WorldWideScience

Sample records for tauri binary revealed

  1. HDE 245059: A WEAK-LINED T TAURI BINARY REVEALED BY CHANDRA AND KECK

    International Nuclear Information System (INIS)

    Baldovin-Saavedra, C.; Audard, M.; Duchene, G.; Guedel, M.; Skinner, S.L.; Paerels, F. B. S.; Ghez, A.; McCabe, C.

    2009-01-01

    We present the Chandra High Energy Transmission Grating Spectrometer and Keck observations of HDE 245059, a young weak-lined T Tauri star (WTTS), member of the pre-main-sequence group in the λ Orionis Cluster. Our high spatial resolution, near-infrared observations with Keck reveal that HDE 245059 is in fact a binary separated by 0.''87, probably composed of two WTTS based on their color indices. Based on this new information we have obtained an estimate of the masses of the binary components; ∼3 M sun and ∼2.5 M sun for the north and south components, respectively. We have also estimated the age of the system to be ∼2-3 Myr. We detect both components of the binary in the zeroth-order Chandra image and in the grating spectra. The light curves show X-ray variability of both sources and in particular a flaring event in the weaker southern component. The spectra of both stars show similar features: a combination of cool and hot plasma as demonstrated by several iron lines from Fe XVII to Fe XXV and a strong bremsstrahlung continuum at short wavelengths. We have fitted the combined grating and zeroth-order spectrum (considering the contribution of both stars) in XSPEC. The coronal abundances and emission measure distribution for the binary have been obtained using different methods, including a continuous emission measure distribution and a multi-temperature approximation. In all cases we have found that the emission is dominated by plasma between ∼8 and ∼15 MK a soft component at ∼4 MK and a hard component at ∼50 MK are also detected. The value of the hydrogen column density was low, N H ∼ 8 x 10 19 cm -2 , likely due to the clearing of the inner region of the λ Orionis cloud, where HDE 245059 is located. The abundance pattern shows an inverse first ionization potential effect for all elements from O to Fe, the only exception being Ca. To obtain the properties of the binary components, a 3-T model was fitted to the individual zeroth-order spectra

  2. Chandra resolves the T Tauri binary system RW Aur

    International Nuclear Information System (INIS)

    Skinner, Stephen L.; Güdel, Manuel

    2014-01-01

    RW Aur is a multiple T Tauri system consisting of an early-K type primary (A) and a K5 companion (B) at a separation of 1.''4. RW Aur A drives a bipolar optical jet that is well characterized optically. We present results of a sensitive Chandra observation whose primary objective was to search for evidence of soft extended X-ray emission along the jet, as has been seen for a few other nearby T Tauri stars. The binary is clearly resolved by Chandra and both stars are detected as X-ray sources. The X-ray spectra of both stars reveal evidence for cool and hot plasma. Surprisingly, the X-ray luminosity of the less-massive secondary is at least twice that of the primary and is variable. The disparity is attributed to the primary whose X-ray luminosity is at the low end of the range for classical T Tauri stars of similar mass based on established correlations. Deconvolved soft-band images show evidence for slight outward elongation of the source structure of RW Aur A along the blueshifted jet axis inside the central arcsecond. In addition, a faint X-ray emission peak is present on the redshifted axis at an offset of 1.''2 ± 0.''2 from the star. Deprojected jet speeds determined from previous optical studies are too low to explain this faint emission peak as shock-heated jet plasma. Thus, unless flow speeds in the redshifted jet have been underestimated, other mechanisms such as magnetic jet heating may be involved.

  3. The Curious Case of PDS 11: A Nearby, >10 Myr Old, Classical T Tauri Binary System

    Energy Technology Data Exchange (ETDEWEB)

    Mathew, Blesson; Manoj, P. [Department of Astronomy and Astrophysics, Tata Institute of Fundamental Research, Colaba, Mumbai 400005 (India); Bhatt, B. C.; Sahu, D. K.; Muneer, S. [Indian Institute of Astrophysics, Koramangala, Bangalore 560034 (India); Maheswar, G., E-mail: blesson.mathew@tifr.res.in [Aryabhatta Research Institute of Observational Sciences (ARIES), Nainital 263002 (India)

    2017-05-01

    We present results of our study of the PDS 11 binary system, which belongs to a rare class of isolated, high Galactic latitude T Tauri stars. Our spectroscopic analysis reveals that PDS 11 is an M2–M2 binary system with both components showing similar H α emission strengths. Both the components appear to be accreting and are classical T Tauri stars. The lithium doublet Li i  λ 6708, a signature of youth, is present in the spectrum of PDS 11A, but not in PDS 11B. From the application of lithium depletion boundary age-dating method and a comparison with the Li i  λ 6708 equivalent width distribution of moving groups, we estimated an age of 10–15 Myr for PDS 11A. Comparison with pre-main sequence evolutionary models indicates that PDS 11A is a 0.4 M {sub ⊙} T Tauri star at a distance of 114–131 pc. PDS 11 system does not appear to be associated with any known star-forming regions or moving groups. PDS 11 is a new addition, after TWA 30 and LDS 5606, to the interesting class of old, dusty, wide binary classical T Tauri systems in which both components are actively accreting.

  4. Pulsed Accretion in the T Tauri Binary TWA 3A

    Energy Technology Data Exchange (ETDEWEB)

    Tofflemire, Benjamin M.; Mathieu, Robert D. [Department of Astronomy, University of Wisconsin–Madison, 475 North Charter Street, Madison, WI 53706 (United States); Herczeg, Gregory J. [The Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing 100871 (China); Akeson, Rachel L.; Ciardi, David R. [NASA Exoplanet Science Institute, IPAC/Caltech, Pasadena, CA 91125 (United States)

    2017-06-20

    TWA 3A is the most recent addition to a small group of young binary systems that both actively accrete from a circumbinary disk and have spectroscopic orbital solutions. As such, it provides a unique opportunity to test binary accretion theory in a well-constrained setting. To examine TWA 3A’s time-variable accretion behavior, we have conducted a two-year, optical photometric monitoring campaign, obtaining dense orbital phase coverage (∼20 observations per orbit) for ∼15 orbital periods. From U -band measurements we derive the time-dependent binary mass accretion rate, finding bursts of accretion near each periastron passage. On average, these enhanced accretion events evolve over orbital phases 0.85 to 1.05, reaching their peak at periastron. The specific accretion rate increases above the quiescent value by a factor of ∼4 on average but the peak can be as high as an order of magnitude in a given orbit. The phase dependence and amplitude of TWA 3A accretion is in good agreement with numerical simulations of binary accretion with similar orbital parameters. In these simulations, periastron accretion bursts are fueled by periodic streams of material from the circumbinary disk that are driven by the binary orbit. We find that TWA 3A’s average accretion behavior is remarkably similar to DQ Tau, another T Tauri binary with similar orbital parameters, but with significantly less variability from orbit to orbit. This is only the second clear case of orbital-phase-dependent accretion in a T Tauri binary.

  5. ACCRETION AND MAGNETIC RECONNECTION IN THE CLASSICAL T TAURI BINARY DQ TAU

    Energy Technology Data Exchange (ETDEWEB)

    Tofflemire, Benjamin M.; Mathieu, Robert D. [Department of Astronomy, University of Wisconsin–Madison, 475 North Charter Street, Madison, WI 53706 (United States); Ardila, David R. [The Aerospace Corporation, M2-266, El Segundo, CA 90245 (United States); Akeson, Rachel L.; Ciardi, David R. [NASA Exoplanet Science Institute, IPAC/Caltech, Pasadena, CA 91125 (United States); Johns-Krull, Christopher [Department of Physics and Astronomy, Rice University, Houston, TX 77005 (United States); Herczeg, Gregory J. [The Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing 100871 (China); Quijano-Vodniza, Alberto [University of Nariño Observatory, Pasto, Nariño (Colombia)

    2017-01-20

    The theory of binary star formation predicts that close binaries ( a < 100 au) will experience periodic pulsed accretion events as streams of material form at the inner edge of a circumbinary disk (CBD), cross a dynamically cleared gap, and feed circumstellar disks or accrete directly onto the stars. The archetype for the pulsed accretion theory is the eccentric, short-period, classical T Tauri binary DQ Tau. Low-cadence (∼daily) broadband photometry has shown brightening events near most periastron passages, just as numerical simulations would predict for an eccentric binary. Magnetic reconnection events (flares) during the collision of stellar magnetospheres near periastron could, however, produce the same periodic, broadband behavior when observed at a one-day cadence. To reveal the dominant physical mechanism seen in DQ Tau’s low-cadence observations, we have obtained continuous, moderate-cadence, multiband photometry over 10 orbital periods, supplemented with 27 nights of minute-cadence photometry centered on four separate periastron passages. While both accretion and stellar flares are present, the dominant timescale and morphology of brightening events are characteristic of accretion. On average, the mass accretion rate increases by a factor of five near periastron, in good agreement with recent models. Large variability is observed in the morphology and amplitude of accretion events from orbit to orbit. We argue that this is due to the absence of stable circumstellar disks around each star, compounded by inhomogeneities at the inner edge of the CBD and within the accretion streams themselves. Quasiperiodic apastron accretion events are also observed, which are not predicted by binary accretion theory.

  6. Absolute dimensions of eclipsing binaries XXVII. V1130 tauri

    DEFF Research Database (Denmark)

    Clausen, Jens Viggo; Olsen, E, H.; Helt, B. E.

    2010-01-01

    stars: evolution / stars: fundamental parameters / stars: individual: V1130¿Tau / binaries: eclipsing / techniques: photometric / techniques: radial velocities Udgivelsesdato: 17 Feb.......stars: evolution / stars: fundamental parameters / stars: individual: V1130¿Tau / binaries: eclipsing / techniques: photometric / techniques: radial velocities Udgivelsesdato: 17 Feb....

  7. The binary RV Tauri star AC Her and evidence for a long-lived dust-disc

    NARCIS (Netherlands)

    Winckel, H. van; Waelkens, C.; Waters, L.B.F.M.; Molster, F.J.; Udry, S.; Bakker, E.J.

    1998-01-01

    We present in this letter a homogeneous set of CORAVEL radial velocity measurements of the well studied RV Tauri star AC Her showing it to be a binary with a period of 1196 ± 6 days. The photospheric abundances are deduced using high resolution, high signal-to-noise optical spectra and prove that AC

  8. Analysis of 45-years of Eclipse Timings of the Hyades (K2 V+ DA) Eclipsing Binary V471 Tauri

    Science.gov (United States)

    Marchioni, Lucas; Guinan, Edward; Engle, Scott

    2018-01-01

    V471 Tau is an important detached 0.521-day eclipsing binary composed of a K2 V and a hot DA white dwarf star. This system resides in the Hyades star cluster located approximately 153 Ly from us. V471 Tau is considered to be the end-product of common-envelope binary star evolution and is currently a pre-CV system. V471 Tau serves as a valuable astrophysical laboratory for studying stellar evolution, white dwarfs, stellar magnetic dynamos, and possible detection of low mass companions using the Light Travel Time (LTT) Effects. Since its discovery as an eclipsing binary in 1970, photometry has been carried out and many eclipse timings have been determined. We have performed an analysis of the available photometric data available on V471 Tauri. The binary system has been the subject of analyses regarding the orbital period. From this analysis several have postulated the existence of a third body in the form of a brown dwarf that is causing periodic variations in the system’s apparent period. In this study we combine ground based data with photometry secured recently from the Kepler K2 mission. After detrending and phasing the available data, we are able to compare the changing period of the eclipsing binary system against predictions on the existence of this third body. The results of the analysis will be presented. This research is sponsored by grants from NASA and NSF for which we are very grateful.

  9. Optical and Radio Observations of the T Tauri Binary KH 15D (V582 Mon): Stellar Properties, Disk Mass Limit, and Discovery of a CO Outflow

    Science.gov (United States)

    Aronow, Rachel A.; Herbst, William; Hughes, A. Meredith; Wilner, David J.; Winn, Joshua N.

    2018-01-01

    We present VRIJHK photometry of the KH 15D T Tauri binary system for the 2015/2016 and 2016/2017 observing seasons. For the first time in the modern (CCD) era, we are seeing Star B fully emerge from behind the trailing edge of the precessing circumbinary ring during each apastron passage. We are, therefore, able to measure its luminosity and color. Decades of photometry on the system now allow us to infer the effective temperature, radius, mass, and age of each binary component. We find our values to be in good agreement with previous studies, including archival photographic photometry from the era when both stars were fully visible, and they set the stage for a full model of the system that can be constructed once radial velocity measurements are available. We also present the first high-sensitivity radio observations of the system, taken with the Atacama Large Millimeter/submillimeter Array and the Submillimeter Array. The respective 2.0 and 0.88 mm observations provide an upper limit on the circumbinary (gas and dust) disk mass of 1.7 M Jup and reveal an extended CO outflow, which overlaps with the position, systemic velocity, and orientation of the KH 15D system and is certainly associated with it. The low velocity, tight collimation, and extended nature of the emission suggest that the outflow is inclined nearly orthogonal to the line of sight, implying it is also orthogonal to the circumbinary ring. The position angle of the radio outflow also agrees precisely with the direction of polarization of the optical emission during the faint phase. A small offset between the optical image of the binary and the central line of the CO outflow remains a puzzle and possible clue to the jet launching mechanism.

  10. High-precision broad-band linear polarimetry of early-type binaries. II. Variable, phase-locked polarization in triple Algol-type system λ Tauri

    Science.gov (United States)

    Berdyugin, A.; Piirola, V.; Sakanoi, T.; Kagitani, M.; Yoneda, M.

    2018-03-01

    Aim. To study the binary geometry of the classic Algol-type triple system λ Tau, we have searched for polarization variations over the orbital cycle of the inner semi-detached binary, arising from light scattering in the circumstellar material formed from ongoing mass transfer. Phase-locked polarization curves provide an independent estimate for the inclination i, orientation Ω, and the direction of the rotation for the inner orbit. Methods: Linear polarization measurements of λ Tau in the B, V , and R passbands with the high-precision Dipol-2 polarimeter have been carried out. The data have been obtained on the 60 cm KVA (Observatory Roque de los Muchachos, La Palma, Spain) and Tohoku 60 cm (Haleakala, Hawaii, USA) remotely controlled telescopes over 69 observing nights. Analytic and numerical modelling codes are used to interpret the data. Results: Optical polarimetry revealed small intrinsic polarization in λ Tau with 0.05% peak-to-peak variation over the orbital period of 3.95 d. The variability pattern is typical for binary systems showing strong second harmonic of the orbital period. We apply a standard analytical method and our own light scattering models to derive parameters of the inner binary orbit from the fit to the observed variability of the normalized Stokes parameters. From the analytical method, the average for three passband values of orbit inclination i = 76° + 1°/-2° and orientation Ω = 15°(195°) ± 2° are obtained. Scattering models give similar inclination values i = 72-76° and orbit orientation ranging from Ω = 16°(196°) to Ω = 19°(199°), depending on the geometry of the scattering cloud. The rotation of the inner system, as seen on the plane of the sky, is clockwise. We have found that with the scattering model the best fit is obtained for the scattering cloud located between the primary and the secondary, near the inner Lagrangian point or along the Roche lobe surface of the secondary facing the primary. The inclination i

  11. Near-Infrared Polarimetry of the GG Tauri A Binary System

    Science.gov (United States)

    Itoh, Yoichi; Oasa, Yumiko; Kudo, Tomoyuki; Kusakabe, Nobuhiko; Hashimoto, Jun; Abe, Lyu; Brandner, Wolfgang; Brandt, Timothy D.; Carson, Joseph C.; Egner, Sebastian; hide

    2014-01-01

    A high angular resolution near-infrared image that shows the intensity of polarization for the GG Tau A binary system was obtained with the Subaru Telescope. The image shows a circumbinary disk scattering the light from the central binary. The azimuthal profile of the intensity of polarization for the circumbinary disk is roughly reproduced by a simple disk model with the Henyey-Greenstein phase function and the Rayleigh function, indicating there are small dust grains at the surface of the disk. Combined with a previous observation of the circumbinary disk, our image indicates that the gap structure in the circumbinary disk orbits counterclockwise, but material in the disk orbits clockwise. We propose that there is a shadow caused by material located between the central binary and the circumbinary disk. The separations and position angles of the stellar components of the binary in the past 20 yr are consistent with the binary orbit with a = 33.4 AU and e = 0.34.

  12. Pulsations of the white dwarf component in V471 tauri-like binaries

    Energy Technology Data Exchange (ETDEWEB)

    Stanghellini, L. (Osservatorio Astronomico di Bologna (Italy)); Cox, A.N. (Los Alamos National Lab., NM (USA)); Starrfield, S.G. (Arizona State Univ., Tempe, AZ (USA). Dept. of Physics and Astronomy Los Alamos National Lab., NM (USA))

    1990-01-01

    The eclipsing spectroscopic binary V471 Tau has a compact DA component that has been observed to pulsate with multimode, low amplitude oscillations. We test three models with different masses (M/M{sub {circle dot}} = 0.6, 0.8, 1.0) against nonradial instability. Our models are derived from an evolutionary track calculated by Iben. The results confirm that the pulsations are driven by the {kappa} and {gamma} mechanisms operating in the ionization zones of carbon and oxygen. 18 refs., 1 fig., 1 tab.

  13. COMPLEX VARIABILITY OF THE Hα EMISSION LINE PROFILE OF THE T TAURI BINARY SYSTEM KH 15D: THE INFLUENCE OF ORBITAL PHASE, OCCULTATION BY THE CIRCUMBINARY DISK, AND ACCRETION PHENOMENA

    International Nuclear Information System (INIS)

    Hamilton, Catrina M.; Johns-Krull, Christopher M.; Mundt, Reinhard; Herbst, William; Winn, Joshua N.

    2012-01-01

    We have obtained 48 high-resolution echelle spectra of the pre-main-sequence eclipsing binary system KH 15D (V582 Mon, P = 48.37 days, e ∼ 0.6, M A = 0.6 M ☉ , M B = 0.7 M ☉ ). The eclipses are caused by a circumbinary disk (CBD) seen nearly edge on, which at the epoch of these observations completely obscured the orbit of star B and a large portion of the orbit of star A. The spectra were obtained over five contiguous observing seasons from 2001/2002 to 2005/2006 while star A was fully visible, fully occulted, and during several ingress and egress events. The Hα line profile shows dramatic changes in these time series data over timescales ranging from days to years. A fraction of the variations are due to 'edge effects' and depend only on the height of star A above or below the razor sharp edge of the occulting disk. Other observed variations depend on the orbital phase: the Hα emission line profile changes from an inverse P-Cygni-type profile during ingress to an enhanced double-peaked profile, with both a blue and a red emission component, during egress. Each of these interpreted variations are complicated by the fact that there is also a chaotic, irregular component present in these profiles. We find that the complex data set can be largely understood in the context of accretion onto the stars from a CBD with gas flows as predicted by the models of eccentric T Tauri binaries put forward by Artymowicz and Lubow, Günther and Kley, and de Val-Borro et al. In particular, our data provide strong support for the pulsed accretion phenomenon, in which enhanced accretion occurs during and after perihelion passage.

  14. Starspot evolution, differential rotation, and magnetic cycles in the chromospherically active binaries lambda andromedae, sigma Geminorum, II Pegasi, and V711 Tauri

    Science.gov (United States)

    Henry, Gregory W.; Eaton, Joel A.; Hamer, Jamesia; Hall, Douglas S.

    1995-01-01

    We have analyzed 15-19 yr of photoelectric photometry, obtained manually and with automated telescopes, of the chromospherically active binaries lambda And, sigma Gem, II Peg, and V711 Tau. These observations let us identify individual dark starspots on the stellar surfaces from periodic dimming of the starlight, follow the evolution of these spots, and search for long-term cyclic changes in the properties of these starspots that might reveal magnetic cycles analogous to the Sun's 11 yr sunspot cycle. We developed a computer code to fit a simple two-spot model to our observed light curves that allows us to extract the most easily determinable and most reliable spot parameters from the light curves, i.e., spot longitudes and radii. We then used these measured properties to identify individual spots and to chart their life histories by constructing migration and amplitude curves. We identified and followed 11 spots in lambda And, 16 in sigma Gem, 12 in II Peg, and 15 in V711 Tau. Lifetimes of individual spots ranged from a few months to longer than 6 yr. Differential rotation coefficients, estimated from the observed range of spot rotation periods for each star and defined by equation (2), were 0.04 for lambda And, 0.038 for sigma Gem, 0.005 for II Peg, and 0.006 for V711 Tau, versus 0.19 for the Sun. We searched for cyclic changes in mean brightness, B-V color index, and spot rotation period as evidence for long-term cycles. Of these, long-term variability in mean brightness appears to offer the best evidence for such cycles in these four stars. Cycles of 11.1 yr for lambda And, 8.5 yr for sigma Gem, 11 yr for II Peg, and 16 yr V711 Tau are implied by these mean brightness changes. Cyclic changes in spot rotation period were found in lambda And and possibly II Peg. Errors in B-V were too large for any long-term changes to be detectable.

  15. HII 2407: AN ECLIPSING BINARY REVEALED BY K2 OBSERVATIONS OF THE PLEIADES

    International Nuclear Information System (INIS)

    David, Trevor J.; Hillenbrand, Lynne A.; Zhang, Celia; Riddle, Reed L.; Stauffer, John; Rebull, L. M.; Cody, Ann Marie; Conroy, Kyle; Stassun, Keivan G.; Pope, Benjamin; Aigrain, Suzanne; Gillen, Ed; Cameron, Andrew Collier; Barrado, David; Isaacson, Howard; Marcy, Geoffrey W.; Ziegler, Carl; Law, Nicholas M.; Baranec, Christoph

    2015-01-01

    The star HII 2407 is a member of the relatively young Pleiades star cluster and was previously discovered to be a single-lined spectroscopic binary. It is newly identified here within Kepler/K2 photometric time series data as an eclipsing binary system. Mutual fitting of the radial velocity and photometric data leads to an orbital solution and constraints on fundamental stellar parameters. While the primary has arrived on the main sequence, the secondary is still pre-main sequence and we compare our results for the M/M ⊙ and R/R ⊙ values with stellar evolutionary models. We also demonstrate that the system is likely to be tidally synchronized. Follow-up infrared spectroscopy is likely to reveal the lines of the secondary, allowing for dynamically measured masses and elevating the system to benchmark eclipsing binary status

  16. HII 2407: AN ECLIPSING BINARY REVEALED BY K2 OBSERVATIONS OF THE PLEIADES

    Energy Technology Data Exchange (ETDEWEB)

    David, Trevor J.; Hillenbrand, Lynne A.; Zhang, Celia; Riddle, Reed L. [Department of Astronomy, California Institute of Technology, Pasadena, CA 91125 (United States); Stauffer, John; Rebull, L. M. [Spitzer Science Center, California Institute of Technology, Pasadena, CA 91125 (United States); Cody, Ann Marie [NASA Ames Research Center, Mountain View, CA 94035 (United States); Conroy, Kyle; Stassun, Keivan G. [Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235 (United States); Pope, Benjamin; Aigrain, Suzanne; Gillen, Ed [Department of Physics, University of Oxford, Keble Road, Oxford OX1 3RH (United Kingdom); Cameron, Andrew Collier [SUPA, School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, Fife KY16 9SS (United Kingdom); Barrado, David [Centro de Astrobiología, INTA-CSIC, Dpto. Astrofísica, ESAC Campus, P.O. Box 78, E-28691 Villanueva de la Cañada, Madrid (Spain); Isaacson, Howard; Marcy, Geoffrey W. [Department of Astronomy, University of California, Berkeley, CA 94720 (United States); Ziegler, Carl; Law, Nicholas M. [Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3255 (United States); Baranec, Christoph, E-mail: tjd@astro.caltech.edu [Institute for Astronomy, University of Hawai‘i at Mānoa, Hilo, HI 96720-2700 (United States)

    2015-11-20

    The star HII 2407 is a member of the relatively young Pleiades star cluster and was previously discovered to be a single-lined spectroscopic binary. It is newly identified here within Kepler/K2 photometric time series data as an eclipsing binary system. Mutual fitting of the radial velocity and photometric data leads to an orbital solution and constraints on fundamental stellar parameters. While the primary has arrived on the main sequence, the secondary is still pre-main sequence and we compare our results for the M/M{sub ⊙} and R/R{sub ⊙} values with stellar evolutionary models. We also demonstrate that the system is likely to be tidally synchronized. Follow-up infrared spectroscopy is likely to reveal the lines of the secondary, allowing for dynamically measured masses and elevating the system to benchmark eclipsing binary status.

  17. Environments of T Tauri stars

    International Nuclear Information System (INIS)

    Chevalier, R.A.

    1983-01-01

    The environments of T Tauri stars are probably determined by the interaction of a stellar wind with matter which is falling toward a newly formed star. As shown by Ulrich, the steady infall of cool gas with angular momentum toward the star leads to a density distribution with rhoproportionalr/sup -1/2/ inside a radius r/sub d/ and rhoproportionalr/sup -3/2/ outside r/sub d/. The radius r/sub d/ is determined by the angular momentum of the infalling gas. The expansion of the wind into this medium depends on the parameter α = M/sub w/v/sub w//M/sub in/v/sub in/(r/sub d/), where v/sub in/(r/sub d/) is the free-fall velocity at r/sub d/, M/sub in/ is the mass accretion rate, v/sub w/ is the wind velocity, and M/sub w/ is the mass loss rate. For α 14 cm, v/sub w/ = 150 km s -1 , M/sub in/ = 10 -7 M/sub sun/ yr -1 , and M/sub w/ = 3 x 10 -8 M/sub sun/ yr -1 . The inflow is clumpy. The shocked wind gives the radio emission and nebular emission from T Tauri, and dust within the clumps gives the infrared emission. T Tauri is in a transitory phase in which most of the wind has only recently propagated beyond r/sub d/. The model naturally predicts variable obscuration of T Tauri stars because the infalling clumps move on nonradial trajectories. The infrared emission can vary either because of structural changes in the circumstellar gas or because of variations in the stellar luminosity. Infrared variability should be small at short time scales because of light-travel time effects

  18. LUT Reveals a New Mass-transferring Semi-detached Binary

    Science.gov (United States)

    Qian, S.-B.; Zhou, X.; Zhu, L.-Y.; Zejda, M.; Soonthornthum, B.; Zhao, E.-G.; Zhang, J.; Zhang, B.; Liao, W.-P.

    2015-12-01

    GQ Dra is a short-period eclipsing binary in a double stellar system that was discovered by Hipparcos. Complete light curves in the UV band were obtained with the Lunar-based Ultraviolet Telescope in 2014 November and December. Photometric solutions are determined using the W-D (Wilson and Devinney) method. It is discovered that GQ Dra is a classical Algol-type semi-detached binary where the secondary component is filling the critical Roche lobe. An analysis of all available times of minimum light suggests that the orbital period is increasing continuously at a rate of \\dot{P}=+3.48(+/- 0.23)× {10}-7 days yr-1. This could be explained by mass transfer from the secondary to the primary, which is in agreement with the semi-detached configuration with a lobe-filling secondary. By assuming a conservation of mass and angular momentum, the mass transfer rate is estimated as \\dot{m}=9.57(+/- 0.63)× {10}-8 {M}⊙ {{yr}}-1. All of these results reveal that GQ Dra is a mass-transferring semi-detached binary in a double system that was formed from an initially detached binary star. After the massive primary evolves to fill the critical Roche lobe, the mass transfer will be reversed and the binary will evolve into a contact configuration with two sub-giant or giant component stars.

  19. Dust Around T Tauri Stars

    Directory of Open Access Journals (Sweden)

    Kyung-Won Suh

    2011-12-01

    Full Text Available To reproduce the multiple broad peaks and the fine spectral features in the spectral energy distributions (SEDs of T Tauri stars, we model dust around T Tauri stars using a radiative transfer model for multiple isothermal circumstellar dust shells. We calculate the radiative transfer model SEDs for multiple dust shells using the opacity functions for various dust grains at different temperatures. For six sample stars, we compare the model results with the observed SEDs including the Spitzer spectral data. We present model parameters for the best fit model SEDs that would be helpful to understand the overall structure of dust envelopes around classical T Tauri stars. We find that at least three separate dust components are required to reproduce the observed SEDs. For all the sample stars, an innermost hot (250-550 K dust component of amorphous (silicate and carbon and crystalline (corundum for all objects and forsterite for some objects grains is needed. Crystalline forsterite grains can reproduce many fine spectral features of the sample stars. We find that crystalline forsterite grains exist in cold regions (80-100 K as well as in hot inner shells.

  20. CO Fundamental Emission from V836 Tauri

    National Research Council Canada - National Science Library

    Najita, Joan R; Crockett, Nathan; Carr, John S

    2008-01-01

    We present high-resolution 4.7 micron CO fundamental spectroscopy of V836 Tau, a young star with properties that are between those of classical and weak T Tauri stars and which may be dissipating its circumstellar disk...

  1. Applicability of colour index calibrations to T Tauri stars

    Science.gov (United States)

    Schöning, T.; Ammler, M.

    2008-01-01

    We examine the applicability of effective temperature scales of several broad band colours to T Tauri stars (TTS). We take into account different colour systems as well as stellar parameters like metallicity and surface gravity which influence the conversion from colour indices or spectral type to effective temperature. For a large sample of TTS, we derive temperatures from broad band colour indices and check if they are consistent in a statistical sense with temperatures inferred from spectral types. There are some scales (for V-H, V-K, I-J, J-H, and J-K) which indeed predict the same temperatures as the spectral types and therefore can be at least used to confirm effective temperatures. Furthermore, we examine whether TTS with dynamically derived masses can be used for a test of evolutionary models and effective temperature calibrations. We compare the observed parameters of the eclipsing T Tauri binary V1642 Ori A to the predictions of evolutionary models in both the H-R and the Kiel diagram using temperatures derived with several colour index scales. We check whether the evolutionary models and the colour index scales are consistent with coevality and the dynamical masses of the binary components. It turns out that the Kiel diagram offers a stricter test than the H-R diagram. Only the evolutionary models of \\cite {BCAH98} with mixing length parameter α=1.9 and of \\cite{DM94,DM97} show consistent results in the Kiel diagram in combination with some conversion scales of \\cite{HBS00} and of \\cite{KH95}.

  2. The reduced kinome of Ostreococcus tauri: core eukaryotic signalling components in a tractable model species.

    Science.gov (United States)

    Hindle, Matthew M; Martin, Sarah F; Noordally, Zeenat B; van Ooijen, Gerben; Barrios-Llerena, Martin E; Simpson, T Ian; Le Bihan, Thierry; Millar, Andrew J

    2014-08-02

    The current knowledge of eukaryote signalling originates from phenotypically diverse organisms. There is a pressing need to identify conserved signalling components among eukaryotes, which will lead to the transfer of knowledge across kingdoms. Two useful properties of a eukaryote model for signalling are (1) reduced signalling complexity, and (2) conservation of signalling components. The alga Ostreococcus tauri is described as the smallest free-living eukaryote. With less than 8,000 genes, it represents a highly constrained genomic palette. Our survey revealed 133 protein kinases and 34 protein phosphatases (1.7% and 0.4% of the proteome). We conducted phosphoproteomic experiments and constructed domain structures and phylogenies for the catalytic protein-kinases. For each of the major kinases families we review the completeness and divergence of O. tauri representatives in comparison to the well-studied kinomes of the laboratory models Arabidopsis thaliana and Saccharomyces cerevisiae, and of Homo sapiens. Many kinase clades in O. tauri were reduced to a single member, in preference to the loss of family diversity, whereas TKL and ABC1 clades were expanded. We also identified kinases that have been lost in A. thaliana but retained in O. tauri. For three, contrasting eukaryotic pathways - TOR, MAPK, and the circadian clock - we established the subset of conserved components and demonstrate conserved sites of substrate phosphorylation and kinase motifs. We conclude that O. tauri satisfies our two central requirements. Several of its kinases are more closely related to H. sapiens orthologs than S. cerevisiae is to H. sapiens. The greatly reduced kinome of O. tauri is therefore a suitable model for signalling in free-living eukaryotes.

  3. Cluster analysis reveals a binary effect of storage on boar sperm motility function.

    Science.gov (United States)

    Henning, Heiko; Petrunkina, Anna M; Harrison, Robin A P; Waberski, Dagmar

    2014-06-01

    Storage of liquid-preserved boar spermatozoa is associated with a loss of fertilising ability of the preserved spermatozoa, which standard semen parameters barely reflect. Monitoring responses to molecular effectors of sperm function (e.g. bicarbonate) has proven to be a more sensitive approach to investigating storage effects. Bicarbonate not only initiates capacitation in spermatozoa, but also induces motility activation. This occurs at ejaculation, but also happens throughout passage through the oviduct. In the present study we tested whether the specific response of boar sperm subpopulations to bicarbonate, as assessed by motility activation, is altered with the duration of storage in vitro. Three ejaculates from each of seven boars were diluted in Beltsville thawing solution and stored at 17°C. Only minor changes in the parameters of diluted semen were revealed over a period of 72h storage. For assessment of bicarbonate responses, subsamples of diluted spermatozoa were centrifuged through a discontinuous Percoll gradient after 12, 24 and 72h storage. Subsequently, spermatozoa were incubated in two Ca2+-free variants of Tyrode's medium either without (TyrControl) or with (TyrBic) 15mM bicarbonate, and computer-aided sperm analysis motility measurements were made. Cluster analysis of imaging data from motile spermatozoa revealed the presence of five major sperm subpopulations with distinct motility characteristics, differing between TyrBic and TyrControl at any given time (Pfunction in both media, bicarbonate induced an increase in a 'fast linear' cohort of spermatozoa in TyrBic regardless of storage (66.4% at 12h and 63.9% at 72h). These results imply a binary pattern in response of sperm motility function descriptors to storage: although the quantitative descriptor (percentage of motile spermatozoa) declines in washed semen samples, the qualitative descriptor (percentage of spermatozoa stimulated into fast linear motion by bicarbonate) is sustained

  4. How to unveil a T Tauri star

    International Nuclear Information System (INIS)

    Hartigan, P.; Hartmann, L.; Kenyon, S.; Hewett, R.; Stauffer, J.

    1989-01-01

    A method for separating the 'veiling' continuum often present in T Tauri stars from the underlying photospheric spectrum is described. Echelle observations from 5100 to 6800 A of the partially veiled T Tauri star BP Tau were analyzed to determine the shape of the veiling spectrum. The residuals of the fit indicate the deviation of the veiling spectrum from a simple continuum and identify the location and strength of any emission-line components. It is shown, by means of goodness-of-fit tests, that the spectrum of BP Tau can be decomposed into a normal stellar spectrum plus a smooth veiling continuum with only a few emission lines superposed. The continuum dominates the veiling spectrum in this spectral region; the veiling does not arise from numerous deep photospheric absorption lines that are filled in by weak emission. 36 refs

  5. Multi-epoch observations with high spatial resolution of multiple T Tauri systems

    Science.gov (United States)

    Csépány, Gergely; van den Ancker, Mario; Ábrahám, Péter; Köhler, Rainer; Brandner, Wolfgang; Hormuth, Felix; Hiss, Hector

    2017-07-01

    Context. In multiple pre-main-sequence systems the lifetime of circumstellar discs appears to be shorter than around single stars, and the actual dissipation process may depend on the binary parameters of the systems. Aims: We report high spatial resolution observations of multiple T Tauri systems at optical and infrared wavelengths. We determine whether the components are gravitationally bound and orbital motion is visible, derive orbital parameters, and investigate possible correlations between the binary parameters and disc states. Methods: We selected 18 T Tau multiple systems (16 binary and two triple systems, yielding 16 + 2 × 2 = 20 binary pairs) in the Taurus-Auriga star-forming region from a previous survey, with spectral types from K1 to M5 and separations from 0.22″ (31 AU) to 5.8″ (814 AU). We analysed data acquired in 2006-07 at Calar Alto using the AstraLux lucky imaging system, along with data from SPHERE and NACO at the VLT, and from the literature. Results: We found ten pairs to orbit each other, five pairs that may show orbital motion, and five likely common proper motion pairs. We found no obvious correlation between the stellar parameters and binary configuration. The 10 μm infra-red excess varies between 0.1 and 7.2 mag (similar to the distribution in single stars, where it is between 1.7 and 9.1), implying that the presence of the binary star does not greatly influence the emission from the inner disc. Conclusions: We have detected orbital motion in young T Tauri systems over a timescale of ≈ 20 yr. Further observations with even longer temporal baseline will provide crucial information on the dynamics of these young stellar systems.

  6. Proton transport in a binary biomimetic solution revealed by molecular dynamics simulation

    NARCIS (Netherlands)

    Liang, Chungwen; Jansen, Thomas L. C.

    2011-01-01

    We report the simulation results of the proton transport in a binary mixture of amphiphilic tetramethylurea (TMU) molecules and water. We identify different mechanisms that either facilitate or retard the proton transport. The efficiency of these mechanisms depends on the TMU concentration. The

  7. BRITE-Constellation reveals evidence for pulsations in the enigmatic binary η Carinae

    Science.gov (United States)

    Richardson, Noel D.; Pablo, Herbert; Sterken, Christiaan; Pigulski, Andrzej; Koenigsberger, Gloria; Moffat, Anthony F. J.; Madura, Thomas I.; Hamaguchi, Kenji; Corcoran, Michael F.; Damineli, Augusto; Gull, Theodore R.; Hillier, D. John; Weigelt, Gerd; Handler, Gerald; Popowicz, Adam; Wade, Gregg A.; Weiss, Werner W.; Zwintz, Konstanze

    2018-04-01

    η Car is a massive, eccentric binary with a rich observational history. We obtained the first high-cadence, high-precision light curves with the BRITE-Constellation nanosatellites over 6 months in 2016 and 6 months in 2017. The light curve is contaminated by several sources including the Homunculus nebula and neighbouring stars, including the eclipsing binary CPD -59°2628. However, we found two coherent oscillations in the light curve. These may represent pulsations that are not yet understood but we postulate that they are related to tidally excited oscillations of η Car's primary star, and would be similar to those detected in lower mass eccentric binaries. In particular, one frequency was previously detected by van Genderen et al. and Sterken et al. through the time period of 1974-1995 through timing measurements of photometric maxima. Thus, this frequency seems to have been detected for nearly four decades, indicating that it has been stable in frequency over this time span. These pulsations could help provide the first direct constraints on the fundamental parameters of the primary star if confirmed and refined with future observations.

  8. IGR J19294+1816: a new Be-X-ray binary revealed through infrared spectroscopy

    Science.gov (United States)

    Rodes-Roca, J. J.; Bernabeu, G.; Magazzù, A.; Torrejón, J. M.; Solano, E.

    2018-05-01

    The aim of this work is to characterize the counterpart to the INTErnational Gamma-Ray Astrophysics Laboratory high-mass X-ray binary candidate IGR J19294+1816 so as to establish its true nature. We obtained H-band spectra of the selected counterpart acquired with the Near Infrared Camera and Spectrograph instrument mounted on the Telescopio Nazionale Galileo 3.5-m telescope which represents the first infrared spectrum ever taken of this source. We complement the spectral analysis with infrared photometry from UKIDSS, 2MASS, WISE, and NEOWISE data bases. We classify the mass donor as a Be star. Subsequently, we compute its distance by properly taking into account the contamination produced by the circumstellar envelope. The findings indicate that IGR J19294+1816 is a transient source with a B1Ve donor at a distance of d = 11 ± 1 kpc, and luminosities of the order of 1036-37 erg s-1, displaying the typical behaviour of a Be-X-ray binary.

  9. A radio survey of weak T Tauri stars in Taurus-Auriga

    International Nuclear Information System (INIS)

    O'neal, D.; Feigelson, E.D.; Mathieu, R.D.; Myers, P.C.

    1990-01-01

    A multi-epoch 5 GHz survey of candidate or confirmed weak T Tauri stars in the Taurus-Auriga molecular cloud complex was conducted with the Very Large Array. The stars were chosen from those having detectable X-ray or chromospheric emission, and weak-emission-line pre-main-sequence stars found by other means. Snapshots of 99 VLA fields containing 119 candidate stars were obtained with a sensitivity of 0.7 mJy; most fields were observed on two or three dates. Nine radio sources coincident with cataloged stars were found. One may be an RS CVn binary system; the other eight are pre-main-sequence stars. Three of the detected stars - HD 283447, V410 Tau, and FK X-ray 1 - were previously known radio sources. Five new detections are Herbig's Anon 1, Hubble 4, HDE 283572, Elias 12, and HK Tau/c. At least five of the sources are variable, and no linear or circular polarization was found. Several lines of evidence suggest that the radio-detected weak T Tauri stars are quite young, perhaps younger on average than nondetected stars. 54 refs

  10. A CAUTIONARY TALE: MARVELS BROWN DWARF CANDIDATE REVEALS ITSELF TO BE A VERY LONG PERIOD, HIGHLY ECCENTRIC SPECTROSCOPIC STELLAR BINARY

    International Nuclear Information System (INIS)

    Mack, Claude E. III; Stassun, Keivan G.; De Lee, Nathan; Ge, Jian; Fleming, Scott W.; Deshpande, Rohit; Mahadevan, Suvrath; Wisniewski, John P.; Gaudi, B. Scott; Eastman, Jason; Beatty, Thomas G.; Ghezzi, Luan; González Hernández, Jonay I.; Femenía, Bruno; Mata Sánchez, Daniel; Ferreira, Letícia; Porto de Mello, Gustavo; Crepp, Justin R.; Agol, Eric; Bizyaev, Dmitry

    2013-01-01

    We report the discovery of a highly eccentric, double-lined spectroscopic binary star system (TYC 3010-1494-1), comprising two solar-type stars that we had initially identified as a single star with a brown dwarf companion. At the moderate resolving power of the MARVELS spectrograph and the spectrographs used for subsequent radial-velocity (RV) measurements (R ∼ Jup ) to a solar-type primary. At least three properties of this system allow it to masquerade as a single star with a very-low-mass companion: its large eccentricity (e ∼ 0.8), its relatively long period (P ∼ 238 days), and the approximately perpendicular orientation of the semi-major axis with respect to the line of sight (ω ∼ 189°). As a result of these properties, for ∼95% of the orbit the two sets of stellar spectral lines are completely blended, and the RV measurements based on centroiding on the apparently single-lined spectrum is very well fit by an orbit solution indicative of a brown dwarf companion on a more circular orbit (e ∼ 0.3). Only during the ∼5% of the orbit near periastron passage does the true, double-lined nature and large RV amplitude of ∼15 km s –1 reveal itself. The discovery of this binary system is an important lesson for RV surveys searching for substellar companions; at a given resolution and observing cadence, a survey will be susceptible to these kinds of astrophysical false positives for a range of orbital parameters. Finally, for surveys like MARVELS that lack the resolution for a useful line bisector analysis, it is imperative to monitor the peak of the cross-correlation function for suspicious changes in width or shape, so that such false positives can be flagged during the candidate vetting process.

  11. Whole Earth Telescope observations of V471 Tauri - The nature of the white dwarf variations

    Science.gov (United States)

    Clemens, J. C.; Nather, R. E.; Winget, D. E.; Robinson, E. L.; Wood, M. A.; Claver, C. F.; Provencal, J.; Kleinman, S. J.; Bradley, P. A.; Frueh, M. L.

    1992-01-01

    Time-series photometric observations of the binary star V471 Tauri were conducted using the Whole Earth Telescope observing network. The purpose was to determine the mechanism responsible for causing the 555 and 277 s periodic luminosity variations exhibited by the white dwarf in this binary. Previous observers have proposed that either g-mode pulsations or rotation of an accreting magnetic white dwarf could cause the variations, but were unable to decide which was the correct model. The present observations have answered this question. Learning the cause of the white dwarf variations has been possible because of the discovery of a periodic signal at 562 s in the Johnson U-band flux of the binary. By identifying this signal as reprocessed radiation and using its phase to infer the phase of the shorter wavelength radiation which produces it, made it possible to compare the phase of the 555 s U-band variations to the phase of the X-ray variations. It was found that U-band maximum coincides with X-ray minimum. From this result it was concluded that the magnetic rotator model accurately describes the variations observed, but that models involving g-mode pulsations do not.

  12. HOT GAS LINES IN T TAURI STARS

    International Nuclear Information System (INIS)

    Ardila, David R.; Herczeg, Gregory J.; Gregory, Scott G.; Hillenbrand, Lynne A.; Ingleby, Laura; Bergin, Edwin; Bethell, Thomas; Calvet, Nuria; France, Kevin; Brown, Alexander; Edwards, Suzan; Johns-Krull, Christopher; Linsky, Jeffrey L.; Yang, Hao; Valenti, Jeff A.; Abgrall, Hervé; Alexander, Richard D.; Brown, Joanna M.; Espaillat, Catherine; Hussain, Gaitee

    2013-01-01

    For Classical T Tauri Stars (CTTSs), the resonance doublets of N V, Si IV, and C IV, as well as the He II 1640 Å line, trace hot gas flows and act as diagnostics of the accretion process. In this paper we assemble a large high-resolution, high-sensitivity data set of these lines in CTTSs and Weak T Tauri Stars (WTTSs). The sample comprises 35 stars: 1 Herbig Ae star, 28 CTTSs, and 6 WTTSs. We find that the C IV, Si IV, and N V lines in CTTSs all have similar shapes. We decompose the C IV and He II lines into broad and narrow Gaussian components (BC and NC). The most common (50%) C IV line morphology in CTTSs is that of a low-velocity NC together with a redshifted BC. For CTTSs, a strong BC is the result of the accretion process. The contribution fraction of the NC to the C IV line flux in CTTSs increases with accretion rate, from ∼20% to up to ∼80%. The velocity centroids of the BCs and NCs are such that V BC ∼> 4 V NC , consistent with the predictions of the accretion shock model, in at most 12 out of 22 CTTSs. We do not find evidence of the post-shock becoming buried in the stellar photosphere due to the pressure of the accretion flow. The He II CTTSs lines are generally symmetric and narrow, with FWHM and redshifts comparable to those of WTTSs. They are less redshifted than the CTTSs C IV lines, by ∼10 km s –1 . The amount of flux in the BC of the He II line is small compared to that of the C IV line, and we show that this is consistent with models of the pre-shock column emission. Overall, the observations are consistent with the presence of multiple accretion columns with different densities or with accretion models that predict a slow-moving, low-density region in the periphery of the accretion column. For HN Tau A and RW Aur A, most of the C IV line is blueshifted suggesting that the C IV emission is produced by shocks within outflow jets. In our sample, the Herbig Ae star DX Cha is the only object for which we find a P-Cygni profile in the C IV

  13. Revealing the Formation of Stellar-mass Black Hole Binaries: The Need for Deci-Hertz Gravitational-wave Observatories

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xian [Astronomy Department, School of Physics, Peking University, 100871 Beijing (China); Amaro-Seoane, Pau, E-mail: xian.chen@pku.edu.cn, E-mail: pau@ice.cat [Institut de Ciències de l’Espai (CSIC-IEEC) at Campus UAB, Carrer de Can Magrans s/n, E-08193 Barcelona (Spain)

    2017-06-10

    The formation of compact stellar-mass binaries is a difficult, but interesting problem in astrophysics. There are two main formation channels: in the field via binary star evolution, or in dense stellar systems via dynamical interactions. The Laser Interferometer Gravitational-wave Observatory (LIGO) has detected black hole binaries (BHBs) via their gravitational radiation. These detections provide us with information about the physical parameters of the system. It has been claimed that when the Laser Interferometer Space Antenna (LISA) is operating, the joint observation of these binaries with LIGO will allow us to derive the channels that lead to their formation. However, we show that for BHBs in dense stellar systems dynamical interactions could lead to high eccentricities such that a fraction of the relativistic mergers are not audible to LISA. A non-detection by LISA puts a lower limit of about 0.005 on the eccentricity of a BHB entering the LIGO band. On the other hand, a deci-Hertz observatory, like DECIGO or Tian Qin, would significantly enhance the chances of a joint detection and shed light on the formation channels of these binaries.

  14. Revealing the Formation of Stellar-mass Black Hole Binaries: The Need for Deci-Hertz Gravitational-wave Observatories

    Science.gov (United States)

    Chen, Xian; Amaro-Seoane, Pau

    2017-06-01

    The formation of compact stellar-mass binaries is a difficult, but interesting problem in astrophysics. There are two main formation channels: in the field via binary star evolution, or in dense stellar systems via dynamical interactions. The Laser Interferometer Gravitational-wave Observatory (LIGO) has detected black hole binaries (BHBs) via their gravitational radiation. These detections provide us with information about the physical parameters of the system. It has been claimed that when the Laser Interferometer Space Antenna (LISA) is operating, the joint observation of these binaries with LIGO will allow us to derive the channels that lead to their formation. However, we show that for BHBs in dense stellar systems dynamical interactions could lead to high eccentricities such that a fraction of the relativistic mergers are not audible to LISA. A non-detection by LISA puts a lower limit of about 0.005 on the eccentricity of a BHB entering the LIGO band. On the other hand, a deci-Hertz observatory, like DECIGO or Tian Qin, would significantly enhance the chances of a joint detection and shed light on the formation channels of these binaries.

  15. LUT Reveals an Algol-type Eclipsing Binary With Three Additional Stellar Companions in a Multiple System

    Science.gov (United States)

    Zhu, L.-Y.; Zhou, X.; Hu, J.-Y.; Qian, S.-B.; Li, L.-J.; Liao, W.-P.; Tian, X.-M.; Wang, Z.-H.

    2016-04-01

    A complete light curve of the neglected eclipsing binary Algol V548 Cygni in the UV band was obtained with the Lunar-based Ultraviolet Telescope in 2014 May. Photometric solutions are obtained using the Wilson-Devinney method. It is found that solutions with and without third light are quite different. The mass ratio without third light is determined to be q = 0.307, while that derived with third light is q = 0.606. It is shown that V548 Cygni is a semi-detached binary where the secondary component is filling the critical Roche lobe. An analysis of all available eclipse times suggests that there are three cyclic variations in the O-C diagram that are interpreted by the light travel-time effect via the presence of three additional stellar companions. This is in agreement with the presence of a large quantity of third light in the system. The masses of these companions are estimated as m sin I‧ ˜ 1.09, 0.20, and 0.52 M⊙. They are orbiting the central binary with orbital periods of about 5.5, 23.3, and 69.9 years, I.e., in 1:4:12 resonance orbit. Their orbital separations are about 4.5, 13.2, and 26.4 au, respectively. Our photometric solutions suggest that they contribute about 32.4% to the total light of the multiple system. No obvious long-term changes in the orbital period were found, indicating that the contributions of the mass transfer and the mass loss due to magnetic braking to the period variations are comparable. The detection of three possible additional stellar components orbiting a typical Algol in a multiple system make V548 Cygni a very interesting binary to study in the future.

  16. Magnetic fields of weak line T-Tauri stars

    Science.gov (United States)

    Hill, Colin A.; MaTYSSE Collaboration

    2017-10-01

    T-Tauri stars (TTS) are late-type pre-main-sequence (PMS) stars that are gravitationally contracting towards the MS. Those that possess a massive accretion disc are known as classical T-Tauri stars (cTTSs), and those that have exhausted the gas in their inner discs are known as weak-line T-Tauri stars (wTTSs). Magnetic fields largely dictate the angular momentum evolution of TTS and can affect the formation and migration of planets. Thus, characterizing their magnetic fields is critical for testing and developing stellar dynamo models, and trialling scenarios currently invoked to explain low-mass star and planet formation. The MaTYSSE programme (Magnetic Topologies of Young Stars and the Survival of close-in Exoplanets) aims to determine the magnetic topologies of ~30 wTTSs and monitor the long-term topology variability of ~5 cTTSs. We present several wTTSs that have been magnetically mapped thus far (using Zeeman Doppler Imaging), where we find a much wider range of field topologies compared to cTTSs and MS dwarfs with similar internal structures.

  17. X-ray sources in regions of star formation. I. The naked T Tauri stars

    International Nuclear Information System (INIS)

    Walter, F.M.

    1986-01-01

    Einstein X-ray observations of regions of active star formation in Taurus, Ophiuchus, and Corona Australis show a greatly enhanced surface density of stellar X-ray sources over that seen in other parts of the sky. Many of the X-ray sources are identified with low-mass, pre-main-sequence stars which are not classical T Tauri stars. The X-ray, photometric, and spectroscopic data for these stars are discussed. Seven early K stars in Oph and CrA are likely to be 1-solar-mass post-T Tauri stars with ages of 10-million yr. The late K stars in Taurus are not post-T Tauri, but naked T Tauri stars, which are coeval with the T Tauri stars, differing mainly in the lack of a circumstellar envelope. 72 references

  18. Flat spectrum T Tauri stars: The case for infall

    Science.gov (United States)

    Calvet, Nuria; Hartmann, Lee; Kenyon, S. J.; Whitney, B. A.

    1994-01-01

    We show that the mid- to far-infrared fluxes of 'flat spectrum' T Tauri stars can be explained by radiative equilibrium emission from infalling dusty envelopes. Infall eliminates the need for accretion disks with non-standard temperature distributions. The simplicity and power of this explanantion indicates that models employing 'active' disks, in which the temperature distribution is a parameterized power law, should be invoked with caution. Infall also naturally explains the scattered light nebulae detected around many flat spectrum sources. To match the observed spectra, material must fall onto a disk rather than the central star, as expected for collapse of a rotating molecular cloud. It may be necessary to invoke cavities in the envelopes to explain the strength of optical and near-infrared emission; these cavities could be produced by the powerful bipolar outflows commonly observed from young stars. If viewed along the cavity, a source may be lightly extincted at visual wavelengths, while still accreting substantial amounts of material from the envelope. Infall may also be needed to explain the infrared-bright companions of many optical T Tauri stars. This picture suggests that many of the flat spectrum sources are 'protostars'-young stellar objects surrounded by dust infalling envelopes of substantial mass.

  19. High-resolution TNG spectra of T Tauri stars. Near-IR GIANO observations of the young variables XZ Tauri and DR Tauri

    Science.gov (United States)

    Antoniucci, S.; Nisini, B.; Biazzo, K.; Giannini, T.; Lorenzetti, D.; Sanna, N.; Harutyunyan, A.; Origlia, L.; Oliva, E.

    2017-10-01

    Aims: We aim to characterise the star-disk interaction region in T Tauri stars that show photometric and spectroscopic variability. Methods: We used the GIANO instrument at the Telescopio Nazionale Galileo to obtain near-infrared high-resolution spectra (R 50 000) of XZ Tau and DR Tau, which are two actively accreting T Tauri stars classified as EXors. Equivalent widths and profiles of the observed features are used to derive information on the properties of the inner disk, the accretion columns, and the winds. Results: Both sources display composite H I line profiles, where contributions from both accreting gas and high-velocity winds can be recognised. These lines are progressively more symmetric and narrower with increasing upper energy which may be interpreted in terms of two components with different decrements or imputed to self-absorption effects. XZ Tau is observed in a relatively high state of activity with respect to literature observations. The variation of the He I 1.08 μm line blue-shifted absorption, in particular, suggests that the inner wind has undergone a dramatic change in its velocity structure, connected with a recent accretion event. DR Tau has a more stable wind as its He I 1.08 μm absorption does not show variations with time in spite of strong variability of the emission component. The IR veiling in the two sources can be interpreted as due to blackbody emission at temperatures of 1600 K and 2300 K for XZ Tau and DR Tau, respectively, with emitting areas 30 times larger than the central star. While for XZ Tau these conditions are consistent with emission from the inner rim of the dusty disk, the fairly high temperature inferred for DR Tau might suggest that its veiling originates from a thick gaseous disk located within the dust sublimation radius. Strong and broad metallic lines, mainly from C I and Fe I, are detected in XZ Tau, similar to those observed in other EXor sources during burst phases. At variance, DR Tau shows weaker and

  20. PLANETARY SYSTEM FORMATION IN THE PROTOPLANETARY DISK AROUND HL TAURI

    Energy Technology Data Exchange (ETDEWEB)

    Akiyama, Eiji; Hasegawa, Yasuhiro; Hayashi, Masahiko; Iguchi, Satoru, E-mail: eiji.akiyama@nao.ac.jp, E-mail: yasuhiro.hasegawa@nao.ac.jp [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan)

    2016-02-20

    We reprocess the Atacama Large Millimeter/Submillimeter Array (ALMA) long-baseline science verification data taken toward HL Tauri. Assuming the observed gaps are opened up by currently forming, unseen bodies, we estimate the mass of such hypothetical bodies based on the following two approaches: the Hill radius analysis and a more elaborate approach developed from the angular momentum transfer analysis in gas disks. For the former, the measured gap widths are used for estimating the mass of the bodies, while for the latter, the measured gap depths are utilized. We show that their masses are comparable to or less than the mass of Jovian planets. By evaluating Toomre’s gravitational instability (GI) condition and cooling effect, we find that the GI might be a mechanism to form the bodies in the outer region of the disk. As the disk might be gravitationally unstable only in the outer region of the disk, inward planetary migration would be needed to construct the current architecture of the observed disk. We estimate the gap-opening mass and show that type II migration might be able to play such a role. Combining GIs with inward migration, we conjecture that all of the observed gaps may be a consequence of bodies that might have originally formed at the outer part of the disk, and have subsequently migrated to the current locations. While ALMA’s unprecedented high spatial resolution observations can revolutionize our picture of planet formation, more dedicated observational and theoretical studies are needed to fully understand the HL Tauri images.

  1. An optical spectroscopic study of T Tauri stars. I. Photospheric properties

    Energy Technology Data Exchange (ETDEWEB)

    Herczeg, Gregory J. [Kavli Institute for Astronomy and Astrophysics, Peking University, Yi He Yuan Lu 5, Haidian Qu, Beijing 100871 (China); Hillenbrand, Lynne A. [Caltech, MC105-24, 1200 East California Boulevard, Pasadena, CA 91125 (United States)

    2014-05-10

    Estimates of the mass and age of young stars from their location in the H-R diagram are limited by not only the typical observational uncertainties that apply to field stars, but also by large systematic uncertainties related to circumstellar phenomena. In this paper, we analyze flux-calibrated optical spectra to measure accurate spectral types and extinctions of 281 nearby T Tauri stars (TTSs). The primary advances in this paper are (1) the incorporation of a simplistic accretion continuum in optical spectral type and extinction measurements calculated over the full optical wavelength range and (2) the uniform analysis of a large sample of stars, many of which are well known and can serve as benchmarks. Comparisons between the non-accreting TTS photospheric templates and stellar photosphere models are used to derive conversions from spectral type to temperature. Differences between spectral types can be subtle and difficult to discern, especially when accounting for accretion and extinction. The spectral types measured here are mostly consistent with spectral types measured over the past decade. However, our new spectral types are one to two subclasses later than literature spectral types for the original members of the TW Hya Association (TWA) and are discrepant with literature values for some well-known members of the Taurus Molecular Cloud. Our extinction measurements are consistent with other optical extinction measurements but are typically 1 mag lower than near-IR measurements, likely the result of methodological differences and the presence of near-IR excesses in most CTTSs. As an illustration of the impact of accretion, spectral type, and extinction uncertainties on the H-R diagrams of young clusters, we find that the resulting luminosity spread of stars in the TWA is 15%-30%. The luminosity spread in the TWA and previously measured for binary stars in Taurus suggests that for a majority of stars, protostellar accretion rates are not large enough to

  2. Coronal Element Abundances of the Post-Common Envelope Binary V471 Tauri

    Science.gov (United States)

    Still, M.; Hussain, G.

    2004-07-01

    Evolutionary calculations indicate that there should be no peculiar abundances on the companion star resulting from the common envelope epoch if accretion efficiencies are low. Indeed, we find no evidence for peculiar abundances from archival ASCA data, although uncertainties are high. We find that a single-temperature plasma model does not fit the data. Two-temperature models with decoupled elemental abundances suggest that Fe is underabundant compared to the Hyades photospheric mean. In the absence of a measurement of photospheric Ne abundance in the cluster, we find Ne is overabundant compared to the solar photospheric value. This is indicative of the inverse first ionization potential effect. Differences between coronal and photospheric abundances are believed to result from the fractionation of ionized and neutral material in the upper atmosphere of the star. Care must be taken to include this effect when inferring photospheric abundances from X-ray data (e.g., Sarna 2004).

  3. The Hyades Binary Theta2 Tauri: Confronting Evolutionary Models With Optical Interferometry

    National Research Council Canada - National Science Library

    Armstrong, J. T; Mozurkewich, D; Hajian, Arsen R; Johnston, K. J; Thessin, R. N; Peterson, Deane M; Hummel, C. A; Gilbreath, G. C

    2006-01-01

    .... The rapid rotation and unknown rotational inclination of both components introduce uncertainty in their luminosities and colors, but not enough to reconcile both of them with the evolutionary models...

  4. THE BIMODALITY OF ACCRETION IN T TAURI STARS AND BROWN DWARFS

    International Nuclear Information System (INIS)

    Vorobyov, E. I.; Basu, Shantanu

    2009-01-01

    We present numerical solutions of the collapse of prestellar cores that lead to the formation and evolution of circumstellar disks. The disk evolution is then followed for up to three million years. A variety of models of different initial masses and rotation rates allow us to study disk accretion around brown dwarfs and low-mass T Tauri stars (TTSs), with central object mass M * sun , as well as intermediate- and upper-mass TTSs (0.2 M sun * sun ). Our models include self-gravity and allow for nonaxisymmetric motions. In addition to the self-consistently generated gravitational torques, we introduce an effective turbulent α-viscosity with α = 0.01, which allows us particularly to model accretion in the low-mass regime where disk self-gravity is diminishing. A range of models with observationally motivated values of the initial ratio of rotational-to-gravitational energy yield a correlation between mass accretion rate M-dot and M * that is relatively steep, as observed. Additionally, our modeling reveals evidence for a bimodality in the M-dot - M * correlation, with a steeper slope at lower masses and a shallower slope at intermediate and upper masses, as also implied by observations. Furthermore, we show that the neglect of disk self-gravity leads to a much steeper M-dot - M * relation for intermediate- and upper-mass TTSs. This demonstrates that an accurate treatment of global self-gravity is essential to understanding observations of circumstellar disks.

  5. EXOSAT observations of V471 Tauri - A 9.25 minute white dwarf pulsation and orbital phase dependent X-ray dips

    Science.gov (United States)

    Jensen, K. A.; Swank, J. H.; Petre, P.; Guinan, E. F.; Sion, E. M.

    1986-01-01

    New results obtained from a 28 hr continuous observation of V471 Tauri with the EXOSAT satellite are reported. The detection of soft X-ray fluxes from both the white dwarf and the K dwarf, the discovery of a 9.25 minute pulsation from the white dwarf, and the discovery of orbital phase-related soft X-ray dips are discussed. The dips may be correlated with the triangular Lagrangian points of the binary orbit. The X-ray flux from the white dwarf is consistent with thermal models for a white dwarf photosphere with T(eff) of about 35,000 K, log g = 8.0-8.5, and log N(H) = 18.65 + or - 0.2.

  6. EXOSAT observations of V471 Tauri - a 9.25 minute white dwarf pulsation and orbital phase dependent X-ray dips

    International Nuclear Information System (INIS)

    Jensen, K.A.; Swank, J.H.; Petre, P.; Guinan, E.F.; Sion, E.M.; Navy, E. O. Hulburt Center for Space Research, Washington, DC; Villanova Univ., PA)

    1986-01-01

    New results obtained from a 28 hr continuous observation of V471 Tauri with the EXOSAT satellite are reported. The detection of soft X-ray fluxes from both the white dwarf and the K dwarf, the discovery of a 9.25 minute pulsation from the white dwarf, and the discovery of orbital phase-related soft X-ray dips are discussed. The dips may be correlated with the triangular Lagrangian points of the binary orbit. The X-ray flux from the white dwarf is consistent with thermal models for a white dwarf photosphere with T(eff) of about 35,000 K, log g = 8.0-8.5, and log N(H) = 18.65 + or - 0.2. 25 references

  7. Interacting binaries

    CERN Document Server

    Shore, S N; van den Heuvel, EPJ

    1994-01-01

    This volume contains lecture notes presented at the 22nd Advanced Course of the Swiss Society for Astrophysics and Astronomy. The contributors deal with symbiotic stars, cataclysmic variables, massive binaries and X-ray binaries, in an attempt to provide a better understanding of stellar evolution.

  8. SPECTROPOLARIMETRY OF THE CLASSICAL T TAURI STAR BP TAU

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Wei; Johns-Krull, Christopher M., E-mail: wc2@rice.edu, E-mail: cmj@rice.edu [Department of Physics and Astronomy, Rice University, Houston, TX 77005 (United States)

    2013-10-20

    We implement a least-squares deconvolution (LSD) code to study magnetic fields on cool stars. We first apply our code to high-resolution optical echelle spectra of 53 Cam (a magnetic Ap star) and three well-studied cool stars (Arcturus, 61 Cyg A, and ξ Boo A) as well as the Sun (by observing the asteroid Vesta) as tests of the code and the instrumentation. Our analysis is based on several hundred photospheric lines spanning the wavelength range 5000 Å to 9000 Å. We then apply our LSD code to six nights of data on the Classical T Tauri Star BP Tau. A maximum longitudinal field of 370 ± 80 G is detected from the photospheric lines on BP Tau. A 1.8 kG dipole tilted at 129° with respect to the rotation axis and a 1.4 kG octupole tilted at 104° with respect to the rotation axis, both with a filling factor of 0.25, best fit our LSD Stokes V profiles. Measurements of several emission lines (He I 5876 Å, Ca II 8498 Å, and 8542 Å) show the presence of strong magnetic fields in the line formation regions of these lines, which are believed to be the base of the accretion footpoints. The field strength measured from these lines shows night-to-night variability consistent with rotation of the star.

  9. Spectral energy distributions of T Tauri stars - disk flaring and limits on accretion

    International Nuclear Information System (INIS)

    Kenyon, S.J.; Hartmann, L.

    1987-01-01

    The Adams et al. (1987) conclusion that much of the IR excess emission in the spectral energy distribution of T Tauri stars arises from reprocessing of stellar radiation by a dusty circumstellar disk is presently supported by analyses conducted in light of various models of these stars' spectra. A low mass reprocessing disk can, however, produce these spectra as well as a massive accretion disk. The detection of possible boundary layer radiation in the optical and near-UV regions poses the strongest limits on accretion rates. Disk accretion in the T Tauri phase does not significantly modify stellar evolution. 85 references

  10. Gravity Modes Reveal the Internal Rotation of a Post-mass-transfer Gamma Doradus/Delta Scuti Hybrid Pulsator in Kepler Eclipsing Binary KIC 9592855

    Science.gov (United States)

    Guo, Z.; Gies, D. R.; Matson, R. A.

    2017-12-01

    We report the discovery of a post-mass-transfer Gamma Doradus/Delta Scuti hybrid pulsator in the eclipsing binary KIC 9592855. This binary has a circular orbit, an orbital period of 1.2 days, and contains two stars of almost identical masses ({M}1=1.72 {M}⊙ ,{M}2=1.71 {M}⊙ ). However, the cooler secondary star is more evolved ({R}2=1.96 {R}⊙ ), while the hotter primary is still on the zero-age-main-sequence ({R}1=1.53 {R}⊙ ). Coeval models from single-star evolution cannot explain the observed masses and radii, and binary evolution with mass-transfer needs to be invoked. After subtracting the binary light curve, the Fourier spectrum shows low-order pressure-mode pulsations, and more dominantly, a cluster of low-frequency gravity modes at about 2 day-1. These g-modes are nearly equally spaced in period, and the period spacing pattern has a negative slope. We identify these g-modes as prograde dipole modes and find that they stem from the secondary star. The frequency range of unstable p-modes also agrees with that of the secondary. We derive the internal rotation rate of the convective core and the asymptotic period spacing from the observed g-modes. The resulting values suggest that the core and envelope rotate nearly uniformly, i.e., their rotation rates are both similar to the orbital frequency of this synchronized binary.

  11. Permutation Entropy for Random Binary Sequences

    Directory of Open Access Journals (Sweden)

    Lingfeng Liu

    2015-12-01

    Full Text Available In this paper, we generalize the permutation entropy (PE measure to binary sequences, which is based on Shannon’s entropy, and theoretically analyze this measure for random binary sequences. We deduce the theoretical value of PE for random binary sequences, which can be used to measure the randomness of binary sequences. We also reveal the relationship between this PE measure with other randomness measures, such as Shannon’s entropy and Lempel–Ziv complexity. The results show that PE is consistent with these two measures. Furthermore, we use PE as one of the randomness measures to evaluate the randomness of chaotic binary sequences.

  12. Stellar energetic particle ionization in protoplanetary disks around T Tauri stars

    Science.gov (United States)

    Rab, Ch.; Güdel, M.; Padovani, M.; Kamp, I.; Thi, W.-F.; Woitke, P.; Aresu, G.

    2017-07-01

    Context. Anomalies in the abundance measurements of short lived radionuclides in meteorites indicate that the protosolar nebulae was irradiated by a large number of energetic particles (E ≳ 10 MeV). The particle flux of the contemporary Sun cannot explain these anomalies. However, similar to T Tauri stars the young Sun was more active and probably produced enough high energy particles to explain those anomalies. Aims: We aim to study the interaction of stellar energetic particles with the gas component of the disk (I.e. ionization of molecular hydrogen) and identify possible observational tracers of this interaction. Methods: We used a 2D radiation thermo-chemical protoplanetary disk code to model a disk representative for T Tauri stars. We used a particle energy distribution derived from solar flare observations and an enhanced stellar particle flux proposed for T Tauri stars. For this particle spectrum we calculated the stellar particle ionization rate throughout the disk with an accurate particle transport model. We studied the impact of stellar particles for models with varying X-ray and cosmic-ray ionization rates. Results: We find that stellar particle ionization has a significant impact on the abundances of the common disk ionization tracers HCO+ and N2H+, especially in models with low cosmic-ray ionization rates (e.g. 10-19 s-1 for molecular hydrogen). In contrast to cosmic rays and X-rays, stellar particles cannot reach the midplane of the disk. Therefore molecular ions residing in the disk surface layers are more affected by stellar particle ionization than molecular ions tracing the cold layers and midplane of the disk. Conclusions: Spatially resolved observations of molecular ions tracing different vertical layers of the disk allow to disentangle the contribution of stellar particle ionization from other competing ionization sources. Modelling such observations with a model like the one presented here allows to constrain the stellar particle flux in

  13. Residual Gas and Dust around Transition Objects and Weak T Tauri Stars

    Energy Technology Data Exchange (ETDEWEB)

    Doppmann, Greg W. [W. M. Keck Observatory, 65-1120 Mamalahoa Hwy., Kamuela, HI 96743 (United States); Najita, Joan R. [National Optical Astronomy Observatory, 950 N. Cherry Avenue, Tucson, AZ 85719 (United States); Carr, John S., E-mail: gdoppmann@keck.hawaii.edu, E-mail: najita@noao.edu, E-mail: carr@nrl.navy.mil [Naval Research Laboratory, Code 7213, Washington, DC 20375 (United States)

    2017-02-20

    Residual gas in disks around young stars can spin down stars, circularize the orbits of terrestrial planets, and whisk away the dusty debris that is expected to serve as a signpost of terrestrial planet formation. We have carried out a sensitive search for residual gas and dust in the terrestrial planet region surrounding young stars ranging in age from a few to ∼10 Myr. Using high-resolution 4.7 μ m spectra of transition objects (TOs) and weak T Tauri stars, we searched for weak continuum excesses and CO fundamental emission, after making a careful correction for the stellar contribution to the observed spectrum. We find that the CO emission from TOs is weaker and located farther from the star than CO emission from nontransition T Tauri stars with similar stellar accretion rates. The difference is possibly the result of chemical and/or dynamical effects (i.e., a low CO abundance or close-in low-mass planets). The weak T Tauri stars show no CO fundamental emission down to low flux levels (5 × 10{sup −20} to 10{sup −18} W m{sup −2}). We illustrate how our results can be used to constrain the residual disk gas content in these systems and discuss their potential implications for star and planet formation.

  14. Identification and analysis of OsttaDSP, a phosphoglucan phosphatase from Ostreococcus tauri.

    Directory of Open Access Journals (Sweden)

    Julieta B Carrillo

    Full Text Available Ostreococcus tauri, the smallest free-living (non-symbiotic eukaryote yet described, is a unicellular green alga of the Prasinophyceae family. It has a very simple cellular organization and presents a unique starch granule and chloroplast. However, its starch metabolism exhibits a complexity comparable to higher plants, with multiple enzyme forms for each metabolic reaction. Glucan phosphatases, a family of enzymes functionally conserved in animals and plants, are essential for normal starch or glycogen degradation in plants and mammals, respectively. Despite the importance of O. tauri microalgae in evolution, there is no information available concerning the enzymes involved in reversible phosphorylation of starch. Here, we report the molecular cloning and heterologous expression of the gene coding for a dual specific phosphatase from O. tauri (OsttaDSP, homologous to Arabidopsis thaliana LSF2. The recombinant enzyme was purified to electrophoretic homogeneity to characterize its oligomeric and kinetic properties accurately. OsttaDSP is a homodimer of 54.5 kDa that binds and dephosphorylates amylopectin. Also, we also determined that residue C162 is involved in catalysis and possibly also in structural stability of the enzyme. Our results could contribute to better understand the role of glucan phosphatases in the metabolism of starch in green algae.

  15. Studies of Gas Disks in Binary Systems

    Science.gov (United States)

    de Val-Borro, Miguel

    There are over 300 exoplanets detected through radial velocity surveys and photometric studies showing a tremendous variety of masses, compositions and orbital parameters. Understanding the way these planets formed and evolved within the circumstellar disks they were initially embedded in is a crucial issue. In the first part of this thesis we study the physical interaction between a gaseous protoplanetary disk and an embedded planet using numerical simulations. In order to trust the results from simulations it is important to compare different methods. However, the standard test problems for hydrodynamic codes differ considerably from the case of a protoplanetary disk interacting with an embedded planet. We have carried out a code comparison in which the problem of a massive planet in a protoplanetary disk was studied with various numerical schemes. We compare the surface density, potential vorticity and azimuthally averaged density profiles at several times. There is overall good agreement between our codes for Neptune and Jupiter-sized planets. We performed simulations for each planet in an inviscid disk and including physical viscosity. The surface density profiles agree within about 5% for the grid-based schemes while the particle codes have less resolution in the low density regions and weaker spiral wakes. In Paper II, we study hydrodynamical instabilities in disks with planets. Vortices are generated close to the gap in our numerical models in agreement with the linear modal analysis. The vortices exert strong perturbations on the planet as they move along the gap and can change its migration rate. In addition, disk viscosity can be modified by the presence of vortices. The last part of this thesis studies the mass transfer in symbiotic binaries and close T Tauri binary systems. Our simulations of gravitationally focused wind accretion in binary systems show the formation of stream flows and enhanced accretion rates onto the compact component.

  16. Label-free quantitative analysis of the casein kinase 2-responsive phosphoproteome of the marine minimal model species Ostreococcus tauri.

    Science.gov (United States)

    Le Bihan, Thierry; Hindle, Matthew; Martin, Sarah F; Barrios-Llerena, Martin E; Krahmer, Johanna; Kis, Katalin; Millar, Andrew J; van Ooijen, Gerben

    2015-12-01

    Casein kinase 2 (CK2) is a protein kinase that phosphorylates a plethora of cellular target proteins involved in processes including DNA repair, cell cycle control, and circadian timekeeping. CK2 is functionally conserved across eukaryotes, although the substrate proteins identified in a range of complex tissues are often different. The marine alga Ostreococcus tauri is a unicellular eukaryotic model organism ideally suited to efficiently study generic roles of CK2 in the cellular circadian clock. Overexpression of CK2 leads to a slow circadian rhythm, verifying functional conservation of CK2 in timekeeping. The proteome was analysed in wild-type and CK2-overexpressing algae at dawn and dusk, revealing that differential abundance of the global proteome across the day is largely unaffected by overexpression. However, CK2 activity contributed more strongly to timekeeping at dusk than at dawn. The phosphoproteome of a CK2 overexpression line and cells treated with CK2 inhibitor was therefore analysed and compared to control cells at dusk. We report an extensive catalogue of 447 unique CK2-responsive differential phosphopeptide motifs to inform future studies into CK2 activity in the circadian clock of more complex tissues. All MS data have been deposited in the ProteomeXchange with identifier PXD000975 (http://proteomecentral.proteomexchange.org/dataset/PXD000975). © 2015 The Authors. PROTEOMICS Published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. The structure of the binary methyltransferase-SAH complex from Zika virus reveals a novel conformation for the mechanism of mRNA capping.

    Science.gov (United States)

    Chatrin, Chatrin; Talapatra, Sandeep K; Canard, Bruno; Kozielski, Frank

    2018-01-09

    Zika virus, a flavivirus like Dengue and West Nile viruses, poses a significant risk as a pathogen in the category of emerging infectious diseases. Zika infections typically cause nonspecific, mild symptoms, but can also manifest as a neurological disorder like Guillain-Barré syndrome. Infection in pregnant women is linked to microcephaly in newborn infants. The methyltransferase domain of the non-structural protein 5 is responsible for two sequential methylations of the 5'-RNA cap. This is crucial for genome stability, efficient translation, and escape from the host immune response. Here we present the crystal structures of the Zika methyltransferase domain in complex with the methyl-donor SAM and its by-product SAH. The methyltransferase-SAH binary complex presents a new conformation of a "closed" or "obstructed" state that would restrict the binding of new RNA for capping. The combination and comparison of our new structures with recently published Zika methyltransferase structures provide a first glimpse into the structural mechanism of Zika virus mRNA capping.

  18. CHARACTERIZING THE STELLAR PHOTOSPHERES AND NEAR-INFRARED EXCESSES IN ACCRETING T TAURI SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    McClure, M. K.; Calvet, N.; Hartmann, L.; Ingleby, L. [Department of Astronomy, University of Michigan, 500 Church Street, 830 Dennison Building, Ann Arbor, MI 48109 (United States); Espaillat, C. [Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Hernandez, J. [Centro de Investigaciones de Astronomia (CIDA), Merida 5101-A (Venezuela, Bolivarian Republic of); Luhman, K. L. [Department of Astronomy and Astrophysics and the Center for Exoplanets and Habitable Worlds, The Pennsylvania State University, University Park, PA 16802 (United States); D' Alessio, P. [Centro de Radioastronomia y Astrofisica, Universidad Nacional Autonoma de Mexico, 58089 Morelia, Michoacan (Mexico); Sargent, B., E-mail: melisma@umich.edu, E-mail: ncalvet@umich.edu, E-mail: lhartm@umich.edu, E-mail: lingleby@umich.edu, E-mail: cespaillat@cfa.harvard.edu, E-mail: hernandj@cida.ve, E-mail: kluhman@astro.psu.edu, E-mail: p.dalessio@astrosmo.unam.mx, E-mail: baspci@rit.edu [Center for Imaging Science and Laboratory for Multiwavelength Astrophysics, Rochester Institute of Technology, 54 Lomb Memorial Drive, Rochester, NY 14623 (United States)

    2013-05-20

    Using NASA Infrared Telescope Facility SpeX data from 0.8 to 4.5 {mu}m, we determine self-consistently the stellar properties and excess emission above the photosphere for a sample of classical T Tauri stars (CTTS) in the Taurus molecular cloud with varying degrees of accretion. This process uses a combination of techniques from the recent literature as well as observations of weak-line T Tauri stars to account for the differences in surface gravity and chromospheric activity between the T Tauri stars and dwarfs, which are typically used as photospheric templates for CTTS. Our improved veiling and extinction estimates for our targets allow us to extract flux-calibrated spectra of the excess in the near-infrared. We find that we are able to produce an acceptable parametric fit to the near-infrared excesses using a combination of up to three blackbodies. In half of our sample, two blackbodies at temperatures of 8000 K and 1600 K suffice. These temperatures and the corresponding solid angles are consistent with emission from the accretion shock on the stellar surface and the inner dust sublimation rim of the disk, respectively. In contrast, the other half requires three blackbodies at 8000, 1800, and 800 K, to describe the excess. We interpret the combined two cooler blackbodies as the dust sublimation wall with either a contribution from the disk surface beyond the wall or curvature of the wall itself, neither of which should have single-temperature blackbody emission. In these fits, we find no evidence of a contribution from optically thick gas inside the inner dust rim.

  19. High-resolution Ultraviolet Radiation Fields of Classical T Tauri Stars

    Science.gov (United States)

    France, Kevin; Schindhelm, Eric; Bergin, Edwin A.; Roueff, Evelyne; Abgrall, Hervé

    2014-04-01

    The far-ultraviolet (FUV; 912-1700 Å) radiation field from accreting central stars in classical T Tauri systems influences the disk chemistry during the period of giant planet formation. The FUV field may also play a critical role in determining the evolution of the inner disk (r publicly available in machine-readable format. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the data archive at the Space Telescope Science Institute. STScI is operated by the Association of Universities for Research in Astronomy, Inc. under NASA contract NAS 5-26555.

  20. VizieR Online Data Catalog: UBVR photometry of the T Tauri binary DQ Tau (Tofflemire+, 2017)

    Science.gov (United States)

    Tofflemire, B. M.; Mathieu, R. D.; Ardila, D. R.; Akeson, R. L.; Ciardi, D. R.; Johns-Krull, C.; Herczeg, G. J.; Quijano-Vodniza, A.

    2017-08-01

    The Las Cumbres Observatories Global Telescope (LCOGT) 1m network consists of nine 1m telescopes spread across four international sites: McDonald Observatory (USA), CTIO (Chile), SAAO (South Africa), and Siding Springs Observatory (Australia). Over the 2014-2015 winter observing season, our program requested queued "visits" of DQ Tau 20 times per orbital cycle for 10 continuous orbital periods. Given the orbital period of DQ Tau, the visit cadence corresponded to ~20hr. Each visit consisted of three observations in each of the broadband UBVRIY and narrowband Hα and Hβ filters, requiring ~20 minutes. In this work we present only the UBVR observations, which overlap with our high-cadence observations. Indeed, two eight-night observing runs centered on separate periastron passages of DQ Tau (orbital cycles 3 and 5 in Figure 1) were obtained from the WIYN 0.9m telescope located at the Kitt Peak National Observatory. In addition to our two eight-night observing runs, a synoptic observation program was also in place at the WIYN 0.9m that provided approximately weekly observations of DQ Tau in UBVR during the 2014-B semester. Also, using Apache Point Observatory's ARCSAT 0.5m telescope, we performed observing runs of seven and ten nights centered on two separate periastron passaged of DQ Tau (orbital cycles 2 and 7 in Figure 1). (1 data file).

  1. Ly{alpha} DOMINANCE OF THE CLASSICAL T TAURI FAR-ULTRAVIOLET RADIATION FIELD

    Energy Technology Data Exchange (ETDEWEB)

    Schindhelm, Eric [Southwest Research Institute, 1050 Walnut Street, Suite 300, Boulder, CO 80303 (United States); France, Kevin; Brown, Alexander [Center for Astrophysics and Space Astronomy, University of Colorado, 389 UCB, Boulder, CO 80309 (United States); Herczeg, Gregory J. [Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing 100871 (China); Bergin, Edwin [Department of Astronomy, University of Michigan, 830 Dennison Building, 500 Church Street, Ann Arbor, MI 48109 (United States); Yang Hao [Institute of Astrophysics, Central China Normal University, Wuhan, Hubei 430079 (China); Brown, Joanna M. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS-78, Cambridge, MA 02138 (United States); Linsky, Jeffrey L. [JILA, University of Colorado and NIST, 440 UCB, Boulder, CO 80309 (United States); Valenti, Jeff, E-mail: eric@boulder.swri.edu [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States)

    2012-09-01

    Far-ultraviolet (FUV) radiation plays an important role in determining chemical abundances in protoplanetary disks. H I Lyman {alpha} (Ly{alpha}) is suspected to be the dominant component of the FUV emission from Classical T Tauri Stars (CTTSs), but is difficult to measure directly due to circumstellar and interstellar H I absorption. To better characterize the intrinsic Ly{alpha} radiation, we present FUV spectra of 14 CTTSs taken with the Hubble Space Telescope Cosmic Origins Spectrograph and Space Telescope Imaging Spectrograph instruments. H{sub 2} fluorescence, commonly seen in the spectra of CTTSs, is excited by Ly{alpha} photons, providing an indirect measure of the Ly{alpha} flux incident upon the warm disk surface. We use observed H{sub 2} progression fluxes to reconstruct the CTTS Ly{alpha} profiles. The Ly{alpha} flux correlates with total measured FUV flux, in agreement with an accretion-related source of FUV emission. With a geometry-independent analysis, we confirm that in accreting T Tauri systems Ly{alpha} radiation dominates the FUV flux ({approx}1150 A -1700 A). In the systems surveyed this one line comprises 70%-90% of the total FUV flux.

  2. .xi. Tauri: a unique laboratory to study the dynamic interaction in a compact hierarchical quadruple system

    Czech Academy of Sciences Publication Activity Database

    Nemravová, J.; Harmanec, P.; Brož, M.; Vokrouhlický, D.; Mourard, D.; Hummel, C.A.; Cameron, C.; Matthews, J.M.; Bolton, C. T.; Božić, H.; Chini, R.; Dembsky, T.; Engle, S.; Farrington, C.D.; Grunhut, J.H.; Guenther, D.B.; Guinan, E. F.; Korčáková, D.; Koubský, Pavel; Křiček, R.; Kuschnig, R.; Mayer, P.; McCook, G.; Moffat, A.F.J.; Nardetto, N.; Prša, A.; Ribeiro, J.; Rowe, J.; Rucinski, S.M.; Škoda, Petr; Šlechta, Miroslav; Tallon-Bosc, I.; Votruba, Viktor; Weiss, W.W.; Wolf, M.; Zasche, P.; Zavala, R.T.

    2016-01-01

    Roč. 594, October (2016), A55/1-A55/47 ISSN 0004-6361 Institutional support: RVO:67985815 Keywords : close binaries * spectroscopic binaries * eclipsing binaries Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.378, year: 2014

  3. Ülehomme on õpetajate päev - milline oli teie parim õpetaja? / Toomas Edur, Tauri Tallermaa, Irene Käosaar...[jt.

    Index Scriptorium Estoniae

    2009-01-01

    Küsimusele vastavad Rahvusooper Estonia balleti kunstiline juht Toomas Edur, koolitaja Tauri Tallermaa, haridus- ja teadusministeeriumi osakonnajuhataja Irene Käosaar, Tartu Karlova Gümnaasiumi direktor Undel Kokk ja näitleja Andrus Vaarik

  4. Solving a binary puzzle

    NARCIS (Netherlands)

    P.H. Utomo (Putranto); R.H. Makarim (Rusydi)

    2017-01-01

    textabstractA Binary puzzle is a Sudoku-like puzzle with values in each cell taken from the set (Formula presented.). Let (Formula presented.) be an even integer, a solved binary puzzle is an (Formula presented.) binary array that satisfies the following conditions: (1) no three consecutive ones and

  5. Eclipsing binaries in open clusters

    DEFF Research Database (Denmark)

    Southworth, John; Clausen, J.V.

    2006-01-01

    Stars: fundamental parameters - Stars : binaries : eclipsing - Stars: Binaries: spectroscopic - Open clusters and ass. : general Udgivelsesdato: 5 August......Stars: fundamental parameters - Stars : binaries : eclipsing - Stars: Binaries: spectroscopic - Open clusters and ass. : general Udgivelsesdato: 5 August...

  6. An accessible echelle pipeline and its application to a binary star

    Science.gov (United States)

    Carmichael, Theron; Johnson, John Asher

    2018-01-01

    Nearly every star observed in the Galaxy has one or more companions that play an integral role in the evolution of the star. Whether it is a planet or another star, a companion opens up opportunities for unique forms of analysis to be done on a system. Some 2400 lightyears away, there is a 3-10 Myr old binary system called KH 15D, which not only includes two T Tauri K-type stars in a close orbit of 48 days, but also a truncated, coherently precessing warped disk in a circumbinary orbit.In binary systems, a double-lined spectroscopic binary may be observable in spectra. This is a spectrum that contains a mixture of each star's properties and manifests as two sets of spectral emission and absorption lines that correspond to each star. Slightly different is a single-lined spectroscopic binary, where only one set of spectral lines from one star is visible. The data of KH 15D are studied in the form of a double single-lined spectroscopic binary. This means that at two separate observing times, a single-lined spectroscopic binary is obtained from one of the stars of KH 15D. This is possible because of the circumbinary disk that blocks one star at a time from view.Here, we study this binary system with a combination of archival echelle data from the Keck Observatory and new echelle data from Las Campanas Observatory. This optical data is reduced with a new Python-based pipeline available on GitHub. The objective is to measure the mass function of the binary star and refine the current values of each star's properties.

  7. Emission-line widths and stellar-wind flows in T Tauri stars

    International Nuclear Information System (INIS)

    Sa, C.; Lago, M.T.V.T.

    1986-01-01

    Spectra are reported of T Tauri stars taken with the IPCS on the Isaac Newton Telescope at the Observatorio del Roque de los Muchachos at a dispersion of l7 A mm -1 . These were taken in order to determine emission-line widths and hence flow velocities in the winds of these stars following the successful modelling of the wind from RU Lupi using such data. Line widths in RW Aur suggest a similar pattern to the wind flow as in RU Lupi with velocities rising in the inner chromosphere of the star and then entering a 'ballistic' zone. The wind from DFTau is also similar but velocities are generally much lower and the lines sharper. (author)

  8. The Disk and Jet of the Classical T Tauri Star AA Tau

    Science.gov (United States)

    Cox, A. W.; Grady, C. A.; Hamel, H.; Hornbeck, Jeremy; Russell, R.; Sitko, M.; Woodgate, B.

    2013-01-01

    Previous studies of the classical T Tauri star AA Tau have interpreted the UX Orionis-like photopolarimetric variability as being due to a warp in the inner disk caused by an inclined stellar magnetic dipolefield. We test that these effects are macroscopically observable in the inclination and alignment of the disk. We use the HST/STIS coronagraphic detection of the disk to measure the outer disk radius and inclination, and find that the inner disk is both misinclined and misaligned with respect to the outer disk. AA Tau drives a faint jet which is also misaligned with respect to the projection of the outer disk minor axis. The jet is also poorly collimated near the star. The measured inclination, 71+/-1deg, is above the inclination range suggested for stars with UX Orionis-like variability, indicating that dust grains in the disk have grown and settled toward the disk midplane.

  9. Optical veiling, disk accretion, and the evolution of T Tauri stars

    International Nuclear Information System (INIS)

    Hartmann, L.W.; Kenyon, S.J.

    1990-01-01

    High-resolution spectra of 31 K7-M1 T Tauri stars (TTs) in the Taurus-Auriga molecular cloud demonstrate that most of these objects exhibit substantial excess emission at 5200 A. Extrapolations of these data consistent with low-resolution spectrophotometry indicate that the extra emission is comparable to the stellar luminosity in many cases. If this continuum emission arises in the boundary layers of accreting disks, more than about 30 percent of all TTs may be accreting material at a rate which is sufficiently rapid to alter their evolution from standard Hayashi tracks. It is estimated that roughly 10 percent of the final stellar mass is accreted in the TT phase. This amount of material is comparable to the minimum gravitationally unstable disk mass estimated by Larson and it is speculated that the TT phase represents the final stages of disk accretion driven by gravitational instabilities. 40 refs

  10. A PROPER MOTION STUDY OF THE HARO 6-10 OUTFLOW: EVIDENCE FOR A SUBARCSECOND BINARY

    International Nuclear Information System (INIS)

    Wilking, Bruce A.; Gerling, Bradley M.; Gibb, Erika; Marvel, Kevin B.; Claussen, Mark J.; Wootten, Alwyn

    2012-01-01

    We present single-dish and very long baseline interferometry observations of an outburst of water maser emission from the young binary system Haro 6-10. Haro 6-10 lies in the Taurus molecular cloud and contains a visible T Tauri star with an infrared companion 1.''3 north. Using the Very Long Baseline Array, we obtained five observations spanning three months and derived absolute positions for 20 distinct maser spots. Three of the masers can be traced over three or more epochs, enabling us to extract absolute proper motions and tangential velocities. We deduce that the masers represent one side of a bipolar outflow that lies nearly in the plane of the sky with an opening angle of ∼45°. They are located within 50 mas of the southern component of the binary, the visible T Tauri star Haro 6-10S. The mean position angle on the sky of the maser proper motions (∼220°) suggests they are related to the previously observed giant Herbig-Haro (HH) flow which includes HH 410, HH 411, HH 412, and HH 184A-E. A previously observed HH jet and extended radio continuum emission (mean position angle of ∼190°) must also originate in the vicinity of Haro 6-10S and represent a second, distinct outflow in this region. We propose that a yet unobserved companion within 150 mas of Haro 6-10S is responsible for the giant HH/maser outflow while the visible star is associated with the HH jet. Despite the presence of H 2 emission in the spectrum of the northern component of the binary, Haro 6-10N, none of outflows/jets can be tied directly to this young stellar object.

  11. A PROPER MOTION STUDY OF THE HARO 6-10 OUTFLOW: EVIDENCE FOR A SUBARCSECOND BINARY

    Energy Technology Data Exchange (ETDEWEB)

    Wilking, Bruce A.; Gerling, Bradley M.; Gibb, Erika [Department of Physics and Astronomy, University of Missouri-St. Louis, 1 University Boulevard, St. Louis, MO 63121 (United States); Marvel, Kevin B. [American Astronomical Society, 2000 Florida Avenue, NW, Suite 400, Washington, DC 20009 (United States); Claussen, Mark J. [National Radio Astronomy Observatory (NRAO), Array Operations Center, P.O. Box 0, 1003 Lopezville Road, Socorro, NM 87801 (United States); Wootten, Alwyn, E-mail: bwilking@umsl.edu, E-mail: bmg5333@truman.edu, E-mail: gibbe@umsl.edu, E-mail: marvel@aas.org, E-mail: mclausse@nrao.edu, E-mail: awootten@nrao.edu [NRAO, 520 Edgemont Road, Charlottesville, VA 22903-2475 (United States)

    2012-07-10

    We present single-dish and very long baseline interferometry observations of an outburst of water maser emission from the young binary system Haro 6-10. Haro 6-10 lies in the Taurus molecular cloud and contains a visible T Tauri star with an infrared companion 1.''3 north. Using the Very Long Baseline Array, we obtained five observations spanning three months and derived absolute positions for 20 distinct maser spots. Three of the masers can be traced over three or more epochs, enabling us to extract absolute proper motions and tangential velocities. We deduce that the masers represent one side of a bipolar outflow that lies nearly in the plane of the sky with an opening angle of {approx}45 Degree-Sign . They are located within 50 mas of the southern component of the binary, the visible T Tauri star Haro 6-10S. The mean position angle on the sky of the maser proper motions ({approx}220 Degree-Sign ) suggests they are related to the previously observed giant Herbig-Haro (HH) flow which includes HH 410, HH 411, HH 412, and HH 184A-E. A previously observed HH jet and extended radio continuum emission (mean position angle of {approx}190 Degree-Sign ) must also originate in the vicinity of Haro 6-10S and represent a second, distinct outflow in this region. We propose that a yet unobserved companion within 150 mas of Haro 6-10S is responsible for the giant HH/maser outflow while the visible star is associated with the HH jet. Despite the presence of H{sub 2} emission in the spectrum of the northern component of the binary, Haro 6-10N, none of outflows/jets can be tied directly to this young stellar object.

  12. Mottled Protoplanetary Disk Ionization by Magnetically Channeled T Tauri Star Energetic Particles

    Science.gov (United States)

    Fraschetti, F.; Drake, J. J.; Cohen, O.; Garraffo, C.

    2018-02-01

    The evolution of protoplanetary disks is believed to be driven largely by angular momentum transport resulting from magnetized disk winds and turbulent viscosity. The ionization of the disk that is essential for these processes has been thought to be due to host star coronal X-rays but could also arise from energetic particles produced by coronal flares, or traveling shock waves, and advected by the stellar wind. We have performed test-particle numerical simulations of energetic protons propagating into a realistic T Tauri stellar wind, including a superposed small-scale magnetostatic turbulence. The isotropic (Kolmogorov power spectrum) turbulent component is synthesized along the individual particle trajectories. We have investigated the energy range [0.1–10] GeV, consistent with expectations from Chandra X-ray observations of large flares on T Tauri stars and recent indications by the Herschel Space Observatory of a significant contribution of energetic particles to the disk ionization of young stars. In contrast with a previous theoretical study finding a dominance of energetic particles over X-rays in the ionization throughout the disk, we find that the disk ionization is likely dominated by X-rays over much of its area, except within narrow regions where particles are channeled onto the disk by the strongly tangled and turbulent magnetic field. The radial thickness of such regions is 5 stellar radii close to the star and broadens with increasing radial distance. This likely continues out to large distances from the star (10 au or greater), where particles can be copiously advected and diffused by the turbulent wind.

  13. THE SPITZER INFRARED SPECTROGRAPH SURVEY OF T TAURI STARS IN TAURUS

    International Nuclear Information System (INIS)

    Furlan, E.; Luhman, K. L.; Espaillat, C.

    2011-01-01

    We present 161 Spitzer Infrared Spectrograph (IRS) spectra of T Tauri stars and young brown dwarfs in the Taurus star-forming region. All of the targets were selected based on their infrared excess and are therefore surrounded by protoplanetary disks; they form the complete sample of all available IRS spectra of T Tauri stars with infrared excesses in Taurus. We also present the IRS spectra of seven Class 0/I objects in Taurus to complete the sample of available IRS spectra of protostars in Taurus. We use spectral indices that are not significantly affected by extinction to distinguish between envelope- and disk-dominated objects. Together with data from the literature, we construct spectral energy distributions for all objects in our sample. With spectral indices derived from the IRS spectra we infer disk properties such as dust settling and the presence of inner disk holes and gaps. We find a transitional disk frequency, which is based on objects with unusually large 13-31 μm spectral indices indicative of a wall surrounding an inner disk hole, of about 3%, and a frequency of about 20% for objects with unusually large 10 μm features, which could indicate disk gaps. The shape and strength of the 10 μm silicate emission feature suggests weaker 10 μm emission and more processed dust for very low mass objects and brown dwarfs (spectral types M6-M9). These objects also display weaker infrared excess emission from their disks, but do not appear to have more settled disks than their higher-mass counterparts. We find no difference for the spectral indices and properties of the dust between single and multiple systems.

  14. A hot Jupiter around the very active weak-line T Tauri star TAP 26

    Science.gov (United States)

    Yu, L.; Donati, J.-F.; Hébrard, E. M.; Moutou, C.; Malo, L.; Grankin, K.; Hussain, G.; Collier Cameron, A.; Vidotto, A. A.; Baruteau, C.; Alencar, S. H. P.; Bouvier, J.; Petit, P.; Takami, M.; Herczeg, G.; Gregory, S. G.; Jardine, M.; Morin, J.; Ménard, F.; Matysse Collaboration

    2017-05-01

    We report the results of an extended spectropolarimetric and photometric monitoring of the weak-line T Tauri star TAP 26, carried out within the Magnetic Topologies of Young Stars and the Survival of close-in massive Exoplanets (MaTYSSE) programme with the Echelle SpectroPolarimetric Device for the Observation of Stars (ESPaDOnS) spectropolarimeter at the 3.6-m Canada-France-Hawaii Telescope. Applying Zeeman-Doppler Imaging (ZDI) to our observations, concentrating in 2015 November and 2016 January and spanning 72 d in total, 16 d in 2015 November and 13 d in 2016 January, we reconstruct surface brightness and magnetic field maps for both epochs and demonstrate that both distributions exhibit temporal evolution not explained by differential rotation alone. We report the detection of a hot Jupiter (hJ) around TAP 26 using three different methods, two using ZDI and one Gaussian-process regression (GPR), with a false-alarm probability smaller than 6 × 10-4. However, as a result of the aliasing related to the observing window, the orbital period cannot be uniquely determined; the orbital period with highest likelihood is 10.79 ± 0.14 d followed by 8.99 ± 0.09 d. Assuming the most likely period, and that the planet orbits in the stellar equatorial plane, we obtain that the planet has a minimum mass Msin I of 1.66 ± 0.31 MJup and orbits at 0.0968 ± 0.0032 au from its host star. This new detection suggests that disc type II migration is efficient at generating newborn hJs, and that hJs may be more frequent around young T Tauri stars than around mature stars (or that the MaTYSSE sample is biased towards hJ-hosting stars).

  15. CURVED WALLS: GRAIN GROWTH, SETTLING, AND COMPOSITION PATTERNS IN T TAURI DISK DUST SUBLIMATION FRONTS

    Energy Technology Data Exchange (ETDEWEB)

    McClure, M. K.; Calvet, N.; Hartmann, L.; Ingleby, L. [Department of Astronomy, The University of Michigan, 500 Church Street, 830 Dennison Building., Ann Arbor, MI 48109 (United States); D' Alessio, P. [Centro de Radioastronomía y Astrofísica, Universidad Nacional Autónoma de México, 58089 Morelia, Michoacán (Mexico); Espaillat, C. [Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Sargent, B. [Center for Imaging Science and Laboratory for Multiwavelength Astrophysics, Rochester Institute of Technology, 54 Lomb Memorial Drive, Rochester, NY 14623 (United States); Watson, D. M. [Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627 (United States); Hernández, J., E-mail: melisma@umich.edu, E-mail: ncalvet@umich.edu, E-mail: lhartm@umich.edu, E-mail: lingleby@umich.edu, E-mail: p.dalessio@astrosmo.unam.mx, E-mail: cespaillat@cfa.harvard.edu, E-mail: baspci@rit.edu, E-mail: dmw@pas.rochester.edu, E-mail: hernandj@cida.ve [Centro de Investigaciones de Astronomía (CIDA), Mérida 5101-A (Venezuela, Bolivarian Republic of)

    2013-10-01

    The dust sublimation walls of disks around T Tauri stars represent a directly observable cross-section through the disk atmosphere and midplane. Their emission properties can probe the grain size distribution and composition of the innermost regions of the disk, where terrestrial planets form. Here we calculate the inner dust sublimation wall properties for four classical T Tauri stars with a narrow range of spectral types and inclination angles and a wide range of mass accretion rates to determine the extent to which the walls are radially curved. Best fits to the near- and mid-IR excesses are found for curved, two-layer walls in which the lower layer contains larger, hotter, amorphous pyroxene grains with Mg/(Mg+Fe) = 0.6 and the upper layer contains submicron, cooler, mixed amorphous olivine and forsterite grains. As the mass accretion rates decrease from 10{sup –8} to 10{sup –10} M{sub ☉} yr{sup –1}, the maximum grain size in the lower layer decreases from ∼3 to 0.5 μm. We attribute this to a decrease in fragmentation and turbulent support for micron-sized grains with decreasing viscous heating. The atmosphere of these disks is depleted of dust with dust-gas mass ratios 1 × 10{sup –4} of the interstellar medium (ISM) value, while the midplane is enhanced to eight times the ISM value. For all accretion rates, the wall contributes at least half of the flux in the optically thin 10 μm silicate feature. Finally, we find evidence for an iron gradient in the disk, suggestive of that found in our solar system.

  16. CURVED WALLS: GRAIN GROWTH, SETTLING, AND COMPOSITION PATTERNS IN T TAURI DISK DUST SUBLIMATION FRONTS

    International Nuclear Information System (INIS)

    McClure, M. K.; Calvet, N.; Hartmann, L.; Ingleby, L.; D'Alessio, P.; Espaillat, C.; Sargent, B.; Watson, D. M.; Hernández, J.

    2013-01-01

    The dust sublimation walls of disks around T Tauri stars represent a directly observable cross-section through the disk atmosphere and midplane. Their emission properties can probe the grain size distribution and composition of the innermost regions of the disk, where terrestrial planets form. Here we calculate the inner dust sublimation wall properties for four classical T Tauri stars with a narrow range of spectral types and inclination angles and a wide range of mass accretion rates to determine the extent to which the walls are radially curved. Best fits to the near- and mid-IR excesses are found for curved, two-layer walls in which the lower layer contains larger, hotter, amorphous pyroxene grains with Mg/(Mg+Fe) = 0.6 and the upper layer contains submicron, cooler, mixed amorphous olivine and forsterite grains. As the mass accretion rates decrease from 10 –8 to 10 –10 M ☉ yr –1 , the maximum grain size in the lower layer decreases from ∼3 to 0.5 μm. We attribute this to a decrease in fragmentation and turbulent support for micron-sized grains with decreasing viscous heating. The atmosphere of these disks is depleted of dust with dust-gas mass ratios 1 × 10 –4 of the interstellar medium (ISM) value, while the midplane is enhanced to eight times the ISM value. For all accretion rates, the wall contributes at least half of the flux in the optically thin 10 μm silicate feature. Finally, we find evidence for an iron gradient in the disk, suggestive of that found in our solar system

  17. Discussing the low fraction of disk-bearing T Tauri stars discovered near to the Sh2-296 nebula

    Science.gov (United States)

    Gregorio-Hetem, Jane

    2015-08-01

    A multiband study has been developed by our team in the direction of young star clusters associated to the Sh2-296 nebula aiming to unveil the star formation history of this galactic molecular cloud that shows a mixing of different age stellar groups. A sample of 58 pre-main sequence stars has been recently discovered by us in this region (Fernandes et al. 2015, MNRAS in press), based on optical spectral features. Only 41% of the sample shows evidence of IR excess revealing the presence of circumstellar disks. It is interesting to note that the targets were revealed by their strong X-ray emission, typically found in T Tauri stars (TTs) (Santos-Silva et al. 2015, in preparation) . In this case, it would be expected a larger number of disk-bearing stars and also the fraction of circumstellar emission (fc = Ldisk/Ltotal ) should be more significant in these objects. However, we verified that only 12% of the sample has fc > 30%. This low fraction is quite rare compared to most young star-forming regions, suggesting that some external factor has accelerated the disc dissipation. In the present work we explore the circumstellar structure of a subsample of 8 TTs associated to Sh2-296. The TTs were selected on the basis of their high circumstellar emission, which is estimated by SED fitting that uses near- to mid-IR data extracted from available catalogues (WISE, AKARI, MSX). The circumstellar characteristics are confronted to interstellar environment by comparing the stellar spatial distribution with 12CO maps (Nanten Survey, Fukui et al. ). Most of the TTs are projected against moderate molecular emission (33 Jy), but some of them are found in regions of lower levels of gas distribution (3.8 Jy). The similarities and differences found among the studied objects are discussed in order to better understand the formation and evolution of protostellar disks of the selected sample and their role in the star formation scenario nearby Sh2-296

  18. Reflection effect in close binary systems

    International Nuclear Information System (INIS)

    Vanlandingham, F.G.

    1974-01-01

    The investigation studies the effects of the irradiation of the hotter component in a close binary system on the atmosphere of the secondary and on the observed flux distribution of the binary system. An existing model atmospheres computer program is modified to include the effects of non-zero incident radiation. Computations reveal that the irradiation can significantly raise the temperature in the upper layers of the atmosphere. (U.S.)

  19. Interacting binary stars

    CERN Document Server

    Sahade, Jorge; Ter Haar, D

    1978-01-01

    Interacting Binary Stars deals with the development, ideas, and problems in the study of interacting binary stars. The book consolidates the information that is scattered over many publications and papers and gives an account of important discoveries with relevant historical background. Chapters are devoted to the presentation and discussion of the different facets of the field, such as historical account of the development in the field of study of binary stars; the Roche equipotential surfaces; methods and techniques in space astronomy; and enumeration of binary star systems that are studied

  20. Binary Masking & Speech Intelligibility

    DEFF Research Database (Denmark)

    Boldt, Jesper

    The purpose of this thesis is to examine how binary masking can be used to increase intelligibility in situations where hearing impaired listeners have difficulties understanding what is being said. The major part of the experiments carried out in this thesis can be categorized as either experime......The purpose of this thesis is to examine how binary masking can be used to increase intelligibility in situations where hearing impaired listeners have difficulties understanding what is being said. The major part of the experiments carried out in this thesis can be categorized as either...... experiments under ideal conditions or as experiments under more realistic conditions useful for real-life applications such as hearing aids. In the experiments under ideal conditions, the previously defined ideal binary mask is evaluated using hearing impaired listeners, and a novel binary mask -- the target...... binary mask -- is introduced. The target binary mask shows the same substantial increase in intelligibility as the ideal binary mask and is proposed as a new reference for binary masking. In the category of real-life applications, two new methods are proposed: a method for estimation of the ideal binary...

  1. Life-cycle and genome of OtV5, a large DNA virus of the pelagic marine unicellular green alga Ostreococcus tauri.

    Directory of Open Access Journals (Sweden)

    Evelyne Derelle

    Full Text Available Large DNA viruses are ubiquitous, infecting diverse organisms ranging from algae to man, and have probably evolved from an ancient common ancestor. In aquatic environments, such algal viruses control blooms and shape the evolution of biodiversity in phytoplankton, but little is known about their biological functions. We show that Ostreococcus tauri, the smallest known marine photosynthetic eukaryote, whose genome is completely characterized, is a host for large DNA viruses, and present an analysis of the life-cycle and 186,234 bp long linear genome of OtV5. OtV5 is a lytic phycodnavirus which unexpectedly does not degrade its host chromosomes before the host cell bursts. Analysis of its complete genome sequence confirmed that it lacks expected site-specific endonucleases, and revealed the presence of 16 genes whose predicted functions are novel to this group of viruses. OtV5 carries at least one predicted gene whose protein closely resembles its host counterpart and several other host-like sequences, suggesting that horizontal gene transfers between host and viral genomes may occur frequently on an evolutionary scale. Fifty seven percent of the 268 predicted proteins present no similarities with any known protein in Genbank, underlining the wealth of undiscovered biological diversity present in oceanic viruses, which are estimated to harbour 200Mt of carbon.

  2. Binary effectivity rules

    DEFF Research Database (Denmark)

    Keiding, Hans; Peleg, Bezalel

    2006-01-01

    effectivity rule is regular if it is the effectivity rule of some regular binary SCR. We characterize completely the family of regular binary effectivity rules. Quite surprisingly, intrinsically defined von Neumann-Morgenstern solutions play an important role in this characterization...

  3. Binary colloidal crystals

    NARCIS (Netherlands)

    Christova-Zdravkova, C.G.

    2005-01-01

    Binary crystals are crystals composed of two types of particles having different properties like size, mass density, charge etc. In this thesis several new approaches to make binary crystals of colloidal particles that differ in size, material and charge are reported We found a variety of crystal

  4. THE PALOMAR TRANSIENT FACTORY ORION PROJECT: ECLIPSING BINARIES AND YOUNG STELLAR OBJECTS

    International Nuclear Information System (INIS)

    Van Eyken, Julian C.; Ciardi, David R.; Akeson, Rachel L.; Beichman, Charles A.; Von Braun, Kaspar; Gelino, Dawn M.; Kane, Stephen R.; Plavchan, Peter; RamIrez, Solange V.; Rebull, Luisa M.; Stauffer, John R.; Hoard, D. W.; Boden, Andrew F.; Howell, Steve B.; Bloom, Joshua S.; Cenko, S. Bradley; Kasliwal, Mansi M.; Kulkarni, Shrinivas R.; Law, Nicholas M.; Nugent, Peter E.

    2011-01-01

    The Palomar Transient Factory (PTF) Orion project is one of the experiments within the broader PTF survey, a systematic automated exploration of the sky for optical transients. Taking advantage of the wide (3. 0 5 x 2. 0 3) field of view available using the PTF camera installed at the Palomar 48 inch telescope, 40 nights were dedicated in 2009 December to 2010 January to perform continuous high-cadence differential photometry on a single field containing the young (7-10 Myr) 25 Ori association. Little is known empirically about the formation of planets at these young ages, and the primary motivation for the project is to search for planets around young stars in this region. The unique data set also provides for much ancillary science. In this first paper, we describe the survey and the data reduction pipeline, and present some initial results from an inspection of the most clearly varying stars relating to two of the ancillary science objectives: detection of eclipsing binaries and young stellar objects. We find 82 new eclipsing binary systems, 9 of which are good candidate 25 Ori or Orion OB1a association members. Of these, two are potential young W UMa type systems. We report on the possible low-mass (M-dwarf primary) eclipsing systems in the sample, which include six of the candidate young systems. Forty-five of the binary systems are close (mainly contact) systems, and one of these shows an orbital period among the shortest known for W UMa binaries, at 0.2156509 ± 0.0000071 days, with flat-bottomed primary eclipses, and a derived distance that appears consistent with membership in the general Orion association. One of the candidate young systems presents an unusual light curve, perhaps representing a semi-detached binary system with an inflated low-mass primary or a star with a warped disk, and may represent an additional young Orion member. Finally, we identify 14 probable new classical T-Tauri stars in our data, along with one previously known (CVSO 35) and

  5. VizieR Online Data Catalog: UV spectra of classical T Tauri stars (France+, 2014)

    Science.gov (United States)

    France, K.; Schindhelm, E.; Bergin, E. A.; Roueff, E.; Abgrall, H.

    2017-06-01

    We present 16 objects from the larger GTO + DAO T Tauri star samples described by Ardila et al. (2013ApJS..207....1A; focusing on the hot gas emission lines) and France et al. (2012, J/ApJ/756/171; focusing on the molecular circumstellar environment). Eleven of the 16 sources were observed as part of the DAO of Tau guest observing program (PID 11616; PI: G. Herczeg), four were part of the COS Guaranteed Time Observing program on protoplanetary disks (PIDs 11533 and 12036; PI: J. Green), and we have included archival STIS observations of the well-studied CTTS TW Hya (Herczeg et al. 2002ApJ...572..310H, 2004ApJ...607..369H), obtained through StarCAT (Ayres 2010, J/ApJS/187/149). The targets were selected by the availability of reconstructed Lyα spectra, as this emission line is a critical component to the intrinsic CTTS UV radiation field (Schindhelm et al. 2012ApJ...756L..23S) and has not been uniformly included in recent studies of the CTTS radiation field (e.g., Ingleby et al. 2011AJ....141..127I; Yang et al. 2012, J/ApJ/744/121). Most of the targets were observed with the medium-resolution FUV modes of COS (G130M and G160M; Green et al. 2012ApJ...744...60G). (2 data files).

  6. Analysis of T Tauri stars spectra: AS 353, DI Cep and RY Tau

    International Nuclear Information System (INIS)

    Krasnobabtsev, V.I.

    1982-01-01

    A study of the variations of the spectra of T Tauri-stars (AS 353, DI Cep and RY Tau) was carried out using the spectrograms obtained with the image-tube spectrograph at the 2.6 m telescope of the Crimean Astrophysical Observatory. Relationship between the variation of several emission lines was considered. For Di Cep a clear correlation between the intensity variation of the emission lines Ca II (H and K) and hydrogen line Hsub(#betta#) was found. On one night the activity of DI Cep looked like the outburst, that developed as displaced emission components in H and K Ca II lines. It was assumed that the variations of DI Cep and RY Tau from night to night might be probably due to heterogeneous surfaces of these stars. In compliance with the emission character in the Fe II lines, continuum spectrum stars (e.g. AS 353) should be distinguished from those with spectra having both emission lines and photospheric absorption lines (e.g. DI Cep). The difference is in the fact that the continuuum spectrum stars (such as AS 353) a certain correlation exists between the intensities of Fe II- and H-beta lines. In case of the CI Cep stars, no correlation exists between the intensity variation of the FeII- and H-beta lines even for the DI Cep proper

  7. Robustness of circadian clocks to daylight fluctuations: hints from the picoeucaryote Ostreococcus tauri.

    Directory of Open Access Journals (Sweden)

    Quentin Thommen

    Full Text Available The development of systemic approaches in biology has put emphasis on identifying genetic modules whose behavior can be modeled accurately so as to gain insight into their structure and function. However, most gene circuits in a cell are under control of external signals and thus, quantitative agreement between experimental data and a mathematical model is difficult. Circadian biology has been one notable exception: quantitative models of the internal clock that orchestrates biological processes over the 24-hour diurnal cycle have been constructed for a few organisms, from cyanobacteria to plants and mammals. In most cases, a complex architecture with interlocked feedback loops has been evidenced. Here we present the first modeling results for the circadian clock of the green unicellular alga Ostreococcus tauri. Two plant-like clock genes have been shown to play a central role in the Ostreococcus clock. We find that their expression time profiles can be accurately reproduced by a minimal model of a two-gene transcriptional feedback loop. Remarkably, best adjustment of data recorded under light/dark alternation is obtained when assuming that the oscillator is not coupled to the diurnal cycle. This suggests that coupling to light is confined to specific time intervals and has no dynamical effect when the oscillator is entrained by the diurnal cycle. This intriguing property may reflect a strategy to minimize the impact of fluctuations in daylight intensity on the core circadian oscillator, a type of perturbation that has been rarely considered when assessing the robustness of circadian clocks.

  8. ON THE TRANSITIONAL DISK CLASS: LINKING OBSERVATIONS OF T TAURI STARS AND PHYSICAL DISK MODELS

    International Nuclear Information System (INIS)

    Espaillat, C.; Andrews, S.; Qi, C.; Wilner, D.; Ingleby, L.; Calvet, N.; Hernández, J.; Furlan, E.; D'Alessio, P.; Muzerolle, J.

    2012-01-01

    Two decades ago 'transitional disks' (TDs) described spectral energy distributions (SEDs) of T Tauri stars with small near-IR excesses, but significant mid- and far-IR excesses. Many inferred this indicated dust-free holes in disks possibly cleared by planets. Recently, this term has been applied disparately to objects whose Spitzer SEDs diverge from the expectations for a typical full disk (FD). Here, we use irradiated accretion disk models to fit the SEDs of 15 such disks in NGC 2068 and IC 348. One group has a 'dip' in infrared emission while the others' continuum emission decreases steadily at all wavelengths. We find that the former have an inner disk hole or gap at intermediate radii in the disk and we call these objects 'transitional disks' and 'pre-transitional disks' (PTDs), respectively. For the latter group, we can fit these SEDs with FD models and find that millimeter data are necessary to break the degeneracy between dust settling and disk mass. We suggest that the term 'transitional' only be applied to objects that display evidence for a radical change in the disk's radial structure. Using this definition, we find that TDs and PTDs tend to have lower mass accretion rates than FDs and that TDs have lower accretion rates than PTDs. These reduced accretion rates onto the star could be linked to forming planets. Future observations of TDs and PTDs will allow us to better quantify the signatures of planet formation in young disks.

  9. PHOTO-REVERBERATION MAPPING OF A PROTOPLANETARY ACCRETION DISK AROUND A T TAURI STAR

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Huan Y. A.; Plavchan, Peter; Ciardi, David [Infrared Processing and Analysis Center, California Institute of Technology, MC 100-22, 770 S. Wilson Ave., Pasadena, CA 91125 (United States); Rieke, George H. [Lunar and Planetary Laboratory and Department of Planetary Sciences, University of Arizona, 1629 E. University Blvd., Tucson, AZ 85721 (United States); Cody, Ann Marie [NASA Ames Research Center, Moffett Field, CA 94035 (United States); Güth, Tina [Department of Physics, New Mexico Institute of Mining and Technology, 801 Leroy Pl., Socorro, NM 87801 (United States); Stauffer, John; Carey, Sean; Rebull, Luisa M. [Infrared Science Archive and Spitzer Science Center, Infrared Processing and Analysis Center, California Institute of Technology, MC 314-6, 1200 E. California Blvd., Pasadena, CA 91125 (United States); Covey, Kevin [Department of Physics and Astronomy, MS-9164, Western Washington University, 516 High St., Bellingham, WA 98225 (United States); Duran-Rojas, Maria C. [Instituto de Astronomía, Universidad Nacional Autónoma de México, Apartado Postal 106, 22800, Ensenada, Baja California, México (Mexico); Gutermuth, Robert A. [Department of Astronomy, University of Massachusetts, Amherst, MA 01003 (United States); Morales-Calderón, María, E-mail: hyameng@lpl.arizona.edu [Centro de Astrobiología, Departamento de Astrofísica, INTA-CSIC, P.O. Box 78, E-28691, ESAC Campus, Villanueva de la Cañada, Madrid (Spain); and others

    2016-05-20

    Theoretical models and spectroscopic observations of newborn stars suggest that protoplantary disks have an inner “wall” at a distance set by the disk interaction with the star. Around T Tauri stars, the size of this disk hole is expected to be on a 0.1 au scale that is unresolved by current adaptive optics imaging, though some model-dependent constraints have been obtained by near-infrared interferometry. Here we report the first measurement of the inner disk wall around a solar-mass young stellar object, YLW 16B in the ρ Ophiuchi star-forming region, by detecting the light-travel time of the variable radiation from the stellar surface to the disk. Consistent time lags were detected on two nights, when the time series in H (1.6 μ m) and K (2.2 μ m) bands were synchronized while the 4.5 μ m emission lagged by 74.5 ± 3.2 s. Considering the nearly edge-on geometry of the disk, the inner rim should be 0.084 au from the protostar on average, with an error of order 0.01 au. This size is likely larger than the range of magnetospheric truncations and consistent with an optically and geometrically thick disk front at the dust sublimation radius at ∼1500 K. The widths of the cross-correlation functions between the data in different wavebands place possible new constraints on the geometry of the disk.

  10. The Mysterious Dimmings of the T Tauri Star V1334 Tau

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, Joseph E.; Zhou, George; Cargile, Phillip A.; Relles, Howard M.; Latham, David W.; Eastman, Jason; Bieryla, Allyson; Esquerdo, Gilbert A.; Berlind, Perry; Calkins, Michael L.; Vanderburg, Andrew [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Stevens, Daniel J. [Department of Astronomy, The Ohio State University, Columbus, OH 43210 (United States); Osborn, Hugh P. [Department of Physics, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL (United Kingdom); Shappee, Benjamin J. [Carnegie Observatories, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Reed, Phillip A. [Department of Physical Sciences, Kutztown University, Kutztown, PA 19530 (United States); Lund, Michael B.; Stassun, Keivan G. [Department of Physics and Astronomy, Vanderbilt University, 6301 Stevenson Center, Nashville, TN 37235 (United States); Gaidos, Eric [Department of Geology and Geophysics, University of Hawai‘i at Mnoa, Honolulu, HI 96822 (United States); Ansdell, Megan [Institute for Astronomy, University of Hawai‘i at Manoa, Honolulu, HI 96822 (United States); Siverd, Robert J. [Las Cumbres Observatory Global Telescope Network, 6740 Cortona Drive, Suite 102, Santa Barbara, CA 93117 (United States); and others

    2017-02-20

    We present the discovery of two extended ∼0.12 mag dimming events of the weak-lined T Tauri star V1334. The start of the first event was missed but came to an end in late 2003, and the second began in 2009 February, and continues as of 2016 November. Since the egress of the current event has not yet been observed, it suggests a period of >13 years if this event is periodic. Spectroscopic observations suggest the presence of a small inner disk, although the spectral energy distribution shows no infrared excess. We explore the possibility that the dimming events are caused by an orbiting body (e.g., a disk warp or dust trap), enhanced disk winds, hydrodynamical fluctuations of the inner disk, or a significant increase in the magnetic field flux at the surface of the star. We also find a ∼0.32 day periodic photometric signal that persists throughout the 2009 dimming which appears to not be due to ellipsoidal variations from a close stellar companion. High-precision photometric observations of V1334 Tau during K2 campaign 13, combined with simultaneous photometric and spectroscopic observations from the ground, will provide crucial information about the photometric variability and its origin.

  11. The Temperature and Distribution of Organic Molecules in the Inner Regions of T Tauri Disks

    Science.gov (United States)

    Mandell, Avi

    2012-01-01

    "High-resolution NIR spectroscopic observations of warm molecular gas emission from young circumstellar disks allow us to constrain the temperature and composition of material in the inner planet-forming region. By combining advanced data reduction algorithms with accurate modeling of the terrestrial atmospheric spectrum and a novel double-differencing data analysis technique, we have achieved very high-contrast measurements (S/N approx. 500-1000) of molecular emission at 3 microns. In disks around low-mass stars, we have achieved the first detections of emission from HCN and C2H2 at near-infrared wavelengths from several bright T Tauri stars using the CRIRES spectrograph on the Very Large Telescope and NIRSPEC spectrograph on the Keck Telescope. We spectrally resolve the line shape, showing that the emission has both a Keplerian and non-Keplerian component as observed previously for CO emission. We used a simplified single-temperature local thermal equilibrium (LTE) slab model with a Gaussian line profile to make line identifications and determine a best-fit temperature and initial abundance ratios, and we then compared these values with constraints derived from a detailed disk radiative transfer model assuming LTE excitation but utilizing a realistic temperature and density structure. Abundance ratios from both sets of models are consistent with each other and consistent with expected values from theoretical chemical models, and analysis of the line shapes suggests that the molecular emission originates from within a narrow region in the inner disk (R < 1 AU)."

  12. BINARY MINOR PLANETS

    Data.gov (United States)

    National Aeronautics and Space Administration — The data set lists orbital and physical properties for well-observed or suspected binary/multiple minor planets including the Pluto system, compiled from the...

  13. Close binary stars

    International Nuclear Information System (INIS)

    Larsson-Leander, G.

    1979-01-01

    Studies of close binary stars are being persued more vigorously than ever, with about 3000 research papers and notes pertaining to the field being published during the triennium 1976-1978. Many major advances and spectacular discoveries were made, mostly due to increased observational efficiency and precision, especially in the X-ray, radio, and ultraviolet domains. Progress reports are presented in the following areas: observational techniques, methods of analyzing light curves, observational data, physical data, structure and models of close binaries, statistical investigations, and origin and evolution of close binaries. Reports from the Coordinates Programs Committee, the Committee for Extra-Terrestrial Observations and the Working Group on RS CVn binaries are included. (Auth./C.F.)

  14. Binary and ternary systems

    International Nuclear Information System (INIS)

    Petrov, D.A.

    1986-01-01

    Conditions for thermodynamical equilibrium in binary and ternary systems are considered. Main types of binary and ternary system phase diagrams are sequently constructed on the basis of general regularities on the character of transition from one equilibria to others. New statements on equilibrium line direction in the diagram triple points and their isothermal cross sections are developed. New represenations on equilibria in case of monovariant curve minimum and maximum on three-phase equilibrium formation in ternary system are introduced

  15. Binary and Millisecond Pulsars

    OpenAIRE

    Lorimer, D. R.

    2005-01-01

    We review the main properties, demographics and applications of binary and millisecond radio pulsars. Our knowledge of these exciting objects has greatly increased in recent years, mainly due to successful surveys which have brought the known pulsar population to over 1800. There are now 83 binary and millisecond pulsars associated with the disk of our Galaxy, and a further 140 pulsars in 26 of the Galactic globular clusters. Recent highlights include the discovery of the young relativistic b...

  16. Astrophysics of white dwarf binaries

    NARCIS (Netherlands)

    Nelemans, G.A.

    2006-01-01

    White dwarf binaries are the most common compact binaries in the Universe and are especially important for low-frequency gravitational wave detectors such as LISA. There are a number of open questions about binary evolution and the Galactic population of white dwarf binaries that can be solved using

  17. Evolution of cataclysmic binaries

    International Nuclear Information System (INIS)

    Paczynski, B.

    1981-01-01

    Cataclysmic binaries with short orbital periods have low mass secondary components. Their nuclear time scale is too long to be of evolutionary significance. Angular momentum loss from the binary drives the mass transfer between the two components. As long as the characteristic time scale is compared with the Kelvin-Helmholtz time scale of the mass losing secondary the star remains close to the main sequence, and the binary period decreases with time. If angular momentum loss is due to gravitational radiation then the mass transfer time scale becomes comparable to the Kelvin-Helmoltz time scale when the secondary's mass decreases to 0.12 Msub(sun), and the binary period is reduced to 80 minutes. Later, the mass losing secondary departs from the main sequence and gradually becomes degenerate. Now the orbital period increases with time. The observed lower limit to the orbital periods of hydrogen rich cataclysmic binaries implies that gravitational radiation is the main driving force for the evolution of those systems. It is shown that binaries emerging from a common envelope phase of evolution are well detached. They have to lose additional angular momentum to become semidetached cataclysmic variables. (author)

  18. The fate of close encounters between binary stars and binary supermassive black holes

    Science.gov (United States)

    Wang, Yi-Han; Leigh, Nathan; Yuan, Ye-Fei; Perna, Rosalba

    2018-04-01

    The evolution of main-sequence binaries that reside in the Galactic Centre can be heavily influenced by the central supermassive black hole (SMBH). Due to these perturbative effects, the stellar binaries in dense environments are likely to experience mergers, collisions, or ejections through secular and/or non-secular interactions. More direct interactions with the central SMBH are thought to produce hypervelocity stars (HVSs) and tidal disruption events (TDEs). In this paper, we use N-body simulations to study the dynamics of stellar binaries orbiting a central SMBH primary with an outer SMBH secondary orbiting this inner triple. The effects of the secondary SMBH on the event rates of HVSs, TDEs, and stellar mergers are investigated, as a function of the SMBH-SMBH binary mass ratio. Our numerical experiments reveal that, relative to the isolated SMBH case, the TDE and HVS rates are enhanced for, respectively, the smallest and largest mass ratio SMBH-SMBH binaries. This suggests that the observed event rates of TDEs and HVSs have the potential to serve as a diagnostic of the mass ratio of a central SMBH-SMBH binary. The presence of a secondary SMBH also allows for the creation of hypervelocity binaries. Observations of these systems could thus constrain the presence of a secondary SMBH in the Galactic Centre.

  19. Short-timescale variability in cataclysmic binaries

    International Nuclear Information System (INIS)

    Cordova, F.A.; Mason, K.O.

    1982-01-01

    Rapid variability, including flickering and pulsations, has been detected in cataclysmic binaries at optical and x-ray frequencies. In the case of the novalike variable TT Arietis, simultaneous observations reveal that the x-ray and optical flickering activity is strongly correlated, while short period pulsations are observed that occur at the same frequencies in both wavelength bands

  20. Star–Disk Interactions in Multiband Photometric Monitoring of the Classical T Tauri Star GI Tau

    Science.gov (United States)

    Guo, Zhen; Herczeg, Gregory J.; Jose, Jessy; Fu, Jianning; Chiang, Po-Shih; Grankin, Konstantin; Michel, Raúl; Kesh Yadav, Ram; Liu, Jinzhong; Chen, Wen-ping; Li, Gang; Xue, Huifang; Niu, Hubiao; Subramaniam, Annapurni; Sharma, Saurabh; Prasert, Nikom; Flores-Fajardo, Nahiely; Castro, Angel; Altamirano, Liliana

    2018-01-01

    The variability of young stellar objects is mostly driven by star–disk interactions. In long-term photometric monitoring of the accreting T Tauri star GI Tau, we detect extinction events with typical depths of {{Δ }}V∼ 2.5 mag that last for days to months and often appear to occur stochastically. In 2014–2015, extinctions that repeated with a quasi-period of 21 days over several months are the first empirical evidence of slow warps predicted by magnetohydrodynamic simulations to form at a few stellar radii away from the central star. The reddening is consistent with {R}V=3.85+/- 0.5 and, along with an absence of diffuse interstellar bands, indicates that some dust processing has occurred in the disk. The 2015–2016 multiband light curve includes variations in spot coverage, extinction, and accretion, each of which results in different traces in color–magnitude diagrams. This light curve is initially dominated by a month-long extinction event and a return to the unocculted brightness. The subsequent light curve then features spot modulation with a 7.03 day period, punctuated by brief, randomly spaced extinction events. The accretion rate measured from U-band photometry ranges from 1.3× {10}-8 to 1.1× {10}-10 M ⊙ yr‑1 (excluding the highest and lowest 5% of high- and low- accretion rate outliers), with an average of 4.7 × {10}-9 M ⊙ yr‑1. A total of 50% of the mass is accreted during bursts of > 12.8× {10}-9 M ⊙ yr{}-1, which indicates limitations on analyses of disk evolution using single-epoch accretion rates.

  1. Amplitude variations of modulated RV Tauri stars support the dust obscuration model of the RVb phenomenon

    Science.gov (United States)

    Kiss, L. L.; Bódi, A.

    2017-12-01

    Context. RV Tauri-type variables are pulsating post-asymptotic giant branch (AGB) stars that evolve rapidly through the instability strip after leaving the AGB. Their light variability is dominated by radial pulsations. Members of the RVb subclass show an additional variability in the form of a long-term modulation of the mean brightness, for which the most popular theories all assume binarity and some kind of circumstellar dust. Here we assess whether or not the amplitude modulations are consistent with the dust obscuration model. Aims: We measure and interpret the overall changes of the mean amplitude of the pulsations along the RVb variability. Methods: We compiled long-term photometric data for RVb-type stars, including visual observations of the American Association of Variable Star Observers, ground-based CCD photometry from the OGLE and ASAS projects, and ultra-precise space photometry of one star, DF Cygni, from theKepler space telescope. After converting all the observations to flux units, we measure the cycle-to-cycle variations of the pulsation amplitude and correlate them to the actual mean fluxes. Results: We find a surprisingly uniform correlation between the pulsation amplitude and the mean flux; they scale linearly with each other for a wide range of fluxes and amplitudes. This means that the pulsation amplitude actually remains constant when measured relative to the system flux level. The apparent amplitude decrease in the faint states has long been noted in the literature but it was always claimed to be difficult to explain with the actual models of the RVb phenomenon. Here we show that when fluxes are used instead of magnitudes, the amplitude attenuation is naturally explained by periodic obscuration from a large opaque screen, one most likely corresponding to a circumbinary dusty disk that surrounds the whole system.

  2. MN Lup: X-RAYS FROM A WEAKLY ACCRETING T TAURI STAR

    Energy Technology Data Exchange (ETDEWEB)

    Guenther, H. M.; Wolk, S. J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Wolter, U.; Robrade, J., E-mail: hguenther@cfa.harvard.edu [Universitaet Hamburg, Hamburger Sternwarte, Gojenbergsweg 112, D-21029 Hamburg (Germany)

    2013-07-01

    Young T Tauri stars (TTS) are surrounded by an accretion disk, which over time disperses due to photoevaporation, accretion, and possibly planet formation. The accretion shock on the central star produces an UV/optical veiling continuum, line emission, and X-ray signatures. As the accretion rate decreases, the impact on the central star must change. In this article we study MN Lup, a young star where no indications of a disk are seen in IR observations. We present XMM-Newton and VLT/UVES observations, some of them taken simultaneously. The X-ray data show that MN Lup is an active star with L{sub X} /L{sub bol} close to the saturation limit. However, we find high densities (n{sub e} > 3 Multiplication-Sign 10{sup 10} cm{sup -3}) in the X-ray grating spectrum. This can be well fitted using an accretion shock model with an accretion rate of 2 Multiplication-Sign 10{sup -11} M{sub Sun} yr{sup -1}. Despite the simple H{alpha} line profile which has a broad component, but no absorption signatures as typically seen on accreting TTS, we find rotational modulation in Ca II K and in photospheric absorption lines. These line profile modulations do not clearly indicate the presence of a localized hot accretion spot on the star. In the H{alpha} line we see a prominence in absorption about 2R{sub *} above the stellar surface-the first of its kind on a TTS. MN Lup is also the only TTS where accretion is seen, but no dust disk is detected that could fuel it. We suggest that MN Lup presents a unique and short-lived state in the disk evolution. It may have lost its dust disk only recently and is now accreting the remaining gas at a very low rate.

  3. Binary Neutron Star Mergers

    Directory of Open Access Journals (Sweden)

    Joshua A. Faber

    2012-07-01

    Full Text Available We review the current status of studies of the coalescence of binary neutron star systems. We begin with a discussion of the formation channels of merging binaries and we discuss the most recent theoretical predictions for merger rates. Next, we turn to the quasi-equilibrium formalisms that are used to study binaries prior to the merger phase and to generate initial data for fully dynamical simulations. The quasi-equilibrium approximation has played a key role in developing our understanding of the physics of binary coalescence and, in particular, of the orbital instability processes that can drive binaries to merger at the end of their lifetimes. We then turn to the numerical techniques used in dynamical simulations, including relativistic formalisms, (magneto-hydrodynamics, gravitational-wave extraction techniques, and nuclear microphysics treatments. This is followed by a summary of the simulations performed across the field to date, including the most recent results from both fully relativistic and microphysically detailed simulations. Finally, we discuss the likely directions for the field as we transition from the first to the second generation of gravitational-wave interferometers and while supercomputers reach the petascale frontier.

  4. Skewed Binary Search Trees

    DEFF Research Database (Denmark)

    Brodal, Gerth Stølting; Moruz, Gabriel

    2006-01-01

    It is well-known that to minimize the number of comparisons a binary search tree should be perfectly balanced. Previous work has shown that a dominating factor over the running time for a search is the number of cache faults performed, and that an appropriate memory layout of a binary search tree...... can reduce the number of cache faults by several hundred percent. Motivated by the fact that during a search branching to the left or right at a node does not necessarily have the same cost, e.g. because of branch prediction schemes, we in this paper study the class of skewed binary search trees....... For all nodes in a skewed binary search tree the ratio between the size of the left subtree and the size of the tree is a fixed constant (a ratio of 1/2 gives perfect balanced trees). In this paper we present an experimental study of various memory layouts of static skewed binary search trees, where each...

  5. Modelling binary data

    CERN Document Server

    Collett, David

    2002-01-01

    INTRODUCTION Some Examples The Scope of this Book Use of Statistical Software STATISTICAL INFERENCE FOR BINARY DATA The Binomial Distribution Inference about the Success Probability Comparison of Two Proportions Comparison of Two or More Proportions MODELS FOR BINARY AND BINOMIAL DATA Statistical Modelling Linear Models Methods of Estimation Fitting Linear Models to Binomial Data Models for Binomial Response Data The Linear Logistic Model Fitting the Linear Logistic Model to Binomial Data Goodness of Fit of a Linear Logistic Model Comparing Linear Logistic Models Linear Trend in Proportions Comparing Stimulus-Response Relationships Non-Convergence and Overfitting Some other Goodness of Fit Statistics Strategy for Model Selection Predicting a Binary Response Probability BIOASSAY AND SOME OTHER APPLICATIONS The Tolerance Distribution Estimating an Effective Dose Relative Potency Natural Response Non-Linear Logistic Regression Models Applications of the Complementary Log-Log Model MODEL CHECKING Definition of Re...

  6. Evolution of dwarf binaries

    International Nuclear Information System (INIS)

    Tutukov, A.V.; Fedorova, A.V.; Yungel'son, L.R.

    1982-01-01

    The conditions of mass exchange in close binary systems with masses of components less or equal to one solar mass have been analysed for the case, when the system radiates gravitational waves. It has been shown that the mass exchange rate depends in a certain way on the mass ratio of components and on the mass of component that fills its inner critical lobe. The comparison of observed periods, masses of contact components, and mass exchange rates of observed cataclysmic binaries have led to the conclusion that the evolution of close binaries WZ Sge, OY Car, Z Cha, TT Ari, 2A 0311-227, and G 61-29 may be driven by the emission of gravitational waves [ru

  7. Evolution of dwarf binaries

    International Nuclear Information System (INIS)

    Tutukov, A.V.; Fedorova, A.V.; Yungel'son, L.R.

    1982-01-01

    The circumstances of mass exchange in close binary systems whose components have a mass < or approx. =1 M/sub sun/ are analyzed for the case where the system is losing orbital angular momentum by radiation of gravitational waves. The mass exchange rate will depend on the mass ratio of the components and on the mass of the component that is overfilling its critical Roche lobe. A comparison of the observed orbital periods, masses of the components losing material, and mass exchange rates against the theoretical values for cataclysmic binaries indicates that the evolution of the close binaries WZ Sge, OY Car, Z Cha, TT Ari, 2A 0311-227, and G61-29 may be driven by the emission of gravitational waves

  8. Binary and Millisecond Pulsars

    Directory of Open Access Journals (Sweden)

    Lorimer Duncan R.

    2008-11-01

    Full Text Available We review the main properties, demographics and applications of binary and millisecond radio pulsars. Our knowledge of these exciting objects has greatly increased in recent years, mainly due to successful surveys which have brought the known pulsar population to over 1800. There are now 83 binary and millisecond pulsars associated with the disk of our Galaxy, and a further 140 pulsars in 26 of the Galactic globular clusters. Recent highlights include the discovery of the young relativistic binary system PSR J1906+0746, a rejuvination in globular cluster pulsar research including growing numbers of pulsars with masses in excess of 1.5M_⊙, a precise measurement of relativistic spin precession in the double pulsar system and a Galactic millisecond pulsar in an eccentric (e = 0.44 orbit around an unevolved companion.

  9. The Brightest Binaries

    Science.gov (United States)

    Vanbeveren, D., Van Rensbergen, W., De Loore, C.

    Massive stars are distributed all over the upper part of the Hertzsprung-Russell diagram according to their subsequent phases of stellar evolution from main sequence to supernova. Massive stars may either be single or they may be a component of a close binary. The observed single star/binary frequency is known only in a small part of the Galaxy. Whether this holds for the whole galaxy or for the whole cosmos is questionable and needs many more high quality observations. Massive star evolution depends critically on mass loss by stellar wind and this stellar wind mass loss may change dramatically when stars evolve from one phase to another. We start the book with a critical discussion of observations of the different types of massive stars, observations that are of fundamental importance in relation to stellar evolution, with special emphasis on mass loss by stellar wind. We update our knowledge of the physics that models the structure and evolution of massive single stars and we present new calculations. The conclusions resulting from a comparison between these calculations and observations are then used to study the evolution of massive binaries. This book provides our current knowledge of a great variety of massive binaries, and hence of a great variety of evolutionary phases. A large number of case studies illustrates the existence of these phases. Finally, we present the results of massive star population number synthesis, including the effect of binaries. The results indicate that neglecting them leads to a conclusion which may be far from reality. This book is written for researchers in massive star evolution. We hope that, after reading this book, university-level astrophysics students will become fascinated by the exciting world of the `Brightest Binaries'.

  10. Encounters of binaries

    International Nuclear Information System (INIS)

    Mikkola, S.

    1983-01-01

    Gravitational encounters of pairs of binaries have been studied numerically. Various cross-sections have been calculated for qualitative final results of the interaction and for energy transfer between the binding energy and the centre of mass kinetic energy. The distribution of the kinetic energies, resulting from the gravitational collision, were found to be virtually independent of the impact velocity in the case of collision of hard binaries. It was found that one out of five collisions, which are not simple fly-by's, leads to the formation of a stable three-body system. (author)

  11. Binary and Millisecond Pulsars

    Directory of Open Access Journals (Sweden)

    Duncan R. Lorimer

    1998-09-01

    Full Text Available Our knowledge of binary and millisecond pulsars has greatly increased in recent years. This is largely due to the success of large-area surveys which have brought the known population of such systems in the Galactic disk to around 50. As well as being interesting as a population of astronomical sources, many pulsars turn out to be superb celestial clocks. In this review we summarise the main properties of binary and millisecond pulsars and highlight some of their applications to relativistic astrophysics.

  12. Binary and Millisecond Pulsars

    Directory of Open Access Journals (Sweden)

    Lorimer Duncan R.

    2005-11-01

    Full Text Available We review the main properties, demographics and applications of binary and millisecond radio pulsars. Our knowledge of these exciting objects has greatly increased in recent years, mainly due to successful surveys which have brought the known pulsar population to over 1700. There are now 80 binary and millisecond pulsars associated with the disk of our Galaxy, and a further 103 pulsars in 24 of the Galactic globular clusters. Recent highlights have been the discovery of the first ever double pulsar system and a recent flurry of discoveries in globular clusters, in particular Terzan 5.

  13. EVIDENCE FOR AN FU ORIONIS-LIKE OUTBURST FROM A CLASSICAL T TAURI STAR

    International Nuclear Information System (INIS)

    Miller, Adam A.; Poznanski, Dovi; Silverman, Jeffrey M.; Kleiser, Io K. W.; Cenko, S. Bradley; Bloom, Joshua S.; Filippenko, Alexei V.; Hillenbrand, Lynne A.; Kasliwal, Mansi M.; Ofek, Eran O.; Quimby, Robert M.; Covey, Kevin R.; Rojas-Ayala, Barbara; Muirhead, Philip S.; Law, Nicholas M.; Dekany, Richard G.; Rahmer, Gustavo; Hale, David; Smith, Roger; Nugent, Peter

    2011-01-01

    We present pre- and post-outburst observations of the new FU Orionis-like young stellar object PTF 10qpf (also known as LkHα 188-G4 and HBC 722). Prior to this outburst, LkHα 188-G4 was classified as a classical T Tauri star (CTTS) on the basis of its optical emission-line spectrum superposed on a K8-type photosphere and its photometric variability. The mid-infrared spectral index of LkHα 188-G4 indicates a Class II-type object. LkHα 188-G4 exhibited a steady rise by ∼1 mag over ∼11 months starting in August 2009, before a subsequent more abrupt rise of >3 mag on a timescale of ∼2 months. Observations taken during the eruption exhibit the defining characteristics of FU Orionis variables: (1) an increase in brightness by ∼>4 mag, (2) a bright optical/near-infrared reflection nebula appeared, (3) optical spectra are consistent with a G supergiant and dominated by absorption lines, the only exception being Hα which is characterized by a P Cygni profile, (4) near-infrared spectra resemble those of late K-M giants/supergiants with enhanced absorption seen in the molecular bands of CO and H 2 O, and (5) outflow signatures in H and He are seen in the form of blueshifted absorption profiles. LkHα 188-G4 is the first member of the FU Orionis-like class with a well-sampled optical to mid-infrared spectral energy distribution in the pre-outburst phase. The association of the PTF 10qpf outburst with the previously identified CTTS LkHα 188-G4 (HBC 722) provides strong evidence that FU Orionis-like eruptions represent periods of enhanced disk accretion and outflow, likely triggered by instabilities in the disk. The early identification of PTF 10qpf as an FU Orionis-like variable will enable detailed photometric and spectroscopic observations during its post-outburst evolution for comparison with other known outbursting objects.

  14. Evidence of a substellar companion around a very young T Tauri star

    Science.gov (United States)

    Almeida, P. Viana; Gameiro, J. F.; Petrov, P. P.; Melo, C.; Santos, N. C.; Figueira, P.; Alencar, S. H. P.

    2017-04-01

    We present results from a near-infrared multi-epoch spectroscopic campaign to detect a young low-mass companion to a T Tauri star. AS 205A is a late-type dwarf (≈K5) of 1 M⊙ that belongs to a triple system. Independent photometric surveys discovered that AS 205A has two distinct periods (P1 = 6.78 and P2 = 24.78 days) detected in the light curve that persist over several years. Period P1 seems to be linked to the axial-rotation of the star and is caused by the presence of cool surface spots. Period P2 is correlated with the modulation in AS 205A brightness (V) and red color (V-R), consistent with a gravitating object within the accretion disk. We here derive precise near-infrared radial velocities to investigate the origin of period P2 which is predicted to correspond to a cool source in a Keplerian orbit with a semi-major axis of 0.17 AU positioned close to the inner disk radius of 0.14 AU. The radial velocity variations of AS 205A were found to have a period of P ≈ 24.84 days and a semi-amplitude of 1.529 km s-1. This result closely resembles the P2 period in past photometric observations (P ≈ 24.78 days). The analysis of the cross-correlation function bisector has shown no correlation with the radial velocity modulations, strongly suggesting that the period is not controlled by stellar rotation. Additional activity indicators should however be explored in future surveys. Taking this into account we found that the presence of a substellar companion is the explanation that best fits the results. We derived an orbital solution for AS 205A and found evidence of a m2 sin I≃ 19.25 MJup object in an orbit with moderate eccentricity of e ≃ 0.34. If confirmed with future observations, preferably using a multiwavelength survey approach, this companion could provide interesting constraints on brown dwarf and planetary formation models. Based on observations collected with the CRIRES spectrograph at the VLT/UT1 8.2-m Antu Telescope (ESO runs ID 385.C-0706(A) and

  15. Interacting binary stars

    International Nuclear Information System (INIS)

    Pringle, J.E.; Wade, R.A.

    1985-01-01

    This book reviews the theoretical and observational knowledge of interacting binary stars. The topics discussed embrace the following features of these objects: their orbits, evolution, mass transfer, angular momentum losses, X-ray emission, eclipses, variability, and other related phenomena. (U.K.)

  16. Equational binary decision diagrams

    NARCIS (Netherlands)

    J.F. Groote (Jan Friso); J.C. van de Pol (Jaco)

    2000-01-01

    textabstractWe incorporate equations in binary decision diagrams (BDD). The resulting objects are called EQ-BDDs. A straightforward notion of ordered EQ-BDDs (EQ-OBDD) is defined, and it is proved that each EQ-BDD is logically equivalent to an EQ-OBDD. Moreover, on EQ-OBDDs satisfiability and

  17. N-Bit Binary Resistor

    Science.gov (United States)

    Tcheng, Ping

    1989-01-01

    Binary resistors in series tailored to precise value of resistance. Desired value of resistance obtained by cutting appropriate traces across resistors. Multibit, binary-based, adjustable resistor with high resolution used in many applications where precise resistance required.

  18. Black holes in binary stars

    NARCIS (Netherlands)

    Wijers, R.A.M.J.

    1996-01-01

    Introduction Distinguishing neutron stars and black holes Optical companions and dynamical masses X-ray signatures of the nature of a compact object Structure and evolution of black-hole binaries High-mass black-hole binaries Low-mass black-hole binaries Low-mass black holes Formation of black holes

  19. A clumpy stellar wind and luminosity-dependent cyclotron line revealed by the first Suzaku observation of the high-mass X-ray binary 4U 1538–522

    Energy Technology Data Exchange (ETDEWEB)

    Hemphill, Paul B.; Rothschild, Richard E.; Markowitz, Alex [Center for Astrophysics and Space Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 920093-0424 (United States); Fürst, Felix [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, MC 290-17, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Pottschmidt, Katja [Center for Space Science and Technology, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250 (United States); Wilms, Jörn, E-mail: pbhemphill@physics.ucsd.edu [Dr. Karl Remeis-Sternwarte and Erlangen Center for Astroparticle Physics, Sternwartstr. 7, D-96049 Bamberg (Germany)

    2014-09-01

    We present results from the first Suzaku observation of the high-mass X-ray binary 4U 1538–522. The broadband spectral coverage of Suzaku allows for a detailed spectral analysis, characterizing the cyclotron resonance scattering feature at 23.0 ± 0.4 keV and the iron Kα line at 6.426 ± 0.008 keV, as well as placing limits on the strengths of the iron Kβ line and the iron K edge. We track the evolution of the spectral parameters both in time and in luminosity, notably finding a significant positive correlation between cyclotron line energy and luminosity. A dip and spike in the light curve is shown to be associated with an order-of-magnitude increase in column density along the line of sight, as well as significant variation in the underlying continuum, implying the accretion of a overdense region of a clumpy stellar wind. We also present a phase-resolved analysis, with most spectral parameters of interest showing significant variation with phase. Notably, both the cyclotron line energy and the iron Kα line intensity vary significantly with phase, with the iron line intensity significantly out of phase with the pulse profile. We discuss the implications of these findings in the context of recent work in the areas of accretion column physics and cyclotron resonance scattering feature formation.

  20. Compressing Binary Decision Diagrams

    DEFF Research Database (Denmark)

    Hansen, Esben Rune; Satti, Srinivasa Rao; Tiedemann, Peter

    2008-01-01

    The paper introduces a new technique for compressing Binary Decision Diagrams in those cases where random access is not required. Using this technique, compression and decompression can be done in linear time in the size of the BDD and compression will in many cases reduce the size of the BDD to ......-2 bits per node. Empirical results for our compression technique are presented, including comparisons with previously introduced techniques, showing that the new technique dominate on all tested instances......The paper introduces a new technique for compressing Binary Decision Diagrams in those cases where random access is not required. Using this technique, compression and decompression can be done in linear time in the size of the BDD and compression will in many cases reduce the size of the BDD to 1...

  1. Compressing Binary Decision Diagrams

    DEFF Research Database (Denmark)

    Rune Hansen, Esben; Srinivasa Rao, S.; Tiedemann, Peter

    The paper introduces a new technique for compressing Binary Decision Diagrams in those cases where random access is not required. Using this technique, compression and decompression can be done in linear time in the size of the BDD and compression will in many cases reduce the size of the BDD to ......-2 bits per node. Empirical results for our compression technique are presented, including comparisons with previously introduced techniques, showing that the new technique dominate on all tested instances.......The paper introduces a new technique for compressing Binary Decision Diagrams in those cases where random access is not required. Using this technique, compression and decompression can be done in linear time in the size of the BDD and compression will in many cases reduce the size of the BDD to 1...

  2. Parametric binary dissection

    Science.gov (United States)

    Bokhari, Shahid H.; Crockett, Thomas W.; Nicol, David M.

    1993-01-01

    Binary dissection is widely used to partition non-uniform domains over parallel computers. This algorithm does not consider the perimeter, surface area, or aspect ratio of the regions being generated and can yield decompositions that have poor communication to computation ratio. Parametric Binary Dissection (PBD) is a new algorithm in which each cut is chosen to minimize load + lambda x(shape). In a 2 (or 3) dimensional problem, load is the amount of computation to be performed in a subregion and shape could refer to the perimeter (respectively surface) of that subregion. Shape is a measure of communication overhead and the parameter permits us to trade off load imbalance against communication overhead. When A is zero, the algorithm reduces to plain binary dissection. This algorithm can be used to partition graphs embedded in 2 or 3-d. Load is the number of nodes in a subregion, shape the number of edges that leave that subregion, and lambda the ratio of time to communicate over an edge to the time to compute at a node. An algorithm is presented that finds the depth d parametric dissection of an embedded graph with n vertices and e edges in O(max(n log n, de)) time, which is an improvement over the O(dn log n) time of plain binary dissection. Parallel versions of this algorithm are also presented; the best of these requires O((n/p) log(sup 3)p) time on a p processor hypercube, assuming graphs of bounded degree. How PBD is applied to 3-d unstructured meshes and yields partitions that are better than those obtained by plain dissection is described. Its application to the color image quantization problem is also discussed, in which samples in a high-resolution color space are mapped onto a lower resolution space in a way that minimizes the color error.

  3. Binary Masking & Speech Intelligibility

    OpenAIRE

    Boldt, Jesper

    2010-01-01

    The purpose of this thesis is to examine how binary masking can be used to increase intelligibility in situations where hearing impaired listeners have difficulties understanding what is being said. The major part of the experiments carried out in this thesis can be categorized as either experiments under ideal conditions or as experiments under more realistic conditions useful for real-life applications such as hearing aids. In the experiments under ideal conditions, the previously defined i...

  4. A FAR-ULTRAVIOLET ATLAS OF LOW-RESOLUTION HUBBLE SPACE TELESCOPE SPECTRA OF T TAURI STARS

    Energy Technology Data Exchange (ETDEWEB)

    Yang Hao; Linsky, Jeffrey L. [JILA, University of Colorado and NIST, Boulder, CO 80309-0440 (United States); Herczeg, Gregory J. [Max-Planck-Institut fuer extraterrestriche Physik, 85741 Garching (Germany); Brown, Alexander [CASA, University of Colorado, Boulder, CO 80309-0389 (United States); Johns-Krull, Christopher M. [Department of Physics and Astronomy, Rice University, Houston, TX 77005 (United States); Ingleby, Laura; Calvet, Nuria; Bergin, Edwin [Department of Astronomy, University of Michigan, 830 Dennison Building, Ann Arbor, MI 48109 (United States); Valenti, Jeff A., E-mail: haoyang@jilau1.colorado.edu, E-mail: jlinsky@jilau1.colorado.edu, E-mail: gregoryh@mpe.mpg.de, E-mail: Alexander.Brown@colorado.edu, E-mail: cmj@rice.edu, E-mail: lingleby@umich.edu, E-mail: ncalvet@umich.edu, E-mail: ebergin@umich.edu, E-mail: valenti@stsci.edu [Space Telescope Science Institute, Baltimore, MD 21218 (United States)

    2012-01-10

    We present a far-ultraviolet (FUV) spectral atlas consisting of spectra of 91 pre-main-sequence stars. Most stars in this sample were observed with the Space Telescope Imaging Spectrograph and Advanced Camera for Surveys on the Hubble Space Telescope (HST). A few archival spectra from the International Ultraviolet Explorer and the Goddard High Resolution Spectrograph on HST are included for completeness. We find strong correlations among the O I {lambda}1304 triplet, the Si IV {lambda}{lambda}1394/1403 doublet, the C IV {lambda}1549 doublet, and the He II {lambda}1640 line luminosities. For classical T Tauri stars (CTTSs), we also find strong correlations between these lines and the accretion luminosity, suggesting that these lines form in processes related to accretion. These FUV line fluxes and X-ray luminosity correlate loosely with large scatters. The FUV emission also correlates well with H{alpha}, H{beta}, and Ca II K line luminosities. These correlations between FUV and optical diagnostics can be used to obtain rough estimates of FUV line fluxes from optical observations. Molecular hydrogen (H{sub 2}) emission is generally present in the spectra of actively accreting CTTSs but not the weak-lined T Tauri stars that are not accreting. The presence of H{sub 2} emission in the spectrum of HD 98800 N suggests that the disk should be classified as actively accreting rather than a debris disk. We discuss the importance of FUV radiation, including the hydrogen Ly{alpha} line, on the photoevaporation of exoplanet atmospheres. We find that the Ca II/C IV flux ratios for more evolved stars are lower than those for less evolved accretors, indicating preferential depletion of refractory metals into dust grains.

  5. Confusing Binaries: The Role of Stellar Binaries in Biasing Disk Properties in the Galactic Center

    Science.gov (United States)

    Naoz, Smadar; Ghez, Andrea M.; Hees, Aurelien; Do, Tuan; Witzel, Gunther; Lu, Jessica R.

    2018-02-01

    The population of young stars near the supermassive black hole (SMBH) in the Galactic Center (GC) has presented an unexpected challenge to theories of star formation. Kinematic measurements of these stars have revealed a stellar disk structure (with an apparent 20% disk membership) that has provided important clues regarding the origin of these mysterious young stars. However, many of the apparent disk properties are difficult to explain, including the low disk membership fraction and the high eccentricities given the youth of this population. Thus far, all efforts to derive the properties of this disk have made the simplifying assumption that stars at the GC are single stars. Nevertheless, stellar binaries are prevalent in our Galaxy, and recent investigations suggested that they may also be abundant in the Galactic Center. Here, we show that binaries in the disk can largely alter the apparent orbital properties of the disk. The motion of binary members around each other adds a velocity component, which can be comparable to the magnitude of the velocity around the SMBH in the GC. Thus, neglecting the contribution of binaries can significantly vary the inferred stars’ orbital properties. While the disk orientation is unaffected, the apparent disk’s 2D width will be increased to about 11.°2, similar to the observed width. For a population of stars orbiting the SMBH with zero eccentricity, unaccounted for binaries will create a wide apparent eccentricity distribution with an average of 0.23. This is consistent with the observed average eccentricity of the stars’ in the disk. We suggest that this high eccentricity value, which poses a theoretical challenge, may be an artifact of binary stars. Finally, our results suggest that the actual disk membership might be significantly higher than the one inferred by observations that ignore the contribution of binaries, alleviating another theoretical challenge.

  6. Young and Waltzing Binary Stars

    Science.gov (United States)

    2001-10-01

    star determines its fate . Massive stars (with masses more than 50 times that of the Sun) lead a glorious, but short life. They are hot and very luminous and exhaust their energy supply in just a few million years. At the other end of the scale, low-mass stars like the Sun are more economical with their resources. Being cooler and dimmer, they are able to shine for billions of years [2]. But although the mass determines the fate of a star, it is not a trivial matter to measure this crucial parameter. In fact, it can only be determined directly if the star happens to be gravitationally bound to another star in a binary stellar system. Observations of the orbital motions of the two stars as they circle each other allows to "weigh" them, and also provide other important information, e.g. about their sizes and temperatures. Orbital motions The understanding of orbital motions has a long history in astronomy. The basic laws of Johannes Kepler (1571-1630) are still used to calculate the masses of orbiting objects, in the solar system as well as in binary stellar systems. However, while the observations of the motion of the nine planets and moons have allowed us to measure quite accurately the masses of objects in our vicinity, the information needed to "weigh" the binary stellar systems is not that easy to obtain. As a result, the mass estimates of the stars in binary systems are often rather uncertain. A main problem is that the individual stars in many binary systems can not be visually separated, even in the best telescopes. The information about the orbit may then come from the motions of the stars, if these are revealed by spectroscopic observations of the combined light (such systems are referred to as "spectroscopic binaries"). If absorption lines from both components are present in the spectrum, the measured wavelength of these double lines will shift periodically back and forth. This is the well-known Doppler effect and it directly reflects the changing velocities

  7. Massive Black Hole Binary Evolution

    Directory of Open Access Journals (Sweden)

    Merritt David

    2005-11-01

    Full Text Available Coalescence of binary supermassive black holes (SBHs would constitute the strongest sources of gravitational waves to be observed by LISA. While the formation of binary SBHs during galaxy mergers is almost inevitable, coalescence requires that the separation between binary components first drop by a few orders of magnitude, due presumably to interaction of the binary with stars and gas in a galactic nucleus. This article reviews the observational evidence for binary SBHs and discusses how they would evolve. No completely convincing case of a bound, binary SBH has yet been found, although a handful of systems (e.g. interacting galaxies; remnants of galaxy mergers are now believed to contain two SBHs at projected separations of <~ 1kpc. N-body studies of binary evolution in gas-free galaxies have reached large enough particle numbers to reproduce the slow, “diffusive” refilling of the binary’s loss cone that is believed to characterize binary evolution in real galactic nuclei. While some of the results of these simulations - e.g. the binary hardening rate and eccentricity evolution - are strongly N-dependent, others - e.g. the “damage” inflicted by the binary on the nucleus - are not. Luminous early-type galaxies often exhibit depleted cores with masses of ~ 1-2 times the mass of their nuclear SBHs, consistent with the predictions of the binary model. Studies of the interaction of massive binaries with gas are still in their infancy, although much progress is expected in the near future. Binary coalescence has a large influence on the spins of SBHs, even for mass ratios as extreme as 10:1, and evidence of spin-flips may have been observed.

  8. X-ray sources in stars formation areas: T Tauri stars and proto-stars in the rho Ophiuchi dark cloud

    International Nuclear Information System (INIS)

    Grosso, Nicolas

    1999-01-01

    This thesis studies from large to small scales, X-ray sources in the rho Ophiuchi dark cloud. After some background on the formation of the low-mass young stars (Chapter 1), Chapter 2 takes an interest in the T Tauri star population. Chapter 3 tackles the search of the magnetic activity at the younger stage of protostar, presenting a powerful X-ray emission from an IR protostar, called YLW15, during a flare, and a quasi-periodic flare of the same source; as well as a new detection of another IR protostar in the ROSAT archives. It ends with a review of protostar detections. Some IR protostar flares show a very long increasing phase. Chapter 4 links this behaviour with a modulation by the central star rotation. The standard model of jet emission assumes that the central star rotates at the same speed that the inner edge of its accretion disk. This chapter shows that the observation of the YLW15 quasi-periodic flare suggests rather that the forming star rotates faster than its accretion disk, at the break up limit. The synchronism with the accretion disk, observed on T Tauri stars, must be reach progressively by magnetic breaking during the IR protostar stage, and more or less rapidly depending on the forming star mass. Recent studies have shown that T Tauri star X-ray emission could ionize the circumstellar disk, and play a role in the instability development, as well as stimulate the accretion. The protostar X-ray emission might be higher than the T Tauri star one, Chapter 5 presents a millimetric interferometric observation dedicated to measure this effect on YLW15. Finally, Chapter 6 reassembles conclusions and perspectives of this work. (author) [fr

  9. Magnetic binary nanofillers

    Energy Technology Data Exchange (ETDEWEB)

    Morales Mendoza, N. [INQUIMAE, CONICET-UBA, Ciudad Universitaria, Pab2, (C1428EHA) Bs As (Argentina); LPyMC, Dep. De Fisica, FCEN-UBA and IFIBA -CONICET, Ciudad Universitaria, Cap. Fed. (Argentina); Goyanes, S. [LPyMC, Dep. De Fisica, FCEN-UBA and IFIBA -CONICET, Ciudad Universitaria, Cap. Fed. (Argentina); Chiliotte, C.; Bekeris, V. [LBT, Dep. De Fisica, FCEN-UBA. Ciudad Universitaria, Pab1, C1428EGA CABA (Argentina); Rubiolo, G. [LPyMC, Dep. De Fisica, FCEN-UBA and IFIBA -CONICET, Ciudad Universitaria, Cap. Fed. (Argentina); Unidad de Actividad Materiales, CNEA, Av Gral. Paz 1499, San Martin (1650), Prov. de Bs As (Argentina); Candal, R., E-mail: candal@qi.fcen.uba.ar [INQUIMAE, CONICET-UBA, Ciudad Universitaria, Pab2, (C1428EHA) Bs As (Argentina); Escuela de Ciencia y Tecnologia, 3iA, Universidad de Gral. San Martin, San Martin, Prov. Bs As (Argentina)

    2012-08-15

    Magnetic binary nanofillers containing multiwall carbon nanotubes (MWCNT) and hercynite were synthesized by Chemical Vapor Deposition (CVD) on Fe/AlOOH prepared by the sol-gel method. The catalyst precursor was fired at 450 Degree-Sign C, ground and sifted through different meshes. Two powders were obtained with different particle sizes: sample A (50-75 {mu}m) and sample B (smaller than 50 {mu}m). These powders are composed of iron oxide particles widely dispersed in the non-crystalline matrix of aluminum oxide and they are not ferromagnetic. After reduction process the powders are composed of {alpha}-Fe nanoparticles inside hercynite matrix. These nanofillers are composed of hercynite containing {alpha}-Fe nanoparticles and MWCNT. The binary magnetic nanofillers were slightly ferromagnetic. The saturation magnetization of the nanofillers depended on the powder particle size. The nanofiller obtained from powder particles in the range 50-75 {mu}m showed a saturation magnetization 36% higher than the one formed from powder particles smaller than 50 {mu}m. The phenomenon is explained in terms of changes in the magnetic environment of the particles as consequence of the presence of MWCNT.

  10. An Eccentric Binary Millisecond Pulsar with a Helium White Dwarf Companion in the Galactic field

    Science.gov (United States)

    Antoniadis, John; Kaplan, David L.; Stovall, Kevin; Freire, Paulo C. C.; Deneva, Julia S.; Koester, Detlev; Jenet, Fredrick; Martinez, Jose G.

    2016-10-01

    Low-mass white dwarfs (LMWDs) are believed to be exclusive products of binary evolution, as the universe is not old enough to produce them from single stars. Because of the strong tidal forces operating during the binary interaction phase, the remnant systems observed today are expected to have negligible eccentricities. Here, we report on the first unambiguous identification of an LMWD in an eccentric (e = 0.13) orbit around the millisecond pulsar PSR J2234+0511, which directly contradicts this picture. We use our spectra and radio-timing solution (derived elsewhere) to infer the WD temperature ({T}{{eff}}=8600+/- 190 K), and peculiar systemic velocity relative to the local standard of rest (≃ 31 km s-1). We also place model-independent constraints on the WD radius ({R}{{WD}}={0.024}-0.002+0.004 {R}⊙ ) and surface gravity ({log} g={7.11}-0.16+0.08 dex). The WD and kinematic properties are consistent with the expectations for low-mass X-ray binary evolution and disfavor a dynamic three-body formation channel. In the case of the high eccentricity being the result of a spontaneous phase transition, we infer a mass of ˜1.60 M ⊙ for the pulsar progenitor, which is too low for the quark-nova mechanism proposed by Jiang et al., and too high for the scenario of Freire & Tauris, in which a WD collapses into a neutron star via a rotationally delayed accretion-induced collapse. We find that eccentricity pumping via interaction with a circumbinary disk is consistent with our inferred parameters. Finally, we report tentative evidence for pulsations that, if confirmed, would transform the star into an unprecedented laboratory for WD physics.

  11. Contact Binary Asteroids

    Science.gov (United States)

    Rieger, Samantha

    2015-05-01

    Recent observations have found that some contact binaries are oriented such that the secondary impacts with the primary at a high inclination. This research investigates the evolution of how such contact binaries came to exist. This process begins with an asteroid pair, where the secondary lies on the Laplace plane. The Laplace plane is a plane normal to the axis about which the pole of a satellites orbit precesses, causing a near constant inclination for such an orbit. For the study of the classical Laplace plane, the secondary asteroid is in circular orbit around an oblate primary with axial tilt. This system is also orbiting the Sun. Thus, there are two perturbations on the secondarys orbit: J2 and third body Sun perturbations. The Laplace surface is defined as the group of orbits that lie on the Laplace plane at varying distances from the primary. If the secondary is very close to the primary, the inclination of the Laplace plane will be near the equator of the asteroid, while further from the primary the inclination will be similar to the asteroid-Sun plane. The secondary will lie on the Laplace plane because near the asteroid the Laplace plane is stable to large deviations in motion, causing the asteroid to come to rest in this orbit. Assuming the secondary is asymmetrical in shape and the bodys rotation is synchronous with its orbit, the secondary will experience the BYORP effect. BYORP can cause secular motion such as the semi-major axis of the secondary expanding or contracting. Assuming the secondary expands due to BYORP, the secondary will eventually reach the unstable region of the Laplace plane. The unstable region exists if the primary has an obliquity of 68.875 degrees or greater. The unstable region exists at 0.9 Laplace radius to 1.25 Laplace radius, where the Laplace radius is defined as the distance from the central body where the inclination of the Laplace plane orbit is half the obliquity. In the unstable region, the eccentricity of the orbit

  12. Relativistic Binaries in Globular Clusters

    Directory of Open Access Journals (Sweden)

    Matthew J. Benacquista

    2013-03-01

    Full Text Available Galactic globular clusters are old, dense star systems typically containing 10^4 – 10^6 stars. As an old population of stars, globular clusters contain many collapsed and degenerate objects. As a dense population of stars, globular clusters are the scene of many interesting close dynamical interactions between stars. These dynamical interactions can alter the evolution of individual stars and can produce tight binary systems containing one or two compact objects. In this review, we discuss theoretical models of globular cluster evolution and binary evolution, techniques for simulating this evolution that leads to relativistic binaries, and current and possible future observational evidence for this population. Our discussion of globular cluster evolution will focus on the processes that boost the production of tight binary systems and the subsequent interaction of these binaries that can alter the properties of both bodies and can lead to exotic objects. Direct N-body integrations and Fokker–Planck simulations of the evolution of globular clusters that incorporate tidal interactions and lead to predictions of relativistic binary populations are also discussed. We discuss the current observational evidence for cataclysmic variables, millisecond pulsars, and low-mass X-ray binaries as well as possible future detection of relativistic binaries with gravitational radiation.

  13. Spectral properties of binary asteroids

    Science.gov (United States)

    Pajuelo, Myriam; Birlan, Mirel; Carry, Benoît; DeMeo, Francesca E.; Binzel, Richard P.; Berthier, Jérôme

    2018-04-01

    We present the first attempt to characterize the distribution of taxonomic class among the population of binary asteroids (15% of all small asteroids). For that, an analysis of 0.8-2.5{μ m} near-infrared spectra obtained with the SpeX instrument on the NASA/IRTF is presented. Taxonomic class and meteorite analog is determined for each target, increasing the sample of binary asteroids with known taxonomy by 21%. Most binary systems are bound in the S-, X-, and C- classes, followed by Q and V-types. The rate of binary systems in each taxonomic class agrees within uncertainty with the background population of small near-Earth objects and inner main belt asteroids, but for the C-types which are under-represented among binaries.

  14. Planets in Binary Star Systems

    CERN Document Server

    Haghighipour, Nader

    2010-01-01

    The discovery of extrasolar planets over the past decade has had major impacts on our understanding of the formation and dynamical evolution of planetary systems. There are features and characteristics unseen in our solar system and unexplainable by the current theories of planet formation and dynamics. Among these new surprises is the discovery of planets in binary and multiple-star systems. The discovery of such "binary-planetary" systems has confronted astrodynamicists with many new challenges, and has led them to re-examine the theories of planet formation and dynamics. Among these challenges are: How are planets formed in binary star systems? What would be the notion of habitability in such systems? Under what conditions can binary star systems have habitable planets? How will volatiles necessary for life appear on such planets? This volume seeks to gather the current research in the area of planets in binary and multistar systems and to familiarize readers with its associated theoretical and observation...

  15. BINARY ASTROMETRIC MICROLENSING WITH GAIA

    Energy Technology Data Exchange (ETDEWEB)

    Sajadian, Sedighe, E-mail: sajadian@ipm.ir [School of Astronomy, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of); Department of Physics, Sharif University of Technology, P.O. Box 11155-9161, Tehran (Iran, Islamic Republic of)

    2015-04-15

    We investigate whether or not Gaia can specify the binary fractions of massive stellar populations in the Galactic disk through astrometric microlensing. Furthermore, we study whether or not some information about their mass distributions can be inferred via this method. In this regard, we simulate the binary astrometric microlensing events due to massive stellar populations according to the Gaia observing strategy by considering (i) stellar-mass black holes, (ii) neutron stars, (iii) white dwarfs, and (iv) main-sequence stars as microlenses. The Gaia efficiency for detecting the binary signatures in binary astrometric microlensing events is ∼10%–20%. By calculating the optical depth due to the mentioned stellar populations, the numbers of the binary astrometric microlensing events being observed with Gaia with detectable binary signatures, for the binary fraction of about 0.1, are estimated to be 6, 11, 77, and 1316, respectively. Consequently, Gaia can potentially specify the binary fractions of these massive stellar populations. However, the binary fraction of black holes measured with this method has a large uncertainty owing to a low number of the estimated events. Knowing the binary fractions in massive stellar populations helps with studying the gravitational waves. Moreover, we investigate the number of massive microlenses for which Gaia specifies masses through astrometric microlensing of single lenses toward the Galactic bulge. The resulting efficiencies of measuring the mass of mentioned populations are 9.8%, 2.9%, 1.2%, and 0.8%, respectively. The numbers of their astrometric microlensing events being observed in the Gaia era in which the lens mass can be inferred with the relative error less than 0.5 toward the Galactic bulge are estimated as 45, 34, 76, and 786, respectively. Hence, Gaia potentially gives us some information about the mass distribution of these massive stellar populations.

  16. KIC 7177553: A QUADRUPLE SYSTEM OF TWO CLOSE BINARIES

    Energy Technology Data Exchange (ETDEWEB)

    Lehmann, H. [Thüringer Landessternwarte Tautenburg, Sternwarte 5, D-07778 Tautenburg (Germany); Borkovits, T. [Baja Astronomical Observatory of Szeged University, H-6500 Baja, Szegedi út, Kt. 766 (Hungary); Rappaport, S. A. [Massachusetts Institute of Technology, Department of Physics, 77 Massachusetts Avenue, Cambridge, MA 02139-4307 (United States); Ngo, H. [California Institute of Technology, Division of Geological and Planetary Sciences, 1200 E. California Boulevard, MC 150-21, Pasadena, CA 91125 (United States); Mawet, D. [California Institute of Technology, Astronomy Dept. MC 249-17, 1200 E. California Boulevard, Pasadena, CA 91125 (United States); Csizmadia, Sz. [German Aerospace Center (DLR), Institut für Planeten-forschung, Rutherfordstraße 2, D-12489 Berlin (Germany); Forgács-Dajka, E., E-mail: lehm@tls-tautenburg.de, E-mail: borko@electra.bajaobs.hu, E-mail: sar@mit.edu, E-mail: hngo@caltech.edu, E-mail: dmawet@astro.caltech.edu, E-mail: szilard.csizmadia@dlr.de, E-mail: e.forgacs-dajka@astro.elte.hu [Astronomical Department, Eötvös University, H-1118 Budapest, Pázmány Péter stny. 1/A (Hungary)

    2016-03-01

    KIC 7177553 was observed by the Kepler satellite to be an eclipsing eccentric binary star system with an 18-day orbital period. Recently, an eclipse timing study of the Kepler binaries has revealed eclipse timing variations (ETVs) in this object with an amplitude of ∼100 s and an outer period of 529 days. The implied mass of the third body is that of a super-Jupiter, but below the mass of a brown dwarf. We therefore embarked on a radial velocity (RV) study of this binary to determine its system configuration and to check the hypothesis that it hosts a giant planet. From the RV measurements, it became immediately obvious that the same Kepler target contains another eccentric binary, this one with a 16.5-day orbital period. Direct imaging using adaptive optics reveals that the two binaries are separated by 0.″4 (∼167 AU) and have nearly the same magnitude (to within 2%). The close angular proximity of the two binaries and very similar γ velocities strongly suggest that KIC 7177553 is one of the rare SB4 systems consisting of two eccentric binaries where at least one system is eclipsing. Both systems consist of slowly rotating, nonevolved, solar-like stars of comparable masses. From the orbital separation and the small difference in γ velocity, we infer that the period of the outer orbit most likely lies in the range of 1000–3000 yr. New images taken over the next few years, as well as the high-precision astrometry of the Gaia satellite mission, will allow us to set much narrower constraints on the system geometry. Finally, we note that the observed ETVs in the Kepler data cannot be produced by the second binary. Further spectroscopic observations on a longer timescale will be required to prove the existence of the massive planet.

  17. Role of local absorption on the X-ray emission from MHD accretion shocks in classical T Tauri stars

    Directory of Open Access Journals (Sweden)

    Bonito

    2014-01-01

    Full Text Available Accretion processes onto classical T Tauri stars (CTTSs are believed to generate shocks at the stellar surface due to the impact of supersonic downflowing plasma. Although current models of accretion streams provide a plausible global picture of this process, several aspects are still unclear. For example, the observed X-ray luminosity in accretion shocks is, in general, well below the predicted value. A possible explanation discussed in the literature is in terms of significant absorption of the emission due to the thick surrounding medium. Here we consider a 2D MHD model describing an accretion stream propagating through the atmosphere of a CTTS and impacting onto its chromosphere. The model includes all the relevant physics, namely the gravity, the thermal conduction, and the radiative cooling, and a realistic description of the unperturbed stellar atmosphere (from the chromosphere to the corona. From the model results, we synthesize the X-ray emission emerging from the hot slab produced by the accretion shock, exploring different configurations and strengths of the stellar magnetic field. The synthesis includes the local absorption by the thick surrounding medium and the Doppler shift of lines due to the component of plasma velocity along the line-of-sight. We explore the effects of absorption on the emerging X-ray spectrum, considering different inclinations of the accretion stream with respect to the observer. Finally we compare our results with the observations.

  18. Water Formation and Destruction by 'Super' X-ray Flares from a T-Tauri Star in a Protoplanetary Disk

    Science.gov (United States)

    Waggoner, Abygail R.; Cleeves, L. Ilsedore

    2018-01-01

    We present models of H2O chemistry is protoplanetary disks in the presence of 'super' X-ray flares emitted by a T-Tauri star. We examine the time-evolving chemistry of H2O at radial locations from 1 to 20 AU at various vertical heights from the mid-plane to the surface of the disk. We find the gas-phase H2O abundance can be enhanced in the surface (Z/R ≥ 0.3) by more than a factor of approximately 3 - 5 by strong flares, i.e., those that increase the ionization rate by a factor of 100. Dissociative recombination of H3O+ , H2O adsorption onto grain, and photolysis of H2O are found to be the three dominant processes leading to a change in H2O abundance. We find X-ray flares have predominantly short- term (days) effects on gaseous H2O abundance, but some regions show a long-term (for the duration of the test about 15 days) decrease in gaseous H2O due to adsorption onto grains, which results in an increase (up to 200%) in ice H2O in regions where ice H2O is 10-8 abundance no are response in the ice is observed.Thanks to the National Science Foundation for funding this research as a part of the Smithsonian Astrophysical Observatory Research Experience for Undergraduates (SAO REU).

  19. TIME VARIABILITY OF EMISSION LINES FOR FOUR ACTIVE T TAURI STARS. I. OCTOBER–DECEMBER IN 2010

    International Nuclear Information System (INIS)

    Chou, Mei-Yin; Takami, Michihiro; Karr, Jennifer L.; Shang Hsien; Liu, Hauyu Baobab; Manset, Nadine; Beck, Tracy; Pyo, Tae-Soo; Chen, Wen-Ping; Panwar, Neelam

    2013-01-01

    We present optical spectrophotometric monitoring of four active T Tauri stars (DG Tau, RY Tau, XZ Tau, RW Aur A) at high spectral resolution (R ∼> 1 × 10 4 ), to investigate the correlation between time variable mass ejection seen in the jet/wind structure of the driving source and time variable mass accretion probed by optical emission lines. This may allow us to constrain the understanding of the jet/wind launching mechanism, the location of the launching region, and the physical link with magnetospheric mass accretion. In 2010, observations were made at six different epochs to investigate how daily and monthly variability might affect such a study. We perform comparisons between the line profiles we observed and those in the literature over a period of decades and confirm the presence of time variability separate from the daily and monthly variability during our observations. This is so far consistent with the idea that these line profiles have a long-term variability (3-20 yr) related to episodic mass ejection suggested by the structures in the extended flow components. We also investigate the correlations between equivalent widths and between luminosities for different lines. We find that these correlations are consistent with the present paradigm of steady magnetospheric mass accretion and emission line regions that are close to the star.

  20. On the binary expansions of algebraic numbers

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, David H.; Borwein, Jonathan M.; Crandall, Richard E.; Pomerance, Carl

    2003-07-01

    Employing concepts from additive number theory, together with results on binary evaluations and partial series, we establish bounds on the density of 1's in the binary expansions of real algebraic numbers. A central result is that if a real y has algebraic degree D > 1, then the number {number_sign}(|y|, N) of 1-bits in the expansion of |y| through bit position N satisfies {number_sign}(|y|, N) > CN{sup 1/D} for a positive number C (depending on y) and sufficiently large N. This in itself establishes the transcendency of a class of reals {summation}{sub n{ge}0} 1/2{sup f(n)} where the integer-valued function f grows sufficiently fast; say, faster than any fixed power of n. By these methods we re-establish the transcendency of the Kempner--Mahler number {summation}{sub n{ge}0}1/2{sup 2{sup n}}, yet we can also handle numbers with a substantially denser occurrence of 1's. Though the number z = {summation}{sub n{ge}0}1/2{sup n{sup 2}} has too high a 1's density for application of our central result, we are able to invoke some rather intricate number-theoretical analysis and extended computations to reveal aspects of the binary structure of z{sup 2}.

  1. Content identification: binary content fingerprinting versus binary content encoding

    Science.gov (United States)

    Ferdowsi, Sohrab; Voloshynovskiy, Svyatoslav; Kostadinov, Dimche

    2014-02-01

    In this work, we address the problem of content identification. We consider content identification as a special case of multiclass classification. The conventional approach towards identification is based on content fingerprinting where a short binary content description known as a fingerprint is extracted from the content. We propose an alternative solution based on elements of machine learning theory and digital communications. Similar to binary content fingerprinting, binary content representation is generated based on a set of trained binary classifiers. We consider several training/encoding strategies and demonstrate that the proposed system can achieve the upper theoretical performance limits of content identification. The experimental results were carried out both on a synthetic dataset with different parameters and the FAMOS dataset of microstructures from consumer packages.

  2. Optimally cloned binary coherent states

    Science.gov (United States)

    Müller, C. R.; Leuchs, G.; Marquardt, Ch.; Andersen, U. L.

    2017-10-01

    Binary coherent state alphabets can be represented in a two-dimensional Hilbert space. We capitalize this formal connection between the otherwise distinct domains of qubits and continuous variable states to map binary phase-shift keyed coherent states onto the Bloch sphere and to derive their quantum-optimal clones. We analyze the Wigner function and the cumulants of the clones, and we conclude that optimal cloning of binary coherent states requires a nonlinearity above second order. We propose several practical and near-optimal cloning schemes and compare their cloning fidelity to the optimal cloner.

  3. Binary typing of staphylococcus aureus

    NARCIS (Netherlands)

    W.B. van Leeuwen (Willem)

    2002-01-01

    textabstractThis thesis describes the development. application and validation of straindifferentiating DNA probes for the characterization of Staphylococcus aureus strains in a system. that yields a binary output. By comparing the differential hybridization of these DNA probes to staphylococcal

  4. Mesoscopic model for binary fluids

    Science.gov (United States)

    Echeverria, C.; Tucci, K.; Alvarez-Llamoza, O.; Orozco-Guillén, E. E.; Morales, M.; Cosenza, M. G.

    2017-10-01

    We propose a model for studying binary fluids based on the mesoscopic molecular simulation technique known as multiparticle collision, where the space and state variables are continuous, and time is discrete. We include a repulsion rule to simulate segregation processes that does not require calculation of the interaction forces between particles, so binary fluids can be described on a mesoscopic scale. The model is conceptually simple and computationally efficient; it maintains Galilean invariance and conserves the mass and energy in the system at the micro- and macro-scale, whereas momentum is conserved globally. For a wide range of temperatures and densities, the model yields results in good agreement with the known properties of binary fluids, such as the density profile, interface width, phase separation, and phase growth. We also apply the model to the study of binary fluids in crowded environments with consistent results.

  5. Orbital Solution for the Spectroscopic Binary in the GW Ori Hierarchical Triple

    Science.gov (United States)

    Prato, L.; Ruíz-Rodríguez, Dary; Wasserman, L. H.

    2018-01-01

    We present the first double-lined orbital solution for the close binary in the GW Ori triple system. Using 12 epochs of infrared spectroscopy, we detected the lines of both stars in the inner pair, previously known as single-lined only. Our preliminary infrared orbital solution has an eccentricity of e = 0.21 ± 0.10, a period of P = 241.15 ± 0.72 days, and a mass ratio of q = 0.66 ± 0.13. We find a larger semi-amplitude for the primary star, K1 = 6.57 ± 1.00 km s‑1, with an infrared-only solution compared to K1 = 4.41 ± 0.33 km s‑1 with optical data from the literature, likely the result of line blending and veiling in the optical. The component spectral types correspond to G3 and K0 stars, with v\\sin i values of 43 km s‑1 and 50 km s‑1, respectively. We obtained a flux ratio of α = 0.58 ± 0.14 in the H-band, allowing us to estimate individual masses of 3.2 and 2.7 M ⊙ for the primary and secondary, respectively, using evolutionary tracks. The tracks also yield a coeval age of 1 Myr for both components to within 1σ. GW Ori is surrounded by a circumbinary/circumtriple disk. A tertiary component has been detected in previous studies; however, we did not detect this component in our near-infrared spectra, probably the result of its relative faintness and blending in the absorption lines of these rapidly rotating stars. With these results, GW Ori joins the small number of classical T Tauri, double-lined spectroscopic binaries.

  6. Misaligned disks in the binary protostar IRS 43

    DEFF Research Database (Denmark)

    Brinch, Christian; Jørgensen, Jes Kristian; Hogerheijde, Michiel R.

    2016-01-01

    Recent high angular resolution (∼ 0\\buildrel{\\prime\\prime}\\over{.} 2) ALMA observations of the 1.1 mm continuum and of HCO+ J = 3–2 and HCN J = 3–2 gas toward the binary protostar IRS 43 reveal multiple Keplerian disks that are significantly misaligned (\\gt 60^\\circ ), both in inclination...

  7. NARROW Na AND K ABSORPTION LINES TOWARD T TAURI STARS: TRACING THE ATOMIC ENVELOPE OF MOLECULAR CLOUDS

    Energy Technology Data Exchange (ETDEWEB)

    Pascucci, I.; Simon, M. N. [Lunar and Planetary Laboratory, The University of Arizona, Tucson, AZ 85721 (United States); Edwards, S. [Five College Astronomy Department, Smith College, Northampton, MA 01063 (United States); Heyer, M. [Department of Astronomy, University of Massachusetts, Amherst, MA 01003-9305 (United States); Rigliaco, E. [Institute for Astronomy, ETH Zurich, Wolfgang-Pauli-Strasse 27, CH-8093 Zurich (Switzerland); Hillenbrand, L. [Department of Astronomy, California Institute of Technology, Pasadena, CA 91125 (United States); Gorti, U.; Hollenbach, D., E-mail: pascucci@lpl.arizona.edu [SETI Institute, Mountain View, CA 94043 (United States)

    2015-11-20

    We present a detailed analysis of narrow Na i and K i absorption resonance lines toward nearly 40 T Tauri stars in Taurus with the goal of clarifying their origin. The Na i λ5889.95 line is detected toward all but one source, while the weaker K i λ7698.96 line is detected in about two-thirds of the sample. The similarity in their peak centroids and the significant positive correlation between their equivalent widths demonstrate that these transitions trace the same atomic gas. The absorption lines are present toward both disk and diskless young stellar objects, which excludes cold gas within the circumstellar disk as the absorbing material. A comparison of Na i and CO detections and peak centroids demonstrates that the atomic gas and molecular gas are not co-located, the atomic gas being more extended than the molecular gas. The width of the atomic lines corroborates this finding and points to atomic gas about an order of magnitude warmer than the molecular gas. The distribution of Na i radial velocities shows a clear spatial gradient along the length of the Taurus molecular cloud filaments. This suggests that absorption is associated with the Taurus molecular cloud. Assuming that the gradient is due to cloud rotation, the rotation of the atomic gas is consistent with differential galactic rotation, whereas the rotation of the molecular gas, although with the same rotation axis, is retrograde. Our analysis shows that narrow Na i and K i absorption resonance lines are useful tracers of the atomic envelope of molecular clouds. In line with recent findings from giant molecular clouds, our results demonstrate that the velocity fields of the atomic and molecular gas are misaligned. The angular momentum of a molecular cloud is not simply inherited from the rotating Galactic disk from which it formed but may be redistributed by cloud–cloud interactions.

  8. NARROW Na AND K ABSORPTION LINES TOWARD T TAURI STARS: TRACING THE ATOMIC ENVELOPE OF MOLECULAR CLOUDS

    International Nuclear Information System (INIS)

    Pascucci, I.; Simon, M. N.; Edwards, S.; Heyer, M.; Rigliaco, E.; Hillenbrand, L.; Gorti, U.; Hollenbach, D.

    2015-01-01

    We present a detailed analysis of narrow Na i and K i absorption resonance lines toward nearly 40 T Tauri stars in Taurus with the goal of clarifying their origin. The Na i λ5889.95 line is detected toward all but one source, while the weaker K i λ7698.96 line is detected in about two-thirds of the sample. The similarity in their peak centroids and the significant positive correlation between their equivalent widths demonstrate that these transitions trace the same atomic gas. The absorption lines are present toward both disk and diskless young stellar objects, which excludes cold gas within the circumstellar disk as the absorbing material. A comparison of Na i and CO detections and peak centroids demonstrates that the atomic gas and molecular gas are not co-located, the atomic gas being more extended than the molecular gas. The width of the atomic lines corroborates this finding and points to atomic gas about an order of magnitude warmer than the molecular gas. The distribution of Na i radial velocities shows a clear spatial gradient along the length of the Taurus molecular cloud filaments. This suggests that absorption is associated with the Taurus molecular cloud. Assuming that the gradient is due to cloud rotation, the rotation of the atomic gas is consistent with differential galactic rotation, whereas the rotation of the molecular gas, although with the same rotation axis, is retrograde. Our analysis shows that narrow Na i and K i absorption resonance lines are useful tracers of the atomic envelope of molecular clouds. In line with recent findings from giant molecular clouds, our results demonstrate that the velocity fields of the atomic and molecular gas are misaligned. The angular momentum of a molecular cloud is not simply inherited from the rotating Galactic disk from which it formed but may be redistributed by cloud–cloud interactions

  9. Testing theory of binary evolution with interacting binary stars

    Science.gov (United States)

    Ergma, E.; Sarna, M. J.

    2002-01-01

    Of particular interest to us is the study of mass loss and its influence on the evolution of a binary systems. For this we use theoretical evolutionary models, which include: mass accretion, mass loss, novae explosion, super--efficient wind, and mixing processes. To test our theoretical prediction we proposed to determine the 12C / 13C ratio via measurements of the 12CO and 13CO bands around 2.3 micron. The available observations (Exter at al. 2001, in preparation) show good agreement with the theoretical predictions (Sarna 1992), for Algol-type binaries. Our preliminary estimates of the isotopic ratios for pre-CV's and CV's (Catalan et al. 2000, Dhillon et al. 2001) agree with the theoretical predictions from the common--envelope binary evolution models by Sarna et al. (1995). For the SXT we proposed (Ergma & Sarna 2001) similar observational test, which has not been done yet.

  10. THE COUNTERJET OF HH 30: NEW LIGHT ON ITS BINARY DRIVING SOURCE

    Energy Technology Data Exchange (ETDEWEB)

    Estalella, Robert; Lopez, Rosario; Riera, Angels [Departament d' Astronomia i Meteorologia, Institut de Ciencies del Cosmos (ICC), Universitat de Barcelona (IEEC-UB), Marti i Franques 1, E-08028 Barcelona (Spain); Anglada, Guillem; Carrasco-Gonzalez, Carlos [Instituto de Astrofisica de Andalucia, CSIC, Glorieta de la Astronomia s/n, E-18008 Granada (Spain); Gomez, Gabriel, E-mail: robert.estalella@am.ub.es, E-mail: rosario.lopez@am.ub.es, E-mail: guillem@iaa.es, E-mail: ggv@iac.es, E-mail: gabriel.gomez@gtc.iac.es, E-mail: angels.riera@upc.edu, E-mail: carrasco@mpifr-bonn.mpg.de [Instituto de Astrofisica de Canarias, E-38200 La Laguna, Tenerife (Spain)

    2012-08-15

    We present new [S II] images of the Herbig-Haro (HH) 30 jet and counterjet observed in 2006, 2007, and 2010 that, combined with previous data, allowed us to measure with improved accuracy the positions and proper motions of the jet and counterjet knots. Our results show that the motion of the knots is essentially ballistic, with the exception of the farthest knots, which trace the large-scale 'C'-shape bending of the jet. The observed bending of the jet can be produced by a relative motion of the HH 30 star with respect to its surrounding environment, caused either by a possible proper motion of the HH 30 star, or by the entrainment of environment gas by the red lobe of the nearby L1551-IRS5 outflow. Alternatively, the bending can be produced by the stellar wind from a nearby classical T Tauri star, identified in the Two Micron All Sky Survey catalog as J04314418+181047. The proper motion velocities of the knots of the counterjet show more variations than those of the jet. In particular, we identify two knots of the counterjet that have the same kinematic age but whose velocities differ by almost a factor of two. Thus, it appears from our observations that counterjet knots launched simultaneously can be ejected with very different velocities. We confirm that the observed wiggling of the jet and counterjet arises from the orbital motion of the jet source in a binary system. Precession, if present at all, is of secondary importance in shaping the jet. We derive an orbital period of {tau}{sub o} = 114 {+-} 2 yr and a mass function of m{mu}{sup 3}{sub c} = 0.014 {+-} 0.006 M{sub Sun }. For a mass of the system of m = 0.45 {+-} 0.04 M{sub Sun} (the value inferred from observations of the CO kinematics of the disk), we obtain a mass of m{sub j} = 0.31 {+-} 0.04 M{sub Sun} for the jet source, a mass of m{sub c} = 0.14 {+-} 0.03 M{sub Sun} for the companion, and a binary separation of a = 18.0 {+-} 0.6 AU. This binary separation coincides with the value required

  11. Biclustering sparse binary genomic data.

    Science.gov (United States)

    van Uitert, Miranda; Meuleman, Wouter; Wessels, Lodewyk

    2008-12-01

    Genomic datasets often consist of large, binary, sparse data matrices. In such a dataset, one is often interested in finding contiguous blocks that (mostly) contain ones. This is a biclustering problem, and while many algorithms have been proposed to deal with gene expression data, only two algorithms have been proposed that specifically deal with binary matrices. None of the gene expression biclustering algorithms can handle the large number of zeros in sparse binary matrices. The two proposed binary algorithms failed to produce meaningful results. In this article, we present a new algorithm that is able to extract biclusters from sparse, binary datasets. A powerful feature is that biclusters with different numbers of rows and columns can be detected, varying from many rows to few columns and few rows to many columns. It allows the user to guide the search towards biclusters of specific dimensions. When applying our algorithm to an input matrix derived from TRANSFAC, we find transcription factors with distinctly dissimilar binding motifs, but a clear set of common targets that are significantly enriched for GO categories.

  12. The Young Visual Binary Survey

    Science.gov (United States)

    Prato, Lisa; Avilez, Ian; Lindstrom, Kyle; Graham, Sean; Sullivan, Kendall; Biddle, Lauren; Skiff, Brian; Nofi, Larissa; Schaefer, Gail; Simon, Michal

    2018-01-01

    Differences in the stellar and circumstellar properties of the components of young binaries provide key information about star and disk formation and evolution processes. Because objects with separations of a few to a few hundred astronomical units share a common environment and composition, multiple systems allow us to control for some of the factors which play into star formation. We are completing analysis of a rich sample of about 100 pre-main sequence binaries and higher order multiples, primarily located in the Taurus and Ophiuchus star forming regions. This poster will highlight some of out recent, exciting results. All reduced spectra and the results of our analysis will be publicly available to the community at http://jumar.lowell.edu/BinaryStars/. Support for this research was provided in part by NSF award AST-1313399 and by NASA Keck KPDA funding.

  13. Period variation studies of six contact binaries in M4

    Science.gov (United States)

    Rukmini, Jagirdar; Shanti Priya, Devarapalli

    2018-04-01

    We present the first period study of six contact binaries in the closest globular cluster M4 the data collected from June 1995‑June 2009 and Oct 2012‑Sept 2013. New times of minima are determined for all the six variables and eclipse timing (O-C) diagrams along with the quadratic fit are presented. For all the variables, the study of (O-C) variations reveals changes in the periods. In addition, the fundamental parameters for four of the contact binaries obtained using the Wilson-Devinney code (v2003) are presented. Planned observations of these binaries using the 3.6-m Devasthal Optical Telescope (DOT) and the 4-m International Liquid Mirror Telescope (ILMT) operated by the Aryabhatta Research Institute of Observational Sciences (ARIES; Nainital) can throw light on their evolutionary status from long term period variation studies.

  14. Protocols for quantum binary voting

    Science.gov (United States)

    Thapliyal, Kishore; Sharma, Rishi Dutt; Pathak, Anirban

    Two new protocols for quantum binary voting are proposed. One of the proposed protocols is designed using a standard scheme for controlled deterministic secure quantum communication (CDSQC), and the other one is designed using the idea of quantum cryptographic switch, which uses a technique known as permutation of particles. A few possible alternative approaches to accomplish the same task (quantum binary voting) have also been discussed. Security of the proposed protocols is analyzed. Further, the efficiencies of the proposed protocols are computed, and are compared with that of the existing protocols. The comparison has established that the proposed protocols are more efficient than the existing protocols.

  15. Matter in compact binary mergers

    Science.gov (United States)

    Read, Jocelyn; LIGO Scientific Collaboration, Virgo Scientific Collaboration

    2018-01-01

    Mergers of binary neutron stars or neutron-star/black-hole systems are promising targets for gravitational-wave detection. The dynamics of merging compact objects, and thus their gravitational-wave signatures, are primarily determined by the mass and spin of the components. However, the presence of matter can make an imprint on the final orbits and merger of a binary system. I will outline efforts to understand the impact of neutron-star matter on gravitational waves, using both theoretical and computational input, so that gravitational-wave observations can be used to measure the properties of source systems with neutron-star components.

  16. Electronic band structures of binary skutterudites

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Banaras [Center for Computational Materials Science, University of Malakand, Chakdara (Pakistan); Department of Physics, University of Malakand, Chakdara (Pakistan); Aliabad, H.A. Rahnamaye [Department of Physics, Hakim Sabzevari University, Sabzevar (Iran, Islamic Republic of); Saifullah [Center for Computational Materials Science, University of Malakand, Chakdara (Pakistan); Department of Physics, University of Malakand, Chakdara (Pakistan); Jalali-Asadabadi, S. [Department of Physics, Faculty of Science, University of Isfahan (UI), 81744 Isfahan (Iran, Islamic Republic of); Khan, Imad [Center for Computational Materials Science, University of Malakand, Chakdara (Pakistan); Department of Physics, University of Malakand, Chakdara (Pakistan); Ahmad, Iftikhar, E-mail: ahma5532@gmail.com [Center for Computational Materials Science, University of Malakand, Chakdara (Pakistan); Department of Physics, University of Malakand, Chakdara (Pakistan)

    2015-10-25

    The electronic properties of complex binary skutterudites, MX{sub 3} (M = Co, Rh, Ir; X = P, As, Sb) are explored, using various density functional theory (DFT) based theoretical approaches including Green's Function (GW) as well as regular and non-regular Tran Blaha modified Becke Jhonson (TB-mBJ) methods. The wide range of calculated bandgap values for each compound of this skutterudites family confirm that they are theoretically as challenging as their experimental studies. The computationally expensive GW method, which is generally assume to be efficient in the reproduction of the experimental bandgaps, is also not very successful in the calculation of bandgaps. In this article, the issue of the theoretical bandgaps of these compounds is resolved by reproducing the accurate experimental bandgaps, using the recently developed non-regular TB-mBJ approach, based on DFT. The effectiveness of this technique is due to the fact that a large volume of the binary skutterudite crystal is empty and hence quite large proportion of electrons lie outside of the atomic spheres, where unlike LDA and GGA which are poor in the treatment of these electrons, this technique properly treats these electrons and hence reproduces the clear electronic picture of these compounds. - Highlights: • Theoretical and experimental electronic band structures of binary skutterudites are reviewed. • The literature reveals that none of the existing theoretical results are consistent with the experiments. • GW, regular and non-regular TB-mBJ methods are used to reproduce the correct results. • The GW and regular TB-mBJ results are better than the available results in literature. • However, non-regular TB-mBJ reproduces the correct experimental band structures.

  17. Electronic band structures of binary skutterudites

    International Nuclear Information System (INIS)

    Khan, Banaras; Aliabad, H.A. Rahnamaye; Saifullah; Jalali-Asadabadi, S.; Khan, Imad; Ahmad, Iftikhar

    2015-01-01

    The electronic properties of complex binary skutterudites, MX 3 (M = Co, Rh, Ir; X = P, As, Sb) are explored, using various density functional theory (DFT) based theoretical approaches including Green's Function (GW) as well as regular and non-regular Tran Blaha modified Becke Jhonson (TB-mBJ) methods. The wide range of calculated bandgap values for each compound of this skutterudites family confirm that they are theoretically as challenging as their experimental studies. The computationally expensive GW method, which is generally assume to be efficient in the reproduction of the experimental bandgaps, is also not very successful in the calculation of bandgaps. In this article, the issue of the theoretical bandgaps of these compounds is resolved by reproducing the accurate experimental bandgaps, using the recently developed non-regular TB-mBJ approach, based on DFT. The effectiveness of this technique is due to the fact that a large volume of the binary skutterudite crystal is empty and hence quite large proportion of electrons lie outside of the atomic spheres, where unlike LDA and GGA which are poor in the treatment of these electrons, this technique properly treats these electrons and hence reproduces the clear electronic picture of these compounds. - Highlights: • Theoretical and experimental electronic band structures of binary skutterudites are reviewed. • The literature reveals that none of the existing theoretical results are consistent with the experiments. • GW, regular and non-regular TB-mBJ methods are used to reproduce the correct results. • The GW and regular TB-mBJ results are better than the available results in literature. • However, non-regular TB-mBJ reproduces the correct experimental band structures

  18. Mental Effort in Binary Categorization Aided by Binary Cues

    Science.gov (United States)

    Botzer, Assaf; Meyer, Joachim; Parmet, Yisrael

    2013-01-01

    Binary cueing systems assist in many tasks, often alerting people about potential hazards (such as alarms and alerts). We investigate whether cues, besides possibly improving decision accuracy, also affect the effort users invest in tasks and whether the required effort in tasks affects the responses to cues. We developed a novel experimental tool…

  19. Binary black hole coalescence in semianalytic puncture evolution

    International Nuclear Information System (INIS)

    Gopakumar, Achamveedu; Schaefer, Gerhard

    2008-01-01

    Binary black hole coalescence is treated semianalytically by a novel approach. Our prescription employs the conservative Skeleton Hamiltonian that describes orbiting Brill-Lindquist wormholes (termed punctures in numerical relativity) within a waveless truncation to the Einstein field equations [G. Faye, P. Jaranowski, and G. Schaefer, Phys. Rev. D 69, 124029 (2004)]. We incorporate, in a transparent Hamiltonian way and in Burke-Thorne gauge structure, the effects of gravitational radiation reaction into the above Skeleton dynamics with the help of 3.5PN accurate angular momentum flux for compact binaries in quasicircular orbits to obtain a semianalytic puncture evolution to model merging black hole binaries. With the help of the TaylorT4 approximant at 3.5PN order, we perform a first-order comparison between gravitational-wave phase evolutions in numerical relativity and our approach for equal-mass binary black holes. This comparison reveals that a modified Skeletonian reactive dynamics that employs flexible parameters will be required to prevent the dephasing between our scheme and numerical relativity, similar to what is pursued in the effective one-body approach. A rough estimate for the gravitational waveform associated with the binary black hole coalescence in our approach is also provided

  20. Binary pulsars as probes of a Galactic dark matter disk

    Science.gov (United States)

    Caputo, Andrea; Zavala, Jesús; Blas, Diego

    2018-03-01

    As a binary pulsar moves through a wind of dark matter particles, the resulting dynamical friction modifies the binary's orbit. We study this effect for the double disk dark matter (DDDM) scenario, where a fraction of the dark matter is dissipative and settles into a thin disk. For binaries within the dark disk, this effect is enhanced due to the higher dark matter density and lower velocity dispersion of the dark disk, and due to its co-rotation with the baryonic disk. We estimate the effect and compare it with observations for two different limits in the Knudsen number (Kn). First, in the case where DDDM is effectively collisionless within the characteristic scale of the binary (Kn ≫ 1) and ignoring the possible interaction between the pair of dark matter wakes. Second, in the fully collisional case (Kn ≪ 1), where a fluid description can be adopted and the interaction of the pair of wakes is taken into account. We find that the change in the orbital period is of the same order of magnitude in both limits. A comparison with observations reveals good prospects to probe currently allowed DDDM models with timing data from binary pulsars in the near future. We finally comment on the possibility of extending the analysis to the intermediate (rarefied gas) case with Kn ∼ 1.

  1. Binary Polymer Brushes of Strongly Immiscible Polymers.

    Science.gov (United States)

    Chu, Elza; Babar, Tashnia; Bruist, Michael F; Sidorenko, Alexander

    2015-06-17

    The phenomenon of microphase separation is an example of self-assembly in soft matter and has been observed in block copolymers (BCPs) and similar materials (i.e., supramolecular assemblies (SMAs) and homo/block copolymer blends (HBCs)). In this study, we use microphase separation to construct responsive polymer brushes that collapse to generate periodic surfaces. This is achieved by a chemical reaction between the minor block (10%, poly(4-vinylpyridine)) of the block copolymer and a substrate. The major block of polystyrene (PS) forms mosaic-like arrays of grafted patches that are 10-20 nm in size. Depending on the nature of the assembly (SMA, HBC, or neat BCP) and annealing method (exposure to vapors of different solvents or heating above the glass transition temperature), a range of "mosaic" brushes with different parameters can be obtained. Successive grafting of a secondary polymer (polyacrylamide, PAAm) results in the fabrication of binary polymer brushes (BPBs). Upon being exposed to specific selective solvents, BPBs may adopt different conformations. The surface tension and adhesion of the binary brush are governed by the polymer occupying the top stratum. The "mosaic" brush approach allows for a combination of strongly immiscible polymers in one brush. This facilitates substantial contrast in the surface properties upon switching, previously only possible for substrates composed of predetermined nanostructures. We also demonstrate a possible application of such PS/PAAm brushes in a tunable bioadhesion-bioadhesive (PS on top) or nonbioadhesive (PAAm on top) surface as revealed by Escherichia coli bacterial seeding.

  2. The Uses of Binary Thinking.

    Science.gov (United States)

    Elbow, Peter

    1993-01-01

    Argues that oppositional thinking, if handled in the right way, will serve as a way to avoid the very problems that Jonathan Culler and Paul de Mann are troubled by: "purity, order, and hierarchy." Asserts that binary thinking can serve to encourage difference--indeed, encourage nondominance, nontranscendence, instability, and disorder.…

  3. Biclustering Sparse Binary Genomic Data

    NARCIS (Netherlands)

    Van Uitert, M.; Meuleman, W.; Wessels, L.F.A.

    2008-01-01

    Genomic datasets often consist of large, binary, sparse data matrices. In such a dataset, one is often interested in finding contiguous blocks that (mostly) contain ones. This is a biclustering problem, and while many algorithms have been proposed to deal with gene expression data, only two

  4. Misclassification in binary choice models

    Czech Academy of Sciences Publication Activity Database

    Meyer, B. D.; Mittag, Nikolas

    2017-01-01

    Roč. 200, č. 2 (2017), s. 295-311 ISSN 0304-4076 R&D Projects: GA ČR(CZ) GJ16-07603Y Institutional support: Progres-Q24 Keywords : measurement error * binary choice models * program take-up Subject RIV: AH - Economics OBOR OECD: Economic Theory Impact factor: 1.633, year: 2016

  5. Misclassification in binary choice models

    Czech Academy of Sciences Publication Activity Database

    Meyer, B. D.; Mittag, Nikolas

    2017-01-01

    Roč. 200, č. 2 (2017), s. 295-311 ISSN 0304-4076 Institutional support: RVO:67985998 Keywords : measurement error * binary choice models * program take-up Subject RIV: AH - Economics OBOR OECD: Economic Theory Impact factor: 1.633, year: 2016

  6. Generating Constant Weight Binary Codes

    Science.gov (United States)

    Knight, D.G.

    2008-01-01

    The determination of bounds for A(n, d, w), the maximum possible number of binary vectors of length n, weight w, and pairwise Hamming distance no less than d, is a classic problem in coding theory. Such sets of vectors have many applications. A description is given of how the problem can be used in a first-year undergraduate computational…

  7. BHMcalc: Binary Habitability Mechanism Calculator

    Science.gov (United States)

    Zuluaga, Jorge I.; Mason, Paul; Cuartas-Restrepo, Pablo A.; Clark, Joni

    2018-02-01

    BHMcalc provides renditions of the instantaneous circumbinary habital zone (CHZ) and also calculates BHM properties of the system including those related to the rotational evolution of the stellar components and the combined XUV and SW fluxes as measured at different distances from the binary. Moreover, it provides numerical results that can be further manipulated and used to calculate other properties.

  8. Subluminous X-ray binaries

    NARCIS (Netherlands)

    Armas Padilla, M.

    2013-01-01

    The discovery of the first X-ray binary, Scorpius X-1, by Giacconi et al. (1962), marked the birth of X-ray astronomy. Following that discovery, many additional X-ray sources where found with the first generation of X-ray rockets and observatories (e.g., UHURU and Einstein). The short-timescale

  9. The Meritfactor of Binary Seqences

    DEFF Research Database (Denmark)

    Høholdt, Tom

    1999-01-01

    Binary sequences with small aperiodic correlations play an important role in many applications ranging from radar to modulation and testing of systems. Golay(1977) introduced the merit factor as a measure of the goodness of the sequence and conjectured an upper bound for this. His conjecture...

  10. Interactions in Massive Colliding Wind Binaries

    Directory of Open Access Journals (Sweden)

    Michael F. Corcoran

    2012-03-01

    Full Text Available There are observational difficulties determining dynamical masses of binary star components in the upper HR diagram both due to the scarcity of massive binary systems and spectral and photometric contamination produced by the strong wind outflows in these systems. We discuss how variable X-ray emission in these systems produced by wind-wind collisions in massive binaries can be used to constrain the system parameters, with application to two important massive binaries, Eta Carinae and WR 140.

  11. NEAR-ULTRAVIOLET EXCESS IN SLOWLY ACCRETING T TAURI STARS: LIMITS IMPOSED BY CHROMOSPHERIC EMISSION

    Energy Technology Data Exchange (ETDEWEB)

    Ingleby, Laura; Calvet, Nuria; Bergin, Edwin; McClure, Melissa [Department of Astronomy, University of Michigan, 830 Dennison Building, 500 Church Street, Ann Arbor, MI 48109 (United States); Herczeg, Gregory [Max-Planck-Institut fuer Extraterrestriche Physik, Postfach 1312, D-85741 Garching (Germany); Brown, Alexander; France, Kevin [Center for Astrophysics and Space Astronomy, University of Colorado, Boulder, CO 80309-0389 (United States); Alexander, Richard [Department of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom); Edwards, Suzan [Department of Astronomy, Smith College, Northampton, MA 01063 (United States); Espaillat, Catherine; Brown, Joanna [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS-78, Cambridge, MA 02138 (United States); Gregory, Scott G.; Hillenbrand, Lynne [Department of Astrophysics, California Institute of Technology, MC 249-17, Pasadena, CA 91125 (United States); Roueff, Evelyne; Abgrall, Herve [LUTH and UMR 8102 du CNRS, Observatoire de Paris, Section de Meudon, Place J. Janssen, F-92195 Meudon (France); Valenti, Jeff [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Walter, Frederick [Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794-3800 (United States); Johns-Krull, Christopher [Department of Physics and Astronomy, Rice University, Houston, TX 77005 (United States); Linsky, Jeffrey [JILA, University of Colorado and NIST, 440 UCB Boulder, CO 80309-0440 (United States); Ardila, David, E-mail: lingleby@umich.edu, E-mail: ncalvet@umich.edu, E-mail: gregoryh@mpe.mpg.de [NASA Herschel Science Center, California Institute of Technology, Mail Code 100-22, Pasadena, CA 91125 (United States); and others

    2011-12-20

    Young stars surrounded by disks with very low mass accretion rates are likely in the final stages of inner disk evolution and therefore particularly interesting to study. We present ultraviolet (UV) observations of the {approx}5-9 Myr old stars RECX-1 and RECX-11, obtained with the Cosmic Origins Spectrograph and Space Telescope Imaging Spectrograph on the Hubble Space Telescope, as well as optical and near-infrared spectroscopic observations. The two stars have similar levels of near-UV emission, although spectroscopic evidence indicates that RECX-11 is accreting and RECX-1 is not. The line profiles of H{alpha} and He I {lambda}10830 in RECX-11 show both broad and narrow redshifted absorption components that vary with time, revealing the complexity of the accretion flows. We show that accretion indicators commonly used to measure mass accretion rates, e.g., U-band excess luminosity or the Ca II triplet line luminosity, are unreliable for low accretors, at least in the middle K spectral range. Using RECX-1 as a template for the intrinsic level of photospheric and chromospheric emission, we determine an upper limit of 3 Multiplication-Sign 10{sup -10} M{sub Sun} yr{sup -1} for RECX-11. At this low accretion rate, recent photoevaporation models predict that an inner hole should have developed in the disk. However, the spectral energy distribution of RECX-11 shows fluxes comparable to the median of Taurus in the near-infrared, indicating that substantial dust remains. Fluorescent H{sub 2} emission lines formed in the innermost disk are observed in RECX-11, showing that gas is present in the inner disk, along with the dust.

  12. Division Unit for Binary Integer Decimals

    DEFF Research Database (Denmark)

    Lang, Tomas; Nannarelli, Alberto

    2009-01-01

    In this work, we present a radix-10 division unit that is based on the digit-recurrence algorithm and implements binary encodings (binary integer decimal or BID) for significands. Recent decimal division designs are all based on the binary coded decimal (BCD) encoding. We adapt the radix-10 digit...

  13. Copernicus observations of Ly-alpha and Mg II emission from HR 1099 /V711 Tauri/ and UX Ari

    Science.gov (United States)

    Weiler, E. J.

    1978-01-01

    Ultraviolet observations of two RS CVn binaries obtained with Copernicus are described. High-resolution (0.05 A) U1 observations indicate that both HR 1099 and UX Ari display broad Ly-alpha emission. The Ly-alpha emission strength from HR 1099 is variable and seems to be correlated with orbital phase, while the UX Ari results indicate no significant variation. Moderate resolution (0.51 A) V2 scans of both systems show variable Mg II h and k emission-line profiles which usually matched the velocity of the more active star in each binary. Additionally, displaced emission components were seen at velocities of up to + or - 250 km/s, indicative of high-velocity gas motions. The radial velocities of these emission features from HR 1099 are marginally correlated with orbital phase. Highly active and variable chromospheric phenomena are found to be the most consistent explanation of these results.

  14. Gravity waves from relativistic binaries

    OpenAIRE

    Levin, Janna; O'Reilly, Rachel; Copeland, E. J.

    1999-01-01

    The stability of binary orbits can significantly shape the gravity wave signal which future Earth-based interferometers hope to detect. The inner most stable circular orbit has been of interest as it marks the transition from the late inspiral to final plunge. We consider purely relativistic orbits beyond the circular assumption. Homoclinic orbits are of particular importance to the question of stability as they lie on the boundary between dynamical stability and instability. We identify thes...

  15. Binary evolution and observational constraints

    International Nuclear Information System (INIS)

    Loore, C. de

    1984-01-01

    The evolution of close binaries is discussed in connection with problems concerning mass and angular momentum losses. Theoretical and observational evidence for outflow of matter, leaving the system during evolution is given: statistics on total masses and mass ratios, effects of the accretion of the mass gaining component, the presence of streams, disks, rings, circumstellar envelopes, period changes, abundance changes in the atmosphere. The effects of outflowing matter on the evolution is outlined, and estimates of the fraction of matter expelled by the loser, and leaving the system, are given. The various time scales involved with evolution and observation are compared. Examples of non conservative evolution are discussed. Problems related to contact phases, on mass and energy losses, in connection with entropy changes are briefly analysed. For advanced stages the disruption probabilities for supernova explosions are examined. A global picture is given for the evolution of massive close binaries, from ZAMS, through WR phases, X-ray phases, leading to runaway pulsars or to a binary pulsar and later to a millisecond pulsar. (Auth.)

  16. LIGO Finds Lightest Black-Hole Binary

    Science.gov (United States)

    Kohler, Susanna

    2017-11-01

    Wednesdayevening the Laser Interferometer Gravitational-wave Observatory (LIGO) collaboration quietly mentioned that theyd found gravitational waves from yet another black-hole binary back in June. This casual announcement reveals what is so far the lightest pair of black holes weve watched merge opening the door for comparisons to the black holes weve detected by electromagnetic means.A Routine DetectionThe chirp signal of GW170608 detected by LIGO Hanford and LIGO Livingston. [LIGO collaboration 2017]After the fanfare of the previous four black-hole-binary merger announcements over the past year and a half as well as the announcement of the one neutron-star binary merger in August GW170608 marks our entry into the era in which gravitational-wave detections are officially routine.GW170608, a gravitational-wave signal from the merger of two black holes roughly a billion light-years away, was detected in June of this year. This detection occurred after wed already found gravitational waves from several black-hole binaries with the two LIGO detectors in the U.S., but before the Virgo interferometer came online in Europe and increased the joint ability of the detectors to localize sources.Mass estimates for the two components of GW170608 using different models. [LIGO collaboration 2017]Overall, GW170608 is fairly unremarkable: it was detected by both LIGO Hanford and LIGO Livingston some 7 ms apart, and the signal looks not unlike those of the previous LIGO detections. But because were still in the early days of gravitational-wave astronomy, every discovery is still remarkable in some way! GW170608 stands out as being the lightest pair of black holes weve yet to see merge, with component masses before the merger estimated at 12 and 7 times the mass of the Sun.Why Size MattersWith the exception of GW151226, the gravitational-wave signal discovered on Boxing Day last year, all of the black holes that have been discovered by LIGO/Virgo have been quite large: the masses

  17. The optical polarization of X-ray binaries

    International Nuclear Information System (INIS)

    Dolan, J.F.

    1977-01-01

    Polarimetric observations of close binaries may reveal the presence of a black-hole secondary. The Einstein photometric effect will introduce a characteristic, time-varying signature upon the interstellar polarization. For several reasons, it is concluded that the short time-scale variability in the polarization in HDE 226868 is caused by Rayleigh scattering from gas streams known to exist in the system. X Persei may have a variable polarization consistent with the predicted effectics and (Auth)

  18. Binary Model for the Heartbeat Star System KIC 4142768

    Science.gov (United States)

    Manuel, Joseph; Hambleton, Kelly

    2018-01-01

    Heartbeat stars are a class of eccentric (e > 0.2) binary systems that undergo strong tidal forces. These tidal forces cause the shape of each star and the temperature across the stellar surfaces to change. This effect also generates variations in the light curve in the form of tidally-induced pulsations, which are theorized to have a significant effect on the circularization of eccentric orbits (Zahn, 1975). Using the binary modeling software PHOEBE (Prša & Zwitter 2005) on the Kepler photometric data and Keck radial velocity data for the eclipsing, heartbeat star KIC 4142768, we have determined the fundamental parameters including masses and radii. The frequency analysis of the residual data has surprisingly revealed approximately 29 pulsations with 8 being Delta Scuti pulsations, 10 being Gamma Doradus pulsations, and 11 being tidally-induced pulsations. After subtracting an initial binary model from the original, detrended photometric data, we analyzed the pulsation frequencies in the residual data. We then were able to disentangle the identified pulsations from the original data in order to conduct subsequent binary modeling. We plan to continue this study by applying asteroseismology to KIC 4142768. Through our continued investigation, we hope to extract information about the star’s internal structure and expect this will yield additional, interesting results.

  19. The structures of binary compounds

    CERN Document Server

    Hafner, J; Jensen, WB; Majewski, JA; Mathis, K; Villars, P; Vogl, P; de Boer, FR

    1990-01-01

    - Up-to-date compilation of the experimental data on the structures of binary compounds by Villars and colleagues. - Coloured structure maps which order the compounds into their respective structural domains and present for the first time the local co-ordination polyhedra for the 150 most frequently occurring structure types, pedagogically very helpful and useful in the search for new materials with a required crystal structure. - Crystal co-ordination formulas: a flexible notation for the interpretation of solid-state structures by chemist Bill Jensen. - Recent important advances in unders

  20. Pulsar magnetospheres in binary systems

    Science.gov (United States)

    Ershkovich, A. I.; Dolan, J. F.

    1985-01-01

    The criterion for stability of a tangential discontinuity interface in a magnetized, perfectly conducting inviscid plasma is investigated by deriving the dispersion equation including the effects of both gravitational and centrifugal acceleration. The results are applied to neutron star magnetospheres in X-ray binaries. The Kelvin-Helmholtz instability appears to be important in determining whether MHD waves of large amplitude generated by instability may intermix the plasma effectively, resulting in accretion onto the whole star as suggested by Arons and Lea and leading to no X-ray pulsar behavior.

  1. Tomographic reconstruction of binary fields

    International Nuclear Information System (INIS)

    Roux, Stéphane; Leclerc, Hugo; Hild, François

    2012-01-01

    A novel algorithm is proposed for reconstructing binary images from their projection along a set of different orientations. Based on a nonlinear transformation of the projection data, classical back-projection procedures can be used iteratively to converge to the sought image. A multiscale implementation allows for a faster convergence. The algorithm is tested on images up to 1 Mb definition, and an error free reconstruction is achieved with a very limited number of projection data, saving a factor of about 100 on the number of projections required for classical reconstruction algorithms.

  2. Microlensing Signature of Binary Black Holes

    Science.gov (United States)

    Schnittman, Jeremy; Sahu, Kailash; Littenberg, Tyson

    2012-01-01

    We calculate the light curves of galactic bulge stars magnified via microlensing by stellar-mass binary black holes along the line-of-sight. We show the sensitivity to measuring various lens parameters for a range of survey cadences and photometric precision. Using public data from the OGLE collaboration, we identify two candidates for massive binary systems, and discuss implications for theories of star formation and binary evolution.

  3. ENHANCED TIDAL DISRUPTION RATES FROM MASSIVE BLACK HOLE BINARIES

    International Nuclear Information System (INIS)

    Chen Xian; Liu, F. K.; Madau, Piero; Sesana, Alberto

    2009-01-01

    'Hard' massive black hole (MBH) binaries embedded in steep stellar cusps can shrink via three-body slingshot interactions. We show that this process will inevitably be accompanied by a burst of stellar tidal disruptions, at a rate that can be several orders of magnitude larger than that appropriate for a single MBH. Our numerical scattering experiments reveal that (1) a significant fraction of stars initially bound to the primary hole are scattered into its tidal disruption loss cone by gravitational interactions with the secondary hole, an enhancement effect that is more pronounced for very unequal mass binaries; (2) about 25% (40%) of all strongly interacting stars are tidally disrupted by an MBH binary of mass ratio q = 1/81 (q = 1/243) and eccentricity 0.1; and (3) two mechanisms dominate the fueling of the tidal disruption loss cone, a Kozai nonresonant interaction that causes the secular evolution of the stellar angular momentum in the field of the binary, and the effect of close encounters with the secondary hole that change the stellar orbital parameters in a chaotic way. For a hard MBH binary of 10 7 M sun and mass ratio 10 -2 , embedded in an isothermal stellar cusp of velocity dispersion σ * = 100 km s -1 , the tidal disruption rate can be as large as N-dot * ∼1 yr -1 . This is 4 orders of magnitude higher than estimated for a single MBH fed by two-body relaxation. When applied to the case of a putative intermediate-mass black hole inspiraling onto Sgr A*, our results predict tidal disruption rates N-dot * ∼0.05-0.1 yr -1 .

  4. Survival of planets around shrinking stellar binaries

    Science.gov (United States)

    Muñoz, Diego J.; Lai, Dong

    2015-01-01

    The discovery of transiting circumbinary planets by the Kepler mission suggests that planets can form efficiently around binary stars. None of the stellar binaries currently known to host planets has a period shorter than 7 d, despite the large number of eclipsing binaries found in the Kepler target list with periods shorter than a few days. These compact binaries are believed to have evolved from wider orbits into their current configurations via the so-called Lidov–Kozai migration mechanism, in which gravitational perturbations from a distant tertiary companion induce large-amplitude eccentricity oscillations in the binary, followed by orbital decay and circularization due to tidal dissipation in the stars. Here we explore the orbital evolution of planets around binaries undergoing orbital decay by this mechanism. We show that planets may survive and become misaligned from their host binary, or may develop erratic behavior in eccentricity, resulting in their consumption by the stars or ejection from the system as the binary decays. Our results suggest that circumbinary planets around compact binaries could still exist, and we offer predictions as to what their orbital configurations should be like. PMID:26159412

  5. Speech perception of noise with binary gains

    DEFF Research Database (Denmark)

    Wang, DeLiang; Kjems, Ulrik; Pedersen, Michael Syskind

    2008-01-01

    For a given mixture of speech and noise, an ideal binary time-frequency mask is constructed by comparing speech energy and noise energy within local time-frequency units. It is observed that listeners achieve nearly perfect speech recognition from gated noise with binary gains prescribed...... by the ideal binary mask. Only 16 filter channels and a frame rate of 100 Hz are sufficient for high intelligibility. The results show that, despite a dramatic reduction of speech information, a pattern of binary gains provides an adequate basis for speech perception....

  6. Survival of planets around shrinking stellar binaries.

    Science.gov (United States)

    Muñoz, Diego J; Lai, Dong

    2015-07-28

    The discovery of transiting circumbinary planets by the Kepler mission suggests that planets can form efficiently around binary stars. None of the stellar binaries currently known to host planets has a period shorter than 7 d, despite the large number of eclipsing binaries found in the Kepler target list with periods shorter than a few days. These compact binaries are believed to have evolved from wider orbits into their current configurations via the so-called Lidov-Kozai migration mechanism, in which gravitational perturbations from a distant tertiary companion induce large-amplitude eccentricity oscillations in the binary, followed by orbital decay and circularization due to tidal dissipation in the stars. Here we explore the orbital evolution of planets around binaries undergoing orbital decay by this mechanism. We show that planets may survive and become misaligned from their host binary, or may develop erratic behavior in eccentricity, resulting in their consumption by the stars or ejection from the system as the binary decays. Our results suggest that circumbinary planets around compact binaries could still exist, and we offer predictions as to what their orbital configurations should be like.

  7. ROSAT observations of the x ray binary HD 154791

    Science.gov (United States)

    Kenyon, Scott J.

    1994-01-01

    We have been surveying the Taurus dark cloud for young stars using a variety of techniques. Two optical proper motion surveys identified 8 new pre-main sequence stars; an IRAS-based program discovered 6 new embedded sources and 4-6 new T Tauri stars. Finally, an optical objective prism survey found 12 new T Tauri stars. Our goal in this project is to examine and compare star formation in the dark clouds: Heiles cloud 2 (HCL2), L1537, L1538, and L1544. HCL2 is a very dense region actively forming young stars and contains 5-6 very young, deeply embedded sources; L1537 and L1538 have no known pre-main sequence stars; L1544 contains 7 optically visible T Tauri stars. These clouds appear roughly similar on optical sky survey plates. We would like to know why some of the clouds are active and why some are not. The first goal of the project is to survey the regions using IR photometry to identify very red pre-main sequence stars and X-ray imaging to identify solar-type young stars missed in the near-IR survey. We will follow up these observations with molecular line surveys to compare the conditions in various clouds with their star formation efficiencies.

  8. Method of all-optical frequency encoded decimal to binary and binary coded decimal, binary to gray, and gray to binary data conversion using semiconductor optical amplifiers.

    Science.gov (United States)

    Garai, Sisir Kumar

    2011-07-20

    Conversion of optical data from decimal to binary format is very important in optical computing and optical signal processing. There are many binary code systems to represent decimal numbers, the most common being the binary coded decimal (BCD) and gray code system. There are a wide choice of BCD codes, one of which is a natural BCD having a weighted code of 8421, by means of which it is possible to represent a decimal number from 0 to 9 with a combination of 4 bit binary digits. The reflected binary code, also known as the Gray code, is a binary numeral system where two successive values differ in only 1 bit. The Gray code is very important in digital optical communication as it is used to prevent spurious output from optical switches as well as to facilitate error correction in digital communications in an optical domain. Here in this communication, the author proposes an all-optical frequency encoded method of ":decimal to binary, BCD," "binary to gray," and "gray to binary" data conversion using the high-speed switching actions of semiconductor optical amplifiers. To convert decimal numbers to a binary form, a frequency encoding technique is adopted to represent two binary bits, 0 and 1. The frequency encoding technique offers advantages over conventional encoding techniques in terms of less probability of bit errors and greater reliability. Here the author has exploited the polarization switch made of a semiconductor optical amplifier (SOA) and a property of nonlinear rotation of the state of polarization of the probe beam in SOA for frequency conversion to develop the method of frequency encoded data conversion. © 2011 Optical Society of America

  9. Binary Relations as a Foundation of Mathematics

    NARCIS (Netherlands)

    Kuper, Jan; Barendsen, E.; Capretta, V.; Geuvers, H.; Niqui, M.

    2007-01-01

    We describe a theory for binary relations in the Zermelo-Fraenkel style. We choose for ZFCU, a variant of ZFC Set theory in which the Axiom of Foundation is replaced by an axiom allowing for non-wellfounded sets. The theory of binary relations is shown to be equi-consistent ZFCU by constructing a

  10. Novel quantum inspired binary neural network algorithm

    Indian Academy of Sciences (India)

    In this paper, a quantum based binary neural network algorithm is proposed, named as novel quantum binary neural network algorithm (NQ-BNN). It forms a neural network structure by deciding weights and separability parameter in quantum based manner. Quantum computing concept represents solution probabilistically ...

  11. The Evolution of Compact Binary Star Systems.

    Science.gov (United States)

    Postnov, Konstantin A; Yungelson, Lev R

    2014-01-01

    We review the formation and evolution of compact binary stars consisting of white dwarfs (WDs), neutron stars (NSs), and black holes (BHs). Mergings of compact-star binaries are expected to be the most important sources for forthcoming gravitational-wave (GW) astronomy. In the first part of the review, we discuss observational manifestations of close binaries with NS and/or BH components and their merger rate, crucial points in the formation and evolution of compact stars in binary systems, including the treatment of the natal kicks, which NSs and BHs acquire during the core collapse of massive stars and the common envelope phase of binary evolution, which are most relevant to the merging rates of NS-NS, NS-BH and BH-BH binaries. The second part of the review is devoted mainly to the formation and evolution of binary WDs and their observational manifestations, including their role as progenitors of cosmologically-important thermonuclear SN Ia. We also consider AM CVn-stars, which are thought to be the best verification binary GW sources for future low-frequency GW space interferometers.

  12. The Evolution of Compact Binary Star Systems

    Directory of Open Access Journals (Sweden)

    Yungelson, Lev R.

    2006-12-01

    Full Text Available We review the formation and evolution of compact binary stars consisting of white dwarfs (WDs, neutron stars (NSs, and black holes (BHs. Binary NSs and BHs are thought to be the primary astrophysical sources of gravitational waves (GWs within the frequency band of ground-based detectors, while compact binaries of WDs are important sources of GWs at lower frequencies to be covered by space interferometers (LISA. Major uncertainties in the current understanding of properties of NSs and BHs most relevant to the GW studies are discussed, including the treatment of the natal kicks which compact stellar remnants acquire during the core collapse of massive stars and the common envelope phase of binary evolution. We discuss the coalescence rates of binary NSs and BHs and prospects for their detections, the formation and evolution of binary WDs and their observational manifestations. Special attention is given to AM CVn-stars -- compact binaries in which the Roche lobe is filled by another WD or a low-mass partially degenerate helium-star, as these stars are thought to be the best LISA verification binary GW sources.

  13. Bondi-Hoyle-Lyttleton Accretion onto Binaries

    Science.gov (United States)

    Antoni, Andrea; MacLeod, Morgan; Ramírez-Ruiz, Enrico

    2018-01-01

    Binary stars are not rare. While only close binary stars will eventually interact with one another, even the widest binary systems interact with their gaseous surroundings. The rates of accretion and the gaseous drag forces arising in these interactions are the key to understanding how these systems evolve. This poster examines accretion flows around a binary system moving supersonically through a background gas. We perform three-dimensional hydrodynamic simulations of Bondi-Hoyle-Lyttleton accretion using the adaptive mesh refinement code FLASH. We simulate a range of values of semi-major axis of the orbit relative to the gravitational focusing impact parameter of the pair. On large scales, gas is gravitationally focused by the center-of-mass of the binary, leading to dynamical friction drag and to the accretion of mass and momentum. On smaller scales, the orbital motion imprints itself on the gas. Notably, the magnitude and direction of the forces acting on the binary inherit this orbital dependence. The long-term evolution of the binary is determined by the timescales for accretion, slow down of the center-of-mass, and decay of the orbit. We use our simulations to measure these timescales and to establish a hierarchy between them. In general, our simulations indicate that binaries moving through gaseous media will slow down before the orbit decays.

  14. The Evolution of Compact Binary Star Systems

    Directory of Open Access Journals (Sweden)

    Konstantin A. Postnov

    2014-05-01

    Full Text Available We review the formation and evolution of compact binary stars consisting of white dwarfs (WDs, neutron stars (NSs, and black holes (BHs. Mergings of compact-star binaries are expected to be the most important sources for forthcoming gravitational-wave (GW astronomy. In the first part of the review, we discuss observational manifestations of close binaries with NS and/or BH components and their merger rate, crucial points in the formation and evolution of compact stars in binary systems, including the treatment of the natal kicks, which NSs and BHs acquire during the core collapse of massive stars and the common envelope phase of binary evolution, which are most relevant to the merging rates of NS-NS, NS-BH and BH-BH binaries. The second part of the review is devoted mainly to the formation and evolution of binary WDs and their observational manifestations, including their role as progenitors of cosmologically-important thermonuclear SN Ia. We also consider AM CVn-stars, which are thought to be the best verification binary GW sources for future low-frequency GW space interferometers.

  15. Microlensing Binaries with Candidate Brown Dwarf Companions

    DEFF Research Database (Denmark)

    Shin, I.-G; Han, C.; Gould, A.

    2012-01-01

    Brown dwarfs are important objects because they may provide a missing link between stars and planets, two populations that have dramatically different formation histories. In this paper, we present the candidate binaries with brown dwarf companions that are found by analyzing binary microlensing...... with well-covered light curves increases with new-generation searches....

  16. Statistical properties of spectroscopic binary stars

    NARCIS (Netherlands)

    Hogeveen, S.J.

    1992-01-01

    As part of a study of the mass-ratio distribution of spectroscopic binary stars, the statistical properties of the systems in the Eighth Catalogue of the Orbital Elements of Spectroscopic Binary Stars, compiled by Batten et al. (1989), are investigated. Histograms are presented of the

  17. An Acidity Scale for Binary Oxides.

    Science.gov (United States)

    Smith, Derek W.

    1987-01-01

    Discusses the classification of binary oxides as acidic, basic, or amphoteric. Demonstrates how a numerical scale for acidity/basicity of binary oxides can be constructed using thermochemical data for oxoacid salts. Presents the calculations derived from the data that provide the numeric scale values. (TW)

  18. Binary trees equipped with semivaluations | Pajoohesh ...

    African Journals Online (AJOL)

    Our interest in this lattice stems from its application to binary decision trees. Binary decision trees form a crucial tool for algorithmic time analysis. The lattice properties of Tn are studied and we show that every Tn has a sublattice isomorphic to Tn-1 and prove that Tn is generated by Tn-1. Also we show that the distance from ...

  19. Eliciting Subjective Probabilities with Binary Lotteries

    DEFF Research Database (Denmark)

    Harrison, Glenn W.; Martínez-Correa, Jimmy; Swarthout, J. Todd

    objective probabilities. Drawing a sample from the same subject population, we find evidence that the binary lottery procedure induces linear utility in a subjective probability elicitation task using the Quadratic Scoring Rule. We also show that the binary lottery procedure can induce direct revelation...

  20. Binary Effect of Fly Ash and Palm Oil Fuel Ash on Heat of Hydration Aerated Concrete

    Science.gov (United States)

    Mehmannavaz, Taha; Ismail, Mohammad; Radin Sumadi, Salihuddin; Rafique Bhutta, Muhammad Aamer; Samadi, Mostafa

    2014-01-01

    The binary effect of pulverized fuel ash (PFA) and palm oil fuel ash (POFA) on heat of hydration of aerated concrete was studied. Three aerated concrete mixes were prepared, namely, concrete containing 100% ordinary Portland cement (control sample or Type I), binary concrete made from 50% POFA (Type II), and ternary concrete containing 30% POFA and 20% PFA (Type III). It is found that the temperature increases due to heat of hydration through all the concrete specimens especially in the control sample. However, the total temperature rises caused by the heat of hydration through both of the new binary and ternary concrete were significantly lower than the control sample. The obtained results reveal that the replacement of Portland cement with binary and ternary materials is beneficial, particularly for mass concrete where thermal cracking due to extreme heat rise is of great concern. PMID:24696646

  1. Estimating the Eutectic Composition of Simple Binary Alloy System Using Linear Geometry

    Directory of Open Access Journals (Sweden)

    Muhammed Olawale Hakeem AMUDA

    2008-06-01

    Full Text Available A simple linear equation was developed and applied to a hypothetical binary equilibrium diagram to evaluate the eutectic composition of the binary alloy system. Solution of the equations revealed that the eutectic composition of the case study Pb – Sn, Bi – Cd and Al – Si alloys are 39.89% Pb, 60.11% Sn, 58.01% Bi, 41.99% Cd and 90.94% Al, 9.06% Si respectively. These values are very close to experimental values. The percent deviation of analytical values from experimental values ranged between 2.87 and 5% for the three binary systems considered, except for Si – Al alloy in which the percent deviation for the silicon element was 22%.It is concluded that equation of straight line could be used to predict the eutectic composition of simple binary alloys within tolerable experimental deviation range of 2.5%.

  2. Investigation of the Physical Properties of Protoplanetary Disks around T Tauri Stars by a 1 Arcsecond Imaging Survey: Evolution and Diversity of the Disks in Their Accretion Stage

    Science.gov (United States)

    Kitamura, Yoshimi; Momose, Munetake; Yokogawa, Sozo; Kawabe, Ryohei; Tamura, Motohide; Ida, Shigeru

    2002-12-01

    We present the results of an imaging survey of protoplanetary disks around single T Tauri stars in Taurus. Thermal emission at 2 mm from dust in the disks has been imaged with a maximum spatial resolution of 1" by using the Nobeyama Millimeter Array. Disk images have been successfully obtained under almost uniform conditions for 13 T Tauri stars, two of which are thought to be embedded. We have derived the disk properties of outer radius, surface density distribution, mass, temperature distribution, and dust opacity coefficient, by analyzing both our images and the spectral energy distributions on the basis of two disk models: the usual power-law model and the standard model for viscous accretion disks. By examining correlations between the disk properties and disk clocks, we have found radial expansion of the disks with decreasing Hα line luminosity, a measure of disk evolution. This expansion can be interpreted as radial expansion of accretion disks due to outward transport of angular momentum with evolution. The increasing rate of the disk radius suggests that the viscosity has weak dependence on radius r and α~0.01 for the α parameterization of the viscosity. The power-law index p of the surface density distribution [Σ(r)=Σ0(r/r0)-p] is 0-1 in most cases, which is smaller than 1.5 adopted in the Hayashi model for the origin of our solar system, while the surface density at 100 AU is 0.1-10 g cm-2, which is consistent with the extrapolated value in the Hayashi model. These facts may imply that in the disks of our sample it is very difficult to make planets like ours without redistribution of solids, if such low values for p hold even in the innermost regions. Based on the long-term open-use observations made at the Nobeyama Radio Observatory, which is a branch of the National Astronomical Observatory of Japan, an interuniversity research institute operated by the Ministry of Education, Science, Sports, Culture, and Technology.

  3. Logistic chaotic maps for binary numbers generations

    International Nuclear Information System (INIS)

    Kanso, Ali; Smaoui, Nejib

    2009-01-01

    Two pseudorandom binary sequence generators, based on logistic chaotic maps intended for stream cipher applications, are proposed. The first is based on a single one-dimensional logistic map which exhibits random, noise-like properties at given certain parameter values, and the second is based on a combination of two logistic maps. The encryption step proposed in both algorithms consists of a simple bitwise XOR operation of the plaintext binary sequence with the keystream binary sequence to produce the ciphertext binary sequence. A threshold function is applied to convert the floating-point iterates into binary form. Experimental results show that the produced sequences possess high linear complexity and very good statistical properties. The systems are put forward for security evaluation by the cryptographic committees.

  4. Mass Transfer in Mira-Type Binaries

    Directory of Open Access Journals (Sweden)

    Mohamed S.

    2012-06-01

    Full Text Available Detached, symbiotic binaries are generally assumed to interact via Bondi-Hoyle-Littleton (BHL wind accretion. However, the accretion rates and outflow geometries that result from this mass-transfer mechanism cannot adequately explain the observations of the nearest and best studied symbiotic binary, Mira, or the formation of some post-AGB binaries, e.g. barium stars. We propose a new mass-transfer mode for Mira-type binaries, which we call ‘wind Roche-lobe overflow’ (WRLOF, and which we demonstrate with 3D hydrodynamic simulations. Importantly, we show that the circumstellar outflows which result from WRLOF tend to be highly aspherical and strongly focused towards the binary orbital plane. Furthermore, the subsequent mass-transfer rates are at least an order of magnitude greater than the analogous BHL values. We discuss the implications of these results for the shaping of bipolar (proto-planetary nebulae and other related systems.

  5. Detection Rates for Close Binaries via Microlensing

    Science.gov (United States)

    Gaudi, B. Scott; Gould, Andrew

    1997-06-01

    Microlensing is one of the most promising methods of reconstructing the stellar mass function down to masses even below the hydrogen-burning limit. The fundamental limit to this technique is the presence of unresolved binaries, which can, in principle, significantly alter the inferred mass function. Here we quantify the fraction of binaries that can be detected using microlensing, considering specifically the mass ratio and separation of the binary. We find that almost all binary systems with separations greater than b ~ 0.4 of their combined Einstein ring radius are detectable assuming a detection threshold of 3%. For two M dwarfs, this corresponds to a limiting separation of >~1 AU. Since very few observed M dwarfs have companions at separations corrupt the measurements of the mass function. We find that the detectability depends only weakly on the mass ratio. For those events for which individual masses can be determined, we find that binaries can be detected down to b ~ 0.2.

  6. Evolution of Supermassive Black-Hole Binaries

    Science.gov (United States)

    Milosavljevic, M.; Merritt, D.

    2000-10-01

    Binary supermassive black holes are expected to form in galactic nuclei following galaxy mergers. We report large-scale N-body simulations using the Aarseth/Spurzem parallel code NBODY6++ of the formation and evolution of such binaries. Initial conditions are drawn from a tree-code simulation of the merger of two spherical galaxies with ρ ~ r-2 density cusps (Cruz & Merritt, AAS Poster). Once the two black holes form a bound pair at the center of the merged galaxies, the evolution is continued using NBODY6++ at much higher resolution. Its exact force calculations generate faithful binary dynamics until the onset of gravity wave-dominated dissipation. We discuss the binary hardening rate, the amplitude of the binary's wandering, and the evolution of the structure of the galactic stellar nucleus.

  7. Phonons in fcc binary alloys

    International Nuclear Information System (INIS)

    Sharma, Amita; Rathore, R.P.S.

    1992-01-01

    Born-Mayer potential has been modified to account for the unpaired (three body) forces among the common nearest neighbours of the ordered binary fcc alloys i.e. Ni 3 Fe 7 , Ni 5 Fe 5 and Ni 75 Fe 25 . The three body potential is added to the two body form of Morse to formalize the total interaction potential. Measured inverse ionic compressibility, cohesive energy, lattice constant and one measured phonon frequency are used to evaluate the defining parameters of the potential. The potential seeks to bring about the binding among 140 and 132 atoms though pair wise (two body) and non-pair wise (three body) forces respectively. The phonon-dispersion relations obtained by solving the secular equation are compared with the experimental findings on the aforesaid alloys. (author). 19 refs., 3 figs

  8. VARIATIONS OF THE 10 μm SILICATE FEATURES IN THE ACTIVELY ACCRETING T TAURI STARS: DG Tau AND XZ Tau

    International Nuclear Information System (INIS)

    Bary, Jeffrey S.; Leisenring, Jarron M.; Skrutskie, Michael F.

    2009-01-01

    Using the Infrared Spectrograph aboard the Spitzer Space Telescope, we observed multiple epochs of 11 actively accreting T Tauri stars in the nearby Taurus-Auriga star-forming region. In total, 88 low-resolution mid-infrared spectra were collected over 1.5 years in Cycles 2 and 3. The results of this multi-epoch survey show that the 10 μm silicate complex in the spectra of two sources-DG Tau and XZ Tau-undergoes significant variations with the silicate feature growing both weaker and stronger over month- and year-long timescales. Shorter timescale variations on day- to week-long timescales were not detected within the measured flux errors. The time resolution coverage of this data set is inadequate for determining if the variations are periodic. Pure emission compositional models of the silicate complex in each epoch of the DG Tau and XZ Tau spectra provide poor fits to the observed silicate features. These results agree with those of previous groups that attempted to fit only single-epoch observations of these sources. Simple two-temperature, two-slab models with similar compositions successfully reproduce the observed variations in the silicate features. These models hint at a self-absorption origin of the diminution of the silicate complex instead of a compositional change in the population of emitting dust grains. We discuss several scenarios for producing such variability including disk shadowing, vertical mixing, variations in disk heating, and disk wind events associated with accretion outbursts.

  9. BPASS predictions for binary black hole mergers

    Science.gov (United States)

    Eldridge, J. J.; Stanway, E. R.

    2016-11-01

    Using the Binary Population and Spectral Synthesis code, BPASS, we have calculated the rates, time-scales and mass distributions for binary black hole (BH) mergers as a function of metallicity. We consider these in the context of the recently reported first Laser Interferometer Gravitational-Wave Observatory (LIGO) event detection. We find that the event has a very low probability of arising from a stellar population with initial metallicity mass fraction above Z = 0.010 (Z ≳ 0.5 Z⊙). Binary BH merger events with the reported masses are most likely in populations below 0.008 (Z ≲ 0.4 Z⊙). Events of this kind can occur at all stellar population ages from 3 Myr up to the age of the Universe, but constitute only 0.1-0.4 per cent of binary BH mergers between metallicities of Z = 0.001 and 0.008. However at metallicity Z = 10-4, 26 per cent of binary BH mergers would be expected to have the reported masses. At this metallicity, the progenitor merger times can be close to ≈10 Gyr and rotationally mixed stars evolving through quasi-homogeneous evolution, due to mass transfer in a binary, dominate the rate. The masses inferred for the BHs in the binary progenitor of GW 150914 are amongst the most massive expected at anything but the lowest metallicities in our models. We discuss the implications of our analysis for the electromagnetic follow-up of future LIGO event detections.

  10. Topological and categorical properties of binary trees

    Directory of Open Access Journals (Sweden)

    H. Pajoohesh

    2008-04-01

    Full Text Available Binary trees are very useful tools in computer science for estimating the running time of so-called comparison based algorithms, algorithms in which every action is ultimately based on a prior comparison between two elements. For two given algorithms A and B where the decision tree of A is more balanced than that of B, it is known that the average and worst case times of A will be better than those of B, i.e., ₸A(n ≤₸B(n and TWA (n≤TWB (n. Thus the most balanced and the most imbalanced binary trees play a main role. Here we consider them as semilattices and characterize the most balanced and the most imbalanced binary trees by topological and categorical properties. Also we define the composition of binary trees as a commutative binary operation, *, such that for binary trees A and B, A * B is the binary tree obtained by attaching a copy of B to any leaf of A. We show that (T,* is a commutative po-monoid and investigate its properties.

  11. General Model for Light Curves of Chromospherically Active Binary Stars

    Science.gov (United States)

    Jetsu, L.; Henry, G. W.; Lehtinen, J.

    2017-04-01

    The starspots on the surface of many chromospherically active binary stars concentrate on long-lived active longitudes separated by 180°. Shifts in activity between these two longitudes, the “flip-flop” events, have been observed in single stars like FK Comae and binary stars like σ Geminorum. Recently, interferometry has revealed that ellipticity may at least partly explain the flip-flop events in σ Geminorum. This idea was supported by the double-peaked shape of the long-term mean light curve of this star. Here we show that the long-term mean light curves of 14 chromospherically active binaries follow a general model that explains the connection between orbital motion, changes in starspot distribution, ellipticity, and flip-flop events. Surface differential rotation is probably weak in these stars, because the interference of two constant period waves may explain the observed light curve changes. These two constant periods are the active longitude period ({P}{act}) and the orbital period ({P}{orb}). We also show how to apply the same model to single stars, where only the value of P act is known. Finally, we present a tentative interference hypothesis about the origin of magnetic fields in all spectral types of stars. The CPS results are available electronically at the Vizier database.

  12. Tenoxicam-kollicoat IR binary systems: physicochemical and biological evaluation.

    Science.gov (United States)

    Ibrahim, Mohamed Abbas

    2014-01-01

    Tenoxicam (TNX) binary systems in Kollicoat IR (KL) matrix were prepared in different drug: polymer ratios using kneading and spray-drying method. The prepared binary systems were characterized for drug dissolution rate, differential scanning calorimetry (DSC), IR spectroscopy and x-ray diffractometry. The results showed that the drug dissolution rate was remarkably enhanced by incorporating it in the KL matrix either by kneading or spray-drying, and the dissolution rate was increased by decreasing the drug weight ratio. The DSc and x-ray studies revealed the presence of TNX in less crystalline or amorphous state in its-KL binary systems. Moreover, the spray-dried TNX-KL system in 1:4 ratio, that exhibited the faster dissolution rate, was formulated in oral disintegrating tablets (ODTs). The data indicated that a fast disintegration and higher drug dissolution rate was achieved in case of the ODTs containing the spray-dried form compared to the ODTS containing untreated drug or the commercial tablet (Epicotil). Also, the drug exhibited significantly (p < 0.01) faster onset of the anti-inflammatory analgesic activities in case of the ODTs containing the spray-dried form, that was superior to that observed with both the commercial tablet product and the ODTS containing untreated drug.

  13. Evaluation of griseofulvin binary and ternary solid dispersions with HPMCAS.

    Science.gov (United States)

    Al-Obaidi, Hisham; Buckton, Graham

    2009-01-01

    The stability and dissolution properties of griseofulvin binary and ternary solid dispersions were evaluated. Solid dispersions of griseofulvin and hydroxypropyl methylcellulose acetate succinate (HPMCAS) were prepared using the spray drying method. A third polymer, poly[N-(2-hydroxypropyl)methacrylate] (PHPMA), was incorporated to investigate its effect on the interaction of griseofulvin with HPMCAS. In this case, HPMCAS can form H bonds with griseofulvin directly; the addition of PHPMA to the solid dispersion may enhance the stability of the amorphous griseofulvin due to greater interaction with griseofulvin. The X-ray powder diffraction results showed that griseofulvin (binary and ternary solid dispersions) remained amorphous for more than 19 months stored at 85% RH compared with the spray-dried griseofulvin which crystallized totally within 24 h at ambient conditions. The Fourier transform infrared scan showed that griseofulvin carbonyl group formed hydrogen bonds with the hydroxyl group in the HPMCAS, which could explain the extended stability of the drug. Further broadening in the peak could be seen when PHPMA was added to the solid dispersion, which indicates stronger interaction. The glass transition temperatures increased in the ternary solid dispersions regardless of HPMCAS grade. The dissolution rate of the drug in the solid dispersion (both binary and ternary) has significantly increased when compared with the dissolution profile of the spray-dried griseofulvin. These results reveal significant stability of the amorphous form due to the hydrogen bond formation with the polymer. The addition of the third polymer improved the stability but had a minor impact on dissolution.

  14. Instabilities in Interacting Binary Stars

    Science.gov (United States)

    Andronov, I. L.; Andrych, K. D.; Antoniuk, K. A.; Baklanov, A. V.; Beringer, P.; Breus, V. V.; Burwitz, V.; Chinarova, L. L.; Chochol, D.; Cook, L. M.; Cook, M.; Dubovský, P.; Godlowski, W.; Hegedüs, T.; Hoňková, K.; Hric, L.; Jeon, Y.-B.; Juryšek, J.; Kim, C.-H.; Kim, Y.; Kim, Y.-H.; Kolesnikov, S. V.; Kudashkina, L. S.; Kusakin, A. V.; Marsakova, V. I.; Mason, P. A.; Mašek, M.; Mishevskiy, N.; Nelson, R. H.; Oksanen, A.; Parimucha, S.; Park, J.-W.; Petrík, K.; Quiñones, C.; Reinsch, K.; Robertson, J. W.; Sergey, I. M.; Szpanko, M.; Tkachenko, M. G.; Tkachuk, L. G.; Traulsen, I.; Tremko, J.; Tsehmeystrenko, V. S.; Yoon, J.-N.; Zola, S.; Shakhovskoy, N. M.

    2017-07-01

    The types of instability in the interacting binary stars are briefly reviewed. The project “Inter-Longitude Astronomy” is a series of smaller projects on concrete stars or groups of stars. It has no special funds, and is supported from resources and grants of participating organizations, when informal working groups are created. This “ILA” project is in some kind similar and complementary to other projects like WET, CBA, UkrVO, VSOLJ, BRNO, MEDUZA, AstroStatistics, where many of us collaborate. Totally we studied 1900+ variable stars of different types, including newly discovered variables. The characteristic timescale is from seconds to decades and (extrapolating) even more. The monitoring of the first star of our sample AM Her was initiated by Prof. V.P. Tsesevich (1907-1983). Since more than 358 ADS papers were published. In this short review, we present some highlights of our photometric and photo-polarimetric monitoring and mathematical modeling of interacting binary stars of different types: classical (AM Her, QQ Vul, V808 Aur = CSS 081231:071126+440405, FL Cet), asynchronous (BY Cam, V1432 Aql), intermediate (V405 Aql, BG CMi, MU Cam, V1343 Her, FO Aqr, AO Psc, RXJ 2123, 2133, 0636, 0704) polars and magnetic dwarf novae (DO Dra) with 25 timescales corresponding to different physical mechanisms and their combinations (part “Polar”); negative and positive superhumpers in nova-like (TT Ari, MV Lyr, V603 Aql, V795 Her) and many dwarf novae stars (“Superhumper”); eclipsing “non-magnetic” cataclysmic variables(BH Lyn, DW UMa, EM Cyg; PX And); symbiotic systems (“Symbiosis”); super-soft sources (SSS, QR And); spotted (and not spotted) eclipsing variables with (and without) evidence for a current mass transfer (“Eclipser”) with a special emphasis on systems with a direct impact of the stream into the gainer star's atmosphere, which we propose to call “Impactor” (short from “Extreme Direct Impactor”), or V361 Lyr-type stars. Other

  15. Binary neutron star merger simulations

    Energy Technology Data Exchange (ETDEWEB)

    Bruegmann, Bernd [Jena Univ. (Germany)

    2016-11-01

    Our research focuses on the numerical tools necessary to solve Einstein's equations. In recent years we have been particularly interested in spacetimes consisting of two neutron stars in the final stages of their evolution. Because of the emission of gravitational radiation, the objects are driven together to merge; the emitted gravitational wave signal is visualized. This emitted gravitational radiation carries energy and momentum away from the system and contains information about the system. Late last year the Laser Interferometer Gravitational-wave Observatory (LIGO) began searches for these gravitational wave signals at a sensitivity at which detections are expected. Although such systems can radiate a significant amount of their total mass-energy in gravitational waves, the gravitational wave signals one expects to receive on Earth are not strong, since sources of gravitational waves are often many millions of light years away. Therefore one needs accurate templates for the radiation one expects from such systems in order to be able to extract them out of the detector's noise. Although analytical models exist for compact binary systems when the constituents are well separated, we need numerical simulation to investigate the last orbits before merger to obtain accurate templates and validate analytical approximations. Due to the strong nonlinearity of the equations and the large separation of length scales, these simulations are computationally demanding and need to be run on large supercomputers. When matter is present the computational cost as compared to pure black hole (vacuum) simulations increases even more due to the additional matter fields. But also more interesting astrophysical phenomena can happen. In fact, there is the possibility for a strong electromagnetic signal from the merger (e.g., a short gamma-ray burst or lower-energy electromagnetic signatures from the ejecta) and significant neutrino emission. Additionally, we can expect that

  16. Eliciting Subjective Probabilities with Binary Lotteries

    DEFF Research Database (Denmark)

    Harrison, Glenn W.; Martínez-Correa, Jimmy; Swarthout, J. Todd

    2014-01-01

    We evaluate a binary lottery procedure for inducing risk neutral behavior in a subjective belief elicitation task. Prior research has shown this procedure to robustly induce risk neutrality when subjects are given a single risk task defined over objective probabilities. Drawing a sample from...... the same subject population, we find evidence that the binary lottery procedure also induces linear utility in a subjective probability elicitation task using the Quadratic Scoring Rule. We also show that the binary lottery procedure can induce direct revelation of subjective probabilities in subjects...

  17. Dixie Valley Bottoming Binary Unit

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, Dale [Terra-Gen Sierra Holdings, LLC, Reno, NV (United States)

    2014-12-21

    This binary plant is the first air cooled, high-output refrigeration based waste heat recovery cycle in the industry. Its working fluid is environmentally friendly and as such, the permits that would be required with a hydrocarbon based cycle are not necessary. The unit is largely modularized, meaning that the unit’s individual skids were assembled in another location and were shipped via truck to the plant site. The Air Cooled Condensers (ACC), equipment piping, and Balance of Plant (BOP) piping were constructed at site. This project further demonstrates the technical feasibility of using low temperature brine for geothermal power utilization. The development of the unit led to the realization of low temperature, high output, and environmentally friendly heat recovery systems through domestic research and engineering. The project generates additional renewable energy, resulting in cleaner air and reduced carbon dioxide emissions. Royalty and tax payments to governmental agencies will increase, resulting in reduced financial pressure on local entities. The major components of the unit were sourced from American companies, resulting in increased economic activity throughout the country.

  18. New stable phase in binary Fe-Nd

    International Nuclear Information System (INIS)

    Schneider, G.; Landgraf, F.J.G.; Villas-Boas, V.; Bezerra, G.H.; Missell, F.P.; Ray, A.E.

    1992-01-01

    An investigation of binary Fe-Nd alloys revealed the existence of an oxygen-free, stable Fe-rich phase A 2 , formed peritecticly in the range 750-800 deg C. EPMA shows this phase to contain 22.8 atomic percent Nd. This ferromagnetic phase has T c = 230 de C, but is magnetically soft. The X-ray diffraction pattern can be indexed using a hexagonal cell with a = 2.021 nm. and c = 1.235 nm. (author)

  19. Enhanced parametric processes in binary metamaterials

    OpenAIRE

    Gorkunov, Maxim V.; Shadrivov, Ilya V.; Kivshar, Yuri S.

    2005-01-01

    We suggest double-resonant (binary) metamaterials composed of two types of magnetic resonant elements, and demonstrate that in the nonlinear regime such metamaterials provide unique possibilities for phase-matched parametric interaction and enhanced second-harmonic generation.

  20. BINARY MINOR PLANETS V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — We present a data table giving basic physical and orbital parameters for known binary minor planets in the Solar System (and Pluto/Charon) based on published...

  1. BINARY MINOR PLANETS V6.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The data set lists orbital and physical properties for well-observed or suspected binary/multiple minor planets including the Pluto system, as inspired by Richardson...

  2. BINARY MINOR PLANETS V4.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The data set lists orbital and physical properties for well-observed or suspected binary/multiple minor planets including the Pluto system, as inspired by Richardson...

  3. BINARY MINOR PLANETS V5.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The data set lists orbital and physical properties for well-observed or suspected binary/multiple minor planets including the Pluto system, as inspired by Richardson...

  4. BINARY MINOR PLANETS V8.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The data set lists orbital and physical properties for well-observed or suspected binary/multiple minor planets including the Pluto system, compiled from the...

  5. BINARY MINOR PLANETS V9.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The data set lists orbital and physical properties for well-observed or suspected binary/multiple minor planets including the Pluto system, compiled from the...

  6. BINARY MINOR PLANETS V7.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The data set lists orbital and physical properties for well-observed or suspected binary/multiple minor planets including the Pluto system, compiled from the...

  7. BINARY MINOR PLANETS V2.0

    Data.gov (United States)

    National Aeronautics and Space Administration — We present data tables giving basic orbital and physical parameters for well-observed or suspected binary/multiple minor planets and the Pluto system, based on a...

  8. BINARY MINOR PLANETS V3.0

    Data.gov (United States)

    National Aeronautics and Space Administration — We present data tables giving basic orbital and physical parameters for well-observed or suspected binary/multiple minor planets and the Pluto system, based on a...

  9. A Type System for Certified Binaries

    National Research Council Canada - National Science Library

    Shao, Zhong; Trifonov, Valery; Saha, Bratin; Papaspyrou, Nikolaos

    2004-01-01

    ... (CPS and closure conversion) while preserving proofs represented in the type system. Our work provides a foundation for the process of automatically generating certified binaries in a type-theoretic framework.

  10. ON THE BINARY DIGITS OF ALGEBRAIC NUMBERS

    OpenAIRE

    KANEKO, HAJIME

    2010-01-01

    Borel conjectured that all algebraic irrational numbers are normal in base 2. However, very little is known about this problem. We improve the lower bounds for the number of digit changes in the binary expansions of algebraic irrational numbers.

  11. General simulation algorithm for autocorrelated binary processes

    Science.gov (United States)

    Serinaldi, Francesco; Lombardo, Federico

    2017-02-01

    The apparent ubiquity of binary random processes in physics and many other fields has attracted considerable attention from the modeling community. However, generation of binary sequences with prescribed autocorrelation is a challenging task owing to the discrete nature of the marginal distributions, which makes the application of classical spectral techniques problematic. We show that such methods can effectively be used if we focus on the parent continuous process of beta distributed transition probabilities rather than on the target binary process. This change of paradigm results in a simulation procedure effectively embedding a spectrum-based iterative amplitude-adjusted Fourier transform method devised for continuous processes. The proposed algorithm is fully general, requires minimal assumptions, and can easily simulate binary signals with power-law and exponentially decaying autocorrelation functions corresponding, for instance, to Hurst-Kolmogorov and Markov processes. An application to rainfall intermittency shows that the proposed algorithm can also simulate surrogate data preserving the empirical autocorrelation.

  12. Computer controlled evaluation of binary images

    NARCIS (Netherlands)

    Schouten, Th.E.; van den Broek, Egon

    2010-01-01

    The present invention relates to computer controlled image processing and, in particular, to computer controlled evaluation of two dimensional, 2D, and three dimensional, 3D, binary images including sequences of images using a distance map.

  13. On the Maximum Separation of Visual Binaries

    Indian Academy of Sciences (India)

    2016-01-27

    minimum) angular separation ρmax(ρmin), the corresponding apparent position angles (|ρmax , |ρmin) and the individual masses of visual binary systems. The algorithm uses Reed's formulae (1984) for the masses, and a ...

  14. Red-giant stars in eccentric binaries

    Directory of Open Access Journals (Sweden)

    Beck P. G.

    2015-01-01

    Full Text Available The unparalleled photometric data obtained by NASA’s Kepler Space Telescope has led to improved understanding of red-giant stars and binary stars. We discuss the characterization of known eccentric system, containing a solar-like oscillating red-giant primary component. We also report several new binary systems that are candidates for hosting an oscillating companion. A powerful approach to study binary stars is to combine asteroseimic techniques with light curve fitting. Seismology allows us to deduce the properties of red giants. In addition, by modeling the ellipsoidal modulations we can constrain the parameters of the binary system. An valuable independent source are ground-bases, high-resolution spectrographs.

  15. Observations of new Wolf-Rayet binaries

    International Nuclear Information System (INIS)

    Niemela, V.S.

    1982-01-01

    The author reports here preliminary results of spectrographic observations for three southern WR stars, whose binary nature had not been previously verified: HDE 320102, CD -45 0 4482, HD 62910. The observations were carried out at the Cerro Tololo Inter-American Observatory, Chile, mostly with the Cassegrain spectrograph with IT attached to the 1-m reflector. These spectrograms were secured on Kodak IIIaJ emulsion, and have a dispersion of 45 A/mm. The results suggest that HDE 320102 must be a double-lined 05-7 + WN3 spectroscopic binary, that CD -45 0 4482 appears to be a single-lined spectroscopic binary and that HD 62910 may be a binary. (Auth.)

  16. Shell-binary nanoparticle materials with variable electrical and electro-mechanical properties.

    Science.gov (United States)

    Zhang, P; Bousack, H; Dai, Y; Offenhäusser, A; Mayer, D

    2018-01-18

    Nanoparticle (NP) materials with the capability to adjust their electrical and electro-mechanical properties facilitate applications in strain sensing technology. Traditional NP materials based on single component NPs lack a systematic and effective means of tuning their electrical and electro-mechanical properties. Here, we report on a new type of shell-binary NP material fabricated by self-assembly with either homogeneous or heterogeneous arrangements of NPs. Variable electrical and electro-mechanical properties were obtained for both materials. We show that the electrical and electro-mechanical properties of these shell-binary NP materials are highly tunable and strongly affected by the NP species as well as their corresponding volume fraction ratio. The conductivity and the gauge factor of these shell-binary NP materials can be altered by about five and two orders of magnitude, respectively. These shell-binary NP materials with different arrangements of NPs also demonstrate different volume fraction dependent electro-mechanical properties. The shell-binary NP materials with a heterogeneous arrangement of NPs exhibit a peaking of the sensitivity at medium mixing ratios, which arises from the aggregation induced local strain enhancement. Studies on the electron transport regimes and micro-morphologies of these shell-binary NP materials revealed the different mechanisms accounting for the variable electrical and electro-mechanical properties. A model based on effective medium theory is used to describe the electrical and electro-mechanical properties of such shell-binary nanomaterials and shows an excellent match with experiment data. These shell-binary NP materials possess great potential applications in high-performance strain sensing technology due to their variable electrical and electro-mechanical properties.

  17. K2 Reveals Pulsed Accretion Driven by the 2 Myr Old Hot Jupiter CI Tau b

    Science.gov (United States)

    Biddle, Lauren I.; Johns-Krull, Christopher M.; Llama, Joe; Prato, Lisa; Skiff, Brian A.

    2018-02-01

    CI Tau is a young (∼2 Myr) classical T Tauri star located in the Taurus star-forming region. Radial velocity observations indicate it hosts a Jupiter-sized planet with an orbital period of approximately 9 days. In this work, we analyze time series of CI Tau’s photometric variability as seen by K2. The light curve reveals the stellar rotation period to be ∼6.6 days. Although there is no evidence that CI Tau b transits the host star, a ∼9 day signature is also present in the light curve. We believe this is most likely caused by planet–disk interactions that perturb the accretion flow onto the star, resulting in a periodic modulation of the brightness with the ∼9 day period of the planet’s orbit.

  18. Diffusion in ordered binary solid systems

    International Nuclear Information System (INIS)

    Stolwijk, N.A.

    1980-01-01

    This thesis contains contributions to the field of diffusion in ordered binary solid systems. An extensive experimental investigation of the self diffusion in CoGa is presented. The results of these diffusion measurements strongly suggest that a substantial part of the atomic migration is caused by a new type of defect. A quantitative description of the atomic displacements via this defect is given. Finally computer simulations are presented of diffusion and ordering in binary solid systems. (Auth.)

  19. Detecting Black Hole Binaries by Gaia

    OpenAIRE

    Yamaguchi, Masaki S.; Kawanaka, Norita; Bulik, Tomasz; Piran, Tsvi

    2017-01-01

    We study the prospect of the Gaia satellite to identify black hole binary systems by detecting the orbital motion of the companion stars. Taking into account the initial mass function, mass transfer, common envelope phase, interstellar absorption and identifiability of black holes, we estimate the number of black hole binaries detected by Gaia and their distributions with respect to the black hole mass for several models with different parameters. We find that $\\sim 300-6000$ black hole binar...

  20. Search for binary nuclei in planetary nebulae

    International Nuclear Information System (INIS)

    Jasniewicz, G.

    1987-01-01

    Two planetary nebulae with central stars of late spectral type were observed: LT 5 and Abell 35. The variation of the systemic velocity of the G-binary in HD 112313 gives strong support to the idea of a third body in the nucleus of LT 5. In addition, it is concluded that observed photometric variations of BD -22 deg 3467 (the central star of Abell 35) can best be explained by the binary nature of the star. 9 references

  1. Search for binary nuclei in planetary nebulae

    Science.gov (United States)

    Jasniewicz, G.

    Two planetary nebulae with central stars of late spectral type were observed: LT 5 and Abell 35. The variation of the systemic velocity of the G-binary in HD 112313 gives strong support to the idea of a third body in the nucleus of LT 5. In addition, it is concluded that observed photometric variations of BD -22 deg 3467 (the central star of Abell 35) can best be explained by the binary nature of the star.

  2. New algorithms for binary wavefront optimization

    Science.gov (United States)

    Zhang, Xiaolong; Kner, Peter

    2015-03-01

    Binary amplitude modulation promises to allow rapid focusing through strongly scattering media with a large number of segments due to the faster update rates of digital micromirror devices (DMDs) compared to spatial light modulators (SLMs). While binary amplitude modulation has a lower theoretical enhancement than phase modulation, the faster update rate should more than compensate for the difference - a factor of π2 /2. Here we present two new algorithms, a genetic algorithm and a transmission matrix algorithm, for optimizing the focus with binary amplitude modulation that achieve enhancements close to the theoretical maximum. Genetic algorithms have been shown to work well in noisy environments and we show that the genetic algorithm performs better than a stepwise algorithm. Transmission matrix algorithms allow complete characterization and control of the medium but require phase control either at the input or output. Here we introduce a transmission matrix algorithm that works with only binary amplitude control and intensity measurements. We apply these algorithms to binary amplitude modulation using a Texas Instruments Digital Micromirror Device. Here we report an enhancement of 152 with 1536 segments (9.90%×N) using a genetic algorithm with binary amplitude modulation and an enhancement of 136 with 1536 segments (8.9%×N) using an intensity-only transmission matrix algorithm.

  3. Eclipsing Binary B-Star Mass Determinations

    Science.gov (United States)

    Townsend, Amanda; Eikenberry, Stephen S.

    2016-01-01

    B-stars in binary pairs provide a laboratory for key astrophysical measurements of massive stars, including key insights for the formation of compact objects (neutron stars and black holes). In their paper, Martayan et al (2004) find 23 Be binary star pairs in NGC2004 in the Large Magellanic Cloud, five of which are both eclipsing and spectroscopic binaries with archival data from VLT-Giraffe and photometric data from MACHO. By using the Wilson eclipsing binary code (e.g., Wilson, 1971), we can determine preliminary stellar masses of the binary components. We present the first results from this analysis. This study also serves as proof-of-concept for future observations with the Photonic Synthesis Telescope Array (Eikenberry et al., in prep) that we are currently building for low-cost, precision spectroscopic observations. With higher resolution and dedicated time for observations, we can follow-up observations of these Be stars as well as Be/X-ray binaries, for improved mass measurements of neutron stars and black holes and better constraints on their origin/formation.

  4. Texture classification by texton: statistical versus binary.

    Directory of Open Access Journals (Sweden)

    Zhenhua Guo

    Full Text Available Using statistical textons for texture classification has shown great success recently. The maximal response 8 (Statistical_MR8, image patch (Statistical_Joint and locally invariant fractal (Statistical_Fractal are typical statistical texton algorithms and state-of-the-art texture classification methods. However, there are two limitations when using these methods. First, it needs a training stage to build a texton library, thus the recognition accuracy will be highly depended on the training samples; second, during feature extraction, local feature is assigned to a texton by searching for the nearest texton in the whole library, which is time consuming when the library size is big and the dimension of feature is high. To address the above two issues, in this paper, three binary texton counterpart methods were proposed, Binary_MR8, Binary_Joint, and Binary_Fractal. These methods do not require any training step but encode local feature into binary representation directly. The experimental results on the CUReT, UIUC and KTH-TIPS databases show that binary texton could get sound results with fast feature extraction, especially when the image size is not big and the quality of image is not poor.

  5. Binary-collision-approximation-based simulation of noble gas irradiation to tungsten materials

    International Nuclear Information System (INIS)

    Saito, Seiki; Takayama, Arimichi; Ito, Atsushi M.; Nakamura, Hiroaki

    2013-01-01

    To reveal the possibility of fuzz formation of tungsten material under noble gas irradiation, helium, neon, and argon atom injections into tungsten materials are performed by binary-collision-approximation-based simulation. The penetration depth is strongly depends on the structure of the target material. Therefore, the penetration depth for amorphous and bcc crystalline structure is carefully investigated in this paper

  6. WR 20a: A massive cornerstone binary system comprising two extreme early-type stars

    NARCIS (Netherlands)

    Rauw, G.; De Becker, M.; Nazé, Y.; Crowther, P.A.; Gosset, E.; Sana, H.; van der Hucht, K.A.; Vreux, J.-M.; Williams, P.M.

    2004-01-01

    We analyse spectroscopic observations of WR 20a revealing that this star is a massive early-type binary system with a most probable orbital period of ~3.675 days. Our spectra indicate that both components are most likely of WN6ha or O3If*/WN6ha spectral type. The orbital solution for a period of

  7. Efficient ceramic anodes infiltrated with binary and ternary electrocatalysts for SOFCs operating at low temperatures

    DEFF Research Database (Denmark)

    Abdul Jabbar, Mohammed Hussain; Høgh, Jens Valdemar Thorvald; Zhang, Wei

    2012-01-01

    the binary Pd–CGO and Pt–CGO due to the particle coarsening of Ni nanoparticles. High resolution transmission electron microscopic analysis on the best performing Ni–Pt–CGO electrocatalyst infiltrated anode reveals the formation of Ni–Pt nanocrystalline alloy and a homogenous distribution of nanoparticles...

  8. Exploring the Birth of Binary Stars

    Science.gov (United States)

    Kohler, Susanna

    2016-08-01

    More than half of all stars are thought to be in binary or multiple star systems. But how do these systems form? The misaligned spins of some binary protostars might provide a clue.Two Formation ModelsIts hard to tell how multiple-star systems form, since these systems are difficult to observe in their early stages. But based on numerical simulations, there are two proposed models for the formation of stellar binaries:Turbulent fragmentationTurbulence within a single core leads to multiple dense clumps. These clumps independently collapse to form stars that orbit each other.Disk fragmentationGravitational instabilities in a massive accretion disk cause the formation of a smaller, secondary disk within the first, resulting in two stars that orbit each other.Log column density for one of the authors simulated binary systems, just after the formation of two protostars. Diamonds indicate the protostar positions. [Adapted from Offner et al. 2016]Outflows as CluesHow can we differentiate between these formation mechanisms? Led by Stella Offner (University of Massachusetts), a team of scientists has suggested that the key isto examine the alignment of the stars protostellar outflows jets that are often emitted from the poles of young, newly forming stars.Naively, wed expect that disk fragmentation would produce binary stars with common angular momentum. As the stars spins would be aligned, they would therefore also launch protostellar jets that were aligned with each other. Turbulent fragmentation, on the other hand, would cause the stars to have independent angular momentum. This would lead to randomly oriented spins, so the protostellar jets would be misaligned.Snapshots from the authors simulations. Left panel of each pair: column density; green arrows giveprotostellar spin directions. Right panel: synthetic observations produced from the simulations; cyan arrows giveprotostellar outflow directions. [Offner et al. 2016]Simulations of FragmentationIn order to better

  9. Do stellar clusters form fewer binaries? Using moderate separation binaries to distinguish between nature and nurture

    Science.gov (United States)

    Reiter, Megan

    2017-08-01

    Fewer wide-separation binaries are found in dense stellar clusters than in looser stellar associations. It is therefore unclear whether feedback in clusters prevents the formation of multiple systems or dynamical interactions destroy them. Measuring the prevalence of close, bound binary systems provide a key test to distinguish between these possibilities. Systems with separations of 10-50 AU will survive interactions in the cluster environment, and therefore are more representative of the natal population of multiple systems. By fitting a double-star PSF, we will identify visual binaries in the Orion Nebula with separations as small as 0.03. At the distance of Orion, this corresponds to a physical separation of 12 AU, effectively closing the observational gap in the binary separation distribution left between known visual and spectroscopic binaries (>65 AU or PhD thesis.

  10. Mathematics revealed

    CERN Document Server

    Berman, Elizabeth

    1979-01-01

    Mathematics Revealed focuses on the principles, processes, operations, and exercises in mathematics.The book first offers information on whole numbers, fractions, and decimals and percents. Discussions focus on measuring length, percent, decimals, numbers as products, addition and subtraction of fractions, mixed numbers and ratios, division of fractions, addition, subtraction, multiplication, and division. The text then examines positive and negative numbers and powers and computation. Topics include division and averages, multiplication, ratios, and measurements, scientific notation and estim

  11. DEM L241, A SUPERNOVA REMNANT CONTAINING A HIGH-MASS X-RAY BINARY

    International Nuclear Information System (INIS)

    Seward, F. D.; Charles, P. A.; Foster, D. L.; Dickel, J. R.; Romero, P. S.; Edwards, Z. I.; Perry, M.; Williams, R. M.

    2012-01-01

    A Chandra observation of the Large Magellanic Cloud supernova remnant DEM L241 reveals an interior unresolved source which is probably an accretion-powered binary. The optical counterpart is an O5III(f) star making this a high-mass X-ray binary with an orbital period likely to be of the order of tens of days. Emission from the remnant interior is thermal and spectral information is used to derive density and mass of the hot material. Elongation of the remnant is unusual and possible causes of this are discussed. The precursor star probably had mass >25 M ☉

  12. DEM L241, A SUPERNOVA REMNANT CONTAINING A HIGH-MASS X-RAY BINARY

    Energy Technology Data Exchange (ETDEWEB)

    Seward, F. D. [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States); Charles, P. A. [School of Physics and Astronomy, University of Southampton, Highfield, Southampton SO17 1BJ (United Kingdom); Foster, D. L. [South African Astronomical Observatory, P.O. Box 9, Observatory 7935, Cape Town (South Africa); Dickel, J. R.; Romero, P. S. [Department of Physics and Astronomy, University of New Mexico, 1919 Lomas Boulevard NE, Albuquerque, NM 87131 (United States); Edwards, Z. I.; Perry, M.; Williams, R. M. [Department of Earth and Space Sciences, Columbus State University, Coca Cola Space Science Center, 701 Front Avenue, Columbus, GA 31901 (United States)

    2012-11-10

    A Chandra observation of the Large Magellanic Cloud supernova remnant DEM L241 reveals an interior unresolved source which is probably an accretion-powered binary. The optical counterpart is an O5III(f) star making this a high-mass X-ray binary with an orbital period likely to be of the order of tens of days. Emission from the remnant interior is thermal and spectral information is used to derive density and mass of the hot material. Elongation of the remnant is unusual and possible causes of this are discussed. The precursor star probably had mass >25 M {sub Sun}.

  13. Satisfiability modulo theory and binary puzzle

    Science.gov (United States)

    Utomo, Putranto

    2017-06-01

    The binary puzzle is a sudoku-like puzzle with values in each cell taken from the set {0, 1}. We look at the mathematical theory behind it. A solved binary puzzle is an n × n binary array where n is even that satisfies the following conditions: (1) No three consecutive ones and no three consecutive zeros in each row and each column, (2) Every row and column is balanced, that is the number of ones and zeros must be equal in each row and in each column, (3) Every two rows and every two columns must be distinct. The binary puzzle had been proven to be an NP-complete problem [5]. Research concerning the satisfiability of formulas with respect to some background theory is called satisfiability modulo theory (SMT). An SMT solver is an extension of a satisfiability (SAT) solver. The notion of SMT can be used for solving various problem in mathematics and industries such as formula verification and operation research [1, 7]. In this paper we apply SMT to solve binary puzzles. In addition, we do an experiment in solving different sizes and different number of blanks. We also made comparison with two other approaches, namely by a SAT solver and exhaustive search.

  14. Star formation history: Modeling of visual binaries

    Science.gov (United States)

    Gebrehiwot, Y. M.; Tessema, S. B.; Malkov, O. Yu.; Kovaleva, D. A.; Sytov, A. Yu.; Tutukov, A. V.

    2018-05-01

    Most stars form in binary or multiple systems. Their evolution is defined by masses of components, orbital separation and eccentricity. In order to understand star formation and evolutionary processes, it is vital to find distributions of physical parameters of binaries. We have carried out Monte Carlo simulations in which we simulate different pairing scenarios: random pairing, primary-constrained pairing, split-core pairing, and total and primary pairing in order to get distributions of binaries over physical parameters at birth. Next, for comparison with observations, we account for stellar evolution and selection effects. Brightness, radius, temperature, and other parameters of components are assigned or calculated according to approximate relations for stars in different evolutionary stages (main-sequence stars, red giants, white dwarfs, relativistic objects). Evolutionary stage is defined as a function of system age and component masses. We compare our results with the observed IMF, binarity rate, and binary mass-ratio distributions for field visual binaries to find initial distributions and pairing scenarios that produce observed distributions.

  15. Stacking Analysis of Binary Systems with HAWC

    Science.gov (United States)

    Brisbois, Chad; HAWC Collaboration

    2017-01-01

    Detecting binary systems at TeV energies is an important problem because only a handful of such systems are currently known. The nature of such systems is typically thought to be composed of a compact object and a massive star. The TeV emission from these systems does not obviously correspond to emission in GeV or X-ray, where many binary systems have previously been found. This study focuses on a stacking method to detect TeV emission from LS 5039, a known TeV binary, to test its efficacy in HAWC data. Stacking is a widely employed method for increasing signal to noise ratio in optical astronomy, but has never been attempted previously with HAWC. HAWC is an ideal instrument to search for TeV binaries, because of its wide field of view and high uptime. Applying this method to the entire sky may allow HAWC to detect binary sources of very short or very long periods not sensitive to current analyses. NSF, DOE, Los Alamos, Michigan Tech, CONACyt, UNAM, BUAP.

  16. SYMBOL LEVEL DECODING FOR DUO-BINARY TURBO CODES

    Directory of Open Access Journals (Sweden)

    Yogesh Beeharry

    2017-05-01

    Full Text Available This paper investigates the performance of three different symbol level decoding algorithms for Duo-Binary Turbo codes. Explicit details of the computations involved in the three decoding techniques, and a computational complexity analysis are given. Simulation results with different couple lengths, code-rates, and QPSK modulation reveal that the symbol level decoding with bit-level information outperforms the symbol level decoding by 0.1 dB on average in the error floor region. Moreover, a complexity analysis reveals that symbol level decoding with bit-level information reduces the decoding complexity by 19.6 % in terms of the total number of computations required for each half-iteration as compared to symbol level decoding.

  17. Resolving the Birth of High-Mass Binary Stars

    Science.gov (United States)

    Kohler, Susanna

    2017-02-01

    New observations may help us to learn more about the birth of high-mass star systems. For the first time, scientists have imaged a very young, high-mass binary system and resolved the individual disks that surround each star and the binary.Massive MultiplesIts unusually common for high-mass stars to be discovered in multiple-star systems. More than 80% of all O-type stars which have masses greater than 16 times that of the Sun are in close multiple systems, compared with a multiplicity fraction of only 20% for stars of 3 solar masses, for instance.Reconstructed VLTI observations of the two components of the high-mass binary IRAS17216-3801. [Adapted from Kraus et al. 2017]Why do more massive stars preferentially form in multiple-star systems? Many different models of high-mass star formation have been invoked to explain this observation, but before we can better understand the process, we need better observations. In particular, past observations have placed few constraints on the architecture and disk structure of early high-mass stars.Conveniently, a team of scientists led by Stefan Kraus (University of Exeter) may have found exactly what we need: a high-mass protobinary that is still in the process of forming. Using ESOs Very Large Telescope Interferometer (VLTI), Kraus and collaborators have captured the first observations of a very young, high-mass binary system in which the circumbinary disk and the two circumstellar dust disks could all be spatially resolved.Clues from Resolved DisksThe VLTI near-infrared observations reveal that IRAS17216-3801, originally thought to be a single high-mass star, is instead a close binary separated by only 170 AU. Its two components are both surrounded by disks from which the protostars are actively accreting mass, and both of these circumstellar disks are strongly misaligned with respect to the separation vector of the binary. This confirms that the system is very young, as tidal forces havent yet had time to align the disks

  18. On the Binary Nature of Massive Blue Hypergiants: High-resolution X-Ray Spectroscopy Suggests That Cyg OB2 12 is a Colliding Wind Binary

    Energy Technology Data Exchange (ETDEWEB)

    Oskinova, L. M.; Hamann, W.-R.; Shenar, T.; Sander, A. A. C.; Todt, H.; Hainich, R. [Institute for Physics and Astronomy, University Potsdam, D-14476 Potsdam (Germany); Huenemoerder, D. P. [Massachusetts Institute of Technology, Kavli Institute for Astrophysics and Space Research, 70 Vassar St., Cambridge, MA 02139 (United States); Ignace, R., E-mail: lida@astro.physik.uni-potsdam.de [Department of Physics and Astronomy, East Tennessee State University, Johnson City, TN 37663 (United States)

    2017-08-10

    The blue hypergiant Cyg OB2 12 (B3Ia{sup +}) is a representative member of the class of very massive stars in a poorly understood evolutionary stage. We obtained its high-resolution X-ray spectrum using the Chandra observatory. PoWR model atmospheres were calculated to provide realistic wind opacities and to establish the wind density structure. We find that collisional de-excitation is the dominant mechanism depopulating the metastable upper levels of the forbidden lines of the He-like ions Si xiv and Mg xii. Comparison between the model and observations reveals that X-ray emission is produced in a dense plasma, which could reside only at the photosphere or in a colliding wind zone between binary components. The observed X-ray spectra are well-fitted by thermal plasma models, with average temperatures in excess of 10 MK. The wind speed in Cyg OB2 12 is not high enough to power such high temperatures, but the collision of two winds in a binary system can be sufficient. We used archival data to investigate the X-ray properties of other blue hypergiants. In general, stars of this class are not detected as X-ray sources. We suggest that our new Chandra observations of Cyg OB2 12 can be best explained if Cyg OB2 12 is a colliding wind binary possessing a late O-type companion. This makes Cyg OB2 12 only the second binary system among the 16 known Galactic hypergiants. This low binary fraction indicates that the blue hypergiants are likely products of massive binary evolution during which they either accreted a significant amount of mass or already merged with their companions.

  19. EVOLUTION OF THE BINARY FRACTION IN DENSE STELLAR SYSTEMS

    International Nuclear Information System (INIS)

    Fregeau, John M.; Ivanova, Natalia; Rasio, Frederic A.

    2009-01-01

    Using our recently improved Monte Carlo evolution code, we study the evolution of the binary fraction in globular clusters. In agreement with previous N-body simulations, we find generally that the hard binary fraction in the core tends to increase with time over a range of initial cluster central densities for initial binary fractions ∼<90%. The dominant processes driving the evolution of the core binary fraction are mass segregation of binaries into the cluster core and preferential destruction of binaries there. On a global scale, these effects and the preferential tidal stripping of single stars tend to roughly balance, leading to overall cluster binary fractions that are roughly constant with time. Our findings suggest that the current hard binary fraction near the half-mass radius is a good indicator of the hard primordial binary fraction. However, the relationship between the true binary fraction and the fraction of main-sequence stars in binaries (which is typically what observers measure) is nonlinear and rather complicated. We also consider the importance of soft binaries, which not only modify the evolution of the binary fraction, but can also drastically change the evolution of the cluster as a whole. Finally, we briefly describe the recent addition of single and binary stellar evolution to our cluster evolution code.

  20. TIDAL NOVAE IN COMPACT BINARY WHITE DWARFS

    International Nuclear Information System (INIS)

    Fuller, Jim; Lai Dong

    2012-01-01

    Compact binary white dwarfs (WDs) undergoing orbital decay due to gravitational radiation can experience significant tidal heating prior to merger. In these WDs, the dominant tidal effect involves the excitation of outgoing gravity waves in the inner stellar envelope and the dissipation of these waves in the outer envelope. As the binary orbit decays, the WDs are synchronized from outside in (with the envelope synchronized first, followed by the core). We examine the deposition of tidal heat in the envelope of a carbon-oxygen WD and study how such tidal heating affects the structure and evolution of the WD. We show that significant tidal heating can occur in the star's degenerate hydrogen layer. This layer heats up faster than it cools, triggering runaway nuclear fusion. Such 'tidal novae' may occur in all WD binaries containing a CO WD, at orbital periods between 5 minutes and 20 minutes, and precede the final merger by 10 5 -10 6 years.

  1. Compact binary hashing for music retrieval

    Science.gov (United States)

    Seo, Jin S.

    2014-03-01

    With the huge volume of music clips available for protection, browsing, and indexing, there is an increased attention to retrieve the information contents of the music archives. Music-similarity computation is an essential building block for browsing, retrieval, and indexing of digital music archives. In practice, as the number of songs available for searching and indexing is increased, so the storage cost in retrieval systems is becoming a serious problem. This paper deals with the storage problem by extending the supervector concept with the binary hashing. We utilize the similarity-preserving binary embedding in generating a hash code from the supervector of each music clip. Especially we compare the performance of the various binary hashing methods for music retrieval tasks on the widely-used genre dataset and the in-house singer dataset. Through the evaluation, we find an effective way of generating hash codes for music similarity estimation which improves the retrieval performance.

  2. Hybrid Black-Hole Binary Initial Data

    Science.gov (United States)

    Mundim, Bruno C.; Kelly, Bernard J.; Nakano, Hiroyuki; Zlochower, Yosef; Campanelli, Manuela

    2010-01-01

    "Traditional black-hole binary puncture initial data is conformally flat. This unphysical assumption is coupled with a lack of radiation signature from the binary's past life. As a result, waveforms extracted from evolutions of this data display an abrupt jump. In Kelly et al. [Class. Quantum Grav. 27:114005 (2010)], a new binary black-hole initial data with radiation contents derived in the post-Newtonian (PN) calculations was adapted to puncture evolutions in numerical relativity. This data satisfies the constraint equations to the 2.5PN order, and contains a transverse-traceless "wavy" metric contribution, violating the standard assumption of conformal flatness. Although the evolution contained less spurious radiation, there were undesired features; the unphysical horizon mass loss and the large initial orbital eccentricity. Introducing a hybrid approach to the initial data evaluation, we significantly reduce these undesired features."

  3. arXiv Gravitational Wave Signatures of Highly Compact Boson Star Binaries

    CERN Document Server

    Palenzuela, Carlos; Bezares, Miguel; Cardoso, Vitor; Lehner, Luis; Liebling, Steven

    2017-11-30

    Solitonic boson stars are stable objects made of a complex scalar field with a compactness that can reach values comparable to that of neutron stars. A recent study of the collision of identical boson stars produced only nonrotating boson stars or black holes, suggesting that rotating boson stars may not form from binary mergers. Here we extend this study to include an analysis of the gravitational waves radiated during the coalescence of such a binary, which is crucial to distinguish these events from other binaries with LIGO and Virgo observations. Our studies reveal that the remnant’s gravitational wave signature is mainly governed by its fundamental frequency as it settles down to a nonrotating boson star, emitting significant gravitational radiation during this post-merger state. We calculate how the waveforms and their post-merger frequencies depend on the compactness of the initial boson stars and estimate analytically the amount of energy radiated after the merger.

  4. Analyzing student conceptual understanding of resistor networks using binary, descriptive, and computational questions

    Science.gov (United States)

    Mujtaba, Abid H.

    2018-02-01

    This paper presents a case study assessing and analyzing student engagement with and responses to binary, descriptive, and computational questions testing the concepts underlying resistor networks (series and parallel combinations). The participants of the study were undergraduate students enrolled in a university in Pakistan. The majority of students struggled with the descriptive question, and while successfully answering the binary and computational ones, they failed to build an expectation for the answer, and betrayed significant lack of conceptual understanding in the process. The data collected was also used to analyze the relative efficacy of the three questions as a means of assessing conceptual understanding. The three questions were revealed to be uncorrelated and unlikely to be testing the same construct. The ability to answer the binary or computational question was observed to be divorced from a deeper understanding of the concepts involved.

  5. Synthesis of binary bismuth-cadmium oxide nanorods with sensitive electrochemical sensing performance

    International Nuclear Information System (INIS)

    Wen, Yong; Pei, Lizhai; Wei, Tian

    2017-01-01

    Binary bismuth-cadmium oxide nanorods have been synthesized by a simple hydrothermal process without templates and additives. X-ray diffraction and high-resolution transmission electron microscopy reveal that the nanorods possess single crystalline tetragonal Bi 2 CdO 4 phase. Scanning electron microscopy and transmission electron microscopy images show that the length and diameter of the nanorods are 20-300 nm and 5-10 μm, respectively. The formation of the binary bismuth-cadmium oxide nanorods is closely related to the hydrothermal parameters. The electrochemical sensing performance of the binary bismuth-cadmium oxide nanorods has been investigated using the nanorods as glassy carbon electrode modifiers. The detection limit is 0.19 μM with a linear range of 0.0005-2 mM. The nanorod-modified glassy carbon electrode exhibits good electrocatalytic activity toward L-cysteine and great application potential for electrochemical sensors.

  6. Tunable porous nanoallotropes prepared by post-assembly etching of binary nanoparticle superlattices

    Science.gov (United States)

    Udayabhaskararao, Thumu; Altantzis, Thomas; Houben, Lothar; Coronado-Puchau, Marc; Langer, Judith; Popovitz-Biro, Ronit; Liz-Marzán, Luis M.; Vuković, Lela; Král, Petr; Bals, Sara; Klajn, Rafal

    2017-10-01

    Self-assembly of inorganic nanoparticles has been used to prepare hundreds of different colloidal crystals, but almost invariably with the restriction that the particles must be densely packed. Here, we show that non–close-packed nanoparticle arrays can be fabricated through the selective removal of one of two components comprising binary nanoparticle superlattices. First, a variety of binary nanoparticle superlattices were prepared at the liquid-air interface, including several arrangements that were previously unknown. Molecular dynamics simulations revealed the particular role of the liquid in templating the formation of superlattices not achievable through self-assembly in bulk solution. Second, upon stabilization, all of these binary superlattices could be transformed into distinct “nanoallotropes”—nanoporous materials having the same chemical composition but differing in their nanoscale architectures.

  7. Synthesis of binary bismuth-cadmium oxide nanorods with sensitive electrochemical sensing performance

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Yong [Xinjiang Univ., Xinjiang (China). School of Civil Engineering and Architecture; Pei, Lizhai; Wei, Tian [Anhui Univ. of Technology, Anhui (China). School of Materials Science and Engineering

    2017-07-15

    Binary bismuth-cadmium oxide nanorods have been synthesized by a simple hydrothermal process without templates and additives. X-ray diffraction and high-resolution transmission electron microscopy reveal that the nanorods possess single crystalline tetragonal Bi{sub 2}CdO{sub 4} phase. Scanning electron microscopy and transmission electron microscopy images show that the length and diameter of the nanorods are 20-300 nm and 5-10 μm, respectively. The formation of the binary bismuth-cadmium oxide nanorods is closely related to the hydrothermal parameters. The electrochemical sensing performance of the binary bismuth-cadmium oxide nanorods has been investigated using the nanorods as glassy carbon electrode modifiers. The detection limit is 0.19 μM with a linear range of 0.0005-2 mM. The nanorod-modified glassy carbon electrode exhibits good electrocatalytic activity toward L-cysteine and great application potential for electrochemical sensors.

  8. The dynamical evolution of binaries in clusters

    International Nuclear Information System (INIS)

    Heggie, D.C.

    1975-01-01

    Using information on the rates at which binaries suffer encounters in a stellar system (Heggie, 1974), the effects of such processes on the evolution of the system itself are studied. First considering systems with no binaries initially, it is shown that low-energy pairs attain a quasi-equilibrium distribution comparatively quickly. Their effect on the evolution of the cluster is negligible compared with that of two-body relaxation. In small systems energetic pairs may form sufficiently quickly to exercise a substantial effect on its development and on the escape rate, but in large systems their appearance is delayed until the evolution of the core is well advanced. In that case they appear to be responsible for arresting the collapse of the core at some stage. Binaries of low energy, even if present initially in large numbers, are likely to have at most only a temporary effect on the evolution of the system. High-energy pairs are not so easily destroyed, and so, if present initially, their effect is persistent. It competes with two-body relaxation especially when the fraction of such pairs and the total number-density are high, as in the core, where, in addition, binaries tend to congregate by mass segregation. When encounters with binaries become important, being mostly 'super-elastic' they enhance escape and lead to ejection of mass from the core into the halo, thus accelerating the rate at which mass is lost by tidal forces. It is difficult to decide observationally whether globular clusters possess sufficiently large numbers of binaries for these effects to be important. (Auth.)

  9. Sputtering yield calculation for binary target

    International Nuclear Information System (INIS)

    Jimenez-Rodriguez, J.J.; Rodriguez-Vidal, M.; Valles-Abarca, J.A.

    1979-01-01

    The generalization for binary targets, of the ideas proposed by Sigmund for monoatomic targets, leads to a set of coupled intergrodifferential equations for the sputtering functions. After moment decomposition, the final formulae are obtained by the standard method based on the Laplace Transform, where the inverse transform is made with the aid of asymptotic expansions in the limit of very high projectile energy as compared to the surface binding energy. The possible loss of stoichiometry for binary targets is analyzed. Comparison of computed values of sputtering yield for normal incidence, with experimental results shows good agreement. (author)

  10. Binary Sparse Phase Retrieval via Simulated Annealing

    Directory of Open Access Journals (Sweden)

    Wei Peng

    2016-01-01

    Full Text Available This paper presents the Simulated Annealing Sparse PhAse Recovery (SASPAR algorithm for reconstructing sparse binary signals from their phaseless magnitudes of the Fourier transform. The greedy strategy version is also proposed for a comparison, which is a parameter-free algorithm. Sufficient numeric simulations indicate that our method is quite effective and suggest the binary model is robust. The SASPAR algorithm seems competitive to the existing methods for its efficiency and high recovery rate even with fewer Fourier measurements.

  11. A simple model for binary star evolution

    International Nuclear Information System (INIS)

    Whyte, C.A.; Eggleton, P.P.

    1985-01-01

    A simple model for calculating the evolution of binary stars is presented. Detailed stellar evolution calculations of stars undergoing mass and energy transfer at various rates are reported and used to identify the dominant physical processes which determine the type of evolution. These detailed calculations are used to calibrate the simple model and a comparison of calculations using the detailed stellar evolution equations and the simple model is made. Results of the evolution of a few binary systems are reported and compared with previously published calculations using normal stellar evolution programs. (author)

  12. A radio-pulsing white dwarf binary star.

    Science.gov (United States)

    Marsh, T R; Gänsicke, B T; Hümmerich, S; Hambsch, F-J; Bernhard, K; Lloyd, C; Breedt, E; Stanway, E R; Steeghs, D T; Parsons, S G; Toloza, O; Schreiber, M R; Jonker, P G; van Roestel, J; Kupfer, T; Pala, A F; Dhillon, V S; Hardy, L K; Littlefair, S P; Aungwerojwit, A; Arjyotha, S; Koester, D; Bochinski, J J; Haswell, C A; Frank, P; Wheatley, P J

    2016-09-15

    White dwarfs are compact stars, similar in size to Earth but approximately 200,000 times more massive. Isolated white dwarfs emit most of their power from ultraviolet to near-infrared wavelengths, but when in close orbits with less dense stars, white dwarfs can strip material from their companions and the resulting mass transfer can generate atomic line and X-ray emission, as well as near- and mid-infrared radiation if the white dwarf is magnetic. However, even in binaries, white dwarfs are rarely detected at far-infrared or radio frequencies. Here we report the discovery of a white dwarf/cool star binary that emits from X-ray to radio wavelengths. The star, AR Scorpii (henceforth AR Sco), was classified in the early 1970s as a δ-Scuti star, a common variety of periodic variable star. Our observations reveal instead a 3.56-hour period close binary, pulsing in brightness on a period of 1.97 minutes. The pulses are so intense that AR Sco's optical flux can increase by a factor of four within 30 seconds, and they are also detectable at radio frequencies. They reflect the spin of a magnetic white dwarf, which we find to be slowing down on a 10 7 -year timescale. The spin-down power is an order of magnitude larger than that seen in electromagnetic radiation, which, together with an absence of obvious signs of accretion, suggests that AR Sco is primarily spin-powered. Although the pulsations are driven by the white dwarf's spin, they mainly originate from the cool star. AR Sco's broadband spectrum is characteristic of synchrotron radiation, requiring relativistic electrons. These must either originate from near the white dwarf or be generated in situ at the M star through direct interaction with the white dwarf's magnetosphere.

  13. Characterization of the benchmark binary NLTT 33370 {sup ,}

    Energy Technology Data Exchange (ETDEWEB)

    Schlieder, Joshua E.; Bonnefoy, Mickaël; Herbst, T. M.; Henning, Thomas; Biller, Beth; Bergfors, Carolina; Brandner, Wolfgang [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Lépine, Sébastien; Rice, Emily [Department of Astrophysics, Division of Physical Sciences, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024 (United States); Berger, Edo [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Skemer, Andrew; Hinz, Philip; Defrère, Denis; Leisenring, Jarron [Steward Observatory, Department of Astronomy, University of Arizona, 933 N. Cherry Ave, Tucson, AZ 85721 (United States); Chauvin, Gaël; Lagrange, Anne-Marie [UJF-Grenoble 1/CNRS-INSU, Institut de Planètologie et d' Astrophysique de Grenoble (IPAG) UMR 5274, Grenoble F-38041 (France); Girard, Julien H. V. [European Southern Observatory, Casilla 19001, Santiago 19 (Chile); Lacour, Sylvestre [LESIA, Observatoire de Paris, CNRS, University Pierre et Marie Curie Paris 6 and University Denis Diderot Paris 7, 5 place Jules Janssen, F-92195 Meudon (France); Skrutskie, Michael, E-mail: schlieder@mpia-hd.mpg.de [Department of Astronomy, University of Virginia, Charlottesville, VA 22904 (United States)

    2014-03-01

    We confirm the binary nature of the nearby, very low mass (VLM) system NLTT 33370 with adaptive optics imaging and present resolved near-infrared photometry and integrated light optical and near-infrared spectroscopy to characterize the system. VLT-NaCo and LBTI-LMIRCam images show significant orbital motion between 2013 February and 2013 April. Optical spectra reveal weak, gravity-sensitive alkali lines and strong lithium 6708 Å absorption that indicate the system is younger than field age. VLT-SINFONI near-IR spectra also show weak, gravity-sensitive features and spectral morphology that is consistent with other young VLM dwarfs. We combine the constraints from all age diagnostics to estimate a system age of ∼30-200 Myr. The 1.2-4.7 μm spectral energy distribution of the components point toward T {sub eff} = 3200 ± 500 K and T {sub eff} = 3100 ± 500 K for NLTT 33370 A and B, respectively. The observed spectra, derived temperatures, and estimated age combine to constrain the component spectral types to the range M6-M8. Evolutionary models predict masses of 97{sub −48}{sup +41} M{sub Jup} and 91{sub −44}{sup +41} M{sub Jup} from the estimated luminosities of the components. KPNO-Phoenix spectra allow us to estimate the systemic radial velocity of the binary. The Galactic kinematics of NLTT 33370AB are broadly consistent with other young stars in the solar neighborhood. However, definitive membership in a young, kinematic group cannot be assigned at this time and further follow-up observations are necessary to fully constrain the system's kinematics. The proximity, age, and late-spectral type of this binary make it very novel and an ideal target for rapid, complete orbit determination. The system is one of only a few model calibration benchmarks at young ages and VLMs.

  14. Binary similarity measures for fingerprint analysis of qualitative metabolomic profiles.

    Science.gov (United States)

    Rácz, Anita; Andrić, Filip; Bajusz, Dávid; Héberger, Károly

    2018-01-01

    Contemporary metabolomic fingerprinting is based on multiple spectrometric and chromatographic signals, used either alone or combined with structural and chemical information of metabolic markers at the qualitative and semiquantitative level. However, signal shifting, convolution, and matrix effects may compromise metabolomic patterns. Recent increase in the use of qualitative metabolomic data, described by the presence (1) or absence (0) of particular metabolites, demonstrates great potential in the field of metabolomic profiling and fingerprint analysis. The aim of this study is a comprehensive evaluation of binary similarity measures for the elucidation of patterns among samples of different botanical origin and various metabolomic profiles. Nine qualitative metabolomic data sets covering a wide range of natural products and metabolomic profiles were applied to assess 44 binary similarity measures for the fingerprinting of plant extracts and natural products. The measures were analyzed by the novel sum of ranking differences method (SRD), searching for the most promising candidates. Baroni-Urbani-Buser (BUB) and Hawkins-Dotson (HD) similarity coefficients were selected as the best measures by SRD and analysis of variance (ANOVA), while Dice (Di1), Yule, Russel-Rao, and Consonni-Todeschini 3 ranked the worst. ANOVA revealed that concordantly and intermediately symmetric similarity coefficients are better candidates for metabolomic fingerprinting than the asymmetric and correlation based ones. The fingerprint analysis based on the BUB and HD coefficients and qualitative metabolomic data performed equally well as the quantitative metabolomic profile analysis. Fingerprint analysis based on the qualitative metabolomic profiles and binary similarity measures proved to be a reliable way in finding the same/similar patterns in metabolomic data as that extracted from quantitative data.

  15. Testing the Binary Black Hole Nature of a Compact Binary Coalescence.

    Science.gov (United States)

    Krishnendu, N V; Arun, K G; Mishra, Chandra Kant

    2017-09-01

    We propose a novel method to test the binary black hole nature of compact binaries detectable by gravitational wave (GW) interferometers and, hence, constrain the parameter space of other exotic compact objects. The spirit of the test lies in the "no-hair" conjecture for black holes where all properties of a Kerr black hole are characterized by its mass and spin. The method relies on observationally measuring the quadrupole moments of the compact binary constituents induced due to their spins. If the compact object is a Kerr black hole (BH), its quadrupole moment is expressible solely in terms of its mass and spin. Otherwise, the quadrupole moment can depend on additional parameters (such as the equation of state of the object). The higher order spin effects in phase and amplitude of a gravitational waveform, which explicitly contains the spin-induced quadrupole moments of compact objects, hence, uniquely encode the nature of the compact binary. Thus, we argue that an independent measurement of the spin-induced quadrupole moment of the compact binaries from GW observations can provide a unique way to distinguish binary BH systems from binaries consisting of exotic compact objects.

  16. Study of polymorphic control in an ethanol-water binary solvent

    Science.gov (United States)

    Kitano, Hiroshi; Tanaka, Takayuki; Hirasawa, Izumi

    2017-07-01

    Three polymorphs of L-Citrulline crystals, anhydrate (Form α, γ and δ) and pseudo polymorph (dihydrate), were confirmed. In this study, polymorphic control of L-Citrulline was attempted by changing the ethanol concentration in ethanol-water binary solvents. First, each polymorph of L-Citrulline crystals was added to the prepared ethanol-water binary solvents and samples which were obtained chronologically were measured by XRD. Also, the crystal sizes and shapes in transformation were observed by microscope. Then, polymorphs of the crystals after transformation were determined by XRD pattern. As a result, the transformation from dihydrate to anhydrate was observed by adding dihydrate crystals to the ethanol-water binary solvent. Similarly, the transformation from anhydrate to another anhydrate was observed. Especially in the case of adding dihydrate, the existences of all polymorphs were confirmed by adjusting ethanol-water binary solvent. According to the results, it was revealed that polymorphic transformation was affected by the trace amount of water contained in ethanol-water binary solvent. Moreover, transformation from dihydrate to anhydrate was constructed with three phases, dissolution of dihydrate, nucleation and growth of anhydrate. Therefore, the solution-mediated polymorphic transformation was supposed to be a key mechanism for this transformation.

  17. BINARIES MIGRATING IN A GASEOUS DISK: WHERE ARE THE GALACTIC CENTER BINARIES?

    International Nuclear Information System (INIS)

    Baruteau, C.; Lin, D. N. C.; Cuadra, J.

    2011-01-01

    The massive stars in the Galactic center inner arcsecond share analogous properties with the so-called Hot Jupiters. Most of these young stars have highly eccentric orbits and were probably not formed in situ. It has been proposed that these stars acquired their current orbits from the tidal disruption of compact massive binaries scattered toward the proximity of the central supermassive black hole. Assuming a binary star formed in a thin gaseous disk beyond 0.1 pc from the central object, we investigate the relevance of disk-satellite interactions to harden the binding energy of the binary, and to drive its inward migration. A massive, equal-mass binary star is found to become more tightly wound as it migrates inward toward the central black hole. The migration timescale is very similar to that of a single-star satellite of the same mass. The binary's hardening is caused by the formation of spiral tails lagging the stars inside the binary's Hill radius. We show that the hardening timescale is mostly determined by the mass of gas inside the binary's Hill radius and that it is much shorter than the migration timescale. We discuss some implications of the binary's hardening process. When the more massive (primary) components of close binaries eject most their mass through supernova explosion, their secondary stars may attain a range of eccentricities and inclinations. Such processes may provide an alternative unified scenario for the origin of the kinematic properties of the central cluster and S-stars in the Galactic center as well as the high-velocity stars in the Galactic halo.

  18. Neutron-Star-Black-Hole Binaries Produced by Binary-Driven Hypernovae.

    Science.gov (United States)

    Fryer, Chris L; Oliveira, F G; Rueda, J A; Ruffini, R

    2015-12-04

    Binary-driven hypernovae (BdHNe) within the induced gravitational collapse paradigm have been introduced to explain energetic (E_{iso}≳10^{52}  erg), long gamma-ray bursts (GRBs) associated with type Ic supernovae (SNe). The progenitor is a tight binary composed of a carbon-oxygen (CO) core and a neutron-star (NS) companion, a subclass of the newly proposed "ultrastripped" binaries. The CO-NS short-period orbit causes the NS to accrete appreciable matter from the SN ejecta when the CO core collapses, ultimately causing it to collapse to a black hole (BH) and producing a GRB. These tight binaries evolve through the SN explosion very differently than compact binaries studied in population synthesis calculations. First, the hypercritical accretion onto the NS companion alters both the mass and the momentum of the binary. Second, because the explosion time scale is on par with the orbital period, the mass ejection cannot be assumed to be instantaneous. This dramatically affects the post-SN fate of the binary. Finally, the bow shock created as the accreting NS plows through the SN ejecta transfers angular momentum, braking the orbit. These systems remain bound even if a large fraction of the binary mass is lost in the explosion (well above the canonical 50% limit), and even large kicks are unlikely to unbind the system. Indeed, BdHNe produce a new family of NS-BH binaries unaccounted for in current population synthesis analyses and, although they may be rare, the fact that nearly 100% remain bound implies that they may play an important role in the compact merger rate, important for gravitational waves that, in turn, can produce a new class of ultrashort GRBs.

  19. The Tarantula Massive Binary Monitoring. I. Observational campaign and OB-type spectroscopic binaries

    Science.gov (United States)

    Almeida, L. A.; Sana, H.; Taylor, W.; Barbá, R.; Bonanos, A. Z.; Crowther, P.; Damineli, A.; de Koter, A.; de Mink, S. E.; Evans, C. J.; Gieles, M.; Grin, N. J.; Hénault-Brunet, V.; Langer, N.; Lennon, D.; Lockwood, S.; Maíz Apellániz, J.; Moffat, A. F. J.; Neijssel, C.; Norman, C.; Ramírez-Agudelo, O. H.; Richardson, N. D.; Schootemeijer, A.; Shenar, T.; Soszyński, I.; Tramper, F.; Vink, J. S.

    2017-02-01

    Context. Massive binaries play a crucial role in the Universe. Knowing the distributions of their orbital parameters is important for a wide range of topics from stellar feedback to binary evolution channels and from the distribution of supernova types to gravitational wave progenitors, yet no direct measurements exist outside the Milky Way. Aims: The Tarantula Massive Binary Monitoring project was designed to help fill this gap by obtaining multi-epoch radial velocity (RV) monitoring of 102 massive binaries in the 30 Doradus region. Methods: In this paper we analyze 32 FLAMES/GIRAFFE observations of 93 O- and 7 B-type binaries. We performed a Fourier analysis and obtained orbital solutions for 82 systems: 51 single-lined (SB1) and 31 double-lined (SB2) spectroscopic binaries. Results: Overall, the binary fraction and orbital properties across the 30 Doradus region are found to be similar to existing Galactic samples. This indicates that within these domains environmental effects are of second order in shaping the properties of massive binary systems. A small difference is found in the distribution of orbital periods, which is slightly flatter (in log space) in 30 Doradus than in the Galaxy, although this may be compatible within error estimates and differences in the fitting methodology. Also, orbital periods in 30 Doradus can be as short as 1.1 d, somewhat shorter than seen in Galactic samples. Equal mass binaries (q> 0.95) in 30 Doradus are all found outside NGC 2070, the central association that surrounds R136a, the very young and massive cluster at 30 Doradus's core. Most of the differences, albeit small, are compatible with expectations from binary evolution. One outstanding exception, however, is the fact that earlier spectral types (O2-O7) tend to have shorter orbital periods than later spectral types (O9.2-O9.7). Conclusions: Our results point to a relative universality of the incidence rate of massive binaries and their orbital properties in the

  20. TWO STARS TWO WAYS: CONFIRMING A MICROLENSING BINARY LENS SOLUTION WITH A SPECTROSCOPIC MEASUREMENT OF THE ORBIT

    Energy Technology Data Exchange (ETDEWEB)

    Yee, Jennifer C.; Johnson, John Asher; Eastman, Jason; Vanderburg, Andrew [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Skowron, Jan [Warsaw University Observatory, Al. Ujazdowskie 4, 00-478 Warszawa (Poland); Gould, Andrew [Department of Astronomy, Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Pineda, J. Sebastian [Department of Astronomy, California Institute of Technology, 1200 East California Boulevard, MC 249-17, Pasadena, CA 91125 (United States); Howard, Andrew, E-mail: jyee@cfa.harvard.edu, E-mail: jjohnson@cfa.harvard.edu, E-mail: jason.eastman@cfa.harvard.edu, E-mail: avanderburg@cfa.harvard.edu [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822-1839 (United States)

    2016-04-20

    Light curves of microlensing events involving stellar binaries and planetary systems can provide information about the orbital elements of the system due to orbital modulations of the caustic structure. Accurately measuring the orbit in either the stellar or planetary case requires detailed modeling of subtle deviations in the light curve. At the same time, the natural, Cartesian parameterization of a microlensing binary is partially degenerate with the microlens parallax. Hence, it is desirable to perform independent tests of the predictions of microlens orbit models using radial velocity (RV) time series of the lens binary system. To this end, we present 3.5 years of RV monitoring of the binary lens system OGLE-2009-BLG-020 L, for which Skowron et al. constrained all internal parameters of the 200–700 day orbit. Our RV measurements reveal an orbit that is consistent with the predictions of the microlens light curve analysis, thereby providing the first confirmation of orbital elements inferred from microlensing events.

  1. Optical/Infrared Polarised Emission in X-ray Binaries

    Directory of Open Access Journals (Sweden)

    David M. Russell

    2018-01-01

    Full Text Available Recently, evidence for synchrotron emission in both black-hole (BH and neutron star X-ray binaries has been mounting, from optical/infrared spectral, polarimetric, and fast timing signatures. The synchrotron emission of jets can be highly linearly polarised, depending on the configuration of the magnetic field (B-field. Optical and infrared (OIR polarimetric observations of X-ray binaries are presented in this brief review. The OIR polarimetric signature of relativistic jets is detected at levels of ∼1–10%, similarly to for active galactic nuclei (AGN cores. This reveals that the magnetic geometry in the compact jets may be similar for supermassive and stellar-mass BHs. The B-fields near the jet base in most of these systems appear to be turbulent, variable and on average, aligned with the jet axis, although there are some exceptions. These measurements probe the physical conditions in the accretion (outflow and demonstrate a new way of connecting inflow and outflow, using both rapid timing and polarisation. Variations in polarisation could be due to rapid changes of the ordering of the B-field in the emitting region, or in one case, flares from individual ejections or collisions between ejecta. It is predicted that in some cases, variable levels of X-ray polarisation from synchrotron emission originating in jets will be detected from accreting galactic BHs with upcoming spaceborne X-ray polarimeters.

  2. A Binary Nature of the Marginal CP Star Sigma Sculptoris

    Science.gov (United States)

    Janík, Jan; Krtička, Jiří; Mikulášek, Zdeněk; Zverko, Juraj; Pintado, Olga; Paunzen, Ernst; Prvák, Milan; Skalický, Jan; Zejda, Miloslav; Adam, Christian

    2018-05-01

    The A2 V star σ Scl was suspected of being a low-amplitude rotating variable of the Ap-type star by several authors. Aiming to decide whether the star is a variable chemically peculiar (CP) star, we searched for the photometric and spectroscopic variability, and determined chemical abundances of σ Scl. The possible variability was tested using several types of periodograms applied to the photometry from Long-Term Photometry of Variables project (LTPV) and Hipparcos. Sixty spectrograms of high signal-to-noise (S/N) were obtained and used for chemical analysis of the stellar atmosphere and for looking for spectral variability that is symptomatic for the CP stars. We did not find any signs of the light variability or prominent chemical peculiarity, that is specific for the CP stars. The only exception is the abundance of scandium, which is significantly lower than the solar one and yttrium and barium, which are strongly overabundant. As a by-product of the analysis, and with the addition of 29 further spectra, we found that σ Scl is a single-lined spectroscopic binary with orbital period of 46.877(8) d. We argue that σ Scl is not an Ap star, but rather a marginal Am star in SB1 system. The spectral energy distribution of the binary reveals infrared excess due to circumstellar material.

  3. Gravitational Rocket from the Merging Massive Black Hole Binaries

    Science.gov (United States)

    Choi, Dale

    2006-01-01

    Coalescing massive black hole binaries are expected to be among the most fascinating gravitational wave sources, observable by the NASA/ESA LISA detector. Not only will the merger events reveal the rich phenomenology of extremely strong and dynamical gravity deep inside the potential wells at the centers of galaxies (thus providing an excellent testing ground for general relativity), it will also make important contributions to the astrophysics of massive black hole evolutions. Typical black hole mergers involve asymmetric radiation of gravitational waves and lose linear momentum as well as energy and angular momentum. As a result, the merger remnant receives a kick from the GW emission: a gravitational rocket effect. High kick velocities (higher than the escape velocities of the host structure) would have a strong impact on our understanding of how massive black holes have evolved over time and, in particular, on the estimates of the merger rate for LISA. The main difficulties in calculations of the kick velocities has been in the last moments of the merger where the full theory of general relativity must be employed to accurately model the black hole dynamics. I describe a recent calculation of the kick velocities from numerical relativity simulations of the merging black hole binaries.

  4. Binary Black Holes, Gravitational Waves, and Numerical Relativity

    Science.gov (United States)

    Centrella, Joan

    2009-01-01

    The final merger of two black holes releases a tremendous amount of energy and is one of the brightest sources in the gravitational wave sky. Observing these sources with gravitational wave detectors requires that we know the radiation waveforms they emit. Since these mergers take place in regions of very strong gravitational fields, we need to solve Einstein's equations of general relativity on a computer in order to calculate these waveforms. For more than 30 years, scientists have tried to compute these waveforms using the methods of numerical relativity. The resulting computer codes have been plagued by instabilities, causing them to crash well before the black holes in the binary could complete even a single orbit. Recently this situation has changed dramatically, with a series of amazing breakthroughs. This talk will take you on this quest for the holy grail of numerical relativity, showing how a spacetime is constructed on a computer to build a simulation laboratory for binary black hole mergers. We will focus on the recent advances that are revealing these waveforms, and the dramatic new potential for discoveries that arises when these sources will be observed by LIGO and LISA.

  5. A coinductive calculus of binary trees

    NARCIS (Netherlands)

    A.M. Silva (Alexandra); J.J.M.M. Rutten (Jan)

    2007-01-01

    htmlabstractWe study the set T_A of infinite binary trees with nodes labelled in a semiring A from a coalgebraic perspective. We present coinductive definition and proof principles based on the fact that T_A carries a final coalgebra structure. By viewing trees as formal power series, we develop a

  6. ANGULAR-MOMENTUM IN BINARY SPIRAL GALAXIES

    NARCIS (Netherlands)

    OOSTERLOO, T

    In order to investigate the relative orientations of spiral galaxies in pairs, the distribution of the angle between the spin-vectors for a new sample of 40 binary spiral galaxies is determined. From this distribution it is found, contrary to an earlier result obtained by Helou (1984), that there is

  7. Binary palmprint representation for feature template protection

    NARCIS (Netherlands)

    Mu, Meiru; Ruan, Qiuqi; Shao, X.; Spreeuwers, Lieuwe Jan; Veldhuis, Raymond N.J.

    2012-01-01

    The major challenge of biometric template protection comes from the intraclass variations of biometric data. The helper data scheme aims to solve this problem by employing the Error Correction Codes (ECC). However, many reported biometric binary features from the same user reach bit error rate (BER)

  8. Binary translation using peephole translation rules

    Science.gov (United States)

    Bansal, Sorav; Aiken, Alex

    2010-05-04

    An efficient binary translator uses peephole translation rules to directly translate executable code from one instruction set to another. In a preferred embodiment, the translation rules are generated using superoptimization techniques that enable the translator to automatically learn translation rules for translating code from the source to target instruction set architecture.

  9. Receptive fields selection for binary feature description.

    Science.gov (United States)

    Fan, Bin; Kong, Qingqun; Trzcinski, Tomasz; Wang, Zhiheng; Pan, Chunhong; Fua, Pascal

    2014-06-01

    Feature description for local image patch is widely used in computer vision. While the conventional way to design local descriptor is based on expert experience and knowledge, learning-based methods for designing local descriptor become more and more popular because of their good performance and data-driven property. This paper proposes a novel data-driven method for designing binary feature descriptor, which we call receptive fields descriptor (RFD). Technically, RFD is constructed by thresholding responses of a set of receptive fields, which are selected from a large number of candidates according to their distinctiveness and correlations in a greedy way. Using two different kinds of receptive fields (namely rectangular pooling area and Gaussian pooling area) for selection, we obtain two binary descriptors RFDR and RFDG .accordingly. Image matching experiments on the well-known patch data set and Oxford data set demonstrate that RFD significantly outperforms the state-of-the-art binary descriptors, and is comparable with the best float-valued descriptors at a fraction of processing time. Finally, experiments on object recognition tasks confirm that both RFDR and RFDG successfully bridge the performance gap between binary descriptors and their floating-point competitors.

  10. Flip-flopping binary black holes.

    Science.gov (United States)

    Lousto, Carlos O; Healy, James

    2015-04-10

    We study binary spinning black holes to display the long term individual spin dynamics. We perform a full numerical simulation starting at an initial proper separation of d≈25M between equal mass holes and evolve them down to merger for nearly 48 orbits, 3 precession cycles, and half of a flip-flop cycle. The simulation lasts for t=20 000M and displays a total change in the orientation of the spin of one of the black holes from an initial alignment with the orbital angular momentum to a complete antialignment after half of a flip-flop cycle. We compare this evolution with an integration of the 3.5 post-Newtonian equations of motion and spin evolution to show that this process continuously flip flops the spin during the lifetime of the binary until merger. We also provide lower order analytic expressions for the maximum flip-flop angle and frequency. We discuss the effects this dynamics may have on spin growth in accreting binaries and on the observational consequences for galactic and supermassive binary black holes.

  11. Predicting Social Trust with Binary Logistic Regression

    Science.gov (United States)

    Adwere-Boamah, Joseph; Hufstedler, Shirley

    2015-01-01

    This study used binary logistic regression to predict social trust with five demographic variables from a national sample of adult individuals who participated in The General Social Survey (GSS) in 2012. The five predictor variables were respondents' highest degree earned, race, sex, general happiness and the importance of personally assisting…

  12. Compiler-Agnostic Function Detection in Binaries

    NARCIS (Netherlands)

    Andriesse, D.A.; Slowinska, J.M.; Bos, H.J.

    2017-01-01

    We propose Nucleus, a novel function detection algorithm for binaries. In contrast to prior work, Nucleus is compiler-agnostic, and does not require any learning phase or signature information. Instead of scanning for signatures, Nucleus detects functions at the Control Flow Graph-level, making it

  13. Non-binary or genderqueer genders.

    Science.gov (United States)

    Richards, Christina; Bouman, Walter Pierre; Seal, Leighton; Barker, Meg John; Nieder, Timo O; T'Sjoen, Guy

    2016-01-01

    Some people have a gender which is neither male nor female and may identify as both male and female at one time, as different genders at different times, as no gender at all, or dispute the very idea of only two genders. The umbrella terms for such genders are 'genderqueer' or 'non-binary' genders. Such gender identities outside of the binary of female and male are increasingly being recognized in legal, medical and psychological systems and diagnostic classifications in line with the emerging presence and advocacy of these groups of people. Population-based studies show a small percentage--but a sizable proportion in terms of raw numbers--of people who identify as non-binary. While such genders have been extant historically and globally, they remain marginalized, and as such--while not being disorders or pathological in themselves--people with such genders remain at risk of victimization and of minority or marginalization stress as a result of discrimination. This paper therefore reviews the limited literature on this field and considers ways in which (mental) health professionals may assist the people with genderqueer and non-binary gender identities and/or expressions they may see in their practice. Treatment options and associated risks are discussed.

  14. Statistics of clusters in binary linear lattices

    NARCIS (Netherlands)

    Felderhof, B.U.

    The statistics of clusters in binary linear lattices is studied on the assumption that the relative weight of an Al or Bm cluster is determined only by its size l or m, and is independent of the location of the cluster on the chain. The average cluster numbers and the variance of their fluctuations

  15. Planar quark diagrams and binary spin processes

    International Nuclear Information System (INIS)

    Grigoryan, A.A.; Ivanov, N.Ya.

    1986-01-01

    Contributions of planar diagrams to the binary scattering processes are analyzed. The analysis is based on the predictions of quark-gluon picture of strong interactions for the coupling of reggeons with quarks as well as on the SU(6)-classification of hadrons. The dependence of contributions of nonplanar corrections on spins and quark composition of interacting particles is discussed

  16. Binary nucleation of water and sodium chloride

    Czech Academy of Sciences Publication Activity Database

    Němec, Tomáš; Maršík, František; Palmer, A.

    2006-01-01

    Roč. 124, č. 4 (2006), 0445091-0445096 ISSN 0021-9606 R&D Projects: GA ČR(CZ) GA101/05/2536 Institutional research plan: CEZ:AV0Z20760514 Keywords : binary nucleation * sodium chloride * water Subject RIV: BJ - Thermodynamics Impact factor: 3.166, year: 2006

  17. The average size of ordered binary subgraphs

    NARCIS (Netherlands)

    van Leeuwen, J.; Hartel, Pieter H.

    To analyse the demands made on the garbage collector in a graph reduction system, the change in size of an average graph is studied when an arbitrary edge is removed. In ordered binary trees the average number of deleted nodes as a result of cutting a single edge is equal to the average size of a

  18. Void formation in irradiated binary nickel alloys

    International Nuclear Information System (INIS)

    Shaikh, M.A.; Ahmed, M.; Akhter, J.I.

    1994-01-01

    In this work a computer program has been used to compute void radius, void density and swelling parameter for nickel and binary nickel-carbon alloys irradiated with nickel ions of 100 keV. The aim is to compare the computed results with experimental results already reported

  19. The Benchmark Eclipsing Binary V530 Ori

    DEFF Research Database (Denmark)

    Torres, Guillermo; Lacy, Claud H. Sandberg; Pavlovski, Kresimir

    2015-01-01

    We report accurate measurements of the physical properties (mass, radius, temperature) of components of the G+M eclipsing binary V530 On. The M-type secondary shows a larger radius and a cooler temperature than predicted by standard stellar evolution models, as has been found for many other low...

  20. Magnetic activity and radial velocity filtering of young Suns: the weak-line T-Tauri stars Par 1379 and Par 2244

    Science.gov (United States)

    Hill, C. A.; Carmona, A.; Donati, J.-F.; Hussain, G. A. J.; Gregory, S. G.; Alencar, S. H. P.; Bouvier, J.; The Matysse Collaboration

    2017-12-01

    We report the results of our spectropolarimetric monitoring of the weak-line T-Tauri stars (wTTSs) Par 1379 and Par 2244, within the MaTYSSE (Magnetic Topologies of Young Stars and the Survival of close-in giant Exoplanets) programme. Both stars are of a similar mass (1.6 and 1.8 M⊙) and age (1.8 and 1.1 Myr), with Par 1379 hosting an evolved low-mass dusty circumstellar disc, and with Par 2244 showing evidence of a young debris disc. We detect profile distortions and Zeeman signatures in the unpolarized and circularly polarized lines for each star, and have modelled their rotational modulation using tomographic imaging, yielding brightness and magnetic maps. We find that Par 1379 harbours a weak (250 G), mostly poloidal field tilted 65° from the rotation axis. In contrast, Par 2244 hosts a stronger field (860 G) split 3:2 between poloidal and toroidal components, with most of the energy in higher order modes, and with the poloidal component tilted 45° from the rotation axis. Compared to the lower mass wTTSs, V819 Tau and V830 Tau, Par 2244 has a similar field strength, but is much more complex, whereas the much less complex field of Par 1379 is also much weaker than any other mapped wTTS. We find moderate surface differential rotation of 1.4× and 1.8× smaller than Solar, for Par 1379 and Par 2244, respectively. Using our tomographic maps to predict the activity-related radial velocity (RV) jitter, and filter it from the RV curves, we find RV residuals with dispersions of 0.017 and 0.086 km s-1 for Par 1379 and Par 2244, respectively. We find no evidence for close-in giant planets around either star, with 3σ upper limits of 0.56 and 3.54 MJup (at an orbital distance of 0.1 au).

  1. Terrestrial Planet Formation Around Individual Stars Within Binary Star Systems

    OpenAIRE

    Quintana, Elisa V.; Adams, Fred C.; Lissauer, Jack J.; Chambers, John E.

    2007-01-01

    We calculate herein the late stages of terrestrial planet accumulation around a solar type star that has a binary companion with semimajor axis larger than the terrestrial planet region. We perform more than one hundred simulations to survey binary parameter space and to account for sensitive dependence on initial conditions in these dynamical systems. As expected, sufficiently wide binaries leave the planet formation process largely unaffected. As a rough approximation, binary stars with per...

  2. Orbital synchronization capture of two binaries emitting gravitational waves

    Science.gov (United States)

    Seto, Naoki

    2018-03-01

    We study the possibility of orbital synchronization capture for a hierarchical quadrupole stellar system composed by two binaries emitting gravitational waves. Based on a simple model including the mass transfer for white dwarf binaries, we find that the capture might be realized for inter-binary distances less than their gravitational wavelength. We also discuss related intriguing phenomena such as a parasitic relation between the coupled white dwarf binaries and significant reductions of gravitational and electromagnetic radiations.

  3. Influence of non-binary effects on intranuclear cascade method

    International Nuclear Information System (INIS)

    Gomes, E.H.C.

    1985-01-01

    The importance of non binary process effects in the intranuclear cascade method is analysed. It is shown that, in the higher density steps, the non binary collisions lead to baryon density distribution and rapidity differents from the one obtained using the usual intranuclear cascade method (limited to purely binary collisions). The validity of the applications of binary intranuclear cascade method to the simulation of the thermal equilibrium, nuclear transparency and particle production, is discussed. (M.C.K.) [pt

  4. Gravitational waves from spinning eccentric binaries

    Science.gov (United States)

    Csizmadia, Péter; Debreczeni, Gergely; Rácz, István; Vasúth, Mátyás

    2012-12-01

    This paper is to introduce a new software called CBwaves which provides a fast and accurate computational tool to determine the gravitational waveforms yielded by generic spinning binaries of neutron stars and/or black holes on eccentric orbits. This is done within the post-Newtonian (PN) framework by integrating the equations of motion and the spin precession equations, while the radiation field is determined by a simultaneous evaluation of the analytic waveforms. In applying CBwaves various physically interesting scenarios have been investigated. In particular, we have studied the appropriateness of the adiabatic approximation, and justified that the energy balance relation is indeed insensitive to the specific form of the applied radiation reaction term. By studying eccentric binary systems, it is demonstrated that circular template banks are very ineffective in identifying binaries even if they possess tiny residual orbital eccentricity, thus confirming a similar result obtained by Brown and Zimmerman (2010 Phys. Rev. D 81 024007). In addition, by investigating the validity of the energy balance relation we show that, contrary to the general expectations, the PN approximation should not be applied once the PN parameter gets beyond the critical value ˜0.08 - 0.1. Finally, by studying the early phase of the gravitational waves emitted by strongly eccentric binary systems—which could be formed e.g. in various many-body interactions in the galactic halo—we have found that they possess very specific characteristics which may be used to identify these type of binary systems. This paper is dedicated to the memory of our colleague and friend Péter Csizmadia a young physicist, computer expert and one of the best Hungarian mountaineers who disappeared in China’s Sichuan near the Ren Zhong Feng peak of the Himalayas on 23 Oct. 2009. We started to develop CBwaves jointly with Péter a couple of months before he left for China.

  5. Probabilistic seismic history matching using binary images

    Science.gov (United States)

    Davolio, Alessandra; Schiozer, Denis Jose

    2018-02-01

    Currently, the goal of history-matching procedures is not only to provide a model matching any observed data but also to generate multiple matched models to properly handle uncertainties. One such approach is a probabilistic history-matching methodology based on the discrete Latin Hypercube sampling algorithm, proposed in previous works, which was particularly efficient for matching well data (production rates and pressure). 4D seismic (4DS) data have been increasingly included into history-matching procedures. A key issue in seismic history matching (SHM) is to transfer data into a common domain: impedance, amplitude or pressure, and saturation. In any case, seismic inversions and/or modeling are required, which can be time consuming. An alternative to avoid these procedures is using binary images in SHM as they allow the shape, rather than the physical values, of observed anomalies to be matched. This work presents the incorporation of binary images in SHM within the aforementioned probabilistic history matching. The application was performed with real data from a segment of the Norne benchmark case that presents strong 4D anomalies, including softening signals due to pressure build up. The binary images are used to match the pressurized zones observed in time-lapse data. Three history matchings were conducted using: only well data, well and 4DS data, and only 4DS. The methodology is very flexible and successfully utilized the addition of binary images for seismic objective functions. Results proved the good convergence of the method in few iterations for all three cases. The matched models of the first two cases provided the best results, with similar well matching quality. The second case provided models presenting pore pressure changes according to the expected dynamic behavior (pressurized zones) observed on 4DS data. The use of binary images in SHM is relatively new with few examples in the literature. This work enriches this discussion by presenting a new

  6. IRAS 11472-0800: an extremely depleted pulsating binary post-AGB star

    Science.gov (United States)

    Van Winckel, H.; Hrivnak, B. J.; Gorlova, N.; Gielen, C.; Lu, W.

    2012-06-01

    Aims: We focus here on one particular and poorly studied object, IRAS 11472-0800. It is a highly evolved post-asymptotic giant branch (post-AGB) star of spectral type F, with a large infrared excess produced by thermal emission of circumstellar dust. Methods: We deployed a multi-wavelength study that includes the analyses of optical and IR spectra as well as a variability study based on photometric and spectroscopic time-series. Results: The spectral energy distribution (SED) properties as well as the highly processed silicate N-band emission show that the dust in IRAS 11472-0800 is likely trapped in a stable disc. The energetics of the SED and the colour variability show that our viewing angle is close to edge-on and that the optical flux is dominated by scattered light. With photospheric abundances of [Fe/H] = -2.7 and [Sc/H] = -4.2, we discovered that IRAS 11472-0800 is one of the most chemically-depleted objects known to date. Moreover, IRAS 11472-0800 is a pulsating star with a period of 31.16 days and a peak-to-peak amplitude of 0.6 mag in V. The radial velocity variability is strongly influenced by the pulsations, but the significant cycle-to-cycle variability is systematic on a longer time scale, which we interpret as evidence for binary motion. Conclusions: We conclude that IRAS 11472-0800 is a pulsating binary star surrounded by a circumbinary disc. The line-of-sight towards the object lies close to the orbital plane, therefore the optical light is dominated by scattered light. IRAS 11472-0800 is one of the most chemically-depleted objects known so far and links the dusty RV Tauri stars to the non-pulsating class of strongly depleted objects. Based on observations collected at the European Southern Observatory, Chile. Programme ID: 65.L-0615(A), on observations made with the Mercator Telescope, operated on the island of La Palma by the Flemish Community, at the Spanish Observatorio del Roque de los Muchachos and on observations obtained with the HERMES

  7. Searching for Binary Systems Among Nearby Dwarfs Based on Pulkovo Observations and SDSS Data

    Science.gov (United States)

    Khovrichev, M. Yu.; Apetyan, A. A.; Roshchina, E. A.; Izmailov, I. S.; Bikulova, D. A.; Ershova, A. P.; Balyaev, I. A.; Kulikova, A. M.; Petyur, V. V.; Shumilov, A. A.; Os'kina, K. I.; Maksimova, L. A.

    2018-02-01

    Our goal is to find previously unknown binary systems among low-mass dwarfs in the solar neighborhood and to test the search technique. The basic ideas are to reveal the images of stars with significant ellipticities and/or asymmetries compared to the background stars on CCD frames and to subsequently determine the spatial parameters of the binary system and the magnitude difference between its components. For its realization we have developed a method based on an image shapelet decomposition. All of the comparatively faint stars with large proper motions ( V >13 m , μ > 300 mas yr-1) for which the "duplicate source" flag in the Gaia DR1 catalogue is equal to one have been included in the list of objects for our study. As a result, we have selected 702 stars. To verify our results, we have performed additional observations of 65 stars from this list with the Pulkovo 1-m "Saturn" telescope (2016-2017). We have revealed a total of 138 binary candidates (nine of them from the "Saturn" telescope and SDSS data). Six program stars are known binaries. The images of the primaries of the comparatively wide pairs WDS 14519+5147, WDS 11371+6022, and WDS 15404+2500 are shown to be resolved into components; therefore, we can talk about the detection of triple systems. The angular separation ρ, position angle, and component magnitude difference Δ m have been estimated for almost all of the revealed binary systems. For most stars 1.5'' < ρ < 2.5'', while Δ m <1.5m.

  8. Rapid method for interconversion of binary and decimal numbers

    Science.gov (United States)

    Lim, R. S.

    1970-01-01

    Decoding tree consisting of 40-bit semiconductor read-only memories interconverts binary and decimal numbers 50 to 100 times faster than current methods. Decimal-to-binary conversion algorithm is based on a divided-by-2 iterative equation, binary-to-decimal conversion algorithm utilizes multiplied-by-2 iterative equation.

  9. Binary interaction dominates the evolution of massive stars

    NARCIS (Netherlands)

    Sana, H.; de Mink, S.E.; de Koter, A.; Langer, N.; Evans, C.J.; Gieles, M.; Gosset, E.; Izzard, R.G.; Le Bouquin, J.-B.; Schneider, F.R.N.

    2012-01-01

    The presence of a nearby companion alters the evolution of massive stars in binary systems, leading to phenomena such as stellar mergers, x-ray binaries, and gamma-ray bursts. Unambiguous constraints on the fraction of massive stars affected by binary interaction were lacking. We simultaneously

  10. Microlensing Binaries Discovered through High-magnification Channel

    DEFF Research Database (Denmark)

    Shin, I.-G.; Choi, J.-Y.; Park, S.-Y.

    2012-01-01

    Microlensing can provide a useful tool to probe binary distributions down to low-mass limits of binary companions. In this paper, we analyze the light curves of eight binary-lensing events detected through the channel of high-magnification events during the seasons from 2007 to 2010. The perturba...

  11. Compact stars and the evolution of binary systems

    NARCIS (Netherlands)

    van den Heuvel, E.P.J.

    2011-01-01

    The Chandrasekhar limit is of key importance for the evolution of white dwarfs in binary systems and for the formation of neutron stars and black holes in binaries. Mass transfer can drive a white dwarf in a binary over the Chandrasekhar limit, which may lead to a Type Ia supernova (in case of a CO

  12. A decoding method of an n length binary BCH code through (n + 1n length binary cyclic code

    Directory of Open Access Journals (Sweden)

    TARIQ SHAH

    2013-09-01

    Full Text Available For a given binary BCH code Cn of length n = 2 s - 1 generated by a polynomial of degree r there is no binary BCH code of length (n + 1n generated by a generalized polynomial of degree 2r. However, it does exist a binary cyclic code C (n+1n of length (n + 1n such that the binary BCH code Cn is embedded in C (n+1n . Accordingly a high code rate is attained through a binary cyclic code C (n+1n for a binary BCH code Cn . Furthermore, an algorithm proposed facilitates in a decoding of a binary BCH code Cn through the decoding of a binary cyclic code C (n+1n , while the codes Cn and C (n+1n have the same minimum hamming distance.

  13. PG 1346+082 - An interacting binary white dwarf system

    Science.gov (United States)

    Wood, M. A.; Winget, D. E.; Nather, R. E.; Liebert, James; Wesemael, F.

    1987-01-01

    PG 1346+082 is both a photometric and a spectroscopic variable, spanning the B-magnitude range 13.6-17.2. High-speed photometric data reveal rapid flickering in the low-state light curve. The system also shows spectroscopic variations, displaying broad shallow He I absorption lines at maximum light and a weak emission feature at He I (4471 A) at minimum light. Hydrogen lines are conspicuous by their absence. Is is concluded that PG 1346+082 is an interacting binary white dwarf system. Furthermore, because continuum fits to IUE high-state data suggest temperatures consistent with membership in the DB white dwarf instability strip, it is suggested that some of the photometric variations may arise from pulsations.

  14. Growth Mechanism of Gold Nanorods in Binary Surfactant System

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bo-Mi; Seo, Sun-Hwa; Joe, Ara; Shim, Kyu-Dong; Jang, Eue-Soon [Kumoh National Institute of Technology, Gumi (Korea, Republic of)

    2016-06-15

    In order to reveal the growth mechanism of gold nanorods (GNRs) in a binary surfactant system, we synthesized various GNRs by changing the concentration of the surfactants, AgNO{sub 3}, and HBr in the growth solution. We found that the benzyldime thylhexadecylammoniumchloride surfactant had weak interaction with the gold ions, but it could reduce the membrane fluidity. In addition, we could dramatically decrease the cetyltrimethylammonium bromide concentration required for GNR growth by adding an HBr solution. Notably, Ag{sup +} ions were necessary to break the symmetry of the seed crystals for GNR growth, but increasing the concentration of Ag{sup +} and Br{sup -} ions caused a decrease in the template size.

  15. Measurement of VLE data for binary lipids systems

    DEFF Research Database (Denmark)

    Cunico, Larissa; Ceriani, Roberta; Sarup, Bent

    components and also for their mixtures. To contribute in this area, experimental data were obtained using the Differential Scanning Calorimetry (DSC) technique for isobaric vapor-liquid equilibrium (VLE) of two binary mixtures at two different pressures (1.2 and 2.5 KPa): system 1 [monoacylglycerol......Consistent physical and thermodynamic properties of pure components and their mixtures are important for process design, simulation, and optimization as well as design of chemical based products. In the case of lipids, our previous works[1-3] have indicated a lack of experimental data for pure...... is revealed for both systems at the two different pressures, with azeotrope behavior observed and confirmed but the relative volatility analysis. Available thermodynamic consistency tests for TPx data were applied before performing parameter regressions for Wilson NRTL, UNIQUAC and original UNIFAC models...

  16. Optimal threshold estimation for binary classifiers using game theory.

    Science.gov (United States)

    Sanchez, Ignacio Enrique

    2016-01-01

    Many bioinformatics algorithms can be understood as binary classifiers. They are usually compared using the area under the receiver operating characteristic ( ROC ) curve. On the other hand, choosing the best threshold for practical use is a complex task, due to uncertain and context-dependent skews in the abundance of positives in nature and in the yields/costs for correct/incorrect classification. We argue that considering a classifier as a player in a zero-sum game allows us to use the minimax principle from game theory to determine the optimal operating point. The proposed classifier threshold corresponds to the intersection between the ROC curve and the descending diagonal in ROC space and yields a minimax accuracy of 1-FPR. Our proposal can be readily implemented in practice, and reveals that the empirical condition for threshold estimation of "specificity equals sensitivity" maximizes robustness against uncertainties in the abundance of positives in nature and classification costs.

  17. Performance analysis and binary working fluid selection of combined flash-binary geothermal cycle

    International Nuclear Information System (INIS)

    Zeyghami, Mehdi

    2015-01-01

    Performance of the combined flash-binary geothermal power cycle for geofluid temperatures between 150 and 250 °C is studied. A thermodynamic model is developed, and the suitable binary working fluids for different geofluid temperatures are identified from a list of thirty working fluid candidates, consisting environmental friendly refrigerants and hydrocarbons. The overall system exergy destruction and Vapor Expansion Ratio across the binary cycle turbine are selected as key performance indicators. The results show that for low-temperature heat sources using refrigerants as binary working fluids result in higher overall cycle efficiency and for medium and high-temperature resources, hydrocarbons are more suitable. For combined flash-binary cycle, secondary working fluids; R-152a, Butane and Cis-butane show the best performances at geofluid temperatures 150, 200 and 250 °C respectively. The overall second law efficiency is calculated as high as 0.48, 0.55 and 0.58 for geofluid temperatures equal 150, 200 and 250 °C respectively. The flash separator pressure found to has important effects on cycle operation and performance. Separator pressure dictates the work production share of steam and binary parts of the system. And there is an optimal separator pressure at which overall exergy destruction of the cycle achieves its minimum value. - Highlights: • Performance of the combined flash-binary geothermal cycle is investigated. • Thirty different fluids are screened to find the most suitable ORC working fluid. • Optimum cycle operation conditions presented for geofluids between 150 °C and 250 °C. • Refrigerants are more suitable for the ORC at geothermal sources temperature ≤200 °C. • Hydrocarbons are more suitable for the ORC at geothermal sources temperature >200 °C

  18. Complex Binary Number System Algorithms and Circuits

    CERN Document Server

    Jamil, Tariq

    2013-01-01

    This book is a compilation of the entire research work on the topic of Complex Binary Number System (CBNS) carried out by the author as the principal investigator and members of his research groups at various universities during the years 1992-2012. Pursuant to these efforts spanning several years, the realization of CBNS as a viable alternative to represent complex numbers in an 'all-in-one' binary number format has become possible and efforts are underway to build computer hardware based on this unique number system. It is hoped that this work will be of interest to anyone involved in computer arithmetic and digital logic design and kindle renewed enthusiasm among the engineers working in the areas of digital signal and image processing for developing newer and efficient algorithms and techniques incorporating CBNS.

  19. Studies of Long Period Eclipsing Binaries

    Science.gov (United States)

    Ratajczak, M.; Hełminiak, K. G.; Konacki, M.

    2015-07-01

    The survey of long period eclipsing binaries from the All Sky Automated Survey (ASAS) catalog aims at searching for and characterizing subgiants and red giants in double-lined detached binary systems. Absolute physical and orbital parameters are presented based on radial velocities from high-quality optical spectra obtained with the following telescope/instrument combinations: 8.2 m Subaru/HDS, ESO 3.6 m/HARPS, 1.9 m Radcliffe/GIRAFFE, CTIO 1.5 m/CHIRON, and 1.2 m Euler/CORALIE. Photometric data from ASAS, SuperWASP, and the Solaris Project were also used. We discuss the derived uncertainties for the individual masses and radii of the components (better than 3% for several systems), as well as results from the spectral analysis performed for components of systems whose spectra we disentangled.

  20. Kilonova Counterparts of Binary Neutron Star Mergers

    Science.gov (United States)

    Metzger, Brian

    2018-01-01

    The merger of a binary neutron star is accompanied by the ejection of neutron-rich matter into space at velocities up to several tenths that of light, which synthesizes rare heavy isotopes through the rapid neutron capture process (r-process). The radioactive decay of these nuclei was predicted by Metzger et al. (2010) to power an optical transient roughly 1000 times more luminous than a classical nova (a "kilonova"), which is among the most promising electromagnetic counterparts to accompany gravitational wave signal from the merger. I will describe how the luminosities, color, and spectra of the kilonova emission inform the properties of the merging binary (neutron star masses/radii and inclination angle) and the long sought origin of the heaviest elements in the Universe. Results will be discussed in the context of recent discoveries by Advanced LIGO/Virgo.

  1. On the dynamics of binary galaxies

    International Nuclear Information System (INIS)

    Verner, D.A.; Chernin, A.D.

    1987-01-01

    The dynamics of close noncontact binary galaxies is investigated. It is demonsrated that the tidal interaction is ineffective for circularization of galaxy orbits. Nonsphericity of galaxies develops a torque in a binary system. For a pair of elliptical galaxies this torque leads to swinging of the galaxies with respect to the orbital plane (which can be observed as a rotation about the minor axis) and to the excitation of internal degrees of freedom. Besides, this pendulum effect may be effective for elliptical galaxies in clusters due to the presence of the torque produced by a cluster as a whole. In the case of spiral galaxies the torque leads to the precession of their rotational axes. However this effect seems to be too weak to be observable

  2. Induced Ellipticity for Inspiraling Binary Systems

    Science.gov (United States)

    Randall, Lisa; Xianyu, Zhong-Zhi

    2018-01-01

    Although gravitational waves tend to erase eccentricity of an inspiraling binary system, ellipticity can be generated in the presence of surrounding matter. We present a semianalytical method for understanding the eccentricity distribution of binary black holes (BHs) in the presence of a supermassive BH in a galactic center. Given a matter distribution, we show how to determine the resultant eccentricity analytically in the presence of both tidal forces and evaporation up to one cutoff and one matter-distribution-independent function, paving the way for understanding the environment of detected inspiraling BHs. We furthermore generalize Kozai–Lidov dynamics to situations where perturbation theory breaks down for short time intervals, allowing more general angular momentum exchange, such that eccentricity is generated even when all bodies orbit in the same plane.

  3. Binary fingerprints at fluctuation-enhanced sensing.

    Science.gov (United States)

    Chang, Hung-Chih; Kish, Laszlo B; King, Maria D; Kwan, Chiman

    2010-01-01

    We have developed a simple way to generate binary patterns based on spectral slopes in different frequency ranges at fluctuation-enhanced sensing. Such patterns can be considered as binary "fingerprints" of odors. The method has experimentally been demonstrated with a commercial semiconducting metal oxide (Taguchi) sensor exposed to bacterial odors (Escherichia coli and Anthrax-surrogate Bacillus subtilis) and processing their stochastic signals. With a single Taguchi sensor, the situations of empty chamber, tryptic soy agar (TSA) medium, or TSA with bacteria could be distinguished with 100% reproducibility. The bacterium numbers were in the range of 2.5 × 10(4)-10(6). To illustrate the relevance for ultra-low power consumption, we show that this new type of signal processing and pattern recognition task can be implemented by a simple analog circuitry and a few logic gates with total power consumption in the microWatts range.

  4. X-Ray Background from Early Binaries

    Science.gov (United States)

    Kohler, Susanna

    2016-11-01

    What impact did X-rays from the first binary star systems have on the universe around them? A new study suggests this radiation may have played an important role during the reionization of our universe.Ionizing the UniverseDuring the period of reionization, the universe reverted from being neutral (as it was during recombination, the previous period)to once again being ionized plasma a state it has remained in since then. This transition, which occurred between 150 million and one billion years after the Big Bang (redshift of 6 z 20), was caused by the formation of the first objects energetic enough to reionize the universes neutral hydrogen.ROSAT image of the soft X-ray background throughout the universe. The different colors represent different energy bands: 0.25 keV (red), 0.75 keV (green), 1.5 keV (blue). [NASA/ROSAT Project]Understanding this time period in particular, determining what sources caused the reionization, and what the properties were of the gas strewn throughout the universe during this time is necessary for us to be able to correctly interpret cosmological observations.Conveniently, the universe has provided us with an interesting clue: the large-scale, diffuse X-ray background we observe all around us. What produced these X-rays, and what impact did this radiation have on the intergalactic medium long ago?The First BinariesA team of scientists led by Hao Xu (UC San Diego) has suggested that the very first generation of stars might be an important contributor to these X-rays.This hypothetical first generation, Population III stars, are thought to have formed before and during reionization from large clouds of gas containing virtually no metals. Studies suggest that a large fraction of Pop III stars formed in binaries and when those stars ended their lives as black holes, ensuing accretion from their companions could produceX-ray radiation.The evolution with redshift of the mean X-ray background intensities. Each curve represents a different

  5. Eclipsing binary stars modeling and analysis

    CERN Document Server

    Kallrath, Josef

    1999-01-01

    This book focuses on the formulation of mathematical models for the light curves of eclipsing binary stars, and on the algorithms for generating such models Since information gained from binary systems provides much of what we know of the masses, luminosities, and radii of stars, such models are acquiring increasing importance in studies of stellar structure and evolution As in other areas of science, the computer revolution has given many astronomers tools that previously only specialists could use; anyone with access to a set of data can now expect to be able to model it This book will provide astronomers, both amateur and professional, with a guide for - specifying an astrophysical model for a set of observations - selecting an algorithm to determine the parameters of the model - estimating the errors of the parameters It is written for readers with knowledge of basic calculus and linear algebra; appendices cover mathematical details on such matters as optimization, coordinate systems, and specific models ...

  6. Binary interaction dominates the evolution of massive stars.

    Science.gov (United States)

    Sana, H; de Mink, S E; de Koter, A; Langer, N; Evans, C J; Gieles, M; Gosset, E; Izzard, R G; Le Bouquin, J-B; Schneider, F R N

    2012-07-27

    The presence of a nearby companion alters the evolution of massive stars in binary systems, leading to phenomena such as stellar mergers, x-ray binaries, and gamma-ray bursts. Unambiguous constraints on the fraction of massive stars affected by binary interaction were lacking. We simultaneously measured all relevant binary characteristics in a sample of Galactic massive O stars and quantified the frequency and nature of binary interactions. More than 70% of all massive stars will exchange mass with a companion, leading to a binary merger in one-third of the cases. These numbers greatly exceed previous estimates and imply that binary interaction dominates the evolution of massive stars, with implications for populations of massive stars and their supernovae.

  7. Detectability of Gravitational Waves from High-Redshift Binaries.

    Science.gov (United States)

    Rosado, Pablo A; Lasky, Paul D; Thrane, Eric; Zhu, Xingjiang; Mandel, Ilya; Sesana, Alberto

    2016-03-11

    Recent nondetection of gravitational-wave backgrounds from pulsar timing arrays casts further uncertainty on the evolution of supermassive black hole binaries. We study the capabilities of current gravitational-wave observatories to detect individual binaries and demonstrate that, contrary to conventional wisdom, some are, in principle, detectable throughout the Universe. In particular, a binary with rest-frame mass ≳10^{10}M_{⊙} can be detected by current timing arrays at arbitrarily high redshifts. The same claim will apply for less massive binaries with more sensitive future arrays. As a consequence, future searches for nanohertz gravitational waves could be expanded to target evolving high-redshift binaries. We calculate the maximum distance at which binaries can be observed with pulsar timing arrays and other detectors, properly accounting for redshift and using realistic binary waveforms.

  8. THE ELM SURVEY. V. MERGING MASSIVE WHITE DWARF BINARIES

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Warren R.; Kenyon, Scott J. [Smithsonian Astrophysical Observatory, 60 Garden St, Cambridge, MA 02138 (United States); Kilic, Mukremin; Gianninas, A. [Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, 440 W. Brooks St., Norman, OK, 73019 (United States); Allende Prieto, Carlos, E-mail: wbrown@cfa.harvard.edu, E-mail: skenyon@cfa.harvard.edu, E-mail: kilic@ou.edu, E-mail: alexg@nhn.ou.edu, E-mail: callende@iac.es [Instituto de Astrofisica de Canarias, E-38205, La Laguna, Tenerife (Spain)

    2013-05-20

    We present the discovery of 17 low-mass white dwarfs (WDs) in short-period (P {<=} 1 day) binaries. Our sample includes four objects with remarkable log g {approx_equal} 5 surface gravities and orbital solutions that require them to be double degenerate binaries. All of the lowest surface gravity WDs have metal lines in their spectra implying long gravitational settling times or ongoing accretion. Notably, six of the WDs in our sample have binary merger times <10 Gyr. Four have {approx}>0.9 M{sub Sun} companions. If the companions are massive WDs, these four binaries will evolve into stable mass transfer AM CVn systems and possibly explode as underluminous supernovae. If the companions are neutron stars, then these may be millisecond pulsar binaries. These discoveries increase the number of detached, double degenerate binaries in the ELM Survey to 54; 31 of these binaries will merge within a Hubble time.

  9. THE ELM SURVEY. V. MERGING MASSIVE WHITE DWARF BINARIES

    International Nuclear Information System (INIS)

    Brown, Warren R.; Kenyon, Scott J.; Kilic, Mukremin; Gianninas, A.; Allende Prieto, Carlos

    2013-01-01

    We present the discovery of 17 low-mass white dwarfs (WDs) in short-period (P ≤ 1 day) binaries. Our sample includes four objects with remarkable log g ≅ 5 surface gravities and orbital solutions that require them to be double degenerate binaries. All of the lowest surface gravity WDs have metal lines in their spectra implying long gravitational settling times or ongoing accretion. Notably, six of the WDs in our sample have binary merger times 0.9 M ☉ companions. If the companions are massive WDs, these four binaries will evolve into stable mass transfer AM CVn systems and possibly explode as underluminous supernovae. If the companions are neutron stars, then these may be millisecond pulsar binaries. These discoveries increase the number of detached, double degenerate binaries in the ELM Survey to 54; 31 of these binaries will merge within a Hubble time.

  10. White dwarfs in Be star binary systems

    Science.gov (United States)

    Apparao, K. M. V.

    1991-01-01

    An evaluation is made of possible reasons for the persistent inability to identify white dwarf stars in the Be binary systems. It is noted that many Be stars exhibiting large optical enhancements may be Be + WD and Be + He systems, and that observations of pulsations in the H-alpha emission, as well as observation of time delays between enhancements of optical line and continuum, can identify such systems.

  11. Search for forced oscillations in binaries

    Czech Academy of Sciences Publication Activity Database

    Janík, J.; Harmanec, Petr; Lehmann, H.; Yang, S.; Božić, H.; Ak, H.; Hadrava, Petr; Eenens, P.; Ruždjak, D.; Sudar, D.; Hubený, I.; Linnell, A. P.

    2003-01-01

    Roč. 408, č. 2 (2003), s. 611-619 ISSN 0004-6361 R&D Projects: GA ČR GA205/96/0162; GA ČR GA205/02/0445; GA AV ČR IAA3003805; GA AV ČR KSK2043105 Institutional research plan: CEZ:AV0Z1003909 Keywords : binaries stars * close stars * spectroscopis Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 3.843, year: 2003

  12. Binary choice models with endogenous regressors

    OpenAIRE

    Christopher Baum; Yingying Dong; Arthur Lewbel; Tao Yang

    2012-01-01

    Dong and Lewbel have developed the theory of simple estimators for binary choice models with endogenous or mismeasured regressors, depending on a `special regressor' as defined by Lewbel (J. Econometrics, 2000). `Control function' methods such as Stata's ivprobit are generally only valid when endogenous regressors are consistent. The estimators proposed here can be used with limited, censored, continuous or discrete endogenous regressors, and have significant advantages over alternatives such...

  13. Digitizing Villanova University's Eclipsing Binary Card Catalogue

    Science.gov (United States)

    Guzman, Giannina; Dalton, Briana; Conroy, Kyle; Prsa, Andrej

    2018-01-01

    Villanova University’s Department of Astrophysics and Planetary Science has years of hand-written archival data on Eclipsing Binaries at its disposal. This card catalog began at Princeton in the 1930’s with notable contributions from scientists such as Henry Norris Russel. During World War II, the archive was moved to the University of Pennsylvania, which was one of the world centers for Eclipsing Binary research, consequently, the contributions to the catalog during this time were immense. It was then moved to University of Florida at Gainesville before being accepted by Villanova in the 1990’s. The catalog has been kept in storage since then. The objective of this project is to digitize this archive and create a fully functional online catalog that contains the information available on the cards, along with the scan of the actual cards. Our group has built a database using a python-powered infrastructure to contain the collected data. The team also built a prototype web-based searchable interface as a front-end to the catalog. Following the data-entry process, information like the Right Ascension and Declination will be run against SIMBAD and any differences between values will be noted as part of the catalog. Information published online from the card catalog and even discrepancies in information for a star, could be a catalyst for new studies on these Eclipsing Binaries. Once completed, the database-driven interface will be made available to astronomers worldwide. The group will also acquire, from the database, a list of referenced articles that have yet to be found online in order to further pursue their digitization. This list will be comprised of references in the cards that were neither found on ADS nor online during the data-entry process. Pursuing the integration of these references to online queries such as ADS will be an ongoing process that will contribute and further facilitate studies on Eclipsing Binaries.

  14. Phase analysis of amplitude binary mask structures

    Science.gov (United States)

    Puthankovilakam, Krishnaparvathy; Scharf, Toralf; Herzig, Hans Peter; Vogler, Uwe; Bramati, Arianna; Voelkel, Reinhard

    2016-03-01

    Shaping of light behind masks using different techniques is the milestone of the printing industry. The aerial image distribution or the intensity distribution at the printing distances defines the resolution of the structure after printing. Contrast and phase are the two parameters that play a major role in shaping of light to get the desired intensity pattern. Here, in contrast to many other contributions that focus on intensity, we discuss the phase evolution for different structures. The amplitude or intensity characteristics of the structures in a binary mask at different proximity gaps have been analyzed extensively for many industrial applications. But the phase evolution from the binary mask having OPC structures is not considered so far. The mask we consider here is the normal amplitude binary mask but having high resolution Optical Proximity Correction (OPC) structures for corners. The corner structures represent a two dimensional problem which is difficult to handle with simple rules of phase masks design and therefore of particular interest. The evolution of light from small amplitude structures might lead to high contrast by creating sharp phase changes or phase singularities which are points of zero intensity. We show the phase modulation at different proximity gaps and can visualize the shaping of light according to the phase changes. The analysis is done with an instrument called High Resolution Interference Microscopy (HRIM), a Mach-Zehnder interferometer that gives access to three-dimensional phase and amplitude images. The current paper emphasizes on the phase measurement of different optical proximity correction structures, and especially on corners of a binary mask.

  15. Composition profile determination in isomorphous binary alloys

    International Nuclear Information System (INIS)

    An, C.Y.; Bandeira, I.N.

    1983-07-01

    The inhomogeneity along the growth axis of the pseudo-binary alloys is due to the segregation of the solute which will be mixed in the melt due to convective and diffusive flows. A process for determination of the exact composition profile by measurements of the crystal density, for alloys of the type A sub(1-x) B sub(x), is shown. (Author) [pt

  16. Robust Speech Recognition from Binary Masks

    Science.gov (United States)

    2010-01-01

    invariance to translation and size of the input pattern. Since the binary patterns of IBM are, in a way, similar to handwritten digits, we used a CNN...classification for each pattern. This also adds to the translational invariance of the CNN. To be consistent, we use the same strategy while testing IBMs...the cases, the noisy speech was enhanced using the MMSE algorithm, which is a widely used speech enhancement algorithm (Ephraim and Malah, 1985), as

  17. Inducing Risk Neutral Preferences with Binary Lotteries

    DEFF Research Database (Denmark)

    Harrison, Glenn W.; Martínez-Correa, Jimmy; Swarthout, J. Todd

    2013-01-01

    We evaluate the binary lottery procedure for inducing risk neutral behavior. We strip the experimental implementation down to bare bones, taking care to avoid any potentially confounding assumptions about behavior having to be made. In particular, our evaluation does not rely on the assumed valid...... toward risk neutrality. This striking result generalizes to the case in which subjects make several lottery choices and one is selected for payment....

  18. Binary DNA Nanostructures for Data Encryption

    OpenAIRE

    Halvorsen, Ken; Wong, Wesley P.

    2012-01-01

    We present a simple and secure system for encrypting and decrypting information using DNA self-assembly. Binary data is encoded in the geometry of DNA nanostructures with two distinct conformations. Removing or leaving out a single component reduces these structures to an encrypted solution of ssDNA, whereas adding back this missing "decryption key" causes the spontaneous formation of the message through self-assembly, enabling rapid read out via gel electrophoresis. Applications include auth...

  19. Binary DNA nanostructures for data encryption.

    Science.gov (United States)

    Halvorsen, Ken; Wong, Wesley P

    2012-01-01

    We present a simple and secure system for encrypting and decrypting information using DNA self-assembly. Binary data is encoded in the geometry of DNA nanostructures with two distinct conformations. Removing or leaving out a single component reduces these structures to an encrypted solution of ssDNA, whereas adding back this missing "decryption key" causes the spontaneous formation of the message through self-assembly, enabling rapid read out via gel electrophoresis. Applications include authentication, secure messaging, and barcoding.

  20. EXACT LOGISTIC MODELS FOR NESTED BINARY DATA

    OpenAIRE

    TROXLER, STEVEN; LALONDE, TRENT; WILSON, JEFFREY R.

    2011-01-01

    The use of logistic models for independent binary data has relied first on asymptotic theory and later on exact distributions for small samples. However, the use of logistic models for dependent analysis based on exact analysis is not as common. Moreover attention is usually given to one-stage clustering. In this paper we extend the exact techniques to address hypothesis testing (estimation is not addressed) for data with second-stage and probably higher levels of clustering. The methods are ...

  1. Relativistic apsidal motion in eccentric eclipsing binaries

    Czech Academy of Sciences Publication Activity Database

    Wolf, M.; Claret, L.; Kotková, Lenka; Kučáková, Hana; Kocián, R.; Brát, L.; Svoboda, P.; Šmelcer, L.

    2010-01-01

    Roč. 509, January (2010), A18/1-A18/14 ISSN 0004-6361 Grant - others:GA ČR(CZ) GA205/04/2063; GA ČR(CZ) GA205/06/0217 Institutional research plan: CEZ:AV0Z10030501 Keywords : binaries eclipsing Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.410, year: 2010

  2. Orbital Decay in Binaries with Evolved Stars

    Science.gov (United States)

    Sun, Meng; Arras, Phil; Weinberg, Nevin N.; Troup, Nicholas; Majewski, Steven R.

    2018-01-01

    Two mechanisms are often invoked to explain tidal friction in binary systems. The ``dynamical tide” is the resonant excitation of internal gravity waves by the tide, and their subsequent damping by nonlinear fluid processes or thermal diffusion. The ``equilibrium tide” refers to non-resonant excitation of fluid motion in the star’s convection zone, with damping by interaction with the turbulent eddies. There have been numerous studies of these processes in main sequence stars, but less so on the subgiant and red giant branches. Motivated by the newly discovered close binary systems in the Apache Point Observatory Galactic Evolution Experiment (APOGEE-1), we have performed calculations of both the dynamical and equilibrium tide processes for stars over a range of mass as the star’s cease core hydrogen burning and evolve to shell burning. Even for stars which had a radiative core on the main sequence, the dynamical tide may have very large amplitude in the newly radiative core in post-main sequence, giving rise to wave breaking. The resulting large dynamical tide dissipation rate is compared to the equilibrium tide, and the range of secondary masses and orbital periods over which rapid orbital decay may occur will be discussed, as well as applications to close APOGEE binaries.

  3. Spinodal decomposition of chemically reactive binary mixtures

    Science.gov (United States)

    Lamorgese, A.; Mauri, R.

    2016-08-01

    We simulate the influence of a reversible isomerization reaction on the phase segregation process occurring after spinodal decomposition of a deeply quenched regular binary mixture, restricting attention to systems wherein material transport occurs solely by diffusion. Our theoretical approach follows a diffuse-interface model of partially miscible binary mixtures wherein the coupling between reaction and diffusion is addressed within the frame of nonequilibrium thermodynamics, leading to a linear dependence of the reaction rate on the chemical affinity. Ultimately, the rate for an elementary reaction depends on the local part of the chemical potential difference since reaction is an inherently local phenomenon. Based on two-dimensional simulation results, we express the competition between segregation and reaction as a function of the Damköhler number. For a phase-separating mixture with components having different physical properties, a skewed phase diagram leads, at large times, to a system converging to a single-phase equilibrium state, corresponding to the absolute minimum of the Gibbs free energy. This conclusion continues to hold for the critical phase separation of an ideally perfectly symmetric binary mixture, where the choice of final equilibrium state at large times depends on the initial mean concentration being slightly larger or less than the critical concentration.

  4. Circumstellar disks around binary stars in Taurus

    International Nuclear Information System (INIS)

    Akeson, R. L.; Jensen, E. L. N.

    2014-01-01

    We have conducted a survey of 17 wide (>100 AU) young binary systems in Taurus with the Atacama Large Millimeter Array (ALMA) at two wavelengths. The observations were designed to measure the masses of circumstellar disks in these systems as an aid to understanding the role of multiplicity in star and planet formation. The ALMA observations had sufficient resolution to localize emission within the binary system. Disk emission was detected around all primaries and 10 secondaries, with disk masses as low as 10 –4 M ☉ . We compare the properties of our sample to the population of known disks in Taurus and find that the disks from this binary sample match the scaling between stellar mass and millimeter flux of F mm ∝M ∗ 1.5--2.0 to within the scatter found in previous studies. We also compare the properties of the primaries to those of the secondaries and find that the secondary/primary stellar and disk mass ratios are not correlated; in three systems, the circumsecondary disk is more massive than the circumprimary disk, counter to some theoretical predictions.

  5. Circumstellar disks around binary stars in Taurus

    Energy Technology Data Exchange (ETDEWEB)

    Akeson, R. L. [NASA Exoplanet Science Institute, IPAC/Caltech, Pasadena, CA 91125 (United States); Jensen, E. L. N. [Swarthmore College, Department of Physics and Astronomy, Swarthmore, PA 19081 (United States)

    2014-03-20

    We have conducted a survey of 17 wide (>100 AU) young binary systems in Taurus with the Atacama Large Millimeter Array (ALMA) at two wavelengths. The observations were designed to measure the masses of circumstellar disks in these systems as an aid to understanding the role of multiplicity in star and planet formation. The ALMA observations had sufficient resolution to localize emission within the binary system. Disk emission was detected around all primaries and 10 secondaries, with disk masses as low as 10{sup –4} M {sub ☉}. We compare the properties of our sample to the population of known disks in Taurus and find that the disks from this binary sample match the scaling between stellar mass and millimeter flux of F{sub mm}∝M{sub ∗}{sup 1.5--2.0} to within the scatter found in previous studies. We also compare the properties of the primaries to those of the secondaries and find that the secondary/primary stellar and disk mass ratios are not correlated; in three systems, the circumsecondary disk is more massive than the circumprimary disk, counter to some theoretical predictions.

  6. ORBITAL EVOLUTION OF COMPACT WHITE DWARF BINARIES

    Energy Technology Data Exchange (ETDEWEB)

    Kaplan, David L. [Physics Department, University of Wisconsin-Milwaukee, Milwaukee, WI 53211 (United States); Bildsten, Lars [Kavli Institute for Theoretical Physics and Department of Physics, Kohn Hall, University of California, Santa Barbara, CA 93106 (United States); Steinfadt, Justin D. R., E-mail: kaplan@uwm.edu, E-mail: bildsten@kitp.ucsb.edu, E-mail: jdrsteinfadt@gmail.com [Department of Physics, Broida Hall, University of California, Santa Barbara, CA 93106 (United States)

    2012-10-10

    The newfound prevalence of extremely low mass (ELM, M{sub He} < 0.2 M{sub Sun }) helium white dwarfs (WDs) in tight binaries with more massive WDs has raised our interest in understanding the nature of their mass transfer. Possessing small (M{sub env} {approx} 10{sup -3} M{sub Sun }) but thick hydrogen envelopes, these objects have larger radii than cold WDs and so initiate mass transfer of H-rich material at orbital periods of 6-10 minutes. Building on the original work of D'Antona et al., we confirm the 10{sup 6} yr period of continued inspiral with mass transfer of H-rich matter and highlight the fact that the inspiraling direct-impact double WD binary HM Cancri likely has an ELM WD donor. The ELM WDs have less of a radius expansion under mass loss, thus enabling a larger range of donor masses that can stably transfer matter and become a He mass transferring AM CVn binary. Even once in the long-lived AM CVn mass transferring stage, these He WDs have larger radii due to their higher entropy from the prolonged H-burning stage.

  7. Constraining the Statistics of Population III Binaries

    Science.gov (United States)

    Stacy, Athena; Bromm, Volker

    2012-01-01

    We perform a cosmological simulation in order to model the growth and evolution of Population III (Pop III) stellar systems in a range of host minihalo environments. A Pop III multiple system forms in each of the ten minihaloes, and the overall mass function is top-heavy compared to the currently observed initial mass function in the Milky Way. Using a sink particle to represent each growing protostar, we examine the binary characteristics of the multiple systems, resolving orbits on scales as small as 20 AU. We find a binary fraction of approx. 36, with semi-major axes as large as 3000 AU. The distribution of orbital periods is slightly peaked at approx. < 900 yr, while the distribution of mass ratios is relatively flat. Of all sink particles formed within the ten minihaloes, approx. 50 are lost to mergers with larger sinks, and 50 of the remaining sinks are ejected from their star-forming disks. The large binary fraction may have important implications for Pop III evolution and nucleosynthesis, as well as the final fate of the first stars.

  8. Observations of binary stars by speckle interferometry

    International Nuclear Information System (INIS)

    Morgan, B.L.; Beckmann, G.K.; Scaddan, R.J.

    1980-01-01

    This is the second paper in a series describing observations of binary stars using the technique of speckle interferometry. Observations were made using the 2.5-m Isaac Newton Telescope and the 1-m telescope of the Royal Greenwich Observatory and the 1.9-m telescope of the South African Astronomical Observatory. The classical Rayleigh diffraction limits are 0.050 arcsec for the 2.5-m telescope, 0.065 arcsec for the 1.9-m telescope and 0.125 arcsec for the 1-m telescope, at a wavelength of 500 nm. The results of 29 measurements of 26 objects are presented. The objects include long period spectroscopic binaries from the 6th Catalogue of Batten, close visual binary systems from the 3rd Catalogue of Finsen and Worley and variable stars. Nine of the objects have not been previously resolved by speckle interferometry. New members are detected in the systems β Cep, p Vel and iota UMa. (author)

  9. Accreting Binary Populations in the Earlier Universe

    Science.gov (United States)

    Hornschemeier, Ann

    2010-01-01

    It is now understood that X-ray binaries dominate the hard X-ray emission from normal star-forming galaxies. Thanks to the deepest (2-4 Ms) Chandra surveys, such galaxies are now being studied in X-rays out to z approximates 4. Interesting X-ray stacking results (based on 30+ galaxies per redshift bin) suggest that the mean rest-frame 2-10 keV luminosity from z=3-4 Lyman break galaxies (LBGs), is comparable to the most powerful starburst galaxies in the local Universe. This result possibly indicates a similar production mechanism for accreting binaries over large cosmological timescales. To understand and constrain better the production of X-ray binaries in high-redshift LBGs, we have utilized XMM-Newton observations of a small sample of z approximates 0.1 GALEX-selected Ultraviolet-Luminous Galaxies (UVLGs); local analogs to high-redshift LBGs. Our observations enable us to study the X-ray emission from LBG-like galaxies on an individual basis, thus allowing us to constrain object-to-object variances in this population. We supplement these results with X-ray stacking constraints using the new 3.2 Ms Chandra Deep Field-South (completed spring 2010) and LBG candidates selected from HST, Swift UVOT, and ground-based data. These measurements provide new X-ray constraints that sample well the entire z=0-4 baseline

  10. Asteroseismic modelling of the Binary HD 176465

    Directory of Open Access Journals (Sweden)

    Nsamba B.

    2017-01-01

    Full Text Available The detection and analysis of oscillations in binary star systems is critical in understanding stellar structure and evolution. This is partly because such systems have the same initial chemical composition and age. Solar-like oscillations have been detected by Kepler in both components of the asteroseismic binary HD 176465. We present an independent modelling of each star in this binary system. Stellar models generated using MESA (Modules for Experiments in Stellar Astrophysics were fitted to both the observed individual frequencies and complementary spectroscopic parameters. The individual theoretical oscillation frequencies for the corresponding stellar models were obtained using GYRE as the pulsation code. A Bayesian approach was applied to find the probability distribution functions of the stellar parameters using AIMS (Asteroseismic Inference on a Massive Scale as the optimisation code. The ages of HD 176465 A and HD 176465 B were found to be 2.81 ± 0.48 Gyr and 2.52 ± 0.80 Gyr, respectively. These results are in agreement when compared to previous studies carried out using other asteroseismic modelling techniques and gyrochronology.

  11. Infalling clouds on to supermassive black hole binaries - II. Binary evolution and the final parsec problem

    Science.gov (United States)

    Goicovic, Felipe G.; Sesana, Alberto; Cuadra, Jorge; Stasyszyn, Federico

    2017-11-01

    The formation of massive black hole binaries (MBHBs) is an unavoidable outcome of galaxy evolution via successive mergers. However, the mechanism that drives their orbital evolution from parsec separations down to the gravitational wave dominated regime is poorly understood, and their final fate is still unclear. If such binaries are embedded in gas-rich and turbulent environments, as observed in remnants of galaxy mergers, the interaction with gas clumps (such as molecular clouds) may efficiently drive their orbital evolution. Using numerical simulations, we test this hypothesis by studying the dynamical evolution of an equal mass, circular MBHB accreting infalling molecular clouds. We investigate different orbital configurations, modelling a total of 13 systems to explore different possible impact parameters and relative inclinations of the cloud-binary encounter. We focus our study on the prompt, transient phase during the first few orbits when the dynamical evolution of the binary is fastest, finding that this evolution is dominated by the exchange of angular momentum through gas capture by the individual black holes and accretion. Building on these results, we construct a simple model for evolving an MBHB interacting with a sequence of clouds, which are randomly drawn from reasonable populations with different levels of anisotropy in their angular momenta distributions. We show that the binary efficiently evolves down to the gravitational wave emission regime within a few hundred million years, overcoming the 'final parsec' problem regardless of the stellar distribution.

  12. High-pressure density measurements for the binary system ethanol plus heptane

    DEFF Research Database (Denmark)

    Watson, G.; Zeberg-Mikkelsen, Claus Kjær; Baylaucq, A.

    2006-01-01

    , The experimental uncertainty is estimated to be 0.5 kg(.)m(-3). The isothermal compressibility, the isobaric thermal expansion, and the excess molar volume have been derived from the experimental density data, revealing that a volume expansion occurs for this binary system. The results have been interpreted as due...... to changes in the molecular free-volume, disruption of the order molecular structure, and the breaking of hydrogen bonds within the self-associating alcohol....

  13. On the dark side of the 'secular': is the religious-secular distinction a binary?

    OpenAIRE

    Rao, Balagangadhara

    2014-01-01

    Recent scholarship claims to have revealed the problematic nature of the religious-secular distinction: (1) the distinction is slippery or fluid; (2) the meanings of the words "religious" and "secular" have changed over multiple historical contexts; (3) the distinction is a binary; (4) it is essentialist in nature. Analyzing these objections, the article shows that it is very difficult to find a clear problem statement. To whom is the religious-secular distinction a problem and why? The disti...

  14. Low-mass Pre-He White Dwarf Stars in Kepler Eclipsing Binaries with Multi-periodic Pulsations

    Science.gov (United States)

    Zhang, X. B.; Fu, J. N.; Liu, N.; Luo, C. Q.; Ren, A. B.

    2017-12-01

    We report the discovery of two thermally bloated low-mass pre-He white dwarfs (WDs) in two eclipsing binaries, KIC 10989032 and KIC 8087799. Based on the Kepler long-cadence photometry, we determined comprehensive photometric solutions of the two binary systems. The light curve analysis reveals that KIC 10989032 is a partially eclipsed detached binary system containing a probable low-mass WD with the temperature of about 10,300 K. Having a WD with the temperature of about 13,300, KKIC 8087799 is typical of an EL CVn system. By utilizing radial velocity measurements available for the A-type primary star of KIC 10989032, the mass and radius of the WD component are determined to be 0.24+/- 0.02 {M}⊙ and 0.50+/- 0.01 {R}⊙ , respectively. The values of mass and radius of the WD in KIC 8087799 are estimated as 0.16 ± 0.02 M ⊙ and 0.21 ± 0.01 R ⊙, respectively, according to the effective temperature and mean density of the A-type star derived from the photometric solution. We therefore introduce KIC 10989032 and KIC 8087799 as the eleventh and twelfth dA+WD eclipsing binaries in the Kepler field. Moreover, both binaries display marked multi-periodic pulsations superimposed on binary effects. A preliminary frequency analysis is applied to the light residuals when subtracting the synthetic eclipsing light curves from the observations, revealing that the light pulsations of the two systems are both due to the δ Sct-type primaries. We hence classify KIC 10989032 and KIC 8087799 as two WD+δ Sct binaries.

  15. The formation of eccentric compact binary inspirals and the role of gravitational wave emission in binary-single stellar encounters

    International Nuclear Information System (INIS)

    Samsing, Johan; MacLeod, Morgan; Ramirez-Ruiz, Enrico

    2014-01-01

    The inspiral and merger of eccentric binaries leads to gravitational waveforms distinct from those generated by circularly merging binaries. Dynamical environments can assemble binaries with high eccentricity and peak frequencies within the LIGO band. In this paper, we study binary-single stellar scatterings occurring in dense stellar systems as a source of eccentrically inspiraling binaries. Many interactions between compact binaries and single objects are characterized by chaotic resonances in which the binary-single system undergoes many exchanges before reaching a final state. During these chaotic resonances, a pair of objects has a non-negligible probability of experiencing a very close passage. Significant orbital energy and angular momentum are carried away from the system by gravitational wave (GW) radiation in these close passages, and in some cases this implies an inspiral time shorter than the orbital period of the bound third body. We derive the cross section for such dynamical inspiral outcomes through analytical arguments and through numerical scattering experiments including GW losses. We show that the cross section for dynamical inspirals grows with increasing target binary semi-major axis a and that for equal-mass binaries it scales as a 2/7 . Thus, we expect wide target binaries to predominantly contribute to the production of these relativistic outcomes. We estimate that eccentric inspirals account for approximately 1% of dynamically assembled non-eccentric merging binaries. While these events are rare, we show that binary-single scatterings are a more effective formation channel than single-single captures for the production of eccentrically inspiraling binaries, even given modest binary fractions.

  16. Measurement and correlation of solubility of cefmenoxime hydrochloride in pure solvents and binary solvent mixtures

    International Nuclear Information System (INIS)

    Wang, Jinxiu; Xie, Chuang; Yin, Qiuxiang; Tao, Linggang; Lv, Jun; Wang, Yongli; He, Fang; Hao, Hongxun

    2016-01-01

    Highlights: • Solubility of cefmenoxime hydrochloride in pure and binary solvents was determined. • The experimental solubility data were correlated by thermodynamic models. • A model was employed to calculate the melting temperature of cefmenoxime hydrochloride. • Mixing thermodynamic properties of cefmenoxime hydrochloride were calculated. - Abstract: The solubility of cefmenoxime hydrochloride in pure solvents and binary solvent mixtures was measured at temperatures from (283.15 to 313.15) K by using the UV spectroscopic method. The results reveal that the solubility of cefmenoxime hydrochloride increases with increasing temperature in all solvent selected. The solubility of cefmenoxime hydrochloride reaches its maximum value when the mole fraction of isopropanol is 0.2 in the binary solvent mixtures of (isopropanol + water). The modified Apelblat equation and the NRTL model were successfully used to correlate the experimental solubility in pure solvents while the modified Apelblat equation, the CNIBS/R–K model and the Jouyban–Acree model were applied to correlate the solubility in binary solvent mixtures. In addition, the mixing thermodynamic properties of cefmenoxime hydrochloride in different solvents were also calculated based on the NRTL model and experimental solubility data.

  17. THE FIRST SPECTROSCOPICALLY RESOLVED SUB-PARSEC ORBIT OF A SUPERMASSIVE BINARY BLACK HOLE

    Energy Technology Data Exchange (ETDEWEB)

    Bon, E.; Jovanovic, P.; Bon, N.; Popovic, L. C. [Astronomical Observatory, Volgina 7, 11060 Belgrade (Serbia); Marziani, P. [INAF, Osservatorio Astronomico di Padova, Padova (Italy); Shapovalova, A. I. [Special Astrophysical Observatory of the Russian AS, Nizhnij Arkhyz, Karachaevo-Cherkesia 369167 (Russian Federation); Borka Jovanovic, V.; Borka, D. [Isaac Newton Institute of Chile, Yugoslavia Branch, Belgrade (Serbia); Sulentic, J. [Instituto de Astrofisica de Andalucia, CSIC, Apdo. 3004, E-18080 Granada (Spain)

    2012-11-10

    One of the most intriguing scenarios proposed to explain how active galactic nuclei are triggered involves the existence of a supermassive binary black hole (BH) system in their cores. Here, we present an observational evidence for the first spectroscopically resolved sub-parsec orbit of a such system in the core of Seyfert galaxy NGC 4151. Using a method similar to those typically used for spectroscopic binary stars, we obtained radial velocity curves of the supermassive binary system, from which we calculated orbital elements and made estimates about the masses of the components. Our analysis shows that periodic variations in the light and radial velocity curves can be accounted for by an eccentric, sub-parsec Keplerian orbit with a 15.9 year period. The flux maximum in the light curve corresponds to the approaching phase of the secondary component toward the observer. According to the obtained results, we speculate that the periodic variations in the observed H{alpha} line shape and flux are due to shock waves generated by the supersonic motion of the components through the surrounding medium. Given the large observational effort needed to reveal this spectroscopically resolved binary orbital motion, we suggest that many such systems may exist in similar objects even if they are hard to find. Detecting more of them will provide us with insight into the BH mass growth process.

  18. High-affinity single-domain binding proteins with a binary-code interface.

    Science.gov (United States)

    Koide, Akiko; Gilbreth, Ryan N; Esaki, Kaori; Tereshko, Valentina; Koide, Shohei

    2007-04-17

    High degrees of sequence and conformation complexity found in natural protein interaction interfaces are generally considered essential for achieving tight and specific interactions. However, it has been demonstrated that specific antibodies can be built by using an interface with a binary code consisting of only Tyr and Ser. This surprising result might be attributed to yet undefined properties of the antibody scaffold that uniquely enhance its capacity for target binding. In this work we tested the generality of the binary-code interface by engineering binding proteins based on a single-domain scaffold. We show that Tyr/Ser binary-code interfaces consisting of only 15-20 positions within a fibronectin type III domain (FN3; 95 residues) are capable of producing specific binding proteins (termed "monobodies") with a low-nanomolar K(d). A 2.35-A x-ray crystal structure of a monobody in complex with its target, maltose-binding protein, and mutation analysis revealed dominant contributions of Tyr residues to binding as well as striking molecular mimicry of a maltose-binding protein substrate, beta-cyclodextrin, by the Tyr/Ser binary interface. This work suggests that an interaction interface with low chemical diversity but with significant conformational diversity is generally sufficient for tight and specific molecular recognition, providing fundamental insights into factors governing protein-protein interactions.

  19. All-optical conversion scheme: Binary to quaternary and quaternary to binary number

    Science.gov (United States)

    Chattopadhyay, Tanay; Roy, Jitendra Nath

    2009-04-01

    To achieve the inherent parallelism in optics a suitable number system and efficient encoding/decoding scheme for handling the data are very much essential. Binary number is accepted as the best representing number system in almost all types of existing electronic computers. But, binary number (0 and 1) is insufficient in respect to the demand of the coming generation. Multi-valued logic (with radix >2) can be viewed as an alternative approach to solve many problems in transmission, storage and processing of large amount of information in digital signal processing. Here, in this paper all-optical scheme for the conversion of binary to quaternary number and vice versa have been proposed and described. Simulation has also been done. In this all-optical scheme the numbers are represented by different discrete polarized state of light.

  20. Searching Ultra-compact Pulsar Binaries with Abnormal Timing Behavior

    Science.gov (United States)

    Gong, B. P.; Li, Y. P.; Yuan, J. P.; Tian, J.; Zhang, Y. Y.; Li, D.; Jiang, B.; Li, X. D.; Wang, H. G.; Zou, Y. C.; Shao, L. J.

    2018-03-01

    Ultra-compact pulsar binaries are both ideal sources of gravitational radiation for gravitational wave detectors and laboratories for fundamental physics. However, the shortest orbital period of all radio pulsar binaries is currently 1.6 hr. The absence of pulsar binaries with a shorter orbital period is most likely due to technique limit. This paper points out that a tidal effect occurring on pulsar binaries with a short orbital period can perturb the orbital elements and result in a significant change in orbital modulation, which dramatically reduces the sensitivity of the acceleration searching that is widely used. Here a new search is proposed. The abnormal timing residual exhibited in a single pulse observation is simulated by a tidal effect occurring on an ultra-compact binary. The reproduction of the main features represented by the sharp peaks displayed in the abnormal timing behavior suggests that pulsars like PSR B0919+06 could be a candidate for an ultra-compact binary of an orbital period of ∼10 minutes and a companion star of a white dwarf star. The binary nature of such a candidate is further tested by (1) comparing the predicted long-term binary effect with decades of timing noise observed and (2) observing the optical counterpart of the expected companion star. Test (1) likely supports our model, while more observations are needed in test (2). Some interesting ultra-compact binaries could be found in the near future by applying such a new approach to other binary candidates.

  1. Inclination evolution of protoplanetary discs around eccentric binaries

    Science.gov (United States)

    Zanazzi, J. J.; Lai, Dong

    2018-01-01

    It is usually thought that viscous torque works to align a circumbinary disc with the binary's orbital plane. However, recent numerical simulations suggest that the disc may evolve to a configuration perpendicular to the binary orbit ('polar alignment) if the binary is eccentric and the initial disc-binary inclination is sufficiently large. We carry out a theoretical study on the long-term evolution of inclined discs around eccentric binaries, calculating the disc warp profile and dissipative torque acting on the disc. For discs with aspect ratio H/r larger than the viscosity parameter α, bending wave propagation effectively makes the disc precess as a quasi-rigid body, while viscosity acts on the disc warp and twist to drive secular evolution of the disc-binary inclination. We derive a simple analytic criterion (in terms of the binary eccentricity and initial disc orientation) for the disc to evolve towards polar alignment with the eccentric binary. When the disc has a non-negligible angular momentum compared to the binary, the final 'polar alignment' inclination angle is reduced from 90°. For typical protoplanetary disc parameters, the time-scale of the inclination evolution is shorter than the disc lifetime, suggesting that highly inclined discs and planets may exist orbiting eccentric binaries.

  2. New inclination changing eclipsing binaries in the Magellanic Clouds

    Science.gov (United States)

    Juryšek, J.; Zasche, P.; Wolf, M.; Vraštil, J.; Vokrouhlický, D.; Skarka, M.; Liška, J.; Janík, J.; Zejda, M.; Kurfürst, P.; Paunzen, E.

    2018-01-01

    Context. Multiple stellar systems are unique laboratories for astrophysics. Analysis of their orbital dynamics, if well characterized from their observations, may reveal invaluable information about the physical properties of the participating stars. Unfortunately, there are only a few known and well described multiple systems, this is even more so for systems located outside the Milky Way galaxy. A particularly interesting situation occurs when the inner binary in a compact triple system is eclipsing. This is because the stellar interaction, typically resulting in precession of orbital planes, may be observable as a variation of depth of the eclipses on a long timescale. Aims: We aim to present a novel method to determine compact triples using publicly available photometric data from large surveys. Here we apply it to eclipsing binaries (EBs) in Magellanic Clouds from OGLE III database. Our tool consists of identifying the cases where the orbital plane of EB evolves in accord with expectations from the interaction with a third star. Methods: We analyzed light curves (LCs) of 26121 LMC and 6138 SMC EBs with the goal to identify those for which the orbital inclination varies in time. Archival LCs of the selected systems, when complemented by our own observations with Danish 1.54-m telescope, were thoroughly analyzed using the PHOEBE program. This provided physical parameters of components of each system. Time dependence of the EB's inclination was described using the theory of orbital-plane precession. By observing the parameter-dependence of the precession rate, we were able to constrain the third companion mass and its orbital period around EB. Results: We identified 58 candidates of new compact triples in Magellanic Clouds. This is the largest published sample of such systems so far. Eight of them were analyzed thoroughly and physical parameters of inner binary were determined together with an estimation of basic characteristics of the third star. Prior to our

  3. Properties and nature of Be stars 27. Orbital and recent long-term variations of the Pleiades Be star Pleione = BU Tauri

    Czech Academy of Sciences Publication Activity Database

    Nemravová, J.; Harmanec, P.; Kubát, Jiří; Koubský, Pavel; Iliev, L.; Yang, S.; Ribeiro, J.; Šlechta, Miroslav; Kotková, Lenka; Wolf, M.; Škoda, Petr

    2010-01-01

    Roč. 516, Jun-Jul (2010), A80/1-A80/10 ISSN 0004-6361 R&D Projects: GA ČR GD205/08/H005 Grant - others:GA ČR(CZ) GA205/06/0304; GA ČR(CZ) GAP209/10/0715 Program:GA Institutional research plan: CEZ:AV0Z10030501 Keywords : early-type stars * close binaries Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.410, year: 2010

  4. Eclipsing binaries observed with the WIRE satellite I. Discovery and photometric analysis of the new bright A0 IV eclipsing binary psi centauri

    DEFF Research Database (Denmark)

    Bruntt, Hans; Southworth, J.; Penny, A. J.

    2006-01-01

    Stars: fundamental parameters, binaries: close, eclipsing, techniques: photometric Udgivelsesdato: Sep.......Stars: fundamental parameters, binaries: close, eclipsing, techniques: photometric Udgivelsesdato: Sep....

  5. The Fate of Neutron Star Binary Mergers

    Energy Technology Data Exchange (ETDEWEB)

    Piro, Anthony L. [The Observatories of the Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Giacomazzo, Bruno [Physics Department, University of Trento, via Sommarive 14, I-38123 Trento (Italy); Perna, Rosalba, E-mail: piro@carnegiescience.edu [Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794 (United States)

    2017-08-01

    Following merger, a neutron star (NS) binary can produce roughly one of three different outcomes: (1) a stable NS, (2) a black hole (BH), or (3) a supramassive, rotationally supported NS, which then collapses to a BH following angular momentum losses. Which of these fates occur and in what proportion has important implications for the electromagnetic transient associated with the mergers and the expected gravitational wave (GW) signatures, which in turn depend on the high density equation of state (EOS). Here we combine relativistic calculations of NS masses using realistic EOSs with Monte Carlo population synthesis based on the mass distribution of NS binaries in our Galaxy to predict the distribution of fates expected. For many EOSs, a significant fraction of the remnants are NSs or supramassive NSs. This lends support to scenarios in which a quickly spinning, highly magnetized NS may be powering an electromagnetic transient. This also indicates that it will be important for future GW observatories to focus on high frequencies to study the post-merger GW emission. Even in cases where individual GW events are too low in signal to noise to study the post merger signature in detail, the statistics of how many mergers produce NSs versus BHs can be compared with our work to constrain the EOS. To match short gamma-ray-burst (SGRB) X-ray afterglow statistics, we find that the stiffest EOSs are ruled out. Furthermore, many popular EOSs require a significant fraction of ∼60%–70% of SGRBs to be from NS–BH mergers rather than just binary NSs.

  6. Binary Classification Method of Social Network Users

    Directory of Open Access Journals (Sweden)

    I. A. Poryadin

    2017-01-01

    Full Text Available The subject of research is a binary classification method of social network users based on the data analysis they have placed. Relevance of the task to gain information about a person by examining the content of his/her pages in social networks is exemplified. The most common approach to its solution is a visual browsing. The order of the regional authority in our country illustrates that its using in school education is needed. The article shows restrictions on the visual browsing of pupil’s pages in social networks as a tool for the teacher and the school psychologist and justifies that a process of social network users’ data analysis should be automated. Explores publications, which describe such data acquisition, processing, and analysis methods and considers their advantages and disadvantages. The article also gives arguments to support a proposal to study the classification method of social network users. One such method is credit scoring, which is used in banks and credit institutions to assess the solvency of clients. Based on the high efficiency of the method there is a proposal for significant expansion of its using in other areas of society. The possibility to use logistic regression as the mathematical apparatus of the proposed method of binary classification has been justified. Such an approach enables taking into account the different types of data extracted from social networks. Among them: the personal user data, information about hobbies, friends, graphic and text information, behaviour characteristics. The article describes a number of existing methods of data transformation that can be applied to solve the problem. An experiment of binary gender-based classification of social network users is described. A logistic model obtained for this example includes multiple logical variables obtained by transforming the user surnames. This experiment confirms the feasibility of the proposed method. Further work is to define a system

  7. Formation and Evolution of Binary Asteroids

    Science.gov (United States)

    Walsh, K. J.; Jacobson, S. A.

    Satellites of asteroids have been discovered in nearly every known small-body population, and a remarkable aspect of the known satellites is the diversity of their properties. They tell a story of vast differences in formation and evolution mechanisms that act as a function of size, distance from the Sun, and the properties of their nebular environment at the beginning of solar system history and their dynamical environment over the next 4.5 G.y. The mere existence of these systems provides a laboratory to study numerous types of physical processes acting on asteroids, and their dynamics provide a valuable probe of their physical properties otherwise possible only with spacecraft. Advances in understanding the formation and evolution of binary systems have been assisted by (1) the growing catalog of known systems, increasing from 33 to ~250 between the Merline et al. (2002) chapter in Asteroids III and now; (2) the detailed study and long-term monitoring of individual systems such as 1999 KW4 and 1996 FG3, (3) the discovery of new binary system morphologies and triple systems, (4) and the discovery of unbound systems that appear to be end-states of binary dynamical evolutionary paths. Specifically for small bodies (diameter smaller than 10 km), these observations and discoveries have motivated theoretical work finding that thermal forces can efficiently drive the rotational disruption of small asteroids. Long-term monitoring has allowed studies to constrain the system's dynamical evolution by the combination of tides, thermal forces, and rigid-body physics. The outliers and split pairs have pushed the theoretical work to explore a wide range of evolutionary end-states.

  8. Magic structures of binary metallic clusters

    Science.gov (United States)

    Ferrando, Riccardo

    2005-03-01

    The structure of binary metallic clusters is investigated by a variety of computational tools, ranging from genetic and basin-hopping global optimization algorithms, to molecular dynamics, and to density-functional calculations. Three different binary systems are investigated: Ag-Cu, Ag-Ni, and Ag-Pd. A new family of magic cluster structures is found. These clusters have the common feature of presenting a perfect core-shell chemical arrangement (with an outer Ag shell of monoatomic thickness) and of being polyicosahedra, that is being made of interpenetrating icosahedra of 13 atoms. Core-shell polyicosahedra are of special stability, which originates from the interplay of different factors. First of all, polyicosahedra are very compact structures, so that they maximize the number of nearest-neighbor bonds for a given size. However, in single-element clusters, these bonds are not optimal, since inner bonds are strongly compressed and surface bonds are expanded. This is the contrary of what is required from the bond order -bond length correlation in metals, which favors contracted surface bonds. In binary clusters, the situation is different. Substituting the inner atoms of a single-element polyicosahedron with different atoms of smaller size, the bonds can relax close to their optimal distance. This leads naturally to the appearance of core-shell polyicosahedra. In Ag-Cu, Ag-Ni and Ag-Pd the formation of these structures is reinforced by the tendency of Ag atoms to surface segregation. A similar mechanism of structural relaxation, originating from the interplay of cluster geometry and bond order - bond length correlation, is also the cause of the destabilization of icosahedral structures in pure Pt and Au clusters . In these clusters, the compressed inner atoms of the icosahedra can relax because of the formation of rosette structures at vertices in the outer layer.

  9. Evaporation of binary mixtures in microgravity

    Science.gov (United States)

    Girgis, Morris; Matta, Nabil; Kolli, Kiran; Brown, Leon; Chubb, Kevin

    1995-01-01

    The motivation of this research is to obtain a better understanding of phase-change heat transfer within single and binary liquid meniscii, both in 1-g and 0-g environments. During phase 1 and part of phase 2, in a glass test cell with an inclined heated plate, 1-6 experiments on pentane with additions of decane up to 3% were conducted to determine the optimum concentration that will exhibit the maximum heat transfer and stability. During phase 2 emphasis was given to explore fundamental research issues and to ultimately develop a reliable capillary pumped loop (CPL) device for low gravity. In related experimental work, it was found that thermocapillary stresses near the contract line could result in a degraded wettability which ultimately could explain the observed failure of CPL devices in zero-gravity environment. Therefore, the current experimental effort investigates the effect of adding binary constituents in improving the thermocapillary characteristics near the contact line within the loop configuration. Achievements during second phase include: (1) Further enhancement of Central State University's Microgravity Laboratory by adding or improving upon capabilities of photography, video imaging, fluid visualization, and general experimental testing capabilities; (2) Experimental results for the inclined plate cell; (3) Modeling effort with a detailed scaling analysis; (4) Additional testing with a tube loop configuration to extend experimental work by Dickens, et al.; (5) Fabrication of a capillary loop to be tested using binary fluid (pentane/decane). The device that has been recently completed will be set up horizontally so that the effect of gravity on the performance is negligible. Testing will cover a wide range of parameters such as decane/pentane concentration, heat input value, heat input location (below or above meniscus), and loop temperature.

  10. Disordered multihyperuniformity derived from binary plasmas

    Science.gov (United States)

    Lomba, Enrique; Weis, Jean-Jacques; Torquato, Salvatore

    2018-01-01

    Disordered multihyperuniform many-particle systems are exotic amorphous states that allow exquisite color sensing capabilities due to their anomalous suppression of density fluctuations for distinct subsets of particles, as recently evidenced in photoreceptor mosaics in avian retina. Motivated by this biological finding, we present a statistical-mechanical model that rigorously achieves disordered multihyperuniform many-body systems by tuning interactions in binary mixtures of nonadditive hard-disk plasmas. We demonstrate that multihyperuniformity competes with phase separation and stabilizes a clustered phase. Our work provides a systematic means to generate disordered multihyperuniform solids, and hence lays the groundwork to explore their potentially unique photonic, phononic, electronic, and transport properties.

  11. Diffusive flux of energy in binary mixtures

    International Nuclear Information System (INIS)

    Sampaio, R.S.

    1976-04-01

    The diffusive flux of energy j tilde is studied through the reduced diffusive flux of energy K tilde, which obeys equations of the form: sim(delta K tilde/delta grad rho sub(α))= sim(delta K tilde/delta grad theta)=0. By a representation theorem, herein proved, is obtained a general representation for K tilde which is simplified, for the case of binary mixtures, using the principle of objectivity. Some consequences of this representation are discussed such as the symmetry of the partial stresses T 1 tilde and T 2 tilde and the difference between the normal stresses [pt

  12. Dynamic Binary Modification Tools, Techniques and Applications

    CERN Document Server

    Hazelwood, Kim

    2011-01-01

    Dynamic binary modification tools form a software layer between a running application and the underlying operating system, providing the powerful opportunity to inspect and potentially modify every user-level guest application instruction that executes. Toolkits built upon this technology have enabled computer architects to build powerful simulators and emulators for design-space exploration, compiler writers to analyze and debug the code generated by their compilers, software developers to fully explore the features, bottlenecks, and performance of their software, and even end-users to extend

  13. in Binary Liquid Mixtures of Ethyl benzoate

    Directory of Open Access Journals (Sweden)

    Shaik Babu

    2012-01-01

    Full Text Available Ultrasonic velocity is measured at 2MHz frequency in the binary mixtures of Ethyl Benzoate with 1-Propanol, 1-Butanol, 1-Pentanol and theoretical values of ultrasonic velocity have been evaluated at 303K using Nomoto's relation, Impedance relation, Ideal mixture relation, Junjie's method and free length theory. Theoretical values are compared with the experimental values and the validity of the theories is checked by applying the chi-square test for goodness of fit and by calculating the average percentage error (APE. A good agreement has been found between experimental and Nomoto’s ultrasonic velocity.

  14. A unified kinetic approach to binary nucleation

    Energy Technology Data Exchange (ETDEWEB)

    Kevrekidis, P.G. [Department of Physics, Rutgers University, 136 Frelinghuysen Road]|[E.O.H.S.I., Rutgers University]|[UMDNJ, 170 Frelinghuysen Road, Piscataway, New Jersey 08854-8019 (United States); Lazaridis, M. [Norwegian Institute for Air Research (NILU), Instittutvein 18, P. O. Box 100, N-2007 Kjeller (Norway); Drossinos, Y. [European Commission, Joint Research Centre, I-21020 Ispra (Vatican City State, Holy See) (Italy); Georgopoulos, P.G. [E.O.H.S.I., Rutgers University]|[UMDNJ, 170 Frelinghuysen Road, Piscataway, New Jersey 08854 (United States)

    1999-11-01

    Two different methods to calculate the steady-state nucleation rate in heteromolecular systems proposed by Stauffer (1976) and Langer (1969) are analyzed. Their mathematical equivalence is explicitly demonstrated, thereby obtaining a generic expression for the rate of binary nucleation. Its numerical evaluation does not entail rotation of the coordinate system at the saddle point, but it only requires data in the natural coordinate system of number fluctuations, namely molecular impingement rates, the droplet free energy and its second order derivatives at the saddle point, and the total density of condensible vapors. {copyright} {ital 1999 American Institute of Physics.}

  15. Binary breeder reactor with annular core

    International Nuclear Information System (INIS)

    Nascimento, J.A. do; Ishiguro, Y.

    1988-01-01

    Characteristics of a 1200 MWe binary breeder reactor with annular core fueled with metallic 233 U- 238 U-Zr, Pu- 238 U-Zr and Th in the blankets have been analyzed. The Doppler effect is small as expected in a metal fueled fast reactor. The sodium void reactivity is, in general, smaller than in homogeneous fast reactors fueled with metallic fuel and with 1 m core height. The worths of available control is high and there is a large shutdown margin throughout the operational cycle. There are flexibility in blankets fueling in the two cycles, uranium and thorium, with doubling times of about 20 years. (author) [pt

  16. Burnup characteristics of binary breeder reactors

    International Nuclear Information System (INIS)

    Dias, A.F.; Nascimento, J.A. do; Ishiguro, Y.

    1983-01-01

    Burnup calculations of a binary breeder reactor have been done for two cases of fueling. In one case the U 233 /TH fueled inner core and the Pu/U-fueled outer core have the same number of fuel assemblies. In the other case two outermost rings in the inner core are Pu/U-fueled. The second case is considered for an initial phase of thorim cycle introduction when the supply of U 233 could be limited. Results show an efficient breeding on the thorium cycle in both cases. (Author) [pt

  17. Pycnonuclear reaction rates for binary ionic mixtures

    Science.gov (United States)

    Ichimaru, S.; Ogata, S.; Van Horn, H. M.

    1992-01-01

    Through a combination of compositional scaling arguments and examinations of Monte Carlo simulation results for the interparticle separations in binary-ionic mixture (BIM) solids, we have derived parameterized expressions for the BIM pycnonuclear rates as generalizations of those in one-component solids obtained previously by Salpeter and Van Horn and by Ogata et al. We have thereby discovered a catalyzing effect of the heavier elements, which enhances the rates of reactions among the lighter elements when the charge ratio exceeds a critical value of approximately 2.3.

  18. HD 161306: a radiatively interacting Be binary?

    Czech Academy of Sciences Publication Activity Database

    Koubský, Pavel; Kotková, Lenka; Kraus, Michaela; Yang, S.; Šlechta, Miroslav; Harmanec, P.; Wolf, M.; Votruba, Viktor; Kubát, Jiří; Kubátová, Brankica; Niemczura, E.; Škoda, Petr

    2014-01-01

    Roč. 567, July (2014), A57/1-A57/4 ISSN 0004-6361 R&D Projects: GA ČR(CZ) GA14-21373S; GA MŠk LG14026 Grant - others:ESA(XE) ESA-PECS project no. 98058; GA ČR(CZ) GAP209/10/0715 Program:GA Institutional support: RVO:67985815 Keywords : binaries: spectroscopic * stars: emission -line * Be: stars Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.378, year: 2014

  19. The Boundary Layer in compact binaries

    OpenAIRE

    Hertfelder, Marius; Kley, Wilhelm; Suleimanov, Valery; Werner, Klaus

    2013-01-01

    Disk accretion onto stars leads to the formation of a Boundary Layer (BL) near the stellar surface where the disk makes contact with the star. Albeit a large fraction of the total luminosity of the system originates from this tiny layer connecting the accretion disk and the accreting object, its structure has not been fully understood yet. It is the aim of this work, to obtain more insight into the Boundary Layer around the white dwarf in compact binary systems. There are still many uncertain...

  20. Binary DNA nanostructures for data encryption.

    Directory of Open Access Journals (Sweden)

    Ken Halvorsen

    Full Text Available We present a simple and secure system for encrypting and decrypting information using DNA self-assembly. Binary data is encoded in the geometry of DNA nanostructures with two distinct conformations. Removing or leaving out a single component reduces these structures to an encrypted solution of ssDNA, whereas adding back this missing "decryption key" causes the spontaneous formation of the message through self-assembly, enabling rapid read out via gel electrophoresis. Applications include authentication, secure messaging, and barcoding.

  1. NONLINEAR TIDES IN CLOSE BINARY SYSTEMS

    International Nuclear Information System (INIS)

    Weinberg, Nevin N.; Arras, Phil; Quataert, Eliot; Burkart, Josh

    2012-01-01

    We study the excitation and damping of tides in close binary systems, accounting for the leading-order nonlinear corrections to linear tidal theory. These nonlinear corrections include two distinct physical effects: three-mode nonlinear interactions, i.e., the redistribution of energy among stellar modes of oscillation, and nonlinear excitation of stellar normal modes by the time-varying gravitational potential of the companion. This paper, the first in a series, presents the formalism for studying nonlinear tides and studies the nonlinear stability of the linear tidal flow. Although the formalism we present is applicable to binaries containing stars, planets, and/or compact objects, we focus on non-rotating solar-type stars with stellar or planetary companions. Our primary results include the following: (1) The linear tidal solution almost universally used in studies of binary evolution is unstable over much of the parameter space in which it is employed. More specifically, resonantly excited internal gravity waves in solar-type stars are nonlinearly unstable to parametric resonance for companion masses M' ∼> 10-100 M ⊕ at orbital periods P ≈ 1-10 days. The nearly static 'equilibrium' tidal distortion is, however, stable to parametric resonance except for solar binaries with P ∼ 3 [P/10 days] for a solar-type star) and drives them as a single coherent unit with growth rates that are a factor of ≈N faster than the standard three-wave parametric instability. These are local instabilities viewed through the lens of global analysis; the coherent global growth rate follows local rates in the regions where the shear is strongest. In solar-type stars, the dynamical tide is unstable to this collective version of the parametric instability for even sub-Jupiter companion masses with P ∼< a month. (4) Independent of the parametric instability, the dynamical and equilibrium tides excite a wide range of stellar p-modes and g-modes by nonlinear inhomogeneous forcing

  2. X-ray binaries, part 1

    International Nuclear Information System (INIS)

    Hammerschlag-Hensberge, G.C.M.J.

    1977-01-01

    Optical observations of X-ray binaries and their interpretation are described. A number of early-type stars which are identified as companions of X-ray sources are photometrically and spectroscopically observed. The spectra were obtained with the coude spectrograph attached to the 1.5 m telescope of the European Southern Observatory, La Silla, Chile. Registrations of the spectra were made with the Faul-Coradi microphotometer of the Observatory at Utrecht. To study radial velocity variations, the positions of the spectral lines were measured with the Grant comparator of the University of Groningen

  3. Electrostatic collection efficiency in binary fluidized beds

    Energy Technology Data Exchange (ETDEWEB)

    Romero, A.; Guardiola, J.; Rincon, J. (Univ. of Alcala de Henares, Madrid (Spain))

    1992-01-01

    Fluidized beds of binary mixtures have been used to clean air streams containing dust particles in the size range 4.4 to 14 {mu}m. All beds were composed of glass beads and plastic granules mixed at different proportions. The effect on the electrostatic collection efficiency of a number of variables, including type of collecting mixture, bed height, and gas velocity, was examined. To calculate the single collection efficiency from experimental results, an early model proposed by Clift et al. was used. The electrostatic collection efficiency was determined by subtracting the other individual mechanism efficiencies from the single particle collection efficiency.

  4. Gas filtration in binary fluidized beds

    Energy Technology Data Exchange (ETDEWEB)

    Rincon, J. (Univ. de Castilla-La Mancha, Ciudad Real (Spain)); Guardiola, J.; Romero, A. (Univ. de Alcala de Henares, Madrid (Spain))

    1992-12-01

    A systematic experimental study of aerosol filtration in a binary fluidized bed of dielectric material is carried out. Measurements of the collection efficiency when such parameters as gas velocity, bed height, collecting mixture, and column diameter are varied over a wide range have been made. Experimental evidence is given to show that charges generated naturally by triboelectrification of the bed dielectric particles can considerably increase the efficiency of such beds. Furthermore, it is demonstrated that a proper choice of the fluidized mixture can significantly improve the performance of such filters.

  5. On Binary-State Phyllosilicate Automata

    Science.gov (United States)

    Adamatzky, Andrew

    Phyllosilicate is a sheet of silicate tetrahedra bound by basal oxygens. A phyllosilicate automaton is a regular network of finite state machines, which mimics the structure of phyllosilicate. A node of a binary state phyllosilicate automaton takes states 0 and 1. A node updates its state in discrete time depending on a sum of states of its three (silicon nodes) or six (oxygen nodes) closest neighbors. We phenomenologically select the main types of patterns generated by phyllosilicate automata based on their shape: convex and concave hulls, almost circularly growing patterns, octagonal patterns, and those with dendritic growth; and, the patterns' interior: disordered, solid, labyrinthine. We also present the rules exhibiting traveling localizations.

  6. Binary Stars and Globular Cluster Dynamics

    Science.gov (United States)

    Fregeau, John M.

    2008-05-01

    In this brief proceedings article I summarize the review talk I gave at the IAU 246 meeting in Capri, Italy, glossing over the well-known results from the literature, but paying particular attention to new, previously unpublished material. This new material includes a careful comparison of the apparently contradictory results of two independent methods used to simulate the evolution of binary populations in dense stellar systems (the direct N-body method of Hurley, Aarseth, & Shara (2007) and the approximate Monte Carlo method of Ivanova et al. (2005)), that shows that the two methods may not actually yield contradictory results, and suggests future work to more directly compare the two methods.

  7. Physical Structure of Four Symbiotic Binaries

    Science.gov (United States)

    Kenyon, Scott J. (Principal Investigator)

    1997-01-01

    Disk accretion powers many astronomical objects, including pre-main sequence stars, interacting binary systems, and active galactic nuclei. Unfortunately, models developed to explain the behavior of disks and their surroundings - boundary layers, jets, and winds - lack much predictive power, because the physical mechanism driving disk evolution - the viscosity - is not understood. Observations of many types of accreting systems are needed to constrain the basic physics of disks and provide input for improved models. Symbiotic stars are an attractive laboratory for studying physical phenomena associated with disk accretion. These long period binaries (P(sub orb) approx. 2-3 yr) contain an evolved red giant star, a hot companion, and an ionized nebula. The secondary star usually is a white dwarf accreting material from the wind of its red giant companion. A good example of this type of symbiotic is BF Cygni: our analysis shows that disk accretion powers the nuclear burning shell of the hot white dwarf and also manages to eject material perpendicular to the orbital plane (Mikolajewska, Kenyon, and Mikolajewski 1989). The hot components in other symbiotic binaries appear powered by tidal overflow from a very evolved red giant companion. We recently completed a study of CI Cygni and demonstrated that the accreting secondary is a solar-type main sequence star, rather than a white dwarf (Kenyon et aL 1991). This project continued our study of symbiotic binary systems. Our general plan was to combine archival ultraviolet and optical spectrophotometry with high quality optical radial velocity observations to determine the variation of line and continuum sources as functions of orbital phase. We were very successful in generating orbital solutions and phasing UV+optical spectra for five systems: AG Dra, V443 Her, RW Hya, AG Peg, and AX Per. Summaries of our main results for these systems appear below. A second goal of our project was to consider general models for the

  8. Binary Modulation Formats in Optical Access Networks

    Directory of Open Access Journals (Sweden)

    Vladimir Tejkal

    2010-01-01

    Full Text Available In this paper the binary modulation formats and their application in passive optical networks have been discussed. Passive optical networks are characterized by dividing the optical signal between several end users by using passive splitters, which added a significant attenuation to the network. The performance of the selected modulation formats, depending on the transmitter power in order to verify that there is no signal distortion, has been examined in our simulations. A minimal error rate of the system for each modulation format has been also examined. Finding a suitable modulation, which would allow extension of the distance and splitting ration in current passive optical networks, has been the main aim.

  9. Astronomical Plate Archives and Binary Blazars Studies

    Czech Academy of Sciences Publication Activity Database

    Hudec, René

    2011-01-01

    Roč. 32, 1-2 (2011), s. 91-95 ISSN 0250-6335. [Conference on Multiwavelength Variability of Blazars. Guangzhou, 22,09,2010-24,09,2010] R&D Projects: GA ČR GA205/08/1207 Grant - others:GA ČR(CZ) GA102/09/0997; MŠMT(CZ) ME09027 Institutional research plan: CEZ:AV0Z10030501 Keywords : astronomical plates * plate archives archives * binary blazars Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 0.400, year: 2011

  10. Generating quality tetrahedral meshes from binary volumes

    DEFF Research Database (Denmark)

    Hansen, Mads Fogtmann; Bærentzen, Jakob Andreas; Larsen, Rasmus

    2010-01-01

    use these measures to generate high quality meshes from signed distance maps. This paper also describes an approach for computing (smooth) signed distance maps from binary volumes as volumetric data in many cases originate from segmentation of objects from imaging techniques such as CT, MRI, etc...... generation algorithm on four examples (torus, Stanford dragon, brain mask, and pig back) and report the dihedral angle, aspect ratio and radius-edge ratio. Even though, the algorithm incorporates none of the mentioned quality measures in the compression stage it receives a good score for all these measures...

  11. Binary magnetic structures in HoEr

    DEFF Research Database (Denmark)

    Howard, B.K.; Bohr, J.

    1991-01-01

    The magnetic structure of a single crystal of the rare earth random alloy Ho50% Er50% has been investigated by elastic neutron diffraction measurements in the temperature range 120-10 K. Three distinct magnetic phases are identified below the Neel temperature of 104 K. The high-temperature phase...... observed between 104 K and 47.5 K is a binary magnetic structure where the holmium and erbium moments belong to different modulated c-axis spirals. The intermediate-temperature phase between 47.5 K and 35 K is a simple basal plane spiral. Below 35 K, the measurements suggest a ferrimagnetic structure...

  12. WIYN Open Cluster Study: Tidal Interactions in Solar type Binaries

    OpenAIRE

    Meibom, S.; Mathieu, R. D.

    2003-01-01

    We present an ongoing study on tidal interactions in late-type close binary stars. New results on tidal circularization are combined with existing data to test and constrain theoretical predictions of tidal circularization in the pre-main-sequence (PMS) phase and throughout the main-sequence phase of stellar evolution. Current data suggest that tidal circularization during the PMS phase sets the tidal cutoff period for binary populations younger than ~1 Gyr. Binary populations older than ~1 G...

  13. Optimal static and dynamic recycling of defective binary devices

    Science.gov (United States)

    Challet, Damien; Pérez Castillo, Isaac

    2004-11-01

    The binary defect combination problem consists in finding a fully working subset from a given ensemble of imperfect binary components. We determine the typical properties of the model using methods of statistical mechanics, in particular the region in the parameter space where there is almost surely at least one fully working subset. Dynamic recycling of a flux of imperfect binary components leads to zero wastage.

  14. CNN-aware Binary Map for General Semantic Segmentation

    OpenAIRE

    Ravanbakhsh, Mahdyar; Mousavi, Hossein; Nabi, Moin; Rastegari, Mohammad; Regazzoni, Carlo

    2016-01-01

    In this paper we introduce a novel method for general semantic segmentation that can benefit from general semantics of Convolutional Neural Network (CNN). Our segmentation proposes visually and semantically coherent image segments. We use binary encoding of CNN features to overcome the difficulty of the clustering on the high-dimensional CNN feature space. These binary codes are very robust against noise and non-semantic changes in the image. These binary encoding can be embedded into the CNN...

  15. Detection of Contact Binaries Using Sparse High Phase Angle Lightcurves

    OpenAIRE

    Lacerda, Pedro

    2007-01-01

    We show that candidate contact binary asteroids can be efficiently identified from sparsely sampled photometry taken at phase angles >60deg. At high phase angle, close/contact binary systems produce distinctive lightcurves that spend most of the time at maximum or minimum (typically >1mag apart) brightness with relatively fast transitions between the two. This means that a few (~5) sparse observations will suffice to measure the large range of variation and identify candidate contact binary s...

  16. Search for forced oscillations in binaries. 4. The eclipsing binary V436 Per revisited

    Czech Academy of Sciences Publication Activity Database

    Janík, J.; Harmanec, Petr; Lehmann, H.; Yang, S.; Božić, H.; Ak, H.; Hadrava, Petr; Eenens, P.; Ruždjak, D.; Sudar, D.; Hubený, I.; Linnell, A. P.

    2003-01-01

    Roč. 408, č. 2 (2003), s. 611-619 ISSN 0004-6361 R&D Projects: GA ČR GA205/96/0162; GA AV ČR KSK2043105 Institutional research plan: CEZ:AV0Z1003909 Keywords : binaries stars * eclipsing * spectroscopic Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 3.843, year: 2003

  17. A Bicultural Researcher's Reflections on Ethical Research Practices With Muslim Immigrant Women: Merging Boundaries and Challenging Binaries.

    Science.gov (United States)

    Salma, Jordana; Ogilvie, Linda; Keating, Norah; Hunter, Kathleen F

    Bicultural researchers are well positioned to identify tensions, disrupt binaries of positions, and reconcile differences across cultural contexts to ensure ethical research practices. This article focuses on a bicultural researcher's experiences of ethically important moments in research activities with Muslim immigrant women. Three ethical principles of respect, justice, and concern for welfare are highlighted, revealing the implications of binary constructions of identity, the value of situated knowledge in creating ethical research practices, and the need to recognize agency as a counterforce to oppressive narratives about Muslim women.

  18. Physical properties and catalog of EW-type eclipsing binaries observed by LAMOST

    Science.gov (United States)

    Qian, Sheng-Bang; He, Jia-Jia; Zhang, Jia; Zhu, Li-Ying; Shi, Xiang-Dong; Zhao, Er-Gang; Zhou, Xiao

    2017-08-01

    EW-type eclipsing binaries (hereafter called EWs) are strong interacting systems in which both component stars usually fill their critical Roche lobes and share a common envelope. Numerous EWs were discovered by several deep photometric surveys and there were about 40 785 EW-type binary systems listed in the international variable star index (VSX) by 2017 March 13. 7938 of them were observed with LAMOST by 2016 November 30 and their spectral types were identified. Stellar atmospheric parameters of 5363 EW-type binary stars were determined based on good spectroscopic observations. In the paper, those EWs are cataloged and their properties are analyzed. The distributions of orbital period (P), effective temperature (T), gravitational acceleration (log(g)), metallicity ([Fe/H]) and radial velocity (RV) are presented for these observed EW-type systems. It is shown that about 80.6% of sample stars have metallicity below zero, indicating that EW-type systems are old stellar populations. This is in agreement with the conclusion that EW binaries are formed from moderately close binaries through angular momentum loss via magnetic braking that takes a few hundred million to a few billion years. The unusually high metallicities of a few percent of EWs may be caused by contamination of material from the evolution of unseen neutron stars or black holes in the systems. The correlations between orbital period and effective temperature, gravitational acceleration and metallicity are presented and their scatters are mainly caused by (i) the presence of third bodies and (ii) sometimes wrongly determined periods. It is shown that some EWs contain evolved component stars and the physical properties of EWs mainly depend on their orbital periods. It is found that extremely short-period EWs may be older than their long-period cousins because they have lower metallicities. This reveals that they have a longer timescale of pre-contact evolution and their formation and evolution aremainly

  19. Absolute Dimensions of Contact Binary Stars in Baade Window

    Directory of Open Access Journals (Sweden)

    Young Woon Kang

    1999-12-01

    Full Text Available The light curves of the representative 6 contact binary stars observed by OGLE Project of searching for dark matter in our Galaxy have been analyzed by the method of the Wilson and Devinney Differential Correction to find photometric solutions. The orbital inclinations of these binaries are in the range of 52 deg - 69 deg which is lower than that of the solar neighborhood binaries. The Roche lobe filling factor of these binaries are distributed in large range of 0.12 - 0.90. Since absence of spectroscopic observations for these binaries we have found masses of the 6 binary systems based on the intersection between Kepler locus and locus derived from Vandenberg isochrones in the mass - luminosity plane. Then absolute dimensions and distances have been found by combining the masses and the photometric solutions. The distances of the 6 binary systems are distributed in the range of 1 kpc - 6 kpc. This distance range is the limiting range where the contact binaries which have period shorter than a day are visible. Most contact binaries discovered in the Baade window do not belong to the Galactic bulge.

  20. Inferences about binary stellar populations using gravitational wave observations

    Science.gov (United States)

    Wysocki, Daniel; Gerosa, Davide; O'Shaughnessy, Richard; Belczynski, Krzysztof; Gladysz, Wojciech; Berti, Emanuele; Kesden, Michael; Holz, Daniel

    2018-01-01

    With the dawn of gravitational wave astronomy, enabled by the LIGO and Virgo interferometers, we now have a new window into the Universe. In the short time these detectors have been in use, multiple confirmed detections of gravitational waves from compact binary coalescences have been made. Stellar binary systems are one of the likely progenitors of the observed compact binary sources. If this is indeed the case, then we can use measured properties of these binary systems to learn about their progenitors. We will discuss the Bayesian framework in which we make these inferences, and results which include mass and spin distributions.

  1. Modern geothermal power: Binary cycle geothermal power plants

    Science.gov (United States)

    Tomarov, G. V.; Shipkov, A. A.

    2017-04-01

    In the second part of the review of modern geothermal power plant technologies and equipment, a role, a usage scale, and features of application of binary cycle plants in the geothermal economy are considered. Data on the use of low-boiling fluids, their impact on thermal parameters and performance of geothermal binary power units are presented. A retrospective of the use of various low-boiling fluids in industrial binary power units in the world since 1965 is shown. It is noted that the current generating capacity of binary power units running on hydrocarbons is equal to approximately 82.7% of the total installed capacity of all the binary power units in the world. At the same time over the past 5 years, the total installed capacity of geothermal binary power units in 25 countries increased by more than 50%, reaching nearly 1800 MW (hereinafter electric power is indicated), by 2015. A vast majority of the existing binary power plants recovers heat of geothermal fluid in the range of 100-200°C. Binary cycle power plants have an average unit capacity of 6.3 MW, 30.4 MW at single-flash power plants, 37.4 MW at double-flash plants, and 45.4 MW at power plants working on superheated steam. The largest binary cycle geothermal power plants (GeoPP) with an installed capacity of over 60 MW are in operation in the United States and the Philippines. In most cases, binary plants are involved in the production process together with a steam cycle. Requirements to the fluid ensuring safety, reliability, and efficiency of binary power plants using heat of geothermal fluid are determined, and differences and features of their technological processes are shown. Application of binary cycle plants in the technological process of combined GeoPPs makes it possible to recover geothermal fluid more efficiently. Features and advantages of binary cycle plants using multiple fluids, including a Kalina Cycle, are analyzed. Technical characteristics of binary cycle plants produced by various

  2. An Economic Evaluation of Binary Cycle Geothermal Electricity Production

    National Research Council Canada - National Science Library

    Fitzgerald, Crissie

    2003-01-01

    .... Variables such as well flow rate, geothermal gradient and electricity prices were varied to study their influence on the economic payback period for binary cycle geothermal electricity production...

  3. Improving geothermal power plants with a binary cycle

    Science.gov (United States)

    Tomarov, G. V.; Shipkov, A. A.; Sorokina, E. V.

    2015-12-01

    The recent development of binary geothermal technology is analyzed. General trends in the introduction of low-temperature geothermal sources are summarized. The use of single-phase low-temperature geothermal fluids in binary power plants proves possible and expedient. The benefits of power plants with a binary cycle in comparison with traditional systems are shown. The selection of the working fluid is considered, and the influence of the fluid's physicochemical properties on the design of the binary power plant is discussed. The design of binary power plants is based on the chemical composition and energy potential of the geothermal fluids and on the landscape and climatic conditions at the intended location. Experience in developing a prototype 2.5 MW Russian binary power unit at Pauzhetka geothermal power plant (Kamchatka) is outlined. Most binary systems are designed individually for a specific location. Means of improving the technology and equipment at binary geothermal power plants are identified. One option is the development of modular systems based on several binary systems that employ the heat from the working fluid at different temperatures.

  4. Flow within an evaporating glycerol-water binary droplet: Segregation by gravitational effects

    Science.gov (United States)

    Li, Yaxing; Lv, Pengyu; Diddens, Christian; Wijshoff, Herman; Versluis, Michel; Lohse, Detlef

    2017-11-01

    The flow within an evaporating glycerol-water binary droplet with Bond number Bo PIV for both sessile and pendant droplets during evaporation process, which surprisingly show opposite radial flow directions - inward and outward, respectively. This observation clearly reveals that gravitational effects play a crucial role in controlling flow fields within the evaporating droplets. We theoretically analyse that this gravity-driven effect is caused by density gradients due to the local concentration difference of glycerol within the droplet triggered by different volatilities of the two components during evaporation. Finally, for confirmation, we numerically simulate the process, revealing a good agreement with experimental results.

  5. Stable Conic-Helical Orbits of Planets around Binary Stars: Analytical Results

    Science.gov (United States)

    Oks, E.

    2015-05-01

    stability of the conic-helical planetary orbits, as well as on the transitability. Then for the general case, we also show that the power of the gravitational radiation due to this planet can be comparable or even exceed the power of the gravitational radiation due to the stars in the binary. This means that in the future, with a progress of gravitational wave detectors, the presence of a planet in a conic-helical orbit could be revealed by the noticeably enhanced gravitational radiation from the binary star system.

  6. TIDAL INTERACTIONS IN MERGING WHITE DWARF BINARIES

    International Nuclear Information System (INIS)

    Piro, Anthony L.

    2011-01-01

    The recently discovered system J0651 is the tightest known detached white dwarf (WD) binary. Since it has not yet initiated Roche-lobe overflow, it provides a relatively clean environment for testing our understanding of tidal interactions. I investigate the tidal heating of each WD, parameterized in terms of its tidal Q parameter. Assuming that the heating can be radiated efficiently, the current luminosities are consistent with Q 1 ∼ 7 x 10 10 and Q 2 ∼ 2 x 10 7 , for the He and C/O WDs, respectively. Conversely, if the observed luminosities are merely from the cooling of the WDs, these estimated values of Q represent the upper limits. A large Q 1 for the He WD means its spin velocity will be slower than that expected if it was tidally locked, which, since the binary is eclipsing, may be measurable via the Rossiter-McLaughlin effect. After one year, gravitational wave emission shifts the time of eclipses by 5.5 s, but tidal interactions cause the orbit to shrink more rapidly, changing the time by up to an additional 0.3 s after a year. Future eclipse timing measurements may therefore infer the degree of tidal locking.

  7. Structure Defect Property Relationships in Binary Intermetallics

    Science.gov (United States)

    Medasani, Bharat; Ding, Hong; Chen, Wei; Persson, Kristin; Canning, Andrew; Haranczyk, Maciej; Asta, Mark

    2015-03-01

    Ordered intermetallics are light weight materials with technologically useful high temperature properties such as creep resistance. Knowledge of constitutional and thermal defects is required to understand these properties. Vacancies and antisites are the dominant defects in the intermetallics and their concentrations and formation enthalpies could be computed by using first principles density functional theory and thermodynamic formalisms such as dilute solution method. Previously many properties of the intermetallics such as melting temperatures and formation enthalpies were statistically analyzed for large number of intermetallics using structure maps and data mining approaches. We undertook a similar exercise to establish the dependence of the defect properties in binary intermetallics on the underlying structural and chemical composition. For more than 200 binary intermetallics comprising of AB, AB2 and AB3 structures, we computed the concentrations and formation enthalpies of vacancies and antisites in a small range of stoichiometries deviating from ideal stoichiometry. The calculated defect properties were datamined to gain predictive capabilities of defect properties as well as to classify the intermetallics for their suitability in high-T applications. Supported by the US DOE under Contract No. DEAC02-05CH11231 under the Materials Project Center grant (Award No. EDCBEE).

  8. GRAVITATIONAL MEMORY IN BINARY BLACK HOLE MERGERS

    International Nuclear Information System (INIS)

    Pollney, Denis; Reisswig, Christian

    2011-01-01

    In addition to the dominant oscillatory gravitational wave signals produced during binary inspirals, a non-oscillatory component arises from the nonlinear 'memory' effect, sourced by the emitted gravitational radiation. The memory grows significantly during the late-inspiral and merger, modifying the signal by an almost step-function profile, and making it difficult to model by approximate methods. We use numerical evolutions of binary black holes (BHs) to evaluate the nonlinear memory during late-inspiral, merger, and ringdown. We identify two main components of the signal: the monotonically growing portion corresponding to the memory, and an oscillatory part which sets in roughly at the time of merger and is due to the BH ringdown. Counterintuitively, the ringdown is most prominent for models with the lowest total spin. Thus, the case of maximally spinning BHs anti-aligned to the orbital angular momentum exhibits the highest signal-to-noise ratio (S/N) for interferometric detectors. The largest memory offset, however, occurs for highly spinning BHs, with an estimated value of h tot 20 ≅ 0.24 in the maximally spinning case. These results are central to determining the detectability of nonlinear memory through pulsar timing array measurements.

  9. Multilevel Cross-Dependent Binary Longitudinal Data

    KAUST Repository

    Serban, Nicoleta

    2013-10-16

    We provide insights into new methodology for the analysis of multilevel binary data observed longitudinally, when the repeated longitudinal measurements are correlated. The proposed model is logistic functional regression conditioned on three latent processes describing the within- and between-variability, and describing the cross-dependence of the repeated longitudinal measurements. We estimate the model components without employing mixed-effects modeling but assuming an approximation to the logistic link function. The primary objectives of this article are to highlight the challenges in the estimation of the model components, to compare two approximations to the logistic regression function, linear and exponential, and to discuss their advantages and limitations. The linear approximation is computationally efficient whereas the exponential approximation applies for rare events functional data. Our methods are inspired by and applied to a scientific experiment on spectral backscatter from long range infrared light detection and ranging (LIDAR) data. The models are general and relevant to many new binary functional data sets, with or without dependence between repeated functional measurements.

  10. ACOUSTIC EFFECTS ON BINARY AEROELASTICITY MODEL

    Directory of Open Access Journals (Sweden)

    Kok Hwa Yu

    2011-10-01

    Full Text Available Acoustics is the science concerned with the study of sound. The effects of sound on structures attract overwhelm interests and numerous studies were carried out in this particular area. Many of the preliminary investigations show that acoustic pressure produces significant influences on structures such as thin plate, membrane and also high-impedance medium like water (and other similar fluids. Thus, it is useful to investigate the structure response with the presence of acoustics on aircraft, especially on aircraft wings, tails and control surfaces which are vulnerable to flutter phenomena. The present paper describes the modeling of structural-acoustic interactions to simulate the external acoustic effect on binary flutter model. Here, the binary flutter model which illustrated as a rectangular wing is constructed using strip theory with simplified unsteady aerodynamics involving flap and pitch degree of freedom terms. The external acoustic excitation, on the other hand, is modeled using four-node quadrilateral isoparametric element via finite element approach. Both equations then carefully coupled and solved using eigenvalue solution. The mentioned approach is implemented in MATLAB and the outcome of the simulated result are later described, analyzed and illustrated in this paper.

  11. Binary rf pulse compression experiment at SLAC

    International Nuclear Information System (INIS)

    Lavine, T.L.; Spalek, G.; Farkas, Z.D.; Menegat, A.; Miller, R.H.; Nantista, C.; Wilson, P.B.

    1990-06-01

    Using rf pulse compression it will be possible to boost the 50- to 100-MW output expected from high-power microwave tubes operating in the 10- to 20-GHz frequency range, to the 300- to 1000-MW level required by the next generation of high-gradient linacs for linear for linear colliders. A high-power X-band three-stage binary rf pulse compressor has been implemented and operated at the Stanford Linear Accelerator Center (SLAC). In each of three successive stages, the rf pulse-length is compressed by half, and the peak power is approximately doubled. The experimental results presented here have been obtained at low-power (1-kW) and high-power (15-MW) input levels in initial testing with a TWT and a klystron. Rf pulses initially 770 nsec long have been compressed to 60 nsec. Peak power gains of 1.8 per stage, and 5.5 for three stages, have been measured. This corresponds to a peak power compression efficiency of about 90% per stage, or about 70% for three stages, consistent with the individual component losses. The principle of operation of a binary pulse compressor (BPC) is described in detail elsewhere. We recently have implemented and operated at SLAC a high-power (high-vacuum) three-stage X-band BPC. First results from the high-power three-stage BPC experiment are reported here

  12. High-quality binary interactome mapping.

    Science.gov (United States)

    Dreze, Matija; Monachello, Dario; Lurin, Claire; Cusick, Michael E; Hill, David E; Vidal, Marc; Braun, Pascal

    2010-01-01

    Physical interactions mediated by proteins are critical for most cellular functions and altogether form a complex macromolecular "interactome" network. Systematic mapping of protein-protein, protein-DNA, protein-RNA, and protein-metabolite interactions at the scale of the whole proteome can advance understanding of interactome networks with applications ranging from single protein functional characterization to discoveries on local and global systems properties. Since the early efforts at mapping protein-protein interactome networks a decade ago, the field has progressed rapidly giving rise to a growing number of interactome maps produced using high-throughput implementations of either binary protein-protein interaction assays or co-complex protein association methods. Although high-throughput methods are often thought to necessarily produce lower quality information than low-throughput experiments, we have recently demonstrated that proteome-scale interactome datasets can be produced with equal or superior quality than that observed in literature-curated datasets derived from large numbers of small-scale experiments. In addition to performing all experimental steps thoroughly and including all necessary controls and quality standards, careful verification of all interacting pairs and validation tests using independent, orthogonal assays are crucial to ensure the release of interactome maps of the highest possible quality. This chapter describes a high-quality, high-throughput binary protein-protein interactome mapping pipeline that includes these features. Copyright © 2010 Elsevier Inc. All rights reserved.

  13. Binary droplet collision at high Weber number.

    Science.gov (United States)

    Pan, Kuo-Long; Chou, Ping-Chung; Tseng, Yu-Jen

    2009-09-01

    By using the techniques developed for generating high-speed droplets, we have systematically investigated binary droplet collision when the Weber number (We) was increased from the range usually tested in previous studies on the order of 10 to a much larger value of about 5100 for water (a droplet at 23 m/s with a diameter of 0.7 mm). Various liquids were also used to explore the effects of viscosity and surface tension. Specifically, beyond the well-known regimes at moderate We's, which exhibited coalescence, separation, and separation followed by satellite droplets, we found different behaviors showing a fingering lamella, separation after fingering, breakup of outer fingers, and prompt splattering into multiple secondary droplets as We was increased. The critical Weber numbers that mark the boundaries between these impact regimes are identified. The specific impact behaviors, such as fingering and prompt splattering or splashing, share essential similarity with those also observed in droplet-surface impacts, whereas substantial variations in the transition boundaries may result from the disparity of the boundary conditions at impacts. To compare the outcomes of both types of collisions, a simple model based on energy conservation was carried out to predict the maximum diameter of an expanding liquid disk for a binary droplet collision. The results oppose the dominance of viscous drag, as proposed by previous studies, as the main deceleration force to effect a Rayleigh-Taylor instability and ensuing periphery fingers, which may further lead to the formations of satellite droplets.

  14. Pattern formation in phase separating binary mixtures.

    Science.gov (United States)

    Sam, Ebie M; Hayase, Yumino; Auernhammer, Günter K; Vollmer, Doris

    2011-08-07

    We experimentally investigate the interplay of thermodynamics with hydrodynamics during phase separation of (quasi-) binary mixtures. Well defined patterns emerge while slowly crossing the cloud point curve. Depending on the material parameters of the experimental system, two distinct scenarios are observed. In quasi-binary mixtures of methanol-hexane patterns appear before macroscopic phase separation sets in. In course of time the patterns turn faint while the overall turbidity of the sample increases until the mixtures become completely turbid. We attribute this pattern formation to a latent heat induced instability resembling a Rayleigh-Bénard instability. This is confirmed by calorimetric data and an estimate of its Rayleigh number. Mixtures of C(4)E(1)-water doped with decane phase separate under heating. After passing the cloud point curve these mixtures first become homogenously turbid. While clearing up, pattern formation is observed. We attribute this type of pattern formation to an interfacial tension induced Bénard-Marangoni instability. The occurrence of the two scenarios is supported by the relevant dimensionless numbers. This journal is © the Owner Societies 2011

  15. Theoretical Bounds of Direct Binary Search Halftoning.

    Science.gov (United States)

    Liao, Jan-Ray

    2015-11-01

    Direct binary search (DBS) produces the images of the best quality among half-toning algorithms. The reason is that it minimizes the total squared perceived error instead of using heuristic approaches. The search for the optimal solution involves two operations: (1) toggle and (2) swap. Both operations try to find the binary states for each pixel to minimize the total squared perceived error. This error energy minimization leads to a conjecture that the absolute value of the filtered error after DBS converges is bounded by half of the peak value of the autocorrelation filter. However, a proof of the bound's existence has not yet been found. In this paper, we present a proof that shows the bound existed as conjectured under the condition that at least one swap occurs after toggle converges. The theoretical analysis also indicates that a swap with a pixel further away from the center of the autocorrelation filter results in a tighter bound. Therefore, we propose a new DBS algorithm which considers toggle and swap separately, and the swap operations are considered in the order from the edge to the center of the filter. Experimental results show that the new algorithm is more efficient than the previous algorithm and can produce half-toned images of the same quality as the previous algorithm.

  16. Inverse halftoning using binary permutation filters.

    Science.gov (United States)

    Kim, Y T; Arce, G R; Grabowski, N

    1995-01-01

    The problem of reconstructing a continuous-tone image given its ordered dithered halftone or its error-diffused halftone image is considered. We develop a modular class of nonlinear filters that can reconstruct the continuous-tone information preserving image details and edges that provide important visual cues. The proposed nonlinear reconstruction algorithms, denoted as binary permutation filters, are based on the space and rank orderings of the halftone samples provided by the multiset permutation of the "on" pixels in a halftone observation window. For a given window size, we obtain a wide range of filters by varying the amount of space-rank ordering information utilized in the estimate. For image reconstructions from ordered dithered halftones, we develop periodically space-varying filters that can account for the periodical nature of the underlying screening process. A class of suboptimal but simpler space-invariant reconstruction filters are also proposed and tested. Constrained LMS type algorithms are employed for the design of reconstruction filters that minimize the reconstruction mean squared error. We present simulations showing that binary permutation filters are modular, robust to image source characteristics, and that they produce high visual quality image reconstruction.

  17. Modeling and analysis of advanced binary cycles

    Energy Technology Data Exchange (ETDEWEB)

    Gawlik, K.

    1997-12-31

    A computer model (Cycle Analysis Simulation Tool, CAST) and a methodology have been developed to perform value analysis for small, low- to moderate-temperature binary geothermal power plants. The value analysis method allows for incremental changes in the levelized electricity cost (LEC) to be determined between a baseline plant and a modified plant. Thermodynamic cycle analyses and component sizing are carried out in the model followed by economic analysis which provides LEC results. The emphasis of the present work is on evaluating the effect of mixed working fluids instead of pure fluids on the LEC of a geothermal binary plant that uses a simple Organic Rankine Cycle. Four resources were studied spanning the range of 265{degrees}F to 375{degrees}F. A variety of isobutane and propane based mixtures, in addition to pure fluids, were used as working fluids. This study shows that the use of propane mixtures at a 265{degrees}F resource can reduce the LEC by 24% when compared to a base case value that utilizes commercial isobutane as its working fluid. The cost savings drop to 6% for a 375{degrees}F resource, where an isobutane mixture is favored. Supercritical cycles were found to have the lowest cost at all resources.

  18. FG-MOS neuron for binary CNN

    Science.gov (United States)

    Flak, Jacek; Laiho, Mika; Halonen, Kari

    2005-06-01

    This paper presents a neuron implementation based on floating-gate MOSFET (FG-MOS) structure. The computation is performed by charge distribution at the input of FG-MOS inverter determining the cell state. There is no current-flow through the interconnections after processing is completed, thus a significant reduction in DC power consumption can be achieved. Such neuron can be used to build a capacitively coupled cellular neural/nonlinear network (CNN) for processing black and white (B/W) images. Although the coupling coefficients are basically implemented with capacitances, this approach provides them with 1-bit programmability. Also the neuron's threshold level can be digitally programmed to four different values. The templates operating on the B/W images can be modified to have only binary-valued {0,1} terms or can be split into such (sequentially run) simple subtasks. Therefore, the presented neuron structure is able to perform the evaluation of almost all B/W templates proposed so far. Exploration of FG-MOS structures can help to understand the implementation problems of capacitively coupled CNNs. Such a situation appears, e.g., in nanoelectronic CNNs composed of single-electron tunneling (SET) transistors, which also deal with B/W images only. Moreover, the binary programmability approach utilized here should help to develop an effective programming scheme for future SET or CMOS-SET hybrid CNN implementations. Along with the neuron structure, its operation description and simulation results of the 8 x 8 network are presented.

  19. Binary self-assembled monolayers modified Au nanoparticles as carriers in biological applications.

    Science.gov (United States)

    Chang, Hsun-Yun; You, Yun-Wen; Liao, Hua-Yang; Shyue, Jing-Jong

    2014-12-01

    Gold nanoparticles (AuNPs) are good nonviral carriers because of their ease of synthesis and conjugation in biochemistry, and self-assembled monolayers (SAMs) provide a tunable system to change their interfacial properties. Using homogeneously mixed carboxylic acid and amine functional groups, a series of surface potentials and isoelectric points (IEPs) could be obtained and allow systematic study of the effect of surface potential. In this work, the result of the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay revealed that binary-SAM modified AuNPs have high biocompatibility with HEK293T cells. The amount of AuNPs ingested by the cells was found to increase with increasing surface potential and the difference was also confirmed with a scanning transmission electron microscope. The ability of binary-SAM modified AuNPs as carriers was examined, and the plasmid deoxyribose nucleic acid (DNA)-containing eGFP reporter gene was used as the model cargo. Fluorescence imaging revealed that the transfection efficiency generally increased with increasing surface potential. More importantly, when the IEP of the AuNPs was higher than that of the environment of the endosome but lower than that of the cytoplasm, the plasmid DNA can be protected better and released more easily during the endocytosis process hence higher efficiency is obtained with 60% NH2 and 40% COOH in the binary-SAM.

  20. Backyard Telescopes Watch an Expanding Binary

    Science.gov (United States)

    Kohler, Susanna

    2018-01-01

    What can you do with a team of people armed with backyard telescopes and a decade of patience? Test how binary star systems evolve under Einsteins general theory of relativity!Unusual VariablesCataclysmic variables irregularly brightening binary stars consisting of an accreting white dwarf and a donor star are a favorite target among amateur astronomers: theyre detectable even with small telescopes, and theres a lot we can learn about stellar astrophysics by observing them, if were patient.Diagram of a cataclysmic variable. In an AM CVn, the donor is most likely a white dwarf as well, or a low-mass helium star. [Philip D. Hall]Among the large family of cataclysmic variables is one unusual type: the extremely short-period AM Canum Venaticorum (AM CVn) stars. These rare variables (only 40 are known) are unique in having spectra dominated by helium, suggesting that they contain little or no hydrogen. Because of this, scientists have speculated that the donor stars in these systems are either white dwarfs themselves or very low-mass helium stars.Why study AM CVn stars? Because their unusual configuration allows us to predict the behavior of their orbital evolution. According to the general theory of relativity, the two components of an AM CVn will spiral closer and closer as the system loses angular momentum to gravitational-wave emission. Eventually they will get so close that the low-mass companion star overflows its Roche lobe, beginning mass transfer to the white dwarf. At this point, the orbital evolution will reverse and the binary orbit will expand, increasing its period.CBA member Enrique de Miguel, lead author on the study, with his backyard telescope in Huelva, Spain. [Enrique de Miguel]Backyard Astronomy Hard at WorkMeasuring the evolution of an AM CVns orbital period is the best way to confirm this model, but this is no simple task! To observe this evolution, we first need a system with a period that can be very precisely measured best achieved with an

  1. Binary to Octal and Octal to Binary Code Converter Using Mach-Zehnder Interferometer for High Speed Communication

    Science.gov (United States)

    Pal, Amrindra; Kumar, Santosh; Sharma, Sandeep

    2017-05-01

    Binary to octal and octal to binary code converter is a device that allows placing digital information from many inputs to many outputs. Any application of combinational logic circuit can be implemented by using external gates. In this paper, binary to octal and octal to binary code converter is proposed using electro-optic effect inside lithium-niobate based Mach-Zehnder interferometers (MZIs). The MZI structures have powerful capability to switching an optical input signal to a desired output port. The paper constitutes a mathematical description of the proposed device and thereafter simulation using MATLAB. The study is verified using beam propagation method (BPM).

  2. Perceptual biases for rhythm: The Mismatch Negativity latency indexes the privileged status of binary vs non-binary interval ratios.

    Science.gov (United States)

    Pablos Martin, X; Deltenre, P; Hoonhorst, I; Markessis, E; Rossion, B; Colin, C

    2007-12-01

    Rhythm perception appears to be non-linear as human subjects are better at discriminating, categorizing and reproducing rhythms containing binary vs non-binary (e.a. 1:2 vs 1:3) as well as metrical vs non-metrical (e.a. 1:2 vs 1:2.5) interval ratios. This study examined the representation of binary and non-binary interval ratios within the sensory memory, thus yielding a truly sensory, pre-motor, attention-independent neural representation of rhythmical intervals. Five interval ratios, one binary, flanked by four non-binary ones, were compared on the basis of the MMN they evoked when contrasted against a common standard interval. For all five intervals, the larger the contrast was, the larger the MMN amplitude was. The binary interval evoked a significantly much shorter (by at least 23 ms) MMN latency than the other intervals, whereas no latency difference was observed between the four non-binary intervals. These results show that the privileged perceptual status of binary rhythmical intervals is already present in the sensory representations found in echoic memory at an early, automatic, pre-perceptual and pre-motor level. MMN latency can be used to study rhythm perception at a truly sensory level, without any contribution from the motor system.

  3. Preparation and Characterization of Binary Organogels via Some Azobenzene Amino Derivatives and Different Fatty Acids: Self-Assembly and Nanostructures

    Directory of Open Access Journals (Sweden)

    Haiying Guo

    2014-01-01

    Full Text Available In present work the gelation behaviors of binary organogels composed of azobenzene amino derivatives and fatty acids with different alkyl chains in various organic solvents were designed and investigated. Their gelation behaviors in 20 solvents were tested as new binary organic gelators. It showed that the length of alkyl substituent chains and azobenzene segment have played a crucial role in the gelation behavior of all gelator mixtures in various organic solvents. Longer alkyl chains in molecular skeletons in present gelators are favorable for the gelation of organic solvents. Morphological studies revealed that the gelator molecules self-assemble into different aggregates from lamella, wrinkle, to belt with change of solvents. Spectral studies indicated that there existed different H-bond formation and hydrophobic force, depending on different substituent chains in molecular skeletons. The present work may also give new perspectives for designing new binary organogelators and soft materials.

  4. MARVELS Radial Velocity Solutions to Seven Kepler Eclipsing Binaries

    Science.gov (United States)

    Heslar, Michael Francis; Thomas, Neil B.; Ge, Jian; Ma, Bo; Herczeg, Alec; Reyes, Alan; SDSS-III MARVELS Team

    2016-01-01

    Eclipsing binaries serve momentous purposes to improve the basis of understanding aspects of stellar astrophysics, such as the accurate calculation of the physical parameters of stars and the enigmatic mass-radius relationship of M and K dwarfs. We report the investigation results of 7 eclipsing binary candidates, initially identified by the Kepler mission, overlapped with the radial velocity observations from the SDSS-III Multi-Object APO Radial-Velocity Exoplanet Large-Area Survey (MARVELS). The RV extractions and spectroscopic solutions of these eclipsing binaries were generated by the University of Florida's 1D data pipeline with a median RV precision of ~60-100 m/s, which was utilized for the DR12 data release. We performed the cross-reference fitting of the MARVELS RV data and the Kepler photometric fluxes obtained from the Kepler Eclipsing Binary Catalog (V2) and modelled the 7 eclipsing binaries in the BinaryMaker3 and PHOEBE programs. This analysis accurately determined the absolute physical and orbital parameters of each binary. Most of the companion stars were determined to have masses of K and M dwarf stars (0.3-0.8 M⊙), and allowed for an investigation into the mass-radius relationship of M and K dwarfs. Among the cases are KIC 9163796, a 122.2 day period "heartbeat star", a recently-discovered class of eccentric binaries known for tidal distortions and pulsations, with a high eccentricity (e~0.75) and KIC 11244501, a 0.29 day period, contact binary with a double-lined spectrum and mass ratio (q~0.45). We also report on the possible reclassification of 2 Kepler eclipsing binary candidates as background eclipsing binaries based on the analysis of the flux measurements, flux ratios of the spectroscopic and photometric solutions, the differences in the FOVs, the image processing of Kepler, and RV and spectral analysis of MARVELS.

  5. Grain Boundary Structures and Collective Dynamics of Inversion Domains in Binary Two-Dimensional Materials

    Science.gov (United States)

    Taha, Doaa; Mkhonta, S. K.; Elder, K. R.; Huang, Zhi-Feng

    2017-06-01

    Understanding and controlling the properties and dynamics of topological defects is a lasting challenge in the study of two-dimensional materials, and is crucial to achieve high-quality films required for technological applications. Here grain boundary structures, energies, and dynamics of binary two-dimensional materials are investigated through the development of a phase field crystal model that is parametrized to match the ordering, symmetry, energy, and length scales of hexagonal boron nitride. Our studies reveal some new dislocation core structures for various symmetrically and asymmetrically tilted grain boundaries, in addition to those obtained in previous experiments and first-principles calculations. We also identify a defect-mediated growth dynamics for inversion domains governed by the collective atomic migration and defect core transformation at grain boundaries and junctions, a process that is related to inversion symmetry breaking in binary lattice.

  6. On the Convergence of Biogeography-Based Optimization for Binary Problems

    Directory of Open Access Journals (Sweden)

    Haiping Ma

    2014-01-01

    Full Text Available Biogeography-based optimization (BBO is an evolutionary algorithm inspired by biogeography, which is the study of the migration of species between habitats. A finite Markov chain model of BBO for binary problems was derived in earlier work, and some significant theoretical results were obtained. This paper analyzes the convergence properties of BBO on binary problems based on the previously derived BBO Markov chain model. Analysis reveals that BBO with only migration and mutation never converges to the global optimum. However, BBO with elitism, which maintains the best candidate in the population from one generation to the next, converges to the global optimum. In spite of previously published differences between genetic algorithms (GAs and BBO, this paper shows that the convergence properties of BBO are similar to those of the canonical GA. In addition, the convergence rate estimate of BBO with elitism is obtained in this paper and is confirmed by simulations for some simple representative problems.

  7. Density measurements under pressure for the binary system (ethanol plus methylcyclohexane)

    DEFF Research Database (Denmark)

    Zeberg-Mikkelsen, Claus Kjær; Lugo, L.; Fernandez, J.

    2005-01-01

    and influence of temperature, pressure and composition on the excess molar volume, the isothermal compressibility, and the isobaric thermal expansion, revealing that a volume expansion occurs for this binary system. The results have been interpreted as due to changes in the intermolecular distances or free......The density of the asymmetrical binary system composed of ethanol and methylcyclohexane has been measured under pressure using a vibrating tube densimeter. The measurements have been performed for eight different compositions as well as the pure compounds at eight temperatures in the range 283.15 K......-volume, disruption of the order molecular structure and the breaking of hydrogen bonds within the self-associating alcohol. (c) 2005 Elsevier Ltd. All rights reserved....

  8. Sparse dynamical Boltzmann machine for reconstructing complex networks with binary dynamics

    Science.gov (United States)

    Chen, Yu-Zhong; Lai, Ying-Cheng

    2018-03-01

    Revealing the structure and dynamics of complex networked systems from observed data is a problem of current interest. Is it possible to develop a completely data-driven framework to decipher the network structure and different types of dynamical processes on complex networks? We develop a model named sparse dynamical Boltzmann machine (SDBM) as a structural estimator for complex networks that host binary dynamical processes. The SDBM attains its topology according to that of the original system and is capable of simulating the original binary dynamical process. We develop a fully automated method based on compressive sensing and a clustering algorithm to construct the SDBM. We demonstrate, for a variety of representative dynamical processes on model and real world complex networks, that the equivalent SDBM can recover the network structure of the original system and simulates its dynamical behavior with high precision.

  9. Flow regime and deposition pattern of evaporating binary mixture droplet suspended with particles.

    Science.gov (United States)

    Zhong, Xin; Duan, Fei

    2016-02-01

    The flow regimes and the deposition pattern have been investigated by changing the ethanol concentration in a water-based binary mixture droplet suspended with alumina nanoparticles. To visualize the flow patterns, Particle Image Velocimetry (PIV) has been applied in the binary liquid droplet containing the fluorescent microspheres. Three distinct flow regimes have been revealed in the evaporation. In Regime I, the vortices and chaotic flows are found to carry the particles to the liquid-vapor interface and to promote the formation of particle aggregation. The aggregates move inwards in Regime II as induced by the Marangoni flow along the droplet free surface. Regime III is dominated by the drying of the left water and the capillary flow driving particles radially outward is observed. The relative weightings of Regimes I and II, which are enhanced with an increasing load of ethanol, determine the motion of the nanoparticles and the formation of the final drying pattern.

  10. Binary culture of microalgae as an integrated approach for enhanced biomass and metabolites productivity, wastewater treatment, and bioflocculation.

    Science.gov (United States)

    Rashid, Naim; Park, Won-Kun; Selvaratnam, Thinesh

    2018-03-01

    Ecological studies of microalgae have revealed their potential to co-exist in the natural environment. It provides an evidence of the symbiotic relationship of microalgae with other microorganisms. The symbiosis potential of microalgae is inherited with distinct advantages, providing a venue for their scale-up applications. The deployment of large-scale microalgae applications is limited due to the technical challenges such as slow growth rate, low metabolites yield, and high risk of biomass contamination by unwanted bacteria. However, these challenges can be overcome by exploring symbiotic potential of microalgae. In a symbiotic system, photosynthetic microalgae co-exist with bacteria, fungi, as well as heterotrophic microalgae. In this consortium, they can exchange nutrients and metabolites, transfer gene, and interact with each other through complex metabolic mechanism. Microalgae in this system, termed as a binary culture, are reported to exhibit high growth rate, enhanced bio-flocculation, and biochemical productivity without experiencing contamination. Binary culture also offers interesting applications in other biotechnological processes including bioremediation, wastewater treatment, and production of high-value metabolites. The focus of the study is to provide a perspective to enhance the understanding about microalgae binary culture. In this review, the mechanism of binary culture, its potential, and limitations are briefly discussed. A number of queries are evolved through this study, which needs to be answered by executing future research to assess the real potential of binary culture. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Programmable spectral design and the binary supergrating

    Science.gov (United States)

    Levner, Daniel

    Spectral operations such as wavelength selection, power level manipulation, and chromatic dispersion control are key to many processes in optical telecommunication, spectroscopy, and sensing. In their simplest forms, these functions can be performed using a number of successful devices such as the Fraunhofer ("diffraction") grating, Bragg grating, thin-film filter (TFF), and dispersion-compensating fiber (DCF). More complicated manipulations, however, often require either problematic cascades of many simple elements, the use of custom technologies that offer little adjustment, or the implementation of fully programmable devices, which allow for the desired spectral function to be synthesized ab initio. Here, I present the Binary Supergrating (BSG), a novel technology that permits the programmable and near-arbitrary control of optical amplitude and phase using a simple, robust and practical form. This guided-wave form consists of an aperiodic sequence of binary elements; the sequence, determined through the process of BSG synthesis, encodes an optical program that defines device functionality. The ability to derive optical programs that address broad spectral demands is central to the BSG's extensive capabilities. In consequence, I present a powerful approach to synthesis that exploits existing knowledge in the design of "analog" gratings. This approach is based on a two-step process, which first derives an analog diffractive structure using the best available methods and then transforms it into binary form. Accordingly, I discuss the notion of diffractive structure transformation and introduce the principle of key information. I identify such key information and illustrate its application in grating quantizers based on an atypical form of Delta-Sigma modulation. As a digital approach to spectral engineering, the BSG presents many of the same advantages offered by the digital approach to electronic signal processing (DSP) over its analog predecessors. As such, it

  12. Binary classification posed as a quadratically constrained quadratic ...

    Indian Academy of Sciences (India)

    DEEPAK KUMAR

    Binary classification is one of the active research areas in machine learning [4, 5]. There are several ways to train a binary classifier. The features and the class labels of the training data set can be stored and retrieved during classifica- tion using the nearest neighbor approach [6]. A hyperplane is learnt for classification by ...

  13. A Comparative Study of the Compaction Properties of Binary and ...

    African Journals Online (AJOL)

    Purpose: To comparatively evaluate the tableting properties of binary mixtures and bilayer tablets containing plastic deformation and brittle fracture excipients. Methods: Binary mixture and bilayer tablets of microcrystalline cellulose (MCC), ethyl cellulose, anhydrous lactose and dextrate were prepared by direct compression ...

  14. Neutron Stars in X-ray Binaries and their Environments

    Indian Academy of Sciences (India)

    The X-ray pulsars among the binary neutron stars provide excellent handle to make accurate measurement of the orbital parameters and thus also evolution of the binray orbits that take place over time scale of a fraction of a million years to tens of millions of years. The orbital period evolution of X-ray binaries have shown ...

  15. Phase separation in binary hard-core mixtures

    NARCIS (Netherlands)

    Dijkstra, Marjolein; Frenkel, D.; Hansen, J.-P.

    1994-01-01

    We report the observation of a purely entropic demixing transition in a three-dimensional binary hard-core mixture by computer simulations. This transition is observed in a lattice model of a binary hard-core mixture of parallel cubes provided that the size asymmetry of the large and small particles

  16. Research note : Miscibility behaviour of binary mixtures of benzyl ...

    African Journals Online (AJOL)

    Miscibility of binary mixtures of benzyl benzoate and liquid paraffin as functions of temperature and composition has been determined using phase separation method. The binary mixtures demonstrated a critical (upper) solution temperature of 35 °C at 101325 Nm-2 with a mixing gap. A tie-line drawn at 28 °C across the ...

  17. Progenitor models of Wolf-Rayet+O binary systems

    NARCIS (Netherlands)

    Petrovic, J.; Langer, N.

    2007-01-01

    Since close WR+O binaries are the result of a strong interaction of both stars in massive close binary systems, they can be used to constrain the highly uncertain mass and angular momentum budget during the major mass- transfer phase. We explore the progenitor evolution of the three best suited WR+O

  18. Grammar-Based Specification and Parsing of Binary File Formats

    Directory of Open Access Journals (Sweden)

    William Underwood

    2012-03-01

    Full Text Available The capability to validate and view or play binary file formats, as well as to convert binary file formats to standard or current file formats, is critically important to the preservation of digital data and records. This paper describes the extension of context-free grammars from strings to binary files. Binary files are arrays of data types, such as long and short integers, floating-point numbers and pointers, as well as characters. The concept of an attribute grammar is extended to these context-free array grammars. This attribute grammar has been used to define a number of chunk-based and directory-based binary file formats. A parser generator has been used with some of these grammars to generate syntax checkers (recognizers for validating binary file formats. Among the potential benefits of an attribute grammar-based approach to specification and parsing of binary file formats is that attribute grammars not only support format validation, but support generation of error messages during validation of format, validation of semantic constraints, attribute value extraction (characterization, generation of viewers or players for file formats, and conversion to current or standard file formats. The significance of these results is that with these extensions to core computer science concepts, traditional parser/compiler technologies can potentially be used as a part of a general, cost effective curation strategy for binary file formats.

  19. Formation of Thorne–Żytkow objects in close binaries

    Indian Academy of Sciences (India)

    Bumareyamu Hutilukejiang

    2018-03-06

    Zytkow, may form as a result of unstable mass transfer in a massive X-ray binary after a neutron star (NS) is engulfed in the envelope of its companion star. Using a rapid binary evolution program and the Monte Carlo method, ...

  20. Resonant Tidal Forcing in Close Binaries: Implications for CVs

    Science.gov (United States)

    Ford, K. E. Saavik; McKernan, Barry; Schwab, Elliana

    2018-01-01

    Resonant tidal forcing occurs when the tidal forcing frequency of a binary matches a quadrupolar oscillation mode of one of the binary members and energy is transferred from the orbit of the binary to the mode. Tidal locking permits ongoing resonant driving of modes even as binary orbital parameters change. At small binary separations during tidal lock, a significant fraction of binary orbital energy can be deposited quickly into a resonant mode and the binary decays faster than via the emission of gravitational radiation alone. Here we discuss some of the implications of resonant tidal forcing for the class of binaries known as Cataclysmic Variable (CV) stars. We show that resonant tidal forcing of the donor’s Roche lobe could explain the observed 2‑3hr period gap in CVs, assuming modest orbital eccentricities are allowed (eb ∼ 0.03), and can be complementary or an alternative to, existing models. Sudden collapse of the companion orbit, yielding a Type Ia supernova is disfavoured, since Hydrogen is not observed in Type Ia supernova spectra. Therefore, resonance must generally be truncated, probably via mass loss from the Roche lobe or orbital perturbation, ultimately producing a short period CV containing an ’overheated’ white dwarf.

  1. Lamellar-in-lamellar structure of binary linear multiblock copolymers

    NARCIS (Netherlands)

    Klymko, T.; Subbotin, A.; ten Brinke, G.

    2008-01-01

    A theoretical description of the lamellar-in-lamellar self-assembly of binary A-b-(B-b-A)(m)-b-B-b-A multiblock copolymers in the strong segregation limit is presented. The essential difference between this binary multiblock system and the previously considered C-b-(B-b-A)(m)-b-B-b-C ternary

  2. Binary sequence detector uses minimum number of decision elements

    Science.gov (United States)

    Perlman, M.

    1966-01-01

    Detector of an n bit binary sequence code within a serial binary data system assigns states to memory elements of a code sequence detector by employing the same order of states for the sequence detector as that of the sequence generator when the linear recursion relationship employed by the sequence generator is given.

  3. White dwarf-red dwarf binaries in the Galaxy

    NARCIS (Netherlands)

    Besselaar, E.J.M. van den

    2007-01-01

    This PhD thesis shows several studies on white dwarf - red dwarf binaries. White dwarfs are the end products of most stars and red dwarfs are normal hydrogen burning low-mass stars. White dwarf - red dwarf binaries are both blue (white dwarf) and red (red dwarf). Together with the fact that they are

  4. Binary GCD like Algorithms for Some Complex Quadratic Rings

    DEFF Research Database (Denmark)

    Agarwal, Saurabh; Frandsen, Gudmund Skovbjerg

    2004-01-01

    binary gcd like algorithms for the ring of integers in and , one now has binary gcd like algorithms for all complex quadratic Euclidean domains. The running time of our algorithms is O(n 2) in each ring. While there exists an O(n 2) algorithm for computing the gcd in quadratic number rings by Erich...

  5. Observer bias in randomised clinical trials with binary outcomes

    DEFF Research Database (Denmark)

    Hróbjartsson, Asbjørn; Thomsen, Ann Sofia Skou; Emanuelsson, Frida

    2012-01-01

    To evaluate the impact of non-blinded outcome assessment on estimated treatment effects in randomised clinical trials with binary outcomes.......To evaluate the impact of non-blinded outcome assessment on estimated treatment effects in randomised clinical trials with binary outcomes....

  6. The Cool Surfaces of Binaries Near-Earth Asteroids

    NARCIS (Netherlands)

    Delbo, Marco; Walsh, K.; Mueller, M.

    2008-01-01

    We present results from thermal-infrared observations of binary near-Earth asteroids (NEAs). These objects, in general, have surface temperatures cooler than the average values for non-binary NEAs. We discuss how this may be evidence of higher-than-average surface thermal inertia. The comparison of

  7. Dielectric studies of binary mixtures of -propyl alcohol and ...

    Indian Academy of Sciences (India)

    Dielectric constant (') and dielectric loss (") of -propyl alcohol (PA), ethylenediamine (EDA) and their binary mixtures, for different mole fractions of ethylenediamine have been experimentally measured at 11.15 GHz microwave frequency. Values of density (), viscosity () and square refractive index ( n D 2 ) of binary ...

  8. Thin shell morphology in the circumstellar medium of massive binaries

    NARCIS (Netherlands)

    van Marle, A. J.; Keppens, R.; Meliani, Z.

    2011-01-01

    Context. In massive binaries, the powerful stellar winds of the two stars collide, leading to the formation of shock-dominated environments that can be modeled only in 3D. Aims. We investigate the morphology of the collision-front shell between the stellar winds of binary components in two

  9. Excess molar volumes and isentropic compressibilities of binary ...

    Indian Academy of Sciences (India)

    Excess molar volumes (E) and deviation in isentropic compressibilities (s) have been investigated from the density and speed of sound measurements of six binary liquid mixtures containing -alkanes over the entire range of composition at 298.15 K. Excess molar volume exhibits inversion in sign in one binary ...

  10. Putting Continuous Metaheuristics to Work in Binary Search Spaces

    Directory of Open Access Journals (Sweden)

    Broderick Crawford

    2017-01-01

    Full Text Available In the real world, there are a number of optimization problems whose search space is restricted to take binary values; however, there are many continuous metaheuristics with good results in continuous search spaces. These algorithms must be adapted to solve binary problems. This paper surveys articles focused on the binarization of metaheuristics designed for continuous optimization.

  11. Binary pattern analysis for 3D facial action unit detection

    NARCIS (Netherlands)

    Sandbach, Georgia; Zafeiriou, Stefanos; Pantic, Maja

    2012-01-01

    In this paper we propose new binary pattern features for use in the problem of 3D facial action unit (AU) detection. Two representations of 3D facial geometries are employed, the depth map and the Azimuthal Projection Distance Image (APDI). To these the traditional Local Binary Pattern is applied,

  12. Excess molar volumes and isentropic compressibilities of binary ...

    Indian Academy of Sciences (India)

    and transport properties of n-alkanes and their mixtures. Several workers [1–4] have pre- viously studied excess properties of binary liquid mixtures containing chloroalkanes. In our [5–8] systematic investigation of the thermodynamic, acoustic and transport prop- erties of binary liquid mixtures, we have reported viscosities, ...

  13. IUE observations of the eclipsing binary Epsilon Aurigae

    International Nuclear Information System (INIS)

    Hack, M.; Selvelli, P.L.

    1978-01-01

    It is stated that the eclipsing binary Epsilon Aur is a most peculiar binary system and it has not been explained satisfactorily. Observations of this system using the International Ultraviolet Explorer (IUE) collected at the Villafranca Satellite Tracking Station of the European Space Agency are here reported. (author)

  14. Binary Biometric Representation through Pairwise Adaptive Phase Quantization

    NARCIS (Netherlands)

    Chen, C.; Veldhuis, Raymond N.J.

    Extracting binary strings from real-valued biometric templates is a fundamental step in template compression and protection systems, such as fuzzy commitment, fuzzy extractor, secure sketch, and helper data systems. Quantization and coding is the straightforward way to extract binary representations

  15. First Hα and Revised Photometric Studies of Contact Binary ...

    Indian Academy of Sciences (India)

    Common among the variable stars are the contact binaries which form an excellent source in determining the stellar parameters with high degree of accuracy (Southworth. 2012). These binaries which are also referred to as W Ursae Majoris (W UMa) stars occur when both components of the system fill their Roche lobes ...

  16. Formation and Evolution of Binary Systems Containing Collapsed Stars

    Science.gov (United States)

    Rappaport, Saul; West, Donald (Technical Monitor)

    2003-01-01

    This research includes theoretical studies of the formation and evolution of five types of interacting binary systems. Our main focus has been on developing a number of comprehensive population synthesis codes to study the following types of binary systems: (i) cataclysmic variables (#3, #8, #12, #15), (ii) low- and intermediate-mass X-ray binaries (#13, #20, #21), (iii) high-mass X-ray binaries (#14, #17, #22), (iv) recycled binary millisecond pulsars in globular clusters (#5, #10, #ll), and (v) planetary nebulae which form in interacting binaries (#6, #9). The numbers in parentheses refer to papers published or in preparation that are listed in this paper. These codes take a new unified approach to population synthesis studies. The first step involves a Monte Carlo selection of the primordial binaries, including the constituent masses, and orbital separations and eccentricities. Next, a variety of analytic methods are used to evolve the primary star to the point where either a dynamical episode of mass transfer to the secondary occurs (the common envelope phase), or the system evolves down an alternate path. If the residual core of the primary is greater than 2.5 solar mass, it will evolve to Fe core collapse and the production of a neutron star and a supernova explosion. In the case of systems involving neutron stars, a kick velocity is chosen randomly from an appropriate distribution and added to the orbital dynamics which determine the state of the binary system after the supernova explosion. In the third step, all binaries which commence stable mass transfer from the donor star (the original secondary in the binary system) to the compact object, are followed with a detailed binary evolution code. Finally, we include all the relevant dynamics of the binary system. For example, in the case of LMXBs, the binary system, with its recoil velocity from the supernova explosion, is followed in time through its path in the Galactic potential. For our globular cluster

  17. Black Hole/Pulsar Binaries in the Galaxy

    Science.gov (United States)

    Shao, Yong; Li, Xiang-Dong

    2018-04-01

    We have performed population synthesis calculation on the formation of binaries containing a black hole (BH) and a neutron star (NS) in the Galactic disk. Some of important input parameters, especially for the treatment of common envelope evolution, are updated in the calculation. We have discussed the uncertainties from the star formation rate of the Galaxy and the velocity distribution of NS kicks on the birthrate (˜ 0.6-13 Myr^{-1}) of BH/NS binaries. From incident BH/NS binaries, by modelling the orbital evolution duo to gravitational wave radiation and the NS evolution as radio pulsars, we obtain the distributions of the observable parameters such as the orbital period, eccentricity and pulse period of the BH/pulsar binaries. We estimate that there may be ˜3 - 80 BH/pulsar binaries in the Galactic disk and around 10% of them could be detected by the Five-hundred-meter Aperture Spherical radio Telescope.

  18. Orbital motion in pre-main sequence binaries

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, G. H. [The CHARA Array of Georgia State University, Mount Wilson Observatory, Mount Wilson, CA 91023 (United States); Prato, L. [Lowell Observatory, 1400 West Mars Hill Road, Flagstaff, AZ 86001 (United States); Simon, M. [Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794 (United States); Patience, J., E-mail: schaefer@chara-array.org [Astrophysics Group, School of Physics, University of Exeter, Exeter, EX4 4QL (United Kingdom)

    2014-06-01

    We present results from our ongoing program to map the visual orbits of pre-main sequence (PMS) binaries in the Taurus star forming region using adaptive optics imaging at the Keck Observatory. We combine our results with measurements reported in the literature to analyze the orbital motion for each binary. We present preliminary orbits for DF Tau, T Tau S, ZZ Tau, and the Pleiades binary HBC 351. Seven additional binaries show curvature in their relative motion. Currently, we can place lower limits on the orbital periods for these systems; full solutions will be possible with more orbital coverage. Five other binaries show motion that is indistinguishable from linear motion. We suspect that these systems are bound and might show curvature with additional measurements in the future. The observations reported herein lay critical groundwork toward the goal of measuring precise masses for low-mass PMS stars.

  19. Dynamic Inertia Weight Binary Bat Algorithm with Neighborhood Search

    Directory of Open Access Journals (Sweden)

    Xingwang Huang

    2017-01-01

    Full Text Available Binary bat algorithm (BBA is a binary version of the bat algorithm (BA. It has been proven that BBA is competitive compared to other binary heuristic algorithms. Since the update processes of velocity in the algorithm are consistent with BA, in some cases, this algorithm also faces the premature convergence problem. This paper proposes an improved binary bat algorithm (IBBA to solve this problem. To evaluate the performance of IBBA, standard benchmark functions and zero-one knapsack problems have been employed. The numeric results obtained by benchmark functions experiment prove that the proposed approach greatly outperforms the original BBA and binary particle swarm optimization (BPSO. Compared with several other heuristic algorithms on zero-one knapsack problems, it also verifies that the proposed algorithm is more able to avoid local minima.

  20. What fraction of white dwarfs are members of binary systems?

    International Nuclear Information System (INIS)

    Holberg, J B

    2009-01-01

    White dwarfs were originally discovered as the subordinate faint companions of bright nearby stars (i.e. Sirius B and 40 Eri B). Several general categories of binary systems involving white dwarfs are recognized: Sirius-like systems, where the white dwarf may be difficult to detect, binary systems containing white dwarfs and low mass stars, where the white dwarf is often readily discerned; and double degenerate systems. Different modes of white dwarf discovery influence our perception of both the overall binary fraction and the nature of these systems; proper motion surveys emphasize resolved systems, while photometric surveys emphasize unresolved systems containing relatively hot white dwarfs. Recent studies of the local white dwarf population offer some hope of achieving realistic estimates of the relative number of binary systems containing white dwarfs. A sample of 132 white dwarfs within 20 pc indicates that an individual white dwarf has a probability of 32 ± 8% of occurring within a binary or multiple star system.

  1. A binary electrolyte model of a cylindrical alkaline cell

    Science.gov (United States)

    Kriegsmann, J. J.; Cheh, H. Y.

    A cylindrical alkaline cell is modeled as a binary electrolyte system by assuming the direct electrochemical formation of ZnO in the anode. Justifications for replacing the dissolution-precipitation mechanism are provided. Compared to the original model, the binary electrolyte model has a more understandable model formulation, more consistent physical property data, and greater flexibility in certain instances. The binary electrolyte model predicts a longer cell life and higher operating voltage than the ternary electrolyte model for the test case discharge rate. There are no numerical difficulties associated with the zincate ion in the binary electrolyte model, because this species is not considered. The characteristics and advantages of the simplified anode behavior are discussed. An application of the binary electrolyte model is included.

  2. Binary classification of items of interest in a repeatable process

    Science.gov (United States)

    Abell, Jeffrey A.; Spicer, John Patrick; Wincek, Michael Anthony; Wang, Hui; Chakraborty, Debejyo

    2014-06-24

    A system includes host and learning machines in electrical communication with sensors positioned with respect to an item of interest, e.g., a weld, and memory. The host executes instructions from memory to predict a binary quality status of the item. The learning machine receives signals from the sensor(s), identifies candidate features, and extracts features from the candidates that are more predictive of the binary quality status relative to other candidate features. The learning machine maps the extracted features to a dimensional space that includes most of the items from a passing binary class and excludes all or most of the items from a failing binary class. The host also compares the received signals for a subsequent item of interest to the dimensional space to thereby predict, in real time, the binary quality status of the subsequent item of interest.

  3. Non-negative Matrix Factorization for Binary Data

    DEFF Research Database (Denmark)

    Larsen, Jacob Søgaard; Clemmensen, Line Katrine Harder

    We propose the Logistic Non-negative Matrix Factorization for decomposition of binary data. Binary data are frequently generated in e.g. text analysis, sensory data, market basket data etc. A common method for analysing non-negative data is the Non-negative Matrix Factorization, though...... this is in theory not appropriate for binary data, and thus we propose a novel Non-negative Matrix Factorization based on the logistic link function. Furthermore we generalize the method to handle missing data. The formulation of the method is compared to a previously proposed method (Tome et al., 2015). We compare...... the performance of the Logistic Non-negative Matrix Factorization to Least Squares Non-negative Matrix Factorization and Kullback-Leibler (KL) Non-negative Matrix Factorization on sets of binary data: a synthetic dataset, a set of student comments on their professors collected in a binary term-document matrix...

  4. Local binary patterns new variants and applications

    CERN Document Server

    Jain, Lakhmi; Nanni, Loris; Lumini, Alessandra

    2014-01-01

    This book introduces Local Binary Patterns (LBP), arguably one of the most powerful texture descriptors, and LBP variants. This volume provides the latest reviews of the literature and a presentation of some of the best LBP variants by researchers at the forefront of textual analysis research and research on LBP descriptors and variants. The value of LBP variants is illustrated with reported experiments using many databases representing a diversity of computer vision applications in medicine, biometrics, and other areas. There is also a chapter that provides an excellent theoretical foundation for texture analysis and LBP in particular. A special section focuses on LBP and LBP variants in the area of face recognition, including thermal face recognition. This book will be of value to anyone already in the field as well as to those interested in learning more about this powerful family of texture descriptors.

  5. Some Bounds on Binary LCD Codes

    OpenAIRE

    Galvez, Lucky; Kim, Jon-Lark; Lee, Nari; Roe, Young Gun; Won, Byung-Sun

    2017-01-01

    A linear code with a complementary dual (or LCD code) is defined to be a linear code $C$ whose dual code $C^{\\perp}$ satisfies $C \\cap C^{\\perp}$= $\\left\\{ \\mathbf{0}\\right\\} $. Let $LCD{[}n,k{]}$ denote the maximum of possible values of $d$ among $[n,k,d]$ binary LCD codes. We give exact values of $LCD{[}n,k{]}$ for $1 \\le k \\le n \\le 12$. We also show that $LCD[n,n-i]=2$ for any $i\\geq2$ and $n\\geq2^{i}$. Furthermore, we show that $LCD[n,k]\\leq LCD[n,k-1]$ for $k$ odd and $LCD[n,k]\\leq LCD[...

  6. Dual jets from binary black holes.

    Science.gov (United States)

    Palenzuela, Carlos; Lehner, Luis; Liebling, Steven L

    2010-08-20

    The coalescence of supermassive black holes--a natural outcome when galaxies merge--should produce gravitational waves and would likely be associated with energetic electromagnetic events. We have studied the coalescence of such binary black holes within an external magnetic field produced by the expected circumbinary disk surrounding them. Solving the Einstein equations to describe black holes interacting with surrounding plasma, we present numerical evidence for possible jets driven by these systems. Extending the process described by Blandford and Znajek for a single, spinning black hole, the picture that emerges suggests that the electromagnetic field extracts energy from the orbiting black holes, which ultimately merge and settle into the standard Blandford-Znajek scenario. Emissions along these jets could potentially be observable at large distances.

  7. Predicting binary choices from probability phrase meanings.

    Science.gov (United States)

    Wallsten, Thomas S; Jang, Yoonhee

    2008-08-01

    The issues of how individuals decide which of two events is more likely and of how they understand probability phrases both involve judging relative likelihoods. In this study, we investigated whether derived scales representing probability phrase meanings could be used within a choice model to predict independently observed binary choices. If they can, this simultaneously provides support for our model and suggests that the phrase meanings are measured meaningfully. The model assumes that, when deciding which of two events is more likely, judges take a single sample from memory regarding each event and respond accordingly. The model predicts choice probabilities by using the scaled meanings of individually selected probability phrases as proxies for confidence distributions associated with sampling from memory. Predictions are sustained for 34 of 41 participants but, nevertheless, are biased slightly low. Sequential sampling models improve the fit. The results have both theoretical and applied implications.

  8. Learning from nature: binary cooperative complementary nanomaterials.

    Science.gov (United States)

    Su, Bin; Guo, Wei; Jiang, Lei

    2015-03-01

    In this Review, nature-inspired binary cooperative complementary nanomaterials (BCCNMs), consisting of two components with entirely opposite physiochemical properties at the nanoscale, are presented as a novel concept for the building of promising materials. Once the distance between the two nanoscopic components is comparable to the characteristic length of some physical interactions, the cooperation between these complementary building blocks becomes dominant and endows the macroscopic materials with novel and superior properties. The first implementation of the BCCNMs is the design of bio-inspired smart materials with superwettability and their reversible switching between different wetting states in response to various kinds of external stimuli. Coincidentally, recent studies on other types of functional nanomaterials contribute more examples to support the idea of BCCNMs, which suggests a potential yet comprehensive range of future applications in both materials science and engineering. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Energetic binary collisions in rare gas plasmas

    Science.gov (United States)

    Robinson, R. S.

    1979-01-01

    Calculations have been made of cross sections for energy and momentum transfer in binary collisions between like pairs of Ar, Kr, and Xe atoms in the energy range from about 1 to 1000 eV. These calculations were made using a classical model with pair interaction potentials for the rare gases developed from experimental sources, e.g., investigations of specific heats, viscosities, solid-state parameters, and scattering data. Cross sections in this energy range have not been available. The cross sections exhibit a rapid decrease from accepted values at thermal energies as the interaction energy increases. This behavior can be used to understand directed beam propagation limits as well as particle propagation within a plasma. Experimental data have also been fit to a theoretical expression for the Ar resonance charge exchange cross section over the same energy range.

  10. Renormalization of QED with planar binary trees

    International Nuclear Information System (INIS)

    Brouder, C.

    2001-01-01

    The Dyson relations between renormalized and bare photon and electron propagators Z 3 anti D(q)=D(q) and Z 2 anti S(q)=S(q) are expanded over planar binary trees. This yields explicit recursive relations for the terms of the expansions. When all the trees corresponding to a given power of the electron charge are summed, recursive relations are obtained for the finite coefficients of the renormalized photon and electron propagators. These relations significantly decrease the number of integrals to carry out, as compared to the standard Feynman diagram technique. In the case of massless quantum electrodynamics (QED), the relation between renormalized and bare coefficients of the perturbative expansion is given in terms of a Hopf algebra structure. (orig.)

  11. The binary collision approximation: Background and introduction

    International Nuclear Information System (INIS)

    Robinson, M.T.

    1992-08-01

    The binary collision approximation (BCA) has long been used in computer simulations of the interactions of energetic atoms with solid targets, as well as being the basis of most analytical theory in this area. While mainly a high-energy approximation, the BCA retains qualitative significance at low energies and, with proper formulation, gives useful quantitative information as well. Moreover, computer simulations based on the BCA can achieve good statistics in many situations where those based on full classical dynamical models require the most advanced computer hardware or are even impracticable. The foundations of the BCA in classical scattering are reviewed, including methods of evaluating the scattering integrals, interaction potentials, and electron excitation effects. The explicit evaluation of time at significant points on particle trajectories is discussed, as are scheduling algorithms for ordering the collisions in a developing cascade. An approximate treatment of nearly simultaneous collisions is outlined and the searching algorithms used in MARLOWE are presented

  12. Periastron advance in black-hole binaries.

    Science.gov (United States)

    Le Tiec, Alexandre; Mroué, Abdul H; Barack, Leor; Buonanno, Alessandra; Pfeiffer, Harald P; Sago, Norichika; Taracchini, Andrea

    2011-09-30

    The general relativistic (Mercury-type) periastron advance is calculated here for the first time with exquisite precision in full general relativity. We use accurate numerical relativity simulations of spinless black-hole binaries with mass ratios 1/8≤m(1)/m(2)≤1 and compare with the predictions of several analytic approximation schemes. We find the effective-one-body model to be remarkably accurate and, surprisingly, so also the predictions of self-force theory [replacing m(1)/m(2)→m(1)m(2)/(m(1)+m(2))(2)]. Our results can inform a universal analytic model of the two-body dynamics, crucial for ongoing and future gravitational-wave searches.

  13. Shock waves in binary oxides memristors

    Science.gov (United States)

    Tesler, Federico; Tang, Shao; Dobrosavljević, Vladimir; Rozenberg, Marcelo

    2017-09-01

    Progress of silicon based technology is nearing its physical limit, as minimum feature size of components is reaching a mere 5 nm. The resistive switching behavior of transition metal oxides and the associated memristor device is emerging as a competitive technology for next generation electronics. Significant progress has already been made in the past decade and devices are beginning to hit the market; however, it has been mainly the result of empirical trial and error. Hence, gaining theoretical insight is of essence. In the present work we report a new connection between the resistive switching and shock wave formation, a classic topic of non-linear dynamics. We argue that the profile of oxygen ions that migrate during the commutation in insulating binary oxides may form a shock wave, which propagates through a poorly conductive region of the device. We validate the scenario by means of model simulations.

  14. Solitary waves in dimer binary collision model

    Science.gov (United States)

    Ahsan, Zaid; Jayaprakash, K. R.

    2017-01-01

    Solitary wave propagation in nonlinear diatomic (dimer) chains is a very interesting topic of research in the study of nonlinear lattices. Such waves were recently found to be supported by the essentially nonlinear granular lattice and Toda lattice. An interesting aspect of this discovery is attributed to the realization of a spectrum of the mass ratio (the only system parameter governing the dynamics) that supports the propagation of such waves corresponding to the considered interaction potential. The objective of this exposition is to explore solitary wave propagation in the dimer binary collision (BC) model. Interestingly, the dimer BC model supports solitary wave propagation at a discrete spectrum of mass ratios similar to those observed in granular and Toda dimers. Further, we report a qualitative and one-to-one correspondence between the spectrum of the mass ratio corresponding to the dimer BC model and those corresponding to granular and Toda dimer chains.

  15. Wetting and evaporation of binary mixture drops.

    Science.gov (United States)

    Sefiane, Khellil; David, Samuel; Shanahan, Martin E R

    2008-09-11

    Experimental results on the wetting behavior of water, methanol, and binary mixture sessile drops on a smooth, polymer-coated substrate are reported. The wetting behavior of evaporating water/methanol drops was also studied in a water-saturated environment. Drop parameters (contact angle, shape, and volume) were monitored in time. The effects of the initial relative concentrations on subsequent evaporation and wetting dynamics were investigated. Physical mechanisms responsible for the various types of wetting behavior during different stages are proposed and discussed. Competition between evaporation and hydrodynamic flow are evoked. Using an environment saturated with water vapor allowed further exploration of the controlling mechanisms and underlying processes. Wetting stages attributed to differential evaporation of methanol were identified. Methanol, the more volatile component, evaporates predominantly in the initial stage. The data, however, suggest that a small proportion of methanol remained in the drop after the first stage of evaporation. This residual methanol within the drop seems to influence subsequent wetting behavior strongly.

  16. Using High-Mass X-ray Binaries to Probe Massive Binary Evolution

    Science.gov (United States)

    Garofali, Kristen; Williams, Ben

    2018-01-01

    High-mass X-ray binaries (HMXBs) provide an exciting window into the underlying processes of both binary as well as massive star evolution. Because HMXBs are systems containing a compact object accreting from a high-mass star at close orbital separations they are also likely progenitors of gamma-ray bursts and gravitational wave sources. I will present work on the classification and age measurements of HMXBs in M33 using a combination of deep Chandra X-ray imaging, and archival Hubble Space Telescope data. I am able to constrain the ages of the HMXB candidates by fitting the color-magnitude diagrams of the surrounding stars, which yield the star formation histories of the surrounding region. Unlike the age distributions measured for HMXB populations in the Magellenic Clouds, the age distribution for the HMXB population in M33 contains a number of extremely young (population.

  17. Formation of a contact binary star system

    International Nuclear Information System (INIS)

    Mullen, E.F.F.

    1974-01-01

    The process of forming a contact binary star system is investigated in the light of current knowledge of the W Ursae Majoris type eclipsing binaries and the current rotational braking theories for contracting stars. A preliminary stage of mass transfer is proposed and studied through the use of a computer program which calculates evolutionary model sequences. The detailed development of both stars is followed in these calculations, and findings regarding the internal structure of the star which is receiving the mass are presented. Relaxation of the mass-gaining star is also studied; for these stars of low mass and essentially zero age, the star eventually settles to a state very similar to a zero-age main sequence star of the new mass. A contact system was formed through these calculations; it exhibits the general properties of a W Ursae Majoris system. The initial masses selected for the calculation were 1.29 M/sub solar mass/ and 0.56 M/sub solar mass/. An initial mass transfer rate of about 10 -10 solar masses per year gradually increased to about 10 -8 solar masses per year. After about 2.5 x 10 7 years, the less massive star filled its Roche lobe and an initial contact system was obtained. The final masses were 1.01359 M/sub solar mass/ and 0.83641 M/sub solar mass/. The internal structure of the secondary component is considerably different from that of a main sequence star of the same mass

  18. Unification of binary star ephemeris solutions

    International Nuclear Information System (INIS)

    Wilson, R. E.; Van Hamme, W.

    2014-01-01

    Time-related binary system characteristics such as orbital period, its rate of change, apsidal motion, and variable light-time delay due to a third body, are measured in two ways that can be mutually complementary. The older way is via eclipse timings, while ephemerides by simultaneous whole light and velocity curve analysis have appeared recently. Each has its advantages, for example, eclipse timings typically cover relatively long time spans while whole curves often have densely packed data within specific intervals and allow access to systemic properties that carry additional timing information. Synthesis of the two information sources can be realized in a one step process that combines several data types, with automated weighting based on their standard deviations. Simultaneous light-velocity-timing solutions treat parameters of apsidal motion and the light-time effect coherently with those of period and period change, allow the phenomena to interact iteratively, and produce parameter standard errors based on the quantity and precision of the curves and timings. The logic and mathematics of the unification algorithm are given, including computation of theoretical conjunction times as needed for generation of eclipse timing residuals. Automated determination of eclipse type, recovery from inaccurate starting ephemerides, and automated data weighting are also covered. Computational examples are given for three timing-related cases—steady period change (XY Bootis), apsidal motion (V526 Sagittarii), and the light-time effect due to a binary's reflex motion in a triple system (AR Aurigae). Solutions for all combinations of radial velocity, light curve, and eclipse timing input show consistent results, with a few minor exceptions.

  19. New Light Curve Analysis for Large Numbers of Eclipsing Binaries I. Detached and Semi-Detached Binaries

    Directory of Open Access Journals (Sweden)

    Young-Woon Kang

    2010-06-01

    Full Text Available Several survey observations have produced light curves of more than five thousand eclipsing binaries for last 15 years. Future missions such as the Large Synoptic Survey Telescope (LSST, the Panoramic Survey Telescope and Rapid Response System (Pan-STARRS and Gaia are expected to yield hundreds thousands of new variable stars and eclipsing binaries. Current methods require a week to analyze the light curves of an eclipsing binary for its physical and orbital parameters. The current methods of analyzing the light curves will be inadequate to treat the overwhelming influx of new data. Therefore we developed a new method to treat large numbers of light curves of eclipsing binaries. We tested the new method by analyzing more than one hundred light curves of the detached and semi-detached eclipsing binaries discovered in the Small Magellan Cloud and present their fitted light curves with observations.

  20. Runaway stars from young star clusters containing initial binaries. I. Equal-mass, equal-energy binaries

    Energy Technology Data Exchange (ETDEWEB)

    Leonard, P.J.T.; Duncan, M.J.

    1988-07-01

    The production of runaway stars by the dynamical-ejection mechanism in an open star cluster containing 50 percent binaries of equal mass and energy is investigated theoretically by means of numerical simulations using the NBODY5 code of Aarseth (1985). The construction of the models is outlined, and the results are presented graphically and characterized in detail. It is shown that binary-binary collisions capable of producing runaways can occur (via formation and disruption, with some stellar collisions, of hierarchical double binaries) in clusters of relatively low density (e.g., pc-sized clusters of O or B stars). The frequency of binaries in the runaway population is found to vary between 0 and 50 percent, with the majority of runaways being unevolved early-type stars. 38 references.

  1. Formation and Evolution of X-ray Binaries

    Science.gov (United States)

    Shao, Y.

    2017-07-01

    X-ray binaries are a class of binary systems, in which the accretor is a compact star (i.e., black hole, neutron star, or white dwarf). They are one of the most important objects in the universe, which can be used to study not only binary evolution but also accretion disks and compact stars. Statistical investigations of these binaries help to understand the formation and evolution of galaxies, and sometimes provide useful constraints on the cosmological models. The goal of this thesis is to investigate the formation and evolution processes of X-ray binaries including Be/X-ray binaries, low-mass X-ray binaries (LMXBs), ultraluminous X-ray sources (ULXs), and cataclysmic variables. In Chapter 1 we give a brief review on the basic knowledge of the binary evolution. In Chapter 2 we discuss the formation of Be stars through binary interaction. In this chapter we investigate the formation of Be stars resulting from mass transfer in binaries in the Galaxy. Using binary evolution and population synthesis calculations, we find that in Be/neutron star binaries the Be stars have a lower limit of mass ˜ 8 M⊙ if they are formed by a stable (i.e., without the occurrence of common envelope evolution) and nonconservative mass transfer. We demonstrate that the isolated Be stars may originate from both mergers of two main-sequence stars and disrupted Be binaries during the supernova explosions of the primary stars, but mergers seem to play a much more important role. Finally the fraction of Be stars produced by binary interactions in all B type stars can be as high as ˜ 13%-30% , implying that most of Be stars may result from binary interaction. In Chapter 3 we show the evolution of intermediate- and low-mass X-ray binaries (I/LMXBs) and the formation of millisecond pulsars. Comparing the calculated results with the observations of binary radio pulsars, we report the following results: (1) The allowed parameter space for forming binary pulsars in the initial orbital period

  2. Eclipsing binary stars with a δ Scuti component

    Science.gov (United States)

    Kahraman Aliçavuş, F.; Soydugan, E.; Smalley, B.; Kubát, J.

    2017-09-01

    Eclipsing binaries with a δ Sct component are powerful tools to derive the fundamental parameters and probe the internal structure of stars. In this study, spectral analysis of six primary δ Sct components in eclipsing binaries has been performed. Values of Teff, v sin I, and metallicity for the stars have been derived from medium-resolution spectroscopy. Additionally, a revised list of δ Sct stars in eclipsing binaries is presented. In this list, we have only given the δ Sct stars in eclipsing binaries to show the effects of the secondary components and tidal-locking on the pulsations of primary δ Sct components. The stellar pulsation, atmospheric and fundamental parameters (e.g. mass, radius) of 92 δ Sct stars in eclipsing binaries have been gathered. Comparison of the properties of single and eclipsing binary member δ Sct stars has been made. We find that single δ Sct stars pulsate in longer periods and with higher amplitudes than the primary δ Sct components in eclipsing binaries. The v sin I of δ Sct components is found to be significantly lower than that of single δ Sct stars. Relationships between the pulsation periods, amplitudes and stellar parameters in our list have been examined. Significant correlations between the pulsation periods and the orbital periods, Teff, log g, radius, mass ratio, v sin I and the filling factor have been found.

  3. Minimum period and the gap in periods of Cataclysmic binaries

    International Nuclear Information System (INIS)

    Paczynski, B.; Sienkiewicz, R.

    1983-01-01

    The 81 minute cutoff to the orbital periods of hydrogen-rich cataclysmic binaries is consistent with evolution of those systems being dominated by angular momentum losses due to gravitational radiation. Unfortunately, many uncertainties, mainly poorly known atmospheric opacities below 2000 K, make is physically impossible to verify the quadrupole formula for gravitational radiation by using the observed cutoff at 81 minutes. The upper boundary of the gap in orbital periods observed at about 3 hours is almost certainly due to enhanced angular momentum losses from cataclysmic binaries which have longer periods. The physical mechanism of those losses is not identified, but a possible importance of stellar winds is pointed out. The lower boundary of the gap may be explained with the oldest cataclysmic binaries, whose periods evolved past the minimum at 81 minutes and reached the value of 2 hours within about 12 x 10 9 years after the binary had formed. Those binaries should have secondary components of only 0.02 solar masses, and their periods could be used to estimate ages of the oldest cataclysmic stars, and presumably the age of Galaxy. An alternative explanation for the gap requires that binaries should be detached while crossing the gap. A possible mechanism for this phenomenon is discussed. It requires the secondary components to be about 0.2 solar masses in the binaries just below the gap

  4. ``Supermassive Black-Hole Binaries in Merging Cusps''

    Science.gov (United States)

    Milosavljevic, M.; Merritt, D.

    2000-12-01

    We present N-body simulations of the formation and evolution of supermassive black-hole binaries in galactic nuclei. Initial conditions are drawn from a tree-code simulation of the merger of two spherical galaxies containing central point masses and ρ ~ r-2 central density cusps. Once the two black holes form a bound pair at the center of the merged galaxies, the evolution is continued using the Aarseth/Spurzem parallel tree code NBODY6++ at much higher resolution. Immediately following the formation of a hard black-hole binary, the density cusp of the merged galaxies is nearly homologous to the cusps in the initial galaxies. However the central density decreases rapidly as the binary black hole ejects stars which pass near to it, reducing the slope of the cusp from ~ r-2 to ~ r-1. When the distance between the black holes becomes comparable to the average stellar separation in the cusp, the binary begins to wander about the center while engaging in hard encounters with stars on radial orbits that are ejected at high speed. Ejection induces further shrinking of the binary at a decreasing rate. We discuss the dynamics of black hole binaries in the limit of large N, appropriate to real galactic nuclei, and discuss the possibility that supermassive black hole binaries can survive over cosmological times.

  5. Accretion Disks Around Binary Black Holes of Unequal Mass: GRMHD Simulations Near Decoupling

    Science.gov (United States)

    Gold, Roman; Paschalidis, Vasileios; Etienne, Zachariah B.; Shapiro, Stuart L.; Pfeiffer, Harald, P.

    2013-01-01

    We report on simulations in general relativity of magnetized disks onto black hole binaries. We vary the binary mass ratio from 1:1 to 1:10 and evolve the systems when they orbit near the binary disk decoupling radius. We compare (surface) density profiles, accretion rates (relative to a single, non-spinning black hole), variability, effective alpha-stress levels and luminosities as functions of the mass ratio. We treat the disks in two limiting regimes: rapid radiative cooling and no radiative cooling. The magnetic field lines clearly reveal jets emerging from both black hole horizons and merging into one common jet at large distances. The magnetic fields give rise to much stronger shock heating than the pure hydrodynamic flows, completely alter the disk structure, and boost accretion rates and luminosities. Accretion streams near the horizons are among the densest structures; in fact, the 1:10 no-cooling evolution results in a refilling of the cavity. The typical effective temperature in the bulk of the disk is approx. 10(exp5) (M / 10(exp 8)M solar mass (exp -1/4(L/L(sub edd) (exp 1/4K) yielding characteristic thermal frequencies approx. 10 (exp 15) (M /10(exp 8)M solar mass) (exp -1/4(L/L (sub edd) (1+z) (exp -1)Hz. These systems are thus promising targets for many extragalactic optical surveys, such as LSST, WFIRST, and PanSTARRS.

  6. Physical Properties and Evolutionary States of EA-type Eclipsing Binaries Observed by LAMOST

    Science.gov (United States)

    Qian, S.-B.; Zhang, J.; He, J.-J.; Zhu, L.-Y.; Zhao, E.-G.; Shi, X.-D.; Zhou, X.; Han, Z.-T.

    2018-03-01

    About 3196 EA-type binaries (EAs) were observed by LAMOST by 2017 June 16 and their spectral types were derived. Meanwhile, the stellar atmospheric parameters of 2020 EAs were determined. In this paper, those EAs are cataloged and their physical properties and evolutionary states are investigated. The period distribution of EAs suggests that the period limit of tidal locking for the close binaries is about 6 days. It is found that the metallicity of EAs is higher than that of EW-type binaries (EWs), indicating that EAs are generally younger than EWs and they are the progenitors of EWs. The metallicities of long-period EWs (0.4values of Log (g) are usually smaller than those of EAs. These support the evolutionary process that EAs evolve into long-period EWs through the combination of angular momentum loss (AML) via magnetic braking and case A mass transfer. For short-period EWs, their metallicities are lower than those of EAs, while their gravitational accelerations are higher. These reveal that they may be formed from cool short-period EAs through AML via magnetic braking with little mass transfer. For some EWs with high metallicities, they may be contaminated by material from the evolution of unseen neutron stars and black holes or they have third bodies that may help them to form rapidly through a short timescale of pre-contact evolution. The present investigation suggests that the modern EW populations may have formed through a combination of these mechanisms.

  7. Biomimetic superhydrophobic surface of high adhesion fabricated with micronano binary structure on aluminum alloy.

    Science.gov (United States)

    Liu, Yan; Liu, Jindan; Li, Shuyi; Liu, Jiaan; Han, Zhiwu; Ren, Luquan

    2013-09-25

    Triggered by the microstructure characteristics of the surfaces of typical plant leaves such as the petals of red roses, a biomimetic superhydrophobic surface with high adhesion is successfully fabricated on aluminum alloy. The essential procedure is that samples were processed by a laser, then immersed and etched in nitric acid and copper nitrate, and finally modified by DTS (CH3(CH2)11Si(OCH3)3). The obtained surfaces exhibit a binary structure consisting of microscale crater-like pits and nanoscale reticula. The superhydrophobicity can be simultaneously affected by the micronano binary structure and chemical composition of the surface. The contact angle of the superhydrophobic surface reaches up to 158.8 ± 2°. Especially, the surface with micronano binary structure is revealed to be an excellent adhesive property with petal-effect. Moreover, the superhydrophobic surfaces show excellent stability in aqueous solution with a large pH range and after being exposed long-term in air. In this way, the multifunctional biomimetic structural surface of the aluminum alloy is fabricated. Furthermore, the preparation technology in this article provides a new route for other metal materials.

  8. Long Period Eclipsing Binaries in the Magellanic Clouds: a Period-I Magnitude Relation

    Science.gov (United States)

    Devinney, Edward J.; Prsa, A.; Guinan, E. F.

    2011-05-01

    The Eclipsing Binaries via Artificial Intelligence (EBAI) project (Prsa et al) generated solutions for eclipsing binaries in the Large Magellanic Cloud (LMC) as observed by the OGLE II project. Automatic clustering applied to the results highlighted that the LMC's long period (P>10d) detached (EA) binaries follow a linear relation in Period-I magnitude (Devinney et al). Subsequent analysis of OGLE II data for the Small Magellanic Cloud (SMC) has revealed a similar relationship. The present relation is distinct from the Period-K band linear relation for LMC MACHO Project (Alcock et al) EBs as found by Wood et al, and discussed by Soszynski et al and Derekas et al. The Period-K band relation is convincingly modeled by invoking one EB component at the Roche lobe, whereas EBs in the Period-I magnitude relation reported here show minimal proximity effects and they are significantly fainter. We show that the Period-I magnitude relation is not a selection effect and weigh alternatives for its evolutionary basis. We are grateful for the support of this research from NSF/RUI Grant AST-05-75042.

  9. Photometric investigation of possible binary occurrence in the central stars of seventeen planetary nebulae

    International Nuclear Information System (INIS)

    Drummond, J.D. III.

    1980-01-01

    A comprehensive literature search was conducted for all possible bihary central stars in planetary nebulae. The results, which include all known and suspected visual, spectroscopic, and spectrum binaries, as well as all reported variable central stars, are presented in a series of tables. A photoelectric study was conducted in order to determine the status of short period (on the order of hours) variability of the central regions of seventeen planetary nebulae. Only the stellar appearing planetary nebula M1-2 (PK 133-8 0 1) was found to be variable. Its short (4.0002 hours) period suggests that it may be only the second eclipsing binary found among central stars to date. A method of concentric apertures was developed to determine the amount of light contributed by the central star vis-a-vis the nebula through a given aperture and filter. The procedure enabled UBV magnitudes and colors (and the errors) of central stars to be measured, including some in the sample of seventeen for which no previous values have been published. Mean nebular UBV magnitudes, surface brightnesses, and color indices were also found with the technique, and represent the first such published measurements. Various UBV two-parameter were constructed, revealing possible nebular/stellar sequences; a star-plus-nebula two-color diagram identifies three spectral classes of central stars, and two suspected binaries in the seventeen studied

  10. Merger rate of primordial black-hole binaries

    Science.gov (United States)

    Ali-Haïmoud, Yacine; Kovetz, Ely D.; Kamionkowski, Marc

    2017-12-01

    Primordial black holes (PBHs) have long been a candidate for the elusive dark matter (DM), and remain poorly constrained in the ˜20 - 100 M⊙ mass range. PBH binaries were recently suggested as the possible source of LIGO's first detections. In this paper, we thoroughly revisit existing estimates of the merger rate of PBH binaries. We compute the probability distribution of orbital parameters for PBH binaries formed in the early Universe, accounting for tidal torquing by all other PBHs, as well as standard large-scale adiabatic perturbations. We then check whether the orbital parameters of PBH binaries formed in the early Universe can be significantly affected between formation and merger. Our analytic estimates indicate that the tidal field of halos and interactions with other PBHs, as well as dynamical friction by unbound standard DM particles, do not do significant work on nor torque PBH binaries. We estimate the torque due to baryon accretion to be much weaker than previous calculations, albeit possibly large enough to significantly affect the eccentricity of typical PBH binaries. We also revisit the PBH-binary merger rate resulting from gravitational capture in present-day halos, accounting for Poisson fluctuations. If binaries formed in the early Universe survive to the present time, as suggested by our analytic estimates, they dominate the total PBH merger rate. Moreover, this merger rate would be orders of magnitude larger than LIGO's current upper limits if PBHs make a significant fraction of the dark matter. As a consequence, LIGO would constrain ˜10 - 300 M⊙ PBHs to constitute no more than ˜1 % of the dark matter. To make this conclusion fully robust, though, numerical study of several complex astrophysical processes—such as the formation of the first PBH halos and how they may affect PBH binaries, as well as the accretion of gas onto an extremely eccentric binary—is needed.

  11. Single drop steam explosions of binary oxides in subcooled water

    International Nuclear Information System (INIS)

    Roberta, C. Hansson; Hyun Sun Park; Bal Raj Sehgal

    2005-01-01

    Full text of publication follows: A steam explosion (vapor explosion or energetic molten fuel-coolant interaction) may occur when a high temperature liquid comes into contact with a cold and volatile liquid. This phenomenon has received much attention in in nuclear industry since it is one of the important safety concerns for the failure of a nuclear containment during a postulated severe accident. Recent well-controlled experiments show, for instance, mixed results on the triggerability of various molten materials (from pure metallic melts to prototypic corium melts). The KROTOS and FARO tests revealed only a mild propagation on triggering of the corium composite melt (UO 2 -ZrO 2 ) in water. On the contrary, highly energetic explosions were observed in the KROTOS tests with pure alumina melt. These different results for the energetics of these materials are not understood. It has been suspected for quite some time that these different results are caused by the different thermo-physical properties and material structure of those melts. Perhaps there are some limiting mechanisms which suppress the vapor explosion process for the corium material (a non-eutectic mixture of oxide materials), in comparison to that for the pure metallic or single oxidic material. To understand these mechanisms, we have performed a series of experimental investigations with various types of molten materials, as corium simulants which range from pure metallic melt to non-eutectic binary oxide melts. The experiments employed a high-speed continuous X-ray radiography system (up to 100,000 fps) to visualize the dynamic fine fragmentation process during steam explosions. Previously X-ray radiography has been successfully employed at the McGill university in Canada and at the University of California at Santa Barbara, USA. Both used flash X-ray systems that take one image per test because of the X-ray recharging time. In spite of this disadvantage, Ciccarelli and Frost successfully visualized

  12. Development of fat-reduced sausages: Influence of binary and ternary combinations of carrageenan, inulin, and bovine plasma proteins.

    Science.gov (United States)

    Baracco, Yanina; Rodriguez Furlán, Laura T; Campderrós, Mercedes E

    2017-04-01

    The aim of this work was to study the influence of the binary and ternary combinations of bovine plasma proteins (BPP), inulin (I) and κ-carrageenan (C) in the overall quality of fat-reduced sausages. The influence of these components over different properties (chemical composition, weight loss after cooking, emulsion stability, texture profile and sensory analysis of fat-reduced sausages) was studied and compared against two samples, one without fat reduction and another a fat-reduced sample without addition of texturing agents. In this sense, a full factorial experimental design of two levels with central point was used. The samples containing BPP+I and BPP+C showed a synergy in which the binary combinations presented higher values of moisture and protein content than the samples containing the individual components. The reduction of fat content increases the values of hardness and decreases the values of springiness. Samples with 5% BPP (w/w) and binary combinations of BPP+C and BPP+I had the best stability values (low total fluid loss), demonstrating a significant synergistic effect by combining BPP+C. Similar results were obtained from the study of weight loss after cooking. However, both studies showed a destabilization of the sample BPP+I+C as emulsion stability decreased and weight loss increased after cooking compared to binary combinations ( P  0.05). The less acceptable sample for flavor and texture was the one containing only BPP. However, when BPP combined with I or C, a major acceptability was obtained, demonstrating the synergistic effect of these binary combinations. Therefore, our studies revealed that the binary combinations of BPP with I or C are good alternatives for the development of fat-reduced sausage.

  13. Manifold corrections on spinning compact binaries

    International Nuclear Information System (INIS)

    Zhong Shuangying; Wu Xin

    2010-01-01

    This paper deals mainly with a discussion of three new manifold correction methods and three existing ones, which can numerically preserve or correct all integrals in the conservative post-Newtonian Hamiltonian formulation of spinning compact binaries. Two of them are listed here. One is a new momentum-position scaling scheme for complete consistency of both the total energy and the magnitude of the total angular momentum, and the other is the Nacozy's approach with least-squares correction of the four integrals including the total energy and the total angular momentum vector. The post-Newtonian contributions, the spin effects, and the classification of orbits play an important role in the effectiveness of these six manifold corrections. They are all nearly equivalent to correct the integrals at the level of the machine epsilon for the pure Kepler problem. Once the third-order post-Newtonian contributions are added to the pure orbital part, three of these corrections have only minor effects on controlling the errors of these integrals. When the spin effects are also included, the effectiveness of the Nacozy's approach becomes further weakened, and even gets useless for the chaotic case. In all cases tested, the new momentum-position scaling scheme always shows the optimal performance. It requires a little but not much expensive additional computational cost when the spin effects exist and several time-saving techniques are used. As an interesting case, the efficiency of the correction to chaotic eccentric orbits is generally better than one to quasicircular regular orbits. Besides this, the corrected fast Lyapunov indicators and Lyapunov exponents of chaotic eccentric orbits are large as compared with the uncorrected counterparts. The amplification is a true expression of the original dynamical behavior. With the aid of both the manifold correction added to a certain low-order integration algorithm as a fast and high-precision device and the fast Lyapunov

  14. Massive Black Hole Binaries: Dynamical Evolution and Observational Signatures

    Directory of Open Access Journals (Sweden)

    M. Dotti

    2012-01-01

    Full Text Available The study of the dynamical evolution of massive black hole pairs in mergers is crucial in the context of a hierarchical galaxy formation scenario. The timescales for the formation and the coalescence of black hole binaries are still poorly constrained, resulting in large uncertainties in the expected rate of massive black hole binaries detectable in the electromagnetic and gravitational wave spectra. Here, we review the current theoretical understanding of the black hole pairing in galaxy mergers, with a particular attention to recent developments and open issues. We conclude with a review of the expected observational signatures of massive binaries and of the candidates discussed in literature to date.

  15. Strong binary pulsar constraints on Lorentz violation in gravity.

    Science.gov (United States)

    Yagi, Kent; Blas, Diego; Yunes, Nicolás; Barausse, Enrico

    2014-04-25

    Binary pulsars are excellent laboratories to test the building blocks of Einstein's theory of general relativity. One of these is Lorentz symmetry, which states that physical phenomena appear the same for all inertially moving observers. We study the effect of violations of Lorentz symmetry in the orbital evolution of binary pulsars and find that it induces a much more rapid decay of the binary's orbital period due to the emission of dipolar radiation. The absence of such behavior in recent observations allows us to place the most stringent constraints on Lorentz violation in gravity, thus verifying one of the cornerstones of Einstein's theory much more accurately than any previous gravitational observation.

  16. Creation of an anti-imaging system using binary optics

    Science.gov (United States)

    Wang, Haifeng; Lin, Jian; Zhang, Dawei; Wang, Yang; Gu, Min; Urbach, H. P.; Gan, Fuxi; Zhuang, Songlin

    2016-01-01

    We present a concealing method in which an anti-point spread function (APSF) is generated using binary optics, which produces a large-scale dark area in the focal region that can hide any object located within it. This result is achieved by generating two identical PSFs of opposite signs, one consisting of positive electromagnetic waves from the zero-phase region of the binary optical element and the other consisting of negative electromagnetic waves from the pi-phase region of the binary optical element. PMID:27620068

  17. Strong Binary Pulsar Constraints on Lorentz Violation in Gravity

    CERN Document Server

    Yagi, Kent; Yunes, Nicolas; Barausse, Enrico

    2014-01-01

    Binary pulsars are excellent laboratories to test the building blocks of Einstein's theory of General Relativity. One of these is Lorentz symmetry which states that physical phenomena appear the same for all inertially moving observers. We study the effect of violations of Lorentz symmetry in the orbital evolution of binary pulsars and find that it induces a much more rapid decay of the binary's orbital period due to the emission of dipolar radiation. The absence of such behavior in recent observations allows us to place the most stringent constraints on Lorentz violation in gravity, thus verifying one of the cornerstones of Einstein's theory much more accurately than any previous gravitational observation.

  18. Finding binaries from phase modulation of pulsating stars with Kepler

    Directory of Open Access Journals (Sweden)

    Shibahashi Hiromoto

    2017-01-01

    Full Text Available Binary orbital motion causes a periodic variation in the path length travelled by light emitted from a star towards us. Hence, if the star is pulsating, the observed phase of the pulsation varies over the orbit. Conversely, once we have observed such phase variation, we can extract information about the binary orbit from photometry alone. Continuous and precise space-based photometry has made it possible to measure these light travel time effects on the pulsating stars in binary systems. This opens up a new way of finding unseen brown dwarfs, planets, or massive compact stellar remnants: neutron stars and black holes.

  19. The BANANA Survey: Spin-Orbit Alignment in Binary Stars

    Science.gov (United States)

    Albrecht, Simon; Winn, J. N.; Fabrycky, D. C.; Torres, G.; Setiawan, J.

    2012-04-01

    Binaries are not always neatly aligned. Previous observations of the DI Herculis system showed that the spin axes of both stars are highly inclined with respect to one another and the orbital axis. Here, we report on our ongoing survey to measure relative orientations of spin-axes in a number of eclipsing binary systems. These observations will hopefully lead to new insights into star and planet formation, as different formation scenarios predict different degrees of alignment and different dependencies on the system parameters. Measurements of spin-orbit angles in close binary systems will also create a basis for comparison for similar measurements involving close-in planets.

  20. Estimation of the Ideal Binary Mask using Directional Systems

    DEFF Research Database (Denmark)

    Boldt, Jesper; Kjems, Ulrik; Pedersen, Michael Syskind

    2008-01-01

    The ideal binary mask is often seen as a goal for time-frequency masking algorithms trying to increase speech intelligibility, but the required availability of the unmixed signals makes it difficult to calculate the ideal binary mask in any real-life applications. In this paper we derive the theory...... and the requirements to enable calculations of the ideal binary mask using a directional system without the availability of the unmixed signals. The proposed method has a low complexity and is verified using computer simulation in both ideal and non-ideal setups showing promising results....