WorldWideScience

Sample records for tbcu7-type sm-co matrix

  1. A model relating remanence and microstructure of SmCo5 magnets

    International Nuclear Information System (INIS)

    Campos, M.F. de; Machado, R.; Landgraf, F.J.G.; Rodrigues, D.; Romero, S.A.; Neiva, A.C.; Missell, F.P.

    1998-01-01

    The question of remanence in SmCo 5 sintered magnets is reviewed, giving special attention to the influence of microstructure. In SmCo 5 magnets, the microstructural constituents are the matrix phase SmCo 5 , another ferromagnetic phase (Sm 2 Co 7 ), oxides (Sm 2 O 3 ), a recently reported carbide SmCoC 2 and pores. A method to estimate alignment via the ratio J r /J s from remanence measurements and microstructural analysis is proposed. The results agree very well with the degree of alignment calculated from Schulz pole figures. During sintering it was observed that the nucleation of SmCo 5 on the Sm 2 Co 7 phase is epitaxial. Hexagonal Sm 2 Co 7 is present in our sintered magnets but rhombohedral Sm 2 Co 7 may also be present. The effect of chemical composition (Sm content and oxygen content) on remanence and on the ratio J r /J s was evaluated. In the sintering step, the densification occurs more slowly for compositions with higher samarium content (or higher Sm 2 Co 7 volume fraction). A model able to calculate the best chemical composition to maximize coercivity and remanence is presented and discussed. (orig.)

  2. PVD Ti coatings on Sm-Co magnets

    International Nuclear Information System (INIS)

    Bovda, O.M.; Bovda, V.O.; Garkusha, I.E.; Leonov, S.O.; Onishchenko, L.V.; Tereshin, V.I.; Totrika, O.S.; Chen, C.H.

    2008-01-01

    The combination of conventional ion-plasma deposition (PVD) and pulsed plasma technologies (PPT) has been applied for rare-earth Sm-Co based magnets, to provide them with enhanced corrosion resistance. The influence of pulsed plasma treatment on Sm-Co magnets with deposited titanium PVD coatings has been investigated. It was revealed that thickness of modified layer significantly depends on the thickness of initial titanium film and plasma treatment regimes. As a result of plasma treatment with energy density of 30 J/cm 2 and pulse duration of ∼ 5 μs fine-grained layer with the thickness of 70 microns has been formed on the Sm-Co magnet with pure titanium film of 50 micron. According to SEM analyses considerable diffusion of titanium to the bulk of the magnet, on the depth of 20 microns, took place. Such reaction enhances strong bonding between the coating and the magnet

  3. Electron back scattered diffraction study of SmCo magnets

    Energy Technology Data Exchange (ETDEWEB)

    Yonamine, T. [Divisao de Metrologia de Materiais-INMETRO, Av. Nossa Senhora das Gracas, 50 (Xerem), 25250-020 Duque de Caxias, RJ (Brazil)], E-mail: tyfukuhara@inmetro.gov.br; Fukuhara, M.; Machado, R. [Divisao de Metrologia de Materiais-INMETRO, Av. Nossa Senhora das Gracas, 50 (Xerem), 25250-020 Duque de Caxias, RJ (Brazil); Missell, F.P. [Divisao de Metrologia de Materiais-INMETRO, Av. Nossa Senhora das Gracas, 50 (Xerem), 25250-020 Duque de Caxias, RJ (Brazil); Departamento de Fisica e Quimica, Centro de Ciencias Exatas e Tecnologia, Universidade de Caxias do Sul, 95070-560 Caxias do Sul, RS (Brazil)

    2008-07-15

    The remanence and energy product of permanent magnets is a strong function of their crystallographic texture. Electron back scattered diffraction (EBSD) is a tool for texture analysis providing information about the atomic layers up to 50 nm below the surface of the material. This paper discusses experimental requirements for performing EBSD measurements on rare-earth permanent magnets and presents results on commercial SmCo magnet material. EBSD measurements proved to be very sensitive to misaligned grains and were sensitive to texture in good agreement with information provided by X-ray diffraction scans. Results for nanostructured Sm(CoFeCuZr){sub z} magnets are also discussed.

  4. Multiple magnetic transitions in SmCoAsO

    Directory of Open Access Journals (Sweden)

    Yongliang Chen

    2011-12-01

    Full Text Available The magnetic properties of SmCoAsO have been investigated. Our results differ from early observations. Complicated magnetism consists of antiferromagnetic, ferromagnetic, ferrimagnetic and paramagnetic, even diamagnetism at low field has been observed. A metamagnetic transition was observed, resulting from a canting of the spins. The interaction between two Co sublattices with canted-structure might take responsibility for the multiple magnetic transitions. Electrical resistivity data indicate that SmCoAsO is metallic conductor with room temperature resistivity of 0.51669 mΩ-cm. Negative magnetoresistance effect suggests a significant suppression of spin-flip scattering by the applied magnetic field. The magnetic phase diagram has been established.

  5. High coercivity Sm-Co thin films from elemental Sm/Co multilayer deposition and their microstructural aspects

    Energy Technology Data Exchange (ETDEWEB)

    Krishnan, M. [Surface Engineering Division, CSIR-National Aerospace Laboratories, Bangalore 560 017 (India); Department of Physics, National Institute of Technology Calicut, Calicut 673601 (India); Predeep, P. [Department of Physics, National Institute of Technology Calicut, Calicut 673601 (India); Sridhara Rao, D.V. [Defence Metallurgical Research Laboratories, Hyderabad 500058 (India); Prajapat, C.L.; Singh, M.R. [Technical Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Barshilia, Harish C. [Surface Engineering Division, CSIR-National Aerospace Laboratories, Bangalore 560 017 (India); Chowdhury, P., E-mail: pchowdhury@nal.res.in [Surface Engineering Division, CSIR-National Aerospace Laboratories, Bangalore 560 017 (India)

    2017-05-15

    Hard magnetic thin films with high coercivity were fabricated by magnetron sputtering on MgO(100) and quartz substrates. The films were grown by depositing sequentially Sm and Co layers at an elevated substrate temperature of 500 °C. Subsequent post-annealing was carried out at various temperatures in range of 500–700 °C to form Sm-Co hard magnetic thin films. X-ray diffraction studies revealed the formation of randomly oriented SmCo{sub 5} crystallites on quartz substrate, whereas, a textured growth of Sm{sub 2}Co{sub 7} with strong (110) crystalline phases was observed on MgO substrate. Microstructural analyses were carried out using Transmission Electron Microscopy (TEM) for samples grown on MgO substrate at 650 °C and inferred the presence of high density planar defects along with large grain boundaries. Further microdiffraction studies confirmed the presence of SmCo{sub 3} as an impurity phase in the films. Magnetic hysteresis measurements indicate the square hysteresis behaviors with high coercivity value of 3.1 T and 2.7 T for 650 °C annealed samples on both MgO and quartz substrates, respectively. The origin of such high coercivity value was then correlated with pinning type of spin reversal mechanism as confirmed through the analyses of demagnetization curves. The magnetic force microscopy images for films on MgO substrate, annealed at 650 °C, revealed the presence of magnetic domains with size higher than 1 µm. The formed magnetic domains lacked well defined boundaries indicating an enhanced exchange coupling between the grain clusters. - Highlights: • Ewald technique in micromagnetic simulations with periodic boundary conditions. • Effect of micromagnetic parameters on hysteresis in exchange spring magnets. • Importance of the interface exchange coupling for hard-soft nanocomposites. • Geometry dependence of the optimal soft phase size in exchange spring magnets.

  6. Magnetic leverage effects in amorphous SmCo/CoAlZr heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Procter, R. A., E-mail: r.a.procter@warwick.ac.uk; Hase, T. P. A. [Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom); Magnus, F.; Andersson, G.; Hjörvarsson, B. [Department of Physics and Astronomy, Uppsala University, Box 516, 751 20 Uppsala (Sweden); Sánchez-Hanke, C. [National Synchrotron Light Source, Brookhaven National Laboratory, Upton, New York 11973 (United States)

    2015-08-10

    Although magnetic heterostructures are the basis of many magnetic technologies, the mechanisms involved in magnetization reversals in such structures are not fully understood, especially in amorphous multilayers. Here, we report on the SmCo/CoAlZr system and exploit resonant magnetic x-ray scattering to probe the element specific magnetization reversals. When combined into a tri-layer structure, two different switching fields and reversal mechanisms are observed for the Sm and Co sub-lattices. We argue that the decoupling of the sub-lattices arises from the local distribution of atomic species within the amorphous matrix leading to a strong magnetic leverage effect and exchange pinning. The decoupling arises due to strong interactions between regions of high Co density which span the interface. The relatively sparse interactions between Sm and Co induce a localized pinning of the Co-rich areas, resulting in an exchange bias in minor loops and an enhanced coercivity.

  7. Measurements of the elastic stiffness constants of single-crystal SmCo5 and of liquid-phase sintered SmCo5 permanent magnet material

    International Nuclear Information System (INIS)

    Doane, D.A.

    1977-01-01

    The five elastic stiffness constants were determined for both single-crystal SmCo 5 and for the commercially processed liquid-phase sintered (LPS) SmCo 5 permanent magnet material. The LPS material is an aligned polycrystalline aggregate of SmCo 5 crystallites oriented so that their magnetically easy c axes are approximately parallel. The elastic constants were obtained from the velocities of propagation of ultrasound in various directions in samples of known thickness and density. For the single crystal, the room-temperature values of the constants (in units of 10 12 dyn/cm 2 ) are c 11 =1.968 +- 2%, c 12 =1.032 +- 4%, c 13 =1.049 +- 4%, c 33 =2.398 +- 2%, and c 44 =0.483 +- 2%, and for the LPS permanent magnet material, c 11 =1.330 +- 2%, c 12 =0.616 +- 5%, c 13 =0.485 +- 5%, c 33 =1.659 +- 2%, and c 44 =0.419 +- 2%. The decrease in elastic constants in SmCo 5 relative to cobalt can be related qualitatively to a corresponding decrease in the number of nearest-neighbor cobalt bonds in SmCo 5

  8. A new synthesis of SmCo5 particles with high magnetic performance through spray pyrolysis

    Science.gov (United States)

    Li, Qingda; Guo, Jianyong; Sha, Long

    2018-03-01

    SmCo5 particles were synthesized by a spray pyrolysis process with in situ hydrogen (H2) reduction. The as-synthesized particles showed homogenous elemental distribution and low crystallization. The crystallization of the as-synthesized SmCo5 particles was further increased by annealing at 700 °C in Ar environment. After the annealing, the SEM images showed that surface roughness of the particles was increased due to the reordering of the atoms, the XRD patterns showed that the crystallization of the particles was increased, and VSM characterization showed that the magnetic properties were improved. Finally, the magnetic properties of SmCo5 particles synthesized in this report were compared with those in other reports. It was concluded that this paper proposed an easy way to synthesize high purity SmCo5 particles with high magnetic performance.

  9. Preparation, microstructure and magnetic properties of Sm(Co,Hf){sub 7}/Co nanocomposite particles by polyol method

    Energy Technology Data Exchange (ETDEWEB)

    Bu, Shao-Jing; Duan, Xiu-Li; Han, Xu-Hao; Sun, Ji-Bing, E-mail: hbgdsjb@126.com; Chi, Xiang; Cui, Chun-Xiang

    2017-02-01

    Hard/soft Sm-Co/Co nanocomposite particles were prepared by reducing CoCl{sub 2}·6H{sub 2}O in the solution containing ball-milled Sm(Co, Hf){sub 7} particles by a simple polyol method with ethylene glycol as the solvent. Phase composition, microstructure and magnetic properties of the particles were analyzed by XRD, TEM (HRTEM) and VSM, respectively. It has been found that Sm-Co/Co core/shell structure is formed in which the Co shell is 3–5 nm in thickness and mainly exists in hcp-Co phase. At the same time, fcc-Co tends to nucleate and grow independently between Sm-Co particles. The formation mechanism of Sm-Co/Co composite particles is discussed and corresponding model is established. Sm-Co/Co composite particles perform obvious remanence enhancement effects especially after being heated at 450 °C for 15 min.

  10. Preparation and structure characterization of SmCo5(0001) epitaxial thin films grown on Cu(111) underlayers

    International Nuclear Information System (INIS)

    Ohtake, Mitsuru; Nukaga, Yuri; Futamoto, Masaaki; Kirino, Fumiyoshi

    2009-01-01

    SmCo 5 (0001) epitaxial films were prepared on Cu(111) single-crystal underlayers formed on Al 2 O 3 (0001) substrates at 500 deg. C. The nucleation and growth mechanism of (0001)-oriented SmCo 5 crystal on Cu(111) underlayer is investigated and a method to control the nucleation is proposed. The SmCo 5 epitaxial thin film formed directly on Cu underlayer consists of two types of domains whose orientations are rotated around the film normal by 30 deg. each other. By introducing a thin Co seed layer on the Cu underlayer, a SmCo 5 (0001) single-crystal thin film is successfully obtained. Nucleation of SmCo 5 crystal on Cu underlayer seems controllable by varying the interaction between the Cu underlayer and the SmCo 5 layer

  11. Preparation, microstructure and magnetic properties of Sm(Co,Hf)7/Co nanocomposite particles by polyol method

    Science.gov (United States)

    Bu, Shao-Jing; Duan, Xiu-Li; Han, Xu-Hao; Sun, Ji-Bing; Chi, Xiang; Cui, Chun-Xiang

    2017-02-01

    Hard/soft Sm-Co/Co nanocomposite particles were prepared by reducing CoCl2·6H2O in the solution containing ball-milled Sm(Co, Hf)7 particles by a simple polyol method with ethylene glycol as the solvent. Phase composition, microstructure and magnetic properties of the particles were analyzed by XRD, TEM (HRTEM) and VSM, respectively. It has been found that Sm-Co/Co core/shell structure is formed in which the Co shell is 3-5 nm in thickness and mainly exists in hcp-Co phase. At the same time, fcc-Co tends to nucleate and grow independently between Sm-Co particles. The formation mechanism of Sm-Co/Co composite particles is discussed and corresponding model is established. Sm-Co/Co composite particles perform obvious remanence enhancement effects especially after being heated at 450 °C for 15 min

  12. A revision of the Sm-rich region of the Sm-Co system

    International Nuclear Information System (INIS)

    Yuan, Y.; Delsante, S.; Yi, J.; Borzone, G.

    2010-01-01

    Research highlights: → The Sm-rich side of the Sm-Co system has been experimentally reinvestigated using Differential Scanning Calorimetry (DSC), microscope and X-Ray diffraction (XRD) analyses. → Results confirm the existence of the Sm 3 Co and Sm 5 Co 2 phases. → Five invariant reactions have been determined in the Sm-rich region. - Abstract: The Sm-rich side of the Sm-Co system has been experimentally reinvestigated using the differential scanning calorimetry (DSC) method with slow rates of 1 o C/min and 0.5 o C/min as well as microscope and X-ray diffraction (XRD) analyses. Combining the experimental results from DSC, XRD and EPMA (Electron Probe MicroAnalysis) analyses, five invariant reactions have been determined and the existence of the Sm 3 Co and Sm 5 Co 2 phases confirmed. The phase diagram of Sm-Co system has been accordingly modified.

  13. Effect of ball milling process on coercivity of nanocrystalline SmCo5 magnets

    Science.gov (United States)

    Fang, Lei; Zhang, Tianli; Wang, Hui; Jiang, Chengbao; Liu, Jinghua

    2018-01-01

    In this paper, the effect of ball milling process on remanence and coercivity of nanocrystalline SmCo5 magnets was systematically investigated. Nanocrystalline SmCo5 magnets were prepared by high energy ball milling and spark plasma sintering. And their vast difference of remanence and coercivity were analyzed thoroughly. The anisotropic SmCo5 magnets prepared by wet-milling with surfactant (oleylamine, OY) have high remanence, but the coercivity is much lower than the isotropic magnets prepared by dry-milling. Further analysis indicates the milling process induced changes on the size and shape of grains are the key factors influencing the coercivity. The amorphous powders prepared by dry-milling were crystallized during sintering and the magnets have small and homogeneous grains, while the anisotropic nanoflakes prepared by wet-milling could be well oriented but the magnets have lower coercivity due to the larger and inhomogeneous grains.

  14. Coercivity in SmCo hard magnetic films for MEMS applications

    International Nuclear Information System (INIS)

    Pina, E.; Palomares, F.J.; Garcia, M.A.; Cebollada, F.; Hoyos, A. de; Romero, J.J.; Hernando, A.; Gonzalez, J.M.

    2005-01-01

    In this work we have investigated the thermal dependence of coercivity in 1.5 μm thick SmCo 5 films fabricated by sputtering technique. Samples were deposited onto Si substrates kept at different temperatures. Samples grown below 450 deg. C are amorphous, present low coercivity and require further crystallization processes in order to obtain the 1:5 SmCo hard phase. Samples grown at 450 deg. C are nanocrystalline in the as-deposited state and exhibit high room temperature in-plane coercivity. Correlation between the thermal dependence of coercivity and the nanostructure has been analyzed in the frame of the so-called micromagnetic model

  15. Magnetic properties of sintered high energy sm-co and nd-fe-b magnets

    Directory of Open Access Journals (Sweden)

    Talijan Nadežda M.

    2006-01-01

    Full Text Available Magnetic properties of permanent magnetic materials based on intermetallic compounds of Sm-Co and Nd-Fe-B are in direct dependence on the microstructure. In the first part of this paper, having in mind the importance of the regime of sintering and heat treatment to obtain the optimal magnetic structure, yet another approach in defining the most adequate technological parameters of the sintering process for applied heat treatment conditions was made. The goal of these investigations was to use the correlation that exists between sintering conditions (temperature and time and intensity of the diffraction peak of the (111 plane of the SmCo5 phase to optimize. In the second part a brief overview of high energy magnetic materials based on Nd-Fe-B is presented with special emphasis to the current research and development of high remanent nanocomposite magnetic materials based on Nd-Fe-B alloys with a reduced Nd content. Part of experimental results gained during research of the sintering process of SmCo5 magnetic materials were realized and published earlier. The scientific meeting devoted to the 60th anniversary of Frankel’s theory of sintering was an opportunity to show once more the importance and role of sintering in optimization of the magnetic microstructure of sintered Sm Co5 magnetic materials.

  16. Exchange-coupled nanoscale SmCo/NdFeB hybrid magnets

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Dapeng; Poudyal, Narayan; Rong, Chuanbing; Zhang, Ying; Kramer, Matthew J.; Liu, J. Ping

    2012-05-11

    Nanoscalehybridmagnets containing SmCo5 and Nd2Fe14B hard magnetic phases have been produced via a novel “in-one-pot” processing route. The grain size of the processed bulk composite materials is controlled below 20 nm. The refinement of the nanoscale morphology leads to effective inter-phase exchange coupling that results in single-phase like magnetic properties. Energy product of 14 MGOe was obtained in the isotropic nanocomposite magnets at room temperature. At elevated temperatures, the hybridmagnets have greatly improved thermal stability compared to the Nd2Fe14B single-phase counterpart and have substantially increased magnetization and energy products compared to the single-phase SmCo5 counterpart.

  17. Plasma spraying of hard magnetic coatings based on Sm-Co alloys

    International Nuclear Information System (INIS)

    KrasnoyarskiyRabochiy prospect, Krasnoyarsk, 660014 (Russian Federation))" data-affiliation=" (Siberian State Aerospace University named after Academician M.F. Reshetnev 31 KrasnoyarskiyRabochiy prospect, Krasnoyarsk, 660014 (Russian Federation))" >Saunin, V N; KrasnoyarskiyRabochiy prospect, Krasnoyarsk, 660014 (Russian Federation))" data-affiliation=" (Siberian State Aerospace University named after Academician M.F. Reshetnev 31 KrasnoyarskiyRabochiy prospect, Krasnoyarsk, 660014 (Russian Federation))" >Telegin, S V

    2015-01-01

    Our research is focused on the formation of hard magnetic coatings by plasma spraying an arc-melted Sm-Co powder. We have studied basic magnetic characteristics depending on the components ratio in the alloy. A sample with a 40 wt.% Sm coating exhibits the highest coercive force (63 kOe) as compared to near-to-zero coercive force in the starting powder. X-ray structure analysis of the starting alloy and the coating reveals that the amount of SmCo 5 phase in the sprayed coating increases occupying up to 2/3 of the sample. We have also studied temperature dependence of the coating and have been able to obtain plasma sprayed permanent magnets operating within the temperature range from -100 to +500 °C. The technique used does not involve any additional thermal treatment and allows a coating to be formed right on the magnetic conductor surface irrespective of the conductor geometry

  18. Coercivity in SmCo hard magnetic films for MEMS applications

    Energy Technology Data Exchange (ETDEWEB)

    Pina, E. [Instituto de Magnetismo Aplicado, RENFE-UCM, Universidad Complutense de Madrid, P.O. Box 155, 28230 Las Rozas, Madrid (Spain)]. E-mail: epina@renfe.es; Palomares, F.J. [Instituto de Ciencia de Materiales de Madrid-CSIC, c/ Sor Juana Ines de la Cruz s/n, 28049 Madrid (Spain); Garcia, M.A. [Instituto de Magnetismo Aplicado, RENFE-UCM, Universidad Complutense de Madrid, P.O. Box 155, 28230 Las Rozas, Madrid (Spain); Cebollada, F. [Departamento de Fisica Aplicada a las Telecomunicaciones, EUITT-UPM, Crtra. De Valencia km 7, 28031 Madrid (Spain); Hoyos, A. de [Instituto de Magnetismo Aplicado, RENFE-UCM, Universidad Complutense de Madrid, P.O. Box 155, 28230 Las Rozas, Madrid (Spain); Romero, J.J. [Instituto de Magnetismo Aplicado, RENFE-UCM, Universidad Complutense de Madrid, P.O. Box 155, 28230 Las Rozas, Madrid (Spain); Hernando, A. [Instituto de Magnetismo Aplicado, RENFE-UCM, Universidad Complutense de Madrid, P.O. Box 155, 28230 Las Rozas, Madrid (Spain); Unidad asociada ICMM-IMA. P.O. Box 155, 28230 Las Rozas Madrid (Spain); Gonzalez, J.M. [Unidad asociada ICMM-IMA. P.O. Box 155, 28230 Las Rozas Madrid (Spain)

    2005-04-15

    In this work we have investigated the thermal dependence of coercivity in 1.5 {mu}m thick SmCo{sub 5} films fabricated by sputtering technique. Samples were deposited onto Si substrates kept at different temperatures. Samples grown below 450 deg. C are amorphous, present low coercivity and require further crystallization processes in order to obtain the 1:5 SmCo hard phase. Samples grown at 450 deg. C are nanocrystalline in the as-deposited state and exhibit high room temperature in-plane coercivity. Correlation between the thermal dependence of coercivity and the nanostructure has been analyzed in the frame of the so-called micromagnetic model.

  19. A nanocrystalline Sm-Co compound for high-temperature permanent magnets.

    Science.gov (United States)

    Zhang, Zhexu; Song, Xiaoyan; Qiao, Yinkai; Xu, Wenwu; Zhang, Jiuxing; Seyring, Martin; Rettenmayr, Markus

    2013-03-21

    The inherently high magnetic anisotropy and nanoscale grain size in a Sm5Co19 compound result in an intrinsic coercivity far higher than those of known Sm-Co compounds prior to orientation treatment. The combination of ultrahigh intrinsic coercivity, high Curie temperature and low coercivity temperature coefficient of nanocrystalline Sm5Co19 as a single phase material shows it to be a very promising compound to develop outstanding high-temperature permanent magnets.

  20. Domain wall pinning by magnetic inhomogeneities in Sm(CoNi) sub 2. 5

    Energy Technology Data Exchange (ETDEWEB)

    Chen, X.; Gaunt, P. (Department of Physics, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada (CA))

    1990-05-01

    Domain wall (thin 180{degree} wall) pinning by pinning sites of atomic size is studied by a new model which is based on the argument that the temperature dependence of the coercivity originates from both thermal activation of the domain wall and the temperature dependence of the height of the energy barriers. This model successfully describes the temperature dependence of the coercivity of a Sm(CoNi){sub 2.5} ferromagnet.

  1. Exchange-coupled nanoscale SmCo/NdFeB hybrid magnets

    Energy Technology Data Exchange (ETDEWEB)

    Wang Dapeng; Poudyal, Narayan; Rong, Chuanbing [Department of Physics, University of Texas at Arlington, Arlington, TX 76019 (United States); Zhang Ying [Department of Physics, University of Texas at Arlington, Arlington, TX 76019 (United States); Materials Science and Engineering, Ames Laboratory, USDOE, Iowa State University, Ames, IA 50011 (United States); Kramer, M.J. [Materials Science and Engineering, Ames Laboratory, USDOE, Iowa State University, Ames, IA 50011 (United States); Liu, J. Ping, E-mail: pliu@uta.edu [Department of Physics, University of Texas at Arlington, Arlington, TX 76019 (United States)

    2012-09-15

    Nanoscale hybrid magnets containing SmCo{sub 5} and Nd{sub 2}Fe{sub 14}B hard magnetic phases have been produced via a novel 'in-one-pot' processing route. The grain size of the processed bulk composite materials is controlled below 20 nm. The refinement of the nanoscale morphology leads to effective inter-phase exchange coupling that results in single-phase like magnetic properties. Energy product of 14 MGOe was obtained in the isotropic nanocomposite magnets at room temperature. At elevated temperatures, the hybrid magnets have greatly improved thermal stability compared to the Nd{sub 2}Fe{sub 14}B single-phase counterpart and have substantially increased magnetization and energy products compared to the single-phase SmCo{sub 5} counterpart. - Highlights: Black-Right-Pointing-Pointer We realize interphase exchange coupling in nanoscale SmCo{sub 5}/Nd{sub 2}Fe{sub 14}B magnets. Black-Right-Pointing-Pointer We observe homogenously distributed two-phase grains with size smaller than 20 nm. Black-Right-Pointing-Pointer We observe a common Curie temperature in the hybrid magnet. Black-Right-Pointing-Pointer High-temperature magnetic properties of the hybrid magnets greatly improved. Black-Right-Pointing-Pointer Plastic deformation of composite materials leads to self-nanoscaling of grains.

  2. An alternative gas sensor material: Synthesis and electrical characterization of SmCoO3

    International Nuclear Information System (INIS)

    Michel, Carlos Rafael; Delgado, Emilio; Santillan, Gloria; Martinez, Alma H.; Chavez-Chavez, Arturo

    2007-01-01

    Single-phase perovskite SmCoO 3 was prepared by a wet-chemical synthesis technique using metal-nitrates and citric acid; after its characterization by thermal analyses and X-ray diffraction, sintering at 900 deg. C in air, gave single phase and well crystallized powders. The powders were mixed with an organic solvent to prepare a slurry, which was deposited on alumina substrates as thick films, using the screen-printing technique. Electrical and gas sensing properties of sintered SmCoO 3 films were investigated in air, O 2 and CO 2 , the results show that sensitivity reached a maximum value at 420 deg. C, for both gases. Dynamic tests revealed a better behavior of SmCoO 3 in CO 2 than O 2 , due to a fast response and a larger electrical resistance change to this gas. X-ray diffraction made on powders after electrical characterization in gases, showed that perovskite-type structure was preserved

  3. Recycled Sm-Co bonded magnet filaments for 3D printing of magnets

    Science.gov (United States)

    Khazdozian, Helena A.; Manzano, J. Sebastián; Gandha, Kinjal; Slowing, Igor I.; Nlebedim, Ikenna C.

    2018-05-01

    Recycling of rare earth elements, such as Sm and Nd, is one technique towards mitigating long-term supply and cost concerns for materials and devices that depend on these elements. In this work recycled Sm-Co powder recovered from industrial grinding swarfs, or waste material from magnet processing, was investigated for use in preparation of filament for 3D printing of bonded magnets. Recycled Sm-Co powder recovered from swarfs was blended into polylactic acid (PLA). Up to 20 vol.% of the recycled Sm-Co in PLA was extruded at 160°C to produce a filament. It was demonstrated that no degradation of magnetic properties occurred due to the preparation or extrusion of the bonded magnet material. Good uniformity of the magnetic properties is exhibited throughout the filament, with the material first extruded being the exception. The material does exhibit some magnetic anisotropy, allowing for the possibility of the development of anisotropic filaments. This work provides a path forward for producing recycled magnetic filament for 3D printing of permanent magnets.

  4. Effects of substrate temperature and Cu underlayer thickness on the formation of SmCo5(0001) epitaxial thin films

    International Nuclear Information System (INIS)

    Ohtake, Mitsuru; Nukaga, Yuri; Futamoto, Masaaki; Kirino, Fumiyoshi

    2010-01-01

    SmCo 5 (0001) epitaxial thin films were prepared on Cu(111) underlayers heteroepitaxially grown on Al 2 O 3 (0001) single-crystal substrates by molecular beam epitaxy. The effects of substrate temperature and Cu underlayer thickness on the crystallographic properties of SmCo 5 (0001) epitaxial films were investigated. The Cu atoms of underlayer diffuse into the SmCo 5 film and substitute the Co sites in SmCo 5 structure forming an alloy compound of Sm(Co,Cu) 5 . The ordered phase formation is enhanced with increasing the substrate temperature and with increasing the Cu underlayer thickness. The Cu atom diffusion into the SmCo 5 film is assisting the formation of Sm(Co,Cu) 5 ordered phase.

  5. Microstructure, magnetic properties and magnetic hardening in 2:17 Sm-Co magnets

    International Nuclear Information System (INIS)

    Tang, W.; Zhang, Y.; Hadjipanayis, G.C.

    2002-01-01

    A comprehensive and systematic study has been made on Sm(Co,Fe,M,L) z magnets (M=Cu or Ni, and L=Zr or Ti) to completely understand the effects of composition and processing on the microstructure and magnetic properties of magnets. Ti-containing magnets do not have a lamellar phase but exhibit only a cellular microstructure, resulting in a much lower coercivity (below 10 kOe). Ni-containing magnets exhibit a perfect cellular/lamellar microstructure, but without a large domain wall energy gradient at the interface of the 2:17 and 1:5 phases, leading to a low coercivity. Only in the magnets containing both Cu and Zr, a uniform and stable cellular/lamellar microstructure with a high domain wall energy gradient across the 1:5 phase is formed, resulting in high coercivity. These results indicate that the conditions for effective magnetic hardening are: (1) Formation of a cellular/lamellar microstructure, and (2) establishment of a domain wall energy gradient at the cell boundaries. Based on all of these experimental results, the magnetization reversal mechanism of 2:17 Sm-Co magnets can be explained by both the domain wall pinning and nucleation models. The nucleation mechanism holds at any temperature in the Cu-rich magnets, and only above the Curie temperature of the 1:5 phase in the alloys with the lower Cu content. In these cases, the 2:17 cells become magnetically decoupled. (orig.)

  6. Study of magnetic hardening in Sm(Co/sub 1-x/Cu/sub x/)/sub 5/ alloy

    International Nuclear Information System (INIS)

    Awan, M.S.; Bhatti, A.S.; Farooque, M.

    2008-01-01

    Magnetic hardening has been examined in the samarium (Sm), cobalt (Co) and copper (Cu) fused permanent magnets by correlating the magnetic properties with annealing temperature and microstructure of the samples. For the Sm(Co/sub 1-x/Cu/sub x/)/sub 5/ system, with various copper contents (x=0, 0.2, 0.3, 0.4 and 0.5) the shape of initial magnetization curve indicated that the magnetic hardening process involved in these types of magnets consists of domain wall pinning type. This is consistent with the microstructure studies which show the existence of nonmagnetic Cu-rich precipitates in the Co-rich matrix. Copper substituted samples were annealed in the temperature range (300 -1000) degree C for 3h under the protective atmosphere of argon (Ar) gas. Both cast and annealed samples prepared by tri-arc melting technique exhibit two-phase microstructure responsible for enhanced magnetic properties. Metallographic and surface studies were carried out using a digital optical microscope (OM). X-ray diffraction (XRD) studies confirmed that the alloys solidefied in the hexagonal crystal structure. The lattice parameters and unit cell volume increase with increasing Cu content. Scanning electron microscope (SEM) coupled with energy dispersive X-ray (EDX) was used to examine the surface morphology, compositional variations, elemental segregations, formation and effect of annealing on the different phases. Later these parameters were related to the magnetic properties. Copper-rich phase precipitates in the Co- rich matrix may serves as the pinning centers for the domain wall motion. Introduction of these pinning centers improved the magnetic hardening of the alloy. Annealing the Cu-substituted alloy further improved the magnetic properties. During annealing, diffusion of copper played the key role for enhanced magnetic properties. It was found that both Cu substitution and subsequent annealing are the dominating factors determining the magnetic properties of these magnetic

  7. First-order-reversal-curve analysis of exchange-coupled SmCo/NdFeB nanocomposite alloys

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Mingxiang; Zhang, Pengyue, E-mail: Zhang_pengyue@cjlu.edu.cn; Ge, Hongliang; Yu, Nengjun; Wu, Qiong

    2014-06-01

    Exchange-coupled SmCo{sub 5}/Nd{sub 2}Fe{sub 14}B nanocomposite magnets have been fabricated by ball milling of the micrometer sized SmCo{sub 5} and Nd{sub 2}Fe{sub 14}B powders. The influence of Nd{sub 2}Fe{sub 14}B content on the microstructure and magnetic properties of these hybrid alloys was investigated. The alloys that show strong intergrain exchange-coupling behavior with (BH){sub max}=2.95 MGOe was obtained when the two hard phases are well coupled. A first-order-reversal-curve (FORC) analysis was performed for both SmCo{sub 5} single-phase magnet and SmCo{sub 5}/Nd{sub 2}Fe{sub 14}B hybrid magnet; the FORC diagrams results show two major peaks for the hybrid magnets. In both cases, the magnetization reversal behaviors for these alloys were discussed in detail and are consistent with the results of δM plots. - Highlights: • Exchange-coupled SmCo{sub 5}/Nd{sub 2}Fe{sub 14}B nanocomposite magnets were studied. • Magnetization reversal behaviors of the hybrid magnet were discussed. • The FORCs analysis is taken to identify the optimal conditions for hybrid magnet.

  8. Enhanced magnetostriction derived from magnetic single domain structures in cluster-assembled SmCo films

    Science.gov (United States)

    Bai, Yulong; Yang, Bo; Guo, Fei; Lu, Qingshan; Zhao, Shifeng

    2017-11-01

    Cluster-assembled SmCo alloy films were prepared by low energy cluster beam deposition. The structure, magnetic domain, magnetization, and magnetostriction of the films were characterized. It is shown that the as-prepared films are assembled in compact and uniformly distributed spherical cluster nanoparticles, most of which, after vacuum in situ annealing at 700 K, aggregated to form cluster islands. These cluster islands result in transformations from superparamagnetic states to magnetic single domain (MSD) states in the films. Such MSD structures contribute to the enhanced magnetostrictive behaviors with a saturation magnetostrictive coefficient of 160 × 10-6 in comparison to 105 × 10-6 for the as-prepared films. This work demonstrates candidate materials that could be applied in nano-electro-mechanical systems, low power information storage, and weak magnetic detecting devices.

  9. Studies of SmCo5/Fe nanocomposite magnetic bilayers with magnetic soft x-ray transmission microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Shahzad, F.; Siddiqi, S. A.; Im, M.-Y.; Avallone, A.; Fischer, P.; Hussain, Z.; Siddiqi, I.; Hellman, F.; Zhao, J.

    2009-12-04

    A hard/soft SmCo{sub 5}/Fe nanocomposite magnetic bilayer system has been fabricated on X-ray transparent 100-200 nm thin Si{sub 3}N{sub 4} membranes by magnetron sputtering. The microscopic magnetic domain pattern and its behavior during magnetization reversal in the hard and soft magnetic phases have been individually studied by element specific magnetic soft x-ray microscopy at a spatial resolution of better than 25nm. We observe that the domain patterns for soft and hard phases switch coherently throughout the full hysteresis cycle upon applying external magnetic fields. We derived local M(H) curves from the images for Fe and SmCo5 separately and found switching for both hard and soft phases same.

  10. Effect of Flake Thickness on Coercivity of Nanocrystalline SmCo5 Bulk Prepared from Anisotropic Nanoflake Powder (Postprint)

    Science.gov (United States)

    2016-08-23

    enabling higher coercivity. As the heat treatment takes place these defects reduce in concentration allowing easier domain wall movement and therefore...1,2 Intensive milling and subsequent annealing have been used to pro- duce nanocrystalline Sm-Co magnets.3–5 However, the magnets are usually obtained...grinded down to the designated particle size. The starting powder was milled in a stainless steel vial on a SPEX 8000 mill. Milling balls with

  11. Modeling hysteresis curves of anisotropic SmCoFeCuZr magnets

    Energy Technology Data Exchange (ETDEWEB)

    Sampaio da Silva, Fernanda A. [Programa de Pos-Graduacao em Engenharia Metalurgica-PUVR, Universidade Federal Fluminense, Av dos Trabalhadores 420, 27255-125 Volta Redonda, RJ (Brazil); Castro, Nicolau A. [Instituto de Pesquisas Tecnologicas, Sao Paulo, SP (Brazil); Campos, Marcos F. de, E-mail: mcampos@metal.eeimvr.uff.br [Programa de Pos-Graduacao em Engenharia Metalurgica-PUVR, Universidade Federal Fluminense, Av dos Trabalhadores 420, 27255-125 Volta Redonda, RJ (Brazil)

    2013-02-15

    The hysteresis curves at room temperature and at 630 K of an anisotropic magnet were successfully modeled with the Stoner-Wohlfarth Callen-Liu-Cullen (SW-CLC) model. This implies that coherent rotation of domains is the reversal mechanism in this magnet. The chemical composition of the evaluated magnet is Sm(Co{sub bal}Fe{sub 0.06}Cu{sub 0.108}Zr{sub 0.03}){sub 7.2}. The anisotropy field H{sub A} was estimated with the model, resulting {mu}{sub 0}H{sub A}=7.1 T at the room temperature, and 2.9 T at 630 K. For this sample, the CLC interaction parameter (1/d) is very low (near zero) and, thus, the nanocrystalline 2:17 grains are well 'magnetically decoupled'. The texture analysis using Schulz Pole figure data indicated M{sub r}/M{sub s} ratio=0.96, and this means that the magnet is very well aligned. The excellent alignment of the grains is one of the reasons for the high coercivity of this sample ({approx}4 T at room temperature). - Highlights: Black-Right-Pointing-Pointer The Stoner-Wohlfarth model can describe the hysteresis curves of anisotropic Sm2Co17 magnets, since the Callen-Liu-Cullen correction is applied. Black-Right-Pointing-Pointer The anisotropy field of the hard magnetic phase Sm2Co17 can be estimated from the hysteresis curves of anisotropic magnets, since the crystallographic texture is known. Black-Right-Pointing-Pointer It is presented a texture study of commercial sintered Sm2Co17 type magnets. Black-Right-Pointing-Pointer The texture data can be used for evaluation of the squareness of the 2nd quadrant of the hysteresis curve, in Sm2Co17 hard coercivity magnets.

  12. Anisotropic SmCo5/FeCo core/shell nanocomposite chips prepared via electroless coating

    Directory of Open Access Journals (Sweden)

    Narayan Poudyal

    2015-08-01

    Full Text Available We report the preparation of anisotropic SmCo5/FeCo core/shell nanocomposite chip-like particles via an electroless coating process. The anisotropic SmCo5 nanoscale chips were first prepared by surfactant-assisted ball milling then coated with soft magnetic FeCo using cobalt sulfate (CoSO4.7H2O and iron sulfate (FeSO4.7H2O as metal precursors in presence of complexing agents. The influence of the soft-phase coating on the magnetic properties of the nanocomposite particles has been studied. The saturation magnetization of the composite particles increases with increasing coating while the coercivity decreases. The FeCo coated chips have an enhanced remanence (Mr = 44.5 emu/g with 16 wt % of FeCo compared to the uncoated chips (Mr = 36.7 emu/g, indicating exchange coupling between the hard and soft phases for the optimal soft-phase coating. Results of magnetic field alignment show the strong anisotropy of SmCo5/FeCo core/shell nanocomposite particles which can be used as building blocks of high-strength anisotropic magnets.

  13. A structural investigation of SmCo5/Fe nanostructured alloys obtained by high-energy ball milling and subsequent annealing

    International Nuclear Information System (INIS)

    Le Breton, J M; Larde, R; Chiron, H; Pop, V; Givord, D; Isnard, O; Chicinas, I

    2010-01-01

    SmCo 5 /Fe nanostructured alloys with 20 wt% Fe, obtained by high-energy ball milling of SmCo 5 and Fe powders, were investigated by 57 Fe Moessbauer spectrometry, x-ray diffraction and tomographic atom probe. The Moessbauer analysis reveals that during the first stages of milling, an interdiffusion of Co and Fe occurs, leading both to the formation of α-Fe(Co) regions in α-Fe and to the introduction of Fe in SmCo 5 regions. Annealing at temperatures up to 650 0 C for 0.5 h promotes interdiffusion further leading to the formation of a unique α-Fe(Co) phase and a Fe-richer Sm(Co,Fe) 5 phase. The Co/Fe interdiffusion is confirmed by tomographic atom probe analysis. The data are discussed and compared with the results of previous magnetic measurements.

  14. The Effects of Radiation and Thermal Stability of Sm-Co High Temperature Magnets For High Power Ion Propulsion, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Since high temperature Sm-Co based magnets were developed, a number of new applications have been introduced. NASA?s Xe+ ion propulsion engine used in Deep Space I...

  15. Microstructural changes during the slow-cooling annealing of nanocrystalline SmCo 2:17 type magnets

    International Nuclear Information System (INIS)

    Romero, S.A.; Campos, M.F. de; Castro, J.A. de; Moreira, A.J.; Landgraf, F.J.G.

    2013-01-01

    Highlights: ► Use of the Stoner-Wohlfarth Callen Liu Cullen model in 2:17 type magnets. ► Data suggest exchange coupling between Sm2(CoFe)17 and Sm(CoCu)5 phases. ► It is given structural data for phase Sm0.33Zr0.67TM3, with TM=Co,Fe,Cu. ► The beneficial effect of the slow cooling treatment is explained. - Abstract: The microstructure and magnetic properties of 2:17 type isotropic magnets were investigated. The slow cooling heat treatment (cooling at 1 °C/min from 820 to 400 °C, and isothermal treatment during 24 h) was interrupted after the temperatures of 820, 700, 600 and 500 °C and their hysteresis were measured with fields up to 9 T. The fully heat treated sample presented coercivity (μ 0 H) of 3.32 T, after 24 h at 400 °C. The microstructure was investigated with SEM–FEG (Scanning Electron Microscope with Field Emission Gun) and X-ray Diffraction Rietveld analysis. The application of the Stoner–Wohlfarth–Callen–Liu–Cullen (SW–CLC) model points out exchange coupling between ferromagnetic Sm 2 (CoFe) 17 nanocells and ferromagnetic Sm(CoCu) 5 present at the cell boundary phase. The results are interpreted with the double shell model: first-a cobalt-rich ferromagnetic Sm(CoCu) 5 shell originates exchange coupling and second-a copper-rich paramagnetic Sm(CuCo) 5 shell produces magnetic decoupling. This double shell helps to maximize coercivity and remanence. The anisotropy field of the Sm 2 (CoFe) 17 cell phase was estimated in 7 T with the SW–CLC model.

  16. The high squareness Sm-Co magnet having Hcb=10.6 kOe at 150°C

    Directory of Open Access Journals (Sweden)

    Hiroaki Machida

    2017-05-01

    Full Text Available The relationship between magnetic properties and magnetic domain structures of Sm(Fe, Cu, Zr, Co7.5 magnet was investigated. The developed Sm-Co magnet, which is conducted homogenization heat treatment at ingot state, high temperature short time sintering and long time solid solution heat treatment showed the maximum energy product, [BH]m of 34.0 MGOe and the coercivity, Hcb of 11.3 kOe at 20°C respectively. Moreover, Hcb of 10.6 kOe at 150°C was achieved. Heat treated ingot has clear 1-7 phase in mother phase from optical microscope observation. Kerr effect microscope with magnetic field applied was used to investigate magnetic domain structure. Reverse magnetic domains were generated evenly but generation of them from inside grain were not observed. Cell structure was observed by scanning transmission electron microscope and composition analysis was conducted by energy dispersive X-ray spectroscopy. Cell size was approximately 150 ∼ 300 nm, Fe and Cu were clearly separated and concentrated to 2-17 phase and 1-5 phase respectively. Moreover, Cu concentration went up to 40 at% in 1-5 phase. That means the gap of domain wall energy between 1-5 phase and 2-17 phase was increased due to microstructure control by conducting heat treatment for compositional homogeneity.

  17. Nucleation and pinning at 360degree domain walls in SmCo/sub 5/ and related alloys

    Energy Technology Data Exchange (ETDEWEB)

    Gaunt, P.; Mylvaganam, C.K.

    1977-06-01

    It is shown that in a high forward field neighboring 180degree ferromagnetic domain walls come together and either annihilate one another (''unwinding walls'') or combine to form 360degree walls separating domains magnetized in the same direction (''winding walls''). If the 360degree wall encounters:i an inhomogeneity of lower zero-field wall energy (infinityZAK), it may be pinned. A finite reverse field is then required to split the 360degree wall nucleus into two transient 180 degree walls which will reverse the magnetization. The model is developed micromagnetically and applied to the pinning of domain walls at grain boundary inhomogeneities in SmCo/sub 5/ alloys. The nucleation--unpinning coercive field is calculated for inhomogeneities which are assumed to have the magnetic properties of pure cobalt. Inhomogeneity widths from 55.6 to 204 A give coercive forces from zero to 3.8 x 10/sup 4/ Oe..A critical constants chosen, this thickness is 55.6 A It is suggested that one function of liquid-phase sintering may be to increase the inhomogeneity thickness beyond the critical value.

  18. Micro-patterning of NdFeB and SmCo magnet films for integration into micro-electro-mechanical-systems

    Energy Technology Data Exchange (ETDEWEB)

    Walther, A. [CEA Leti-MINATEC, 17 rue des Martyrs, 38054 Grenoble (France); Institut Neel, CNRS-UJF, 25 rue des Martyrs, 38042 Grenoble (France); Marcoux, C.; Desloges, B. [CEA Leti-MINATEC, 17 rue des Martyrs, 38054 Grenoble (France); Grechishkin, R. [Laboratory of Magnetoelectronics, Tver State University, 170000 Tver (Russian Federation); Givord, D. [Institut Neel, CNRS-UJF, 25 rue des Martyrs, 38042 Grenoble (France); Dempsey, N.M. [Institut Neel, CNRS-UJF, 25 rue des Martyrs, 38042 Grenoble (France)], E-mail: nora.dempsey@grenoble.cnrs.fr

    2009-03-15

    The integration of high-performance RE-TM (NdFeB and SmCo) hard magnetic films into micro-electro-mechanical-systems (MEMS) requires their patterning at the micron scale. In this paper we report on the applicability of standard micro-fabrication steps (film deposition onto topographically patterned substrates, wet etching and planarization) to the patterning of 5-8 {mu}m thick RE-TM films. While NdFeB comprehensively fills micron-scaled trenches in patterned substrates, SmCo deposits are characterized by poor filling of the trench corners, which poses a problem for further processing by planarization. The magnetic hysteresis loops of both the NdFeB and SmCo patterned films are comparable to those of non-patterned films prepared under the same deposition/annealing conditions. A micron-scaled multipole magnetic field pattern is directly produced by the unidirectional magnetization of the patterned films. NdFeB and SmCo show similar behavior when wet etched in an amorphous state: etch rates of approximately 1.25 {mu}m/min and vertical side walls which may be attributed to a large lateral over-etch of typically 20 {mu}m. Chemical-mechanical-planarization (CMP) produced material removal rates of 0.5-3 {mu}m/min for amorphous NdFeB. Ar ion etching of such films followed by the deposition of a Ta layer prior to film crystallization prevented degradation in magnetic properties compared to non-patterned films.

  19. Micro-patterning of NdFeB and SmCo magnet films for integration into micro-electro-mechanical-systems

    International Nuclear Information System (INIS)

    Walther, A.; Marcoux, C.; Desloges, B.; Grechishkin, R.; Givord, D.; Dempsey, N.M.

    2009-01-01

    The integration of high-performance RE-TM (NdFeB and SmCo) hard magnetic films into micro-electro-mechanical-systems (MEMS) requires their patterning at the micron scale. In this paper we report on the applicability of standard micro-fabrication steps (film deposition onto topographically patterned substrates, wet etching and planarization) to the patterning of 5-8 μm thick RE-TM films. While NdFeB comprehensively fills micron-scaled trenches in patterned substrates, SmCo deposits are characterized by poor filling of the trench corners, which poses a problem for further processing by planarization. The magnetic hysteresis loops of both the NdFeB and SmCo patterned films are comparable to those of non-patterned films prepared under the same deposition/annealing conditions. A micron-scaled multipole magnetic field pattern is directly produced by the unidirectional magnetization of the patterned films. NdFeB and SmCo show similar behavior when wet etched in an amorphous state: etch rates of approximately 1.25 μm/min and vertical side walls which may be attributed to a large lateral over-etch of typically 20 μm. Chemical-mechanical-planarization (CMP) produced material removal rates of 0.5-3 μm/min for amorphous NdFeB. Ar ion etching of such films followed by the deposition of a Ta layer prior to film crystallization prevented degradation in magnetic properties compared to non-patterned films

  20. A DFT+U study of the structural, electronic, magnetic, and mechanical properties of cubic and orthorhombic SmCoO3.

    Science.gov (United States)

    Olsson, Emilia; Aparicio-Anglès, Xavier; de Leeuw, Nora H

    2016-12-14

    SmCoO 3 is a perovskite material that has gained attention as a potential substitute for La 1-x Sr x MnO 3-d as a solid oxide fuel cell cathode. However, a number of properties have remained unknown due to the complexity of the material. For example, we know from experimental evidence that this perovskite exists in two different crystal structures, cubic and orthorhombic, and that the cobalt ion changes its spin state at high temperatures, leading to a semiconductor-to-metal transition. However, little is known about the precise magnetic structure that causes the metallic behavior or the spin state of the Co centers at high temperature. Here, we therefore present a systematic DFT+U study of the magnetic properties of SmCoO 3 in order to determine what magnetic ordering is the one exhibited by the metallic phase at different temperatures. Similarly, mechanical properties are difficult to measure experimentally, which is why there is a lack of data for the two different phases of SmCoO 3 . Taking advantage of our DFT calculations, we have determined the mechanical properties from our calculated elastic constants, finding that both polymorphs exhibit similar ductility and brittleness, but that the cubic structure is harder than the orthorhombic phase.

  1. Study of the magnetic microstructure of high-coercivity sintered SmCo5 permanent magnets with the conventional Bitter pattern technique and the colloid-SEM method

    International Nuclear Information System (INIS)

    Szmaja, Witold

    2007-01-01

    The magnetic microstructure of high-coercivity sintered SmCo 5 permanent magnets was studied with the conventional Bitter pattern technique, and also for the first time with the colloid-scanning electron microscopy (colloid-SEM) method. Both techniques were supported by digital image acquisition, enhancement and analysis. Thanks to this, it was possible to obtain high-contrast and clear images of the magnetic microstructure and to analyze them in detail, and consequently also to achieve improvements over earlier results. In the thermally demagnetized state the grains were composed of magnetic domains. On the surface perpendicular to the alignment axis, the main domains forming a maze pattern and surface reverse spikes were observed. Investigations on the surface parallel to the alignment axis, especially by the colloid-SEM technique, provided a detailed insight into the orientation of grains. The alignment of grains was good, but certainly not perfect; there were also strongly misaligned grains, although generally very rare. In most cases the domain structures within grains were independent of their neighbors, but in some cases (not so rare) the domain walls were observed to continue through the grain boundaries, indicating significant magnetostatic interaction between neighboring grains. Studies of the behavior of the magnetic microstructure under the influence of an external magnetic field, performed for the first time on the surface parallel to the alignment axis (with the conventional Bitter pattern method), showed that the domain walls move easily within the grains and that the magnetization reversal mechanism is mainly related to the nucleation and growth of reverse domains, i.e. that sintered SmCo 5 magnets are nucleation-dominated systems. Groupwise magnetization reversal of adjacent magnetically coupled grains was observed, an unfavorable effect for high-coercivity magnets. Images obtained by the colloid-SEM technique and the conventional Bitter pattern

  2. Matrix theory

    CERN Document Server

    Franklin, Joel N

    2003-01-01

    Mathematically rigorous introduction covers vector and matrix norms, the condition-number of a matrix, positive and irreducible matrices, much more. Only elementary algebra and calculus required. Includes problem-solving exercises. 1968 edition.

  3. Matrix calculus

    CERN Document Server

    Bodewig, E

    1959-01-01

    Matrix Calculus, Second Revised and Enlarged Edition focuses on systematic calculation with the building blocks of a matrix and rows and columns, shunning the use of individual elements. The publication first offers information on vectors, matrices, further applications, measures of the magnitude of a matrix, and forms. The text then examines eigenvalues and exact solutions, including the characteristic equation, eigenrows, extremum properties of the eigenvalues, bounds for the eigenvalues, elementary divisors, and bounds for the determinant. The text ponders on approximate solutions, as well

  4. Matrix superpotentials

    Science.gov (United States)

    Nikitin, Anatoly G.; Karadzhov, Yuri

    2011-07-01

    We present a collection of matrix-valued shape invariant potentials which give rise to new exactly solvable problems of SUSY quantum mechanics. It includes all irreducible matrix superpotentials of the generic form W=kQ+\\frac{1}{k} R+P, where k is a variable parameter, Q is the unit matrix multiplied by a real-valued function of independent variable x, and P and R are the Hermitian matrices depending on x. In particular, we recover the Pron'ko-Stroganov 'matrix Coulomb potential' and all known scalar shape invariant potentials of SUSY quantum mechanics. In addition, five new shape invariant potentials are presented. Three of them admit a dual shape invariance, i.e. the related Hamiltonians can be factorized using two non-equivalent superpotentials. We find discrete spectrum and eigenvectors for the corresponding Schrödinger equations and prove that these eigenvectors are normalizable.

  5. Matrix thermalization

    Energy Technology Data Exchange (ETDEWEB)

    Craps, Ben [Theoretische Natuurkunde, Vrije Universiteit Brussel (VUB), and International Solvay Institutes, Pleinlaan 2, B-1050 Brussels (Belgium); Evnin, Oleg [Department of Physics, Faculty of Science, Chulalongkorn University, Thanon Phayathai, Pathumwan, Bangkok 10330 (Thailand); Theoretische Natuurkunde, Vrije Universiteit Brussel (VUB), and International Solvay Institutes, Pleinlaan 2, B-1050 Brussels (Belgium); Nguyen, Kévin [Theoretische Natuurkunde, Vrije Universiteit Brussel (VUB), and International Solvay Institutes, Pleinlaan 2, B-1050 Brussels (Belgium)

    2017-02-08

    Matrix quantum mechanics offers an attractive environment for discussing gravitational holography, in which both sides of the holographic duality are well-defined. Similarly to higher-dimensional implementations of holography, collapsing shell solutions in the gravitational bulk correspond in this setting to thermalization processes in the dual quantum mechanical theory. We construct an explicit, fully nonlinear supergravity solution describing a generic collapsing dilaton shell, specify the holographic renormalization prescriptions necessary for computing the relevant boundary observables, and apply them to evaluating thermalizing two-point correlation functions in the dual matrix theory.

  6. The Reciprocal Pascal Matrix

    OpenAIRE

    Richardson, Thomas M.

    2014-01-01

    The reciprocal Pascal matrix is the Hadamard inverse of the symmetric Pascal matrix. We show that the ordinary matrix inverse of the reciprocal Pascal matrix has integer elements. The proof uses two factorizations of the matrix of super Catalan numbers.

  7. Matrix inequalities

    CERN Document Server

    Zhan, Xingzhi

    2002-01-01

    The main purpose of this monograph is to report on recent developments in the field of matrix inequalities, with emphasis on useful techniques and ingenious ideas. Among other results this book contains the affirmative solutions of eight conjectures. Many theorems unify or sharpen previous inequalities. The author's aim is to streamline the ideas in the literature. The book can be read by research workers, graduate students and advanced undergraduates.

  8. Matrix analysis

    CERN Document Server

    Bhatia, Rajendra

    1997-01-01

    A good part of matrix theory is functional analytic in spirit. This statement can be turned around. There are many problems in operator theory, where most of the complexities and subtleties are present in the finite-dimensional case. My purpose in writing this book is to present a systematic treatment of methods that are useful in the study of such problems. This book is intended for use as a text for upper division and gradu­ ate courses. Courses based on parts of the material have been given by me at the Indian Statistical Institute and at the University of Toronto (in collaboration with Chandler Davis). The book should also be useful as a reference for research workers in linear algebra, operator theory, mathe­ matical physics and numerical analysis. A possible subtitle of this book could be Matrix Inequalities. A reader who works through the book should expect to become proficient in the art of deriving such inequalities. Other authors have compared this art to that of cutting diamonds. One first has to...

  9. Matrix pentagons

    Science.gov (United States)

    Belitsky, A. V.

    2017-10-01

    The Operator Product Expansion for null polygonal Wilson loop in planar maximally supersymmetric Yang-Mills theory runs systematically in terms of multi-particle pentagon transitions which encode the physics of excitations propagating on the color flux tube ending on the sides of the four-dimensional contour. Their dynamics was unraveled in the past several years and culminated in a complete description of pentagons as an exact function of the 't Hooft coupling. In this paper we provide a solution for the last building block in this program, the SU(4) matrix structure arising from internal symmetry indices of scalars and fermions. This is achieved by a recursive solution of the Mirror and Watson equations obeyed by the so-called singlet pentagons and fixing the form of the twisted component in their tensor decomposition. The non-singlet, or charged, pentagons are deduced from these by a limiting procedure.

  10. Matrix pentagons

    Directory of Open Access Journals (Sweden)

    A.V. Belitsky

    2017-10-01

    Full Text Available The Operator Product Expansion for null polygonal Wilson loop in planar maximally supersymmetric Yang–Mills theory runs systematically in terms of multi-particle pentagon transitions which encode the physics of excitations propagating on the color flux tube ending on the sides of the four-dimensional contour. Their dynamics was unraveled in the past several years and culminated in a complete description of pentagons as an exact function of the 't Hooft coupling. In this paper we provide a solution for the last building block in this program, the SU(4 matrix structure arising from internal symmetry indices of scalars and fermions. This is achieved by a recursive solution of the Mirror and Watson equations obeyed by the so-called singlet pentagons and fixing the form of the twisted component in their tensor decomposition. The non-singlet, or charged, pentagons are deduced from these by a limiting procedure.

  11. Efficiency criterion for teleportation via channel matrix, measurement matrix and collapsed matrix

    Directory of Open Access Journals (Sweden)

    Xin-Wei Zha

    Full Text Available In this paper, three kinds of coefficient matrixes (channel matrix, measurement matrix, collapsed matrix associated with the pure state for teleportation are presented, the general relation among channel matrix, measurement matrix and collapsed matrix is obtained. In addition, a criterion for judging whether a state can be teleported successfully is given, depending on the relation between the number of parameter of an unknown state and the rank of the collapsed matrix. Keywords: Channel matrix, Measurement matrix, Collapsed matrix, Teleportation

  12. Extended biorthogonal matrix polynomials

    Directory of Open Access Journals (Sweden)

    Ayman Shehata

    2017-01-01

    Full Text Available The pair of biorthogonal matrix polynomials for commutative matrices were first introduced by Varma and Tasdelen in [22]. The main aim of this paper is to extend the properties of the pair of biorthogonal matrix polynomials of Varma and Tasdelen and certain generating matrix functions, finite series, some matrix recurrence relations, several important properties of matrix differential recurrence relations, biorthogonality relations and matrix differential equation for the pair of biorthogonal matrix polynomials J(A,B n (x, k and K(A,B n (x, k are discussed. For the matrix polynomials J(A,B n (x, k, various families of bilinear and bilateral generating matrix functions are constructed in the sequel.

  13. A matrix lower bound

    Energy Technology Data Exchange (ETDEWEB)

    Grcar, Joseph F.

    2002-02-04

    A matrix lower bound is defined that generalizes ideas apparently due to S. Banach and J. von Neumann. The matrix lower bound has a natural interpretation in functional analysis, and it satisfies many of the properties that von Neumann stated for it in a restricted case. Applications for the matrix lower bound are demonstrated in several areas. In linear algebra, the matrix lower bound of a full rank matrix equals the distance to the set of rank-deficient matrices. In numerical analysis, the ratio of the matrix norm to the matrix lower bound is a condition number for all consistent systems of linear equations. In optimization theory, the matrix lower bound suggests an identity for a class of min-max problems. In real analysis, a recursive construction that depends on the matrix lower bound shows that the level sets of continuously differential functions lie asymptotically near those of their tangents.

  14. Matrix completion by deep matrix factorization.

    Science.gov (United States)

    Fan, Jicong; Cheng, Jieyu

    2018-02-01

    Conventional methods of matrix completion are linear methods that are not effective in handling data of nonlinear structures. Recently a few researchers attempted to incorporate nonlinear techniques into matrix completion but there still exists considerable limitations. In this paper, a novel method called deep matrix factorization (DMF) is proposed for nonlinear matrix completion. Different from conventional matrix completion methods that are based on linear latent variable models, DMF is on the basis of a nonlinear latent variable model. DMF is formulated as a deep-structure neural network, in which the inputs are the low-dimensional unknown latent variables and the outputs are the partially observed variables. In DMF, the inputs and the parameters of the multilayer neural network are simultaneously optimized to minimize the reconstruction errors for the observed entries. Then the missing entries can be readily recovered by propagating the latent variables to the output layer. DMF is compared with state-of-the-art methods of linear and nonlinear matrix completion in the tasks of toy matrix completion, image inpainting and collaborative filtering. The experimental results verify that DMF is able to provide higher matrix completion accuracy than existing methods do and DMF is applicable to large matrices. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Transition Matrix Cluster Algorithms

    OpenAIRE

    Yevick, David; Lee, Yong Hwan

    2018-01-01

    We demonstrate that a series of simple procedures for increasing the efficiency of transition matrix calculations can be realized by integrating the standard single-spin reversal transition matrix method with global cluster inversion techniques.

  16. The Matrix Cookbook

    DEFF Research Database (Denmark)

    Petersen, Kaare Brandt; Pedersen, Michael Syskind

    Matrix identities, relations and approximations. A desktop reference for quick overview of mathematics of matrices.......Matrix identities, relations and approximations. A desktop reference for quick overview of mathematics of matrices....

  17. Stochastic Matrix Factorization

    OpenAIRE

    Adams, Christopher

    2016-01-01

    This paper considers a restriction to non-negative matrix factorization in which at least one matrix factor is stochastic. That is, the elements of the matrix factors are non-negative and the columns of one matrix factor sum to 1. This restriction includes topic models, a popular method for analyzing unstructured data. It also includes a method for storing and finding pictures. The paper presents necessary and sufficient conditions on the observed data such that the factorization is unique. I...

  18. Matrix with Prescribed Eigenvectors

    Science.gov (United States)

    Ahmad, Faiz

    2011-01-01

    It is a routine matter for undergraduates to find eigenvalues and eigenvectors of a given matrix. But the converse problem of finding a matrix with prescribed eigenvalues and eigenvectors is rarely discussed in elementary texts on linear algebra. This problem is related to the "spectral" decomposition of a matrix and has important technical…

  19. Parallelism in matrix computations

    CERN Document Server

    Gallopoulos, Efstratios; Sameh, Ahmed H

    2016-01-01

    This book is primarily intended as a research monograph that could also be used in graduate courses for the design of parallel algorithms in matrix computations. It assumes general but not extensive knowledge of numerical linear algebra, parallel architectures, and parallel programming paradigms. The book consists of four parts: (I) Basics; (II) Dense and Special Matrix Computations; (III) Sparse Matrix Computations; and (IV) Matrix functions and characteristics. Part I deals with parallel programming paradigms and fundamental kernels, including reordering schemes for sparse matrices. Part II is devoted to dense matrix computations such as parallel algorithms for solving linear systems, linear least squares, the symmetric algebraic eigenvalue problem, and the singular-value decomposition. It also deals with the development of parallel algorithms for special linear systems such as banded ,Vandermonde ,Toeplitz ,and block Toeplitz systems. Part III addresses sparse matrix computations: (a) the development of pa...

  20. Patience of matrix games

    DEFF Research Database (Denmark)

    Hansen, Kristoffer Arnsfelt; Ibsen-Jensen, Rasmus; Podolskii, Vladimir V.

    2013-01-01

    For matrix games we study how small nonzero probability must be used in optimal strategies. We show that for image win–lose–draw games (i.e. image matrix games) nonzero probabilities smaller than image are never needed. We also construct an explicit image win–lose game such that the unique optimal...

  1. Unitarity of CKM Matrix

    CERN Document Server

    Saleem, M

    2002-01-01

    The Unitarity of the CKM matrix is examined in the light of the latest available accurate data. The analysis shows that a conclusive result cannot be derived at present. Only more precise data can determine whether the CKM matrix opens new vistas beyond the standard model or not.

  2. Probability matrix decomposition models

    NARCIS (Netherlands)

    Maris, E.; DeBoeck, P.; Mechelen, I. van

    1996-01-01

    In this paper, we consider a class of models for two-way matrices with binary entries of 0 and 1. First, we consider Boolean matrix decomposition, conceptualize it as a latent response model (LRM) and, by making use of this conceptualization, generalize it to a larger class of matrix decomposition

  3. Triangularization of a Matrix

    Indian Academy of Sciences (India)

    ). From this one can see that this equality is als9 true for diagonalizable matrices; just note that eSAs-. 1 = SeAS-I. Finally, the equality car- ries over to all matrices since both sides are continuous functions of a matrix and every matrix is a limit ...

  4. Fuzzy vulnerability matrix

    International Nuclear Information System (INIS)

    Baron, Jorge H.; Rivera, S.S.

    2000-01-01

    The so-called vulnerability matrix is used in the evaluation part of the probabilistic safety assessment for a nuclear power plant, during the containment event trees calculations. This matrix is established from what is knows as Numerical Categories for Engineering Judgement. This matrix is usually established with numerical values obtained with traditional arithmetic using the set theory. The representation of this matrix with fuzzy numbers is much more adequate, due to the fact that the Numerical Categories for Engineering Judgement are better represented with linguistic variables, such as 'highly probable', 'probable', 'impossible', etc. In the present paper a methodology to obtain a Fuzzy Vulnerability Matrix is presented, starting from the recommendations on the Numerical Categories for Engineering Judgement. (author)

  5. Matrix comparison, Part 2

    DEFF Research Database (Denmark)

    Schneider, Jesper Wiborg; Borlund, Pia

    2007-01-01

    The present two-part article introduces matrix comparison as a formal means for evaluation purposes in informetric studies such as cocitation analysis. In the first part, the motivation behind introducing matrix comparison to informetric studies, as well as two important issues influencing...... such comparisons, matrix generation, and the composition of proximity measures, are introduced and discussed. In this second part, the authors introduce and thoroughly demonstrate two related matrix comparison techniques the Mantel test and Procrustes analysis, respectively. These techniques can compare...... and evaluate the degree of monotonicity between different proximity measures or their ordination results. In common with these techniques is the application of permutation procedures to test hypotheses about matrix resemblances. The choice of technique is related to the validation at hand. In the case...

  6. Phase transformations in Sm(CoFeCuZr) permanent magnets; Transformacoes de fase em imas de Sm(CoFeCuZr)

    Energy Technology Data Exchange (ETDEWEB)

    Romero, Sergio Antonio; Landgraf, Fernando Jose Gomes; Neiva, Augusto Camara [Universidade de Sao Paulo (USP), Sao Paulo, SP (Brazil); Yonamine, Taeko; Fukuhara, Marcos [Institutlo Nacional de Metrologia, Qualidade e Tecnologia (INMETRO), Duque de Caxias, RJ (Brazil); Campos, Marcos Flavio de [Universidade Federal Fluminense (UFF), Volta Redonda, RJ (Brazil). Escola de Engenharia Industrial Metalurgica

    2010-07-01

    A detailed microstructural analysis by SEM EBSD and XRD Rietveld has revealed the main phases present in the magnets. One of the most relevant questions is the elucidation of the phase transformations that maximize the magnetic properties of the magnets, after a long heat treatment, which is commercially employed. The 6:23 phase (Th{sub 6}Mn{sub 23} structure) has been identified by SEM EBSD and XRD. Rhombohedral phases with 2:7, 1:3 and 5:19 (SmZr):(CoFeCu) stoichiometries were found in the microstructure, with a typical ratio of 2Zr:1Sm. In the solubilization temperature, the main phase is the disordered rhombohedral 2:17, which presents two versions, one Sm rich and Cu rich and another Sm poor and Fe rich. (author)

  7. The nuclear reaction matrix

    International Nuclear Information System (INIS)

    Krenciglowa, E.M.; Kung, C.L.; Kuo, T.T.S.; Osnes, E.; and Department of Physics, State University of New York at Stony Brook, Stony Brook, New York 11794)

    1976-01-01

    Different definitions of the reaction matrix G appropriate to the calculation of nuclear structure are reviewed and discussed. Qualitative physical arguments are presented in support of a two-step calculation of the G-matrix for finite nuclei. In the first step the high-energy excitations are included using orthogonalized plane-wave intermediate states, and in the second step the low-energy excitations are added in, using harmonic oscillator intermediate states. Accurate calculations of G-matrix elements for nuclear structure calculations in the Aapprox. =18 region are performed following this procedure and treating the Pauli exclusion operator Q 2 /sub p/ by the method of Tsai and Kuo. The treatment of Q 2 /sub p/, the effect of the intermediate-state spectrum and the energy dependence of the reaction matrix are investigated in detail. The present matrix elements are compared with various matrix elements given in the literature. In particular, close agreement is obtained with the matrix elements calculated by Kuo and Brown using approximate methods

  8. Nuclear reaction matrix

    International Nuclear Information System (INIS)

    Krenciglowa, E.M.; Kung, C.L.; Kuo, T.T.S.; Osnes, E.

    1975-01-01

    Different definitions of the reaction matrix G appropriate to the calculation of nuclear structure are reviewed and discussed. Qualitative physical arguments are presented in support of a two-step calculation of the G-matrix for finite nuclei. In the first step the high-energy excitations are included using orthogonalized plane-wave intermediate states, and in the second step the low-energy excitations are added in, using harmonic oscillator intermediate states. Accurate calculations of G-matrix elements for nuclear structure calculations in the A approximately 18 region are performed following this procedure and treating the Pauli exclusion operator Q/sub 2p/ by the method of Tsai and Kuo. The treatment of Q/sub 2p/, the effect of the intermediate-state spectrum and the energy dependence of the reaction matrix are investigated in detail. The present matrix elements are compared with various matrix elements given in the literature. In particular, close argument is obtained with the matrix elements calculated by Kuo and Brown using approximate methods

  9. N-matrix completion problem

    OpenAIRE

    Araújo, C. Mendes; Torregrosa, Juan R.; Urbano, Ana M.

    2003-01-01

    An n x n matrix is called an N-matrix if all principal minors are negative. In this paper, we are interested in N-matrix completion problems, that is, when a partial N-matrix hás an N-matrix completion. In general, a combinatorially or non-combinatorially symmetric partial N-matrix does not have an N-matrix completion. Here we prove that a combinatorially symmetric partial N-matrix has an N-matrix completion if the graph of its specified entries is a 1-chordal graph. We also prove that there ...

  10. Elementary matrix theory

    CERN Document Server

    Eves, Howard

    1980-01-01

    The usefulness of matrix theory as a tool in disciplines ranging from quantum mechanics to psychometrics is widely recognized, and courses in matrix theory are increasingly a standard part of the undergraduate curriculum.This outstanding text offers an unusual introduction to matrix theory at the undergraduate level. Unlike most texts dealing with the topic, which tend to remain on an abstract level, Dr. Eves' book employs a concrete elementary approach, avoiding abstraction until the final chapter. This practical method renders the text especially accessible to students of physics, engineeri

  11. Quantifying matrix product state

    Science.gov (United States)

    Bhatia, Amandeep Singh; Kumar, Ajay

    2018-03-01

    Motivated by the concept of quantum finite-state machines, we have investigated their relation with matrix product state of quantum spin systems. Matrix product states play a crucial role in the context of quantum information processing and are considered as a valuable asset for quantum information and communication purpose. It is an effective way to represent states of entangled systems. In this paper, we have designed quantum finite-state machines of one-dimensional matrix product state representations for quantum spin systems.

  12. The biofilm matrix.

    Science.gov (United States)

    Flemming, Hans-Curt; Wingender, Jost

    2010-09-01

    The microorganisms in biofilms live in a self-produced matrix of hydrated extracellular polymeric substances (EPS) that form their immediate environment. EPS are mainly polysaccharides, proteins, nucleic acids and lipids; they provide the mechanical stability of biofilms, mediate their adhesion to surfaces and form a cohesive, three-dimensional polymer network that interconnects and transiently immobilizes biofilm cells. In addition, the biofilm matrix acts as an external digestive system by keeping extracellular enzymes close to the cells, enabling them to metabolize dissolved, colloidal and solid biopolymers. Here we describe the functions, properties and constituents of the EPS matrix that make biofilms the most successful forms of life on earth.

  13. Tendon functional extracellular matrix.

    Science.gov (United States)

    Screen, Hazel R C; Berk, David E; Kadler, Karl E; Ramirez, Francesco; Young, Marian F

    2015-06-01

    This article is one of a series, summarizing views expressed at the Orthopaedic Research Society New Frontiers in Tendon Research Conference. This particular article reviews the three workshops held under the "Functional Extracellular Matrix" stream. The workshops focused on the roles of the tendon extracellular matrix, such as performing the mechanical functions of tendon, creating the local cell environment, and providing cellular cues. Tendon is a complex network of matrix and cells, and its biological functions are influenced by widely varying extrinsic and intrinsic factors such as age, nutrition, exercise levels, and biomechanics. Consequently, tendon adapts dynamically during development, aging, and injury. The workshop discussions identified research directions associated with understanding cell-matrix interactions to be of prime importance for developing novel strategies to target tendon healing or repair. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  14. Hacking the Matrix.

    Science.gov (United States)

    Czerwinski, Michael; Spence, Jason R

    2017-01-05

    Recently in Nature, Gjorevski et al. (2016) describe a fully defined synthetic hydrogel that mimics the extracellular matrix to support in vitro growth of intestinal stem cells and organoids. The hydrogel allows exquisite control over the chemical and physical in vitro niche and enables identification of regulatory properties of the matrix. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. The Matrix Organization Revisited

    DEFF Research Database (Denmark)

    Gattiker, Urs E.; Ulhøi, John Parm

    1999-01-01

    This paper gives a short overview of matrix structure and technology management. It outlines some of the characteristics and also points out that many organizations may actualy be hybrids (i.e. mix several ways of organizing to allocate resorces effectively).......This paper gives a short overview of matrix structure and technology management. It outlines some of the characteristics and also points out that many organizations may actualy be hybrids (i.e. mix several ways of organizing to allocate resorces effectively)....

  16. Matrix Information Geometry

    CERN Document Server

    Bhatia, Rajendra

    2013-01-01

    This book is an outcome of the Indo-French Workshop on Matrix Information Geometries (MIG): Applications in Sensor and Cognitive Systems Engineering, which was held in Ecole Polytechnique and Thales Research and Technology Center, Palaiseau, France, in February 23-25, 2011. The workshop was generously funded by the Indo-French Centre for the Promotion of Advanced Research (IFCPAR).  During the event, 22 renowned invited french or indian speakers gave lectures on their areas of expertise within the field of matrix analysis or processing. From these talks, a total of 17 original contribution or state-of-the-art chapters have been assembled in this volume. All articles were thoroughly peer-reviewed and improved, according to the suggestions of the international referees. The 17 contributions presented  are organized in three parts: (1) State-of-the-art surveys & original matrix theory work, (2) Advanced matrix theory for radar processing, and (3) Matrix-based signal processing applications.  

  17. Fast methods for resumming matrix polynomials and Chebyshev matrix polynomials

    International Nuclear Information System (INIS)

    Liang Wanzen; Baer, Roi; Saravanan, Chandra; Shao Yihan; Bell, Alexis T.; Head-Gordon, Martin

    2004-01-01

    Fast and effective algorithms are discussed for resumming matrix polynomials and Chebyshev matrix polynomials. These algorithms lead to a significant speed-up in computer time by reducing the number of matrix multiplications required to roughly twice the square root of the degree of the polynomial. A few numerical tests are presented, showing that evaluation of matrix functions via polynomial expansions can be preferable when the matrix is sparse and these fast resummation algorithms are employed

  18. 2016 MATRIX annals

    CERN Document Server

    Praeger, Cheryl; Tao, Terence

    2018-01-01

    MATRIX is Australia’s international, residential mathematical research institute. It facilitates new collaborations and mathematical advances through intensive residential research programs, each lasting 1-4 weeks. This book is a scientific record of the five programs held at MATRIX in its first year, 2016: Higher Structures in Geometry and Physics (Chapters 1-5 and 18-21); Winter of Disconnectedness (Chapter 6 and 22-26); Approximation and Optimisation (Chapters 7-8); Refining C*-Algebraic Invariants for Dynamics using KK-theory (Chapters 9-13); Interactions between Topological Recursion, Modularity, Quantum Invariants and Low-dimensional Topology (Chapters 14-17 and 27). The MATRIX Scientific Committee selected these programs based on their scientific excellence and the participation rate of high-profile international participants. Each program included ample unstructured time to encourage collaborative research; some of the longer programs also included an embedded conference or lecture series. The artic...

  19. Matrix interdiction problem

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Feng [Los Alamos National Laboratory; Kasiviswanathan, Shiva [Los Alamos National Laboratory

    2010-01-01

    In the matrix interdiction problem, a real-valued matrix and an integer k is given. The objective is to remove k columns such that the sum over all rows of the maximum entry in each row is minimized. This combinatorial problem is closely related to bipartite network interdiction problem which can be applied to prioritize the border checkpoints in order to minimize the probability that an adversary can successfully cross the border. After introducing the matrix interdiction problem, we will prove the problem is NP-hard, and even NP-hard to approximate with an additive n{gamma} factor for a fixed constant {gamma}. We also present an algorithm for this problem that achieves a factor of (n-k) mUltiplicative approximation ratio.

  20. Dynamic Matrix Rank

    DEFF Research Database (Denmark)

    Frandsen, Gudmund Skovbjerg; Frandsen, Peter Frands

    2009-01-01

    We consider maintaining information about the rank of a matrix under changes of the entries. For n×n matrices, we show an upper bound of O(n1.575) arithmetic operations and a lower bound of Ω(n) arithmetic operations per element change. The upper bound is valid when changing up to O(n0.575) entries...... in a single column of the matrix. We also give an algorithm that maintains the rank using O(n2) arithmetic operations per rank one update. These bounds appear to be the first nontrivial bounds for the problem. The upper bounds are valid for arbitrary fields, whereas the lower bound is valid for algebraically...... closed fields. The upper bound for element updates uses fast rectangular matrix multiplication, and the lower bound involves further development of an earlier technique for proving lower bounds for dynamic computation of rational functions....

  1. Elementary matrix algebra

    CERN Document Server

    Hohn, Franz E

    2012-01-01

    This complete and coherent exposition, complemented by numerous illustrative examples, offers readers a text that can teach by itself. Fully rigorous in its treatment, it offers a mathematically sound sequencing of topics. The work starts with the most basic laws of matrix algebra and progresses to the sweep-out process for obtaining the complete solution of any given system of linear equations - homogeneous or nonhomogeneous - and the role of matrix algebra in the presentation of useful geometric ideas, techniques, and terminology.Other subjects include the complete treatment of the structur

  2. Complex matrix model duality

    Energy Technology Data Exchange (ETDEWEB)

    Brown, T.W.

    2010-11-15

    The same complex matrix model calculates both tachyon scattering for the c=1 non-critical string at the self-dual radius and certain correlation functions of half-BPS operators in N=4 super- Yang-Mills. It is dual to another complex matrix model where the couplings of the first model are encoded in the Kontsevich-like variables of the second. The duality between the theories is mirrored by the duality of their Feynman diagrams. Analogously to the Hermitian Kontsevich- Penner model, the correlation functions of the second model can be written as sums over discrete points in subspaces of the moduli space of punctured Riemann surfaces. (orig.)

  3. R-matrix methods

    International Nuclear Information System (INIS)

    Robb, W.D.

    1978-01-01

    The procedures used in the application of R-matrix theory to atomic and molecular collision processes are presented. The computationally advantageous features of these methods are high-lighted, and some applications to electron scattering and photoionization are briefly discussed

  4. A Matrix Isolation Infrared

    Indian Academy of Sciences (India)

    The elusive ≡C-H· · ·O complex in the hydrogen bonded systems of Phenylacetylene: A Matrix Isolation Infrared and Ab Initio Study ... A comparison of the spectral shifts observed in the features of PhAc-MeOH and PhAc-DEE would therefore independently confirm the existence or not of n-σ* complex in both these systems.

  5. Challenging the CSCW matrix

    DEFF Research Database (Denmark)

    Jørnø, Rasmus Leth Vergmann; Gynther, Karsten; Christensen, Ove

    2014-01-01

    useful information, we question whether the axis of time and space comprising the matrix pertains to relevant defining properties of the tools, technology or learning environments to which they are applied. Subsequently we offer an example of an Adobe Connect e-learning session as an illustration...

  6. R-matrix analysis

    International Nuclear Information System (INIS)

    Dodder, D.C.

    1975-01-01

    Scattering and reaction processes involving very few nucleons are studied via the R matrix formalism of Wigner and Eisenbud. As examples, the d + 3 He, p + 4 He, 3 He + 4 He, and p + 6 Li are considered. (3 figures) (SDF)

  7. Combinatorial matrix theory

    CERN Document Server

    Mitjana, Margarida

    2018-01-01

    This book contains the notes of the lectures delivered at an Advanced Course on Combinatorial Matrix Theory held at Centre de Recerca Matemàtica (CRM) in Barcelona. These notes correspond to five series of lectures. The first series is dedicated to the study of several matrix classes defined combinatorially, and was delivered by Richard A. Brualdi. The second one, given by Pauline van den Driessche, is concerned with the study of spectral properties of matrices with a given sign pattern. Dragan Stevanović delivered the third one, devoted to describing the spectral radius of a graph as a tool to provide bounds of parameters related with properties of a graph. The fourth lecture was delivered by Stephen Kirkland and is dedicated to the applications of the Group Inverse of the Laplacian matrix. The last one, given by Ángeles Carmona, focuses on boundary value problems on finite networks with special in-depth on the M-matrix inverse problem.

  8. Sparse matrix decompositions for clustering

    OpenAIRE

    Blumensath, Thomas

    2014-01-01

    Clustering can be understood as a matrix decomposition problem, where a feature vector matrix is represented as a product of two matrices, a matrix of cluster centres and a matrix with sparse columns, where each column assigns individual features to one of the cluster centres. This matrix factorisation is the basis of classical clustering methods, such as those based on non-negative matrix factorisation but can also be derived for other methods, such as k-means clustering. In this paper we de...

  9. Paths correlation matrix.

    Science.gov (United States)

    Qian, Weixian; Zhou, Xiaojun; Lu, Yingcheng; Xu, Jiang

    2015-09-15

    Both the Jones and Mueller matrices encounter difficulties when physically modeling mixed materials or rough surfaces due to the complexity of light-matter interactions. To address these issues, we derived a matrix called the paths correlation matrix (PCM), which is a probabilistic mixture of Jones matrices of every light propagation path. Because PCM is related to actual light propagation paths, it is well suited for physical modeling. Experiments were performed, and the reflection PCM of a mixture of polypropylene and graphite was measured. The PCM of the mixed sample was accurately decomposed into pure polypropylene's single reflection, pure graphite's single reflection, and depolarization caused by multiple reflections, which is consistent with the theoretical derivation. Reflection parameters of rough surface can be calculated from PCM decomposition, and the results fit well with the theoretical calculations provided by the Fresnel equations. These theoretical and experimental analyses verify that PCM is an efficient way to physically model light-matter interactions.

  10. Partially separable t matrix

    International Nuclear Information System (INIS)

    Sasakawa, T.; Okuno, H.; Ishikawa, S.; Sawada, T.

    1982-01-01

    The off-shell t matrix is expressed as a sum of one nonseparable and one separable terms so that it is useful for applications to more-than-two body problems. All poles are involved in this one separable term. Both the nonseparable and the separable terms of the kernel G 0 t are regular at the origin. The nonseparable term of this kernel vanishes at large distances, while the separable term behaves asymptotically as the spherical Hankel function. These properties make our expression free from defects inherent in the Jost or the K-matrix expressions, and many applications are anticipated. As the application, a compact expression of the many-level formula is presented. Also the application is suggested to the breakup threebody problem based on the Faddeev equation. It is demonstrated that the breakup amplitude is expressed in a simple and physically interesting form and we can calculate it in coordinate space

  11. A matrix contraction process

    Science.gov (United States)

    Wilkinson, Michael; Grant, John

    2018-03-01

    We consider a stochastic process in which independent identically distributed random matrices are multiplied and where the Lyapunov exponent of the product is positive. We continue multiplying the random matrices as long as the norm, ɛ, of the product is less than unity. If the norm is greater than unity we reset the matrix to a multiple of the identity and then continue the multiplication. We address the problem of determining the probability density function of the norm, \

  12. Holomorphic matrix integrals

    International Nuclear Information System (INIS)

    Felder, Giovanni; Riser, Roman

    2004-01-01

    We study a class of holomorphic matrix models. The integrals are taken over middle-dimensional cycles in the space of complex square matrices. As the size of the matrices tends to infinity, the distribution of eigenvalues is given by a measure with support on a collection of arcs in the complex planes. We show that the arcs are level sets of the imaginary part of a hyperelliptic integral connecting branch points

  13. Matrix groups for undergraduates

    CERN Document Server

    Tapp, Kristopher

    2016-01-01

    Matrix groups touch an enormous spectrum of the mathematical arena. This textbook brings them into the undergraduate curriculum. It makes an excellent one-semester course for students familiar with linear and abstract algebra and prepares them for a graduate course on Lie groups. Matrix Groups for Undergraduates is concrete and example-driven, with geometric motivation and rigorous proofs. The story begins and ends with the rotations of a globe. In between, the author combines rigor and intuition to describe the basic objects of Lie theory: Lie algebras, matrix exponentiation, Lie brackets, maximal tori, homogeneous spaces, and roots. This second edition includes two new chapters that allow for an easier transition to the general theory of Lie groups. From reviews of the First Edition: This book could be used as an excellent textbook for a one semester course at university and it will prepare students for a graduate course on Lie groups, Lie algebras, etc. … The book combines an intuitive style of writing w...

  14. Extracellular matrix structure.

    Science.gov (United States)

    Theocharis, Achilleas D; Skandalis, Spyros S; Gialeli, Chrysostomi; Karamanos, Nikos K

    2016-02-01

    Extracellular matrix (ECM) is a non-cellular three-dimensional macromolecular network composed of collagens, proteoglycans/glycosaminoglycans, elastin, fibronectin, laminins, and several other glycoproteins. Matrix components bind each other as well as cell adhesion receptors forming a complex network into which cells reside in all tissues and organs. Cell surface receptors transduce signals into cells from ECM, which regulate diverse cellular functions, such as survival, growth, migration, and differentiation, and are vital for maintaining normal homeostasis. ECM is a highly dynamic structural network that continuously undergoes remodeling mediated by several matrix-degrading enzymes during normal and pathological conditions. Deregulation of ECM composition and structure is associated with the development and progression of several pathologic conditions. This article emphasizes in the complex ECM structure as to provide a better understanding of its dynamic structural and functional multipotency. Where relevant, the implication of the various families of ECM macromolecules in health and disease is also presented. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Standard Errors for Matrix Correlations.

    Science.gov (United States)

    Ogasawara, Haruhiko

    1999-01-01

    Derives the asymptotic standard errors and intercorrelations for several matrix correlations assuming multivariate normality for manifest variables and derives the asymptotic standard errors of the matrix correlations for two factor-loading matrices. (SLD)

  16. The cellulose resource matrix.

    Science.gov (United States)

    Keijsers, Edwin R P; Yılmaz, Gülden; van Dam, Jan E G

    2013-03-01

    The emerging biobased economy is causing shifts from mineral fossil oil based resources towards renewable resources. Because of market mechanisms, current and new industries utilising renewable commodities, will attempt to secure their supply of resources. Cellulose is among these commodities, where large scale competition can be expected and already is observed for the traditional industries such as the paper industry. Cellulose and lignocellulosic raw materials (like wood and non-wood fibre crops) are being utilised in many industrial sectors. Due to the initiated transition towards biobased economy, these raw materials are intensively investigated also for new applications such as 2nd generation biofuels and 'green' chemicals and materials production (Clark, 2007; Lange, 2007; Petrus & Noordermeer, 2006; Ragauskas et al., 2006; Regalbuto, 2009). As lignocellulosic raw materials are available in variable quantities and qualities, unnecessary competition can be avoided via the choice of suitable raw materials for a target application. For example, utilisation of cellulose as carbohydrate source for ethanol production (Kabir Kazi et al., 2010) avoids the discussed competition with easier digestible carbohydrates (sugars, starch) deprived from the food supply chain. Also for cellulose use as a biopolymer several different competing markets can be distinguished. It is clear that these applications and markets will be influenced by large volume shifts. The world will have to reckon with the increase of competition and feedstock shortage (land use/biodiversity) (van Dam, de Klerk-Engels, Struik, & Rabbinge, 2005). It is of interest - in the context of sustainable development of the bioeconomy - to categorize the already available and emerging lignocellulosic resources in a matrix structure. When composing such "cellulose resource matrix" attention should be given to the quality aspects as well as to the available quantities and practical possibilities of processing the

  17. Matrix Encryption Scheme

    Directory of Open Access Journals (Sweden)

    Abdelhakim Chillali

    2017-05-01

    Full Text Available In classical cryptography, the Hill cipher is a polygraphic substitution cipher based on linear algebra. In this work, we proposed a new problem applicable to the public key cryptography, based on the Matrices, called “Matrix discrete logarithm problem”, it uses certain elements formed by matrices whose coefficients are elements in a finite field. We have constructed an abelian group and, for the cryptographic part in this unreliable group, we then perform the computation corresponding to the algebraic equations, Returning the encrypted result to a receiver. Upon receipt of the result, the receiver can retrieve the sender’s clear message by performing the inverse calculation.

  18. Matrix string partition function

    CERN Document Server

    Kostov, Ivan K; Kostov, Ivan K.; Vanhove, Pierre

    1998-01-01

    We evaluate quasiclassically the Ramond partition function of Euclidean D=10 U(N) super Yang-Mills theory reduced to a two-dimensional torus. The result can be interpreted in terms of free strings wrapping the space-time torus, as expected from the point of view of Matrix string theory. We demonstrate that, when extrapolated to the ultraviolet limit (small area of the torus), the quasiclassical expressions reproduce exactly the recently obtained expression for the partition of the completely reduced SYM theory, including the overall numerical factor. This is an evidence that our quasiclassical calculation might be exact.

  19. Matrix vector analysis

    CERN Document Server

    Eisenman, Richard L

    2005-01-01

    This outstanding text and reference applies matrix ideas to vector methods, using physical ideas to illustrate and motivate mathematical concepts but employing a mathematical continuity of development rather than a physical approach. The author, who taught at the U.S. Air Force Academy, dispenses with the artificial barrier between vectors and matrices--and more generally, between pure and applied mathematics.Motivated examples introduce each idea, with interpretations of physical, algebraic, and geometric contexts, in addition to generalizations to theorems that reflect the essential structur

  20. Matrix algebra for linear models

    CERN Document Server

    Gruber, Marvin H J

    2013-01-01

    Matrix methods have evolved from a tool for expressing statistical problems to an indispensable part of the development, understanding, and use of various types of complex statistical analyses. This evolution has made matrix methods a vital part of statistical education. Traditionally, matrix methods are taught in courses on everything from regression analysis to stochastic processes, thus creating a fractured view of the topic. Matrix Algebra for Linear Models offers readers a unique, unified view of matrix analysis theory (where and when necessary), methods, and their applications. Written f

  1. Ceramic matrix and resin matrix composites - A comparison

    Science.gov (United States)

    Hurwitz, Frances I.

    1987-01-01

    The underlying theory of continuous fiber reinforcement of ceramic matrix and resin matrix composites, their fabrication, microstructure, physical and mechanical properties are contrasted. The growing use of organometallic polymers as precursors to ceramic matrices is discussed as a means of providing low temperature processing capability without the fiber degradation encountered with more conventional ceramic processing techniques. Examples of ceramic matrix composites derived from particulate-filled, high char yield polymers and silsesquioxane precursors are provided.

  2. Ceramic matrix and resin matrix composites: A comparison

    Science.gov (United States)

    Hurwitz, Frances I.

    1987-01-01

    The underlying theory of continuous fiber reinforcement of ceramic matrix and resin matrix composites, their fabrication, microstructure, physical and mechanical properties are contrasted. The growing use of organometallic polymers as precursors to ceramic matrices is discussed as a means of providing low temperature processing capability without the fiber degradation encountered with more conventional ceramic processing techniques. Examples of ceramic matrix composites derived from particulate-filled, high char yield polymers and silsesquioxane precursors are provided.

  3. A matrix big bang

    Science.gov (United States)

    Craps, Ben; Sethi, Savdeep; Verlinde, Erik

    2005-10-01

    The light-like linear dilaton background represents a particularly simple time-dependent 1/2 BPS solution of critical type-IIA superstring theory in ten dimensions. Its lift to M-theory, as well as its Einstein frame metric, are singular in the sense that the geometry is geodesically incomplete and the Riemann tensor diverges along a light-like subspace of codimension one. We study this background as a model for a big bang type singularity in string theory/M-theory. We construct the dual Matrix theory description in terms of a (1+1)-d supersymmetric Yang-Mills theory on a time-dependent world-sheet given by the Milne orbifold of (1+1)-d Minkowski space. Our model provides a framework in which the physics of the singularity appears to be under control.

  4. Light cone matrix product

    Energy Technology Data Exchange (ETDEWEB)

    Hastings, Matthew B [Los Alamos National Laboratory

    2009-01-01

    We show how to combine the light-cone and matrix product algorithms to simulate quantum systems far from equilibrium for long times. For the case of the XXZ spin chain at {Delta} = 0.5, we simulate to a time of {approx} 22.5. While part of the long simulation time is due to the use of the light-cone method, we also describe a modification of the infinite time-evolving bond decimation algorithm with improved numerical stability, and we describe how to incorporate symmetry into this algorithm. While statistical sampling error means that we are not yet able to make a definite statement, the behavior of the simulation at long times indicates the appearance of either 'revivals' in the order parameter as predicted by Hastings and Levitov (e-print arXiv:0806.4283) or of a distinct shoulder in the decay of the order parameter.

  5. A matrix big bang

    International Nuclear Information System (INIS)

    Craps, Ben; Sethi, Savdeep; Verlinde, Erik

    2005-01-01

    The light-like linear dilaton background represents a particularly simple time-dependent 1/2 BPS solution of critical type-IIA superstring theory in ten dimensions. Its lift to M-theory, as well as its Einstein frame metric, are singular in the sense that the geometry is geodesically incomplete and the Riemann tensor diverges along a light-like subspace of codimension one. We study this background as a model for a big bang type singularity in string theory/M-theory. We construct the dual Matrix theory description in terms of a (1+1)-d supersymmetric Yang-Mills theory on a time-dependent world-sheet given by the Milne orbifold of (1+1)-d Minkowski space. Our model provides a framework in which the physics of the singularity appears to be under control

  6. A matrix big bang

    Energy Technology Data Exchange (ETDEWEB)

    Craps, Ben [Instituut voor Theoretische Fysica, Universiteit van Amsterdam, Valckenierstraat 65, 1018 XE Amsterdam (Netherlands); Sethi, Savdeep [Enrico Fermi Institute, University of Chicago, Chicago, IL 60637 (United States); Verlinde, Erik [Instituut voor Theoretische Fysica, Universiteit van Amsterdam, Valckenierstraat 65, 1018 XE Amsterdam (Netherlands)

    2005-10-15

    The light-like linear dilaton background represents a particularly simple time-dependent 1/2 BPS solution of critical type-IIA superstring theory in ten dimensions. Its lift to M-theory, as well as its Einstein frame metric, are singular in the sense that the geometry is geodesically incomplete and the Riemann tensor diverges along a light-like subspace of codimension one. We study this background as a model for a big bang type singularity in string theory/M-theory. We construct the dual Matrix theory description in terms of a (1+1)-d supersymmetric Yang-Mills theory on a time-dependent world-sheet given by the Milne orbifold of (1+1)-d Minkowski space. Our model provides a framework in which the physics of the singularity appears to be under control.

  7. Correntropy Based Matrix Completion

    Directory of Open Access Journals (Sweden)

    Yuning Yang

    2018-03-01

    Full Text Available This paper studies the matrix completion problems when the entries are contaminated by non-Gaussian noise or outliers. The proposed approach employs a nonconvex loss function induced by the maximum correntropy criterion. With the help of this loss function, we develop a rank constrained, as well as a nuclear norm regularized model, which is resistant to non-Gaussian noise and outliers. However, its non-convexity also leads to certain difficulties. To tackle this problem, we use the simple iterative soft and hard thresholding strategies. We show that when extending to the general affine rank minimization problems, under proper conditions, certain recoverability results can be obtained for the proposed algorithms. Numerical experiments indicate the improved performance of our proposed approach.

  8. An Application of Matrix Multiplication

    Indian Academy of Sciences (India)

    IAS Admin

    vector whose entries are all non-negative and have sum. 1, and a transition matrix to be a square matrix, each of whose rows is a probability vector. We then define a finite Markov chain (or simply a chain) to consist of an n × n transition matrix P and a 1 × n row vector x: The positions Ei are the states of the chain and our aim.

  9. Homolumo Gap and Matrix Model

    CERN Document Server

    Andric, I; Jurman, D; Nielsen, H B

    2007-01-01

    We discuss a dynamical matrix model by which probability distribution is associated with Gaussian ensembles from random matrix theory. We interpret the matrix M as a Hamiltonian representing interaction of a bosonic system with a single fermion. We show that a system of second-quantized fermions influences the ground state of the whole system by producing a gap between the highest occupied eigenvalue and the lowest unoccupied eigenvalue.

  10. Multivariate Matrix-Exponential Distributions

    DEFF Research Database (Denmark)

    Bladt, Mogens; Nielsen, Bo Friis

    2010-01-01

    be written as linear combinations of the elements in the exponential of a matrix. For this reason we shall refer to multivariate distributions with rational Laplace transform as multivariate matrix-exponential distributions (MVME). The marginal distributions of an MVME are univariate matrix......-exponential distributions. We prove a characterization that states that a distribution is an MVME distribution if and only if all non-negative, non-null linear combinations of the coordinates have a univariate matrix-exponential distribution. This theorem is analog to a well-known characterization theorem...

  11. Clay matrix voltammetry

    International Nuclear Information System (INIS)

    Perdicakis, Michel

    2012-01-01

    Document available in extended abstract form only. In many countries, it is planned that the long life highly radioactive nuclear spent fuel will be stored in deep argillaceous rocks. The sites selected for this purpose are anoxic and satisfy several recommendations as mechanical stability, low permeability and low redox potential. Pyrite (FeS 2 ), iron(II) carbonate, iron(II) bearing clays and organic matter that are present in very small amounts (about 1% w:w) in soils play a major role in their reactivity and are considered today as responsible for the low redox potential values of these sites. In this communication, we describe an electrochemical technique derived from 'Salt matrix voltammetry' and allowing the almost in-situ voltammetric characterization of air-sensitive samples of soils after the only addition of the minimum humidity required for electrolytic conduction. Figure 1 shows the principle of the developed technique. It consists in the entrapment of the clay sample between a graphite working electrode and a silver counter/quasi-reference electrode. The sample was previously humidified by passing a water saturated inert gas through the electrochemical cell. The technique leads to well-defined voltammetric responses of the electro-active components of the clays. Figure 2 shows a typical voltammogram relative to a Callovo-Oxfordian argillite sample from Bure, the French place planned for the underground nuclear waste disposal. During the direct scan, one can clearly distinguish the anodic voltammetric signals for the oxidation of the iron (II) species associated with the clay and the oxidation of pyrite. The reverse scan displays a small cathodic signal for the reduction of iron (III) associated with the clay that demonstrates that the majority of the previously oxidized iron (II) species were transformed into iron (III) oxides reducible at lower potentials. When a second voltammetric cycle is performed, one can notice that the signal for iron (II

  12. Ceramic matrix composite article and process of fabricating a ceramic matrix composite article

    Science.gov (United States)

    Cairo, Ronald Robert; DiMascio, Paul Stephen; Parolini, Jason Robert

    2016-01-12

    A ceramic matrix composite article and a process of fabricating a ceramic matrix composite are disclosed. The ceramic matrix composite article includes a matrix distribution pattern formed by a manifold and ceramic matrix composite plies laid up on the matrix distribution pattern, includes the manifold, or a combination thereof. The manifold includes one or more matrix distribution channels operably connected to a delivery interface, the delivery interface configured for providing matrix material to one or more of the ceramic matrix composite plies. The process includes providing the manifold, forming the matrix distribution pattern by transporting the matrix material through the manifold, and contacting the ceramic matrix composite plies with the matrix material.

  13. Glass matrix armor

    Science.gov (United States)

    Calkins, Noel C.

    1991-01-01

    An armor system which utilizes glass. A plurality of constraint cells are mounted on a surface of a substrate, which is metal armor plate or a similar tough material, such that the cells almost completely cover the surface of the substrate. Each constraint cell has a projectile-receiving wall parallel to the substrate surface and has sides which are perpendicular to and surround the perimeter of the receiving wall. The cells are mounted such that, in one embodiment, the substrate surface serves as a sixth side or closure for each cell. Each cell has inside of it a plate, termed the front plate, which is parallel to and in contact with substantially all of the inside surface of the receiving wall. The balance of each cell is completely filled with a projectile-abrading material consisting of glass and a ceramic material and, in certain embodiments, a polymeric material. The glass may be in monolithic form or particles of ceramic may be dispersed in a glass matrix. The ceramic material may be in monolithic form or may be in the form of particles dispersed in glass or dispersed in said polymer.

  14. Strategy BMT Al-Ittihad Using Matrix IE, Matrix SWOT 8K, Matrix SPACE and Matrix TWOS

    Directory of Open Access Journals (Sweden)

    Nofrizal Nofrizal

    2018-03-01

    Full Text Available This research aims to formulate and select BMT Al-Ittihad Rumbai strategy to face the changing of business environment both from internal environment such as organization resources, finance, member and external business such as competitor, economy, politics and others. This research method used Analysis of EFAS, IFAS, IE Matrix, SWOT-8K Matrix, SPACE Matrix and TWOS Matrix. our hope from this research it can assist BMT Al-Ittihad in formulating and selecting strategies for the sustainability of BMT Al-Ittihad in the future. The sample in this research is using purposive sampling technique that is the manager and leader of BMT Al-IttihadRumbaiPekanbaru. The result of this research shows that the position of BMT Al-Ittihad using IE Matrix, SWOT-8K Matrix and SPACE Matrix is in growth position, stabilization and aggressive. The choice of strategy after using TWOS Matrix is market penetration, market development, vertical integration, horizontal integration, and stabilization (careful.

  15. How to Study a Matrix

    Science.gov (United States)

    Jairam, Dharmananda; Kiewra, Kenneth A.; Kauffman, Douglas F.; Zhao, Ruomeng

    2012-01-01

    This study investigated how best to study a matrix. Fifty-three participants studied a matrix topically (1 column at a time), categorically (1 row at a time), or in a unified way (all at once). Results revealed that categorical and unified study produced higher: (a) performance on relationship and fact tests, (b) study material satisfaction, and…

  16. Quantum mechanics in matrix form

    CERN Document Server

    Ludyk, Günter

    2018-01-01

    This book gives an introduction to quantum mechanics with the matrix method. Heisenberg's matrix mechanics is described in detail. The fundamental equations are derived by algebraic methods using matrix calculus. Only a brief description of Schrödinger's wave mechanics is given (in most books exclusively treated), to show their equivalence to Heisenberg's matrix  method. In the first part the historical development of Quantum theory by Planck, Bohr and Sommerfeld is sketched, followed by the ideas and methods of Heisenberg, Born and Jordan. Then Pauli's spin and exclusion principles are treated. Pauli's exclusion principle leads to the structure of atoms. Finally, Dirac´s relativistic quantum mechanics is shortly presented. Matrices and matrix equations are today easy to handle when implementing numerical algorithms using standard software as MAPLE and Mathematica.

  17. M-theoretic matrix models

    Science.gov (United States)

    Grassi, Alba; Mariño, Marcos

    2015-02-01

    Some matrix models admit, on top of the usual 't Hooft expansion, an M-theory-like expansion, i.e. an expansion at large N but where the rest of the parameters are fixed, instead of scaling with N . These models, which we call M-theoretic matrix models, appear in the localization of Chern-Simons-matter theories, and also in two-dimensional statistical physics. Generically, their partition function receives non-perturbative corrections which are not captured by the 't Hooft expansion. In this paper, we discuss general aspects of these type of matrix integrals and we analyze in detail two different examples. The first one is the matrix model computing the partition function of supersymmetric Yang-Mills theory in three dimensions with one adjoint hypermultiplet and N f fundamentals, which has a conjectured M-theory dual, and which we call the N f matrix model. The second one, which we call the polymer matrix model, computes form factors of the 2d Ising model and is related to the physics of 2d polymers. In both cases we determine their exact planar limit. In the N f matrix model, the planar free energy reproduces the expected behavior of the M-theory dual. We also study their M-theory expansion by using Fermi gas techniques, and we find non-perturbative corrections to the 't Hooft expansion.

  18. Containment Code Validation Matrix

    International Nuclear Information System (INIS)

    Chin, Yu-Shan; Mathew, P.M.; Glowa, Glenn; Dickson, Ray; Liang, Zhe; Leitch, Brian; Barber, Duncan; Vasic, Aleks; Bentaib, Ahmed; Journeau, Christophe; Malet, Jeanne; Studer, Etienne; Meynet, Nicolas; Piluso, Pascal; Gelain, Thomas; Michielsen, Nathalie; Peillon, Samuel; Porcheron, Emmanuel; Albiol, Thierry; Clement, Bernard; Sonnenkalb, Martin; Klein-Hessling, Walter; Arndt, Siegfried; Weber, Gunter; Yanez, Jorge; Kotchourko, Alexei; Kuznetsov, Mike; Sangiorgi, Marco; Fontanet, Joan; Herranz, Luis; Garcia De La Rua, Carmen; Santiago, Aleza Enciso; Andreani, Michele; Paladino, Domenico; Dreier, Joerg; Lee, Richard; Amri, Abdallah

    2014-01-01

    The Committee on the Safety of Nuclear Installations (CSNI) formed the CCVM (Containment Code Validation Matrix) task group in 2002. The objective of this group was to define a basic set of available experiments for code validation, covering the range of containment (ex-vessel) phenomena expected in the course of light and heavy water reactor design basis accidents and beyond design basis accidents/severe accidents. It was to consider phenomena relevant to pressurised heavy water reactor (PHWR), pressurised water reactor (PWR) and boiling water reactor (BWR) designs of Western origin as well as of Eastern European VVER types. This work would complement the two existing CSNI validation matrices for thermal hydraulic code validation (NEA/CSNI/R(1993)14) and In-vessel core degradation (NEA/CSNI/R(2001)21). The report initially provides a brief overview of the main features of a PWR, BWR, CANDU and VVER reactors. It also provides an overview of the ex-vessel corium retention (core catcher). It then provides a general overview of the accident progression for light water and heavy water reactors. The main focus is to capture most of the phenomena and safety systems employed in these reactor types and to highlight the differences. This CCVM contains a description of 127 phenomena, broken down into 6 categories: - Containment Thermal-hydraulics Phenomena; - Hydrogen Behaviour (Combustion, Mitigation and Generation) Phenomena; - Aerosol and Fission Product Behaviour Phenomena; - Iodine Chemistry Phenomena; - Core Melt Distribution and Behaviour in Containment Phenomena; - Systems Phenomena. A synopsis is provided for each phenomenon, including a description, references for further information, significance for DBA and SA/BDBA and a list of experiments that may be used for code validation. The report identified 213 experiments, broken down into the same six categories (as done for the phenomena). An experiment synopsis is provided for each test. Along with a test description

  19. The matrix of inspiration

    Science.gov (United States)

    Oehlmann, Dietmar; Ohlmann, Odile M.; Danzebrink, Hans U.

    2005-04-01

    perform this exchange, as a matrix, understood as source, of new ideas.

  20. Matrix Converter in Hybrid Drives

    Czech Academy of Sciences Publication Activity Database

    Lettl, Jiří; Flígl, S.

    -, č. 3 (2004), s. 77-80 ISSN 0204-3599 Institutional research plan: CEZ:AV0Z2057903 Keywords : matrix converter * hybrid drive * electric power splitting Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  1. GoM Diet Matrix

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set was taken from CRD 08-18 at the NEFSC. Specifically, the Gulf of Maine diet matrix was developed for the EMAX exercise described in that center...

  2. Radiation resistant ceramic matrix composites

    International Nuclear Information System (INIS)

    Jones, R.H.; Steiner, D.; Heinisch, H.L.; Newsome, G.A.; Kerch, H.M.

    1997-01-01

    Ceramic matrix composites are of interest for nuclear applications because of their high-temperature properties, corrosion resistance, fracture toughness relative to monolithic ceramics, and low neutron activation and after heat. Evaluations of the radiation resistance of commercially available SiC/SiC composites have revealed their promise for this application, but also the need for further development to achieve the desired performance. This paper summarizes the results of a workshop cosponsored by the Offices of Fusion Energy and Basic Energy Sciences of the US Department of Energy and Lockheed-Martin Corporation with forty attendees from national laboratories, universities and industry. A number of promising routes for optimizing the radiation stability of ceramic matrix composites were identified at this workshop. These routes included the newer, more stoichiometric fibers and alternate fiber/matrix interfaces and matrix processing routes. (orig.)

  3. The R-matrix theory

    International Nuclear Information System (INIS)

    Descouvemont, P; Baye, D

    2010-01-01

    The different facets of the R-matrix method are presented pedagogically in a general framework. Two variants have been developed over the years: (i) The 'calculable' R-matrix method is a calculational tool to derive scattering properties from the Schroedinger equation in a large variety of physical problems. It was developed rather independently in atomic and nuclear physics with too little mutual influence. (ii) The 'phenomenological' R-matrix method is a technique to parametrize various types of cross sections. It was mainly (or uniquely) used in nuclear physics. Both directions are explained by starting from the simple problem of scattering by a potential. They are illustrated by simple examples in nuclear and atomic physics. In addition to elastic scattering, the R-matrix formalism is applied to inelastic and radiative-capture reactions. We also present more recent and more ambitious applications of the theory in nuclear physics.

  4. Matrix analysis of electrical machinery

    CERN Document Server

    Hancock, N N

    2013-01-01

    Matrix Analysis of Electrical Machinery, Second Edition is a 14-chapter edition that covers the systematic analysis of electrical machinery performance. This edition discusses the principles of various mathematical operations and their application to electrical machinery performance calculations. The introductory chapters deal with the matrix representation of algebraic equations and their application to static electrical networks. The following chapters describe the fundamentals of different transformers and rotating machines and present torque analysis in terms of the currents based on the p

  5. Bilateral matrix-exponential distributions

    DEFF Research Database (Denmark)

    Bladt, Mogens; Esparza, Luz Judith R; Nielsen, Bo Friis

    2012-01-01

    In this article we define the classes of bilateral and multivariate bilateral matrix-exponential distributions. These distributions have support on the entire real space and have rational moment-generating functions. These distributions extend the class of bilateral phasetype distributions of [1]....... As an application we demonstrate that certain multivariate disions, which are governed by the underlying Markov jump process generating a phasetype distribution, have a bilateral matrix-exponential distribution at the time of absorption, see also [4]....

  6. Matrix Effects in XRF Measurements

    International Nuclear Information System (INIS)

    Kandil, A.T.; Gabr, N.A.; El-Aryan, S.M.

    2015-01-01

    This research treats the matrix effect on XRF measurements. The problem is treated by preparing general oxide program, which contains many samples that represent all materials in cement factories, then by using T rail Lachance m ethod to correct errors of matrix effect. This work compares the effect of using lithium tetraborate or sodium tetraborate as a fluxing agent in terms of accuracy and economic cost

  7. Capacitance matrix method in TRAC and MELPROG

    International Nuclear Information System (INIS)

    Steinke, R.G.; Dearing, J.F.

    1989-01-01

    The capacitance matrix method has been used in the TRAC and MELPROG transient, thermal-hydraulic, safety-analysis computer programs to solve the multi-dimensional-vessel matrix equations. A full-matrix solver rather than a more efficient banded-matrix solver was used previously because of nonzero elements lying outside the matrix bandwidth. These outlying nonzero elements result from vessel external and internal pipe flow channels connecting non-adjacent cells in the multidimensional vessel component. The capacitance matrix method provides a more efficient solution algorithm by solving the banded portion of the vessel-matrix equation with a banded-matrix solver. The effect of the nonzero outlying elements on that solution is accounted for through matrix algebra and a lower order capacitance-matrix equation solution that modifies the banded-matrix solution to give the full-matrix solution. 5 refs., 2 figs

  8. EISPACK, Subroutines for Eigenvalues, Eigenvectors, Matrix Operations

    International Nuclear Information System (INIS)

    Garbow, Burton S.; Cline, A.K.; Meyering, J.

    1993-01-01

    1 - Description of problem or function: EISPACK3 is a collection of 75 FORTRAN subroutines, both single- and double-precision, that compute the eigenvalues and eigenvectors of nine classes of matrices. The package can determine the Eigen-system of complex general, complex Hermitian, real general, real symmetric, real symmetric band, real symmetric tridiagonal, special real tridiagonal, generalized real, and generalized real symmetric matrices. In addition, there are two routines which use the singular value decomposition to solve certain least squares problem. The individual subroutines are - Identification/Description: BAKVEC: Back transform vectors of matrix formed by FIGI; BALANC: Balance a real general matrix; BALBAK: Back transform vectors of matrix formed by BALANC; BANDR: Reduce sym. band matrix to sym. tridiag. matrix; BANDV: Find some vectors of sym. band matrix; BISECT: Find some values of sym. tridiag. matrix; BQR: Find some values of sym. band matrix; CBABK2: Back transform vectors of matrix formed by CBAL; CBAL: Balance a complex general matrix; CDIV: Perform division of two complex quantities; CG: Driver subroutine for a complex general matrix; CH: Driver subroutine for a complex Hermitian matrix; CINVIT: Find some vectors of complex Hess. matrix; COMBAK: Back transform vectors of matrix formed by COMHES; COMHES: Reduce complex matrix to complex Hess. (elementary); COMLR: Find all values of complex Hess. matrix (LR); COMLR2: Find all values/vectors of cmplx Hess. matrix (LR); CCMQR: Find all values of complex Hessenberg matrix (QR); COMQR2: Find all values/vectors of cmplx Hess. matrix (QR); CORTB: Back transform vectors of matrix formed by CORTH; CORTH: Reduce complex matrix to complex Hess. (unitary); CSROOT: Find square root of complex quantity; ELMBAK: Back transform vectors of matrix formed by ELMHES; ELMHES: Reduce real matrix to real Hess. (elementary); ELTRAN: Accumulate transformations from ELMHES (for HQR2); EPSLON: Estimate unit roundoff

  9. A survey of matrix theory and matrix inequalities

    CERN Document Server

    Marcus, Marvin

    2010-01-01

    Written for advanced undergraduate students, this highly regarded book presents an enormous amount of information in a concise and accessible format. Beginning with the assumption that the reader has never seen a matrix before, the authors go on to provide a survey of a substantial part of the field, including many areas of modern research interest.Part One of the book covers not only the standard ideas of matrix theory, but ones, as the authors state, ""that reflect our own prejudices,"" among them Kronecker products, compound and induced matrices, quadratic relations, permanents, incidence

  10. QCD Matrix Elements + Parton Showers

    CERN Document Server

    Catani, S; Kühn, R; Webber, Bryan R

    2001-01-01

    We propose a method for combining QCD matrix elements and parton showers in Monte Carlo simulations of hadronic final states in $e^+e^-$ annihilation. The matrix element and parton shower domains are separated at some value $y_{ini}$ of the jet resolution, defined according to the $k_T$-clustering algorithm. The matrix elements are modified by Sudakov form factors and the parton showers are subjected to a veto procedure to cancel dependence on $y_{ini}$ to next-to-leading logarithmic accuracy. The method provides a leading-order description of hard multi-jet configurations together with jet fragmentation, while avoiding the most serious problems of double counting. We present first results of an approximate implementation using the event generator APACIC++.

  11. Lectures on matrix field theory

    CERN Document Server

    Ydri, Badis

    2017-01-01

    These lecture notes provide a systematic introduction to matrix models of quantum field theories with non-commutative and fuzzy geometries. The book initially focuses on the matrix formulation of non-commutative and fuzzy spaces, followed by a description of the non-perturbative treatment of the corresponding field theories. As an example, the phase structure of non-commutative phi-four theory is treated in great detail, with a separate chapter on the multitrace approach. The last chapter offers a general introduction to non-commutative gauge theories, while two appendices round out the text. Primarily written as a self-study guide for postgraduate students – with the aim of pedagogically introducing them to key analytical and numerical tools, as well as useful physical models in applications – these lecture notes will also benefit experienced researchers by providing a reference guide to the fundamentals of non-commutative field theory with an emphasis on matrix models and fuzzy geometries.

  12. Noncommutative spaces from matrix models

    Science.gov (United States)

    Lu, Lei

    Noncommutative (NC) spaces commonly arise as solutions to matrix model equations of motion. They are natural generalizations of the ordinary commutative spacetime. Such spaces may provide insights into physics close to the Planck scale, where quantum gravity becomes relevant. Although there has been much research in the literature, aspects of these NC spaces need further investigation. In this dissertation, we focus on properties of NC spaces in several different contexts. In particular, we study exact NC spaces which result from solutions to matrix model equations of motion. These spaces are associated with finite-dimensional Lie-algebras. More specifically, they are two-dimensional fuzzy spaces that arise from a three-dimensional Yang-Mills type matrix model, four-dimensional tensor-product fuzzy spaces from a tensorial matrix model, and Snyder algebra from a five-dimensional tensorial matrix model. In the first part of this dissertation, we study two-dimensional NC solutions to matrix equations of motion of extended IKKT-type matrix models in three-space-time dimensions. Perturbations around the NC solutions lead to NC field theories living on a two-dimensional space-time. The commutative limit of the solutions are smooth manifolds which can be associated with closed, open and static two-dimensional cosmologies. One particular solution is a Lorentzian fuzzy sphere, which leads to essentially a fuzzy sphere in the Minkowski space-time. In the commutative limit, this solution leads to an induced metric that does not have a fixed signature, and have a non-constant negative scalar curvature, along with singularities at two fixed latitudes. The singularities are absent in the matrix solution which provides a toy model for resolving the singularities of General relativity. We also discussed the two-dimensional fuzzy de Sitter space-time, which has irreducible representations of su(1,1) Lie-algebra in terms of principal, complementary and discrete series. Field

  13. Supersymmetry in random matrix theory

    Energy Technology Data Exchange (ETDEWEB)

    Kieburg, Mario

    2010-05-04

    I study the applications of supersymmetry in random matrix theory. I generalize the supersymmetry method and develop three new approaches to calculate eigenvalue correlation functions. These correlation functions are averages over ratios of characteristic polynomials. In the first part of this thesis, I derive a relation between integrals over anti-commuting variables (Grassmann variables) and differential operators with respect to commuting variables. With this relation I rederive Cauchy- like integral theorems. As a new application I trace the supermatrix Bessel function back to a product of two ordinary matrix Bessel functions. In the second part, I apply the generalized Hubbard-Stratonovich transformation to arbitrary rotation invariant ensembles of real symmetric and Hermitian self-dual matrices. This extends the approach for unitarily rotation invariant matrix ensembles. For the k-point correlation functions I derive supersymmetric integral expressions in a unifying way. I prove the equivalence between the generalized Hubbard-Stratonovich transformation and the superbosonization formula. Moreover, I develop an alternative mapping from ordinary space to superspace. After comparing the results of this approach with the other two supersymmetry methods, I obtain explicit functional expressions for the probability densities in superspace. If the probability density of the matrix ensemble factorizes, then the generating functions exhibit determinantal and Pfaffian structures. For some matrix ensembles this was already shown with help of other approaches. I show that these structures appear by a purely algebraic manipulation. In this new approach I use structures naturally appearing in superspace. I derive determinantal and Pfaffian structures for three types of integrals without actually mapping onto superspace. These three types of integrals are quite general and, thus, they are applicable to a broad class of matrix ensembles. (orig.)

  14. Supersymmetry in random matrix theory

    International Nuclear Information System (INIS)

    Kieburg, Mario

    2010-01-01

    I study the applications of supersymmetry in random matrix theory. I generalize the supersymmetry method and develop three new approaches to calculate eigenvalue correlation functions. These correlation functions are averages over ratios of characteristic polynomials. In the first part of this thesis, I derive a relation between integrals over anti-commuting variables (Grassmann variables) and differential operators with respect to commuting variables. With this relation I rederive Cauchy- like integral theorems. As a new application I trace the supermatrix Bessel function back to a product of two ordinary matrix Bessel functions. In the second part, I apply the generalized Hubbard-Stratonovich transformation to arbitrary rotation invariant ensembles of real symmetric and Hermitian self-dual matrices. This extends the approach for unitarily rotation invariant matrix ensembles. For the k-point correlation functions I derive supersymmetric integral expressions in a unifying way. I prove the equivalence between the generalized Hubbard-Stratonovich transformation and the superbosonization formula. Moreover, I develop an alternative mapping from ordinary space to superspace. After comparing the results of this approach with the other two supersymmetry methods, I obtain explicit functional expressions for the probability densities in superspace. If the probability density of the matrix ensemble factorizes, then the generating functions exhibit determinantal and Pfaffian structures. For some matrix ensembles this was already shown with help of other approaches. I show that these structures appear by a purely algebraic manipulation. In this new approach I use structures naturally appearing in superspace. I derive determinantal and Pfaffian structures for three types of integrals without actually mapping onto superspace. These three types of integrals are quite general and, thus, they are applicable to a broad class of matrix ensembles. (orig.)

  15. Polychoric/Tetrachoric Matrix or Pearson Matrix? A methodological study

    Directory of Open Access Journals (Sweden)

    Dominguez Lara, Sergio Alexis

    2014-04-01

    Full Text Available The use of product-moment correlation of Pearson is common in most studies in factor analysis in psychology, but it is known that this statistic is only applicable when the variables related are in interval scale and normally distributed, and when are used in ordinal data may to produce a distorted correlation matrix . Thus is a suitable option using polychoric/tetrachoric matrices in item-level factor analysis when the items are in level measurement nominal or ordinal. The aim of this study was to show the differences in the KMO, Bartlett`s Test and Determinant of the Matrix, percentage of variance explained and factor loadings in depression trait scale of Depression Inventory Trait - State and the Neuroticism dimension of the short form of the Eysenck Personality Questionnaire -Revised, regarding the use of matrices polychoric/tetrachoric matrices and Pearson. These instruments was analyzed with different extraction methods (Maximum Likelihood, Minimum Rank Factor Analysis, Unweighted Least Squares and Principal Components, keeping constant the rotation method Promin were analyzed. Were observed differences regarding sample adequacy measures, as well as with respect to the explained variance and the factor loadings, for solutions having as polychoric/tetrachoric matrix. So it can be concluded that the polychoric / tetrachoric matrix give better results than Pearson matrices when it comes to item-level factor analysis using different methods.

  16. Symmetries and Interactions in Matrix String Theory

    NARCIS (Netherlands)

    Hacquebord, F.H.

    1999-01-01

    This PhD-thesis reviews matrix string theory and recent developments therein. The emphasis is put on symmetries, interactions and scattering processes in the matrix model. We start with an introduction to matrix string theory and a review of the orbifold model that flows out of matrix string theory

  17. On the Matrix (I + X)-1

    NARCIS (Netherlands)

    Engwerda, J.C.

    2005-01-01

    In this note we consider the question under which conditions all entries of the matrix I-(I+X)-1 are nonnegative in case matrix X is a real positive definite matrix.Sufficient conditions are presented as well as some necessary conditions.One sufficient condition is that matrix X-1 is an inverse

  18. Matrix models of induced QCD

    International Nuclear Information System (INIS)

    Makeenko, Yu.

    1994-01-01

    I review recent works on the problem of inducing large-N QCD by matrix fields. In the first part of the talk I describe the matrix models which induce large-N QCD and present the results of studies of their phase structure by the standard lattice technology (in particular, by the mean field method). The second part is devoted to the exact solution of these models in the strong coupling region by means of the loop equations. I describe the solution of the Kazakov-Migdal model with the quadratic and logarithmic potentials as well as that of analogous fermionic models with the quadratic potential. (orig.)

  19. Inverse Interval Matrix: A Survey

    Czech Academy of Sciences Publication Activity Database

    Rohn, Jiří; Farhadsefat, R.

    2011-01-01

    Roč. 22, - (2011), s. 704-719 E-ISSN 1081-3810 R&D Projects: GA ČR GA201/09/1957; GA ČR GC201/08/J020 Institutional research plan: CEZ:AV0Z10300504 Keywords : interval matrix * inverse interval matrix * NP-hardness * enclosure * unit midpoint * inverse sign stability * nonnegative invertibility * absolute value equation * algorithm Subject RIV: BA - General Mathematics Impact factor: 0.808, year: 2010 http://www.math.technion.ac.il/iic/ela/ela-articles/articles/vol22_pp704-719.pdf

  20. The eWOM Matrix

    DEFF Research Database (Denmark)

    Martensen, Anne; Jensen, J.S; Gyrd-Jones, Richard

    Consumers often share opinions and personal consumption experiences on web-based consumer opinion platforms. These e-Word-of-Mouth (eWOM) reviews are powerful as they can prompt other consumers to consider a company and its offerings, but they can also cause the opposite effect. This article......WOM Matrix - where the customers’ touch points are the strategic connection between analysis and implementation of eWOM issues. The eWOM Matrix serves as a management tool, visually assisting companies to explore about which touch-points their customers’ primarily construct negative or positive e...

  1. Towards Google matrix of brain

    Energy Technology Data Exchange (ETDEWEB)

    Shepelyansky, D.L., E-mail: dima@irsamc.ups-tlse.f [Laboratoire de Physique Theorique (IRSAMC), Universite de Toulouse, UPS, F-31062 Toulouse (France); LPT - IRSAMC, CNRS, F-31062 Toulouse (France); Zhirov, O.V. [Budker Institute of Nuclear Physics, 630090 Novosibirsk (Russian Federation)

    2010-07-12

    We apply the approach of the Google matrix, used in computer science and World Wide Web, to description of properties of neuronal networks. The Google matrix G is constructed on the basis of neuronal network of a brain model discussed in PNAS 105 (2008) 3593. We show that the spectrum of eigenvalues of G has a gapless structure with long living relaxation modes. The PageRank of the network becomes delocalized for certain values of the Google damping factor {alpha}. The properties of other eigenstates are also analyzed. We discuss further parallels and similarities between the World Wide Web and neuronal networks.

  2. Towards Google matrix of brain

    International Nuclear Information System (INIS)

    Shepelyansky, D.L.; Zhirov, O.V.

    2010-01-01

    We apply the approach of the Google matrix, used in computer science and World Wide Web, to description of properties of neuronal networks. The Google matrix G is constructed on the basis of neuronal network of a brain model discussed in PNAS 105 (2008) 3593. We show that the spectrum of eigenvalues of G has a gapless structure with long living relaxation modes. The PageRank of the network becomes delocalized for certain values of the Google damping factor α. The properties of other eigenstates are also analyzed. We discuss further parallels and similarities between the World Wide Web and neuronal networks.

  3. Matrix theory selected topics and useful results

    CERN Document Server

    Mehta, Madan Lal

    1989-01-01

    Matrices and operations on matrices ; determinants ; elementary operations on matrices (continued) ; eigenvalues and eigenvectors, diagonalization of normal matrices ; functions of a matrix ; positive definiteness, various polar forms of a matrix ; special matrices ; matrices with quaternion elements ; inequalities ; generalised inverse of a matrix ; domain of values of a matrix, location and dispersion of eigenvalues ; symmetric functions ; integration over matrix variables ; permanents of doubly stochastic matrices ; infinite matrices ; Alexander matrices, knot polynomials, torsion numbers.

  4. Matrix Treatment of Ray Optics.

    Science.gov (United States)

    Quon, W. Steve

    1996-01-01

    Describes a method to combine two learning experiences--optical physics and matrix mathematics--in a straightforward laboratory experiment that allows engineering/physics students to integrate a variety of learning insights and technical skills, including using lasers, studying refraction through thin lenses, applying concepts of matrix…

  5. Parallel Sparse Matrix - Vector Product

    DEFF Research Database (Denmark)

    Alexandersen, Joe; Lazarov, Boyan Stefanov; Dammann, Bernd

    This technical report contains a case study of a sparse matrix-vector product routine, implemented for parallel execution on a compute cluster with both pure MPI and hybrid MPI-OpenMP solutions. C++ classes for sparse data types were developed and the report shows how these class can be used...

  6. A two-matrix alternative

    Czech Academy of Sciences Publication Activity Database

    Rohn, Jiří

    2013-01-01

    Roč. 26, 15 December (2013), s. 836-841 ISSN 1537-9582 Institutional support: RVO:67985807 Keywords : two-matrix alternative * solution * algorithm Subject RIV: BA - General Mathematics Impact factor: 0.514, year: 2013 http://www.math.technion.ac.il/iic/ela/ela-articles/articles/vol26_pp836-841.pdf

  7. Amorphous metal matrix composite ribbons

    International Nuclear Information System (INIS)

    Barczy, P.; Szigeti, F.

    1998-01-01

    Composite ribbons with amorphous matrix and ceramic (SiC, WC, MoB) particles were produced by modified planar melt flow casting methods. Weldability, abrasive wear and wood sanding examinations were carried out in order to find optimal material and technology for elevated wear resistance and sanding durability. The correlation between structure and composite properties is discussed. (author)

  8. Extracellular matrix and wound healing.

    Science.gov (United States)

    Maquart, F X; Monboisse, J C

    2014-04-01

    Extracellular matrix has been known for a long time as an architectural support for the tissues. Many recent data, however, have shown that extracellular matrix macromolecules (collagens, elastin, glycosaminoglycans, proteoglycans and connective tissue glycoproteins) are able to regulate many important cell functions, such as proliferation, migration, protein synthesis or degradation, apoptosis, etc., making them able to play an important role in the wound repair process. Not only the intact macromolecules but some of their specific domains, that we called "Matrikines", are also able to regulate many cell activities. In this article, we will summarize main findings showing the effects of extracellular matrix macromolecules and matrikines on connective tissue and epithelial cells, particularly in skin, and their potential implication in the wound healing process. These examples show that extracellular matrix macromolecules or some of their specific domains may play a major role in wound healing. Better knowledge of these interactions may suggest new therapeutic targets in wound healing defects. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  9. Concept for Energy Security Matrix

    International Nuclear Information System (INIS)

    Kisel, Einari; Hamburg, Arvi; Härm, Mihkel; Leppiman, Ando; Ots, Märt

    2016-01-01

    The following paper presents a discussion of short- and long-term energy security assessment methods and indicators. The aim of the current paper is to describe diversity of approaches to energy security, to structure energy security indicators used by different institutions and papers, and to discuss several indicators that also play important role in the design of energy policy of a state. Based on this analysis the paper presents a novel Energy Security Matrix that structures relevant energy security indicators from the aspects of Technical Resilience and Vulnerability, Economic Dependence and Political Affectability for electricity, heat and transport fuel sectors. Earlier publications by different authors have presented energy security assessment methodologies that use publicly available indicators from different databases. Current paper challenges viability of some of these indicators and introduces new indicators that would deliver stronger energy security policy assessments. Energy Security Matrix and its indicators are based on experiences that the authors have gathered as high-level energy policymakers in Estonia, where all different aspects of energy security can be observed. - Highlights: •Energy security should be analysed in technical, economic and political terms; •Energy Security Matrix provides a framework for energy security analyses; •Applicability of Matrix is limited due to the lack of statistical data and sensitivity of output.

  10. The COMPADRE Plant Matrix Database

    DEFF Research Database (Denmark)

    2014-01-01

    COMPADRE contains demographic information on hundreds of plant species. The data in COMPADRE are in the form of matrix population models and our goal is to make these publicly available to facilitate their use for research and teaching purposes. COMPADRE is an open-access database. We only request...

  11. Unravelling the nuclear matrix proteome

    DEFF Research Database (Denmark)

    Albrethsen, Jakob; Knol, Jaco C; Jimenez, Connie R

    2009-01-01

    The nuclear matrix (NM) model posits the presence of a protein/RNA scaffold that spans the mammalian nucleus. The NM proteins are involved in basic nuclear function and are a promising source of protein biomarkers for cancer. Importantly, the NM proteome is operationally defined as the proteins...

  12. Hyper-systolic matrix multiplication

    NARCIS (Netherlands)

    Lippert, Th.; Petkov, N.; Palazzari, P.; Schilling, K.

    A novel parallel algorithm for matrix multiplication is presented. It is based on a 1-D hyper-systolic processor abstraction. The procedure can be implemented on all types of parallel systems. (C) 2001 Elsevier Science B,V. All rights reserved.

  13. Regularization in Matrix Relevance Learning

    NARCIS (Netherlands)

    Schneider, Petra; Bunte, Kerstin; Stiekema, Han; Hammer, Barbara; Villmann, Thomas; Biehl, Michael

    A In this paper, we present a regularization technique to extend recently proposed matrix learning schemes in learning vector quantization (LVQ). These learning algorithms extend the concept of adaptive distance measures in LVQ to the use of relevance matrices. In general, metric learning can

  14. Matrix-Free Preconditioning using Partial Matrix Estimation

    Czech Academy of Sciences Publication Activity Database

    Cullum, J. K.; Tůma, Miroslav

    2006-01-01

    Roč. 46, č. 4 (2006), s. 711-729 ISSN 0006-3835 R&D Projects: GA AV ČR 1ET400300415; GA AV ČR IAA1030405 Institutional research plan: CEZ:AV0Z10300504 Keywords : matrix-free algorithms * linear algebraic equations * large sparse matrices * preconditioned iterative methods Subject RIV: BA - General Mathematics Impact factor: 0.841, year: 2006

  15. Matrix metalloproteinases in fish biology and matrix turnover.

    Science.gov (United States)

    Pedersen, Mona E; Vuong, Tram T; Rønning, Sissel B; Kolset, Svein O

    2015-01-01

    Matrix metalloproteinases have important functions for tissue turnover in fish, with relevance both for the fish industry and molecular and cellular research on embryology, inflammation and tissue repair. These metalloproteinases have been studied in different fish types, subjected to both aquaculture and experimental conditions. This review highlights studies on these metalloproteinases in relation to both fish quality and health and further, the future importance of fish for basic research studies. Copyright © 2015. Published by Elsevier B.V.

  16. Omentin-1 prevents cartilage matrix destruction by regulating matrix metalloproteinases.

    Science.gov (United States)

    Li, Zhigang; Liu, Baoyi; Zhao, Dewei; Wang, BenJie; Liu, Yupeng; Zhang, Yao; Li, Borui; Tian, Fengde

    2017-08-01

    Matrix metalloproteinases (MMPs) play a crucial role in the degradation of the extracellular matrix and pathological progression of osteoarthritis (OA). Omentin-1 is a newly identified anti-inflammatory adipokine. Little information regarding the protective effects of omentin-1 in OA has been reported before. In the current study, our results indicated that omentin-1 suppressed expression of MMP-1, MMP-3, and MMP-13 induced by the proinflammatory cytokine interleukin-1β (IL-1β) at both the mRNA and protein levels in human chondrocytes. Importantly, administration of omentin-1 abolished IL-1β-induced degradation of type II collagen (Col II) and aggrecan, the two major extracellular matrix components in articular cartilage, in a dose-dependent manner. Mechanistically, omentin-1 ameliorated the expression of interferon regulatory factor 1 (IRF-1) by blocking the JAK-2/STAT3 pathway. Our results indicate that omentin-1 may have a potential chondroprotective therapeutic capacity. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  17. The doubly negative matrix completion problem

    OpenAIRE

    Araújo, C. Mendes; Torregrosa, Juan R.; Urbano, Ana M.

    2005-01-01

    An $n\\times n$ matrix over the field of real numbers is a doubly negative matrix if it is symmetric, negative definite and entry-wise negative. In this paper, we are interested in the doubly negative matrix completion problem, that is when does a partial matrix have a doubly negative matrix completion. In general, we cannot guarantee the existence of such a completion. In this paper, we prove that every partial doubly negative matrix whose associated graph is a $p$-chorda...

  18. Minimal solution for inconsistent singular fuzzy matrix equations

    Directory of Open Access Journals (Sweden)

    M. Nikuie

    2013-10-01

    Full Text Available The fuzzy matrix equations $Ailde{X}=ilde{Y}$ is called a singular fuzzy matrix equations while the coefficients matrix of its equivalent crisp matrix equations be a singular matrix. The singular fuzzy matrix equations are divided into two parts: consistent singular matrix equations and inconsistent fuzzy matrix equations. In this paper, the inconsistent singular fuzzy matrix equations is studied and the effect of generalized inverses in finding minimal solution of an inconsistent singular fuzzy matrix equations are investigated.

  19. The gravitational S-matrix

    CERN Document Server

    Giddings, Steven B

    2010-01-01

    We investigate the hypothesized existence of an S-matrix for gravity, and some of its expected general properties. We first discuss basic questions regarding existence of such a matrix, including those of infrared divergences and description of asymptotic states. Distinct scattering behavior occurs in the Born, eikonal, and strong gravity regimes, and we describe aspects of both the partial wave and momentum space amplitudes, and their analytic properties, from these regimes. Classically the strong gravity region would be dominated by formation of black holes, and we assume its unitary quantum dynamics is described by corresponding resonances. Masslessness limits some powerful methods and results that apply to massive theories, though a continuation path implying crossing symmetry plausibly still exists. Physical properties of gravity suggest nonpolynomial amplitudes, although crossing and causality constrain (with modest assumptions) this nonpolynomial behavior, particularly requiring a polynomial bound in c...

  20. Matrix Factorization for Evolution Data

    Directory of Open Access Journals (Sweden)

    Xiao-Yu Huang

    2014-01-01

    Full Text Available We study a matrix factorization problem, that is, to find two factor matrices U and V such that R≈UT×V, where R is a matrix composed of the values of the objects O1,O2,…,On at consecutive time points T1,T2,…,Tt. We first present MAFED, a constrained optimization model for this problem, which straightforwardly performs factorization on R. Then based on the interplay of the data in U, V, and R, a probabilistic graphical model using the same optimization objects is constructed, in which structural dependencies of the data in these matrices are revealed. Finally, we present a fitting algorithm to solve the proposed MAFED model, which produces the desired factorization. Empirical studies on real-world datasets demonstrate that our approach outperforms the state-of-the-art comparison algorithms.

  1. Random matrix improved subspace clustering

    KAUST Repository

    Couillet, Romain

    2017-03-06

    This article introduces a spectral method for statistical subspace clustering. The method is built upon standard kernel spectral clustering techniques, however carefully tuned by theoretical understanding arising from random matrix findings. We show in particular that our method provides high clustering performance while standard kernel choices provably fail. An application to user grouping based on vector channel observations in the context of massive MIMO wireless communication networks is provided.

  2. Coherence matrix of plasmonic beams

    DEFF Research Database (Denmark)

    Novitsky, Andrey; Lavrinenko, Andrei

    2013-01-01

    We consider monochromatic electromagnetic beams of surface plasmon-polaritons created at interfaces between dielectric media and metals. We theoretically study non-coherent superpositions of elementary surface waves and discuss their spectral degree of polarization, Stokes parameters, and the for...... of the spectral coherence matrix. We compare the polarization properties of the surface plasmonspolaritons as three-dimensional and two-dimensional fields concluding that the latter is superior....

  3. Cubic Matrix, Nambu Mechanics and Beyond

    OpenAIRE

    Yoshiharu, KAWAMURA; Department of Physics, Shinshu University

    2003-01-01

    We propose a generalization of cubic matrix mechanics by introducing a canonical triplet and study its relation to Nambu mechanics. The generalized cubic matrix mechanics we consider can be interpreted as a 'quantum' generalization of Nambu mechanics.

  4. Matrix Models and String World Sheet Duality

    OpenAIRE

    de Alwis, S. P.

    1997-01-01

    The scaling limit used recently to derive matrix models, and a certain analyticity assumption, are invoked to argue that the agreement between some matrix model calculations and supergravity is a consequence of string world sheet duality.

  5. Cubic Matrix, Nambu Mechanics and Beyond

    OpenAIRE

    Kawamura, Yoshiharu

    2002-01-01

    We propose a generalization of cubic matrix mechanics by introducing a canonical triplet and study its relation to Nambu mechanics. The generalized cubic matrix mechanics we consider can be interpreted as a “quantum” generalization of Nambu mechanics.

  6. Glomerular extracellular matrix components and integrins

    NARCIS (Netherlands)

    Sterk, L. M.; de Melker, A. A.; Kramer, D.; Kuikman, I.; Chand, A.; Claessen, N.; Weening, J. J.; Sonnenberg, A.

    1998-01-01

    It has become apparent that extracellular matrix components and their cellular receptors, the integrins, are important regulators of glomerular development and function. In this rapidly evolving field we studied the production of extracellular matrix components and integrins by rat glomerular

  7. Analytic matrix elements with shifted correlated Gaussians

    DEFF Research Database (Denmark)

    Fedorov, D. V.

    2017-01-01

    Matrix elements between shifted correlated Gaussians of various potentials with several form-factors are calculated analytically. Analytic matrix elements are of importance for the correlated Gaussian method in quantum few-body physics.......Matrix elements between shifted correlated Gaussians of various potentials with several form-factors are calculated analytically. Analytic matrix elements are of importance for the correlated Gaussian method in quantum few-body physics....

  8. A quenched c = 1 critical matrix model

    International Nuclear Information System (INIS)

    Qiu, Zongan; Rey, Soo-Jong.

    1990-12-01

    We study a variant of the Penner-Distler-Vafa model, proposed as a c = 1 quantum gravity: 'quenched' matrix model with logarithmic potential. The model is exactly soluble, and exhibits a two-cut branching as observed in multicritical unitary matrix models and multicut Hermitian matrix models. Using analytic continuation of the power in the conventional polynomial potential, we also show that both the Penner-Distler-Vafa model and our 'quenched' matrix model satisfy Virasoro algebra constraints

  9. Construction of covariance matrix for experimental data

    International Nuclear Information System (INIS)

    Liu Tingjin; Zhang Jianhua

    1992-01-01

    For evaluators and experimenters, the information is complete only in the case when the covariance matrix is given. The covariance matrix of the indirectly measured data has been constructed and discussed. As an example, the covariance matrix of 23 Na(n, 2n) cross section is constructed. A reasonable result is obtained

  10. Magnetic properties of co-precipitated hexaferrite powders with Sm-Co substitutions optimized with the molten flux method

    Science.gov (United States)

    Serletis, C.; Litsardakis, G.; Pavlidou, E.; Efthimiadis, K. G.

    2017-11-01

    In this work, using the chemical coprecipitation method, Sr1-xSmxFe12-xCoxO19 (x = 0, 0.1, 0.2) hexaferrite powders were prepared. Major magnetization loops were recorded at room temperature in order to determine the correct calcination temperature for optimum hard magnetic properties. It is found that a small degree of substitution increases substantially the coercive field. Also, the use of the molten flux calcination method increases the remanent magnetization. SEM/EDXS and XRD measurements were performed at the calcined powders: the results show that a single hexaferrite phase is formed and that the substituted powders consist of an assembly of grains with a mean diameter of 40 nm. Measurements of minor magnetization loops and of the temperature and time dependence of the magnetization confirm that the powders consist of a non-oriented single domain magnetic particles assembly. The results indicate that Sm could be a viable replacement for La in the manufacturing of hexaferrites with a high-energy product.

  11. Estudio de películas de CoP y SmCo en sensores miniaturizados para aplicaciones espaciales

    OpenAIRE

    Lucas del Pozo, Irene

    2009-01-01

    Esta tesis doctoral está centrada en el estudio, desarrollo y optimización de dos sensores de campo magnético para aplicaciones espaciales: un sensor de campo magnético tipo fluxgate, pensado principalmente para medidas en órbita del campo magnético, y un sensor de gradiente de campo magnético o gradiómetro con el objetivo de llevar a cabo medidas magnéticas de la superficie de Marte o de la Luna. Inicialmente este último está orientado a ser embarcado en alguna misión dirigida al planeta Mar...

  12. Effect of Soft Phase on Magnetic Properties of Bulk Sm-Co/alpha-Fe Nanocomposite Magnets (Postprint)

    Science.gov (United States)

    2012-11-01

    addition), which resulted in the lower BH of 8.64 MGOe. The optimal soft phase Fe addition was determined to be 15 wt% which results in remanence of...8.1 kG, coercivity of 10.3 kOe, and BH of 12.3 MGOe. It is noted that the remanence was not enhanced as much as . Fig. 2 shows the increase rate of and...versus Fe addition, which were calculated by and , respectively. The increase rate of remanence is lower than that of magnetiza- tion at 10 kOe and

  13. Surfactant Removal Study for Nano-Scale SmCo5 Powder Prepared by High Energy Ball Milling (Postprint)

    Science.gov (United States)

    2014-04-01

    determine magnetic coercivity , remanence , and maximum energy product . III. RESULTS AND DISCUSSION SEM imaging of the as-milled and heat treated pow- ders... remanence and max- imum energy product . Ar pressure is highly effective in preventing oxygen access to the powder and avoiding alloy oxidation...slight variation in measured remanence and coercivity between samples is expected due to some inconsistency in sample preparation steps we assumed M(H

  14. Effect of Surfactant Molecular Weight on Particle Morphology of SmCo5 Prepared by High Energy Ball Milling

    Science.gov (United States)

    2014-04-01

    milling media, and milling time provides a high level of control over the product morphology, particle size , grain- size , interfacial surface area, and...specific surface area.1 HEBM has been employed within the magnetic materials community as a method for producing rare-earth magnetic nanoparticles ...surfactant molecules bind to these new surfaces result- ing in the formation of a thin organic layer that protects the exposed surface from cold welding when

  15. Hexagonal response matrix using symmetries

    International Nuclear Information System (INIS)

    Gotoh, Y.

    1991-01-01

    A response matrix for use in core calculations for nuclear reactors with hexagonal fuel assemblies is presented. It is based on the incoming currents averaged over the half-surface of a hexagonal node by applying symmetry theory. The boundary conditions of the incoming currents on the half-surface of the node are expressed by a complete set of orthogonal vectors which are constructed from symmetrized functions. The expansion coefficients of the functions are determined by the boundary conditions of incoming currents. (author)

  16. Geometric phase from dielectric matrix

    International Nuclear Information System (INIS)

    Banerjee, D.

    2005-10-01

    The dielectric property of the anisotropic optical medium is found by considering the polarized photon as two component spinor of spherical harmonics. The Geometric Phase of a polarized photon has been evaluated in two ways: the phase two-form of the dielectric matrix through a twist and the Pancharatnam phase (GP) by changing the angular momentum of the incident polarized photon over a closed triangular path on the extended Poincare sphere. The helicity in connection with the spin angular momentum of the chiral photon plays the key role in developing these phase holonomies. (author)

  17. Distributively generated matrix near rings

    International Nuclear Information System (INIS)

    Abbasi, S.J.

    1993-04-01

    It is known that if R is a near ring with identity then (I,+) is abelian if (I + ,+) is abelian and (I,+) is abelian if (I*,+) is abelian [S.J. Abbasi, J.D.P. Meldrum, 1991]. This paper extends these results. We show that if R is a distributively generated near ring with identity then (I,+) is included in Z(R), the center of R, if (I + ,+) is included in Z(M n (R)), the center of matrix near ring M n (R). Furthermore (I,+) is included in Z(R) if (I*,+) is included in Z(M n (R)). (author). 5 refs

  18. The COMPADRE Plant Matrix Database

    DEFF Research Database (Denmark)

    Salguero-Gomez, Roberto; Jones, Owen; Archer, C. Ruth

    2015-01-01

    growth or decline, such data furthermore help us understand how different biomes shape plant ecology, how plant populations and communities respond to global change, and how to develop successful management tools for endangered or invasive species. 2. Matrix population models summarize the life cycle......Bank), functional plant ecology (TRY, BIEN, D3), and grassland community ecology (NutNet). Here we present COMPADRE, a similar data-rich and ecologically relevant resource for plant demography. Open access to this information, its frequent updates, and its integration with other online resources will allow...

  19. Matrix regularization of 4-manifolds

    OpenAIRE

    Trzetrzelewski, M.

    2012-01-01

    We consider products of two 2-manifolds such as S^2 x S^2, embedded in Euclidean space and show that the corresponding 4-volume preserving diffeomorphism algebra can be approximated by a tensor product SU(N)xSU(N) i.e. functions on a manifold are approximated by the Kronecker product of two SU(N) matrices. A regularization of the 4-sphere is also performed by constructing N^2 x N^2 matrix representations of the 4-algebra (and as a byproduct of the 3-algebra which makes the regularization of S...

  20. Fragmentation of extracellular matrix by hypochlorous acid

    DEFF Research Database (Denmark)

    Woods, Alan A; Davies, Michael Jonathan

    2003-01-01

    of the MPO-derived oxidant hypochlorous acid (HOCl) with extracellular matrix from vascular smooth muscle cells and healthy pig arteries has been examined. HOCl is rapidly consumed by such matrix samples, with the formation of matrix-derived chloramines or chloramides. The yield of these intermediates....../chloramide decomposition, with copper and iron ions being effective catalysts, and decreased by compounds which scavenge chloramines/chloramides, or species derived from them. The effect of such matrix modifications on cellular behaviour is poorly understood, though it is known that changes in matrix materials can have...

  1. Confocal microscopy imaging of the biofilm matrix

    DEFF Research Database (Denmark)

    Schlafer, Sebastian; Meyer, Rikke L

    2017-01-01

    The extracellular matrix is an integral part of microbial biofilms and an important field of research. Confocal laser scanning microscopy is a valuable tool for the study of biofilms, and in particular of the biofilm matrix, as it allows real-time visualization of fully hydrated, living specimens....... Confocal microscopes are held by many research groups, and a number of methods for qualitative and quantitative imaging of the matrix have emerged in recent years. This review provides an overview and a critical discussion of techniques used to visualize different matrix compounds, to determine...... the concentration of solutes and the diffusive properties of the biofilm matrix....

  2. Linear algebra and matrix analysis for statistics

    CERN Document Server

    Banerjee, Sudipto

    2014-01-01

    Matrices, Vectors, and Their OperationsBasic definitions and notations Matrix addition and scalar-matrix multiplication Matrix multiplication Partitioned matricesThe ""trace"" of a square matrix Some special matricesSystems of Linear EquationsIntroduction Gaussian elimination Gauss-Jordan elimination Elementary matrices Homogeneous linear systems The inverse of a matrixMore on Linear EquationsThe LU decompositionCrout's Algorithm LU decomposition with row interchanges The LDU and Cholesky factorizations Inverse of partitioned matrices The LDU decomposition for partitioned matricesThe Sherman-W

  3. The q-Laguerre matrix polynomials.

    Science.gov (United States)

    Salem, Ahmed

    2016-01-01

    The Laguerre polynomials have been extended to Laguerre matrix polynomials by means of studying certain second-order matrix differential equation. In this paper, certain second-order matrix q-difference equation is investigated and solved. Its solution gives a generalized of the q-Laguerre polynomials in matrix variable. Four generating functions of this matrix polynomials are investigated. Two slightly different explicit forms are introduced. Three-term recurrence relation, Rodrigues-type formula and the q-orthogonality property are given.

  4. Colored graphs and matrix integrals

    International Nuclear Information System (INIS)

    Artamkin, I.V.

    2007-12-01

    In this article we discuss two different asymptotic expansions of matrix integrals. The original approach using the so-called Feynman diagram techniques leads to sums over isomorphism classes of ribbon graphs. Asymptotic expansions of more general Gaussian integrals are sums over isomorphism classes of colored graphs without ribbon structure. Here we derive the former expansion from the latter one. This provides an independent proof for the expansion used by Kontsevich. It might be very interesting to compare the algebra arising in these two approaches. The asymptotic expansion using ribbon graphs leads to the tau function of the KDV hierarchy while the sums over colored graphs satisfy simple partial differential equations which generalize the Burgers equation. We describe the general approach using colored graphs in the second section. In the third section we specialize the results of the second section for the matrix integral. In this section we also derive the expansion over ribbon graphs. The proof is based on simple topological considerations which are contained in section 5. In the last section we give an explicit calculation of the first term of the expansion using colored graphs

  5. Interpolation of rational matrix functions

    CERN Document Server

    Ball, Joseph A; Rodman, Leiba

    1990-01-01

    This book aims to present the theory of interpolation for rational matrix functions as a recently matured independent mathematical subject with its own problems, methods and applications. The authors decided to start working on this book during the regional CBMS conference in Lincoln, Nebraska organized by F. Gilfeather and D. Larson. The principal lecturer, J. William Helton, presented ten lectures on operator and systems theory and the interplay between them. The conference was very stimulating and helped us to decide that the time was ripe for a book on interpolation for matrix valued functions (both rational and non-rational). When the work started and the first partial draft of the book was ready it became clear that the topic is vast and that the rational case by itself with its applications is already enough material for an interesting book. In the process of writing the book, methods for the rational case were developed and refined. As a result we are now able to present the rational case as an indepe...

  6. Matrix metalloproteinases and TGFbeta1 modulate oral tumor cell matrix.

    Science.gov (United States)

    Dang, Dongmin; Yang, Yongjian; Li, Xiaowu; Atakilit, Amha; Regezi, Joseph; Eisele, David; Ellis, Duncan; Ramos, Daniel M

    2004-04-09

    The integrin beta6 has been shown to promote invasion and experimental metastasis by oral squamous cell carcinoma (SCC). In this study, we demonstrate that the expression of beta6 by oral SCC9 cells increased activation of the UPA --> MMP3 --> MMP9 pathway. We also demonstrate that the deposition of fibronectin and tenascin-C matrices by SCC9beta6 cells and peritumor fibroblast cocultures is counter-regulated by the UPA --> MMP3 --> MMP9 pathway. Suppression of individual components of this pathway increased the deposition of fibronectin, but decreased tenascin-C matrix assembly by the cocultures. When the SCC9beta6/PTF cocultures were incubated with TGFbeta1, the deposition of fibronectin and tenascin-C as well as the activation of MMP3 and MMP9 was increased. These results indicate that MMP3, MMP9, and TGFbeta1 are important for the modulation, composition, and maintenance of the ECM in oral SCC.

  7. Inequalities Involving Upper Bounds for Certain Matrix Operators

    Indian Academy of Sciences (India)

    Home; Journals; Proceedings – Mathematical Sciences; Volume 116; Issue 3. Inequalities Involving Upper Bounds for Certain Matrix Operators. R Lashkaripour D Foroutannia. Volume ... Keywords. Inequality; norm; summability matrix; Hausdorff matrix; Hilbert matrix; weighted sequence space; Lorentz sequence space.

  8. Petz recovery versus matrix reconstruction

    Science.gov (United States)

    Holzäpfel, Milan; Cramer, Marcus; Datta, Nilanjana; Plenio, Martin B.

    2018-04-01

    The reconstruction of the state of a multipartite quantum mechanical system represents a fundamental task in quantum information science. At its most basic, it concerns a state of a bipartite quantum system whose subsystems are subjected to local operations. We compare two different methods for obtaining the original state from the state resulting from the action of these operations. The first method involves quantum operations called Petz recovery maps, acting locally on the two subsystems. The second method is called matrix (or state) reconstruction and involves local, linear maps that are not necessarily completely positive. Moreover, we compare the quantities on which the maps employed in the two methods depend. We show that any state that admits Petz recovery also admits state reconstruction. However, the latter is successful for a strictly larger set of states. We also compare these methods in the context of a finite spin chain. Here, the state of a finite spin chain is reconstructed from the reduced states of a few neighbouring spins. In this setting, state reconstruction is the same as the matrix product operator reconstruction proposed by Baumgratz et al. [Phys. Rev. Lett. 111, 020401 (2013)]. Finally, we generalize both these methods so that they employ long-range measurements instead of relying solely on short-range correlations embodied in such local reduced states. Long-range measurements enable the reconstruction of states which cannot be reconstructed from measurements of local few-body observables alone and hereby we improve existing methods for quantum state tomography of quantum many-body systems.

  9. Response matrix method for large LMFBR analysis

    International Nuclear Information System (INIS)

    King, M.J.

    1977-06-01

    The feasibility of using response matrix techniques for computational models of large LMFBRs is examined. Since finite-difference methods based on diffusion theory have generally found a place in fast-reactor codes, a brief review of their general matrix foundation is given first in order to contrast it to the general strategy of response matrix methods. Then, in order to present the general method of response matrix technique, two illustrative examples are given. Matrix algorithms arising in the application to large LMFBRs are discussed, and the potential of the response matrix method is explored for a variety of computational problems. Principal properties of the matrices involved are derived with a view to application of numerical methods of solution. The Jacobi iterative method as applied to the current-balance eigenvalue problem is discussed

  10. COMPOSITION OF FOWLPOX VIRUS AND INCLUSION MATRIX.

    Science.gov (United States)

    RANDALL, C C; GAFFORD, L G; DARLINGTON, R W; HYDE, J

    1964-04-01

    Randall, Charles C. (University of Mississippi School of Medicine, Jackson), Lanelle G. Gafford, Robert W. Darlington, and James M. Hyde. Composition of fowlpox virus and inclusion matrix. J. Bacteriol. 87:939-944. 1964.-Inclusion bodies of fowlpox virus infection are especially favorable starting material for the isolation of virus and inclusion matrix. Electron micrographs of viral particles and matrix indicated a high degree of purification. Density-gradient centrifugation of virus in cesium chloride and potassium tartrate was unsatisfactory because of inactivation, and clumping or disintegration. Chemical analyses of virus and matrix revealed significant amounts of lipid, protein, and deoxyribonucleic acid, but no ribonucleic acid or carbohydrate. Approximately 47% of the weight of the virus and 83% of the matrix were extractable in chloroform-methanol. The lipid partitions of the petroleum ether extracts were similar, except that the phospholipid content of the matrix was 2.2 times that of the virus. Viral particles were sensitive to diethyl ether and chloroform.

  11. Convex nonnegative matrix factorization with manifold regularization.

    Science.gov (United States)

    Hu, Wenjun; Choi, Kup-Sze; Wang, Peiliang; Jiang, Yunliang; Wang, Shitong

    2015-03-01

    Nonnegative Matrix Factorization (NMF) has been extensively applied in many areas, including computer vision, pattern recognition, text mining, and signal processing. However, nonnegative entries are usually required for the data matrix in NMF, which limits its application. Besides, while the basis and encoding vectors obtained by NMF can represent the original data in low dimension, the representations do not always reflect the intrinsic geometric structure embedded in the data. Motivated by manifold learning and Convex NMF (CNMF), we propose a novel matrix factorization method called Graph Regularized and Convex Nonnegative Matrix Factorization (GCNMF) by introducing a graph regularized term into CNMF. The proposed matrix factorization technique not only inherits the intrinsic low-dimensional manifold structure, but also allows the processing of mixed-sign data matrix. Clustering experiments on nonnegative and mixed-sign real-world data sets are conducted to demonstrate the effectiveness of the proposed method. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Covariance matrix estimation for stationary time series

    OpenAIRE

    Xiao, Han; Wu, Wei Biao

    2011-01-01

    We obtain a sharp convergence rate for banded covariance matrix estimates of stationary processes. A precise order of magnitude is derived for spectral radius of sample covariance matrices. We also consider a thresholded covariance matrix estimator that can better characterize sparsity if the true covariance matrix is sparse. As our main tool, we implement Toeplitz [Math. Ann. 70 (1911) 351–376] idea and relate eigenvalues of covariance matrices to the spectral densities or Fourier transforms...

  13. Matrix orderings and their associated skew fields

    International Nuclear Information System (INIS)

    Mahdavi-Hezavehi, M.

    1990-08-01

    Matrix orderings on rings are investigated. It is shown that in the commutative case they are essentially positive cones. This is proved by reducing it to the field case; similarly one can show that on a skew field, matrix positive cones can be reduced to positive cones by using the Dieudonne determinant. Our main result shows that there is a natural bijection between the matrix positive cones on a ring R and the ordered epic R-fields. (author). 7 refs

  14. Matrix-assisted peptide synthesis on nanoparticles.

    Science.gov (United States)

    Khandadash, Raz; Machtey, Victoria; Weiss, Aryeh; Byk, Gerardo

    2014-09-01

    We report a new method for multistep peptide synthesis on polymeric nanoparticles of differing sizes. Polymeric nanoparticles were functionalized via their temporary embedment into a magnetic inorganic matrix that allows multistep peptide synthesis. The matrix is removed at the end of the process for obtaining nanoparticles functionalized with peptides. The matrix-assisted synthesis on nanoparticles was proved by generating various biologically relevant peptides. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.

  15. Basic matrix algebra and transistor circuits

    CERN Document Server

    Zelinger, G

    1963-01-01

    Basic Matrix Algebra and Transistor Circuits deals with mastering the techniques of matrix algebra for application in transistors. This book attempts to unify fundamental subjects, such as matrix algebra, four-terminal network theory, transistor equivalent circuits, and pertinent design matters. Part I of this book focuses on basic matrix algebra of four-terminal networks, with descriptions of the different systems of matrices. This part also discusses both simple and complex network configurations and their associated transmission. This discussion is followed by the alternative methods of de

  16. Risk matrix model for rotating equipment

    Directory of Open Access Journals (Sweden)

    Wassan Rano Khan

    2014-07-01

    Full Text Available Different industries have various residual risk levels for their rotating equipment. Accordingly the occurrence rate of the failures and associated failure consequences categories are different. Thus, a generalized risk matrix model is developed in this study which can fit various available risk matrix standards. This generalized risk matrix will be helpful to develop new risk matrix, to fit the required risk assessment scenario for rotating equipment. Power generation system was taken as case study. It was observed that eight subsystems were under risk. Only vibration monitor system was under high risk category, while remaining seven subsystems were under serious and medium risk categories.

  17. Matrix Krylov subspace methods for image restoration

    Directory of Open Access Journals (Sweden)

    khalide jbilou

    2015-09-01

    Full Text Available In the present paper, we consider some matrix Krylov subspace methods for solving ill-posed linear matrix equations and in those problems coming from the restoration of blurred and noisy images. Applying the well known Tikhonov regularization procedure leads to a Sylvester matrix equation depending the Tikhonov regularized parameter. We apply the matrix versions of the well known Krylov subspace methods, namely the Least Squared (LSQR and the conjugate gradient (CG methods to get approximate solutions representing the restored images. Some numerical tests are presented to show the effectiveness of the proposed methods.

  18. Hartree--Fock density matrix equation

    International Nuclear Information System (INIS)

    Cohen, L.; Frishberg, C.

    1976-01-01

    An equation for the Hartree--Fock density matrix is discussed and the possibility of solving this equation directly for the density matrix instead of solving the Hartree--Fock equation for orbitals is considered. Toward that end the density matrix is expanded in a finite basis to obtain the matrix representative equation. The closed shell case is considered. Two numerical schemes are developed and applied to a number of examples. One example is given where the standard orbital method does not converge while the method presented here does

  19. SYMAT, COVAR: Test Procedures for Matrix Calculations

    Science.gov (United States)

    Morris, W. L.; Wiginton, C. L.; Lowell, D. K.

    1972-01-01

    The FORTRAN subroutine SYMAT and related subroutines are described. In essence SYMAT is an iterative algorithm in which the problem of finding eigenvalues and eigenvectors of a real symmetric matrix is transformed into an equivalent problem of finding eigenvalues and eigenvectors of an infinite sequence of matrices of order two. A DEMO PROGRAM contains a subroutine COVAR which is used to compute the covariance matrix (denoted by A) of a data matrix (denoted by X). Since a covariance matrix is symmetric it can be analyzed by using subroutine SYMAT.

  20. Random Correlation Matrix and De-Noising

    OpenAIRE

    Ken-ichi Mitsui; Yoshio Tabata

    2006-01-01

    In Finance, the modeling of a correlation matrix is one of the important problems. In particular, the correlation matrix obtained from market data has the noise. Here we apply the de-noising processing based on the wavelet analysis to the noisy correlation matrix, which is generated by a parametric function with random parameters. First of all, we show that two properties, i.e. symmetry and ones of all diagonal elements, of the correlation matrix preserve via the de-noising processing and the...

  1. Finding Nonoverlapping Substructures of a Sparse Matrix

    Energy Technology Data Exchange (ETDEWEB)

    Pinar, Ali; Vassilevska, Virginia

    2005-08-11

    Many applications of scientific computing rely on computations on sparse matrices. The design of efficient implementations of sparse matrix kernels is crucial for the overall efficiency of these applications. Due to the high compute-to-memory ratio and irregular memory access patterns, the performance of sparse matrix kernels is often far away from the peak performance on a modern processor. Alternative data structures have been proposed, which split the original matrix A into A{sub d} and A{sub s}, so that A{sub d} contains all dense blocks of a specified size in the matrix, and A{sub s} contains the remaining entries. This enables the use of dense matrix kernels on the entries of A{sub d} producing better memory performance. In this work, we study the problem of finding a maximum number of nonoverlapping dense blocks in a sparse matrix, which is previously not studied in the sparse matrix community. We show that the maximum nonoverlapping dense blocks problem is NP-complete by using a reduction from the maximum independent set problem on cubic planar graphs. We also propose a 2/3-approximation algorithm that runs in linear time in the number of nonzeros in the matrix. This extended abstract focuses on our results for 2x2 dense blocks. However we show that our results can be generalized to arbitrary sized dense blocks, and many other oriented substructures, which can be exploited to improve the memory performance of sparse matrix operations.

  2. Titanium Matrix Composite Pressure Vessel, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — For over 15 years, FMW Composite Systems has developed Metal Matrix Composite manufacturing methodologies for fabricating silicon-carbide-fiber-reinforced titanium...

  3. Titanium Matrix Composite Pressure Vessel Project

    Data.gov (United States)

    National Aeronautics and Space Administration — For over 15 years, FMW Composite Systems has developed Metal Matrix Composite manufacturing methodologies for fabricating silicon-carbide-fiber-reinforced titanium...

  4. Analysis Matrix for Smart Cities

    Directory of Open Access Journals (Sweden)

    Pablo E. Branchi

    2014-01-01

    Full Text Available The current digital revolution has ignited the evolution of communications grids and the development of new schemes for productive systems. Traditional technologic scenarios have been challenged, and Smart Cities have become the basis for urban competitiveness. The citizen is the one who has the power to set new scenarios, and that is why a definition of the way people interact with their cities is needed, as is commented in the first part of the article. At the same time, a lack of clarity has been detected in the way of describing what Smart Cities are, and the second part will try to set the basis for that. For all before, the information and communication technologies that manage and transform 21st century cities must be reviewed, analyzing their impact on new social behaviors that shape the spaces and means of communication, as is posed in the experimental section, setting the basis for an analysis matrix to score the different elements that affect a Smart City environment. So, as the better way to evaluate what a Smart City is, there is a need for a tool to score the different technologies on the basis of their usefulness and consequences, considering the impact of each application. For all of that, the final section describes the main objective of this article in practical scenarios, considering how the technologies are used by citizens, who must be the main concern of all urban development.

  5. Factorization of the coherency matrix of polarization optics.

    Science.gov (United States)

    Sheppard, Colin J R; Le Gratiet, Aymeric; Diaspro, Alberto

    2018-04-01

    We show that the coherency matrix associated with a general depolarizing Mueller matrix can be factorized into the product of a matrix, the coherency matrix factor, and its conjugate transpose. The coherency matrix factor contains all the information in the Mueller matrix, and directly shows useful properties in an illustrative fashion. Propagation through a nondeterministic uniform medium is analyzed. Some examples for simple systems are shown, and an experimental Mueller matrix is considered. The coherency matrix and the coherency matrix factor can be diagonalized, even if the Mueller matrix cannot.

  6. Photoacoustic measurement of lutein in biological matrix

    NARCIS (Netherlands)

    Bicanic, D.D.; Luterotti, S.; Becucci, M.; Fogliano, V.; Versloot, P.

    2005-01-01

    Photoacoustic (PA) spectroscopy was applied for the first time to quantify lutein in a complex biological matrix. Standard addition of lutein to a biological low-lutein matrix was used for the calibration. The PA signal was found linearly proportional (R > 0.98) to lutein concentration up to 0.3%

  7. CKM matrix exponential parametrization and Euler angles

    International Nuclear Information System (INIS)

    Dattoli, G.; Sabia, E.; Torre, A.

    1997-01-01

    They show that the exponential parametrization of the CKM matrix allows to establish exact relations between the Euler weak rotation angles and the entries of the CKM generating matrix, which has already been shown to include the hierarchy features of the Wolfenstein parametrization. The analysis includes CP-violating effects and its usefulness to treat the experimental data is also proved

  8. Matrix perturbations: bounding and computing eigenvalues

    NARCIS (Netherlands)

    Reis da Silva, R.J.

    2011-01-01

    Despite the somewhat negative connotation of the word, not every perturbation is a bad perturbation. In fact, while disturbing the matrix entries, many perturbations still preserve useful properties such as the orthonormality of the basis of eigenvectors or the Hermicity of the original matrix. In

  9. two-body random matrix ensembles

    Indian Academy of Sciences (India)

    2015-02-03

    Feb 3, 2015 ... Random matrix theory (RMT) introduced to describe statistical properties of the energy levels of complex nuclei has seen tremendous growth recently [1]. It is now well rec- ognized that, the quantum system whose classical counterpart is chaotic, will follow one of the three classical random matrix ensembles ...

  10. Differential analysis of matrix convex functions II

    DEFF Research Database (Denmark)

    Hansen, Frank; Tomiyama, Jun

    2009-01-01

    We continue the analysis in [F. Hansen, and J. Tomiyama, Differential analysis of matrix convex functions. Linear Algebra Appl., 420:102--116, 2007] of matrix convex functions of a fixed order defined in a real interval by differential methods as opposed to the characterization in terms of divided...

  11. The Molecules of the Cell Matrix.

    Science.gov (United States)

    Weber, Klaus; Osborn, Mary

    1985-01-01

    Cytoplasmic proteins form a highly structured yet changeable matrix that affects cell shape, division, motion, and transport of vesicles and organelles. Types of microfilaments, research techniques, actin and myosin, tumor cells, and other topics are addressed. Evidence indicates that the cell matrix might have a bearing on metabolism. (DH)

  12. Differentiating Instruction Using a Matrix Plan.

    Science.gov (United States)

    Distad, Linda; Heacox, Diane

    2000-01-01

    Describes the Matrix Plan that is a planning grid with operational verbs related to Bloom's taxonomy and acts as a means for assisting teachers in differentiating instruction in the regular classroom. Explores a case where pre-service teachers utilized the Matrix Plan in order to help them learn about differential instruction. (CMK)

  13. QUEUEING DISCIPLINES BASED ON PRIORITY MATRIX

    Directory of Open Access Journals (Sweden)

    Taufik I. Aliev

    2014-11-01

    Full Text Available The paper deals with queueing disciplines for demands of general type in queueing systems with multivendor load. A priority matrix is proposed to be used for the purpose of mathematical description of such disciplines, which represents the priority type (preemptive priority, not preemptive priority or no priority between any two demands classes. Having an intuitive and simple way of priority assignment, such description gives mathematical dependencies of system operation characteristics on its parameters. Requirements for priority matrix construction are formulated and the notion of canonical priority matrix is given. It is shown that not every matrix, constructed in accordance with such requirements, is correct. The notion of incorrect priority matrix is illustrated by an example, and it is shown that such matrixes do not ensure any unambiguousness and determinacy in design of algorithm, which realizes corresponding queueing discipline. Rules governing construction of correct matrixes are given for canonical priority matrixes. Residence time for demands of different classes in system, which is the sum of waiting time and service time, is considered as one of the most important characteristics. By introducing extra event method Laplace transforms for these characteristics are obtained, and mathematical dependencies are derived on their basis for calculation of two first moments for corresponding characteristics of demands queueing

  14. Density matrix technique for groundstate calculations

    NARCIS (Netherlands)

    Croo de Jongh, du M.S.L.; Doumen, J.M.; Leeuwen, van J.M.J.

    1999-01-01

    The density matrix approach is a technique to calculate the lowest eigenvalue of a large matrix such as occurring in quantum mechanical systems. So far the method works very well for systems with a linear structure. The limitations for a planar structure, from critical correlations and from

  15. Systolic triple-matrix product calculations

    Science.gov (United States)

    Caulfield, H. J.; Verber, C. M.; Stermer, R. L.

    1984-01-01

    In order to handle arbitrary-sized matrices with fixed-sized optical matrix processors, it is necessary to expand or contract the problem to fit the processor. This preprocessing is examined. It is applied to the type of triple-matrix product calculation needed for Kalman filtering. Emphasis will be placed on systolic-type processors.

  16. Matrix representation of a Neural Network

    DEFF Research Database (Denmark)

    Christensen, Bjørn Klint

    Processing, by David Rummelhart (Rummelhart 1986) for an easy-to-read introduction. What the paper does explain is how a matrix representation of a neural net allows for a very simple implementation. The matrix representation is introduced in (Rummelhart 1986, chapter 9), but only for a two-layer linear...

  17. Random matrix model for disordered conductors

    Indian Academy of Sciences (India)

    We present a random matrix ensemble where real, positive semi-definite matrix elements, , are log-normal distributed, exp ⁡ [ − log 2 ⁡ ( x ) ] . We show that the level density varies with energy, , as 2/(1 + ) for large , in the unitary family, consistent with the expectation for disordered conductors. The two-level ...

  18. Modeling and Simulation of Matrix Converter

    DEFF Research Database (Denmark)

    Liu, Fu-rong; Klumpner, Christian; Blaabjerg, Frede

    2005-01-01

    This paper discusses the modeling and simulation of matrix converter. Two models of matrix converter are presented: one is based on indirect space vector modulation and the other is based on power balance equation. The basis of these two models is• given and the process on modeling is introduced...

  19. Preparation and Characterization of Sustained Release Matrix ...

    African Journals Online (AJOL)

    Purpose: To formulate matrix type sustained-release (SR) tablets of tizanidine hydrochloride (TH) for prolonged drug release and improvement in motor activity after spinal injuries. Methods: Matrix tablets were prepared by the wet granulation method using four polymers (hydroxyl propyl methyl cellulose [HPMC] K 100, ethyl ...

  20. Rovibrational matrix elements of the multipole moments

    Indian Academy of Sciences (India)

    Rovibrational matrix elements of the multipole moments ℓ up to rank 10 and of the linear polarizability of the H2 molecule in the condensed phase have been computed taking into account the effect of the intermolecular potential. Comparison with gas phase matrix elements shows that the effect of solid state interactions is ...

  1. Matrix Approach to Cooperative Game Theory

    NARCIS (Netherlands)

    Xu Genjiu, G.

    2008-01-01

    In this monograph, the algebraic representation and the matrix approach are applied to study linear operators on the game space, more precisely, linear transformations on games and linear values. In terms of the essential notion of a coalitional matrix, these linear operators are represented

  2. Indecomposability of polynomials via Jacobian matrix

    International Nuclear Information System (INIS)

    Cheze, G.; Najib, S.

    2007-12-01

    Uni-multivariate decomposition of polynomials is a special case of absolute factorization. Recently, thanks to the Ruppert's matrix some effective results about absolute factorization have been improved. Here we show that with a jacobian matrix we can get sharper bounds for the special case of uni-multivariate decomposition. (author)

  3. Interfaces between a fibre and its matrix

    DEFF Research Database (Denmark)

    Lilholt, Hans; Sørensen, Bent F.

    2017-01-01

    parameters (applied load, debond length and relative fibre/matrix displacement) are rather similar for these test modes. A simplified analysis allows the direct determination of the three interface parameters from two plots for the experimental data. The complete analysis is demonstrated for steel fibres...... in polyester matrix. The analysis of existing experimental literature data is demonstrated for steel fibres in epoxy matrix and for tungsten wires in copper matrix. These latter incomplete analyses show that some results can be obtained even if all three experimental parameters are not recorded.......The interface between a fibre and its matrix represents an important element in the characterization and exploitation of composite materials. Both theoretical models and analyses of experimental data have been presented in the literature since modern composite were developed and many experiments...

  4. [Modern polymers in matrix tablets technology].

    Science.gov (United States)

    Zimmer, Łukasz; Kasperek, Regina; Poleszak, Ewa

    2014-01-01

    Matrix tablets are the most popular method of oral drug administration, and polymeric materials have been used broadly in matrix formulations to modify and modulate drug release rate. The main goal of the system is to extend drug release profiles to maintain a constant in vivo plasma drug concentration and a consistent pharmacological effect. Polymeric matrix tablets offer a great potential as oral controlled drug delivery systems. Cellulose derivatives, like hydroxypropyl methylcellulose (HPMC) are often used as matrix formers. However, also other types of polymers can be used for this purpose including: Kollidon SR, acrylic acid polymers such as Eudragits and Carbopols. Nevertheless, polymers of natural origin like: carragens, chitosan and alginates widely used in the food and cosmetics industry are now coming to the fore of pharmaceutical research and are used in matrix tablets technology. Modern polymers allow to obtain matrix tablets by 3D printing, which enables to develop new formulation types. In this paper, the polymers used in matrix tablets technology and examples of their applications were described.

  5. Development of a Java Package for Matrix Programming

    OpenAIRE

    Lim, Ngee-Peng; Ling, Maurice HT; Lim, Shawn YC; Choi, Ji-Hee; Teo, Henry BK

    2003-01-01

    We had assembled a Java package, known as MatrixPak, of four classes for the purpose of numerical matrix computation. The classes are matrix, matrix_operations, StrToMatrix, and MatrixToStr; all of which are inherited from java.lang.Object class. Class matrix defines a matrix as a two-dimensional array of float types, and contains the following mathematical methods: transpose, adjoint, determinant, inverse, minor and cofactor. Class matrix_operations contains the following mathematical method...

  6. A matrix model from string field theory

    Directory of Open Access Journals (Sweden)

    Syoji Zeze

    2016-09-01

    Full Text Available We demonstrate that a Hermitian matrix model can be derived from level truncated open string field theory with Chan-Paton factors. The Hermitian matrix is coupled with a scalar and U(N vectors which are responsible for the D-brane at the tachyon vacuum. Effective potential for the scalar is evaluated both for finite and large N. Increase of potential height is observed in both cases. The large $N$ matrix integral is identified with a system of N ZZ branes and a ghost FZZT brane.

  7. A transilient matrix for moist convection

    Energy Technology Data Exchange (ETDEWEB)

    Romps, D.; Kuang, Z.

    2011-08-15

    A method is introduced for diagnosing a transilient matrix for moist convection. This transilient matrix quantifies the nonlocal transport of air by convective eddies: for every height z, it gives the distribution of starting heights z{prime} for the eddies that arrive at z. In a cloud-resolving simulation of deep convection, the transilient matrix shows that two-thirds of the subcloud air convecting into the free troposphere originates from within 100 m of the surface. This finding clarifies which initial height to use when calculating convective available potential energy from soundings of the tropical troposphere.

  8. Bilateral kidney matrix stones: a rare case.

    Science.gov (United States)

    Lahyani, Mounir; Rhannam, Yassine; Slaoui, Amine; Touzani, Alae; Karmouni, Tarik; Elkhader, Khalid; Koutani, Abdellatif; Andaloussi, Ahmed Ibn Attya

    2016-01-01

    Kedney matrix stones are a rare form of calculi. Flank pain and urinary tract infections (UTI) are the most common presentations of matrix calculi. The diagnosis is usually made at surgery, but some preoperative radiographic findings might be suggestive. Open surgery was the method of choice for treatment. However, combination of ureterorenoscopy and percutaneous nephrolithotomy (PCNL) was found to be safe and effective. We report a rare case of renal and ureteral matrix stones that were diagnosed and treated by open surgery. We also describe its clinical, radiological and therapeutic features through a review of the literature.

  9. Microlevel thermal effects in metal matrix composites

    Science.gov (United States)

    Herakovich, Carl T.

    1990-01-01

    A method for studying the influence of thermal effects on the inelastic response of metal matrix composites is reviewed. A micromechanics approach based upon the method of cells is shown to be quite versatile for studying a variety of materials response phenomena. Yielding and inelastic response of the composite are predicted as functions of thermal stresses, yielding of the matrix, and imperfect fiber/matrix bonding. Results are presented in the form of yield surfaces and nonlinear stress-strain curves for unidirectional and laminated boron/aluminum and silicon-carbide/titanium.

  10. Residual, restarting and Richardson iteration for the matrix exponential

    NARCIS (Netherlands)

    Bochev, Mikhail A.

    2010-01-01

    A well-known problem in computing some matrix functions iteratively is a lack of a clear, commonly accepted residual notion. An important matrix function for which this is the case is the matrix exponential. Assume, the matrix exponential of a given matrix times a given vector has to be computed. We

  11. The deviation matrix of a continuous-time Markov chain

    NARCIS (Netherlands)

    Coolen-Schrijner, Pauline; van Doorn, Erik A.

    2002-01-01

    he deviation matrix of an ergodic, continuous-time Markov chain with transition probability matrix $P(.)$ and ergodic matrix $\\Pi$ is the matrix $D \\equiv \\int_0^{\\infty} (P(t)-\\Pi)dt$. We give conditions for $D$ to exist and discuss properties and a representation of $D$. The deviation matrix of a

  12. The deviation matrix of a continuous-time Markov chain

    NARCIS (Netherlands)

    Coolen-Schrijner, P.; van Doorn, E.A.

    2001-01-01

    The deviation matrix of an ergodic, continuous-time Markov chain with transition probability matrix $P(.)$ and ergodic matrix $\\Pi$ is the matrix $D \\equiv \\int_0^{\\infty} (P(t)-\\Pi)dt$. We give conditions for $D$ to exist and discuss properties and a representation of $D$. The deviation matrix of a

  13. Residual, restarting and Richardson iteration for the matrix exponential

    NARCIS (Netherlands)

    Bochev, Mikhail A.; Grimm, Volker; Hochbruck, Marlis

    2013-01-01

    A well-known problem in computing some matrix functions iteratively is the lack of a clear, commonly accepted residual notion. An important matrix function for which this is the case is the matrix exponential. Suppose the matrix exponential of a given matrix times a given vector has to be computed.

  14. Study of theophylline stability on polymer matrix

    International Nuclear Information System (INIS)

    Rodrigues, Kiriaki M.S.; Parra, Duclerc F.; Oliveira, Maria Jose A.; Bustillos, Oscar V.; Lugao, Ademar B.

    2007-01-01

    Theophylline is a bronchodilator, commonly known and used as a drug model in the development of pharmaceutical formulations. The stability of the drug and the matrix, scope of this study, was evaluated in the solid formulation. Polymeric matrix based on PHB containing the drug (theophylline) was prepared and submitted to radiation sterilization at different doses of: 5, 10, 20 and 25 kGy using a Cobalt- 60 source. The modified drug release of theophylline sterilized tablets has been studied. Modern techniques of HPLC (High Pressure Liquid Chromatography), DSC (Differential scanning calorimetry) and TGA (Thermogravimetry analysis) were employed. The results have shown the influence of sterilization by radiation process in both the theophylline and the polymeric drug delivery matrix samples. The increasing of polymeric matrix crosslinking under radiation conditions retards the drug release while the theophylline structure is stable under the radiation (author)

  15. Nuclear waste storage container with metal matrix

    Science.gov (United States)

    Sump, Kenneth R.

    1978-01-01

    The invention relates to a storage container for high-level waste having a metal matrix for the high-level waste, thereby providing greater impact strength for the waste container and increasing heat transfer properties.

  16. Matrix models with γstring>0

    International Nuclear Information System (INIS)

    Marzban, C.; Viswanathan, R.R.

    1990-12-01

    Within the framework of c = 1 matrix models, we consider multi-matrix models. A connection is established between a D-dimensional gas of fermions (bosons) for odd (even) values of D. A statistical mechanical analysis yields the scaling law for the free energy, and hence the susceptibility exponents for the various models. The exponents turn out to be positive for the multi-matrix models, suggesting that these could represent models of 2 d-gravity coupled to c>1 matter. Whereas in the c=1 case the density of states itself diverges as one approaches the critical point, in the D-matrix models various derivatives of the density of states diverge, with the order of the derivative depending on D. This qualitatively different behaviour of the density of states could be a signal of the conjectured ''phase transition'' at c=1. (author). 14 refs

  17. A matrix of social accounting for Asturias

    Directory of Open Access Journals (Sweden)

    Margarita Argüelles

    2003-01-01

    Full Text Available A Social Accounting Matrix is an integrated system of accounts that presents in a double-entry table all the transactions made in an economy among productive sectors, production factors, institutional sectors and the rest of the world. In comparison with an Input-Output Table, it offers a greater deal of information and shows completely the circular process of income, captivating more precisely the effects of exogenous changes. One of the main profits of a Social Accounting Matrix is to serve as a database for the development and application of a computable general equilibrium model. This is, in fact, the aim pursued with the elaboration of the Social Accounting Matrix for the Asturian economy presented here. This Matrix has been constructed with data from the 1995 Regional Accounts of Asturias, and its structure has been adapted to its future use as a database for a computable general equilibrium model of this regional economy.

  18. Image Encryption Using the Chaotic Josephus Matrix

    Directory of Open Access Journals (Sweden)

    Gelan Yang

    2014-01-01

    Full Text Available This paper presents a new image encryption solution using the chaotic Josephus matrix. It extends the conventional Josephus traversing to a matrix form and proposes a treatment to improve the randomness of this matrix by mixing chaotic maps. It also derives the corresponding encryption primitives controlled by the chaotic Josephus matrix. In this way, it builds up an image encryption system with very high sensitivities in both encryption key and input image. Our simulation results demonstrate that an encrypted image of using this method is very random-like, that is, a uniform-like pixel histogram and very low correlations in adjacent pixels. The design idea of this method is also applicable to data encryption of other types, like audio and video.

  19. GB Diet matrix as informed by EMAX

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set was taken from CRD 08-18 at the NEFSC. Specifically, the Georges Bank diet matrix was developed for the EMAX exercise described in that center...

  20. Configuration management compliance matrix for K Basins

    International Nuclear Information System (INIS)

    Laney, T.

    1995-01-01

    This compliance matrix identifies the criteria of the configuration management program at K Basins and identifies the current methods, i.e., systems, processes, procedures, and programs, that implement the configuration management criteria. The matrix identifies the current K Basins implementing methods established through an initial assessment. This initial assessment of the implementation is reflected in the compliance matrix and forms the basis for subsequent detailed evaluations to ensure that the identified implementation methods adequately support the configuration management program. Specific objectives of this matrix include: Identifying functional elements (criteria) of configuration management and K Basins implementation of these criteria; Assessing the conformance of the implementation and providing resolution for discrepancies; Recommending corrective actions or improvements for discrepant conditions; Providing a tracking database to status the discrepancy resolutions; and Identifying estimated schedules and resources for implementing discrepancy resolutions

  1. Extracellular matrix component signaling in cancer

    DEFF Research Database (Denmark)

    Multhaupt, Hinke A. B.; Leitinger, Birgit; Gullberg, Donald

    2016-01-01

    Cell responses to the extracellular matrix depend on specific signaling events. These are important from early development, through differentiation and tissue homeostasis, immune surveillance, and disease pathogenesis. Signaling not only regulates cell adhesion cytoskeletal organization...

  2. Focal adhesions and cell-matrix interactions

    DEFF Research Database (Denmark)

    Woods, A; Couchman, J R

    1988-01-01

    Focal adhesions are areas of cell surfaces where specializations of cytoskeletal, membrane and extracellular components combine to produce stable cell-matrix interactions. The morphology of these adhesions and the components identified in them are discussed together with possible mechanisms...

  3. Third order transfer matrix elements of octopoles

    International Nuclear Information System (INIS)

    Heck, D.

    1976-04-01

    The matrix elements of the third order transport matrices for electrostatic and magnetic octopoles are derived. They are needed in ion optical calculations, if octopoles are used as correctors of image aberrations. (orig.) [de

  4. Matrix-exponential distributions in applied probability

    CERN Document Server

    Bladt, Mogens

    2017-01-01

    This book contains an in-depth treatment of matrix-exponential (ME) distributions and their sub-class of phase-type (PH) distributions. Loosely speaking, an ME distribution is obtained through replacing the intensity parameter in an exponential distribution by a matrix. The ME distributions can also be identified as the class of non-negative distributions with rational Laplace transforms. If the matrix has the structure of a sub-intensity matrix for a Markov jump process we obtain a PH distribution which allows for nice probabilistic interpretations facilitating the derivation of exact solutions and closed form formulas. The full potential of ME and PH unfolds in their use in stochastic modelling. Several chapters on generic applications, like renewal theory, random walks and regenerative processes, are included together with some specific examples from queueing theory and insurance risk. We emphasize our intention towards applications by including an extensive treatment on statistical methods for PH distribu...

  5. Matrix models of 2d gravity

    International Nuclear Information System (INIS)

    Ginsparg, P.

    1991-01-01

    These are introductory lectures for a general audience that give an overview of the subject of matrix models and their application to random surfaces, 2d gravity, and string theory. They are intentionally 1.5 years out of date

  6. Development of a Compact Matrix Converter

    Directory of Open Access Journals (Sweden)

    J. Bauer

    2009-01-01

    Full Text Available This paper deals with the development of a matrix converter. Matrix converters belong to the category of direct frequency converters. A converter does not contain DC-link and the output voltage is provided by direct switching of voltage from the input phases. This is enabled by 9 bidirectional switches, which are provided by anti-serial connection of 18 IGBT transistors. The absence of a DC-link is great advantage of the matrix converter, but it also increases the requirements on the converter control. For this reason a new prototype of a matrix converter is being developed with sophisticated modern components (FPGA, Power PC equipped in the control part of the converter. The converter will be used for testing new control algorithms and commutation methods. 

  7. Microwave Processed Multifunctional Polymer Matrix Composites Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA has identified polymer matrix composites (PMCs) as a critical need for launch and in-space vehicles, but the significant costs of such materials limits their...

  8. Applied matrix algebra in the statistical sciences

    CERN Document Server

    Basilevsky, Alexander

    2005-01-01

    This comprehensive text offers teachings relevant to both applied and theoretical branches of matrix algebra and provides a bridge between linear algebra and statistical models. Appropriate for advanced undergraduate and graduate students. 1983 edition.

  9. Nuclear waste storage container with metal matrix

    International Nuclear Information System (INIS)

    Sump, K.R.

    1978-01-01

    The invention relates to a storage container for high-level waste having a metal matrix for the high-level waste, thereby providing greater impact strength for the waste container and increasing heat transfer properties

  10. Celsian Glass-Ceramic Matrix Composites

    Science.gov (United States)

    Bansal, Narottam P.; Dicarlo, James A.

    1996-01-01

    Glass-ceramic matrix reinforced fiber composite materials developed for use in low dielectric applications, such as radomes. Materials strong and tough, exhibit low dielectric properties, and endure high temperatures.

  11. The revenge of the S-matrix

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    In this talk I will describe recent work aiming to reinvigorate the 50 year old S-matrix program, which aims to constrain scattering of massive particles non-perturbatively. I will begin by considering quantum fields in anti-de Sitter space and show that one can extract information about the S-matrix by considering correlators in conformally invariant theories. The latter can be studied with "bootstrap" techniques, which allow us to constrain the S-matrix. In particular, in 1+1D one obtains bounds which are saturated by known integrable models. I will also show that it is also possible to directly constrain the S-matrix, without using the CFT crutch, by using crossing symmetry and unitarity. This alternative method is simpler and gives results in agreement with the previous approach. Both techniques are generalizable to higher dimensions.

  12. Superfund Chemical Data Matrix (SCDM) Query

    Science.gov (United States)

    This site allows you to to easily query the Superfund Chemical Data Matrix (SCDM) and generate a list of the corresponding Hazard Ranking System (HRS) factor values, benchmarks, and data elements that you need.

  13. Ubiquitination of specific mitochondrial matrix proteins

    Energy Technology Data Exchange (ETDEWEB)

    Lehmann, Gilad [The Janet and David Polak Tumor and Vascular Biology Research Center and the Technion Integrated Cancer Center (TICC), The Rappaport Faculty of Medicine and Research Institute, Haifa, 31096 (Israel); Ziv, Tamar [The Smoler Proteomics Center, Faculty of Biology – Technion-Israel Institute of Technology, Haifa, 32000 (Israel); Braten, Ori [The Janet and David Polak Tumor and Vascular Biology Research Center and the Technion Integrated Cancer Center (TICC), The Rappaport Faculty of Medicine and Research Institute, Haifa, 31096 (Israel); Admon, Arie [The Smoler Proteomics Center, Faculty of Biology – Technion-Israel Institute of Technology, Haifa, 32000 (Israel); Udasin, Ronald G. [The Janet and David Polak Tumor and Vascular Biology Research Center and the Technion Integrated Cancer Center (TICC), The Rappaport Faculty of Medicine and Research Institute, Haifa, 31096 (Israel); Ciechanover, Aaron, E-mail: aaroncie@tx.technion.ac.il [The Janet and David Polak Tumor and Vascular Biology Research Center and the Technion Integrated Cancer Center (TICC), The Rappaport Faculty of Medicine and Research Institute, Haifa, 31096 (Israel)

    2016-06-17

    Several protein quality control systems in bacteria and/or mitochondrial matrix from lower eukaryotes are absent in higher eukaryotes. These are transfer-messenger RNA (tmRNA), The N-end rule ATP-dependent protease ClpAP, and two more ATP-dependent proteases, HslUV and ClpXP (in yeast). The lost proteases resemble the 26S proteasome and the role of tmRNA and the N-end rule in eukaryotic cytosol is performed by the ubiquitin proteasome system (UPS). Therefore, we hypothesized that the UPS might have substituted these systems – at least partially – in the mitochondrial matrix of higher eukaryotes. Using three independent experimental approaches, we demonstrated the presence of ubiquitinated proteins in the matrix of isolated yeast mitochondria. First, we show that isolated mitochondria contain ubiquitin (Ub) conjugates, which remained intact after trypsin digestion. Second, we demonstrate that the mitochondrial soluble fraction contains Ub-conjugates, several of which were identified by mass spectrometry and are localized to the matrix. Third, using immunoaffinity enrichment by specific antibodies recognizing digested ubiquitinated peptides, we identified a group of Ub-modified matrix proteins. The modification was further substantiated by separation on SDS-PAGE and immunoblots. Last, we attempted to identify the ubiquitin ligase(s) involved, and identified Dma1p as a trypsin-resistant protein in our mitochondrial preparations. Taken together, these data suggest a yet undefined role for the UPS in regulation of the mitochondrial matrix proteins. -- Highlights: •Mitochondrial matrix contains ubiquitinated proteins. •Ubiquitination occurs most probably in the matrix. •Dma1p is a ubiquitin ligase present in mitochondrial preparations.

  14. Correlation matrix for quartet codon usage

    CERN Document Server

    Frappat, L; Sorba, Paul

    2005-01-01

    It has been argued that the sum of usage probabilities for codons, belonging to quartets, that have as third nucleotide C or A, is independent of the biological species for vertebrates. The comparison between the theoretical correlation matrix derived from these sum rules and the experimentally computed matrix for 26 species shows a satisfactory agreement. The Shannon entropy, weakly depending on the biological species, gives further support. Suppression of codons containing the dinucleotides CG or AU is put in evidence.

  15. About the solvability of matrix polynomial equations

    OpenAIRE

    Netzer, Tim; Thom, Andreas

    2016-01-01

    We study self-adjoint matrix polynomial equations in a single variable and prove existence of self-adjoint solutions under some assumptions on the leading form. Our main result is that any self-adjoint matrix polynomial equation of odd degree with non-degenerate leading form can be solved in self-adjoint matrices. We also study equations of even degree and equations in many variables.

  16. Matrix parameters and storage conditions of manure

    Energy Technology Data Exchange (ETDEWEB)

    Weinfurtner, Karlheinz [Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Schmallenberg (Germany)

    2011-01-15

    The literature study presents an overview of storage conditions for manure and information about important matrix parameters of manure such as dry matter content, pH value, total organic carbon, total nitrogen and ammonium nitrogen. The presented results show that for matrix parameters a dissimilarity of cattle and pig manure can be observed but no difference within the species for different production types occurred with exception of calves. A scenario for western and central European countries is derived. (orig.)

  17. Quantized Matrix Algebras and Quantum Seeds

    DEFF Research Database (Denmark)

    Jakobsen, Hans Plesner; Pagani, Chiara

    2015-01-01

    We determine explicitly quantum seeds for classes of quantized matrix algebras. Furthermore, we obtain results on centres and block diagonal forms of these algebras. In the case where is an arbitrary root of unity, this further determines the degrees.......We determine explicitly quantum seeds for classes of quantized matrix algebras. Furthermore, we obtain results on centres and block diagonal forms of these algebras. In the case where is an arbitrary root of unity, this further determines the degrees....

  18. Multi-matrix models from jet coefficients

    International Nuclear Information System (INIS)

    Apfeldorf, K.M.; California Univ., Berkeley, CA

    1991-01-01

    We present a very natural framework in which to discuss multi-matrix models of two-dimensional quantum gravity. Multi-matrix model actions, string equations, and other quantities can be compactly expressed in terms of the jets of the resolvents of the relevant differential operators. This allows one to write down equations describing minimal matter coupled to two-dimensional quantum gravity directly in terms of known functionals. (orig.)

  19. Embedded Lattice and Properties of Gram Matrix

    Directory of Open Access Journals (Sweden)

    Futa Yuichi

    2017-03-01

    Full Text Available In this article, we formalize in Mizar [14] the definition of embedding of lattice and its properties. We formally define an inner product on an embedded module. We also formalize properties of Gram matrix. We formally prove that an inverse of Gram matrix for a rational lattice exists. Lattice of Z-module is necessary for lattice problems, LLL (Lenstra, Lenstra and Lov´asz base reduction algorithm [16] and cryptographic systems with lattice [17].

  20. Micromechanical Modeling of Woven Metal Matrix Composites

    Science.gov (United States)

    Bednarcyk, Brett A.; Pindera, Marek-Jerzy

    1997-01-01

    This report presents the results of an extensive micromechanical modeling effort for woven metal matrix composites. The model is employed to predict the mechanical response of 8-harness (8H) satin weave carbon/copper (C/Cu) composites. Experimental mechanical results for this novel high thermal conductivity material were recently reported by Bednarcyk et al. along with preliminary model results. The micromechanics model developed herein is based on an embedded approach. A micromechanics model for the local (micro-scale) behavior of the woven composite, the original method of cells (Aboudi), is embedded in a global (macro-scale) micromechanics model (the three-dimensional generalized method of cells (GMC-3D) (Aboudi). This approach allows representation of true repeating unit cells for woven metal matrix composites via GMC-3D, and representation of local effects, such as matrix plasticity, yarn porosity, and imperfect fiber-matrix bonding. In addition, the equations of GMC-3D were reformulated to significantly reduce the number of unknown quantities that characterize the deformation fields at the microlevel in order to make possible the analysis of actual microstructures of woven composites. The resulting micromechanical model (WCGMC) provides an intermediate level of geometric representation, versatility, and computational efficiency with respect to previous analytical and numerical models for woven composites, but surpasses all previous modeling work by allowing the mechanical response of a woven metal matrix composite, with an elastoplastic matrix, to be examined for the first time. WCGMC is employed to examine the effects of composite microstructure, porosity, residual stresses, and imperfect fiber-matrix bonding on the predicted mechanical response of 8H satin C/Cu. The previously reported experimental results are summarized, and the model predictions are compared to monotonic and cyclic tensile and shear test data. By considering appropriate levels of porosity

  1. Heteroscedasticity resistant robust covariance matrix estimator

    Czech Academy of Sciences Publication Activity Database

    Víšek, Jan Ámos

    2010-01-01

    Roč. 17, č. 27 (2010), s. 33-49 ISSN 1212-074X Grant - others:GA UK(CZ) GA402/09/0557 Institutional research plan: CEZ:AV0Z10750506 Keywords : Regression * Covariance matrix * Heteroscedasticity * Resistant Subject RIV: BB - Applied Statistics, Operational Research http://library.utia.cas.cz/separaty/2011/SI/visek-heteroscedasticity resistant robust covariance matrix estimator.pdf

  2. Extracellular matrix, cell skeletons, and embryonic development.

    Science.gov (United States)

    Hay, E D

    1989-09-01

    During embryonic development, the extracellular matrix (ECM) promotes the production of differentiated products by epithelial cells and the migration of mesenchymal cells, and probably also plays a role in epithelial-mesenchymal transformation. Here we examine the role of the cell skeleton (actin, microtubules, intermediate filaments) in mediating matrix effects on mesenchymal cell morphology, migration, and formation. The interaction of both epithelial cells and mesenchymal cells with ECM seems to involve the actin cortex, which is best developed in the base of the epithelial cell, where it attaches to underlying matrix via membrane-intercalated receptors. To interact with the matrix, the fibroblast has appropriate ECM receptors and an actin cortex around the whole cell. The actin cortex is absolutely required for assumption of bipolar shape, elongation, and movement through the matrix. Since the cortex seems to be anchored to the matrix, it is unlikely that it moves during cell migration. A new hypothesis states that the microtubule- and intermediate filament-rich endoplasm, containing the nucleus, moves past the actin cortex-receptor-matrix complex into the newly synthesized front end of the mesenchymal cell to effect forward movement. When epithelial cells transform into mesenchyme in the embryo, or when they are induced to do this in vitro, they switch from the keratin intermediate filament profile to one rich in vimentin, and the effect of cell matrix interaction on cell shape is profoundly altered. Vimentin-actin interactions with ECM may be a major factor in the ability of a cell to become mesenchymal.(ABSTRACT TRUNCATED AT 250 WORDS)

  3. Nanophosphor composite scintillator with a liquid matrix

    Science.gov (United States)

    McKigney, Edward Allen; Burrell, Anthony Keiran; Bennett, Bryan L.; Cooke, David Wayne; Ott, Kevin Curtis; Bacrania, Minesh Kantilal; Del Sesto, Rico Emilio; Gilbertson, Robert David; Muenchausen, Ross Edward; McCleskey, Thomas Mark

    2010-03-16

    An improved nanophosphor scintillator liquid comprises nanophosphor particles in a liquid matrix. The nanophosphor particles are optionally surface modified with an organic ligand. The surface modified nanophosphor particle is essentially surface charge neutral, thereby preventing agglomeration of the nanophosphor particles during dispersion in a liquid scintillator matrix. The improved nanophosphor scintillator liquid may be used in any conventional liquid scintillator application, including in a radiation detector.

  4. Multifaceted role of matrix metalloproteinases (MMPs)

    OpenAIRE

    Singh, Divya; Srivastava, Sanjeev K.; Chaudhuri, Tapas K.; Upadhyay, Ghanshyam

    2015-01-01

    Matrix metalloproteinases (MMPs), a large family of calcium-dependent zinc-containing endopeptidases, are involved in the tissue remodeling and degradation of the extracellular matrix. MMPs are widely distributed in the brain and regulate various processes including microglial activation, inflammation, dopaminergic apoptosis, blood-brain barrier disruption, and modulation of ?-synuclein pathology. High expression of MMPs is well documented in various neurological disorders including Parkinson...

  5. Matrix string theory on pp-waves

    Energy Technology Data Exchange (ETDEWEB)

    Bonelli, Giulio

    2003-06-21

    After a brief review on matrix string theory on flat backgrounds, we formulate matrix string models on different pp-wave backgrounds. This will be done both in the cases of constant and variable RR background flux for certain exact string geometries. We exhibit the non-perturbative representation of string interaction and show how the eigenvalue tunnelling drives the WKB expansion to give the usual perturbative string interaction also in supersymmetric pp-wave background cases.

  6. Laser Additive Manufacturing of Metal Matrix Composites

    OpenAIRE

    Mertens, Anne

    2016-01-01

    Current trends in the mechanics and energy industries impose increasing demands on metallic materials, combining elevated service temperatures and severe mechanical solicitations. Metal matrix composite coatings with ceramic reinforcements are good candidates in view of fulfilling the requirements for an improved mechanical durability, and for other complex functions (e.g. self-lubrication, biocompatibility...). First of all, this paper provides an introduction to metal matrix compos...

  7. Genetic Relationships Between Chondrules, Rims and Matrix

    Science.gov (United States)

    Huss, G. R.; Alexander, C. M. OD.; Palme, H.; Bland, P. A.; Wasson, J. T.

    2004-01-01

    The most primitive chondrites are composed of chondrules and chondrule fragments, various types of inclusions, discrete mineral grains, metal, sulfides, and fine-grained materials that occur as interchondrule matrix and as chondrule/inclusion rims. Understanding how these components are related is essential for understanding how chondrites and their constituents formed and were processed in the solar nebula. For example, were the first generations of chondrules formed by melting of matrix or matrix precursors? Did chondrule formation result in appreciable transfer of chondrule material into the matrix? Here, we consider three types of data: 1) compositional data for bulk chondrites and matrix, 2) mineralogical and textural information, and 3) the abundances and characteristics of presolar materials that reside in the matrix and rims. We use these data to evaluate the roles of evaporation and condensation, chondrule formation, mixing of different nebular components, and secondary processing both in the nebula and on the parent bodies. Our goal is to identify the things that are reasonably well established and to point out the areas that need additional work.

  8. Pseudomonas biofilm matrix composition and niche biology

    Science.gov (United States)

    Mann, Ethan E.; Wozniak, Daniel J.

    2014-01-01

    Biofilms are a predominant form of growth for bacteria in the environment and in the clinic. Critical for biofilm development are adherence, proliferation, and dispersion phases. Each of these stages includes reinforcement by, or modulation of, the extracellular matrix. Pseudomonas aeruginosa has been a model organism for the study of biofilm formation. Additionally, other Pseudomonas species utilize biofilm formation during plant colonization and environmental persistence. Pseudomonads produce several biofilm matrix molecules, including polysaccharides, nucleic acids, and proteins. Accessory matrix components shown to aid biofilm formation and adaptability under varying conditions are also produced by pseudomonads. Adaptation facilitated by biofilm formation allows for selection of genetic variants with unique and distinguishable colony morphology. Examples include rugose small-colony variants and wrinkly spreaders (WS), which over produce Psl/Pel or cellulose, respectively, and mucoid bacteria that over produce alginate. The well-documented emergence of these variants suggests that pseudomonads take advantage of matrix-building subpopulations conferring specific benefits for the entire population. This review will focus on various polysaccharides as well as additional Pseudomonas biofilm matrix components. Discussions will center on structure–function relationships, regulation, and the role of individual matrix molecules in niche biology. PMID:22212072

  9. Multi-threaded Sparse Matrix-Matrix Multiplication for Many-Core and GPU Architectures.

    Energy Technology Data Exchange (ETDEWEB)

    Deveci, Mehmet [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rajamanickam, Sivasankaran [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Trott, Christian Robert [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-12-01

    Sparse Matrix-Matrix multiplication is a key kernel that has applications in several domains such as scienti c computing and graph analysis. Several algorithms have been studied in the past for this foundational kernel. In this paper, we develop parallel algorithms for sparse matrix-matrix multiplication with a focus on performance portability across different high performance computing architectures. The performance of these algorithms depend on the data structures used in them. We compare different types of accumulators in these algorithms and demonstrate the performance difference between these data structures. Furthermore, we develop a meta-algorithm, kkSpGEMM, to choose the right algorithm and data structure based on the characteristics of the problem. We show performance comparisons on three architectures and demonstrate the need for the community to develop two phase sparse matrix-matrix multiplication implementations for efficient reuse of the data structures involved.

  10. Multi-threaded Sparse Matrix Sparse Matrix Multiplication for Many-Core and GPU Architectures.

    Energy Technology Data Exchange (ETDEWEB)

    Deveci, Mehmet [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Trott, Christian Robert [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rajamanickam, Sivasankaran [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2018-01-01

    Sparse Matrix-Matrix multiplication is a key kernel that has applications in several domains such as scientific computing and graph analysis. Several algorithms have been studied in the past for this foundational kernel. In this paper, we develop parallel algorithms for sparse matrix- matrix multiplication with a focus on performance portability across different high performance computing architectures. The performance of these algorithms depend on the data structures used in them. We compare different types of accumulators in these algorithms and demonstrate the performance difference between these data structures. Furthermore, we develop a meta-algorithm, kkSpGEMM, to choose the right algorithm and data structure based on the characteristics of the problem. We show performance comparisons on three architectures and demonstrate the need for the community to develop two phase sparse matrix-matrix multiplication implementations for efficient reuse of the data structures involved.

  11. New Class of Quark Mass Matrix and Calculability of Flavor Mixing Matrix

    OpenAIRE

    Kang, Kyungsik; Kang, Sin Kyu

    1997-01-01

    We discuss a new general class of mass matrix ansatz that respects the fermion mass hierarchy and calculability of the flavor mixing matrix. This is a generalization and justification of the various specific forms of the mass matrix by successive breaking of the maximal permutation symmetry. By confronting the experimental data, a large class of the mass matrices are shown to survive, while certain specific cases are phenomenologically ruled out. Also the CP-violation turns out to be maximal,...

  12. Method of forming a ceramic matrix composite and a ceramic matrix component

    Science.gov (United States)

    de Diego, Peter; Zhang, James

    2017-05-30

    A method of forming a ceramic matrix composite component includes providing a formed ceramic member having a cavity, filling at least a portion of the cavity with a ceramic foam. The ceramic foam is deposited on a barrier layer covering at least one internal passage of the cavity. The method includes processing the formed ceramic member and ceramic foam to obtain a ceramic matrix composite component. Also provided is a method of forming a ceramic matrix composite blade and a ceramic matrix composite component.

  13. Experimental study on mechanical behavior of fiber/matrix interface in metal matrix composite

    International Nuclear Information System (INIS)

    Wang, Q.; Chiang, F.P.

    1994-01-01

    The technique SIEM(Speckle Interferometry with Electron Microscopy) was employed to quantitatively measure the deformation on the fiber/matrix interface in SCS-6/Ti-6-4 composite at a microscale level. The displacement field within the fiber/matrix interphase zone was determined by in-situ observation with sensitivity of 0.003(microm). The macro-mechanical properties were compared with micro-mechanical behavior. It is shown that the strength in the interphase zone is weaker than the matrix tensile strength. The deformation process can be characterized by the uniform deformation, interface strain concentration and debond, and matrix plastic deformation

  14. Contribution to high voltage matrix switches reliability

    International Nuclear Information System (INIS)

    Lausenaz, Yvan

    2000-01-01

    Nowadays, power electronic equipment requirements are important, concerning performances, quality and reliability. On the other hand, costs have to be reduced in order to satisfy the market rules. To provide cheap, reliability and performances, many standard components with mass production are developed. But the construction of specific products must be considered following these two different points: in one band you can produce specific components, with delay, over-cost problems and eventuality quality and reliability problems, in the other and you can use standard components in a adapted topologies. The CEA of Pierrelatte has adopted this last technique of power electronic conception for the development of these high voltage pulsed power converters. The technique consists in using standard components and to associate them in series and in parallel. The matrix constitutes high voltage macro-switch where electrical parameters are distributed between the synchronized components. This study deals with the reliability of these structures. It brings up the high reliability aspect of MOSFETs matrix associations. Thanks to several homemade test facilities, we obtained lots of data concerning the components we use. The understanding of defects propagation mechanisms in matrix structures has allowed us to put forwards the necessity of robust drive system, adapted clamping voltage protection, and careful geometrical construction. All these reliability considerations in matrix associations have notably allowed the construction of a new matrix structure regrouping all solutions insuring reliability. Reliable and robust, this product has already reaches the industrial stage. (author) [fr

  15. Redesigning Triangular Dense Matrix Computations on GPUs

    KAUST Repository

    Charara, Ali

    2016-08-09

    A new implementation of the triangular matrix-matrix multiplication (TRMM) and the triangular solve (TRSM) kernels are described on GPU hardware accelerators. Although part of the Level 3 BLAS family, these highly computationally intensive kernels fail to achieve the percentage of the theoretical peak performance on GPUs that one would expect when running kernels with similar surface-to-volume ratio on hardware accelerators, i.e., the standard matrix-matrix multiplication (GEMM). The authors propose adopting a recursive formulation, which enriches the TRMM and TRSM inner structures with GEMM calls and, therefore, reduces memory traffic while increasing the level of concurrency. The new implementation enables efficient use of the GPU memory hierarchy and mitigates the latency overhead, to run at the speed of the higher cache levels. Performance comparisons show up to eightfold and twofold speedups for large dense matrix sizes, against the existing state-of-the-art TRMM and TRSM implementations from NVIDIA cuBLAS, respectively, across various GPU generations. Once integrated into high-level Cholesky-based dense linear algebra algorithms, the performance impact on the overall applications demonstrates up to fourfold and twofold speedups, against the equivalent native implementations, linked with cuBLAS TRMM and TRSM kernels, respectively. The new TRMM/TRSM kernel implementations are part of the open-source KBLAS software library (http://ecrc.kaust.edu.sa/Pages/Res-kblas.aspx) and are lined up for integration into the NVIDIA cuBLAS library in the upcoming v8.0 release.

  16. Loop Transfer Matrix and Loop Quantum Mechanics

    International Nuclear Information System (INIS)

    Savvidy, George K.

    2000-01-01

    The gonihedric model of random surfaces on a 3d Euclidean lattice has equivalent representation in terms of transfer matrix K(Q i ,Q f ), which describes the propagation of loops Q. We extend the previous construction of the loop transfer matrix to the case of nonzero self-intersection coupling constant κ. We introduce the loop generalization of Fourier transformation which allows to diagonalize transfer matrices, that depend on symmetric difference of loops only and express all eigenvalues of 3d loop transfer matrix through the correlation functions of the corresponding 2d statistical system. The loop Fourier transformation allows to carry out the analogy with quantum mechanics of point particles, to introduce conjugate loop momentum P and to define loop quantum mechanics. We also consider transfer matrix on 4d lattice which describes propagation of memebranes. This transfer matrix can also be diagonalized by using the generalized Fourier transformation, and all its eigenvalues are equal to the correlation functions of the corresponding 3d statistical system. In particular the free energy of the 4d membrane system is equal to the free energy of 3d gonihedric system of loops and is equal to the free energy of 2d Ising model. (author)

  17. Transfer matrix representation for periodic planar media

    Science.gov (United States)

    Parrinello, A.; Ghiringhelli, G. L.

    2016-06-01

    Sound transmission through infinite planar media characterized by in-plane periodicity is faced by exploiting the free wave propagation on the related unit cells. An appropriate through-thickness transfer matrix, relating a proper set of variables describing the acoustic field at the two external surfaces of the medium, is derived by manipulating the dynamic stiffness matrix related to a finite element model of the unit cell. The adoption of finite element models avoids analytical modeling or the simplification on geometry or materials. The obtained matrix is then used in a transfer matrix method context, making it possible to combine the periodic medium with layers of different nature and to treat both hard-wall and semi-infinite fluid termination conditions. A finite sequence of identical sub-layers through the thickness of the medium can be handled within the transfer matrix method, significantly decreasing the computational burden. Transfer matrices obtained by means of the proposed method are compared with analytical or equivalent models, in terms of sound transmission through barriers of different nature.

  18. Image encryption using the Sudoku matrix

    Science.gov (United States)

    Wu, Yue; Zhou, Yicong; Noonan, Joseph P.; Panetta, Karen; Agaian, Sos

    2010-04-01

    This paper introduces a new effective and lossless image encryption algorithm using a Sudoku Matrix to scramble and encrypt the image. The new algorithm encrypts an image through a three stage process. In the first stage, a reference Sudoku matrix is generated as the foundation for the encryption and scrambling processes. The image pixels' intensities are then changed by using the reference Sudoku matrix values, and then the pixels' positions are shuffled using the Sudoku matrix as a mapping process. The advantages of this method is useful for efficiently encrypting a variety of digital images, such as binary images, gray images, and RGB images without any quality loss. The security keys of the presented algorithm are the combination of the parameters in a 1D chaotic logistic map, a parameter to control the size of Sudoku Matrix and the number of iteration times desired for scrambling. The possible security key space is extremely large. The principles of the presented scheme could be applied to provide security for a variety of systems including image, audio and video systems.

  19. Matrix strings in weakly curved background fields

    International Nuclear Information System (INIS)

    Schiappa, Ricardo

    2001-01-01

    We investigate further the recent proposal for the form of the Matrix theory action in weak background fields. We perform DVV reduction to the multiple D0-brane action in order to find the Matrix string theory action for multiple fundamental strings in curved but weak NSNS and RR backgrounds. This matrix sigma model gives a definite prescription on how to deal with RR fields with an explicit spacetime dependence in Type II string theory. We do this both via the 9-11 flip and the chain of T and S dualities, and further check on their equivalence explicitly. In order to do so, we also discuss the implementation of S-duality in the operators of the 2-dimensional worldvolume supersymmetric gauge theory describing the Type IIB D-string. We compare the result to the known Green-Schwarz sigma model action (for one string), and use this comparison in order to discuss about possible, non-linear background curvature corrections to the Matrix string action (involving many strings), and therefore to the Matrix theory action. We illustrate the nonabelian character of our action with an example involving multiple fundamental strings in a nontrivial RR flux, where the strings are polarized into a noncommutative configuration. This corresponds to a dielectric type of effect on fundamental strings

  20. Google matrix analysis of DNA sequences.

    Science.gov (United States)

    Kandiah, Vivek; Shepelyansky, Dima L

    2013-01-01

    For DNA sequences of various species we construct the Google matrix [Formula: see text] of Markov transitions between nearby words composed of several letters. The statistical distribution of matrix elements of this matrix is shown to be described by a power law with the exponent being close to those of outgoing links in such scale-free networks as the World Wide Web (WWW). At the same time the sum of ingoing matrix elements is characterized by the exponent being significantly larger than those typical for WWW networks. This results in a slow algebraic decay of the PageRank probability determined by the distribution of ingoing elements. The spectrum of [Formula: see text] is characterized by a large gap leading to a rapid relaxation process on the DNA sequence networks. We introduce the PageRank proximity correlator between different species which determines their statistical similarity from the view point of Markov chains. The properties of other eigenstates of the Google matrix are also discussed. Our results establish scale-free features of DNA sequence networks showing their similarities and distinctions with the WWW and linguistic networks.

  1. Google matrix analysis of DNA sequences.

    Directory of Open Access Journals (Sweden)

    Vivek Kandiah

    Full Text Available For DNA sequences of various species we construct the Google matrix [Formula: see text] of Markov transitions between nearby words composed of several letters. The statistical distribution of matrix elements of this matrix is shown to be described by a power law with the exponent being close to those of outgoing links in such scale-free networks as the World Wide Web (WWW. At the same time the sum of ingoing matrix elements is characterized by the exponent being significantly larger than those typical for WWW networks. This results in a slow algebraic decay of the PageRank probability determined by the distribution of ingoing elements. The spectrum of [Formula: see text] is characterized by a large gap leading to a rapid relaxation process on the DNA sequence networks. We introduce the PageRank proximity correlator between different species which determines their statistical similarity from the view point of Markov chains. The properties of other eigenstates of the Google matrix are also discussed. Our results establish scale-free features of DNA sequence networks showing their similarities and distinctions with the WWW and linguistic networks.

  2. Max–min distance nonnegative matrix factorization

    KAUST Repository

    Wang, Jim Jing-Yan

    2014-10-26

    Nonnegative Matrix Factorization (NMF) has been a popular representation method for pattern classification problems. It tries to decompose a nonnegative matrix of data samples as the product of a nonnegative basis matrix and a nonnegative coefficient matrix. The columns of the coefficient matrix can be used as new representations of these data samples. However, traditional NMF methods ignore class labels of the data samples. In this paper, we propose a novel supervised NMF algorithm to improve the discriminative ability of the new representation by using the class labels. Using the class labels, we separate all the data sample pairs into within-class pairs and between-class pairs. To improve the discriminative ability of the new NMF representations, we propose to minimize the maximum distance of the within-class pairs in the new NMF space, and meanwhile to maximize the minimum distance of the between-class pairs. With this criterion, we construct an objective function and optimize it with regard to basis and coefficient matrices, and slack variables alternatively, resulting in an iterative algorithm. The proposed algorithm is evaluated on three pattern classification problems and experiment results show that it outperforms the state-of-the-art supervised NMF methods.

  3. A framework for general sparse matrix-matrix multiplication on GPUs and heterogeneous processors

    DEFF Research Database (Denmark)

    Liu, Weifeng; Vinter, Brian

    2015-01-01

    General sparse matrix-matrix multiplication (SpGEMM) is a fundamental building block for numerous applications such as algebraic multigrid method (AMG), breadth first search and shortest path problem. Compared to other sparse BLAS routines, an efficient parallel SpGEMM implementation has to handle...

  4. Quaternion from rotation matrix. [four-parameter representation of coordinate transformation matrix

    Science.gov (United States)

    Shepperd, S. W.

    1978-01-01

    A quaternion is regarded as a four-parameter representation of a coordinate transformation matrix, where the four components of the quaternion are treated on an equal basis. This leads to a unified, compact, and singularity-free approach to determining the quaternion when the matrix is given.

  5. MICRO-CRACK BEHAVIOUR IN POLYMER MATRIX OF PARTICULATE COMPOSITE: INFLUENCE OF NON-LINEAR MATRIX

    Czech Academy of Sciences Publication Activity Database

    Majer, Z.; Náhlík, Luboš

    2012-01-01

    Roč. 106, SUPPL. 3 (2012), S472-S473 ISSN 0009-2770 Institutional support: RVO:68081723 Keywords : polymer matrix composite * fracture behaviour * non-linear matrix * micro-crack Subject RIV: JL - Materials Fatigue, Friction Mechanics OBOR OECD: Audio engineering, reliability analysis Impact factor: 0.453, year: 2012

  6. Cache oblivious storage and access heuristics for blocked matrix-matrix multiplication

    Energy Technology Data Exchange (ETDEWEB)

    Bock, Nicolas [Los Alamos National Laboratory; Rubensson, Emanuel H [Los Alamos National Laboratory; Niklasson, Anders M N [Los Alamos National Laboratory; Challacombe, Matt [Los Alamos National Laboratory; Salek, Pawel [SWEDEN

    2008-01-01

    The authors investigate effects of ordering in blocked matrix-matrix multiplication. They find that submatrices do not have to be stored contiguously in memory in order to achieve near optimal performance. They also find a good choice of execution order of submatrix operations can lead to a speedup of up to four times for small block sizes.

  7. The minimum amount of "matrix " needed for matrix-assisted pulsed laser deposition of biomolecules

    DEFF Research Database (Denmark)

    Tabetah, Marshall; Matei, Andreea; Constantinescu, Catalin

    2014-01-01

    of coarse-grained molecular dynamics simulations are performed for a model lysozyme-water system, where the water serves the role of volatile "matrix" that drives the ejection of the biomolecules. The simulations reveal a remarkable ability of a small (5-10 wt %) amount of matrix to cause the ejection...

  8. Matrix transformation of Fibonacci band matrix on generalized $bv$-space and its dual spaces

    Directory of Open Access Journals (Sweden)

    Anupam Das

    2018-07-01

    Full Text Available In this paper we introduce a new sequence space $bv(\\hat{F}$ by using the Fibonacci band matrix $\\hat{F}.$ We also establish a few inclusion relations concerning this space and determine its $\\alpha-,\\beta-,\\gamma-$duals. Finally we characterize some matrix classes on the space $bv(\\hat{F}.$

  9. Matrix correction for PIXE in biomedical samples

    International Nuclear Information System (INIS)

    Heck, D.; Rokita, E.

    1985-03-01

    This report describes the programs MATRIX2, STPPWRF2 and MUROFIT, which are used for the calculation of the matrix correction factors, which must be applied to concentrations determined by PIXE (Proton induced X-ray emission). The correction takes into account the slowing down of the protons along their path through the specimen, which causes a decreasing X-ray production along this path. Moreover these X-rays are attenuated penetrating the specimen towards to the X-ray detector. The matrix correction factors regard these effects in dependence on the proton impact energy, the specimen and detector geometry, the specimen composition and the energies of the interesting X-rays. (orig.) [de

  10. A review of Indirect Matrix Converter Topologies

    Directory of Open Access Journals (Sweden)

    Salem Rahmani

    2015-08-01

    Full Text Available Abstract—Matrix Converter (MC is a modern direct AC/AC electrical power converter without dc-link capacitor. MC is operated in four quadrant, assuring a control of the output voltage, amplitude and frequency. The matrix converter has recently attracted significant attention among researchers and it has become increasing attractive for applications of wind energy conversion, military power supplies, induction motor drives, etc. Recently, different MC topologies have been proposed and developed which have their own advantages and disadvantages. Matrix converter can be classified as direct and indirect structures. The direct one has been elaborated in previous work. In this paper the indirect MCs are reviewed. Different characteristics of the indirect MC topologies are mentioned to show the strengths and weaknesses of such converter topologies.

  11. Google matrix analysis of directed networks

    Science.gov (United States)

    Ermann, Leonardo; Frahm, Klaus M.; Shepelyansky, Dima L.

    2015-10-01

    In the past decade modern societies have developed enormous communication and social networks. Their classification and information retrieval processing has become a formidable task for the society. Because of the rapid growth of the World Wide Web, and social and communication networks, new mathematical methods have been invented to characterize the properties of these networks in a more detailed and precise way. Various search engines extensively use such methods. It is highly important to develop new tools to classify and rank a massive amount of network information in a way that is adapted to internal network structures and characteristics. This review describes the Google matrix analysis of directed complex networks demonstrating its efficiency using various examples including the World Wide Web, Wikipedia, software architectures, world trade, social and citation networks, brain neural networks, DNA sequences, and Ulam networks. The analytical and numerical matrix methods used in this analysis originate from the fields of Markov chains, quantum chaos, and random matrix theory.

  12. Function of the sperm nuclear matrix.

    Science.gov (United States)

    Shaman, Jeffrey A; Yamauchi, Yasuhiro; Ward, W Steven

    2007-01-01

    Mammalian spermatozoa contain some of the most highly compact chromatin. This is due to the DNA binding proteins, the protamines, which replace most of the histones during spermiogenesis. This chromatin, however, shares some features with somatic cell chromatin. One of these is the organization of DNA into loop domains attached at their bases to a proteinaceous nuclear matrix. Several groups have shown that the sites at which DNA associates with the sperm nuclear matrix contain chromatin structures that are linked with specific functions. Recent data also suggest that the sperm nuclear matrix plays essential roles in the paternal pronucleus of the newly fertilized oocyte, suggesting that the sperm cell provides more information to the new embryo than solely the genetic material it delivers. Here, we will review these data which together give insight into the functional significance and requirements of sperm nuclear structure.

  13. Nanomechanics of the Cartilage Extracellular Matrix

    Science.gov (United States)

    Han, Lin; Grodzinsky, Alan J.; Ortiz, Christine

    2011-08-01

    Cartilage is a hydrated biomacromolecular fiber composite located at the ends of long bones that enables proper joint lubrication, articulation, loading, and energy dissipation. Degradation of extracellular matrix molecular components and changes in their nanoscale structure greatly influence the macroscale behavior of the tissue and result in dysfunction with age, injury, and diseases such as osteoarthritis. Here, the application of the field of nanomechanics to cartilage is reviewed. Nanomechanics involves the measurement and prediction of nanoscale forces and displacements, intra- and intermolecular interactions, spatially varying mechanical properties, and other mechanical phenomena existing at small length scales. Experimental nanomechanics and theoretical nanomechanics have been applied to cartilage at varying levels of material complexity, e.g., nanoscale properties of intact tissue, the matrix associated with single cells, biomimetic molecular assemblies, and individual extracellular matrix biomolecules (such as aggrecan, collagen, and hyaluronan). These studies have contributed to establishing a fundamental mechanism-based understanding of native and engineered cartilage tissue function, quality, and pathology.

  14. Random matrix theory with an external source

    CERN Document Server

    Brézin, Edouard

    2016-01-01

    This is a first book to show that the theory of the Gaussian random matrix is essential to understand the universal correlations with random fluctuations and to demonstrate that it is useful to evaluate topological universal quantities. We consider Gaussian random matrix models in the presence of a deterministic matrix source. In such models the correlation functions are known exactly for an arbitrary source and for any size of the matrices. The freedom given by the external source allows for various tunings to different classes of universality. The main interest is to use this freedom to compute various topological invariants for surfaces such as the intersection numbers for curves drawn on a surface of given genus with marked points, Euler characteristics, and the Gromov–Witten invariants. A remarkable duality for the average of characteristic polynomials is essential for obtaining such topological invariants. The analysis is extended to nonorientable surfaces and to surfaces with boundaries.

  15. Betatron coupling: Merging Hamiltonian and matrix approaches

    Directory of Open Access Journals (Sweden)

    R. Calaga

    2005-03-01

    Full Text Available Betatron coupling is usually analyzed using either matrix formalism or Hamiltonian perturbation theory. The latter is less exact but provides a better physical insight. In this paper direct relations are derived between the two formalisms. This makes it possible to interpret the matrix approach in terms of resonances, as well as use results of both formalisms indistinctly. An approach to measure the complete coupling matrix and its determinant from turn-by-turn data is presented. Simulations using methodical accelerator design MAD-X, an accelerator design and tracking program, were performed to validate the relations and understand the scope of their application to real accelerators such as the Relativistic Heavy Ion Collider.

  16. ACORNS, Covariance and Correlation Matrix Diagonalization

    International Nuclear Information System (INIS)

    Szondi, E.J.

    1990-01-01

    1 - Description of program or function: The program allows the user to verify the different types of covariance/correlation matrices used in the activation neutron spectrometry. 2 - Method of solution: The program performs the diagonalization of the input covariance/relative covariance/correlation matrices. The Eigen values are then analyzed to determine the rank of the matrices. If the Eigen vectors of the pertinent correlation matrix have also been calculated, the program can perform a complete factor analysis (generation of the factor matrix and its rotation in Kaiser's 'varimax' sense to select the origin of the correlations). 3 - Restrictions on the complexity of the problem: Matrix size is limited to 60 on PDP and to 100 on IBM PC/AT

  17. Breaking Megrelishvili protocol using matrix diagonalization

    Science.gov (United States)

    Arzaki, Muhammad; Triantoro Murdiansyah, Danang; Adi Prabowo, Satrio

    2018-03-01

    In this article we conduct a theoretical security analysis of Megrelishvili protocol—a linear algebra-based key agreement between two participants. We study the computational complexity of Megrelishvili vector-matrix problem (MVMP) as a mathematical problem that strongly relates to the security of Megrelishvili protocol. In particular, we investigate the asymptotic upper bounds for the running time and memory requirement of the MVMP that involves diagonalizable public matrix. Specifically, we devise a diagonalization method for solving the MVMP that is asymptotically faster than all of the previously existing algorithms. We also found an important counterintuitive result: the utilization of primitive matrix in Megrelishvili protocol makes the protocol more vulnerable to attacks.

  18. Interface matrix method in AFEN framework

    Energy Technology Data Exchange (ETDEWEB)

    Pogosbekyan, Leonid; Cho, Jin Young; Kim, Young Jin [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1997-12-31

    In this study, we extend the application of the interface-matrix(IM) method for reflector modeling to Analytic Flux Expansion Nodal (AFEN) method. This include the modifications of the surface-averaged net current continuity and the net leakage balance conditions for IM method in accordance with AFEN formula. AFEN-interface matrix (AFEN-IM) method has been tested against ZION-1 benchmark problem. The numerical result of AFEN-IM method shows 1.24% of maximum error and 0.42% of root-mean square error in assembly power distribution, and 0.006% {Delta} k of neutron multiplication factor. This result proves that the interface-matrix method for reflector modeling can be useful in AFEN method. 3 refs., 4 figs. (Author)

  19. Covariance Matrix Estimation for Massive MIMO

    Science.gov (United States)

    Upadhya, Karthik; Vorobyov, Sergiy A.

    2018-04-01

    We propose a novel pilot structure for covariance matrix estimation in massive multiple-input multiple-output (MIMO) systems in which each user transmits two pilot sequences, with the second pilot sequence multiplied by a random phase-shift. The covariance matrix of a particular user is obtained by computing the sample cross-correlation of the channel estimates obtained from the two pilot sequences. This approach relaxes the requirement that all the users transmit their uplink pilots over the same set of symbols. We derive expressions for the achievable rate and the mean-squared error of the covariance matrix estimate when the proposed method is used with staggered pilots. The performance of the proposed method is compared with existing methods through simulations.

  20. Matrix elements from moments of correlation functions

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Chia Cheng [SLAC National Accelerator Lab., Menlo Park, CA (United States); Bouchard, Chris [College of William and Mary, Williamsburg, VA (United States); Orginos, Konstantinos [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); College of William and Mary, Williamsburg, VA (United States); Richards, David G. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2016-10-01

    Momentum-space derivatives of matrix elements can be related to their coordinate-space moments through the Fourier transform. We derive these expressions as a function of momentum transfer Q2 for asymptotic in/out states consisting of a single hadron. We calculate corrections to the finite volume moments by studying the spatial dependence of the lattice correlation functions. This method permits the computation of not only the values of matrix elements at momenta accessible on the lattice, but also the momentum-space derivatives, providing {\\it a priori} information about the Q2 dependence of form factors. As a specific application we use the method, at a single lattice spacing and with unphysically heavy quarks, to directly obtain the slope of the isovector form factor at various Q2, whence the isovector charge radius. The method has potential application in the calculation of any hadronic matrix element with momentum transfer, including those relevant to hadronic weak decays.

  1. Alternative dimensional reduction via the density matrix

    Science.gov (United States)

    de Carvalho, C. A.; Cornwall, J. M.; da Silva, A. J.

    2001-07-01

    We give graphical rules, based on earlier work for the functional Schrödinger equation, for constructing the density matrix for scalar and gauge fields in equilibrium at finite temperature T. More useful is a dimensionally reduced effective action (DREA) constructed from the density matrix by further functional integration over the arguments of the density matrix coupled to a source. The DREA is an effective action in one less dimension which may be computed order by order in perturbation theory or by dressed-loop expansions; it encodes all thermal matrix elements. We term the DREA procedure alternative dimensional reduction, to distinguish it from the conventional dimensionally reduced field theory (DRFT) which applies at infinite T. The DREA is useful because it gives a dimensionally reduced theory usable at any T including infinity, where it yields the DRFT, and because it does not and cannot have certain spurious infinities which sometimes occur in the density matrix itself or the conventional DRFT; these come from ln T factors at infinite temperature. The DREA can be constructed to all orders (in principle) and the only regularizations needed are those which control the ultraviolet behavior of the zero-T theory. An example of spurious divergences in the DRFT occurs in d=2+1φ4 theory dimensionally reduced to d=2. We study this theory and show that the rules for the DREA replace these ``wrong'' divergences in physical parameters by calculable powers of ln T; we also compute the phase transition temperature of this φ4 theory in one-loop order. Our density-matrix construction is equivalent to a construction of the Landau-Ginzburg ``coarse-grained free energy'' from a microscopic Hamiltonian.

  2. Bioengineering Human Myocardium on Native Extracellular Matrix

    Science.gov (United States)

    Guyette, Jacques P.; Charest, Jonathan M; Mills, Robert W; Jank, Bernhard J.; Moser, Philipp T.; Gilpin, Sarah E.; Gershlak, Joshua R.; Okamoto, Tatsuya; Gonzalez, Gabriel; Milan, David J.; Gaudette, Glenn R.; Ott, Harald C.

    2015-01-01

    Rationale More than 25 million individuals suffer from heart failure worldwide, with nearly 4,000 patients currently awaiting heart transplantation in the United States. Donor organ shortage and allograft rejection remain major limitations with only about 2,500 hearts transplanted each year. As a theoretical alternative to allotransplantation, patient-derived bioartificial myocardium could provide functional support and ultimately impact the treatment of heart failure. Objective The objective of this study is to translate previous work to human scale and clinically relevant cells, for the bioengineering of functional myocardial tissue based on the combination of human cardiac matrix and human iPS-derived cardiac myocytes. Methods and Results To provide a clinically relevant tissue scaffold, we translated perfusion-decellularization to human scale and obtained biocompatible human acellular cardiac scaffolds with preserved extracellular matrix composition, architecture, and perfusable coronary vasculature. We then repopulated this native human cardiac matrix with cardiac myocytes derived from non-transgenic human induced pluripotent stem cells (iPSCs) and generated tissues of increasing three-dimensional complexity. We maintained such cardiac tissue constructs in culture for 120 days to demonstrate definitive sarcomeric structure, cell and matrix deformation, contractile force, and electrical conduction. To show that functional myocardial tissue of human scale can be built on this platform, we then partially recellularized human whole heart scaffolds with human iPSC-derived cardiac myocytes. Under biomimetic culture, the seeded constructs developed force-generating human myocardial tissue, showed electrical conductivity, left ventricular pressure development, and metabolic function. Conclusions Native cardiac extracellular matrix scaffolds maintain matrix components and structure to support the seeding and engraftment of human iPS-derived cardiac myocytes, and enable

  3. Inequalities involving upper bounds for certain matrix operators

    Indian Academy of Sciences (India)

    Inequalities involving upper bounds for certain matrix operators. R LASHKARIPOUR and D ... Inequality; norm; summability matrix; Hausdorff matrix; Hilbert matrix; weighted sequence space; Lorentz ...... [10] Pecari J, Peric I and Roki R, On bounds for weighted norms for matrices and integral operators, Linear Algebra and ...

  4. Algebraic approach to bare nucleon matrix elements of quark operators

    International Nuclear Information System (INIS)

    Zschocke, Sven; Kaempfer, Burkhard; Plunien, Guenter

    2005-01-01

    An algebraic method for evaluating bare nucleon matrix elements of quark operators is proposed. Thereby, bare nucleon matrix elements are traced back to vacuum matrix elements. The method is similar to the soft pion theorem. Matrix elements of two-quark, four-quark and six-quark operators inside the bare nucleon are considered

  5. Role of work hardening characteristics of matrix alloys in the ...

    Indian Academy of Sciences (India)

    The strengthening of particulate reinforced metal–matrix composites is associated with a high dislocation density in the matrix due to the difference in coefficient of thermal expansion between the reinforcement and the matrix. While this is valid, the role of work hardening characteristics of the matrix alloys in strengthening of ...

  6. The wilderness threats matrix: A framework for assessing impacts

    Science.gov (United States)

    David N. Cole

    1994-01-01

    A comprehensive framework for assessing threats to wilderness is described. The framework is represented as a matrix of potential threats and attributes of wilderness character. Cells in the matrix represent the impacts of threats on each attribute. Potential applications of the matrix are described. An application of the matrix to the wildernesses in the Forest...

  7. 48 CFR 1652.370 - Use of the matrix.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 6 2010-10-01 2010-10-01 true Use of the matrix. 1652.370... HEALTH BENEFITS ACQUISITION REGULATION CLAUSES AND FORMS CONTRACT CLAUSES FEHBP Clause Matrix 1652.370 Use of the matrix. (a) The matrix in this section lists the FAR and FEHBAR clauses to be used with...

  8. Generating Nice Linear Systems for Matrix Gaussian Elimination

    Science.gov (United States)

    Homewood, L. James

    2004-01-01

    In this article an augmented matrix that represents a system of linear equations is called nice if a sequence of elementary row operations that reduces the matrix to row-echelon form, through matrix Gaussian elimination, does so by restricting all entries to integers in every step. Many instructors wish to use the example of matrix Gaussian…

  9. A direct parallel sparse matrix solver

    International Nuclear Information System (INIS)

    Tran, T.M.; Gruber, R.; Appert, K.; Wuthrich, S.

    1995-08-01

    The direct sparse matrix solver is based on a domain decomposition technique to achieve data and work parallelization. Geometries that have long and thin structures are specially efficiently tractable with this solver, provided that they can be decomposed mainly in one direction. Due to the separation of the algorithm into a factorization stage and a solution stage, time-dependent problems with a constant coefficient matrix are particularly well suited for this solver. The parallelization performances obtained on a Cray T3D show that the method scales up to at least 256 processors. (author) 5 figs., 2 tabs., 9 refs

  10. Hybrid Ceramic Matrix Fibrous Composites: an Overview

    Science.gov (United States)

    Naslain, R.

    2011-10-01

    Ceramic-Matrix Composites (CMCs) consist of a ceramic fiber architecture in a ceramic matrix, bonded together through a thin interphase. The present contribution is limited to non-oxide CMCs. Their constituents being oxidation-prone, they are protected by external coatings. We state here that CMCs display a hybrid feature, when at least one of their components is not homogeneous from a chemical or microstructural standpoint. Hybrid fiber architectures are used to tailor the mechanical or thermal CMC-properties whereas hybrid interphases, matrices and coatings to improve CMC resistance to aggressive environments.

  11. Random matrix theories and chaotic dynamics

    International Nuclear Information System (INIS)

    Bohigas, O.

    1991-01-01

    A review of some of the main ideas, assumptions and results of the Wigner-Dyson type random matrix theories (RMT) which are relevant in the general context of 'Chaos and Quantum Physics' is presented. RMT are providing interesting and unexpected clues to connect classical dynamics with quantum phenomena. It is this aspect which will be emphasised and, concerning the main body of RMT, the author will restrict himself to a minimum. However, emphasis will be put on some generalizations of the 'canonical' random matrix ensembles that increase their flexibility, rendering the incorporation of relevant physical constraints possible. (R.P.) 112 refs., 35 figs., 5 tabs

  12. Stochastic R matrix for Uq (An(1))

    Science.gov (United States)

    Kuniba, A.; Mangazeev, V. V.; Maruyama, S.; Okado, M.

    2016-12-01

    We show that the quantum R matrix for symmetric tensor representations of Uq (An(1)) satisfies the sum rule required for its stochastic interpretation under a suitable gauge. Its matrix elements at a special point of the spectral parameter are found to factorize into the form that naturally extends Povolotsky's local transition rate in the q-Hahn process for n = 1. Based on these results we formulate new discrete and continuous time integrable Markov processes on a one-dimensional chain in terms of n species of particles obeying asymmetric stochastic dynamics. Bethe ansatz eigenvalues of the Markov matrices are also given.

  13. Matrix Tricks for Linear Statistical Models

    CERN Document Server

    Puntanen, Simo; Styan, George PH

    2011-01-01

    In teaching linear statistical models to first-year graduate students or to final-year undergraduate students there is no way to proceed smoothly without matrices and related concepts of linear algebra; their use is really essential. Our experience is that making some particular matrix tricks very familiar to students can substantially increase their insight into linear statistical models (and also multivariate statistical analysis). In matrix algebra, there are handy, sometimes even very simple "tricks" which simplify and clarify the treatment of a problem - both for the student and

  14. Proposed demonstration projects matrix, commercial buildings

    Energy Technology Data Exchange (ETDEWEB)

    None

    1976-04-01

    The Proposed Demonstration Projects Matrix is designed to meet the goals and objectives of ERDA-23A. Selection criteria for the Demonstration Matrix have been established. Phase 0 SHACOB studies have been updated and expanded. Building/location/solar system combinations have been selected for the directed level of 200 commercial demonstrations. The list of demonstrations has been arranged in an effectiveness ranked array. Modeling techniques have been applied to the selection process to enable mechanized generation of similar listings at other demonstration levels. Individual demonstration project selection guidelines have been developed to provide decision criteria among candidate projects. (WDM)

  15. Hybrid Ceramic Matrix Fibrous Composites: an Overview

    Energy Technology Data Exchange (ETDEWEB)

    Naslain, R, E-mail: naslain@lcts.u-bordeaux1.fr [University of Bordeaux 3, Allee de La Boetie, 33600 Pessac (France)

    2011-10-29

    Ceramic-Matrix Composites (CMCs) consist of a ceramic fiber architecture in a ceramic matrix, bonded together through a thin interphase. The present contribution is limited to non-oxide CMCs. Their constituents being oxidation-prone, they are protected by external coatings. We state here that CMCs display a hybrid feature, when at least one of their components is not homogeneous from a chemical or microstructural standpoint. Hybrid fiber architectures are used to tailor the mechanical or thermal CMC-properties whereas hybrid interphases, matrices and coatings to improve CMC resistance to aggressive environments.

  16. Polymeric matrix materials for infrared metamaterials

    Science.gov (United States)

    Dirk, Shawn M; Rasberry, Roger D; Rahimian, Kamyar

    2014-04-22

    A polymeric matrix material exhibits low loss at optical frequencies and facilitates the fabrication of all-dielectric metamaterials. The low-loss polymeric matrix material can be synthesized by providing an unsaturated polymer, comprising double or triple bonds; partially hydrogenating the unsaturated polymer; depositing a film of the partially hydrogenated polymer and a crosslinker on a substrate; and photopatterning the film by exposing the film to ultraviolet light through a patterning mask, thereby cross-linking at least some of the remaining unsaturated groups of the partially hydrogenated polymer in the exposed portions.

  17. Assessment of Matrix Metalloproteinases by Gelatin Zymography.

    Science.gov (United States)

    Cathcart, Jillian

    2016-01-01

    Matrix metalloproteinases are endopeptidases responsible for remodeling of the extracellular matrix and have been identified as critical contributors to breast cancer progression. Gelatin zymography is a valuable tool which allows the analysis of MMP expression. In this approach, enzymes are resolved electrophoretically on a sodium dodecyl sulfate-polyacrylamide gel copolymerized with the substrate for the MMP of interest. Post electrophoresis, the enzymes are refolded in order for proteolysis of the incorporated substrate to occur. This assay yields valuable information about MMP isoforms or changes in activation and can be used to analyze the role of MMPs in normal versus pathological conditions.

  18. Perturbed generalized multicritical one-matrix models

    Science.gov (United States)

    Ambjørn, J.; Chekhov, L.; Makeenko, Y.

    2018-03-01

    We study perturbations around the generalized Kazakov multicritical one-matrix model. The multicritical matrix model has a potential where the coefficients of zn only fall off as a power 1 /n s + 1. This implies that the potential and its derivatives have a cut along the real axis, leading to technical problems when one performs perturbations away from the generalized Kazakov model. Nevertheless it is possible to relate the perturbed partition function to the tau-function of a KdV hierarchy and solve the model by a genus expansion in the double scaling limit.

  19. Hybrid Ceramic Matrix Fibrous Composites: an Overview

    International Nuclear Information System (INIS)

    Naslain, R

    2011-01-01

    Ceramic-Matrix Composites (CMCs) consist of a ceramic fiber architecture in a ceramic matrix, bonded together through a thin interphase. The present contribution is limited to non-oxide CMCs. Their constituents being oxidation-prone, they are protected by external coatings. We state here that CMCs display a hybrid feature, when at least one of their components is not homogeneous from a chemical or microstructural standpoint. Hybrid fiber architectures are used to tailor the mechanical or thermal CMC-properties whereas hybrid interphases, matrices and coatings to improve CMC resistance to aggressive environments.

  20. Cern DD4424 ROM Diode Matrix

    CERN Multimedia

    A diode matrix is an extremely low-density form of read-only memory. It's one of the earliest forms of ROMs (dating back to the 1950s). Each bit in the ROM is represented by the presence or absence of one diode. The ROM is easily user-writable using a soldering iron and pair of wire cutters.This diode matrix board is a floppy disk boot ROM for a PDP-11, and consists of 32 16-bit words. When you access an address on the ROM, the circuit returns the represented data from that address.

  1. A Diode Matrix model M792

    CERN Multimedia

    A diode matrix is an extremely low-density form of read-only memory. It's one of the earliest forms of ROMs (dating back to the 1950s). Each bit in the ROM is represented by the presence or absence of one diode. The ROM is easily user-writable using a soldering iron and pair of wire cutters.This diode matrix board is a floppy disk boot ROM for a PDP-11, and consists of 32 16-bit words. When you access an address on the ROM, the circuit returns the represented data from that address.

  2. Ceramic Matrix Composite (CMC) Materials Characterization

    Science.gov (United States)

    Calomino, Anthony

    2001-01-01

    Under the former NASA EPM Program, much initial progress was made in identifying constituent materials and processes for SiC/SiC ceramic composite hot-section components. This presentation discusses the performance benefits of these approaches and elaborates on further constituent and property improvements made under NASA UEET. These include specific treatments at NASA that significantly improve the creep and environmental resistance of the Sylramic(TM) SiC fiber as well as the thermal conductivity and creep resistance of the CVI Sic matrix. Also discussed are recent findings concerning the beneficial effects of certain 2D-fabric architectures and carbon between the BN interphase coating and Sic matrix.

  3. Ceramic Matrix Composite (CMC) Materials Development

    Science.gov (United States)

    DiCarlo, James

    2001-01-01

    Under the former NASA EPM Program, much initial progress was made in identifying constituent materials and processes for SiC/SiC ceramic composite hot-section components. This presentation discusses the performance benefits of these approaches and elaborates on further constituent and property improvements made under NASA UEET. These include specific treatments at NASA that significantly improve the creep and environmental resistance of the Sylramic(TM) Sic fiber as well as the thermal conductivity and creep resistance of the CVI Sic matrix. Also discussed are recent findings concerning the beneficial effects of certain 2D-fabric architectures and carbon between the BN interphase coating and Sic matrix.

  4. More on rotations as spin matrix polynomials

    International Nuclear Information System (INIS)

    Curtright, Thomas L.

    2015-01-01

    Any nonsingular function of spin j matrices always reduces to a matrix polynomial of order 2j. The challenge is to find a convenient form for the coefficients of the matrix polynomial. The theory of biorthogonal systems is a useful framework to meet this challenge. Central factorial numbers play a key role in the theoretical development. Explicit polynomial coefficients for rotations expressed either as exponentials or as rational Cayley transforms are considered here. Structural features of the results are discussed and compared, and large j limits of the coefficients are examined

  5. Geometric Aspects of Iterated Matrix Multiplication

    DEFF Research Database (Denmark)

    Gesmundo, Fulvio

    2016-01-01

    This paper studies geometric properties of the Iterated Matrix Multiplication polynomial and the hypersurface that it defines. We focus on geometric aspects that may be relevant for complexity theory such as the symmetry group of the polynomial, the dual variety and the Jacobian loci of the hyper......This paper studies geometric properties of the Iterated Matrix Multiplication polynomial and the hypersurface that it defines. We focus on geometric aspects that may be relevant for complexity theory such as the symmetry group of the polynomial, the dual variety and the Jacobian loci...

  6. Massive Asynchronous Parallelization of Sparse Matrix Factorizations

    Energy Technology Data Exchange (ETDEWEB)

    Chow, Edmond [Georgia Inst. of Technology, Atlanta, GA (United States)

    2018-01-08

    Solving sparse problems is at the core of many DOE computational science applications. We focus on the challenge of developing sparse algorithms that can fully exploit the parallelism in extreme-scale computing systems, in particular systems with massive numbers of cores per node. Our approach is to express a sparse matrix factorization as a large number of bilinear constraint equations, and then solving these equations via an asynchronous iterative method. The unknowns in these equations are the matrix entries of the factorization that is desired.

  7. Information matrix estimation procedures for cognitive diagnostic models.

    Science.gov (United States)

    Liu, Yanlou; Xin, Tao; Andersson, Björn; Tian, Wei

    2018-03-06

    Two new methods to estimate the asymptotic covariance matrix for marginal maximum likelihood estimation of cognitive diagnosis models (CDMs), the inverse of the observed information matrix and the sandwich-type estimator, are introduced. Unlike several previous covariance matrix estimators, the new methods take into account both the item and structural parameters. The relationships between the observed information matrix, the empirical cross-product information matrix, the sandwich-type covariance matrix and the two approaches proposed by de la Torre (2009, J. Educ. Behav. Stat., 34, 115) are discussed. Simulation results show that, for a correctly specified CDM and Q-matrix or with a slightly misspecified probability model, the observed information matrix and the sandwich-type covariance matrix exhibit good performance with respect to providing consistent standard errors of item parameter estimates. However, with substantial model misspecification only the sandwich-type covariance matrix exhibits robust performance. © 2018 The British Psychological Society.

  8. Modification of natural matrix lac-bagasse for matrix composite films

    Science.gov (United States)

    Nurhayati, Nanik Dwi; Widjaya, Karna; Triyono

    2016-02-01

    Material technology continues to be developed in order to a material that is more efficient with composite technology is a combination of two or more materials to obtain the desired material properties. The objective of this research was to modification and characterize the natural matrix lac-bagasse as composite films. The first step, natural matrix lac was changed from solid to liquid using an ethanol as a solvent so the matrix homogenly. Natural matrix lac was modified by adding citric acid with concentration variation. Secondly, the bagasse delignification using acid hydrolysis method. The composite films natural matrix lac-bagasse were prepared with optimum modified the addition citric acid 5% (v/v) and delignification bagasse optimum at 1,5% (v/v) in hot press at 80°C 6 Kg/cm-1. Thirdly, composite films without and with modification were characterized functional group analysis using FTIR spectrophotometer and mechanical properties using Universal Testing Machine. The result of research showed natural matrix lac can be modified by reaction with citric acid. FTIR spectra showed without and with modification had functional groups wide absorption 3448 cm-1 group -OH, C=O ester strong on 1712 cm-1 and the methylene group -CH2 on absorption 1465 cm-1. The mechanical properties showed tensile strength 0,55 MPa and elongation at break of 0,95 %. So that composite films natural matrix lac can be made with reinforcement bagasse for material application.

  9. M(atrix) theory: matrix quantum mechanics as a fundamental theory

    International Nuclear Information System (INIS)

    Taylor, Washington

    2001-01-01

    This article reviews the matrix model of M theory. M theory is an 11-dimensional quantum theory of gravity that is believed to underlie all superstring theories. M theory is currently the most plausible candidate for a theory of fundamental physics which reconciles gravity and quantum field theory in a realistic fashion. Evidence for M theory is still only circumstantial -- no complete background-independent formulation of the theory exists as yet. Matrix theory was first developed as a regularized theory of a supersymmetric quantum membrane. More recently, it has appeared in a different guise as the discrete light-cone quantization of M theory in flat space. These two approaches to matrix theory are described in detail and compared. It is shown that matrix theory is a well-defined quantum theory that reduces to a supersymmetric theory of gravity at low energies. Although its fundamental degrees of freedom are essentially pointlike, higher-dimensional fluctuating objects (branes) arise through the non-Abelian structure of the matrix degrees of freedom. The problem of formulating matrix theory in a general space-time background is discussed, and the connections between matrix theory and other related models are reviewed

  10. Matrix compliance and the regulation of cytokinesis

    Directory of Open Access Journals (Sweden)

    Savitha Sambandamoorthy

    2015-07-01

    Full Text Available Integrin-mediated cell adhesion to the ECM regulates many physiological processes in part by controlling cell proliferation. It is well established that many normal cells require integrin-mediated adhesion to enter S phase of the cell cycle. Recent evidence indicates that integrins also regulate cytokinesis. Mechanical properties of the ECM can dictate entry into S phase; however, it is not known whether they also can affect the successful completion of cell division. To address this issue, we modulated substrate compliance using fibronectin-coated acrylamide-based hydrogels. Soft and hard substrates were generated with approximate elastic moduli of 1600 and 34,000 Pascals (Pa respectively. Our results indicate that dermal fibroblasts successfully complete cytokinesis on hard substrates, whereas on soft substrates, a significant number fail and become binucleated. Cytokinesis failure occurs at a step following the formation of the intercellular bridge connecting presumptive daughter cells, suggesting a defect in abscission. Like dermal fibroblasts, mesenchymal stem cells require cell-matrix adhesion for successful cytokinesis. However, in contrast to dermal fibroblasts, they are able to complete cytokinesis on both hard and soft substrates. These results indicate that matrix stiffness regulates the successful completion of cytokinesis, and does so in a cell-type specific manner. To our knowledge, our study is the first to demonstrate that matrix stiffness can affect cytokinesis. Understanding the cell-type specific contribution of matrix compliance to the regulation of cytokinesis will provide new insights important for development, as well as tissue homeostasis and regeneration.

  11. Incremental Nonnegative Matrix Factorization for Face Recognition

    Directory of Open Access Journals (Sweden)

    Wen-Sheng Chen

    2008-01-01

    Full Text Available Nonnegative matrix factorization (NMF is a promising approach for local feature extraction in face recognition tasks. However, there are two major drawbacks in almost all existing NMF-based methods. One shortcoming is that the computational cost is expensive for large matrix decomposition. The other is that it must conduct repetitive learning, when the training samples or classes are updated. To overcome these two limitations, this paper proposes a novel incremental nonnegative matrix factorization (INMF for face representation and recognition. The proposed INMF approach is based on a novel constraint criterion and our previous block strategy. It thus has some good properties, such as low computational complexity, sparse coefficient matrix. Also, the coefficient column vectors between different classes are orthogonal. In particular, it can be applied to incremental learning. Two face databases, namely FERET and CMU PIE face databases, are selected for evaluation. Compared with PCA and some state-of-the-art NMF-based methods, our INMF approach gives the best performance.

  12. Weak interaction matrix elements with staggered fermions

    International Nuclear Information System (INIS)

    Sharpe, S.R.

    1986-08-01

    An overview of the results of the Los Alamos Advanced Computing Group is given. The theory behind the measurement of Weak Interaction Matrix Elements using staggered fermions is presented, and contrasted with that for Wilson fermions. This is followed by a preliminary discussion of numerical results on a 12 3 x 30 lattice. 10 refs., 4 figs

  13. Silver Matrix Composites - Structure and Properties

    Directory of Open Access Journals (Sweden)

    Wieczorek J.

    2016-03-01

    Full Text Available Phase compositions of composite materials determine their performance as well as physical and mechanical properties. Depending on the type of applied matrix and the kind, amount and morphology of the matrix reinforcement, it is possible to shape the material properties so that they meet specific operational requirements. In the paper, results of investigations on silver alloy matrix composites reinforced with ceramic particles are presented. The investigations enabled evaluation of hardness, tribological and mechanical properties as well as the structure of produced materials. The matrix of composite material was an alloy of silver and aluminium, magnesium and silicon. As the reinforcing phase, 20-60 μm ceramic particles (SiC, SiO2, Al2O3 and Cs were applied. The volume fraction of the reinforcing phase in the composites was 10%. The composites were produced using the liquid phase (casting technology, followed by plastic work (the KOBO method. The mechanical and tribological properties were analysed for plastic work-subjected composites. The mechanical properties were assessed based on a static tensile and hardness tests. The tribological properties were investigated under dry sliding conditions. The analysis of results led to determination of effects of the composite production technology on their performance. Moreover, a relationship between the type of reinforcing phase and the mechanical and tribological properties was established.

  14. Better Size Estimation for Sparse Matrix Products

    DEFF Research Database (Denmark)

    Amossen, Rasmus Resen; Campagna, Andrea; Pagh, Rasmus

    2010-01-01

    We consider the problem of doing fast and reliable estimation of the number of non-zero entries in a sparse Boolean matrix product. Let n denote the total number of non-zero entries in the input matrices. We show how to compute a 1 ± ε approximation (with small probability of error) in expected t...

  15. The Bushido Matrix for Couple Communication

    Science.gov (United States)

    Li, Chi-Sing; Lin, Yu-Fen; Ginsburg, Phil; Eckstein, Daniel

    2012-01-01

    The concept of Japanese Bushido and its seven virtues were introduced by the authors in this article for the practice and application of couple communication. The Bushido Matrix Worksheet (BMW) was created for enhancing couple's awareness and understanding of each other's values and experiences. An activity and a case study to demonstrate the use…

  16. Differential analysis of matrix convex functions

    DEFF Research Database (Denmark)

    Hansen, Frank; Tomiyama, Jun

    2007-01-01

    We analyze matrix convex functions of a fixed order defined in a real interval by differential methods as opposed to the characterization in terms of divided differences given by Kraus [F. Kraus, Über konvekse Matrixfunktionen, Math. Z. 41 (1936) 18-42]. We obtain for each order conditions for ma...

  17. Functional equations in matrix normed spaces

    Indian Academy of Sciences (India)

    Cauchy additive functional equation and the quadratic functional equation in matrix normed spaces. Keywords. Operator space; fixed point; Hyers–Ulam stability; Cauchy additive functional equation; quadratic functional equation. 2000 Mathematics Subject Classification. 47L25, 47H10, 39B82, 46L07, 39B52. 1.

  18. TURKISH SOCIAL ACCOUNTING MATRIX FOR 1996

    OpenAIRE

    ASLAN, MURAT

    2015-01-01

    This study is aimed at constructing detail social accounting matrix (SAM) for Turkey by using the most recent available data. In order to reconcile the inconsistency in data which are gathered from various official institutions, the study employs Cross Entropy method

  19. A Generalization of the Alias Matrix

    DEFF Research Database (Denmark)

    Kulahci, Murat; Bisgaard, S.

    2006-01-01

    The investigation of aliases or biases is important for the interpretation of the results from factorial experiments. For two-level fractional factorials this can be facilitated through their group structure. For more general arrays the alias matrix can be used. This tool is traditionally based...

  20. Critical State of Sand Matrix Soils

    Science.gov (United States)

    Marto, Aminaton; Tan, Choy Soon; Makhtar, Ahmad Mahir; Kung Leong, Tiong

    2014-01-01

    The Critical State Soil Mechanic (CSSM) is a globally recognised framework while the critical states for sand and clay are both well established. Nevertheless, the development of the critical state of sand matrix soils is lacking. This paper discusses the development of critical state lines and corresponding critical state parameters for the investigated material, sand matrix soils using sand-kaolin mixtures. The output of this paper can be used as an interpretation framework for the research on liquefaction susceptibility of sand matrix soils in the future. The strain controlled triaxial test apparatus was used to provide the monotonic loading onto the reconstituted soil specimens. All tested soils were subjected to isotropic consolidation and sheared under undrained condition until critical state was ascertain. Based on the results of 32 test specimens, the critical state lines for eight different sand matrix soils were developed together with the corresponding values of critical state parameters, M, λ, and Γ. The range of the value of M, λ, and Γ is 0.803–0.998, 0.144–0.248, and 1.727–2.279, respectively. These values are comparable to the critical state parameters of river sand and kaolin clay. However, the relationship between fines percentages and these critical state parameters is too scattered to be correlated. PMID:24757417

  1. Young Children, Gender and the Heterosexual Matrix

    Science.gov (United States)

    Paechter, Carrie

    2017-01-01

    In this paper I consider the adult focus of current mainstream gender theory. I relate this to how the concept of the heterosexual matrix originates in a social contract which excludes children from civil society. I argue that this exclusion is problematic both for theoretical reasons and from the perspective of children themselves. I start by…

  2. Hierarchical matrix approximation of large covariance matrices

    KAUST Repository

    Litvinenko, Alexander

    2015-11-30

    We approximate large non-structured Matérn covariance matrices of size n×n in the H-matrix format with a log-linear computational cost and storage O(kn log n), where rank k ≪ n is a small integer. Applications are: spatial statistics, machine learning and image analysis, kriging and optimal design.

  3. Matrix multiplication operators on Banach function spaces

    Indian Academy of Sciences (India)

    In this paper, we study the matrix multiplication operators on Banach function spaces and discuss their applications in semigroups for solving the abstract Cauchy problem. Author Affiliations. H Hudzik1 Rajeev Kumar2 Romesh Kumar2. Faculty of Mathematics and Computer Science, Adam Mickiewicz University ...

  4. Regularization of the one-matrix models

    International Nuclear Information System (INIS)

    Jurkiewicz, J.

    1990-04-01

    We analyze the critical properties of the one-matrix model near its critical point, corresponding to the continuum limit. We consider the model with quartic and six-order interactions. This last can be viewed as a regularization of the model. We show that the regularized theory develops a phase structure in which it is impossible to reach the standard continuum limit. (orig.)

  5. Marriage as Matrix, Metaphor or Mysticism

    DEFF Research Database (Denmark)

    Pedersen, Else Marie Wiberg

    2015-01-01

    Taking Julia Kristeva's 'Tales of Love' with its more or less slight treatment of Bernard's and Luther's peceptions of love as its point of departure, this article shows that both the monk Bernard and the married theologian Luther use conjugal love as a matrix for an abundant, heterogenous love b...

  6. The Cartan matrix of a centralizer algebra

    Indian Academy of Sciences (India)

    2010-12-20

    Dec 20, 2010 ... The centralizer algebra of a matrix consists of those matrices that commute with it. We investigate the basic representation-theoretic invariants of centralizer algebras, namely their radicals, projective indecomposable modules, injective indecomposable modules, simple modules and Cartan matrices.

  7. The Cartan Matrix of a Centralizer Algebra

    Indian Academy of Sciences (India)

    2010-12-20

    Dec 20, 2010 ... We investigate the basic representation-theoretic invariants of centralizer algebras, namely their radicals, projective indecomposable modules, injective indecomposable modules, simple modules and Cartan matrices. With the help of our Cartan matrix calculations we determine their global dimensions.

  8. Interpreting the change detection error matrix

    NARCIS (Netherlands)

    Oort, van P.A.J.

    2007-01-01

    Two different matrices are commonly reported in assessment of change detection accuracy: (1) single date error matrices and (2) binary change/no change error matrices. The third, less common form of reporting, is the transition error matrix. This paper discuses the relation between these matrices.

  9. Random matrix analysis of human EEG data

    Czech Academy of Sciences Publication Activity Database

    Šeba, Petr

    2003-01-01

    Roč. 91, - (2003), s. 198104-1 - 198104-4 ISSN 0031-9007 R&D Projects: GA ČR GA202/02/0088 Institutional research plan: CEZ:AV0Z1010914 Keywords : random matrix theory * EEG signal Subject RIV: BE - Theoretical Physics Impact factor: 7.035, year: 2003

  10. Matrix multiplication operators on Banach function spaces

    Indian Academy of Sciences (India)

    function spaces and discuss their applications in semigroups for solving the abstract. Cauchy problem. Keywords. Banach function spaces; closed operators; compact operators; Fredholm operators; matrix multiplication operators; semigroups. 1. Introduction. Let ( , , µ) be a σ-finite complete measure space and C be the field ...

  11. On affine non-negative matrix factorization

    DEFF Research Database (Denmark)

    Laurberg, Hans; Hansen, Lars Kai

    2007-01-01

    We generalize the non-negative matrix factorization (NMF) generative model to incorporate an explicit offset. Multiplicative estimation algorithms are provided for the resulting sparse affine NMF model. We show that the affine model has improved uniqueness properties and leads to more accurate...

  12. Polymer matrix electroluminescent materials and devices

    Science.gov (United States)

    Marrocco, III, Matthew L.; Motamedi, Farshad J [Claremont, CA; Abdelrazzaq, Feras Bashir [Covina, CA; Abdelrazzaq, legal representative, Bashir Twfiq

    2012-06-26

    Photoluminescent and electroluminescent compositions are provided which comprise a matrix comprising aromatic repeat units covalently coordinated to a phosphorescent or luminescent metal ion or metal ion complexes. Methods for producing such compositions, and the electroluminescent devices formed therefrom, are also disclosed.

  13. Emerging Educational Institutional Decision-Making Matrix

    Science.gov (United States)

    Ashford-Rowe, Kevin H.; Holt, Marnie

    2011-01-01

    The "emerging educational institutional decision-making matrix" is developed to allow educational institutions to adopt a rigorous and consistent methodology of determining which of the myriad of emerging educational technologies will be the most compelling for the institution, particularly ensuring that it is the educational or pedagogical but…

  14. Hermitian Matrix Model with Plaquette Interaction

    DEFF Research Database (Denmark)

    Chekhov, L.; Kristjansen, C.

    1996-01-01

    We study a hermitian $(n+1)$-matrix model with plaquette interaction, $\\sum_{i=1}^n MA_iMA_i$. By means of a conformal transformation we rewrite the model as an $O(n)$ model on a random lattice with a non polynomial potential. This allows us to solve the model exactly. We investigate the critical...

  15. Dynamics of nuclear matrix proteome during embryonic ...

    Indian Academy of Sciences (India)

    Drosophila melanogaster embryos and show that 65% of the NuMat proteome is dynamic during development. Our ... [Varma P and Mishra RK 2011 Dynamics of nuclear matrix proteome during embryonic development in Drosophila melanogaster. J. Biosci. 36 .... functional group X, D = Number of proteins unique to late.

  16. Physiology and pathophysiology of matrix metalloproteases

    NARCIS (Netherlands)

    Klein, T.; Bischoff, R.

    Matrix metalloproteases (MMPs) comprise a family of enzymes that cleave protein substrates based on a conserved mechanism involving activation of an active site-bound water molecule by a Zn(2+) ion. Although the catalytic domain of MMPs is structurally highly similar, there are many differences with

  17. Physiology and pathophysiology of matrix metalloproteases

    NARCIS (Netherlands)

    Klein, T; Bischoff, Rainer

    2010-01-01

    Matrix metalloproteases (MMPs) comprise a family of enzymes that cleave protein substrates based on a conserved mechanism involving activation of an active site-bound water molecule by a Zn(2+) ion. Although the catalytic domain of MMPs is structurally highly similar, there are many differences with

  18. Matrix metalloproteinase activity assays: Importance of zymography.

    Science.gov (United States)

    Kupai, K; Szucs, G; Cseh, S; Hajdu, I; Csonka, C; Csont, T; Ferdinandy, P

    2010-01-01

    Matrix metalloproteinases (MMPs) are zinc-dependent endopeptidases capable of degrading extracellular matrix, including the basement membrane. MMPs are associated with various physiological processes such as morphogenesis, angiogenesis, and tissue repair. Moreover, due to the novel non-matrix related intra- and extracellular targets of MMPs, dysregulation of MMP activity has been implicated in a number of acute and chronic pathological processes, such as arthritis, acute myocardial infarction, chronic heart failure, chronic obstructive pulmonary disease, inflammation, and cancer metastasis. MMPs are considered as viable drug targets in the therapy of the above diseases. For the development of selective MMP inhibitor molecules, reliable methods are necessary for target validation and lead development. Here, we discuss the major methods used for MMP assays, focusing on substrate zymography. We highlight some problems frequently encountered during sample preparations, electrophoresis, and data analysis of zymograms. Zymography is a widely used technique to study extracellular matrix-degrading enzymes, such as MMPs, from tissue extracts, cell cultures, serum or urine. This simple and sensitive technique identifies MMPs by the degradation of their substrate and by their molecular weight and therefore helps to understand the widespread role of MMPs in different pathologies and cellular pathways. Copyright 2010 Elsevier Inc. All rights reserved.

  19. Effect of matrix metalloproteinase promoter polymorphisms on ...

    Indian Academy of Sciences (India)

    large-scale studies regarding gene–gene and gene–environment interactions are needed in the future. [Ye H., He Y., Wang J., Song T., Lan Z., Zhao Y. and Xi M. 2016 Effect of matrix metalloproteinase promoter polymorphisms on endometriosis and adenomyosis risk: evidence from a meta-analysis. J. Genet. 95, 611–619].

  20. A hierarchical model for ordinal matrix factorization

    DEFF Research Database (Denmark)

    Paquet, Ulrich; Thomson, Blaise; Winther, Ole

    2012-01-01

    This paper proposes a hierarchical probabilistic model for ordinal matrix factorization. Unlike previous approaches, we model the ordinal nature of the data and take a principled approach to incorporating priors for the hidden variables. Two algorithms are presented for inference, one based...

  1. Limit properties of monotone matrix functions

    NARCIS (Netherlands)

    Behrndt, Jussi; Hassi, Seppo; de Snoo, Henk; Wietsma, Rudi

    2012-01-01

    The basic objects in this paper are monotonically nondecreasing n x n matrix functions D(center dot) defined on some open interval l = (a, b) of R and their limit values D(a) and D(b) at the endpoints a and b which are, in general, selfadjoint relations in C-n. Certain space decompositions induced

  2. The Hotelling bi-matrix game

    NARCIS (Netherlands)

    Mouche, van P.H.M.; Pijnappel, Willem

    2018-01-01

    We study the pure equilibrium set for a specific symmetric finite game in strategic form, referred to as the Hotelling bi-matrix game. General results tha guarantee non-emptiness of this set (for all parametric values) do not seem to exist. We prove non-emptiness by determining the pure equilibrium

  3. Baryoniums - the S-matrix approach

    International Nuclear Information System (INIS)

    Roy, D.P.

    1979-08-01

    In this series of lectures the question of how the baryoniums are related to charmoniums and strangoniums is discussed and it is pointed out that in the S-matrix framework, they all follow from the same pair of hypotheses, duality and no exotics. Invoking no underlying quark structure, except that inherent in the assumption of no exotics, it is shown that there are no mesons outside the singlet and octet representation of SU(3) and no baryons outside the singlet, octet and decaplet. In other words all mesons occur within the quantum number of a q-antiq system and all baryons within those of qqq. This seems to be an experimental fact, which has no natural explanation within the S-matrix framework except that it is the minimal non-zero solution to the duality constraints. The approach in the past has been to take it as an experimental input and build up a phenomenological S-matrix framework. Lately it has been realised that the answer may come from the colour dynamics of quarks. If true this would provide an important link between the fundamental but invisible field theory of quarks and gluons and the phenomenological but visible S-matrix theory overlying it. The subject is discussed under the headings; strangonium and charmonium, baryonium, spectroscopy, baryonium resonances, FESR constraint, baryonium exchange, phenomenological estimate of ω - baryonium mixing at t = 0, and models of ω - baryonium mixing. (UK)

  4. Role of metastructural matrixes in optimization ecotourism

    Directory of Open Access Journals (Sweden)

    A. N. Leuchin

    2010-01-01

    Full Text Available In the article possibilities anthropocentric and ecocentric developing paradigms ecotourism are shown. The updating role institutional functions ecotourism an expert by metastructural matrixes of optimization tourist-institutional space (TIS is specified. Long-range directions of socially-ecological interaction in system of ecotourism are designated, measures on optimisation of this interaction are considered.

  5. Comparison of transition-matrix sampling procedures

    DEFF Research Database (Denmark)

    Yevick, D.; Reimer, M.; Tromborg, Bjarne

    2009-01-01

    We compare the accuracy of the multicanonical procedure with that of transition-matrix models of static and dynamic communication system properties incorporating different acceptance rules. We find that for appropriate ranges of the underlying numerical parameters, algorithmically simple yet high...... accurate procedures can be employed in place of the standard multicanonical sampling algorithm....

  6. The Cartan matrix of a centralizer algebra

    Indian Academy of Sciences (India)

    Proc. Indian Acad. Sci. (Math. Sci.) Vol. 122, No. 1, February 2012, pp. 67–73. c Indian Academy of Sciences. The Cartan matrix of a centralizer algebra ... isomorphism classes of principal indecomposable Л-modules (throughout this article, the .... An inductive argument then shows that when i ≥ j, then every product.

  7. The algebras of large N matrix mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Halpern, M.B.; Schwartz, C.

    1999-09-16

    Extending early work, we formulate the large N matrix mechanics of general bosonic, fermionic and supersymmetric matrix models, including Matrix theory: The Hamiltonian framework of large N matrix mechanics provides a natural setting in which to study the algebras of the large N limit, including (reduced) Lie algebras, (reduced) supersymmetry algebras and free algebras. We find in particular a broad array of new free algebras which we call symmetric Cuntz algebras, interacting symmetric Cuntz algebras, symmetric Bose/Fermi/Cuntz algebras and symmetric Cuntz superalgebras, and we discuss the role of these algebras in solving the large N theory. Most important, the interacting Cuntz algebras are associated to a set of new (hidden!) local quantities which are generically conserved only at large N. A number of other new large N phenomena are also observed, including the intrinsic nonlocality of the (reduced) trace class operators of the theory and a closely related large N field identification phenomenon which is associated to another set (this time nonlocal) of new conserved quantities at large N.

  8. Matrix metalloproteinase-12 (MMP-12) in osteoclasts

    DEFF Research Database (Denmark)

    Hou, Peng; Troen, Tine; Ovejero, Maria C

    2004-01-01

    Osteoclasts require matrix metalloproteinase (MMP) activity and cathepsin K to resorb bone, but the critical MMP has not been identified. Osteoclasts express MMP-9 and MMP-14, which do not appear limiting for resorption, and the expression of additional MMPs is not clear. MMP-12, also called...

  9. Light weight polymer matrix composite material

    Science.gov (United States)

    Bowles, Kenneth J. (Inventor); Lowell, Carl E. (Inventor)

    1991-01-01

    A graphite fiber reinforced polymer matrix is layed up, cured, and thermally aged at about 750.degree. F. in the presence of an inert gas. The heat treatment improves the structural integrity and alters the electrical conductivity of the materials. In the preferred embodiment PMR-15 polyimides and Celion-6000 graphite fibers are used.

  10. Error Analysis of Band Matrix Method

    OpenAIRE

    Taniguchi, Takeo; Soga, Akira

    1984-01-01

    Numerical error in the solution of the band matrix method based on the elimination method in single precision is investigated theoretically and experimentally, and the behaviour of the truncation error and the roundoff error is clarified. Some important suggestions for the useful application of the band solver are proposed by using the results of above error analysis.

  11. Silica gel matrix immobilized Chlorophyta hydrodictyon africanum ...

    African Journals Online (AJOL)

    Chlorophyta hydrodictyon africanum was immobilized on a silica gel matrix to improve its mechanical properties. The algae-silica gel adsorbent was used for batch sorption studies of a cationic dye, methylene blue (MB). Optimum adsorption was obtained with a dosage of 0.8 g bio sorbent. Results from sorption studies ...

  12. Density Matrix Renormalization Group for Dummies

    OpenAIRE

    De Chiara, G.; Rizzi, M.; Rossini, D.; Montangero, S.

    2006-01-01

    We describe the Density Matrix Renormalization Group algorithms for time dependent and time independent Hamiltonians. This paper is a brief but comprehensive introduction to the subject for anyone willing to enter in the field or write the program source code from scratch.

  13. Inverter Matrix for the Clementine Mission

    Science.gov (United States)

    Buehler, M. G.; Blaes, B. R.; Tardio, G.; Soli, G. A.

    1994-01-01

    An inverter matrix test circuit was designed for the Clementine space mission and is built into the RRELAX (Radiation and Reliability Assurance Experiment). The objective is to develop a circuit that will allow the evaluation of the CMOS FETs using a lean data set in the noisy spacecraft environment.

  14. Involution symmetries and the PMNS matrix

    Indian Academy of Sciences (India)

    Palash B Pal

    2017-10-09

    Oct 9, 2017 ... approach, advocated first by Lam [1], one starts by look- ing at the symmetries of the low-energy Lagrangian, and tries to see which group can contain these symmetries. The bigger symmetry might then determine the PMNS matrix, or at least some information about its elements. In this paper, we are going ...

  15. "Matrix" sobitub iga filosoofiaga / Rando Tooming

    Index Scriptorium Estoniae

    Tooming, Rando

    2003-01-01

    Andy ja Larry Wachowski ulmefilmide triloogia "Matrix" fenomeni analüüsist ajakirja "Vikerkaar" 2003. aasta 9. numbris, kus sellele on pühendatud nelja filosoofi artiklid ( Slavoj Zhizhek, Jüri Eintalu, Bruno Mölder, Tanel Tammet)

  16. Association of matrix metalloproteinase-2 gene promoter ...

    Indian Academy of Sciences (India)

    coronary heart disease. Atherosclerosis of the coronary ar- teries is the predominant AMI mechanism. Atherosclerotic plaque growth occurs through structural changes which al- low the accumulation of cells, extracellular matrix and lipids in the intimate layer of the diseased artery. The rupture or erosion of the fibrous layer of ...

  17. Electromagnetic Compatibility of Matrix Converter System

    Directory of Open Access Journals (Sweden)

    S. Fligl

    2006-12-01

    Full Text Available The presented paper deals with matrix converters pulse width modulation strategies design with emphasis on the electromagnetic compatibility. Matrix converters provide an all-silicon solution to the problem of converting AC power from one frequency to another, offering almost all the features required of an ideal static frequency changer. They possess many advantages compared to the conventional voltage or current source inverters. A matrix converter does not require energy storage components as a bulky capacitor or an inductance in the DC-link, and enables the bi-directional power flow between the power supply and load. The most of the contemporary modulation strategies are able to provide practically sinusoidal waveforms of the input and output currents with negligible low order harmonics, and to control the input displacement factor. The perspective of matrix converters regarding EMC in comparison with other types of converters is brightly evident because it is no need to use any equipment for power factor correction and current and voltage harmonics reduction. Such converter with proper control is properly compatible both with the supply mains and with the supplied load. A special digital control system was developed for the realized experimental test bed which makes it possible to achieve greater throughput of the digital control system and its variability.

  18. Determination of Matrix Diffusion Properties of Granite

    International Nuclear Information System (INIS)

    Holtta, Pirkko; Siitari-Kauppi, Marja; Huittinen, Nina; Poteri, Antti

    2007-01-01

    Rock-core column experiments were introduced to estimate the diffusion and sorption properties of Kuru Grey granite used in block-scale experiments. The objective was to examine the processes causing retention in solute transport through rock fractures, especially matrix diffusion. The objective was also to estimate the importance of retention processes during transport in different scales and flow conditions. Rock-core columns were constructed from cores drilled into the fracture and were placed inside tubes to form flow channels in the 0.5 mm gap between the cores and the tube walls. Tracer experiments were performed using uranin, HTO, 36 Cl, 131 I, 22 Na and 85 Sr at flow rates of 1-50 μL.min -1 . Rock matrix was characterized using 14 C-PMMA method, scanning electron microscopy (SEM), energy dispersive X-ray micro analysis (EDX) and the B.E.T. method. Solute mass flux through a column was modelled by applying the assumption of a linear velocity profile and molecular diffusion. Coupling of the advection and diffusion processes was based on the model of generalised Taylor dispersion in the linear velocity profile. Experiments could be modelled applying a consistent parameterization and transport processes. The results provide evidence that it is possible to investigate matrix diffusion at the laboratory scale. The effects of matrix diffusion were demonstrated on the slightly-sorbing tracer breakthrough curves. Based on scoping calculations matrix diffusion begins to be clearly observable for non-sorbing tracer when the flow rate is 0.1 μL.min -1 . The experimental results presented here cannot be transferred directly to the spatial and temporal scales that prevail in an underground repository. However, the knowledge and understanding of transport and retention processes gained from this study is transferable to different scales from laboratory to in-situ conditions. (authors)

  19. Solution of the Lyapunov matrix equation for a system with a time-dependent stiffness matrix

    DEFF Research Database (Denmark)

    Pommer, Christian; Kliem, Wolfhard

    2004-01-01

    The stability of the linearized model of a rotor system with non-symmetric strain and axial loads is investigated. Since we are using a fixed reference system, the differential equations have the advantage to be free of Coriolis and centrifugal forces. A disadvantage is nevertheless the occurrenc...... of time-dependent periodic terms in the stiffness matrix. However, by solving the Lyapunov matrix equation we can formulate several stability conditions for the rotor system. Hereby the positive definiteness of a certain averaged stiffness matrix plays a crucial role....

  20. Global unitary fixing and matrix-valued correlations in matrix models

    International Nuclear Information System (INIS)

    Adler, Stephen L.; Horwitz, Lawrence P.

    2003-01-01

    We consider the partition function for a matrix model with a global unitary invariant energy function. We show that the averages over the partition function of global unitary invariant trace polynomials of the matrix variables are the same when calculated with any choice of a global unitary fixing, while averages of such polynomials without a trace define matrix-valued correlation functions, that depend on the choice of unitary fixing. The unitary fixing is formulated within the standard Faddeev-Popov framework, in which the squared Vandermonde determinant emerges as a factor of the complete Faddeev-Popov determinant. We give the ghost representation for the FP determinant, and the corresponding BRST invariance of the unitary-fixed partition function. The formalism is relevant for deriving Ward identities obeyed by matrix-valued correlation functions

  1. A New Candidate Substrate for Cell-Matrix Adhesion Study: The Acellular Human Amniotic Matrix

    OpenAIRE

    Guo, Qianchen; Lu, Xuya; Xue, Yuan; Zheng, Hong; Zhao, Xiaotao; Zhao, Huajian

    2012-01-01

    In vivo adhesions between cells and the extracellular matrix play a crucial role in cell differentiation, proliferation, and migration as well as tissue remodeling. Natural three-dimensional (3D) matrices, such as self-assembling matrices and Matrigel, have limitations in terms of their biomechanical properties. Here, we present a simple method to produce an acellular human amniotic matrix (AHAM) with preserved biomechanical properties and a favorable adhesion potential. On the stromal side o...

  2. Optimizing Tpetra%3CU%2B2019%3Es sparse matrix-matrix multiplication routine.

    Energy Technology Data Exchange (ETDEWEB)

    Nusbaum, Kurtis Lee

    2011-08-01

    Over the course of the last year, a sparse matrix-matrix multiplication routine has been developed for the Tpetra package. This routine is based on the same algorithm that is used in EpetraExt with heavy modifications. Since it achieved a working state, several major optimizations have been made in an effort to speed up the routine. This report will discuss the optimizations made to the routine, its current state, and where future work needs to be done.

  3. Multi-cut solutions in Chern-Simons matrix models

    Science.gov (United States)

    Morita, Takeshi; Sugiyama, Kento

    2018-04-01

    We elaborate the Chern-Simons (CS) matrix models at large N. The saddle point equations of these matrix models have a curious structure which cannot be seen in the ordinary one matrix models. Thanks to this structure, an infinite number of multi-cut solutions exist in the CS matrix models. Particularly we exactly derive the two-cut solutions at finite 't Hooft coupling in the pure CS matrix model. In the ABJM matrix model, we argue that some of multi-cut solutions might be interpreted as a condensation of the D2-brane instantons.

  4. How to get the Matrix Organization to Work

    DEFF Research Database (Denmark)

    Burton, Richard M.; Obel, Børge; Håkonsson, Dorthe Døjbak

    2015-01-01

    Many organizations, both public and private, are changing their structure to a complex matrix in order to meet the growing complexity in the world in which they operate. Often, those organizations struggle to obtain the benefits of a matrix organization. In this article, we discuss how to get...... a matrix to work, taking a multi-contingency perspective. We translate the matrix concept for designers and managers who are considering a matrix organization and argue that three factors are critical for its success: (1) Strong purpose: Only choose the matrix structure if there are strong reasons...

  5. Photoacoustic measurement of lutein in biological matrix

    Science.gov (United States)

    Bicanic, D.; Luterotti, S.; Becucci, M.; Fogliano, V.; Versloot, P.

    2005-06-01

    Photoacoustic (PA) spectroscopy was applied for the first time to quantify lutein in a complex biological matrix. Standard addition of lutein to a biological low-lutein matrix was used for the calibration. The PA signal was found linearly proportional (R > 0.98) to lutein concentration up to 0.3% (w/w). The dynamic range of concentrations extends to 1% (w/w) lutein. For a given experimental set-up the responsivity of PA detector within the range of linearity was estimated to 1.1 mV/1% lutein. Precision of repeated analyses is good with average RSD values of 4 and 5% for blanks and spiked samples, respectively. The analytical parameters indicate that the PA method is fast and sensitive enough for quantification of lutein in supplementary drugs and in the lutein-rich foods.

  6. The super period matrix with Ramond punctures

    Science.gov (United States)

    Witten, Edward

    2015-06-01

    We generalize the super period matrix of a super Riemann surface to the case that Ramond punctures are present. For a super Riemann surface of genus g with 2 r Ramond punctures, we define, modulo certain choices that generalize those in the classical theory (and assuming a certain generic condition is satisfied), a g | r × g | r period matrix that is symmetric in the Z2-graded sense. As an application, we analyze the genus 2 vacuum amplitude in string theory compactifications to four dimensions that are supersymmetric at tree level. We find an explanation for a result that has been found in orbifold examples in explicit computations by D'Hoker and Phong: with their integration procedure, the genus 2 vacuum amplitude always vanishes "pointwise" after summing over spin structures, and hence is given entirely by a boundary contribution.

  7. Thermolysin activates equine lamellar hoof matrix metalloproteinases.

    Science.gov (United States)

    Mungall, B A; Pollitt, C C

    2002-01-01

    Cultured equine lamellar hoof explants secrete the pro-enzymes matrix metalloproteinase-2 (MMP-2, 72 kDa) and MMP-2 (92 kDa). Untreated explants remained intact when tested on a calibrated force transducer, but when treated with an MMP activator, developed "in-vitro laminitis", separating at the dermal-epidermal junction. Explants treated with the bacterial protease thermolysin separated dose-dependently; this was accompanied by activation of both MMP-2 and -9. Thermolysin-mediated MP activation did not occur in a cell-free system and was not inhibited by the addition of the MMP inhibitor and batimastat. These findings suggest that thermolysin-mediated gelatinase activation is not dependent on membrane-bound matrix metalloproteinase (MT-MMP) activation, providing further evidence that bacteria can produce potent MMP activators that probably facilitate host invasion.

  8. Embedded random matrix ensembles in quantum physics

    CERN Document Server

    Kota, V K B

    2014-01-01

    Although used with increasing frequency in many branches of physics, random matrix ensembles are not always sufficiently specific to account for important features of the physical system at hand. One refinement which retains the basic stochastic approach but allows for such features consists in the use of embedded ensembles.  The present text is an exhaustive introduction to and survey of this important field. Starting with an easy-to-read introduction to general random matrix theory, the text then develops the necessary concepts from the beginning, accompanying the reader to the frontiers of present-day research. With some notable exceptions, to date these ensembles have primarily been applied in nuclear spectroscopy. A characteristic example is the use of a random two-body interaction in the framework of the nuclear shell model. Yet, topics in atomic physics, mesoscopic physics, quantum information science and statistical mechanics of isolated finite quantum systems can also be addressed using these ensemb...

  9. Matrix models with non-even potentials

    International Nuclear Information System (INIS)

    Marzban, C.; Raju Viswanathan, R.

    1990-07-01

    We study examples of hermitian 1-matrix models with even and odd terms present in the potential. A definition of criticality is presented which in these cases leads to multicritical models falling into the same universality classes as those of the purely even potentials. We also show that, in our examples, for polynomial potentials ending in odd powers (unbounded) the coupling constants, in addition to their expected real critical values, also admit critical values which alternate between imaginary/real values in the odd/even terms. We find that, remarkably, the ensuing statistical models are insensitive to the real/imaginary nature of these critical values. This feature may be of relevance in the recently-studied connection between matrix models and the moduli space of Riemann surfaces. (author). 9 refs

  10. Social patterns revealed through random matrix theory

    Science.gov (United States)

    Sarkar, Camellia; Jalan, Sarika

    2014-11-01

    Despite the tremendous advancements in the field of network theory, very few studies have taken weights in the interactions into consideration that emerge naturally in all real-world systems. Using random matrix analysis of a weighted social network, we demonstrate the profound impact of weights in interactions on emerging structural properties. The analysis reveals that randomness existing in particular time frame affects the decisions of individuals rendering them more freedom of choice in situations of financial security. While the structural organization of networks remains the same throughout all datasets, random matrix theory provides insight into the interaction pattern of individuals of the society in situations of crisis. It has also been contemplated that individual accountability in terms of weighted interactions remains as a key to success unless segregation of tasks comes into play.

  11. Aluminum matrix composites reinforced with alumina nanoparticles

    CERN Document Server

    Casati, Riccardo

    2016-01-01

    This book describes the latest efforts to develop aluminum nanocomposites with enhanced damping and mechanical properties and good workability. The nanocomposites exhibited high strength, improved damping behavior and good ductility, making them suitable for use as wires. Since the production of metal matrix nanocomposites by conventional melting processes is considered extremely problematic (because of the poor wettability of the nanoparticles), different powder metallurgy routes were investigated, including high-energy ball milling and unconventional compaction methods. Special attention was paid to the structural characterization at the micro- and nanoscale, as uniform nanoparticle dispersion in metal matrix is of prime importance. The aluminum nanocomposites displayed an ultrafine microstructure reinforced with alumina nanoparticles produced in situ or added ex situ. The physical, mechanical and functional characteristics of the materials produced were evaluated using different mechanical tests and micros...

  12. Matrix model calculations beyond the spherical limit

    International Nuclear Information System (INIS)

    Ambjoern, J.; Chekhov, L.; Kristjansen, C.F.; Makeenko, Yu.

    1993-01-01

    We propose an improved iterative scheme for calculating higher genus contributions to the multi-loop (or multi-point) correlators and the partition function of the hermitian one matrix model. We present explicit results up to genus two. We develop a version which gives directly the result in the double scaling limit and present explicit results up to genus four. Using the latter version we prove that the hermitian and the complex matrix model are equivalent in the double scaling limit and that in this limit they are both equivalent to the Kontsevich model. We discuss how our results away from the double scaling limit are related to the structure of moduli space. (orig.)

  13. CMH-17 Volume 5 Ceramic Matrix Composites

    Science.gov (United States)

    Andrulonis, Rachael; Kiser, J. Douglas; David, Kaia E.; Davies, Curtis; Ashforth, Cindy

    2017-01-01

    A wide range of issues must be addressed during the process of certifying CMC (ceramic matrix composite) components for use in commercial aircraft. The Composite Materials Handbook-17, Volume 5, Revision A on ceramic matrix composites has just been revised to help support FAA certification of CMCs for elevated temperature applications. The handbook supports the development and use of CMCs through publishing and maintaining proven, reliable engineering information and standards that have been thoroughly reviewed. Volume 5 contains detailed sections describing CMC materials processing, design analysis guidelines, testing procedures, and data analysis and acceptance. A review of the content of this latest revision will be presented along with a description of how CMH-17, Volume 5 could be used by the FAA (Federal Aviation Administration) and others in the future.

  14. Quantum phase transitions in matrix product states

    International Nuclear Information System (INIS)

    Zhu Jingmin

    2008-01-01

    We present a new general and much simpler scheme to construct various quantum phase transitions (QPTs) in spin chain systems with matrix product ground states. By use of the scheme we take into account one kind of matrix product state (MPS) QPT and provide a concrete model. We also study the properties of the concrete example and show that a kind of QPT appears, accompanied by the appearance of the discontinuity of the parity absent block physical observable, diverging correlation length only for the parity absent block operator, and other properties which are that the fixed point of the transition point is an isolated intermediate-coupling fixed point of renormalization flow and the entanglement entropy of a half-infinite chain is discontinuous. (authors)

  15. Quantum Phase Transitions in Matrix Product States

    International Nuclear Information System (INIS)

    Jing-Min, Zhu

    2008-01-01

    We present a new general and much simpler scheme to construct various quantum phase transitions (QPTs) in spin chain systems with matrix product ground states. By use of the scheme we take into account one kind of matrix product state (MPS) QPT and provide a concrete model. We also study the properties of the concrete example and show that a kind of QPT appears, accompanied by the appearance of the discontinuity of the parity absent block physical observable, diverging correlation length only for the parity absent block operator, and other properties which are that the fixed point of the transition point is an isolated intermediate-coupling fixed point of renormalization flow and the entanglement entropy of a half-infinite chain is discontinuous

  16. Correlation functions of two-matrix models

    International Nuclear Information System (INIS)

    Bonora, L.; Xiong, C.S.

    1993-11-01

    We show how to calculate correlation functions of two matrix models without any approximation technique (except for genus expansion). In particular we do not use any continuum limit technique. This allows us to find many solutions which are invisible to the latter technique. To reach our goal we make full use of the integrable hierarchies and their reductions which were shown in previous papers to naturally appear in multi-matrix models. The second ingredient we use, even though to a lesser extent, are the W-constraints. In fact an explicit solution of the relevant hierarchy, satisfying the W-constraints (string equation), underlies the explicit calculation of the correlation functions. The correlation functions we compute lend themselves to a possible interpretation in terms of topological field theories. (orig.)

  17. Notes on branes in matrix theory

    International Nuclear Information System (INIS)

    Keski-Vakkuri, E.; Kraus, P.

    1998-01-01

    We study the effective actions of various brane configurations in matrix theory. Starting from the 0+1-dimensional quantum mechanics, we replace coordinate matrices by covariant derivatives in the large N limit, thereby obtaining effective field theories on the brane world-volumes. Even for non-compact branes, these effective theories are of Yang-Mills type, with constant background magnetic fields. In the case of a D2-brane, we show explicitly how the effective action equals the large magnetic field limit of the Born-Infeld action, and thus derive from matrix theory the action used by Polchinski and Pouliot to compute M-momentum transfer between membranes. We also consider the effect of compactifying transverse directions. Finally, we analyze a scattering process involving a recently proposed background representing a classically stable D6+D0 brane configuration. We compute the potential between this configuration and a D0-brane, and show that the result agrees with supergravity. (orig.)

  18. Conserving T-matrix theory of superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Morawetz, Klaus [University of Applied Science Muenster, Stegerwaldstrasse 39, 48565 Steinfurt (Germany); International Center for Condensed Matter Physics, Universidade de Brasilia, 70904-910, Brasilia-DF (Brazil); Lipavsky, Pavel [Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, 12116 Prague 2 (Czech Republic); Institute of Physics, Academy of Sciences, Cukrovarnicka 10, 16253 Prague 6 (Czech Republic); Sopik, Bretislav [Institute of Physics, Academy of Sciences, Cukrovarnicka 10, 16253 Prague 6 (Czech Republic); Maennel, Michael [Institute of Physics, Chemnitz University of Technology, 09107 Chemnitz (Germany)

    2010-07-01

    Any many-body approximation corrected for unphysical repeated collisions in a given condensation channel is shown to provide the same set of equations as they appear by using anomalous propagators. The ad-hoc assumption in the latter theory about non-conservation of particle numbers can be released. In this way the widespread used anomalous propagator approach is given another physical interpretation. A generalized Soven equation follows which improves any approximation in the same way as the coherent potential approximation (CPA) improves the averaged T-matrix for impurity scattering. A selfconsistent T-matrix theory of many-Fermion systems is proposed. In the normal state the theory agrees with the Galitskii-Feynmann approximation, in the superconducting state it has the form of the renormalized Kadanoff-Martin approximation. The two-particle propagator satisfies the Baym-Kadanoff symmetry condition which guarantees that the theory conserves the number of particles, momentum and energy.

  19. The Lehmer Matrix and Its Recursive Analogue

    Science.gov (United States)

    2010-01-01

    Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty...and p = 1 (the Fibonacci sequence case), we have 1 12 1 3 1 4 1 5 1 2 1 2 3 2 4 2 5 1 3 2 3 1 3 4 3 5 1 4 2 4 3 4 1 4 5 1 5 2 5 3 5 4 5 1...special cases of the matrix Fn, we take the matrix F0n ob- tained using the Fibonacci sequence, that is, Fn+1 = Fn+Fn−1, F0 = 0, F1 = 1. The determinant

  20. Fiber study involving a polyimide matrix

    Energy Technology Data Exchange (ETDEWEB)

    Cano, R.J. [NASA Langley Research Center, Hampton, VA (United States); Rommel, M. [Northop Grumman Corp., Pico Rivera, CA (United States); Hinkley, J.A.; Estes, E.D. [NASA Langley Research Center, Hampton, VA (United States)

    1996-12-31

    Mechanical properties are presented for eight different intermediate modulus carbon fiber/ polyimide matrix composites. Two unsized carbon fibers (Thornel T650-42 and Hercules IM9) and two sized carbon fibers (high temperature sized Thornel T650-42 HTS and epoxy sized Toray T1000) were prepregged on the NASA LaRC Multipurpose Tape Machine using the NASA LaRC developed polyimide resin matrix, LaRC{trademark}-PETI-5, and the DuPont developed Avitnid{reg_sign} R1-16. Composite panels fabricated from these prepregs were evaluated to determine their mechanical properties. The data show the effects of using sized fibers on the processing and mechanical properties of polyimide composites.

  1. Delocalization transition for the Google matrix.

    Science.gov (United States)

    Giraud, Olivier; Georgeot, Bertrand; Shepelyansky, Dima L

    2009-08-01

    We study the localization properties of eigenvectors of the Google matrix, generated both from the world wide web and from the Albert-Barabási model of networks. We establish the emergence of a delocalization phase for the PageRank vector when network parameters are changed. For networks with localized PageRank, eigenvalues of the matrix in the complex plane with a modulus above a certain threshold correspond to localized eigenfunctions while eigenvalues below this threshold are associated with delocalized relaxation modes. We argue that, for networks with delocalized PageRank, the efficiency of information retrieval by Google-type search is strongly affected since the PageRank values have no clear hierarchical structure in this case.

  2. Rolling Element Bearing Stiffness Matrix Determination (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Y.; Parker, R.

    2014-01-01

    Current theoretical bearing models differ in their stiffness estimates because of different model assumptions. In this study, a finite element/contact mechanics model is developed for rolling element bearings with the focus of obtaining accurate bearing stiffness for a wide range of bearing types and parameters. A combined surface integral and finite element method is used to solve for the contact mechanics between the rolling elements and races. This model captures the time-dependent characteristics of the bearing contact due to the orbital motion of the rolling elements. A numerical method is developed to determine the full bearing stiffness matrix corresponding to two radial, one axial, and two angular coordinates; the rotation about the shaft axis is free by design. This proposed stiffness determination method is validated against experiments in the literature and compared to existing analytical models and widely used advanced computational methods. The fully-populated stiffness matrix demonstrates the coupling between bearing radial, axial, and tilting bearing deflections.

  3. Ensemble Topic Modeling via Matrix Factorization

    OpenAIRE

    Belford, Mark; MacNamee, Brian; Greene, Derek

    2016-01-01

    Topic models can provide us with an insight into the underlying latent structure of a large corpus of documents, facilitating knowledge discovery and information summarization. A range of methods have been proposed in the literature, including probabilistic topic models and techniques based on matrix factorization. However, these methods tend to have stochastic elements in their initialization, which can lead to their output being unstable. That is, if a topic modeling algorithm is applied to...

  4. Nodal coupling by response matrix principles

    International Nuclear Information System (INIS)

    Ancona, A.; Becker, M.; Beg, M.D.; Harris, D.R.; Menezes, A.D.; VerPlanck, D.M.; Pilat, E.

    1977-01-01

    The response matrix approach has been used in viewing a reactor node in isolation and in characterizing the node by reflection and trans-emission factors. These are then used to generate invariant imbedding parameters, which in turn are used in a nodal reactor simulator code to compute core power distributions in two and three dimensions. Various nodal techniques are analyzed and converted into a single invariant imbedding formalism

  5. Proton decay matrix elements from lattice QCD

    International Nuclear Information System (INIS)

    Aoki, Yasumichi; Shintani, Eigo

    2012-01-01

    We report on the calculation of the matrix elements of nucleon to pseudoscalar decay through a three quark operator, a part of the low-energy, four-fermion, baryon-number-violating operator originating from grand unified theories. The direct calculation of the form factors using domain-wall fermions on the lattice, incorporating the u, d and s sea-quarks effects yields the results with all the relevant systematic uncertainties controlled for the first time.

  6. Graphite matrix materials for nuclear waste isolation

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, W.C.

    1981-06-01

    At low temperatures, graphites are chemically inert to all but the strongest oxidizing agents. The raw materials from which artificial graphites are produced are plentiful and inexpensive. Morover, the physical properties of artificial graphites can be varied over a very wide range by the choice of raw materials and manufacturing processes. Manufacturing processes are reviewed herein, with primary emphasis on those processes which might be used to produce a graphite matrix for the waste forms. The approach, recommended herein, involves the low-temperature compaction of a finely ground powder produced from graphitized petroleum coke. The resultant compacts should have fairly good strength, low permeability to both liquids and gases, and anisotropic physical properties. In particular, the anisotropy of the thermal expansion coefficients and the thermal conductivity should be advantageous for this application. With two possible exceptions, the graphite matrix appears to be superior to the metal alloy matrices which have been recommended in prior studies. The two possible exceptions are the requirements on strength and permeability; both requirements will be strongly influenced by the containment design, including the choice of materials and the waste form, of the multibarrier package. Various methods for increasing the strength, and for decreasing the permeability of the matrix, are reviewed and discussed in the sections in Incorporation of Other Materials and Elimination of Porosity. However, it would be premature to recommend a particular process until the overall multi-barrier design is better defined. It is recommended that increased emphasis be placed on further development of the low-temperature compacted graphite matrix concept.

  7. Determination of insoluble avian eggshell matrix proteins

    Czech Academy of Sciences Publication Activity Database

    Mikšík, Ivan; Sedláková, Pavla; Lacinová, Kateřina; Pataridis, Statis; Eckhardt, Adam

    2010-01-01

    Roč. 397, č. 1 (2010), s. 205-214 ISSN 1618-2642 R&D Projects: GA MŠk(CZ) 1M0510; GA ČR(CZ) GA203/09/0675; GA ČR(CZ) GA203/08/1428 Institutional research plan: CEZ:AV0Z50110509 Keywords : eggshell proteins * insoluble proteins * matrix proteins Subject RIV: CE - Biochemistry Impact factor: 3.841, year: 2010

  8. ANL Critical Assembly Covariance Matrix Generation

    Energy Technology Data Exchange (ETDEWEB)

    McKnight, Richard D. [Argonne National Lab. (ANL), Argonne, IL (United States); Grimm, Karl N. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2014-01-15

    This report discusses the generation of a covariance matrix for selected critical assemblies that were carried out by Argonne National Laboratory (ANL) using four critical facilities-all of which are now decommissioned. The four different ANL critical facilities are: ZPR-3 located at ANL-West (now Idaho National Laboratory- INL), ZPR-6 and ZPR-9 located at ANL-East (Illinois) and ZPPr located at ANL-West.

  9. Some topics in matrix iterative analysis

    International Nuclear Information System (INIS)

    Khandekar, D.C.; Menon, S.V.G.; Sahni, D.C.

    1984-01-01

    This report deals with the general theory of matrix iterative analysis. The contents of the report are presented in the form of lecture notes primarily because the report is an outcome of a series of lectures delivered in the Theoretical Reactor Physics Section of the Bhabha Atomic Research Centre, Bombay. The first six lectures are devoted to the mathematical preliminaries needed to fully understand the subject. The remaining lectures provide an introduction to various iteractive methods and their intercomparison. (author)

  10. Reducing Actinide Production Using Inert Matrix Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Deinert, Mark [Colorado School of Mines, Golden, CO (United States)

    2017-08-23

    The environmental and geopolitical problems that surround nuclear power stem largely from the longlived transuranic isotopes of Am, Cm, Np and Pu that are contained in spent nuclear fuel. New methods for transmuting these elements into more benign forms are needed. Current research efforts focus largely on the development of fast burner reactors, because it has been shown that they could dramatically reduce the accumulation of transuranics. However, despite five decades of effort, fast reactors have yet to achieve industrial viability. A critical limitation to this, and other such strategies, is that they require a type of spent fuel reprocessing that can efficiently separate all of the transuranics from the fission products with which they are mixed. Unfortunately, the technology for doing this on an industrial scale is still in development. In this project, we explore a strategy for transmutation that can be deployed using existing, current generation reactors and reprocessing systems. We show that use of an inert matrix fuel to recycle transuranics in a conventional pressurized water reactor could reduce overall production of these materials by an amount that is similar to what is achievable using proposed fast reactor cycles. Furthermore, we show that these transuranic reductions can be achieved even if the fission products are carried into the inert matrix fuel along with the transuranics, bypassing the critical separations hurdle described above. The implications of these findings are significant, because they imply that inert matrix fuel could be made directly from the material streams produced by the commercially available PUREX process. Zirconium dioxide would be an ideal choice of inert matrix in this context because it is known to form a stable solid solution with both fission products and transuranics.

  11. Nanophosphor composite scintillators comprising a polymer matrix

    Science.gov (United States)

    Muenchausen, Ross Edward; Mckigney, Edward Allen; Gilbertson, Robert David

    2010-11-16

    An improved nanophosphor composite comprises surface modified nanophosphor particles in a solid matrix. The nanophosphor particle surface is modified with an organic ligand, or by covalently bonding a polymeric or polymeric precursor material. The surface modified nanophosphor particle is essentially charge neutral, thereby preventing agglomeration of the nanophosphor particles during formation of the composite material. The improved nanophosphor composite may be used in any conventional scintillator application, including in a radiation detector.

  12. Detection of Matrix Metalloproteinases by Zymography.

    Science.gov (United States)

    Tajhya, Rajeev B; Patel, Rutvik S; Beeton, Christine

    2017-01-01

    Matrix metalloproteinases (MMPs) represent more than 20 zinc-containing endopeptidases that cleave internal peptide bonds, leading to protein degradation. They play a critical role in many physiological cell functions, including tissue remodeling, embryogenesis, and angiogenesis. They are also involved in the pathogenesis of a vast array of diseases, including but not limited to systemic inflammation, various cancers, and cardiovascular, neurological, and autoimmune diseases. Here, we describe gel zymography to detect MMPs in cell and tissue samples and in cell culture supernatants.

  13. On the Mesh Array for Matrix Multiplication

    OpenAIRE

    Kak, Subhash

    2010-01-01

    This article presents new properties of the mesh array for matrix multiplication. In contrast to the standard array that requires 3n-2 steps to complete its computation, the mesh array requires only 2n-1 steps. Symmetries of the mesh array computed values are presented which enhance the efficiency of the array for specific applications. In multiplying symmetric matrices, the results are obtained in 3n/2+1 steps. The mesh array is examined for its application as a scrambling system.

  14. Enforced Sparse Non-Negative Matrix Factorization

    Science.gov (United States)

    2016-01-23

    mixture of topics constitutes a document . Other common methods for topic modeling include the following: latent semantic analysis (LSA) [1...probabilistic latent semantic analysis (PLSA) [2], and term frequency- inverse document frequency (TF-IDF) [3] analysis. More recently, non-negative matrix...factorization (NMF) [4]–[7] is used as a technique for document classification and topic modeling. The NMF has also been used for graph cluster

  15. ANL Critical Assembly Covariance Matrix Generation - Addendum

    Energy Technology Data Exchange (ETDEWEB)

    McKnight, Richard D. [Argonne National Lab. (ANL), Argonne, IL (United States); Grimm, Karl N. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2014-01-13

    In March 2012, a report was issued on covariance matrices for Argonne National Laboratory (ANL) critical experiments. That report detailed the theory behind the calculation of covariance matrices and the methodology used to determine the matrices for a set of 33 ANL experimental set-ups. Since that time, three new experiments have been evaluated and approved. This report essentially updates the previous report by adding in these new experiments to the preceding covariance matrix structure.

  16. Hierarchical matrix approximation of large covariance matrices

    KAUST Repository

    Litvinenko, Alexander

    2015-01-07

    We approximate large non-structured covariance matrices in the H-matrix format with a log-linear computational cost and storage O(n log n). We compute inverse, Cholesky decomposition and determinant in H-format. As an example we consider the class of Matern covariance functions, which are very popular in spatial statistics, geostatistics, machine learning and image analysis. Applications are: kriging and optimal design

  17. Hierarchical matrix approximation of large covariance matrices

    KAUST Repository

    Litvinenko, Alexander

    2015-01-05

    We approximate large non-structured covariance matrices in the H-matrix format with a log-linear computational cost and storage O(nlogn). We compute inverse, Cholesky decomposition and determinant in H-format. As an example we consider the class of Matern covariance functions, which are very popular in spatial statistics, geostatistics, machine learning and image analysis. Applications are: kriging and op- timal design.

  18. Diagonalizing sensing matrix of broadband RSE

    International Nuclear Information System (INIS)

    Sato, Shuichi; Kokeyama, Keiko; Kawazoe, Fumiko; Somiya, Kentaro; Kawamura, Seiji

    2006-01-01

    For a broadband-operated RSE interferometer, a simple and smart length sensing and control scheme was newly proposed. The sensing matrix could be diagonal, owing to a simple allocation of two RF modulations and to a macroscopic displacement of cavity mirrors, which cause a detuning of the RF modulation sidebands. In this article, the idea of the sensing scheme and an optimization of the relevant parameters will be described

  19. Graphite matrix materials for nuclear waste isolation

    International Nuclear Information System (INIS)

    Morgan, W.C.

    1981-06-01

    At low temperatures, graphites are chemically inert to all but the strongest oxidizing agents. The raw materials from which artificial graphites are produced are plentiful and inexpensive. Morover, the physical properties of artificial graphites can be varied over a very wide range by the choice of raw materials and manufacturing processes. Manufacturing processes are reviewed herein, with primary emphasis on those processes which might be used to produce a graphite matrix for the waste forms. The approach, recommended herein, involves the low-temperature compaction of a finely ground powder produced from graphitized petroleum coke. The resultant compacts should have fairly good strength, low permeability to both liquids and gases, and anisotropic physical properties. In particular, the anisotropy of the thermal expansion coefficients and the thermal conductivity should be advantageous for this application. With two possible exceptions, the graphite matrix appears to be superior to the metal alloy matrices which have been recommended in prior studies. The two possible exceptions are the requirements on strength and permeability; both requirements will be strongly influenced by the containment design, including the choice of materials and the waste form, of the multibarrier package. Various methods for increasing the strength, and for decreasing the permeability of the matrix, are reviewed and discussed in the sections in Incorporation of Other Materials and Elimination of Porosity. However, it would be premature to recommend a particular process until the overall multi-barrier design is better defined. It is recommended that increased emphasis be placed on further development of the low-temperature compacted graphite matrix concept

  20. Multispectral Palmprint Recognition Using a Quaternion Matrix

    Directory of Open Access Journals (Sweden)

    Yafeng Li

    2012-04-01

    Full Text Available Palmprints have been widely studied for biometric recognition for many years. Traditionally, a white light source is used for illumination. Recently, multispectral imaging has drawn attention because of its high recognition accuracy. Multispectral palmprint systems can provide more discriminant information under different illuminations in a short time, thus they can achieve better recognition accuracy. Previously, multispectral palmprint images were taken as a kind of multi-modal biometrics, and the fusion scheme on the image level or matching score level was used. However, some spectral information will be lost during image level or matching score level fusion. In this study, we propose a new method for multispectral images based on a quaternion model which could fully utilize the multispectral information. Firstly, multispectral palmprint images captured under red, green, blue and near-infrared (NIR illuminations were represented by a quaternion matrix, then principal component analysis (PCA and discrete wavelet transform (DWT were applied respectively on the matrix to extract palmprint features. After that, Euclidean distance was used to measure the dissimilarity between different features. Finally, the sum of two distances and the nearest neighborhood classifier were employed for recognition decision. Experimental results showed that using the quaternion matrix can achieve a higher recognition rate. Given 3000 test samples from 500 palms, the recognition rate can be as high as 98.83%.

  1. Random matrix models for phase diagrams

    International Nuclear Information System (INIS)

    Vanderheyden, B; Jackson, A D

    2011-01-01

    We describe a random matrix approach that can provide generic and readily soluble mean-field descriptions of the phase diagram for a variety of systems ranging from quantum chromodynamics to high-T c materials. Instead of working from specific models, phase diagrams are constructed by averaging over the ensemble of theories that possesses the relevant symmetries of the problem. Although approximate in nature, this approach has a number of advantages. First, it can be useful in distinguishing generic features from model-dependent details. Second, it can help in understanding the 'minimal' number of symmetry constraints required to reproduce specific phase structures. Third, the robustness of predictions can be checked with respect to variations in the detailed description of the interactions. Finally, near critical points, random matrix models bear strong similarities to Ginsburg-Landau theories with the advantage of additional constraints inherited from the symmetries of the underlying interaction. These constraints can be helpful in ruling out certain topologies in the phase diagram. In this Key Issues Review, we illustrate the basic structure of random matrix models, discuss their strengths and weaknesses, and consider the kinds of system to which they can be applied.

  2. Full CKM matrix with lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Okamoto, Masataka; /Fermilab

    2004-12-01

    The authors show that it is now possible to fully determine the CKM matrix, for the first time, using lattice QCD. |V{sub cd}|, |V{sub cs}|, |V{sub ub}|, |V{sub cb}| and |V{sub us}| are, respectively, directly determined with the lattice results for form factors of semileptonic D {yields} {pi}lv, D {yields} Klv, B {yields} {pi}lv, B {yields} Dlv and K {yields} {pi}lv decays. The error from the quenched approximation is removed by using the MILC unquenced lattice gauge configurations, where the effect of u, d and s quarks is included. The error from the ''chiral'' extrapolation (m{sub l} {yields} m{sub ud}) is greatly reduced by using improved staggered quarks. The accuracy is comparable to that of the Particle Data Group averages. In addition, |V{sub ud}|, |V{sub ts}|, |V{sub ts}| and |V{sub td}| are determined by using unitarity of the CKM matrix and the experimental result for sin (2{beta}). In this way, they obtain all 9 CKM matrix elements, where the only theoretical input is lattice QCD. They also obtain all the Wolfenstein parameters, for the first time, using lattice QCD.

  3. Google matrix, dynamical attractors, and Ulam networks.

    Science.gov (United States)

    Shepelyansky, D L; Zhirov, O V

    2010-03-01

    We study the properties of the Google matrix generated by a coarse-grained Perron-Frobenius operator of the Chirikov typical map with dissipation. The finite-size matrix approximant of this operator is constructed by the Ulam method. This method applied to the simple dynamical model generates directed Ulam networks with approximate scale-free scaling and characteristics being in certain features similar to those of the world wide web with approximate scale-free degree distributions as well as two characteristics similar to the web: a power-law decay in PageRank that mirrors the decay of PageRank on the world wide web and a sensitivity to the value alpha in PageRank. The simple dynamical attractors play here the role of popular websites with a strong concentration of PageRank. A variation in the Google parameter alpha or other parameters of the dynamical map can drive the PageRank of the Google matrix to a delocalized phase with a strange attractor where the Google search becomes inefficient.

  4. Matrix models and 2-D gravity

    International Nuclear Information System (INIS)

    David, F.

    1990-01-01

    In these lectures, I shall focus on the matrix formulation of 2-d gravity. In the first one, I shall discuss the main results of the continuum formulation of 2-d gravity, starting from the first renormalization group calculations which led to the concept of the conformal anomaly, going through the Polyakov bosonic string and the Liouville action, up to the recent results on the scaling properties of conformal field theories coupled to 2-d gravity. In the second lecture, I shall discuss the discrete formulation of 2-d gravity in term of random lattices, and the mapping onto random matrix models. The occurrence of critical points in the planar limit and the scaling limit at those critical points will be described, as well as the identification of these scaling limits with continuum 2-d gravity coupled to some matter field theory. In the third lecture, the double scaling limit in the one matrix model, and its connection with continuum non perturbative 2-d gravity, will be presented. The connection with the KdV hierarchy and the general form of the string equation will be discuted. In the fourth lecture, I shall discuss the non-perturbative effects present in the non perturbative solutions, in the case of pure gravity. The Schwinger-Dyson equations for pure gravity in the double scaling limit are described and their compatibility with the solutions of the string equation for pure gravity is shown to be somewhat problematic

  5. Notes on Mayer expansions and matrix models

    International Nuclear Information System (INIS)

    Bourgine, Jean-Emile

    2014-01-01

    Mayer cluster expansion is an important tool in statistical physics to evaluate grand canonical partition functions. It has recently been applied to the Nekrasov instanton partition function of N=2 4d gauge theories. The associated canonical model involves coupled integrations that take the form of a generalized matrix model. It can be studied with the standard techniques of matrix models, in particular collective field theory and loop equations. In the first part of these notes, we explain how the results of collective field theory can be derived from the cluster expansion. The equalities between free energies at first orders is explained by the discrete Laplace transform relating canonical and grand canonical models. In a second part, we study the canonical loop equations and associate them with similar relations on the grand canonical side. It leads to relate the multi-point densities, fundamental objects of the matrix model, to the generating functions of multi-rooted clusters. Finally, a method is proposed to derive loop equations directly on the grand canonical model

  6. Matrix models, geometric engineering and elliptic genera

    International Nuclear Information System (INIS)

    Hollowood, Timothy; Iqbal, Amer; Vafa, Cumrun

    2008-01-01

    We compute the prepotential of N = 2 supersymmetric gauge theories in four dimensions obtained by toroidal compactifications of gauge theories from 6 dimensions, as a function of Kaehler and complex moduli of T 2 . We use three different methods to obtain this: matrix models, geometric engineering and instanton calculus. Matrix model approach involves summing up planar diagrams of an associated gauge theory on T 2 . Geometric engineering involves considering F-theory on elliptic threefolds, and using topological vertex to sum up worldsheet instantons. Instanton calculus involves computation of elliptic genera of instanton moduli spaces on R 4 . We study the compactifications of N = 2* theory in detail and establish equivalence of all these three approaches in this case. As a byproduct we geometrically engineer theories with massive adjoint fields. As one application, we show that the moduli space of mass deformed M5-branes wrapped on T 2 combines the Kaehler and complex moduli of T 2 and the mass parameter into the period matrix of a genus 2 curve

  7. Matrix Metalloproteinases in Non-Neoplastic Disorders

    Science.gov (United States)

    Tokito, Akinori; Jougasaki, Michihisa

    2016-01-01

    The matrix metalloproteinases (MMPs) are zinc-dependent endopeptidases belonging to the metzincin superfamily. There are at least 23 members of MMPs ever reported in human, and they and their substrates are widely expressed in many tissues. Recent growing evidence has established that MMP not only can degrade a variety of components of extracellular matrix, but also can cleave and activate various non-matrix proteins, including cytokines, chemokines and growth factors, contributing to both physiological and pathological processes. In normal conditions, MMP expression and activity are tightly regulated via interactions between their activators and inhibitors. Imbalance among these factors, however, results in dysregulated MMP activity, which causes tissue destruction and functional alteration or local inflammation, leading to the development of diverse diseases, such as cardiovascular disease, arthritis, neurodegenerative disease, as well as cancer. This article focuses on the accumulated evidence supporting a wide range of roles of MMPs in various non-neoplastic diseases and provides an outlook on the therapeutic potential of inhibiting MMP action. PMID:27455234

  8. Analyticity and the Holographic S-Matrix

    Energy Technology Data Exchange (ETDEWEB)

    Fitzpatrick, A.Liam; /Stanford U., Phys. Dept.; Kaplan, Jared; /SLAC

    2012-04-03

    We derive a simple relation between the Mellin amplitude for AdS/CFT correlation functions and the bulk S-Matrix in the flat spacetime limit, proving a conjecture of Penedones. As a consequence of the Operator Product Expansion, the Mellin amplitude for any unitary CFT must be a meromorphic function with simple poles on the real axis. This provides a powerful and suggestive handle on the locality vis-a-vis analyticity properties of the S-Matrix. We begin to explore analyticity by showing how the familiar poles and branch cuts of scattering amplitudes arise from the holographic description. For this purpose we compute examples of Mellin amplitudes corresponding to 1-loop and 2-loop Witten diagrams in AdS. We also examine the flat spacetime limit of conformal blocks, implicitly relating the S-Matrix program to the Bootstrap program for CFTs. We use this connection to show how the existence of small black holes in AdS leads to a universal prediction for the conformal block decomposition of the dual CFT.

  9. Gas chromatography/matrix-isolation apparatus

    Science.gov (United States)

    Reedy, Gerald T.

    1986-01-01

    A gas-sample collection device provides matrix isolation of individual gas bands from a gas chromatographic separation and for the spectroscopic analysis of the individual sample bands. The device includes a vacuum chamber containing a rotatably supported, specular carousel having at least one reflecting surface for holding a sample deposited thereon. A gas inlet is provided for depositing a mixture of sample and matrix material on the reflecting surface which is maintained at a sufficiently low temperature to cause solidification. A first parabolic mirror directs an incident beam of electromagnetic radiation, such as in the infrared (IR) spectrum, from a source onto the sample/matrix mixture while a second parabolic mirror directs a second beam of electromagnetic radiation reflected by the specular surface to an IR spectrometer for determining the absorption spectra of the sample material deposited on the reflecting surface. The pair of off-axis parabolic mirrors having a common focal point are positioned outside of the vacuum chamber and may be displaced in combination for improved beam positioning and alignment. The carousel is provided with an aperture for each reflecting surface to facilitate accurate positioning of the incident beam relative to the gas-samples under analysis. Improved gas-sample deposition is insured by the use of a long focal length stereomicroscope positioned outside of the vacuum chamber for monitoring sample formation through a window, while the sample collector is positioned outside of the zone bounded by the incident and reflected electromagnetic beams for improved sample access and monitoring.

  10. The finite element response Matrix method

    International Nuclear Information System (INIS)

    Nakata, H.; Martin, W.R.

    1983-01-01

    A new method for global reactor core calculations is described. This method is based on a unique formulation of the response matrix method, implemented with a higher order finite element method. The unique aspects of this approach are twofold. First, there are two levels to the overall calculational scheme: the local or assembly level and the global or core level. Second, the response matrix scheme, which is formulated at both levels, consists of two separate response matrices rather than one response matrix as is generally the case. These separate response matrices are seen to be quite beneficial for the criticality eigenvalue calculation, because they are independent of k /SUB eff/. The response matrices are generated from a Galerkin finite element solution to the weak form of the diffusion equation, subject to an arbitrary incoming current and an arbitrary distributed source. Calculational results are reported for two test problems, the two-dimensional International Atomic Energy Agency benchmark problem and a two-dimensional pressurized water reactor test problem (Biblis reactor), and they compare well with standard coarse mesh methods with respect to accuracy and efficiency. Moreover, the accuracy (and capability) is comparable to fine mesh for a fraction of the computational cost. Extension of the method to treat heterogeneous assemblies and spatial depletion effects is discussed

  11. ABCD Matrix Method a Case Study

    CERN Document Server

    Seidov, Zakir F; Yahalom, Asher

    2004-01-01

    In the Israeli Electrostatic Accelerator FEL, the distance between the accelerator's end and the wiggler's entrance is about 2.1 m, and 1.4 MeV electron beam is transported through this space using four similar quadrupoles (FODO-channel). The transfer matrix method (ABCD matrix method) was used for simulating the beam transport, a set of programs is written in the several programming languages (MATHEMATICA, MATLAB, MATCAD, MAPLE) and reasonable agreement is demonstrated between experimental results and simulations. Comparison of ABCD matrix method with the direct "numerical experiments" using EGUN, ELOP, and GPT programs with and without taking into account the space-charge effects showed the agreement to be good enough as well. Also the inverse problem of finding emittance of the electron beam at the S1 screen position (before FODO-channel), by using the spot image at S2 screen position (after FODO-channel) as function of quad currents, is considered. Spot and beam at both screens are described as tilted eel...

  12. Deghosting based on the transmission matrix method

    Science.gov (United States)

    Wang, Benfeng; Wu, Ru-Shan; Chen, Xiaohong

    2017-12-01

    As the developments of seismic exploration and subsequent seismic exploitation advance, marine acquisition systems with towed streamers become an important seismic data acquisition method. But the existing air-water reflective interface can generate surface related multiples, including ghosts, which can affect the accuracy and performance of the following seismic data processing algorithms. Thus, we derive a deghosting method from a new perspective, i.e. using the transmission matrix (T-matrix) method instead of inverse scattering series. The T-matrix-based deghosting algorithm includes all scattering effects and is convergent absolutely. Initially, the effectiveness of the proposed method is demonstrated using synthetic data obtained from a designed layered model, and its noise-resistant property is also illustrated using noisy synthetic data contaminated by random noise. Numerical examples on complicated data from the open SMAART Pluto model and field marine data further demonstrate the validity and flexibility of the proposed method. After deghosting, low frequency components are recovered reasonably and the fake high frequency components are attenuated, and the recovered low frequency components will be useful for the subsequent full waveform inversion. The proposed deghosting method is currently suitable for two-dimensional towed streamer cases with accurate constant depth information and its extension into variable-depth streamers in three-dimensional cases will be studied in the future.

  13. Involvement of extracellular matrix constituents in breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Lochter, Andre; Bissell, Mina J

    1995-06-01

    It has recently been established that the extracellular matrix is required for normal functional differentiation of mammary epithelia not only in culture, but also in vivo. The mechanisms by which extracellular matrix affects differentiation, as well as the nature of extracellular matrix constituents which have major impacts on mammary gland function, have only now begun to be dissected. The intricate variety of extracellular matrix-mediated events and the remarkable degree of plasticity of extracellular matrix structure and composition at virtually all times during ontogeny, make such studies difficult. Similarly, during carcinogenesis, the extracellular matrix undergoes gross alterations, the consequences of which are not yet precisely understood. Nevertheless, an increasing amount of data suggests that the extracellular matrix and extracellular matrix-receptors might participate in the control of most, if not all, of the successive stages of breast tumors, from appearance to progression and metastasis.

  14. Fatigue Behavior of a Functionally-Graded Titanium Matrix Composite

    National Research Council Canada - National Science Library

    Cunningham, Scott R

    2005-01-01

    Functionally-graded Titanium Matrix Composites are an attempt to utilize the high-strength properties of a titanium matrix composite with a monolithic alloy having the more practical machining qualities...

  15. Using SEM Programs To Perform Matrix Manipulations and Data Simulation.

    Science.gov (United States)

    Raykov, Tenko; Marcoulides, George A.; Boyd, Jeremy

    2003-01-01

    Illustrates how commonly available structural equation modeling programs can be used to conduct some basic matrix manipulations and generate multivariate normal data with given means and positive definite covariance matrix. Demonstrates the outlined procedure. (SLD)

  16. A Note on Inclusion Intervals of Matrix Singular Values

    OpenAIRE

    Cui, Shu-Yu; Tian, Gui-Xian

    2012-01-01

    We establish an inclusion relation between two known inclusion intervals of matrix singular values in some special case. In addition, based on the use of positive scale vectors, a known inclusion interval of matrix singular values is also improved.

  17. The Mailman Algorithm: A Note on Matrix Vector Multiplication

    National Research Council Canada - National Science Library

    Liberty, Edo; Zucker, Steven W

    2008-01-01

    ...) operations and matching the running time of naively applying A to x. However, we claim that if the matrix contains only a constant number of distinct values, then reading the matrix once in O(mn...

  18. A wave propagation matrix method in semiclassical theory

    International Nuclear Information System (INIS)

    Lee, S.Y.; Takigawa, N.

    1977-05-01

    A wave propagation matrix method is used to derive the semiclassical formulae of the multiturning point problem. A phase shift matrix and a barrier transformation matrix are introduced to describe the processes of a particle travelling through a potential well and crossing a potential barrier respectively. The wave propagation matrix is given by the products of phase shift matrices and barrier transformation matrices. The method to study scattering by surface transparent potentials and the Bloch wave in solids is then applied

  19. Novel entries in a fungal biofilm matrix encyclopedia.

    Science.gov (United States)

    Zarnowski, Robert; Westler, William M; Lacmbouh, Ghislain Ade; Marita, Jane M; Bothe, Jameson R; Bernhardt, Jörg; Lounes-Hadj Sahraoui, Anissa; Fontaine, Joël; Sanchez, Hiram; Hatfield, Ronald D; Ntambi, James M; Nett, Jeniel E; Mitchell, Aaron P; Andes, David R

    2014-08-05

    Virulence of Candida is linked with its ability to form biofilms. Once established, biofilm infections are nearly impossible to eradicate. Biofilm cells live immersed in a self-produced matrix, a blend of extracellular biopolymers, many of which are uncharacterized. In this study, we provide a comprehensive analysis of the matrix manufactured by Candida albicans both in vitro and in a clinical niche animal model. We further explore the function of matrix components, including the impact on drug resistance. We uncovered components from each of the macromolecular classes (55% protein, 25% carbohydrate, 15% lipid, and 5% nucleic acid) in the C. albicans biofilm matrix. Three individual polysaccharides were identified and were suggested to interact physically. Surprisingly, a previously identified polysaccharide of functional importance, β-1,3-glucan, comprised only a small portion of the total matrix carbohydrate. Newly described, more abundant polysaccharides included α-1,2 branched α-1,6-mannans (87%) associated with unbranched β-1,6-glucans (13%) in an apparent mannan-glucan complex (MGCx). Functional matrix proteomic analysis revealed 458 distinct activities. The matrix lipids consisted of neutral glycerolipids (89.1%), polar glycerolipids (10.4%), and sphingolipids (0.5%). Examination of matrix nucleic acid identified DNA, primarily noncoding sequences. Several of the in vitro matrix components, including proteins and each of the polysaccharides, were also present in the matrix of a clinically relevant in vivo biofilm. Nuclear magnetic resonance (NMR) analysis demonstrated interaction of aggregate matrix with the antifungal fluconazole, consistent with a role in drug impedance and contribution of multiple matrix components. Importance: This report is the first to decipher the complex and unique macromolecular composition of the Candida biofilm matrix, demonstrate the clinical relevance of matrix components, and show that multiple matrix components are needed

  20. Mirror of the refined topological vertex from a matrix model

    CERN Document Server

    Eynard, B

    2011-01-01

    We find an explicit matrix model computing the refined topological vertex, starting from its representation in terms of plane partitions. We then find the spectral curve of that matrix model, and thus the mirror symmetry of the refined vertex. With the same method we also find a matrix model for the strip geometry, and we find its mirror curve. The fact that there is a matrix model shows that the refined topological string amplitudes also satisfy the remodeling the B-model construction.

  1. Separation of matrix alloy and reinforcement from aluminum metal ...

    Indian Academy of Sciences (India)

    TECS

    Separation of matrix alloy and reinforcements from pure Al–SiCp composite scrap by salt flux addi- tion has been theoretically predicted .... zero and the salt fluxes have only little solubility in the matrix metal, separation of the matrix ... aluminum melt with SiC at this temperature did not exceed. 30 min. In order to change the ...

  2. Rovibrational matrix elements of the multipole moments and of the ...

    Indian Academy of Sciences (India)

    Comparison with gas phase matrix elements shows that the effect of solid state interactions is marginal. Keywords. Multipole moments; linear polarizability; solid hydrogen, matrix elements. PACS Nos 33.15.Kr; 33.70.-w; 34.20.Gj. 1. Introduction. The rovibrational matrix elements of the multipole moments and polarizability of.

  3. Teaching Improvement Model Designed with DEA Method and Management Matrix

    Science.gov (United States)

    Montoneri, Bernard

    2014-01-01

    This study uses student evaluation of teachers to design a teaching improvement matrix based on teaching efficiency and performance by combining management matrix and data envelopment analysis. This matrix is designed to formulate suggestions to improve teaching. The research sample consists of 42 classes of freshmen following a course of English…

  4. The Matrix Element Method and Vector-Like Quark Searches

    CERN Document Server

    Morrison, Benjamin

    2016-01-01

    In my time at the CERN summer student program, I worked on applying the matrix element method to vector-like quark identification. I worked in the ATLAS University of Geneva group under Dr. Olaf Nackenhorst. I developed automated plotting tools with ROOT, a script for implementing and optimizing generated matrix element calculation code, and kinematic transforms for the matrix element method.

  5. Matrix Training of Preliteracy Skills with Preschoolers with Autism

    Science.gov (United States)

    Axe, Judah B.; Sainato, Diane M.

    2010-01-01

    Matrix training is a generative approach to instruction in which words are arranged in a matrix so that some multiword phrases are taught and others emerge without direct teaching. We taught 4 preschoolers with autism to follow instructions to perform action-picture combinations (e.g., circle the pepper, underline the deer). Each matrix contained…

  6. Lorentzian 3d gravity with wormholes via matrix models

    NARCIS (Netherlands)

    Ambjørn, J.; Jurkiewicz, J.; Loll, R.; Vernizzi, G.

    2001-01-01

    We uncover a surprising correspondence between a non-perturbative formulation of three-dimensional Lorentzian quantum gravity and a hermitian two-matrix model with ABAB-interaction. The gravitational transfer matrix can be expressed as the logarithm of a two-matrix integral, and we deduce from

  7. SOME PROPERTIES OF MATRIX ALGEBRA OF SEMI-QUATERNIONS

    Directory of Open Access Journals (Sweden)

    Mehdi JAFARI

    2015-03-01

    Full Text Available Abstract. By representing semi-quaternions as four-dimensional vectors andthe multiplication of quaternions as matrix-by-vector product, we investi-gate properties of matrix associated with a semi-quaternion and examine De-Moivre's formula for this matrix, from which the nth power of such a matrixcan be determined.

  8. SALTSTONE MATRIX CHARACTERIZATION AND STADIUM SIMULATION RESULTS

    Energy Technology Data Exchange (ETDEWEB)

    Langton, C.

    2009-07-30

    SIMCO Technologies, Inc. was contracted to evaluate the durability of the saltstone matrix material and to measure saltstone transport properties. This information will be used to: (1) Parameterize the STADIUM{reg_sign} service life code, (2) Predict the leach rate (degradation rate) for the saltstone matrix over 10,000 years using the STADIUM{reg_sign} concrete service life code, and (3) Validate the modeled results by conducting leaching (water immersion) tests. Saltstone durability for this evaluation is limited to changes in the matrix itself and does not include changes in the chemical speciation of the contaminants in the saltstone. This report summarized results obtained to date which include: characterization data for saltstone cured up to 365 days and characterization of saltstone cured for 137 days and immersed in water for 31 days. Chemicals for preparing simulated non-radioactive salt solution were obtained from chemical suppliers. The saltstone slurry was mixed according to directions provided by SRNL. However SIMCO Technologies Inc. personnel made a mistake in the premix proportions. The formulation SIMCO personnel used to prepare saltstone premix was not the reference mix proportions: 45 wt% slag, 45 wt% fly ash, and 10 wt% cement. SIMCO Technologies Inc. personnel used the following proportions: 21 wt% slag, 65 wt% fly ash, and 14 wt% cement. The mistake was acknowledged and new mixes have been prepared and are curing. The results presented in this report are assumed to be conservative since the excessive fly ash was used in the SIMCO saltstone. The SIMCO mixes are low in slag which is very reactive in the caustic salt solution. The impact is that the results presented in this report are expected to be conservative since the samples prepared were deficient in slag and contained excess fly ash. The hydraulic reactivity of slag is about four times that of fly ash so the amount of hydrated binder formed per unit volume in the SIMCO saltstone samples is

  9. AHP-ENHANCED SWOT MATRIX TEACHING STRATEGY

    Directory of Open Access Journals (Sweden)

    Mario Chipoco Quevedo

    2015-12-01

    Full Text Available ABSTRACT The SWOT matrix is the quintessential analysis tool for business purposes, and is taught both in undergraduate and postgraduate courses. However, it is widely understood that the selection of the critical success factors (CSFs that are included for analysis in the matrix is a very subjective and unstructured process, leaving room for bias and arbitrariness. One way to give a better foundation and support to the analysis results is by utilizing Analytic Hierarchical Process (AHP in order to weigh the importance of CSFs in the SWOT matrix and increase reliability of the output. This paper contains the design of a strategy to teach this topic in a marketing planning course, with the addition of a useful technique to overcome the limitations of the tool. RESUMEN La matriz FODA es la herramienta de análisis por excelencia para fines de negocios, y se enseña en cursos de pregrado y postgrado. Sin embargo, se entiende que la elección de los factores críticos de éxito (FCEs que se incluyen en la matriz para el análisis es un proceso muy subjetivo y no estructurado, que da cabida a sesgos y arbitrariedad. Una forma de dar una mejor base y respaldo a los resultados del análisis es mediante la utilización del Proceso Jerárquico Analítico (AHP con el fin de ponderar la importancia de los FCEs en la matriz FODA y aumentar la fiabilidad de los resultados. Este documento contiene el diseño de una estrategia para enseñar este tema en un curso de planificación de marketing, con la adición de una técnica útil para superar las limitaciones de la herramienta.

  10. Gas chromatography/matrix-isolation apparatus

    Science.gov (United States)

    Reedy, G.T.

    1986-06-10

    A gas-sample collection device provides matrix isolation of individual gas bands from a gas chromatographic separation and for the spectroscopic analysis of the individual sample bands. The device includes a vacuum chamber containing a rotatably supported, specular carousel having at least one reflecting surface for holding a sample deposited thereon. A gas inlet is provided for depositing a mixture of sample and matrix material on the reflecting surface which is maintained at a sufficiently low temperature to cause solidification. A first parabolic mirror directs an incident beam of electromagnetic radiation, such as in the infrared (IR) spectrum, from a source onto the sample/matrix mixture while a second parabolic mirror directs a second beam of electromagnetic radiation reflected by the specular surface to an IR spectrometer for determining the absorption spectra of the sample material deposited on the reflecting surface. The pair of off-axis parabolic mirrors having a common focal point are positioned outside of the vacuum chamber and may be displaced in combination for improved beam positioning and alignment. The carousel is provided with an aperture for each reflecting surface to facilitate accurate positioning of the incident beam relative to the gas-samples under analysis. Improved gas-sample deposition is insured by the use of a long focal length stereomicroscope positioned outside of the vacuum chamber for monitoring sample formation through a window, while the sample collector is positioned outside of the zone bounded by the incident and reflected electromagnetic beams for improved sample access and monitoring. 10 figs.

  11. Convergence of Transition Probability Matrix in CLVMarkov Models

    Science.gov (United States)

    Permana, D.; Pasaribu, U. S.; Indratno, S. W.; Suprayogi, S.

    2018-04-01

    A transition probability matrix is an arrangement of transition probability from one states to another in a Markov chain model (MCM). One of interesting study on the MCM is its behavior for a long time in the future. The behavior is derived from one property of transition probabilty matrix for n steps. This term is called the convergence of the n-step transition matrix for n move to infinity. Mathematically, the convergence of the transition probability matrix is finding the limit of the transition matrix which is powered by n where n moves to infinity. The convergence form of the transition probability matrix is very interesting as it will bring the matrix to its stationary form. This form is useful for predicting the probability of transitions between states in the future. The method usually used to find the convergence of transition probability matrix is through the process of limiting the distribution. In this paper, the convergence of the transition probability matrix is searched using a simple concept of linear algebra that is by diagonalizing the matrix.This method has a higher level of complexity because it has to perform the process of diagonalization in its matrix. But this way has the advantage of obtaining a common form of power n of the transition probability matrix. This form is useful to see transition matrix before stationary. For example cases are taken from CLV model using MCM called Model of CLV-Markov. There are several models taken by its transition probability matrix to find its convergence form. The result is that the convergence of the matrix of transition probability through diagonalization has similarity with convergence with commonly used distribution of probability limiting method.

  12. Multithreading for synchronization tolerance in matrix factorization

    International Nuclear Information System (INIS)

    Buttari, Alfredo; Dongarra, Jack; Husbands, Parry; Kurzak, Jakub; Yelick, Katherine

    2007-01-01

    Physical constraints such as power, leakage and pin bandwidth are currently driving the HPC industry to produce systems with unprecedented levels of concurrency. In these parallel systems, synchronization and memory operations are becoming considerably more expensive than before. In this work we study parallel matrix factorization codes and conclude that they need to be re-engineered to avoid unnecessary (and expensive) synchronization. We propose the use of multithreading combined with intelligent schedulers and implement representative algorithms in this style. Our results indicate that this strategy can significantly outperform traditional codes

  13. Theory of ion-matrix-sheath dynamics

    Science.gov (United States)

    Kos, L.; Tskhakaya, D. D.

    2018-01-01

    The time evolution of a one-dimensional, uni-polar ion sheath (an "ion matrix sheath") is investigated. The analytical solutions for the ion-fluid and Poisson's equations are found for an arbitrary time dependence of the wall-applied negative potential. In the case that the wall potential is large and remains constant after its ramp-up application, the explicit time dependencies of the sheath's parameters during the initial stage of the process are given. The characteristic rate of approaching the stationary state, satisfying the Child-Langmuir law, is determined.

  14. Random matrix techniques in quantum information theory

    Energy Technology Data Exchange (ETDEWEB)

    Collins, Benoît, E-mail: collins@math.kyoto-u.ac.jp [Department of Mathematics, Kyoto University, Kyoto 606-8502 (Japan); Département de Mathématique et Statistique, Université d’Ottawa, 585 King Edward, Ottawa, Ontario K1N6N5 (Canada); CNRS, Lyon (France); Nechita, Ion, E-mail: nechita@irsamc.ups-tlse.fr [Zentrum Mathematik, M5, Technische Universität München, Boltzmannstrasse 3, 85748 Garching (Germany); Laboratoire de Physique Théorique, CNRS, IRSAMC, Université de Toulouse, UPS, F-31062 Toulouse (France)

    2016-01-15

    The purpose of this review is to present some of the latest developments using random techniques, and in particular, random matrix techniques in quantum information theory. Our review is a blend of a rather exhaustive review and of more detailed examples—coming mainly from research projects in which the authors were involved. We focus on two main topics, random quantum states and random quantum channels. We present results related to entropic quantities, entanglement of typical states, entanglement thresholds, the output set of quantum channels, and violations of the minimum output entropy of random channels.

  15. Fracture behaviour of brittle (glass) matrix composites

    Czech Academy of Sciences Publication Activity Database

    Dlouhý, Ivo; Chlup, Zdeněk; Boccaccini, A. R.

    2005-01-01

    Roč. 482, - (2005), s. 115-122 ISSN 0255-5476. [International Conference on Materials Structure and Micromechanics of Fracture /4./. Brno, 23.06.2004-25.06.2004] R&D Projects: GA AV ČR(CZ) IAA2041003; GA ČR(CZ) GA101/02/0683 Institutional research plan: CEZ:AV0Z2041904 Keywords : Ceramic matrix composite s * fracture toughness * toughening effects Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 0.399, year: 2005

  16. Domestic tourism in Uruguay: a matrix approach

    Directory of Open Access Journals (Sweden)

    Magdalena Domínguez Pérez

    2016-01-01

    Full Text Available In this paper domestic tourism in Uruguay is analyzed by introducing an Origin-Destination matrix approach, and an attraction coefficient is calculated. We show that Montevideo is an attractive destination to every department except itself (even if it emits more trips than it receives, and the Southeast region is the main destination. Another important outcome is the importance of intra-regional patterns, associated to trips to bordering departments. Findings provide destination managers with practical knowledge, useful for reducing seasonality and attracting more domestic tourists throughout the year, as well as to deliver a better service offer, that attracts both usual visitors and new ones from competitive destinations.

  17. PRODUCT PORTFOLIO ANALYSIS - ARTHUR D. LITTLE MATRIX

    Directory of Open Access Journals (Sweden)

    Curmei Catalin Valeriu

    2011-07-01

    Full Text Available In recent decades we have witnessed an unseen dynamism among companies, which is explained by their desire to engage in more activities that provide a high level of development and diversification. Thus, as companies are diversifying more and more, their managers confront a number of challenges arising from the management of resources for the product portfolio and the low level of resources with which companies can identify, at a time. Responding to these challenges, over time were developed a series of analytical product portfolio methods through which managers can balance the sources of cash flows from the multiple products and also can identify the place and role of products, in strategic terms, within the product portfolio. In order to identify these methods the authors of the present paper have conducted a desk research in order to analyze the strategic marketing and management literature of the last 2 decades. Widely were studied a series of methods that are presented in the marketing and management literature as the main instruments used within the product portfolio strategic planning process. Among these methods we focused on the Arthur D. Little matrix. Thus the present paper has the purpose to outline the characteristics and strategic implications of the ADL matrix within a company’s product portfolio. After conducting this analysis we have found that restricting the product portfolio analysis to the A.D.L. matrix is not a very wise decision. The A.D.L. matrix among with other marketing tools of product portfolio analysis have some advantages and disadvantages and is trying to provide, at a time, a specific diagnosis of a company’s product portfolio. Therefore, the recommendation for the Romanian managers consists in a combined use of a wide range of tools and techniques for product portfolio analysis. This leads to a better understanding of the whole mix of product markets, included in portfolio analysis, the strategic position

  18. An update of the CKM matrix

    CERN Document Server

    Ali, Ahmed; London, D

    1995-01-01

    We update the constraints on the parameters of the quark flavour mixing matrix V_{CKM} in the standard model using the latest experimental and theoretical results as input. We present the 95\\% C.L. allowed region of the unitarity triangle and the corresponding ranges for the ratio \\vert V_{td}/V_{ts} \\vert and for the quantities \\sin 2\\alpha, \\sin 2\\beta and \\sin^2\\gamma, which characterize CP-violating rate asymmetries in B-decays. The SM prediction for the \\bs-\\bsb mixing ratio \\xs is also presented.

  19. Fundamentals of matrix analysis with applications

    CERN Document Server

    Saff, Edward Barry

    2015-01-01

    This book provides comprehensive coverage of matrix theory from a geometric and physical perspective, and the authors address the functionality of matrices and their ability to illustrate and aid in many practical applications.  Readers are introduced to inverses and eigenvalues through physical examples such as rotations, reflections, and projections, and only then are computational details described and explored.  MATLAB is utilized to aid in reader comprehension, and the authors are careful to address the issue of rank fragility so readers are not flummoxed when MATLAB displays conflict wit

  20. Drilling of polymer-matrix composites

    CERN Document Server

    Krishnaraj, Vijayan; Davim, J Paulo

    2013-01-01

    Polymeric composites are recognised as good candidates for structural components due to their inherent properties. However, they present several kinds of damages while creating holes for assembly. Delamination is considered the most serious damage since it reduces service life of the component. Thrust and delamination can be controlled by proper drill point geometry. Drilling at high speed is also a current requirement of the aerospace industry. This book focus on drilling of polymer matrix composites for aerospace and defence applications. The book presents introduction to machining of polymer composites and discusses drilling as a processing of composites.

  1. The CKM matrix and CP violation

    International Nuclear Information System (INIS)

    Nir, Y.

    1991-10-01

    The CKM picture of the quark sector is reviewed. We explain how the phenomena of quark mixing, CP violation and the absence of flavor changing neutral currents arise in the Standard Model. We describe the determination of the CKM elements from direct measurements, from unitarity and from indirect measurements. We discuss the motivation for schemes of quark mass matrices and analyze the Fritzsch scheme as an example. Finally, we list the experimental and theoretical improvements expected in the future in the determination of the CKM matrix. 86 refs., 6 figs

  2. Matrix factorization on a hypercube multiprocessor

    International Nuclear Information System (INIS)

    Geist, G.A.; Heath, M.T.

    1985-08-01

    This paper is concerned with parallel algorithms for matrix factorization on distributed-memory, message-passing multiprocessors, with special emphasis on the hypercube. Both Cholesky factorization of symmetric positive definite matrices and LU factorization of nonsymmetric matrices using partial pivoting are considered. The use of the resulting triangular factors to solve systems of linear equations by forward and back substitutions is also considered. Efficiencies of various parallel computational approaches are compared in terms of empirical results obtained on an Intel iPSC hypercube. 19 refs., 6 figs., 2 tabs

  3. Ceramic matrix composites by microwave assisted CVI

    International Nuclear Information System (INIS)

    Currier, R.P.; Devlin, D.J.

    1993-01-01

    Chemical vapor infiltration (CVI) processes for producing continuously reinforced ceramic composites are reviewed. Potential advantages of microwave assisted CVI are noted and numerical studies of microwave assisted CVI are reviewed. The models predict inverted thermal gradients in fibrous ceramic preforms subjected to microwave radiation and suggest processing strategies for achieving uniformly dense composites. Comparisons are made to experimental results on silicon-based composite systems. The role played by the relative ability of fiber and matrix to dissipate microwave energy is noted. Results suggest that microwave induced inverted gradients can be exploited to promote inside-out densification. 10 refs., 2 figs

  4. Evaluation of lymphangiogenesis in acellular dermal matrix

    Directory of Open Access Journals (Sweden)

    Mario Cherubino

    2014-01-01

    Full Text Available Introduction: Much attention has been directed towards understanding the phenomena of angiogenesis and lymphangiogenesis in wound healing. Thanks to the manifold dermal substitute available nowadays, wound treatment has improved greatly. Many studies have been published about angiogenesis and cell invasion in INTEGRA® . On the other hand, the development of the lymphatic network in acellular dermal matrix (ADM is a more obscure matter. In this article, we aim to characterize the different phases of host cell invasion in ADM. Special attention was given to lymphangiogenic aspects. Materials and Methods: Among 57 rats selected to analyse the role of ADM in lymphangiogenesis, we created four groups. We performed an excision procedure on both thighs of these rats: On the left one we did not perform any action except repairing the borders of the wound; while on the right one we used INTEGRA® implant. The excision biopsy was performed at four different times: First group after 7 days, second after 14 days, third after 21 days and fourth after 28 days. For our microscopic evaluation, we used the classical staining technique of haematoxylin and eosin and a semi-quantitative method in order to evaluate cellularity counts. To assess angiogenesis and lymphangiogenesis development we employed PROX-1 Ab and CD31/PECAM for immunohistochemical analysis. Results: We found remarkable wound contraction in defects that healed by secondary intention while minor wound contraction was observed in defects treated with ADM. At day 7, optical microscopy revealed a more plentiful cellularity in the granulation tissue compared with the dermal regeneration matrix. The immunohistochemical process highlighted vascular and lymphatic cells in both groups. After 14 days a high grade of fibrosis was noticeable in the non-treated group. At day 21, both lymphatic and vascular endothelial cells were better developed in the group with a dermal matrix application. At day 28

  5. Pseudo-Hermitian random matrix theory

    International Nuclear Information System (INIS)

    Srivastava, S.C.L.; Jain, S.R.

    2013-01-01

    Complex extension of quantum mechanics and the discovery of pseudo-unitarily invariant random matrix theory has set the stage for a number of applications of these concepts in physics. We briefly review the basic ideas and present applications to problems in statistical mechanics where new results have become possible. We have found it important to mention the precise directions where advances could be made if further results become available. (Copyright copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Matrix regularization of embedded 4-manifolds

    International Nuclear Information System (INIS)

    Trzetrzelewski, Maciej

    2012-01-01

    We consider products of two 2-manifolds such as S 2 ×S 2 , embedded in Euclidean space and show that the corresponding 4-volume preserving diffeomorphism algebra can be approximated by a tensor product SU(N)⊗SU(N) i.e. functions on a manifold are approximated by the Kronecker product of two SU(N) matrices. A regularization of the 4-sphere is also performed by constructing N 2 ×N 2 matrix representations of the 4-algebra (and as a byproduct of the 3-algebra which makes the regularization of S 3 also possible).

  7. Complex Masses in the S-Matrix

    International Nuclear Information System (INIS)

    Rupp, G.; Coito, S.; Beveren, E. van

    2010-01-01

    Most excited hadrons have multiparticle strong decay modes, which can often be described as resulting from intermediate states containing one or two resonances. In a theoretical approach, such a description in terms of quasi-two-particle initial and final states leads to unitarity violations, because of the complex masses of the involved resonances. In the present paper, an empirical algebraic procedure is presented to restore unitarity of the S-matrix while preserving its symmetry. Preliminary results are presented in a first application to S-wave ππ scattering, in the framework of the Resonance-Spectrum Expansion. (author)

  8. A random matrix approach to credit risk.

    Science.gov (United States)

    Münnix, Michael C; Schäfer, Rudi; Guhr, Thomas

    2014-01-01

    We estimate generic statistical properties of a structural credit risk model by considering an ensemble of correlation matrices. This ensemble is set up by Random Matrix Theory. We demonstrate analytically that the presence of correlations severely limits the effect of diversification in a credit portfolio if the correlations are not identically zero. The existence of correlations alters the tails of the loss distribution considerably, even if their average is zero. Under the assumption of randomly fluctuating correlations, a lower bound for the estimation of the loss distribution is provided.

  9. ABCD matrix method: A case study

    International Nuclear Information System (INIS)

    Seidov, Z.; Pinhasi, Y.; Yahalorn, A.

    2004-01-01

    Full Text:A general approach for phase-space characterization of an electron beam from physical measurements is presented. The theory is based on the paraxial beam tracing approach, employing ABCD transfer matrix. Relations between the beam radius and its angular spread at each plane along the beam line are derived, enabling calculations of beam emittance from its spot dimensions. The theory can be applied in electron beam transport systems, in which fluorescent screens serve as the only means for beam diagnostics. Optimization procedure was carried out in order to obtain a beam waist at a required position

  10. The requirement of matrix ATP for the import of precursor proteins into the mitochondrial matrix and intermembrane space

    NARCIS (Netherlands)

    Stuart, Rosemary A.; Gruhler, Albrecht; Klei, Ida van der; Guiard, Bernard; Koll, Hans; Neupert, Walter

    1994-01-01

    The role of ATP in the matrix for the import of precursor proteins into the various mitochondrial subcompartments was investigated by studying protein translocation at experimentally defined ATP levels. Proteins targeted to the matrix were neither imported or processed when matrix ATP was depleted.

  11. A new matrix for long and short range potential scattering

    International Nuclear Information System (INIS)

    Kolsrud, M.

    1979-01-01

    A new matrix f(p,k) is given for scattering in both long and short range potentials, and which becomes equal to the scattering amplitude when p=k. In the Coulomb case there are thus no anomalies. The f-matrix is established by means of an irregular scattering solution of the Schroedinger equation. The connection with the T-matrix is shown. The Coulomb f-matrix is given in closed form. The Yukawa and two other short range f-matrices are calculated to first order. The partial Coulomb f(sub l)-matrix is given. (Auth.)

  12. Low-Rank Matrix Factorization With Adaptive Graph Regularizer.

    Science.gov (United States)

    Lu, Gui-Fu; Wang, Yong; Zou, Jian

    2016-05-01

    In this paper, we present a novel low-rank matrix factorization algorithm with adaptive graph regularizer (LMFAGR). We extend the recently proposed low-rank matrix with manifold regularization (MMF) method with an adaptive regularizer. Different from MMF, which constructs an affinity graph in advance, LMFAGR can simultaneously seek graph weight matrix and low-dimensional representations of data. That is, graph construction and low-rank matrix factorization are incorporated into a unified framework, which results in an automatically updated graph rather than a predefined one. The experimental results on some data sets demonstrate that the proposed algorithm outperforms the state-of-the-art low-rank matrix factorization methods.

  13. Non-negative Matrix Factorization for Binary Data

    DEFF Research Database (Denmark)

    Larsen, Jacob Søgaard; Clemmensen, Line Katrine Harder

    We propose the Logistic Non-negative Matrix Factorization for decomposition of binary data. Binary data are frequently generated in e.g. text analysis, sensory data, market basket data etc. A common method for analysing non-negative data is the Non-negative Matrix Factorization, though...... this is in theory not appropriate for binary data, and thus we propose a novel Non-negative Matrix Factorization based on the logistic link function. Furthermore we generalize the method to handle missing data. The formulation of the method is compared to a previously proposed method (Tome et al., 2015). We compare...... the performance of the Logistic Non-negative Matrix Factorization to Least Squares Non-negative Matrix Factorization and Kullback-Leibler (KL) Non-negative Matrix Factorization on sets of binary data: a synthetic dataset, a set of student comments on their professors collected in a binary term-document matrix...

  14. The matrix metalloproteinase in larynx cancer

    Directory of Open Access Journals (Sweden)

    Weronika Lucas Grzelczyk

    2016-12-01

    Full Text Available One of the most common carcinoma occurring in the head and neck is laryngeal cancer. Despite the rapid scientific advances in medicine the prognosis for patients with such type of disease is not satisfying. In the last few years matrix metalloproteinases ‑ MMPs and their tissue inhibitors – TIMPs, mostly MMP‑2 and MMP‑9, arouses a great interest, especially in the process of carcinogenesis. It seems that their impact in the formation and development of laryngeal cancer is significant. MMPs a group of zinc‑ and calcium‑ dependent endopeptidases play crucial role extracellular matrix collagen degradation. That are enzymes, that degrade and the basement membrane by facilitating tumor growth, cell migration and tumor invasion. They are implicated in metastasis and angiogenesis potentiate within the tumor. Clear tendency was observed towards the higher MMPs and TIMPs expression in larynx cancer than in the stroma. Recent studies show correlations between increased MMP‑2 gene expression in the tumor tissue and clinical status, histopathological grading and metastases occurrence. The similar MMP2 over expression dependence were found on tumor recurrence and survival. Many authors pointed out, significant higher MMP‑2 expression as a potential marker of tumor invasiveness and worse prognosis in patients with larynx cancer. However, association of MMP 9 gene expression with laryngeal cancer clinicopathological features and survival of patients are ambiguous. Although, numerous researches show that this relationship does exists. Similar correlations could be found in TIMPs, but further studies are necessary because of small amount of literature.

  15. Polypropylene matrix composites reinforced with coconut fibers

    Directory of Open Access Journals (Sweden)

    Maria Virginia Gelfuso

    2011-09-01

    Full Text Available Polypropylene matrix composites reinforced with treated coconut fibers were produced. Fibers chemically treated (alkalization-CCUV samples or mechanically treated (ultrasonic shockwave-CMUV samples were dried using UV radiation. The goal was to combine low cost and eco-friendly treatments to improve fiber-matrix adhesion. Composite samples containing up to 20 vol. (% of untreated and treated coconut fibers were taken from boxes fabricated by injection molding. Water absorption and mechanical properties were investigated according to ASTM D570-98 and ASTM D638-03, respectively. Electrical characterizations were carried out to identify applications of these composites in the electrical sector. NBR 10296-Electrical Tracking Standard (specific to industry applications and conductivity measurements were obtained applying 5 kV DC to the samples. CMUV samples containing 5 vol. (% fiber presented superior tensile strength values (σ~28 MPa compared to the untreated fibers composite (σ~22 MPa or alkali treatment (σ~24 MPa. However, CMUV composites containing 10 vol. (% fiber presented best results for the electrical tracking test and electrical resistivity (3 × 10(7 Ω.m. The results suggest that composites reinforced with mechanically treated coconut fibers are suitable for electrical applications.

  16. Oriented nanofibers embedded in a polymer matrix

    Science.gov (United States)

    Barrera, Enrique V. (Inventor); Rodriguez-Macias, Fernando J. (Inventor); Lozano, Karen (Inventor); Chibante, Luis Paulo Felipe (Inventor); Stewart, David Harris (Inventor)

    2011-01-01

    A method of forming a composite of embedded nanofibers in a polymer matrix is disclosed. The method includes incorporating nanofibers in a plastic matrix forming agglomerates, and uniformly distributing the nanofibers by exposing the agglomerates to hydrodynamic stresses. The hydrodynamic said stresses force the agglomerates to break apart. In combination or additionally elongational flow is used to achieve small diameters and alignment. A nanofiber reinforced polymer composite system is disclosed. The system includes a plurality of nanofibers that are embedded in polymer matrices in micron size fibers. A method for producing nanotube continuous fibers is disclosed. Nanofibers are fibrils with diameters of 100 nm, multiwall nanotubes, single wall nanotubes and their various functionalized and derivatized forms. The method includes mixing a nanofiber in a polymer; and inducing an orientation of the nanofibers that enables the nanofibers to be used to enhance mechanical, thermal and electrical properties. Orientation is induced by high shear mixing and elongational flow, singly or in combination. The polymer may be removed from said nanofibers, leaving micron size fibers of aligned nanofibers.

  17. Discriminant projective non-negative matrix factorization.

    Directory of Open Access Journals (Sweden)

    Naiyang Guan

    Full Text Available Projective non-negative matrix factorization (PNMF projects high-dimensional non-negative examples X onto a lower-dimensional subspace spanned by a non-negative basis W and considers W(T X as their coefficients, i.e., X≈WW(T X. Since PNMF learns the natural parts-based representation Wof X, it has been widely used in many fields such as pattern recognition and computer vision. However, PNMF does not perform well in classification tasks because it completely ignores the label information of the dataset. This paper proposes a Discriminant PNMF method (DPNMF to overcome this deficiency. In particular, DPNMF exploits Fisher's criterion to PNMF for utilizing the label information. Similar to PNMF, DPNMF learns a single non-negative basis matrix and needs less computational burden than NMF. In contrast to PNMF, DPNMF maximizes the distance between centers of any two classes of examples meanwhile minimizes the distance between any two examples of the same class in the lower-dimensional subspace and thus has more discriminant power. We develop a multiplicative update rule to solve DPNMF and prove its convergence. Experimental results on four popular face image datasets confirm its effectiveness comparing with the representative NMF and PNMF algorithms.

  18. Entanglement property in matrix product spin systems

    International Nuclear Information System (INIS)

    Zhu Jingmin

    2012-01-01

    We study the entanglement property in matrix product spin-ring systems systemically by von Neumann entropy. We find that: (i) the Hilbert space dimension of one spin determines the upper limit of the maximal value of the entanglement entropy of one spin, while for multiparticle entanglement entropy, the upper limit of the maximal value depends on the dimension of the representation matrices. Based on the theory, we can realize the maximum of the entanglement entropy of any spin block by choosing the appropriate control parameter values. (ii) When the entanglement entropy of one spin takes its maximal value, the entanglement entropy of an asymptotically large spin block, i.e. the renormalization group fixed point, is not likely to take its maximal value, and so only the entanglement entropy S n of a spin block that varies with size n can fully characterize the spin-ring entanglement feature. Finally, we give the entanglement dynamics, i.e. the Hamiltonian of the matrix product system. (author)

  19. An XMM-Newton proton response matrix

    Science.gov (United States)

    Mineo, Teresa; Lotti, Simone; Molendi, Silvano; Ghizzardi, Simona

    2017-12-01

    Soft protons constitute an important source of background in focusing X-ray telescopes, as Chandra and XMM-Newton experience has shown. The optics in fact transmit them to the focal plane with efficiency similar to the X-ray photon one. This effect is a good opportunity to study the environment of the Earth magnetosphere crossed by the X-ray satellite orbits, provided that we can link the spectra detected by the instruments with the ones impacting on the optics. For X-ray photons this link has the form of the so-called response matrix that includes the optics effective area and the energy redistribution in the detectors. Here we present a first attempt to produce a proton response matrix exploiting ray-tracing and GEANT4 simulations with the final aim to be able to analyse XMM-Newton soft proton data and link them to the external environment. If the procedure is found to be reliable, it can be applied to any future X-ray missions to predict the soft particles spectra impacting on the focal plane instruments.

  20. A random matrix approach to language acquisition

    International Nuclear Information System (INIS)

    Nicolaidis, A; Kosmidis, Kosmas; Argyrakis, Panos

    2009-01-01

    Since language is tied to cognition, we expect the linguistic structures to reflect patterns that we encounter in nature and are analyzed by physics. Within this realm we investigate the process of lexicon acquisition, using analytical and tractable methods developed within physics. A lexicon is a mapping between sounds and referents of the perceived world. This mapping is represented by a matrix and the linguistic interaction among individuals is described by a random matrix model. There are two essential parameters in our approach. The strength of the linguistic interaction β, which is considered as a genetically determined ability, and the number N of sounds employed (the lexicon size). Our model of linguistic interaction is analytically studied using methods of statistical physics and simulated by Monte Carlo techniques. The analysis reveals an intricate relationship between the innate propensity for language acquisition β and the lexicon size N, N∼exp(β). Thus a small increase of the genetically determined β may lead to an incredible lexical explosion. Our approximate scheme offers an explanation for the biological affinity of different species and their simultaneous linguistic disparity

  1. Correlation between matrix metalloproteinase-9 and endometriosis.

    Science.gov (United States)

    Liu, Haiping; Wang, Jianye; Wang, Haiyu; Tang, Ning; Li, Yunfei; Zhang, Yan; Hao, Tianyu

    2015-01-01

    Endometrial implantation is the major cause of endometriosis (EMS). Matrix metalloproteinase (MMPs) can degrade multiple extracellular matrix and has been postulated to be related with EMC occurrence. This study thus investigated serum and ascites levels of MMP-9 in EMS patients, in an attempt to discuss the correlation between MMP-9 and EMS. A total of 100 EMS patients, including eutopic endometrium and ectopic endometrium, were recruited in this study along with hysteromyoma patients as the control group. Peripheral blood and ascites samples were collected and tested for MMP-9 levels using gelatin zymogram and enzyme-linked immunosorbent assay (ELISA). In EMS patients, MMP-9 levels in serum and ascites were 6.24 ± 0.53 mM and 38.57 ± 4.93 mM, respectively. Both of them were significantly higher than those in control group (P<0.05). Eutopic endometrium group had higher MMP-9 levels compared to those in ectopic endometrium ones (P<0.05). With advancement of disease stage, EMS patients had progressively elevated MMP-9 levels (P<0.05). Patients at proliferative stage had higher MMP-9 secretion (P<0.05). In summary, site of endometrium, clinical stage and proliferative cycle were independent risk factors for EMS. The elevation of serum and ascites MMP-9 existed in EMS patients, of which those had ectopic endometrium, advanced stage and at proliferative stage had higher MMP-9 expression.

  2. Multiple graph regularized nonnegative matrix factorization

    KAUST Repository

    Wang, Jim Jing-Yan

    2013-10-01

    Non-negative matrix factorization (NMF) has been widely used as a data representation method based on components. To overcome the disadvantage of NMF in failing to consider the manifold structure of a data set, graph regularized NMF (GrNMF) has been proposed by Cai et al. by constructing an affinity graph and searching for a matrix factorization that respects graph structure. Selecting a graph model and its corresponding parameters is critical for this strategy. This process is usually carried out by cross-validation or discrete grid search, which are time consuming and prone to overfitting. In this paper, we propose a GrNMF, called MultiGrNMF, in which the intrinsic manifold is approximated by a linear combination of several graphs with different models and parameters inspired by ensemble manifold regularization. Factorization metrics and linear combination coefficients of graphs are determined simultaneously within a unified object function. They are alternately optimized in an iterative algorithm, thus resulting in a novel data representation algorithm. Extensive experiments on a protein subcellular localization task and an Alzheimer\\'s disease diagnosis task demonstrate the effectiveness of the proposed algorithm. © 2013 Elsevier Ltd. All rights reserved.

  3. Tumorigenic Potential of Extracellular Matrix Metalloproteinase Inducer

    Science.gov (United States)

    Zucker, Stanley; Hymowitz, Michelle; Rollo, Ellen E.; Mann, Richard; Conner, Cathleen E.; Cao, Jian; Foda, Hussein D.; Tompkins, David C.; Toole, Bryan P.

    2001-01-01

    Extracellular matrix metalloproteinase inducer (EMMPRIN), a glycoprotein present on the cancer cell plasma membrane, enhances fibroblast synthesis of matrix metalloproteinases (MMPs). The demonstration that peritumoral fibroblasts synthesize most of the MMPs in human tumors rather than the cancer cells themselves has ignited interest in the role of EMMPRIN in tumor dissemination. In this report we have demonstrated a role for EMMPRIN in cancer progression. Human MDA-MB-436 breast cancer cells, which are tumorigenic but slow growing in vivo, were transfected with EMMPRIN cDNA and injected orthotopically into mammary tissue of female NCr nu/nu mice. Green fluorescent protein was used to visualize metastases. In three experiments, breast cancer cell clones transfected with EMMPRIN cDNA were considerably more tumorigenic and invasive than plasmid-transfected cancer cells. Increased gelatinase A and gelatinase B expression (demonstrated by in situ hybridization and gelatin substrate zymography) was demonstrated in EMMPRIN-enhanced tumors. In contrast to de novo breast cancers in humans, human tumors transplanted into mice elicited minimal stromal or inflammatory cell reactions. Based on these experimental studies and our previous demonstration that EMMPRIN is prominently displayed in human cancer tissue, we propose that EMMPRIN plays an important role in cancer progression by increasing synthesis of MMPs. PMID:11395366

  4. Unitarity and the Holographic S-Matrix

    Energy Technology Data Exchange (ETDEWEB)

    Fitzpatrick, A.Liam; /Stanford U., Phys. Dept.; Kaplan, Jared; /SLAC

    2012-08-28

    The bulk S-Matrix can be given a non-perturbative definition in terms of the flat space limit of AdS/CFT. We show that the unitarity of the S-Matrix, ie the optical theorem, can be derived by studying the behavior of the OPE and the conformal block decomposition in the flat space limit. When applied to perturbation theory in AdS, this gives a holographic derivation of the cutting rules for Feynman diagrams. To demonstrate these facts we introduce some new techniques for the analysis of conformal field theories. Chief among these is a method for conglomerating local primary operators O{sub 1} and O{sub 2} to extract the contribution of an individual primary O{sub {Delta},{ell}} in their OPE. This provides a method for isolating the contribution of specific conformal blocks which we use to prove an important relation between certain conformal block coefficients and anomalous dimensions. These techniques make essential use of the simplifications that occur when CFT correlators are expressed in terms of a Mellin amplitude.

  5. Nuclear matrix - structure, function and pathogenesis.

    Science.gov (United States)

    Wasąg, Piotr; Lenartowski, Robert

    2016-12-20

    The nuclear matrix (NM), or nuclear skeleton, is the non-chromatin, ribonucleoproteinaceous framework that is resistant to high ionic strength buffers, nonionic detergents, and nucleolytic enzymes. The NM fulfills a structural role in eukaryotic cells and is responsible for maintaining the shape of the nucleus and the spatial organization of chromatin. Moreover, the NM participates in several cellular processes, such as DNA replication/repair, gene expression, RNA transport, cell signaling and differentiation, cell cycle regulation, apoptosis and carcinogenesis. Short nucleotide sequences called scaffold/matrix attachment regions (S/MAR) anchor the chromatin loops to the NM proteins (NMP). The NMP composition is dynamic and depends on the cell type and differentiation stage or metabolic activity. Alterations in the NMP composition affect anchoring of the S/MARs and thus alter gene expression. This review aims to systematize information about the skeletal structure of the nucleus, with particular emphasis on the organization of the NM and its role in selected cellular processes. We also discuss several diseases that are caused by aberrant NM structure or dysfunction of individual NM elements.

  6. A random matrix approach to language acquisition

    Science.gov (United States)

    Nicolaidis, A.; Kosmidis, Kosmas; Argyrakis, Panos

    2009-12-01

    Since language is tied to cognition, we expect the linguistic structures to reflect patterns that we encounter in nature and are analyzed by physics. Within this realm we investigate the process of lexicon acquisition, using analytical and tractable methods developed within physics. A lexicon is a mapping between sounds and referents of the perceived world. This mapping is represented by a matrix and the linguistic interaction among individuals is described by a random matrix model. There are two essential parameters in our approach. The strength of the linguistic interaction β, which is considered as a genetically determined ability, and the number N of sounds employed (the lexicon size). Our model of linguistic interaction is analytically studied using methods of statistical physics and simulated by Monte Carlo techniques. The analysis reveals an intricate relationship between the innate propensity for language acquisition β and the lexicon size N, N~exp(β). Thus a small increase of the genetically determined β may lead to an incredible lexical explosion. Our approximate scheme offers an explanation for the biological affinity of different species and their simultaneous linguistic disparity.

  7. Semiclassical S-matrix for black holes

    CERN Document Server

    Bezrukov, Fedor; Sibiryakov, Sergey

    2015-01-01

    We propose a semiclassical method to calculate S-matrix elements for two-stage gravitational transitions involving matter collapse into a black hole and evaporation of the latter. The method consistently incorporates back-reaction of the collapsing and emitted quanta on the metric. We illustrate the method in several toy models describing spherical self-gravitating shells in asymptotically flat and AdS space-times. We find that electrically neutral shells reflect via the above collapse-evaporation process with probability exp(-B), where B is the Bekenstein-Hawking entropy of the intermediate black hole. This is consistent with interpretation of exp(B) as the number of black hole states. The same expression for the probability is obtained in the case of charged shells if one takes into account instability of the Cauchy horizon of the intermediate Reissner-Nordstrom black hole. Our semiclassical method opens a new systematic approach to the gravitational S-matrix in the non-perturbative regime.

  8. Extracellular matrix alterations in the Peyronie's disease.

    Science.gov (United States)

    Watanabe, Marcelo Silva; Theodoro, Thérèse Rachel; Coelho, Natália Lima; Mendes, Aline; Leonel, Monica Luzia Pereira; Mader, Ana Maria; Nader, Helena Bonciani; Glina, Sidney; Pinhal, Maria Aparecida Silva

    2017-07-01

    Peyronie's disease is characterized by fibrous plaque formation of the tunica albuginea, causing penile deformity and fertility problems. The aim of the present study was to investigate alterations in the extracellular matrix in Peyronie's disease. The study used tissues collected by surgical procedure from individuals that presented a well-established disease, while control samples were obtained by biopsies of fresh cadavers. Immunohistochemistry analysis followed by digital quantification was performed to evaluate TGF-β, heparanases and metalloproteinases (MMPs). The profile of sulfated glycosaminoglycans, chondroitin sulfate and dermatan sulfate was determined by agarose gel electrophoresis, while hyaluronic acid quantification was obtained by an ELISA-like assay. The expression of mRNA was investigated for syndecan-1 proteoglycan (Syn-1), interleukine-6 (IL-6), hyaluronic acid synthases, and hyaluronidases. Pathologic features showed decreased apoptosis and blood vessel number in Peyronie's tissues. TGF-β and IL-6 were significantly enhanced in Peyronie's disease. There was an increased expression of heparanases, though no alteration was observed for MMPs. Hyaluronic acid as well as hyaluronic acid synthases, hyaluronidases, and dermatan sulfate were not changed, while the level of chondroitin sulfate was significantly ( P  = 0.008, Mann-Whitney test) increased in Peyronie's samples. Heparanases and sulfated glycosaminoglycans seem to be involved in extracellular matrix alterations in Peyronie's disease.

  9. Electrometallurgical treatment of aluminum-matrix fuels

    International Nuclear Information System (INIS)

    Willit, J.L.; Gay, E.C.; Miller, W.E.; McPheeters, C.C.; Laidler, J.J.

    1996-01-01

    The electrometallurgical treatment process described in this paper builds on our experience in treating spent fuel from the Experimental Breeder Reactor (EBR-II). The work is also to some degree, a spin-off from applying electrometallurgical treatment to spent fuel from the Hanford single pass reactors (SPRs) and fuel and flush salt from the Molten Salt Reactor Experiment (MSRE) in treating EBR-II fuel, we recover the actinides from a uranium-zirconium fuel by electrorefining the uranium out of the chopped fuel. With SPR fuel, uranium is electrorefined out of the aluminum cladding. Both of these processes are conducted in a LiCl-KCl molten-salt electrolyte. In the case of the MSRE, which used a fluoride salt-based fuel, uranium in this salt is recovered through a series of electrochemical reductions. Recovering high-purity uranium from an aluminum-matrix fuel is more challenging than treating SPR or EBR-II fuel because the aluminum- matrix fuel is typically -90% (volume basis) aluminum

  10. Characterization and control of the fiber-matrix interface in ceramic matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Lowden, R.A.

    1989-03-01

    Fiber-reinforced SiC composites fabricated by thermal-gradient forced-flow chemical-vapor infiltration (FCVI) have exhibited both composite (toughened) and brittle behavior during mechanical property evaluation. Detailed analysis of the fiber-matrix interface revealed that a silica layer on the surface of Nicalon Si-C-O fibers tightly bonds the fiber to the matrix. The strongly bonded fiber and matrix, combined with the reduction in the strength of the fibers that occurs during processing, resulted in the observed brittle behavior. The mechanical behavior of Nicalon/SiC composites has been improved by applying thin coatings (silicon carbide, boron, boron nitride, molybdenum, carbon) to the fibers, prior to densification, to control the interfacial bond. Varying degrees of bonding have been achieved with different coating materials and film thicknesses. Fiber-matrix bond strengths have been quantitatively evaluated using an indentation method and a simple tensile test. The effects of bonding and friction on the mechanical behavior of this composite system have been investigated. 167 refs., 59 figs., 18 tabs.

  11. Drawing a different picture with pencil lead as matrix-assisted laser desorption/ionization matrix for fullerene derivatives.

    Science.gov (United States)

    Nye, Leanne C; Hungerbühler, Hartmut; Drewello, Thomas

    2018-02-01

    Inspired by reports on the use of pencil lead as a matrix-assisted laser desorption/ionization matrix, paving the way towards matrix-free matrix-assisted laser desorption/ionization, the present investigation evaluates its usage with organic fullerene derivatives. Currently, this class of compounds is best analysed using the electron transfer matrix trans-2-[3-(4-tert-butylphenyl)-2-methyl-2-propenylidene] malononitrile (DCTB), which was employed as the standard here. The suitability of pencil lead was additionally compared to direct (i.e. no matrix) laser desorption/ionization-mass spectrometry. The use of (DCTB) was identified as the by far gentler method, producing spectra with abundant molecular ion signals and much reduced fragmentation. Analytically, pencil lead was found to be ineffective as a matrix, however, appears to be an extremely easy and inexpensive method for producing sodium and potassium adducts.

  12. Development of a Matrix Alteration Model (MAM)

    International Nuclear Information System (INIS)

    Martinez Esparza, A.; Cunado, M. A.; Gago, J. A.; Quinones, J.; Iglesias, E.; Cobos, J.; Gonzalez de la Huebra, A.; Cera, E.; Merino, J.; Bruno, J.; Pablos, J. de; Casas, I.; Clarens, F.; Gimenez, J.

    2005-01-01

    The present report is a summary of the main tasks carried out within the WP4 of the SFS project (5th Framework Programme of the European Commission) by ENRESA and collaborators, mainly focused on the development of the so-called Matrix Alteration Model (MAM), a model to study the long-term oxidant dissolution of the spent fuel matrix under repository conditions. A variety of issues have been addressed: development of the MAM conceptual model, integration of a new matrix alteration mechanism in the radiolytic model, calibration and testing of the model, calculations for base case in Performance Assessment exercises, sensitivity analysis and an assessment of applicability of the MAM. The conceptual model for the UO2 oxidant dissolution is based on the processes expected to occur in the long term under repository conditions. Briefly, when water will enter in contact with the fuel surface, the first process we may expect is the radiolysis of water. Water radiolysis will generate reductant and oxidants and we may expect local oxidising conditions. Because of these local conditions, the surface of the fuel will be oxidized. The oxidation of the matrix and the attachment of aqueous ligands able to form strong complexes with its major component will favour the dissolution of the matrix. The integration of the matrix alteration (oxidation and dissolution) mechanism in the radiolytic model by means of elemental reactions has been mainly elucidated from the mechanistic models developed for non-irradiated UO2 dissolution experiments. Moreover, flow-through dissolution experiments with unirradiated UO2 have been used to calibrate the oxidative dissolution mechanism of UO2. The model developed has been able to reproduce experimental dissolution rates for pH > 5 and [HCO3 -] < 10-2 M when the oxidant is O2 at partial pressures lower than 21%, and 3 < pH < 9 and [HCO3 -] = 210-3 M and when the oxidant is H2O2 at concentrations below 10-4 M. These ranges cover the geochemical

  13. Advances in biomimetic regeneration of elastic matrix structures.

    Science.gov (United States)

    Sivaraman, Balakrishnan; Bashur, Chris A; Ramamurthi, Anand

    2012-10-01

    Elastin is a vital component of the extracellular matrix, providing soft connective tissues with the property of elastic recoil following deformation and regulating the cellular response via biomechanical transduction to maintain tissue homeostasis. The limited ability of most adult cells to synthesize elastin precursors and assemble them into mature crosslinked structures has hindered the development of functional tissue-engineered constructs that exhibit the structure and biomechanics of normal native elastic tissues in the body. In diseased tissues, the chronic overexpression of proteolytic enzymes can cause significant matrix degradation, to further limit the accumulation and quality (e.g., fiber formation) of newly deposited elastic matrix. This review provides an overview of the role and importance of elastin and elastic matrix in soft tissues, the challenges to elastic matrix generation in vitro and to regenerative elastic matrix repair in vivo, current biomolecular strategies to enhance elastin deposition and matrix assembly, and the need to concurrently inhibit proteolytic matrix disruption for improving the quantity and quality of elastogenesis. The review further presents biomaterial-based options using scaffolds and nanocarriers for spatio-temporal control over the presentation and release of these biomolecules, to enable biomimetic assembly of clinically relevant native elastic matrix-like superstructures. Finally, this review provides an overview of recent advances and prospects for the application of these strategies to regenerating tissue-type specific elastic matrix structures and superstructures.

  14. Finding a Hadamard matrix by simulated annealing of spin vectors

    Science.gov (United States)

    Bayu Suksmono, Andriyan

    2017-05-01

    Reformulation of a combinatorial problem into optimization of a statistical-mechanics system enables finding a better solution using heuristics derived from a physical process, such as by the simulated annealing (SA). In this paper, we present a Hadamard matrix (H-matrix) searching method based on the SA on an Ising model. By equivalence, an H-matrix can be converted into a seminormalized Hadamard (SH) matrix, whose first column is unit vector and the rest ones are vectors with equal number of -1 and +1 called SH-vectors. We define SH spin vectors as representation of the SH vectors, which play a similar role as the spins on Ising model. The topology of the lattice is generalized into a graph, whose edges represent orthogonality relationship among the SH spin vectors. Starting from a randomly generated quasi H-matrix Q, which is a matrix similar to the SH-matrix without imposing orthogonality, we perform the SA. The transitions of Q are conducted by random exchange of {+, -} spin-pair within the SH-spin vectors that follow the Metropolis update rule. Upon transition toward zeroth energy, the Q-matrix is evolved following a Markov chain toward an orthogonal matrix, at which the H-matrix is said to be found. We demonstrate the capability of the proposed method to find some low-order H-matrices, including the ones that cannot trivially be constructed by the Sylvester method.

  15. Eigensolver for a Sparse, Large Hermitian Matrix

    Science.gov (United States)

    Tisdale, E. Robert; Oyafuso, Fabiano; Klimeck, Gerhard; Brown, R. Chris

    2003-01-01

    A parallel-processing computer program finds a few eigenvalues in a sparse Hermitian matrix that contains as many as 100 million diagonal elements. This program finds the eigenvalues faster, using less memory, than do other, comparable eigensolver programs. This program implements a Lanczos algorithm in the American National Standards Institute/ International Organization for Standardization (ANSI/ISO) C computing language, using the Message Passing Interface (MPI) standard to complement an eigensolver in PARPACK. [PARPACK (Parallel Arnoldi Package) is an extension, to parallel-processing computer architectures, of ARPACK (Arnoldi Package), which is a collection of Fortran 77 subroutines that solve large-scale eigenvalue problems.] The eigensolver runs on Beowulf clusters of computers at the Jet Propulsion Laboratory (JPL).

  16. Extracellular Matrix Molecules Facilitating Vascular Biointegration

    Directory of Open Access Journals (Sweden)

    Martin K.C. Ng

    2012-08-01

    Full Text Available All vascular implants, including stents, heart valves and graft materials exhibit suboptimal biocompatibility that significantly reduces their clinical efficacy. A range of biomolecules in the subendothelial space have been shown to play critical roles in local regulation of thrombosis, endothelial growth and smooth muscle cell proliferation, making these attractive candidates for modulation of vascular device biointegration. However, classically used biomaterial coatings, such as fibronectin and laminin, modulate only one of these components; enhancing endothelial cell attachment, but also activating platelets and triggering thrombosis. This review examines a subset of extracellular matrix molecules that have demonstrated multi-faceted vascular compatibility and accordingly are promising candidates to improve the biointegration of vascular biomaterials.

  17. Secured Economic Dispatch Algorithm using GSDF Matrix

    Directory of Open Access Journals (Sweden)

    Slimane SOUAG

    2014-02-01

    Full Text Available In this paper we present a new method for solving the secured power flow problem by the economic dispatch using DC power flow method and Generation Shift Distribution Factor (GSDF. A graphical interface in LabVIEW has been created as a virtual instrument. Hence the DC power flow reduces the power flow problem to a set of linear equations, which make the iterative calculation very fast and the GSFD matrix present the effects of single and multiple generator MW change on the transmission line. The effectiveness of the method developed is identified through its application to an IEEE-14 bus test system. The calculation results show excellent performance of the proposed method, in regard to computation time and quality of results.

  18. A random matrix approach to VARMA processes

    International Nuclear Information System (INIS)

    Burda, Zdzislaw; Jarosz, Andrzej; Nowak, Maciej A; Snarska, Malgorzata

    2010-01-01

    We apply random matrix theory to derive the spectral density of large sample covariance matrices generated by multivariate VMA(q), VAR(q) and VARMA(q 1 , q 2 ) processes. In particular, we consider a limit where the number of random variables N and the number of consecutive time measurements T are large but the ratio N/T is fixed. In this regime, the underlying random matrices are asymptotically equivalent to free random variables (FRV). We apply the FRV calculus to calculate the eigenvalue density of the sample covariance for several VARMA-type processes. We explicitly solve the VARMA(1, 1) case and demonstrate perfect agreement between the analytical result and the spectra obtained by Monte Carlo simulations. The proposed method is purely algebraic and can be easily generalized to q 1 >1 and q 2 >1.

  19. Oxidation behaviour of the matrix materials

    International Nuclear Information System (INIS)

    Qiu Xueliang; He Jun; Ma Changwen; Zhang Shichao

    1996-01-01

    The oxidation kinetics of the three main components of the graphite matrix; nuclear grade natural graphite, petroleum coke graphite and carbon derived from thermoplastic formaldehyde resin; were studied in a flowing gas mixture of oxygen and nitrogen, or in a flowing Argon containing 1 vol % H 2 O. It is shown that the oxidation rate increases in the order of the petroleum coke graphite, the natural graphite, and the resin carbon. High temperature vacuum treatment of the natural graphite at 1950 deg. C decreases the impurities and increases the oxidation activation energy. Differences between the activation energy and the oxidation rate of the resin carbon heat-treated at 1950 and 1600 deg. C is resulted form the changes in the micro-pore texture and reduction of impurities. (author). 6 refs, 10 figs, 4 tabs

  20. Immobilization of krypton in a metal matrix

    International Nuclear Information System (INIS)

    Whitmell, D.S.

    1987-01-01

    The report presents the work carried out on the immobilization of krypton in a metallic matrix by combined ion implantation and sputtering. The process has been successfully tested using 100 curies of fully active krypton in order to demonstrate that the process operates in the radiation levels which will be obtained with active gas at a reprocessing plant. A design study for a plant for fuel reprocessing has shown that the process can be simply operated, without requiring shielded cells. These results, which complete the development programme, indicate that the process is ideal for the containment of kripton arising from the processing of nuclear fuel and that the product will retain the gas under normal storage conditions and also during simulated accident conditions