and barriers and drivers for its development; site assessment and cost estimation methods and at the end presents techno-economic analysis of small scale hydropower development on the Kulfo River in southern Ethiopia. The technical and economic feasibility of the site have been studied by using HOMER, RETscreen, and SMART Mini-IDRO software. The result of simulation shows that the construction of small scale hydropower in the Kulfo River is technically and economically feasible with total net present cost of $13,345,150, cost of energy $0.028/kWh, simple payback period of 12.4 year, and internal rate of return 12.9%. The result also shows that construction of hydropower curtails greenhouse gas emissions such as carbon dioxide by 96,685,45 kg/year, sulfur dioxide by 4,1917 kg/year, and nitrogen dioxide by 20,500 kg/year.

  14. Techno-economic and Fluid Dynamics Analysis for Growing Microalgae with the Intent of Producing Biofuel Using a System Model

    Science.gov (United States)

    Raffaeli, Leah R.

    Techno-economic and systems studies on microalgal growth scenarios to date are abbreviated and missing a number of important variables. By including these variables in a detailed model integrating biology, chemistry, engineering, and financial aspects, a more defined systems analysis is possible. Through optimizing the model productivity based on the resulting net profit, the system analysis results in a more accurate assessment of environmental and economic sustainability of specific algal growth scenarios. Photobioreactor algal growth scenario optimization in the system model has resulted in realistic engineering design requirements based on algal growth requirements and fluid dynamics analysis. Results show feasibility for photobioreactor growth scenarios to be economically sustainable when co-products are included, but definite technological advancements and productivity improvements must be made. The main factors inhibiting a cost effective photobioreactor growth scenario are culture density, temperature, and lighting distribution for solar illuminated photobioreactors, and lighting cost for artificially illuminated photobioreactors. Open pond algal growth scenarios do not show any prospect of economic or environmental sustainability with current technology due to the large amount of surface area required, inefficient water use, and low culture density. All algal growth scenarios are inferior to petro-diesel regarding energy inputs, carbon emissions, and environmental sustainability. No algal growth scenarios analyzed in this study meet the U.S. requirement of biofuel emitting at least 20% less carbon emissions than diesel from crude oil.

  15. Microalgal technology for remediation of CO{sub 2} from power plant flue gas: A techno-economic perspective

    Energy Technology Data Exchange (ETDEWEB)

    Kadam, K.L. [National Renewable Energy Lab., Golden, CO (United States)

    1996-12-31

    Power plants burning fossil fuels are a major source of CO{sub 2} which is implicated in global warming. Microalgal systems which photosynthetically assimilate carbon dioxide can be used for mitigation of this major greenhouse gas. A techno-economic model was developed for trapping carbon dioxide from flue gases by microalgae in outdoor ponds. The model also shows that algal lipid content and growth rate are both important for an economical process, but a trade-off exists between the two, i.e., a high lipid content and low growth rate combination can be as effective as a low lipid content and high growth rate combination. Hence, these two parameters may be treated as a composite parameter to be optimized to yield the least CO{sub 2} mitigation cost. Model predictions were also used to compare the microalgal technology with alternative technologies in terms of CO{sub 2} mitigation costs. Incorporating advances anticipated in the future into the design basis, the model yields a CO{sub 2} mitigation cost that is competitive with other CO{sub 2} remediation technologies currently being proposed. Furthermore, this technology also provides a lipid feedstock for producing a renewable fuel such as biodiesel. Deployment of this technology for CO{sub 2} mitigation looks attractive if research goals put forth by the model are achieved.

  16. Techno-economic optimization of a shell and tube heat exchanger by genetic and particle swarm algorithms

    International Nuclear Information System (INIS)

    Sadeghzadeh, H.; Ehyaei, M.A.; Rosen, M.A.

    2015-01-01

    Highlights: • Calculating pressure drop and heat transfer coefficient by Delaware method. • The accuracy of the Delaware method is more than the Kern method. • The results of the PSO are better than the results of the GA. • The optimization results suggest that yields the best and most economic optimization. - Abstract: The use of genetic and particle swarm algorithms in the design of techno-economically optimum shell-and-tube heat exchangers is demonstrated. A cost function (including costs of the heat exchanger based on surface area and power consumption to overcome pressure drops) is the objective function, which is to be minimized. Selected decision variables include tube diameter, central baffles spacing and shell diameter. The Delaware method is used to calculate the heat transfer coefficient and the shell-side pressure drop. The accuracy and efficiency of the suggested algorithm and the Delaware method are investigated. A comparison of the results obtained by the two algorithms shows that results obtained with the particle swarm optimization method are superior to those obtained with the genetic algorithm method. By comparing these results with those from various references employing the Kern method and other algorithms, it is shown that the Delaware method accompanied by genetic and particle swarm algorithms achieves more optimum results, based on assessments for two case studies

  17. Production of Monosugars from Lignocellulosic Biomass in Molten Salt Hydrates: Process Design and Techno-Economic Analysis.

    Science.gov (United States)

    van den Bergh, Johan; Babich, Igor V; O'Connor, Paul; Moulijn, Jacob A

    2017-11-15

    ZnCl 2 hydrate, the main molten salt used in biomass conversion, combined with low concentration HCl is an excellent solvent for the dissolution and hydrolysis of the carbohydrates present in lignocellulosic biomass. The most recalcitrant carbohydrate, cellulose, is dissolved in a residence time less than 1 h under mild conditions without significant degradation. This technology is referred to as BIOeCON-solvent technology. Separation of the sugars from the solution is the main challenge. The earlier conclusion regarding the potential of zeolite beta for selective adsorption has been used as the basis of a scale-up study. The technology of choice is continuous chromatographic separation (e.g., simulated moving bed, SMB). The sugar monomers are separated from the sugar oligomers, allowing the production of monosugars at high yield, using water as an eluent. Results of a pilot plant study are presented showing a stable operation at high selectivity. Several process designs are discussed, and the techno-economic performance of the BIOeCON-solvent technology is demonstrated by comparison with the state-of-the-art technology of NREL (National Renewable Energy Laboratory), which is based on enzymatic conversion of cellulose. It is concluded that the BIOeCON-solvent technology is technically and economically viable and is competitive to the NREL process. Because the BIOeCON-solvent process is in an early stage of development and far from fully optimized, it has the potential to outperform the existing processes.

  18. Waste-to-biofuel integrated system and its comprehensive techno-economic assessment in wastewater treatment plants.

    Science.gov (United States)

    Xin, Chunhua; Addy, Min M; Zhao, Jinyu; Cheng, Yanling; Ma, Yiwei; Liu, Shiyu; Mu, Dongyan; Liu, Yuhuan; Chen, Paul; Ruan, Roger

    2018-02-01

    Combining wastewater treatment and biofuel production is considered the cost-effective way for better waste remediation and lowering the environmental impact for biofuel production. In this study, an innovative integrated system incorporating sludge, scum and centrate treatment and biofuel production was developed. A comprehensive techno-economic analysis was conducted to evaluate the technology and economic feasibility of the integrated system with the consideration of biofuel production, wastewater treatment improvement, tax credits, carbon credit, and coproducts utilization. Benefited from the integrated system that the intermediate byproducts can be used in between the sub-systems, such as the glycerol generated from the scum-to-biodiesel production can be used as an organic carbon for the centrate-to-algae production, the estimated breakeven selling price of the bio-oil ($1.85/gallon) is very close to the 5-year averaged crude oil price. The assessment result showed the payback period and the IRRs of the integrated system are superior in comparison with others. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Process Simulation and Techno-Economic Evaluation of Alternative Biorefinery Scenarios

    Science.gov (United States)

    Aizpurua Gonzalez, Carlos Ernesto

    A biorefinery is a complex processing facility that uses sustainably produced biomass as feedstock to generate biofuels and chemical products using a wide variety of alternative conversion pathways. The alternative conversion pathways can be generally classified as either biochemical or thermochemical conversion. A biorefinery is commonly based on a core biomass conversion technology (pretreatment, hydrolysis, pyrolysis, etc.) followed by secondary processing stages that determine the specific product, and its recovery. In this study, techno-economic analysis of several different lignocellulosic biomass conversion pathways have been performed. First, a novel biochemical conversion, which used electron beam and steam explosion pretreatments for ethanol production was evaluated. This evaluation include both laboratory work and process modeling. Encouraging experimental results are obtained that showed the biomass had enhanced reactivity to the enzyme hydrolysis. The total sugar recovery for the hardwood species was 72% using 5 FPU/g enzyme dosage. The combination of electron beam and steam explosion provides an improvement in sugar conversion of more than 20% compared to steam explosion alone. This combination of pretreatments was modeled along with a novel ethanol dehydration process that is based on vapor permeation membranes. The economic feasibility of this novel pretreatment-dehydration technology was evaluated and compared with the dilute acid process proposed by NREL in 2011. Overall, the pretreatment-dehydration technology process produces the same ethanol yields (81 gal/bdton). However, the economics of this novel process does not look promising since the minimum ethanol selling price (MESP) to generate an internal rate of return of 10% is of 3.09 /gal, compared to 2.28 /gal for the base case. To enhance the economic potential of a biorefinery, the isolation of value-added co-products was incorporated into the base dilute acid biorefinery process. In this

  20. New Approach to Techno-economic Assessment of Power Plants with Carbon Capture and Storage : The Inclusion of Realistic Dispatch Profiles To Calculate Techno-economics of Part Load Operations

    NARCIS (Netherlands)

    van der Spek, M.W.; Manzolini, Giampaolo; Ramirez, C.A.

    2017-01-01

    Techno-economic assessment of fossil-fueled power plants with (and/or without) carbon capture and storage (CCS) is generally carried out at full load conditions assuming a capacity factor of typically around 85%1−3 or even 100%.4 This approach allows for straightforward assessment and easy

  1. Preliminary results of a techno-economic assessment of CO2 capture-network configurations in the industry

    NARCIS (Netherlands)

    Berghout, N.A.; Kuramochi, T.; van den Broek, M.A.; Ramirez, C.A.; Faaij, A.P.C.

    2013-01-01

    This paper evaluated the techno economic performance of several CO2 capture-network configurations for a cluster of sixteen industrial plants in the Netherlands using bottom up analysis. Preliminary findings indicate that centralizing capture equipment instead of capture equipment at plant sites

  2. A Techno-economic and Spatial Analysis for the Optimal Planning of Wind Energy in Kythira Island, Greece

    DEFF Research Database (Denmark)

    Xydis, George

    2013-01-01

    Renewable Energy Sources (RES) and especially wind energy are seen as an essential part of the future clean energy system. In the present paper, the wind potential of Kythira Island was studied and a techno-economic analysis was done aiming at identifying the optimum solution for the proposed Wind...

  3. Retro-Techno-Economic Analysis: Using (Bio)Process Systems Engineering Tools to Attain Process Target Values

    DEFF Research Database (Denmark)

    Furlan, Felipe F.; Costa, Caliane B B; Secchi, Argimiro R.

    2016-01-01

    for the main process metrics, providing feedback to the research and development team and setting goals for experimental efforts. The present study proposes a methodology for performing such a "retro" techno-economic analysis. It consists of choosing the most important variables of the process and finding...

  4. Techno-economic assessments of oxy-fuel technology for South African coal-fired power stations

    CSIR Research Space (South Africa)

    Oboirien, BO

    2014-03-01

    Full Text Available at the technical and economic viability of oxy-fuel technology for CO(sub2) capture for South African coal-fired power stations. This study presents a techno-economic analysis for six coal fired power stations in South Africa. Each of these power stations has a...

  5. TECHNO-ECONOMIC ANALYSIS IN A SUPERSTRUCTURE OF A MULTIPLE FLOORS BUILDING (THREE, FIVE, SEVEN AND NINE FLOORS IN REINFORCED CONCRETE AND RIBBED SLABS WITH RECTANGULAR FORM AND DIFFERENT COMPRESSIVE STRENGTH VALUES

    Directory of Open Access Journals (Sweden)

    E. F. S. Moraes

    2017-12-01

    Full Text Available Adapting “fck" values between 25 MPa to 40 MPa, in three, five, seven and nine floor buildings for places under winds of up to 30 m/s, this research calculated the cost and inputs of these variations. The results have as a goal to improve multiple floors building design in reinforced concrete and ribbed slabs, and to contribute to economic gains. The results were analysed in five stages. (I Architectural design definition in a 1:1 proportion, (II structural conception, (III structural design, (IV cost composition and (V techno economic parameters. To sum up, the results showed that lower “fck” has presented more viability to few flooring. In addition, with the increase of floors also the “fck” raised, causing higher cost around 16,54% in the beams and 11,16% in the slabs. Moreover, the pillars showed a saving of 28,89% in the cost, ranging by up to 11,93% in the average thickness and 6,29% in the concrete form expenditure per m³. Therefore, the research showed an economic achievement of 5,14% in the overall cost between the number of floor.

  6. Techno-economic evaluation of hybrid energy storage technologies for a solar–wind generation system

    International Nuclear Information System (INIS)

    Ren, L.; Tang, Y.; Shi, J.; Dou, J.; Zhou, S.; Jin, T.

    2013-01-01

    Highlights: ► The techno-economic feasibility of four ESSs is studied. ► The hybrid ESS applied on a renewable energy generation system is feasible. ► From the technical and economic viewpoint, case 3 is the optimal hybrid ESS. -- Abstract: Huazhong University of Science and Technology is planning to establish a hybrid solar–wind generation dynamic simulation laboratory. Energy storage technologies will be vital to this system for load leveling, power quality control and stable output. In this paper, the technical feasibility of energy storage technologies for renewable intermittent sources like wind and solar generation is analyzed. Furthermore, the different combination modes of energy storage technologies are proposed. The involved energy storage technologies include superconducting magnetic energy storage systems (SMESs), flywheels (FWs), electrochemical super-capacitors (SCs) and redox flow batteries (RFBs). Based on that, the economic analysis of hybrid energy storage technologies is conducted

  7. Cognitive radio policy and regulation techno-economic studies to facilitate dynamic spectrum access

    CERN Document Server

    Holland, Oliver

    2014-01-01

    This book offers a timely reflection on how the proliferation of advanced wireless communications technologies, particularly cognitive radio (CR) can be enabled by thoroughly-considered policy and appropriate regulation. It looks at the prospects of CR from the divergent standpoints of technological development and economic market reality. The book provides a broad survey of various techno-economic and policy aspects of CR development, and provides the reader with an understanding of the complexities involved as well as a toolbox of possible solutions to enable the evolutionary leap towards successful implementation of disruptive CR technology or indeed any other novel wireless technologies. Cognitive Radio Policy and Regulation showcases the original ideas and concepts introduced into the field of CR and dynamic spectrum access policy over nearly four years of work within COST Action IC0905 TERRA, a think-tank with participants from more than 20 countries. The book’s subject matter includes: • deploymen...

  8. Techno-economic Analysis for the Thermochemical Conversion of Biomass to Liquid Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Yunhua; Tjokro Rahardjo, Sandra A.; Valkenburt, Corinne; Snowden-Swan, Lesley J.; Jones, Susanne B.; Machinal, Michelle A.

    2011-06-01

    ). This study is part of an ongoing effort within the Department of Energy to meet the renewable energy goals for liquid transportation fuels. The objective of this report is to present a techno-economic evaluation of the performance and cost of various biomass based thermochemical fuel production. This report also documents the economics that were originally developed for the report entitled “Biofuels in Oregon and Washington: A Business Case Analysis of Opportunities and Challenges” (Stiles et al. 2008). Although the resource assessments were specific to the Pacific Northwest, the production economics presented in this report are not regionally limited. This study uses a consistent technical and economic analysis approach and assumptions to gasification and liquefaction based fuel production technologies. The end fuels studied are methanol, ethanol, DME, SNG, gasoline and diesel.

  9. Introducing GEOPHIRES v2.0: Updated Geothermal Techno-Economic Simulation Tool

    Energy Technology Data Exchange (ETDEWEB)

    Beckers, Koenraad J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); McCabe, Kevin [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-02-14

    This paper presents an updated version of the geothermal techno-economic simulation tool GEOPHIRES (GEOthermal energy for Production of Heat and electricity ('IR') Economically Simulated). GEOPHIRES combines engineering models of the reservoir, wellbores, and surface plant facilities of a geothermal plant with an economic model to estimate the capital and operation and maintenance costs, lifetime energy production, and overall levelized cost of energy. The available end-use options are electricity, direct-use heat, and cogeneration. The main updates in the new version include conversion of the source code from FORTRAN to Python, the option to import temperature data (e.g., measured or from stand-alone reservoir simulator), updated cost correlations, and more flexibility in selecting the time step and number of injection and production wells. In this paper, we provide an overview of all the updates and two case studies to illustrate the tool's new capabilities.

  10. TECHNO-ECONOMIC STUDY FOR L-LYSINE PRODUCTION AS THE BUSINESS OPPORTUNITIES IN SUGAR INDUSTRY

    Directory of Open Access Journals (Sweden)

    Glenia Rabassa Olazábal

    2015-10-01

    Full Text Available In the present work, we made a techno-economic evaluation in order to produce L-lysine through modern tools of evaluation and processes investigation such as the SuperPro Designer® simulator, version 9.0 (9 and Microsoft Excel. We evaluate the employment of final honey as main raw material. All the stages for the process of production are set and we define the unitary and updated rules and prices, the capacity and the equipment cost. From the conducted study, we conclude that is feasible the production of L-lysine as a business opportunity for the sugar industry because it produce positive and dynamic indicators such as a NPV of $703 000, an IRR of 18.30 %, and a recovery time of 4.84 years. What influences the most the costs is the acquisition of raw material with a 50.28 % of total operation costs.

  11. Black liquor fractionation for biofuels production - a techno-economic assessment.

    Science.gov (United States)

    Mesfun, Sennai; Lundgren, Joakim; Grip, Carl-Erik; Toffolo, Andrea; Nilsson, Rasika Lasanthi Kudahettige; Rova, Ulrika

    2014-08-01

    The hemicelluloses fraction of black liquor is an underutilized resource in many chemical pulp mills. It is possible to extract and separate the lignin and hemicelluloses from the black liquor and use the hemicelluloses for biochemical conversion into biofuels and chemicals. Precipitation of the lignin from the black liquor would consequently decrease the thermal load on the recovery boiler, which is often referred to as a bottleneck for increased pulp production. The objective of this work is to techno-economically evaluate the production of sodium-free lignin as a solid fuel and butanol to be used as fossil gasoline replacement by fractionating black liquor. The hydrolysis and fermentation processes are modeled in Aspen Plus to analyze energy and material balances as well as to evaluate the plant economics. A mathematical model of an existing pulp and paper mill is used to analyze the effects on the energy performance of the mill subprocesses. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Techno-economic modelling to strategize energy exports in the Central Asian Caspian region.

    Science.gov (United States)

    Bakdolotov, Aidyn; Miglio, Rocco De; Akhmetbekov, Yerbol; Baigarin, Kanat

    2017-04-01

    This paper studies the concept of energy security from export-oriented countries' point of view. It aims to test the effects of long-term energy export strategies in the Central Asian Caspian (CAC) region, by exploring the trade-offs between a "risk" indicator and some key variables of the energy system such as the total cost, the quantities exported, and the corresponding revenues. Risk reduction goals are combined with securing a minimum level of revenues from the hydrocarbon exports goals. It is also attempted to provide a definition and a quantification of a risk indicator on the basis of four components. The analysis makes use of a techno-economic energy system model to quantitatively evaluate the response of the energy sector to energy security risks, and its sensitivity to different export strategies.

  13. Electrical Components for Marine Renewable Energy Arrays: A Techno-Economic Review

    Directory of Open Access Journals (Sweden)

    Adam J. Collin

    2017-11-01

    Full Text Available This paper presents a review of the main electrical components that are expected to be present in marine renewable energy arrays. The review is put in context by appraising the current needs of the industry and identifying the key components required in both device and array-scale developments. For each component, electrical, mechanical and cost considerations are discussed; with quantitative data collected during the review made freely available for use by the community via an open access online repository. This data collection updates previous research and addresses gaps specific to emerging offshore technologies, such as marine and floating wind, and provides a comprehensive resource for the techno-economic assessment of offshore energy arrays.

  14. Techno-economic assessment of central sorting at material recovery facilities

    DEFF Research Database (Denmark)

    Cimpan, Ciprian; Maul, Anja; Wenzel, Henrik

    2016-01-01

    by documenting typical steps taken in a techno-economic assessment of MRFs, using the specific example of lightweight packaging waste (LWP) sorting in Germany. Thus, the study followed the steps of dimensioning of buildings and equipment, calculation of processing costs and projections of revenues from material......) and technological level, the analysis revealed the cost impact of economies of scale, as well as complementary relations linking capacity, technology and process efficiency. Hence, within a fourfold increase in capacity (from 25,000 to 100,000 tonnes per year), the total capital investment was shown to triple from...... 7 to 21 million EUR and the yearly operational expenditure grew by a factor of 2.4 from 2 to 4.7 million EUR. As a result, specific unit processing cost decreased from 110 to 70 EUR/tonne. Material sales and disposal costs summed to between a net cost of 25 EUR/tonne and net revenue of 50 EUR...

  15. Introducing GEOPHIRES v2.0: Updated Geothermal Techno-Economic Simulation Tool: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Beckers, Koenraad J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); McCabe, Kevin [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-02-16

    This paper presents an updated version of the geothermal techno-economic simulation tool GEOPHIRES (GEOthermal Energy for Production of Heat and electricity (IR) Economically Simulated). GEOPHIRES combines reservoir, wellbore, surface plant and economic models to estimate the capital, and operation and maintenance costs, lifetime energy production, and overall levelized cost of energy of a geothermal plant. The available end-use options are electricity, direct-use heat and cogeneration. The main updates in the new version include conversion of the source code from FORTRAN to Python, the option to couple to an external reservoir simulator, updated cost correlations, and more flexibility in selecting the time step and number of injection and production wells. An overview of all the updates and two case-studies to illustrate the tool's new capabilities are provided in this paper.

  16. Techno-economic risk analysis of glycerol biorefinery concepts against market price fluctuation

    DEFF Research Database (Denmark)

    Gargalo, Carina L.; Cheali, Peam; Gernaey, Krist

    . The high-value added bio-products boost profitability, the high-volume fuel helps meet national energy targets, and the power production cuts costs and dodges greenhouse-gas emissions [1] [2] [3]. The increasing amount of biodiesel production worldwide (e.g. from vegetable oils, palm oil, animal fats...... glycerol prices. Therefore, in order to increase the economic competitiveness of the biodiesel industry, there is an increasing interest in adding value using the glycerol waste stream as feedstock for the synthesis of bio-derived building block compounds and polymers [5] [6] [7] [8] [4] [9]. Moreover...... earlier [11][12][13][14][15] and compare them in terms of techno-economic performance including minimum selling price calculation for potential high-value added products. In particular, we address the challenge of price volatility (both glycerol as feedstock and high-value added chemicals...

  17. Techno-economic evaluation of a combined bioprocess for fermentative hydrogen production from food waste.

    Science.gov (United States)

    Han, Wei; Fang, Jun; Liu, Zhixiang; Tang, Junhong

    2016-02-01

    In this study, the techno-economic evaluation of a combined bioprocess based on solid state fermentation for fermentative hydrogen production from food waste was carried out. The hydrogen production plant was assumed to be built in Hangzhou and designed for converting 3 ton food waste per day into hydrogen. The total capital cost (TCC) and the annual production cost (APC) were US$583092 and US$88298.1/year, respectively. The overall revenue after the tax was US$146473.6/year. The return on investment (ROI), payback period (PBP) and internal rate of return (IRR) of the plant were 26.75%, 5 years and 24.07%, respectively. The results exhibited that the combined bioprocess for hydrogen production from food waste was feasible. This is an important study for attracting investment and industrialization interest for hydrogen production from food waste in the industrial scale. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Techno economic systems and excessive consumption: a political economy of 'pathological' gambling.

    Science.gov (United States)

    Reith, Gerda

    2013-12-01

    This article argues that gambling is a paradigmatic form of consumption that captures the intensified logic at the heart of late modern capitalist societies. As well as a site of intensified consumption, it claims that gambling has also become the location of what has been described as a new form of 'social pathology' related to excess play. Drawing on Castells' (1996) notion of techno-economic systems, it explores the ways that intersections between technology, capital and states have generated the conditions for this situation, and critiques the unequal distribution of gambling environments that result. It argues that, while the products of these systems are consumed on a global scale, the risks associated with them tend to be articulated in bio-psychological discourses of 'pathology' which are typical of certain types of knowledge that have salience in neo-liberal societies, and which work to conceal wider structural relationships. We argue that a deeper understanding of the political and cultural economy of gambling environments is necessary, and provide a synoptic overview of the conditions upon which gambling expansion is based. This perspective highlights parallels with the wider global economy of finance capital, as well as the significance of intensified consumption, of which gambling is an exemplary instance. It also reveals the existence of a geo-political dispersal of 'harms', conceived as deteriorations of financial, temporal and social relationships, which disproportionately affect vulnerable social groups. From this, we urge an understanding of commercial gambling based on a critique of the wider social body of gambling environments within techno economic systems, rather than the (flawed) individual bodies within them. © London School of Economics and Political Science 2013.

  19. Techno-Economic Related Metrics for a Wave Energy Converters Feasibility Assessment

    Directory of Open Access Journals (Sweden)

    Adrian de Andres

    2016-10-01

    Full Text Available When designing “multi-MW arrays” of Wave Energy Converters (WECs, having a low number of converters with high individual power ratings can be beneficial as the Operation and Maintenance (O&M costs may be reduced. However, having converters of small dimensions or small power ratings could also be beneficial, as suggested by previous works, due to a reduction in material costs as compared to power production, and the use of small, inexpensive vessels. In this work, a case study investigating the optimum size of WEC for a 20 MW array is performed. Analysis is carried out based on the CorPower Ocean technology. In this case study, firstly a Levelized Cost of Energy (LCOE model is created. This model incorporates the latest Capital Expenditure (CAPEX estimates for CorPower Ocean’s 250 kW prototype. Using this techno-economic model, several sizes/ratings of WEC are tested for use in a 20 MW array. Operational Expenditure (OPEX is calculated using two different calculation approaches in order to check its influence on final indicators. OPEX is firstly calculated as a percentage of CAPEX, as shown in previous works, and secondly using a failure-repair model, taking into account individual failures of WECs in the array. Size/rating analysis is carried out for several European locations in order to establish any dependence between site location and optimal WEC size/rating. Several metrics for techno-economic assessment of marine energy converters, other than LCOE, are compared in this work. A comparison of several devices with each these metrics is performed within this study.

  20. Shared Values in the Formation of a Modern Techno-Economic Paradigm

    Directory of Open Access Journals (Sweden)

    Ol’ga Aleksandrovna Romanova

    2016-07-01

    Full Text Available The article presents the evolution of the concept of techno-economic paradigm. It points out that the concept of transformative investments (impact investing has a significant impact on the formation of a modern techno-economic paradigm. In the framework of this concept, “shared values” are considered as a central element in the development strategy of any state. The ideology of shared values is based on pragmatic principles that create economic value to meet the interests of society. It is based on “three pillars of sustainable development”: planet, people and profit. The authors identify three main types of impact investing – responsible investing, development investing, localizing investing. The paper highlights the most important areas of impact investing and substantiates the expediency of promoting the ideas of impact investing at the level of individual business entities, which formulate a specific approach to the management of socio-economic systems of the micro-level, the authors call this approach “impact management”. The ideas of impact management as a management technology designed to stimulate the development of shared values and increase the interest of each participant in the overall final results were tested at Motovilikhinskiye Zavody PJSC – one of the largest enterprises of the military-industrial complex. It is proved that the idea of impact investing is in line with the ideas of inclusive development, which allowed the authors to establish the essential similarity of these processes. The paper introduces the notions of “structural inclusion ” and “spatial inclusion”. Some elements of spatial inclusion are shown on the example of the Sverdlovsk Oblast

  1. Biomass to levulinic acid: A techno-economic analysis and sustainability of biorefinery processes in Southeast Asia.

    Science.gov (United States)

    Isoni, V; Kumbang, D; Sharratt, P N; Khoo, H H

    2018-05-15

    Aligned with Singapore's commitment to sustainable development and investment in renewable resources, cleaner energy and technology (Sustainable Singapore Blueprint), we report a techno-economic analysis of the biorefinery process in Southeast Asia. The considerations in this study provide an overview of the current and future challenges in the biomass-to-chemical processes with life-cycle thinking, linking the land used for agriculture and biomass to the levulinic acid production. 7-8 kg of lignocellulosic feedstock (glucan content 30-35 wt%) from agriculture residues empty fruit bunches (EFB) or rice straw (RS) can be processed to yield 1 kg of levulinic acid. Comparisons of both traditional and "green" alternative solvents and separation techniques for the chemical process were modelled and their relative energy profiles evaluated. Using 2-methyltetrahydrofuran (2-MeTHF) as the process solvent showed to approx. 20 fold less energy demand compared to methyl isobutyl ketone (MIBK) or approx. 180 fold less energy demand compared to direct distillation from aqueous stream. Greenhouse gases emissions of the major operations throughout the supply chain (energy and solvent use, transport, field emissions) were estimated and compared against the impact of deforestation to make space for agriculture purposes. A biorefinery process for the production of 20 ktonne/year of levulinic acid from two different types of lignocellulosic feedstock was hypothesized for different scenarios. In one scenario the chemical plant producing levulinic acid was located in Singapore whereas in other scenarios, its location was placed in a neighboring country, closer to the biomass source. Results from this study show the importance of feedstock choices, as well as the associated plant locations, in the quest for sustainability objectives. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Techno-economic evaluation of stillage treatment with anaerobic digestion in a softwood-to-ethanol process

    Directory of Open Access Journals (Sweden)

    Barta Zsolt

    2010-09-01

    Full Text Available Abstract Background Replacing the energy-intensive evaporation of stillage by anaerobic digestion is one way of decreasing the energy demand of the lignocellulosic biomass to the ethanol process. The biogas can be upgraded and sold as transportation fuel, injected directly into the gas grid or be incinerated on-site for combined heat and power generation. A techno-economic evaluation of the spruce-to-ethanol process, based on SO2-catalysed steam pretreatment followed by simultaneous saccharification and fermentation, has been performed using the commercial flow-sheeting program Aspen Plus™. Various process configurations of anaerobic digestion of the stillage, with different combinations of co-products, have been evaluated in terms of energy efficiency and ethanol production cost versus the reference case of evaporation. Results Anaerobic digestion of the stillage showed a significantly higher overall energy efficiency (87-92%, based on the lower heating values, than the reference case (81%. Although the amount of ethanol produced was the same in all scenarios, the production cost varied between 4.00 and 5.27 Swedish kronor per litre (0.38-0.50 euro/L, including the reference case. Conclusions Higher energy efficiency options did not necessarily result in lower ethanol production costs. Anaerobic digestion of the stillage with biogas upgrading was demonstrated to be a favourable option for both energy efficiency and ethanol production cost. The difference in the production cost of ethanol between using the whole stillage or only the liquid fraction in anaerobic digestion was negligible for the combination of co-products including upgraded biogas, electricity and district heat.

  3. Techno-economic Analysis for the Thermochemical Conversion of Lignocellulosic Biomass to Ethanol via Acetic Acid Synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Yunhua; Jones, Susanne B.

    2009-04-01

    Biomass is a renewable energy resource that can be converted into liquid fuel suitable for transportation applications. As a widely available biomass form, lignocellulosic biomass can have a major impact on domestic transportation fuel supplies and thus help meet the Energy Independence and Security Act renewable energy goals (U.S. Congress 2007). This study performs a techno-economic analysis of the thermo chemical conversion of biomass to ethanol, through methanol and acetic acid, followed by hydrogenation of acetic acid to ethanol. The conversion of syngas to methanol and methanol to acetic acid are well-proven technologies with high conversions and yields. This study was undertaken to determine if this highly selective route to ethanol could provide an already established economically attractive route to ethanol. The feedstock was assumed to be wood chips at 2000 metric ton/day (dry basis). Two types of gasification technologies were evaluated: an indirectly-heated gasifier and a directly-heated oxygen-blown gasifier. Process models were developed and a cost analysis was performed. The carbon monoxide used for acetic acid synthesis from methanol and the hydrogen used for hydrogenation were assumed to be purchased and not derived from the gasifier. Analysis results show that ethanol selling prices are estimated to be $2.79/gallon and $2.81/gallon for the indirectly-heated gasifier and the directly-heated gasifier systems, respectively (1stQ 2008$, 10% ROI). These costs are above the ethanol market price for during the same time period ($1.50 - $2.50/gal). The co-production of acetic acid greatly improves the process economics as shown in the figure below. Here, 20% of the acetic acid is diverted from ethanol production and assumed to be sold as a co-product at the prevailing market prices ($0.40 - $0.60/lb acetic acid), resulting in competitive ethanol production costs.

  4. Green Hydrogen Production from Raw Biogas: A Techno-Economic Investigation of Conventional Processes Using Pressure Swing Adsorption Unit

    Directory of Open Access Journals (Sweden)

    Gioele Di Marcoberardino

    2018-02-01

    Full Text Available This paper discusses the techno-economic assessment of hydrogen production from biogas with conventional systems. The work is part of the European project BIONICO, whose purpose is to develop and test a membrane reactor (MR for hydrogen production from biogas. Within the BIONICO project, steam reforming (SR and autothermal reforming (ATR, have been identified as well-known technologies for hydrogen production from biogas. Two biogases were examined: one produced by landfill and the other one by anaerobic digester. The purification unit required in the conventional plants has been studied and modeled in detail, using Aspen Adsorption. A pressure swing adsorption system (PSA with two and four beds and a vacuum PSA (VPSA made of four beds are compared. VPSA operates at sub-atmospheric pressure, thus increasing the recovery: results of the simulations show that the performances strongly depend on the design choices and on the gas feeding the purification unit. The best purity and recovery values were obtained with the VPSA system, which achieves a recovery between 50% and 60% at a vacuum pressure of 0.1 bar and a hydrogen purity of 99.999%. The SR and ATR plants were designed in Aspen Plus, integrating the studied VPSA model, and analyzing the behavior of the systems at the variation of the pressure and the type of input biogas. The SR system achieves a maximum efficiency, calculated on the LHV, of 52% at 12 bar, while the ATR of 28% at 18 bar. The economic analysis determined a hydrogen production cost of around 5 €/kg of hydrogen for the SR case.

  5. Techno-economic study of hydrogen production by high temperature electrolysis and coupling with different thermal energy sources

    International Nuclear Information System (INIS)

    Rivera-Tinoco, R.

    2009-03-01

    This work focuses on the techno-economic study of massive hydrogen production by the High Temperature Electrolysis (HTE) process and also deals with the possibility of producing the steam needed in the process by using different thermal energy sources. Among several sources, those retained in this study are the biomass and domestic waste incineration units, as well as two nuclear reactors (European Pressurised water Reactor - EPR and Sodium Fast Reactor - SFR). Firstly, the technical evaluation of the steam production by each of these sources was carried out. Then, the design and modelling of the equipments composing the process, specially the electrolysers (Solid Oxides Electrolysis Cells), are presented. Finally, the hydrogen production cost for each energy sources coupled with the HTE process is calculated. Moreover, several sensibility studies were performed in order to determine the process key parameter and to evaluate the influence of the unit size effect, the electric energy cost, maintenance, the cells current density, their investment cost and their lifespan on the hydrogen production cost. Our results show that the thermal energy cost is much more influent on the hydrogen production cost than the steam temperature at the outlet stream of the thermal source. It seems also that the key parameters for this process are the electric energy cost and the c ells lifespan. The first one contributes for more than 70% of the hydrogen production cost. From several cell lifespan values, it seems that a 3 year value, rather than 1 year, could lead to a hydrogen production cost reduced on 34%. However, longer lifespan values going from 5 to 10 years would only lead to a 8% reduction on the hydrogen production cost. (author)

  6. Techno-economic optimisation of energy systems; Contribution a l'optimisation technico-economique de systemes energetiques

    Energy Technology Data Exchange (ETDEWEB)

    Mansilla Pellen, Ch

    2006-07-15

    The traditional approach currently used to assess the economic interest of energy systems is based on a defined flow-sheet. Some studies have shown that the flow-sheets corresponding to the best thermodynamic efficiencies do not necessarily lead to the best production costs. A method called techno-economic optimisation was proposed. This method aims at minimising the production cost of a given energy system, including both investment and operating costs. It was implemented using genetic algorithms. This approach was compared to the heat integration method on two different examples, thus validating its interest. Techno-economic optimisation was then applied to different energy systems dealing with hydrogen as well as electricity production. (author)

  7. Performance modeling and techno-economic analysis of a modular concentrated solar power tower with latent heat storage

    Energy Technology Data Exchange (ETDEWEB)

    Rea, Jonathan E.; Oshman, Christopher J.; Olsen, Michele L.; Hardin, Corey L.; Glatzmaier, Greg C.; Siegel, Nathan P.; Parilla, Philip A.; Ginley, David S.; Toberer, Eric S.

    2018-05-01

    In this paper, we present performance simulations and techno-economic analysis of a modular dispatchable solar power tower. Using a heliostat field and power block three orders of magnitude smaller than conventional solar power towers, our unique configuration locates thermal storage and a power block directly on a tower receiver. To make the system dispatchable, a valved thermosyphon controls heat flow from a latent heat thermal storage tank to a Stirling engine. The modular design results in minimal balance of system costs and enables high deployment rates with a rapid realization of economies of scale. In this new analysis, we combine performance simulations with techno-economic analysis to evaluate levelized cost of electricity, and find that the system has potential for cost-competitiveness with natural gas peaking plants and alternative dispatchable renewables.

  8. Techno-economic analysis of oxy-combustion coal-fired power plant with cryogenic oxygen storage

    OpenAIRE

    Hanak, Dawid Piotr; Manovic, Vasilije

    2017-01-01

    Around 43% of the cumulative CO2 emissions from the power sector between 2012 and 2050 could be mitigated through implementation of carbon capture and storage, and utilisation of renewable energy sources. Energy storage technologies can increase the efficiency of energy utilisation and thus should be widely deployed along with low-emission technologies. This study evaluates the techno-economic performance of cryogenic O2 storage implemented in an oxy-combustion coal-fired power plant as a mea...

  9. Recent trends on techno-economic assessment (TEA of sugarcane biorefineries

    Directory of Open Access Journals (Sweden)

    Mohsen Ali Mandegari

    2017-09-01

    Full Text Available Sustainability challenges, e.g., climate change, resource depletion, and expanding populations, have triggered a swift move towards a circular bio-economy which is expected to evolve progressively in the coming decades. However, the transition from a fossil fuel-based economy to a bio-based economy requires the exploitation of scientific innovations and step changes in the infrastructure of chemical industry. Biorefineries have been extensively investigated for biofuel production from first and second generation feedstocks, whereas some research activities have been conducted on production of biochemical and biopolymers from renewable resources. Techno-economic evaluation of diverse technologies for production of biofuels and biochemical is a crucial step for decision making in the development of bio-economy. This contribution focuses on the economic studies carried out on biorefineries converting sugarcane bagasse, due to its availability and importance in the South African context, into value-added products. Recent studies on biofuel production via biochemical pathway, e.g., ethanol, butanol, or thermochemical pathway, e.g., methanol and bio jet fuel as well as production of biochemicals with high market demands and diverse applications such as lactic acid, succinic acid, and xylitol have been briefly reviewed. In addition, an overview on the production of biopolymers such as polyl-lactic acid and bio-based monomers, i.e., butanediol, from sugarcane bagasse is reported.

  10. Techno-economic comparison of biojet fuel production from lignocellulose, vegetable oil and sugar cane juice.

    Science.gov (United States)

    Diederichs, Gabriel Wilhelm; Ali Mandegari, Mohsen; Farzad, Somayeh; Görgens, Johann F

    2016-09-01

    In this study, a techno-economic comparison was performed considering three processes (thermochemical, biochemical and hybrid) for production of jet fuel from lignocellulosic biomass (2G) versus two processes from first generation (1G) feedstocks, including vegetable oil and sugar cane juice. Mass and energy balances were constructed for energy self-sufficient versions of these processes, not utilising any fossil energy sources, using ASPEN Plus® simulations. All of the investigated processes obtained base minimum jet selling prices (MJSP) that is substantially higher than the market jet fuel price (2-4 fold). The 1G process which converts vegetable oil, obtained the lowest MJSPs of $2.22/kg jet fuel while the two most promising 2G processes- the thermochemical (gasification and Fischer-Tropsch synthesis) and hybrid (gasification and biochemical upgrading) processes- reached MJSPs of $2.44/kg and $2.50/kg jet fuel, respectively. According to the economic sensitivity analysis, the feedstock cost and fixed capital investment have the most influence on the MJSP. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Techno-Economic Assessment of Redundancy Systems for a Cogeneration Plant

    Directory of Open Access Journals (Sweden)

    Majid Mohd Amin Abd

    2014-07-01

    Full Text Available The use of distributed power generation has advantage as well as disadvantage. One of the disadvantages is that the plant requires a dependable redundancy system to provide back up of power during failure of its power generation equipment. This paper presents a study on techno-economic assessment of redundancy systems for a cogeneration plant. Three redundancy systems were investigated; using public utility, generator set and gas turbine as back up during failures. Results from the analysis indicate that using public utility provides technical as well as economic advantages in comparison to using generator set or turbine as back up. However, the economic advantage of the public utility depends on the frequency of failures the plant will experience as well on the maximum demand charge. From the break even analysis of the understudied plant, if the number of failures exceeds 3 failures per year for the case of maximum demand charge of RM56.80, it is more economical to install a generator set as redundancy. The study will be useful for the co-generator operators to evaluate the feasibility of redundancy systems.

  12. Techno-economic Analysis of a Wind-Diesel Hybrid Power System in the South Algeria

    Directory of Open Access Journals (Sweden)

    Khaireddine Allali

    2015-07-01

    Full Text Available The electrical energy is often produced with the help of diesel generators in isolated areas in the Saharan region. While the latter requiring relatively little investment because is generally expensive to exploit due to the transportation to remote areas adds extra cost, significant fuel consumption and relatively high maintenance cost, etc. Moreover, the electricity production by the diesel is ineffective, presents significant environmental risks. But these isolated areas have significant wind energy potential; which is good position for the exploitation of clean and sustainable wind energy. The use of wind-diesel power system is widely recommended especially to reduce fuel consumption and in this way to reduce system operating costs and environmental impact. The subject of this paper is to present the techno-economic analysis of a wind-diesel hybrid power system. In this context, the contribution envisaged with this research is to collaborate on the optimal design of a hybrid power system including a wind turbine generator, a diesel generator and an energy storage system for powering a continuous way an isolated site in the South Algerian installed power of 120 kW.This system has a high control strategy for the management of different power sources (wind, diesel, battery that depending to weather conditions, especially wind speed values and the power demanded by the consumer load.

  13. Techno-economic analysis of biodiesel production from Jatropha curcas via a supercritical methanol process

    International Nuclear Information System (INIS)

    Yusuf, N.N.A.N.; Kamarudin, S.K.

    2013-01-01

    Highlights: • This paper presents the techno-economic of a production of biodiesel from JCO. • The results obtained 99.96% of biodiesel with 96.49% of pure glycerol. • This proved that biodiesel from JCO is the least expensive compare to other resources. - Abstract: This paper presents the conceptual design and economic evaluation of a production of methyl esters (biodiesel) from Jatropha curcas oil (JCO) via a supercritical methanol process with glycerol as a by-product. The process consists of four major units: transesterification (PFR), methanol recovery (FT) and (DC1), recovery of glycerol (DEC), and biodiesel purification (DC2). The material and heat balance are also presented here. A biodiesel production of 40,000 tonnes-yr −1 is taken as case study. Biodiesel obtained from supercritical transesterification with Jatropha curcas oil as feedstock resulting in high purity methyl esters (99.96%) with almost pure glycerol (96.49%) obtained as by-product. The biodiesel can be sold at USD 0.78 kg −1 , while the manufacturing and capital investment costs are in the range of USD 25.39 million-year −1 and USD 9.41 million year −1 , respectively. This study proved that biodiesel from JCO is the least expensive with purities comparable to those found in other studies

  14. Techno-Economic Analysis of Biomass Fast Pyrolysis to Transportation Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Wright, M. M.; Satrio, J. A.; Brown, R. C.; Daugaard, D. E.; Hsu, D. D.

    2010-11-01

    This study develops techno-economic models for assessment of the conversion of biomass to valuable fuel products via fast pyrolysis and bio-oil upgrading. The upgrading process produces a mixture of naphtha-range (gasoline blend stock) and diesel-range (diesel blend stock) products. This study analyzes the economics of two scenarios: onsite hydrogen production by reforming bio-oil, and hydrogen purchase from an outside source. The study results for an nth plant indicate that petroleum fractions in the naphtha distillation range and in the diesel distillation range are produced from corn stover at a product value of $3.09/gal ($0.82/liter) with onsite hydrogen production or $2.11/gal ($0.56/liter) with hydrogen purchase. These values correspond to a $0.83/gal ($0.21/liter) cost to produce the bio-oil. Based on these nth plant numbers, product value for a pioneer hydrogen-producing plant is about $6.55/gal ($1.73/liter) and for a pioneer hydrogen-purchasing plant is about $3.41/gal ($0.92/liter). Sensitivity analysis identifies fuel yield as a key variable for the hydrogen-production scenario. Biomass cost is important for both scenarios. Changing feedstock cost from $50-$100 per short ton changes the price of fuel in the hydrogen production scenario from $2.57-$3.62/gal ($0.68-$0.96/liter).

  15. Kinetic study and techno-economic indicators for base catalyzed transesterification of Jatropha oil

    Directory of Open Access Journals (Sweden)

    Tarik M. Labib

    2013-06-01

    Full Text Available Fatty acid methyl ester (biodiesel has been identified as biodiesel alternative fuel obtained from renewable sources. Efforts in Egypt are directed toward the development of new non-edible sources. At the forefront of these non-edible sources comes Jatropha curcas oil (JCO because it has been grown successfully in Egypt using primary treated municipal wastewater for irrigation. Based on previous research findings for the production of biodiesel from (JCO using heterogeneous catalyst, some kinetic data on the transesterification reaction were provided. This was achieved by conducting the reaction at various temperatures, reaction time, and dose of catalyst and reactant molar ratios. The transesterification reaction was observed with regard to the percent biodiesel yield versus time and the reaction order was found to be a first order reaction rate equation. Techno-economic indicators revealed that the price of biodiesel produced by heterogeneous base catalyzed method was $0.665/L with a gross profit per year of $37,403,643.

  16. Integration of Microalgae-Based Bioenergy Production into a Petrochemical Complex: Techno-Economic Assessment

    Directory of Open Access Journals (Sweden)

    Ana L. Gonçalves

    2016-03-01

    Full Text Available The rapid development of modern society has resulted in an increased demand for energy, mainly from fossil fuels. The use of this source of energy has led to the accumulation of carbon dioxide (CO2 in the atmosphere. In this context, microalgae culturing may be an effective solution to reduce the CO2 concentration in the atmosphere, since these microorganisms can capture CO2 and, simultaneously, produce bioenergy. This work consists of a techno-economic assessment of a microalgal production facility integrated in a petrochemical complex, in which established infrastructure allows efficient material and energy transport. Seven different scenarios were considered regarding photosynthetic, lipids extraction and anaerobic digestion efficiencies. This analysis has demonstrated six economically viable scenarios able to: (i reduce CO2 emissions from a thermoelectric power plant; (ii treat domestic wastewaters (which were used as culture medium; and (iii produce lipids and electrical and thermal energy. For a 100-ha facility, considering a photosynthetic efficiency of 3%, a lipids extraction efficiency of 75% and an anaerobic digestion efficiency of 45% (scenario 3, an economically viable process was obtained (net present value of 22.6 million euros, being effective in both CO2 removal (accounting for 1.1 × 104 t per year and energy production (annual energy produced was 1.6 × 107 kWh and annual lipids productivity was 1.9 × 103 m3.

  17. Techno-economic analysis of seawater desalination using high temperature gas cooled reactor

    International Nuclear Information System (INIS)

    Wu Linchun; Qin Zhenya

    2001-01-01

    Our world, including China (especially in big cities and foreland), is facing the increased global shortage of potable water and pollution of water. It is ideal to promote seawater desalination to satisfy the potable water demand in these areas. Among the various processes, MED, RO and VC have proven well developed and promising. Due to the inherent safety and its vapor produced with high parameters and features of small size and modular design, HTGR (High Temperature Gas-cooled Reactor) of 2x200MW is chosen as the energy source for the desalination in dual production of clean water and power. This paper discusses the techno-economic feasibility of different seawater desalting systems using 2x200MW HTGR in the areas mentioned above, that is, ST-MED (Steam Turbine Cycle), RO, MED/TVC, RO/MED and GT-MED (Gas Turbine Cycle). The exergy concept is used in calculating availability to get cost of energy in desalination, and power credit method is used in economic assessment of different systems to get reasonable evaluating, while economic-life levelized cost method is adopted for calculating electricity cost of referred HTGR plant. In addition, sensitivity analysis on ST-MED economy is also presented. (author)

  18. Solar photo voltaics powered seawater desalination plants and their techno-economics

    Energy Technology Data Exchange (ETDEWEB)

    Kumaravel, M.; Sulochana, K.; Saravanan, G. [CEC, Indian Inst. of Technology, Madras (India); Gopalaswami, R.

    2008-07-01

    Acute scarcity of surface water resources and rapidly falling underground water levels in many regions of the world, have created a compelling need for new fresh water resources, especially for population and industries located in coastal regions. The oceans are mankind's only reliable and perennial source of water. Seawater Desalination by the Reverse Osmosis (SWRO) process is currently the most cost-effective technology for small as well as large-scale fresh water production from seawater. Due to depletion of fossil fuel reserves, increasing interest is being expressed in the use of Renewable Energy (RE) sources for seawater desalination and amongst the RE Sources, Solar Photo Voltaics (SPV) power is considered as a viable option. The techno-economics both in standalone mode and in PV-biodiesel hybrid mode for capacities from 0.05 MLD to 300 MLD are examined here. As a Technology Demonstrator, a plant of 500 litre /day capacity has been designed, installed and functional at Indian Institute of Technology Madras. (orig.)

  19. Techno-economic and Life Cycle Assessment of methane production via biogas upgrading and power to gas technology

    International Nuclear Information System (INIS)

    Collet, Pierre; Flottes, Eglantine; Favre, Alain; Raynal, Ludovic; Pierre, Hélène; Capela, Sandra; Peregrina, Carlos

    2017-01-01

    Highlights: • CH 4 production from Power to Gas and upgrading technologies have been assessed. • Both environmental and economic assessments of have been done. • We perform sensitivity analyses to identify key parameters. - Abstract: To decrease the use of fossil fuels and face the energetic demand, the integration of renewable energy is a necessary step. Part of this renewable energy can be supplied by the production of electricity from photovoltaic panels and windfarms. The massive use of these intermittent energies will lead to overproduction periods, and there is consequently a need to convert this surplus of electricity into a storable form of energy. Power-to-gas (PtG) technology consists in using electricity to convert water into hydrogen by electrolysis, and then to synthetize methane from carbon dioxide and hydrogen. Techno-economic and Life Cycle Assessment of methane production via the combination of anaerobic digestion and PtG technology have been applied to sewage sludge valorization. Process studies and equipment design have been addressed considering already available technologies. Sensitivity analyses have been done on biogas upgrading technologies, electricity prices, annual operation time and composition of the electricity mix with also a comparison between PtG and direct injection. It appears that the more the electricity is expensive, the longer the operation time of the methanation process must be to be competitive with injection of methane from biogas. Reduction of electricity consumption of the electrolysis step decreases production costs. Even if the current context does not feature adapted conditions to ensure an economically viable chain, the evolution of the energetic context in the next few years as well as the expected technological improvements will contribute to overall cost reduction. From an environmental point of view, continuous PtG generates more greenhouse gases than direct injection, but intermittent operation with use of

  20. Synthetic spider silk sustainability verification by techno-economic and life cycle analysis

    Science.gov (United States)

    Edlund, Alan

    Major ampullate spider silk represents a promising biomaterial with diverse commercial potential ranging from textiles to medical devices due to the excellent physical and thermal properties from the protein structure. Recent advancements in synthetic biology have facilitated the development of recombinant spider silk proteins from Escherichia coli (E. coli), alfalfa, and goats. This study specifically investigates the economic feasibility and environmental impact of synthetic spider silk manufacturing. Pilot scale data was used to validate an engineering process model that includes all of the required sub-processing steps for synthetic fiber manufacture: production, harvesting, purification, drying, and spinning. Modeling was constructed modularly to support assessment of alternative protein production methods (alfalfa and goats) as well as alternative down-stream processing technologies. The techno-economic analysis indicates a minimum sale price from pioneer and optimized E. coli plants at 761 kg-1 and 23 kg-1 with greenhouse gas emissions of 572 kg CO2-eq. kg-1 and 55 kg CO2-eq. kg-1, respectively. Spider silk sale price estimates from goat pioneer and optimized results are 730 kg-1 and 54 kg-1, respectively, with pioneer and optimized alfalfa plants are 207 kg-1 and 9.22 kg-1 respectively. Elevated costs and emissions from the pioneer plant can be directly tied to the high material consumption and low protein yield. Decreased production costs associated with the optimized plants include improved protein yield, process optimization, and an Nth plant assumption. Discussion focuses on the commercial potential of spider silk, the production performance requirements for commercialization, and impact of alternative technologies on the sustainability of the system.

  1. The techno-economic optimization of a 100MWe CSP-desalination plant in Arandis, Namibia

    Science.gov (United States)

    Dall, Ernest P.; Hoffmann, Jaap E.

    2017-06-01

    Energy is a key factor responsible for a country's economic growth and prosperity. It is closely related to the main global challenges namely: poverty mitigation, global environmental change and food and water security [1.]. Concentrating solar power (CSP) is steadily gaining more market acceptance as the cost of electricity from CSP power plants progressively declines. The cogeneration of electricity and water is an attractive prospect for future CSP developments as the simultaneous production of power and potable water can have positive economic implications towards increasing the feasibility of CSP plant developments [2.]. The highest concentrations of direct normal irradiation are located relatively close to Western coastal and Middle-Eastern North-African regions. It is for this reason worthwhile investigating the possibility of CSP-desalination (CSP+D) plants as a future sustainable method for providing both electricity and water with significantly reduced carbon emissions and potential cost reductions. This study investigates the techno-economic feasibility of integrating a low-temperature thermal desalination plant to serve as the condenser as opposed to a conventional dry-cooled CSP plant in Arandis, Namibia. It outlines the possible benefits of the integration CSP+D in terms of overall cost of water and electricity. The high capital costs of thermal desalination heat exchangers as well as the pumping of seawater far inland is the most significant barrier in making this approach competitive against more conventional desalination methods such as reverse osmosis. The compromise between the lowest levelized cost of electricity and water depends on the sizing and the top brine temperature of the desalination plant.

  2. Environmental life cycle assessment and techno-economic analysis of triboelectric nanogenerators

    KAUST Repository

    Ahmed, Abdelsalam

    2017-02-22

    As the world economy grows and industrialization of the developing countries increases, the demand for energy continues to rise. Triboelectric nanogenerators (TENGs) have been touted as having great potential for low-carbon, non-fossil fuel energy generation. Mechanical energies from, amongst others, body motion, vibration, wind and waves are captured and converted by TENGs to harvest electricity, thereby minimizing global fossil fuel consumption. However, only by ascertaining performance efficiency along with low material and manufacturing costs as well as a favorable environmental profile in comparison with other energy harvesting technologies, can the true potential of TENGs be established. This paper presents a detailed techno-economic lifecycle assessment of two representative examples of TENG modules, one with a high performance efficiency (Module A) and the other with a lower efficiency (Module B) both fabricated using low-cost materials. The results are discussed across a number of sustainability metrics in the context of other energy harvesting technologies, notably photovoltaics. Module A possesses a better environmental profile, lower cost of production, lower CO2 emissions and shorter energy payback period (EPBP) compared to Module B. However, the environmental profile of Module B is slightly degraded due to the higher content of acrylic in its architecture and higher electrical energy consumption during fabrication. The end of life scenario of acrylic is environmentally viable given its recyclability and reuse potential and it does not generate toxic gases that are harmful to humans and the environment during combustion processes due to its stability during exposure to ultraviolet radiation. Despite the adoption of a less optimum laboratory manufacturing route, TENG modules generally have a better environmental profile than commercialized Si based and organic solar cells, but Module B has a slightly higher energy payback period than PV technology based

  3. Carbon felt and carbon fiber - A techno-economic assessment of felt electrodes for redox flow battery applications

    Science.gov (United States)

    Minke, Christine; Kunz, Ulrich; Turek, Thomas

    2017-02-01

    Carbon felt electrodes belong to the key components of redox flow batteries. The purpose of this techno-economic assessment is to uncover the production costs of PAN- and rayon-based carbon felt electrodes. Raw material costs, energy demand and the impact of processability of fiber and felt are considered. This innovative, interdisciplinary approach combines deep insights into technical, ecologic and economic aspects of carbon felt and carbon fiber production. Main results of the calculation model are mass balances, cumulative energy demands (CED) and the production costs of conventional and biogenic carbon felts supplemented by market assessments considering textile and carbon fibers.

  4. Techno-Economic Basis for Coproduct Manufacturing To Enable Hydrocarbon Fuel Production from Lignocellulosic Biomass

    Energy Technology Data Exchange (ETDEWEB)

    Biddy, Mary J.; Davis, Ryan; Humbird, David; Tao, Ling; Dowe, Nancy; Guarnieri, Michael T.; Linger, Jeffrey G.; Karp, Eric M.; Salvachua, Davinia; Vardon, Derek R.; Beckham, Gregg T.

    2016-06-06

    Biorefinery process development relies on techno-economic analysis (TEA) to identify primary cost drivers, prioritize research directions, and mitigate technical risk for scale-up through development of detailed process designs. Here, we conduct TEA of a model 2000 dry metric ton-per-day lignocellulosic biorefinery that employs a two-step pretreatment and enzymatic hydrolysis to produce biomass-derived sugars, followed by biological lipid production, lipid recovery, and catalytic hydrotreating to produce renewable diesel blendstock (RDB). On the basis of projected near-term technical feasibility of these steps, we predict that RDB could be produced at a minimum fuel selling price (MFSP) of USD $9.55/gasoline-gallon-equivalent (GGE), predicated on the need for improvements in the lipid productivity and yield beyond current benchmark performance. This cost is significant given the limitations in scale and high costs for aerobic cultivation of oleaginous microbes and subsequent lipid extraction/recovery. In light of this predicted cost, we developed an alternative pathway which demonstrates that RDB costs could be substantially reduced in the near term if upgradeable fractions of biomass, in this case hemicellulose-derived sugars, are diverted to coproducts of sufficient value and market size; here, we use succinic acid as an example coproduct. The coproduction model predicts an MFSP of USD $5.28/GGE when leaving conversion and yield parameters unchanged for the fuel production pathway, leading to a change in biorefinery RDB capacity from 24 to 15 MM GGE/year and 0.13 MM tons of succinic acid per year. Additional analysis demonstrates that beyond the near-term projections assumed in the models here, further reductions in the MFSP toward $2-3/GGE (which would be competitive with fossil-based hydrocarbon fuels) are possible with additional transformational improvements in the fuel and coproduct trains, especially in terms of carbon efficiency to both fuels and

  5. Uncertainty in techno-economic estimates of cellulosic ethanol production due to experimental measurement uncertainty

    Directory of Open Access Journals (Sweden)

    Vicari Kristin J

    2012-04-01

    Full Text Available Abstract Background Cost-effective production of lignocellulosic biofuels remains a major financial and technical challenge at the industrial scale. A critical tool in biofuels process development is the techno-economic (TE model, which calculates biofuel production costs using a process model and an economic model. The process model solves mass and energy balances for each unit, and the economic model estimates capital and operating costs from the process model based on economic assumptions. The process model inputs include experimental data on the feedstock composition and intermediate product yields for each unit. These experimental yield data are calculated from primary measurements. Uncertainty in these primary measurements is propagated to the calculated yields, to the process model, and ultimately to the economic model. Thus, outputs of the TE model have a minimum uncertainty associated with the uncertainty in the primary measurements. Results We calculate the uncertainty in the Minimum Ethanol Selling Price (MESP estimate for lignocellulosic ethanol production via a biochemical conversion process: dilute sulfuric acid pretreatment of corn stover followed by enzymatic hydrolysis and co-fermentation of the resulting sugars to ethanol. We perform a sensitivity analysis on the TE model and identify the feedstock composition and conversion yields from three unit operations (xylose from pretreatment, glucose from enzymatic hydrolysis, and ethanol from fermentation as the most important variables. The uncertainty in the pretreatment xylose yield arises from multiple measurements, whereas the glucose and ethanol yields from enzymatic hydrolysis and fermentation, respectively, are dominated by a single measurement: the fraction of insoluble solids (fIS in the biomass slurries. Conclusions We calculate a $0.15/gal uncertainty in MESP from the TE model due to uncertainties in primary measurements. This result sets a lower bound on the error bars of

  6. Techno-economic evaluation of concentrating solar power generation in India

    International Nuclear Information System (INIS)

    Purohit, Ishan; Purohit, Pallav

    2010-01-01

    The Jawaharlal Nehru National Solar Mission (JNNSM) of the recently announced National Action Plan on Climate Change (NAPCC) by the Government of India aims to promote the development and use of solar energy for power generation and other uses with the ultimate objective of making solar competitive with fossil-based energy options. The plan includes specific goals to (a) create an enabling policy framework for the deployment of 20,000 MW of solar power by 2022; (b) create favourable conditions for solar manufacturing capability, particularly solar thermal for indigenous production and market leadership; (c) promote programmes for off grid applications, reaching 1000 MW by 2017 and 2000 MW by 2022, (d) achieve 15 million m 2 solar thermal collector area by 2017 and 20 million by 2022, and (e) deploy 20 million solar lighting systems for rural areas by 2022. The installed capacity of grid interactive solar power projects were 6 MW until October 2009 that is far below from their respective potential. In this study, a preliminary attempt towards the technical and economic assessment of concentrating solar power (CSP) technologies in India has been made. To analyze the techno-economic feasibility of CSP technologies in Indian conditions two projects namely PS-10 (based on power tower technology) and ANDASOL-1 (based on parabolic trough collector technology) have been taken as reference cases for this study. These two systems have been simulated at several Indian locations. The preliminary results indicate that the use of CSP technologies in India make financial sense for the north-western part of the country (particularly in Rajasthan and Gujarat states). Moreover, internalization of secondary benefits of carbon trading under clean development mechanism of the Kyoto Protocol further improves the financial feasibility of CSP systems at other locations considered in this study. It may be noted that the locations blessed with annual direct solar radiation more than 1800 k

  7. Methanol synthesis using captured CO2 as raw material: Techno-economic and environmental assessment

    International Nuclear Information System (INIS)

    Pérez-Fortes, Mar; Schöneberger, Jan C.; Boulamanti, Aikaterini; Tzimas, Evangelos

    2016-01-01

    Highlights: • A carbon utilisation plant that synthesise methanol is simulated in CHEMCAD. • The total amount of CO 2 demand is 1.46 t/t methanol . • The CO 2 not-produced compared to a conventional plant is 0.54 t/t methanol . • Production costs results too high for a financially attractive project. • There is a net potential for CO 2 emissions reduction of 2.71 MtCO 2 /yr in Europe. - Abstract: The purpose of this paper is to assess via techno-economic and environmental metrics the production of methanol (MeOH) using H 2 and captured CO 2 as raw materials. It evaluates the potential of this type of carbon capture and utilisation (CCU) plant on (i) the net reduction of CO 2 emissions and (ii) the cost of production, in comparison with the conventional synthesis process of MeOH Europe. Process flow modelling is used to estimate the operational performance and the total purchased equipment cost; the flowsheet is implemented in CHEMCAD, and the obtained mass and energy flows are utilised as input to calculate the selected key performance indicators (KPIs). CO 2 -based metrics are used to assess the environmental impact. The evaluated MeOH plant produces 440 ktMeOH/yr, and its configuration is the result of a heat integration process. Its specific capital cost is lower than for conventional plants. However, raw materials prices, i.e. H 2 and captured CO 2 , do not allow such a project to be financially viable. In order to make the CCU plant financially attractive, the price of MeOH should increase in a factor of almost 2, or H 2 costs should decrease almost 2.5 times, or CO 2 should have a value of around 222 €/t, under the assumptions of this work. The MeOH CCU-plant studied can utilise about 21.5% of the CO 2 emissions of a pulverised coal (PC) power plant that produces 550 MW net of electricity. The net CO 2 emissions savings represent 8% of the emissions of the PC plant (mainly due to the avoidance of consuming fossil fuels as in the conventional Me

  8. Materials, system designs and modelling approaches in techno-economic assessment of all-vanadium redox flow batteries - A review

    Science.gov (United States)

    Minke, Christine; Turek, Thomas

    2018-02-01

    The vanadium redox flow battery (VFB) is one of the most promising stationary electrochemical storage systems. The reduction of system costs is a major challenge in the realization of its widespread application. The high complexity of this technology requires a close linking of technologic and economic aspects in system cost assessment. The present review provides an extensive literature analysis with a focus on techno-economic assessment of VFB. Considered materials, system designs and modelling approaches are assessed and compared in order to present and evaluate the current status of system cost assessment in a transparent way. Systems in a range of 2 kW-50 MW providing energy for up to 150 h are covered in literature resulting in an immense range of specific total system costs of 564-12931 € kW-1 or 89-1738 € (kWh)-1. Based on the data from the reviewed studies, guide values of 650 € (kWh)-1 and 550 € (kWh)-1 for installed VFB systems in a power range of 10-1000 kW providing energy for 4 h and 8 h respectively are derived from literature. Moreover, the relevance of precision in the definition of scope and components for meaningful results of techno-economic assessments of VFB systems is pointed out.

  9. Techno-economic and uncertainty analysis of in situ and ex situ fast pyrolysis for biofuel production

    Energy Technology Data Exchange (ETDEWEB)

    Li, Boyan; Ou, Longwen; Dang, Qi; Meyer, Pimphan A.; Jones, Susanne B.; Brown, Robert C.; Wright, Mark

    2015-11-01

    This study evaluates the techno-economic uncertainty in cost estimates for two emerging biorefinery technologies for biofuel production: in situ and ex situ catalytic pyrolysis. Stochastic simulations based on process and economic parameter distributions are applied to calculate biorefinery performance and production costs. The probability distributions for the minimum fuel-selling price (MFSP) indicate that in situ catalytic pyrolysis has an expected MFSP of $4.20 per gallon with a standard deviation of 1.15, while the ex situ catalytic pyrolysis has a similar MFSP with a smaller deviation ($4.27 per gallon and 0.79 respectively). These results suggest that a biorefinery based on ex situ catalytic pyrolysis could have a lower techno-economic risk than in situ pyrolysis despite a slightly higher MFSP cost estimate. Analysis of how each parameter affects the NPV indicates that internal rate of return, feedstock price, total project investment, electricity price, biochar yield and bio-oil yield are significant parameters which have substantial impact on the MFSP for both in situ and ex situ catalytic pyrolysis.

  10. Comparative techno-economic analysis of steam explosion, dilute sulfuric acid, ammonia fiber explosion and biological pretreatments of corn stover.

    Science.gov (United States)

    Baral, Nawa Raj; Shah, Ajay

    2017-05-01

    Pretreatment is required to destroy recalcitrant structure of lignocelluloses and then transform into fermentable sugars. This study assessed techno-economics of steam explosion, dilute sulfuric acid, ammonia fiber explosion and biological pretreatments, and identified bottlenecks and operational targets for process improvement. Techno-economic models of these pretreatment processes for a cellulosic biorefinery of 113.5 million liters butanol per year excluding fermentation and wastewater treatment sections were developed using a modelling software-SuperPro Designer. Experimental data of the selected pretreatment processes based on corn stover were gathered from recent publications, and used for this analysis. Estimated sugar production costs ($/kg) via steam explosion, dilute sulfuric acid, ammonia fiber explosion and biological methods were 0.43, 0.42, 0.65 and 1.41, respectively. The results suggest steam explosion and sulfuric acid pretreatment methods might be good alternatives at present state of technology and other pretreatment methods require research and development efforts to be competitive with these pretreatment methods. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Hydrothermal Liquefaction and Upgrading of Municipal Wastewater Treatment Plant Sludge: A Preliminary Techno-Economic Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Snowden-Swan, Lesley J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhu, Yunhua [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Jones, Susanne B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Elliott, Douglas C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Schmidt, Andrew J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hallen, Richard T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Billing, Justin M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hart, Todd R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Fox, Samuel P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Maupin, Gary D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-06-08

    A preliminary process model and techno-economic analysis (TEA) was completed for fuel produced from hydrothermal liquefaction (HTL) of sludge waste from a municipal wastewater treatment plant (WWTP) and subsequent biocrude upgrading. The model is adapted from previous work by Jones et al. (2014) for algae HTL, using experimental data generated in fiscal year 2015 (FY15) bench-scale HTL testing of sludge waste streams. Testing was performed on sludge samples received from MetroVancouver’s Annacis Island WWTP (Vancouver, B.C.) as part of a collaborative project with the Water Environment and Reuse Foundation (WERF). The full set of sludge HTL testing data from this effort will be documented in a separate report to be issued by WERF. This analysis is based on limited testing data and therefore should be considered preliminary. Future refinements are necessary to improve the robustness of the model, including a cross-check of modeled biocrude components with the experimental GCMS data and investigation of equipment costs most appropriate at the smaller scales used here. Environmental sustainability metrics analysis is also needed to understand the broader impact of this technology pathway. The base case scenario for the analysis consists of 10 HTL plants, each processing 100 dry U.S. ton/day (92.4 ton/day on a dry, ash-free basis) of sludge waste and producing 234 barrel per stream day (BPSD) biocrude, feeding into a centralized biocrude upgrading facility that produces 2,020 barrel per standard day of final fuel. This scale was chosen based upon initial wastewater treatment plant data collected by the resource assessment team from the EPA’s Clean Watersheds Needs Survey database (EPA 2015a) and a rough estimate of what the potential sludge availability might be within a 100-mile radius. In addition, we received valuable feedback from the wastewater treatment industry as part of the WERF collaboration that helped form the basis for the selected HTL and upgrading

  12. Techno-economical study of solar energy technologies in Russia and in Israel and development of conceptions for the use of solar energy in various fields

    International Nuclear Information System (INIS)

    Wolf, D.; Saksonov, G.; Kiselman, U.; Shpielrain, E.

    1993-01-01

    A techno-economical study was made on the Russian and Israeli solar energy research and development and application. The main objective were to evaluate the present state of art in both countries and to identify topics of mutual interest for cooperation on research and development and application including commercialization. The Israeli and Russian teams have visited many institutions and have consulted with many people involved in solar energy work, and have analyzed the following main topics: Low potential solar heat, electricity production via thermodynamic cycles, electricity production via photovoltaic cells and solar energy for technological processes. A wide variety of subjects were identified to have potential for cooperation, and a number of institutes and scientists and engineers have expressed interest in joint work. In the proposed course of action we gave higher priorities for cooperation on photovoltaic cells, parabolic troughs and DSG development, solar tower and high temperature technology, solar collectors and heating and cooling systems. Except perhaps for water heating, the economic analysis shows marginal to poor economics for solar energy utilization. Depending on fuel costs and additional restrictions planned on fuels combustion, the economics may change in some cases, for example for solar ponds. (authors)

  13. Process simulation and techno economic analysis of renewable diesel production via catalytic decarboxylation of rubber seed oil - A case study in Malaysia.

    Science.gov (United States)

    Cheah, Kin Wai; Yusup, Suzana; Gurdeep Singh, Haswin Kaur; Uemura, Yoshimitsu; Lam, Hon Loong

    2017-12-01

    This work describes the economic feasibility of hydroprocessed diesel fuel production via catalytic decarboxylation of rubber seed oil in Malaysia. A comprehensive techno-economic assessment is developed using Aspen HYSYS V8.0 software for process modelling and economic cost estimates. The profitability profile and minimum fuels selling price of this synthetic fuels production using rubber seed oil as biomass feedstock are assessed under a set of assumptions for what can be plausibly be achieved in 10-years framework. In this study, renewable diesel processing facility is modelled to be capable of processing 65,000 L of inedible oil per day and producing a total of 20 million litre of renewable diesel product per annual with assumed annual operational days of 347. With the forecasted renewable diesel retail price of 3.64 RM per kg, the pioneering renewable diesel project investment offers an assuring return of investment of 12.1% and net return as high as 1.35 million RM. Sensitivity analysis conducted showed that renewable diesel production cost is most sensitive to rubber seed oil price and hydrogen gas price, reflecting on the relative importance of feedstock prices in the overall profitability profile. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Techno-economic and behavioural analysis of battery electric, hydrogen fuel cell and hybrid vehicles in a future sustainable road transport system in the UK

    International Nuclear Information System (INIS)

    Offer, G.J.; Contestabile, M.; Howey, D.A.; Clague, R.; Brandon, N.P.

    2011-01-01

    This paper conducts a techno-economic study on hydrogen Fuel Cell Electric Vehicles (FCV), Battery Electric Vehicles (BEV) and hydrogen Fuel Cell plug-in Hybrid Electric Vehicles (FCHEV) in the UK using cost predictions for 2030. The study includes an analysis of data on distance currently travelled by private car users daily in the UK. Results show that there may be diminishing economic returns for Plug-in Hybrid Electric Vehicles (PHEV) with battery sizes above 20 kWh, and the optimum size for a PHEV battery is between 5 and 15 kWh. Differences in behaviour as a function of vehicle size are demonstrated, which decreases the percentage of miles that can be economically driven using electricity for a larger vehicle. Decreasing carbon dioxide emissions from electricity generation by 80% favours larger optimum battery sizes as long as carbon is priced, and will reduce emissions considerably. However, the model does not take into account reductions in carbon dioxide emissions from hydrogen generation, assuming hydrogen will still be produced from steam reforming methane in 2030. - Research highlights: → Report diminishing returns for plug-in hybrids with battery sizes above 20 kWh. → The optimum size for a PHEV battery is between 5 and 15 kWh. → Current behaviour decreases percentage electric only miles for larger vehicles. → Low carbon electricity favours larger battery sizes as long as carbon is priced. → Reinforces that the FCHEV is a cheaper option than conventional ICE vehicles in 2030.

  15. NEMO. A novel techno-economic tool suite for simulating and optimizing solutions for grid integration of electric vehicles and charging stations

    Energy Technology Data Exchange (ETDEWEB)

    Erge, Thomas; Stillahn, Thies; Dallmer-Zerbe, Kilian; Wille-Haussmann, Bernhard [Frauenhofer Institut for Solar Energy Systems ISE, Freiburg (Germany)

    2013-07-01

    With an increasing use of electric vehicles (EV) grid operators need to predict energy flows depending on electromobility use profiles to accordingly adjust grid infrastructure and operation control accordingly. Tools and methodologies are required to characterize grid problems resulting from the interconnection of EV with the grid. The simulation and optimization tool suite NEMO (Novel E-MObility grid model) was developed within a European research project and is currently being tested using realistic showcases. It is a combination of three professional tools. One of the tools aims at a combined techno-economic design and operation, primarily modeling plants on contracts or the spot market, at the same time participating in balancing markets. The second tool is designed for planning grid extension or reinforcement while the third tool is mainly used to quickly discover potential conflicts of grid operation approaches through load flow analysis. The tool suite is used to investigate real showcases in Denmark, Germany and the Netherlands. First studies show that significant alleviation of stress on distribution grid lines could be achieved by few but intelligent restrictions to EV charging procedures.

  16. Techno-economic assessment of membrane assisted fluidized bed reactors for pure H2 production with CO2 capture

    International Nuclear Information System (INIS)

    Spallina, V.; Pandolfo, D.; Battistella, A.; Romano, M.C.; Van Sint Annaland, M.; Gallucci, F.

    2016-01-01

    Highlights: • Membrane reactors improve the overall efficiency of H 2 production up to 20%. • Respect to conventional reforming, the H 2 yield increases from 12% to 20%. • The COH is reduced of at least 220% using membrane reactors. • FBMR capture 72% of CO 2 with a specific cost of 8 eur/tonn CO2. • MA-CLR can reach 90% of CO 2 avoided with same cost of FTR. - Abstract: This paper addresses the techno-economic assessment of two membrane-based technologies for H 2 production from natural gas, fully integrated with CO 2 capture. In the first configuration, a fluidized bed membrane reactor (FBMR) is integrated in the H 2 plant: the natural gas reacts with steam in the catalytic bed and H 2 is simultaneously separated using Pd-based membranes, and the heat of reaction is provided to the system by feeding air as reactive sweep gas in part of the membranes and by burning part of the permeated H 2 (in order to avoid CO 2 emissions for heat supply). In the second system, named membrane assisted chemical looping reforming (MA-CLR), natural gas is converted in the fuel rector by reaction with steam and an oxygen carrier (chemical looping reforming), and the produced H 2 permeates through the membranes. The oxygen carrier is re-oxidized in a separate air reactor with air, which also provides the heat required for the endothermic reactions in the fuel reactor. The plants are optimized by varying the operating conditions of the reactors such as temperature, pressures (both at feed and permeate side), steam-to-carbon ratio and the heat recovery configuration. The plant design is carried out using Aspen Simulation, while the novel reactor concepts have been designed and their performance have been studied with a dedicated phenomenological model in Matlab. Both configurations have been designed and compared with reference technologies for H 2 production based on conventional fired tubular reforming (FTR) with and without CO 2 capture. The results of the analysis show

  17. Techno-economic and ex-ante environmental assessment of C6 sugars production from spruce and corn. Comparison of organosolv and wet milling technologies

    NARCIS (Netherlands)

    Moncada, Jonathan; Vural Gursel, Iris; Huijgen, Wouter J J; Dijkstra, Jan Wilco; Ramírez, Andrea

    2018-01-01

    This study assesses the techno-economic and environmental performance of C6 sugars production from softwood (spruce) and corn. Two technologies were considered in the assessment: organosolv of spruce woodchips (2nd generation) and corn wet milling (1st generation). Process models were developed to

  18. Techno-economic evaluation of a complete bioprocess for 2,3-butanediol production from renewable resources.

    Science.gov (United States)

    Koutinas, Apostolis A; Yepez, Bernardo; Kopsahelis, Nikolaos; Freire, Denise M G; de Castro, Aline Machado; Papanikolaou, Seraphim; Kookos, Ioannis K

    2016-03-01

    This study presents the techno-economic evaluation of 2,3-butanediol (BDO) production via fermentation using glycerol, sucrose and sugarcane molasses as carbon sources. Literature-cited experimental data were used to design the fermentation stage, whereas downstream separation of BDO was based on reactive extraction of BDO employing an aldehyde to convert BDO into an acetal that is immiscible with water. The selected downstream process can be used in all fermentations employed. Sensitivity analysis was carried out targeting the estimation of the minimum selling price (MSP) of BDO at different plant capacities and raw material purchase costs. In all cases, the MSP of BDO is higher than 1 $/kg that is considered as the target in order to characterize a fermentation product as platform chemical. The complex nutrient supplements, the raw material market price and the fermentation efficiency were identified as the major reasons for the relatively high MSP observed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Techno-economical Analysis of Rooftop Grid-connected PV Dairy Farms; Case Study of Urmia University Dairy Farm

    Science.gov (United States)

    Nikbakht, A. M.; Aste, N.; Sarnavi, H. J.; Leonforte, F.

    2017-08-01

    The global trends indicate a growing commitment to renewable energy development because of declining fossil fuels and environmental threats. Moreover, the global demographic growth coupled with rising demands for food has escalated the rate of energy consumption in food section. This study aims to investigate the techno-economic impacts of a grid-connected rooftop PV plan applied for a educational dairy farm in Urmia university, with total estimated annual electrical energy consumption of 18,283 kWh, located at the north west part of Iran. Based on the current feed-in tariff and tremendously low electricity price in agriculture section in Iran, the plants with size ranged from 14.4 to 19.7 kWp (initial investment ranged from 26,000 to 36,000 USD) would be satisfied economically.

  20. Techno-economic assessment and policy of gas power generation considering the role of multiple stakeholders in China

    International Nuclear Information System (INIS)

    Dong Jun; Zhang Xu; Xu Xiaolin

    2012-01-01

    In accordance with the energy planning in China, within the “Twelfth Five-Year” period (2011–2015), the proportion of natural gas among primary energy consumption is expected to increase from the current 4% to 8%. In 2015, about 17 natural gas pipelines will be completed. This paper reviews the current situation of gas power generation, analyzes the main opportunities and obstacles of gas power generation development in China, and conducts a techno-economic assessment of the natural gas power generation, taking into account the role and the interaction of the multiple stakeholders in the natural gas industry chain. Taking a power plant fueled with the natural gas transported by the second West-to-East Pipeline as an example, it is found that the on-grid power price fluctuates upward with the rise of gas price and downward with the increase of annual utilization hours, and the influences of tax policies on the on-grid power price prove to be highly significant. As the analysis and calculation indicate, the environmental benefits of natural gas power generation ought to be strongly emphasized, compared with coal-fired power generation. Finally, this paper puts forward specific policy recommendations, from the perspectives of electricity price, gas price, tax, power grid dispatching, etc. - Highlights: ► Presents the opportunities and obstacles of gas power generation development in China. ► Analyzes the interactions of multiple stakeholders in the natural gas industry chain. ► Conducts a techno-economic assessment on the natural gas power generation. ► Discusses the responsibilities and risks of multiple stakeholders. ► Puts forward policy recommendations, from electricity price, gas price, tax, etc.

  1. Techno-economic Analysis for the Conversion of Lignocellulosic Biomass to Gasoline via the Methanol-to-Gasoline (MTG) Process

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Susanne B.; Zhu, Yunhua

    2009-05-01

    Biomass is a renewable energy resource that can be converted into liquid fuel suitable for transportation applications. As a widely available biomass form, lignocellulosic biomass can have a major impact on domestic transportation fuel supplies and thus help meet the Energy Independence and Security Act renewable energy goals (U.S. Congress 2007). With gasification technology, biomass can be converted to gasoline via methanol synthesis and methanol-to-gasoline (MTG) technologies. Producing a gasoline product that is infrastructure ready has much potential. Although the MTG technology has been commercially demonstrated with natural gas conversion, combining MTG with biomass gasification has not been shown. Therefore, a techno-economic evaluation for a biomass MTG process based on currently available technology was developed to provide information about benefits and risks of this technology. The economic assumptions used in this report are consistent with previous U.S. Department of Energy Office of Biomass Programs techno-economic assessments. The feedstock is assumed to be wood chips at 2000 metric ton/day (dry basis). Two kinds of gasification technologies were evaluated: an indirectly-heated gasifier and a directly-heated oxygen-blown gasifier. The gasoline selling prices (2008 USD) excluding taxes were estimated to be $3.20/gallon and $3.68/gallon for indirectly-heated gasified and directly-heated. This suggests that a process based on existing technology is economic only when crude prices are above $100/bbl. However, improvements in syngas cleanup combined with consolidated gasoline synthesis can potentially reduce the capital cost. In addition, improved synthesis catalysts and reactor design may allow increased yield.

  2. Techno-economic analysis of the industrial production of a low-cost enzyme using E. coli: the case of recombinant β-glucosidase.

    Science.gov (United States)

    Ferreira, Rafael da Gama; Azzoni, Adriano Rodrigues; Freitas, Sindelia

    2018-01-01

    The enzymatic conversion of lignocellulosic biomass into fermentable sugars is a promising approach for producing renewable fuels and chemicals. However, the cost and efficiency of the fungal enzyme cocktails that are normally employed in these processes remain a significant bottleneck. A potential route to increase hydrolysis yields and thereby reduce the hydrolysis costs would be to supplement the fungal enzymes with their lacking enzymatic activities, such as β-glucosidase. In this context, it is not clear from the literature whether recombinant E. coli could be a cost-effective platform for the production of some of these low-value enzymes, especially in the case of on-site production. Here, we present a conceptual design and techno-economic evaluation of the production of a low-cost industrial enzyme using recombinant E. coli . In a simulated baseline scenario for β-glucosidase demand in a hypothetical second-generation ethanol (2G) plant in Brazil, we found that the production cost (316 US$/kg) was higher than what is commonly assumed in the literature for fungal enzymes, owing especially to the facility-dependent costs (45%) and to consumables (23%) and raw materials (25%). Sensitivity analyses of process scale, inoculation volume, and volumetric productivity indicated that optimized conditions may promote a dramatic reduction in enzyme cost and also revealed the most relevant factors affecting production costs. Despite the considerable technical and economic uncertainties that surround 2G ethanol and the large-scale production of low-cost recombinant enzymes, this work sheds light on some relevant questions and supports future studies in this field. In particular, we conclude that process optimization, on many fronts, may strongly reduce the costs of E. coli recombinant enzymes, in the context of tailor-made enzymatic cocktails for 2G ethanol production.

  3. Techno-economic analysis for incorporating a liquid-liquid extraction system to remove acetic acid into a proposed commercial scale biorefinery.

    Science.gov (United States)

    Aghazadeh, Mahdieh; Engelberth, Abigail S

    2016-07-08

    Mitigating the effect of fermentation inhibitors in bioethanol plants can have a great positive impact on the economy of this industry. Liquid-liquid extraction (LLE) using ethyl acetate is able to remove fermentation inhibitors-chiefly, acetic acid-from an aqueous solution used to produce bioethanol. The fermentation broth resulting from LLE has higher performance for ethanol yield and its production rate. Previous techno-economic analyses focused on second-generation biofuel production did not address the impact of removing the fermentation inhibitors on the economic performance of the biorefinery. A comprehensive analysis of applying a separation system to mitigate the fermentation inhibition effect and to provide an analysis on the economic impact of removal of acetic acid from corn stover hydrolysate on the overall revenue of the biorefinery is necessary. This study examines the pros and cons associated with implementing LLE column along with the solvent recovery system into a commercial scale bioethanol plant. Using details from the NREL-developed model of corn stover biorefinery, the capital costs associated with the equipment and the operating cost for the use of solvent were estimated and the results were compared with the profit gain due to higher ethanol production. Results indicate that the additional capital will add 1% to the total capital and manufacturing cost will increase by 5.9%. The benefit arises from the higher ethanol production rate and yield as a consequence of inhibitor extraction and results in a $0.35 per gallon reduction in the minimum ethanol selling price (MESP). © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:971-977, 2016. © 2016 American Institute of Chemical Engineers.

  4. Biogas from lignocellulosic biomass - A techno-economic study of pretreatment with NMMO; Biogas fraan lignocellulosa - Tekno-ekonomisk utvaerdering av foerbehandling med NMMO

    Energy Technology Data Exchange (ETDEWEB)

    Sarvari Horvath, Ilona; Del Pilar Castillo, Maria; Berglund Odhner, Peter; Teghammar, Anna; Mohseni Kabir, Maryam, Olsson, Marcus; Ascue, Johnny

    2013-09-01

    Biogas has been identified as one of the most cost-effective renewable fuels. In order to increase biogas production, yields from traditionally substrates either need to be improved or other alternative substrates must be made available for anaerobic digestion. Cellulose and lignocellulose rich wastes are available in large amounts and have great potential to be utilized for biogas production. This project focused on the optimization of the pretreatment conditions when using the organic solvent N-methylmorpholine-N-oxide (NMMO) to enhance the methane yield from forest residues and straw. It also focused on a techno-economic evaluation of this pre-treatment technology. NMMO has previously been shown to be effective in dissolving cellulose and, as a consequence, in increasing the methane yield during the subsequent digestion. The goal of this project was to develop a technology that increases energy production from domestic substrates in a cost-effective and environmentally friendly way. The treatment works well at lower temperatures (9 C), which means that water from the district heating system can advantageously be used in the treatment. The results showed that treatment with NMMO at 90 deg C doubles the methane yield from forest residues and increases the methane yield from straw by 50 %. For the techno-economic evaluation, the base case was assumed to be a facility with a capacity of 100 000 tones forest residues/year. After a washing and filtration step, the treated material will be utilized in a co-digestion process where 33 % of the incoming material consists of forest residues and the rest is source-sorted household waste. The scale-up, process design, simulation and calculations were made using the software tool Intelligent SuperPro Design. The total investment costs were calculated to be about 145 million, when forest residues or straw are to be used as raw material. Costs for operation (i.e. raw materials, energy, waste management, maintenance and

  5. Improved ethanol yield and reduced minimum ethanol selling price (MESP by modifying low severity dilute acid pretreatment with deacetylation and mechanical refining: 2 Techno-economic analysis

    Directory of Open Access Journals (Sweden)

    Tao Ling

    2012-09-01

    Full Text Available Abstract Background Our companion paper discussed the yield benefits achieved by integrating deacetylation, mechanical refining, and washing with low acid and low temperature pretreatment. To evaluate the impact of the modified process on the economic feasibility, a techno-economic analysis (TEA was performed based on the experimental data presented in the companion paper. Results The cost benefits of dilute acid pretreatment technology combined with the process alternatives of deacetylation, mechanical refining, and pretreated solids washing were evaluated using cost benefit analysis within a conceptual modeling framework. Control cases were pretreated at much lower acid loadings and temperatures than used those in the NREL 2011 design case, resulting in much lower annual ethanol production. Therefore, the minimum ethanol selling prices (MESP of the control cases were $0.41-$0.77 higher than the $2.15/gallon MESP of the design case. This increment is highly dependent on the carbohydrate content in the corn stover. However, if pretreatment was employed with either deacetylation or mechanical refining, the MESPs were reduced by $0.23-$0.30/gallon. Combing both steps could lower the MESP further by $0.44 ~ $0.54. Washing of the pretreated solids could also greatly improve the final ethanol yields. However, the large capital cost of the solid–liquid separation unit negatively influences the process economics. Finally, sensitivity analysis was performed to study the effect of the cost of the pretreatment reactor and the energy input for mechanical refining. A 50% cost reduction in the pretreatment reactor cost reduced the MESP of the entire conversion process by $0.11-$0.14/gallon, while a 10-fold increase in energy input for mechanical refining will increase the MESP by $0.07/gallon. Conclusion Deacetylation and mechanical refining process options combined with low acid, low severity pretreatments show improvements in ethanol yields and

  6. Techno-economic analysis of sorption-enhanced steam methane reforming in a fixed bed reactor network integrated with fuel cell

    Science.gov (United States)

    Diglio, Giuseppe; Hanak, Dawid P.; Bareschino, Piero; Mancusi, Erasmo; Pepe, Francesco; Montagnaro, Fabio; Manovic, Vasilije

    2017-10-01

    Sorption-enhanced steam methane reforming (SE-SMR) is a promising alternative for H2 production with inherent CO2 capture. This study evaluates the techno-economic performance of SE-SMR in a network of fixed beds and its integration with a solid oxide fuel cell (SE-SMR-SOFC) for power generation. The analysis revealed that both proposed systems are characterised by better economic performance than the reference systems. In particular, for SE-SMR the levelised cost of hydrogen is 1.6 €ṡkg-1 and the cost of CO2 avoided is 29.9 €ṡtCO2-1 (2.4 €ṡkg-1 and 50 €ṡtCO2-1, respectively, for SMR with CO2 capture) while for SE-SMR-SOFC the levelised cost of electricity is 0.078 €ṡkWh-1 and the cost of CO2 avoided is 36.9 €ṡtCO2-1 (0.080 €ṡkWh-1 and 80 €ṡtCO2-1, respectively, for natural gas-fired power plant with carbon capture). The sensitivity analysis showed that the specific cost of fuel and the capital cost of fuel cell mainly affect the economic performance of SE-SMR and SE-SMR-SOFC, respectively. The daily revenue of the SE-SMR-SOFC system is higher than that of the natural gas-fired power plant if the difference between the carbon tax and the CO2 transport and storage cost is > 6 €ṡtCO2-1.

  7. Techno-economic feasibility of hybrid diesel/PV/wind/battery electricity generation systems for non-residential large electricity consumers under southern Iran climate conditions

    International Nuclear Information System (INIS)

    Baneshi, Mehdi; Hadianfard, Farhad

    2016-01-01

    Highlights: • A hybrid electricity generation system for a large electricity consumer was studied. • The PV and wind electricity potentials under given climate conditions were evaluated. • Technical, economical, and environmental issues of different systems were discussed. • The optimum configuration of components was obtained. • The impacts of governmental incentives on economic viability of systems were examined. - Abstract: This paper aims to study the techno-economical parameters of a hybrid diesel/PV/wind/battery power generation system for a non-residential large electricity consumer in the south of Iran. As a case study, the feasibility of running a hybrid system to meet a non-residential community’s load demand of 9911 kWh daily average and 725 kW peak load demand was investigated. HOMER Pro software was used to model the operation of the system and to identify the appropriate configuration of it based on comparative technical, economical, and environmental analysis. Both stand alone and grid connected systems were modeled. The impacts of annual load growth and governmental energy policies such as providing low interest loan to renewable energy projects, carbon tax, and modifying the grid electricity price on viability of the system were discussed. Results show that for off-grid systems the cost of electricity (COE) and the renewable fraction of 9.3–12.6 ₵/kWh and 0–43.9%, respectively, are achieved with photovoltaic (PV) panel, wind turbine, and battery sizes of 0–1000 kW, 0–600 kW, and 1300 kWh, respectively. For on grid systems without battery storage the range of COE and renewable fraction are 5.7–8.4 ₵/kWh and 0–53%, respectively, for the same sizes of PV panel and wind turbine.

  8. A techno-economic comparison of a direct expansion ground-source and an air-source heat pump system in Canadian cold climates

    International Nuclear Information System (INIS)

    Hakkaki-Fard, Ali; Eslami-Nejad, Parham; Aidoun, Zine; Ouzzane, Mohamed

    2015-01-01

    This study aims to compare two commonly used ASHP (air-source heat pump) and DX-GSHP (direct-expansion ground-source heat pump). There have been many debates on energy efficiency, system costs and relative payback period of DX-GSHP against ASHP systems over the past few years. In this context, and with the aim of enriching this debate, a detailed screening heat pump model previously developed is modified and used to compare the seasonal performance of ASHP vs DX-GSHP in a residential building in the cold climate city of Montreal. Further, a life cycle cost analysis is performed to account for the difference between initial and 10-year operating costs of the two systems based on the current prices in Quebec. The obtained results show that by proper sizing, energy consumption of the DX-GSHP system can be reduced by 50%. Moreover, with current borehole installation prices, the relative payback period of the GSHP (ground source heat pump) compared to ASHP is more than 15 years. However, if the borehole installation price reduced by 50% the payback period would be reduced to just a few years. Such results highlight the importance of further investigations in the area of DX-GSHPs, in order to reduce the borehole installation cost and increase its performance. - Highlights: • A techno-economic comparison between DX-GSHP and ASHP is undertaken. • A detailed numerical modeling of both systems is performed. • The effect of heat pump capacity and borehole size on system costs is evaluated. • Under good design condition, DX-GSHPs offer some performance and cost advantages over ASHPs

  9. Field-to-Fuel Performance Testing of Lignocellulosic Feedstocks for Fast Pyrolysis and Upgrading: Techno-economic Analysis and Greenhouse Gas Life Cycle Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Pimphan A.; Snowden-Swan, Lesley J.; Rappé, Kenneth G.; Jones, Susanne B.; Westover, Tyler L.; Cafferty, Kara G.

    2016-11-17

    This work shows preliminary results from techno-economic analysis and life cycle greenhouse gas analysis of the conversion of seven (7) biomass feedstocks to produce liquid transportation fuels via fast pyrolysis and upgrading via hydrodeoxygenation. The biomass consists of five (5) pure feeds (pine, tulip poplar, hybrid poplar, switchgrass, corn stover) and two blends. Blend 1 consists of equal weights of pine, tulip poplar and switchgrass, and blend 2 is 67% pine and 33% hybrid poplar. Upgraded oil product yield is one of the most significant parameters affecting the process economics, and is a function of both fast pyrolysis oil yield and hydrotreating oil yield. Pure pine produced the highest overall yield, while switchgrass produced the lowest. Interestingly, herbaceous materials blended with woody biomass performed nearly as well as pure woody feedstock, suggesting a non-trivial relationship between feedstock attributes and production yield. Production costs are also highly dependent upon hydrotreating catalyst-related costs. The catalysts contribute an average of ~15% to the total fuel cost, which can be reduced through research and development focused on achieving performance at increased space velocity (e.g., reduced catalyst loading) and prolonging catalyst lifetime. Green-house-gas reduction does not necessarily align with favorable economics. From the greenhouse gas analysis, processing tulip poplar achieves the largest GHG emission reduction relative to petroleum (~70%) because of its lower hydrogen consumption in the upgrading stage that results in a lower natural gas requirement for hydrogen production. Conversely, processing blend 1 results in the smallest GHG emission reduction from petroleum (~58%) because of high natural gas demand for hydrogen production.

  10. Hybrid PV and solar-thermal systems for domestic heat and power provision in the UK: Techno-economic considerations

    International Nuclear Information System (INIS)

    Herrando, María; Markides, Christos N.

    2016-01-01

    Highlights: • Renewable heat and power generation in UK homes with PVT systems studied. • PVT/w generation: 2.3 MW e h/yr (51% of demand) and 1.0 MW th h/yr (36% hot water). • Optimised PVT/w system has 9–11 year payback periods (PV-only: 6.8 years). • Same system allows 16.0-t CO 2 reduction and 14-t primary fossil-fuel saving. • With a ∼2:1 support (£/W e h:£/W th h), PVT and PV have similar payback periods. - Abstract: A techno-economic analysis is undertaken to assess hybrid PV/solar-thermal (PVT) systems for distributed electricity and hot-water provision in a typical house in London, UK. In earlier work (Herrando et al., 2014), a system model based on a PVT collector with water as the cooling medium (PVT/w) was used to estimate average year-long system performance. The results showed that for low solar irradiance levels and low ambient temperatures, such as those associated with the UK climate, a higher coverage of total household energy demands and higher CO 2 emission savings can be achieved by the complete coverage of the solar collector with PV and a relatively low collector cooling flow-rate. Such a PVT/w system demonstrated an annual electricity generation of 2.3 MW h, or a 51% coverage of the household’s electrical demand (compared to an equivalent PV-only value of 49%), plus a significant annual water heating potential of to 1.0 MW h, or a 36% coverage of the hot-water demand. In addition, this system allowed for a reduction in CO 2 emissions amounting to 16.0 tonnes over a life-time of 20 years due to the reduction in electrical power drawn from the grid and gas taken from the mains for water heating, and a 14-tonne corresponding displacement of primary fossil-fuel consumption. Both the emissions and fossil-fuel consumption reductions are significantly larger (by 36% and 18%, respectively) than those achieved by an equivalent PV-only system with the same peak rating/installed capacity. The present paper proceeds further, by

  11. Process Design and Techno-economic Analysis for Materials to Treat Produced Waters.

    Energy Technology Data Exchange (ETDEWEB)

    Heimer, Brandon Walter [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Paap, Scott M [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Sasan, Koroush [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Brady, Patrick Vane. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Nenoff, Tina M. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2017-09-01

    Significant quantities of water are produced during enhanced oil recovery making these “produced water” streams attractive candidates for treatment and reuse. However, high concentrations of dissolved silica raise the propensity for fouling. In this paper, we report the design and economic analysis for a new ion exchange process using calcined hydrotalcite (HTC) to remove silica from water. This process improves upon known technologies by minimizing sludge product, reducing process fouling, and lowering energy use. Process modeling outputs included raw material requirements, energy use, and the minimum water treatment price (MWTP). Monte Carlo simulations quantified the impact of uncertainty and variability in process inputs on MWTP. These analyses showed that cost can be significantly reduced if the HTC materials are optimized. Specifically, R&D improving HTC reusability, silica binding capacity, and raw material price can reduce MWTP by 40%, 13%, and 20%, respectively. Optimizing geographic deployment further improves cost competitiveness.

  12. The effects of techno-economic and organizational factors on the adoption of NASA-innovations by commercial firms in the U.S

    Science.gov (United States)

    Chakrabarti, A. K.

    1974-01-01

    The present work reports on the effects of several organizational and techno-economic factors which tend to facilitate or inhibit the successful transfer and commercial utilization of technology generated outside the organizational setting of a potential industrial user. Innovations were regarded as either product cases or process cases, and successful adoption of these innovations was related to systematic data on the relation between innovator and user and on channels of communication.

  13. Techno-Economic Models for Optimised Utilisation of Jatropha curcas Linnaeus under an Out-Grower Farming Scheme in Ghana

    Directory of Open Access Journals (Sweden)

    Isaac Osei

    2016-11-01

    Full Text Available Techno-economic models for optimised utilisation of jatropha oil under an out-grower farming scheme were developed based on different considerations for oil and by-product utilisation. Model 1: Out-grower scheme where oil is exported and press cake utilised for compost. Model 2: Out-grower scheme with six scenarios considered for the utilisation of oil and by-products. Linear programming models were developed based on outcomes of the models to optimise the use of the oil through profit maximisation. The findings revealed that Model 1 was financially viable from the processors’ perspective but not for the farmer at seed price of $0.07/kg. All scenarios considered under Model 2 were financially viable from the processors perspective but not for the farmer at seed price of $0.07/kg; however, at seed price of $0.085/kg, financial viability was achieved for both parties. Optimising the utilisation of the oil resulted in an annual maximum profit of $123,300.

  14. Catalytic potential of selected metal ions for bioleaching, and potential techno-economic and environmental issues: A critical review.

    Science.gov (United States)

    Pathak, Ashish; Morrison, Liam; Healy, Mark Gerard

    2017-04-01

    Bioleaching is considered to be a low-cost, eco-friendly technique for leaching valuable metals from a variety of matrixes. However, the inherent slow dissolution kinetics and low metal leaching yields have restricted its wider commercial applicability. Recent advancements in bio-hydrometallurgy have suggested that these critical issues can be successfully alleviated through the addition of a catalyst. The catalyzing properties of a variety of metals ions (Ag + , Hg ++ , Bi +++ , Cu ++ , Co ++ etc.) during bioleaching have been successfully demonstrated. In this article, the role and mechanisms of these metal species in catalyzing bioleaching from different minerals (chalcopyrite, complex sulfides, etc.) and waste materials (spent batteries) are reviewed, techno-economic and environmental challenges associated with the use of metals ions as catalysts are identified, and future prospectives are discussed. Based on the analysis, it is suggested that metal ion-catalyzed bioleaching will play a key role in the development of future industrial bio-hydrometallurgical processes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Process development of coke oven gas to methanol integrated with CO2 recycle for satisfactory techno-economic performance

    International Nuclear Information System (INIS)

    Yi, Qun; Gong, Min-Hui; Huang, Yi; Feng, Jie; Hao, Yan-Hong; Zhang, Ji-Long; Li, Wen-Ying

    2016-01-01

    A novel process designed for producing methanol from coke oven gas (COG) integrated with CO 2 recycle is proposed. In the new system, oxygen replacing air is blown to combustor for assisting combustion of COG and unreacted syngas from methanol synthesis process. The combustion process provides to the heat required in the coking process. The rest COG reacts with the recycled CO 2 separated from the exhaust gas to produce syngas for methanol synthesis. The unreacted syngas from methanol synthesis process with low grade energy level is recycled to the combustor. In the whole methanol production process, there is no additional process with respect to supplementary carbon, and the carbon resource only comes from the internal CO 2 recycle in the plant. With the aid of techno-economic analysis, the new system presents the energy or exergy saving by 5–10%, the CO 2 emission reduction by about 70% and the internal rate of return increase by 5–8%, respectively, in comparison with the traditional COG to methanol process. - Highlights: • A process for producing methanol from COG integrated with CO 2 recycle is first proposed. • CO 2 from the exhaust gas is recycled to supply carbon for producing syngas. • New integrated plant simplifies the production process with 5–8% IRR increase. • New system presents about 5–10% energy saving, about 70% CO 2 emission reduction.

  16. Tactical techno-economic analysis of electricity generation from forest, fossil, and wood waste fuels in a heating plant

    Directory of Open Access Journals (Sweden)

    Palander Teijo

    2012-01-01

    Full Text Available The Finnish energy industry is subject to policy decisions regarding renewable energy production and energy efficiency regulation. Conventional electricity generation has environmental side-effects that may cause global warming. Renewable fuels are superior because they offer near-zero net emissions. In this study, we investigated a heating mill's ability to generate electricity from forest fuels in southern Finland on a 1-year strategic decision-making horizon. The electricity-generation, -purchase, and -sales decisions are made using three different energy efficiency and forest technology rates. Then the decision environment was complicated by the sequence-dependent procurement chains for forest fuels (below-ground on a tactical decision-making horizon. With this aim, fuel data of three forest fuel procurement teams were collected for 3 months. The strategic fuel procurement decisions were adjusted to the changed decision environment based on a tactical techno-economic analysis using forest technology rates. The optimal energy product and fuel mixtures were solved by minimizing procurement costs, maximizing production revenues, and minimizing energy losses.

  17. Microbial community-based polyhydroxyalkanoates (PHAs) production from wastewater: Techno-economic analysis and ex-ante environmental assessment.

    Science.gov (United States)

    Fernández-Dacosta, Cora; Posada, John A; Kleerebezem, Robbert; Cuellar, Maria C; Ramirez, Andrea

    2015-06-01

    This work investigates the potential for polyhydroxybutyrate (PHB) production from wastewater, from a techno-economic and an environmental perspective, examining scale-up opportunities and bottlenecks prior to commercialisation. Conceptual process design, economic, environmental impacts and sensitivity analysis are developed for one fermentation process and three downstream processing routes, based on alkali, surfactant-hypochlorite and solvent treatments. Environmentally and cost-wise, the alkali treatment is the most favourable with production costs of 1.40€/kg PHB, global warming potential of 2.4kgCO2-eq/kg PHB and non-renewable energy use of 106MJ/kg PHB. The solvent-based process yields the highest costs and environmental burdens: 1.95€/kg PHB, 4.30kgCO2-eq/kg PHB and 156MJ/kg PHB. The production of PHB from wastewater is identified as an interesting alternative to pure culture-polyhydroxyalkanoates production from sugars. However, these results are not yet competitive with those for the petrochemical counterparts. Additional performance improvements may be possible, through process integration and optimisation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Techno-economic performance analysis of bio-oil based Fischer-Tropsch and CHP synthesis platform

    International Nuclear Information System (INIS)

    Ng, Kok Siew; Sadhukhan, Jhuma

    2011-01-01

    The techno-economic potential of the UK poplar wood and imported oil palm empty fruit bunch derived bio-oil integrated gasification and Fischer-Tropsch (BOIG-FT) systems for the generation of transportation fuels and combined heat and power (CHP) was investigated. The bio-oil was represented in terms of main chemical constituents, i.e. acetic acid, acetol and guaiacol. The compositional model of bio-oil was validated based on its performance through a gasification process. Given the availability of large scale gasification and FT technologies and logistic constraints in transporting biomass in large quantities, distributed bio-oil generations using biomass pyrolysis and centralised bio-oil processing in BOIG-FT system are technically more feasible. Heat integration heuristics and composite curve analysis were employed for once-through and full conversion configurations, and for a range of economies of scale, 1 MW, 675 MW and 1350 MW LHV of bio-oil. The economic competitiveness increases with increasing scale. A cost of production of FT liquids of 78.7 Euro/MWh was obtained based on 80.12 Euro/MWh of electricity, 75 Euro/t of bio-oil and 116.3 million Euro/y of annualised capital cost. -- Highlights: → Biomass to liquid process and gas to liquid process synthesis. → Biorefinery economic analysis. → Pyrolysis oil to biofuel. → Gasification and Fischer-Tropsch. → Process integration, pinch analysis and energy efficiency.

  19. Techno-economic feasibility study of providing variable frequency drive for high pressure pump, SWRO Plant at NDDP, Kalpakkam

    International Nuclear Information System (INIS)

    Nagaraj, R.; Murugan, V.; Dangore, A.Y.; Thalor, K.L.; Prabakar, S.; Srivastava, V.K.; Tewari, P.K.

    2010-01-01

    The cost of product water is a key factor in determination of acceptability of any desalination system and plant. In case of Sea Water Reverse Osmosis plants, most of the energy consumed is in the form of electricity. The efficiency of the Reverse Osmosis plant primarily lies in optimization of the power consumption. The High Pressure pump is the single major energy consuming equipment with a share of above 75%. Hence reduction in energy consumed by high pressure pump will have a substantial effect on the overall energy consumption. Also the high pressure pump being a high inertia load requires very high torque at the time of starting. This high starting torque requirement results in increased acceleration time of the motor which subsequently increases the strain on the upstream electrical system from motor feeder to transformer. Such starting characteristic necessitates provision of special starting scheme for the high pressure pump motors. Provision of a Variable Frequency Drive can be a solution for both the above problems. This paper studies the techno-economic feasibility of providing variable frequency drive for high pressure pump motor at NDDP, Kalpakkam. (author)

  20. Techno-economic and environmental analysis of power generation expansion plan of Ghana

    International Nuclear Information System (INIS)

    Awopone, Albert K.; Zobaa, Ahmed F.; Banuenumah, Walter

    2017-01-01

    This paper examines the current electrical generation expansion plan of Ghana and compares it with proposed expansion pathways with higher penetration of Renewable Energy Technologies. An adaptation of Schwartz's Scenario Methodology was used to develop the scenarios which were then analysed using the Long-range Alternatives Planning (LEAP) model. Each of the scenarios represents policy options for generation expansion in Ghana up to 2040. Energy, economic and environmental analysis of the three alternative scenarios compared to the base scenarios was undertaken. Sensitivity results show that, if the country were to follow the generation expansion path described in the renewable energy scenarios, it could reap economic benefits of 0.5–13.23% depending on the developments in fuel prices and renewable technology capital cost. The analysis further quantifies benefits to be derived from a reduction in Greenhouse gases of the scenarios. Policy implications for the generation system of Ghana based on the results are also discussed. - Highlights: • LEAP demand projection for Ghana from 2010 to 2014. • Develop scenarios using an adaptation of Schwartz’s scenario approach. • Develop LEAP model for generation scenario. • Each scenario represents possible generation expansion strategy. • High renewable energy systems penetration results in net economic and environmental benefits.

  1. Techno-Economic Feasibility And Cost Analysis Of Solar Water Pumping In Nigeria

    International Nuclear Information System (INIS)

    Okonta, A.D; Akinwumi, I.O; Siyanbola, W.O.

    2004-01-01

    Solar photovoltaic Water Pumping (PVP) system is becoming a reliable and cost effective method of supplying potable water to remote rural areas of developing countries. Whoever, the high initial investment cost has hindered it widespread application. This paper has reported the outcome of an economic feasibility and cost analysis survey carried out in Nigeria. It involved the administration of a validated set of questionnaires to randomly selected stratified respondents. The outcomes were analysed using graphical displays, a student t-test statistic and the Statistical Package for Social Sciences (SPSS Version 10.0) the survey showed that private investors sourced their funds mostly form commercial banks and through savings. They do not enjoy any government incentives or subsidy. It was found that he number of modules per system and borehole depths are the major initial cost components and that the mean cost of PVP system in Nigeria between 1999- 2003 is 31,690.91 U$$. The paper recommends the establishment and intensive monitoring of PVP pilot projects in different geographical zones of the country to provide the database for Life-cycle-cost analysis and as feedback for the further development of PVP systems in Nigeria

  2. Techno-economic optimization of flexible biogas concepts in the context of EEG

    International Nuclear Information System (INIS)

    Barchmann, Tino; Lauer, Markus

    2014-01-01

    Due to the introduction of direct marketing and flexibility premium of renewable energy by the Renewable Energy Act 2012 (EEG 2012), incentives were created to favour a more demand-oriented power supply from biogas plants (BGA). The decision for such an operational mode depends on on-site conversion units on the economic outcome of the plants throughout the whole operating time. To install new plants or transfer existing plants into a flexible mode of operation, investments in additional and more efficient combined heat and power plants (CHP), in additional gas and/or heat storage and other technical components are necessary. The analyses show that the flexibility premium, as an extra of the market premium model, creates the greatest incentive for a more flexible generation of electricity from biogas. In addition, an intelligent management optimization can generate additional revenues on EPEX SPOT SE and balancing energy market. The additional revenues of more demand-oriented power supply from biogas plants are highly dependent on plant-specific conditions. From an economic perspective, a duplication of the installed electrical capacity seems to be the most beneficial option for a transition to a demand-driven operation mode of an average biogas model plant under the current legal framework (EEG 2012).

  3. Techno-economic studies on hybrid energy based cooling system for milk preservation in isolated regions

    International Nuclear Information System (INIS)

    Edwin, M.; Joseph Sekhar, S.

    2014-01-01

    Highlights: • Performance studies on biomass and biogas based milk cooling systems in remote areas. • Economic analysis of milk cooling system operated with locally available renewable energy sources. • Payback period for replacing conventional milk cooling systems with renewable energy based cooling system. • Identification of the suitable combination of locally available renewable energy sources for milk cooling. • Hybrid energy based milk cooling system for regions that have rubber and paddy cultivation, in India. - Abstract: In developing countries like India, about 70% of the population is engaged in the production of milk, fruits and vegetables. Due to the lack of proper storage and transit facilities, the agricultural produce, in remote areas loses its value. This spoilage could be prevented at the local village level, by providing cooling units for short term preservation. In this paper, the possibility of a hybrid energy based thermally operated cold storage has been considered to meet the cooling needs of the villages in the southern parts of India, where biomass, biogas and gobar gas are available in abundance. A milk cooling system that uses various combinations of locally available renewable energy sources to operate an aqua ammonia vapour absorption cooling system has been analysed using the Matlab software. The impact of various combinations of renewable energy sources on the Coefficient of Performance (COP), Net Present Value (NPV) and payback period of the total cooling system has been studied. The analysis shows that the COP and payback period of the proposed hybrid renewable energy based milk cooling system are 0.16–0.23 and 4–6 years respectively

  4. Electricity production from anaerobic digestion of household organic waste in Ontario: techno-economic and GHG emission analyses.

    Science.gov (United States)

    Sanscartier, David; Maclean, Heather L; Saville, Bradley

    2012-01-17

    The first Feed-in-Tariff (FiT) program in North America was recently implemented in Ontario, Canada to stimulate the generation of electricity from renewable sources. The life cycle greenhouse gas (GHG) emissions and economics of electricity generation through anaerobic digestion (AD) of household source-separated organic waste (HSSOW) are investigated within the FiT program. AD can potentially provide considerable GHG emission reductions (up to 1 t CO(2)eq/t HSSOW) at relatively low to moderate cost (-$35 to 160/t CO(2)eq) by displacing fossil electricity and preventing the emission of landfill gas. It is a cost-effective GHG mitigation option compared to some other FiT technologies (e.g., wind, solar photovoltaic) and provides unique additional benefits (waste diversion, nutrient recycling). The combination of electricity sales at a premium rate, savings in waste management costs, and economies of scale allow AD facilities processing >30,000 t/yr to be cost-competitive against landfilling. However, the FiT does not sufficiently support smaller-scale facilities that are needed as a transition to larger, more economically viable facilities. Refocusing of the FiT program and waste policies are needed to support the adoption of AD of HSSOW, which has not yet been developed in the Province, while more costly technologies (e.g., photovoltaic) have been deployed.

  5. Techno-Economic Feasibility of Highly Efficient Cost-Effective Thermoelectric-SOFC Hybrid Power Generation Systems

    Energy Technology Data Exchange (ETDEWEB)

    Jifeng Zhang; Jean Yamanis

    2007-09-30

    Solid oxide fuel cell (SOFC) systems have the potential to generate exhaust gas streams of high temperature, ranging from 400 to 800 C. These high temperature gas streams can be used for additional power generation with bottoming cycle technologies to achieve higher system power efficiency. One of the potential candidate bottoming cycles is power generation by means of thermoelectric (TE) devices, which have the inherent advantages of low noise, low maintenance and long life. This study was to analyze the feasibility of combining coal gas based SOFC and TE through system performance and cost techno-economic modeling in the context of multi-MW power plants, with 200 kW SOFC-TE module as building blocks. System and component concepts were generated for combining SOFC and TE covering electro-thermo-chemical system integration, power conditioning system (PCS) and component designs. SOFC cost and performance models previously developed at United Technologies Research Center were modified and used in overall system analysis. The TE model was validated and provided by BSST. The optimum system in terms of energy conversion efficiency was found to be a pressurized SOFC-TE, with system efficiency of 65.3% and cost of $390/kW of manufacturing cost. The pressurization ratio was approximately 4 and the assumed ZT of the TE was 2.5. System and component specifications were generated based on the modeling study. The major technology and cost barriers for maturing the system include pressurized SOFC stack using coal gas, the high temperature recycle blowers, and system control design. Finally, a 4-step development roadmap is proposed for future technology development, the first step being a 1 kW proof-of-concept demonstration unit.

  6. Techno-economic assessment of biogas plant upgrading by adsorption of hydrogen sulfide on treated sewage–sludge

    International Nuclear Information System (INIS)

    Aguilera, P.G.; Gutiérrez Ortiz, F.J.

    2016-01-01

    Highlights: • Three processes were considered: desulfurization by adsorption, in-situ sorbent regeneration and its production. • The steam for regeneration was studied considering it as a bought external utility and as an in-situ produced utility. • From the cash flow analysis, the cost of the overall desulfurization process was between 2.5 and 4.0 c€/Nm 3 . • A sensitivity analysis was carried out to consider the uncertainty of the methodology. • The competitiveness of the technology seems to be promising versus other biogas H 2 S removal technologies. - Abstract: Biogas plant upgrading by adsorption of hydrogen sulfide on treated sewage–sludge was techno-economically assessed. Three different processes were included in the study: the desulfurization of biogas by adsorption, the in-situ regeneration of the adsorbent and its production from sewage-sludge. Biogas plant upgrading was performed for a flow rate of 1000 Nm 3 /h of biogas with a H 2 S concentration of 2000 ppmv and a breakthrough concentration of 200 ppmv, which is the technical limit value for internal combustion engines. The cost due to the steam required for the in-situ regeneration was evaluated in two different scenarios: as a bought external utility and as an in-situ produced utility, installing an electric or a biogas steam boiler. According to the cash flow analysis carried out, all the options require a similar minimum selling price for the upgraded biogas (about 0.27–0.29 €/Nm 3 ), with a cost of the overall desulfurization process between 2.5 and 4.0 c€/Nm 3 .

  7. Incorporation of distributed generation and shunt capacitor in radial distribution system for techno-economic benefits

    Directory of Open Access Journals (Sweden)

    Mukul Dixit

    2017-04-01

    The various costs such as purchase active power from grid, DG installation, capacitor installation, DG Operation and Maintenance (O&M are evaluated at two different load scenarios. In addition to that, technical and economical analyses are examined for various combinations of DGs and shunt capacitors. The proposed methodology is successfully demonstrated on 33-bus and 85-bus radial networks and the obtained numerical outcomes validate the suitability, importance and effectiveness to identify locations as well as sizes of DGs and shunt capacitors.

  8. Voltage Optimisation Technology for an Australian Abattoir—A Techno-Economic Evaluation

    Directory of Open Access Journals (Sweden)

    GM Shafiullah

    2017-11-01

    Full Text Available Optimising voltage levels to a controlled stable level at a facility can not only reduce the cost of energy but also enhance equipment performance, prolong equipment life, reduce maintenance costs and reduce greenhouse gas emissions. Voltage optimisation (VO technology has been widely used in a number of different industries locally and internationally, but not to a large extent within the red meat processing sector in Australia. To determine whether VO technology can be implemented, and whether it is technically and economically viable for red meat processing sites, this study investigated, through case study analyses, the potential effectiveness of VO technology in Australian abattoirs. Through an extensive literature survey, the study initially explored the need and considerations of deploying VO technologies at a typical red meat processing plant. To determine the advantages of using VO technology the study then performed site analyses to investigate power quality (PQ issues, such as voltage regulation, harmonics and power factor, at two typical medium-sized abattoirs, one in Western Australia and another in Queensland. Finally, an economic assessment of the use of VO in the red meat processing industry was undertaken to identify the potential electricity savings and payback periods. From the case study analyses, it is evident that power quality issues, such as under voltage, overvoltage, and harmonic distortion, can be reduced and significant energy savings can be achieved with the optimum selection of VO technology and voltage level. The outcomes of this study will enable engineering and operations staff to be better informed about the economic and technical benefits of (and possible issues with using VO technologies in an abattoir.

  9. Techno-economic assessment of the need for bulk energy storage in low-carbon electricity systems with a focus on compressed air storage (CAES)

    Science.gov (United States)

    Safaei Mohamadabadi, Hossein

    Increasing electrification of the economy while decarbonizing the electricity supply is among the most effective strategies for cutting greenhouse gas (GHG) emissions in order to abate climate change. This thesis offers insights into the role of bulk energy storage (BES) systems to cut GHG emissions from the electricity sector. Wind and solar energies can supply large volumes of low-carbon electricity. Nevertheless, large penetration of these resources poses serious reliability concerns to the grid, mainly because of their intermittency. This thesis evaluates the performance of BES systems - especially compressed air energy storage (CAES) technology - for integration of wind energy from engineering and economic aspects. Analytical thermodynamic analysis of Distributed CAES (D-CAES) and Adiabatic CAES (A-CAES) suggest high roundtrip storage efficiencies ( 80% and 70%) compared to conventional CAES ( 50%). Using hydrogen to fuel CAES plants - instead of natural gas - yields a low overall efficiency ( 35%), despite its negligible GHG emissions. The techno-economic study of D-CAES shows that exporting compression heat to low-temperature loads (e.g. space heating) can enhance both the economic and emissions performance of compressed air storage plants. A case study for Alberta, Canada reveals that the abatement cost of replacing a conventional CAES with D-CAES plant practicing electricity arbitrage can be negative (-$40 per tCO2e, when the heat load is 50 km away from the air storage site). A green-field simulation finds that reducing the capital cost of BES - even drastically below current levels - does not substantially impact the cost of low-carbon electricity. At a 70% reduction in the GHG emissions intensity of the grid, gas turbines remain three times more cost-efficient in managing the wind variability compared to BES (in the best case and with a 15-minute resolution). Wind and solar thus, do not need to wait for availability of cheap BES systems to cost

  10. Study of the techno-economic feasibilities of potato and onion irradiation in Syria

    International Nuclear Information System (INIS)

    Al-Bachir, M.; Sharabi, N.; Midani, M.A.

    1991-06-01

    Ionizing radiation has been used for food preservation in many ways, among them sprout inhibition in onion and potato. Experiments showed that irradiation of these crops using doses between 50 - 150 Gy prevented sprouting for up to 6 months during storage. Priliminary experiments in Syria proved the effectiveness of such treatment in these two crops. In addition to the technical, social, and political feasibility, this study includes, general description of the suggested plant ( 60 Co 3.7 PBq), estimated cost, location, and the tentative operation schedual. The study showed that the cost of irradiation will be about $ 8.7 per ton, this will save the country about $ 3.760.000 per year. The study showed the possitive effect of establishing this plant. (author). 74 refs., 44 tabs., 15 figs

  11. Techno-economics of carbon nanotubes produced by open air arc ...

    African Journals Online (AJOL)

    user

    alcohol for 5 minutes and depositing a drop of the CNTs in carbon coated TEM grid. Thermal gravimetric analysis of purified ... The different forms of carbon show different oxidation behaviors. From TGA curve, less ordered .... Carbon nanotubes – Becoming clean, Materials Today, Vol. 10, pp 28-35. Guo,T., Nikolaev,P., ...

  12. Techno-economical comparison of cutting material by laser, plasma and oxygen

    Czech Academy of Sciences Publication Activity Database

    Harničárová, M.; Valíček, Jan; Zajac, J.; Hloch, S.; Čep, R.; Džubáková, I.; Tofil, S.; Hlaváček, Petr; Klich, Jiří; Čepová, L.

    2012-01-01

    Roč. 19, č. 4 (2012), s. 813-817 ISSN 1330-3651 R&D Projects: GA MŠk ED2.1.00/03.0082; GA MŠk(CZ) ED1.1.00/02.0070 Institutional support: RVO:68145535 Keywords : cutting cost * productivity * plasma * laser * oxygen Subject RIV: JQ - Machines ; Tools Impact factor: 0.601, year: 2012 http://hrcak.srce.hr/index.php?show=clanak&id_clanak_jezik=137703

  13. Reassessing the Aurignacian of Slovenia: techno-economic behaviour and direct dating of osseous projectile points.

    Science.gov (United States)

    Moreau, Luc; Odar, Boštjan; Higham, Tom; Horvat, Aleksander; Pirkmajer, Darja; Turk, Peter

    2015-01-01

    The Palaeolithic of southern Central Europe has a long history of archaeological research. Particularly, the presence of numerous osseous projectile points in many early Upper Palaeolithic (EUP) assemblages in this region has attracted the attention of the international research community. However, the scarcity of properly identified and well-dated Aurignacian contexts represents an obstacle for investigation of the nature and timing of the Middle to Upper Palaeolithic transition. In this context, the question of whether Neandertals made Aurignacian osseous projectile points, either on their own or as a consequence of cultural interaction with anatomically modern humans (AMH), still remains an open issue. Here we reassess the EUP record of Slovenia by evaluating the Aurignacian character of the assemblages from Potočka zijalka, Mokriška jama and Divje babe I in the light of their suggested roots in the local Mousterian. We provide a comprehensive description of the lithic industry from Potočka zijalka, which represents one of the rare EUP assemblages of southern Central Europe with a representative number of lithic artefacts to be analysed from the perspective of lithic technology and raw material economy. Our re-analysis of the Slovenian assemblages is backed by a series of 11 new ultrafiltered collagen 14C dates obtained directly on associated osseous projectile points from the studied assemblages. The Aurignacian of Potočka zijalka underlines the remarkable consistency of the Early Aurignacian with low typo-technological variability across Europe, resulting from a marked dependence on transported toolkits and raw material conservation. The new radiocarbon determinations for the Aurignacian of Slovenia appear to post-date the 34-32 ka BP (thousands of years before present) threshold for the last Neandertals in the region. Although not falsified, the hypothesis of Aurignacian bone tools in southern Central Europe as a product of late Neandertals is not

  14. Techno-economic simulation data based deterministic and stochastic for product engineering research and development BATAN

    International Nuclear Information System (INIS)

    Petrus Zacharias; Abdul Jami

    2010-01-01

    Researches conducted by Batan's researchers have resulted in a number competences that can be used to produce goods and services, which will be applied to industrial sector. However, there are difficulties how to convey and utilize the R and D products into industrial sector. Evaluation results show that each research result should be completed with techno-economy analysis to obtain the feasibility of a product for industry. Further analysis on multy-product concept, in which one business can produce many main products, will be done. For this purpose, a software package simulating techno-economy I economic feasibility which uses deterministic and stochastic data (Monte Carlo method) was been carried out for multi-product including side product. The programming language used in Visual Basic Studio Net 2003 and SQL as data base processing software. This software applied sensitivity test to identify which investment criteria is sensitive for the prospective businesses. Performance test (trial test) has been conducted and the results are in line with the design requirement, such as investment feasibility and sensitivity displayed deterministically and stochastically. These result can be interpreted very well to support business decision. Validation has been performed using Microsoft Excel (for single product). The result of the trial test and validation show that this package is suitable for demands and is ready for use. (author)

  15. Techno-economic feasibility analysis of 1 MW photovoltaic grid connected system in Oman

    Directory of Open Access Journals (Sweden)

    Hussein A. Kazem

    2017-09-01

    Full Text Available Solar photovoltaic panels (PV face many challenges in the Sultanate of Oman. These challenges include costs, policy and technical development. With the growing needs of the Sultanate in the energy sector, Grid Connected PV (GCPV system could help in reducing peak load demand and offer an alternative energy source. This study aims to numerically discover the optimal configuration for a 1 MW GCPV plant in Adam city. Real time data, on hour-by-hour basis, from the location are used to ensure highest accuracy. The simulation not only is set for technical evaluation but economic as well. Investment in GCPV technology needs a bigger push both by research, development and policy. The assessment results show that the PV technology investment is very promising in this site whereas the annual yield factor of the system is 1875.1 kW h/kW p. Meanwhile, the capacity factor of the proposed system is 21.7%. The cost of energy found for the plant is around 0.2258 USD/kW h which is economically feasible and shows great promise.

  16. Development of a Techno-economic Model of Intelligent Transportation System (ITS) for Deployment in Ghana

    DEFF Research Database (Denmark)

    Adjin, Daniel Michael Okwabi; Tadayoni, Reza

    2011-01-01

    The concept of Intelligent Transportation System (ITS) is about the development and deployment of advanced Traffic Management Systems, Traveler Information Systems, Commercial Vehicle Operations, Public and Private Transportation Systems, and Rural Transportation Systems. Several key technologies......, the paper looks at how these modern technologies can be deployed in developing countries, with emphasis on wireless communications applications which will enable developing countries to take off smoothly and progress into their emerging economies successfully. In this paper we have looked at the key....... The results show that deployment of Intelligent Vehicle Tracking Technology (IVTT) will address the problems of inefficiencies experienced in the Ghanaian road transport haulage tracking industry. Research for ITS development and eployment in these countries should be cost effective....

  17. Integrated furfural and first generation bioethanol production: process simulation and techno-economic analysis

    Directory of Open Access Journals (Sweden)

    J. F. L. Silva

    Full Text Available Abstract Furfural is a base chemical with a wide range of applications and with a great opportunity for market growth in the near term. Derived from biomass, its production may be incorporated to the Brazilian chemical industry using sugarcane bagasse as feedstock. In this context, the integration of a furfural plant to a first generation bioethanol facility, within the biorefinery concept, was simulated considering different scenarios compared to an autonomous bioethanol distillery. The economic analysis of the different scenarios showed that the revenues from furfural commercialization increase the internal rate of return of the project for maximum furfural production (22.0% in comparison to a conventional ethanol distillery (13.5%, despite the decrease in electricity output. Moreover, the economic analysis of the results pointed out the possibility of lowering furfural prices to levels that could lead to its use as a precursor for biofuels.

  18. Techno-economic analysis and decision making for PHEV benefits to society, consumers, policymakers and automakers

    Science.gov (United States)

    Al-Alawi, Baha Mohammed

    Plug-in hybrid electric vehicles (PHEVs) are an emerging automotive technology that has the capability to reduce transportation environmental impacts, but at an increased production cost. PHEVs can draw and store energy from an electric grid and consequently show reductions in petroleum consumption, air emissions, ownership costs, and regulation compliance costs, and various other externalities. Decision makers in the policy, consumer, and industry spheres would like to understand the impact of HEV and PHEV technologies on the U.S. vehicle fleets, but to date, only the disciplinary characteristics of PHEVs been considered. The multidisciplinary tradeoffs between vehicle energy sources, policy requirements, market conditions, consumer preferences and technology improvements are not well understood. For example, the results of recent studies have posited the importance of PHEVs to the future US vehicle fleet. No studies have considered the value of PHEVs to automakers and policy makers as a tool for achieving US corporate average fuel economy (CAFE) standards which are planned to double by 2030. Previous studies have demonstrated the cost and benefit of PHEVs but there is no study that comprehensively accounts for the cost and benefits of PHEV to consumers. The diffusion rate of hybrid electric vehicle (HEV) and PHEV technology into the marketplace has been estimated by existing studies using various tools and scenarios, but results show wide variations between studies. There is no comprehensive modeling study that combines policy, consumers, society and automakers in the U.S. new vehicle sales cost and benefits analysis. The aim of this research is to build a potential framework that can simulate and optimize the benefits of PHEVs for a multiplicity of stakeholders. This dissertation describes the results of modeling that integrates the effects of PHEV market penetration on policy, consumer and economic spheres. A model of fleet fuel economy and CAFE compliance for

  19. Regionalized Techno-Economic Assessment and Policy Analysis for Biomass Molded Fuel in China

    Directory of Open Access Journals (Sweden)

    Jie Xu

    2015-12-01

    Full Text Available As a relatively mature technology, biomass molded fuel (BMF is widely used in distributed and centralized heating in China and has received considerable government attention. Although many BFM incentive policies have been developed, decreased domestic traditional fuel prices in China have caused BMF to lose its economic viability and new policy recommendations are needed to stimulate this industry. The present study built a regionalized net present value (NPV model based on real production process simulation to test the impacts of each policy factor. The calculations showed that BMF production costs vary remarkably between regions, with the cost of agricultural briquette fuel (ABF ranging from 86 US dollar per metric ton (USD/t to 110 (USD/t, while that of woody pellet fuel (WPF varies from 122 USD/t to 154 USD/t. The largest part of BMF’s cost composition is feedstock, which accounts for up 50%–60% of the total; accordingly a feedstock subsidy is the most effective policy factor, but in consideration of policy implementation, it would be better to use a production subsidy. For ABF, the optimal product subsidy varies from 26 USD/t to 57 USD/t among different regions of China, while for WPF, the range is 36 USD/t to 75 USD/t. Based on the data, a regional BMF development strategy is also proposed in this study.

  20. Techno-Economic Analysis of Magnesium Extraction from Seawater via a Catalyzed Organo-Metathetical Process

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jian; Bearden, Mark D.; Fernandez, Carlos A.; Fifield, Leonard S.; Nune, Satish K.; Motkuri, Radha K.; Koech, Philip K.; McGrail, B. Pete

    2018-01-16

    Magnesium (Mg) has many useful applications especially in various Mg alloys which can decrease weight while increasing strength. To increase the affordability and minimize environment consequence, a novel catalyzed organo-metathetical (COMET) process was proposed to extract Mg from seawater aiming to achieve significant reduction in total energy and production cost comparing with the melting salt electrolysis method currently adopted by US Mg LLC. A process flowsheet for a reference COMET process was set-up using Aspen Plus which included five key steps, anhydrous MgCl2 production, transmetallation, dibutyl Mg decomposition, n-BuLi regeneration, and LiCL electrolysis. The energy and production cost and CO2 emission were estimated based on the Aspen modeling using Aspen economic analyzer. Our results showed that it is possible to produce Mg from seawater with a production cost of $2.0/kg-Mg while consuming about 35.3 kWh/kg-Mg and releasing 7.0 kg CO2/kg-Mg. A simplified US Mg manufacturing process was also generated using Aspen and the cost and emission results were estimated for comparison purpose. Under our simulation conditions, the reference COMET process maintain a comparable CO2 emission rate and can save about 40% in production cost and save about 15% energy compared to the simplified US Mg process.

  1. Techno-Economic Analysis of Magnesium Extraction from Seawater via a Catalyzed Organo-Metathetical Process

    Science.gov (United States)

    Liu, Jian; Bearden, Mark D.; Fernandez, Carlos A.; Fifield, Leonard S.; Nune, Satish K.; Motkuri, Radha K.; Koech, Philip K.; McGrail, B. Pete

    2018-03-01

    Magnesium (Mg) has many useful applications especially in the form of various Mg alloys that can decrease weight while increasing strength compared with common steels. To increase the affordability and minimize environment consequence, a novel catalyzed organo-metathetical (COMET) process was proposed to extract Mg from seawater aiming to achieve a significant reduction in total energy and production cost compared with the melting salt electrolysis method currently adapted by US Mg LLC. A process flow sheet for a reference COMET process was set up using Aspen Plus. The energy consumption, production cost, and CO2 emissions were estimated using the Aspen economic analyzer. Our results showed that it is possible to produce Mg from seawater with a production cost of 2.0/kg-Mg while consuming about 35.6 kWh/kg-Mg and releasing 7.7 kg CO2/kg-Mg. Under the simulated conditions, the reference COMET process maintains a comparable CO2 emission rate, saves about 40% in production cost, and saves about 15% in energy consumption compared with a simplified US Mg process.

  2. Techno-economic and risk evaluation of a thermal recovery project

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, S.; Brigham, W.E.; Castanier, L.M.

    1997-07-01

    Field production data were studied, to derive an overall energy balance for the steamflood, to calculate the steamflood capture efficiency and predict future steamflood performance. Heat-losses due to produced fluids were also calculated. Predicted production schedules from the model were history-matched with field production data The reservoir parameters (porosity, {phi}, net thickness, h{sub n}, initial oil saturation, S{sub oi}, and residual oil saturation, S{sub or}) were evaluated statistically using both Gaussian and triangular distributions. These resulted in distributed recovery predictions. The Gaussian distributions behaved as predicted; but of great importance, the skewed triangular distributions also behaved in much the same manner. The results fit closely with predictions using logical formulas to predict expected values, peak values and standard variations of recoveries. This result is important, for it indicates that complete Monte-Carlo simulations may not be necessary. All steamflood calculations were carried out using a PC-based spreadsheet program. The major results were as follows: The capture efficiency of the Wilmington steamflood was calculated at 60%. This is an acceptable value, taking into account the reservoir geometry and history. The calculated heat balance showed high heat-loss to adjacent formations and through produced fluids. Of the cumulative heat injected at the time of the study, 21% had been lost to vertical conduction and 21% through produced fluids. Predicted production schedules indicated that up to 43% of the oil in place (at steamflood initiation) could be recovered by the steamflood.

  3. Thermal paint production: the techno-economic evaluation of muscovite as insulating additive.

    Directory of Open Access Journals (Sweden)

    Gabriela Fernandes Ribas

    2016-09-01

    Full Text Available Muscovite is known by its thermal and electrical insulating properties. Based on this, it was hypothesized that its addition on paints should increase the thermal resistance. The use of muscovite as mineral insulating is pointed out as advantageous due to its low cost compared to other materials used for this purpose, such as the ceramic microsphere. The use of a low cost material could open the access to the medium and low income families, implying two aspects: the life quality increase by thermal comfort and the increase of energy saving. Thus, this part of the population could open a new market to thermal paints. Aiming to contribute to this issue, this work evaluated the thermal insulation performance of commercial paints containing muscovite additions and determined the economic evaluation for its industrial production. The thermal paint was formulated by adding 10%, 20% and 40% of muscovite to the commercial paint. This was applied on steel reinforced mortar boards. Thermal insulation tests were carried out in bench scale using an adapted box. The economic evaluation of the industrial production of muscovite-based thermal paint was conducted, considering the Brazilian economic market in this activity. The results showed its ability as an insulating agent due to a reduction of 0.667 °C/mm board by the addition of 40% muscovite. The economic analysis also demonstrated the feasibility of the thermal paint industrial production. The payback is favorable to 5 years when compared to the Selic short-term lending rate, with 21.53% of internal rate return and a net present value of US$ 15,085.76.

  4. Techno-Economic Analysis of BEV Service Providers Offering Battery Swapping Services

    Energy Technology Data Exchange (ETDEWEB)

    Neubauer, J. S.; Pesaran, A.

    2013-01-01

    Battery electric vehicles (BEVs) offer the potential to reduce both oil imports and greenhouse gas emissions, but high upfront costs, battery-limited vehicle range, and concern over high battery replacement costs may discourage potential buyers. A subscription model in which a service provider owns the battery and supplies access to battery swapping infrastructure could reduce upfront and replacement costs for batteries with a predictable monthly fee, while expanding BEV range. Assessing the costs and benefits of such a proposal are complicated by many factors, including customer drive patterns, the amount of required infrastructure, battery life, etc. The National Renewable Energy Laboratory has applied its Battery Ownership Model to compare the economics and utility of BEV battery swapping service plan options to more traditional direct ownership options. Our evaluation process followed four steps: (1) identifying drive patterns best suited to battery swapping service plans, (2) modeling service usage statistics for the selected drive patterns, (3) calculating the cost-of-service plan options, and (4) evaluating the economics of individual drivers under realistically priced service plans. A service plan option can be more cost-effective than direct ownership for drivers who wish to operate a BEV as their primary vehicle where alternative options for travel beyond the single-charge range are expensive, and a full-coverage-yet-cost-effective regional infrastructure network can be deployed. However, when assumed cost of gasoline, tax structure, and absence of purchase incentives are factored in, our calculations show the service plan BEV is rarely more cost-effective than direct ownership of a conventional vehicle.

  5. Techno-Economic Analysis of BEV Service Providers Offering Battery Swapping Services: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Neubauer, J.; Pesaran, A.

    2013-03-01

    Battery electric vehicles (BEVs) offer the potential to reduce both oil imports and greenhouse gas emissions, but high upfront costs, battery-limited vehicle range, and concern over high battery replacement costs may discourage potential buyers. A subscription model in which a service provider owns the battery and supplies access to battery swapping infrastructure could reduce upfront and replacement costs for batteries with a predictable monthly fee, while expanding BEV range. Assessing the costs and benefits of such a proposal are complicated by many factors, including customer drive patterns, the amount of required infrastructure, battery life, etc. The National Renewable Energy Laboratory has applied its Battery Ownership Model to compare the economics and utility of BEV battery swapping service plan options to more traditional direct ownership options. Our evaluation process followed four steps: (1) identifying drive patterns best suited to battery swapping service plans, (2) modeling service usage statistics for the selected drive patterns, (3) calculating the cost-of-service plan options, and (4) evaluating the economics of individual drivers under realistically priced service plans. A service plan option can be more cost-effective than direct ownership for drivers who wish to operate a BEV as their primary vehicle where alternative options for travel beyond the single-charge range are expensive, and a full-coverage-yet-cost-effective regional infrastructure network can be deployed. However, when assumed cost of gasoline, tax structure, and absence of purchase incentives are factored in, our calculations show the service plan BEV is rarely more cost-effective than direct ownership of a conventional vehicle.

  6. Importance of using roller compacted concrete in techno-economic investigation and design of small dams

    Science.gov (United States)

    Rouissat, Bouchrit; Smail, N.; Zenagui, S.

    2017-12-01

    In recent years, and under constraints caused by persistent drought, Algeria has launched a new mobilization strategy for surface water resources from small and medium dams. However, by making a review of the studies and achievements of twenty small dams in the west of Algeria, some deficiencies appeared. In addition to reservoir siltation assessment, operation spillways have been the major constraint on the reliability of these types of dams. The objective of this paper is to use the roller compacted concrete (RCC) for small dams' design for the benefit it offers and its ability to incorporate spillways. The development of this reflection was applied to the Khneg Azir earth dam situated in southwest of Algeria. Its uncontrolled lateral spillway has registered significant damage following the flood of October 2005, amounted, at that time, to more than 100 million Algerian dinars (1 million US Dollars). The present research encompasses a technical and economical comparative analysis concerning multiple criteria dam design types coupled with the conjugation of the spillways. Thus, on the basis of financial estimates calculated for all design types, the variant RCC remains competitive with that of the earth dam's spillway isolated (Less than 40% of the cost). To assess the mechanical behavior of the foundations for both types of dams, (earth and RCC dams), numerical modeling has been undertaken, according to the comparative analysis of deformations in the foundations. Analysis of deformations showed that the average foundation deformations was between (0.052-0.85) m for earth dam and (0.023-0.373) m for RCC dam. These economical and technical considerations open up important prospects for the use of RCC in the design of small dams.

  7. Techno-economic analysis of biooil production process from palm empty fruit bunches

    International Nuclear Information System (INIS)

    Do, Truong Xuan; Lim, Young-il; Yeo, Heejung

    2014-01-01

    Highlights: • A comprehensive model of biooil production from empty fruit bunches was developed. • A minimum plant size having an economic benefit was 20 kton/yr of dry EFB. • Plant size and biooil yield had a major influence on reducing the product value. • Biooil from EFB can be produced at 0.27 $/kg in the most optimistic scenario examined. - Abstract: Empty fruit bunches (EFB), a main residue of the palm oil industry, are one of the most recent renewable energy resources and they promise a high yield of liquid with low gas and char. The objective of this study is to evaluate the economic feasibility of the biooil production process from EFB via fast pyrolysis using the fluidized-bed. A comprehensive model of a biooil production plant was developed utilizing a commercial process simulator. The total capital investment (TCI) was estimated for five different plant sizes. The EFB biooil plant was analyzed in terms of the specific capital cost (SCC), payback period (PBP), return on investment (ROI), and the product value (PV). The minimum profitable plant size was found to be 20 kton-dry EFB/yr at a PV of 0.47 $/kg of biooil including 39% of water. Sensitivity analysis was performed on the basis of the minimum plant size to identify key variables that have a strong impact on the PV. The plant size and the biooil yield showed a major influence on the PV. In the most optimistic scenario investigated in this study, biooil can be produced at a PV of 0.27 $/kg

  8. Techno-economic assessment of hybrid extraction and distillation processes for furfural production from lignocellulosic biomass.

    Science.gov (United States)

    Nhien, Le Cao; Long, Nguyen Van Duc; Kim, Sangyong; Lee, Moonyong

    2017-01-01

    Lignocellulosic biomass is one of the most promising alternatives for replacing mineral resources to overcome global warming, which has become the most important environmental issue in recent years. Furfural was listed by the National Renewable Energy Laboratory as one of the top 30 potential chemicals arising from biomass. However, the current production of furfural is energy intensive and uses inefficient technology. Thus, a hybrid purification process that combines extraction and distillation to produce furfural from lignocellulosic biomass was considered and investigated in detail to improve the process efficiency. This effective hybrid process depends on the extracting solvent, which was selected based on a comprehensive procedure that ranged from solvent screening to complete process design. Various solvents were first evaluated in terms of their extraction ability. Then, the most promising solvents were selected to study the separation feasibility. Eventually, processes that used the three best solvents (toluene, benzene, and butyl chloride) were designed and optimized in detail using Aspen Plus. Sustainability analysis was performed to evaluate these processes in terms of their energy requirements, total annual costs (TAC), and carbon dioxide (CO 2 ) emissions. The results showed that butyl chloride was the most suitable solvent for the hybrid furfural process because it could save 44.7% of the TAC while reducing the CO 2 emissions by 45.5% compared to the toluene process. In comparison with the traditional purification process using distillation, this suggested hybrid extraction/distillation process can save up to 19.2% of the TAC and reduce 58.3% total annual CO 2 emissions. Furthermore, a sensitivity analysis of the feed composition and its effect on the performance of the proposed hybrid system was conducted. Butyl chloride was found to be the most suitable solvent for the hybrid extraction/distillation process of furfural production. The proposed

  9. A techno-economic analysis of EU renewable electricity policy pathways in 2030

    International Nuclear Information System (INIS)

    Río, Pablo del; Resch, Gustav; Ortner, Andre; Liebmann, Lukas; Busch, Sebastian; Panzer, Christian

    2017-01-01

    The aim of this paper is to assess several pathways of a harmonised European policy framework for supporting renewable electricity (RES-E) in a 2030 horizon according to different criteria. The pathways combine two main dimensions: degrees of harmonisation and instruments and design elements. A quantitative model-based analysis with the Green-X model is provided. The results of the simulations show that there are small differences between the evaluated cases regarding effectiveness. All the policy pathways score similarly with respect to RES-E deployment, i.e., with different degrees of harmonisation and whether using a feed-in tariff, a feed-in premium, a quota system with banding or a quota without banding scheme. In contrast, the policy costs clearly differ across the pathways, but the differences can mostly be attributed to the instruments rather than to the degrees of harmonisation. This is also the case with other criteria (static and dynamic efficiency and the socioeconomic and environmental benefits in terms of CO2 emissions and fossil fuels avoided). Both the degree of harmonisation and the choice of instrument influence the distribution of support costs across countries. Finally, our findings suggest that keeping strengthened national support leads to similar results to other policy pathways. - Highlights: • Pathways of a harmonised European policy framework for renewable electricity in 2030. • Two main dimensions: degrees of harmonisation and instruments. • A quantitative model-based analysis based on the Green-X model. • Small differences between the pathways regarding the effectiveness criterion. • Important differences between pathways regarding other assessment criteria.

  10. Techno-economic feasibility study of the integration of a commercial small-scale ORC in a real case study

    International Nuclear Information System (INIS)

    Cavazzini, G.; Dal Toso, P.

    2015-01-01

    Highlights: • The integration of a small-scale commercial ORC in a real case study was analyzed. • The possibility of recovering the waste heat produced by an ICE was considered. • A semi-empirical steady-state model of the commercial small scale ORC was created. • Both direct and indirect costs was considered in the business model. • The ORC integration was not economically feasible due to increased indirect costs. - Abstract: The ORC certainly represents a promising solution for recovering low-grade waste heat in industries. However, the efficiency of commercial small-scale ORC solutions is still too low in comparison with the high initial costs of the machine and the lack of simulation models specifically developed for commercial ORC systems prevents industries from defining an accurate business model to correctly evaluate the ORC integration in real industrial processes. This paper presents a techno-economic feasibility analysis of the integration of a small-scale commercial ORC in a real case study, represented by a highly-efficient industrial distillery. The integration is aimed at maximizing the electricity auto-production by exploiting the heat produced by an internal combustion engine, already partially recovered in internal thermal processes. To analyze the influence of the ORC integration on the industrial processes, a semi-empirical steady-state model of the commercial small scale ORC was created. The model made it possible to simulate the performance of the commercial ORC within a hypothetical scenario involving the use of the heat from the cooling water and from the exhaust gases of the internal combustion engine. A detailed thermo-dynamic analysis has been carried out to study the effects of the ORC integration on the plant’s energy system with particular focus on the two processes directly affected by ORC integration, namely vapor production and the drying process of the grape marc. The analysis highlighted the great importance in the

  11. Techno-economic evaluation of integrated first- and second-generation ethanol production from grain and straw.

    Science.gov (United States)

    Joelsson, Elisabeth; Erdei, Borbála; Galbe, Mats; Wallberg, Ola

    2016-01-01

    Integration of first- and second-generation ethanol production can facilitate the introduction of second-generation lignocellulosic ethanol production. Consolidation of the second-generation with the first-generation process can potentially reduce the downstream processing cost for the second-generation process as well as providing the first-generation process with energy. This study presents novel experimental results from integrated first- and second-generation ethanol production from grain and wheat straw in a process development unit. The results were used in techno-economic evaluations to investigate the feasibility of the plant, in which the main co-products were distiller's dried grains with solubles and biogas. An overall glucose to ethanol yield, of 81 % of the theoretical, based on glucose available in the raw material, was achieved in the experiments. A positive net present value was found for all the base case scenarios and the minimal ethanol selling price varied between 0.45 and 0.53 EUR/L ethanol. The revenue increased with combined xylose and glucose fermentation and biogas upgrading to vehicle fuel quality. A decrease in the biogas yield from 80 to 60 % also largely affects the net present value. The energy efficiency for the energy content in products available for sale compared with the incoming energy content varied from 74 to 80 %. One of the two main configurations can be chosen when designing an integrated first- and second-generation ethanol production plant from grain and straw: that producing biogas or that producing distiller's dried grains with solubles from the xylose sugars. The choice depends mainly on the local market and prices for distiller's dried grains with solubles and biogas, since the prices for both co-products have fluctuated a great deal in recent years. In the current study, however, distiller's dried grains with solubles were found to be a more promising co-product than biogas, if the biogas was not upgraded to

  12. Market potential of solar thermal enhanced oil recovery-a techno-economic model for Issaran oil field in Egypt

    Science.gov (United States)

    Gupta, Sunay; Guédez, Rafael; Laumert, Björn

    2017-06-01

    fields. The model was developed for steam flooding requirements in Issaran oil field using DYESOPT, KTH's in-house tool for techno-economic modelling in CSP.

  13. Techno-economic feasibility study of food irradiation in the Republic of Kenya. End-of-Mission report

    International Nuclear Information System (INIS)

    Du Plessis, T.A.

    1993-01-01

    Through its National Council for Science and Technology as the adhering body to the IAEA, the Government of the Republic of Kenya requested an IAEA expert to undertake a 20 - day mission in Kenya during September 1993 to investigate the techno-economic feasibility of introducing food irradiation as a technology in this country. During his investigation in Kenya the expert was accompanied by a local food scientist from the Department of Food Science and Postharvest Technology, as well as an economist from the Kenya Industrial Research and Development Institute. The investigation covered a very wide spectrum of more than fifty visits and meetings to governmental and regulatory bodies, as well as to the relevant private industries. Although the emphasis was placed on food irradiation, the investigation also covered potential medical and pharmaceutical applications. The feasibility study indicated that radiation indeed has a role to play in addressing some of the problems currently experienced by the food industry in Kenya. It was found that both governmental institutions and industry are enthusiastic about the prospects of this technology. However, it was found that the majority of foodstuffs that currently could be irradiated are destined for the export market and the acceptance of such irradiated foodstuffs in some recipient countries may pose a problem. In the case of the medical and pharmaceutical industries, the mere availability of a radiation sterilization facility in the country could strongly enhance the establishment of a local medical device industry. Based on a preliminary economic feasibility study by the expert, a radiation processing industry may be already be viable and a number of businessmen in industry indeed expressed their interest in becoming involved as potential investors in the technology. However, from an investment point of view, the current investigation was not comprehensive enough to come to the final conclusion as to the economic

  14. Techno-Economic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Salvesen, F.; Sandgren, J. [KanEnergi AS, Rud (Norway)

    1997-12-31

    The present energy situation in the target area is summarized: 20 million inhabitants without electricity in north- west Russia, 50 % of the people in the Baltic`s without electricity, very high technical skills, biggest problems is the finance. The energy situation, the advantages of the renewables, the restrictions, and examples for possible technical solutions are reviewed on the basis of short analysis and experience with the Baltics and Russia

  15. Hydrothermal Liquefaction and Upgrading of Municipal Wastewater Treatment Plant Sludge: A Preliminary Techno-Economic Analysis, Rev.1

    Energy Technology Data Exchange (ETDEWEB)

    Snowden-Swan, Lesley J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhu, Yunhua [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Jones, Susanne B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Elliott, Douglas C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Schmidt, Andrew J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hallen, Richard T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Billing, Justin M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hart, Todd R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Fox, Samuel P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Maupin, Gary D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-09-01

    A preliminary process model and techno-economic analysis (TEA) was completed for fuel produced from hydrothermal liquefaction (HTL) of sludge waste from a municipal wastewater treatment plant (WWTP) and subsequent biocrude upgrading. The model is adapted from previous work by Jones et al. (2014) for algae HTL, using experimental data generated in fiscal year 2015 (FY15) bench-scale HTL testing of sludge waste streams. Testing was performed on sludge samples received from Metro Vancouver’s Annacis Island WWTP (Vancouver, B.C.) as part of a collaborative project with the Water Environment and Reuse Foundation (WERF). The full set of sludge HTL testing data from this effort will be documented in a separate report to be issued by WERF. This analysis is based on limited testing data and therefore should be considered preliminary. In addition, the testing was conducted with the goal of successful operation, and therefore does not represent an optimized process. Future refinements are necessary to improve the robustness of the model, including a cross-check of modeled biocrude components with the experimental GCMS data and investigation of equipment costs most appropriate at the relatively small scales used here. Environmental sustainability metrics analysis is also needed to understand the broader impact of this technology pathway. The base case scenario for the analysis consists of 10 HTL plants, each processing 100 dry U.S. ton/day (92.4 ton/day on a dry, ash-free basis) of sludge waste and producing 234 barrel per stream day (BPSD) biocrude, feeding into a centralized biocrude upgrading facility that produces 2,020 barrel per standard day of final fuel. This scale was chosen based upon initial wastewater treatment plant data collected by PNNL’s resource assessment team from the EPA’s Clean Watersheds Needs Survey database (EPA 2015a) and a rough estimate of what the potential sludge availability might be within a 100-mile radius. In addition, we received

  16. Are the lessons of the techno-economic studies on the sulphur-iodine cycle applicable to the other cycles?

    International Nuclear Information System (INIS)

    Werkoff, F.; Mansilla, C.

    2007-01-01

    Further advances in nuclear energy system design can broaden the opportunities for the use of nuclear energy. To explore these opportunities, several countries are involved in a forum on the development of next generation nuclear energy systems known as 'Generation IV'. Six concepts have been chosen by the forum, to be studied. The Very High Temperature Reactor (VHTR) offers perspectives for producing electricity and hydrogen with high efficiencies. Nuclear production of hydrogen by thermochemical means is one of the prime candidates for powering the hydrogen economy without producing green house gases. Among them, the Sulphur-Iodine (S-I) thermochemical cycle appeared well fitted with the VHTR, due to the temperature needed for the decomposition of the sulphuric acid. It was invented in the 1970's and it benefits from a revival of interest in the framework of Generation IV. In the last past years, assessments of the S-I process, coupled with a VHTR have been carried out. It appeared that these assessments have to be considered, looking with a particular care to the recommendations of the Generation IV crosscutting economics group [1]: a Generation IV system will: 1. Have a clear life-cost advantage over other energy systems. 2. Have a level of financial risk comparable to other energy projects. The experience gained from techno-economic studies [2, 3] which consider the S-I cycle, indicates that the choice of alternatives cycles to the S-I one must be driven by the characteristic of a previously selected nuclear reactor, mainly the temperature at the nuclear core outlet. Moreover, the net efficiency of the thermochemical cycle must be higher than a reference value defined from the alkaline electrolysis fed by the electricity produced from the selected reactor. Besides, the technical feasibility of the thermochemical processes is not yet established and the production cost of hydrogen from these processes is the result of the sum of several cost factors which are

  17. Techno-economic analysis of a food waste valorization process via microalgae cultivation and co-production of plasticizer, lactic acid and animal feed from algal biomass and food waste.

    Science.gov (United States)

    Kwan, Tsz Him; Pleissner, Daniel; Lau, Kin Yan; Venus, Joachim; Pommeret, Aude; Lin, Carol Sze Ki

    2015-12-01

    A techno-economic study of food waste valorization via fungal hydrolysis, microalgae cultivation and production of plasticizer, lactic acid and animal feed was simulated and evaluated by Super-Pro Designer®. A pilot-scale plant was designed with a capacity of 1 metric ton day(-1) of food waste with 20 years lifetime. Two scenarios were proposed with different products: Scenario (I) plasticizer & lactic acid, Scenario (II) plasticizer & animal feed. It was found that only Scenario I was economically feasible. The annual net profits, net present value, payback period and internal rate of return were US$ 422,699, US$ 3,028,000, 7.56 years and 18.98%, respectively. Scenario II was not economic viable due to a deficit of US$ 42,632 per year. Sensitivity analysis showed that the price of lactic acid was the largest determinant of the profitability in Scenario I, while the impact of the variables was very close in Scenario II. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Smart intermittency-friendly cogeneration: Techno-economic performance of innovative double storage concept for integrating compression heat pumps in distributed cogeneration

    DEFF Research Database (Denmark)

    Blarke, Morten

    2011-01-01

    plants may adapt their plant design and operational strategy to improve the co-existence between cogeneration and intermittent renewables. A novel intermittency-friendly and super-efficient concept in cogeneration is presented that involves integrating a high-pressure compression heat pump using heat...... cogeneration plants rather than central power plants are giving way for wind power in the electricity mix. Could intermittent renewables be a threat to the system-wide energy, economic and environmental benefits that distributed cogeneration have to offer? This paper investigates how existing cogeneration...... recovered from flue gasses as the only low-temperature heat source, furthermore applying an intermediate cold storage allowing for non-concurrent operation of heat pump and cogeneration unit. The novel concept is subject to a detailed techno-economic comparative modelling and analysis, hich finds...

  19. Integrated 1st and 2nd generation sugarcane bio-refinery for jet fuel production in Brazil: Techno-economic and greenhouse gas emissions assessment

    DEFF Research Database (Denmark)

    Santos, Catarina I.; Silva, Constança C.; Mussatto, Solange I.

    2017-01-01

    technological improvements may help to further reduce the MJSP either marginally (2%, by using 1G sugars for succinic acid production) or significantly (30%, by increasing the operation time). Thus, the lowest MJSP here calculated is 1725 US $.ton−1 (with 1G sugars to biojet fuel via ethanol, and bagasse......This study presents a techno-economic analysis and an environmental assessment, of the whole production chain (biomass production, sugar extraction, biomass pretreatment, sugars fermentation, and products recovery and purification), of a fully autarkic sugarcane-based biorefinery for biojet fuel...... from sugars (i.e. ethanol to jet and direct fermentation); one biojet fuel production route from biomass (i.e. fast pyrolysis); two biojet fuel production routes from lignin obtained after biomass pretreatment (i.e. fast pyrolysis and gasification Fischer- Tropsch); and one alternative use for lignin...

  20. Techno-economic and environmental assessment of bioethanol production from high starch and root yield Sri Kanji 1 cassava in Malaysia

    Directory of Open Access Journals (Sweden)

    M. Hanif

    2016-11-01

    Full Text Available Transportation played a significant role in energy consumption and pollution subsequently. Caused by the intense growth of greenhouse gas emission, efficient and sustainable improvement of the transportation sector has elevated the concern in many nations including Malaysia. Bioethanol is an alternative and renewable energy that has a great potential to substitute for fossil gasoline in internal combustion engine (ICE. Although bioethanol has been widely utilized in road transport worldwide, the production and application of bioethanol in Malaysia is yet to be considered. Presently there is comprehensive diversity of bioethanol research on distillation, performance and emission analysis available worldwide. Yet, the study on techno-economic and feasibility of bioethanol fuel in Malaysia condition is unavailable. Thus, this study is concentrated on bioethanol production and techno-economic analysis of cassava bioethanol as an alternative fuel in Malaysia. Furthermore, the current study attempts to determine the effect of bioethanol employment towards the energy scenario, environmental and economy. From the economic analysis, determined that the life cycle cost for 54 ktons cassava bioethanol production plant with a project life time of 20 years is $132 million USD, which is equivalent to $0.11 USD per litre of bioethanol. Furthermore, substituting 5 % of gasoline fuel with bioethanol fuel in road transport can reduce the CO2 emissions up to 2,038 ktons in year 2036. In case to repay the carbon debt from converting natural forest to cassava cropland, cassava bioethanol required about 5.4 years. The cassava bioethanol is much cheaper than gasoline fuel even when 20 % taxation is subjected to bioethanol at current production cost. Thus, this study serves as a guideline for further investigation and research on bioethanol production, subsidy cost and other limitation factors before the extensive application of bioethanol can be implemented in

  1. Electrical network capacity support from demand side response: Techno-economic assessment of potential business cases for small commercial and residential end-users

    International Nuclear Information System (INIS)

    Martínez Ceseña, Eduardo A.; Good, Nicholas; Mancarella, Pierluigi

    2015-01-01

    Demand Side Response (DSR) is recognised for its potential to bring economic benefits to various electricity sector actors, such as energy retailers, Transmission System Operators (TSOs) and Distribution Network Operators (DNOs). However, most DSR is provided by large industrial and commercial consumers, and little research has been directed to the quantification of the value that small (below 100 kW) commercial and residential end-users could accrue by providing DSR services. In particular, suitable models and studies are needed to quantify potential business cases for DSR from small commercial and residential end-users. Such models and studies should consider the technical and physical characteristics of the power system and demand resources, together with the economic conditions of the power market. In addition, the majority of research focuses on provision of energy arbitrage or ancillary services, with very little attention to DSR services for network capacity support. Accordingly, this paper presents comprehensive techno-economic methodologies for the quantification of three capacity-based business cases for DSR from small commercial and residential end-users. Case study results applied to a UK context indicate that, if the appropriate regulatory framework is put in place, services for capacity support to both DNOs and TSOs can result into potentially attractive business cases for DSR from small end-users with minimum impact on their comfort level. -- Highlights: •We present three business cases for DSR from domestic and commercial end-users. •A comprehensive techno-economic methodology is proposed for the quantification of each DSR business cases. •The regulatory implications associated with each business case are discussed

  2. IGCC power plant integrated to a Finnish pulp and paper mill. IEA Bioenergy. Techno-economic analysis activity

    Energy Technology Data Exchange (ETDEWEB)

    Koljonen, T.; Solantausta, Y. [VTT Energy, Espoo (Finland). New Energy Technologies; Salo, K.; Horvath, A. [Carbona Inc. (Finland)

    1999-11-01

    ), which is about double compared to that of the new bark boiler and the steam turbine. The techno-economic assessment of the biomass IGCC integrated to a pulp and paper mill or a pulp mill indicated that the IGCC will be competitive compared to the conventional bark boiler steam cycle. The IGCC integrated to a pulp and paper mill was slightly more economical than the IGCC pulp mill integrate. However, it should be borne in mind that the internal rate of return (IRR) was relatively low in both cases or even negative with high biomass fuel prices. As the IGCC produces about 50 % more electricity from the same fuel amount than the regular power plant its economics will improve with higher electricity prices (>200 FIM/MWh, 40 USD/MWh) compared to that of the conventional boiler plant. According to the Finnish energy policy, the use of bioenergy should be increased by at least one quarter by the year 2005. To achieve this target, the Finnish Government should grant investment aid for the construction of demonstration plants to promote advanced power production, like gasification. The Finnish energy policy is also in line with the objectives of the European Union, which also grants investment supports. In this study, an investment aid of 50 % was assumed. With an investment cost of FIM 200 million (USD 40 million) the SIR value of the IGCC plant increased to about 10 %. Based on test runs at a pilot plant (15 MJ/s) in Tampere and on the experience of Car- bona the pressurised gasification technology can be considered ready for demonstration. There are, however, some technical uncertainty related to full-scale continues operation of the biomass MCC related to hot gas cleaning of gas contaminants, fuel handling and feeding, operating parameters of the gasified, bed material selection, special material problems, and environmental performance, especially, if specific feedstock with a high alkaline, ash or other harmful contaminant content is used. The full-scale demonstration of

  3. IGCC power plant integrated to a Finnish pulp and paper mill. IEA Bioenergy. Techno-economic analysis activity

    International Nuclear Information System (INIS)

    Koljonen, T.; Solantausta, Y.

    1999-01-01

    ), which is about double compared to that of the new bark boiler and the steam turbine. The techno-economic assessment of the biomass IGCC integrated to a pulp and paper mill or a pulp mill indicated that the IGCC will be competitive compared to the conventional bark boiler steam cycle. The IGCC integrated to a pulp and paper mill was slightly more economical than the IGCC pulp mill integrate. However, it should be borne in mind that the internal rate of return (IRR) was relatively low in both cases or even negative with high biomass fuel prices. As the IGCC produces about 50 % more electricity from the same fuel amount than the regular power plant its economics will improve with higher electricity prices (>200 FIM/MWh, 40 USD/MWh) compared to that of the conventional boiler plant. According to the Finnish energy policy, the use of bioenergy should be increased by at least one quarter by the year 2005. To achieve this target, the Finnish Government should grant investment aid for the construction of demonstration plants to promote advanced power production, like gasification. The Finnish energy policy is also in line with the objectives of the European Union, which also grants investment supports. In this study, an investment aid of 50 % was assumed. With an investment cost of FIM 200 million (USD 40 million) the SIR value of the IGCC plant increased to about 10 %. Based on test runs at a pilot plant (15 MJ/s) in Tampere and on the experience of Car- bona the pressurised gasification technology can be considered ready for demonstration. There are, however, some technical uncertainty related to full-scale continues operation of the biomass MCC related to hot gas cleaning of gas contaminants, fuel handling and feeding, operating parameters of the gasified, bed material selection, special material problems, and environmental performance, especially, if specific feedstock with a high alkaline, ash or other harmful contaminant content is used. The full-scale demonstration of

  4. Comparative techno-economic analysis and process design for indirect liquefaction pathways to distillate-range fuels via biomass-derived oxygenated intermediates upgrading: Liquid Transportation Fuel Production via Biomass-derived Oxygenated Intermediates Upgrading

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Eric C. D. [National Renewable Energy Laboratory, Golden CO USA; Snowden-Swan, Lesley J. [Pacific Northwest National Laboratory, Richland WA USA; Talmadge, Michael [National Renewable Energy Laboratory, Golden CO USA; Dutta, Abhijit [National Renewable Energy Laboratory, Golden CO USA; Jones, Susanne [Pacific Northwest National Laboratory, Richland WA USA; Ramasamy, Karthikeyan K. [Pacific Northwest National Laboratory, Richland WA USA; Gray, Michel [Pacific Northwest National Laboratory, Richland WA USA; Dagle, Robert [Pacific Northwest National Laboratory, Richland WA USA; Padmaperuma, Asanga [Pacific Northwest National Laboratory, Richland WA USA; Gerber, Mark [Pacific Northwest National Laboratory, Richland WA USA; Sahir, Asad H. [National Renewable Energy Laboratory, Golden CO USA; Tao, Ling [National Renewable Energy Laboratory, Golden CO USA; Zhang, Yanan [National Renewable Energy Laboratory, Golden CO USA

    2016-09-27

    This paper presents a comparative techno-economic analysis (TEA) of five conversion pathways from biomass to gasoline-, jet-, and diesel-range hydrocarbons via indirect liquefaction with specific focus on pathways utilizing oxygenated intermediates. The four emerging pathways of interest are compared with one conventional pathway (Fischer-Tropsch) for the production of the hydrocarbon blendstocks. The processing steps of the four emerging pathways include: biomass to syngas via indirect gasification, gas cleanup, conversion of syngas to alcohols/oxygenates followed by conversion of alcohols/oxygenates to hydrocarbon blendstocks via dehydration, oligomerization, and hydrogenation. Conversion of biomass-derived syngas to oxygenated intermediates occurs via three different pathways, producing: 1) mixed alcohols over a MoS2 catalyst, 2) mixed oxygenates (a mixture of C2+ oxygenated compounds, predominantly ethanol, acetic acid, acetaldehyde, ethyl acetate) using an Rh-based catalyst, and 3) ethanol from syngas fermentation. This is followed by the conversion of oxygenates/alcohols to fuel-range olefins in two approaches: 1) mixed alcohols/ethanol to 1-butanol rich mixture via Guerbet reaction, followed by alcohol dehydration, oligomerization, and hydrogenation, and 2) mixed oxygenates/ethanol to isobutene rich mixture and followed by oligomerization and hydrogenation. The design features a processing capacity of 2,000 tonnes/day (2,205 short tons) of dry biomass. The minimum fuel selling prices (MFSPs) for the four developing pathways range from $3.40 to $5.04 per gasoline-gallon equivalent (GGE), in 2011 US dollars. Sensitivity studies show that MFSPs can be improved with co-product credits and are comparable to the commercial Fischer-Tropsch benchmark ($3.58/GGE). Overall, this comparative TEA study documents potential economics for the developmental biofuel pathways via mixed oxygenates.

  5. Model for the techno-economic analysis of common work of wind power and CCGT power plant to offer constant level of power in the electricity market

    Science.gov (United States)

    Tomsic, Z.; Rajsl, I.; Filipovic, M.

    2017-11-01

    Wind power varies over time, mainly under the influence of meteorological fluctuations. The variations occur on all time scales. Understanding these variations and their predictability is of key importance for the integration and optimal utilization of wind in the power system. There are two major attributes of variable generation that notably impact the participation on power exchanges: Variability (the output of variable generation changes and resulting in fluctuations in the plant output on all time scales) and Uncertainty (the magnitude and timing of variable generation output is less predictable, wind power output has low levels of predictability). Because of these variability and uncertainty wind plants cannot participate to electricity market, especially to power exchanges. For this purpose, the paper presents techno-economic analysis of work of wind plants together with combined cycle gas turbine (CCGT) plant as support for offering continues power to electricity market. A model of wind farms and CCGT plant was developed in program PLEXOS based on real hourly input data and all characteristics of CCGT with especial analysis of techno-economic characteristics of different types of starts and stops of the plant. The Model analyzes the followings: costs of different start-stop characteristics (hot, warm, cold start-ups and shutdowns) and part load performance of CCGT. Besides the costs, the technical restrictions were considered such as start-up time depending on outage duration, minimum operation time, and minimum load or peaking capability. For calculation purposes, the following parameters are necessary to know in order to be able to economically evaluate changes in the start-up process: ramp up and down rate, time of start time reduction, fuel mass flow during start, electricity production during start, variable cost of start-up process, cost and charges for life time consumption for each start and start type, remuneration during start up time regarding

  6. Techno-economic analysis of a wind-solar hybrid renewable energy system with rainwater collection feature for urban high-rise application

    International Nuclear Information System (INIS)

    Chong, W.T.; Naghavi, M.S.; Poh, S.C.; Mahlia, T.M.I.; Pan, K.C.

    2011-01-01

    harvesting technologies. → The system overcomes the inferior aspect on the low wind speed by introducing the power-augmentation-guide-vane (PAGV). → The PAGV is used to guide and create venturi effect to increase the wind speed before the wind-stream enters wind turbine. → This design can be blended into the building architecture without negative visual impact, and is safer for populated area. → The PAGV improves the wind turbine's starting behavior and prolongs its operating hour, thus reduces the payback period. -- Abstract: The technical and economic feasibility study of an innovative wind-solar hybrid renewable energy generation system with rainwater collection feature for electrical energy generation is presented in this paper. The power generated would supply part of the energy requirements of the high-rise building where the system is installed. The system integrates and optimizes several green technologies; including urban wind turbine, solar cell module and rain water collector. The design was conceptualized based on the experiences acquired during the development and testing of a suitable wind turbine for Malaysian applications. It is compact and can be built on top of high-rise buildings in order to provide on-site renewable power to the building. It overcomes the inferior aspect on the low wind speed by channeling and increasing the speed of the high altitude free-stream wind through the power-augmentation-guide-vane (PAGV) before it enters the wind turbine at the center portion. The shape or appearance of the PAGV that surrounds the wind turbine can be blended into the building architecture without negative visual impact (becomes part of the building). The design improves the starting behavior of wind turbines. It is also safer to people around and reduces noise pollution. The techno-economic analysis is carried out by applying the life cycle cost (LCC) method. The LCC method takes into consideration the complete range of costs and makes cash flows time

  7. Concept development and techno-economic assessment for a solar home system using lithium-ion battery for developing regions to provide electricity for lighting and electronic devices

    International Nuclear Information System (INIS)

    Zubi, Ghassan; Dufo-López, Rodolfo; Pardo, Nicolás; Pasaoglu, Guzay

    2016-01-01

    Highlights: • Solar home systems using light emitting diode lamps could substitute kerosene lamps. • This implies major improvement in life quality in developing regions. • The economic advantage of solar home systems is substantial and incremental. • This shift implies a cut of more than 200 mega tons of carbon dioxide annually. • Implementation barriers can be overcome by early consideration in system engineering. - Abstract: Around 18% of the world’s population still don’t have access to electricity, most of them living in rural areas in South Asia, Southeast Asia, and Sub-Saharan Africa. Kerosene lamps are widely used for lighting in these regions, but imply a big number of disadvantages including low light quality, reduced indoor air quality and safety concerns. Furthermore, the consumption of kerosene for lighting is very energy inefficient and implies a relatively high cost for the added value it provides, while its price volatility is a major concern for dependant developing regions. Global carbon dioxide emissions from kerosene lamps exceed 200 mega tons annually. A solar home system using light emitting diode lamps provides an effective solution for this problem. This paper elaborates such a solar home system while focusing on overcoming implementation barriers including lack of technical support and affordability. An evolutionary techno-economic assessment, considering the time period 2015–2030, is provided for the proposed system. This emphasizes not only the existing but also the increasing advantage of solar home systems over kerosene lamps.

  8. Techno-economic analysis of using corn stover to supply heat and power to a corn ethanol plant - Part 2: Cost of heat and power generation systems

    International Nuclear Information System (INIS)

    Mani, S.; Sokhansanj, S.; Tagore, S.; Turhollow, A.F.

    2010-01-01

    This paper presents a techno-economic analysis of corn stover fired process heating (PH) and the combined heat and power (CHP) generation systems for a typical corn ethanol plant (ethanol production capacity of 170 dam 3 ). Discounted cash flow method was used to estimate both the capital and operating costs of each system and compared with the existing natural gas fired heating system. Environmental impact assessment of using corn stover, coal and natural gas in the heat and/or power generation systems was also evaluated. Coal fired process heating (PH) system had the lowest annual operating cost due to the low fuel cost, but had the highest environmental and human toxicity impacts. The proposed combined heat and power (CHP) generation system required about 137 Gg of corn stover to generate 9.5 MW of electricity and 52.3 MW of process heat with an overall CHP efficiency of 83.3%. Stover fired CHP system would generate an annual savings of 3.6 M$ with an payback period of 6 y. Economics of the coal fired CHP system was very attractive compared to the stover fired CHP system due to lower fuel cost. But the greenhouse gas emissions per Mg of fuel for the coal fired CHP system was 32 times higher than that of stover fired CHP system. Corn stover fired heat and power generation system for a corn ethanol plant can improve the net energy balance and add environmental benefits to the corn to ethanol biorefinery.

  9. Municipal Solid Waste (MSW) to Liquid Fuels Synthesis, Volume 2: A Techno-economic Evaluation of the Production of Mixed Alcohols

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Susanne B.; Zhu, Yunhua; Valkenburt, Corinne

    2009-05-01

    Biomass is a renewable energy resource that can be converted into liquid fuel suitable for transportation applications and thus help meet the Energy Independence and Security Act renewable energy goals (U.S. Congress 2007). However, biomass is not always available in sufficient quantity at a price compatible with fuels production. Municipal solid waste (MSW) on the other hand is readily available in large quantities in some communities and is considered a partially renewable feedstock. Furthermore, MSW may be available for little or no cost. This report provides a techno-economic analysis of the production of mixed alcohols from MSW and compares it to the costs for a wood based plant. In this analysis, MSW is processed into refuse derived fuel (RDF) and then gasified in a plant co-located with a landfill. The resulting syngas is then catalytically converted to mixed alcohols. At a scale of 2000 metric tons per day of RDF, and using current technology, the minimum ethanol selling price at a 10% rate of return is approximately $1.85/gallon ethanol (early 2008 $). However, favorable economics are dependent upon the toxicity characteristics of the waste streams and that a market exists for the by-product scrap metal recovered from the RDF process.

  10. A techno-economic evaluation of the effects of centralized cellulosic ethanol and co-products refinery options with sugarcane mill clustering

    International Nuclear Information System (INIS)

    Seabra, Joaquim E.A.; Tao, Ling; Chum, Helena L.; Macedo, Isaias C.

    2010-01-01

    This work compares the calculated techno-economic performance for thermochemical and biochemical conversion of sugarcane residues, considering future conversion plants adjacent to sugarcane mills in Brazil. Process models developed by the National Renewable Energy Laboratory were adapted to reflect the Brazilian feedstock composition and used to estimate the cost and performance of these two conversion technologies. Models assumed that surplus bagasse from the mill would be used as the feedstock for conversion, while cane trash collected from the field would be used as supplementary fuel at the mill. The integration of the conversion technology to the mill enabled an additional ethanol production of 0.033 m 3 per tonne of cane for the biochemical process and 0.025 m 3 t -1 of cane plus 0.004 m 3 t -1 of cane of higher alcohols for the thermochemical process. For both cases, electricity is an important co-product for the biorefinery, but especially for biochemical conversion, with surpluses of about 50 kWh t -1 of cane. The economic performance of the two technologies is quite similar in terms of the minimum ethanol selling price (MESP), at 318 $ m -3 (United States 2007 dollars) for biochemical conversion and 329 $ m -3 for thermochemical conversion. (author)

  11. Techno-Economic Feasibility Study of Renewable Power Systems for a Small-Scale Plasma-Assisted Nitric Acid Plant in Africa

    Directory of Open Access Journals (Sweden)

    Aikaterini Anastasopoulou

    2016-12-01

    Full Text Available The expected world population growth by 2050 is likely to pose great challenges in the global food demand and, in turn, in the fertilizer consumption. The Food and Agricultural Organization of the United Nations has forecasted that 46% of this projected growth will be attributed to Africa. This, in turn, raises further concerns about the sustainability of Africa’s contemporary fertilizer production, considering also its high dependence on fertilizer imports. Based on these facts, a novel “green” route for the synthesis of fertilizers has been considered in the context of the African agriculture by means of plasma technology. More precisely, a techno-economic feasibility study has been conducted for a small-scale plasma-assisted nitric acid plant located in Kenya and South Africa with respect to the electricity provision by renewable energy sources. In this study, standalone solar and wind power systems, as well as a hybrid system, have been assessed for two different electricity loads against certain economic criteria. The relevant simulations have been carried out in HOMER software and the optimized configurations of each examined renewable power system are presented in this study.

  12. Single-step syngas-to-distillates (S2D) process based on biomass-derived syngas--a techno-economic analysis.

    Science.gov (United States)

    Zhu, Yunhua; Jones, Susanne B; Biddy, Mary J; Dagle, Robert A; Palo, Daniel R

    2012-08-01

    This study compared biomass gasification based syngas-to-distillate (S2D) systems using techno-economic analysis (TEA). Three cases, state of technology (SOT), goal, and conventional, were compared in terms of performance and cost. The SOT case represented the best available experimental results for a process starting with syngas using a single-step dual-catalyst reactor for distillate generation. The conventional case mirrored a conventional two-step S2D process consisting of separate syngas-to-methanol and methanol-to-gasoline (MTG) processes. The goal case assumed the same performance as the conventional, but with a single-step S2D technology. TEA results revealed that the SOT was more expensive than the conventional and goal cases. The SOT case suffers from low one-pass yield and high selectivity to light hydrocarbons, both of which drive up production cost. Sensitivity analysis indicated that light hydrocarbon yield and single pass conversion efficiency were the key factors driving the high cost for the SOT case. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Techno-Economic Analysis of PEV Battery Second Use: Repurposed-Battery Selling Price and Commercial and Industrial End-User Value

    Energy Technology Data Exchange (ETDEWEB)

    Neubauer, J.; Pesaran, A.; Williams, B.; Ferry, M.; Eyer, J.

    2012-06-01

    Accelerated market penetration of plug-in electric vehicles and deployment of grid-connected energy storage are restricted by the high cost of lithium-ion batteries. Research, development, and manufacturing are underway to lower material costs, enhance process efficiencies, and increase production volumes. A fraction of the battery cost may be recovered after vehicular service by reusing the battery where it may have sufficient performance for other energy-storage applications. By extracting post-vehicle additional services and revenue from the battery, the total lifetime value of the battery is increased. The overall cost of energy-storage solutions for both primary (automotive) and secondary (grid) customer could be decreased. This techno-economic analysis of battery second use considers effects of battery degradation in both automotive and grid service, repurposing costs, balance-of-system costs, the value of aggregated energy-storage to commercial and industrial end users, and competitive technology. Batteries from plug-in electric vehicles can economically be used to serve the power quality and reliability needs of commercial and industrial end users. However, the value to the automotive battery owner is small (e.g., $20-$100/kWh) as declining future battery costs and other factors strongly affect salvage value. Repurposed automotive battery prices may range from $38/kWh to $132/kWh.

  14. Electrochemical treatment of carwash wastewater using Fe and Al electrode: Techno-economic analysis and sludge characterization.

    Science.gov (United States)

    Gönder, Z Beril; Balcıoğlu, Gökhan; Vergili, Ilda; Kaya, Yasemin

    2017-09-15

    The present study was conducted to investigate the electrochemical treatment of carwash wastewater using electrocoagulation (EC) process with Fe and Al electrodes. The effects of operating conditions such as initial pH (2-10), current density (0.1-5 mA/cm 2 ) and operating time (5-50 min) on chemical oxygen demand (COD), oil-grease, chloride removal efficiencies as well as total operating costs were studied. The optimum conditions that achieve higher removal efficiencies were found as pH: 8, current density: 3 mA/cm 2 , operating time: 30 min for Fe electrode and pH: 6, current density: 1 mA/cm 2 , operating time: 30 min for Al electrode. The removal efficiencies for COD, oil-grease and chloride were obtained as 88%, 90% and 50% for Fe and 88%, 68% and 33% for Al electrodes under the optimum conditions. The total operating costs at the optimum conditions were calculated as 0.6 $/m 3 and 0.3 $/m 3 for Fe and Al electrodes, respectively. The sludge samples generated after EC process were characterized with Fourier transform infrared (FTIR) spectroscopy and zeta potential measurements for both electrodes. The analyses showed the presence of hydroxides and oxyhydroxides in the sludge samples and the surface of the sludge samples was negatively charged in the wide range of pH. As a conclusion, this study revealed that EC process using Fe electrode should be a feasible technology for higher COD and oil-grease removals from carwash wastewaters. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Techno-Economic analysis of solar photovoltaic power plant for small scale fish processing in Kota Langsa - a case study

    Science.gov (United States)

    Widodo, S. B.; Hamdani; Rizal, T. A.; Pambudi, N. A.

    2018-02-01

    In Langsa, fisheries are the sector leaders by fulfilling a capacity of about 6,050 tons per year and on the other hand, fish-aquaculture reaches 1,200 tons per year on average. The fish processing is conducted through catches and aquaculture. The facilities on which this processing takes place are divided into an ice factory unit, a gutting and cutting unit, a drying unit and a curing unit. However, the energy and electricity costs during the production process has become major constraint because of the increase in the fishermen’s production and income. In this study, the potential and cost-effectiveness of photovoltaic solar power plant to meet the energy demands of fish processing units have been analysed. The energy requirements of fish processing units have reached an estimate of 130 kW, while the proposed design of solar photovoltaic electricity generation is of 200 kW in an area of 0,75 hectares. In this analysis, given the closeness between the location of the processing units and the fish supply auctions, the assumption is made that the photovoltaic plants (OTR) were installed on the roof of the building as compared to the solar power plants (OTL) installed on the outside of the location. The results shows that the levelized cost of OTR instalation is IDR 1.115 per kWh, considering 25 years of plant life-span at 10% of discount rate, with a simple payback period of 13.2 years. OTL levelized energy, on the other hand, is at IDR 997.5 per kWh with a simple payback period of 9.6 years. Blood is an essential component of living creatures in the vascular space. For possible disease identification, it can be tested through a blood test, one of which can be seen from the form of red blood cells. The normal and abnormal morphology of the red blood cells of a patient is very helpful to doctors in detecting a disease. With the advancement of digital image processing technology can be used to identify normal and abnormal blood cells of a patient. This research used

  16. Techno-economic analysis of an optimized photovoltaic and diesel generator hybrid power system for remote houses in a tropical climate

    International Nuclear Information System (INIS)

    Ismail, M.S.; Moghavvemi, M.; Mahlia, T.M.I.

    2013-01-01

    Highlights: ► We analyzed solar data in the location under consideration. ► We developed a program to simulate the operation of the PV-diesel generator hybrid system. ► We analyzed different scenarios to select and design the optimal system. ► It is cost effective to power houses in remote areas with such hybrid systems. ► The hybrid system had lower CO 2 emissions compared to a diesel generator only operation. - Abstract: A techno-economic analysis and the design of a complete hybrid system, consisting of photovoltaic (PV) panels, a battery system and a diesel generator as a backup power source for a typical Malaysian village household is presented in this paper. The specifications of the different components constructing the hybrid system were also determined. A scenario depending on a standalone PV and other scenario depending on a diesel generator only were also analyzed. A simulation program was developed to simulate the operation of these different scenarios. The scenario that achieves the minimum cost while meeting the load requirement was selected. The optimal tilt angle of the PV panels in order to increase the generated energy was obtained using genetic algorithm. In addition, sensitivity analysis was undertaken to evaluate the effect of change of some parameters on the cost of energy. The results indicated that the optimal scenario is the one that consists of a combination of the PV panels, battery bank and a diesel generator. Powering a rural house using this hybrid system is advantageous as it decreases operating cost, increases efficiencies, and reduces pollutant emissions

  17. Techno-economical efficiency and productivity change of wastewater treatment plants: the role of internal and external factors.

    Science.gov (United States)

    Hernández-Sancho, F; Molinos-Senante, M; Sala-Garrido, R

    2011-12-01

    Efficiency and productivity are important measures for identifying best practice in businesses and optimising resource-use. This study analyses how these two measures change across the period 2003-2008 for 196 wastewater treatment plants (WWTPs) in Spain, by using the benchmarking methods of Data Envelopment Analysis and the Malmquist Productivity Index. To identify which variables contribute to the sustainability of the WWTPs, differences in efficiency scores and productivity indices for external factors are also investigated. Our results indicate that both efficiency and productivity decreased over the five years. We verify that the productivity drop is primarily explained by technical change. Furthermore, certain external variables affected WWTP efficiency, including plant size, treatment technology and energy consumption. However, plants with low energy consumption are the only ones which improve their productivity. Finally, the benchmarking analyses proved to be useful as management tools in the wastewater sector, by providing vital information for improving the sustainability of plants.

  18. Final Techno-Economic Analysis of 550 MWe Supercritical PC Power Plant CO2 Capture with Linde-BASF Advanced PCC Technology

    Energy Technology Data Exchange (ETDEWEB)

    Bostick, Devin [Linde LLC, Murray Hill, NJ (United States); Stoffregen, Torsten [Linde AG Linde Engineering Division, Dresden (Germany); Rigby, Sean [BASF Corporation, Houston, TX (United States)

    2017-01-09

    This topical report presents the techno-economic evaluation of a 550 MWe supercritical pulverized coal (PC) power plant utilizing Illinois No. 6 coal as fuel, integrated with 1) a previously presented (for a subcritical PC plant) Linde-BASF post-combustion CO2 capture (PCC) plant incorporating BASF’s OASE® blue aqueous amine-based solvent (LB1) [Ref. 6] and 2) a new Linde-BASF PCC plant incorporating the same BASF OASE® blue solvent that features an advanced stripper interstage heater design (SIH) to optimize heat recovery in the PCC process. The process simulation and modeling for this report is performed using Aspen Plus V8.8. Technical information from the PCC plant is determined using BASF’s proprietary thermodynamic and process simulation models. The simulations developed and resulting cost estimates are first validated by reproducing the results of DOE/NETL Case 12 representing a 550 MWe supercritical PC-fired power plant with PCC incorporating a monoethanolamine (MEA) solvent as used in the DOE/NETL Case 12 reference [Ref. 2]. The results of the techno-economic assessment are shown comparing two specific options utilizing the BASF OASE® blue solvent technology (LB1 and SIH) to the DOE/NETL Case 12 reference. The results are shown comparing the energy demand for PCC, the incremental fuel requirement, and the net higher heating value (HHV) efficiency of the PC power plant integrated with the PCC plant. A comparison of the capital costs for each PCC plant configuration corresponding to a net 550 MWe power generation is also presented. Lastly, a cost of electricity (COE) and cost of CO2 captured assessment is shown illustrating the substantial cost reductions achieved with the Linde-BASF PCC plant utilizing the advanced SIH configuration in combination with BASF’s OASE® blue solvent technology as compared to the DOE/NETL Case 12 reference. The key factors contributing to the reduction of COE and the cost of CO2 captured

  19. Techno-Economic and Life Cycle Assessment of Wastewater Management from Potato Starch Production: Present Status and Alternative Biotreatments

    Directory of Open Access Journals (Sweden)

    Pedro F. Souza Filho

    2017-10-01

    Full Text Available Potato liquor, a byproduct of potato starch production, is steam-treated to produce protein isolate. The heat treated potato liquor (HTPL, containing significant amounts of organic compounds, still needs to be further treated before it is discarded. Presently, the most common strategy for HTPL management is concentrating it via evaporation before using it as a fertilizer. In this study, this scenario was compared with two biotreatments: (1 fermentation using filamentous fungus R. oryzae to produce a protein-rich biomass, and (2 anaerobic digestion of the HTPL to produce biogas. Technical, economic and environmental analyses were performed via computational simulation to determine potential benefits of the proposed scenarios to a plant discarding 19.64 ton/h of HTPL. Fungal cultivation was found to be the preferred scenario with respect to the economic aspects. This scenario needed only 46% of the investment needed for the evaporation scenario. In terms of the environmental impacts, fungal cultivation yielded the lowest impacts in the acidification, terrestrial eutrophication, freshwater eutrophication, marine eutrophication and freshwater ecotoxicity impact categories. The lowest impact in the climate change category was obtained when using the HTPL for anaerobic digestion.

  20. Techno-economic assessment of membrane gas absorption for the production of carbon dioxide from flue gas

    NARCIS (Netherlands)

    Feron, P.H.M.; Jansen, A.E.

    1998-01-01

    Membrane gas absorption for carbon dioxide production from flue gases is discussed with special reference to the economics of the supply of carbon dioxide to greenhouses in the Netherlands. Novel absorption liquids have been introduced which show as excellent performance in terms of system stability

  1. Evaluating the potential of renewable diesel production from algae cultured on wastewater: techno-economic analysis and life cycle assessment

    Directory of Open Access Journals (Sweden)

    Ankita Juneja

    2017-03-01

    Full Text Available Algae, a renewable energy source, has an added advantage of consuming nutrients from wastewater and consequently aiding in wastewater treatment. The algae thus produced can be processed using alternative paths for conversion to fuels. However, due to high moisture content of algae, wet algae processing methods are being encouraged to avoid the dewatering cost and energy. Hydrothermal liquefaction is one such technology that converts the algae into high heating value bio-oil under high temperature and pressure. This bio-oil can be further upgraded to renewable diesel (RD which can be used in diesel powered vehicles without any modifications. The objective of this study is to evaluate the economic viability and to estimate the energy use and greenhouse gas (GHG emissions during life cycle of RD production from algae grown in wastewater using hydrothermal liquefaction. Economic analysis of RD production on commercial scale was performed using engineering process model of RD production plant with processing capacity of 60 Mgal wastewater/day, simulated in SuperPro designer. RD yields for algae were estimated as 10.18 MML/year with unit price of production as $1.75/RD. The GHG emissions during life cycle of RD production were found to be 6.2 times less than those produced for conventional diesel. Sensitivity analysis indicated a potential to reduce ethanol production cost either by using high lipid algae or increasing the plant size. The integrated economic and ecological assessment analyses are helpful in determining long-term sustainability of a product and can be used to drive energy policies in an environmentally sustainable direction.

  2. Techno-economic analysis of stand-alone photovoltaic/wind/battery/hydrogen systems for very small-scale applications

    Directory of Open Access Journals (Sweden)

    Stojković Saša M.

    2016-01-01

    Full Text Available The paper presents the results of a technical and economic analysis of three stand-alone hybrid power systems based on renewable energy sources which supply a specific group of low-power consumers. This particular case includes measuring sensors and obstacle lights on a meteorological mast for wind measurements requiring an uninterrupted power supply in cold climate conditions. Although these low-power (100 W measuring sensors and obstacle lights use little energy, their energy consumption is not the same as the available solar energy obtained on a daily or seasonal basis. In the paper, complementarity of renewable energy sources was analysed, as well as one of short-term lead-acid battery-based storage and seasonal, hydrogen-based (electrolyser, H2 tank, and fuel cells storage. These relatively complex power systems were proposed earlier for high-power consumers only, while this study specifically highlights the role of the hydrogen system for supplying low-power consumers. The analysis employed a numerical simulation method using the HOMER software tool. The results of the analysis suggest that solar and wind-solar systems, which involve meteorological conditions as referred to in this paper, include a relatively large number of lead-acid batteries. Additionally, the analysis suggests that the use of hydrogen power systems for supplying low power-consumers is entirely justifiable, as it significantly reduces the number of batteries (two at minimum in this particular case. It was shown that the increase in costs induced by the hydrogen system is acceptable.

  3. Use of vibratory shear enhanced processing to treat magnetic ion exchange concentrate: A techno-economic analysis

    OpenAIRE

    Leong, J; Tan, J; Heitz, A; Ladewig, BP

    2016-01-01

    Disposal of waste generated by inland water treatment technologies is highly expensive. The introduction of vibratory shear enhanced processing (VSEP) to treat waste produced from magnetic ion exchange (MIEX) shows benefits in terms of performance and economics. A small VSEP unit fitted with a nanofiltration (NF) membrane is capable of treating up to 15 kL of MIEX waste per day, is able remove more than 97% of dissolved organic compounds as well as recover over 80% of waste in the form of per...

  4. Techno-Economic Analysis of Integrating First and Second-Generation Ethanol Production Using Filamentous Fungi: An Industrial Case Study

    Directory of Open Access Journals (Sweden)

    Karthik Rajendran

    2016-05-01

    Full Text Available The 2nd generation plants producing ethanol from lignocelluloses demand risky and high investment costs. This paper presents the energy- and economical evaluations for integrating lignocellulose in current 1st generation dry mill ethanol processes, using filamentous fungi. Dry mills use grains and have mills, liquefactions, saccharifications, fermentation, and distillation to produce ethanol, while their stillage passes centrifugation, and evaporation to recycle the water and dry the cake and evaporated syrup into animal feed. In this work, a bioreactor was considered to cultivate fungi on the stillage either before or after the centrifugation step together with pretreated lignocellulosic wheat bran. The results showed that the integrated 1st and 2nd generation ethanol process requires a capital investment of 77 million USD, which could yield NPV of 162 million USD after 20 years. Compared to the fungal cultivation on thin stillage modified 1st generation process, the integrated process resulted in 53 million USD higher NPV. The energy analysis showed that the thin stillage modified 1st generation process could reduce the overall energy consumption by 2.5% and increase the ethanol production by 4%. Such modifications in the 1st generation processes and integration concepts could be interesting for the ethanol industries, as integrating lignocelluloses to their existing setup requires less capital investment.

  5. Techno-economic analysis of lipase enzyme production from agro-industry waste with solid state fermentation method

    Science.gov (United States)

    Hidayatullah, I. M.; Arbianti, R.; Utami, T. S.; Suci, M.; Sahlan, M.; Wijanarko, A.; Gozan, M.; Hermansyah, H.

    2018-03-01

    Needs for this kind of catalyst derived from biological raw materials (biocatalysts) has increased along with development of products based on eco-friendly. To achieve the needs of biocatalyst (enzyme), large production is necessary. This study aimed to get the best conditions and design equipment to produce lipase enzyme based on solid state fermentation using SuperPro Designer v9.0. Several equipment such as Tray Bioreactor, Mixing Tank 1, Filter Press, centrifuge, Mixing Tank 2, and a dryer have been improved during the simulation. Economic analysis in the form of NPV, IRR, Payback Period, and the Benefit Cost Ratio was evaluated respectively. The result showed that production of 10 kg enzyme with NPV Rp112.796.147.423,00; IRR 54.20%; Payback Period 1.95 years; and Benefit Cost Ratio of 3.36 was more advantageous.

  6. A techno-economic evaluation of two non-edible vegetable oil based bio diesel in Pakistan

    International Nuclear Information System (INIS)

    Chakrabarti, M.H.; Ali, M.

    2010-01-01

    Technical evaluation of Bio diesel, produced from various non-edible oils, was carried out on the basis of emission profile, torque, engine brake power and exhaust temperatures at 10% blend ratio (by volume) with mineral diesel. The performance of engine parameters showed that the castor oil based bio diesel gave the best results. Economic feasibility for bio diesel production was carried out based on available data on cultivation of necessary plants on marginal lands. This economic analysis also included the value of by-products which would be available during the chemical process for the production of bio diesel. It was found that jatropha bio diesel could be produced at a comparable cost to mineral diesel, however, castor bio diesel required substantial subsidies or mass cultivation of plants on marginal lands to enable it to compete economically with mineral diesel. (author)

  7. Efficient boron abstraction using honeycomb-like porous magnetic hybrids: Assessment of techno-economic recovery of boric acid.

    Science.gov (United States)

    Oladipo, Akeem Adeyemi; Gazi, Mustafa

    2016-12-01

    Porous magnetic hybrids were synthesized and functionalized with glycidol to produce boron-selective adsorbent. The magnetic hybrid (MH) comparatively out-performed the existing expensive adsorbents. MH had a saturation magnetisation of 63.48 emu/g and average pore diameter ranging from meso to macropores. The magnetic hybrids showed excellent selectivity towards boron and resulted in 79-93% boron removal even in the presence of competing metal ions (Na + and Cr 2+ ). Experiments were performed in a column system, and breakthrough time was observed to increase with bed depths and decreased with flow rates. The batch experiments revealed that 60 min was enough to achieve equilibrium, and the level of boron sorption was 108.5 mg/g from a synthetic solution. Several adsorption-desorption cycles were performed using a simple acid-water treatment and evaluated using various kinetic models. The spent adsorbents could be separated easily from the mixture by an external magnetic field. The cost-benefit analysis was performed for the treatment of 72 m 3 /year boron effluent, including five years straight line depreciation charges of equipment. The net profit and standard percentage confirmed that the recovery process is economically feasible. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Techno-economic and sensitivity analysis for grid-connected renewable energy electric boat charging station in Terengganu

    Directory of Open Access Journals (Sweden)

    Salleh N. A. S.

    2017-01-01

    Full Text Available In order to encourage the eco-friendly technologies in transportation sector, the reliance on fuel need to be reduced and the use of renewable energy (RE technology as energy source are widely explored by researchers. Thus, this study focus on the feasibility of developing grid-connected renewable energy electric boat charging station for the fishermen in Terengganu using simulation-based method by HOMER software. Five year solar radiation and wind speed data were collected at Universiti Sultan Zainal Abidin (UNISZA weather station. For load profile, the information about fishing activities and the amount of subsidy spent by the government were obtained from the interview session with the fishermen and validated with Lembaga Kemajuan Ikan Malaysia (LKIM. The results acquired are compared between grid-only and grid-connected RE systems in term of net present cost (NPC, operational cost and payback period. A sensitivity analysis is done to find the minimal Feed-in Tariff (FiT rate that can be implemented in order to encourage the use of RE system in this sector. Then, the relationship between FiT and NPC, payback period and emission of pollutants are analyzed. At current FiT rates RM 0.813/kWh, hybrid grid-PV system manages to achieve its optimal in generating high income from selling the power to the grid with convincing amount of electricity production and short payback period. It is concluded at minimum RM 0.56/kWh of FiT, the grid-connected RE system is possible to be developed because its performance shows better outcome compared to the grid-only system.

  9. Pilot-Scale Silicone Process for Low-Cost Carbon Dioxide Capture Preliminary Techno-Economic Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Surinder; Spiry, Irina; Wood, Benjamin; Hance, Dan; Chen, Wei; Kehmna, Mark; McDuffie, Dwayne

    2014-03-31

    This report presents system and economic analysis for a carbon-capture unit which uses an aminosilicone-based solvent for CO{sub 2} capture in a pulverized coal (PC) boiler. The aminosilicone solvent is a 60/40 wt/wt mixture of 3-aminopropyl end-capped polydimethylsiloxane (GAP-1m) with tri-ethylene glycol (TEG) as a co-solvent. For comparison purposes, the report also shows results for a carbon-capture unit based on a conventional approach using mono-ethanol amine (MEA). The first year removal cost of CO{sub 2} for the aminosilicone-based carbon-capture process is $46.04/ton of CO2 as compared to $60.25/ton of CO{sub 2} when MEA is used. The aminosilicone-based process has <77% of the CAPEX of a system using MEA solvent. The lower CAPEX is due to several factors, including the higher working capacity of the aminosilicone solvent compared the MEA, which reduces the solvent flow rate required, reducing equipment sizes. If it is determined that carbon steel can be used in the rich-lean heat exchanger in the carbon capture unit, the first year removal cost of CO{sub 2} decreases to $44.12/ton. The aminosilicone-based solvent has a higher thermal stability than MEA, allowing desorption to be conducted at higher temperatures and pressures, decreasing the number of compressor stages needed. The aminosilicone-based solvent also has a lower vapor pressure, allowing the desorption to be conducted in a continuous-stirred tank reactor versus a more expensive packed column. The aminosilicone-based solvent has a lower heat capacity, which decreases the heat load on the desorber. In summary, the amino-silicone solvent has significant advantages over conventional systems using MEA.

  10. Management of agricultural waste for removal of heavy metals from aqueous solution: adsorption behaviors, adsorption mechanisms, environmental protection, and techno-economic analysis.

    Science.gov (United States)

    Elhafez, S E Abd; Hamad, H A; Zaatout, A A; Malash, G F

    2017-01-01

    In the last decades, Egypt has been suffering from the phenomenon of black cloud resulting from burning rice husk and increasing the demand for water leading to the water crisis. An alternative, low-value and surplus agricultural byproduct (rice husk, RH) has an enormous potential for the removal of Cu(II) ions from water. The present study focuses on the chance of the use of rice husk as a bio-adsorbent without any chemical treatment instead of burning it and soiling the environment. The elemental, structural, morphological, surface functional, thermal, and textural characteristics of RH are determined by XRF, XRD, SEM, FT-IR, TGA, and BET surface area, respectively, and contributed to the understanding of the adsorption mechanism of Cu(II) ions in aqueous solution. Also, the performance analysis, adsorption mechanism, influencing factors, favorable conditions, etc. are discussed in this article. The results obtained from optimization by batch mode are achieved under the following conditions: initial concentration, 150 ppm; amount of rice husk, 1 g; average particle size, 0.25 mm; temperature, 25 °C; pH, 4; agitation rate, 180 rpm; and contact time, 60 min. RH exhibits a high degree of selectivity for Cu(II) adsorption. The adsorption isotherm is fitted well with Langmuir and Freundlich models with R 2 0.998 and 0.997, respectively. The adsorption is well governed by the pseudo-second-order kinetics. It is observed that the rate of adsorption improves with decreasing temperature, and the process is exothermic and non-spontaneous. Particular attention has being paid to factors as production processes, fixed/operational cost, production cost, and profit. The techno-economical analysis is presented in this study that provides precise demands on capital for a fixed investment, provisions for operational capital, and finally provisions for revenue. The social, economical, and environmental benefits by industrial point of view using low-cost adsorbent are also

  11. Techno-economic assessment of an off-grid PV system for developing regions to provide electricity for basic domestic needs: A 2020–2040 scenario

    International Nuclear Information System (INIS)

    Zubi, Ghassan; Dufo-López, Rodolfo; Pasaoglu, Guzay; Pardo, Nicolás

    2016-01-01

    the installation years 2020, 2030 and 2040, taking thereby into account different developing regions, provide an evolutionary techno-economic assessment of these applications and a clear picture about the developments to be expected from off-grid PV in general.

  12. New genetic and linguistic analyses show ancient human influence on baobab evolution and distribution in Australia.

    Directory of Open Access Journals (Sweden)

    Haripriya Rangan

    Full Text Available This study investigates the role of human agency in the gene flow and geographical distribution of the Australian baobab, Adansonia gregorii. The genus Adansonia is a charismatic tree endemic to Africa, Madagascar, and northwest Australia that has long been valued by humans for its multiple uses. The distribution of genetic variation in baobabs in Africa has been partially attributed to human-mediated dispersal over millennia, but this relationship has never been investigated for the Australian species. We combined genetic and linguistic data to analyse geographic patterns of gene flow and movement of word-forms for A. gregorii in the Aboriginal languages of northwest Australia. Comprehensive assessment of genetic diversity showed weak geographic structure and high gene flow. Of potential dispersal vectors, humans were identified as most likely to have enabled gene flow across biogeographic barriers in northwest Australia. Genetic-linguistic analysis demonstrated congruence of gene flow patterns and directional movement of Aboriginal loanwords for A. gregorii. These findings, along with previous archaeobotanical evidence from the Late Pleistocene and Holocene, suggest that ancient humans significantly influenced the geographic distribution of Adansonia in northwest Australia.

  13. Correlation analyses between volatiles and glucosinolates show no evidence for chemical defense signaling in Brassica rapa

    Directory of Open Access Journals (Sweden)

    Florian Paul Schiestl

    2014-04-01

    Full Text Available Positive correlations between volatile organic compounds (VOCs and defense chemicals indicate signaling of defense status. Such aposematic signaling has been hypothesized to be widespread in plants, however, it has up to now only been shown for visual signals. Correlations between identical compounds in different plant tissues, on the other hand, can be informative about the (co-regulation of their biosynthesis or emission. Here I use Brassica rapa to investigate 1 correlations between identical metabolites (volatiles, glucosinolates in leaf and flower tissue, and 2 correlations between volatiles and glucosinolates in the same plant organs (flowers and leaves. Whereas the amounts of many glucosinolates were positively correlated in leaves and flower tissue, identical leaf and floral VOCs showed no such correlations, indicating independent regulation of emission. None of the leaf or flower volatiles showed positive correlations with the two major glucosinolates (gluconapin, glucobrassicanapin or the sum of all glucosinolates in either leaves or flowers. Some VOCs, however, showed positive correlations with minor glucosinolates which, however, represented less than one percent of the total amounts of glucosinolates. Some leaf monoterpenes showed negative associations with gluconapin. The lack of consistent positive correlations between VOCs and major defense compounds suggests that plants do not chemically signal their defense status. This could be adaptive as it may avoid eavesdropping by specialist herbivores to locate their host plants. Negative correlations likely indicate chemical trade-offs in the synthesis of secondary metabolites.

  14. Bibliographic study showed improving statistical methodology of network meta-analyses published between 1999 and 2015.

    Science.gov (United States)

    Petropoulou, Maria; Nikolakopoulou, Adriani; Veroniki, Areti-Angeliki; Rios, Patricia; Vafaei, Afshin; Zarin, Wasifa; Giannatsi, Myrsini; Sullivan, Shannon; Tricco, Andrea C; Chaimani, Anna; Egger, Matthias; Salanti, Georgia

    2017-02-01

    To assess the characteristics and core statistical methodology specific to network meta-analyses (NMAs) in clinical research articles. We searched MEDLINE, EMBASE, and the Cochrane Database of Systematic Reviews from inception until April 14, 2015, for NMAs of randomized controlled trials including at least four different interventions. Two reviewers independently screened potential studies, whereas data abstraction was performed by a single reviewer and verified by a second. A total of 456 NMAs, which included a median (interquartile range) of 21 (13-40) studies and 7 (5-9) treatment nodes, were assessed. A total of 125 NMAs (27%) were star networks; this proportion declined from 100% in 2005 to 19% in 2015 (P = 0.01 by test of trend). An increasing number of NMAs discussed transitivity or inconsistency (0% in 2005, 86% in 2015, P < 0.01) and 150 (45%) used appropriate methods to test for inconsistency (14% in 2006, 74% in 2015, P < 0.01). Heterogeneity was explored in 256 NMAs (56%), with no change over time (P = 0.10). All pairwise effects were reported in 234 NMAs (51%), with some increase over time (P = 0.02). The hierarchy of treatments was presented in 195 NMAs (43%), the probability of being best was most commonly reported (137 NMAs, 70%), but use of surface under the cumulative ranking curves increased steeply (0% in 2005, 33% in 2015, P < 0.01). Many NMAs published in the medical literature have significant limitations in both the conduct and reporting of the statistical analysis and numerical results. The situation has, however, improved in recent years, in particular with respect to the evaluation of the underlying assumptions, but considerable room for further improvements remains. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. A techno-economic & environmental analysis of a novel technology utilizing an internal combustion engine as a compact, inexpensive micro-reformer for a distributed gas-to-liquids system

    Science.gov (United States)

    Browne, Joshua B.

    Anthropogenic greenhouse gas emissions (GHG) contribute to global warming, and must be mitigated. With GHG mitigation as an overarching goal, this research aims to study the potential for newfound and abundant sources of natural gas to play a role as part of a GHG mitigation strategy. However, recent work suggests that methane leakage in the current natural gas system may inhibit end-use natural gas as a robust mitigation strategy, but that natural gas as a feedstock for other forms of energy, such as electricity generation or liquid fuels, may support natural-gas based mitigation efforts. Flaring of uneconomic natural gas, or outright loss of natural gas to the atmosphere results in greenhouse gas emissions that could be avoided and which today are very large in aggregate. A central part of this study is to look at a new technology for converting natural gas into methanol at a unit scale that is matched to the size of individual natural gas wells. The goal is to convert stranded or otherwise flared natural gas into a commercially valuable product and thereby avoid any unnecessary emission to the atmosphere. A major part of this study is to contribute to the development of a novel approach for converting natural gas into methanol and to assess the environmental impact (for better or for worse) of this new technology. This Ph. D. research contributes to the development of such a system and provides a comprehensive techno-economic and environmental assessment of this technology. Recognizing the distributed nature of methane leakage associated with the natural gas system, this work is also intended to advance previous research at the Lenfest Center for Sustainable Energy that aims to show that small, modular energy systems can be made economic. This thesis contributes to and analyzes the development of a small-scale gas-to-liquids (GTL) system aimed at addressing flared natural gas from gas and oil wells. This thesis includes system engineering around a design that

  16. A Techno-Economic Assessment of Hybrid Cooling Systems for Coal- and Natural-Gas-Fired Power Plants with and without Carbon Capture and Storage.

    Science.gov (United States)

    Zhai, Haibo; Rubin, Edward S

    2016-04-05

    Advanced cooling systems can be deployed to enhance the resilience of thermoelectric power generation systems. This study developed and applied a new power plant modeling option for a hybrid cooling system at coal- or natural-gas-fired power plants with and without amine-based carbon capture and storage (CCS) systems. The results of the plant-level analyses show that the performance and cost of hybrid cooling systems are affected by a range of environmental, technical, and economic parameters. In general, when hot periods last the entire summer, the wet unit of a hybrid cooling system needs to share about 30% of the total plant cooling load in order to minimize the overall system cost. CCS deployment can lead to a significant increase in the water use of hybrid cooling systems, depending on the level of CO2 capture. Compared to wet cooling systems, widespread applications of hybrid cooling systems can substantially reduce water use in the electric power sector with only a moderate increase in the plant-level cost of electricity generation.

  17. Comparative Analyses of the Lipooligosaccharides from Nontypeable Haemophilus influenzae and Haemophilus haemolyticus Show Differences in Sialic Acid and Phosphorylcholine Modifications.

    Science.gov (United States)

    Post, Deborah M B; Ketterer, Margaret R; Coffin, Jeremy E; Reinders, Lorri M; Munson, Robert S; Bair, Thomas; Murphy, Timothy F; Foster, Eric D; Gibson, Bradford W; Apicella, Michael A

    2016-01-04

    Haemophilus haemolyticus and nontypeable Haemophilus influenzae (NTHi) are closely related upper airway commensal bacteria that are difficult to distinguish phenotypically. NTHi causes upper and lower airway tract infections in individuals with compromised airways, while H. haemolyticus rarely causes such infections. The lipooligosaccharide (LOS) is an outer membrane component of both species and plays a role in NTHi pathogenesis. In this study, comparative analyses of the LOS structures and corresponding biosynthesis genes were performed. Mass spectrometric and immunochemical analyses showed that NTHi LOS contained terminal sialic acid more frequently and to a higher extent than H. haemolyticus LOS did. Genomic analyses of 10 strains demonstrated that H. haemolyticus lacked the sialyltransferase genes lic3A and lic3B (9/10) and siaA (10/10), but all strains contained the sialic acid uptake genes siaP and siaT (10/10). However, isothermal titration calorimetry analyses of SiaP from two H. haemolyticus strains showed a 3.4- to 7.3-fold lower affinity for sialic acid compared to that of NTHi SiaP. Additionally, mass spectrometric and immunochemical analyses showed that the LOS from H. haemolyticus contained phosphorylcholine (ChoP) less frequently than the LOS from NTHi strains. These differences observed in the levels of sialic acid and ChoP incorporation in the LOS structures from H. haemolyticus and NTHi may explain some of the differences in their propensities to cause disease. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  18. Techno-Economic and dynamic analysis of low velocity wind turbines for rural electrification in agricultural area of Ratchaburi Province, Thailand

    Science.gov (United States)

    Lipirodjanapong, Sumate; Namboonruang, Weerapol

    2017-07-01

    This paper presents the analysis of potential wind speed of electrical power generating using for agriculture in Ratchaburi province, Thailand. The total area is 1,900 square kilometers. First of all, the agriculture electrical load (AEL) data was investigated from all farming districts in Ratchaburi. Subsequently, the load data was analyzed and classified by the load power and energy consumption at individual district. The wind turbine generator (WTG) at capacity rate of 200w, 500w, 1,000w, and 2,000w were adopted to implement for the AEL in each area at wind speed range of 3 to 6 m/s. This paper shows the approach based on the wind speed at individual district to determine the capacity of WTG using the capacitor factor (CF) and the cost of energy (COE) in baht per unit under different WTG value rates. Ten locations for wind station installations are practical investigated. Results show that for instance, the Damnoen Sa-duak (DN-04) one of WTG candidate site is identically significant for economic investment of installing rated WTG. The results of COE are important to determine whether a wind site is good or not.

  19. Techno-economic feasibility of energy supply of remote villages in Palestine by PV-systems, diesel generators and electric grid (Case studies: Emnazeil and Atouf villages)

    Energy Technology Data Exchange (ETDEWEB)

    Ibrik, Imad [An-Najah National Univ., Nablus (PS). Energy Research Centre; Lecumberri, Marta

    2010-07-01

    The energy situation in Palestine is somewhat unique when compared to other countries in the Middle East. There are virtually no available natural resources, and due to the ongoing political situation, the Palestinians rely (or have to rely) almost totally on Israel for their energy needs. This paper presents three energy supply alternatives for a remote village represented in PV system, diesel generator and electric grid. Design of these systems and the associated costs of their utilization are illustrated. Economic evaluation methods are used to compare the economic-effectiveness of these energy systems. The results show that, utilizing of PV systems for rural electrification in Palestine is economically more useful than using diesel generators or extension of the high voltage electric grid. The obtained results represents also a helpful reference for energy planers in Palestine and justify the consideration of PV systems more seriously. (orig.)

  20. Techno-economic evaluation of 2nd generation bioethanol production from sugar cane bagasse and leaves integrated with the sugar-based ethanol process.

    Science.gov (United States)

    Macrelli, Stefano; Mogensen, Johan; Zacchi, Guido

    2012-04-13

    Bioethanol produced from the lignocellulosic fractions of sugar cane (bagasse and leaves), i.e. second generation (2G) bioethanol, has a promising market potential as an automotive fuel; however, the process is still under investigation on pilot/demonstration scale. From a process perspective, improvements in plant design can lower the production cost, providing better profitability and competitiveness if the conversion of the whole sugar cane is considered. Simulations have been performed with AspenPlus to investigate how process integration can affect the minimum ethanol selling price of this 2G process (MESP-2G), as well as improve the plant energy efficiency. This is achieved by integrating the well-established sucrose-to-bioethanol process with the enzymatic process for lignocellulosic materials. Bagasse and leaves were steam pretreated using H3PO4 as catalyst and separately hydrolysed and fermented. The addition of a steam dryer, doubling of the enzyme dosage in enzymatic hydrolysis, including leaves as raw material in the 2G process, heat integration and the use of more energy-efficient equipment led to a 37 % reduction in MESP-2G compared to the Base case. Modelling showed that the MESP for 2G ethanol was 0.97 US$/L, while in the future it could be reduced to 0.78 US$/L. In this case the overall production cost of 1G + 2G ethanol would be about 0.40 US$/L with an output of 102 L/ton dry sugar cane including 50 % leaves. Sensitivity analysis of the future scenario showed that a 50 % decrease in the cost of enzymes, electricity or leaves would lower the MESP-2G by about 20%, 10% and 4.5%, respectively. According to the simulations, the production of 2G bioethanol from sugar cane bagasse and leaves in Brazil is already competitive (without subsidies) with 1G starch-based bioethanol production in Europe. Moreover 2G bioethanol could be produced at a lower cost if subsidies were used to compensate for the opportunity cost from the sale of excess electricity and

  1. Techno-economic evaluation of 2nd generation bioethanol production from sugar cane bagasse and leaves integrated with the sugar-based ethanol process

    Directory of Open Access Journals (Sweden)

    Macrelli Stefano

    2012-04-01

    Full Text Available Abstract Background Bioethanol produced from the lignocellulosic fractions of sugar cane (bagasse and leaves, i.e. second generation (2G bioethanol, has a promising market potential as an automotive fuel; however, the process is still under investigation on pilot/demonstration scale. From a process perspective, improvements in plant design can lower the production cost, providing better profitability and competitiveness if the conversion of the whole sugar cane is considered. Simulations have been performed with AspenPlus to investigate how process integration can affect the minimum ethanol selling price of this 2G process (MESP-2G, as well as improve the plant energy efficiency. This is achieved by integrating the well-established sucrose-to-bioethanol process with the enzymatic process for lignocellulosic materials. Bagasse and leaves were steam pretreated using H3PO4 as catalyst and separately hydrolysed and fermented. Results The addition of a steam dryer, doubling of the enzyme dosage in enzymatic hydrolysis, including leaves as raw material in the 2G process, heat integration and the use of more energy-efficient equipment led to a 37 % reduction in MESP-2G compared to the Base case. Modelling showed that the MESP for 2G ethanol was 0.97 US$/L, while in the future it could be reduced to 0.78 US$/L. In this case the overall production cost of 1G + 2G ethanol would be about 0.40 US$/L with an output of 102 L/ton dry sugar cane including 50 % leaves. Sensitivity analysis of the future scenario showed that a 50 % decrease in the cost of enzymes, electricity or leaves would lower the MESP-2G by about 20%, 10% and 4.5%, respectively. Conclusions According to the simulations, the production of 2G bioethanol from sugar cane bagasse and leaves in Brazil is already competitive (without subsidies with 1G starch-based bioethanol production in Europe. Moreover 2G bioethanol could be produced at a lower cost if subsidies were used to compensate for the

  2. Techno-economic assessment of a wood-based biorefinery concept for the production of polymer-grade ethylene, organosolv lignin and fuel.

    Science.gov (United States)

    Nitzsche, Roy; Budzinski, Maik; Gröngröft, Arne

    2016-01-01

    Lignocellulose biorefineries are distinguished by an explicitly integrative, multi-functional concept that transforms biomass into multiple products, using a variety of conversion and separation processes. This study focuses on the technical design and economic evaluation of a lignocellulose biorefinery, that converts 400,000tDM/a (≙250MW) of beech wood into chemicals and fuel. A model was simulated with Aspen Plus® including the process steps pre-treatment, enzymatic hydrolysis, alcoholic fermentation, dehydration and biogas generation and upgrading. Mass and energy balances showed that 61,600t/a polymer-grade ethylene, 58,520tDM/a organosolv lignin, 38,400t/a biomethane and 90,800tDM/a hydrolysis lignin can be produced with a total energy efficiency of 87.1%. A discounted cash flow analysis indicated that the heat integrated biorefinery concept is not yet profitable. However, the economic results are greatly sensitive regarding various assumptions, in particular in terms of the prices for beech wood, ethylene and organosolv lignin. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Techno-economic evaluation of thermal treatment, ozonation and sonication for the reduction of wastewater biomass volume before aerobic or anaerobic digestion.

    Science.gov (United States)

    Salsabil, M R; Laurent, J; Casellas, M; Dagot, C

    2010-02-15

    Aerobic and anaerobic digestions were compared with different sludge reduction processes such as ultrasonic, ozone, and thermal treatments. Each treatment was tested under the following conditions to improve batch aerobic or anaerobic digestion: ultrasound (200,000kJkgTS(0)(-1)), thermal (40 degrees C, 60 degrees C, 90 degrees C for 90 min, 120 degrees C 15 min, 1 bar), and ozonation (0.1gO(3)gTS(0)(-1)). The different pretreatments induced organic matter solubilisation and intrinsic sludge reduction (total suspended solids): ultrasound (47%), thermal 90 degrees C (16%), ozone (15%), thermal 60 degrees C (9%), thermal 40 degrees C (5%), autoclave (120 degrees C) (4.2%). TSS (and also VSS) solubilisation were found to be highly correlated to the pretreatment ability to break the flocs rather than to specific energy input. The total values of TSS reduction ranged from 57% to 71% under aerobic conditions and from 66% to 86% under anaerobic conditions. TSS solubilisation after pretreatment can be considered as a predictive parameter of sludge volume reduction enhancement after aerobic or anaerobic digestion while specific energy input did not show anything or negligible impact. In our experimental conditions, ultrasound and ozone led to the best TSS removal improvement after both aerobic (30% and 20%) and anaerobic digestion (20%). Ultrasonic and ozone pretreatments prior to aerobic or anaerobic digestion led to the best reduction of the specific energy required for removing 1 kg of TSS compared to the control. Anaerobic digestion was globally more effective (compare to aerobic digestion) in enhancing sludge production reduction.

  4. Techno-economic analysis of stand alone solar pv systems for remote base stations in Ghana. (a case study at Abofrem vodafone cell site)

    International Nuclear Information System (INIS)

    Denkyira, Samuel

    2015-06-01

    . The study shows that even though the initial investment in solar PV is higher than conventional diesel engines, overtime it becomes more cost efficient. The NPV is positive which indicates a potentially feasible project. The Benefit-Cost (B-C) ratio is greater than 1 indicating a profitable project and an equity payback of 4.9 years. (au)

  5. Model for 3D-visualization of streams and techno-economic estimate of locations for construction of small hydropower plants

    International Nuclear Information System (INIS)

    Izeiroski, Subija

    2012-01-01

    platform practical and efficient information regarding the elevation drops along river streams from the potential points of intake locations to the location of objects of the small hydropower plants. In the hydrology analysis are used historic measured data in table format regarding the flow rates and precipitation for the period 1961-2000 from two pluviometric station that are close each other. At the calculation of precipitations at annual level in GIS platform is used a stochastic quadratic equation for correlation between the rainfall (precipitation) and elevation which is valid for the climatic zone of the south-west region of Republic of Macedonia. using more hydrological methods: Rational method, Area-proportion method, Regression analysis and others, are obtained graphic raster maps for numerical values of flow rates at pixel level, and also is executed a comparative analysis of obtained results. Having available data for slope (elevation drops) and values of flows, is made analysis of the hydro power potential and locations for SHP construction along Brajchanska river and its main tributaries. The analysis showed that at the higher elevation of 1000 m.a.s.l. are found more than 10 potential locations for SHP construction. From the executed analysis was also determined, that the combination of more intakes that are directed to one SHP plant gives significantly more power output and energy. Together with the techno-engineering analysis, is also given a short review considering the economic justification for SHP construction and the impact at the environment. The developed model at the study area can also serve as a practical model at the analysis regarding the assessment and the site selection of SHP in all other areas reach with water resources. The methodological approach developed in this research, can contribute to a great extent for quick and efficient decision making regarding the preliminary screening of locations and assessment of the hydro power potentials

  6. Techno-economic study of hydrogen production by high temperature electrolysis coupled with an EPR-water steam production and coupling possibilities

    International Nuclear Information System (INIS)

    Tinoco, R. R.; Bouallou, C.; Mansilla, C.; Werkoff, F.

    2007-01-01

    the emission of hazard materials and electrolyser damage. Further information about electric and thermal energy production cost, electrolyser cost, heat exchangers costs, etc. has been considered and used in the technoeconomic study. Concerning the electrolyser, we considered that electric needs are supplied by the electric network. An optimisation method, based on genetic algorithms has been used to estimate the lowest hydrogen production cost. Results from the optimisation method were confronted with potential steam water production, using or drawing off an EPR, to find the best coupling for hydrogen production. The drawing off of EPR secondary circuit seems to be more viable than total water production. Even pilot plant court-dated construction could be considered. Besides, the cost of 1 kilogramme of hydrogen for different water steam conditions has been estimated, being between 2.26 and 2.50 euros. This cost production seems to be near to the international goal of 2 euros. References (1) Palier W-1300, Centrale de Nogent, Tranches 1-2, Region d'equipement Paris. EDF, France. December 1986 (2) L'EPR, AREVA, France. January 2006, (3) http://www.areva-np.com/scripts/info/publigen/content/templates/show.asp? P=494 and LFR and SYNC=Y and ID C AT=305, date accessed: 15/11/2006 (4) IAEA-TECDOC-1505 Data processing technologies and diagnostics for water chemistry and corrosion control in nuclear power plants (DAWAC) Report of a coordinated research project 2001-2005, Nuclear Fuel Cycle and Materials Section, Austria. June 2006 (5) Jon SIGURVINSSON, Christine MANSILLA et al. Heat transfer problems for the production of hydrogen from geothermal energy. Energy Conversion and Management 47 (2006) 3543-3551 (6) Christine MANSILLA et al. Heat management for hydrogen production by high temperature steam electrolysis, Energy (2006), doi:10.1016/j.energy.2006.07.033 (7) DGEMP-DIDEME. Couts de reference de la production electrique. Secretariat d'Etat a l'Industrie-Ministere de l

  7. Control design profits heliostat techno-economics

    CSIR Research Space (South Africa)

    Rubin, N

    2012-05-01

    Full Text Available Modelling, Identification, Simulation and Synthesis are well known components of the System Engineering Process. Ally these with the Target Aligned (TA) heliostat architecture and the universally acknowledged merits of using closed loop feedback...

  8. Multi-Scale Carbon Isotopic Analyses Show Allende Nanodiamonds are Mostly Solar with Some PreSolar

    Science.gov (United States)

    Lewis, J. B.; Isheim, D.; Floss, C.; Gyngard, F.; Seidman, D. N.

    2017-07-01

    NanoSIMS and atom-probe experiments on different-sized aggregates of meteoritic nanodiamonds show mostly normal C isotopes, with a fraction of 13C-enriched material. The best interpretation is a combination of solar system and supernova formation.

  9. DEVELOPMENT OF A NOVEL GAS PRESSURIZED STRIPPING (GPS)-BASED TECHNOLOGY FOR CO2 CAPTURE FROM POST-COMBUSTION FLUE GASES Topical Report: Techno-Economic Analysis of GPS-based Technology for CO2 Capture

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Shiaoguo

    2015-09-30

    This topical report presents the techno-economic analysis, conducted by Carbon Capture Scientific, LLC (CCS) and Nexant, for a nominal 550 MWe supercritical pulverized coal (PC) power plant utilizing CCS patented Gas Pressurized Stripping (GPS) technology for post-combustion carbon capture (PCC). Illinois No. 6 coal is used as fuel. Because of the difference in performance between the GPS-based PCC and the MEA-based CO2 absorption technology, the net power output of this plant is not exactly 550 MWe. DOE/NETL Case 11 supercritical PC plant without CO2 capture and Case 12 supercritical PC plant with benchmark MEA-based CO2 capture are chosen as references. In order to include CO2 compression process for the baseline case, CCS independently evaluated the generic 30 wt% MEA-based PCC process together with the CO2 compression section. The net power produced in the supercritical PC plant with GPS-based PCC is 647 MW, greater than the MEA-based design. The levelized cost of electricity (LCOE) over a 20-year period is adopted to assess techno-economic performance. The LCOE for the supercritical PC plant with GPS-based PCC, not considering CO2 transport, storage and monitoring (TS&M), is 97.4 mills/kWh, or 152% of the Case 11 supercritical PC plant without CO2 capture, equivalent to $39.6/tonne for the cost of CO2 capture. GPS-based PCC is also significantly superior to the generic MEA-based PCC with CO2 compression section, whose LCOE is as high as 109.6 mills/kWh.

  10. Elapid Snake Venom Analyses Show the Specificity of the Peptide Composition at the Level of Genera Naja and Notechis

    Directory of Open Access Journals (Sweden)

    Aisha Munawar

    2014-02-01

    Full Text Available Elapid snake venom is a highly valuable, but till now mainly unexplored, source of pharmacologically important peptides. We analyzed the peptide fractions with molecular masses up to 10 kDa of two elapid snake venoms—that of the African cobra, N. m. mossambica (genus Naja, and the Peninsula tiger snake, N. scutatus, from Kangaroo Island (genus Notechis. A combination of chromatographic methods was used to isolate the peptides, which were characterized by combining complimentary mass spectrometric techniques. Comparative analysis of the peptide compositions of two venoms showed specificity at the genus level. Three-finger (3-F cytotoxins, bradykinin-potentiating peptides (BPPs and a bradykinin inhibitor were isolated from the Naja venom. 3-F neurotoxins, Kunitz/basic pancreatic trypsin inhibitor (BPTI-type inhibitors and a natriuretic peptide were identified in the N. venom. The inhibiting activity of the peptides was confirmed in vitro with a selected array of proteases. Cytotoxin 1 (P01467 from the Naja venom might be involved in the disturbance of cellular processes by inhibiting the cell 20S-proteasome. A high degree of similarity between BPPs from elapid and viperid snake venoms was observed, suggesting that these molecules play a key role in snake venoms and also indicating that these peptides were recruited into the snake venom prior to the evolutionary divergence of the snakes.

  11. Techno-economic accompanying research the national competition ''Bioenergy Regions''. Final report funding measure 2009-2012; Technisch-oekonomische Begleitforschung des Bundeswettbewerbes ''Bioenergie-Regionen''. Endbericht Foerdermassnahme 2009-2012

    Energy Technology Data Exchange (ETDEWEB)

    Bohnet, Sebastian; Haak, Falko; Gawor, Marek [DBFZ Deutsches Biomasseforschungszentrum gemeinnuetzige GmbH, Leipzig (Germany); Thraen, Daniela [DBFZ Deutsches Biomasseforschungszentrum gemeinnuetzige GmbH, Leipzig (Germany); Helmholtz-Zentrum fuer Umweltforschung (UFZ), Leipzig (Germany)

    2015-07-01

    This final report describes the results of the techno-economic accompanying research of the competition of bioenergy regions. The competition was realized as a three-year funding project of the Federal Ministry of Food, Agriculture and Consumer Protection (BMELV), wherein the DBFZ analyzed the bioenergy development in the project regions and effects for regional development. The aim of the techno-economic accompanying research was to evaluate the project regions regarding the use of bioenergy. To this end, the bioenergy plants and supply chains of bioenergy as well as the raw materials used were the focus of investigations. Hereby the comparison between the regions and classification of the national average should be made possible. It was also necessary to be able to make statements about the climate protection contribution of funding the project. Not least the DBFZ supported the office of competition and the regions in answering technical-economic issues. The report is divided into a theoretical part A and the result Part B. After a summary of the results (chapter 1) and a brief overview of important and higher-level indicators (Chapter 2) the background and objectives of the competition are in Part A, first presented (Chapter 3). This is followed by Chapter 4 of the explanation of the methodological approach. Part B contains the results of the accompanying research project. The individual chapters are based respectively on the specific questions or thematic blocks of techno-economic accompanying research (Section 5-8). The final chapter 9 takes a brief look at the second funding phase from 2012 to 2015. [German] Der vorliegende Endbericht beschreibt die Ergebnisse der technisch-oekonomischen Begleitforschung zum Wettbewerb Bioenergie-Regionen. Der Wettbewerb wurde als dreijaehriges Foerdervorhaben des Bundesministeriums fuer Ernaehrung, Landwirtschaft und Verbraucherschutz (BMELV) realisiert, bei dem das DBFZ die Bioenergieentwicklung in den Projektregionen sowie

  12. Nucleotide sequence analyses of coat protein gene of peanut stunt virus isolates from alfalfa and different hosts show a new tentative subgroup from Iran.

    Science.gov (United States)

    Amid-Motlagh, Mohammad Hadi; Massumi, Hossein; Heydarnejad, Jahangir; Mehrvar, Mohsen; Hajimorad, Mohammad Reza

    2017-09-01

    Alfalfa cultivars grown in 14 provinces in Iran were surveyed for the relative incidence of peanut stunt virus (PSV) during 2013-2016. PSV were detected in 41.89% of symptomatic alfalfa samples and a few alternate hosts by plate-trapped antigen ELISA. Among other hosts tested only Chenopodium album , Robinia pseudoacacia and Arachis hypogaea were found naturally infected with PSV. Twenty five isolates of PSV were chosen for biological and molecular characterizations based on their geographical distributions. There was not any differences in experimental host range of these isolates; however, variation in systemic symptoms observed on Nicotiana glutinosa . Total RNA from 25 of viral isolates were subjected to reverse transcription polymerase chain reaction analysis using primers directed against coat protein (CP) gene. The CP genes of 25 Iranian PSV isolates were either 651 or 666 nucleotides long. The nucleotide and amino acid identities for CP gene among Iranian PSV isolates were 79.3-99.7 and 72-100%, respectively. They also shared between 67.4 and 82.4% pairwise nucleotide identity with other PSV isolates reported elsewhere in the world. Phylogenetic analyses of CP gene sequences showed formation of a new subgroup comprising only the Iranian isolates. Natural infection of a few alternate hosts with PSV is reported for the first time from Iran.

  13. The early design stage for building renovation with a novel loop-heat-pipe based solar thermal facade (LHP-STF) heat pump water heating system: Techno-economic analysis in three European climates

    International Nuclear Information System (INIS)

    Zhang, Xingxing; Shen, Jingchun; Adkins, Deborah; Yang, Tong; Tang, Llewellyn; Zhao, Xudong; He, Wei; Xu, Peng; Liu, Chenchen; Luo, Huizhong

    2015-01-01

    Highlights: • LHP-STF was evaluated from both technical and economic aspects for three EU climates. • The impact of LHP-STF on the overall building socio-energy performance was explored. • A dedicated business model was developed to study the economic feasibility of LHP-STF. • Three fundamental methods for financial measurement of LHP-STF were analysed. • Four investment options were considered in this business model. - Abstract: Most of the building renovation plans are usually decided in the early design stage. This delicate phase contains the greatest opportunity to achieve the high energy performance buildings after refurbishment. It is therefore important to provide the pertinent energy performance information for the designers or decision-makers from multidisciplinary and comparative points of view. This paper investigates the renovation concept of a novel loop-heat-pipe based solar thermal facade (LHP-STF) installed on a reference residential building by technical evaluation and economic analysis in three typical European climates, including North Europe (represented by Stockholm), West Europe (represented by London) and South Europe (represented by Madrid). The aim of this paper is firstly to explore the LHP-STF’s sensitivity with regards to the overall building socio-energy performance and secondly to study the LHP-STF’s economic feasibility by developing a dedicated business model. The reference building model was derived from the U.S. Department of Energy (DOE) commercial buildings research, in which the energy data for the building models were from the ASHRAE codes and other standard practices. The financial data were collected from the European statistic institute and the cost of system was based on the manufactured prototype. Several critical financial indexes were applied to evaluate the investment feasibility of the LHP-STF system in building renovation, such as Payback Period (PP), Net Present Value (NPV), and the modified internal

  14. Short preheating at 41°C leads to a red blood cells count comparable to that in RET channel of Sysmex analysers in samples showing cold agglutination.

    Science.gov (United States)

    La Gioia, Antonio; Fumi, Maurizio; Fiorini, Fabiana; Pezzati, Paola; Balboni, Fiamma; Bombara, Maria; Marini, Alessandra; Pancione, Ylenia; Solarino, Leonardo; Marchese, Elisa; Sale, Silvia; Rocco, Vincenzo; Fiorini, Marcello

    2018-03-13

    The presence of cold agglutinin in blood samples can cause a spontaneous agglutination of red blood cells (RBCs) when low temperature occurs. This phenomenon causes a spurious lowering of RBC count on the automated haematological analysers that are detected by incongruous values (≥370 g/L) of the mean cellular haemoglobi concentration (MCHC). A preheating at 37°C can remove the RBC agglutination generally resulting in a reliable count. It has been reported that the same result can be reached by using the optical reticulocyte (RET) channel of Sysmex analysers where the RBC count is not influenced by the presence of cold agglutinin. This study aims to evaluate these data in a larger population, with regard to environmental conditions on Sysmex analysers. We have also evaluated the influence of different thermal pretreatments on the RBC count. This study was performed on 96 remnants of peripheral blood samples (48 with MCHC in normal range and 48 with MCHC > 370 g/L) which have been analysed in different preanalytical conditions on the Sysmex analysers. A preheating of samples at 41°C for 1 min leads to a reversibility of the cold agglutination comparable to the one observed in the RET channel and yields better results compared with 37°C for 2 hours. None of described procedures assure the complete cold agglutination reversibility in every case. Consequently, since the haematological analysers not yet provide reliable parameters to confirm the complete resolution of agglutination, further verification of RBC count accuracy needs to be performed. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  15. A systematic review and meta-Analyses show that carbapenem use and medical devices are the leading risk factors for carbapenem- resistant pseudomonas aeruginosa

    NARCIS (Netherlands)

    A.F. Voor (Anne); J.A. Severin (Juliëtte); E.M.E.H. Lesaffre (Emmanuel); M.C. Vos (Margreet)

    2014-01-01

    textabstractA systematic review and meta-Analyses were performed to identify the risk factors associated with carbapenem-resistant Pseudomonas aeruginosa and to identify sources and reservoirs for the pathogen. A systematic search of PubMed and Embase databases from 1 January 1987 until 27 January

  16. A techno-economic analysis of biodiesel production from microalgae

    NARCIS (Netherlands)

    Olivieri, G.; Guida, T.; Salatino, P.; Marzocchella, A.

    2013-01-01

    The preliminary assessment of a cost-effective flow-sheet for the production of biodiesel from microalgae lipid fraction was carried out. The study was based on approximated cost-estimation methods integrated with the simulation software Aspen Plus (R). Several scenarios were investigated to compare

  17. FEATURES OF TECHNO-ECONOMIC CALCULATION OF COMMERCIAL COOLING CHAMBERS

    Directory of Open Access Journals (Sweden)

    M. Khmelniuk

    2017-10-01

    Full Text Available The article touches upon the design and calculation of trade objects refrigerating chambers. The influence of the cost of various groups of components and equipment on the final cost of the camera is analyzed. The influence of such factors as noise, fire safety and location of equipment during operation and installation is described. Recommendations are given on the choice of components in the design.

  18. Design and techno economic evaluation of biomass gasifier for ...

    African Journals Online (AJOL)

    user

    and environmental benefits (Ravindranath, 2004). Inex- pensive materials such as forest residue, wood residue, and rice straw are few potential feedstocks for .... Based on net present worth, it can be concluded that the construction of industrial biomass gasifier and heating sy- stem is economical and there is substantial ...

  19. Techno-economic analysis of a biomass depot

    Energy Technology Data Exchange (ETDEWEB)

    Jacobson, Jacob Jordan [Idaho National Lab. (INL), Idaho Falls, ID (United States); Lamers, Patrick [Idaho National Lab. (INL), Idaho Falls, ID (United States); Roni, Mohammad Sadekuzzaman [Idaho National Lab. (INL), Idaho Falls, ID (United States); Cafferty, Kara Grace [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kenney, Kevin Louis [Idaho National Lab. (INL), Idaho Falls, ID (United States); Heath, Brendi May [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hansen, Jason K [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-10-01

    The U.S. Department of Energy (DOE) Bioenergy Technologies Office (BETO) promotes the production of an array of liquid fuels and fuel blendstocks from lignocellulosic biomass feedstocks by funding fundamental and applied research that advances the state of technology in biomass collection, conversion, and sustainability. As part of its involvement in this program, the Idaho National Laboratory (INL) investigates the technical, economic, and environmental performance of different feedstock supply systems and their impacts on the downstream conversion processes.

  20. Techno-economical Analysis of Indoor Enterprise Solutions

    DEFF Research Database (Denmark)

    Liu, Zhen

    2013-01-01

    to accommodate the high indoor traffic demand for their future network evolution. In this thesis, we study the dedicated indoor systems for enterprise solutions. The DAS and Femtocells constitute two major IBW solutions for efficient in-building coverage extension and capacity provision. This study makes...

  1. Design and techno economic evaluation of biomass gasifier for ...

    African Journals Online (AJOL)

    This paper addresses the design, performance and economic evaluation of biomass based open core downdraft gasifier for industrial process heat application. The gasifier is having feed rate as 90 kg h-1 and producing about 850 MJ h-1 of heat. The gasifier has been installed in M/S Phosphate India Pvt. Limited, Udaipur ...

  2. Techno-economic packaging of palm wine preservation and bottling ...

    African Journals Online (AJOL)

    The study was carried out to investigate the economic viability of setting up a small scale palm wine bottling factory with a view to providing investment data to guide entrepreneurs in making investment decisions. The economic evaluation was based on a factory capacity of 750,000 bottles (60cl) per annum with production ...

  3. TECHNO-ECONOMIC ANALYSIS OF WOOD PYROLYSIS IN SWEDEN

    OpenAIRE

    Salman, Chaudhary Awais

    2014-01-01

    The significance of bio fuels production is increasing as fossil fuels are being depleted and energy security is gaining importance in the final energy mix. Moreover, bio fuel production offers the potential to alleviate concerns regarding global warming and air pollution. The process scheme design and parameter value choices used in this analysis are exclusively based on research domain literature by considering the state of the art of pyrolysis technology. Henceforth, the results should not...

  4. techno-economic investigation of different alternatives of improving

    African Journals Online (AJOL)

    HOD

    power generation. The demand for gas turbine power plant has been on the increase. In fact according to. United State Department of Energy it accounted for 15. % in 1998 and it ... of its low capital cost, high flexibility, high reliability without complexity ... examined the effect of inlet fogging system on Shahid. Rajaee power ...

  5. Techno-economic evaluation of broadband access technologies

    DEFF Research Database (Denmark)

    Sigurdsson, Halldór Matthias; Skouby, Knud Erik

    2005-01-01

    Broadband for all is an essential element in the EU policy concerning the future of ICT-based society. The overall purpose of this paper is to present a model for evaluation of different broadband access technologies and to present some preliminary results based on the model that has been carried...

  6. Techno Economic Analysis of Hydrogen Production by gasification of biomass

    Energy Technology Data Exchange (ETDEWEB)

    Francis Lau

    2002-12-01

    Biomass represents a large potential feedstock resource for environmentally clean processes that produce power or chemicals. It lends itself to both biological and thermal conversion processes and both options are currently being explored. Hydrogen can be produced in a variety of ways. The majority of the hydrogen produced in this country is produced through natural gas reforming and is used as chemical feedstock in refinery operations. In this report we will examine the production of hydrogen by gasification of biomass. Biomass is defined as organic matter that is available on a renewable basis through natural processes or as a by-product of processes that use renewable resources. The majority of biomass is used in combustion processes, in mills that use the renewable resources, to produce electricity for end-use product generation. This report will explore the use of hydrogen as a fuel derived from gasification of three candidate biomass feedstocks: bagasse, switchgrass, and a nutshell mix that consists of 40% almond nutshell, 40% almond prunings, and 20% walnut shell. In this report, an assessment of the technical and economic potential of producing hydrogen from biomass gasification is analyzed. The resource base was assessed to determine a process scale from feedstock costs and availability. Solids handling systems were researched. A GTI proprietary gasifier model was used in combination with a Hysys(reg. sign) design and simulation program to determine the amount of hydrogen that can be produced from each candidate biomass feed. Cost estimations were developed and government programs and incentives were analyzed. Finally, the barriers to the production and commercialization of hydrogen from biomass were determined. The end-use of the hydrogen produced from this system is small PEM fuel cells for automobiles. Pyrolysis of biomass was also considered. Pyrolysis is a reaction in which biomass or coal is partially vaporized by heating. Gasification is a more general term, and includes heating as well as the injection of other ''ingredients'' such as oxygen and water. Pyrolysis alone is a useful first step in creating vapors from coal or biomass that can then be processed in subsequent steps to make liquid fuels. Such products are not the objective of this project. Therefore pyrolysis was not included in the process design or in the economic analysis. High-pressure, fluidized bed gasification is best known to GTI through 30 years of experience. Entrained flow, in contrast to fluidized bed, is a gasification technology applied at much larger unit sizes than employed here. Coal gasification and residual oil gasifiers in refineries are the places where such designs have found application, at sizes on the order of 5 to 10 times larger than what has been determined for this study. Atmospheric pressure gasification is also not discussed. Atmospheric gasification has been the choice of all power system pilot plants built for biomass to date, except for the Varnamo plant in Sweden, which used the Ahlstrom (now Foster Wheeler) pressurized gasifier. However, for fuel production, the disadvantage of the large volumetric flows at low pressure leads to the pressurized gasifier being more economical.

  7. Techno-economic analysis of fuel ethanol production from cassava ...

    African Journals Online (AJOL)

    Moncada Botero, J. (Jonathan)

    Tanzanian conditions were considered in order to calculate the production costs of one litre of fuel ethanol including the costs of the raw materials, income tax, labour costs, among others. RESULTS AND DISCUSSION. Simulations of the different technological schemes studied were used to produce their respective material.

  8. Techno-economical evaluation of protein extraction for microalgae biorefinery

    NARCIS (Netherlands)

    Sari, Y.W.; Sanders, J.P.M.; Bruins, M.

    2016-01-01

    Due to scarcity of fossil feedstocks, there is an increasing demand for biobased fuels. Microalgae are considered as promising biobased feedstocks. However, microalgae based fuels are not yet produced at large scale at present. Applying biorefinery, not only for oil, but also for other

  9. Techno-economical evaluation of protein extraction for microalgae biorefinery

    Science.gov (United States)

    Sari, Y. W.; Sanders, J. P. M.; Bruins, M. E.

    2016-01-01

    Due to scarcity of fossil feedstocks, there is an increasing demand for biobased fuels. Microalgae are considered as promising biobased feedstocks. However, microalgae based fuels are not yet produced at large scale at present. Applying biorefinery, not only for oil, but also for other components, such as carbohydrates and protein, may lead to the sustainable and economical microalgae-based fuels. This paper discusses two relatively mild conditions for microalgal protein extraction, based on alkali and enzymes. Green microalgae (Chlorella fusca) with and without prior lipid removal were used as feedstocks. Under mild conditions, more protein could be extracted using proteases, with the highest yields for microalgae meal (without lipids). The data on protein extraction yields were used to calculate the costs for producing 1 ton of microalgal protein. The processing cost for the alkaline method was € 2448 /ton protein. Enzymatic method performed better from an economic point of view with € 1367 /ton protein on processing costs. However, this is still far from industrially feasible. For both extraction methods, biomass cost per ton of produced product were high. A higher protein extraction yield can partially solve this problem, lowering processing cost to €620 and 1180 /ton protein product, using alkali and enzyme, respectively. Although alkaline method has lower processing cost, optimization appears to be better achievable using enzymes. If the enzymatic method can be optimized by lowering the amount of alkali added, leading to processing cost of € 633/ton protein product. Higher revenue can be generated when the residue after protein extraction can be sold as fuel, or better as a highly digestible feed for cattle.

  10. Techno-economic analysis of fuel ethanol production from cassava ...

    African Journals Online (AJOL)

    Moncada Botero, J. (Jonathan)

    Remarks. Complexity. Investment in equipment and strain development. 1 .... 1. Standalone medium feedstock. Production Plant capacity 160,000 L/day increased fresh cassava yield (single plant). 2. Standalone .... Some data on physical properties of the components required during the simulation were obtained from the ...

  11. Techno-economic assessment of fuel cell vehicles for India

    International Nuclear Information System (INIS)

    Manish S; Rangan Banerjee

    2006-01-01

    This paper compares four alternative vehicle technologies for a typical small family car in India (Maruti 800) - two conventional i) Petrol driven internal combustion (IC) engine, ii) Compressed natural gas (CNG) driven IC engine and two based on proton exchange membrane (PEM) fuel cells with different storage iii) Compressed hydrogen storage and iv) Metal hydride (FeTi) storage. Each technology option is simulated in MATLAB using a backward facing algorithm to calculate the force and power requirement for the Indian urban drive cycle. The storage for the CNG and the fuel cell vehicles is designed to have driving range of 50% of the existing petrol vehicle. The simulation considers the part load efficiency vs. load characteristics for the computed ratings of the IC engine and the fuel cell. The analysis includes the transmission efficiency, motor efficiency and storage efficiencies. The comparison criteria used are the primary energy consumption (MJ/km), the cost (Rs./km) obtained by computing the annualized life cycle cost and dividing this by the annual vehicle travel and carbon dioxide emissions (g/km). For the primary energy analysis the energy required for extraction, processing of the fuel is also included. For the fuel cell vehicles, it is assumed that hydrogen is produced from natural gas through steam methane reforming. It is found that the fuel cell vehicles have the lowest primary energy consumption (1.3 MJ/km) as compared to the petrol and CNG vehicles (2.3 and 2.5 MJ/km respectively). The cost analysis is done based on existing prices in India and reveals that the CNG vehicle has the lowest cost (2.3 Rs./km) as compared to petrol (4.5 Rs./km). The fuel cell vehicles have a higher cost of 26 Rs./km mainly due to the higher fuel cell system cost (93% of the total cost). The CO 2 emissions are lowest for the fuel cell vehicle with compressed hydrogen storage (98 g/km) as compared to the petrol vehicle (162 g/km). If the incremental annual cost of the fuel cell vehicle is divided by the annual CO 2 reduction, the cost per kg of CO 2 is Rs. 334. The sensitivity analysis reveals the impact of fuel cell life, fuel cell price, relative price of natural gas and petrol on the cost analysis. This analysis clearly reveals the merits and demerits of fuel cell vehicles and can be useful in setting targets for fuel cell vehicle development. 1 Euro = 53 Rupees in 2006. (authors)

  12. techno-economic packaging of palm wine preservation and bottling

    African Journals Online (AJOL)

    Admin

    Table 4: Net Income Statement N'000. Year. 1. 2. 3. 4. 5. Capacity Utilization % 75. 80. 85. 90. 95. Sales Revenue. 33,750.00. 36,000.00. 38,250.00. 40,500.00. 42,750.00. Less: Production Cost 21,292.19. 22,174.79. 23,381.98. 24,282.09. 25,198.93. Profit Before Tax. 12,457.81. 13,825.21. 14,868.02. 16,217.91. 17,551.07.

  13. Achieving High Burnup Targets With Mox Fuels: Techno Economic Implications

    International Nuclear Information System (INIS)

    Clement Ravi Chandar, S.; Sivayya, D.N.; Puthiyavinayagam, P.; Chellapandi, P.

    2013-01-01

    For a typical MOX fuelled SFR of power reactor size, Implications due to higher burnup have been quantified. Advantages: – Improvement in the economy is seen upto 200 GWd/ t; Disadvantages: – Design changes > 150 GWd/ t bu; – Need for 8/ 16 more fuel SA at 150/ 200 GWd/ t bu; – Higher enrichment of B 4 C in CSR/ DSR at higher bu; – Reduction in LHR may be required at higher bu; – Structural material changes beyond 150 GWd/ t bu; – Reprocessing point of view-Sp Activity & Decay heat increase. Need for R & D is a must before increasing burnup. bu- refers burnup. Efforts to increase MOX fuel burnup beyond 200 GWd/ t may not be highly lucrative; • MOX fuelled FBR would be restricted to two or four further reactors; • Imported MOX fuelled FBRs may be considered; • India looks towards launching metal fuel FBRs in the future. – Due to high Breeding Ratio; – High burnup capability

  14. Techno-economic analysis of fuel ethanol production from cassava ...

    African Journals Online (AJOL)

    An analysis on the energy consumption of various proposed technological schemes was carried out and production cost per liter of biofuel was estimated. These results serve as the basis to draw recommendations on technological and economic feasibility aspects for the implementation of a national biofuel production in ...

  15. Analysing biomass torrefaction supply chain costs.

    Science.gov (United States)

    Svanberg, Martin; Olofsson, Ingemar; Flodén, Jonas; Nordin, Anders

    2013-08-01

    The objective of the present work was to develop a techno-economic system model to evaluate how logistics and production parameters affect the torrefaction supply chain costs under Swedish conditions. The model consists of four sub-models: (1) supply system, (2) a complete energy and mass balance of drying, torrefaction and densification, (3) investment and operating costs of a green field, stand-alone torrefaction pellet plant, and (4) distribution system to the gate of an end user. The results show that the torrefaction supply chain reaps significant economies of scale up to a plant size of about 150-200 kiloton dry substance per year (ktonDS/year), for which the total supply chain costs accounts to 31.8 euro per megawatt hour based on lower heating value (€/MWhLHV). Important parameters affecting total cost are amount of available biomass, biomass premium, logistics equipment, biomass moisture content, drying technology, torrefaction mass yield and torrefaction plant capital expenditures (CAPEX). Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Descriptive and network analyses of the equine contact network at an equestrian show in Ontario, Canada and implications for disease spread.

    Science.gov (United States)

    Spence, Kelsey L; O'Sullivan, Terri L; Poljak, Zvonimir; Greer, Amy L

    2017-06-21

    Identifying the contact structure within a population of horses attending a competition is an important element towards understanding the potential for the spread of equine pathogens as the horses subsequently travel from location to location. However, there is limited information in Ontario, Canada to quantify contact patterns of horses. The objective of this study was to describe the network of potential contacts associated with an equestrian show to determine how this network structure may influence potential disease transmission. This was a descriptive study of horses attending an equestrian show in southern Ontario, Canada on July 6 and 7, 2014. Horse show participants completed a questionnaire about their horse, travel patterns, and infection control practices. Questionnaire responses were received from horse owners of 79.7% (55/69) of the horses attending the show. Owners reported that horses attending the show were vaccinated for diseases such as rabies, equine influenza, and equine herpesvirus. Owners demonstrated high compliance with most infection control practices by reporting reduced opportunities for direct and indirect contact while away from home. The two-mode undirected network consisted of 820 nodes (41 locations and 779 horses). Eight percent of nodes in the network represented horses attending the show, 87% of nodes represented horses not attending the show, but boarded at individual home facilities, and 5% represented locations. The median degree of a horse in the network was 33 (range: 1-105). Developing disease management strategies without the explicit consideration of horses boarded at individual home facilities would underestimate the connectivity of horses in the population. The results of this study provides information that can be used by equestrian show organizers to configure event management in such a way that can limit the extent of potential disease spread.

  17. Comparative sequence, structure and redox analyses of Klebsiella pneumoniae DsbA show that anti-virulence target DsbA enzymes fall into distinct classes.

    Directory of Open Access Journals (Sweden)

    Fabian Kurth

    Full Text Available Bacterial DsbA enzymes catalyze oxidative folding of virulence factors, and have been identified as targets for antivirulence drugs. However, DsbA enzymes characterized to date exhibit a wide spectrum of redox properties and divergent structural features compared to the prototypical DsbA enzyme of Escherichia coli DsbA (EcDsbA. Nonetheless, sequence analysis shows that DsbAs are more highly conserved than their known substrate virulence factors, highlighting the potential to inhibit virulence across a range of organisms by targeting DsbA. For example, Salmonella enterica typhimurium (SeDsbA, 86 % sequence identity to EcDsbA shares almost identical structural, surface and redox properties. Using comparative sequence and structure analysis we predicted that five other bacterial DsbAs would share these properties. To confirm this, we characterized Klebsiella pneumoniae DsbA (KpDsbA, 81 % identity to EcDsbA. As expected, the redox properties, structure and surface features (from crystal and NMR data of KpDsbA were almost identical to those of EcDsbA and SeDsbA. Moreover, KpDsbA and EcDsbA bind peptides derived from their respective DsbBs with almost equal affinity, supporting the notion that compounds designed to inhibit EcDsbA will also inhibit KpDsbA. Taken together, our data show that DsbAs fall into different classes; that DsbAs within a class may be predicted by sequence analysis of binding loops; that DsbAs within a class are able to complement one another in vivo and that compounds designed to inhibit EcDsbA are likely to inhibit DsbAs within the same class.

  18. GATA2 mutations in patients with acute myeloid leukemia-paired samples analyses show that the mutation is unstable during disease evolution.

    Science.gov (United States)

    Hou, Hsin-An; Lin, Yun-Chu; Kuo, Yuan-Yeh; Chou, Wen-Chien; Lin, Chien-Chin; Liu, Chieh-Yu; Chen, Chien-Yuan; Lin, Liang-In; Tseng, Mei-Hsuan; Huang, Chi-Fei; Chiang, Ying-Chieh; Liu, Ming-Chih; Liu, Chia-Wen; Tang, Jih-Luh; Yao, Ming; Huang, Shang-Yi; Ko, Bor-Sheng; Hsu, Szu-Chun; Wu, Shang-Ju; Tsay, Woei; Chen, Yao-Chang; Tien, Hwei-Fang

    2015-02-01

    Recently, mutations of the GATA binding protein 2 (GATA2) gene were identified in acute myeloid leukemia (AML) patients with CEBPA double mutations (CEBPA (double-mut)), but the interaction of this mutation with other genetic alterations and its dynamic changes during disease progression remain to be determined. In this study, 14 different missense GATA2 mutations, which were all clustered in the highly conserved N-terminal zinc finger 1 domain, were identified in 27.4, 6.7, and 1 % of patients with CEBPA (double-mut), CEBPA (single-mut), and CEBPA wild type, respectively. All but one patient with GATA2 mutation had concurrent CEBPA mutation. GATA2 mutations were closely associated with younger age, FAB M1 subtype, intermediate-risk cytogenetics, expression of HLA-DR, CD7, CD15, or CD34 on leukemic cells, and CEBPA mutation, but negatively associated with FAB M4 subtype, favorable-risk cytogenetics, and NPM1 mutation. Patients with GATA2 mutation had significantly better overall survival and relapse-free survival than those without GATA2 mutation. Sequential analysis showed that the original GATA2 mutations might be lost during disease progression in GATA2-mutated patients, while novel GATA2 mutations might be acquired at relapse in GATA2-wild patients. In conclusion, AML patients with GATA2 mutations had distinct clinic-biological features and a favorable prognosis. GATA2 mutations might be lost or acquired at disease progression, implying that it was a second hit in the leukemogenesis of AML, especially those with CEBPA mutation.

  19. Energy supply and urban planning projects: Analysing tensions around district heating provision in a French eco-district

    International Nuclear Information System (INIS)

    Gabillet, Pauline

    2015-01-01

    Through the analysis of energy supply choices, this article explores the way in which energy priorities and their climate-related features are incorporated into urban public policy. These choices must take account of different factors, as is the case with district heating, which is justified as a vehicle of renewable energy while subject to pressure in eco-districts because its techno-economic balances are destabilised by falls in demand. Our study focuses particularly on the city of Metz (France), which has chosen district heating as the primary source for provision for the municipal area and for its first eco-district. We analyse the tensions within these choices, with particular attention to the way in which they are negotiated inside municipal departments and with the local energy operator. This enables us to explore the tensions in defining the scale that governs decisions and the linkages between energy-related and urban priorities. - Highlights: • Analyses of tensions in the choice of energy supplies for eco-districts. •District heating networks can be vehicles of renewable energy. • District heating networks are threatened by drops in energy consumption. • Energy supply issues oppose urban planning and energy policy in municipal departments. • Technical and financial adjustments can be made by the municipality to justify its energy choices

  20. Business Mododelling of Electronic Brokerage

    DEFF Research Database (Denmark)

    Skouby, Knud Erik; Øst, Alexander Gorm

    1998-01-01

    The central task of Business Modelling is to develop a theoretical techno-economic reference model for analyses of the value chain in the production of brokerage services in electronic networks......The central task of Business Modelling is to develop a theoretical techno-economic reference model for analyses of the value chain in the production of brokerage services in electronic networks...

  1. Review: Martin Spetsmann-Kunkel (2004. Die Moral der Daytime Talkshow. Eine soziologische Analyse eines umstrittenen Fernsehformats [The Morality of the Daytime Talk Show. A Sociological Analysis of a Controversial Television Format

    Directory of Open Access Journals (Sweden)

    Nicola Döring

    2006-05-01

    Full Text Available This book deals with the phenomenon of the daytime talk show from a sociological perspective. The author questions the common cultural pessimism of this TV format ("exhibitionist guests," "voyeuristic spectators". He first describes the characteristics of the daytime talk show and summarizes the results of previous surveys that reveal a broad variety of talk show guests' and recipients' motives—beyond pathology. Drawing on concepts like civilization and individualisation, the book outlines the societal functions of the daytime talk show. A participatory observation study in the editorial office of "Hans Meiser" and free interpretations of three series from "Vera am Mittag" are presented as "empirical evidence." Unfortunately the book lacks theoretical and methodological rigor and a sound empirical basis. The bibliography could have been more comprehensive. The work is useful, though, as an inspired, readable introduction into the topic. URN: urn:nbn:de:0114-fqs0603119

  2. Showing/Sharing: Analysing Visual Communication from a Praxeological Perspective

    Directory of Open Access Journals (Sweden)

    Maria Schreiber

    2017-12-01

    Full Text Available This contribution proposes a methodological framework for empirical research into visual practices on social media. The framework identifies practices, pictures and platforms as relevant dimensions of analysis. It is mainly developed within, and is compatible with qualitative, interpretive approaches which focus on visual communication as part of everyday personal communicative practices. Two screenshots from Instagram and Facebook are introduced as empirical examples to investigate collaborative practices of meaning-making relating to pictures on social media. While social media seems to augment reflexive, processual practices of negotiating identities, visual media, in particular, amps up aesthetic, ambivalent and embodied dimensions within these practices.

  3. Techno-economics of carbon nanotubes produced by open air arc ...

    African Journals Online (AJOL)

    The morphology and structure of the CNTs produced were characterized by Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), X ray diffraction, Raman spectroscopy and Thermo gravimetric analysis (TGA). The cost analysis for the synthesis of MWNTs through this simplified method was done ...

  4. Developing Socio-Techno-Economic-Political (STEP Solutions for Addressing Resource Nexus Hotspots

    Directory of Open Access Journals (Sweden)

    Bassel Daher

    2018-02-01

    Full Text Available The challenge of meeting increasing water, energy, and food needs is linked not only to growing demands globally, but also to the growing interdependency between these interconnected resource systems. Pressures on these systems will emerge to become hotspots with different characteristics, and will require a fresh look at the challenges existing both within each of the resource systems and at their respective interfaces. Proposing solutions to address different resource hotspots must be multi-faceted and need to acknowledge the multiple dimensions of the biophysical water, energy, and food systems, and the players connected with them. This commentary first explores the multiple dimensions of water, energy, and food systems as these relate to government, business, and society. It then identifies contemporary critical questions at the interface of these stressed resource systems. A 3-Filter framework is then introduced for vetting the feasibility of proposed resource allocation scenarios and to account for the bio-physical resource interactions and trade-offs, the stakeholder interactions and trade-offs, and to address governance and financing schemes for carrying forward the implementation of those scenarios.

  5. Techno-economic analysis of bioethanol production from rice straw by liquid-state fermentation

    Science.gov (United States)

    Hidayata, M. H. M.; Salleh, S. F.; Riayatsyahb, T. M. I.; Aditiyac, H. B.; Mahliaa, T. M. I.; Shamsuddina, A. H.

    2016-03-01

    Renewable energy is the latest approach of the Malaysian government in an effort to find sustainable alternative energy sources and to fulfill the ever increasing energy demand. Being a country that thrives in the service and agricultural sector, bioethanol production from lignocellulosic biomass presents itself as a promising option. However, the lack of technical practicality and complexity in the operation system hinder it from being economically viable. Hence, this research acquired multiple case studies in order to provide an insight on the process involved and its implication on production as well as to obtain a cost analysis of bioethanol production. The energy input and cost of three main components of the bioethanol production which are the collection, logistics, and pretreatment of rice straw were evaluated extensively. The theoretical bioethanol yield and conversion efficiency obtained were 250 L/t and 60% respectively. The findings concluded that bioethanol production from rice straw is currently not economically feasible in Malaysia’s market due to lack of efficiency in the pretreatment phase and overbearing logistics and pretreatment costs. This work could serve as a reference to future studies of biofuel commercialization in Malaysia.

  6. Prospective techno-economic and environmental assessment of carbon capture at a refinery and CO

    NARCIS (Netherlands)

    Fernandez Dacosta, C.; Van Der Spek, Mijndert; Hung, Christine Roxanne; Oregionni, Gabriel David; Skagestad, Ragnhild; Parihar, Prashant; Gokak, D. T.; Strømman, Anders Hammer; Ramirez Ramirez, C.A.

    2017-01-01

    CO2 utilisation is gaining interest as a potential element towards a sustainable economy. CO2 can be used as feedstock in the synthesis of fuels, chemicals and polymers. This study presents a prospective assessment of carbon capture from a hydrogen unit at a refinery, where

  7. A New Proposal of Cellulosic Ethanol to Boost Sugarcane Biorefineries: Techno-Economic Evaluation

    Directory of Open Access Journals (Sweden)

    Juliana Q. Albarelli

    2014-01-01

    Full Text Available Commercial simulator Aspen Plus was used to simulate a biorefinery producing ethanol from sugarcane juice and second generation ethanol production using bagasse fine fraction composed of parenchyma cells (P-fraction. Liquid hot water and steam explosion pretreatment technologies were evaluated. The processes were thermal and water integrated and compared to a biorefinery producing ethanol from juice and sugarcane bagasse. The results indicated that after thermal and water integration, the evaluated processes were self-sufficient in energy demand, being able to sell the surplus electricity to the grid, and presented water intake inside the environmental limit for São Paulo State, Brazil. The processes that evaluated the use of the bagasse fine fraction presented higher economic results compared with the use of the entire bagasse. Even though, due to the high enzyme costs, the payback calculated for the biorefineries were higher than 8 years for all cases that considered second generation ethanol and the net present value for the investment was negative. The reduction on the enzyme load, in a way that the conversion rates could be maintained, is the limiting factor to make second generation ethanol competitive with the most immediate uses of bagasse: fuel for the cogeneration system to surplus electricity production.

  8. An Analysis of Techno-Economic Requirements for MOSAIC CPV Systems to Achieve Cost Competitiveness

    Energy Technology Data Exchange (ETDEWEB)

    Horowitz, Kelsey A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Cunningham, David W. [Advanced Research Projects Agency - Energy (ARPA-E); Zahler, James [Advanced Research Projects Agency - Energy (ARPA-E)

    2017-11-06

    A comprehensive bottom-up cost model has been developed by NREL for ARPAE's MOSAIC micro-concentrator PV program. It will calculate LCOE for MOSAIC technologies and assess their cost competitiveness compared to traditional flat-plate systems.

  9. Transport energy demand: techno-economic modelling and scenarios for Irish climate policy

    OpenAIRE

    Daly, Hannah E.

    2012-01-01

    The case for energy policy modelling is strong in Ireland, where stringent EU climate targets are projected to be overshot by 2015. Policy targets aiming to deliver greenhouse gas and renewable energy targets have been made, but it is unclear what savings are to be achieved and from which sectors. Concurrently, the growth of personal mobility has caused an astonishing increase in CO2 emissions from private cars in Ireland, a 37% rise between 2000 and 2008, and while there have been improvemen...

  10. Techno-economical parameters of renewable electricity options in 2008. Draft recommendation for financial gap calculations

    International Nuclear Information System (INIS)

    Van Tilburg, X.; Stienstra, G.J.; Lensink, S.M.; Pfeiffer, E.A.; Cleijne, H.

    2007-02-01

    The results of a study on the financial gaps of renewable energy production technologies are presented. These financial gaps form the basis for determining the level of so-called MEP-subsidies (feed-in tariffs) for different renewable electricity sources and technologies. This report contains a recommendation on the financial gaps for projects in the Netherlands which are planned to be finalized in 2008. Although the report is based on careful research, the results have not been presented to stakeholders for consultation [nl

  11. Techno-Economic Performance Evaluation for Olive Mills Powered by Grid-Connected Photovoltaic Systems

    Directory of Open Access Journals (Sweden)

    Ovidio Rabaza

    2015-10-01

    Full Text Available In recent years, due to the rise in petroleum prices and greenhouse gas emissions, renewable energy has been recommended as a power source for different types of facilities. For the period 2010 to 2020 the European Commission has established three key objectives related to climatic change and energy sustainability, such as reductions of CO2 emissions, increases in the use of renewable energy, and improvements in energy efficiency. A key industry is olive oil production in olive mills, where there is a great opportunity to reduce electricity consumption, increase additional profits related to the reduction of technologies that are harmful to the environment, and to cut back maintenance costs. For this reason, a feasibility study of grid-connected photovoltaics (PV systems has been carried out for different types of olive mills in Andalusia (southern Spain. This region is highly energy dependent, but has an abundance of “green” resources to be exploited. The results of this study contemplate a reduction in spending on electrical power of between 2% and 37%, and an increase in the use of renewable energy of between 2% and 26%. These results are according to the self-consumption or net metering policy and the production capacity of olive oil.

  12. A techno-economic evaluation of anaerobic biogas producing systems in developing countries.

    Science.gov (United States)

    Morgan, Hervan Marion; Xie, Wei; Liang, Jianghui; Mao, Hanping; Lei, Hanwu; Ruan, Roger; Bu, Quan

    2017-12-08

    Biogas production has been the focus of many individuals in the developing world; there have been several investigations that focus on improving the production process and product quality. In the developing world the lack of advanced technology and capital has hindered the development of energy production. Renewable energy has the potential to improve the standard of living for most of the 196 countries which are classified as developing economies. One of the easiest renewable energy compounds that can be produced is biogas (bio-methane). Biogas can be produced from almost any source of biomass through the anaerobic respiration of micro-organisms. Low budget energy systems are reviewed in this article along with various feedstock sources. Adapted gas purification and storage systems are also reviewed, along with the possible economic, social, health and environmental benefits of its implementation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Impacts of retrofitting analysis on first generation ethanol production: process design and techno-economics.

    Science.gov (United States)

    Rajendran, Karthik; Rajoli, Sreevathsava; Teichert, Oliver; Taherzadeh, Mohammad J

    2015-02-01

    More than half of the bioethanol plants in operation today use corn or grains as raw materials. The downstream processing of mash after fermentation to produce ethanol and distiller grains is an energy-demanding process, which needs retrofitting for optimization. In addition, the fluctuation in the ethanol and grain prices affects the overall profitability of the plant. For this purpose, a process simulation was performed in Aspen Plus(®) based on an existing industrial plant located in Sweden. The simulations were compared using different scenarios including different concentrations of ethanol, using the stillage for biogas production to produce steam instead of distiller grains as a by-product, and altering the purity of the ethanol produced. Using stillage for biogas production, as well as utilizing the steam, reduced the overall energy consumption by 40% compared to the plant in operation. The fluctuations in grain prices had a high impact on the net present value (NPV), where grain prices greater than 349 USD/ton reached a zero NPV. After 20 years, the plant in operation producing 41,600 tons ethanol/year can generate a profit of 78 million USD. Compared to the base case, the less purified ethanol resulted in a lower NPV of 30 million USD.

  14. Hydrogen Fueling Station Using Thermal Compression: a techno-economic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kriha, Kenneth [Gas Technology Inst., Des Plaines, IL (United States); Petitpas, Guillaume [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Melchionda, Michael [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Soto, Herie [Shell, Houston TX (United States); Feng, Zhili [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wang, Yanli [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-08-11

    The goal of this project was to demonstrate the technical and economic feasibility of using thermal compression to create the hydrogen pressure necessary to operate vehicle hydrogen fueling stations. The concept of utilizing the exergy within liquid hydrogen to build pressure rather than mechanical components such as compressors or cryogenic liquid pumps has several advantages. In theory, the compressor-less hydrogen station will have lower operating and maintenance costs because the compressors found in conventional stations require large amounts of electricity to run and are prone to mechanical breakdowns. The thermal compression station also utilizes some of the energy used to liquefy the hydrogen as work to build pressure, this is energy that in conventional stations is lost as heat to the environment.

  15. Biomass Direct Liquefaction Options. TechnoEconomic and Life Cycle Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Tews, Iva J.; Zhu, Yunhua; Drennan, Corinne; Elliott, Douglas C.; Snowden-Swan, Lesley J.; Onarheim, Kristin; Solantausta, Yrjo; Beckman, David

    2014-07-31

    The purpose of this work was to assess the competitiveness of two biomass to transportation fuel processing routes, which were under development in Finland, the U.S. and elsewhere. Concepts included fast pyrolysis (FP), and hydrothermal liquefaction (HTL), both followed by hydrodeoxygenation, and final product refining. This work was carried out as a collaboration between VTT (Finland), and PNNL (USA). The public funding agents for the work were Tekes in Finland and the Bioenergy Technologies Office of the U.S. Department of Energy. The effort was proposed as an update of the earlier comparative technoeconomic assessment performed by the IEA Bioenergy Direct Biomass Liquefaction Task in the 1980s. New developments in HTL and the upgrading of the HTL biocrude product triggered the interest in reinvestigating this comparison of these biomass liquefaction processes. In addition, developments in FP bio-oil upgrading had provided additional definition of this process option, which could provide an interesting comparison.

  16. Techno-economic assessment of electric steelmaking through the year 2000

    Energy Technology Data Exchange (ETDEWEB)

    Bosley, J. J.; Clark, J. P.; Dancy, T. E.; Fruehan, R. J.; McIntyre, E. H.

    1987-07-01

    This paper presents a critical review of the outlook for electric steelmaking including an assessment of existing and potential electric arc furnace (EAF) capacity. Suggested areas of development to minimize energy consumption and optimize output are also featured. 20 figs.; 62 tabs.

  17. Techno-economic optimisation of three gas liquefaction processes for small-scale applications

    DEFF Research Database (Denmark)

    Nguyen, Tuong-Van; Rothuizen, Erasmus Damgaard; Elmegaard, Brian

    2016-01-01

    promising cycle setups are identified. The findings illustrate the resulting trade-offs between the system performance and investment costs, which differ significantly with the type of refrigeration cycle. Although these configurations are suitable for small-scale applications, mixed-refrigerant processes...

  18. Techno-economic Assessment of Coal to SNG Power Plant in Kalimantan

    Directory of Open Access Journals (Sweden)

    Riezqa Andika

    2016-09-01

    Full Text Available As the most abundant and widely distributed fossil fuel, coal has become a key component of energy sources in worldwide. However, air pollutants from coal power plants contribute carbon dioxide emissions. Therefore, understanding how to taking care coal in industrial point of view is important. This paper focused on the feasibility study, including process design and simulation, of a coal to SNG power plant in Kalimantan in order to fulfill its electricity demand. In 2019, it is estimated that Kalimantan will need 2446 MW of electricity and it reaches 2518 MW in 2024. This study allows a thorough evaluation both in technology and commercial point of view. The data for the model is gathered through literature survey from government institution reports and academic papers. Aspen HYSYS is used for modelling the power plant consists of two blocks which are SNG production block and power block. The economic evaluation is vary depends on the pay-back period, capital and operational cost which are coal price, and electricity cost. The results of this study can be used as support tool for energy development plan as well as policy-making in Indonesia.

  19. Techno-economic assessment of anaerobic digestion systems for agri-food wastes

    Energy Technology Data Exchange (ETDEWEB)

    Lau, A.; Baldwin, S.; Wang, M. [British Colombia Univ., Vancouver, BC (Canada)

    2010-07-01

    Activities in British Columbia's Fraser Valley generate an estimated 3 million tones of agriculture and food wastes annually, of which 85 per cent are readily available for anaerobic digestion. The potential for energy generation from biogas through anaerobic digestion is approximately 30 MW. On-farm manure-based systems represent the most likely scenario for the development of anaerobic digestion in British Columbia in the near future. Off-farm food processing wastes may be an alternative option to large centralized industrial complexes. Odour control, pathogen reduction, improved water quality, reduced greenhouse gas emissions and reduced landfill usage are among the environmental benefits of anaerobic digestion. The economical benefits include power and heat generation, biogas upgrading, and further processing of the residues to produce compost or animal bedding. This paper described a newly developed anaerobic digestion (AD) calculator that helps users regarding their investment decision in AD facilities. The calculator classifies various technology options into several major types of AD systems. It also constructs kinetic and economic models for these systems and provides a fair estimation on biogas yield, digester volume, capital cost and annual income. The calculator takes into consideration factors such as the degradability of wastes with different compositions and different operating parameters.

  20. Valorisation of mango seed via extraction of starch: preliminary techno-economic analysis

    CSIR Research Space (South Africa)

    Tesfaye, T

    2017-11-01

    Full Text Available Reducing environmental impacts and obtaining economic benefits based on utilisation of waste materials are drivers for the implementation of cleaner production policies and technologies in food processing industries. Starch is a very versatile...

  1. Techno-Economic Assessment of Concentrating Solar Power and Wind Hybridization in Jordan

    Directory of Open Access Journals (Sweden)

    Osama Ayadi

    2018-03-01

    A strong complementarity between wind and direct normal solar radiation was observed in the selected location in Jordan, which emphasizes the attractiveness of the selected hybrid system. The optimal configuration of the CSP-wind hybrid system was obtained with a solar field of a 2.6 solar multiple and a 5 hours energy storage. The achieved capacity factor was 94%, and the LCOE is lower than those resulted for standalone CSP plants.

  2. Assessing current and future techno-economic potential of concentrated solar power and photovoltaic electricity generation

    NARCIS (Netherlands)

    Köberle, Alexandre C.; Gernaat, David E H J; van Vuuren, Detlef P.

    2015-01-01

    CSP and PV technologies represent energy sources with large potentials. We present cost-supply curves for both technologies using a consistent methodology for 26 regions, based on geoexplicit information on solar radiation, land cover type and slope, exploring individual potential and

  3. Techno-Economic Analysis of a 600 MW Oxy-Enrich Pulverized Coal-Fired Boiler

    Directory of Open Access Journals (Sweden)

    Ming Lei

    2018-03-01

    Full Text Available Oxy-fuel combustion is one of the most promising methods for CO2 capture and storage (CCS but the operating costs—mainly due to the need for oxygen production—usually lead to an obvious decrease in power generation efficiency. An “oxy-enrich combustion” process was proposed in this study to improve the efficiency of the oxy-fuel combustion process. The oxidizer for oxy-enrich combustion was composed of pure oxygen, air and recycled flue gas. Thus, the CO2 concentration in the flue gas decreased to 30–40%. The PSA (pressure swing adsorption, which has been widely used for CO2 removal from the shifting gases of ammonia synthesis in China, was applied to capture CO2 during oxy-enrich combustion. The technological economics of oxy-enrich combustion with PSA was calculated and compared to that of oxy-fuel combustion. The results indicated that, compared with oxy-fuel combustion: (1 the oxy-enrich combustion has fewer capital and operating costs for the ASU (air separation unit and the recycle fan; (2 there were fewer changes in the components of the flue gas in a furnace for oxy-enrich combustion between dry and wet flue gas circulation; and (3 as the volume ratio of air and oxygen was 2 or 3, the economics of oxy-enrich combustion with PSA were more advantageous.

  4. Techno-economic comparison of series hybrid, plug-in hybrid, fuel cell and regular cars

    NARCIS (Netherlands)

    van Vliet, O.P.R.; Kruithof, T.; Turkenburg, W.C.; Faaij, A.P.C.

    2010-01-01

    We examine the competitiveness of series hybrid compared to fuel cell, parallel hybrid, and regular cars. We use public domain data to determine efficiency, fuel consumption, total costs of ownership and greenhouse gas emissions resulting from drivetrain choices. The series hybrid drivetrain can be

  5. A general model for techno-economic analysis of CSP plants with thermochemical energy storage systems

    Science.gov (United States)

    Peng, Xinyue; Maravelias, Christos T.; Root, Thatcher W.

    2017-06-01

    Thermochemical energy storage (TCES), with high energy density and wide operating temperature range, presents a potential solution for CSP plant energy storage. We develop a general optimization based process model for CSP plants employing a wide range of TCES systems which allows us to assess the plant economic feasibility and energy efficiency. The proposed model is applied to a 100 MW CSP plant employing ammonia or methane TCES systems. The methane TCES system with underground gas storage appears to be the most promising option, achieving a 14% LCOE reduction over the current two-tank molten-salt CSP plants. For general TCES systems, gas storage is identified as the main cost driver, while the main energy driver is the compressor electricity consumption. The impacts of separation and different reaction parameters are also analyzed. This study demonstrates that the realization of TCES systems for CSP plants is contingent upon low storage cost and a reversible reaction with proper reaction properties.

  6. Techno-Economic Optimization of a Sustainable Energy System for a 100% Renewables Smart House

    DEFF Research Database (Denmark)

    Craciun, Vasile Simion; Blarke, Morten; Trifa, Viorel

    2012-01-01

    , and hot tap water demand, balancing fluctuating wind power and both solar power and solar thermal supply utilizing advanced heat pump and both electro-chemical electricity storage, and hot and cold thermal storages. Our research is basically concerned with the question of how to design 100 % renewable......The continuous increasing negative effects of fossil fuel consumption on society and the environment, opens a major interest into environmentally friendly alternatives to sustain the increasing demand for energy services. Despite the obvious advantages of renewable energy, it presents important...... technical and economic challenges. One such challenge is the discontinuity, or intermittency, of generation, as most renewable energy resources depend on the climate, which is why their use requires complex design, planning and control optimization strategies. This paper presents a model and optimization...

  7. Techno-Economic Analysis of BEVs with Fast Charging Infrastructure: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Neubauer, J.; Pesaran, A.

    2014-08-01

    Battery electric vehicles (BEVs) offer the potential to reduce both oil imports and greenhouse gas emissions, but high upfront costs, battery-limited vehicle range, and concern over high battery replacement costs may discourage many potential purchasers. One proposed solution is to employ a subscription model under which a service provider assumes ownership of the battery while providing access to vast fast charging infrastructure. Thus, high upfront and subsequent battery replacement costs are replaced by a predictable monthly fee, and battery-limited range is replaced by a larger infrastructure-limited range. Assessing the costs and benefits of such a proposal are complicated by many factors, including customer drive patterns, the amount of required infrastructure, and battery life. Herein the National Renewable Energy Laboratory applies its Battery Ownership Model to address these challenges and compare the economics and utility of a BEV fast charging service plan to a traditional direct ownership option. In single vehicle households, where such a service is most valuable, we find that operating a BEV under a fast charge service plan can be more cost-effective than direct ownership of a BEV, but it is rarely more cost-effective than direct ownership of a conventional vehicle.

  8. Assessing biomass-fired gas turbine power plants: a techno-economic and environmental perspective

    OpenAIRE

    Ihiabe, Daniel

    2013-01-01

    Fossil fuels continue to deplete with use as they are irreplaceable. In addition, the environmental impact with the continuous use of these conventional fuels has generated global concern due to the production of harmful emission gases. An alternative source of energy has become inevitable. Technological advancements in the area of biomass use for both aviation and power generation are at different levels of development. There is however the need for an integrated approach t...

  9. Techno-economic evaluation of different CO2-based processes for dimethyl carbonate production

    DEFF Research Database (Denmark)

    Kongpanna, Pichayapan; Pavarajarn, Varong; Gani, Rafiqul

    2015-01-01

    In this work, several chemical processes for production of dimethyl carbonate (DMC) based on CO2 utilization are evaluated. Four CO2-based processes for production of DMC are considered: (1) direct synthesis from CO2 and methanol; (2) synthesis from urea; (3) synthesis from propylene carbonate......; and (4) synthesis from ethylene carbonate. The processes avoid the use of toxic chemicals such as phosgene, CO and NO that are required in conventional DMC production processes. From preliminary thermodynamic analysis, the yields of DMC are found to have the following order (higher to lower): ethylene...... carbonate route > urea route > propylene carbonate route > direct synthesis from CO2. Therefore, only the urea and ethylene carbonate routes are further investigated by comparing their performances with the commercial BAYER process on the basis of kg of DMC produced at a specific purity. The ethylene...

  10. Low-Severity Hydroprocessing to Stabilize Bio-oil: TechnoEconomic Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Tews, Iva J.; Elliott, Douglas C.

    2014-08-31

    The impetus for this study was the suggestion that recent developments in fast pyrolysis (FP) bio-oil production had indicated instability of the bio-oil in storage which might lead to unacceptable viscosity increases. Commercial operation of FP in Finland began in 2014 and the distribution of the bio-oil to isolated users has been proposed as the long-term plan. Stability of the shipped bio-oil therefore became a concern. Experimental results at PNNL with low-severity hydroprocessing of bio-oil for stabilization has validated a process in which the stability of the bio-oil could be improved, as measured by viscosity increase following storage of the product at 80 °C for 24h. In the work reported here the assessed process configuration consists of fast pyrolysis followed by low temperature and pressure hydroprocessing to produce a stable fuel oil product. The product could then be stored for an extended period of time without significant viscosity increase. This work was carried out as part of a collaborative project between Technical Research Centre of Finland (VTT) and Pacific Northwest National Laboratory (PNNL). The public funding agents for the work were Tekes in Finland and the Bioenergy Technologies Office of the U.S. Department of Energy. The effort was proposed as an evaluation of the process developed in earlier collaboration and jointly invented by VTT and PNNL researchers.

  11. Techno-economic analysis of household and community energy storage for residential prosumers with smart appliances

    OpenAIRE

    van der Stelt, Sander; Alskaif, T.A.; van Sark, W.G.J.H.M.

    2018-01-01

    The emergence of Decentralized Energy Resources (DERs) and rising electricity demand are known to cause grid instability. Additionally, recent policy developments indicate a decreased tariff in the future for electricity sold to the grid by households with DERs. Energy Storage Systems (ESS) combined with Demand Side Management (DSM) can improve the self-consumption of Photovoltaic (PV) generated electricity and decrease grid imbalance between supply and demand. Household Energy Storage (HES) ...

  12. Techno-economic analysis of household and community energy storage for residential prosumers with smart appliances

    NARCIS (Netherlands)

    van der Stelt, Sander; Alskaif, T.A.; van Sark, W.G.J.H.M.

    2018-01-01

    The emergence of Decentralized Energy Resources (DERs) and rising electricity demand are known to cause grid instability. Additionally, recent policy developments indicate a decreased tariff in the future for electricity sold to the grid by households with DERs. Energy Storage Systems (ESS) combined

  13. Fourth Generation Broadband Delivered by Hybrid FttH Solution — A Techno-Economic Study

    NARCIS (Netherlands)

    Phillipson, F.; Smit-Rietveld, C.J.C.; Verhagen, W.P.

    2013-01-01

    The use of fibre will be inevitable for transporting hundreds of Mb/s to and from end-users, but this does not necessary mean that fibre has to be deployed all the way up to a point into the home. An alternative is bringing fibre up to the Home (Hybrid FttH) and reusing existing telephony wiring for

  14. A techno-economic assessment of grid connected photovoltaic system for hospital building in Malaysia

    Science.gov (United States)

    Mat Isa, Normazlina; Tan, Chee Wei; Yatim, AHM

    2017-07-01

    Conventionally, electricity in hospital building are supplied by the utility grid which uses mix fuel including coal and gas. Due to enhancement in renewable technology, many building shall moving forward to install their own PV panel along with the grid to employ the advantages of the renewable energy. This paper present an analysis of grid connected photovoltaic (GCPV) system for hospital building in Malaysia. A discussion is emphasized on the economic analysis based on Levelized Cost of Energy (LCOE) and total Net Present Post (TNPC) in regards with the annual interest rate. The analysis is performed using Hybrid Optimization Model for Electric Renewables (HOMER) software which give optimization and sensitivity analysis result. An optimization result followed by the sensitivity analysis also being discuss in this article thus the impact of the grid connected PV system has be evaluated. In addition, the benefit from Net Metering (NeM) mechanism also discussed.

  15. Techno-Economic Evaluation of Technologies to Mitigate Greenhouse Gas Emissions at North American Refineries.

    Science.gov (United States)

    Motazedi, Kavan; Abella, Jessica P; Bergerson, Joule A

    2017-02-07

    A petroleum refinery model, Petroleum Refinery Life-cycle Inventory Model (PRELIM), that estimates energy use and CO 2 emissions was modified to evaluate the environmental and economic performance of a set of technologies to reduce CO 2 emissions at refineries. Cogeneration of heat and power (CHP), carbon capture at fluid catalytic cracker (FCC) and steam methane reformer (SMR) units, and alternative hydrogen production technologies were considered in the analysis. The results indicate that a 3-44% reduction in total annual refinery CO 2 emissions (2-24% reductions in the CO 2 emissions on a per barrel of crude oil processed) can be achieved in a medium conversion refinery that processes a typical U.S. crude slate obtained by using the technologies considered. A sensitivity analysis of the quality of input crude to a refinery, refinery configuration, and prices of natural gas and electricity revealed how the magnitude of possible CO 2 emissions reductions and the economic performance of the mitigation technologies can vary under different conditions. The analysis can help inform decision making related to investment decisions and CO 2 emissions policy in the refining sector.

  16. Techno-economic assessment and optimization of Stirling engine micro-cogeneration systems in residential buildings

    International Nuclear Information System (INIS)

    Alanne, Kari; Soederholm, Niklas; Siren, Kai; Beausoleil-Morrison, Ian

    2010-01-01

    Micro-cogeneration offers numerous potential advantages for the supply of energy to residential buildings in the sense of improved energy efficiency and reduced environmental burdens. To realize these benefits, however, such systems must reduce energy costs, primary energy consumption, and CO 2 emissions relative to conventional heating systems. In this paper, we search for optimized strategies for the integration of a Stirling engine-based micro-cogeneration system in residential buildings by comparing the performance of various system configurations and operational strategies with that of a reference system, i.e. hydronic heating and a low temperature gas boiler in standard and passive house constructions located in different climates. The IDA-ICE whole-building simulation program is employed with the Stirling engine micro-cogeneration model that was developed by IEA/ECBCS Annex 42. In this way the dynamic effects of micro-cogeneration devices, such as warm-ups and shutdowns, are accounted for. This study contributes to the research by addressing hourly changes in the fuel mix used for central electricity generation and the utilization of thermal exhaust through heat recovery. Our results suggest that an optimally operated micro-cogeneration system encompassing heat recovery and appropriate thermal storage would result in a 3-5% decrease in primary energy consumption and CO 2 emissions when compared to a conventional hydronic heating system. Moreover, this configuration is capable of delivering annual savings in all the combinations of electricity and fuel price between 0.05 and 0.15 Euro kW h -1 . As can be expected, these results are sensitive to the electrical energy supply mix, building type, and climate.

  17. Techno-economic analysis of resource recovery technologies for wastewater treatment plants

    DEFF Research Database (Denmark)

    Boiocchi, Riccardo; Matafome, Beatriz; Loureiro da Costa Lira Gargalo, Carina

    2017-01-01

    The high nutrient content of domestic wastewater can be efficiently recovered through specific technologies included in dedicated wastewater treatment plants (WWTPs). Nevertheless, the operational costs linked to the implementation of these technologies can make them economically unfeasible...... resource-recovery treatment units: (a) a chemical precipitation process, for recovery of iron phosphate fertilizer; (b) the Exelys technology, for increased biogas production; and, (c) the Phosnix technology, for recovery of struvite fertilizer. Seven upgrade strategies/flowsheets employing different...... combinations of the recovery technologies are generated and evaluated. The evaluation results have shown that the most economically beneficial strategy to upgrade the WWTP is to employ a Phosnix reactor in the side-stream to recover phosphorus from the bottom of the dewatering treatment unit. All other...

  18. Techno-economic analysis of wastewater sludge gasification: a decentralized urban perspective.

    Science.gov (United States)

    Lumley, Nicholas P G; Ramey, Dotti F; Prieto, Ana L; Braun, Robert J; Cath, Tzahi Y; Porter, Jason M

    2014-06-01

    The successful management of wastewater sludge for small-scale, urban wastewater treatment plants, (WWTPs), faces several financial and environmental challenges. Common management strategies stabilize sludge for land disposal by microbial processes or heat. Such approaches require large footprint processing facilities or high energy costs. A new approach considers converting sludge to fuel which can be used to produce electricity on-site. This work evaluated several thermochemical conversion (TCC) technologies from the perspective of small urban WWTPs. Among TCC technologies, air-blown gasification was found to be the most suitable approach. A gasification-based generating system was designed and simulated in ASPEN Plus® to determine net electrical and thermal outputs. A technical analysis determined that such a system can be built using currently available technologies. Air-blown gasification was found to convert sludge to electricity with an efficiency greater than 17%, about triple the efficiency of electricity generation using anaerobic digester gas. This level of electricity production can offset up to 1/3 of the electrical demands of a typical WWTP. Finally, an economic analysis concluded that a gasification-based power system can be economically feasible for WWTPs with raw sewage flows above 0.093m(3)/s (2.1 million gallons per day), providing a profit of up to $3.5 million over an alternative, thermal drying and landfill disposal. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Techno-economic assessment of micro-algae as feedstock for renewable bio-energy production

    NARCIS (Netherlands)

    Jonker, J.G.G.; Faaij, A.P.C.

    2013-01-01

    This paper determines the energy consumption ratio and overall bio-energy production costs of microalgae cultivation, harvesting and conversion to secondary energy carriers, thus helping to clarify future perspectives of micro-algae production for energy purposes. A limitation growth model is

  20. Techno-economic and ecological advantages of unconventional methods for coal exploitation

    OpenAIRE

    Karanakova Stefanovska, Radmila; Panov, Zoran; Dambov, Risto; Popovski, Risto

    2017-01-01

    Considering the quantity and quality of the available resources, especially the necessity for rational utilization of the primary energy resources, we are in a position to won new technologies for exploitation of unbalance and in individual cases balance reserves of coal. No resource, renewable or non-renewable, can meet the demand for energy and environmental sustainability without some compromise. All resources need to be developed with the emphasis on the development of technologies that c...

  1. Techno Economic Analysis of Directly Coupled Photovoltaic Water Pumping System Under Real Climatic Condition

    OpenAIRE

    Sitaram Jana; Majid Jamil; Sanjay Gairola

    2017-01-01

    Solar Photovoltaic (SPV) powered water pumping system is a cost-effective alternative to the conventional means of water pumping system. In coming days as cost of PV panels is decreasing, the energy efficient SPV based water pumping systems shall also become a popular technology particularly in remote areas. The focus of this paper is on designing of solar-powered pumping systems for drinking water in small villages where the water supply comes from a well or submersible pump. The performance...

  2. Techno-economic assessment of biorefinery technologies for aviation biofuels supply chains in Brazil

    NARCIS (Netherlands)

    Alves, Catarina; Valk, Misha; de Jong, S.A.; Bonomi, Antonio; van der Wielen, Luuk; Mussatto, Solange

    2017-01-01

    Abstract: Production of aviation biofuels has been strongly encouraged by the volatility of oil prices and environmental concerns. Brazilian society, companies, and government are taking a step forward in the production of renewable jet fuel from biomass feedstocks largely available in the

  3. A techno-economic evaluation of a biomass energy conversion park

    NARCIS (Netherlands)

    Dael, Van M.; Passel, van S.; Pelkmans, L.; Guisson, R.; Reumermann, P.; Luzardo, N.M.; Witters, N.; Broeze, J.

    2013-01-01

    Biomass as a renewable energy source has many advantages and is therefore recognized as one of the main renewable energy sources to be deployed in order to attain the target of 20% renewable energy use of final energy consumption by 2020 in Europe. In this paper the concept of a biomass Energy

  4. Techno-economic analysis of biomass to fuel conversion via the MixAlco process.

    Science.gov (United States)

    Pham, Viet; Holtzapple, Mark; El-Halwagi, Mahmoud

    2010-11-01

    MixAlco is a robust process that converts biomass to fuels and chemicals. A key feature of the MixAlco process is the fermentation, which employs a mixed culture of acid-forming microorganisms to convert biomass components (carbohydrates, proteins, and fats) to carboxylate salts. Subsequently, these intermediate salts are chemically converted to hydrocarbon fuels (gasoline, jet fuel, and diesel). This work focuses on process synthesis, simulation, integration, and cost estimation of the MixAlco process. For the base-case capacity of 40 dry tonne feedstock per hour, the total capital investment is US $5.54/annual gallon of hydrocarbon fuels (US $3.79/annual gallon of ethanol equivalent), and the minimum selling price [with 10% return on investment (ROI), internal hydrogen production, and US $60/tonne biomass] is US $2.56/gal hydrocarbon, which is equivalent to US $1.75/gal ethanol. If plant capacity is increased to 400 tph, the minimum selling price of biomass-derived hydrocarbon fuels is US $1.76/gal hydrocarbon (US $1.20/gal ethanol equivalent), which can compete without subsidies with petroleum-derived hydrocarbons when crude oil sells for about US $65/bbl. At 40 tph, using the average tipping fee for municipal solid waste (US $45/dry tonne) and current price of external hydrogen (US $1/kg), the minimum selling price is only US $1.24/gal hydrocarbon (US $0.85/gal ethanol equivalent).

  5. Hydrocarbon bio-jet fuel from bioconversion of poplar biomass: techno-economic assessment.

    Science.gov (United States)

    Crawford, Jordan T; Shan, Chin Wei; Budsberg, Erik; Morgan, Hannah; Bura, Renata; Gustafson, Rick

    2016-01-01

    Infrastructure compatible hydrocarbon biofuel proposed to qualify as renewable transportation fuel under the U.S. Energy Independence and Security Act of 2007 and Renewable Fuel Standard (RFS2) is evaluated. The process uses a hybrid poplar feedstock, which undergoes dilute acid pretreatment and enzymatic hydrolysis. Sugars are fermented to acetic acid, which undergoes conversion to ethyl acetate, ethanol, ethylene, and finally a saturated hydrocarbon end product. An unfermentable lignin stream may be burned for steam and electricity production, or gasified to produce hydrogen. During biofuel production, hydrogen gas is required and may be obtained by various methods including lignin gasification. Both technical and economic aspects of the biorefinery are analyzed, with different hydrogen sources considered including steam reforming of natural gas and gasification of lignin. Cash operating costs for jet fuel production are estimated to range from 0.67 to 0.86 USD L -1 depending on facility capacity. Minimum fuel selling prices with a 15 % discount rate are estimated to range from 1.14 to 1.79 USD L -1 . Capacities of 76, 190, and 380 million liters of jet fuel per year are investigated. Capital investments range from 356 to 1026 million USD. A unique biorefinery is explored to produce a hydrocarbon biofuel with a high yield from bone dry wood of 330 L t -1 . This yield is achieved chiefly due to the use of acetogenic bacteria that do not produce carbon dioxide as a co-product during fermentation. Capital investment is significant in the biorefinery in part because hydrogen is required to produce a fully de-oxygenated fuel. Minimum selling price to achieve reasonable returns on investment is sensitive to capital financing options because of high capital costs. Various strategies, such as producing alternative, intermediate products, are investigated with the intent to reduce risk in building the proposed facility. It appears that producing and selling these intermediates may be more profitable than converting all the biomass into aviation fuel. With variability in historical petroleum prices and environmental subsidies, a high internal rate of return would be required to attract investors.

  6. Techno-economic Analysis of Rotor Flettner in Container Ship 4000DWT

    Directory of Open Access Journals (Sweden)

    Agoes Santoso

    2017-06-01

    Full Text Available Rotor flettner is a kind of technology which developed and used in 21st century. This technology is very simple, cylindrical in shape, applied in the upper deck, and rotated by the electrical motor. This technology uses wind energy and applicating magnus effect to create propulsion force. Rotor flettner depends on the condition of the sea wind. The designer has to check the weather condition in its route before make a design of rotor flettner. This kind of technology is not only useful for the economic side, but also, for the environment. Rotor flettner can reduce the emission of a ship. It helps to gain some power to increase in fuel saving.The emission can be decreased by the increasing of fuel saving. So, this technology is a kind of environmentally friendly technology that can be used for the future innovation

  7. Techno-economic evaluation of high temperature pyrolysis processes for mixed plastic waste.

    NARCIS (Netherlands)

    Westerhout, R.W.J.; Westerhout, R.W.J.; van Koningsbruggen, M.P.; van der Ham, Aloysius G.J.; Kuipers, J.A.M.; van Swaaij, Willibrordus Petrus Maria

    1998-01-01

    Three pyrolysis processes for Mixed Plastic Waste (MPW) with different reactors (Bubbling Fluidized Bed, Circulating Fluidized Bed and Rotating Cone Reactor, respectively BFB, CFB and RCR) were designed and evaluated. The estimated fixed capital investment for a 50 kton/year MPW pyrolysis plant

  8. Techno-economics of carbon nanotubes produced by open air arc ...

    African Journals Online (AJOL)

    user

    Abstract. This paper describes a simplified arc discharge method for synthesis of multi-walled carbon nanotubes (MWNTs). In this method, a continuous and mass production of carbon nanotubes (CNTs) can be achieved with high purity and considerable yield. There is no need for costly setup of the synthesis of MWNTs and ...

  9. Techno-Economic Analysis of Scalable Coal-Based Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Chuang, Steven S. C. [Univ. of Akron, OH (United States)

    2014-08-31

    Researchers at The University of Akron (UA) have demonstrated the technical feasibility of a laboratory coal fuel cell that can economically convert high sulfur coal into electricity with near zero negative environmental impact. Scaling up this coal fuel cell technology to the megawatt scale for the nation’s electric power supply requires two key elements: (i) developing the manufacturing technology for the components of the coal-based fuel cell, and (ii) long term testing of a kW scale fuel cell pilot plant. This project was expected to develop a scalable coal fuel cell manufacturing process through testing, demonstrating the feasibility of building a large-scale coal fuel cell power plant. We have developed a reproducible tape casting technique for the mass production of the planner fuel cells. Low cost interconnect and cathode current collector material was identified and current collection was improved. In addition, this study has demonstrated that electrochemical oxidation of carbon can take place on the Ni anode surface and the CO and CO2 product produced can further react with carbon to initiate the secondary reactions. One important secondary reaction is the reaction of carbon with CO2 to produce CO. We found CO and carbon can be electrochemically oxidized simultaneously inside of the anode porous structure and on the surface of anode for producing electricity. Since CH4 produced from coal during high temperature injection of coal into the anode chamber can cause severe deactivation of Ni-anode, we have studied how CH4 can interact with CO2 to produce in the anode chamber. CO produced was found able to inhibit coking and allow the rate of anode deactivation to be decreased. An injection system was developed to inject the solid carbon and coal fuels without bringing air into the anode chamber. Five planner fuel cells connected in a series configuration and tested. Extensive studies on the planner fuels and stack revealed that the planner fuel cell stack is not suitable for operation with carbon and coal fuels due to lack of mechanical strength and difficulty in sealing. We have developed scalable processes for manufacturing of process for planner and tubular cells. Our studies suggested that tubular cell stack could be the only option for scaling up the coal-based fuel cell. Although the direct feeding of coal into fuel cell can significantly simplify the fuel cell system, the durability of the fuel cell needs to be further improved before scaling up. We are developing a tubular fuel cell stack with a coal injection and a CO2 recycling unit.

  10. Techno-economical analysis of off-grid hybrid systems at Kutubdia Island, Bangladesh

    International Nuclear Information System (INIS)

    Kumar Nandi, Sanjoy; Ranjan Ghosh, Himangshu

    2010-01-01

    Kutubdia is an island in the southern coast of Bangladesh where mainland grid electricity is not present or would not feasible in near future. Presently, electricity is generated using a diesel generator by Bangladesh Power Development Board (BPDB) for a limited time and location. Due to its remote location, the fuel cost in Kutubdia is very expensive. In the present study one-year recorded wind by Bangladesh Centre of Advanced Studies (BCAS) location and other three potential locations for hybrid system analysis is discussed. The system configuration of the hybrid is achieved based on a theoretical domestic load at the island. The sizing of the hybrid power systems is discussed with 0% and 5% annual capacity of shortage. This feasibility study indicates that wind-PV-diesel system is feasible with 0% capacity of shortage and wind-diesel system is feasible with 5% annual capacity of shortage at all locations. As 5% annual capacity of shortage can be considered, the wind-diesel hybrid system will reduce net present cost as well as cost of energy to about 20% and the diesel consumption on the island can be reduced to about 50% of its present annual consumption. Such a hybrid system will reduce about 44% green house gases (GHG) from the local atmosphere.

  11. Estimation of CO2 Transport Costs in South Korea Using a Techno-Economic Model

    Directory of Open Access Journals (Sweden)

    Kwangu Kang

    2015-03-01

    Full Text Available In this study, a techno–economic model was used to calculate the costs of CO2 transport and specify the major equipment required for transport in order to demonstrate and implement CO2 sequestration in the offshore sediments of South Korea. First, three different carbon capture and storage demonstration scenarios were set up involving the use of three CO2 capture plants and one offshore storage site. Each transport scenario considered both the pipeline transport and ship transport options. The temperature and pressure conditions of CO2 in each transport stage were determined from engineering and economic viewpoints, and the corresponding specifications and equipment costs were calculated. The transport costs for a 1 MtCO2/year transport rate were estimated to be US$33/tCO2 and US$28/tCO2 for a pipeline transport of ~530 km and ship transport of ~724 km, respectively. Through the economies of scale effect, the pipeline and ship transport costs for a transport rate of 3 MtCO2/year were reduced to approximately US$21/tCO2 and US$23/tCO2, respectively. A CO2 hub terminal did not significantly reduce the cost because of the short distance from the hub to the storage site and the small number of captured sources.

  12. Eco-techno-economic synthesis of process routes for the production of zinc using combinatorial optimization

    Science.gov (United States)

    Sudhölter, S.; Krüger, J.; Reuter, M. A.

    1996-12-01

    The demands placed on the environmental and social acceptability of metallurgical processing technology are rising steadily. Of particular importance are the production techniques, products, and disposal of residues. These aspects are affected by the varying compositions of the primary and secondary raw materials processed in the plants and the rapidly changing market situations in the metallurgical industry. Metallurgical engineers have to select “optimal” processes from a vast number of existing technologies for the primary production of zinc and for the processing of zinc containing residues. To enable the engineer to compare these techniques and to choose the right combination of unit operations, a process design methodology is presented here, which has been adapted from methodologies developed in chemical engineering and minerals processing. In a previous article by the authors, a structural parameter approach was introduced, that implements a synthesis model, which includes all unit operations currently implemented in zinc metallurgy. At the basis of this model is a data base containing the details of the unit operations included in the model. In this article, this methodology is expanded to incorporate an unlimited quantity of different components by introducing the simulated annealing optimization technique to generate optimal flow sheets for the production of zinc under varying constraints which include operation costs, metal prices, environmental costs, and split factors for Zn, Pb, Ag, and Fe. Case studies demonstrate the functionality of this metallurgical tool for the hydrometallurgical recovery of zinc including numerous unit operations for the processing of by-products and residues. It will also be demonstrated how this model can be extended to a “waste management” tool that generates processing routes not only for the residues from the zinc industry but also for zinc containing residues from other processes, e.g., EAF dusts.

  13. Techno-Economic Simulation Approach in Preparation of Employing Renewable Energies for Process Industry

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Jun Hyung; Lee, Soo bin; Hodge, Bri-Mathias; Lee, In-Beum

    2016-11-21

    The energy system of process industry are faced with a new unprecedented challenge. Renewable energies should be incorporated but single of them cannot meet its energy demand of high degree and a large quantity. This paper investigates a simulation framework to compute the capacity of multiple energy sources including solar, wind power, diesel and batteries. The framework involves actual renewable energy supply and demand profile generation and supply demand matching. Eight configurations of different supply options are evaluated to illustrate the applicability of the proposed framework with some remarks.

  14. NEW METHODOLOGICAL APPROACH IN TECHNO-ECONOMIC AND ENVIRONMENTAL OPTIMISATION OF SUSTAINABLE ENERGY PRODUCTION

    Directory of Open Access Journals (Sweden)

    Svetlana Stevović

    2010-01-01

    Full Text Available Among its other objectives and principles, sustainable development concept includes finding the optimal technical solutions that will enable exploitation of the resources of energy with minimal environmental damage. The main goal of this paper is to demonstrate methodological approach by using several operational research methods for selecting the optimal solution for complex, multipurpose power-plants construction concept problem with taking the sustainable development aspects into account. These methods are: ELECTRE I-IV, PROMETHEE I-IV, method of analytic hierarchy process (AHP and linear programming. The aim of this research was to find out highly efficient, but relatively simple methods of defining environmental-friendly and socio-politically acceptable technical solution. The new methodology is developed and tested by case studies of determining the optimal choice for the construction of thermal and hydropower plants in the areas extremely exposed to conflict of economic, environmental and socio-political interest.

  15. Feasibility Study and Techno-Economic Optimization Model for Battery Thermal Management System

    DEFF Research Database (Denmark)

    Khan, Mohammad Rezwan; Nielsen, Mads Pagh; Kær, Søren Knudsen

    2014-01-01

    . Hence, the objective of this paper is to develop and detail the method of the feasibility for commissioning BTMS called “The decision tool frame-work” (DTF) and to investigate its sensitivity to major factors (e.g. lifetime and application requirement) which are well-known to influence the battery pack...... thermal performance, battery pack performance and ultimately the performance as well as utility of the desired application. This DTF is designed to provide a common frame-work of a BTMS manufacturer and designer to evaluate the options of different BTMS applicable for different applications and operating...... conditions. The results provide insight into the feasibility and the required specifi-cation and configuration of a BTMS....

  16. Design of Standards and Labeling programs in Chile: Techno-Economic Analysis for Refrigerators

    Energy Technology Data Exchange (ETDEWEB)

    Letschert, Virginie E. [Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division.; McNeil, Michael A. [Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division.; Pavon, Mariana [Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division.; Lutz, Wolfgang F. [Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division.

    2013-05-01

    Lawrence Berkeley National Laboratory is a global leader in the study of energy efficiency and its effective implementation through government policy. The Energy Analysis and Environmental Impacts Department of LBNL’s Environmental Energy Technologies Division provides technical assistance to help federal, stat e and local government agencies in the United States, and throughout the world, develop long-term strategies, policy, and programs to encourage energy efficiency in all sectors and industries. In the past, LBNL has assisted staff of various countries government agencies and their con tractors in providing methodologies to analyze cost-effectiveness of regulations and asses s overall national impacts of efficiency programs. The paper presents the work done in collaboration with the Ministry of Energy (MoE) in Chile and the Collaborative Labeling Appliance Standards Programs (CLASP) on designing a Minimum Energy Performance Standards (MEPS) and ext ending the current labeling program for refrigerators.

  17. Techno-economic analysis of energy renovation measures for a district heated multi-family house

    International Nuclear Information System (INIS)

    Gustafsson, Marcus; Gustafsson, Moa Swing; Myhren, Jonn Are; Bales, Chris; Holmberg, Sture

    2016-01-01

    Highlights: • Energy saving measures can be cost-effective as part of a planned renovation. • Primary energy consumption, non-renewable energy consumption and CO 2 emissions are assessed for different electricity mixes. • EAHP can be a cost-effective and environmentally beneficial complement to district heating. • EAHP has lower LCC and significantly shorter payback time than ventilation with heat recovery. • Low-temperature ventilation radiators improve the COP of the heat pump. - Abstract: Renovation of existing buildings is important in the work toward increased energy efficiency and reduced environmental impact. The present paper treats energy renovation measures for a Swedish district heated multi-family house, evaluated through dynamic simulation. Insulation of roof and façade, better insulating windows and flow-reducing water taps, in combination with different HVAC systems for recovery of heat from exhaust air, were assessed in terms of life cycle cost, discounted payback period, primary energy consumption, CO 2 emissions and non-renewable energy consumption. The HVAC systems were based on the existing district heating substation and included mechanical ventilation with heat recovery and different configurations of exhaust air heat pump. Compared to a renovation without energy saving measures, the combination of new windows, insulation, flow-reducing taps and an exhaust air a heat pump gave up to 24% lower life cycle cost. Adding insulation on roof and façade, the primary energy consumption was reduced by up to 58%, CO 2 emissions up to 65% and non-renewable energy consumption up to 56%. Ventilation with heat recovery also reduced the environmental impact but was not economically profitable in the studied cases. With a margin perspective on electricity consumption, the environmental impact of installing heat pumps or air heat recovery in district heated houses is increased. Low-temperature heating improved the seasonal performance factor of the heat pump by up to 11% and reduced the environmental impact.

  18. Techno-economic analysis of expander-based configurations for natural gas liquefaction

    DEFF Research Database (Denmark)

    Nagy, Matteo; Nguyen, Tuong-Van; Elmegaard, Brian

    2017-01-01

    The use of liquefied natural gas (LNG) as a marine fuel is rapidly growing because of the possible economic advantages over conventional fuels and stricter environmental regulations. Production of LNG is energy-intensive because of the required temperature level of around -160°C. Three main types...

  19. Social and techno-economical analysis of biodiesel production in Peru

    International Nuclear Information System (INIS)

    Andres Quintero, Julian; Ruth Felix, Erika; Eduardo Rincón, Luis; Crisspín, Marianella; Fernandez Baca, Jaime; Khwaja, Yasmeen; Cardona, Carlos Ariel

    2012-01-01

    Peru has introduced a law to promote the use of biofuels with the objective to increase employment, strengthening agriculture development, providing an economic alternative to illegal drug production. In this work, the costs of biodiesel production from oil palm and Jatropha were analyzed under different scenarios. They include the participation of associations of smallholders and commercial producers as raw material provides in biodiesel business in Peru. The scenarios considered have a strong social dimension in which they explicitly consider how productions' costs change when smallholders supply a proportion of the feedstock to the industry. Production cost profiles were generated using the chemical process simulation and economical evaluation software packages provided by Aspen Technology. Total production cost found for oil palm biodiesel production ranged between 0.23 and 0.31 USD/L and Jatropha biodiesel production costs were between 0.84 and 0.87 USD/L. These production costs were analyzed and compared to biodiesel ex-factory prices and diesel fuel production cost factors. The results suggest that including smallholders in the supply chain can be under some conditions competitive with liquid biofuel production systems that are purely large scale. - Highlights: ► We design and simulate biodiesel production schemes based on oil palm and Jatropha. ► Scenarios consider smallholders and commercial producers combinations. ► Inclusion of by-product selling allows a reduction of 30% in total biodiesel production cost. ► Major inclusion of smallholders requires a strong government policy to improve their technical production conditions.

  20. Techno-economic analysis of a transient plant-based platform for monoclonal antibody production

    Science.gov (United States)

    Nandi, Somen; Kwong, Aaron T.; Holtz, Barry R.; Erwin, Robert L.; Marcel, Sylvain; McDonald, Karen A.

    2016-01-01

    ABSTRACT Plant-based biomanufacturing of therapeutic proteins is a relatively new platform with a small number of commercial-scale facilities, but offers advantages of linear scalability, reduced upstream complexity, reduced time to market, and potentially lower capital and operating costs. In this study we present a detailed process simulation model for a large-scale new “greenfield” biomanufacturing facility that uses transient agroinfiltration of Nicotiana benthamiana plants grown hydroponically indoors under light-emitting diode lighting for the production of a monoclonal antibody. The model was used to evaluate the total capital investment, annual operating cost, and cost of goods sold as a function of mAb expression level in the plant (g mAb/kg fresh weight of the plant) and production capacity (kg mAb/year). For the Base Case design scenario (300 kg mAb/year, 1 g mAb/kg fresh weight, and 65% recovery in downstream processing), the model predicts a total capital investment of $122 million dollars and cost of goods sold of $121/g including depreciation. Compared with traditional biomanufacturing platforms that use mammalian cells grown in bioreactors, the model predicts significant reductions in capital investment and >50% reduction in cost of goods compared with published values at similar production scales. The simulation model can be modified or adapted by others to assess the profitability of alternative designs, implement different process assumptions, and help guide process development and optimization. PMID:27559626

  1. Techno-economic analysis of concentrated solar power plants in terms of levelized cost of electricity

    Science.gov (United States)

    Musi, Richard; Grange, Benjamin; Sgouridis, Sgouris; Guedez, Rafael; Armstrong, Peter; Slocum, Alexander; Calvet, Nicolas

    2017-06-01

    Levelized Cost of Electricity (LCOE) is an important metric which provides one way to compare the economic competitiveness of different electricity generation systems, calculated simply by dividing lifetime costs by lifetime production. Hidden behind the simplicity of this formula are various assumptions which may significantly alter results. Different LCOE studies exist in the literature, although their assumptions are rarely explicitly stated. This analysis gives all formulas and assumptions which allow for inter-study comparisons. The results of this analysis indicate that CSP LCOE is reducing markedly over time and that given the right location and market conditions, the SunShot 6¢/kWh 2020 target can be reached. Increased industrial cooperation is needed to advance the CSP market and continue to drive down LCOE. The results also indicate that there exist a country and technology level learning effect, either when installing an existing CSP technology in a new country or when using a new technology in an existing CSP country, which seems to impact market progress.

  2. Methane Hydrate Pellet Transport Using the Self-Preservation Effect: A Techno-Economic Analysis

    Directory of Open Access Journals (Sweden)

    Hans Osterkamp

    2012-07-01

    Full Text Available Within the German integrated project SUGAR, aiming for the development of new technologies for the exploration and exploitation of submarine gas hydrates, the option of gas transport by gas hydrate pellets has been comprehensively re-investigated. A series of pVT dissociation experiments, combined with analytical tools such as x-ray diffraction and cryo-SEM, were used to gather an additional level of understanding on effects controlling ice formation. Based on these new findings and the accessible literature, knowns and unknowns of the self-preservation effect important for the technology are summarized. A conceptual process design for methane hydrate production and pelletisation has been developed. For the major steps identified, comprising (i hydrate formation; (ii dewatering; (iii pelletisation; (iv pellet cooling; and (v pressure relief, available technologies have been evaluated, and modifications and amendments included where needed. A hydrate carrier has been designed, featuring amongst other technical solutions a pivoted cargo system with the potential to mitigate sintering, an actively cooled containment and cargo distribution system, and a dual fuel engine allowing the use of the boil-off gas. The design was constrained by the properties of gas hydrate pellets, the expected operation on continental slopes in areas with rough seas, a scenario-defined loading capacity of 20,000 m3 methane hydrate pellets, and safety as well as environmental considerations. A risk analysis for the transport at sea has been carried out in this early stage of development, and the safety level of the new concept was compared to the safety level of other ship types with similar scopes, i.e., LNG carriers and crude oil tankers. Based on the results of the technological part of this study, and with best knowledge available on the alternative technologies, i.e., pipeline, LNG and CNG transportation, an evaluation of the economic competitiveness of the methane hydrate transport technology has been performed. The analysis considers capital investment as well as operational costs and comprises a wide set of scenarios with production rates from 20 to 800 103 Nm3·h−1 and transport distances from 200 to 10,000 km. In contrast to previous studies, the model calculations in this study reveal no economic benefit of methane hydrate transportation versus competing technologies.

  3. An Analysis of Techno-Economic Requirements for MOSAIC CPV Systems to Achieve Cost Competitiveness

    Energy Technology Data Exchange (ETDEWEB)

    Horowitz, Kelsey A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Cunningham, Daniel [ARPA-E; Zahler, James [ARPA-E

    2017-11-01

    A comprehensive bottom-up cost model has been developed by NREL for ARPAE's MOSAIC micro-concentrator PV program. In this presentation, we use this model to examine the potential competitiveness of MOSAIC systems compared to incumbent technologies in different markets. We also provide an example of how these models can be used by awardees to assess different aspects of their design.

  4. Techno-economic assessment of a solar PV, fuel cell, and biomass gasifier hybrid energy system

    Directory of Open Access Journals (Sweden)

    Anand Singh

    2016-11-01

    Full Text Available The interest of power is expanding step by step all through the world. Because of constrained measure of fossil fuel, it is vital to outline some new non-renewable energy frameworks that can diminish the reliance on ordinary energy asset. A hybrid off-grid renewable energy framework might be utilized to reduction reliance on the traditional energy assets. Advancement of crossover framework is a procedure to choose the best mix of part and there cost that can give shabby, solid and successful option energy resource. In this paper sun oriented photovoltaic, fuel cell, biomass gasifier generator set, battery backup and power conditioning unit have been simulated and optimized for educational institute, energy centre, Maulana Azad National Institute of Technology, Bhopal in the Indian state of Madhya Pradesh. The area of the study range on the guide situated of 23°12′N latitude and 77°24′E longitude. In this framework, the essential wellspring of power is sun based solar photovoltaic system and biomass gasifier generator set while fuel cell and batteries are utilized as reinforcement supply. HOMER simulator has been utilized to recreate off the grid and it checks the specialized and financial criteria of this hybrid energy system. The execution of every segment of this framework is dissected lastly delicate examination has been performing to enhance the mixture framework at various conditions. In view of the recreation result, it is found that the cost of energy (COE of a biomass gasifier generator set, solar PV and fuel cell crossover energy system has been found to be 15.064 Rs/kWh and complete net present cost Rs.51,89003. The abundance power in the proposed framework is observed to be 36 kWh/year with zero rates unmet electrical burden.

  5. Show-Bix &

    DEFF Research Database (Denmark)

    2014-01-01

    The anti-reenactment 'Show-Bix &' consists of 5 dias projectors, a dial phone, quintophonic sound, and interactive elements. A responsive interface will enable the Dias projectors to show copies of original dias slides from the Show-Bix piece ”March på Stedet”, 265 images in total. The copies are...

  6. Talk Show Science.

    Science.gov (United States)

    Moore, Mitzi Ruth

    1992-01-01

    Proposes having students perform skits in which they play the roles of the science concepts they are trying to understand. Provides the dialog for a skit in which hot and cold gas molecules are interviewed on a talk show to study how these properties affect wind, rain, and other weather phenomena. (MDH)

  7. Physics Reality Show

    Science.gov (United States)

    Erukhimova, Tatiana

    The attention span of K-12 students is very short; they are used to digesting information in short snippets through social media and TV. To get the students interested in physics, we created the Physics Reality Show: a series of staged short videos with duration no longer than a few minutes. Each video explains and illustrates one physics concept or law through a fast-paced sequence of physics demonstrations and experiments. The cast consists entirely of physics undergraduate students with artistic abilities and substantial experience in showing physics demonstrations at current outreach events run by the department: Physics Shows and Physics & Engineering Festival. Undergraduate students are of almost the same age as their high-school audience. They are in the best position to connect with kids and convey their fascination with physics. The PI and other faculty members who are involved in the outreach advise and coach the cast. They help students in staging the episodes and choosing the most exciting and relevant demonstrations. Supported by the APS mini-outreach Grant.

  8. Not a "reality" show.

    Science.gov (United States)

    Wrong, Terence; Baumgart, Erica

    2013-01-01

    The authors of the preceding articles raise legitimate questions about patient and staff rights and the unintended consequences of allowing ABC News to film inside teaching hospitals. We explain why we regard their fears as baseless and not supported by what we heard from individuals portrayed in the filming, our decade-long experience making medical documentaries, and the full un-aired context of the scenes shown in the broadcast. The authors don't and can't know what conversations we had, what documents we reviewed, and what protections we put in place in each televised scene. Finally, we hope to correct several misleading examples cited by the authors as well as their offhand mischaracterization of our program as a "reality" show.

  9. Showing Value (Editorial

    Directory of Open Access Journals (Sweden)

    Denise Koufogiannakis

    2009-06-01

    Full Text Available When Su Cleyle and I first decided to start Evidence Based Library and Information Practice, one of the things we agreed upon immediately was that the journal be open access. We knew that a major obstacle to librarians using the research literature was that they did not have access to the research literature. Although Su and I are both academic librarians who can access a wide variety of library and information literature from our institutions, we belong to a profession where not everyone has equal access to the research in our field. Without such access to our own body of literature, how can we ever hope for practitioners to use research evidence in their decision making? It would have been contradictory to the principles of evidence based library and information practice to do otherwise.One of the specific groups we thought could use such an open access venue for discovering research literature was school librarians. School librarians are often isolated and lacking access to the research literature that may help them prove to stakeholders the importance of their libraries and their role within schools. Certainly, school libraries have been in decline and the use of evidence to show value is needed. As Ken Haycock noted in his 2003 report, The Crisis in Canada’s School Libraries: The Case for Reform and Reinvestment, “Across the country, teacher-librarians are losing their jobs or being reassigned. Collections are becoming depleted owing to budget cuts. Some principals believe that in the age of the Internet and the classroom workstation, the school library is an artifact” (9. Within this context, school librarians are looking to our research literature for evidence of the impact that school library programs have on learning outcomes and student success. They are integrating that evidence into their practice, and reflecting upon what can be improved locally. They are focusing on students and showing the impact of school libraries and

  10. Probabilistic safety analyses (PSA)

    International Nuclear Information System (INIS)

    1997-01-01

    The guide shows how the probabilistic safety analyses (PSA) are used in the design, construction and operation of light water reactor plants in order for their part to ensure that the safety of the plant is good enough in all plant operational states

  11. Prospective techno-economic and environmental assessment of carbon capture at a refinery and CO2 utilisation in polyol synthesis

    NARCIS (Netherlands)

    Fernández-Dacosta, Cora; Van Der Spek, Mijndert; Hung, Christine Roxanne; Oregionni, Gabriel David; Skagestad, Ragnhild; Parihar, Prashant; Gokak, D. T.; Strømman, Anders Hammer; Ramirez, Andrea

    2017-01-01

    CO2 utilisation is gaining interest as a potential element towards a sustainable economy. CO2 can be used as feedstock in the synthesis of fuels, chemicals and polymers. This study presents a prospective assessment of carbon capture from a hydrogen unit at a refinery, where the CO2 is either stored,

  12. Techno-economic evaluation of integrated first- and second-generation ethanol production from grain and straw

    OpenAIRE

    Joelsson, Elisabeth; Erdei, Borb?la; Galbe, Mats; Wallberg, Ola

    2016-01-01

    Background Integration of first- and second-generation ethanol production can facilitate the introduction of second-generation lignocellulosic ethanol production. Consolidation of the second-generation with the first-generation process can potentially reduce the downstream processing cost for the second-generation process as well as providing the first-generation process with energy. This study presents novel experimental results from integrated first- and second-generation ethanol production...

  13. Techno-Economic Assessment of Recycling BOF Offgas Cleaning System Solid Wastes by Using Zinc-Free Scrap

    Science.gov (United States)

    Ma, Naiyang

    High zinc concentration in basic oxygen furnace (BOF) steelmaking offgas (OG) cleaning system solid wastes is one of the main barriers for recycling of the solid wastes in sintering — blast furnace ironmaking process. One of the possible solutions is to utilize zinc-free scrap in BOF steelmaking so that the BOF OG solid wastes will not be contaminated with zinc and can be recycled through sintering — blast furnace ironmaking. This paper describes a model for helping to decide whether to use zinc-free scrap in a BOF process. A model computing marginal price increment of zinc-free scrap is developed. The marginal price increment is proportional to value change of the BOF OG solid wastes after and before using zinc-free scrap, to ratio of BOF solid waste rate to purchased galvanized scrap rate, and to price of galvanized scrap. Due to the variations of consumption rate of purchased galvanized scrap and home galvanized scrap, iron ore price, landfill cost, and price of purchased galvanized scrap, using zinc-free scrap in a BOF process might be economically feasible for some ironmaking and steelmaking plants or in some particular market circumstances.

  14. Techno-economic Modeling of the Integration of 20% Wind and Large-scale Energy Storage in ERCOT by 2030

    Energy Technology Data Exchange (ETDEWEB)

    Baldick, Ross; Webber, Michael; King, Carey; Garrison, Jared; Cohen, Stuart; Lee, Duehee

    2012-12-21

    This study's objective is to examine interrelated technical and economic avenues for the Electric Reliability Council of Texas (ERCOT) grid to incorporate up to and over 20% wind generation by 2030. Our specific interests are to look at the factors that will affect the implementation of both high level of wind power penetration (> 20% generation) and installation of large scale storage.

  15. Techno-economic and sensitivity analysis for grid-connected renewable energy electric boat charging station in Terengganu

    OpenAIRE

    Salleh N. A. S.; Muda W. M. W.

    2017-01-01

    In order to encourage the eco-friendly technologies in transportation sector, the reliance on fuel need to be reduced and the use of renewable energy (RE) technology as energy source are widely explored by researchers. Thus, this study focus on the feasibility of developing grid-connected renewable energy electric boat charging station for the fishermen in Terengganu using simulation-based method by HOMER software. Five year solar radiation and wind speed data were collected at Universiti Sul...

  16. Techno-economic evaluation of significant CO2 emission reductions in the iron and steel industry with CCS

    OpenAIRE

    Arasto, Antti

    2015-01-01

    The iron and steel industry is one of the largest emitters of industrial CO2, accounting for around 6% of global anthropogenic CO2 emissions each year. In Europe, the recently proposed stricter emission reduction targets for 2030 are likely to increase the price for CO2 emission allowances. Various different GHG emission mitigation alternatives have been considered to enable decarbonisation of the iron and steel industry, such as energy efficiency, biogenic reducing agents, hydrogen and CCS. ...

  17. Techno-economic assessment of sour gas oxy-combustion water cycles for CO[subscript 2] capture

    OpenAIRE

    Chakroun, Nadim Walid; Ghoniem, Ahmed F

    2015-01-01

    Growing energy demand coupled with the threat of global warming call for investigating alternative and unconventional energy sources while reducing CO2 emissions. One of these unconventional fuels is sour gas, which consists of methane, hydrogen sulfide and carbon dioxide. Using this fuel poses many challenges because of the toxic and corrosive nature of its combustion products. A promising technology for utilizing it is oxy-fuel combustion with carbon capture and storage, including the poten...

  18. Multifunctional benefits of SuDS: techno-economic evaluation of decentralised solutions for urban water management

    Science.gov (United States)

    Mijic, Ana; Ossa-Moreno, Juan; Smith, Karl M.

    2016-04-01

    The increased frequency of extreme weather events associated with climate change poses a significant threat to the integrity and function of critical urban infrastructure - rail, road, telecommunications, power and water supply/sewerage networks. A key threat within the United Kingdom (UK) is the increased risk of pluvial flooding; the conventional approach of channeling runoff to an outfall has proven to be unsustainable during severe storm events. Green infrastructure, in the form of Sustainable Urban Drainage Systems (SuDS), has been proposed as a means of minimising the risk of pluvial flooding. However, despite their technical performance, SuDS uptake in the UK has not reached its full capacity yet, mostly due to reasons that go beyong the engineering realm. This work investigated the strategic role of SuDS retrofit in managing environmental risks to urban infrastructure in London at a catchment level, through an economic appraisal of multifunctional benefits. It was found that by including the multifunctional benefits of SuDS, the economic feasibility of the project improves considerably. The case study has also shown a mechanism towards achieving wider-scale SuDS retrofit, whereby the investments are split amongst multiple stakeholder groups by highlighting the additional benefits each group derives. Groups include water utilities and their users, local government and critical infrastructure owners. Finally, limitations to the existing cost-benefit methdology in the UK were identified, and recommendations made regarding incentives and governmental regulations to enhance the uptake of SuDS in London. The proposed methodology provides compelling and robust, cost-benefit based evidence of SUDS' effectiveness within the flood risk management planning framework, but also with regard to the additional benefits of Nature Based Solutions in urban environments.

  19. Liquefaction of Lignocellulose in Fractionated Light Bio-Oil: Proof of Concept and Techno-Economic Assessment

    NARCIS (Netherlands)

    Kumar, S.; Lange, Jean Paul; van Rossum, G.; Kersten, Sascha R.A.

    2015-01-01

    The direct thermal liquefaction of lignocellulose can provide a biocrude that could be used as a precursor for biofuels. However, earlier attempts to use the whole reactor effluent as a liquefaction medium, by recycling it to the liquefaction reactor, were hampered by the buildup of heavy products.

  20. A comparison between two full-scale MBR and CAS municipal wastewater treatment plants: techno-economic-environmental assessment.

    Science.gov (United States)

    Bertanza, Giorgio; Canato, Matteo; Laera, Giuseppe; Vaccari, Mentore; Svanström, Magdalena; Heimersson, Sara

    2017-07-01

    A holistic assessment procedure has been used in this study for comparing conventional activated sludge (CAS) and membrane bioreactor (MBR) processes for the treatment of municipal wastewater. Technical, social, administrative, economic and environmental impacts have been evaluated based on 1 year of operational data from three full-scale lines (one MBR and two CAS) working in parallel in a large municipal treatment plant. The comparative assessment evidences a slight advantage of the conventional process in the studied case, essentially due to lower costs, complexity and energy consumption. On the other hand, the MBR technology has a better social acceptance and similar overall environmental footprint. Although these results are influenced by site-specific parameters and cannot be generalized, the assessment procedure allowed identifying the most important factors affecting the final scores for each technology and the main differences between the compared technologies. Local conditions can affect the relative importance of the assessed impacts, and the use of weighting factors is proposed for better tailoring the comparative assessment to the local needs and circumstances. A sensitivity analysis on the weighted final scores demonstrated how local factors are very important and must be carefully evaluated in the decision making process.

  1. Inductive charging of electric cars. A techno-economic assessment; Induktives Laden von Elektromobilen. Eine techno-oekonomische Bewertung

    Energy Technology Data Exchange (ETDEWEB)

    Schraven, Sebastian; Kley, Fabian; Wietschel, Martin [Fraunhofer-Institut fuer System- und Innovationsforschung (ISI), Karlsruhe (Germany). Competence Center Energy Politik und Energie Systeme

    2010-07-01

    Most concepts for charging of electric vehicles are based on cables that must be plugged in and out. In case of frequent charging or short-term charging, however, this may be impractical, and an inductive (cableless) solution would be preferable. The contribution attempts to analyze if inductive power transmission is technically feasible in electric vehicles, and in what areas it will be economically attractive to users. To begin with, the two charging technologies are presented and compared. This is followed by a cost assessment. It is found that the inductive technology involves significant additional cost, so it cannot be expected to spread quickly. In certain conditions, however, it may be applicable as a niche technology in certain commercial applications, e.g. taxis. (orig.) [German] In den bisher diskutierten Konzepten zur Ladung von Elektrofahrzeugen ist die kabelgebundene (konduktive) Ladung vorherrschend, bei der der Nutzer das Kabel zur Ladung ein- bzw. wieder ausstecken muss. Haeufige Ladevorgaenge und insbesondere Kurzladungen lassen jedoch dieses Ein- und Ausstecken neben der reduzierten Reichweite des Elektrofahrzeugs unpraktisch in der Nutzung erscheinen. Demgegenueber bietet die induktive (kabellose) Energieuebertragung das Laden ohne erforderlichen Nutzereingriff. Der vorliegende Artikel versucht die Fragen zu beantworten, ob ein Einsatz der induktiven Energieuebertragung bereits technisch zur Ladung von Elektrofahrzeugen realisierbar ist, und in welchen Bereichen diese eine wirtschaftlich attraktive Loesung fuer den Nutzer darstellt. Dazu werden zunaechst die Ladetechnologien vor- und technisch gegenuebergestellt. Auf Basis einer Kostenbetrachtung ist auch ein oekonomischer Vergleich der beiden Ladetechnologien moeglich. Es zeigt sich, dass aus wirtschaftlicher Sicht aufgrund signifikanter Mehrkosten vorlaeufig kein weitverbreiteter Einsatz der induktiven Technik zu erwarten ist. Unter bestimmten Voraussetzungen ergibt sich aber ein begrenztes Anwendungsfeld als Nischentechnologie in bestimmten gewerblichen Bereichen, wie zum Beispiel bei Taxis.

  2. Techno-economic evaluation of a ventilation system assisted with exhaust air heat recovery, electrical heater and solar energy

    OpenAIRE

    Özyoğurtçu, Gamze; Mobedi, Moghtada; Özerdem, Barış

    2014-01-01

    The energy consumed to condition fresh air is considerable, particularly for the buildings such as cinema, theatre or gymnasium saloons. The aim of the present study is to design a ventilation system assisted with exhaust air heat recovery unit, electrical heater and stored solar energy, then to make an economical analysis based on life cycle cost (LCC) to find out its payback period. The system is able to recover thermal energy of exhaust air, store solar energy during the sunlight period an...

  3. Techno-Economic Evaluation of Biodiesel Production from Waste Cooking Oil?A Case Study of Hong Kong

    OpenAIRE

    Karmee, Sanjib Kumar; Patria, Raffel Dharma; Lin, Carol Sze Ki

    2015-01-01

    Fossil fuel shortage is a major challenge worldwide. Therefore, research is currently underway to investigate potential renewable energy sources. Biodiesel is one of the major renewable energy sources that can be obtained from oils and fats by transesterification. However, biodiesel obtained from vegetable oils as feedstock is expensive. Thus, an alternative and inexpensive feedstock such as waste cooking oil (WCO) can be used as feedstock for biodiesel production. In this project, techno-eco...

  4. Dry reforming of methane to syngas: a potential alternative process for value added chemicals-a techno-economic perspective.

    Science.gov (United States)

    Mondal, Kartick; Sasmal, Sankar; Badgandi, Srikant; Chowdhury, Dipabali Roy; Nair, Vinod

    2016-11-01

    During the past decade, there has been increasing global concern over the rise of anthropogenic CO 2 emission into the Earth's atmosphere (J Air Waste Manage Assoc 53:645-715, 2003). The utilization of CO 2 to produce any valuable product is need of the hour. The production of syngas from CO 2 and CH 4 seems to be one of the promising alternatives in terms of industrial utilization, as it offers several advantages: (a) mitigation of CO 2 , (b) transformation of natural gas and CO 2 into valuable syngas, and (c) producing syngas with H 2 /CO ratio 1 which may further be used for the production of valuable petrochemicals (J Air Waste Manage Assoc 53:645-715, 2003). A conceptual design for the production of synthesis gas by dry reforming of methane is presented here. An economic assessment of this process with an integrated methanol production section as a case was conceptualized and compared with the conventional steam methane reforming route to produce methanol. The economic study indicated that dry reforming of natural gas/methane is a competitive process with lower operating and capital costs in comparison with steam reforming assuming negligible cost of CO 2 import.

  5. Techno-economic felling cycles for selected energy plantation species in the arid areas of western Rajasthan

    Energy Technology Data Exchange (ETDEWEB)

    Kalla, J.C.; Gyan, C.; Vyas, D.L.; Gehlot, N.S.

    1978-01-01

    Analysis of data collected from research plots at Pali, Rajasthan, predicted that the maximum fuel yields per tree would be reached at rotations of 50 years for (a) Azadirachta indica (51 kg), 25 years for (b) Acacia tortilis (39 kg), 14 years for (c) Albizzia (Abizia) lebbek (15 kg) and 13 years for (d) Acacia nilotica (6 kg). The best economic rotations would be 23 years for (a) yielding 24 kg/tree, 8 years for (b) yielding 20 kg/tree and 11 years for (c) yielding 6 kg/tree. Harvesting (d) for fuel would not be economic.

  6. Techno-economic and carbon footprint assessment of methyl crotonate and methyl acrylate production from wastewater-based polyhydroxybutyrate (PHB)

    NARCIS (Netherlands)

    Fernandez Dacosta, C.; Posada, John A.; Ramirez, C.A.

    2016-01-01

    This paper assesses whether a cleaner and more sustainable production of the chemical building blocks methyl crotonate (MC) and methyl acrylate (MA) can be obtained in an innovative process in which resource consumption, waste generation and environmental impacts are minimized by using

  7. Comparative techno-economical study between membrane technology systems for obtaining concentrated fertilizers from biogas plant effluents

    DEFF Research Database (Denmark)

    Camilleri Rumbau, Maria Salud; Norddahl, Birgir; Kjærhus Nielsen, Anne

    2013-01-01

    Membrane technology is a promising candidate for producing mineral fertilizers from animal slurry. This paper presents a combination of membrane technologies for processing digested slurry, lists retentions of nitrogen (N), phosphorus (P) and potassium (K) and evaluates the economic and technolog...... and technological potential of the processes presented. To increase the content of plant nutrients in mineral concentrates substantially, improved RO (reverse osmosis) or additional technology is required....

  8. Techno-economic assessment of integrating methanol or Fischer-Tropsch synthesis in a South African sugar mill.

    Science.gov (United States)

    Petersen, Abdul M; Farzad, Somayeh; Görgens, Johann F

    2015-05-01

    This study considered an average-sized sugar mill in South Africa that crushes 300 wet tonnes per hour of cane, as a host for integrating methanol and Fischer-Tropsch synthesis, through gasification of a combined flow of sugarcane trash and bagasse. Initially, it was shown that the conversion of biomass to syngas is preferably done by catalytic allothermal gasification instead of catalytic autothermal gasification. Thereafter, conventional and advanced synthesis routes for both Methanol and Fischer-Tropsch products were simulated with Aspen Plus® software and compared by technical and economic feasibility. Advanced FT synthesis satisfied the overall energy demands, but was not economically viable for a private investment. Advanced methanol synthesis is also not viable for private investment since the internal rate of return was 21.1%, because it could not provide the steam that the sugar mill required. The conventional synthesis routes had less viability than the corresponding advanced synthesis routes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Production of Monosugars from Lignocellulosic Biomass in Molten Salt Hydrates : Process Design and Techno-Economic Analysis

    NARCIS (Netherlands)

    van den Bergh, Johan; Babich, Igor V.; O'Connor, Paul; Moulijn, J.A.

    2017-01-01

    ZnCl2 hydrate, the main molten salt used in biomass conversion, combined with low concentration HCl is an excellent solvent for the dissolution and hydrolysis of the carbohydrates present in lignocellulosic biomass. The most recalcitrant carbohydrate, cellulose, is dissolved in a residence time less

  10. Techno-economic study of CO2 capture process for cement plants. Paper no. IGEC-1-107

    International Nuclear Information System (INIS)

    Nazmul Hassan, S.M.; Douglas, P.L.; Croiset, E.

    2005-01-01

    Carbon dioxide is considered to be the major source of GHG responsible for global warming; man-made CO 2 contributes approximately 63.5% to all greenhouse gases. The cement industry is responsible for approximately 5% of global anthropogenic carbon dioxide emissions emitting nearly 900 kg of CO 2 for every 1000 kg of cement produced. Amine absorption processes, in particular the monoethanolamine (MEA) based process, is considered to be a viable technology for capturing CO 2 from low-pressure flue gas streams because of its fast reaction rate with CO 2 and low cost of raw materials compared to other amines. However, the MEA absorption process is associated with high capital and operating costs because a significant amount of energy is required for solvent regeneration and because of severe operating problems such as corrosion, solvent loss and solvent degradation. This research was motivated by the need to design, size and cost a CO 2 capture process from the cement industry. The MEA based absorption process was used as a potential technique to model CO 2 capture from cement plants. In this research four cases were considered all to reach a CO 2 purity of 98%: i) the plant operates at the highest capacity; ii) the plant operates at average load; iii) the plant operates at minimum operating capacity; and iv) switching to a lower carbon content fuel at average plant load. A comparison among the four cases were performed to determine the best operating conditions for capturing CO 2 from cement plants. A sensitivity analysis of the economics to the lean loading and percent recovery were carried out as well as the different absorber and striper tray combinations. (author)

  11. Techno-economic analysis of a roof-integrated solar air heating system for drying fruit and vegetables

    International Nuclear Information System (INIS)

    Sreekumar, A.

    2010-01-01

    The solar air heater was 46 m 2 and recorded a maximum temperature of 76.6 deg. C. The dryer was loaded with 200 kg of fresh pineapple slices 5 mm thick. The initial moisture content of 82% was reduced to the desired level (<10%) within 8 h. The performance of the dryer was analyzed in detail by three methods namely annualized cost, present worth of annual savings, and present worth of cumulative savings. The cost of drying 1 kg pineapple worked out to Rs. 11 which was roughly half of that of an electric dryer. The payback period worked out to 0.54 year, much less than the estimated life of the system (20 years).

  12. Secondary analyses of data from four studies with fourth-grade children show that sex, race, amounts eaten of standardized portions, and energy content given in trades explain the positive relationship between BMI and energy intake at school-provided meals

    Science.gov (United States)

    Baxter, Suzanne Domel; Paxton-Aiken, Amy E.; Tebbs, Joshua M.; Royer, Julie A.; Guinn, Caroline H.; Finney, Christopher J.

    2012-01-01

    Results from a 2012 article showed a positive relationship between children’s body mass index (BMI) and energy intake at school-provided meals. To help explain that positive relationship, secondary analyses investigated 1) whether the relationship differed by sex and race, and 2) the relationship between BMI and six aspects of school-provided meals—amounts eaten of standardized portions, energy content given in trades, energy intake received in trades, energy intake from flavored milk, energy intake from a la carte ice cream, and breakfast type. Data were from four studies conducted one per school year (1999–2000 to 2002–2003). Fourth-grade children (n=328; 50% female; 54% Black) from 13 schools total were observed eating school-provided breakfast and lunch on one to three days per child for 1,178 total meals (50% breakfast). Children were weighed and measured. Marginal regression models were fit using BMI as the dependent variable. For Purpose One, independent variables were energy intake at school-provided meals, sex, race, age, and study; additional models included interaction terms involving energy intake and sex/race. For Purpose Two, independent variables were the six aspects of school-provided meals, sex, race, age, and study. The relationship between BMI and energy intake at school-provided meals differed by sex (p<0.0001; stronger for females) and race (p=0.0063; stronger for Black children). BMI was positively related to amounts eaten of standardized portions (p<0.0001) and negatively related to energy content given in trades (p=0.0052). Explaining the positive relationship between BMI and energy intake at school-provided meals may contribute to school-based obesity prevention efforts. PMID:23084638

  13. Laser Beam Focus Analyser

    DEFF Research Database (Denmark)

    Nielsen, Peter Carøe; Hansen, Hans Nørgaard; Olsen, Flemming Ove

    2007-01-01

    the obtainable features in direct laser machining as well as heat affected zones in welding processes. This paper describes the development of a measuring unit capable of analysing beam shape and diameter of lasers to be used in manufacturing processes. The analyser is based on the principle of a rotating...... mechanical wire being swept through the laser beam at varying Z-heights. The reflected signal is analysed and the resulting beam profile determined. The development comprised the design of a flexible fixture capable of providing both rotation and Z-axis movement, control software including data capture...... and finally data analysis based on the ISO approach. The device was calibrated and tested on commercially available laser systems. It showed good reproducibility. It was the target to be able to measure CW lasers with a power up to 200 W, focused down to spot diameters in the range of 10µm. In order...

  14. HPLC-MS/MS analyses show that the near-Starchless aps1 and pgm leaves accumulate wild type levels of ADPglucose: further evidence for the occurrence of important ADPglucose biosynthetic pathway(s alternative to the pPGI-pPGM-AGP pathway.

    Directory of Open Access Journals (Sweden)

    Abdellatif Bahaji

    Full Text Available In leaves, it is widely assumed that starch is the end-product of a metabolic pathway exclusively taking place in the chloroplast that (a involves plastidic phosphoglucomutase (pPGM, ADPglucose (ADPG pyrophosphorylase (AGP and starch synthase (SS, and (b is linked to the Calvin-Benson cycle by means of the plastidic phosphoglucose isomerase (pPGI. This view also implies that AGP is the sole enzyme producing the starch precursor molecule, ADPG. However, mounting evidence has been compiled pointing to the occurrence of important sources, other than the pPGI-pPGM-AGP pathway, of ADPG. To further explore this possibility, in this work two independent laboratories have carried out HPLC-MS/MS analyses of ADPG content in leaves of the near-starchless pgm and aps1 mutants impaired in pPGM and AGP, respectively, and in leaves of double aps1/pgm mutants grown under two different culture conditions. We also measured the ADPG content in wild type (WT and aps1 leaves expressing in the plastid two different ADPG cleaving enzymes, and in aps1 leaves expressing in the plastid GlgC, a bacterial AGP. Furthermore, we measured the ADPG content in ss3/ss4/aps1 mutants impaired in starch granule initiation and chloroplastic ADPG synthesis. We found that, irrespective of their starch contents, pgm and aps1 leaves, WT and aps1 leaves expressing in the plastid ADPG cleaving enzymes, and aps1 leaves expressing in the plastid GlgC accumulate WT ADPG content. In clear contrast, ss3/ss4/aps1 leaves accumulated ca. 300 fold-more ADPG than WT leaves. The overall data showed that, in Arabidopsis leaves, (a there are important ADPG biosynthetic pathways, other than the pPGI-pPGM-AGP pathway, (b pPGM and AGP are not major determinants of intracellular ADPG content, and (c the contribution of the chloroplastic ADPG pool to the total ADPG pool is low.

  15. Network class superposition analyses.

    Directory of Open Access Journals (Sweden)

    Carl A B Pearson

    Full Text Available Networks are often used to understand a whole system by modeling the interactions among its pieces. Examples include biomolecules in a cell interacting to provide some primary function, or species in an environment forming a stable community. However, these interactions are often unknown; instead, the pieces' dynamic states are known, and network structure must be inferred. Because observed function may be explained by many different networks (e.g., ≈ 10(30 for the yeast cell cycle process, considering dynamics beyond this primary function means picking a single network or suitable sample: measuring over all networks exhibiting the primary function is computationally infeasible. We circumvent that obstacle by calculating the network class ensemble. We represent the ensemble by a stochastic matrix T, which is a transition-by-transition superposition of the system dynamics for each member of the class. We present concrete results for T derived from boolean time series dynamics on networks obeying the Strong Inhibition rule, by applying T to several traditional questions about network dynamics. We show that the distribution of the number of point attractors can be accurately estimated with T. We show how to generate Derrida plots based on T. We show that T-based Shannon entropy outperforms other methods at selecting experiments to further narrow the network structure. We also outline an experimental test of predictions based on T. We motivate all of these results in terms of a popular molecular biology boolean network model for the yeast cell cycle, but the methods and analyses we introduce are general. We conclude with open questions for T, for example, application to other models, computational considerations when scaling up to larger systems, and other potential analyses.

  16. Risk Aversion in Game Shows

    DEFF Research Database (Denmark)

    Andersen, Steffen; Harrison, Glenn W.; Lau, Morten I.

    2008-01-01

    We review the use of behavior from television game shows to infer risk attitudes. These shows provide evidence when contestants are making decisions over very large stakes, and in a replicated, structured way. Inferences are generally confounded by the subjective assessment of skill in some games...

  17. Measuring performance at trade shows

    DEFF Research Database (Denmark)

    Hansen, Kåre

    2004-01-01

    Trade shows is an increasingly important marketing activity to many companies, but current measures of trade show performance do not adequately capture dimensions important to exhibitors. Based on the marketing literature's outcome and behavior-based control system taxonomy, a model is built...... that captures a outcome-based sales dimension and four behavior-based dimensions (i.e. information-gathering, relationship building, image building, and motivation activities). A 16-item instrument is developed for assessing exhibitors perceptions of their trade show performance. The paper presents evidence...... of the scale's reliability, factor structure, and validity on the basis of analyzing data from independent samples of exhibitors at the international trade shows SIAL (Paris) and ANUGA (Cologne); and it concludes with a discussion of potential managerial applications and implications for future research. New...

  18. Tokyo Motor Show 2003; Tokyo Motor Show 2003

    Energy Technology Data Exchange (ETDEWEB)

    Joly, E.

    2004-01-01

    The text which follows present the different techniques exposed during the 37. Tokyo Motor Show. The report points out the great tendencies of developments of the Japanese automobile industry. The hybrid electric-powered vehicles or those equipped with fuel cells have been highlighted by the Japanese manufacturers which allow considerable budgets in the research of less polluting vehicles. The exposed models, although being all different according to the manufacturer, use always a hybrid system: fuel cell/battery. The manufacturers have stressed too on the intelligent systems for navigation and safety as well as on the design and comfort. (O.M.)

  19. Create a Polarized Light Show.

    Science.gov (United States)

    Conrad, William H.

    1992-01-01

    Presents a lesson that introduces students to polarized light using a problem-solving approach. After illustrating the concept using a slinky and poster board with a vertical slot, students solve the problem of creating a polarized light show using Polya's problem-solving methods. (MDH)

  20. Producing Talent and Variety Shows.

    Science.gov (United States)

    Szabo, Chuck

    1995-01-01

    Identifies key aspects of producing talent shows and outlines helpful hints for avoiding pitfalls and ensuring a smooth production. Presents suggestions concerning publicity, scheduling, and support personnel. Describes types of acts along with special needs and problems specific to each act. Includes a list of resources. (MJP)

  1. Complexity analyses show two distinct types of nonlinear dynamics in short heart period variability recordings

    Science.gov (United States)

    Porta, Alberto; Bari, Vlasta; Marchi, Andrea; De Maria, Beatrice; Cysarz, Dirk; Van Leeuwen, Peter; Takahashi, Anielle C. M.; Catai, Aparecida M.; Gnecchi-Ruscone, Tomaso

    2015-01-01

    Two diverse complexity metrics quantifying time irreversibility and local prediction, in connection with a surrogate data approach, were utilized to detect nonlinear dynamics in short heart period (HP) variability series recorded in fetuses, as a function of the gestational period, and in healthy humans, as a function of the magnitude of the orthostatic challenge. The metrics indicated the presence of two distinct types of nonlinear HP dynamics characterized by diverse ranges of time scales. These findings stress the need to render more specific the analysis of nonlinear components of HP dynamics by accounting for different temporal scales. PMID:25806002

  2. "Medicine show." Alice in Doctorland.

    Science.gov (United States)

    1987-01-01

    This is an excerpt from the script of a 1939 play provided to the Institute of Social Medicine and Community Health by the Library of Congress Federal Theater Project Collection at George Mason University Library, Fairfax, Virginia, pages 2-1-8 thru 2-1-14. The Federal Theatre Project (FTP) was part of the New Deal program for the arts 1935-1939. Funded by the Works Progress Administration (WPA) its goal was to employ theater professionals from the relief rolls. A number of FTP plays deal with aspects of medicine and public health. Pageants, puppet shows and documentary plays celebrated progress in medical science while examining social controversies in medical services and the public health movement. "Medicine Show" sharply contrasts technological wonders with social backwardness. The play was rehearsed by the FTP but never opened because funding ended. A revised version ran on Broadway in 1940. The preceding comments are adapted from an excellent, well-illustrated review of five of these plays by Barabara Melosh: "The New Deal's Federal Theatre Project," Medical Heritage, Vol. 2, No. 1 (Jan/Feb 1986), pp. 36-47.

  3. Improving optimal control of grid-connected lithium-ion batteries through more accurate battery and degradation modelling

    Science.gov (United States)

    Reniers, Jorn M.; Mulder, Grietus; Ober-Blöbaum, Sina; Howey, David A.

    2018-03-01

    The increased deployment of intermittent renewable energy generators opens up opportunities for grid-connected energy storage. Batteries offer significant flexibility but are relatively expensive at present. Battery lifetime is a key factor in the business case, and it depends on usage, but most techno-economic analyses do not account for this. For the first time, this paper quantifies the annual benefits of grid-connected batteries including realistic physical dynamics and nonlinear electrochemical degradation. Three lithium-ion battery models of increasing realism are formulated, and the predicted degradation of each is compared with a large-scale experimental degradation data set (Mat4Bat). A respective improvement in RMS capacity prediction error from 11% to 5% is found by increasing the model accuracy. The three models are then used within an optimal control algorithm to perform price arbitrage over one year, including degradation. Results show that the revenue can be increased substantially while degradation can be reduced by using more realistic models. The estimated best case profit using a sophisticated model is a 175% improvement compared with the simplest model. This illustrates that using a simplistic battery model in a techno-economic assessment of grid-connected batteries might substantially underestimate the business case and lead to erroneous conclusions.

  4. Periodic safety analyses

    International Nuclear Information System (INIS)

    Gouffon, A.; Zermizoglou, R.

    1990-12-01

    The IAEA Safety Guide 50-SG-S8 devoted to 'Safety Aspects of Foundations of Nuclear Power Plants' indicates that operator of a NPP should establish a program for inspection of safe operation during construction, start-up and service life of the plant for obtaining data needed for estimating the life time of structures and components. At the same time the program should ensure that the safety margins are appropriate. Periodic safety analysis are an important part of the safety inspection program. Periodic safety reports is a method for testing the whole system or a part of the safety system following the precise criteria. Periodic safety analyses are not meant for qualification of the plant components. Separate analyses are devoted to: start-up, qualification of components and materials, and aging. All these analyses are described in this presentation. The last chapter describes the experience obtained for PWR-900 and PWR-1300 units from 1986-1989

  5. Contesting Citizenship: Comparative Analyses

    DEFF Research Database (Denmark)

    Siim, Birte; Squires, Judith

    2007-01-01

    importance of particularized experiences and multiple ineequality agendas). These developments shape the way citizenship is both practiced and analysed. Mapping neat citizenship modles onto distinct nation-states and evaluating these in relation to formal equality is no longer an adequate approach....... Comparative citizenship analyses need to be considered in relation to multipleinequalities and their intersections and to multiple governance and trans-national organisinf. This, in turn, suggests that comparative citizenship analysis needs to consider new spaces in which struggles for equal citizenship occur...

  6. Dialogisk kommunikationsteoretisk analyse

    DEFF Research Database (Denmark)

    Phillips, Louise Jane

    2018-01-01

    analysemetode, der er blevet udviklet inden for dialogisk kommunikationsforskning - The Integrated Framework for Analysing Dialogic Knowledge Production and Communication (IFADIA). IFADIA-metoden bygger på en kombination af Bakhtins dialogteori og Foucaults teori om magt/viden og diskurs. Metoden er beregnet...

  7. Meta-analyses

    NARCIS (Netherlands)

    Hendriks, Maria A.; Luyten, Johannes W.; Scheerens, Jaap; Sleegers, P.J.C.; Scheerens, J

    2014-01-01

    In this chapter results of a research synthesis and quantitative meta-analyses of three facets of time effects in education are presented, namely time at school during regular lesson hours, homework, and extended learning time. The number of studies for these three facets of time that could be used

  8. Analysing Access Control Specifications

    DEFF Research Database (Denmark)

    Probst, Christian W.; Hansen, René Rydhof

    2009-01-01

    . Recent events have revealed intimate knowledge of surveillance and control systems on the side of the attacker, making it often impossible to deduce the identity of an inside attacker from logged data. In this work we present an approach that analyses the access control configuration to identify the set...

  9. Wavelet Analyses and Applications

    Science.gov (United States)

    Bordeianu, Cristian C.; Landau, Rubin H.; Paez, Manuel J.

    2009-01-01

    It is shown how a modern extension of Fourier analysis known as wavelet analysis is applied to signals containing multiscale information. First, a continuous wavelet transform is used to analyse the spectrum of a nonstationary signal (one whose form changes in time). The spectral analysis of such a signal gives the strength of the signal in each…

  10. Filmstil - teori og analyse

    DEFF Research Database (Denmark)

    Hansen, Lennard Højbjerg

    Filmstil påvirker på afgørende vis vores oplevelse af film. Men filmstil, måden, de levende billeder organiserer fortællingen på fylder noget mindre end filmens handling, når vi taler om film. Filmstil - teori og analyse er en rigt eksemplificeret præsentation, kritik og videreudvikling af...

  11. Risico-analyse brandstofpontons

    NARCIS (Netherlands)

    Uijt de Haag P; Post J; LSO

    2001-01-01

    Voor het bepalen van de risico's van brandstofpontons in een jachthaven is een generieke risico-analyse uitgevoerd. Er is een referentiesysteem gedefinieerd, bestaande uit een betonnen brandstofponton met een relatief grote inhoud en doorzet. Aangenomen is dat de ponton gelegen is in een

  12. Analysing and Comparing Encodability Criteria

    Directory of Open Access Journals (Sweden)

    Kirstin Peters

    2015-08-01

    Full Text Available Encodings or the proof of their absence are the main way to compare process calculi. To analyse the quality of encodings and to rule out trivial or meaningless encodings, they are augmented with quality criteria. There exists a bunch of different criteria and different variants of criteria in order to reason in different settings. This leads to incomparable results. Moreover it is not always clear whether the criteria used to obtain a result in a particular setting do indeed fit to this setting. We show how to formally reason about and compare encodability criteria by mapping them on requirements on a relation between source and target terms that is induced by the encoding function. In particular we analyse the common criteria full abstraction, operational correspondence, divergence reflection, success sensitiveness, and respect of barbs; e.g. we analyse the exact nature of the simulation relation (coupled simulation versus bisimulation that is induced by different variants of operational correspondence. This way we reduce the problem of analysing or comparing encodability criteria to the better understood problem of comparing relations on processes.

  13. Biomass feedstock analyses

    Energy Technology Data Exchange (ETDEWEB)

    Wilen, C.; Moilanen, A.; Kurkela, E. [VTT Energy, Espoo (Finland). Energy Production Technologies

    1996-12-31

    The overall objectives of the project `Feasibility of electricity production from biomass by pressurized gasification systems` within the EC Research Programme JOULE II were to evaluate the potential of advanced power production systems based on biomass gasification and to study the technical and economic feasibility of these new processes with different type of biomass feed stocks. This report was prepared as part of this R and D project. The objectives of this task were to perform fuel analyses of potential woody and herbaceous biomasses with specific regard to the gasification properties of the selected feed stocks. The analyses of 15 Scandinavian and European biomass feed stock included density, proximate and ultimate analyses, trace compounds, ash composition and fusion behaviour in oxidizing and reducing atmospheres. The wood-derived fuels, such as whole-tree chips, forest residues, bark and to some extent willow, can be expected to have good gasification properties. Difficulties caused by ash fusion and sintering in straw combustion and gasification are generally known. The ash and alkali metal contents of the European biomasses harvested in Italy resembled those of the Nordic straws, and it is expected that they behave to a great extent as straw in gasification. Any direct relation between the ash fusion behavior (determined according to the standard method) and, for instance, the alkali metal content was not found in the laboratory determinations. A more profound characterisation of the fuels would require gasification experiments in a thermobalance and a PDU (Process development Unit) rig. (orig.) (10 refs.)

  14. Possible future HERA analyses

    International Nuclear Information System (INIS)

    Geiser, Achim

    2015-12-01

    A variety of possible future analyses of HERA data in the context of the HERA data preservation programme is collected, motivated, and commented. The focus is placed on possible future analyses of the existing ep collider data and their physics scope. Comparisons to the original scope of the HERA pro- gramme are made, and cross references to topics also covered by other participants of the workshop are given. This includes topics on QCD, proton structure, diffraction, jets, hadronic final states, heavy flavours, electroweak physics, and the application of related theory and phenomenology topics like NNLO QCD calculations, low-x related models, nonperturbative QCD aspects, and electroweak radiative corrections. Synergies with other collider programmes are also addressed. In summary, the range of physics topics which can still be uniquely covered using the existing data is very broad and of considerable physics interest, often matching the interest of results from colliders currently in operation. Due to well-established data and MC sets, calibrations, and analysis procedures the manpower and expertise needed for a particular analysis is often very much smaller than that needed for an ongoing experiment. Since centrally funded manpower to carry out such analyses is not available any longer, this contribution not only targets experienced self-funded experimentalists, but also theorists and master-level students who might wish to carry out such an analysis.

  15. Workload analyse of assembling process

    Science.gov (United States)

    Ghenghea, L. D.

    2015-11-01

    The workload is the most important indicator for managers responsible of industrial technological processes no matter if these are automated, mechanized or simply manual in each case, machines or workers will be in the focus of workload measurements. The paper deals with workload analyses made to a most part manual assembling technology for roller bearings assembling process, executed in a big company, with integrated bearings manufacturing processes. In this analyses the delay sample technique have been used to identify and divide all bearing assemblers activities, to get information about time parts from 480 minutes day work time that workers allow to each activity. The developed study shows some ways to increase the process productivity without supplementary investments and also indicated the process automation could be the solution to gain maximum productivity.

  16. AMS analyses at ANSTO

    International Nuclear Information System (INIS)

    Lawson, E.M.

    1998-01-01

    The major use of ANTARES is Accelerator Mass Spectrometry (AMS) with 14 C being the most commonly analysed radioisotope - presently about 35 % of the available beam time on ANTARES is used for 14 C measurements. The accelerator measurements are supported by, and dependent on, a strong sample preparation section. The ANTARES AMS facility supports a wide range of investigations into fields such as global climate change, ice cores, oceanography, dendrochronology, anthropology, and classical and Australian archaeology. Described here are some examples of the ways in which AMS has been applied to support research into the archaeology, prehistory and culture of this continent's indigenous Aboriginal peoples. (author)

  17. Uncertainty Analyses and Strategy

    International Nuclear Information System (INIS)

    Kevin Coppersmith

    2001-01-01

    The DOE identified a variety of uncertainties, arising from different sources, during its assessment of the performance of a potential geologic repository at the Yucca Mountain site. In general, the number and detail of process models developed for the Yucca Mountain site, and the complex coupling among those models, make the direct incorporation of all uncertainties difficult. The DOE has addressed these issues in a number of ways using an approach to uncertainties that is focused on producing a defensible evaluation of the performance of a potential repository. The treatment of uncertainties oriented toward defensible assessments has led to analyses and models with so-called ''conservative'' assumptions and parameter bounds, where conservative implies lower performance than might be demonstrated with a more realistic representation. The varying maturity of the analyses and models, and uneven level of data availability, result in total system level analyses with a mix of realistic and conservative estimates (for both probabilistic representations and single values). That is, some inputs have realistically represented uncertainties, and others are conservatively estimated or bounded. However, this approach is consistent with the ''reasonable assurance'' approach to compliance demonstration, which was called for in the U.S. Nuclear Regulatory Commission's (NRC) proposed 10 CFR Part 63 regulation (64 FR 8640 [DIRS 101680]). A risk analysis that includes conservatism in the inputs will result in conservative risk estimates. Therefore, the approach taken for the Total System Performance Assessment for the Site Recommendation (TSPA-SR) provides a reasonable representation of processes and conservatism for purposes of site recommendation. However, mixing unknown degrees of conservatism in models and parameter representations reduces the transparency of the analysis and makes the development of coherent and consistent probability statements about projected repository

  18. Bench Scale Process for Low Cost CO2 Capture Using a PhaseChanging Absorbent: Techno-Economic Analysis Topical Report

    Energy Technology Data Exchange (ETDEWEB)

    Miebach, Barbara [GE Global Research, Niskayuna, New York (United States); McDuffie, Dwayne [GE Global Research, Niskayuna, New York (United States); Spiry, Irina [GE Global Research, Niskayuna, New York (United States); Westendorf, Tiffany [GE Global Research, Niskayuna, New York (United States)

    2017-01-27

    The objective of this project is to design and build a bench-scale process for a novel phase-changing CO2 capture solvent. The project will establish scalability and technical and economic feasibility of using a phase-changing CO2 capture absorbent for post-combustion capture of CO2 from coal-fired power plants with 90% capture efficiency and 95% CO2 purity at a cost of $40/tonne of CO2 captured by 2025 and a cost of <$10/tonne of CO2 captured by 2035. This report presents system and economic analysis for a process that uses a phase changing aminosilicone solvent to remove CO2 from pulverized coal (PC) power plant flue gas. The aminosilicone solvent is a pure 1,3-bis(3-aminopropyl)-1,1,3,3-tetramethyldisiloxane (GAP-0). Performance of the phase-changing aminosilicone technology is compared to that of a conventional carbon capture system using aqueous monoethanolamine (MEA). This analysis demonstrates that the aminosilicone process has significant advantages relative to an MEA-based system. The first-year CO2 removal cost for the phase-changing CO2 capture process is $52.1/tonne, compared to $66.4/tonne for the aqueous amine process. The phase-changing CO2 capture process is less costly than MEA because of advantageous solvent properties that include higher working capacity, lower corrosivity, lower vapor pressure, and lower heat capacity. The phase-changing aminosilicone process has approximately 32% lower equipment capital cost compared to that of the aqueous amine process. However, this solvent is susceptible to thermal degradation at CSTR desorber operating temperatures, which could add as much as $88/tonne to the CO2 capture cost associated with solvent makeup. Future work is focused on mitigating this critical risk by developing an advanced low-temperature desorber that can deliver comparable desorption performance and significantly reduced thermal degradation rate.

  19. Thermal battery with CO2 compression heat pump: Techno-economic optimization of a high-efficiency Smart Grid option for buildings

    DEFF Research Database (Denmark)

    Blarke, Morten; Yazawa, Kazuaki; Shakouri, Ali

    2012-01-01

    . In a proof-of-concept case study, the TB replaces an existing electric resistance heater used for hot water production and an electric compressor used for air refrigeration in a central air conditioning system. A mathematical model for least-cost unit dispatch is developed. Heat pump cycle components...... and thermal storages are designed and optimized. A general methodology is applied that allows for comparing the obtained results with other Smart Grid enabling options. It is found that the TB concept leads to improvements in the intermittency-friendliness of operation Rc (improves from −0.11 to 0.46), lower...

  20. Techno-economic assessment of FT unit for synthetic diesel production in existing stand-alone biomass gasification plant using process simulation tool

    DEFF Research Database (Denmark)

    Hunpinyo, Piyapong; Narataruksa, Phavanee; Tungkamani, Sabaithip

    2014-01-01

    such as Fischer-Tropsch (FT) diesel. The embedding of the FT plant into the stand-alone based on power mode plants for production of a synthetic fuel is a promising practice, which requires an extensive adaptation of conventional techniques to the special chemical needs found in a gasified biomass. Because...... there are currently no plans to engage the FT process in Thailand, the authors have targeted that this work focus on improving the FT configurations in existing biomass gasification facilities (10 MWth). A process simulation model for calculating extended unit operations in a demonstrative context is designed...

  1. Deployment pathways for decarbonising industry and electricity generation : System analysis of the techno-economic feasibility and implementation of CO2 capture and transport for different geographical scales

    NARCIS (Netherlands)

    Berghout, N.A.

    2015-01-01

    The main objective of this thesis is to assess promising deployment pathways for CO2 capture and transport in industry and the electricity generation sector. To meet this objective, the following three research questions were formulated: I. What are cost effective CO2 capture and transport

  2. Techno-economic and environmental analysis of a thermal treatment technology for the generation of electrical energy by municipal solid waste from the zone of Los Santos

    International Nuclear Information System (INIS)

    Carranza Campos, Kevin; Monge Leiva, Matias

    2014-01-01

    A technical, economic and environmental assessment is realized of a thermal treatment technology. The energetic valorization from municipal solid waste and electric power generation in the zone of Los Santos, Costa Rica, are made by the multicriteria hierarchical analysis methodology. The national and cantonal situation is examined in the integral management of municipal solid waste (GIRS), with emphasis on the cantons from the zone of Los Santos. A comparative analysis is developed among some cantons of Costa Rica that have had GIRS studies, and the zone of Los Santos to know the fraction of municipal solid waste that can be valued energetically and calorific power that present. The similarity in the characterization, composition and physico-chemical properties is determined in the study of residues between the cantons analyzed and the zone of Los Santos. The legislation relating the waste processing is analyzed, according Law 8839 for integral management of waste and laws similar to the implementation of a power generation plant. An analysis is developed for the environmental compliance of thermal treatment technologies, including aspects for control of contaminants. The main technologies of energy valorization from waste are investigated and some real cases of Latin America and the world are exposed. A thermal treatment technology of municipal solid waste is selected through a decision-making methodology to evaluate technical, environmental and economic aspects. Operation requirements and functioning of the devices that conform a power generation plant are described by municipal solid waste of the technology selected. The economic viability of the selected proposal has determined by an economic analysis, to extend on the most influential aspects developing alternative scenarios. The diagnosis of the situation of solid waste in the zone of Los Santos has specified that the cardboard, paper and plastics have been the most adequate for the thermal utilization according to the physico-chemical properties. Conventional gasification technology has been the most suitable, according to the result of the multicriteria hierarchical analysis, through of the software ExpertChoice®, for a possible implementation according to the conditions present in the zone of Los Santos [es

  3. The potentials and challenges of algae based biofuels: a review of the techno-economic, life cycle, and resource assessment modeling.

    Science.gov (United States)

    Quinn, Jason C; Davis, Ryan

    2015-05-01

    Microalgae biofuel production has been extensively evaluated through resource, economic and life cycle assessments. Resource assessments consistently identify land as non-limiting and highlight the need to consider siting based on combined geographical constraints of land and other critical resources such as water and carbon dioxide. Economic assessments report a selling cost of fuel that ranges between $1.64 and over $30 gal(-1) consistent with large variability reported in the life cycle literature, -75 to 534 gCO2-eq MJ(-1). Large drivers behind such variability stem from differences in productivity assumptions, pathway technologies, and system boundaries. Productivity represents foundational units in these assessments with current assumed yields in various assessments varying by a factor of 60. A review of the literature in these areas highlights the need for harmonized assessments such that direct comparisons of alternative processing technologies can be made on the metrics of resource requirements, economic feasibility, and environmental impact. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Process integration study of a kraft pulp mill converted to an ethanol production plant – part B: Techno-economic analysis

    International Nuclear Information System (INIS)

    Fornell, Rickard; Berntsson, Thore; Åsblad, Anders

    2012-01-01

    In a previous study by the authors, energy efficiency measures in a conceptual kraft pulp mill converted to a lignocellulosic ethanol plant were investigated. The results suggested a number of different process designs which would give a substantial improvement in steam economy in the ethanol plant, compared to the original design. In the present study the different process designs are evaluated from an economic point-of-view, in order to determine if energy efficiency measures and increasing by-product sales decrease the production cost of ethanol from this specific process, or if the increased costs related to the implementation of these measures overshadow the benefits from increased by-product sales. The different energy efficiency measures are compared with less capital demanding alternatives (i.e. including low or no energy efficiency improvements) in order to assess the economic benefits of different strategies when converting a kraft pulp mill to ethanol production. The study indicates the economic importance of considering energy efficiency measures when repurposing a kraft pulp mill to an ethanol plant. It is also shown that, within the context of this study, a larger investment in measures will give better economic results than less capital demanding alternatives (with less improvement in energy efficiency). From an economic and energy efficiency viewpoint many of the suggested process designs will give approximately similar results, therefore the process design should be made based on other criteria (e.g. low complexity, low maintenance). - Highlights: ► Conversion of a kraft pulp mill to ethanol production. ► Heat integration of distillation/evaporation in a lignocellulosic ethanol plant. ► Energy efficiency measures lead to lower ethanol production cost. ► If capital costs and raw material prices are low the production cost could be as low as 365 €/m 3 EtOH.

  5. Electrochemically induced crystallization as a sustainable method for product recovery of building block chemicals: techno-economic evaluation of fumaric acid separation

    NARCIS (Netherlands)

    Nasrollahnejad, T.; Urbanus, J.; Horst, J.H. ter; Verdoes, D.; Roelands, C.P.M.

    2012-01-01

    Carboxylic acids are key platform chemicals for use as biobased alternatives for fossil-based applications. State-of-the-art fermentations of carboxylic acids at neutral pH with downstream product recovery by pH-shift crystallization are not sustainable due to the accompanied production of waste

  6. Electrochemically Induced Crystallization as a Sustainable Method for Product Recovery of Building Block Chemicals : Techno-Economic Evaluation of Fumaric Acid Separation

    NARCIS (Netherlands)

    Nasrollahnejad, T.; Urbanus, J.; Ter Horst, J.H.; Verdoes, D.; Roelands, C.P.M.

    2012-01-01

    Carboxylic acids are key platform chemicals for use as biobased alternatives for fossil-based applications. State-of-the-art fermentations of carboxylic acids at neutral pH with downstream product recovery by pH-shift crystallization are not sustainable due to the accompanied production of waste

  7. Impact of hydrogen onboard storage technologies on the performance of hydrogen fuelled vehicles: A techno-economic well-to-wheel assessment

    NARCIS (Netherlands)

    de Wit, M.P.|info:eu-repo/dai/nl/310873754; Faaij, A.P.C.|info:eu-repo/dai/nl/10685903X

    2007-01-01

    Hydrogen onboard storage technologies form an important factor in the overall performance of hydrogen fuelled transportation, both energetically and economically. Particularly, advanced storage options such as metal hydrides and carbon nanotubes are often hinted favourable to conventional, liquid

  8. Techno-economic study of a distributed hybrid renewable energy system supplying electrical power and heat for a rural house in China

    Science.gov (United States)

    Yuan, Jindou; Xu, Jinliang; Wang, Yaodong

    2018-03-01

    Energy saving and emission reduction have become targets for modern society due to the potential energy crisis and the threat of climate change. A distributed hybrid renewable energy system (HRES) consists of photovoltaic (PV) arrays, a wood-syngas combined heat and power generator (CHP) and back-up batteries is designed to power a typical semi-detached rural house in China which aims to meet the energy demand of a house and to reduce greenhouse gas emissions from the use of fossil fuels. Based on the annual load information of the house and the local meteorological data including solar radiation, air temperature, etc., a system model is set up using HOMER software and is used to simulate all practical configurations to carry out technical and economic evaluations. The performance of the whole HRES system and each component under different configurations are evaluated. The optimized configuration of the system is found

  9. Techno-economic assessment of boiler feed water production by membrane distillation with reuse of thermal waste energy from cooling water

    NARCIS (Netherlands)

    Kuipers, N.J.M.; Leerdam, R.C. van; Medevoort, J. van; Tongeren, W.G.J.M. van; Verhasselt, B.; Verelst, L.; Vermeersch, M.; Corbisier, D.

    2015-01-01

    The European KIC-Climate project Water and Energy for Climate Change (WE4CC) aims at the technical demonstration, business case evaluation and implementation of new value chains for the production of high-quality water using low-grade thermal waste energy from cooling water. A typical large-scale

  10. Development of Natural Gas Fired Combined Cycle Plant for Tri-Generation of Power, Cooling and Clean Water Using Waste Heat Recovery: Techno-Economic Analysis

    Directory of Open Access Journals (Sweden)

    Gowtham Mohan

    2014-10-01

    Full Text Available Tri-generation is one of the most efficient ways for maximizing the utilization of available energy. Utilization of waste heat (flue gases liberated by the Al-Hamra gas turbine power plant is analyzed in this research work for simultaneous production of: (a electricity by combining steam rankine cycle using heat recovery steam generator (HRSG; (b clean water by air gap membrane distillation (AGMD plant; and (c cooling by single stage vapor absorption chiller (VAC. The flue gases liberated from the gas turbine power cycle is the prime source of energy for the tri-generation system. The heat recovered from condenser of steam cycle and excess heat available at the flue gases are utilized to drive cooling and desalination cycles which are optimized based on the cooling energy demands of the villas. Economic and environmental benefits of the tri-generation system in terms of cost savings and reduction in carbon emissions were analyzed. Energy efficiency of about 82%–85% is achieved by the tri-generation system compared to 50%–52% for combined cycles. Normalized carbon dioxide emission per MW·h is reduced by 51.5% by implementation of waste heat recovery tri-generation system. The tri-generation system has a payback period of 1.38 years with cumulative net present value of $66 million over the project life time.

  11. Development of a techno-economic model for dynamic calculation of cost of electricity, energy demand and CO2 emissions of an integrated UCG–CCS process

    OpenAIRE

    Nakaten, Natalie; Schlüter, Ralph; Azzam, Rafig; Kempka, Thomas

    2014-01-01

    Underground coal gasification (UCG) allows for the utilization of coal reserves not exploitable due to unfavorable geology and economic boundary conditions. The present study examines underground coal gasification economics converting deep-situated coals into a high-calorific UCG synthesis gas. Utilizing UCG synthesis gas to fuel a combined cycle gas turbine (CCGT) considering CO2 capture and its subsequent storage (CCS) in the underground voids resulting from coal consumption, the coupled pr...

  12. Techno-economic feasibility of the irrigation system for the grassland and farmland conservation in China: Photovoltaic vs. wind power water pumping

    International Nuclear Information System (INIS)

    Campana, Pietro Elia; Li, Hailong; Yan, Jinyue

    2015-01-01

    Highlights: • A novel design procedure for photovoltaic and wind power water pumping systems for irrigation is proposed. • The design procedure is proved conducting dynamic simulations of the water supply and water demand. • The technical and economic effectiveness of photovoltaic water pumping systems is proved simulating the crop yield response. - Abstract: Photovoltaic water pumping (PVWP) and wind power water pumping (WPWP) systems for irrigation represent innovative solutions for the restoration of degraded grassland and the conservation of farmland in remote areas of China. The present work systematically compares the technical and economic suitability of such systems, providing a general approach for the design and selection of the suitable technology for irrigation purposes. The model calculates the PVWP and WPWP systems sizes based on irrigation water requirement (IWR), solar irradiation and wind speed. Based on the lowest PVWP and WPWP systems components costs, WPWP systems can compete with PVWP systems only at high wind speed and low solar irradiation values. Nevertheless, taking into account the average specific costs both for PVWP and WPWP systems, it can be concluded that the most cost-effective solution for irrigation is site specific. According to the dynamic simulations, it has also been found that the PVWP systems present better performances in terms of matching between IWR and water supply compared to the WPWP systems. The mismatch between IWR and pumped water resulted in a reduction of crop yield. Therefore, the dynamic simulations of the crop yield are essential for economic assessment and technology selection

  13. Development and implementation of a dynamic TES dispatch control component in a PV-CSP techno-economic performance modelling tool

    Science.gov (United States)

    Hansson, Linus; Guédez, Rafael; Larchet, Kevin; Laumert, Bjorn

    2017-06-01

    The dispatchability offered by thermal energy storage (TES) in concentrated solar power (CSP) and solar hybrid plants based on such technology presents the most important difference compared to power generation based only on photovoltaics (PV). This has also been one reason for recent hybridization efforts of the two technologies and the creation of Power Purchase Agreement (PPA) payment schemes based on offering higher payment multiples during daily hours of higher (peak or priority) demand. Recent studies involving plant-level thermal energy storage control strategies are however to a large extent based on pre-determined approaches, thereby not taking into account the actual dynamics of thermal energy storage system operation. In this study, the implementation of a dynamic dispatch strategy in the form of a TRNSYS controller for hybrid PV-CSP plants in the power-plant modelling tool DYESOPT is presented. In doing this it was attempted to gauge the benefits of incorporating a day-ahead approach to dispatch control compared to a fully pre-determined approach determining hourly dispatch only once prior to annual simulation. By implementing a dynamic strategy, it was found possible to enhance technical and economic performance for CSP-only plants designed for peaking operation and featuring low values of the solar multiple. This was achieved by enhancing dispatch control, primarily by taking storage levels at the beginning of every simulation day into account. The sequential prediction of the TES level could therefore be improved, notably for evaluated plants without integrated PV, for which the predicted storage levels deviated less than when PV was present in the design. While also featuring dispatch performance gains, optimal plant configurations for hybrid PV-CSP was found to present a trade-off in economic performance in the form of an increase in break-even electricity price when using the dynamic strategy which was offset to some extent by a reduction in upfront investment cost. An increase in turbine starts for the implemented strategy however highlights that this is where further improvements can be made.

  14. Techno-economic feasibility study of a system for the transfer of refrigeration capacity from LNG regasification plants to industrial assets

    NARCIS (Netherlands)

    Pineda Quijano, Diego; Infante Ferreira, C.A.; Duivenvoorden, Wil; Mieog, Juriaan; van der Noortgaete, Tom; van Velpen, Bart

    2017-01-01

    The recovery of cold energy during the regasification of Liquefied Natural Gas (LNG) has gained attention in recent years due to the fast growth of the LNG trade market and the increasing importance that governments are giving to energy efficiency and sustainability. Near 200 kWh/ton of LNG are

  15. Techno-Economic Evaluation of a Stand-Alone Power System Based on Solar Power/Batteries for Global System for Mobile Communications Base Stations

    Directory of Open Access Journals (Sweden)

    Mohammed H. Alsharif

    2017-03-01

    Full Text Available Energy consumption in cellular networks is receiving significant attention from academia and the industry due to its significant potential economic and ecological influence. Energy efficiency and renewable energy are the main pillars of sustainability and environmental compatibility. Technological advancements and cost reduction for photovoltaics are making cellular base stations (BSs; a key source of energy consumption in cellular networks powered by solar energy sources a long-term promising solution for the mobile cellular network industry. This paper addresses issues of deployment and operation of two solar-powered global system for mobile communications (GSM BSs that are being deployed at present (GSM BS 2/2/2 and GSM BS 4/4/4. The study is based on the characteristics of South Korean solar radiation exposure. The optimum criteria as well as economic and technical feasibility for various BSs are analyzed using a hybrid optimization model for electric renewables. In addition, initial capital, replacement, operations, maintenance, and total net present costs for various solar-powered BSs are discussed. Furthermore, the economic feasibility of the proposed solar system is compared with conventional energy sources in urban and remote areas.

  16. Techno-economic analysis of production of Fischer-Tropsch liquids via biomass gasification: The effects of Fischer-Tropsch catalysts and natural gas co-feeding

    International Nuclear Information System (INIS)

    Rafati, Mohammad; Wang, Lijun; Dayton, David C.; Schimmel, Keith; Kabadi, Vinayak; Shahbazi, Abolghasem

    2017-01-01

    Graphical abstract: Process flowsheet developed in Aspen Plus® for the production of FT liquids and electricity through biomass gasification. - Highlights: • Some CO 2 in syngas can increase the conversion of FT process with an iron catalyst. • Overall thermal efficiency for biomass to FT liquids was in a range of 41.3–45.5% • A reformer to recycle off-gas improves the economics for maximum FT fuel production. • Co-feeding of natural gas as 50% energy input reduces 30% costs of FT liquids. • It is not economically feasible to produce FT biofuels at oil price of $60/barrel. - Abstract: The effects of H 2 /CO ratio in syngas from a biomass gasifier, the type of a Fischer-Tropsch (FT) catalyst, addition of a reformer in a recycle mode, efficiency of CO 2 removal, and co-feeding of biomass and natural gas on the overall thermal efficiency and costs for the production of FT liquid fuels from the biomass-derived syngas were analyzed using an Aspen Plus®-based process model. The overall thermal efficiency for biomass-fed processes was in a range of 41.3–45.5%. A cobalt catalyst-based FT process achieved slightly higher efficiency than an iron-based FT process mainly owing to the absence of water-gas shift activity on a cobalt FT catalyst. A proper amount of CO 2 in the syngas can inhibit the amount of CO 2 generated via the water-gas shift reaction in a FT reactor with an iron-based catalyst which yields a similar efficiency to a cobalt-based FT process. The lowest production costs were around $28.8 per GJ of FT liquids for the biomass fed processes with a reformer. However, the addition of a reformer in the gas recycle loop can improve the economics only when the operation of the plant is optimized for maximum fuel production rather than co-generation of fuels and power. A process with co-feeding of natural gas into the reformer can achieve more attractive economics than a solely biomass fed process. Co-feeding of biomass and natural gas each at 200 MW th for a total feedstock thermal energy input of 400 MW th reduced the costs of FT liquid production by about 30% to $19–$20 per GJ of FT liquids. However, production of FT biofuels would be economically viable only at very high oil price or if some premiums are considered for the production of green fuels and power. At an oil price of $60/barrel, production of FT biofuels in the process configurations considered in this study wouldn’t be economically feasible.

  17. Model for the techno-economic analysis of common work of wind power and CCGT power plant to offer constant level of power in the electricity market

    Directory of Open Access Journals (Sweden)

    Tomsic Z.

    2017-01-01

    For calculation purposes, the following parameters are necessary to know in order to be able to economically evaluate changes in the start-up process: ramp up and down rate, time of start time reduction, fuel mass flow during start, electricity production during start, variable cost of start-up process, cost and charges for life time consumption for each start and start type, remuneration during start up time regarding expected or unexpected starts, the cost and revenues for balancing energy (important when participating in electricity market, and the cost or revenues for CO2-certificates. Main motivation for this analysis is to investigate possibilities to participate on power exchanges by offering continues guarantied power from wind plants by backing-up them with CCGT power plant.

  18. Integration of biomass into urban energy systems for heat and power. Part II: Sensitivity assessment of main techno-economic factors

    International Nuclear Information System (INIS)

    Pantaleo, Antonio M.; Giarola, Sara; Bauen, Ausilio; Shah, Nilay

    2014-01-01

    Highlights: • Application of a MILP tool for optimal sizing and location of heating and CHP plants to serve residential energy demand. • Trade-offs between local vs centralized heat generation, district heating vs natural gas distribution systems. • Assessment of the key factors influencing the use of biomass and district heating in residential areas. - Abstract: The paper presents the application of a mixed integer linear programming (MILP) methodology to optimize multi-biomass and natural gas supply chain strategic design for heat and power generation in urban areas. The focus is on spatial and temporal allocation of biomass supply, storage, processing, transport and energy conversion (heat and CHP) to match the heat demand of residential end users. The main aim lies on the assessment of the trade-offs between centralized district heating plants and local heat generation systems, and on the decoupling of the biomass processing and biofuel energy conversion steps. After a brief description of the methodology, which is presented in detail in Part I of the research, an application to a generic urban area is proposed. Moreover, the influence of energy demand typologies (urban areas energy density, heat consumption patterns, buildings energy efficiency levels, baseline energy costs and available infrastructures) and specific constraints of urban areas (transport logistics, air emission levels, space availability) on the selection of optimal bioenergy pathways for heat and power is assessed, by means of sensitivity analysis. On the basis of these results, broad considerations about the key factors influencing the use of bioenergy into urban energy systems are proposed. Potential further applications of this model are also described, together with main barriers for development of bioenergy routes for urban areas

  19. Activated Carbon by Co-pyrolysis and Steam Activation from Particle Board and Melamine Formaldehyde Resin: Production, Adsorption Properties and Techno Economic Evaluation

    Directory of Open Access Journals (Sweden)

    Kenny Vanreppelen

    2013-03-01

    Full Text Available One of the top strategic objectives and research areas in Europe is recovering wood from processing and end of life products. However, there are still several "contaminated" wood products that are not or only partly reused/recycled. Particle board waste which is contaminated with aminoplasts is one of these products. In addition, a considerable amount of aminoplast waste resinis produced for the production of particle board that cannot be re-used or recycled. The chemical properties of these wastes (high nitrogen content of 5.9 wt% and 54.1 wt% for particle board and melamine formaldehyde respectively make them ideal precursors for the production of nitrogenised activated carbon. The profitability of the produced activated carbon is investigated by calculating the net present value, the minimum selling price and performing a Monte Carlo sensitivity analysis. Encouraging results for a profitable production are obtained even though the current assumptions start from a rather pessimistic scenario.

  20. Novel integrated mechanical biological chemical treatment (MBCT) systems for the production of levulinic acid from fraction of municipal solid waste: A comprehensive techno-economic analysis.

    Science.gov (United States)

    Sadhukhan, Jhuma; Ng, Kok Siew; Martinez-Hernandez, Elias

    2016-09-01

    This paper, for the first time, reports integrated conceptual MBCT/biorefinery systems for unlocking the value of organics in municipal solid waste (MSW) through the production of levulinic acid (LA by 5wt%) that increases the economic margin by 110-150%. After mechanical separation recovering recyclables, metals (iron, aluminium, copper) and refuse derived fuel (RDF), lignocelluloses from remaining MSW are extracted by supercritical-water for chemical valorisation, comprising hydrolysis in 2wt% dilute H2SO4 catalyst producing LA, furfural, formic acid (FA), via C5/C6 sugar extraction, in plug flow (210-230°C, 25bar, 12s) and continuous stirred tank (195-215°C, 14bar, 20min) reactors; char separation and LA extraction/purification by methyl isobutyl ketone solvent; acid/solvent and by-product recovery. The by-product and pulping effluents are anaerobically digested into biogas and fertiliser. Produced biogas (6.4MWh/t), RDF (5.4MWh/t), char (4.5MWh/t) are combusted, heat recovered into steam generation in boiler (efficiency: 80%); on-site heat/steam demand is met; balance of steam is expanded into electricity in steam turbines (efficiency: 35%). Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. An evaluation of the policy and techno-economic factors affecting the potential for biogas upgrading for transport fuel use in the UK

    International Nuclear Information System (INIS)

    Patterson, Tim; Esteves, Sandra; Dinsdale, Richard; Guwy, Alan

    2011-01-01

    Gaseous biofuels including biomethane, which has been shown to be more environmentally beneficial than liquid biofuels, should contribute to meeting the challenging UK targets set for the supplying of biofuels to the road transport fuel market. Under the Renewable Transport Fuel Obligations the financial incentives for the supply of biofuels have been volatile, e.g. 2008/2009 saw Renewable Transport Fuel Certificate values fall to zero. Any shortfall from the maximum value has significant implications for all biofuels. It is demonstrated that biomethane can be produced at a cost which is competitive with liquid biofuels and fossil fuels within the UK. Technologies such as water scrubbing, pressure swing adsorption and physical and chemical absorption are available to upgrade biogas generated by anaerobic digestion of organic wastes to transport fuel quality, and technologies such as membrane separation and cryogenic distillation are being modified for such an application. The manufacture and sale of biomethane as a transport fuel is also financially competitive with Combined Heat and Power. One limiting factor may be the additional cost of purchasing and maintaining biomethane fuelled vehicles. Support in this area could lead to the rapid expansion of biomethane transport fuel infrastructure and bring significant long term environmental and economic advantages. - Research highlights: → A technical summary of commercially available biogas upgrading technologies is made. → An assessment of energetic, environmental and economic performance is included. → Proposed financial subsidies for biomethane transport fuel are investigated. → Biomethane can be financially competitive with liquid biofuels. → The enhanced environmental performance of biomethane should be reflected by the level of subsidy.

  2. Techno-Economic Assessment of Heat Transfer Fluid Buffering for Thermal Energy Storage in the Solar Field of Parabolic Trough Solar Thermal Power Plants

    Directory of Open Access Journals (Sweden)

    Jorge M. Llamas

    2017-08-01

    Full Text Available Currently, operating parabolic trough (PT solar thermal power plants, either solar-only or with thermal storage block, use the solar field as a heat transfer fluid (HTF thermal storage system to provide extra thermal capacity when it is needed. This is done by circulating heat transfer fluid into the solar field piping in order to create a heat fluid buffer. In the same way, by oversizing the solar field, it can work as an alternative thermal energy storage (TES system to the traditionally applied methods. This paper presents a solar field TES model for a standard solar field from a 50-MWe solar power plant. An oversized solar model is analyzed to increase the capacity storage system (HTF buffering. A mathematical model has been developed and different simulations have been carried out over a cycle of one year with six different solar multiples considered to represent the different oversized solar field configurations. Annual electricity generation and levelized cost of energy (LCOE are calculated to find the solar multiple (SM which makes the highest solar field thermal storage capacity possible within the minimum LCOE.

  3. Techno-economic analysis of guayule (parthenium argentatum) pyrolysis biorefining: production of biofuels from guayule bagasse via tail-gas reactive pyrolysis

    Science.gov (United States)

    The tire industry is currently considering natural rubber from guayule (Parthenium argentatum Gray) as a viable alternative to imported Hevea natural rubber, or petroleum-based synthetics, to meet expanding materials needs of the industry, however, only 5-10% of the harvested guayule plant is conver...

  4. Performance and techno-economic assessment of several solid-liquid separation technologies for processing dilute-acid pretreated corn stover.

    Science.gov (United States)

    Sievers, David A; Tao, Ling; Schell, Daniel J

    2014-09-01

    Solid-liquid separation of pretreated lignocellulosic biomass slurries is a critical unit operation employed in several different processes for production of fuels and chemicals. An effective separation process achieves good recovery of solute (sugars) and efficient dewatering of the biomass slurry. Dilute acid pretreated corn stover slurries were subjected to pressure and vacuum filtration and basket centrifugation to evaluate the technical and economic merits of these technologies. Experimental performance results were used to perform detailed process simulations and economic analysis using a 2000 tonne/day biorefinery model to determine differences between the various filtration methods and their process settings. The filtration processes were able to successfully separate pretreated slurries into liquor and solid fractions with estimated sugar recoveries of at least 95% using a cake washing process. A continuous vacuum belt filter produced the most favorable process economics. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Techno-economic analysis of a 2.1 kW rooftop photovoltaic-grid-tied system based on actual performance

    International Nuclear Information System (INIS)

    Adaramola, Muyiwa S.

    2015-01-01

    Highlights: • The economic analysis of rooftop PV grid-tied installation is examined. • Based on actual performance, the LCOE of the system is estimated as US$0.246/kW h. • Feed-in-tariff of US$0.356/kW h is estimated with no financial support. • To encourage installation of PV system, financial support of up to 40% of the investment is suggested. - Abstract: As more attention is being focus on the development of renewable energy resources globally, technical and economic assessments of these resources are crucial to ascertain their viability. These assessments can be more meaningful, if they are based on field and actual performance of the renewable energy conversion systems. This study presents the economic analysis of a rooftop 2.07 kW grid-connected photovoltaic energy system installation located in Ås (59.65°N and longitude 10.76°E, and about 105 m above sea level), Norway. Both the annual and monthly costs of energy produced by the system are determined. In addition, the feed-in tariff that can give internal rate of return of about 7.5% on investment on this installation was examined. Based on assumptions used in this study, feed-in-tariff of US$0.356/kW h is estimated for a project with economic life of 25 years with no other financial support. This translates to US$0.110/kW h premium over the levelized cost of energy of US$0.246/kW h generated by the system. However, if the financial support is more than 45% of the initial investment cost, no further premium fee is necessary to support this type of system

  6. Stochastic techno-economic assessment based on Monte Carlo simulation and the Response Surface Methodology: The case of an innovative linear Fresnel CSP (concentrated solar power) system

    International Nuclear Information System (INIS)

    Bendato, Ilaria; Cassettari, Lucia; Mosca, Marco; Mosca, Roberto

    2016-01-01

    Combining technological solutions with investment profitability is a critical aspect in designing both traditional and innovative renewable power plants. Often, the introduction of new advanced-design solutions, although technically interesting, does not generate adequate revenue to justify their utilization. In this study, an innovative methodology is developed that aims to satisfy both targets. On the one hand, considering all of the feasible plant configurations, it allows the analysis of the investment in a stochastic regime using the Monte Carlo method. On the other hand, the impact of every technical solution on the economic performance indicators can be measured by using regression meta-models built according to the theory of Response Surface Methodology. This approach enables the design of a plant configuration that generates the best economic return over the entire life cycle of the plant. This paper illustrates an application of the proposed methodology to the evaluation of design solutions using an innovative linear Fresnel Concentrated Solar Power system. - Highlights: • A stochastic methodology for solar plants investment evaluation. • Study of the impact of new technologies on the investment results. • Application to an innovative linear Fresnel CSP system. • A particular application of Monte Carlo simulation and response surface methodology.

  7. Techno-economic assessment of four CO2 storage sites = Évaluation technico-économique de quatre sites de stockage de CO2

    NARCIS (Netherlands)

    Gruson, J.F.; Serbutoviez, S.; Delprat-Jannaud, F.; Akhurst, M.; Nielsen, C.; Dalhoff, F.; Bergmo, P.; Bos, C.; Volpi, V.; Iacobellis, S.

    2015-01-01

    Carbon Capture and Storage (CCS) should be a key technology in order to achieve a decline in the CO2 emissions intensity of the power sector and other intensive industry, but this potential deployment could be restricted by cost issues as the International Energy Agency (IEA) in their last

  8. Transmission Expansion Planning of Transnational Offshore Grids : A Techno-Economic and Legal Approach Case Study of the North Sea Offshore Grid

    NARCIS (Netherlands)

    Shariat Torbaghan, S.

    2016-01-01

    The new energy policy of the European Union (EU) with the core objectives of competitiveness, reliability and sustainability, has driven Europe into a transition towards a low carbon & sustainable electricity supply systems. Under the new policy, the European energy systems are pursing two major

  9. EEG analyses with SOBI.

    Energy Technology Data Exchange (ETDEWEB)

    Glickman, Matthew R.; Tang, Akaysha (University of New Mexico, Albuquerque, NM)

    2009-02-01

    The motivating vision behind Sandia's MENTOR/PAL LDRD project has been that of systems which use real-time psychophysiological data to support and enhance human performance, both individually and of groups. Relevant and significant psychophysiological data being a necessary prerequisite to such systems, this LDRD has focused on identifying and refining such signals. The project has focused in particular on EEG (electroencephalogram) data as a promising candidate signal because it (potentially) provides a broad window on brain activity with relatively low cost and logistical constraints. We report here on two analyses performed on EEG data collected in this project using the SOBI (Second Order Blind Identification) algorithm to identify two independent sources of brain activity: one in the frontal lobe and one in the occipital. The first study looks at directional influences between the two components, while the second study looks at inferring gender based upon the frontal component.

  10. A simple beam analyser

    International Nuclear Information System (INIS)

    Lemarchand, G.

    1977-01-01

    (ee'p) experiments allow to measure the missing energy distribution as well as the momentum distribution of the extracted proton in the nucleus versus the missing energy. Such experiments are presently conducted on SACLAY's A.L.S. 300 Linac. Electrons and protons are respectively analysed by two spectrometers and detected in their focal planes. Counting rates are usually low and include time coincidences and accidentals. Signal-to-noise ratio is dependent on the physics of the experiment and the resolution of the coincidence, therefore it is mandatory to get a beam current distribution as flat as possible. Using new technologies has allowed to monitor in real time the behavior of the beam pulse and determine when the duty cycle can be considered as being good with respect to a numerical basis

  11. Analyse af elbilers forbrug

    DEFF Research Database (Denmark)

    Andersen, Ove; Krogh, Benjamin Bjerre; Torp, Kristian

    2014-01-01

    Denne rapport undersøger GPS og CAN bus datagrundlaget opsamlet ved kørsel med elbiler og analysere på elbilers forbrug. Analyserne er baseret på godt 133 millioner GPS og CAN bus målinger opsamlet fra 164 elbiler (Citroen C-Zero, Mitsubishi iMiev og Peugeot Ion) i kalenderåret 2012....... For datagrundlaget kan det konstateres, at der er behov for væsentlige, men simple opstramninger for fremadrettet at gøre det nemmere at anvende GPS/CAN bus data fra elbiler i andre analyser. Brugen af elbiler er sammenlignet med brændstofbiler og konklusionen er, at elbiler generelt kører 10-15 km/t langsommere på...

  12. Analyse de "La banlieue"

    Directory of Open Access Journals (Sweden)

    Nelly Morais

    2006-11-01

    Full Text Available 1. Préambule - Conditions de réalisation de la présente analyse Un groupe d'étudiants de master 1 de FLE de l'université Paris 3 (donc des étudiants en didactique des langues se destinant à l'enseignement du FLE a observé le produit au cours d'un module sur les TIC (Technologies de l'Information et de la Communication et la didactique des langues. Une discussion s'est ensuite engagée sur le forum d'une plate-forme de formation à distance à partir de quelques questions posées par l'enseigna...

  13. Approximate analyses of inelastic effects in pipework

    International Nuclear Information System (INIS)

    Jobson, D.A.

    1983-01-01

    This presentation shows figures concerned with analyses of inelastic effects in pipework as follows: comparison of experimental and calculated simplified analyses results for free end rotation and for circumferential strain; interrupted stress relaxation; regenerated relaxation caused by reversed yield; buckling of straight pipe under combined bending and torsion; results of fatigues test of pipe bend

  14. Seismic fragility analyses

    International Nuclear Information System (INIS)

    Kostov, Marin

    2000-01-01

    In the last two decades there is increasing number of probabilistic seismic risk assessments performed. The basic ideas of the procedure for performing a Probabilistic Safety Analysis (PSA) of critical structures (NUREG/CR-2300, 1983) could be used also for normal industrial and residential buildings, dams or other structures. The general formulation of the risk assessment procedure applied in this investigation is presented in Franzini, et al., 1984. The probability of failure of a structure for an expected lifetime (for example 50 years) can be obtained from the annual frequency of failure, β E determined by the relation: β E ∫[d[β(x)]/dx]P(flx)dx. β(x) is the annual frequency of exceedance of load level x (for example, the variable x may be peak ground acceleration), P(fI x) is the conditional probability of structure failure at a given seismic load level x. The problem leads to the assessment of the seismic hazard β(x) and the fragility P(fl x). The seismic hazard curves are obtained by the probabilistic seismic hazard analysis. The fragility curves are obtained after the response of the structure is defined as probabilistic and its capacity and the associated uncertainties are assessed. Finally the fragility curves are combined with the seismic loading to estimate the frequency of failure for each critical scenario. The frequency of failure due to seismic event is presented by the scenario with the highest frequency. The tools usually applied for probabilistic safety analyses of critical structures could relatively easily be adopted to ordinary structures. The key problems are the seismic hazard definitions and the fragility analyses. The fragility could be derived either based on scaling procedures or on the base of generation. Both approaches have been presented in the paper. After the seismic risk (in terms of failure probability) is assessed there are several approaches for risk reduction. Generally the methods could be classified in two groups. The

  15. Analysing international relations

    DEFF Research Database (Denmark)

    Corry, Olaf

    2014-01-01

    theories to ‘explain’ international relations and distinguishes between different kinds of explanation. In Section 4 I look at how different theories have been grouped – first according to their underlying views of what is valid knowledge, and second in terms of different accounts of how history works....... matters by depicting reality in new ways. I then show how different theories rely on different ‘pictures’ of what makes up the international system. Section 2 shows how theories differ in terms of their scope, their aims and their purposes. Section 3 explores some of the choices to be made when using...

  16. Website-analyse

    DEFF Research Database (Denmark)

    Thorlacius, Lisbeth

    2009-01-01

    eller blindgyder, når han/hun besøger sitet. Studier i design og analyse af de visuelle og æstetiske aspekter i planlægning og brug af websites har imidlertid kun i et begrænset omfang været under reflektorisk behandling. Det er baggrunden for dette kapitel, som indleder med en gennemgang af æstetikkens......Websitet er i stigende grad det foretrukne medie inden for informationssøgning,virksomhedspræsentation, e-handel, underholdning, undervisning og social kontakt. I takt med denne voksende mangfoldighed af kommunikationsaktiviteter på nettet, er der kommet mere fokus på at optimere design og...... planlægning af de funktionelle og indholdsmæssige aspekter ved websites. Der findes en stor mængde teori- og metodebøger, som har specialiseret sig i de tekniske problemstillinger i forbindelse med interaktion og navigation, samt det sproglige indhold på websites. Den danske HCI (Human Computer Interaction...

  17. A channel profile analyser

    International Nuclear Information System (INIS)

    Gobbur, S.G.

    1983-01-01

    It is well understood that due to the wide band noise present in a nuclear analog-to-digital converter, events at the boundaries of adjacent channels are shared. It is a difficult and laborious process to exactly find out the shape of the channels at the boundaries. A simple scheme has been developed for the direct display of channel shape of any type of ADC on a cathode ray oscilliscope display. This has been accomplished by sequentially incrementing the reference voltage of a precision pulse generator by a fraction of a channel and storing ADC data in alternative memory locations of a multichannel pulse height analyser. Alternative channels are needed due to the sharing at the boundaries of channels. In the flat region of the profile alternate memory locations are channels with zero counts and channels with the full scale counts. At the boundaries all memory locations will have counts. The shape of this is a direct display of the channel boundaries. (orig.)

  18. Prospects for the use of SMR and IGCC technologies for power generation in Poland

    Science.gov (United States)

    Wyrwa, Artur; Suwała, Wojciech

    2017-11-01

    This study is a preliminary assessment of prospects for new power generation technologies that are of particular interest in Poland. We analysed the economic competitiveness of small size integrated gasification combined cycle units (IGCC) and small modular reactors (SMR). For comparison we used one of the most widely applied and universal metric i.e. Levelized Cost of Electricity (LCOE). The LCOE results were complemented with the results of energy-economic model TIMES-PL in order to analyse the economic viability of these technologies under operation regime of the entire power system. The results show that with techno-economic assumptions presented in the paper SMRs are more competitive option as compared to small IGCC units.

  19. Prospects for the use of SMR and IGCC technologies for power generation in Poland

    Directory of Open Access Journals (Sweden)

    Wyrwa Artur

    2017-01-01

    Full Text Available This study is a preliminary assessment of prospects for new power generation technologies that are of particular interest in Poland. We analysed the economic competitiveness of small size integrated gasification combined cycle units (IGCC and small modular reactors (SMR. For comparison we used one of the most widely applied and universal metric i.e. Levelized Cost of Electricity (LCOE. The LCOE results were complemented with the results of energy-economic model TIMES-PL in order to analyse the economic viability of these technologies under operation regime of the entire power system. The results show that with techno-economic assumptions presented in the paper SMRs are more competitive option as compared to small IGCC units.

  20. Analyse van kwalitatief onderzoeksmateriaal

    NARCIS (Netherlands)

    Wester, F.P.J.

    2004-01-01

    Qualitative research is characterised by its analytical goals: the development of categories, the elaboration of concepts or the formulation of a theory. Because of this analytical openness, the research design shows successive phases, each with its own objective and specific demands for data

  1. Microbial biosurfactants with their high-value functional properties

    Science.gov (United States)

    Microbial world is a rich source for finding valuable industrial chemicals and ingredients. Specifically, many microbial metabolites are surface-active compounds that can be developed into bio-based surfactants, detergents, and emulsifiers. Techno-economic analyses for the production of bio-based ...

  2. Reversible Operation of Solid Oxide Cells for Sustainable Fuel Production and Solar/Wind Load-Balancing

    DEFF Research Database (Denmark)

    Graves, Christopher R.; Villarreal, D.; Mýrdal, Jón Steinar Garðarsson

    2016-01-01

    exceeds the wind power supply.At the system level, techno-economic analyses and system designs for different scalesand applications have been realized. A simulation of an RSOC system that uses real-worldtime-series market prices for electricity and natural gas in Denmark to decide when tooperate...

  3. Limiting the public cost of stationary battery deployment by combining applications

    Science.gov (United States)

    Stephan, A.; Battke, B.; Beuse, M. D.; Clausdeinken, J. H.; Schmidt, T. S.

    2016-07-01

    Batteries could be central to low-carbon energy systems with high shares of intermittent renewable energy sources. However, the investment attractiveness of batteries is still perceived as low, eliciting calls for policy to support deployment. Here we show how the cost of battery deployment can potentially be minimized by introducing an aspect that has been largely overlooked in policy debates and underlying analyses: the fact that a single battery can serve multiple applications. Batteries thereby can not only tap into different value streams, but also combine different risk exposures. To address this gap, we develop a techno-economic model and apply it to the case of lithium-ion batteries serving multiple stationary applications in Germany. Our results show that batteries could be attractive for investors even now if non-market barriers impeding the combination of applications were removed. The current policy debate should therefore be refocused so as to encompass the removal of such barriers.

  4. Uncertainty and Sensitivity Analyses Plan

    International Nuclear Information System (INIS)

    Simpson, J.C.; Ramsdell, J.V. Jr.

    1993-04-01

    Hanford Environmental Dose Reconstruction (HEDR) Project staff are developing mathematical models to be used to estimate the radiation dose that individuals may have received as a result of emissions since 1944 from the US Department of Energy's (DOE) Hanford Site near Richland, Washington. An uncertainty and sensitivity analyses plan is essential to understand and interpret the predictions from these mathematical models. This is especially true in the case of the HEDR models where the values of many parameters are unknown. This plan gives a thorough documentation of the uncertainty and hierarchical sensitivity analysis methods recommended for use on all HEDR mathematical models. The documentation includes both technical definitions and examples. In addition, an extensive demonstration of the uncertainty and sensitivity analysis process is provided using actual results from the Hanford Environmental Dose Reconstruction Integrated Codes (HEDRIC). This demonstration shows how the approaches used in the recommended plan can be adapted for all dose predictions in the HEDR Project

  5. Hydrogen Analyses in the EPR

    International Nuclear Information System (INIS)

    Worapittayaporn, S.; Eyink, J.; Movahed, M.

    2008-01-01

    In severe accidents with core melting large amounts of hydrogen may be released into the containment. The EPR provides a combustible gas control system to prevent hydrogen combustion modes with the potential to challenge the containment integrity due to excessive pressure and temperature loads. This paper outlines the approach for the verification of the effectiveness and efficiency of this system. Specifically, the justification is a multi-step approach. It involves the deployment of integral codes, lumped parameter containment codes and CFD codes and the use of the sigma criterion, which provides the link to the broad experimental data base for flame acceleration (FA) and deflagration to detonation transition (DDT). The procedure is illustrated with an example. The performed analyses show that hydrogen combustion at any time does not lead to pressure or temperature loads that threaten the containment integrity of the EPR. (authors)

  6. Molecular ecological network analyses

    Directory of Open Access Journals (Sweden)

    Deng Ye

    2012-05-01

    Full Text Available Abstract Background Understanding the interaction among different species within a community and their responses to environmental changes is a central goal in ecology. However, defining the network structure in a microbial community is very challenging due to their extremely high diversity and as-yet uncultivated status. Although recent advance of metagenomic technologies, such as high throughout sequencing and functional gene arrays, provide revolutionary tools for analyzing microbial community structure, it is still difficult to examine network interactions in a microbial community based on high-throughput metagenomics data. Results Here, we describe a novel mathematical and bioinformatics framework to construct ecological association networks named molecular ecological networks (MENs through Random Matrix Theory (RMT-based methods. Compared to other network construction methods, this approach is remarkable in that the network is automatically defined and robust to noise, thus providing excellent solutions to several common issues associated with high-throughput metagenomics data. We applied it to determine the network structure of microbial communities subjected to long-term experimental warming based on pyrosequencing data of 16 S rRNA genes. We showed that the constructed MENs under both warming and unwarming conditions exhibited topological features of scale free, small world and modularity, which were consistent with previously described molecular ecological networks. Eigengene analysis indicated that the eigengenes represented the module profiles relatively well. In consistency with many other studies, several major environmental traits including temperature and soil pH were found to be important in determining network interactions in the microbial communities examined. To facilitate its application by the scientific community, all these methods and statistical tools have been integrated into a comprehensive Molecular Ecological

  7. Driving forces and barriers in the development and implementation of coal-to-liquids (CtL) technologies in Germany

    International Nuclear Information System (INIS)

    Vallentin, Daniel

    2008-01-01

    Because of a growing global energy demand and rising oil prices coal-abundant nations, such as China and the United States, are pursuing the application of technologies which could replace crude oil imports by converting coal to synthetic hydrocarbon fuels-so-called coal-to-liquids (CtL) technologies. The case of CtL is well suited to analyse techno-economic, resources-related, policy-driven and actor-related parameters, which are affecting the market prospects of a technology that eases energy security constraints but is hardly compatible with a progressive climate policy. This paper concentrates on Germany as an example-the European Union (EU)'s largest member state with considerable coal reserves. It shows that in Germany and the EU, CtL is facing rather unfavourable market conditions as high costs and ambitious climate targets offset its energy security advantage

  8. Automatic incrementalization of Prolog based static analyses

    DEFF Research Database (Denmark)

    Eichberg, Michael; Kahl, Matthias; Saha, Diptikalyan

    2007-01-01

    Modem development environments integrate various static analyses into the build process. Analyses that analyze the whole project whenever the project changes are impractical in this context. We present an approach to automatic incrementalization of analyses that are specified as tabled logic...... programs and evaluated using incremental tabled evaluation, a technique for efficiently updating memo tables in response to changes in facts and rules. The approach has been implemented and integrated into the Eclipse IDE. Our measurements show that this technique is effective for automatically...

  9. Publications | Page 553 | IDRC - International Development ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Results 5521 - 5530 of 6381 ... In the transition of the techno-economic paradigm from a (post) industrial to an information society, it is crucial that ICT and broadband become embedded within the whole of the socio-economic system. However figures show that SMEs and micro-enterprises - the backbone of European ...

  10. Electric power generation from biomass gasification; Geracao de eletricidade a partir da gaseificacao de biomassa

    Energy Technology Data Exchange (ETDEWEB)

    Sales, Cristina Aparecida Vilas Boas de; Andrade, Rubenildo Vieira; Lora, Electo Eduardo Silva [Universidade Federal de Itajuba (NEST/IEM/UNIFEI), MG (Brazil). Inst. de Engenharia Mecanica. Nucleo de Estudos em Sistemas Termicos], e-mails: cristinasales@unifei.edu.br, ruben@unifei.edu.br, electo@unifei.edu.br

    2006-07-01

    This paper presents a techno-economical evaluation of the biomass gasification utilization with different technologies such as: reciprocating engine, gas micro turbine, Stirling engine and fuel cells for small scale electricity generation. The comparative evaluation about the technologies is limited to the utilization in isolated areas. This paper shows the principal characteristics of these technologies. (author)

  11. Late-night talk show v USA

    OpenAIRE

    Halamásek, Šimon

    2013-01-01

    This thesis focuses on the history of talk show in USA with emphasis on its specific form, which is late-night talk show. The first chapter focuses on the creation of new television networks and the overall state of american broadcasting during the first era of the television talk show format. The thesis briefly describes radio broadcasting which served not only as an important source of inspiration for television but also as a starting platform for most talk show hosts. Next chapter theoreti...

  12. Acculturation, Cultivation, and Daytime TV Talk Shows.

    Science.gov (United States)

    Woo, Hyung-Jin; Dominick, Joseph R.

    2003-01-01

    Explores the cultivation phenomenon among international college students in the United States by examining the connection between levels of acculturation, daytime TV talk show viewing, and beliefs about social reality. Finds that students who scored low on acculturation and watched a great deal of daytime talk shows had a more negative perception…

  13. Effects of Talk Show Viewing on Adolescents.

    Science.gov (United States)

    Davis, Stacy; Mares, Marie-Louise

    1998-01-01

    Investigates the effects of talk-show viewing on high-school students' social-reality beliefs. Supports the hypothesis that viewers overestimate the frequency of deviant behaviors; does not find support for the hypothesis that viewers become desensitized to the suffering of others; and finds that talk-show viewing was positively related, among…

  14. Multiple Imputation for Network Analyses

    NARCIS (Netherlands)

    Krause, Robert; Huisman, Mark; Steglich, Christian; Snijders, Thomas

    2016-01-01

    Missing data on network ties is a fundamental problem for network analyses. The biases induced by missing edge data, even when missing completely at random (MCAR), are widely acknowledged and problematic for network analyses (Kossinets, 2006; Huisman & Steglich, 2008; Huisman, 2009). Although

  15. Genomic analyses of the Chlamydia trachomatis core genome show an association between chromosomal genome, plasmid type and disease

    NARCIS (Netherlands)

    Versteeg, Bart; Bruisten, Sylvia M.; Pannekoek, Yvonne; Jolley, Keith A.; Maiden, Martin C. J.; van der Ende, Arie; Harrison, Odile B.

    2018-01-01

    Background: Chlamydia trachomatis (Ct) plasmid has been shown to encode genes essential for infection. We evaluated the population structure of Ct using whole-genome sequence data (WGS). In particular, the relationship between the Ct genome, plasmid and disease was investigated. Results: WGS data

  16. Community-level physiological profiling analyses show potential to identify the copiotrophic bacteria present in soil environments

    Czech Academy of Sciences Publication Activity Database

    Lladó, Salvador; Baldrian, Petr

    2017-01-01

    Roč. 12, č. 2 (2017), s. 1-9, č. článku e0171638. E-ISSN 1932-6203 R&D Projects: GA ČR(CZ) GP14-09040P; GA MŠk(CZ) LD15086 Institutional support: RVO:61388971 Keywords : SUBSTRATE UTILIZATION PATTERNS * CARBON-SOURCE UTILIZATION * MICROBIAL COMMUNITIES Subject RIV: EE - Microbiology, Virology OBOR OECD: Microbiology Impact factor: 2.806, year: 2016

  17. Tract-Specific Analyses of Diffusion Tensor Imaging Show Widespread White Matter Compromise in Autism Spectrum Disorder

    Science.gov (United States)

    Shukla, Dinesh K.; Keehn, Brandon; Muller, Ralph-Axel

    2011-01-01

    Background: Previous diffusion tensor imaging (DTI) studies have shown white matter compromise in children and adults with autism spectrum disorder (ASD), which may relate to reduced connectivity and impaired function of distributed networks. However, tract-specific evidence remains limited in ASD. We applied tract-based spatial statistics (TBSS)…

  18. Foodstuff analyses show that seafood and water are major perfluoroalkyl acids (PFAAs) sources to humans in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Heo, Jin-Ju; Lee, Ji-Woo [Department of Civil and Environmental Engineering, Pusan National University, Busan, 609-735 (Korea, Republic of); Kim, Seung-Kyu [Department of Marine Science, College of Natural Sciences, Incheon National University, Incheon, 406-772 (Korea, Republic of); Oh, Jeong-Eun, E-mail: jeoh@pusan.ac.kr [Department of Civil and Environmental Engineering, Pusan National University, Busan, 609-735 (Korea, Republic of)

    2014-08-30

    Graphical abstract: - Highlights: • 16 PFAAs in 397 samples of 66 food types and 34 tap water samples were analyzed. • Dietary exposure to PFAAs was estimated by using the PFAAs measured concentrations. • The major contributors of PFAAs dietary exposure were confirmed. - Abstract: We measured concentrations of PFAAs in 397 foods, of 66 types, in Korea, and determined the daily human dietary PFAAs intake and the contribution of each foodstuff to that intake. The PFAAs concentration in the 66 different food types ranged from below the detection limit to 48.3 ng/g. Perfluorooctane sulfonate (PFOS) and long-chain perfluorocarboxylic acids (PFCAs) were the dominant PFAAs in fish, shellfish, and processed foods, while perfluorooctanoic acid (PFOA) and short-chain PFCAs dominated dairy foodstuffs and beverages. The Korean adult dietary intake ranges, estimated for a range of scenarios, were 0.60–3.03 and 0.17–1.68 ng kg{sup −1} bw d{sup −1} for PFOS and PFOA, respectively, which were lower than the total daily intake limits suggested by European Food Safety Authority (PFOS: 150 ng kg{sup −1} bw d{sup −1}; PFOA: 1500 ng kg{sup −1} bw d{sup −1}). The major contributors to PFAAs dietary exposure varied with subject age and PFAAs. For example, fish was a major contributor of PFOS but dairy foods were major contributors of PFOA. However, tap water was a major contributor to PFOA intake when it was the main source of drinking water (rather than bottled water)

  19. Career development at London Vet Show.

    Science.gov (United States)

    2016-09-03

    Are you considering a career change? Perhaps you want help to develop within your current role? Either way, you will find a relevant session in the BVA Career Development stream at the London Vet Show in November. British Veterinary Association.

  20. Analysing User Lifetime in Voluntary Online Collaboration

    DEFF Research Database (Denmark)

    McHugh, Ronan; Larsen, Birger

    2010-01-01

    This paper analyses persuasion in online collaboration projects. It introduces a set of heuristics that can be applied to such projects and combines these with a quantitative analysis of user activity over time. Two example sites are studies, Open Street Map and The Pirate Bay. Results show...