WorldWideScience

Sample records for target material recycling

  1. Feasibility of Target Material Recycling as Waste Management Alternative

    International Nuclear Information System (INIS)

    El-Guebaly, L.; Wilson, P.; Henderson, D.; Varuttamaseni, A.

    2004-01-01

    The issue of waste management has been studied simultaneously along with the development of the ARIES heavy-ion-driven inertial fusion energy (IFE) concept. Options for waste management include disposal in repositories, recycling, or clearance from regulatory control, following a reasonable cooling period. This paper concerns the feasibility of recycling the heavy-ion-beam targets, in particular the hohlraum wall materials that include, for example, Au/Gd, Au, W, Pb, Hg, Ta, Pb/Ta/Cs, Hg/W/Cs, Pb/Hf, Hf, solid Kr, and solid Xe. The choice between target material disposal and recycling depends on the amount of waste generated relative to the nuclear island, the strategy to solve the recycling problem, and the impact of the additional cost and complexity of the recycling process on the overall machine. A detailed flow diagram for the elements of the recycling process was developed to analyze two extreme activation cases: (a) one-shot use and then disposal in a repository and (b) recycling continuously during plant life without removal of transmutation products. Metrics for comparing the two scenarios included waste level, dose to recycling equipment, additional cost, and design complexity. Comparing the two approaches indicated a preference for the one-shot scenario as it generates 1 m 3 /yr of extremely low-level waste (Class A) and offers attractive design and economics features. Recycling reduces the target waste stream by a factor of 10 or more but introduces additional issues. It may produce high-level waste, requires remote handling, adds radioactive storage facilities, and increases the cost and complexity of the plant. The inventory analysis indicated that the heavy-ion-beam (HIB) target materials represent a very small waste stream compared to that of the nuclear island (<1% of the total waste). This means recycling is not a 'must' requirement for IFE-HIB power plants unless the target materials have cost and/or resource problems (e.g., Au and Gd). In this

  2. Recycling issues facing target and RTL materials of inertial fusion designs

    International Nuclear Information System (INIS)

    El-Guebaly, L.; Wilson, P.; Sawan, M.; Henderson, D.; Varuttamaseni, A.

    2005-01-01

    Designers of heavy ion (HI) and Z-pinch inertial fusion power plants have explored the potential of recycling the target and recyclable transmission line (RTL) materials as an alternate option to disposal in a geological repository. This work represents the first time a comprehensive recycling assessment was performed on both machines with an exact pulse history. Our results offer two divergent conclusions on the recycling issue. For the HI concept, target recycling is not a 'must' requirement and the preferred option is the one-shot use scenario as target materials represent a small waste stream, less than 1% of the total nuclear island waste. We recommend using low-cost hohlraum materials once-through and then disposing of them instead of recycling expensive materials such as Au and Gd. On the contrary, RTL recycling is a 'must' requirement for the Z-pinch concept in order to minimize the RTL inventory and enhance the economics. The RTLs meet the low level waste and recycling dose requirements with a wide margin when recycled for the entire plant life even without a cooling period. While recycling offers advantages to the Z-pinch system, it adds complexity and cost to the HI designs

  3. Modelling Recycling Targets

    DEFF Research Database (Denmark)

    hill, amanda; Leinikka Dall, Ole; Andersen, Frits Møller

    2014-01-01

    Within the European Union (EU) a paradigm shift is currently occurring in the waste sector, where EU waste directives and national waste strategies are placing emphasis on resource efficiency and recycling targets. The most recent Danish resource strategy calculates a national recycling rate of 22......% for household waste, and sets an ambitious goal of a 50% recycling rate by 2020. This study integrates the recycling target into the FRIDA model to project how much waste and from which streams should be diverted from incineration to recycling in order to achieve the target. Furthermore, it discusses how...... the existing technological, organizational and legislative frameworks may affect recycling activities. The results of the analysis show that with current best practice recycling rates, the 50% recycling rate cannot be reached without recycling of household biowaste. It also shows that all Danish municipalities...

  4. Modelling Recycling Targets

    DEFF Research Database (Denmark)

    Hill, Amanda Louise; Leinikka Dall, Ole; Andersen, Frits M.

    2014-01-01

    % for household waste, and sets an ambitious goal of a 50% recycling rate by 2020. This study integrates the recycling target into the FRIDA model to project how much waste and from which streams should be diverted from incineration to recycling in order to achieve the target. Furthermore, it discusses how...

  5. Material recycling; Recycling von Werkstoffen

    Energy Technology Data Exchange (ETDEWEB)

    Eyerer, P. [Fraunhofer-Institut fuer Chemische Technologie (ICT), Pfinztal-Berghausen (Germany)]|[Stuttgart Univ. (Germany). Inst. fuer Kunststoffpruefung und Kunststoffkunde (IKP)

    1996-12-01

    Lasting economizing is the only peaceful possibility for ensuring human life on Earth. Recycling of materials only contributes to lasting economizing if less resources and energy are required than for primary materials. Materials which have been collected and sorted after products have been disassembled result in secondary, tertiary etc. products with virtually the same properties as the primary materials. Non-specific material cycles connected with large scale processes e.g. shredders, hydrogenation, mixed waste recycling result in recycled goods of interior quality and costs which are greater than those of the primary materials. In contrast to metals, paper and glass, synthetic materials from products (e.g. televisions, surfboards, cars, washing machines etc.) especially require and permit differentiated recycling paths. Production waste: For decades now the sorted production waste generated during production, has been reintroduced to the production process of new products at the production location itself if financially interesting. Production waste made of steel, aluminium, glass and paper must be returned to the balst furnace, melting house or slurry. Specific synthetic material cycles: E.g. SMC, PVC window frames and floors, PET bottles, polystyrene, PE and PP disposable syringes, HDPE fuel tanks, PA66 car suction pipes etc. Specific recycling processes: E.g. supercritical hydrooxidation for electronics waste and shredder light fraction alcoholysis for polyurethane. Non-specific recycling processes for organic raw materials: E.g. hydrogenation, high temperature gas generation, thermoselect process etc. Non-specific disposal procedures: E.g. shredders for synthetic materials (light fraction) lead to incineration or to the disposal site, because the costs for separating and sorting the mass synthetic materials are greater than the kilogram prices of the new materials. (orig./HW) [Deutsch] Nachhaltiges Wirtschaften ist die einzige friedliche Moeglichkeit

  6. Fly ash. Quality recycling material

    Energy Technology Data Exchange (ETDEWEB)

    Blomster, D.; Leisio, C.

    1996-11-01

    Imatran Voima`s coal-fired power plants not only generate power and heat but also produce fly ash which is suitable raw material for recycling. This material for recycling is produced in the flue gas cleaning process. It is economical and, thanks to close quality control, is suitable for use as a raw material in the building materials industry, in asphalt production, and in earthworks. Structures made from fly ash are also safe from an environmental point of view. (orig.)

  7. Recycled materials in Portland cement concrete

    Science.gov (United States)

    2000-06-01

    This report pertains to a comprehensive study involving the use of recycled materials in Portland cement concrete. Three different materials were studied including crushed glass (CG), street sweepings (SS), and recycled concrete (RC). Blast furnace s...

  8. Plastic Recycling Experiments in Materials Education

    Science.gov (United States)

    Liu, Ping; Waskom, Tommy L.

    1996-01-01

    The objective of this project was to introduce a series of plastic recycling experiments to students in materials-related courses such as materials science, material technology and materials testing. With the plastic recycling experiments, students not only can learn the fundamentals of plastic processing and properties as in conventional materials courses, but also can be exposed to the issue of materials life cycle and the impact on society and environment.

  9. Waste material recycling: Assessment of contaminants limiting recycling

    DEFF Research Database (Denmark)

    Pivnenko, Kostyantyn

    , consumption and waste management stages within a product’s lifecycle (Figure 1). Hence, waste materials contain potentially hazardous chemicals that are unwanted in the new products made of the recycled raw materials. So far, the presence of such chemicals in materials for recycling has not been...... schemes and great potential for increase in recycling, respectively. The approach followed in the present work was developed and performed in four distinct steps. As step one, fractional composition of waste paper (30 fractions) and plastics (9 fractions) from households in Åbenrå municipality (Southern......, chemical analyses for quantification of a range of potential contaminants in paper (mineral oils, phenols, phthalates, polychlorinated biphenyls and toxic metals) and plastics (phthalates and brominated flame retardants) were done. The results indicated large variations in presence of chemical contaminants...

  10. Recycled carpet materials for infrastructure applications.

    Science.gov (United States)

    2013-06-01

    The objective of this project was to develop novel composite materials for infrastructure applications by recycling nylon based waste carpets. These novel composites have been proven to possess improved mechanical and sound barrier properties to meet...

  11. Recycling of used fission material

    International Nuclear Information System (INIS)

    Abrahams, K.

    1991-01-01

    One of the most important social obstructions for the final disposal of nuclear waste is the long lifetime of some radioactive nuclides. However there are new possibilities for recycling high-level radioactive wastes. By nuclear transformation the troublesome components in the waste, the actinides and the long-living fission products can be transformed into products with a shorter decay time. (author). 9 refs.; 2 figs.; 3 tabs

  12. Energy implications of recycling packaging materials

    Energy Technology Data Exchange (ETDEWEB)

    Gaines, L.L. [Argonne National Lab., IL (United States); Stodolsky, F. [Argonne National Lab., Washington, DC (United States)

    1994-03-01

    In 1992, Congress sought to rewrite the United States comprehensive solid waste legislation -- the Resource Conservation and Recovery Act (RCRA). Commodity-specific recycling rates were proposed for consumer-goods packaging materials and newsprint We compare the impacts on energy, materials use, and landfill volume of recycling at those rates to the impacts for alternative methods of material disposition to determine the optimum for each material. After products have served their intended uses, there are several alternative paths for material disposition. These include reuse, recycling to the same product, recycling to a lower-valued product, combustion for energy recovery, incineration without energy recovery, and landfill. Only options considered to be environmentally sound are Included. Both houses of Congress specifically excluded combustion for energy recovery from counting towards the recovery goats, probably because combustion is viewed as a form of disposal and is therefore assumed to waste resources and have n environmental effects. However, co-combustion in coal-fired plants or combustion in appropriately pollution-controlled waste-to-energy plants Is safe, avoids landfill costs, and can displace fossil fuels. In some cases, more fossil fuels can be displaced by combustion than by recycling. We compare the alternative life-cycle energies to the energies for producing the products from virgin materials. Results depend on the material and on the objective to be achieved. There are trade-offs among possible goals. For instance, paper packaging recycling conserves trees but may require greater fossil-fuel input than virgin production. Therefore, the objectives for proposed legislation must be examined to see whether they can most effectively be achieved by mandated recycling rates or by other methods of disposition. The optimal choices for the United States may not necessarily be the same as those for Europe and other parts of the world.

  13. Feasibility of recycling rubber-modified paving materials.

    Science.gov (United States)

    2005-02-01

    Recycling has proved to be a sound, economical method of conserving and reusing scarce material resources used in AC pavement construction. Considerable experience with recycling conventional AC mixtures indicates that the resulting recycled pavement...

  14. Characterization of DWPF recycle condensate materials

    Energy Technology Data Exchange (ETDEWEB)

    Bannochie, C. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Adamson, D. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); King, W. D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-04-01

    A Defense Waste Processing Facility (DWPF) Recycle Condensate Tank (RCT) sample was delivered to the Savannah River National Laboratory (SRNL) for characterization with particular interest in the concentration of I-129, U-233, U-235, total U, and total Pu. Since a portion of Salt Batch 8 will contain DWPF recycle materials, the concentration of I-129 is important to understand for salt batch planning purposes. The chemical and physical characterizations are also needed as input to the interpretation of future work aimed at determining the propensity of the RCT material to foam, and methods to remediate any foaming potential. According to DWPF the Tank Farm 2H evaporator has experienced foaming while processing DWPF recycle materials. The characterization work on the RCT samples has been completed and is reported here.

  15. Performance evaluation of subgrade stabilization with recycled materials.

    Science.gov (United States)

    2016-02-29

    Due to rising costs of good quality acceptable materials for remove/replace options and traditional : subgrade stabilization materials, MDOT is in need to identify potential recycled materials to treat : unacceptable subgrade soils. Use of recycled m...

  16. Recovery of the secondary raw materials, recycling

    International Nuclear Information System (INIS)

    Chmielewska, E.

    2010-01-01

    In this chapter the recovery and recycling of secondary raw materials is explained. This chapter consists of the following parts: Paper and tetrapaks; Car wrecks; Scrap metal; Plastics; Used tires; Electrical and electronic equipment; Glass; Accumulators and batteries; Spent oil; Low-and non-waste technology.

  17. Modelling Recycling Targets:Achieving a 50% Recycling Rate for Household Waste in Denmark

    OpenAIRE

    Hill, Amanda Louise; Leinikka Dall, Ole; Andersen, Frits M.

    2014-01-01

    Within the European Union (EU) a paradigm shift is currently occurring in the waste sector, whereEU waste directives and national waste strategies are placing emphasis on resource efficiency andrecycling targets. The most recent Danish resource strategy calculates a national recycling rate of22% for household waste, and sets an ambitious goal of a 50% recycling rate by 2020. This studyintegrates the recycling target into the FRIDA model to project how much waste and from whichstreams should b...

  18. Recycled Glass and Dredged Materials

    Science.gov (United States)

    2007-03-01

    rotary kiln is part of the process that converts dredged material stored in a CDF to lightweight aggregate, and the proprietary technique has been...combustion byproducts, incinerator ash residue, waste lime products, and cement production byproducts. Two commercial recyling operations for amending...clayey silt and silty sand with Portland cement increased the compressive strength to 360 psi and 1170 psi, respectively (Silva et al. 2003). FINE

  19. Recycling of chemical hydrogen storage materials

    International Nuclear Information System (INIS)

    Lo, C.F.; Davis, B.R.; Karan, K.

    2004-01-01

    'Full text:' Light weight chemical hydrides such as sodium borohydride (NaBH4) and lithium borohydride (LiBH4) are promising hydrogen storage materials. They offer several advantages including high volumetric storage density, safe storage, practical storage and operating condition, controlled and rapid hydrogen release kinetics in alkaline aqueous media in the presence of catalysts. In addition, borate or borax, the reaction by-product, is environmentally friendly and can be directly disposed or recycled. One technical barrier for utilizing borohydrides as hydrogen storage material is their high production cost. Sodium borohydride currently costs $90 per kg while lithium borohydride costs $8000 per kg. For commercialization, new and improved technology to manufacture borohydrides must be developed - preferably by recycling borates. We are investigating different inorganic recycling routes for regenerating borohydrides from borates. In this paper, the results of a chlorination-based recycling route, incorporating multi-step reactions, will be discussed. Experiments were conducted to establish the efficiency of various steps of the selected regeneration process. The yields of desired products as a function of reaction temperature and composition were obtained from multi-phase batch reactor. Separation efficiency of desired product was also determined. The results obtained so far appear to be promising. (author)

  20. Low to high performance recycled cementitious materials: case studies

    OpenAIRE

    Etxeberria Larrañaga, Miren

    2015-01-01

    In this work, four real case studies using concrete produced with recycled aggregates are described. The four real cases carried out in Barcelona are: 1) Pavement filling with control low strength material (CLSM) employing fine recycled aggregates, 2) pervious recycled aggregate concrete employing coarse mixed recycled aggregates in the works undertaken at Cervantes park; 3) Concrete blocks produced employing recycled and slag aggregates as well as sea water for a new breakwater dyke and 4) R...

  1. Sustainable Materials Management (SMM) - Recycling Economic Information (REI) Report

    Data.gov (United States)

    U.S. Environmental Protection Agency — The 2016 Recycling Economic Information (REI) Report aims to increase the understanding of the economic implications of material reuse and recycling. The report...

  2. Demonstrating Lenz's Law with Recycled Materials

    Science.gov (United States)

    Saraiva, Carlos

    2006-03-01

    A number of interesting demonstrations of induced electric currents and of Lenz's law have been described in this journal.1-5 In this paper, a simple version of an experiment that was described6 by Léon Foucault in 1855 is presented. Foucault placed a rotating copper disk between the poles of an electromagnet. When the electromagnet was off, the disk rotated almost without friction, but when the electromagnet was turned on, the disk stopped almost immediately. Nice discussions of this sort of magnetic braking may be found in a number of textbooks.7 Here I describe how to do the demonstration quite simply using recycled materials.

  3. Material Cycles and Chemicals: Dynamic Material Flow Analysis of Contaminants in Paper Recycling.

    Science.gov (United States)

    Pivnenko, Kostyantyn; Laner, David; Astrup, Thomas F

    2016-11-15

    This study provides a systematic approach for assessment of contaminants in materials for recycling. Paper recycling is used as an illustrative example. Three selected chemicals, bisphenol A (BPA), diethylhexyl phthalate (DEHP) and mineral oil hydrocarbons (MOHs), are evaluated within the paper cycle. The approach combines static material flow analysis (MFA) with dynamic material and substance flow modeling. The results indicate that phasing out of chemicals is the most effective measure for reducing chemical contamination. However, this scenario was also associated with a considerable lag phase (between approximately one and three decades) before the presence of chemicals in paper products could be considered insignificant. While improved decontamination may appear to be an effective way of minimizing chemicals in products, this may also result in lower production yields. Optimized waste material source-segregation and collection was the least effective strategy for reducing chemical contamination, if the overall recycling rates should be maintained at the current level (approximately 70% for Europe). The study provides a consistent approach for evaluating contaminant levels in material cycles. The results clearly indicate that mass-based recycling targets are not sufficient to ensure high quality material recycling.

  4. Composition of waste materials and recyclables

    DEFF Research Database (Denmark)

    Götze, Ramona

    decisions in waste planning thus require a holistic and systematic assessment of environmental impacts of different waste management options. Such assessment requires reliable information on the physical and chemical waste properties to model the flows of waste materials and substances throughout the entire...... the selection of appropriate acid digestion method for future waste characterization studies and the comparison of data across existing studies. A consistent dataset for 73 physico-chemical parameters in 49 residual and 24 source-segregated Danish household waste fractions was obtained and is now available...... for future modelling and assessment of waste management systems. The analyzed fractions were selected based on material properties with relevance for potential recycling processes. The physico-chemical analysis revealed chemical differences between residual and source-segregated samples for several fractions...

  5. Sustainable Materials Management (SMM) - Recycling Economic Information (REI) Report

    Science.gov (United States)

    The 2016 Recycling Economic Information (REI) Report aims to increase the understanding of the economic implications of material reuse and recycling. The report shows that recycling and reuse of materials creates jobs, while also generating local and state tax revenues. The 2016 REI Report covers the economic activities of nine sectors: ferrous metals, nonferrous metals (aluminum), glass, paper, plastics, rubber, construction and demolition, electronics and organics (including food and yard trimmings). The 2016 REI Report builds on work from a 2001 REI study. In 2001, to encourage the development of an economic market for recycling, EPA supported the creation of a national Recycling Economic Information (REI) Project and the related REI report, based upon the work of several states and regions. The REI report was a ground breaking national study demonstrating the economic value of recycling and reuse to the U.S. economy. Compiled through a cooperative agreement with the National Recycling Coalition, the study confirmed what many have known for decades: there are significant economic benefits in recycling. The 2016 report focuses on the economic impacts of recycling rather than the environmental benefits, as the environmental benefits have been researched in detail. Accurately estimating the impact that recycling has on jobs, wages and taxes is important because the results can influence policy decisions and provide a more robust picture of recycling by a

  6. High-volume recycled materials for sustainable pavement construction.

    Science.gov (United States)

    2017-05-01

    The main objective of this research is to evaluate the feasibility of using high-volume recycled materials for concrete production in rigid pavement. The goal was to replace 50% of the solids with recycled materials and industrial by-products. The pe...

  7. Recycled Materials in European Highway Environments : Uses, Technologies, and Policies

    Science.gov (United States)

    2000-10-01

    The objective of this scanning tour was to review and document innovative policies, programs, and techniques that promote the use of recycled materials in the highway environment. The U.S. delegation met with more than 100 representatives from transp...

  8. The effect of release liner materials on adhesive contaminants, paper recycling and recycled paper properties

    Science.gov (United States)

    Richard Venditti; Richard Gilbert; Andy Zhang; Said Abubakr

    2000-01-01

    Release liner waste material is found in post-consumer waste streams and is also a significant component of the preconsumer waste stream generated in the manufacturing of adhesive products. To date, very little has been reported pertaining to the behavior of release liner in paper recycling. In this study, the effect of the release liner material on the behavior of...

  9. Material properties of frc with recycled aggregate

    Czech Academy of Sciences Publication Activity Database

    Trčková, Jiřina; Procházka, P.

    2011-01-01

    Roč. 8, č. 2 (2011), s. 105-113 ISSN 1214-9705 R&D Projects: GA ČR GA103/08/1197 Institutional research plan: CEZ:AV0Z30460519 Keywords : recycled aggregate * concrete composite * pullout test Subject RIV: JM - Building Engineering Impact factor: 0.530, year: 2011 http://www.irsm.cas.cz/abstracts/AGG/02_11/1_Trckova.pdf

  10. Central sorting and recovery of MSW recyclable materials: A review of technological state-of-the-art, cases, practice and implications for materials recycling

    DEFF Research Database (Denmark)

    Cimpan, Ciprian; Maul, Anja; Jansen, Michael

    2015-01-01

    Today's waste regulation in the EU comprises stringent material recovery targets and calls for comprehensive programs in order to achieve them. A similar movement is seen in the US where more and more states and communities commit to high diversion rates from landfills. The present paper reviews...... scientific literature, case studies and results from pilot projects, on the topic of central sorting of recyclable materials commonly found in waste from households. The study contributes, inter alia, with background understanding on the development of materials recovery, both in a historical...... and process control, which are targeted at curtailing process inefficiencies shown by operational practice. Technology developed for the sorting of commingled recyclables from separate collection is also being successfully used to upgrade residual MSW processing plants. The strongest motivation for central...

  11. Energy impacts of recycling disassembly material in residential buildings

    International Nuclear Information System (INIS)

    Gao, Weijun; Ariyama, Takahiro; Ojima, Toshio; Meier, Alan

    2000-01-01

    In order to stop the global warmth due to the CO2 concentration, the energy use should be decreased. The investment of building construction industry in Japan is about 20 percent of GDP. This fraction is much higher than in most developed countries. That results the Japanese building construction industry including residential use consumes about one third of all energy and resources of the entire industrial sectors. In order to save energy as well as resource, the recycle of the building materials should be urgent to be carried out. In this paper, we focus on the potential energy savings with a simple calculated method when the building materials or products are manufactured from recycled materials. We examined three kinds of residential buildings with different construction techniques and estimated the decreased amount of energy consumption and resources resulting from use of recycled materials. The results have shown for most building materials, the energy consumption needed to remake housing materials from recycled materials is lower than that to make new housing materials. The energy consumption of building materials in all case-study housing can be saved by at least 10 percent. At the same time, the resource, measured by mass of building materials (kg) can be decreased by over 50 percent

  12. Reuse and recycling of radioactive material packaging

    International Nuclear Information System (INIS)

    Gerulis, Eduardo; Zapparoli, Carlos Leonel; Barboza, Marycel Figols de

    2009-01-01

    Human development is directly linked to energy consumption. The political decisions (to this human development) result in economic, social and environmental aspects, whose magnitude should maintain the sustainability of every aspect for not to collapsing. The environmental aspect has been a target of research because of the excessive emission of gases which contributes to the greenhouse effect. The production processes emit gases due to the consumption of energy to get it, but it is necessary to maintain the environmental sustainability in order to minimize the contribution to the emission of greenhouse gases. The population control and the energetic efficiency are factors that contribute to the environmental sustainability. Besides them, the culture of consumption is another factor that, when applied to the reduction of emissions, also contributes to the sustainability of the environment. The reuse of materials is one of the sub-factors which contribute to the reduction of emissions. The Radiopharmacy Directory (DIRF) at IPEN-CNEN/SP, produces radiopharmaceuticals that are necessary to improve the Brazilian population's life quality. The radiopharmaceuticals are transported in packaging to the transport of radioactive material. These packages are considered non-biodegradable, because some metals, which make up these packages, pollute the environment. These packages have increased costs, in addition, because it must be approved in tests of integrity. The reuse of packaging in favorable situations to the same purpose is a way to help the environment degradation and costs reduction. The packaging reuse in unfavorable situations disobey rules or return logistics that become effective the transport back, but the consumption culture strengthening can change this situation. This paper describes IPEN's packaging, form and quantities distribution, and the packaging that comes back to be reused. (author)

  13. Modeling the thermal characteristics of masonry mortar containing recycled materials

    Science.gov (United States)

    Laney, Morgan Gretchen

    As the building industry in the United States rapidly expands, the reuse of recycled demolition waste aggregates is becoming increasingly more important. Currently, the building industry is the largest consumer of natural resources. The constant use of raw virgin aggregate is resulting in depleting resources, lack of space for landfills, increasing costs, and heightened levels of pollution. The use of these recycled aggregates in building envelopes and the study of thermal properties are becoming a popular area of research in order to improve building energy usage. The construction of Zero Energy Buildings (ZEB) is encouraged by the United States government as a result of the unresolved finite resources and environmental pollution. The focus of this research is on the impact of using recycled demolition waste aggregates on thermal properties, including specific heat capacity and thermal conductivity, in masonry mortar applications. The new forms of aggregate were analyzed for efficiency and practical utilization in construction in seven locations across the United States by embedding the new material into the building envelope of a strip mall mercantile build model from the National Renewable Energy Laboratory (NREL) in the EnergyPlus Building Energy Simulation Program (BESP). It was determined that the recycled aggregate mortar mixtures performed as well as or better than the traditional mortar mix. Opportunities for future research in recycled aggregate mortar mixtures exist in a regional analysis, a regional recycled aggregate cost analysis, and a life cycled cost analysis (LCCA).

  14. Regulatory Exclusions and Alternative Standards for the Recycling of Materials, Solid Wastes and Hazardous Wastes

    Science.gov (United States)

    Determining the Level of Regulation for Hazardous Waste Recycling, Recycled Materials that are not Subject to RCRA Hazardous Waste Regulation, Materials Subject to Alternative Regulatory Controls, Materials Subject to Full Hazardous Waste Regulations.

  15. Soil stabilization with recycled materials improves subgrade performance : research spotlight.

    Science.gov (United States)

    2016-02-29

    The use of recycled materials for subgrade stabilization can provide the support needed for construction vehicle loading and more typical long-term traffic loading. This is a particular need in Michigan due to the prevalence of weak subgrade soils. U...

  16. Reducing Greenhouse Gasses Emissions by Recyclable Material Bank Project in Universities of Thailand

    OpenAIRE

    Ronbanchob Apiratikul

    2012-01-01

    This research studied recycled wastes by Recyclable Material Bank project of 17 universities of Thailand for evaluation of reducing greenhouse gasses emission compared with landfilling activity during January 2011 to December 2011. The results showed that the projects collected total amount of recyclable wastes about 1,626.917 metric ton. The office paper has the largest amount among these recycled wastes (55.61 % of total recycled wastes). Groups of recycled waste can be prioritized from hig...

  17. Targets and special materials

    International Nuclear Information System (INIS)

    Blanc, R.; Bouriant, M.; Richaud, J.P.

    1997-01-01

    The target preparation group supplied a large number of samples to nuclear physicists for experiments using SARA and also other accelerators throughout the world. Particular preparation and projects include: 208 Pb, 116 Cd, 6 LiF, 123 Sb, In and Ta targets, strippers for SARA and GANIL, optical silicone disks for POLDER and GRAAL experiments, active participations for the AMS project and finally filament preparation for the GENEPI project. (authors)

  18. Radiological control criteria for materials considered for recycle and reuse

    International Nuclear Information System (INIS)

    Kennedy, W.E. Jr.; Hill, R.L.; Aaberg, R.L.; Wallo, A. III.

    1995-01-01

    Pacific Northwest Laboratory (PNL) is conducting technical analyses to support the U.S. Department of Energy (DOE), Office of Environmental Guidance, Air, Water, and Radiation Division (DOE/EH-232) in developing radiological control criteria for recycling or reuse of metals or equipment containing residual radioactive contamination from DOE operations. The criteria, framed as acceptable concentrations for release of materials for recycling or reuse, are risk-based and were developed through analysis of generic radiation exposure scenarios and pathways. The analysis includes evaluation of relevant radionuclides, potential mechanisms of exposure, and non-health-related impacts of residual radioactivity on electronics and film. The analysis considers 42 key radionuclides that DOE operations are known to generate and that may be contained in recycled or reused metals or equipment. The preliminary results are compared with similar results reported by the International Atomic Energy Agency, by radionuclide grouping. (author)

  19. Radiological control criteria for materials considered for recycle and reuse

    International Nuclear Information System (INIS)

    Kennedy, W.E. Jr.; Hill, R.L.; Aaberg, R.L.; Wallo, A. III

    1994-11-01

    Pacific Northwest Laboratory (PNL) is conducting technical analyses to support the US Department of Energy (DOE), Office of Environmental Guidance, Air, Water, and Radiation Division (DOE/EH-232) in developing radiological control criteria for recycling or reuse of metals or equipment containing residual radioactive contamination from DOE operations. The criteria, framed as acceptable concentrations for release of materials for recycling or reuse, are risk-based and were developed through analysis of generic radiation exposure scenarios and pathways. The analysis includes evaluation of relevant radionuclides, potential mechanisms of exposure, and non-health-related impacts of residual radioactivity on electronics and film. The analysis considers 42 key radionuclides that DOE operations are known to generate and that may be contained in recycled or reused metals or equipment. Preliminary results are compared with similar results reported by the International Atomic Energy Agency, by radionuclide grouping

  20. Fracture mechanics of polymer mortar made with recycled raw materials

    Directory of Open Access Journals (Sweden)

    Marco Antonio Godoy Jurumenha

    2010-12-01

    Full Text Available The aim of this work is to show that industrial residues could be used in construction applications so that production costs as well as environmental protection can be improved. The fracture properties of polymer mortar manufactured with recycled materials are investigated to evaluate the materials behaviour to crack propagation. The residues used in this work were spent sand from foundry industry as aggregate, unsaturated polyester resin from polyethylene terephthalate (PET as matrix and polyester textile fibres from garment industry, producing an unique composite material fully from recycled components with low cost. The substitution of fresh by used foundry sand and the insertions of textile fibres contribute to a less brittle behaviour of polymer mortar.

  1. Materials Recycling: The Virtue of Necessity. Worldwatch Paper 56.

    Science.gov (United States)

    Chandler, William U.

    This report focuses on the necessity and advantages of recycling. Following an introduction, the report is divided into five sections, addressing respectively: the necessity of recycling; waste paper recycling; aluminum recycling; iron and steel recycling; and three steps to a "recycling society." These steps include: (1) requiring that consumers…

  2. Developing improved opportunities for the recycling and reuse of materials in road, bridge, and construction projects.

    Science.gov (United States)

    2014-12-01

    The use of recycled and reused materials in transportation construction reduces consumption of non-renewable : resources. The objective of this research was to develop opportunities for improving the recycling and reuse of : materials in road and bri...

  3. MICROBIALLY MEDIATED LEACHING OF RARE EARTH ELEMENTS FROM RECYCLABLE MATERIALS

    Energy Technology Data Exchange (ETDEWEB)

    Reed, D. W.; Fujita, Y.; Daubaras, D. L.; Bruhn, D. F.; Reiss, J. H.; Thompson, V. S.; Jiao, Y.

    2016-09-01

    Bioleaching offers a potential approach for recovery of rare earth elements (REE) from recyclable materials, such as fluorescent lamp phosphors or degraded industrial catalysts. Microorganisms were enriched from REE-containing ores and recyclable materials with the goal of identifying strains capable of extracting REE from solid materials. Over 100 heterotrophic microorganisms were isolated and screened for their ability to produce organic acids capable of leaching REE. The ten most promising isolates were most closely related to Pseudomonas, Acinetobacter and Talaromyces. Of the acids produced, gluconic acid appeared to be the most effective at leaching REE (yttrium, lanthanum, cerium, europium, and terbium) from retorted phosphor powders (RPP), fluidized cracking catalyst (FCC), and europium-doped yttrium oxide (YOEu). We found that an Acinetobacter isolates, BH1, was the most capable strain and able to leach 33% of the total REE content from the FCC material. These results support the continuing evaluation of gluconic acid-producing microbes for large-scale REE recovery from recyclable materials.

  4. Reprocessing yields and material throughput: HTGR recycle demonstration facility

    Energy Technology Data Exchange (ETDEWEB)

    Holder, N.; Abraham, L.

    1977-08-01

    Recovery and reuse of residual U-235 and bred U-233 from the HTGR thorium-uranium fuel cycle will contribute significantly to HTGR fuel cycle economics and to uranium resource conservation. The Thorium Utilization National Program Plan for HTGR Fuel Recycle Development includes the demonstration, on a production scale, of reprocessing and refabrication processes in an HTGR Recycle Demonstration Facility (HRDF). This report addresses process yields and material throughput that may be typically expected in the reprocessing of highly enriched uranium fuels in the HRDF. Material flows will serve as guidance in conceptual design of the reprocessing portion of the HRDF. In addition, uranium loss projections, particle breakage limits, and decontamination factor requirements are identified to serve as guidance to the HTGR fuel reprocessing development program. (28 tables, 18 figs.)

  5. Clearance, recycling and disposal of fusion activated material

    International Nuclear Information System (INIS)

    Zucchetti, M.; Forrest, R.; Forty, C.; Gulden, W.; Rocco, P.; Rosanvallon, S.

    2001-01-01

    The SEAFP-99 waste management studies include further explorations in the direction of activated materials management, adopting a more realistic approach in order to consolidate and refine the previous encouraging findings of SEAFP waste management studies performed till 1998. The main results were obtained in the following topics, impact of materials/components optimisation on waste management issues; integrated approach to recycling and clearance; analysis of the potential for fusion specific repositories and hazard-relevant nuclides/processes; materials detritiation. The overall conclusion is that the adoption of a more realistic approach for the analysis has been beneficial. The results further confirmed the potential for waste minimisation and hazard reduction

  6. Issues in recycling and disposal of radioactively contaminated materials

    International Nuclear Information System (INIS)

    Kluk, A.F.; Hocking, E.K.; Roberts, R.; Phillips, J.W.

    1993-01-01

    The Department of Energy's present stock of potentially re-usable and minimally radioactively contaminated materials will increase significantly as the Department's remediation activities expand. As part of its effort to minimize wastes, the Department is pursuing several approaches to recover valuable materials such as nickel, copper, and steel, and reduce the high disposal costs associated with contaminated materials. Key approaches are recycling radioactively contaminated materials or disposing of them as non-radioactive waste. These approaches are impeded by a combination of potentially conflicting Federal regulations, State actions, and Departmental policies. Actions to promote or implement these approaches at the Federal, State, or Departmental level involve issues which must be addressed and resolved. The paramount issue is the legal status of radioactively contaminated materials and the roles of the Federal and State governments in regulating those materials. Public involvement is crucial in the debate surrounding the fate of radioactively contaminated materials

  7. Recycling

    International Nuclear Information System (INIS)

    Binder, J.J.; Calpin, P.J.

    1990-01-01

    As the recycling ethic takes hold at the state and municipal level, municipal officials and private contractors are working together to formulate and implement recycling programs. The questions - What is to be recycled? How should recyclables be separated and collected? Is intermediate processing beneficial? How can recyclables best be marketed? Should the public or private sector perform the service? What are the true costs? - are being addressed. Answers, however, are often different for large and small municipalities and regional versus individual municipal programs. While no one approach will be suitable for all applications, one can learn from the experiences of operating programs. The paper to be presented will describe two operating, recycling programs that are public and private cooperative efforts: one regional (11 communities in Bucks County, Pennsylvania); and one municipal (Quincy, Massachusetts). Information will be presented describing the recycling programs, economics, and performance

  8. Reusing Recycling Material as Teaching Strategy to Strengthen Environmental Values

    Directory of Open Access Journals (Sweden)

    Yudit Zaida del Carmen Alarcón de Palma

    2017-08-01

    Full Text Available The study was centered interest implement recycling reuse the material as a teaching strategy to strengthen environmental students “Adolfo Moreno” National Basic School Barinitas parish, municipality Bolivar, Barinas state values. School Year 2014 - 2015. The study was based on the paradigm of qualitative research and research in action type. From this point of view, the study focuses on participatory action this mode, it is limited in so-called field layouts. The study its characteristics was fulfilled in the following phases: diagnosis, planning, implementation, evaluation and systematization. Finally, it can be noted that the implementation of teaching strategies reuse recycle material for strengthening environmental students "Adolfo Moreno" National Basic School values; They will be incorporating parents and guardians as well as various educational actors to implement the activities involved in the proposal which seeks to change attitudes to improve through practical actions management standards and conservation practices to achieve an environmental change in institution through technical, theoretical and practical knowledge to strengthen the benefit of recyclables properly handle procedures.

  9. National inventory of the radioactive wastes and the recycling materials

    International Nuclear Information System (INIS)

    Dupuis, M.C.

    2006-01-01

    This synthesis report presents the 2006 inventory of the radioactive wastes and recycling materials, in France. It contains 9 chapters: a general introduction, the radioactive wastes (definition, classification, origins and management), the inventory methodology (organization, accounting and prospecting, exhaustiveness and control tools), main results (stocks, prevision for the period 2005-2020, perspectives after 2020), the inventory for producers or owners (front end fuel cycle, electric power plants, back end fuel cycle, wastes processing and maintenance facilities, researches centers, medical activities, industrial activities, non nuclear industries using nuclear materials, defense center, storage and disposal), the polluted sites, examples of foreign inventories, conclusion and annexes. (A.L.B.)

  10. Melting behaviour of raw materials and recycled stone wool waste

    DEFF Research Database (Denmark)

    Schultz-Falk, Vickie; Agersted, Karsten; Jensen, Peter Arendt

    2018-01-01

    Stone wool is a widely used material for building insulation, to provide thermal comfort along with fire stability and acoustic comfort for all types of buildings. Stone wool waste generated either during production or during renovation or demolition of buildings can be recycled back into the stone...... indicates that the wool waste initiates melting at a lower temperature than the conventional charge. Also DSC measurements show that the wool waste requires less energy for heating and melting than the conventional charge, making stone wool waste recycling desirable both for environmental and for process...... wool melt production. This study investigates and compares the thermal response and melting behaviour of a conventional stone wool charge and stone wool waste. The study combines differential scanning calorimetry (DSC), hot stage microscopy (HSM) and X-ray diffraction (XRD). DSC reveals...

  11. Development of Solvent Extraction Approach to Recycle Enriched Molybdenum Material

    Energy Technology Data Exchange (ETDEWEB)

    Tkac, Peter [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Brown, M. Alex [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Sen, Sujat [Argonne National Lab. (ANL), Argonne, IL (United States). Energy Systems Division; Bowers, Delbert L. [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Wardle, Kent [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Copple, Jacqueline M. [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Pupek, Krzysztof Z. [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Dzwiniel, Trevor L. [Argonne National Lab. (ANL), Argonne, IL (United States). Energy Systems Division; Pereira, Candido [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Krumdick, Gregory K. [Argonne National Lab. (ANL), Argonne, IL (United States). Energy Systems Division; Vandegrift, George F. [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division

    2016-06-01

    Argonne National Laboratory, in cooperation with Oak Ridge National Laboratory and NorthStar Medical Technologies, LLC, is developing a recycling process for a solution containing valuable Mo-100 or Mo-98 enriched material. Previously, Argonne had developed a recycle process using a precipitation technique. However, this process is labor intensive and can lead to production of large volumes of highly corrosive waste. This report discusses an alternative process to recover enriched Mo in the form of ammonium heptamolybdate by using solvent extraction. Small-scale experiments determined the optimal conditions for effective extraction of high Mo concentrations. Methods were developed for removal of ammonium chloride from the molybdenum product of the solvent extraction process. In large-scale experiments, very good purification from potassium and other elements was observed with very high recovery yields (~98%).

  12. Utilizing Coal Fly Ash and Recycled Glass in Developing Green Concrete Materials

    Science.gov (United States)

    2012-06-01

    The environmental impact of Portland cement concrete production has motivated researchers and the construction industry to evaluate alternative technologies for incorporating recycled cementing materials and recycled aggregates in concrete. One such ...

  13. Meeting the EU recycling targets by introducing a 2-compartment bin to households

    DEFF Research Database (Denmark)

    Jensen, Morten Bang; Scheutz, Charlotte; Møller, Jacob

    A Danish municipality has introduced a 2-compartment bin in the waste collection scheme, this bin should increase recycling of dry household recyclables. An excessive waste sorting campaign was conducted and the efficiency of the bin assessed. The waste sorting campaign yielded a full waste...... composition with focus on the dry recyclables, and it was used to determine wheter the 2-compartment bin could fulfill the EU recycling targets for 2020. Only 2 of 4 calculation methods for meeting the EU targets were applicable and only one of these fulfilled the EU target. Eventhough the EU recycling...... targets can be fulfilled, there is still room for improvement (increase source separation), especially for hard plastic and metals....

  14. Raw material generated from pet bottle recycling and its derivatives

    Directory of Open Access Journals (Sweden)

    João Almeida Santos

    2015-08-01

    Full Text Available The recycling process is no longer a pejorative connotation business to become the main business of any company not only because of the need to conserve virgin resources, but mainly because of the benefits to the environment. In this sense, this paper aims at assessing the possibility of exports of polyethylene terephthalate - PET known for - a type of product that can be recycled and reprocessed into products of various types and applications. This article has been structured based on exploratory research bibliographic database of scientific articles, books, newspapers and magazines where we analyze the main steps involved in the recycling of PET and its exploitation for export. Support of organizations and associations such as the Brazilian Association of PET (ABIPET contributed to the development of theoretical framework. The market operated and what can still be very large, with the possibility of exponential growth supported by: the economy in the use of virgin resources reduces the impact of chemicals in the environment, saving energy used in the production process, reducing the use of financial resources allocated to the reuse of materials.

  15. Noise control by sonic crystal barriers made of recycled materials.

    Science.gov (United States)

    Sánchez-Dehesa, José; Garcia-Chocano, Victor M; Torrent, Daniel; Cervera, Francisco; Cabrera, Suitberto; Simon, Francisco

    2011-03-01

    A systematic study of noise barriers based on sonic crystals made of cylinders that use recycled materials like absorbing component is reported here. The barriers consist of only three rows of perforated metal shells filled with rubber crumb. Measurements of reflectance and transmittance by these barriers are reported. Their attenuation properties result from a combination of sound absorption by the rubber crumb and reflection by the periodic distribution of scatterers. It is concluded that the porous cylinders can be used as building blocks whose physical parameters can be optimized in order to design efficient barriers adapted to different noisy environments. © 2011 Acoustical Society of America

  16. Current and future priorities for mass and material in silicon PV module recycling

    Energy Technology Data Exchange (ETDEWEB)

    Olson, C.L.; Geerligs, L.J.; Goris, M.J.A.A.; Bennett, I.J. [ECN Solar Energy, P.O. Box 1, 1755 ZG Petten (Netherlands); Clyncke, J. [PV CYCLE, Rue Montoyer 23, 1000 Brussels (Belgium)

    2013-10-15

    A full description of the state-of-the-art PV recycling methods and their rationale is presented, which discusses the quality of the recycled materials and the fate of the substances which end up in the landfill. The aim is to flag the PV module components currently not recycled, which may have a priority in terms of their embedded energy, chemical nature or scarcity, for the next evolution of recycling. The sustainability of different recycling options, emerging in the literature on electronic waste recycling, and the possible improvement of the environmental footprint of silicon PV modules, will be discussed.

  17. Stormwater Pollution Prevention Plan - TA-60 Material Recycling Facility

    Energy Technology Data Exchange (ETDEWEB)

    Sandoval, Leonard Frank [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2018-01-31

    This Storm Water Pollution Prevention Plan (SWPPP) was developed in accordance with the provisions of the Clean Water Act (33 U.S.C. §§1251 et seq., as amended), and the Multi-Sector General Permit for Storm Water Discharges Associated with Industrial Activity (U.S. EPA, June 2015) issued by the U.S. Environmental Protection Agency (EPA) for the National Pollutant Discharge Elimination System (NPDES) and using the industry specific permit requirements for Sector P-Land Transportation and Warehousing as a guide. This SWPPP applies to discharges of stormwater from the operational areas of the TA- 60 Material Recycling Facility at Los Alamos National Laboratory. Los Alamos National Laboratory (also referred to as LANL or the “Laboratory”) is owned by the Department of Energy (DOE), and is operated by Los Alamos National Security, LLC (LANS). Throughout this document, the term “facility” refers to the TA-60 Material Recycling Facility. The current permit expires at midnight on June 4, 2020.

  18. Complete Recycling of Composite Material Comprising Polybutylene Terephthalate and Copper

    Directory of Open Access Journals (Sweden)

    Fabian Knappich

    2017-06-01

    Full Text Available Composite materials comprising plastic and metal parts generate a large amount of waste containing valuable components that are difficult to separate and recycle. We therefore developed an economical solvent-based process for the recovery of costly manufactured composite materials comprising several copper panels over-moulded with a polymeric matrix of polybutylene terephthalate (PBT. We applied the CreaSolv® Process, which uses proprietary formulations with a low risk to user and environment, in order to dissolve the polymer and retain the inert copper. After separating the metal from the solution, solvent recovery was achieved by means of vacuum distillation and melt degassing extrusion. The recovered solvent was collected and recycled while maintaining its original properties. We tested two candidate solvents with PBT, measuring their impact on the molecular weight (Mw and polydispersity of the polymer at different residence times and dissolution temperatures. We found that increasing the temperature-time-load had a negative effect on the Mw. Both solvents we tested were able to dissolve the polymeric matrix within 30 min and with moderate energy consumption. Furthermore, we found that the exclusion of oxygen during dissolution significantly increases the quality of the recovered polymer and metal. We transferred the process from the laboratory scale to the small-technical scale and produced material for large analytical and mechanical quality evaluation, revealing no decline in the polymer quality by blending with new plastic. The recovered copper met virgin material properties. Therefore, both components of the original composite material have been recovered in a form suitable for reuse.

  19. On achieving the state's household recycling target: A case study of Northern New Jersey, USA

    International Nuclear Information System (INIS)

    Otegbeye, M.; Abdel-Malek, L.; Hsieh, H.N.; Meegoda, J.N.

    2009-01-01

    In recent times, the State of New Jersey (USA) has been making attempts at promoting recycling as an environmentally friendly means of attaining self-sufficiency at waste disposal, and the state has put in place a 50% recycling target for its municipal solid waste stream. While the environmental benefits of recycling are obvious, a recycling program must be cost effective to ensure its long-term sustainability. In this paper, a linear programming model is developed to examine the current state of recycling in selected counties in Northern New Jersey and assess the needs to achieve the state's recycling goal in these areas. The optimum quantities of waste to be sent to the different waste facilities, which include landfills, incinerators, transfer stations, recycling and composting plants, are determined by the model. The study shows that for these counties, the gap between the current waste practices where the recycling rate stands at 32% and the state's goal can be bridged by more efficient utilization of existing facilities and reasonable investment in expanding those for recycling activities

  20. Sustainability and training materials for in-place recycling.

    Science.gov (United States)

    2016-04-22

    Hot and cold in-place recycling techniques recycle 100 percent of a hot mix asphalt (HMA) pavement, in place, during the maintenance/rehabilitation process. Numerous studies have shown in-place recycling to be a sustainable, cost-effective procedure ...

  1. Fast and automatic thermographic material identification for the recycling process

    Science.gov (United States)

    Haferkamp, Heinz; Burmester, Ingo

    1998-03-01

    Within the framework of the future closed loop recycling process the automatic and economical sorting of plastics is a decisive element. The at the present time available identification and sorting systems are not yet suitable for the sorting of technical plastics since essential demands, as the realization of high recognition reliability and identification rates considering the variety of technical plastics, can not be guaranteed. Therefore the Laser Zentrum Hannover e.V. in cooperation with the Hoerotron GmbH and the Preussag Noell GmbH has carried out investigations on a rapid thermographic and laser-supported material- identification-system for automatic material-sorting- systems. The automatic identification of different engineering plastics coming from electronic or automotive waste is possible. Identification rates up to 10 parts per second are allowed by the effort from fast IR line scanners. The procedure is based on the following principle: within a few milliseconds a spot on the relevant sample is heated by a CO2 laser. The samples different and specific chemical and physical material properties cause different temperature distributions on their surfaces that are measured by a fast IR-linescan system. This 'thermal impulse response' has to be analyzed by means of a computer system. Investigations have shown that it is possible to analyze more than 18 different sorts of plastics at a frequency of 10 Hz. Crucial for the development of such a system is the rapid processing of imaging data, the minimization of interferences caused by oscillating samples geometries, and a wide range of possible additives in plastics in question. One possible application area is sorting of plastics coming from car- and electronic waste recycling.

  2. Sustainable Materials Management (SMM) Web Academy Webinar: Let’s WRAP (Wrap Recycling Action Program): Best Practices to Boost Plastic Film Recycling in Your Community

    Science.gov (United States)

    This is a webinar page for the Sustainable Management of Materials (SMM) Web Academy webinar titled Let’s WRAP (Wrap Recycling Action Program): Best Practices to Boost Plastic Film Recycling in Your Community

  3. The Usage of Recycle Materials for Science Practicum: Is There Any Effect on Science Process Skills?

    Science.gov (United States)

    Prajoko, Setiyo; Amin, Mohamad; Rohman, Fatchur; Gipayana, Muhana

    2017-01-01

    This study aimed at determining the effect of recycle materials usage for science practicum on students' basic science process skills of the Open University, Surakarta. Recycle materials are the term used for the obtained materials and equipment from the students' environment by taking back the garbage or secondhand objects into goods or new…

  4. Recycle

    DEFF Research Database (Denmark)

    Sparre-Petersen, Maria

    2017-01-01

    knowledge and insight. The contributions are manifest in a range of epistemic artifacts, i.e. outcomes of my own experiments with recycled glass as well as a series of creative outcomes of collaborative activities. Through the creation of these works, my collaborators and I have developed tacit as well...

  5. Assessing changes on poly(ethylene terephthalate) properties after recycling: Mechanical recycling in laboratory versus postconsumer recycled material

    Energy Technology Data Exchange (ETDEWEB)

    López, María del Mar Castro, E-mail: quimcl02@udc.es [Grupo de Polímeros, Centro de Investigacións Tecnológicas (CIT), Departamento de Física, Escuela Universitaria Politécnica, Universidade de A Coruña, Campus de Ferrol, 15403 Ferrol (Spain); Ares Pernas, Ana Isabel, E-mail: aares@udc.es [Grupo de Polímeros, Centro de Investigacións Tecnológicas (CIT), Departamento de Física, Escuela Universitaria Politécnica, Universidade de A Coruña, Campus de Ferrol, 15403 Ferrol (Spain); Abad López, Ma José, E-mail: mjabad@udc.es [Grupo de Polímeros, Centro de Investigacións Tecnológicas (CIT), Departamento de Física, Escuela Universitaria Politécnica, Universidade de A Coruña, Campus de Ferrol, 15403 Ferrol (Spain); and others

    2014-10-15

    Keeping rheological, mechanical and thermal properties of virgin poly(ethylene terephthalate), PET, is necessary to assure the quality of second-market applications. A comparative study of these properties has been undertaken in virgin, mechanical recycled and commercial recycled PET samples. Viscoelastic characterization was carried out by rheological measurements. Mechanical properties were estimated by tensile and Charpy impact strength tests. Thermal properties and crystallinity were evaluated by differential scanning calorimetry and a deconvolution procedure was applied to study the population of the different crystals. Molecular conformational changes related to crystallinity values were studied by FTIR spectroscopy. Variations in average molecular weight were predicted from rheology. Besides, the presence-absence of linear and cyclic oligomeric species was measured by mass spectrometry techniques, as MALDI-TOF. Mechanical recycled PET undergoes a significant decline in rheological, mechanical and thermal properties upon increasing the number of reprocessing steps. This is due to the cleavage of the ester bonds with reduction in molar mass and raise in cyclic oligomeric species, in particular [GT{sub c}]{sub n} and [GT{sub c}]{sub n}-G type. Chain shortening plus enrichment in trans conformers favour the crystallization process which occurs earlier and faster with modification in crystal populations. Additional physicochemical steps are necessary to preserve the main benefits of PET. - Highlights: • Combination of multiple techniques to characterize the effects of recycling in PET. • Cleavage of ester bonds reduced viscosity, Mw, toughness in mechanical recycled PET. • Virgin, mechanical recycled and commercial recycled PET differ in crystal populations. • Cyclic oligomers [GT{sub c}]{sub n} and [GT{sub c}]{sub n}-G increase from the fourth extrusion cycle onwards.

  6. Assessing changes on poly(ethylene terephthalate) properties after recycling: Mechanical recycling in laboratory versus postconsumer recycled material

    International Nuclear Information System (INIS)

    López, María del Mar Castro; Ares Pernas, Ana Isabel; Abad López, Ma José

    2014-01-01

    Keeping rheological, mechanical and thermal properties of virgin poly(ethylene terephthalate), PET, is necessary to assure the quality of second-market applications. A comparative study of these properties has been undertaken in virgin, mechanical recycled and commercial recycled PET samples. Viscoelastic characterization was carried out by rheological measurements. Mechanical properties were estimated by tensile and Charpy impact strength tests. Thermal properties and crystallinity were evaluated by differential scanning calorimetry and a deconvolution procedure was applied to study the population of the different crystals. Molecular conformational changes related to crystallinity values were studied by FTIR spectroscopy. Variations in average molecular weight were predicted from rheology. Besides, the presence-absence of linear and cyclic oligomeric species was measured by mass spectrometry techniques, as MALDI-TOF. Mechanical recycled PET undergoes a significant decline in rheological, mechanical and thermal properties upon increasing the number of reprocessing steps. This is due to the cleavage of the ester bonds with reduction in molar mass and raise in cyclic oligomeric species, in particular [GT c ] n and [GT c ] n -G type. Chain shortening plus enrichment in trans conformers favour the crystallization process which occurs earlier and faster with modification in crystal populations. Additional physicochemical steps are necessary to preserve the main benefits of PET. - Highlights: • Combination of multiple techniques to characterize the effects of recycling in PET. • Cleavage of ester bonds reduced viscosity, Mw, toughness in mechanical recycled PET. • Virgin, mechanical recycled and commercial recycled PET differ in crystal populations. • Cyclic oligomers [GT c ] n and [GT c ] n -G increase from the fourth extrusion cycle onwards

  7. Sustainable Materials Management (SMM) Web Academy Webinar: Advancing Sustainable Materials Management: Facts and Figures 2013 - Assessing Trends in Materials Generation, Recycling and Disposal in the United States

    Science.gov (United States)

    This is a webinar page for the Sustainable Management of Materials (SMM) Web Academy webinar titled Let’s WRAP (Wrap Recycling Action Program): Best Practices to Boost Plastic Film Recycling in Your Community

  8. Recycling ceramic industry wastes in sound absorbing materials

    Directory of Open Access Journals (Sweden)

    C. Arenas

    2016-10-01

    Full Text Available The scope of this investigation is to develop a material mainly composed (80% w/w of ceramic wastes that can be applied in the manufacture of road traffic noise reducing devices. The characterization of the product has been carried out attending to its acoustic, physical and mechanical properties, by measuring the sound absorption coefficient at normal incidence, the open void ratio, density and compressive strength. Since the sound absorbing behavior of a porous material is related to the size of the pores and the thickness of the specimen tested, the influence of the particle grain size of the ceramic waste and the thickness of the samples tested on the properties of the final product has been analyzed. The results obtained have been compared to a porous concrete made of crushed granite aggregate as a reference commercial material traditionally used in similar applications. Compositions with coarse particles showed greater sound absorption properties than compositions made with finer particles, besides presenting better sound absorption behavior than the reference porous concrete. Therefore, a ceramic waste-based porous concrete can be potentially recycled in the highway noise barriers field.

  9. Materials considerations in accelerator targets

    International Nuclear Information System (INIS)

    Peacock, H.B. Jr.; Iyer, N.C.; Louthan, M.R. Jr.

    1994-01-01

    Future nuclear materials production and/or the burn-up of long lived radioisotopes may be accomplished through the capture of spallation produced neutrons in accelerators. Aluminum clad-lead and/or lead alloys has been proposed as a spallation target. Aluminum was the cladding choice because of the low neutron absorption cross section, fast radioactivity decay, high thermal conductivity, and excellent fabricability. Metallic lead and lead oxide powders were considered for the target core with the fabrication options being casting or powder metallurgy (PM). Scoping tests to evaluate gravity casting, squeeze casting, and casting and swaging processes showed that, based on fabricability and heat transfer considerations, squeeze casting was the preferred option for manufacture of targets with initial core cladding contact. Thousands of aluminum clad aluminum-lithium alloy core targets and control rods for tritium production have been fabricated by coextrusion processes and successfully irradiated in the SRS reactors. Tritium retention in, and release from the coextruded product was modeled from experimental and operational data. Newly produced tritium atoms were trapped by lithium atoms to form a lithium tritide. The effective tritium pressure required for trap or tritide stability was the equilibrium decomposition pressure of tritium over a lithium tritide-aluminum mixture. The temperature dependence of tritium release was determined by the permeability of the cladding to tritium and the local equilibrium at the trap sites. The model can be used to calculate tritium release from aluminum clad, aluminum-lithium alloy targets during postulated accelerator operational and accident conditions. This paper describes the manufacturing technologies evaluated and presents the model for tritium retention in aluminum clad, aluminum-lithium alloy tritium production targets

  10. Materials considerations in accelerator targets

    International Nuclear Information System (INIS)

    Peacock, H. B. Jr.; Iyer, N. C.; Louthan, M. R. Jr.

    1995-01-01

    Future nuclear materials production and/or the burn-up of long lived radioisotopes may be accomplished through the capture of spallation produced neutrons in accelerators. Aluminum clad-lead and/or lead alloys has been proposed as a spallation target. Aluminum was the cladding choice because of the low neutron absorption cross section, fast radioactivity decay, high thermal conductivity, and excellent fabricability. Metallic lead and lead oxide powders were considered for the target core with the fabrication options being casting or powder metallurgy (PM). Scoping tests to evaluate gravity casting, squeeze casting, and casting and swaging processes showed that, based on fabricability and heat transfer considerations, squeeze casting was the preferred option for manufacture of targets with initial core cladding contact. Thousands of aluminum clad aluminum-lithium alloy core targets and control rods for tritium production have been fabricated by coextrusion processes and successfully irradiated in the SRS reactors. Tritium retention in, and release from, the coextruded product was modeled from experimental and operational data. The model assumed that tritium atoms, formed by the 6Li(n,a)3He reaction, were produced in solid solution in the Al-Li alloy. Because of the low solubility of hydrogen isotopes in aluminum alloys, the irradiated Al-Li rapidly became supersaturated in tritium. Newly produced tritium atoms were trapped by lithium atoms to form a lithium tritide. The effective tritium pressure required for trap or tritide stability was the equilibrium decomposition pressure of tritium over a lithium tritide-aluminum mixture. The temperature dependence of tritium release was determined by the permeability of the cladding to tritium and the local equilibrium at the trap sites. The model can be used to calculate tritium release from aluminum clad, aluminum-lithium alloy targets during postulated accelerator operational and accident conditions. This paper describes

  11. Waste handling and REACH : Recycling of materials containing SVHCs: daily practice challenges

    NARCIS (Netherlands)

    Janssen MPM; van Broekhuizen FA; MSP; M&V

    2017-01-01

    To achieve a circular economy it is essential to recycle substances, materials and products created by that economy. Recycling, however, becomes more difficult when said materials and products contain substances that are so hazardous that their use is restricted. This is the case with any substance

  12. Material Cycles and Chemicals: Dynamic Material Flow Analysis of Contaminants in Paper Recycling

    DEFF Research Database (Denmark)

    Pivnenko, Kostyantyn; Laner, David; Astrup, Thomas Fruergaard

    2016-01-01

    This study provides a systematic approach for assessment of contaminants in materials for recycling. Paper recycling is used as an illustrative example. Three selected chemicals, bisphenol A (BPA), diethylhexyl phthalate (DEHP) and mineral oil hydrocarbons (MOHs), are evaluated within the paper...... cycle. The approach combines static material flow analysis (MFA) with dynamic material and substance flow modeling. The results indicate that phasing out of chemicals is the most effective measure for reducing chemical contamination. However, this scenario was also associated with a considerable lag...... phase (between approximately one and three decades) before the presence of chemicals in paper products could be considered insignificant. While improved decontamination may appear to be an effective way of minimizing chemicals in products, this may also result in lower production yields. Optimized waste...

  13. Data summary of municipal solid waste management alternatives. Volume 7, Appendix E -- Material recovery/material recycling technologies

    Energy Technology Data Exchange (ETDEWEB)

    None

    1992-10-01

    The enthusiasm for and commitment to recycling of municipal solid wastes is based on several intuitive benefits: Conservation of landfill capacity; Conservation of non-renewable natural resources and energy sources; Minimization of the perceived potential environmental impacts of MSW combustion and landfilling; Minimization of disposal costs, both directly and through material resale credits. In this discussion, ``recycling`` refers to materials recovered from the waste stream. It excludes scrap materials that are recovered and reused during industrial manufacturing processes and prompt industrial scrap. Materials recycling is an integral part of several solid waste management options. For example, in the preparation of refuse-derived fuel (RDF), ferrous metals are typically removed from the waste stream both before and after shredding. Similarly, composting facilities, often include processes for recovering inert recyclable materials such as ferrous and nonferrous metals, glass, Plastics, and paper. While these two technologies have as their primary objectives the production of RDF and compost, respectively, the demonstrated recovery of recyclables emphasizes the inherent compatibility of recycling with these MSW management strategies. This appendix discusses several technology options with regard to separating recyclables at the source of generation, the methods available for collecting and transporting these materials to a MRF, the market requirements for post-consumer recycled materials, and the process unit operations. Mixed waste MRFs associated with mass bum plants are also presented.

  14. Removal of metal cations from wastewater using recycled wool-based non-woven material

    Directory of Open Access Journals (Sweden)

    MAJA RADETIC

    2007-06-01

    Full Text Available In this study, the effect of low-temperature air plasma, biopolymer chitosan and hydrogen peroxide treatment of recycled wool-based non-woven material on metal cation uptake was investigated. Recycled wool-based material either as an untreated or modified material showed ability to bind all investigated metal cations in the following order: Pb2+>Cu2+>Zn2+>Co2+. Material performed good selectivity due to distinct sorption rates of studied metal cations.

  15. Recyclable Materials (Waste) Management in Enterprise’s Production Process

    Science.gov (United States)

    Malevskaia-Malevich, E. D.; Demidenko, D. S.

    2017-10-01

    Currently, in view of the increasing garbage crisis, the notion of a “new lease of life” for waste becomes even more relevant. Waste recycling makes it possible not only to solve obvious environmental problems, but also to offer new resource opportunities for industries. Among the obvious economic, social and environmental advantages, however, waste recycling meets various problems. These problems and solutions for them, as well as the problems of economic efficiency improvement and recycling activities’ appeal for industrial companies in Leningrad region, are discussed in the present study.

  16. Studies of nuclear materials recycling in conventional and advanced reactors

    International Nuclear Information System (INIS)

    Guillet, J.L.; Grouiller, J.P.

    1999-01-01

    Recycling is one of the major challenges for the future of nuclear energy. Its impact on plutonium (Pu) inventory, the environment (waste management and associated radioactivity) and energy resource conservation can be important. This study analyzes several recycling scenarios in current power reactors over the years 2000 to 2050, for a 400 TWhe yearly electricity production. The following scenarios are considered: Pu mono-recycling in PWR with MOX fuel (depleted uranium matrix); Pu multi-recycling in PWR with MOX and MIX fuel (MIX = MOX fuel with enriched U matrix), beginning in 2010. A comparison of these scenarios with the open cycle is presented for parameters such as: Pu inventory, minor actinides, waste and radioactivity, Uranium (U) and Separation Work Unit (SWU) savings. This study leads to the following main conclusions: compared with the open cycle, most Pu recycling scenarios result in a significant reduction of Pu inventory; recycling is possible for at least several decades with today's reactor design and fuel cycle plant concepts; flexible existing technical capabilities allow adjustment of the separated plutonium inventory to the working inventory needs; plutonium availability remains the determining factor for the MOX and MIX fuel penetration rate over the medium term and the limiting factor for the number of reactors using plutonium; 20 to 30 years are necessary to significantly modify Pu inventories; reprocessing and recycling reduce the plutonium in the annual flow of ultimate residues by a factor of 100 to 1000; recycling enables a reduction of the ultimate residues' radiotoxicity by a factor of up to 10. (authors)

  17. An efficient method of material recycling of municipal plastic waste

    Czech Academy of Sciences Publication Activity Database

    Fortelný, Ivan; Michálková, Danuše; Kruliš, Zdeněk

    2004-01-01

    Roč. 85, č. 9 (2004), s. 975-979 ISSN 0141-3910. [IUPAC Microsymposium on Degradation, Stabilisation and Recycling of Polymers /42./. Prague, 14.07.2003-17.07.2003] R&D Projects: GA AV ČR(CZ) IBS4050008 Institutional research plan: CEZ:AV0Z4050913 Keywords : recycling * municipal plastic waste * compatibilisation Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.685, year: 2004

  18. SUSTAINABLE PRODUCT DESIGN AND EXAMPLES OF LEATHER MATERIAL RECYCLING

    Directory of Open Access Journals (Sweden)

    GÜRLER KARAMAN Deniz

    2017-05-01

    Full Text Available Many garments made of leather, end up in landfills as waste following the end of its useful life. However, in the flow of production of a leather product, intense energy, chemicals, high volumes of water are consumed. This means that the carbon footprint and environmental loads are high. There are many research activities related to the recycling of textile products, and recycling chains, in this regard famous clothing brands have been organizing grand campaigns. In order to assess the case for leather products that have an important place in the ready-to-wear segment, one should ask the following questions: “How do the big companies and brands in this sector participate in the environmental movement? And importantly, what are the best attempts to recycle leather products? What can be done about the future of leather products recycling and innovative sustainable designs?” when considering sustainable design using recycled leather from end-of-life leather products. In this study, examples of innovative best practices, which were adopted by new brands for recycling and reuse of various types of waste, in order to perform a sustainable product design were presented with the attempt of clarifying aforementioned questions. These new initiatives and practices can develop a novel perspective for academicians and professionals engaged in the field of leather and fashion design, and the concept of sustainable design can be introduced to wider masses.

  19. Particulate Filled Composite Plastic Materials from Recycled Glass Fibre Reinforced Plastics

    Directory of Open Access Journals (Sweden)

    Aare ARUNIIT

    2011-09-01

    Full Text Available Glass fibre reinforced plastic (GFRP scrap consisted of acrylic plastic with glass fibre reinforcement in polyester resin matrix was used in our experiments. The multi-functional DS-series disintegrator mills were used for mechanical processing of GFRP scrap. Preceding from the results characterization of the milled powder particles size, shape and other properties the numerical algorithm for modelling of the density of the new filler material was developed. The main goal of the current study is to develop new particulate filled composite plastic material from recycled GFRP scrap. With recovered plastic powder material the higher filler content in polyester resin matrix can be achieved. The new composite is modelled on basis of the properties of new material. Such an approach requires tests of the new material. The considered target characteristics of the new material are the tensile strength, elongation at break and the cost. The multicriteria optimization problem has been formulated and solved by use of physical programming techniques and Pareto optimality concept. The designed new composites were manufactured in different mixing ratios of powder and binder agent. The strength and stiffness properties of new composite material were tested. http://dx.doi.org/10.5755/j01.ms.17.3.593

  20. Proposed industrial recovered materials utilization targets for the metals and metal-products industry

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-05-01

    The introductory chapter provides a discussion of the factors that affect the recovery and reuse of secondary materials and the competition between the primary and secondary metals industries. It discusses these industries in terms of resource characteristics, industry technology, pollution control requirements, market structure, the economics of recycling, and the issues involved in econometrically estimating scrap supply response behavior. It further presents the methodology established by DOE for the metals, textiles, rubber, and pulp and paper industries. The areas in which government policies might have a significant impact on the utilization of primary and secondary metals and on any recycling targets between now and 1987 are noted. Chapter 3 presents general profiles for the major industrial segments comprising SIC 33. The profiles include such topics as industry structure, process technology, materials and recycling flow, and future trends. Chapter 4 specifically covers the evaluation of recycling targets for the ferrous, aluminum, copper, zinc, and lead industries. (MCW)

  1. Homogeneous electrochemical aptamer-based ATP assay with signal amplification by exonuclease III assisted target recycling.

    Science.gov (United States)

    Liu, Shufeng; Wang, Ying; Zhang, Chengxin; Lin, Ying; Li, Feng

    2013-03-21

    A novel and homogeneous electrochemical aptamer-based adenosine triphosphate (ATP) assay was demonstrated with signal amplification by exonuclease III-assisted target recycling. A superior detection limit of 1 nM toward ATP with an excellent selectivity could be achieved.

  2. Development of Low Cost Soil Stabilization Using Recycled Material

    Science.gov (United States)

    Ahmad, F.; Yahaya, A. S.; Safari, A.

    2016-07-01

    Recycled tyres have been used in many geotechnical engineering projects such as soil improvement, soil erosion and slope stability. Recycled tyres mainly in chip and shredded form are highly compressible under low and normal pressures. This characteristic would cause challenging problems in some applications of soil stabilization such as retaining wall and river bank projects. For high tensile stress and low tensile strain the use of fiberglass would be a good alternative for recycled tyre in some cases. To evaluate fiberglass as an alternative for recycled tyre, this paper focused on tests of tensile tests which have been carried out between fiberglass and recycled tyre strips. Fibreglass samples were produced from chopped strand fibre mat, a very low-cost type of fibreglass, which is cured by resin and hardener. Fibreglass samples in the thickness of 1 mm, 2 mm, 3 mm and 4 mm were developed 100 mm x 300 mm pieces. It was found that 3 mm fibreglass exhibited the maximum tensile load (MTL) and maximum tensile stress (MTS) greater than other samples. Statistical analysis on 3 mm fibreglass indicated that in the approximately equal MTL fibreglass samples experienced 2% while tyre samples experienced 33.9% ultimate tensile strain (UTST) respectively. The results also showed an approximately linear relationship between stress and strain for fibreglass samples and Young's modulus (E), ranging from 3581 MPa to 4728 MPa.

  3. Towards increased recycling of household waste: Documenting cascading effects and material efficiency of commingled recyclables and biowaste collection.

    Science.gov (United States)

    Cimpan, Ciprian; Rothmann, Marianne; Hamelin, Lorie; Wenzel, Henrik

    2015-07-01

    Municipal solid waste (MSW) management remains a challenge, even in Europe where several countries now possess capacity to treat all arising MSW, while others still rely on unsustainable disposal pathways. In the former, strategies to reach higher recycling levels are affecting existing waste-to-energy (WtE) treatment infrastructure, by inducing additional overcapacity and this in turn rebounds as pressure on the waste and recyclable materials markets. This study addresses such situations by documenting the effects, in terms of resource recovery, global warming potential (GWP) and cumulative energy demand (CED), of a transition from a self-sufficient waste management system based on minimal separate collection and efficient WtE, towards a system with extended separate collection of recyclable materials and biowaste. In doing so, it tackles key questions: (1) whether recycling and biological treatment are environmentally better compared to highly efficient WtE, and (2) what are the implications of overcapacity-related cascading effects, namely waste import, when included in the comparison of alternative waste management systems. System changes, such as the implementation of kerbside separate collection of recyclable materials were found to significantly increase material recovery, besides leading to substantial GWP and CED savings in comparison to the WtE-based system. Bio-waste separate collection contributed with additional savings when co-digested with manure, and even more significantly when considering future renewable energy background systems reflecting the benefits induced by the flexible use of biogas. Given the current liberalization of trade in combustible waste in Europe, waste landfilling was identified as a short-to-medium-term European-wide waste management marginal reacting to overcapacity effects induced by the implementation of increased recycling strategies. When waste import and, consequently, avoided landfilling were included in the system

  4. Code qualification of structural materials for AFCI advanced recycling reactors.

    Energy Technology Data Exchange (ETDEWEB)

    Natesan, K.; Li, M.; Majumdar, S.; Nanstad, R.K.; Sham, T.-L. (Nuclear Engineering Division); (ORNL)

    2012-05-31

    This report summarizes the further findings from the assessments of current status and future needs in code qualification and licensing of reference structural materials and new advanced alloys for advanced recycling reactors (ARRs) in support of Advanced Fuel Cycle Initiative (AFCI). The work is a combined effort between Argonne National Laboratory (ANL) and Oak Ridge National Laboratory (ORNL) with ANL as the technical lead, as part of Advanced Structural Materials Program for AFCI Reactor Campaign. The report is the second deliverable in FY08 (M505011401) under the work package 'Advanced Materials Code Qualification'. The overall objective of the Advanced Materials Code Qualification project is to evaluate key requirements for the ASME Code qualification and the Nuclear Regulatory Commission (NRC) approval of structural materials in support of the design and licensing of the ARR. Advanced materials are a critical element in the development of sodium reactor technologies. Enhanced materials performance not only improves safety margins and provides design flexibility, but also is essential for the economics of future advanced sodium reactors. Code qualification and licensing of advanced materials are prominent needs for developing and implementing advanced sodium reactor technologies. Nuclear structural component design in the U.S. must comply with the ASME Boiler and Pressure Vessel Code Section III (Rules for Construction of Nuclear Facility Components) and the NRC grants the operational license. As the ARR will operate at higher temperatures than the current light water reactors (LWRs), the design of elevated-temperature components must comply with ASME Subsection NH (Class 1 Components in Elevated Temperature Service). However, the NRC has not approved the use of Subsection NH for reactor components, and this puts additional burdens on materials qualification of the ARR. In the past licensing review for the Clinch River Breeder Reactor Project (CRBRP

  5. Nitrification in hybrid reactor with a recycled plastic support material

    Directory of Open Access Journals (Sweden)

    Delmira Beatriz Wolff

    2005-06-01

    Full Text Available This work investigated the nitrification in a hybrid moving bed pilot scale reactor, which used a low density recycled plastic support material for biomass growth. The filling rate was 20% of its working volume (22L. The feeding and recirculation outflow was 45L/day. The reactor operated at a temperature of 16ºC, in two phases, according to the sludge retention time (SRT: A phase was 10 days and B phase was 3 days (average values. The applied average volumetric nitrogen and organic loads were 0.16KgTKN/m3.day and 1kgCOD/m³.day, respectively. The results showed an average nitrogen removal of 95% and average COD removal of 89%, in both A and B phases. Nitrogen removal rates were independents of the SRT.Este trabalho investiga a nitrificação em um reator-piloto híbrido de leito móvel agitado, que utiliza um plástico reciclado de baixa densidade como material suporte para o crescimento da biomassa. O preenchimento do reator com o suporte era 20% de seu volume útil (22L. A vazão de alimentação e recirculação era de 45 L/dia. O reator foi operado com temperatura de 16ºC, em duas fases, de acordo com a idade do lodo: fase A = 10 dias e fase B = 3 dias (valores médios. As cargas volumétricas médias aplicadas, de nitrogênio e orgânicas foram de 0.16KgNTK/m³dia e de 1kgDQO/m³dia, respectivamente. Os resultados mostraram uma redução média de nitrogênio de 95% e de DQO de 89%, nas duas fases (A e B. A eficiência de remoção de nitrogênio deste reator mostrou ser independente da idade do lodo.

  6. Brownfields Recover Your Resources - Reduce, Reuse, and Recycle Construction and Demolition Materials at Land Revitalization Projects

    Science.gov (United States)

    This document provides background information on how the sustainable reuse of brownfield properties includes efforts to reduce the environmental impact by reusing and recycling materials generated during building construction, demolition, or renovation.

  7. Resources and recycling of secondary raw materials as basis for aluminum alloys production

    OpenAIRE

    Aćimović-Pavlović, Zagorka; Simović, Đuro; Andrić, Ljubiša

    2012-01-01

    Raw materials which represent basis for 'secondary' aluminum alloys are waste and scrap of pure aluminum and its alloys, as well as waste and scrap of various materials which contain aluminum or its alloys. Hence aluminum residues are numerous and they appear on various places, there is alerting open question considering necessity of collecting, preparing and processing, i.e. returning aluminum waste into the recycling process. Aluminum recycling can be considered from different point of view...

  8. Development of assessment methods for transport and storage containers with higher content of metallic recycling material

    International Nuclear Information System (INIS)

    Zencker, U.; Qiao Linan; Droste, B.

    2004-01-01

    The mechanical behaviour of transport and storage containers made of ductile cast iron melted with higher content of metallic recycling material from decommissioning and dismantling of nuclear installations is investigated. With drop tests of cubic container-like models, the influence of different real targets on the stresses in the cask body and the fracture behaviour is examined. A test stand foundation is suggested, which can be manufactured simply and improves the reproducibility of the test results strongly. The test objects are partially equipped with artificial cracklike defects. Dynamic fracture mechanics analyses of these defects were performed by means of finite element calculations to uncover safety margins. Numerous test results show depending on the requirements that containers for final disposal can be built by means of a ductile cast iron with fracture toughness more than half under the lower bound value for the licensed material qualities yet. The application limits of the material are determined also by the opportunities of the safety assessment methods. This project supports the application of brittle fracture safe transport and storage packages for radioactive materials as recommended in App. VI of the Advisory Material for the IAEA Regulations for the Safe Transport of Radioactive Material (IAEA No. TS-G-1.1)

  9. Safe recycling of materials containing persistent inorganic and carbon nanoparticles

    NARCIS (Netherlands)

    Reijnders, L.; Njuguna, J.; Pielichowski, K.; Zhu, H.

    2014-01-01

    For persistent inorganic and carbon nanomaterials, considerable scope exists for a form of recycling called ‘resource cascading’. Resource cascading is aimed at the maximum exploitation of quality and service time of natural resources. Options for resource cascading include engineered nanomaterials

  10. Multi-material classification of dry recyclables from municipal solid waste based on thermal imaging.

    Science.gov (United States)

    Gundupalli, Sathish Paulraj; Hait, Subrata; Thakur, Atul

    2017-12-01

    There has been a significant rise in municipal solid waste (MSW) generation in the last few decades due to rapid urbanization and industrialization. Due to the lack of source segregation practice, a need for automated segregation of recyclables from MSW exists in the developing countries. This paper reports a thermal imaging based system for classifying useful recyclables from simulated MSW sample. Experimental results have demonstrated the possibility to use thermal imaging technique for classification and a robotic system for sorting of recyclables in a single process step. The reported classification system yields an accuracy in the range of 85-96% and is comparable with the existing single-material recyclable classification techniques. We believe that the reported thermal imaging based system can emerge as a viable and inexpensive large-scale classification-cum-sorting technology in recycling plants for processing MSW in developing countries. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Vacuum pyrolysis characteristics and parameter optimization of recycling organic materials from waste tantalum capacitors.

    Science.gov (United States)

    Chen, Zhenyang; Niu, Bo; Zhang, Lingen; Xu, Zhenming

    2018-01-15

    Recycling rare metal tantalum from waste tantalum capacitors (WTCs) is significant to alleviate the shortage of tantalum resource. However, environmental problems will be caused if the organic materials from WTCs are improperly disposed. This study presented a promising vacuum pyrolysis technology to recycle the organic materials from WTCs. The organics removal rate could reach 94.32wt% according to TG results. The optimal parameters were determined as 425°C, 50Pa and 30min on the basis of response surface methodology (RSM). The oil yield and residual rate was 18.09wt% and 74.94wt%, respectively. All pyrolysis products can be recycled through a reasonable route. Besides, to deeply understand the pyrolysis process, the pyrolysis mechanism was also proposed based on the product and free radical theory. This paper provides an efficient process for recycling the organic material from WTCs, which can facilitate the following tantalum recovery. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Recycle and reuse of materials and components from waste streams of nuclear fuel cycle facilities

    International Nuclear Information System (INIS)

    2000-01-01

    All nuclear fuel cycle processes utilize a wide range of equipment and materials to produce the final products they are designed for. However, as at any other industrial facility, during operation of the nuclear fuel cycle facilities, apart from the main products some byproducts, spent materials and waste are generated. A lot of these materials, byproducts or some components of waste have a potential value and may be recycled within the original process or reused outside either directly or after appropriate treatment. The issue of recycle and reuse of valuable material is important for all industries including the nuclear fuel cycle. The level of different materials involvement and opportunities for their recycle and reuse in nuclear industry are different at different stages of nuclear fuel cycle activity, generally increasing from the front end to the back end processes and decommissioning. Minimization of waste arisings and the practice of recycle and reuse can improve process economics and can minimize the potential environmental impact. Recognizing the importance of this subject, the International Atomic Energy Agency initiated the preparation of this report aiming to review and summarize the information on the existing recycling and reuse practice for both radioactive and non-radioactive components of waste streams at nuclear fuel cycle facilities. This report analyses the existing options, approaches and developments in recycle and reuse in nuclear industry

  13. Reliable classification of moving waste materials with LIBS in concrete recycling.

    Science.gov (United States)

    Xia, Han; Bakker, M C M

    2014-03-01

    Effective discrimination between different waste materials is of paramount importance for inline quality inspection of recycle concrete aggregates from demolished buildings. The moving targeted materials in the concrete waste stream are wood, PVC, gypsum block, glass, brick, steel rebar, aggregate and cement paste. For each material, up to three different types were considered, while thirty particles of each material were selected. Proposed is a reliable classification methodology based on integration of the LIBS spectral emissions in a fixed time window, starting from the deployment of the laser shot. PLS-DA (multi class) and the hybrid combination PCA-Adaboost (binary class) were investigated as efficient classifiers. In addition, mean centre and auto scaling approaches were compared for both classifiers. Using 72 training spectra and 18 test spectra per material, each averaged by ten shots, only PLS-DA achieved full discrimination, and the mean centre approach made it slightly more robust. Continuing with PLS-DA, the relation between data averaging and convergence to 0.3% average error was investigated using 9-fold cross-validations. Single-shot PLS-DA presented the highest challenge and most desirable methodology, which converged with 59 PC. The degree of success in practical testing will depend on the quality of the training set and the implications of the possibly remaining false positives. © 2013 Published by Elsevier B.V.

  14. Recycling and reuse of chosen kinds of waste materials in a building industry

    Science.gov (United States)

    Ferek, B.; Harasymiuk, J.; Tyburski, J.

    2016-08-01

    The article describes the current state of knowledge and practice in Poland concerning recycling as a method of reuse of chosen groups of waste materials in building industry. The recycling of building scraps is imposed by environmental, economic and technological premises. The issue of usage of sewage residues is becoming a problem of ever -growing gravity as the presence of the increasing number of pernicious contaminants makes their utilization for agricultural purposes more and more limited. The strategies of using waste materials on Polish building sites were analyzed. The analysis of predispositions to salvage for a group of traditional materials, such as: timber, steel, building debris, insulation materials, plastics, and on the example of new materials, such as: artificial light aggregates made by appropriate mixing of siliceous aggregates, glass refuses and sewage residues in order to obtain a commodity which is apt for economic usage also was made in the article. The issue of recycling of waste materials originating from building operations will be presented in the context of the binding home and EU legal regulations. It was proved that the level of recycling of building wastes in Poland is considerably different from one which is achieved in the solid market economies, both in quantity and in assortment. The method of neutralization of building refuses in connection with special waste materials, which are sewage sludge that is presented in the article may be one of the alternative solutions to the problem of recycling of these wastes not only on the Polish scale.

  15. Utilisation of biological and secondary raw materials IX. Recycling - conversion to energy

    International Nuclear Information System (INIS)

    Wiemer, Klaus; Kern, Michael; Raussen, Thomas

    2014-01-01

    The book on the utilization of biological and secondary raw materials covers the following issues: Perspectives of the circular flow and resource economy, waste avoidance, closed substance cycle waste management law and biowaste assessment, economic evaluation and usage alternatives for biogas, consequences of the 4th BlmschV, the BioAbfV and the DueV for the biowaste treatment, alternative techniques of the Biowaste collection, alternative models of the recyclable substance assessment, future of the packaging and recyclable substance utilization, ElectroG and E-scrape recycling, innovative concepts for the municipal waste management, future of the MBA, MVA and EBS management.

  16. Recycled Material Collector: Citizenship and the Social Right to Special Foresight

    Directory of Open Access Journals (Sweden)

    Ana Luiza Felix Severo

    2016-10-01

    Full Text Available The object of this study is to analyze the elements that the recyclable material collector has to belong to particular social class insured. Use shall be bibliographical research with qualitative order to discuss the possibility of granting the benefit under consideration by the social security. Justified by the importance of the collector exercise profitable activity for the recycling industry and promote sound environmental quality. Thus, what is the legal relationship of recyclables collector with special social security? It can be assumed that no such benefits can generate disincentive to exercise this activity, therefore, decline in balanced environment.

  17. Innovative technologies for recycling and reusing radioactively contaminated materials from DOE facilities

    International Nuclear Information System (INIS)

    Bossart, S.J.; Hyde, J.

    1993-01-01

    Through award of ten contracts under the solicitation, DOE is continuing efforts to develop innovative technologies for decontamination and recycling or reusing of process equipment, scrap metal, and concrete. These ten technologies are describe briefly in this report. There is great economic incentive for recycling or reusing materials generated during D ampersand D of DOE's facilities. If successfully developed, these superior technologies will enable DOE to clean its facilities by 2019. These technologies will also generate a reusable or recyclable product, while achieving D ampersand D in less time at lower cost with reduced health and safety risks to the workers, the public and the environment

  18. Considerations on the Benefits of Using Recyclable Materials for Road Construction

    Directory of Open Access Journals (Sweden)

    Popescu Diana

    2017-07-01

    Full Text Available A current worldwide economy problem includes both the responsible management of the planet's non-renewable resources and the waste management. The benefits of using recyclable materials and recycling technologies with asphalt mixtures consist mainly of reducing fuel consumption and greenhouse gas emissions. It is well known that oil (from which bitumen is obtained is a non-renewable resource, hence the its price increase. Therefore, at present, the world is looking for solutions that will lead to a better use of natural resources and to an economic integration of sub-products from various industries. This paper intends to raise awareness of the possibilities for asphalt mixtures recycling and of the recyclable materials that can be used as additives with benefits of each.

  19. Application of renewable and recyclable raw materials for preparation of new polymers

    OpenAIRE

    Horák, Pavel

    2012-01-01

    This thesis deals with optimalization of flexible polyurethane foam recycling with using of natural polyols based on rape seed oil and fish oil and it explores applications of depolymerized polyol product by formulations of new polyurethane materials. The experiments of depolymerisation showed that both tested natural oil (rape seed oil and fish oil) can be used as effective reagents for polyurethane recycling. Reaction conditions of depolymerisation were optimised with model flexible polyure...

  20. Recycling positive-electrode material of a lithium-ion battery

    Science.gov (United States)

    Sloop, Steven E.

    2017-11-21

    Examples are disclosed of methods to recycle positive-electrode material of a lithium-ion battery. In one example, the positive-electrode material is heated under pressure in a concentrated lithium hydroxide solution. After heating, the positive-electrode material is separated from the concentrated lithium hydroxide solution. After separating, the positive electrode material is rinsed in a basic liquid. After rinsing, the positive-electrode material is dried and sintered.

  1. Development of construction materials using nano-silica and aggregates recycled from construction and demolition waste.

    Science.gov (United States)

    Mukharjee, Bibhuti Bhusan; Barai, Sudhirkumar V

    2015-06-01

    The present work addresses the development of novel construction materials utilising commercial grade nano-silica and recycled aggregates retrieved from construction and demolition waste. For this, experimental work has been carried out to examine the influence of nano-silica and recycled aggregates on compressive strength, modulus of elasticity, water absorption, density and volume of voids of concrete. Fully natural and recycled aggregate concrete mixes are designed by replacing cement with three levels (0.75%, 1.5% and 3%) of nano-silica. The results of the present investigation depict that improvement in early days compressive strength is achieved with the incorporation of nano-silica in addition to the restoration of reduction in compressive strength of recycled aggregate concrete mixes caused owing to the replacement of natural aggregates by recycled aggregates. Moreover, the increase in water absorption and volume of voids with a reduction of bulk density was detected with the incorporation of recycled aggregates in place of natural aggregates. However, enhancement in density and reduction in water absorption and volume of voids of recycled aggregate concrete resulted from the addition of nano-silica. In addition, the results of the study reveal that nano-silica has no significant effect on elastic modulus of concrete. © The Author(s) 2015.

  2. Durability of recycled aggregate concrete using pozzolanic materials.

    Science.gov (United States)

    Ann, K Y; Moon, H Y; Kim, Y B; Ryou, J

    2008-01-01

    In this study, pulverized fuel ash (PFA) and ground granulated blast furnace slag (GGBS) were used to compensate for the loss of strength and durability of concrete containing recycled aggregate. As a result, 30% PFA and 65% GGBS concretes increased the compressive strength to the level of control specimens cast with natural granite gravel, but the tensile strength was still lowered at 28 days. Replacement with PFA and GGBS was effective in raising the resistance to chloride ion penetrability into the concrete body, measured by a rapid chloride ion penetration test based on ASTM C 1202-91. It was found that the corrosion rate of 30% PFA and 65% GGBS concretes was kept at a lower level after corrosion initiation, compared to the control specimens, presumably due to the restriction of oxygen and water access. However, it was less effective in increasing the chloride threshold level for steel corrosion. Hence, it is expected that the corrosion time for 30% PFA and 65% GGBS concrete containing recycled aggregate mostly equates to the corrosion-free life of control specimens.

  3. Efficiency of recycled wool-based nonwoven material for the removal of oils from water

    NARCIS (Netherlands)

    Radetic, M.; Ilic, V.; Radojevic, D.; Miladinovic, R.; Jocic, D.; Javancic, P.

    2007-01-01

    The aim of this study was to highlight the potential use of recycled wool-based nonwoven material for the removal of diesel fuel, crude, base, vegetable and motor oil from water. Sorption capacity of the material in water and in oil without water, oil retention, sorbent reusability and buoyancy in

  4. Properties of backfilling material for solidifying miscellaneous waste using recycled cement from waste concrete

    International Nuclear Information System (INIS)

    Matsuda, Atsuo; Yamamoto, Kazuo; Konishi, Masao; Iwamoto, Yoshiaki; Yoshikane, Toru; Koie, Toshio; Nakashima, Yoshio.

    1997-01-01

    A large reduction of total radioactive waste is expected, if recycled cement from the waste concrete of decommissioned nuclear power plants would be able to be used the material for backfilling mortar among the miscellaneous waste. In this paper, we discuss the hydration, strength and consistency of recycled cement compared with normal portland cement. The strength of recycled cement mortar is lower than that of normal portland cement mortar on the same water to cement ratio. It is possible to obtain the required strength to reduce the water to cement ratio by using of high range water-reducing AE agent. According to reducing of water to cement ratio, the P-type funnel time of mortar increase with the increase of its viscosity. However, in new method of self-compactability for backfilling mortar, it became evident that there was no difference between the recycled cement and normal portland cement on the self-compactability. (author)

  5. Pyrolysis characteristics and pyrolysis products separation for recycling organic materials from waste liquid crystal display panels

    International Nuclear Information System (INIS)

    Wang, Ruixue; Xu, Zhenming

    2016-01-01

    Highlights: • Pyrolysis characteristics are conducted for a better understanding of LCDs pyrolysis. • Optimum design is developed which is significant to guide the further industrial process. • Acetic acid and TPP are recycled and separated. - Abstract: Waste liquid crystal display (LCD) panels mainly contain inorganic materials (glass substrate with indium-tin oxide film), and organic materials (polarizing film and liquid crystal). The organic materials should be removed beforehand since the organic matters would hinder the indium recycling process. In the present study, pyrolysis process is used to remove the organic materials and recycle acetic as well as and triphenyl phosphate (TPP) from waste LCD panels in an environmental friendly way. Several highlights of this study are summarized as follows: (i) Pyrolysis characteristics and pyrolysis kinetics analysis are conducted which is significant to get a better understanding of the pyrolysis process. (ii) Optimum design is developed by applying Box–Behnken Design (BBD) under response surface methodology (RSM) for engineering application which is significant to guide the further industrial recycling process. The oil yield could reach 70.53 wt% and the residue rate could reach 14.05 wt% when the pyrolysis temperature is 570 °C, nitrogen flow rate is 6 L min −1 and the particle size is 0.5 mm. (iii) Furthermore, acetic acid and TPP are recycled, and then separated by rotary evaporation, which could reduce the consumption of fossil energy for producing acetic acid, and be reused in electronics manufacturing industry.

  6. Pyrolysis characteristics and pyrolysis products separation for recycling organic materials from waste liquid crystal display panels

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ruixue; Xu, Zhenming, E-mail: zmxu@sjtu.edu.cn

    2016-01-25

    Highlights: • Pyrolysis characteristics are conducted for a better understanding of LCDs pyrolysis. • Optimum design is developed which is significant to guide the further industrial process. • Acetic acid and TPP are recycled and separated. - Abstract: Waste liquid crystal display (LCD) panels mainly contain inorganic materials (glass substrate with indium-tin oxide film), and organic materials (polarizing film and liquid crystal). The organic materials should be removed beforehand since the organic matters would hinder the indium recycling process. In the present study, pyrolysis process is used to remove the organic materials and recycle acetic as well as and triphenyl phosphate (TPP) from waste LCD panels in an environmental friendly way. Several highlights of this study are summarized as follows: (i) Pyrolysis characteristics and pyrolysis kinetics analysis are conducted which is significant to get a better understanding of the pyrolysis process. (ii) Optimum design is developed by applying Box–Behnken Design (BBD) under response surface methodology (RSM) for engineering application which is significant to guide the further industrial recycling process. The oil yield could reach 70.53 wt% and the residue rate could reach 14.05 wt% when the pyrolysis temperature is 570 °C, nitrogen flow rate is 6 L min{sup −1} and the particle size is 0.5 mm. (iii) Furthermore, acetic acid and TPP are recycled, and then separated by rotary evaporation, which could reduce the consumption of fossil energy for producing acetic acid, and be reused in electronics manufacturing industry.

  7. Analysis of chromium and sulphate origins in construction recycled materials based on leaching test results.

    Science.gov (United States)

    Del Rey, I; Ayuso, J; Galvín, A P; Jiménez, J R; López, M; García-Garrido, M L

    2015-12-01

    Twenty samples of recycled aggregates from construction and demolition waste (CDW) with different compositions collected at six recycling plants in the Andalusia region (south of Spain) were characterised according to the Landfill Directive criteria. Chromium and sulphate were identified as the most critical compounds in the leachates. To detect the sources of these two pollutant constituents in recycled aggregate, environmental assessments were performed on eight construction materials (five unused ceramic materials, two old crushed concretes and one new mortar manufactured in the laboratory). The results confirmed that leached sulphate and Cr were mainly released by the ceramic materials (bricks and tiles). To predict the toxicological consequences, the oxidation states of Cr (III) and Cr (VI) were measured in the leachates of recycled aggregates and ceramic materials classified as non-hazardous. The bricks and tiles mainly released total Cr as Cr (III). However, the recycled aggregates classified as non-hazardous according to the Landfill Directive criteria mainly released Cr (VI), which is highly leachable and extremely toxic. The obtained results highlight the need for legislation that distinguishes the oxidative state in which chromium is released into the environment. Leaching level regulations must not be based solely on total Cr, which can lead to inaccurate predictions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. New recycling approaches for thermoset polymeric composite wastes – an experimental study on polyester based concrete materials filled with fibre reinforced plastic recyclates

    OpenAIRE

    Ribeiro, M. C. S.; Fiúza, António; Meira Castro, A C; Dinis, M. L.; Silva, Francisco J. G.; Meixedo, João Paulo

    2011-01-01

    In this study, a new waste management solution for thermoset glass fibre reinforced polymer (GFRP) based products was assessed. Mechanical recycling approach, with reduction of GFRP waste to powdered and fibrous materials was applied, and the prospective added-value of obtained recyclates was experimentally investigated as raw material for polyester based mortars. Different GFRP waste admixed mortar formulations were analyzed varying the content, between 4% up to 12% in we...

  9. Drivers and Constraints of Critical Materials Recycling: The Case of Indium

    Directory of Open Access Journals (Sweden)

    Jenni Ylä-Mella

    2016-11-01

    Full Text Available Raw material criticality studies are receiving increasing attention because an increasing number of elements of great economic importance, performing essential functions face high supply risks. Scarcity of key materials is a potential barrier to large-scale deployment of sustainable energy and clean-tech technologies as resorting to several critical materials. As physical scarcity and geopolitical issues may present a barrier to the supply of critical metals, recycling is regarded as a possible solution to substitute primary resources for securing the long-term supply of critical metals. In this paper, the main drivers and constraints for critical materials recycling are analyzed from literature, considering indium as a case study of critical materials. This literature review shows that waste electrical and electronic equipment (WEEE could be a future source of critical metals; however, the reduction of dissipation of critical materials should have much higher priority. It is put forward that more attention should be paid to sustainable management of critical materials, especially improved practices at the waste management stage. This calls for not only more efficient WEEE recycling technologies, but also revising priorities in recycling strategies.

  10. BIOFILTERS IN WASTEWATER TREATMENT AFTER RECYCLED PLASTIC MATERIALS

    Directory of Open Access Journals (Sweden)

    Irena Kania-Surowiec

    2014-10-01

    Full Text Available In this paper the possibility of using biological deposits in wastewater treatment of recycled plastics were presented. There are many aspects of this issue that should be considered to be able to use information technology solutions in the industry. This includes, inter alia, specify the types of laboratory tests based on the analysis of changes in the fluid during the wastewater treatment process, knowledge and selection factors for proper growth of biofilm in the deposit and to develop the right concept and a prototype for a particular processing plant, plastic processing plant. It is possible to determine the parameters that will increase the efficiency of sewage treatment while minimizing the financial effort on the part of the Company. Selection methods of wastewater treatment is also associated with the environmental strategy of the country at the enterprise level specified in the Environmental Policy. This is an additional argument for the use of biological methods in the treatment of industrial waste water.

  11. Proposed industrial recovered materials utilization targets for the metals and metal products industry

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-05-01

    Set targets for increased utilization of energy-saving recovered materials in the metals and metal products industries (ferrous, aluminium, copper, zinc, and lead) are discussed. Data preparation and methodology development and analysis of the technological and economic factors in order to prepare draft targets for the use of recovered materials are covered. Chapter 2 provides an introductory discussion of the factors that affect the recovery and reuse of secondary materials and the competition between the primary and secondary metals industries. Chapter 3 presents general profiles for the major industrial segments comprising SIC 33, including industry structure, process technology, materials and recycling flow, and future trends for the 5 industries: ferrous, aluminium, copper, zinc, and lead. Chapter 4 presents the evaluation of recycling targets for those industries. (MCW)

  12. A variable neighborhood search for the multi-period collection of recyclable materials

    DEFF Research Database (Denmark)

    Andersen, Maria Elbek; Wøhlk, Sanne

    2016-01-01

    We consider an approach for scheduling the multi-period collection of recyclable materials. Citizens can deposit glass and paper for recycling in small cubes located at several collection points. The cubes are emptied by a vehicle that carries two containers and the material is transported to two...... treatment facilities. We investigate how the scheduling of emptying and transportation should be done in order to minimize the operation cost, while providing a high service level and ensuring that capacity constraints are not violated. We develop a heuristic solution method for solving the daily planning...

  13. Energy and materials use in the production and recycling of consumer-goods packaging

    Energy Technology Data Exchange (ETDEWEB)

    Gaines, L.L.

    1981-02-01

    A comparison is made of the energy consumed annually in the United States to produce paper, glass, steel, aluminum, and plastic for consumer-goods packaging and types of energy used for production are examined. Energy saved through recycling and combustion for energy recovery also is considered. A maximum of 1.5 quad could be saved if this packaging material were recycled, and about 0.6 quad could be recovered if it were burned as part of municipal solid waste. Paper and plastic compete in several markets, including bags and milk containers: in almost all cases, the plastic container requires less energy to produce and recycle. However, the major energy input to paper manufacture is wood, rather than oil and natural gas. Glass bottles require less energy to produce than aluminum or steel cans. On the other hand, aluminum cans take less energy to recycle than bottles, and recycled aluminum cans are the least energy intensive of the single-serving beverage containers, except for refillable glass bottles that are reused several times. For family-sized beverage bottles, a plastic bottle uses less energy to make and to recycle than a glass bottle. In addition, plastic bottles are combustible. However, glass bottles could be made with no oil or natural gas input, and they can be reused.

  14. Recycling of plastic group composite materials. 3. ; Current situation in recycling of thermosetting resin composite materials in Japan, Europe and America. Plastic ki fukugo zairyo no recycle. 3. ; Netsukokasei jushi fukugo zairyo no recycle no Nichiobei no genjo

    Energy Technology Data Exchange (ETDEWEB)

    Iimori, H. (Mitsui Toatsu Chemicals, Inc., Tokyo (Japan))

    1993-07-15

    This paper describes the current situation in Japan, Europe and America on recycling of thermosetting resin composite materials, and material treatment and resource re-utilization with emphasis on FRP. Land reclamation would become impossible eventually as a result of difficulty in land procurement, soil contamination, and residents' objection. Pulverization consists of a flow comprising disassembling, cutting, crushing, pulverization, and classification. Pyrolysis heats materials in steam, oxygen-free or low-oxygen atmosphere to recover combustible gases, oils, and resin material solids. Incineration requires incinerator designs that take into account incinerator damages due to black smoke and molten glassfibers. Japan, Europe, and America which have common environmental and legislative regulation issues have begun researches simultaneously. Europe has advanced with pulverization systems in reaching practical use levels, and North America has been using the systems practically. The pyrolytic means are in a feasibility study phase. The issue of the car scrapping law in Germany is inevitable to become a common problem for the EC countries. The automobile industries in North America have been working on technical development under joint investments. Treatment technologies in Japan have nearly reached the levels in Europe and America. Responses to structural change requirements from consumption type to environmental protection type are required. 14 refs., 8 figs., 7 tabs.

  15. Multidimensional Analysis of the Effects of Waste Materials on Physical and Mechanical Properties of Recycled Mixtures with Foamed Bitumen

    Directory of Open Access Journals (Sweden)

    Grzegorz Mazurek

    2018-02-01

    Full Text Available The paper reports the results from the tests of recycled mixture samples containing waste materials. Six types of waste materials were used in the mineral mix, in various configurations. Statistical inference was based on the multidimensional analysis through the reduction of input data size. Three groups of recycled mixtures were identified, each representing significantly different properties. The first group included rigid recycled mixtures, the second group comprised flexible mixtures, and those with the lowest cohesion and rigidity were in the third group. The statistical inference demonstrated that the recycled mixtures with waste materials to be most recommended were those with a high bitumen content (>2.5%. A high proportion of reclaimed asphalt pavement material was found to provide high performance of the recycled mixture, whereas recycled aggregate reduced the stiffness of the mix and its resistance to moisture.

  16. Target system materials and engineering problems

    International Nuclear Information System (INIS)

    Fischer, W.E.

    1989-01-01

    This paper discusses the common problems of target design. As a model for the discussion, the author considers a spallation source which is fed by a high power proton beam of the order of one megawatt. The materials used for the target station and particularly for the spallation target itself depend on whether the source is built for pulsed, modulated or continuous operation. The difference of materials used is mainly determined by the neutronics considerations. Depending on the choice of materials for the target systems, the characters of material problems met, are of somewhat different nature. It is recognized that for each target version quite specific difficulties have to be overcome. On the other hand, there is a whole set of problems which is common to all target versions. These are: heat load in region of proton beam interactions; thermal stress and cycling; and radiation damage. It is shown that solutions to the whole package of problems up to a beam power of 0 (1MW) have been found. The whole effort concentrates onto the region of the first few centimeters of beam penetration. Two solutions have been proposed: (1) Keep the power of proton beam limited and produce neutrons elsewhere in the target. and (2) Dilute the power by moving mechanically the target and the window. 8 refs., 11 figs

  17. Target materials for exotic ISOL beams

    CERN Document Server

    Gottberg, A

    2016-01-01

    The demand for intensity, purity, reliability and availability of short-lived isotopes far from stability is steadily high, and considerably exceeding the supply. In many cases the ISOL (Isotope Separation On-Line) method can provide beams of high intensity and purity. Limitations in terms of accessible chemical species and minimum half-life are driven mainly by chemical reactions and physical processes inside of the thick target. A wide range of materials are in use, ranging from thin metallic foils and liquids to refractory ceramics, while poly-phasic mixed uranium carbides have become the reference target material for most ISOL facilities world-wide. Target material research and development is often complex and especially important post-irradiation analyses are hindered by the high intrinsic radiotoxicity of these materials. However, recent achievements have proven that these investigations are possible if the effort of different facilities is combined, leading to the development of new material matrices t...

  18. State of the art of fusion material recycling and remaining issues

    International Nuclear Information System (INIS)

    Massaut, V.; Broden, K.; Pace, L. Di; Ooms, L.; Pampin, R.

    2006-01-01

    Fusion as a power production system presents several advantages in terms of safety and environmental impact, one of these being the limited amount of radioactive waste production which is burden for future generations. Nevertheless, even if fusion does not produce long term radioactive waste, e.g. by adequate material selection for plasma facing components, there are two important aspects deserving consideration: the presence of tritium in relatively large quantity, and the very hard neutron spectrum leading to large amounts of active materials. In order to keep radioactive waste levels to a minimum it has been proposed to recycle the materials removed from the reactor, after adequate decay period and proper handling and treatment. Treatment may include detritiation, separation of different material types and sorting of the non reusable materials, among others. Moreover if recycle or reuse (within the nuclear industry in general or, for some particular materials, within the fusion industry) are foreseen, the material has to be melted or reduced to reusable raw material, machined or the pieces fabricated again, assembled and checked (for geometrical correctness, or leak tightness for instance). And all this has to be made on industrial scale, as fusion will produce large amounts of material presenting various degrees of radioactivity and tritium content. Even if some experience of recycling exists in the nuclear fission industry, which can be used for fusion materials, the different steps mentioned above are challenging operations when dealing with tritiated materials or highly radioactive components. The paper presents a review of the current situation and state-of-the-art recycling methods for typical fusion materials (e.g. Beryllium, Tungsten, Copper and Copper alloys, steel, Carbon) and components of future fusion plants based on current conceptual design studies. It also focuses attention on R-and-D issues to be addressed in order to be able to recycle as much

  19. The Circular Economy of E-Waste in the Netherlands: Optimizing Material Recycling and Energy Recovery

    Directory of Open Access Journals (Sweden)

    Laura Golsteijn

    2017-01-01

    Full Text Available In the Netherlands, waste electric and electronic equipment (e-waste is an important point for discussion on the circular economy agenda. This paper shows the Dutch example of how “waste” can be turned into a resource, and the climate change benefits from appropriate collection and recycling. It describes the avoided emissions of CO2-equivalents due to e-waste recycling and appropriate removal and destruction of (HCFCs contained in cooling and freezing appliances. Six different e-waste categories were included, and the results of 2016 were compared to previous years (2009–2015. In 2016, 110,000 tonnes of e-waste were collected. 80% of this was recycled to useful materials. Additionally, it resulted in 17% energy recovery. That year, the recycling of e-waste and the removal of (HCFKs resulted in approximately 416,000 tonnes of avoided emissions of CO2-equivalents. Although the phasing out of cooling and freezing appliances with (HCFKs led to a general decrease in the quantity of avoided CO2 emissions over time, removal of (HCFKs still explained most of the avoided CO2 emissions. Material recycling appeared particularly beneficial for cooling and freezing appliances and small and large household appliances. The paper ends with reasons to further close the loop and ways forward to do so.

  20. International measures needed to protect metal recycling facilities from radioactive materials

    International Nuclear Information System (INIS)

    Mattia, M.; Wiener, R.

    1999-01-01

    In almost every major city and region of every country, there is a recycling facility that is designed to process or consume scrap metal. These same countries will probably have widespread applications of radioactive materials and radiation generating equipment. This material and equipment will have metal as a primary component of its housing or instrumentation. It is this metal that will cause these sources of radioactivity, when lost, stolen or mishandled, to be taken to a metal recycling facility to be sold for the value of the metal. This is the problem that has faced scrap recycling facilities for many years. The recycling industry has spent millions of dollars for installation of radiation monitors and training in identification of radioactive material. It has expended millions more for the disposal of radioactive material that has mistakenly entered these facilities. Action must be taken to prevent this material from entering the conventional recycling process. There are more than 2,300 known incidents of radioactive material found in recycled metal scrap. Worldwide, more than 50 smeltings of radioactive sources have been confirmed. Seven fatal accidents involving uncontrolled radioactive material have also been documented. Hazardous exposures to radioactive material have plagued not just the workers at metal recycling facilities. The families of these workers, including their children, have been exposed to potentially harmful levels of radioactivity. The threat from this material does not stop there. Radioactive material that is not caught at recycling facilities can be melted and the radioactivity has been found in construction materials used to build homes, as well as shovels, fencing material, and furniture offered for sale to the general public. The time has come for the international community to address the issue of the uncontrolled sources of radioactive material. The following are the key points that must be addressed. (i) Identification of sources

  1. Climate Benefits of Material Recycling: Inventory of Average Greenhouse Gas Emissions for Denmark, Norway and Sweden

    DEFF Research Database (Denmark)

    Hillman, Karl; Damgaard, Anders; Eriksson, Ola

    . The results can be used by companies and industry associations in Denmark, Norway and Sweden to communicate the current climate benefits of material recycling in general. They may also contribute to discussions on a societal level, as long as their average and historic nature is recognised....

  2. New developments in materials recycling by the US Bureau of Mines

    Science.gov (United States)

    Horton, R. C.; Kenahan, C. B.

    1984-04-01

    The mineral based waste products generated by industry and the consuming public as potential secondary mineral resources to be used for recycling materials are considered. Technical solutions are presented to complex recycling problems, such as: recovery of cobalt, nickel, and chromium from superalloy scrap; the separation, recovery, and reuse of nickel and chromium from stainless and specialty steel wastes; precious metal recovery from electronic scrap; an environmentally acceptable method for recyclng lead acid batteries; recovery of nonferrous metals from scrap automobiles; and rapid scrap identification methods suitable for today's modern alloys.

  3. Awareness about biomedical waste management and knowledge of effective recycling of dental materials among dental students

    Science.gov (United States)

    Ranjan, Rajeev; Pathak, Ruchi; Singh, Dhirendra K.; Jalaluddin, Md.; Kore, Shobha A.; Kore, Abhijeet R.

    2016-01-01

    Aims and Objectives: Biomedical waste management has become a concern with increasing number of dental practitioners in India. Being health care professionals, dentists should be aware regarding safe disposal of biomedical waste and recycling of dental materials to minimize biohazards to the environment. The aim of the present study was to assess awareness regarding biomedical waste management as well as knowledge of effective recycling and reuse of dental materials among dental students. Materials and Methods: This cross-sectional study was conducted among dental students belonging from all dental colleges of Bhubaneswar, Odisha (India) from February 2016 to April 2016. A total of 500 students (208 males and 292 females) participated in the study, which was conducted in two phases. A questionnaire was distributed to assess the awareness of biomedical waste management and knowledge of effective recycling of dental materials, and collected data was examined on a 5-point unipolar scale in percentages to assess the relative awareness regarding these two different categorizes. The Statistical Package for Social Sciences was used to analyzed collected data. Results: Forty-four percent of the dental students were not at all aware about the management of biomedical waste, 22% were moderately aware, 21% slightly aware, 7% very aware, and 5% fell in extremely aware category. Similarly, a higher percentage of participants (61%) were completely unaware regarding recycling and reusing of biomedical waste. Conclusion: There is lack of sufficient knowledge among dental students regarding management of biomedical waste and recycling or reusing of dental materials. Considering its impact on the environment, biomedical waste management requires immediate academic assessment to increase the awareness during training courses. PMID:27891315

  4. Materials development and field demonstration of high-recycled-content concrete for energy-efficient building construction; FINAL

    International Nuclear Information System (INIS)

    Ostowari, Ken; Nosson, Ali

    2000-01-01

    The project developed high-recycled-content concrete material with balanced structural and thermal attributes for use in energy-efficient building construction. Recycled plastics, tire, wool, steel and concrete were used as replacement for coarse aggregates in concrete and masonry production. With recycled materials the specific heat and thermal conductivity of concrete could be tailored to enhance the energy-efficiency of concrete buildings. A comprehensive field project was implemented which confirmed the benefits of high-recycled-content concrete for energy-efficient building construction

  5. Aspects of waste solid in Japan, and recycling of construction materials and used plastic

    Energy Technology Data Exchange (ETDEWEB)

    Morimoto, M. (Kajima Construction Co. Ltd., Tokyo (Japan))

    1992-10-31

    When the natural process is unable to keep pace with the increase of pollutants, serious environmental problems may arise. Education, research, demonstration and local planning for the sake of waste solids management, utilization and disposal are required to solve the difficult problems. The solid material industry should make efforts to improve the economy of recycling waste solids. The national laws, which now deal with the waste solids directly, are the Waste Solid Disposal Act of 1970 and the Resource Recycle and Reuse Act of 1991. Latest estimation shows that the public and private agencies collect waste solids of 1 kg per person per day or more than 0.13 million tons per day on the average throughout Japan. In this paper, the present situation and the problems of waste solid disposal and treatment are described; the disposal and recycling of construction wastes and used plastics are also explained showing flow diagrams. 6 refs., 10 figs., 5 tabs.

  6. Dynamic nuclear polarization of irradiated target materials

    International Nuclear Information System (INIS)

    Seely, M.L.

    1982-01-01

    Polarized nucleon targets used in high energy physics experiments usually employ the method of dynamic nuclear polarization (DNP) to polarize the protons or deuterons in an alcohol. DNP requires the presence of paramagnetic centers, which are customarily provided by a chemical dopant. These chemically doped targets have a relatively low polarizable nucleon content and suffer from loss of polarization when subjected to high doses of ionizing radiation. If the paramagnetic centers formed when the target is irradiated can be used in the DNP process, it becomes possible to produce targets using materials which have a relatively high polarizable nucleon content, but which are not easily doped by chemical means. Furthermore, the polarization of such targets may be much more radiation resistant. Dynamic nuclear polarization in ammonia, deuterated ammonia, ammonium hydroxide, methylamine, borane ammonia, butonal, ethane and lithium borohydride has been studied. These studies were conducted at the Stanford Linear Accelerator Center using the Yale-SLAC polarized target system. Results indicate that the use of ammonia and deuterated ammonia as polarized target materials would make significant increases in polarized target performance possible

  7. Control levels for residual contamination in materials considered for recycle and reuse

    International Nuclear Information System (INIS)

    Hill, R.L.; Aaberg, R.L.; Baker, D.A.; Kennedy, W.E. Jr.

    1993-09-01

    Pacific Northwest Laboratory (PNL) is collecting data and conducting technical analyses to support joint efforts by the U.S. Department of Energy (DOE), Office of Environmental Guidance, Air, Water and Radiation Division (DOE/EH-232); by the U.S. Environmental Protection Agency (EPA); and by the U.S. Nuclear Regulatory Commission (NRC) to develop radiological control criteria for the recycle and reuse of scrap materials and equipment that contain residual radioactive contamination. The initial radiological control levels are the concentrations in or on materials considered for recycle or reuse that meet the individual (human) or industrial (electronics/film) dose criteria. The analysis identifies relevant radionuclides, potential mechanisms of exposure, and methods to determine possible non-health-related impacts from residual radioactive contamination in materials considered for recycle or reuse. The generic methodology and scenarios described here provide a basic framework for numerically deriving radiological control criteria for recycle or reuse. These will be adequately conservative for most situations

  8. Life-Cycle Environmental and Economic Assessment of Using Recycled Materials for Asphalt Pavements

    OpenAIRE

    Horvath, Arpad

    2003-01-01

    The public, industry and governments have become increasingly interested in green design and engineering as approaches towards better environmental quality and sustainable development. Pavement construction is one of the largest consumers of natural resources. Recycling of pavements represents an important opportunity to save the mining and use of virgin materials, conserve energy, divert materials away from landfills, and save scarce tax dollars. How much pollution, energy, natural resources...

  9. [Science and Technology and Recycling: Instructional Materials on Aluminum.

    Science.gov (United States)

    Aluminum Association, New York, NY.

    Educational materials on the manufacture and use of aluminum are assembled in this multi-media unit for use by junior high and secondary school students. Student booklets and brochures include: "The Story of Aluminum,""Uses of Aluminum,""Independent Study Guide for School Research Projects,""Questions and Answers…

  10. Upgrade Recycling of Cast Iron Scrap Chips towards β-FeSi2 Thermoelectric Materials

    Science.gov (United States)

    Laila, Assayidatul; Nanko, Makoto; Takeda, Masatoshi

    2014-01-01

    The upgrade recycling of cast-iron scrap chips towards β-FeSi2 thermoelectric materials is proposed as an eco-friendly and cost-effective production process. By using scrap waste from the machining process of cast-iron components, the material cost to fabricate β-FeSi2 is reduced and the industrial waste is recycled. In this study, β-FeSi2 specimens obtained from cast iron scrap chips were prepared both in the undoped form and doped with Al and Co elements. The maximum figure of merit (ZT) indicated a thermoelectric performance of approximately 70% in p-type samples and nearly 90% in n-type samples compared to β-FeSi2 prepared from pure Fe and other published studies. The use of cast iron scrap chips to produce β-FeSi2 shows promise as an eco-friendly and cost-effective production process for thermoelectric materials. PMID:28788193

  11. Upgrade Recycling of Cast Iron Scrap Chips towards β-FeSi₂ Thermoelectric Materials.

    Science.gov (United States)

    Laila, Assayidatul; Nanko, Makoto; Takeda, Masatoshi

    2014-09-04

    The upgrade recycling of cast-iron scrap chips towards β-FeSi₂ thermoelectric materials is proposed as an eco-friendly and cost-effective production process. By using scrap waste from the machining process of cast-iron components, the material cost to fabricate β-FeSi₂ is reduced and the industrial waste is recycled. In this study, β-FeSi₂ specimens obtained from cast iron scrap chips were prepared both in the undoped form and doped with Al and Co elements. The maximum figure of merit ( ZT ) indicated a thermoelectric performance of approximately 70% in p-type samples and nearly 90% in n-type samples compared to β-FeSi₂ prepared from pure Fe and other published studies. The use of cast iron scrap chips to produce β-FeSi₂ shows promise as an eco-friendly and cost-effective production process for thermoelectric materials.

  12. Cogema and the recycling of nuclear military materials

    International Nuclear Information System (INIS)

    1999-04-01

    The signature of the Start 1 and Start 2 treaties in 1991 and 1993 has marked the start-up of nuclear disarmament. This process covers two aspects: the destruction of vectors (missiles, planes..) and the dismantling of warheads carrying weapon grade radioactive materials (uranium and plutonium). This dossier explains the political and technical choices made by Russia and the USA for the management of their weapon grade plutonium: fabrication of MOX fuels (cooperation between Minatom (Russia), Siemens and Cogema for the building of conversion and fabrication plants, collaboration between Cogema, Duke Engineering and Stone and Webster (DCS) for the building of a MOX fabrication plant and for the irradiation of MOX fuels in US reactors), disposal of hardly convertible plutonium. (J.S.)

  13. Recycling Roof Tile Waste Material for Wall Cover Tiles

    Directory of Open Access Journals (Sweden)

    Ambar Mulyono

    2014-02-01

    Full Text Available Prior research on roof tile waste treatment has attempted to find the appropriate technology to reuse old roof tile waste by  create  wall  cladding  materials  from  it.  Through  exploration  and  experimentation,  a  treatment  method  has  been discovered  to  transform  the  tile  fragments  into  artificial  stone  that  resembles  the  shape  of  coral.  This  baked  clay artificial stone material is then processed as a decorative element for vertical surfaces that are not load-bearing, such as on the interior and exterior walls of a building. Before applying the fragments as wall tiles, several steps must be taken: 1  Blunting,  which  changes  the  look  of  tile  fragments  using  a  machine  created  specifically  to  blunt  the  roof-tile fragment  edges,  2  Closing  the  pores  of  the  blunted  fragments  as  a  finishing  step  that  can  be  done  with  a  transparent coat or a solid color of paint, 3 Planting the transformed roof-tile fragments on a prepared tile body made of concrete. In this study, the second phase is done using the method of ceramics glazing at a temperature of 700 °C. The finishing step is the strength of this product because it produces a rich color artificial pebble.

  14. Development of melting facilities and techniques for decontamination and recycling of radioactively contaminated material

    International Nuclear Information System (INIS)

    Steinwarz, W.

    1998-01-01

    One decade after the accident at unit 4 of the Chernobyl nuclear power station a melting plant for radioactively contaminated metallic materials, the so-called SURF facility is being planned and licensed for erection in the direct neighbourhood of the NPP area. Main goal is the recycling of the material, largely decontaminated by the melting process, by means of manufacturing of casks and containers for waste disposal and of shielding equipment. The melting plant will be placed as part of the Ukrainian waste handling centre (CPPRO). The technology is based on the long-term experience gained at Siempelkamp's CARLA plant in Krefeld. In 1995-1997 the licensing conditions were defined, the licensing documents prepared and the formal procedure initiated. For completion of the recycling technique and to broaden the application fields for the re-usable material a granules production method has been developed and formally qualified. The essential is the substitution of the hematite portion in concrete structures providing an alternative sink for recycling material. (author)

  15. Target-responsive aptamer release from manganese dioxide nanosheets for electrochemical sensing of cocaine with target recycling amplification.

    Science.gov (United States)

    Chen, Zongbao; Lu, Minghua

    2016-11-01

    A novel electrochemical sensing platform based on manganese dioxide (MnO2) nanosheets was developed for sensitive screening of target cocaine with the signal amplification. Ferrocene-labeled cocaine aptamers were initially immobilized onto MnO2 nanosheets-modified screen-printed carbon electrode because of π-stacking interaction between nucleobases and nanosheets. The immobilized ferrocene-aptamer activated the electrical contact with the electrode, thereby resulting in the sensor circuit to switch on. Upon target cocaine introduction, the analyte reacted with the aptamer and caused the dissociation of ferrocene-aptamer from the electrode, thus giving rise to the detection circuit to switch off. The released aptamer was cleaved by DNase I with target recycling. Under optimal conditions, the decreasing percentage of the electronic signal relative to background current increased with the increasing cocaine concentration in the dynamic range of 0.1-20nM, and the detection limit was 32pM. The reproducibility, selectivity and method accuracy were acceptable. Importantly, this concept offers promise for rapid, simple, and cost-effective analysis of cocaine biological samples without the needs of sample separation and multiple washing steps. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Effects of material properties of HFDFRCC Using recycled fine aggregate on shear strength of RC beam

    Science.gov (United States)

    Shiratori, Yuhei; Watanabe, Ken

    2017-11-01

    In this study, we performed loading tests on RC beam specimens made of high-fluidity ductile-fiber-reinforced cementitious composites incorporating recycled fine aggregate with different water-binder ratios. We also performed nonlinear finite element analyses to investigate the effects of water-binder ratios and shear reinforcement bars on RC beam shear strength. Additionally, for some factors, we investigated the influence of the presence or absence of shear reinforcement bars on the shear strength of R-HFDFRCC RC beams. We found that fluctuations in the maximum load of the RC beam specimens attributable to differences in the water-binder ratio can generally be predicted if we understand the differences in the material properties (mainly compressive strength, tensile strength and ultimate tensile strain) of the tough, highly fluid cement compound materials incorporating recycled fine aggregate.

  17. Quality- and dilution losses in the recycling of ferrous materials from end-of-life passenger cars: input-output analysis under explicit consideration of scrap quality.

    Science.gov (United States)

    Nakamura, Shinichiro; Kondo, Yasushi; Matsubae, Kazuyo; Nakajima, Kenichi; Tasaki, Tomohiro; Nagasaka, Tetsuya

    2012-09-04

    Metals can in theory be infinitely recycled in a closed-loop without any degradation in quality. In reality, however, open-loop recycling is more typical for metal scrap recovered from end-of-life (EoL) products because mixing of different metal species results in scrap quality that no longer matches the originals. Further losses occur when meeting the quality requirement of the target product requires dilution of the secondary material by adding high purity materials. Standard LCA usually does not address these losses. This paper presents a novel approach to quantifying quality- and dilution losses, by means of hybrid input-output analysis. We focus on the losses associated with the recycling of ferrous materials from end-of-life vehicle (ELV) due to the mixing of copper, a typical contaminant in steel recycling. Given the quality of scrap in terms of copper density, the model determines the ratio by which scrap needs to be diluted in an electric arc furnace (EAF), and the amount of demand for EAF steel including those quantities needed for dilution. Application to a high-resolution Japanese IO table supplemented with data on ferrous materials including different grades of scrap indicates that a nationwide avoidance of these losses could result in a significant reduction of CO(2) emissions.

  18. Torsional Shear Device for Testing the Dynamic Properties of Recycled Material

    Science.gov (United States)

    Gabryś, Katarzyna; Sas, Wojciech; Soból, Emil; Głuchowski, Andrzej

    2016-12-01

    From the viewpoint of environmental preservation and effective utilization of resources, it is beneficial and necessary to reuse wastes, for example, concrete, as the recycled aggregates for new materials. In this work, the dynamic behavior of such aggregates under low frequency torsional loading is studied. Results show that the properties of such artificial soils match with those reported in the literature for specific natural soils.

  19. Torsional Shear Device for Testing the Dynamic Properties of Recycled Material

    Directory of Open Access Journals (Sweden)

    Gabryś Katarzyna

    2016-12-01

    Full Text Available From the viewpoint of environmental preservation and effective utilization of resources, it is beneficial and necessary to reuse wastes, for example, concrete, as the recycled aggregates for new materials. In this work, the dynamic behavior of such aggregates under low frequency torsional loading is studied. Results show that the properties of such artificial soils match with those reported in the literature for specific natural soils.

  20. ENVIRONMENTAL ETHICS IN GOVERNING RECYCLED MATERIAL STYROFOAM FOR BUILDING HUMAN HABITAT

    OpenAIRE

    Kartini Aboo Talib Khalid; Ravichandran Moorthy; Suhana Saad

    2012-01-01

    Styrofoam is extensively used in food packaging businesses throughout the world. Its light weight makes it a favorite food package for entrepreneurs in food businesses. However, unlike its content, the food, which decomposed easily after some time, Styrofoam remains un-decomposed due to its oil-based structure. This study discusses the prospects of re-utilization of Styrofoam as environmentally friendly recycled material. This study uses the data from an exploratory survey on the usage of Sty...

  1. Evaluation of sludge from paper recycling as bedding material for broilers.

    Science.gov (United States)

    Villagrá, A; Olivas, I; Benitez, V; Lainez, M

    2011-05-01

    Several materials have been used as bedding substrates in broiler production. In this work, the sludge from paper recycling was tested for its potential use as litter material and was compared with wood shavings. Moisture content, apparent density, and water-holding capacity were measured and characterized in both materials. Later, 192 male broiler chickens were distributed among 16 experimental pens, 8 of which contained wood shavings as bedding material and 8 of which contained the sludge. Growth rate, consumption, tonic immobility, gait score, breast lesions, foot pad dermatitis, hock burn, tibial dyschondroplasia, and metatarsal thickness were determined in the birds. Although the moisture content of the sludge was high, it decreased strongly after 7 d of drying, reaching lower values than those of wood shavings. In general, few differences were found between the materials in terms of bird performance and welfare and only the incidence of hock burn was higher in the sludge than in the wood shavings. Although further research is needed, sludge from paper recycling is a possible alternative to traditional bedding materials because it achieves most of the requirements for broiler bedding materials and does not show negative effects on the birds.

  2. Assessing recycling versus incineration of key materials in municipal waste: The importance of efficient energy recovery and transport distances.

    Science.gov (United States)

    Merrild, Hanna; Larsen, Anna W; Christensen, Thomas H

    2012-05-01

    Recycling of materials from municipal solid waste is commonly considered to be superior to any other waste treatment alternative. For the material fractions with a significant energy content this might not be the case if the treatment alternative is a waste-to-energy plant with high energy recovery rates. The environmental impacts from recycling and from incineration of six material fractions in household waste have been compared through life cycle assessment assuming high-performance technologies for material recycling as well as for waste incineration. The results showed that there are environmental benefits when recycling paper, glass, steel and aluminium instead of incinerating it. For cardboard and plastic the results were more unclear, depending on the level of energy recovery at the incineration plant, the system boundaries chosen and which impact category was in focus. Further, the environmental impact potentials from collection, pre-treatment and transport was compared to the environmental benefit from recycling and this showed that with the right means of transport, recyclables can in most cases be transported long distances. However, the results also showed that recycling of some of the material fractions can only contribute marginally in improving the overall waste management system taking into consideration their limited content in average Danish household waste. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Decommissioning and dismantling of nuclear facilities: Establishing methods for testing the safe design of ductile cast iron casks with higher content of metallic recycling material (EBER)

    International Nuclear Information System (INIS)

    Zenker, U.; Voelzke, H.; Droste, B.

    2001-01-01

    The safe design of ductile cast iron (DCI) casks with higher content of metallic recycling material is investigated. Based upon the requirements of transport and storage containers for radioactive waste appropriate test scenarios are defined. A representative accident scenario (5 m drop of a cubic DCI container with given material properties onto a hard repository ground simulating concrete target) is analysed numerically by means of the finite element method using three-dimensional models. Dynamic flow curves of ductile cast iron with different scrap metal additions which are necessary for precise elastic-plastic calculations are given. The accuracy and numerical stability of the resulting dynamic stresses and strains are investigated. A comparison between calculation results and measurements from drop tests with DCI containers shows, that known mechanical effects like bending vibrations of the container walls are reflected by the finite element models. The detailed stress analysis and knowledge of the material properties are prerequisites for the safety assessment concept developed for DCI casks with higher content of metallic recycling material. Equations for semi-elliptical surface cracks in the walls of a cubically shaped container which are used in the safety assessment concept are verified under dynamic conditions. This allows the specification of the maximum permissible size of crack-like flaws depending on the material quality. Mainly the fracture mechanical properties of ductile cast iron with higher content of metallic recycling material determine the suitability of such materials for transport and storage containers. (orig.) [de

  4. Annual asphalt pavement industry survey on recycled materials and warm-mix asphalt usage : 2009-2012, [summary].

    Science.gov (United States)

    2013-12-01

    The objective of this survey was to quantify the use of recycled materials, including RAP and RAS, and WMA produced by the asphalt pavement industry. The National Asphalt Pavement Association (NAPA) conducted a voluntary survey of asphalt mixture pro...

  5. Developing improved opportunities for the recycle and reuse of materials in road, bridge and construction projects : [summary].

    Science.gov (United States)

    2014-01-01

    Reducing waste and reusing materials is now : a part of the everyday fabric of life. Recycling : glass, paper, and plastic is an activity in many : households and businesses. Similarly, the : transportation sector generates huge quantities : of concr...

  6. Microstructural Analysis and Rheological Modeling of Asphalt Mixtures Containing Recycled Asphalt Materials

    Directory of Open Access Journals (Sweden)

    Augusto Cannone Falchetto

    2014-09-01

    Full Text Available The use of recycled materials in pavement construction has seen, over the years, a significant increase closely associated with substantial economic and environmental benefits. During the past decades, many transportation agencies have evaluated the effect of adding Reclaimed Asphalt Pavement (RAP, and, more recently, Recycled Asphalt Shingles (RAS on the performance of asphalt pavement, while limits were proposed on the amount of recycled materials which can be used. In this paper, the effect of adding RAP and RAS on the microstructural and low temperature properties of asphalt mixtures is investigated using digital image processing (DIP and modeling of rheological data obtained with the Bending Beam Rheometer (BBR. Detailed information on the internal microstructure of asphalt mixtures is acquired based on digital images of small beam specimens and numerical estimations of spatial correlation functions. It is found that RAP increases the autocorrelation length (ACL of the spatial distribution of aggregates, asphalt mastic and air voids phases, while an opposite trend is observed when RAS is included. Analogical and semi empirical models are used to back-calculate binder creep stiffness from mixture experimental data. Differences between back-calculated results and experimental data suggest limited or partial blending between new and aged binder.

  7. An Efficient approach for selective collection made by scavengers for transportation logistics of recyclable materials

    Directory of Open Access Journals (Sweden)

    Adelino Carlos Maccarini

    2014-01-01

    Full Text Available The advance of technology, associated to the increase in the production of recyclable waste due to the increase of consumption and population, has been led to a search for alternatives of management and minimization of this waste. A part of this recyclable material is collected by scavengers, who do it to guarantee their livelihood. Many of them face logistical difficulties in transportation, mainly when they have to walk long distances and the streets have high slopes. Therefore, to minimize these efforts, the purpose of this paper is to settle mobile warehouses to receive recyclable items, with trucks that receive in bulk all materials collected by the collectors, who will deliver them to someone who will be in the truck for weighing and subsequent payment to the collector. With the help of the Analysis of Variance – ANOVA, studies were made so that this receipt is a quick operation, with the historical record of each sampling in a spreadsheet and value calculations based on this description, thus minimizing errors in weighing in bulk and improving, in every collection, the system reliability.

  8. Utilization of recycled glass as aggregate in controlled low-strength material (CLSM)

    Energy Technology Data Exchange (ETDEWEB)

    Ohlheiser, T.R. [Western Mobile Denver Aggregate Div., CO (United States)

    1998-10-01

    Incoming glass from curbside recycling programs is successfully being utilized as aggregate replacements. The colored glass that can not be used by local bottle manufacturers is crushed to a {1/2} in. (12.5 mm) material and used in various construction projects. The most successful use of processed glass aggregate (PGA) to date, has been in replacing up to 100% of the aggregate in controlled low-strength material (CLSM). It has proven to be successful and has gained acceptance by contractors in the Boulder, Colorado area.

  9. Characteristics of wood-fiber plastic composites made of recycled materials.

    Science.gov (United States)

    Ashori, Alireza; Nourbakhsh, Amir

    2009-04-01

    This study investigates the feasibility of using recycled high density polyethylene (rHDPE), polypropylene (rPP) and old newspaper (rONP) fiber to manufacture experimental composite panels. The panels were made through air-forming and hot press. The effects of the fiber and coupling agent concentration on tensile, flexural, internal bond properties and water absorption and thickness swelling of wood-fiber plastic composites were studied. The use of maleated polypropylene as coupling agent improved the compatibility between the fiber and both plastic matrices and mechanical properties of the resultant composites compared well with those of non-coupled ones. Based on the findings in this work, it appears that recycled materials can be used to manufacture value-added panels without having any significant adverse influence on board properties. It was also found that composites with rHDPE provided moderately superior properties, compared with rPP samples.

  10. PLA coated paper containing active inorganic nanoparticles: Material characterization and fate of nanoparticles in the paper recycling process.

    Science.gov (United States)

    Zhang, Hai; Bussini, Daniele; Hortal, Mercedes; Elegir, Graziano; Mendes, Joana; Jordá Beneyto, Maria

    2016-06-01

    For paper and paperboard packaging, recyclability plays an important role in conserving the resources and reducing the environmental impacts. Therefore, when it comes to the nano-enabled paper packaging material, the recyclability issue should be properly addressed. This study represents our first report on the fate of nanomaterials in paper recycling process. The packaging material of concern is a PLA (Polylactic Acid) coated paper incorporating zinc oxide nanoparticles in the coating layer. The material was characterised and assessed in a lab-scale paper recycling line. The recyclability test was based on a method adapted from ATICELCA MC501-13, which enabled to recover over 99% of the solids material. The mass balance result indicates that 86-91% zinc oxide nanoparticles ended up in the rejected material stream, mostly embedded within the polymer coating; whereas 7-16% nanoparticles ended up in the accepted material stream. Besides, the tensile strength of the recycled handsheets suggests that the nano-enabled coating had no negative impacts on the recovered fibre quality. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Evaluation of the environmental, material, and structural performance of recycled aggregate concrete

    Science.gov (United States)

    Michaud, Katherine Sarah

    Concrete is the most commonly used building material in the construction industry, and contributes to 52% of construction and demolition waste in Canada. Recycled concrete aggregate (RCA) is one way to reduce this impact. To evaluate the performance of coarse and granular (fine and coarse) RCA in structural concrete applications, four studies were performed: an environmental assessment, a material testing program, a shear performance study, and a flexural performance study. To determine the environmental benefits of recycled aggregate concrete (RAC), three case studies were investigated using different populations and proximities to city centres. Environmental modelling suggested that RCA replacement could result in energy savings and greenhouse gas emission reductions, especially in remote areas. Tests were performed to determine if the volumetric replacement of up to 30% coarse RCA and 20% granular RCA is suitable for structural concrete applications in Canada. Fresh, hardened, and durability properties were evaluated. All five (5) of the RCA mixes showed equivalent material performance to the control mixes and met the requirements for a structural concrete mix. The five (5) RAC mixes were also used in structural testing. One-way reinforced concrete slab specimens were tested to failure to evaluate the shear and flexural performance of the RAC members. Peak capacities of and crack formation within each member were analyzed to evaluate the performance of RAC compared to conventional concrete. The shear capacity of specimens made from four (4) of the five (5) RAC mixtures was higher or equivalent to the control specimens. Specimens of the concrete mixture containing the highest content of recycled aggregate, 20% volumetric replacement of granular RCA, had shear capacities 14.1% lower, and exhibited cracking at lower loads than the control. The average flexural capacities of all RAC specimens were within 3.7% of the control specimens. Results from this research

  12. Investigation of Self Consolidating Concrete Containing High Volume of Supplementary Cementitious Materials and Recycled Asphalt Pavement Aggregates

    Science.gov (United States)

    Patibandla, Varun chowdary

    The use of sustainable technologies such as supplementary cementitiuous materials (SCMs), and/or recycled materials is expected to positively affect the performance of concrete mixtures. However, it is important to study and qualify such mixtures and check if the required specifications of their intended application are met before they can be implemented in practice. This study presents the results of a laboratory investigation of Self Consolidating concrete (SCC) containing sustainable technologies. A total of twelve concrete mixtures were prepared with various combinations of fly ash, slag, and recycled asphalt pavement (RAP). The mixtures were divided into three groups with constant water to cementitiuous materials ratio of 0.37, and based on the RAP content; 0, 25, and 50% of coarse aggregate replaced by RAP. All mixtures were prepared to achieve a target slump flow equal to or higher than 500 mm (24in). A control mixture for each group was prepared with 100% Portland cement whereas all other mixtures were designed to have up to 70% of portland cement replaced by a combination of supplementary cementitiuous materials (SCMs) such as class C fly ash and granulated blast furnace slag. The properties of fresh concrete investigated in this study include flowability, deformability; filling capacity, and resistance to segregation. In addition, the compressive strength at 3, 14, and 28 days, the tensile strength, and the unrestrained shrinkage up to 80 days was also investigated. As expected the inclusion of the sustainable technologies affected both fresh and hardened concrete properties. Analysis of the experimental data indicated that inclusion of RAP not only reduces the ultimate strength, but it also affected the compressive strength development rate. Moreover, several mixes satisfied compressive strength requirements for pavements and bridges; those mixes included relatively high percentages of SCMs and RAP. Based on the results obtained in this study, it is not

  13. Recycling cycle of materials applied to acrylonitrile-butadiene-styrene/policarbonate blends with styrene-butadiene-styrene copolymer addition

    Science.gov (United States)

    Cândido, L. H. A.; Ferreira, D. B.; Júnior, W. Kindlein; Demori, R.; Mauler, R. S.

    2014-05-01

    The scope of this research is the recycling of polymers from mobile phones hulls discarded and the performance evaluation when they are submitted to the Recycling Cycle of Materials (RCM). The studied material was the ABS/PC blend in a 70/30 proportion. Different compositions were evaluated adding virgin material, recycled material and using the copolymer SBS as impact modifier. In order to evaluate the properties of material's composition, the samples were characterized by TGA, FTIR, SEM, IZOD impact strength and tensile strength tests. At the first stage, the presented results suggest the composition containing 25% of recycled material and 5% of SBS combines good mechanical performance to the higher content of recycled material and lower content of impact modifier providing major benefits to recycling plans. Five cycles (RCM) were applied in the second stage; they evidenced a decrease trend considering the impact strength. At first and second cycle the impact strength was higher than reference material (ABS/PC blend) and from the fourth cycle it was lower. The superiority impact strength in the first and second cycles can be attributed to impact modifier effect. The thermal tests and the spectrometry didn't show the presence of degradation process in the material and the TGA curves demonstrated the process stability. The impact surface of each sample was observed at SEM. The microstructures are not homogeneous presenting voids and lamellar appearance, although the outer surface presents no defects, demonstrating good moldability. The present work aims to assess the life cycle of the material from the successive recycling processes.

  14. MATERIALS PERFORMANCE TARGETED THRUST FY 2004 PROJECTS

    International Nuclear Information System (INIS)

    DOE

    2005-01-01

    The Yucca Mountain site was recommended by the President to be a geological repository for commercial spent nuclear fuel and high-level radioactive waste. The multi-barrier approach was adopted for assessing and predicting system behavior, including both natural barriers and engineered barriers. A major component of the long-term strategy for safe disposal of nuclear waste is first to completely isolate the radionuclides in waste packages for long times and then to greatly retard the egress and transport of radionuclides from penetrated packages. The goal of the Materials Performance Targeted Thrust program is to further enhance the understanding of the role of engineered barriers in waste isolation. In addition, the Thrust will explore technical enhancements and seek to offer improvements in materials costs and reliability

  15. MATERIALS PERFORMANCE TARGETED THRUST FY 2004 PROJECTS

    Energy Technology Data Exchange (ETDEWEB)

    DOE

    2005-09-13

    The Yucca Mountain site was recommended by the President to be a geological repository for commercial spent nuclear fuel and high-level radioactive waste. The multi-barrier approach was adopted for assessing and predicting system behavior, including both natural barriers and engineered barriers. A major component of the long-term strategy for safe disposal of nuclear waste is first to completely isolate the radionuclides in waste packages for long times and then to greatly retard the egress and transport of radionuclides from penetrated packages. The goal of the Materials Performance Targeted Thrust program is to further enhance the understanding of the role of engineered barriers in waste isolation. In addition, the Thrust will explore technical enhancements and seek to offer improvements in materials costs and reliability.

  16. DESIGN AND TECHNOLOGICAL SOLUTIONS FOR THE RESTORATION OF SEWERS USING ELEMENTS OF RECYCLED POLYMER COMPOSITE MATERIALS

    Directory of Open Access Journals (Sweden)

    GONCHARENKO D. F.

    2017-01-01

    Full Text Available Problem statement. Currently sanitary drainage systems of large cities in Ukraine are significantly worn down with prolonged use and due to inefficient solutions for protection of the structures from aggressive effects of the environment, poor quality of materials and construction and installation works during building. Restoration of performance characteristics, reliability and durability of sewer tunnels is the costly and technically complex task, which is urgently needed to be fulfilled to prevent accidents including those with serious environmental impact. Modern work technique and the materials used for restoration allow us to solve these problems with different levels of efficiency, while reducing the cost of restoration due to use of recycled polymeric raw material, as well as to improvement of technological solutions is a currently important direction of research. Purpose of the article. To develop solutions for restoring serviceability, reliability and durability of sewer tunnels taking into account the accumulated experience in renovation of water disposal networks. Conclusion. Use of components made of recycled polymer composite materials during restoring sewer tunnels has significant economic and environmental effects and allows to undertake repair work in hard-to-reach areas.

  17. Effect of crumb rubber on the mechanical properties of crushed recycled pavement materials.

    Science.gov (United States)

    Li, Jie; Saberian, Mohammad; Nguyen, Bao Thach

    2018-04-20

    The low-carbon footprint of using recycled construction and demolition (C&D) aggregates in civil engineering infrastructure applications has been considered to be a significant solution for the replacement of conventional pavement aggregates. Investigations regarding the use of crumb rubber in the base and subbase layers of pavement have been well documented. However, information on the effects of crumb rubber and its size within C&D aggregates as the base/subbase layers is still very limited. In this study, crumb rubber with particle sizes ranging from 400 to 600 μm (fine) to 10-15 mm (coarse), 20 mm recycled crushed concrete (RCC), and 20 mm crushed rock (CR) were used. The crumb rubber was added to the two groups of C&D aggregates at 0.5, 1 and 2% by weight percentages of the aggregates. The effect of crumb rubber on the mechanical properties (such as California bearing ratio, unconfined compressive strength, aggregate crushing value, dynamic lightweight cone penetrometer, Clegg impact value, Los Angeles abrasion values, and resilient modulus) of the C&D aggregates was then examined. Based on the experimental test results, it was found that crumb rubber can be recycled as a waste material for the base and subbase layers in the pavement. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Development of Composite Materials Under Ecological Aspects as Recycling Concept For Borosilicate Glass Containing Iron Slags

    International Nuclear Information System (INIS)

    Khalil, T.K.; Bossert, J.; Aly, H.F.; Bossert, J.

    1999-01-01

    Composite concept in materials science can be conveniently applied in the waste treatment technology to construct specific t ailor made c omposite materials, in which at least one of the phases is built by the waste material. In this work the applicability of this concept for the fixation and recycling of slags wastes is done, whereby different mixtures of blast furnace slags are mixed with two different borosilicate glasses, which serve as matrix material. Thermal behaviour of the produced compacts were studied. Both melting and powder technology are applied for the fabrication of dense products. The microstructure of sintered samples is investigated by electron microscopy. The mechanical properties such as hardness and fracture toughness are determined by a Vickers technique. An improvement of the fracture toughness of more than 50% over the value for the original glass VG 98 is achieved by slag addition

  19. Transparent Façade Panel Typologies Based on Recyclable Polymer Materials

    Directory of Open Access Journals (Sweden)

    Harry Giles

    2012-11-01

    Full Text Available Buildings are large consumers of energy. In the United States of America; they constitute over 33% of the total annual energy consumption, produce 35% of the total carbon dioxide emissions and attribute 40% of landfill wastes. The building industry is also a large consumer of non-renewable materials and this trend has escalated dramatically over the past century. It is essential that we find ways to save on energy consumption through the use of solar energy, improved thermal insulation, and alternative efficient glazed façade systems. In this paper, we demonstrate how alternative typologies of transparent and translucent load-bearing façade systems based on biocomposite and recyclable materials, are structurally and thermally efficient at the same time they contribute towards reduced pollutant emissions and non-renewable material uses.Composite insulated panel systems are used extensively in the engineering and building industry, owing to their structural and thermal efficiency. However, these systems are generally opaque and offer little flexibility in building applications. As an alternative, we demonstrate how building products comprised of hybrid material typologie scan be made to perform efficiently as load-bearing façade systems that substitute for current glazing systems with adequate thermal and structural performance, which also possess good light transmission characteristics and integral shading capability. The materials are configured to work as composite panel systems made from a combination of biocomposite and recyclable polymer materials. These materials are environmentally sustainable, because they either originate from naturally grown renewable resources or are recyclable. Our research program includes the design and development of prototype panel systems; the evaluation of structural and thermal performance, together with their role in reducing energy consumption and pollution emission through life cycle analysis. The paper

  20. Specific recycling receptors are targeted to the immune synapse by the intraflagellar transport system

    Science.gov (United States)

    Finetti, Francesca; Patrussi, Laura; Masi, Giulia; Onnis, Anna; Galgano, Donatella; Lucherini, Orso Maria; Pazour, Gregory J.; Baldari, Cosima T.

    2014-01-01

    ABSTRACT T cell activation requires sustained signaling at the immune synapse, a specialized interface with the antigen-presenting cell (APC) that assembles following T cell antigen receptor (TCR) engagement by major histocompatibility complex (MHC)-bound peptide. Central to sustained signaling is the continuous recruitment of TCRs to the immune synapse. These TCRs are partly mobilized from an endosomal pool by polarized recycling. We have identified IFT20, a component of the intraflagellar transport (IFT) system that controls ciliogenesis, as a central regulator of TCR recycling to the immune synapse. Here, we have investigated the interplay of IFT20 with the Rab GTPase network that controls recycling. We found that IFT20 forms a complex with Rab5 and the TCR on early endosomes. IFT20 knockdown (IFT20KD) resulted in a block in the recycling pathway, leading to a build-up of recycling TCRs in Rab5+ endosomes. Recycling of the transferrin receptor (TfR), but not of CXCR4, was disrupted by IFT20 deficiency. The IFT components IFT52 and IFT57 were found to act together with IFT20 to regulate TCR and TfR recycling. The results provide novel insights into the mechanisms that control TCR recycling and immune synapse assembly, and underscore the trafficking-related function of the IFT system beyond ciliogenesis. PMID:24554435

  1. An EU Recycling Target: What Does the Dutch Evidence Tell Us?

    NARCIS (Netherlands)

    Dijkgraaf, E.; Gradus, R.H.J.M.

    2017-01-01

    The European Union (EU) advocates a household waste recycling rate of more than 65 %. Although the Netherlands has already invested heavily in recycling policies, this is still a big challenge as nowadays this rate is approximately 50 % on average and very few no municipalities have a rate above 65

  2. PVC-based composite material containing recycled non-metallic printed circuit board (PCB) powders.

    Science.gov (United States)

    Wang, Xinjie; Guo, Yuwen; Liu, Jingyang; Qiao, Qi; Liang, Jijun

    2010-12-01

    The study is directed to the use of non-metallic powders obtained from comminuted recycled paper-based printed circuit boards (PCBs) as an additive to polyvinyl chloride (PVC) substrate. The physical properties of the non-metallic PCB (NMPCB) powders were measured, and the morphological, mechanical and thermal properties of the NMPCB/PVC composite material were investigated. The results show that recycled NMPCB powders, when added below a threshold, tended to increase the tensile strength and bending strength of PVC. When 20 wt% NMPCB powders (relative to the substrate PVC) of an average diameter of 0.08 mm were added, the composite tensile strength and bending strength reached 22.6 MPa and 39.83 MPa, respectively, representing 107.2% and 123.1% improvement over pure PVC. The elongation at break of the composite material reached 151.94% of that of pure PVC, while the Vicat softening temperature of the composite material did not increase significantly compared to the pure PVC. The above results suggest that paper-based NMPCB powders, when used at appropriate amounts, can be effective for toughening PVC. Thus, this study suggests a new route for reusing paper-based NMPCB, which may have a significant beneficial environmental impact. Copyright © 2010 Elsevier Ltd. All rights reserved.

  3. RECYCLED WASTE-BASED CEMENT COMPOSITE PATCH MATERIALS FOR RAPID/PERMANENT ROAD RESTORATION.

    Energy Technology Data Exchange (ETDEWEB)

    SUGAMA,T.

    2001-07-31

    Over the past year, KeySpan Energy sponsored a research program at Brookhaven National Laboratory (BNL) aimed at recycling boiler ash (BA) and waste water treatment sludge (WWTS) byproducts generated from Keyspan's power stations into potentially useful materials, and at reducing concurrent costs for their disposal. Also, KeySpan has an interest in developing strategies to explicitly integrate industrial ecology and green chemistry. From our collaborative efforts with Keyspan (Diane Blankenhom Project Manager, and Kenneth Yager), we succeeded in recycling them into two viable products; Pb-exchange adsorbents (PEAs), and high-performance cements (HpCs). These products were made from chemically bonded cement and ceramic (CBC) materials that were synthesized through two-step chemical reaction pathways, acid-base and hydration. Using this synthesis technology, both the WWTS and BA served in acting as solid base reactants, and sodium polyphosphate, [-(-NaPO{sub 3}-)-{sub n}], known as an intermediator of fertilizer, was employed as the acid solution reactant. In addition, two commercial cement additives, Secar No. 51 calcium aluminate cement (CAC) and Type I calcium silicate cement (CSC), were used to improve mechanical behavior and to promote the rate of acid-base reaction of the CBC materials.

  4. Upgrade Recycling of Cast Iron Scrap Chips towards β-FeSi2 Thermoelectric Materials

    Directory of Open Access Journals (Sweden)

    Assayidatul Laila

    2014-09-01

    Full Text Available The upgrade recycling of cast-iron scrap chips towards β-FeSi2 thermoelectric materials is proposed as an eco-friendly and cost-effective production process. By using scrap waste from the machining process of cast-iron components, the material cost to fabricate β-FeSi2 is reduced and the industrial waste is recycled. In this study, β-FeSi2 specimens obtained from cast iron scrap chips were prepared both in the undoped form and doped with Al and Co elements. The maximum figure of merit (ZT indicated a thermoelectric performance of approximately 70% in p-type samples and nearly 90% in n-type samples compared to β-FeSi2 prepared from pure Fe and other published studies. The use of cast iron scrap chips to produce β-FeSi2 shows promise as an eco-friendly and cost-effective production process for thermoelectric materials.

  5. Control of Orphan Sources and Other Radioactive Material in the Metal Recycling and Production Industries. Specific Safety Guide

    International Nuclear Information System (INIS)

    2012-01-01

    Accidents involving orphan sources and other radioactive material in the metal recycling and production industries have resulted in serious radiological accidents as well as in harmful environmental, social and economic impacts. This Safety Guide provides recommendations, the implementation of which should prevent such accidents and provide confidence that scrap metal and recycled products are safe. Contents: 1. Introduction; 2. Protection of people and the environment; 3. Responsibilities; 4. Monitoring for radioactive material; 5. Response to the discovery of radioactive material; 6. Remediation of contaminated areas; 7. Management of recovered radioactive material; Annex I: Review of events involving radioactive material in the metal recycling and production industries; Annex II: Categorization of radioactive sources; Annex III: Some examples of national and international initiatives.

  6. Assessing recycling versus incineration of key materials in municipal waste: The importance of efficient energy recovery and transport distances

    DEFF Research Database (Denmark)

    Merrild, Hanna; Larsen, Anna W.; Christensen, Thomas H.

    2012-01-01

    Recycling of materials from municipal solid waste is commonly considered to be superior to any other waste treatment alternative. For the material fractions with a significant energy content this might not be the case if the treatment alternative is a waste-to-energy plant with high energy recovery...... rates. The environmental impacts from recycling and from incineration of six material fractions in household waste have been compared through life cycle assessment assuming high-performance technologies for material recycling as well as for waste incineration. The results showed...... of the material fractions can only contribute marginally in improving the overall waste management system taking into consideration their limited content in average Danish household waste....

  7. Study of Effects on Mechanical Properties of PLA Filament which is blended with Recycled PLA Materials

    Science.gov (United States)

    Babagowda; Kadadevara Math, R. S.; Goutham, R.; Srinivas Prasad, K. R.

    2018-02-01

    Fused deposition modeling is a rapidly growing additive manufacturing technology due to its ability to build functional parts having complex geometry. The mechanical properties of the build part is depends on several process parameters and build material of the printed specimen. The aim of this study is to characterize and optimize the parameters such as layer thickness and PLA build material which is mixed with recycled PLA material. Tensile and flexural or bending test are carried out to determine the mechanical response characteristics of the printed specimen. Taguchi method is used for number of experiments and Taguchi S/N ratio is used to identify the set of parameters which give good results for respective response characteristics, effectiveness of each parameters is investigated by using analysis of variance (ANOVA).

  8. Data compilation for radiation effects on hydrogen recycle in fusion reactor materials

    International Nuclear Information System (INIS)

    Ozawa, Kunio; Fukushima, Kimichika; Ebisawa, Katsuyuki.

    1984-05-01

    Irradiation tests of materials by hydrogen isotopes are under way, to investigate the hydrogen recycling process where exchange of fuel particles takes place between plasma and the wall of the nuclear fusion reactor. In the report, data on hydrogen irradiation are collected and reviewed from the view point of irradiation effects. Data are classified into, (1) Re-emmission, (2) Retention, (Retained hydrogen isotopes, Depth profile in the materials and Thermal desorption spectroscopy), (3) Permeation and (4) Ion impact desorption. Research activities in each area are arranged according to the date of publication, research institutes, materials investigated, so that overview of present status can be made. Then, institute, author and reference are shown for each classification with tables. The list of literature is also attached. (author)

  9. Unconventional recycling

    Energy Technology Data Exchange (ETDEWEB)

    White, K.M.

    1996-05-01

    Despite advances made in recycling technology and markets for materials over the past few years, recycling at convention centers, particularly on the show floor itself, can be a vexing problem. Part of the problem lies in the fact that recycling at convention centers has more to do with logistics than it does with these industry trends. However, given the varied nature of convention centers, and the shows they book, a rigid approach to recycling at convention centers is not always feasible. Like the numerous different curbside programs serving communities across the country, what works for one convention center--and one show--many not work for another. These difficulties notwithstanding, more convention centers are offering recycling programs today, and more groups booking conventions these days have begun requesting recycling services.

  10. Production of Controlled Low Strength Material Utilizing Waste Paper Sludge Ash and Recycled Aggregate Concrete

    Directory of Open Access Journals (Sweden)

    Azmi A. N.

    2016-01-01

    Full Text Available Recently, the best method to make the concrete industry more sustainable was using the waste materials to replace the natural resources. Currently waste paper sludge is a major economic and environmental problem in this country. In this research, the alternative method is to dwindle the usage of natural resources and the usage of cement in the construction. This method is to replace the usage of cement with the waste paper sludge ash (WPSA and to use the recycle aggregate collected from the construction is used. The WPSA has ingredient likely cement such as self-cementation but for a low strength. The research was conducted at heavy laboratory UITM Pulau Pinang. Meanwhile, the WPSA is collected at MNI Industries at Mentakab, Pahang. The recycle aggregate is a separated half, which were fine aggregate and the coarse aggregate with the specific size. In this research, the ratio is divided into two (2 which is 1:1 and 1:2 for the aggregate and difference percentage levels of WPSA. The percentage levels of WPSA that use in this research are 10%, 20%, 30%, 40%, 50%, and 60%. A total of 36 cubes were prepared. Aim of this research is to develop a simple design approach for the mixture proportioning of WPSA and recycle concrete aggregate (RCA within the concrete and to assess the effect of concrete mix with different percentage of WPSA and RCA ratio on the properties. It is found that the best design mix that achieves control low strength material (CLSM is on 30% of WPSA with the ratio 1:2 on day 28 of compression test.

  11. Green Science: Revisiting Recycling

    Science.gov (United States)

    Palliser, Janna

    2011-01-01

    Recycling has been around for a long time--people have reused materials and refashioned them into needed items for thousands of years. More recently, war efforts encouraged conservation and reuse of materials, and in the 1970s recycling got its official start when recycling centers were created. Now, curbside recycling programs and recycling…

  12. Application of exemption principles to the recycle and reuse of materials from nuclear facilities

    International Nuclear Information System (INIS)

    1992-01-01

    Radioactive waste is generated from the production of nuclear energy and from the use of radioactive materials in industrial applications, research and medicine. The importance of the safe management of radioactive waste for the protection of human health and the environment has long been recognized and considerable experience has been gained in this field. The Radioactive Waste Safety Standards (RADWASS) programme is the IAEA's contribution to establishing and promoting, in a coherent and comprehensive manner, the basic safety philosophy for radioactive waste management and the steps necessary to ensure its implementation. The RADWASS publications will: (a) reflect the existing international consensus in the approaches and methodologies for safe waste management, including disposal, and provide mechanisms to establish consensus where it does not yet exist; and (b) provide Member States with a comprehensive series of internationally agreed upon documents to assist in the derivation of new, or to complement existing, national criteria, standards and practices. This Safety Practices publication is concerned with procedures for determining the levels of radionuclides in materials below which they can be exempted from regulatory control and recycled or reused without any further restriction. It describes how the internationally agreed upon principles for exemption can be applied in the case of recycle and reuse. The methodology is applied to derive the typical ranges of exempt concentrations for representative radionuclides. Refs, figs and tabs

  13. Development and field testing of agricultural snowmelting agents made from recycled bio-waste materials

    International Nuclear Information System (INIS)

    Hirota, T.; Hasegawa, M.; Tanaka, H.; Suzuki, S.; Tadano, T.

    2008-01-01

    In snow-covering region of Japan, the promotion of snowmelting with application of agricultural snowmelting agents ('Yusetsuzai' in Japanese) has been widely carried out by farmers at the snowmelting season. When black colored materials with albedo-lowering effect are spread on snow surface, absorption of solar radiation by snow is increased, the snowmelting is promoted and snow thawing date becomes earlier. As a result, the growing season of crop plants is extended. Existing agricultural snowmelting agents have been mostly made from industrial waste materials or industrial processed products due to requirement for the low cost of the raw materials. These agents may contain harmful heavy metal elements and may lead to environmental pollution. To solve these problems, we developed the new agricultural snowmelting agents made from recycled bio-waste materials generated from the fields of agriculture and fishery. The developed snowmelting agents were made from shells of Patinopecten yessoensis, fowl droppings and processed wastes of fish and shellfish, etc. Especially, the shells of Patinopecten yessoensis has problems due to generation of a huge quantity in Hokkaido. Therefore, the recycling-use of these waste materials was strongly requested and expected. The developed snowmelting agents were possible to spread efficiently and safely on the snow-surface without wide scattering by controlling the particle size within the range larger than 100 microm and smaller than 1180 microm. Results obtained from the field experiment showed that the albedo was decreased from 0.70 for natural snow to 0.20 and the promotion of snowmelting for 11 days was recognized when 100 kg/10a of developed agent was spread. The promoting ability of the developed agent was equivalent to those of the existing commercial snowmelting agents. (author)

  14. CHARACTERISTICS STUDY OF UNCONVENTIONAL TEXTILE FIBERS RECOVERED FROM RECYCLABLE MATERIALS - PART II

    Directory of Open Access Journals (Sweden)

    OANA Ioan-Pavel

    2015-05-01

    Full Text Available Unconventional textiles can be obtained by strengthening the fibrous layer using wires, thereby achieving auxiliary materials for clothing, apparel linings, carpets. The fiber layers can be reinforced backing fabric using mechanical or mixed methods. The products are designed as filter materials, basic clothing. The global market for raw materials there is a continuing concern for material recovery specialists and their reintroduction into the economic cycle. Reconsideration materials as technological losses in production processes and in the sphere of consumption as factors polunaţi environment on the one hand and as a source of raw materials and energy, on the other hand, gave rise to different views regarding society's attitudes also potential resources and practical concepts that operate in these areas are unforgettable. Researches in order to create new unconventional textile fiber content of recyclable materials recovered were considered objectives: -The establishment of new wool upholstery variants which besides reusable textile fibers recovered to be entered and recovered fiber in textile products -Make per-lightweight textile per unit area that could be used in land drainage works on clay as filter elements covering plastic tubes.

  15. Recycling and disposal of FUSRAP materials from the Ashland 2 site at a licensed uranium mill

    International Nuclear Information System (INIS)

    Howard, B.; Conboy, D.; Rehmann, M.; Roberts, H.

    1999-01-01

    During World War II the Manhattan Engineering District (MED) used facilities near Buffalo, N.Y. to extract natural uranium from ores. Some of the byproduct material left from the ores (MED byproduct), containing low levels of uranium, thorium, and radium, was deposited on a disposal site known as Ashland 2, located in Tonawanda, NY. On behalf of the United States Army Corps of Engineers (USACE, or the Corps), ICF Kaiser Engineers (ICFKE) was tasked to provide the best value clean-up results that meet all of the criteria established in the Record of Decision for the site. International Uranium (USA) Corporation (IUC), the operator of the White Mesa Uranium Mill, a Nuclear Regulatory Commission (NRC)-licensed mill near Blanding, Utah, was selected to perform uranium extraction on the excavated materials, therefore giving the best value as it provided beneficial use of the material consistent with the Resource Conservation and Recovery Act (RCRA) intent to encourage recycling and recovery, while also providing the most cost-effective means of disposal. Challenges overcome to complete this project included (1) identifying the best-value location to accept the material; (2) meeting regulatory requirements with IUC obtaining an NRC license amendment to accept and process the material as an alternate feed; (3) excavating and preparing the material for shipment, then shipping the material to the Mill for uranium recovery; and (4) processing the material, followed by disposal of tailings from the process in the Mill's licensed uranium tailings facility. Excavation from Ashland 2 and processing of the Ashland 2 material at the White Mesa Mill resulted in a cleaner environment at Tonawanda, a cost avoidance of up to $16 million, beneficial recovery of source material, and environmentally protective disposal of byproduct material. (author)

  16. A fluorescent biosensing platform based on the polydopamine nanospheres intergrating with Exonuclease III-assisted target recycling amplification.

    Science.gov (United States)

    Qiang, Weibing; Wang, Xi; Li, Wei; Chen, Xiang; Li, Hui; Xu, Danke

    2015-09-15

    Rapid, cost-effective, sensitive and specific analysis of biomolecules is important in the modern healthcare system. Here, a fluorescent biosensing platform based on the polydopamine nanospheres (PDANS) intergrating with Exonuclease III (Exo III) was developed. Due to the interaction between the ssDNA and the PDANS, the fluorescence of 6-carboxyfluorescein (FAM) labelled in the probe would been quenched by PDANS through FRET. While, in the present of the target DNA, the probe DNA would hybridize with the target DNA to form the double-strand DNA complex. Thus, Exo III could catalyze the stepwise removal of mononucleotides from 3'-terminus in the probe DNA, releasing the target DNA. As the FAM was released from the probe DNA, the fluorescence would no longer been quenched, led to the signal on. As one target DNA molecule could undergo a number of cycles to trigger the degradation of abundant probe DNA, Exo III-assisted target recycling would led to the amplification of the signal. The detection limit for DNA was 5 pM, which was 20 times lower than that without Exo III. And the assay time was largely shortened due to the faster signal recovery kinetics. What is more, this target recycling strategy was also applied to conduct an aptamer-based biosensing platform. The fluorescence intensity was also enhanced for the assay of adenosine triphosphate (ATP). For the Exo III-assisted target recycling amplification, DNA and ATP were fast detected with high sensitivity and selectivity. This work provides opportunities to develop simple, rapid, economical, and sensitive biosensing platforms for biomedical diagnostics. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. A comparative study of recycled aggregates from concrete and mixed debris as material for unbound road sub-base

    International Nuclear Information System (INIS)

    Jimenez, J. R.; Agrela, F.; Ayuso, J.; Lopez, M.

    2011-01-01

    Seven different types of recycled aggregates from construction and demolition waste (CDW) have been evaluated as granular materials for unbound road sub bases construction. The results showed that recycled concrete aggregates complied with all specifications for using in the construction of unbound structural layers (sub-base) for T3 and T4 traffic categories according to the Spanish General Technical Specification for Road Construction (PG-3). Some mixed recycled aggregates fell short of some specifications due to a high content of sulphur compounds and poor fragmentation resistance. Sieving off the fine fraction prior to crushing the mixed CDW reduce the total sulphur content and improve the quality of the mixed recycled aggregates, by contrast, pre-sieving concrete CDW had no effect on the quality of the resulting aggregates. The results were compared with a crushed limestone as natural aggregate. (Author) 23 refs.

  18. Changing patterns in the use, recycling, and material substitution of mercury in the United States

    Science.gov (United States)

    Wilburn, David R.

    2013-01-01

    Environmental concerns have led to numerous regulations that have dramatically decreased the reported production and use of mercury in the United States since the 1980s. Government legislation and subsequent industry actions have led to increased collection of mercury-containing materials and the recovery of mercury through recycling. Mercury emissions have been reduced and effective alternatives to mercury products have been developed for many applications. This study updates and quantifies the changes in demand, supply, use, and material flow for mercury in various sectors in the United States that have taken place since 1996. Nearly all primary mercury produced in the United States is derived as a byproduct of processing of gold and silver ore in Nevada. Since 2001, annual production of mercury from gold and silver mining in Nevada has decreased by 22 percent overall because ore from greater depths containing low grade mercury is recovered, and mercury emissions from this source have decreased by 95 percent as a result of increased regulation and improved collection and suppression technology. The distribution of consumption of mercury in the United States has changed as a result of regulation (elimination of large-scale mercury use in the paint and battery sectors), reduction by consumers (decommissioning of mercury-cell chloralkali manufacturing capacity), and technological advances (improvements in dental, lighting, and wiring sectors). Mercury use in the chloralkali sector, the leading end-use sector in the United States in 1996, has declined by 98 percent from 136 metric tons (t) in 1996 to about 0.3 t in 2010 because of increased processing and recycling efficiencies and plant closures or conversion to other technologies. As plants were closed, mercury recovered from the infrastructure of decommissioned plants has been exported, making the United States a net exporter of mercury, even though no mercury has been produced as the primary product from mines in

  19. A catalytic and dual recycling amplification ATP sensor based on target-driven allosteric structure switching of aptamer beacons.

    Science.gov (United States)

    Peng, Ying; Li, Daxiu; Yuan, Ruo; Xiang, Yun

    2018-05-15

    Abnormal concentrations of ATP are associated with many diseases and cancers, and quantitative detection of ATP is thus of great importance for disease diagnosis and prognosis. In the present work, we report a new dual recycling amplification sensor integrated with catalytic hairpin assembly (CHA) to achieve high sensitivity for fluorescent detection of ATP. The association of the target ATP with the aptamer beacons causes the allosteric structure switching of the aptamer beacons to expose the toehold regions, which hybridize with and unfold the fluorescently quenched hairpin signal probes (HP1) to recycle the target ATP and to trigger CHA between HP1 and the secondary hairpin probes (HP2) to form HP1/HP2 duplexes. Due to the recycling amplification, the presence of ATP leads to the formation of many HP1/HP2 duplexes, generating dramatically amplified fluorescent signals for sensitive detection of ATP. Under optimal experimental conditions, our sensor linearly responds to ATP in the range from 25 to 600nM with a calculated detection limit of 8.2nM. Furthermore, the sensor shows a high selectivity and can also be used to detect ATP in human serums to realize its application for real samples. With the distinct advantage of significant signal amplification without the involvement of any nanomaterial and enzyme, the developed sensor thus holds great potential for simple and sensitive detection of different small molecules and proteins. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Reuse of materials from recyclable-waste collection for road building

    International Nuclear Information System (INIS)

    Messineo, A.; Panno, D.; Ticali, D.

    2006-01-01

    A right policy of waste management should look to nature: in fact in nature nothing of produced is lost; everything could be considered food to energy resource for another subject. A diffusion of right policy of waste reuse is the leit motive of this study. Heavy problem of pollution and the protection of the natural environment, is the one of the most important problem of this society, and so to think waste to reuse for civil engineering research has a double aim: a) to reduce quantity to send to dump; b) to reuse good materials for civil engineering building, as substitute of natural aggregate. It look very innovative and actual to think to possibility of reuse glass from recyclable-waste collection for road building, and so we could consider road as a valid substitute to dump. The aim is to consider waste as an element with high energetic power and value added [it

  1. THERMAL ENERGY STORAGE PROPERTIES OF FORMSTABLE PARAFFIN/RECYCLE BLOCK CONCRETE COMPOSITE PHASE CHANGE MATERIAL

    Directory of Open Access Journals (Sweden)

    PATTARAPORN SUTTAPHAKDEE

    2017-01-01

    Full Text Available In this research, the form-stable composite phase change material was developed by incorporating paraffin on recycle block concrete (RB through the vacuum impregnation method. The compatibility and thermal properties of RB impregnated with paraffin ranging from 0-35 wt% were characterized by Fourier transform infrared spectroscopy (FTIR and differential scanning calorimetry (DSC. Results revealed that paraffin was uniformly absorbed in RB with a good physical compatibility. The optimum adsorption ratio of paraffin in RB was 25 wt% which produced phase transition temperature of 52.85 OC and latent heat of 30.98 J/g. The obtained form-stable paraffin/RB composite PCM had proper latent heat and phase transition temperature and can be applied for thermal energy storage applications such as solar heating and cooling in buildings.

  2. CO2 emission factors for waste incineration: Influence from source separation of recyclable materials

    DEFF Research Database (Denmark)

    Larsen, Anna Warberg; Astrup, Thomas

    2011-01-01

    CO2-loads from combustible waste are important inputs for national CO2 inventories and life-cycle assessments (LCA). CO2 emissions from waste incinerators are often expressed by emission factors in kg fossil CO2 emitted per GJ energy content of the waste. Various studies have shown considerable...... variations between emission factors for different incinerators, but the background for these variations has not been thoroughly examined. One important reason may be variations in collection of recyclable materials as source separation alters the composition of the residual waste incinerated. The objective...... of this study was to quantify the importance of source separation for determination of emission factors for incineration of residual household waste. This was done by mimicking various source separation scenarios and based on waste composition data calculating resulting emission factors for residual waste...

  3. Treeing phenomenon of thermoplastic polyethylene blends for recyclable cable insulation materials

    Directory of Open Access Journals (Sweden)

    Lunzhi Li

    2017-02-01

    Full Text Available Owing to its good recyclability and low processing energy consumption, non-crosslinked polyethylene blends (e.g. LLDPE-HDPE blends are considered as one of potential environmental-friendly substitutions for crosslinked polyethylene (XLPE as cable insulation material. Although extensive work has been performed for measuring the basic dielectric properties, there is a lack of the investigations on the aging properties for such a material system, which hinders the evaluation of reliability and lifetime of the material for cable insulation. In this paper, we study the electric aging phenomenon of 0.7LLDPE-0.3HDPE blending material by investigating the treeing behavior, and its comparison with XLPE and LLDPE. Treeing tests show that the 0.7LLDPE-0.3HDPE blends have lower probability for treeing as well as smaller treeing dimensions. Further thermal analysis and microstructure study results suggest that the blends exhibit larger proportion of thick lamellae and higher crystallinity with homogeneously-distributed amorphous region, which is responsible for good anti-treeing performance. Our finding provides the evidence that the 0.7LLDPE-0.3HDPE blends exhibits better electric-aging-retardance properties than XLPE, which may result in a potential application for cable insulation.

  4. Fabrication of recyclable and durable superhydrophobic materials with wear/corrosion-resistance properties from kaolin and polyvinylchloride

    Science.gov (United States)

    Qu, Mengnan; Liu, Shanshan; He, Jinmei; Feng, Juan; Yao, Yali; Ma, Xuerui; Hou, Lingang; Liu, Xiangrong

    2017-07-01

    In this study, mechanically stable and recyclable superhydrophobic materials were prepared from polyvinylchloride (PVC) and kaolin nanoparticles modified by stearic acid using a simple and low-cost drop-coating. The obtained materials displayed liquid-repellent toward water and several other liquids of daily life (such as orange juice, coffee, milk, coca cola and ink). These superhydrophobic materials showed remarkable robustness against sandpaper abrasion, UV-irradiation and ultrasonication test, while retaining its superhydrophobicity even after 60 abrasion cycles loaded of 500 g with sandpaper, 7 days UV-irradiation or 120 min ultrasonication test. The excellent durability against complex conditions was attributed to the hierarchical structure and strong interfacial adhesion of the materials. More significantly, the materials used in the coating could be recycled and reconstructed without losing its superhydrophobicity. The current superhydrophobic materials tolerate rigorous environment, opening a new avenue to a variety of practical applications.

  5. Fabrication of recyclable and durable superhydrophobic materials with wear/corrosion-resistance properties from kaolin and polyvinylchloride

    International Nuclear Information System (INIS)

    Qu, Mengnan; Liu, Shanshan; He, Jinmei; Feng, Juan; Yao, Yali; Ma, Xuerui; Hou, Lingang; Liu, Xiangrong

    2017-01-01

    Highlights: • The scraped debris can be recycled and easily reused to fabricate the superhydrophobic materials. • The obtained materials displayed liquid-repellent toward water and several other liquids of daily life. • The superhydrophobic materials can retain excellent chemical stability and mechanical durability after rigorous tests. • This as-prepared material can be regarded as a real superhydrophobic “material”, not just the superhydrophobic “surface”. - Abstract: In this study, mechanically stable and recyclable superhydrophobic materials were prepared from polyvinylchloride (PVC) and kaolin nanoparticles modified by stearic acid using a simple and low-cost drop-coating. The obtained materials displayed liquid-repellent toward water and several other liquids of daily life (such as orange juice, coffee, milk, coca cola and ink). These superhydrophobic materials showed remarkable robustness against sandpaper abrasion, UV-irradiation and ultrasonication test, while retaining its superhydrophobicity even after 60 abrasion cycles loaded of 500 g with sandpaper, 7 days UV-irradiation or 120 min ultrasonication test. The excellent durability against complex conditions was attributed to the hierarchical structure and strong interfacial adhesion of the materials. More significantly, the materials used in the coating could be recycled and reconstructed without losing its superhydrophobicity. The current superhydrophobic materials tolerate rigorous environment, opening a new avenue to a variety of practical applications.

  6. Fabrication of recyclable and durable superhydrophobic materials with wear/corrosion-resistance properties from kaolin and polyvinylchloride

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Mengnan, E-mail: mnanqu@gmail.com; Liu, Shanshan; He, Jinmei, E-mail: jinmhe@gmail.com; Feng, Juan; Yao, Yali; Ma, Xuerui; Hou, Lingang; Liu, Xiangrong

    2017-07-15

    Highlights: • The scraped debris can be recycled and easily reused to fabricate the superhydrophobic materials. • The obtained materials displayed liquid-repellent toward water and several other liquids of daily life. • The superhydrophobic materials can retain excellent chemical stability and mechanical durability after rigorous tests. • This as-prepared material can be regarded as a real superhydrophobic “material”, not just the superhydrophobic “surface”. - Abstract: In this study, mechanically stable and recyclable superhydrophobic materials were prepared from polyvinylchloride (PVC) and kaolin nanoparticles modified by stearic acid using a simple and low-cost drop-coating. The obtained materials displayed liquid-repellent toward water and several other liquids of daily life (such as orange juice, coffee, milk, coca cola and ink). These superhydrophobic materials showed remarkable robustness against sandpaper abrasion, UV-irradiation and ultrasonication test, while retaining its superhydrophobicity even after 60 abrasion cycles loaded of 500 g with sandpaper, 7 days UV-irradiation or 120 min ultrasonication test. The excellent durability against complex conditions was attributed to the hierarchical structure and strong interfacial adhesion of the materials. More significantly, the materials used in the coating could be recycled and reconstructed without losing its superhydrophobicity. The current superhydrophobic materials tolerate rigorous environment, opening a new avenue to a variety of practical applications.

  7. Innovative fabrication of fuels and targets for Pu recycling and minor actinide transmutation

    International Nuclear Information System (INIS)

    Haas, D.; Somers, J.; Charollais, F.

    1999-01-01

    At the Karlsruhe Transuranium Institute of the Joint Research Centre, a number of processes for the fabrication of MOX fuels and minor actinide targets for transmutation are being developed. For the highly radioactive materials, methods avoiding the use of powders are preferred. Therefore, the liquid routes, SOL GEL or INRAM (infiltration of radioactive materials) are used. A new laboratory for that purpose will be commissioned in 2001. For MOX fuels, laboratory scale fabrication is being undertaken following powder metallurgy (e.g. MIMAS) or SOL GEL routes. The present research programme concerns the development of MOX fuels with large grains, achieved by SOL GEL without any additives, and by the MIMAS process with the addition of 0.1 w/o mullite (3Al 2 O 3 , 2SiO 2 ). (orig.) [de

  8. Innovative fabrication of fuels and targets for Pu recycling and minor actinide transmutation

    International Nuclear Information System (INIS)

    Haas, D.; Somers, J.; Charollais, F.

    1999-01-01

    At the Karlsruhe Transuranium Institute of the Joint Research Centre, a number of processes for the fabrication of MOX fuels and minor actinide targets for transmutation are being developed. For the highly radioactive materials, methods avoiding the use of powders are preferred. Therefore, the liquid routes, SOL GEL or INRAM (infiltration of radioactive materials) are used. A new laboratory for that purpose will be commissioned in 2001. For MOX fuels, laboratory scale fabrication is being undertaken following powder metallurgy (e.g. MIMAS) or SOL GEL routes. The present research programme concerns the development of MOX fuels with large grains, achieved by SOL GEL without any additives and by the MIMAS process with the addition of 0.1 w/o mullite (3 Al 2 O 3 , 2SiO 2 ). (authors)

  9. Signal-on electrochemical detection of antibiotics at zeptomole level based on target-aptamer binding triggered multiple recycling amplification.

    Science.gov (United States)

    Wang, Hongzhi; Wang, Yu; Liu, Su; Yu, Jinghua; Guo, Yuna; Xu, Ying; Huang, Jiadong

    2016-06-15

    In the work, a signal-on electrochemical DNA sensor based on multiple amplification for ultrasensitive detection of antibiotics has been reported. In the presence of target, the ingeniously designed hairpin probe (HP1) is opened and the polymerase-assisted target recycling amplification is triggered, resulting in autonomous generation of secondary target. It is worth noting that the produced secondary target could not only hybridize with other HP1, but also displace the Helper from the electrode. Consequently, methylene blue labeled HP2 forms a "close" probe structure, and the increase of signal is monitored. The increasing current provides an ultrasensitive electrochemical detection for antibiotics down to 1.3 fM. To our best knowledge, such work is the first report about multiple recycling amplification combing with signal-on sensing strategy, which has been utilized for quantitative determination of antibiotics. It would be further used as a general strategy associated with more analytical techniques toward the detection of a wide spectrum of analytes. Thus, it holds great potential for the development of ultrasensitive biosensing platform for the applications in bioanalysis, disease diagnostics, and clinical biomedicine. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Recycling of hazardous solid waste material using high-temperature solar process heat

    Energy Technology Data Exchange (ETDEWEB)

    Schaffner, B.; Meier, A.; Wuillemin, D.; Hoffelner, W.; Steinfeld, A.

    2003-03-01

    A novel high-temperature solar chemical reactor is proposed for the thermal recycling of hazardous solid waste material using concentrated solar power. A 10 kW solar reactor prototype was designed and tested for the carbothermic reduction of electric arc furnace dusts (EAFD). The reactor was subjected to mean solar flux intensities of 2000 kW/m2 and operated in both batch and continuous mode within the temperature range 1120-1400 K. Extraction of up to 99% and 90% of the Zn originally contained in the EAFD was achieved in the residue for the batch and continuous solar experiments, respectively. The condensed off-gas products consisted mainly of Zn, Pb, and Cl. No ZnO was detected when the O{sub 2} concentration remained below 2 vol.-%. The use of concentrated solar energy as the source of process heat offers the possibility of converting hazardous solid waste material into valuable commodities for processes in closed and sustainable material cycles. (author)

  11. Current studies on the decommissioning materials recycling at Japan Atomic Energy Research Institute

    Energy Technology Data Exchange (ETDEWEB)

    Fujiki, K.; Nakamura, H. [Japan Atomic Research Inst., Tokai, Ibaraki (Japan). Dept. of Decommissioning and Waste Management

    1993-12-31

    Rational treatment of a large volume of solid wastes resulting from the reactor dismantling is a key to success to carry out the decommissioning smoothly. From this viewpoint, the Japan Atomic Energy Research Institute (JAERI) has been conducting development of the recycling technology for metal waste and an investigation study on the rational recycling system for the dismantling wastes recycling. With respect to the development of the recycling technology, series of melting tests using non-contaminated metals, metal waste dismantled from JPDR or imitated waste using radioisotopes have been conducted. The basic characteristics of the radionuclides transport behavior during the melting have been understood. In the investigation study on the rational recycling system, a scenario of recycling the wastes was developed based on the amount of waste arising from decommissioning nuclear power plants, and necessary processing facilities were examined, and safety and economy of the process were evaluated.

  12. Organic-Inorganic Hybrid Silica Material Derived from a Monosilylated Grubbs-Hoveyda Ruthenium Carbene as a Recyclable Metathesis Catalyst

    Directory of Open Access Journals (Sweden)

    Michel Wong Chi Man

    2010-08-01

    Full Text Available The synthesis of a monosilylated Grubbs-Hoveyda ruthenium alkylidene complex is described, as well as the preparation and characterization of the corresponding material by sol-gel cogelification with tetraethoxysilane (TEOS and the assay of this recyclable supported catalyst in ring-closing diene and enyne metathesis reactions under thermal and microwave conditions.

  13. Recycled asphalt pavement – fly ash geopolymer as a sustainable stabilized pavement material

    Science.gov (United States)

    Horpibulsuk, S.; Hoy, M.; Witchayaphong, P.; Rachan, R.; Arulrajah, A.

    2017-11-01

    Strength, durability, microstructure and leachate characteristics of Recycled Asphalt Pavement and Fly Ash (RAP-FA) geopolymers and RAP-FA blends as a sustainable pavement material are evaluated in this paper. The strength development of the stabilized materials with and without effect wetting-drying (w-d) cycles was determined by Unconfined Compression Strength (UCS) test. The mineralogical and microstructural changes of the stabilized material were analyzed by X-Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM). The leachability of the heavy metals were measured by Toxicity Characteristic Leaching Procedure (TCLP) and compared with international standard. The results show that both RAP-FA blend and RAP-FA geopolymer increase with increasing the number of w-d cycles (C), reaching its peak at 6 w-d cycles. The XRD and SEM analyses indicate that the strength development of RAP-FA blend occurs due to stimulation of the chemical reaction between the high amount to Calcium in RAP and the high amount of Silica and Alumina in FA leaching to production of Calcium Aluminium (Silicate) Hydrate, while the geopolymerization reaction is observed in RAP-FA geopolymer. For C> 6, the significant macro- and micro-cracks developed during w-d cycles cause strength reduction for both RAP-FA blend and geopolymer. The TCLP results demonstrate that there is no environmental risk for these stabilized materials. Furthermore, FA-geopolymer can reduce the leachability of heavy metal in RAP-FA blend. The outcome from this research confirms the viability of using RAP-FA blend and RAP-FA geopolymer as alternative sustainable pavement materials.

  14. Targeting a Novel Plasmodium falciparum Purine Recycling Pathway with Specific Immucillins

    International Nuclear Information System (INIS)

    Ting, L; Shi, W; Lewandowicz, A; Singh, V; Mwakingwe, A; Birck, M R; Taylor Ringia, E A; Bench, G; Madrid, D C; Tyler, P C; Evans, G B; Furneaux, R H; Schramm, V L; Kim, K.

    2004-01-01

    Plasmodium falciparum is unable to synthesize purine bases and relies upon purine salvage and purine recycling to meet its purine needs. We report that purines formed as products of the polyamine pathway are recycled in a novel pathway in which 5'-methylthioinosine is generated by adenosine deaminase. The action of P. falciparum purine nucleoside phosphorylase is a convergent step of purine salvage, converting both 5'-methylthioinosine and inosine to hypoxanthine. We used accelerator mass spectrometry to verify that 5'-methylthioinosine is an active nucleic acid precursor in P. falciparum. Prior studies have shown that inhibitors of purine salvage enzymes kill malaria, but potent malaria-specific inhibitors of these enzymes have not previously been described. 5'-methylthio-Immucillin-H, a transition state analogue inhibitor that is selective for malarial over human purine nucleoside phosphorylase, kills P. falciparum in culture. Immucillins are currently in clinical trials for other indications and may have application as antimalarials

  15. Recycling of Manganese Secondary Raw Material Via Cold-Bond Pelletizing Process

    International Nuclear Information System (INIS)

    Ahmed, Y.M.Z.; Mohamed, F.M.

    2004-01-01

    Large quantities of fines were produced during the shipping, transportation, handling and storage of manganese ore sinter imported from different countries to Sinai Company for ferromanganese production. These fines are generally considered as valuable secondary raw materials. Hence, they have a potential to be recycled back to the submerged arc furnace after having been agglomerated. For agglomerates to be considered as feed materials for submerged arc furnace they must have sufficient room temperature strength. Cold-bonded penalization process offers an economically attractive and environmentally viable method for achieving this. Ordinary Portland cement was used in this investigation for the purpose of producing a suitable cold-bonded pellet from such fines. In this investigation, the effect of adding different percentages of Portland cement on the mechanical properties of both green and pellet dried at room temperature for 1, 3, 7, 14, and 28 days of normal curing were studied. The results revealed that, although the compressive strength of green pellets improved with the increase of the amount of cement added. retardation in pellet drop strength was reported. Whereas, the increase in both the cement content and time of drying leads to increase in the mechanical properties of pellets normally cured at room temperature. pellets obtain with the addition of 9% cement shows reasonable mechanical properties to be charged in the submerged are furnace. ferromanganese alloy having a standard range composition was produced in a laboratory submerged are furnace using such pellets

  16. Transport of nuclear materials: a major stake for the reprocessing-conditioning-recycling strategy

    International Nuclear Information System (INIS)

    Gautrot, J.J.

    1998-01-01

    As the international reference in terms of fuel cycle services, the COGEMA Group has developed a wide range of industrialized products answering to its clients needs. But, as deregulation and competition are now expanding, utilities has to be perfectly aware of the cost level of their strategic choices, and to keep these costs down. This point is especially valid in the back-end of the fuel cycle. Several leading nuclear countries around the world have chosen the reprocessing-recycling option because it ensures a economically mastered vision. In that respect, transportation reliability is consequently a basic requirement. It ensures a balanced and continuous flows of materials. Transportation system must be reliable in terms of schedule, safety or industrial aspects (i.e. dedicated packaging for road, rail, sea or air transports, maintenance aspects...). Any serious flaw in one of these three points could lead to delays, thus lessening the economic advantage for utilities. But, one must not loose sight that transportation of nuclear materials is tied to extra-technical issues, such as environmental or regulatory factors, which are fundamental for a consistent understanding of this business. The COGEMA Group, through its subsidiary Transnucleaire, possesses a dedicated transport system, widely praised for its constant commitment in terms of safety, quality and operating. This papers presents the overall back-end transportation framework and details the transport organisations as well as the main achievements of Transnucleaire when it comes to sea, road or rail back-end transports. (authors)

  17. Recycling of spent lithium-ion battery cathode materials by ammoniacal leaching.

    Science.gov (United States)

    Ku, Heesuk; Jung, Yeojin; Jo, Minsang; Park, Sanghyuk; Kim, Sookyung; Yang, Donghyo; Rhee, Kangin; An, Eung-Mo; Sohn, Jeongsoo; Kwon, Kyungjung

    2016-08-05

    As the production and consumption of lithium ion batteries (LIBs) increase, the recycling of spent LIBs appears inevitable from an environmental, economic and health viewpoint. The leaching behavior of Ni, Mn, Co, Al and Cu from treated cathode active materials, which are separated from a commercial LIB pack in hybrid electric vehicles, is investigated with ammoniacal leaching agents based on ammonia, ammonium carbonate and ammonium sulfite. Ammonium sulfite as a reductant is necessary to enhance leaching kinetics particularly in the ammoniacal leaching of Ni and Co. Ammonium carbonate can act as a pH buffer so that the pH of leaching solution changes little during leaching. Co and Cu can be fully leached out whereas Mn and Al are hardly leached and Ni shows a moderate leaching efficiency. It is confirmed that the cathode active materials are a composite of LiMn2O4, LiCoxMnyNizO2, Al2O3 and C while the leach residue is composed of LiNixMnyCozO2, LiMn2O4, Al2O3, MnCO3 and Mn oxides. Co recovery via the ammoniacal leaching is believed to gain a competitive edge on convenitonal acid leaching both by reducing the sodium hydroxide expense for increasing the pH of leaching solution and by removing the separation steps of Mn and Al. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Photocatalytic activity of titanium dioxide modified concrete materials - influence of utilizing recycled glass cullets as aggregates.

    Science.gov (United States)

    Chen, Jun; Poon, Chi-Sun

    2009-08-01

    Combining the use of photocatalysts with cementitious materials is an important development in the field of photocatalytic air pollution mitigation. This paper presents the results of a systematic study on assessing the effectiveness of pollutant degradation by concrete surface layers that incorporate a photocatalytic material - Titanium Dioxide. The photocatalytic activity of the concrete samples was determined by photocatalytic oxidation of nitric oxide (NO) in the laboratory. Recycled glass cullets, derived from crushed waste beverage bottles, were used to replace sand in preparing the concrete surface layers. Factors, which may affect the pollutant removal performance of the concrete layers including glass color, aggregate size and curing age, were investigated. The results show a significant enhancement of the photocatalytic activity due to the use of glass cullets as aggregates in the concrete layers. The samples fabricated with clear glass cullets exhibited threefold NO removal efficiency compared to the samples fabricated with river sand. The light transmittance property of glass was postulated to account for the efficiency improvement, which was confirmed by a separate simulation study. But the influence of the size of glass cullets was not evident. In addition, the photocatalytic activity of concrete surface layers decreased with curing age, showing a loss of 20% photocatalytic activity after 56-day curing.

  19. A study on the performance of concrete containing recycled aggregates and ceramic as materials replacement

    Science.gov (United States)

    Azmi, N. B.; Khalid, F. S.; Irwan, J. M.; Anting, N.; Mazenan, P. N.

    2017-11-01

    Natural fine aggregate materials are commonly used in development and commercial construction in Malaysia. In fact, concrete production was increased as linear with the growing Malaysia economy. However, an issue was production of concrete was to locate adequate sources of natural fine aggregates. There lot of studies have been conducted in order to replace the fine aggregate in which natural fine aggregate replace with the waste material in concrete preparation. Therefore, this study aims to utilize the Recycled Concrete Aggregate (RCA) and ceramic waste which has great potential to replace the natural aggregate in concrete mix with different type of method, admixture, and parameters. This research were focused on compressive strength and water absorption test to determine the optimum mix ratio of concrete mix. The concrete aggregate was chosen due to improvement capillary bonding mechanisms and ceramic presented similar strength compared to the conventional concrete using natural aggregate. Percent of replacement have been used in this study was at 25%, 35% and 45% of the RCA and 5%, 10% and 15% for ceramic, respectively. Furthermore, this research was conduct to find the optimum percentage of aggregate replacement, using water-cement ratio of 0.55 with concrete grade 25/30. The best percentage of replacement was the RCA35% C15% with the compressive strength of 34.72 MPa and the water absorption was satisfied.

  20. Reliability Analysis of Temperature Influence on Stresses in Rigid Pavement Made from Recycled Materials

    Directory of Open Access Journals (Sweden)

    Aleš Florian

    2016-01-01

    Full Text Available Complex statistical and sensitivity analysis of principal stresses in concrete slabs of the real type of rigid pavement made from recycled materials is performed. The pavement is dominantly loaded by the temperature field acting on the upper and lower surface of concrete slabs. The computational model of the pavement is designed as a spatial (3D model, is based on a nonlinear variant of the finite element method that respects the structural nonlinearity, enables to model different arrangement of joints, and the entire model can be loaded by thermal load. Four concrete slabs separated by transverse and longitudinal joints and the additional structural layers including soil to the depth of about 3 m are modeled. The thickness of individual layers, physical and mechanical properties of materials, characteristics of joints, and the temperature of the upper and lower surface of slabs are supposed to be random variables. The simulation technique Updated Latin Hypercube Sampling with 20 simulations is used for the reliability analysis. As results of statistical analysis, the estimates of basic statistics of the principal stresses σ1 and σ3 in 106 points on the upper and lower surface of slabs are obtained. For sensitivity analysis the sensitivity coefficient based on the Spearman rank correlation coefficient is used. As results of sensitivity analysis, the estimates of influence of random variability of individual input variables on the random variability of principal stresses σ1 and σ3 are obtained.

  1. Incorporation of hydrogel as a sensing medium for recycle of sensing material in chemical sensors

    Science.gov (United States)

    Hwang, Yunjung; Park, Jeong Yong; Kwon, Oh Seok; Joo, Seokwon; Lee, Chang-Soo; Bae, Joonwon

    2018-01-01

    A hydrogel, produced with agarose extracted from seaweed, was introduced as a reusable medium in ultrasensitive sensors employing conducting polymer nanomaterials and aptamers. A basic dopamine (DA) sensor was constructed by placing a hydrogel, containing a sensing material composed of aptamer-linked carboxylated polypyrrole nanotubes (PPy-COOH NTs), onto a micropatterned gold electrode. The hydrogel provided a benign electrochemical environment, facilitated specific interactions between DA and the PPy-COOH NT sensing material, and simplified the retrieval of PPy-COOH NTs after detection. It was demonstrated that the agarose hydrogel was successfully employed as a sensing medium for detection of DA, providing a benign environment for the electrode type sensor. PPy-COOH NTs were recovered by simply heating the hydrogel in water. The hydrogel also afforded stable signal intensity after repeated use with a limit of detection of 1 nmol and a clear, stable signal up to 100 nmol DA. This work provides relevant information for future research on reusable or recyclable sensors.

  2. CHARACTERISTICS STUDY OF UNCONVENTIONAL TEXTILE FIBERS RECOVERED FROM RECYCLABLE MATERIALS - PART I

    Directory of Open Access Journals (Sweden)

    OANA Ioan-Pavel

    2015-05-01

    Full Text Available Unconventional textiles are manufactured different from those obtained by the classic spinning weaving and knitting. They are obtained by mechanical or chemical consolidation of a textile backing up of fibrous layers or combinations of layers of fiber and yarn, fabrics and yarns, fabrics or knitted fabrics and fibers. The non-conventional textiles can be obtained by mechanical or chemical consolidation of a system or several systems of wires. The increasing trend of chemical fiber production compared to natural fibers found also in the unconventional fabrics. In addition emphasis is laid increasingly on the use of recyclable materials recovered fibers and preforms or debris resulting from a regular textile processing. Processing unconventional fibers that are recovered from such materials are best suited for the production of unconventional textile. The production of unconventional textile fiber made from layers have the largest share. The fiber layers may have fibers oriented in a single direction, in two or more directions. The fiber layers can enhance mechanical, chemical and mixed. This produces textile auxiliaries for clothing, replacement canvas for buckram wadding, sanitary ware carpet filters, support for synthetic leather, cloth, wallpapers.

  3. Phosphogypsum recycling in the building materials industry: assessment of the radon exhalation rate.

    Science.gov (United States)

    Campos, M P; Costa, L J P; Nisti, M B; Mazzilli, B P

    2017-06-01

    Phosphogypsum can be classified as a Naturally Occurring Radioactive Material (NORM) residue of the phosphate fertilizer industry. One of the main environmental concerns of its use as building material is the radon exhalation. The aim of this study is to measure the radon exhalation rate from plates and bricks manufactured with phosphogypsum from three installations of the main Brazilian producer, Vale Fertilizantes, in order to evaluate the additional health risk to dwellers. A simple and reliable accumulator method involving a PVC pipe sealed with a PVC pipe cover commercially available with CR-39 radon detector into a diffusion chamber was used for measuring radon exhalation rate from phosphogypsum made plates and bricks. The radon exhalation rate from plates varied from 0.19 ± 0.06 Bq m -2 h -1 , for phosphogypsum from Bunge Fertilizers, from 1.3 ± 0.3 Bq m -2 h -1 , for phosphogypsum from Ultrafertil. As for the bricks, the results ranged from 0.11 ± 0.01 Bq m -2 h -1 , for phosphogypsum from Bunge Fertilizers, to 1.2 ± 0.3 Bq m -2 h -1 , for phosphogypsum from Ultrafertil. The results obtained in this study for the radon exhalation rate from phosphogypsum plates and bricks are of the same order of magnitude than those from ordinary building materials. So, it can be concluded that the recycling of phosphogypsum as building material is a safe practice, since no additional health risk is expected from the radiological point of view. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. 76 FR 53897 - EPA Seeking Input Materials Measurement; Municipal Solid Waste (MSW), Recycling, and Source...

    Science.gov (United States)

    2011-08-30

    ... Measurement; Municipal Solid Waste (MSW), Recycling, and Source Reduction Measurement in the U.S. AGENCY... Subjects Environmental protection, municipal solid waste (MSW) characterization, MSW management, recycling... efficacy and scope of the MSW Characterization Report called ``Municipal Solid Waste in the United States...

  5. Phase structure and properties of poly(ethylene terephthalate)/polyethylene based on recycled materials

    Science.gov (United States)

    Yong Lei; Qinglin Wu; Craig M. Clemons; Weihong. Guo

    2009-01-01

    Blends based on recycled high density polyethylene (R-HDPE) and recycled poly(ethylene terephthalate) (R-PET) were made through reactive extrusion. The effects of maleated polyethylene (PE-g-MA), triblock copolymer of styrene and ethylene/butylene (SEBS), and 4,40-methylenedi(phenyl isocyanate) (MDI) on blend properties were studied. The 2% PE-g-MA improved the...

  6. The origin and role of structural inhomogeneities and impurities in material recycling of plastics

    Czech Academy of Sciences Publication Activity Database

    Pospíšil, Jan; Horák, Zdeněk; Kruliš, Zdeněk; Nešpůrek, Stanislav

    1998-01-01

    Roč. 135, - (1998), s. 247-263 ISSN 1022-1360. [Microsymposium Recycling of Polymers /38./. Prague, 14.07.1997-17.07.1997] R&D Projects: GA AV ČR IAA4050603; GA ČR GA106/96/1377 Subject RIV: DM - Solid Waste and Recycling Impact factor: 0.465, year: 1998

  7. Scientific Opinion on the safety evaluation of the process “INTERSEROH Step 1” used to recycle polypropylene cratesfor use as food contact material

    OpenAIRE

    EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF)

    2012-01-01

    The EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF) provides a scientific opinion dealing with the safety evaluation of the recycling process “INTERSEROH Step 1” with the EC register number RECYC069. The process recycles pre-washed damaged food contact re-usable polypropylene crates (RPC) which have been used in a closed and controlled product loop into new recycled polypropylene crates. Through this process, cleaned damaged crates are firstly gro...

  8. Recycling of spent lithium-ion battery cathode materials by ammoniacal leaching

    International Nuclear Information System (INIS)

    Ku, Heesuk; Jung, Yeojin; Jo, Minsang; Park, Sanghyuk; Kim, Sookyung; Yang, Donghyo; Rhee, Kangin; An, Eung-Mo; Sohn, Jeongsoo; Kwon, Kyungjung

    2016-01-01

    Highlights: • Ammoniacal leaching is used to recover spent Li-ion battery cathode materials. • Leaching agents consist of ammonia, ammonium sulfite and ammonium carbonate. • Ammonium sulfite is a reductant and ammonium carbonate acts as pH buffer. • Co and Cu can be fully leached while Mn and Al are not leached. • Co recovery via ammoniacal leaching is economical compared to acid leaching. - Abstract: As the production and consumption of lithium ion batteries (LIBs) increase, the recycling of spent LIBs appears inevitable from an environmental, economic and health viewpoint. The leaching behavior of Ni, Mn, Co, Al and Cu from treated cathode active materials, which are separated from a commercial LIB pack in hybrid electric vehicles, is investigated with ammoniacal leaching agents based on ammonia, ammonium carbonate and ammonium sulfite. Ammonium sulfite as a reductant is necessary to enhance leaching kinetics particularly in the ammoniacal leaching of Ni and Co. Ammonium carbonate can act as a pH buffer so that the pH of leaching solution changes little during leaching. Co and Cu can be fully leached out whereas Mn and Al are hardly leached and Ni shows a moderate leaching efficiency. It is confirmed that the cathode active materials are a composite of LiMn 2 O 4 , LiCo x Mn y Ni z O 2, Al 2 O 3 and C while the leach residue is composed of LiNi x Mn y Co z O 2 , LiMn 2 O 4 , Al 2 O 3 , MnCO 3 and Mn oxides. Co recovery via the ammoniacal leaching is believed to gain a competitive edge on convenitonal acid leaching both by reducing the sodium hydroxide expense for increasing the pH of leaching solution and by removing the separation steps of Mn and Al.

  9. Material control and accountability aspects of safeguards for the USA 233U/Th fuel recycle plant

    International Nuclear Information System (INIS)

    Carpenter, J.A. Jr.; McNeany, S.R.; Angelini, P.; Holder, N.D.; Abraham, L.

    1978-01-01

    The materials control and accountability aspects of the reprocessing and refabrication of a conceptual large-scale HTGR fuel recycle plant have been discussed. Two fuel cycles were considered. The traditional highly enriched uranium cycle uses an initial or makeup fuel element with a fissile enrichment of 93% 235 U. The more recent medium enriched uranium cycle uses initial or makeup fuel elements with a fissile enrichment less than 20% 235 U. In both cases, 233 U bred from the fertile thorium is recycled. Materials control and accountability in the plant will be by means of a real-time accountability method. Accountability data will be derived from monitoring of total material mass through the processes and a system of numerous assays, both destructive and nondestructive

  10. Urban Mining: Quality and quantity of recyclable and recoverable material mechanically and physically extractable from residual waste

    International Nuclear Information System (INIS)

    Di Maria, Francesco; Micale, Caterina; Sordi, Alessio; Cirulli, Giuseppe; Marionni, Moreno

    2013-01-01

    Highlights: • Material recycling and recovery from residual waste by physical and mechanical process has been investigated. • About 6% of recyclable can be extracted by NIR and 2-3Dimension selector. • Another 2% of construction materials can be extracted by adopting modified soil washing process. • Extracted material quality is quite high even some residual heavy metal have been detected by leaching test. - Abstract: The mechanically sorted dry fraction (MSDF) and Fines (<20 mm) arising from the mechanical biological treatment of residual municipal solid waste (RMSW) contains respectively about 11% w/w each of recyclable and recoverable materials. Processing a large sample of MSDF in an existing full-scale mechanical sorting facility equipped with near infrared and 2-3 dimensional selectors led to the extraction of about 6% w/w of recyclables with respect to the RMSW weight. Maximum selection efficiency was achieved for metals, about 98% w/w, whereas it was lower for Waste Electrical and Electronic Equipment (WEEE), about 2% w/w. After a simulated lab scale soil washing treatment it was possible to extract about 2% w/w of inert exploitable substances recoverable as construction materials, with respect to the amount of RMSW. The passing curve showed that inert materials were mainly sand with a particle size ranging from 0.063 to 2 mm. Leaching tests showed quite low heavy metal concentrations with the exception of the particles retained by the 0.5 mm sieve. A minimum pollutant concentration was in the leachate from the 10 and 20 mm particle size fractions

  11. The Solidary Economy as a work organization principle: training and technical assistance for recyclable material collectors

    Directory of Open Access Journals (Sweden)

    Elisabete Aparecida Zambelo

    2015-06-01

    Full Text Available The field of study of this article is about the solidary economy and self-management in recyclable material cooperatives aiming to present the partial results from an extension program called Selective Collection, involving three extension projects (Solidary Economy, Management Systems and Environmental education under development at the Universidade do Sagrado Coração (USC. The article will focus on the solidary economy extension project , which relates to the preliminary analysis of factors regarding selective collection, self-management and productivity of the cooperatives involved. The motivation of the study is a result of the need to understand how good self-management affects the organization of the cooperatives. Therefore, the current reality of two cooperatives, Cootramat and COOPECO, was portrayed- to identify what are their needs and expectations. Level of commitment of members and the major problem identified by them were some of the issues addressed during in loco observations. The results presented are part of the research that is underway in partnership with the Municipal Company for Urban and Rural Development (Empresa Municipal de Desenvolvimento Urbano e Rural - Emdurb Bauru/SP

  12. Efficient technical solution for recycling textile materials by manufacturing nonwoven geotextiles

    Science.gov (United States)

    Leon, A. L.; Potop, G. L.; Hristian, L.; Manea, L. R.

    2016-08-01

    This paper aims to support the concept "circular economy" that was developed recently. It presents an efficient method for creating a closed loop in the Romanian textile industry by recycling textile materials, such as polyacrylonitrile knitted old products (collected from population) and small polyester woven patches from pre-consumer waste (garments manufacturing companies). Because of their properties, nonwoven geotextiles have many advantages in railways reinforcement, slopes stabilization, erosion control, drainage, filtration, paving roads, crops coverings, etc. The nonwoven geotextiles were obtained from three fibrous blends based on recovered fibers (PES and PAN) and fibers at first usage (PP) in different ratios. All experimental variants were processed on the same manufacturing line with the same technological parameters. There were tested the main physical and mechanical parameters and it was applied single factor ANOVA method for thickness, bulk density, air permeability and static puncture strength. The conclusion is that adding PP fibers in the blends represents a very important factor for geotextiles characteristics but it possible to decrease the ratio from economical reasons and still maintain a high quality level of nonwovens.

  13. Advances in Magnetically Separable Photocatalysts: Smart, Recyclable Materials for Water Pollution Mitigation

    Directory of Open Access Journals (Sweden)

    Gcina Mamba

    2016-06-01

    Full Text Available Organic and inorganic compounds utilised at different stages of various industrial processes are lost into effluent water and eventually find their way into fresh water sources where they cause devastating effects on the ecosystem due to their stability, toxicity, and non-biodegradable nature. Semiconductor photocatalysis has been highlighted as a promising technology for the treatment of water laden with organic, inorganic, and microbial pollutants. However, these semiconductor photocatalysts are applied in powdered form, which makes separation and recycling after treatment extremely difficult. This not only leads to loss of the photocatalyst but also to secondary pollution by the photocatalyst particles. The introduction of various magnetic nanoparticles such as magnetite, maghemite, ferrites, etc. into the photocatalyst matrix has recently become an area of intense research because it allows for the easy separation of the photocatalyst from the treated water using an external magnetic field. Herein, we discuss the recent developments in terms of synthesis and photocatalytic properties of magnetically separable nanocomposites towards water treatment. The influence of the magnetic nanoparticles in the optical properties, charge transfer mechanism, and overall photocatalytic activity is deliberated based on selected results. We conclude the review by providing summary remarks on the successes of magnetic photocatalysts and present some of the future challenges regarding the exploitation of these materials in water treatment.

  14. Electric vehicle recycling 2020: Key component power electronics.

    Science.gov (United States)

    Bulach, Winfried; Schüler, Doris; Sellin, Guido; Elwert, Tobias; Schmid, Dieter; Goldmann, Daniel; Buchert, Matthias; Kammer, Ulrich

    2018-04-01

    Electromobility will play a key role in order to reach the specified ambitious greenhouse gas reduction targets in the German transport sector of 42% between 1990 and 2030. Subsequently, a significant rise in the sale of electric vehicles (EVs) is to be anticipated in future. The amount of EVs to be recycled will rise correspondingly after a delay. This includes the recyclable power electronics modules which are incorporated in every EV as an important component for energy management. Current recycling methods using car shredders and subsequent post shredder technologies show high recycling rates for the bulk metals but are still associated with high losses of precious and strategic metals such as gold, silver, platinum, palladium and tantalum. For this reason, the project 'Electric vehicle recycling 2020 - key component power electronics' developed an optimised recycling route for recycling power electronics modules from EVs which is also practicable in series production and can be implemented using standardised technology. This 'WEEE recycling route' involves the disassembly of the power electronics from the vehicle and a subsequent recycling in an electronic end-of-life equipment recycling plant. The developed recycling process is economical under the current conditions and raw material prices, even though it involves considerably higher costs than recycling using the car shredder. The life cycle assessment shows basically good results, both for the traditional car shredder route and the developed WEEE recycling route: the latter provides additional benefits from some higher recovery rates and corresponding credits.

  15. Materials technology applied to nuclear accelerator targets

    International Nuclear Information System (INIS)

    Barthell, B.L.

    1986-01-01

    The continuing requests for both shaped and flat, very low areal density metal foils have led to the development of metallurgical quality, high strength products. Intent of this paper is to show methods of forming structures on various substrates using periodic vapor interruptions, alternating anodes, and mechanical peening to alter otherwise unacceptable grain morphology which both lowers tensile strength and causes high stresses in thin films. The three technologies, physical vapor deposition, electrochemistry, and chemical vapor deposition and their thin film products can benefit from the use of laminate technology and control of grain structure morphology through the use of materials research and technology

  16. 40 CFR 260.43 - Legitimate recycling of hazardous secondary materials regulated under § 260.34, § 261.2(a)(2)(ii...

    Science.gov (United States)

    2010-07-01

    ... is discarded material and is a solid waste. In determining if their recycling is legitimate, persons....43 Section 260.43 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) HAZARDOUS WASTE MANAGEMENT SYSTEM: GENERAL Rulemaking Petitions § 260.43 Legitimate recycling of...

  17. Recycled Asphalt Pavement and Crushed Concrete Backfill: State-of-the-Art Review and Material Characterization

    Science.gov (United States)

    2001-10-01

    This report describes research results from the first year of a three-year study focused on the use of recycled asphalt pavement (RAP) and crushed concrete (CC) as backfill for mechanically stabilized earth (MSE) walls.

  18. Radiation dose assessments to support evaluations of radiological control levels for recycling or reuse of materials and equipment

    International Nuclear Information System (INIS)

    Hill, R.L.; Aaberg, R.L.; Baker, D.A.; Kennedy, W.E. Jr.

    1995-07-01

    Pacific Northwest Laboratory is providing Environmental Protection Support and Assistance to the USDOE, Office of Environmental Guidance. Air, Water, and Radiation Division. As part of this effort, PNL is collecting data and conducting technical evaluations to support DOE analyses of the feasibility of developing radiological control levels for recycling or reuse of metals, concrete, or equipment containing residual radioactive contamination from DOE operations. The radiological control levels will be risk-based, as developed through a radiation exposure scenario and pathway analysis. The analysis will include evaluation of relevant radionuclides, potential mechanisms of exposure, and both health and non-health-related impacts. The main objective of this report is to develop a methodology for establishing radiological control levels for recycle or reuse. This report provides the results of the radiation exposure scenario and pathway analyses for 42 key radionuclides generated during DOE operations that may be contained in metals or equipment considered for either recycling or reuse. The scenarios and information developed by the IAEA. Application of Exemption Principles to the Recycle and Reuse of Materials from Nuclear Facilities, are used as the initial basis for this study. The analyses were performed for both selected worker populations at metal smelters and for the public downwind of a smelter facility. Doses to the public downwind were estimated using the US (EPA) CAP88-PC computer code with generic data on atmospheric dispersion and population density. Potential non-health-related effects of residual activity on electronics and on film were also analyzed

  19. STUDIES AND RESEARCH CONCERNING THE USE OF SOME RECYCLABLE ABSORBENT MATERIALS FOR INCREASING ACOUSTIC COMFORT INTO A ROOM DESIGNED FOR SPEAKING

    Directory of Open Access Journals (Sweden)

    Florin Marian Nedeff

    2017-10-01

    Full Text Available The acoustic comfort of a speech hall is characterized by acoustic parameters. These parameters depend by on the hall volume, construction and design materials. On the hall ceiling (the most unused surface, some various acoustic devices can be installed on which the acoustic materials can be applied in order to obtain specific suitable acoustic parameters for that hall. Recycled materials such as wood, granular recycled rubber, shredded recycled plastic and shredded polypropylene, applied on various acoustic devices made from OAS, polystyrene or plasterboard rigips, can increase the acoustics quality of room.

  20. Eco-efficient concretes: the effects of using recycled ceramic material from sanitary installations on the mechanical properties of concrete.

    Science.gov (United States)

    Guerra, I; Vivar, I; Llamas, B; Juan, A; Moran, J

    2009-02-01

    The aim of this research was to investigate some of the physical and mechanical properties of concrete mixed under laboratory conditions, where different proportions of coarse aggregate materials were substituted by porcelain from sanitary installations. The results of the tests show that the concrete produced has the same mechanical characteristics as conventional concrete, thus opening a door to selective recycling of sanitary porcelain and its use in the production of concrete.

  1. Pentanol-based target material with polarized protons

    International Nuclear Information System (INIS)

    Bunyatova, E.I.

    1992-01-01

    1-pentanol is a promising material for a target with polarized protons owing to its high resistance to radiation damage. To develop the target, the solutions of 1-pentanol or 2-pentanol with complexes of pentavalent chromium ware investigated. The material based EHBA-Cr(V) solution in a glass-like matrix, consisting of 1-pentanol, 3-pentanol and 1,2-propanediol, was proposed as a target material. It was investigated by the electron paramagnetic resonance and differential scanning calorimetry methods. 24 refs.; 3 figs.; 1 tab

  2. Cold in-place recycle phase III, mix design.

    Science.gov (United States)

    2014-10-01

    This projects purpose is to revise the UDOT accepted design methods for Cold In-Place Recycling so that they : better reflect field behavior and target the desirable attributes of the material. The previous design process failed to : adequately pr...

  3. Sustainable Materials Management (SMM) Web Academy Webinar: An Introduction to Lithium Batteries and the Challenges that they Pose to the Waste and Recycling Industry

    Science.gov (United States)

    This is a webinar page for the Sustainable Management of Materials (SMM) Web Academy webinar titled, An Introduction to Lithium Batteries and the Challenges that they Pose to the Waste and Recycling Industry.

  4. Fabrication of autoclavable bacteriologic loops for handling Mycobacterium tuberculosis isolates from recycled materials in a resource poor setting.

    Science.gov (United States)

    Ochang, Ernest Afu

    2013-01-01

    In resource limited settings, the appropriation of scarce resources during research efforts can be daunting. Sourcing for disposable plastic bacteriological loops for manipulating M. tuberculosis had been eating into the research budget. In an attempt to reduce cost, an alternative and more cost effective way of obtaining autoclavable bacteriologic inoculation loops from used materials in the laboratory was employed. Autoclave resistant loops were prepared from polypropylene automatic pipette tips and platinum wires from electric stoves. The loop volume, when desired, was calculated using a simple mathematical equation after several passes in weighted water. Laboratories in resource poor settings could also save on inoculating loops by adopting such pragmatic approaches using recycled materials.

  5. National inventory of the radioactive wastes and the recycling materials; Inventaire national des dechets radioactifs et des matieres valorisables

    Energy Technology Data Exchange (ETDEWEB)

    Dupuis, M.C

    2006-07-01

    This synthesis report presents the 2006 inventory of the radioactive wastes and recycling materials, in France. It contains 9 chapters: a general introduction, the radioactive wastes (definition, classification, origins and management), the inventory methodology (organization, accounting and prospecting, exhaustiveness and control tools), main results (stocks, prevision for the period 2005-2020, perspectives after 2020), the inventory for producers or owners (front end fuel cycle, electric power plants, back end fuel cycle, wastes processing and maintenance facilities, researches centers, medical activities, industrial activities, non nuclear industries using nuclear materials, defense center, storage and disposal), the polluted sites, examples of foreign inventories, conclusion and annexes. (A.L.B.)

  6. The Circular Economy of E-Waste in the Netherlands: Optimizing Material Recycling and Energy Recovery

    OpenAIRE

    Golsteijn, Laura; Valencia Martinez, Elsa

    2017-01-01

    In the Netherlands, waste electric and electronic equipment (e-waste) is an important point for discussion on the circular economy agenda. This paper shows the Dutch example of how “waste” can be turned into a resource, and the climate change benefits from appropriate collection and recycling. It describes the avoided emissions of CO2-equivalents due to e-waste recycling and appropriate removal and destruction of (H)CFCs contained in cooling and freezing appliances. Six different e-waste cate...

  7. Development of a readily recyclable sound insulation material made of polyester fibers. Application of the PET fibers from plastic bottles; Recycle kanona jidoshayo polyester sei kyuon zairyo no kaihatsu. Shiyozumi pet bottle zai no insulator zai eno tekiyo

    Energy Technology Data Exchange (ETDEWEB)

    Nemoto, K.; Watanabe, K.; Sugawara, H.; Minemura, Y. [Nissan Motor Co. Ltd., Tokyo (Japan)

    1997-10-01

    We have developed new polyester sound-absorbing materials made of fine and modified-cross-section polyester fabric. They provide noticeably higher sound-absorbing performance than traditional materials. Another feature of the new materials is their excellent recyclability since they are made of polyester. Application of the new materials to the dash silencer and the floor carpeting produced a great improvement in sound-insulation performance with less weight. 2 refs., 7 figs.

  8. High purity materials as targets for radioisotope production: Needs ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 28; Issue 4. High purity materials as targets for radioisotope production: Needs and challenges ... Application of radioisotopes in medicine has given birth to a new branch, viz. nuclear medicine, wherein radioisotopes are used extensively in the diagnosis and treatment ...

  9. Availability of enriched isotopic material for accelerator targets

    International Nuclear Information System (INIS)

    Newman, E.

    1982-01-01

    The electromagnetic isotope enrichment facility at ORNL provides a broad spectrum of highly enriched stable isotopes to the worldwide scientific community. The continued timely availability of these materials is of vital importance in many areas of basic research and, in particular, as source material for the fabrication of accelerator targets. A brief description of the facility and its capabilities and limitations is presented

  10. [Research on resources chemistry of Chinese medicinal materials and resources recycling utilization ways and goals and tasks].

    Science.gov (United States)

    Duan, Jin-ao; Su, Shu-lan; Guo, Sheng; Jiang, Shu; Liu, Pei; Yan, Hui; Qian, Da-wei; Zhu, Hua-xu; Tang, Yu-ping; Wu, Qi-nan

    2015-09-01

    The objects of research on the resources chemistry of Chinese medicinal materials (RCCMM) are promotion of efficient production, rational utilization and improving quality of CMM and natural products. The development of TCM cause depends on the efficient utilization and sustainable development of CMM, hinges on the technologies and methods for using and discovering medicinal biological resources, stand or fall on the extension of industy chains, detailed utilizaion of resource chemical components by multi-way, multi-level. All of these may help to the recycling utilization and sound development of RCMM. In this article, five respects were discussed to the RCCMM researches and resources recycling utilization ways and goals and tasks. First, based on the principle of resource scarcity, discovering or replacing CMM resources, protecting the rare or endangered species or resources. Second, based on the multifunctionality of CMM, realizing the value-added and value compensation, and promoting the utilization efficiency through systermatic and detailed exploitation and utilization. Third, based on the resource conservation and environment-friendly, reducing raw material consumption, lowering cost, promoting recycling utilization and elevating utilization efficiency. Fourth, based on the stratege of turning harm into good, using the invasive alien biological resources by multi-ways and enriching the medicial resources. Fifth, based on the method of structure modification of chemical components, exploring and enhancing the utility value of resouces chemical substances. These data should provide references and attention for improving the utilization efficiency, promoting the development of recycling economy, and changing the mode of economic growth of agriculture and industry of CMM fundamentally.

  11. Material control and accountability aspects of safeguards for the USA 233U/TH fuel recycle plant

    International Nuclear Information System (INIS)

    Carpenter, J.A. Jr.; McNeany, S.R.; Angelini, P.; Holder, N.D.; Abraham, L.

    1979-01-01

    Two fuel cycles are considered. The highly enriched uranium (HEU) cycle uses uranium enriched 93% in 235 U as the initial fuel. The medium enriched uranium (MEU) cycle uses uranium with a 235 U enrichment less than 20% as its initial fuel. In both, 233 U is bred from thorium. The HEU 235 U and the 233 U of both cycles are recycled. The MEU 235 U is retired to waste after one reactor cycle. Typical heavy metal contents of spent fuel elements from both cycles are presented. The main functional areas of the recycle plant are Shipping, Receiving, and Storage; Reprocessing; Refabrication; and Waste Treatment. A real-time materials accountability system will manage the data provided by measurements from all four areas. Simulations of material flow used in the HTGR development program are forerunners of such a system. The material control and accountability aspects of Reprocessing and Refabrication only are discussed. The proposed accountability areas are identified and the measurement techniques appropriate to various streams crossing the boundaries of the areas are identified. Special emphasis is placed on novel nondestructive methods developed for assaying solid materials containing 233 U-Th. The material form, total uranium and plutonium, and activity of selected reprocessing streams are listed. The isotopics and activity of the uranium input into Refabrication are also presented

  12. Possible Target Corridor for Sustainable Use of Global Material Resources

    Directory of Open Access Journals (Sweden)

    Stefan Bringezu

    2015-02-01

    Full Text Available Many countries have started to develop policy programs for the sustainable use of natural resources. Indicators and targets can cover both a territorial and a life-cycle-wide global perspective. This article focuses on how a safe operating space for global material resource use can be outlined based on existing economy-wide material flow indicators. It reflects on issues such as scale and systems perspective, as the choice of indicators determines the target “valves” of the socio-industrial metabolism. It considers environmental pressures and social aspects of safe and fair resource use. Existing proposals for resource consumption targets are reviewed, partially revisited, and taken as a basis to outline potential target values for a safe operating space for the extraction and use of minerals and biomass by final consumption. A potential sustainability corridor is derived with the Total Material Consumption of abiotic resources ranging from 6 to 12 t/person, the Total Material Consumption of biotic resources not exceeding 2 t/person, and the Raw Material Consumption of used biotic and abiotic materials ranging from 3 to 6 t/person until 2050. For policy, a “10-2-5 target triplet” can provide orientation, when the three indicators are assigned values of 10, 2, and 5 t/person, respectively.

  13. Research and development on materials for the SPES target

    Science.gov (United States)

    Corradetti, Stefano; Andrighetto, Alberto; Manzolaro, Mattia; Scarpa, Daniele; Vasquez, Jesus; Rossignoli, Massimo; Monetti, Alberto; Calderolla, Michele; Prete, Gianfranco

    2014-03-01

    The SPES project at INFN-LNL (Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali di Legnaro) is focused on the production of radioactive ion beams. The core of the SPES facility is constituted by the target, which will be irradiated with a 40 MeV, 200 µA proton beam in order to produce radioactive species. In order to efficiently produce and release isotopes, the material constituting the target should be able to work under extreme conditions (high vacuum and temperatures up to 2000 °C). Both neutron-rich and proton-rich isotopes will be produced; in the first case, carbon dispersed uranium carbide (UCx) will be used as a target, whereas to produce p-rich isotopes, several types of targets will have to be irradiated. The synthesis and characterization of different types of material will be reported. Moreover, the results of irradiation and isotopes release tests on different uranium carbide target prototypes will be discussed.

  14. From waste plastics to industrial raw materials: A life cycle assessment of mechanical plastic recycling practice based on a real-world case study.

    Science.gov (United States)

    Gu, Fu; Guo, Jianfeng; Zhang, Wujie; Summers, Peter A; Hall, Philip

    2017-12-01

    Mechanical recycling of waste plastics is an environmental solution to the problem of waste plastic disposal, and has already become a common practice in industry. However, limited information can be found on either the industralised plastic recycling or the recycled materials, despite the use of recycled plastics has already extended to automobile production. This study investigates the life cycle environmental impacts of mechanical plastic recycling practice of a plastic recycling company in China. Waste plastics from various sources, such as agricultural wastes, plastic product manufacturers, collected solid plastic wastes and parts dismantled from waste electric and electronic equipments, are processed in three routes with products end up in different markets. The results of life cycle assessments show that the extrusion process has the largest environmental impacts, followed by the use of fillers and additives. Compared to production of virgin plastics and composites, the mechanical recycling is proved to be a superior alternative in most environmental aspects. Substituting virgin plastic composites with recycled plastic composites has achieved the highest environmental benefits, as virgin composite production has an impact almost 4 times higher that of the recycled composite production in each ReCiPe endpoint damage factor. Sensitivity analysis shows that the coverage of collecting network contribute affect little to overall environmental impact, and centralisation plays an important role in reducing overall environmental impacts. Among the fillers and additives, impact modifiers account for the most significant contributions to the environmental impacts of recycled composites. This study provides necessary information about the existing industrialised plastic recycling practice, and recommendations are given. Research implications are presented with the purpose to achieve higher substitution rate and lower environmental impact. Copyright © 2017 Elsevier B

  15. Proceedings of the second workshop on polarised target materials

    International Nuclear Information System (INIS)

    Court, G.R.; Niinikoski, T.O.; Cox, S.F.J.; Cragg, D.A.

    1980-10-01

    The proceedings are reported of a second international workshop which was convened to consider the use of polarised targets in nuclear research and in particular the experimental difficulties imposed by the limitations of target materials with respect to their relatively low hydrogen content and susceptibility to radiation damage. Papers presented were entitled: (1) Introduction and general review. (2) Theory of dynamic nuclear polarisation. (3) Radiation induced paramagnetic centres in organic and inorganic materials. (4) Dynamic nuclear polarisation with radiation induced free radicals. (5) Radiation damage of chemically doped materials. (6) Chemical doping. (7) Techniques and instrumentation. (8) The use of polarised nuclei in physics with neutrons. (9) The use of polarised targets in high energy physics. (U.K.)

  16. Interaction of bullets with intermediate targets: material transfer and damage.

    Science.gov (United States)

    Vermeij, Erwin; Rijnders, Marco; Pieper, Pascal; Hermsen, Rob

    2012-11-30

    In complex shooting incidents, it is not always clear which bullet hit or eventually killed the victim and who fired it. The examination of traces of foreign material embedded in or adhered to bullets provides critical information in the trajectory reconstruction of spent bullets. Such a reconstruction can have considerable legal implications because it can prove that it was not someone's intention to kill. However, the microtraces that remain on spent bullets are often ignored. Microtraces on bullets, around bullet-holes and on ricochet marks were investigated using SEM/EDX for two different types of bullets: a relatively hard, full metal jacket (FMJ) bullet and a relatively soft, lead round-nose (LRN) bullet. A total of 179 bullets were fired into intermediate targets, sheets of 5 different materials (MDF, greenboard, gypsum fibreboard, glass and steel), at approximate incident angles of 90°, 10° and 5°. Of the 144 bullets fired at incident angles of 90°, 130 bullets perforated one of the materials, and 14 bullets perforated two of the materials. The 35 bullets fired at incident angles of 10° and 5° ricocheted off the intermediate targets, producing ricochet marks. In the majority of cases, traces from the target materials were found on the bullet, both after perforation and ricochet. The only exceptions were (1) the perforation of 9-mm sheets of MDF by FMJ bullets and (2) ricochet off glass when the glass did not break. Steel targets transfer small, but still detectable traces of iron to the bullet. The order in which targets are hit was reflected in the traces found on the bullets, i.e., materials from a secondary target were deposited on top of deposits from the primary target. This result implies that it is possible to determine the order of impact from the stratification of the material analysed. Traces from the bullets were found around all the bullet holes. Wipe-off from lead bullets is sometimes visible by the naked eye. Ricocheting bullets produce

  17. Recycling - Danish Waste Management Strategy

    DEFF Research Database (Denmark)

    Romann, Anne Funch; Thøgersen, John; Husmer, Lis

    The report challanges recycling as the only waste handling strategy. The tonnes of recycled materials should not be the only goal - it is essential to minimize the waste production and focus on eliminating hazardous materials.......The report challanges recycling as the only waste handling strategy. The tonnes of recycled materials should not be the only goal - it is essential to minimize the waste production and focus on eliminating hazardous materials....

  18. Indicative quantities of recyclable materials disposed of at municipal landfills in 2011

    CSIR Research Space (South Africa)

    Oelofse, Suzanna HH

    2012-10-01

    Full Text Available is well aligned with the objectives of the National Environmental Management: Waste Act of 2008 (RSA, 2009) and the National Waste Management Strategy (DEA, 2011). Until recently, recycling has had limited community participation and government... and waste characterisation studies from South African municipalities was undertaken. The results of these findings were combined with the estimates of municipal waste generation in South Africa, 2011, as determined in the National Waste Information...

  19. Urban mining: quality and quantity of recyclable and recoverable material mechanically and physically extractable from residual waste.

    Science.gov (United States)

    Di Maria, Francesco; Micale, Caterina; Sordi, Alessio; Cirulli, Giuseppe; Marionni, Moreno

    2013-12-01

    The mechanically sorted dry fraction (MSDF) and Fines (waste (RMSW) contains respectively about 11% w/w each of recyclable and recoverable materials. Processing a large sample of MSDF in an existing full-scale mechanical sorting facility equipped with near infrared and 2-3 dimensional selectors led to the extraction of about 6% w/w of recyclables with respect to the RMSW weight. Maximum selection efficiency was achieved for metals, about 98% w/w, whereas it was lower for Waste Electrical and Electronic Equipment (WEEE), about 2% w/w. After a simulated lab scale soil washing treatment it was possible to extract about 2% w/w of inert exploitable substances recoverable as construction materials, with respect to the amount of RMSW. The passing curve showed that inert materials were mainly sand with a particle size ranging from 0.063 to 2mm. Leaching tests showed quite low heavy metal concentrations with the exception of the particles retained by the 0.5mm sieve. A minimum pollutant concentration was in the leachate from the 10 and 20mm particle size fractions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Overview of recycling technologies for decommissioned materials. Lessons learned during the dismantling of a small PWR reactor

    International Nuclear Information System (INIS)

    Klein, M.; Emond, O.; Ponnet, M.

    2001-01-01

    Full text: SCK CEN is dismantling its 11 MWe PWR reactor. The reactor was shutdown in 1987 after 25 years of operation and the dismantling started in 1990. For the management of the low radioactive materials, we apply a strategy promoting the minimisation of the production of radioactive waste and hence the maximisation of the production of recycled materials while keeping the costs as low as possible. The recycled materials are either reused in the non- nuclear industry as raw materials (metal scrap industry or building industry for the concrete) or recycled in the nuclear industry for specific applications (reuse of metals for fabrication of shielding, potential reuse of concrete for production of 'radioactive mortar'). The clearance of radioactive materials and their reuse require the strict respect of procedures and specifications. In our case, the Health Physics department under supervision of the Competent Authority establishes the procedures. This procedure is still a case by case practice but the legislation in Belgium is progressively put in place. For the recycling in the nuclear industry, we must respect the specifications of the end-user. Up to now, we have recycled low radioactive metals for the fabrication of shielding in the USA, so we had to respect the specifications of the melting facility and to obtain the authorisations for the transport abroad and for the transfer of property. Besides the radioactive waste route, we are using several evacuation routes for the dismantled materials: Evacuation of the cleared metals (iron, stainless steel, copper, electric motors...) to a local scrap dealer; Evacuation of metals to the Studsvik melting facility situated in Sweden: after clearance by the Swedish Authority, the non radioactive materials are sent to a local scrap dealer and the secondary radioactive waste is sent back to Belgium and conditioned by Belgoprocess. This technology further decontaminates the metals and allows performing an accurate

  1. Oyster spat recruitment in Espírito Santo State, Brazil, using recycled materials

    Directory of Open Access Journals (Sweden)

    Rosebel C. Nalesso

    2008-12-01

    Full Text Available This paper evaluated the effectiveness of four types of oyster spat collectors, made with recycled materials, in the recruitment of the mangrove oyster Crassostrea spp. at five sites in the Benevente river estuary, Anchieta District and on two islands in Piúma District, both in Espírito Santo State. The collectors were made of: 1- oyster shells, 2- PET bottles, 3- car tires and 4- tiles, all of them suspended by ropes and tied to roots of Rhizophora mangle or mussel long-lines. The number of spat recruited on each collector and their shell lengths were registered bimonthly, as well as the physico-chemical-trophic parameters of the water: salinity, temperature, dissolved oxygen, particulate organic matter and chlorophyll a, which were correlated (by Spearman's correlation with the number of spat recruited. Spat settlement was significantly higher on oyster shell, tile and tire collectors, mainly at points with higher salinities, such as Praia do Coqueiro in Anchieta and on Meio and Cabrito Islands in Piúma (Kruskal-Wallis: H= 10.01; 3 d.f.; p 0.05. The number of oyster spat was positively correlated with the salinity (ρs= 0.331; p Este trabalho avaliou a eficiência de quatro tipos de coletores de sementes no recrutamento de ostras Crassostrea sp., em cinco pontos do estuário do Rio Benevente, município de Anchieta, e em duas ilhas no município de Piúma, estado do Espírito Santo. Foram utilizados quatro tipos de coletores: 1-conchas de ostras, 2- garrafas PET, 3-tiras de pneu e 4- telhas, todos suspensos por cordas e amarrados em rizóforos de Rhizophora mangle ou em "long-lines" de mexilhões. Bimensalmente, as sementes recrutadas foram contadas e medidas quanto à altura, determinando-se os parâmetros físico-químicos-tróficos da água: salinidade, temperatura, oxigênio dissolvido, matéria orgânica particulada e clorofila-a, que foram correlacionados com o número de sementes nos coletores (através de correlações de Spearman

  2. Global Warming Implications of the Use of By-Products and Recycled Materials in Western Australia’s Housing Sector

    Directory of Open Access Journals (Sweden)

    Krishna Lawania

    2015-10-01

    Full Text Available Western Australia’s housing sector is growing rapidly and around half a million houses are expected to be built by 2030, which not only will result in increased energy and resources demand but will have socio-economic impacts. Majority of Western Australians live in detached houses made of energy intensive clay bricks, which have a high potential to generate construction and demolition (C&D waste. Therefore, there is a need to look into the use of alternative materials and construction methods. Due to Western Australia’s temperate climate, concrete could not only offer a comfortable living space but an operational energy saving also can be achieved. This paper has assessed the global warming implications of cast in-situ concrete sandwich wall system as an alternative to clay brick walls (CBW with partial replacement of cement in concrete with by-products such as fly ash (FA and ground granulated blast furnace slag (GGBFS, natural aggregate (NA with recycled crushed aggregate (RCA, natural sand (NS with manufactured sand (MS and, polyethylene terephthalate (PET foam core as a replacement to polystyrene core for construction of a typical 4 × 2 × 2 detached house in Perth. Life cycle management (LCM approach has been used to determine global warming reduction benefits due to the use of available by-products and recycled materials in Western Australian houses.

  3. Global Warming Implications of the Use of By-Products and Recycled Materials in Western Australia’s Housing Sector

    Science.gov (United States)

    Lawania, Krishna; Sarker, Prabir; Biswas, Wahidul

    2015-01-01

    Western Australia’s housing sector is growing rapidly and around half a million houses are expected to be built by 2030, which not only will result in increased energy and resources demand but will have socio-economic impacts. Majority of Western Australians live in detached houses made of energy intensive clay bricks, which have a high potential to generate construction and demolition (C&D) waste. Therefore, there is a need to look into the use of alternative materials and construction methods. Due to Western Australia’s temperate climate, concrete could not only offer a comfortable living space but an operational energy saving also can be achieved. This paper has assessed the global warming implications of cast in-situ concrete sandwich wall system as an alternative to clay brick walls (CBW) with partial replacement of cement in concrete with by-products such as fly ash (FA) and ground granulated blast furnace slag (GGBFS), natural aggregate (NA) with recycled crushed aggregate (RCA), natural sand (NS) with manufactured sand (MS) and, polyethylene terephthalate (PET) foam core as a replacement to polystyrene core for construction of a typical 4 × 2 × 2 detached house in Perth. Life cycle management (LCM) approach has been used to determine global warming reduction benefits due to the use of available by-products and recycled materials in Western Australian houses.

  4. Recycling systems and material flows from the viewpoint of thermal waste treatment; Kreislaufwirtschaft- und Stoffstrombetrachtungen aus Sicht der thermischen Abfallbehandlung

    Energy Technology Data Exchange (ETDEWEB)

    Johnke, B. [Umweltbundesamt, Berlin (Germany); Mast, P.G. [Tauw Umwelt GmbH, Berlin (Germany)

    1998-09-01

    Material stream analysis can serve as a basis for decisions on which materials should be kept in circulation, and in what quantity, and which materials it is better to remove from the recycling system and dispose of as waste. Wastes destined for disposal are mostly transferred to waste treatment plants and landfills. The role of thermal treatment as part of the disposal system is to destroy or decompose organic pollutants contained in the waste, concentrate and remove inorganic pollutants, make the heat arising during the treatment process available for use as energy, and make the greatest possible physical use of the treatment residues. The present paper reviews the current regulations for the promotion of recycling and investigates selected material streams and the fate of these materials. In connection with the residue quality of household waste incineration slag as a thermal waste treatment product it also considers the influence of waste management measures on wastes destined for disposal. [Deutsch] Stoffstrombetrachtungen koennen als Grundlage fuer Entscheidungen dienen, welche Stoffe in welchem Umfang im Kreislauf verbleiben oder wieder integriert werden sollten und welche besser als Abfall zur Beseitigung aus dem Kreislaufsystem auszuschleusen sind. Fuer Abfaelle zur Beseitigung wird diese Aufgabe i.d.R. von thermischen Abfallbehandlungsanlagen und Deponien uebernommen. Im Rahmen der Entsorgung kommt der thermischen Behandlung dabei die Aufgabe zu, die im Abfall zur Beseitigung enthaltenen organischen Schadstoffe zu zerstoeren oder abzubauen, anorganische Schadstoffe aufzukonzentrieren und auszuschleusen, die bei dem Behandlungsprozess entstehende Waerme einer weitgehenden Energienutzung zuzufuehren und die Rueckstaende aus der Behandlung so weit wie moeglich stofflich zu verwerten. Nachfolgend sollen insbesondere die Regelungen zur Unterstuetzung der Kreislaufwirtschaft, ausgewaehlte Stofffluesse und der Verbleib dieser Stoffe und Materialien und der

  5. The prospects for polarized target materials with pure carbon background

    International Nuclear Information System (INIS)

    Hill, D.A.

    1992-01-01

    None of the materials presently in common use for polarized proton targets has a pure carbon nuclear background. The alcohols and diols contain some oxygen, and the ammonia and amine-based materials contain nitrogen and/or other noncarbon species. In the latter cases the noncarbon nuclei are measurably polarized as a concomitant of the process used to polarize the hydrogen nuclei. The relative simplicity of a pure carbon background would be advantageous for most types of scattering experiments and perhaps crucial for some. In addition to simplifying the kinematics of background events, pure carbon is relatively easy to prepare as a ''dummy'' target for background subtraction. Also, in such a target material, 13 C-enrichment would yield a clean polarized 13 C material. In this note I explore the possibilities for such materials, touching upon only what I consider to be the ''high'' points. The subject matter is capable of nearly endless ramification and speculation. In fact, owing to a general lack of relevant experimental data, even this relatively brief note contains much that is speculative to some degree

  6. Fiscal 2000 report on result of R and D of nonmetallic material recycling promotion technology (demonstration test and research, total system technology); 2000 nendo hitetsu kinzokukei sozai recycle sokushin gijutsu kenkyu kaihatsu seika hokokusho. Jissho shiken kenkyu, total system gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    R and D was conducted on advanced recycling technology for aluminum and base metal/rare metal based materials, with fiscal 2000 results compiled. In the research of aluminum recycling technology, on a continuous fractional crystallization process and a purification by zinc removal process, the existing facilities for each demonstrated that they could simulate an aluminum scrap melting process capacity of 1,000 t/month, with a series of initial conditions determined. In the research of total system technology, combined test facilities were completed in which a purification process and a melt cleaning process were integrated. In the research of the recycling technology for base metal/rare metal based materials, a test was carried out by demonstrative facilities, with the aim of establishing copper regeneration technology in which high grade copper is produced using metal/resin based scraps such as shredder dust of automobiles as the materials. In structuring the total system technology, a preliminary survey and environmental load measures were carried out toward the practicability of a comprehensive copper metal collection recycling system. (NEDO)

  7. Target recycling amplification for label-free and sensitive colorimetric detection of adenosine triphosphate based on un-modified aptamers and DNAzymes.

    Science.gov (United States)

    Gong, Xue; Li, Jinfu; Zhou, Wenjiao; Xiang, Yun; Yuan, Ruo; Chai, Yaqin

    2014-05-30

    Based on target recycling amplification, the development of a new label-free, simple and sensitive colorimetric detection method for ATP by using un-modified aptamers and DNAzymes is described. The association of the model target molecules (ATP) with the corresponding aptamers of the dsDNA probes leads to the release of the G-quadruplex sequences. The ATP-bound aptamers can be further degraded by Exonuclease III to release ATP, which can again bind the aptamers of the dsDNA probes to initiate the target recycling amplification process. Due to this target recycling amplification, the amount of the released G-quadruplex sequences is significantly enhanced. Subsequently, these G-quadruplex sequences bind hemin to form numerous peroxidase mimicking DNAzymes, which cause substantially intensified color change of the probe solution for highly sensitive colorimetric detection of ATP down to the sub-nanomolar (0.33nM) level. Our method is highly selective toward ATP against other control molecules and can be performed in one single homogeneous solution, which makes our sensing approach hold great potential for sensitive colorimetric detection of other small molecules and proteins. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Target-induced structure switching of hairpin aptamers for label-free and sensitive fluorescent detection of ATP via exonuclease-catalyzed target recycling amplification.

    Science.gov (United States)

    Xu, Yunying; Xu, Jin; Xiang, Yun; Yuan, Ruo; Chai, Yaqin

    2014-01-15

    In this work, we described the development of a new label-free, simple and sensitive fluorescent ATP sensing platform based on exonuclease III (Exo III)-catalyzed target recycling (ECTR) amplification and SYBR Green I indicator. The hairpin aptamer probes underwent conformational structure switching and re-configuration in the presence of ATP, which led to catalytic cleavage of the re-configured aptamers by Exo III to release ATP and to initiate the ECTR process. Such ECTR process resulted in the digestion of a significant number of the hairpin aptamer probes, leading to much less intercalation of SYBR Green I to the hairpin stems and drastic suppression of the fluorescence emission for sensitive ATP detection down to the low nanomolar level. Due to the highly specific affinity bindings between aptamers and ATP, the developed method exhibited excellent selectivity toward ATP against other analogous molecules. Besides, our ATP sensing approach used un-modified aptamer probes and could be performed in a "mix-and-detect" fashion in homogenous solutions. All these distinct advantages of the developed method thus made it hold great potential for the development of simple and robust sensing strategies for the detection of other small molecules. © 2013 Elsevier B.V. All rights reserved.

  9. Study of Material Used in Nanotechnology for the Recycling of Industrial Waste Water

    Science.gov (United States)

    Larbi, L.; Fertikh, N.; Toubal, A.

    The objective of our study is to recycle the industrial waste water of a industrial Complex after treatment by the bioprocess MBR (membrane bioreactor). In order to apply this bioprocess, the water quality in question was first of all studied. To characterize this industrial waste water, a series of physicochemical analysis was carried out according to standardized directives and methods. Following-up the water quality to meet the regulatory requirements with rejection of this industrial waste water, a study was done thanks to the permanently monitoring of the following relevant parameters(P): the flow, the potential of hydrogen (pH), the total suspended solids(TSS), the turbidity (Turb), the chemical oxygen demand (COD),the biochemical oxygen demand (BOD), the Kjeldahl total nitrogen (KTN) and ammonia (NH4+), the total phosphorus (Ptot), the fluorine (F), the oils (O), the fats (F) and the phenols (Ph). According to collected information, it was established the sampling rates to which the quality control was done, the selected analytical methods were validated by the control charts and the analysis test number was determined by the Cochran test. The results of the quality control show that some rejected water contents are not in the Algerian standards, but, in our case, the objective is the preoccupation for a standard setting of these industrial water parameters so as to recycle it. The process adopted by MBR for waste water treatment is being studied, first in the development of the experimental characterizing of the reactor and the selected membrane.

  10. Assessment of municipal solid waste generation and recyclable materials potential in Kuala Lumpur, Malaysia.

    Science.gov (United States)

    Saeed, Mohamed Osman; Hassan, Mohd Nasir; Mujeebu, M Abdul

    2009-07-01

    This paper presents a forecasting study of municipal solid waste generation (MSWG) rate and potential of its recyclable components in Kuala Lumpur (KL), the capital city of Malaysia. The generation rates and composition of solid wastes of various classes such as street cleansing, landscape and garden, industrial and constructional, institutional, residential and commercial are analyzed. The past and present trends are studied and extrapolated for the coming years using Microsoft office 2003 Excel spreadsheet assuming a linear behavior. The study shows that increased solid waste generation of KL is alarming. For instance, the amount of daily residential SWG is found to be about 1.62 kg/capita; with the national average at 0.8-0.9 kg/capita and is expected to be increasing linearly, reaching to 2.23 kg/capita by 2024. This figure seems reasonable for an urban developing area like KL city. It is also found that, food (organic) waste is the major recyclable component followed by mix paper and mix plastics. Along with estimated population growth and their business activities, it has been observed that the city is still lacking in terms of efficient waste treatment technology, sufficient fund, public awareness, maintaining the established norms of industrial waste treatment etc. Hence it is recommended that the concerned authority (DBKL) shall view this issue seriously.

  11. Recyclable calix[4]arene-lanthanoid luminescent hybrid materials with color-tuning and color-switching properties.

    Science.gov (United States)

    Ennis, Brendan W; Muzzioli, Sara; Reid, Brodie L; D'Alessio, Daniel M; Stagni, Stefano; Brown, David H; Ogden, Mark I; Massi, Massimiliano

    2013-05-21

    Inorganic-organic hybrid materials combine the properties of both components providing functionality with a wide range of potential applications. Phase segregation of the inorganic and organic components is a common challenge in these systems, which is overcome here by copolymerizing a metal-free calixarene ionophore and methyl methacrylate. A lanthanoid ion is then added using a swelling-deswelling procedure. The resulting luminescent hybrid materials can be made to emit any required color, including white light, by loading with an appropriate mixture of lanthanoids. The gradation of the emitted color can also be finely adjusted by changing the excitation wavelength. The polymer monolith can be recycled to emit a different color by swelling with a solution containing a different lanthanoid ion. This methodology is flexible and has the potential to be extended to many different ionophores and polymer matrices.

  12. Research and development on materials for the SPES target

    Directory of Open Access Journals (Sweden)

    Corradetti Stefano

    2014-03-01

    Full Text Available The SPES project at INFN-LNL (Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali di Legnaro is focused on the production of radioactive ion beams. The core of the SPES facility is constituted by the target, which will be irradiated with a 40 MeV, 200 µA proton beam in order to produce radioactive species. In order to efficiently produce and release isotopes, the material constituting the target should be able to work under extreme conditions (high vacuum and temperatures up to 2000 °C. Both neutron-rich and proton-rich isotopes will be produced; in the first case, carbon dispersed uranium carbide (UCx will be used as a target, whereas to produce p-rich isotopes, several types of targets will have to be irradiated. The synthesis and characterization of different types of material will be reported. Moreover, the results of irradiation and isotopes release tests on different uranium carbide target prototypes will be discussed.

  13. Annual asphalt pavement industry survey on recycled materials and warm-mix asphalt usage : 2009-2012.

    Science.gov (United States)

    2013-12-01

    One of the shared goals of the Federal Highway Administration (FHWA) and the National Asphalt Pavement Association : (NAPA) is to support and promote sustainable practices such as pavement recycling and warm-mix asphalt (WMA). The use of : recycled m...

  14. Recycle Glass in Foam Glass Production

    DEFF Research Database (Denmark)

    Petersen, Rasmus Rosenlund; König, Jakob; Yue, Yuanzheng

    The foam glass industry turn recycle glass into heat insulating building materials. The foaming process is relative insensitive to impurities in the recycle glass. It is therefore considered to play an important role in future glass recycling. We show and discuss trends of use of recycled glasses...... in foam glass industry and the supply sources and capacity of recycle glass....

  15. A comparative study of recycled aggregates from concrete and mixed debris as material for unbound road sub-base

    Directory of Open Access Journals (Sweden)

    Jiménez, J. R.

    2011-06-01

    Full Text Available Seven different types of recycled aggregates from construction and demolition waste (CDW have been evaluated as granular materials for unbound road sub-bases construction. The results showed that recycled concrete aggregates complied with all specifications for using in the construction of unbound structural layers (sub-base for T3 and T4 traffic categories according to the Spanish General Technical Specification for Road Construction (PG-3. Some mixed recycled aggregates fell short of some specifications due to a high content of sulphur compounds and poor fragmentation resistance. Sieving off the fine fraction prior to crushing the mixed CDW reduce the total sulphur content and improve the quality of the mixed recycled aggregates, by contrast, pre-sieving concrete CDW had no effect on the quality of the resulting aggregates. The results were compared with a crushed limestone as natural aggregate.

    Siete áridos reciclados de residuos de construcción y demolición (RCD se han evaluado como zahorras para la construcción de sub-bases de carreteras. Los resultados muestran que los áridos reciclados de hormigón cumplen todas las especificaciones del Pliego de Prescripciones Técnicas Generales para Obras de Carreteras de España (PG-3 para su uso en capas estructurales (sub-base de las categorías de tráfico T3 y T4. Algunos áridos reciclados mixtos no cumplen por escaso margen algunas de las especificaciones, debido a un alto contenido de compuestos de azufre y a una menor resistencia a la fragmentación. El precribado de la fracción fina antes de la trituración de los RCD mixtos reduce el contenido de azufre total y mejora la calidad, por el contrario, el precribado de los RCD de hormigón no tiene ningún efecto sobre la calidad de los áridos reciclados. Los resultados se compararon con una zahorra artificial caliza como árido natural.

  16. 20 years of experience on treatment of large contaminated components and on clearance of material for recycling

    International Nuclear Information System (INIS)

    Lorenzen, Joachim; Lindberg, Maria; Amcoff, Bjoern; Wirendal, Bo

    2005-01-01

    This paper will describe the treatment of contaminated, large, retired components from NPP:s, at low and intermediate activity waste levels for recycling in Sweden. Decontamination and melting of various large components, as well as other metal scrap, has been conducted at Studsvik since the mid 1980:ies. Experience on clearance for recycling, i.e. for unconditional re-use of the metals in the public domain will be described. The contaminated material may be Co-60 dominated as well as Uranium Bearing Waste. During these years different techniques for decontamination and segmentation as well as pre- and post treatment have been developed and successively applied at Studsvik melting facility in Nykoeping, Sweden. This collective experience is presently used for the planning and treatment of both domestic and foreign larger components, like heat exchangers, reactors vessel heads, turbine parts, steam generators, fuel bottles and Giant boilers. During 2005 one 300 ton full size, 400 m 3 Westinghouse Steam Generator is under treatment using advanced decontamination, segmentation and melting techniques to be applied in a specifically designed and confined environment. The conduction of demonstration projects as well as commercial projects will be explained and described. The Studsvik melting facility is today treating components and scrap metal comprising stainless and carbon steel as well as aluminium, copper, brass and lead. Studsvik RadWaste has licenses for treating not only components from Swedish nuclear facilities but also for processing components from nuclear industries outside Sweden, including temporary import and export within a limited time window for each international project. Direct clearance or clearance after limited decay storage at Studsvik site is possible. The high Recycling Rate is due to optimized production to leave an extremely low percentage of secondary waste, including post-treatment of the secondary waste volume. Further, the waste volume

  17. Processing of oil palm empty fruit bunch as filler material of polymer recycles

    Science.gov (United States)

    Saepulloh, D. R.; Nikmatin, S.; Hardhienata, H.

    2017-05-01

    Oil palm empty fruit bunches (OPEFB) is waste from crude palm oil (CPO) processing plants. This research aims to process OPEFB to be a reinforcement polymer recycle with the mechanical milling method and identify each establishment molecular with the orbital hybridization theory. OPEFB fibers were synthesized using a mechanical milling until the size shortfiber and microfiber. Then do the biocomposite granular synthesis with single screw extruder. TAPPI chemical test shows levels of α-cellulose fibers amounted 41.68%. Based on density, the most optimum composition contained in the filler amounted 15% with the size is the microfiber. The test results of morphology with SEM showed deployment of filler OPEFB fiber is fairly equitable distributed. Regarding the molecular interaction between matrix with OPEFB fiber, described by the theory of orbital hybridization. But the explanation establishment of the bond for more complex molecules likes this from the side of the molecular orbital theory is necessary complete information of the hybrid levels.

  18. The Hydrological Performance of Lightweight Green Roofs Made From Recycled Waste Materials As the Drainage Layer

    Directory of Open Access Journals (Sweden)

    Afizah Asman Nurul Shahadahtul

    2017-01-01

    Full Text Available Green roofs can be used for promoting infiltration and provide temporary storage spaces. Hence, in urban stormwater structural design, the investigation of the hydrological performance investigation is often required. Thus, this paper presents the results of a hydrological investigation in term of peak flow reduction and green roof’s weight using 0, 2, and 6% slope for three specimens drainage layer in green roofs. Three types of recycled waste are selected for each test bed which is rubber crumbs, palm oil shell, and polyfoam. Another test bed without a drainage layer as a control. The result indicates that rubber crumbs can be used as a stormwater control and runoff reduction while ensuring a good drainage and aeration of the substrate and roofs. From the results obtained shows that rubber crumbs are suitable as a drainage layer and a proposed slope of 6% are suitable for lightweight green roofs.

  19. Characteristics from Recycled of Zinc Anode used as a Corrosion Preventing Material on Board Ship

    Science.gov (United States)

    Barokah, B.; Semin, S.; Kaligis, D. D.; Huwae, J.; Fanani, M. Z.; Rompas, P. T. D.

    2018-02-01

    The objective of this research is to obtain the values of chemical composition, electrochemical potential and electrochemical efficiency. Methods used were experiment with physical tests conducted in metallurgical laboratory and DNV-RP-B401 cathode protection design DNV (Det Norske Veritas) standard. The results showed that the composition of chemical as Zinc (Zn), Aluminium, Cadmium, Plumbumb, Copper and Indium is suitable of standard. The values of electrochemical potential and electrochemical efficiency were respectively. However it can be concluded that the normal meaning of recycled zinc anode with increasing melting temperature can produce zinc anode better than original zinc anode and can be used as cathode protection on board ships. This research can assist in the management of used zinc anode waste, the supply of zinc anodes for consumers at relatively low prices, and recommendations of using zinc anodes for the prevention of corrosion on board ship.

  20. Colorimetric detection of genetically modified organisms based on exonuclease III-assisted target recycling and hemin/G-quadruplex DNAzyme amplification.

    Science.gov (United States)

    Zhang, Decai; Wang, Weijia; Dong, Qian; Huang, Yunxiu; Wen, Dongmei; Mu, Yuejing; Yuan, Yong

    2017-12-21

    An isothermal colorimetric method is described for amplified detection of the CaMV 35S promoter sequence in genetically modified organism (GMO). It is based on (a) target DNA-triggered unlabeled molecular beacon (UMB) termini binding, and (b) exonuclease III (Exo III)-assisted target recycling, and (c) hemin/G-quadruplex (DNAzyme) based signal amplification. The specific binding of target to the G-quadruplex sequence-locked UMB triggers the digestion of Exo III. This, in turn, releases an active G-quadruplex segment and target DNA for successive hybridization and cleavage. The Exo III impellent recycling of targets produces numerous G-quadruplex sequences. These further associate with hemin to form DNAzymes and hence will catalyze H 2 O 2 -mediated oxidation of the chromogenic enzyme substrate ABTS 2- causing the formation of a green colored product. This finding enables a sensitive colorimetric determination of GMO DNA (at an analytical wavelength of 420 nm) at concentrations as low as 0.23 nM. By taking advantage of isothermal incubation, this method does not require sophisticated equipment or complicated syntheses. Analyses can be performed within 90 min. The method also discriminates single base mismatches. In our perception, it has a wide scope in that it may be applied to the detection of many other GMOs. Graphical abstract An isothermal and sensitive colorimetric method is described for amplified detection of CaMV 35S promoter sequence in genetically modified organism (GMO). It is based on target DNA-triggered molecular beacon (UMB) termini-binding and exonuclease III assisted target recycling, and on hemin/G-quadruplex (DNAzyme) signal amplification.

  1. Copper sludge from printed circuit board production/recycling for ceramic materials: a quantitative analysis of copper transformation and immobilization.

    Science.gov (United States)

    Tang, Yuanyuan; Lee, Po-Heng; Shih, Kaimin

    2013-08-06

    The fast development of electronic industries and stringent requirement of recycling waste electronics have produced a large amount of metal-containing waste sludge. This study developed a waste-to-resource strategy to beneficially use such metal-containing sludge from the production and recycling processes of printed circuit board (PCBs). To observe the metal incorporation mechanisms and phase transformation processes, mixtures of copper industrial waste sludge and kaolinite-based materials (kaolinite and mullite) were fired between 650 and 1250 °C for 3 h. The different copper-hosting phases were identified by powder X-ray diffraction (XRD) in the sintered products, and CuAl2O4 was found to be the predominant hosting phase throughout the reactions, regardless of the strong reduction potential of copper expected at high temperatures. The experimental results indicated that CuAl2O4 was generated more easily and in larger quantities at low-temperature processing when using the kaolinite precursor. Maximum copper transformations reached 86% and 97% for kaolinite and mullite systems, respectively, when sintering at 1000 °C. To monitor the stabilization effect after thermal process, prolonged leaching tests were carried out using acetic acid with an initial pH value of 2.9 to leach the sintered products for 20 days. The results demonstrated the decrease of copper leachability with the formation of CuAl2O4, despite different sintering behavior in kaolinite and mullite systems. This study clearly indicates spinel formation as the most crucial metal stabilization mechanism when sintering copper sludge with aluminosilicate materials, and suggests a promising and reliable technique for reusing metal-containing sludge as ceramic materials.

  2. Regulatory Aspects of Clearance and Recycling of Metallic Material forming Part of Buildings of Nuclear Facilities in Germany

    International Nuclear Information System (INIS)

    Thierfeldt, Stefan; Woerlen, Stefan; Harding, Philip

    2014-01-01

    Metallic materials as part of buildings of nuclear installations, like reinforcement in concrete, anchor slabs, pipework buried in concrete, but also steel liners of water basins or anchor rails that are welded to the reinforcement steel etc. require special considerations during decommissioning. It is the aim to release as much of this material as possible for recycling (either by melting in conventional foundries or by melting in a controlled recycling plant for reuse in the nuclear field). This poses problems as on the one hand these metallic materials cannot be removed from the buildings prior to their demolition, while on the other hand they would in principle require a specific clearance procedure for which they should be available separately. Besides aspects of radiological characterisation and measurements, this is also a regulatory issue, as the competent authority has to grant clearance of materials that may not be fully characterised by measurements, but for which a significant part of the information required for clearance is inferred from the operational history, from conclusions by analogy and from other sources. This issue has been resolved in different ways in various NPPs in Germany. Examples of materials that pose problems of the kind listed above (including relevant contamination pathways) are given, together with examples for solving these problems by specific considerations in the clearance procedure. The clearance regulations for metal scrap in Germany require adherence to both mass specific and surface related clearance levels in Bq/g and Bq/cm 2 , respectively, which are similar to those as laid down in the EU recommendations RP 89/101. Therefore, approaches had to be developed for inferring sufficiently comprehensive and conservative estimates of the mass and surface related activities for metallic materials forming an integral part of buildings from measurements that do not cover 100% of the material. The ways are outlined in which the

  3. Recycling of concrete

    International Nuclear Information System (INIS)

    Halaszovich, S.

    1988-01-01

    The paper reviews potentials and problems of disposal or recycling of concrete removed from nuclear installations. Due to the difficulties in determining radioactivity limits that are compatible with utilization of recycled material in practice, a method is proposed that takes into account inhalation of dusts, as occurring during the reprocessing or recycling of the concrete, for instance in road building. This method is based on the maximum permissible radioactivity uptake by inhalation of a nuclide mixture of unknown composition. (RB) [de

  4. Programme on the recyclability of food-packaging materials with respect to food safety considerations: polyethylene terephthalate (PET), paper and board, and plastics covered by functional barriers.

    Science.gov (United States)

    Franz, R

    2002-01-01

    Stimulated by new ecology-driven European and national regulations, news routes of recycling waste appear on the market. Since food packages represent a large percentage of the plastics consumption and since they have a short lifetime, an important approach consists in making new packages from post-consumer used packages. On the other hand, food-packaging regulations in Europe require that packaging materials must be safe. Therefore, potential mass transfer (migration) of harmful recycling-related substances to the food must be excluded and test methods to ensure the safety-in-use of recycled materials for food packaging are needled. As a consequence of this situation, a European research project FAIR-CT98-4318, with the acronym 'Recyclability', was initiated. The project consists of three sections each focusing on a different class of recycled materials: polyethylene terephthalate (PET), paper and board, and plastics covered by functional barriers. The project consortium consists of 28 project members from 11 EU countries. In addition, the project is during its lifetime in discussion with the US Food and Drug Administrations (FDA) to consider also US FDA regulatory viewpoints and to aim, as a consequence, to harmonizable conclusions and recommendations. The paper introduces the project and presents an overview of the project work progress.

  5. INFLUENCE OF VARIOUS RAW MATERIAL AND TECHNOLOGICAL REGIMES OF ITS RECYCLING ON QUALITATIVE INDICES OF SEMI-FINISHED PRODUCT USED FOR PACKAGE PRINTING

    Directory of Open Access Journals (Sweden)

    V. V. Kuzmich

    2014-01-01

    Full Text Available The paper has investigated influence of various technologies on recycling of vegetal raw material with the purpose to obtain the desired product used for package printing. Influence of various technological regimes and introduction of fresh polyethylene additives for recycled raw material on qualitative indices of the desired product has been studied in the paper. Investigations of preliminary aquatic hydrolysis of vegetal raw material have shown that in order to obtain high quality cellulose from vegetal raw material it is necessary that this cellulose has not less than 2-3 % of hemicellulose otherwise its qualitative indices are significantly deteriorated that is important for packaging printing. Usage of carbon dioxide aqueous solution for preliminary vegetal raw material hydrolysis contributes to reduction in destruction of cellulose carbo-hydrate. This improves qualitative indices of the obtained desired product that is cellulose which is used for package printing.Recommendations for sulphate pulping of vegetal raw material with preliminary hydrolysis have been prepared with the purpose to improve physical and mechanical characteristics of the obtained desired product - cellulose on the basis of the obtained data on content of hemicellulose in cellulose.While investigating recycled polymers the obtained results have demonstrated that increase of low- molecular product content in them looks rather typical. This suggests that packaging will have lower qualitative indices while using polymers being kept in waste deposits. In order to avoid this phenomena it is necessary to add 20-30 % of fresh polymers during their recycling.

  6. Recycling of inorganic waste in monolithic and cellular glass-based materials for structural and functional applications.

    Science.gov (United States)

    Rincón, Acacio; Marangoni, Mauro; Cetin, Suna; Bernardo, Enrico

    2016-07-01

    The stabilization of inorganic waste of various nature and origin, in glasses, has been a key strategy for environmental protection for the last decades. When properly formulated, glasses may retain many inorganic contaminants permanently, but it must be acknowledged that some criticism remains, mainly concerning costs and energy use. As a consequence, the sustainability of vitrification largely relies on the conversion of waste glasses into new, usable and marketable glass-based materials, in the form of monolithic and cellular glass-ceramics. The effective conversion in turn depends on the simultaneous control of both starting materials and manufacturing processes. While silica-rich waste favours the obtainment of glass, iron-rich wastes affect the functionalities, influencing the porosity in cellular glass-based materials as well as catalytic, magnetic, optical and electrical properties. Engineered formulations may lead to important reductions of processing times and temperatures, in the transformation of waste-derived glasses into glass-ceramics, or even bring interesting shortcuts. Direct sintering of wastes, combined with recycled glasses, as an example, has been proven as a valid low-cost alternative for glass-ceramic manufacturing, for wastes with limited hazardousness. The present paper is aimed at providing an up-to-date overview of the correlation between formulations, manufacturing technologies and properties of most recent waste-derived, glass-based materials. © 2016 The Authors. Journal of Chemical Technology & Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

  7. Recycling of inorganic waste in monolithic and cellular glass‐based materials for structural and functional applications

    Science.gov (United States)

    Rincón, Acacio; Marangoni, Mauro; Cetin, Suna

    2016-01-01

    Abstract The stabilization of inorganic waste of various nature and origin, in glasses, has been a key strategy for environmental protection for the last decades. When properly formulated, glasses may retain many inorganic contaminants permanently, but it must be acknowledged that some criticism remains, mainly concerning costs and energy use. As a consequence, the sustainability of vitrification largely relies on the conversion of waste glasses into new, usable and marketable glass‐based materials, in the form of monolithic and cellular glass‐ceramics. The effective conversion in turn depends on the simultaneous control of both starting materials and manufacturing processes. While silica‐rich waste favours the obtainment of glass, iron‐rich wastes affect the functionalities, influencing the porosity in cellular glass‐based materials as well as catalytic, magnetic, optical and electrical properties. Engineered formulations may lead to important reductions of processing times and temperatures, in the transformation of waste‐derived glasses into glass‐ceramics, or even bring interesting shortcuts. Direct sintering of wastes, combined with recycled glasses, as an example, has been proven as a valid low‐cost alternative for glass‐ceramic manufacturing, for wastes with limited hazardousness. The present paper is aimed at providing an up‐to‐date overview of the correlation between formulations, manufacturing technologies and properties of most recent waste‐derived, glass‐based materials. © 2016 The Authors. Journal of Chemical Technology & Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. PMID:27818564

  8. Comparison between existing recycle processes for composite materials - a study regarding microwave pyrolysis; Jaemfoerelse av befintliga aatervinningsprocesser foer kompositmaterial - en foerstudie gaellande mikrovaagspyrolys

    Energy Technology Data Exchange (ETDEWEB)

    Pettersson, Carina; Andreasson, Sune (Stena Metall AB (Sweden)); Skrifvars, Mikael; Aakesson, Dan (Hoegskolan i Boraas (Sweden))

    2009-07-01

    The purpose of this project has been to investigate the possibilities to use recycled composites as energy recycling based on microwave pyrolysis and also to evaluate the microwave pyrolysis technique for the recycling of combined materials, such as composites. Composites can be recycled by mechanically grinding into a material which can be used as a filler in virgin composites. However, several earlier studies have showed that this will give a material with inferior quality, and there is presently no economical viable use of the recycled material. Composites can be incinerated together with other waste materials but the high content of inorganic material results in a material with low energy content. Composites typically contain 40-50 weight-% glass fibres, and in some cases be as high as 60-75 weight-%. Consequently, composites often end up at landfill sites and processes to recycle composites do not exit. Large volumes of composites are produced in Europe and these products will largely end up on landfill site after end-of-life as systems to recycle these products do not exist. These composites represent a large amount of energy which presently is not utilized. Processes and materials to produce composites are being developed continuously. This in addition to the need for light weight materials in the aerospace, windmills and automotive industry spurs the use of composites. It is therefore of outmost importance to develop processes to recycle of composites. Recycling of composites by the use of microwave pyrolysis has been studied in this project. Microwave pyrolysis is a process where the material is heated by microwave in an inert environment. The project has been focusing on the recycling of glass fibre reinforced composites as this type of composite makes the large volume of composites. Pyrolysis of glass fibre reinforce composites will result in two fractions - one oil fraction and one inorganic fraction. The oil fraction was analyzed with calorimetry and

  9. Field site leaching from recycled concrete aggregates applied as sub-base material in road construction.

    Science.gov (United States)

    Engelsen, Christian J; Wibetoe, Grethe; van der Sloot, Hans A; Lund, Walter; Petkovic, Gordana

    2012-06-15

    The release of major and trace elements from recycled concrete aggregates used in an asphalt covered road sub-base has been monitored for more than 4 years. A similar test field without an asphalt cover, directly exposed to air and rain, and an asphalt covered reference field with natural aggregates in the sub-base were also included in the study. It was found that the pH of the infiltration water from the road sub-base with asphalt covered concrete aggregates decreased from 12.6 to below pH 10 after 2.5 years of exposure, whereas this pH was reached within only one year for the uncovered field. Vertical temperature profiles established for the sub-base, could explain the measured infiltration during parts of the winter season. When the release of major and trace elements as function of field pH was compared with pH dependent release data measured in the laboratory, some similar pH trends were found. The field concentrations of Cd, Ni, Pb and Zn were found to be low throughout the monitoring period. During two of the winter seasons, a concentration increase of Cr and Mo was observed, possibly due to the use of de-icing salt. The concentrations of the trace constituents did not exceed Norwegian acceptance criteria for ground water and surface water Class II. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Permeability of Concrete with Recycled Concrete Aggregate and Pozzolanic Materials under Stress.

    Science.gov (United States)

    Wang, Hailong; Sun, Xiaoyan; Wang, Junjie; Monteiro, Paulo J M

    2016-03-30

    The research reported herein studied the permeability of concrete containing recycled-concrete aggregate (RA), superfine phosphorous slag (PHS), and ground granulated blast-furnace slag (GGBS) with and without stress. Test results showed that the chloride diffusion coefficient of RA concrete (RAC) without external loads decreased with time, and the permeability of RAC is much lower than that of the reference concrete due to the on-going hydration and the pozzolanic reaction provided by the PHS and GGBS additives in the RAC mixture. The permeability of chloride under flexural load is much more sensitive than that under compressive load due to the differences in porosity and cracking pattern. At low compressive stress levels, the permeability of chloride decreased by the closing of pores and microcracks within RAC specimens. However, in a relatively short time the chloride diffusion coefficient and the chloride content increased rapidly with the increase of compressive stress when it exceeded a threshold stress level of approximate 35% of the ultimate compressive strength. Under flexural stress, the chloride transport capability increased with the increase of stress level and time. At high compressive and flexural stress levels, creep had a significant effect on the permeability of chloride in the RAC specimens due to the damage from the nucleation and propagation of microcracks over time. It is apparent that mortar cracking has more of a significant effect on the chloride transport in concrete than cracking in the interfacial transition zone (ITZ).

  11. System Studies for the ADTF: Target and Materials Test Station

    International Nuclear Information System (INIS)

    Cappiello, M.; Pitcher, E.; Pasamehmetoglu, K.

    2002-01-01

    To meet the objectives of the Advanced Accelerator Applications (AAA) program, the Accelerator-Driven Test Facility (ADTF) provides a world-class accelerator-driven test facility to: - Provide the capability to assess technology options for the transmutation of spent nuclear fuel and waste through a proof-of-performance. - Provide a user facility that allows testing of advanced nuclear technologies and applications, material science and research, experimental physics, and conventional nuclear engineering science applications. - Provide the capability, through upgrades or additions to the ADTF accelerator, to produce tritium for defense purposes, if required. - Provide the capability, through upgrades or additions, to produce radioisotopes for medical and commercial purposes. These missions are diverse and demand a facility with significant flexibility. In order to meet them, it is envisioned that we construct two target stations: the Target and Materials Test (TMT) station and the Subcritical Multiplier (SCM) test station. The two test stations share common hot-cell facilities for post-irradiation examination. It is expected the TMT will come online first, closely followed by the SCM. The TMT will provide the capability to: - Irradiate small samples of proposed ATW (accelerator-driven transmutation of waste) fuels and materials at prototypic flux, temperature, and coolant conditions (requires intense source of neutrons). - Perform transient testing. - Test liquid (lead-bismuth) and solid spallation targets with water, sodium, or helium coolant. - Test generation-IV fuels for advance nuclear systems (requires high-intensity thermal flux). - Irradiate fission product transmutation targets. - Test advanced fuel and coolant combinations, including helium, water, sodium, and lead-bismuth. - Produce isotopes for commercial and medical applications. - Perform neutron physics experiments. The SCM will provide the capability to: - Irradiate large samples of proposed ATW

  12. Networks of recyclable material waste-picker’s cooperatives: An alternative for the solid waste management in the city of Rio de Janeiro

    International Nuclear Information System (INIS)

    Tirado-Soto, Magda Martina; Zamberlan, Fabio Luiz

    2013-01-01

    Highlights: ► In the marketing of recyclable materials, the waste-pickers are the least wins. ► It is proposed creating a network of recycling cooperatives to achieve viability. ► The waste-pickers contribute to waste management to the city. - Abstract: The objective of this study is to discuss the role of networks formed of waste-picker cooperatives in ameliorating problems of final disposal of solid waste in the city of Rio de Janeiro, since the city’s main landfill will soon have to close because of exhausted capacity. However, it is estimated that in the city of Rio de Janeiro there are around five thousand waste-pickers working in poor conditions, with lack of physical infrastructure and training, but contributing significantly by diverting solid waste from landfills. According to the Sustainable Development Indicators (IBGE, 2010a,b) in Brazil, recycling rates hover between 45% and 55%. In the municipality of Rio de Janeiro, only 1% of the waste produced is collected selectively by the government (COMLURB, 2010), demonstrating that recycling is mainly performed by waste-pickers. Furthermore, since the recycling market is an oligopsony that requires economies of scale to negotiate directly with industries, the idea of working in networks of cooperatives meets the demands for joint marketing of recyclable materials. Thus, this work presents a method for creating and structuring a network of recycling cooperatives, with prior training for working in networks, so that the expected synergies and joint efforts can lead to concrete results. We intend to demonstrate that it is first essential to strengthen the waste-pickers’ cooperatives in terms of infrastructure, governance and training so that solid waste management can be environmentally, socially and economically sustainable in the city of Rio de Janeiro

  13. Interpretation of ion flux and electron temperature profiles at the JET divertor target during high recycling and detached discharges

    International Nuclear Information System (INIS)

    Monk, R.D.

    1997-01-01

    Detailed experiments have been carried out with the JET Mark I pumped divertor to characterise high recycling and detached plasma regimes. This paper presents new measurements of high resolution divertor ion flux profiles that identify the growth of additional peaks during high recycling discharges. These ion flux profiles are used in conjunction with Dα and neutral flux measurements to examine the physics of divertor detachment and compare against simple analytic models. Finally, problems are highlighted with conventional methods of single and triple probe interpretation under high recycling conditions. By assuming that the single probe behaves as an asymmetric double probe the whole characteristic may be fitted and significantly lower electron temperatures may be derived when the electron to ion saturation current ratio is reduced. The results from the asymmetric double probe fit are shown to be consistent with independent diagnostic measurements. (orig.)

  14. Direct Solid-State Conversion of Recyclable Metals and Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Z; Manchiraju, K [Southwire Co.

    2012-02-22

    This project is to develop and demonstrate the concept feasibility of a highly energy-efficient solid-state material synthesis process, friction stir extrusion (FSE) technology. Specifically, the project seeks to explore and demonstrate the feasibility to recycle metals, produce nano-particle dispersion strengthened bulk materials and/or nano-composite materials from powders, chips or other recyclable feedstock metals or scraps through mechanical alloying and thermo-mechanical processing in a single-step. In this study, we focused on metal recycling, producing nano-engineered wires and evaluating their potential use in future generation long-distance electric power delivery infrastructure. More comprehensive R&D on the technology fundamentals and system scale-up toward early-stage applications in two targeted “showcase” fields of use: nano engineered bulk materials and Al recycling will be considered and planned as part of Project Continuation Plan.

  15. Teaching Interactive Art Lessons with Recycled Waste Materials as Instructional Resources

    Science.gov (United States)

    Yeboah, Rita; Asante, Eric Appau; Opoku-Asare, Nana Afia

    2016-01-01

    The study examines the use of waste materials as instructional resources in teaching and learning Art lessons. Primary, Junior and Senior High School Art teachers in Ghana mostly teach their lessons without instructional resources because the government is not able to provide materials to create the needed resources. The study therefore explored…

  16. Some material and construction aspects regarding in situ recycling of road pavements in South Africa

    CSIR Research Space (South Africa)

    Paige-Green, P

    2006-07-01

    Full Text Available new 200mm C3 quality subbase layer [COM 86]. The road was then finished with an imported G1 crushed stone base and Cape Seal surfacing (combination of single and slurry seal). The existing road consisted of a slurry seal and up to 3 subsequent... cent of existing unstabilized carriageway material and about 40 per cent stabilized shoulder material (probably in an equivalent granular state [COM 86] after about 20 years in service). The new subbase therefore consisted of a variety of materials...

  17. Local field in LiD polarized target material

    CERN Document Server

    Kisselev, Yu V; Baum, G; Berglund, P; Doshita, N; Gautheron, F; Görtz, S; Horikawa, N; Koivuniemi, J H; Kondo, K; Magnon, A; Meyer, Werner T; Reicherz, G

    2004-01-01

    We have experimentally studied the first and the second moments of D, **6Li and **7Li (I greater than 1/2) NMR lines in a granulated LiD- target material as a function of nuclear polarizations and the data has been compared with a theory elaborated by Abragam, Roinel and Bouffard for monocrystalline samples. The experiments were carried out in the large COMPASS twin-target at CERN. The static local magnetic field of the polarized nuclei was measured by frequency shift between the NMR-signals in the two oppositely polarized cells and lead to the first moment, whereas the investigation of the second moment was done through Gaussian approximation. The average field magnitude in granulated material was estimated 20% larger than the value given by the calculations for monocrystalline samples of cylindrical shape. The second moment shows a qualitative agreement with the theory but it is slightly larger at the negative than at the positive polarization. In a polarized mode, the moments depend on the saturated microw...

  18. Optimizing Interacting Potentials to Form Targeted Materials Structures

    Energy Technology Data Exchange (ETDEWEB)

    Torquato, Salvatore [Princeton Univ., NJ (United States)

    2015-09-28

    Conventional applications of the principles of statistical mechanics (the "forward" problems), start with particle interaction potentials, and proceed to deduce local structure and macroscopic properties. Other applications (that may be classified as "inverse" problems), begin with targeted configurational information, such as low-order correlation functions that characterize local particle order, and attempt to back out full-system configurations and/or interaction potentials. To supplement these successful experimental and numerical "forward" approaches, we have focused on inverse approaches that make use of analytical and computational tools to optimize interactions for targeted self-assembly of nanosystems. The most original aspect of our work is its inherently inverse approach: instead of predicting structures that result from given interaction potentials among particles, we determine the optimal potential that most robustly stabilizes a given target structure subject to certain constraints. Our inverse approach could revolutionize the manner in which materials are designed and fabricated. There are a number of very tangible properties (e.g. zero thermal expansion behavior), elastic constants, optical properties for photonic applications, and transport properties.

  19. A comparative study of recycled aggregates from concrete and mixed debris as material for unbound road sub-base; Estudio comparativo de los aridos reciclados de hormigon y mixtos como material para sub-bases de carreteras

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez, J. R.; Agrela, F.; Ayuso, J.; Lopez, M.

    2011-07-01

    Seven different types of recycled aggregates from construction and demolition waste (CDW) have been evaluated as granular materials for unbound road sub bases construction. The results showed that recycled concrete aggregates complied with all specifications for using in the construction of unbound structural layers (sub-base) for T3 and T4 traffic categories according to the Spanish General Technical Specification for Road Construction (PG-3). Some mixed recycled aggregates fell short of some specifications due to a high content of sulphur compounds and poor fragmentation resistance. Sieving off the fine fraction prior to crushing the mixed CDW reduce the total sulphur content and improve the quality of the mixed recycled aggregates, by contrast, pre-sieving concrete CDW had no effect on the quality of the resulting aggregates. The results were compared with a crushed limestone as natural aggregate. (Author) 23 refs.

  20. Material recycling of post-consumer polyolefin bulk plastics: Influences on waste sorting and treatment processes in consideration of product qualities achievable.

    Science.gov (United States)

    Pfeisinger, Christian

    2017-02-01

    Material recycling of post-consumer bulk plastics made up of polyolefins is well developed. In this article, it is examined which effects on waste sorting and treatment processes influence the qualities of polyolefin-recyclats. It is shown that the properties and their changes during the product life-cycle of a polyolefin are defined by its way of polymerisation, its nature as a thermoplast, additives, other compound and composite materials, but also by the mechanical treatments during the production, its use where contact to foreign materials is possible and the waste sorting and treatment processes. Because of the sum of the effects influencing the quality of polyolefin-recyclats, conclusions are drawn for the material recycling of polyolefins to reach high qualities of their recyclats. Also, legal requirements like the EU regulation 1907/2006 concerning the registration, evaluation, authorisation and restrictions on chemicals are considered.

  1. Study on mechanical and physical properties of composite materials with recycled PET as fillers for paving block application

    Science.gov (United States)

    Wicaksono, Sigit Tri; Ardhyananta, Hosta; Rasyida, Amaliya

    2018-04-01

    Base on Sidoarjo's goverment data, there was more than 4000 metric ton perday of waste that has been accumulated during 2016. More than 10 percent from overall waste is plastics. In accordance with the Indonesia government regulation, "Indonesia clean from waste" by 2020 through 3R (Reduce, Reuse and Recycle) program, we have been focusing research on how to reduce the accumulation of the plastics waste in Sidoarjo by processing it become a new product. In this research, we have made the plastic waste of PET bottle as additional fillers or agregates of composite material for construction application as a paving block. The composition of PET plastic used as fillers is vary from 0, 10, 20, 30, 40 and 50% from total volume of agregates. The ratio of cement binder to sands agregate is 1:3. The specimens were characterized its mechanical and physical properties by using flexural testing, compressive testing, density and water absorbance measurement. The results show that the mechanical (flexural and compressive) properties of composite materials is increased significantly by increasing PET fillers up to 20%, however it was decreased when PET content more than 20%. But, both the density and water absobance of specimens are decreased by increasing of PET fillers.

  2. High-energy, stable and recycled molecular solar thermal storage materials using AZO/graphene hybrids by optimizing hydrogen bonds.

    Science.gov (United States)

    Luo, Wen; Feng, Yiyu; Qin, Chengqun; Li, Man; Li, Shipei; Cao, Chen; Long, Peng; Liu, Enzuo; Hu, Wenping; Yoshino, Katsumi; Feng, Wei

    2015-10-21

    An important method for establishing a high-energy, stable and recycled molecular solar heat system is by designing and preparing novel photo-isomerizable molecules with a high enthalpy and a long thermal life by controlling molecular interactions. A meta- and ortho-bis-substituted azobenzene chromophore (AZO) is covalently grafted onto reduced graphene oxide (RGO) for solar thermal storage materials. High grafting degree and close-packed molecules enable intermolecular hydrogen bonds (H-bonds) for both trans-(E) and cis-(Z) isomers of AZO on the surface of nanosheets, resulting in a dramatic increase in enthalpy and lifetime. The metastable Z-form of AZO on RGO is thermally stabilized with a half-life of 52 days by steric hindrance and intermolecular H-bonds calculated using density functional theory (DFT). The AZO-RGO fuel shows a high storage capacity of 138 Wh kg(-1) by optimizing intermolecular H-bonds with a good cycling stability for 50 cycles induced by visible light at 520 nm. Our work opens up a new method for making advanced molecular solar thermal storage materials by tuning molecular interactions on a nano-template.

  3. Organic Contaminant Content and Physico-Chemical Characteristics of Waste Materials Recycled in Agriculture

    Directory of Open Access Journals (Sweden)

    Hannah Rigby

    2015-12-01

    Full Text Available A range of wastes representative of materials currently applied, or with future potential to be applied, to agricultural land in the UK as fertilisers and soil improvers or used as animal bedding in livestock production, were investigated. In addition to full physico-chemical characterization, the materials were analysed for a suite of priority organic contaminants. In general, contaminants were present at relatively low concentrations. For example, for biosolids and compost-like-output (CLO, concentrations of polychlorinated dibenzo-p-dioxins/dibenzofurans (PCDD/Fs and polychlorinated biphenyls (PCBs were approximately 1−10 and 5–50 times lower, respectively, than various proposed or implemented European limit values for these contaminants in biosolids or composts applied to agricultural land. However, the technical basis for these limits may require re-evaluation in some cases. Polybrominated, and mixed halogenated, dibenzo-p-dioxins/dibenzofurans are not currently considered in risk assessments of dioxins and dioxin-like chemicals, but were detected at relatively high concentrations compared with PCDD/Fs in the biosolids and CLOs and their potential contribution to the overall toxic equivalency is assessed. Other ‘emerging’ contaminants, such as organophosphate flame retardants, were detected in several of the waste materials, and their potential significance is discussed. The study is part of a wider research programme that will provide evidence that is expected to improve confidence in the use of waste-derived materials in agriculture and to establish guidelines to protect the food chain where necessary.

  4. Thermally Self-Healing Polymeric Materials : The Next Step to Recycling Thermoset Polymers?

    NARCIS (Netherlands)

    Zhang, Youchun; Broekhuis, Antonius A.; Picchioni, Francesco

    2009-01-01

    We developed thermally self-healing polymeric materials on the basis of furan-functionalized, alternating thermosetting polyketones (PK-furan) and bis-maleimide by using the Diels-Alder (DA) and Retro-Diels-Alder (RDA) reaction sequence. PK-furan can be easily obtained under mild conditions by the

  5. UPTAKE OF HEAVY METALS IN BATCH SYSTEMS BY A RECYCLED IRON-BEARING MATERIAL

    Science.gov (United States)

    An iron-bearing material deriving from surface finishing operations in the manufacturing of cast-iron components demonstrates potential for removal of heavy metals from aqueous waste streams. Batch isotherm and rate experiments were conducted for uptake of cadmium, zinc, and lead...

  6. Replacement of Fine Aggregate by using Recyclable Materials in Paving Blocks

    Science.gov (United States)

    Koganti, Shyam Prakash; Hemanthraja, Kommineni; Sajja, Satish

    2017-08-01

    Cement concrete paving blocks are precast hard products complete out of cement concrete. The product is made in various sizes and shapes like square, round and rectangular blocks of different dimensions with designs for interlocking of adjacent tiles blocks. Several Research Works have been carried out in the past to study the possibility of utilizing waste materials and industrial byproducts in the manufacturing of paver blocks. Various industrial waste materials like quarry dust, glass powder, ceramic dust and coal dust are used as partial replacement of fine aggregate and assessed the strength parameters and compared the profit percentages after replacement with waste materials. Quarry dust can be replaced by 20% and beyond that the difference in strength is not much higher but considering cost we can replace upto 40% so that we can get a profit of almost 10%. Similarly we can replace glass powder and ceramic dust by 20% only beyond that there is decrement in strength and even with 20% replacement we can get 1.34 % and 2.42% of profit. Coal dust is not suitable for alternative material as fine aggregate as it reduces the strength.

  7. A Service Learning Project on Aluminum Recycling--Developing Soft Skills in a Material and Energy Balances Course

    Science.gov (United States)

    West, Christy Wheeler

    2017-01-01

    This paper describes a project carried out in a sophomore chemical engineering course, in which students studied the energetic differences between refining and recycling aluminum. They worked in teams to prepare a presentation about the importance of aluminum recycling to a lay audience. The project reinforced classroom learning and provided an…

  8. Yersinia pestis Targets the Host Endosome Recycling Pathway during the Biogenesis of the Yersinia-Containing Vacuole To Avoid Killing by Macrophages

    Science.gov (United States)

    Connor, Michael G.; Pulsifer, Amanda R.; Ceresa, Brian K.

    2018-01-01

    ABSTRACT Yersinia pestis has evolved many strategies to evade the innate immune system. One of these strategies is the ability to survive within macrophages. Upon phagocytosis, Y. pestis prevents phagolysosome maturation and establishes a modified compartment termed the Yersinia-containing vacuole (YCV). Y. pestis actively inhibits the acidification of this compartment, and eventually, the YCV transitions from a tight-fitting vacuole into a spacious replicative vacuole. The mechanisms to generate the YCV have not been defined. However, we hypothesized that YCV biogenesis requires Y. pestis interactions with specific host factors to subvert normal vesicular trafficking. In order to identify these factors, we performed a genome-wide RNA interference (RNAi) screen to identify host factors required for Y. pestis survival in macrophages. This screen revealed that 71 host proteins are required for intracellular survival of Y. pestis. Of particular interest was the enrichment for genes involved in endosome recycling. Moreover, we demonstrated that Y. pestis actively recruits Rab4a and Rab11b to the YCV in a type three secretion system-independent manner, indicating remodeling of the YCV by Y. pestis to resemble a recycling endosome. While recruitment of Rab4a was necessary to inhibit YCV acidification and lysosomal fusion early during infection, Rab11b appeared to contribute to later stages of YCV biogenesis. We also discovered that Y. pestis disrupts global host endocytic recycling in macrophages, possibly through sequestration of Rab11b, and this process is required for bacterial replication. These data provide the first evidence that Y. pestis targets the host endocytic recycling pathway to avoid phagolysosomal maturation and generate the YCV. PMID:29463656

  9. Influence of Al-W-B Recycled Composite Material on the Properties of High Performance Concrete

    Directory of Open Access Journals (Sweden)

    Baronins Janis

    2015-12-01

    Full Text Available The aim of this study is to obtain high performance boron containing material with sufficient carrying capacity with increased porosity and lower density at the same time. The influence of the different concentrations of Al-W-B powder on the properties of the fresh and hardened HPC was investigated. In the concrete mix design, the allite containing White Portland cement CEM I 52,5 R, granite stone, sand, microsilica, on polycarboxylates based super plasticizer and Al-W-B powder were used. As a source of boron composite material (CM, previously grinded powder containing boron-tungsten fiber and aluminium matrix (CM Al-W-B was used. Grinding was used for processing of CM Al-W-B powder.

  10. Recycling MSWI bottom and fly ash as raw materials for Portland cement.

    Science.gov (United States)

    Pan, Jill R; Huang, Chihpin; Kuo, Jung-Jen; Lin, Sheng-Huan

    2008-01-01

    Municipal solid waste incineration (MSWI) ash is rich in heavy metals and salts. The disposal of MSWI ash without proper treatment may cause serious environmental problems. Recently, the local cement industry in Taiwan has played an important role in the management of solid wastes because it can utilize various kinds of wastes as either fuels or raw materials. The objective of this study is to assess the possibility of MSWI ash reuse as a raw material for cement production. The ash was first washed with water and acid to remove the chlorides, which could cause serious corrosion in the cement kiln. Various amounts of pre-washed ash were added to replace the clay component of the raw materials for cement production. The allowable limits of chloride in the fly ash and bottom ash were found to be 1.75% and 3.50% respectively. The results indicate that cement production can be a feasible alternative for MSWI ash management. It is also evident that the addition of either fly ash or bottom ash did not have any effect on the compressive strength of the clinker. Cement products conformed to the Chinese National Standard (CNS) of Type II Portland cement with one exception, the setting time of the clinker was much longer.

  11. Analysis of the application of an interdisciplinar project in education of future engineers: assembly of thermal machines with recycled materials

    Directory of Open Access Journals (Sweden)

    Elaine Cristina Marques

    2015-12-01

    Full Text Available Teaching through the four areas of learning development is increasing in educational systems. The methods used for this purpose are: analysis and solving of problems, and development of integrative or interdisciplinary projects. Both use active learning methodologies, making it possible to circumvent the low capacity for concentration and retention of information from today’s students, so globalized and dependent on computers. In this sense, the development of this project aims for the students to manufacture a steam machine with reused/recycled materials, and to present it during a trial lesson. This project was developed in the Fundamentals of Thermodynamics and Engineering and Materials Science courses, taken in the first semester of 2014, and involved 130 students enrolled in the fifth semester of the Production Engineering course at Centro Universitário Padre Anchieta. A total of 28 steam machines were presented and, after prior modification, the majority succeeded in their functioning. Most of the groups used industrial materials and/or industrial tools in order to accomplish their projects. Due to this experience, they could apply their knowledge in both student and professional routines. Based on that, it is believed that the projects may play a role of meaningful learning for students. At the end of the activity, most students signaled their satisfaction with the project and their desire to repeat such activities, which interconnect disciplines. It is possible to conclude that teaching through interdisciplinary projects is an important tool in the teaching of engineering, thus, understanding of knowledge is more articulate and less fragmented. It contributes to the use of science as an element of interpretation and intervention of reality

  12. Enabling In-Theater Processes for Indigenous, Recycled, and Reclaimed Material Manufacturing

    Science.gov (United States)

    2015-12-01

    inorganic materials are produced (including meals-ready-to- eat [MRE] trash, cardboard boxes, cellophane and Styrofoam packing boxes, used oil and air...for potential future habitation . This concept has had a renewed interest recently, with the proliferation of additive manufacturing and 3...mm) Width (mm) Area (mm2) Max stress (MPa) Density (g/cm3) Mean (MPa) Std. Dev. (MPa) 403 a1 19.63 19.58 384.36 21.66 1.48 27.97 4.41

  13. Process for recycling mixed-cathode materials from spent lithium-ion batteries and kinetics of leaching.

    Science.gov (United States)

    Li, Li; Bian, Yifan; Zhang, Xiaoxiao; Guan, Yibiao; Fan, Ersha; Wu, Feng; Chen, Renjie

    2018-01-01

    A "grave-to-cradle" process for the recycling of spent mixed-cathode materials (LiCoO 2 , LiCo 1/3 Ni 1/3 Mn 1/3 O 2 , and LiMn 2 O 4 ) has been proposed. The process comprises an acid leaching followed by the resynthesis of a cathode material from the resulting leachate. Spent cathode materials were leached in citric acid (C 6 H 8 O 7 ) and hydrogen peroxide (H 2 O 2 ). Optimal leaching conditions were obtained at a leaching temperature of 90 °C, a H 2 O 2 concentration of 1.5 vol%, a leaching time of 60 min, a pulp density of 20 g L -1 , and a citric acid concentration of 0.5 M. The leaching efficiencies of Li, Co, Ni, and Mn exceeded 95%. The leachate was used to resynthesize new LiCo 1/3 Ni 1/3 Mn 1/3 O 2 material by using a sol-gel method. A comparison of the electrochemical properties of the resynthesized material (NCM-spent) with that synthesized directly from original chemicals (NCM-syn) indicated that the initial discharge capacity of NCM-spent at 0.2 C was 152.8 mA h g -1 , which was higher than the 149.8 mA h g -1 of NCM-syn. After 160 cycles, the discharge capacities of the NCM-spent and NCM-syn were 140.7 mA h g -1 and 121.2 mA h g -1 , respectively. After discharge at 1 C for 300 cycles, the NCM-spent material remained a higher capacity of 113.2 mA h g -1 than the NCM-syn (78.4 mA h g -1 ). The better performance of the NCM-spent resulted from trace Al doping. A new formulation based on the shrinking-core model was proposed to explain the kinetics of the leaching process. The activation energies of the Li, Co, Ni, and Mn leaching were calculated to be 66.86, 86.57, 49.46, and 45.23 kJ mol -1 , respectively, which indicates that the leaching was a chemical reaction-controlled process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Investigation of the Effect of Recycled Asphalt Pavement Material on Permeability and Bearing Capacity in the Base Layer

    Directory of Open Access Journals (Sweden)

    Ayşegül Güneş Seferoğlu

    2018-01-01

    Full Text Available The purpose of this research was to investigate the effects of recycled asphalt pavement (RAP and cement content on the permeability and bearing capacity characteristics of aggregate base courses. Mixtures containing untreated RAP ranging between 0 and 100 percent and 1, 2, and 3% cement-treated RAP were subjected to laboratory tests (bitumen content, sieve analysis, modified proctor, soaked California bearing ratio (CBR, and constant-level permeability tests. The results showed that, as the RAP percentage in the mixture increased, CBR values decreased considerably. Moreover, there is a linear increase in the CBR values with cement treatment. Optimum moisture contents (OMC and maximum dry densities (MDD showed a decreasing trend. Increasing the cement percentages in 100% RAP blend increases the OMC and MDD values. The permeability of RAP showed a decrease as the percentage of RAP and cement increased in blends. The study showed that the CBR value of the 20% RAP blend is also obtained in the 100% RAP/3% cement-treated blend. Thus, it has been understood that cement is a suitable material in order to increase the use of RAP. In addition, the increase in the percentage of RAP and cement made the base course more impermeable.

  15. Hypervelocity penetration against mechanical properties of target materials

    Science.gov (United States)

    Kamarudin, Khairul Hasni; Abdullah, Mohamad Faizal; Zaidi, Ahmad Mujahid Ahmad; Nor, Norazman M.; Ismail, Ariffin; Yusof, Mohammed Alias; Hilmi, Ahmad Humaizi

    2018-02-01

    This paper study the mechanical properties behavior of metal plates against hypervelocity penetration caused by shaped charge. Five different materials were used as target specimen fabricated from welded stacks of material plates, namely Rolled Homogeneous Armor (RHA), Hardox-500, mild steel, aluminum and brass. Specimens had undergone an initial monolithic test consist of tensile tests and microstructure observations, followed by series of hydrodynamics penetration blast tests using shape charge mechanism. Results from blast test shows that the least penetrated specimen is RHA (58mm) followed by Hardox-500 (92 mm), mild steel (110 mm), Brass (155 mm) and aluminum 238 mm). Comparing these with the specimen yield strength from the tensile test results shows that Hardox-500 has higher yield strength (Sy) followed by RHA, mild steel, brass and aluminum, which are 1370 MPa, 1320 MPa, 280,221 respectively, which are not inversely proportional to the penetration. However, the ultimate tensile strength (Sut) where the RHA were the highest followed by Hardox-500, mild steel, brass and aluminum, were inversely proportional with the depth of penetration. The penetration results also show consistence relation with energy absorption.

  16. Water Recycling in Australia

    Directory of Open Access Journals (Sweden)

    Ross Young

    2011-09-01

    Full Text Available Australia is the driest inhabited continent on earth and, more importantly, experiences the most variable rainfall of all the continents on our planet. The vast majority of Australians live in large cities on the coast. Because wastewater treatments plants were all located near the coast, it was thought that large scale recycling would be problematic given the cost of infrastructure and pumping required to establish recycled water schemes. This all changed when Australia experienced a decade of record low rainfall and water utilities were given aggressive targets to increase the volume of water recycled. This resulted in recycled water being accepted as a legitimate source of water for non-drinking purposes in a diversified portfolio of water sources to mitigate climate risk. To ensure community support for recycled water, Australia lead the world in developing national guidelines for the various uses of recycled water to ensure the protection of public health and the environment. Australia now provides a great case study of the developments in maximizing water recycling opportunities from policy, regulatory and technological perspectives. This paper explores the evolution in thinking and how approaches to wastewater reuse has changed over the past 40 years from an effluent disposal issue to one of recognizing wastewater as a legitimate and valuable resource. Despite recycled water being a popular choice and being broadly embraced, the concept of indirect potable reuse schemes have lacked community and political support across Australia to date.

  17. Combined Material Recycling Study with Aesthetic of Entropy and Place Making

    Science.gov (United States)

    2015-01-01

    Green building is a hot topic today. The place making and urban cultures are also important issues in postindustrial society. The industrial heritage renovation projects provide a research opportunity in combination with both aspects. This paper tries to shed new light on this issue by interdisciplinary methods, to study six Guangzhou industrial heritage renovation projects, giving aesthetic values for six sites concerning place making and culture creation, especially giving an explanation for old building material's aesthetic performance in terms of concepts “entropy” and “archetype.” The conclutions regard: the six places are brand spaces of “authentic Guangzhou” that make local experiential knowledge, emotional significance and creative communities in combination with historical and cultural narratives. PMID:25884021

  18. Recycling of agroindustrial solid wastes as additives in brick manufacturing for development of sustainable construction materials

    OpenAIRE

    Lisset Maritza Luna-Cañas; Carlos Alberto Ríos-Reyes; Luz Amparo Quintero-Ortíz

    2014-01-01

    La acumulación de residuos sólidos agroindustriales no administ rados especialmente en los países en vías de desarrollo ha dado lugar a una creciente preocupación ambiental. El reciclaje de tales res iduos como un material de construcción sostenible parece ser un a solución viable no sólo al problema de la contaminación, sino también un a opción económica para diseñar edificios verdes. El presente t rabajo estudia la aplicación de varios residuos agroindustriales en la fabricación de ladrillo...

  19. The importance of recycling - Responsible recycling

    International Nuclear Information System (INIS)

    Svensson, Joens Petter

    2014-01-01

    7 times the total emissions from Sweden are saved each year by the recycling industry. It reduces CO 2 emissions and saves the environment. In fact it annually reduces global CO 2 emissions by 500 million tons, which is more than what is being emitted by the world wide aviation industry. Recycling of iron and steel saves 74% energy and reduces water and air pollution by respectively 76% and 86%, compared to primary production. It provides new raw materials and contributes to save energy. There's no sense in producing goods in a permanent material like plastics, that's supposed to be used only once. It's a huge waste of resources. Today the recycling industry provides half of the world's raw materials and this figure is set to increase. It's about environmentally sound management of resources. It's about plain common sense. There has to be a political willingness to facilitate recycling in every way. And from a corporate perspective social responsibility is becoming an increasingly important competitive edge. This is also a communication issue, it has to be a fact that is well known to the market when a company is doing valuable environmental work. We also need a well functioning global market with easy to understand regulations to facilitate global trade. The global demand for recycled materials should influence their collection and use. Fraud and theft has also to be kept at bay which calls for a close collaboration between organizations such as The International Chamber of Commerce, The International Trade Council and the International Maritime Bureau of the commercial crime services. Increasing recycling is the only way to go if we want to minimize our effect on the environment. We have to remember that recycling is essential for the environment. An increase would be a tremendous help to reduce the green house effect. Increasing recycling is not rocket science. We know how to do it, we just have to decide to go through with it

  20. Modeling of geo-material durability and contaminant fate in recycling or disposal of industrial and radioactive waste

    International Nuclear Information System (INIS)

    De Windt, L.

    2011-01-01

    This report deals with the HYTEC model, coupling chemical and hydrodynamic processes, and its application to the recycling of inorganic wastes and the disposal of hazardous and radioactive wastes. A common feature is the assessment of geo-material durability while submitted to chemical disturbances by their industrial or natural environment and, reciprocally, the quantification of contaminant fate in soils and aquifers. Research papers in a first section numerically oriented, HYTEC is validated by means of an intercomparison exercise based on oxidative UO 2 dissolution and the subsequent migration of U species in subsurface environments. A numerical approach of leaching tests is also discussed. Several researches based on HYTEC follows. The evolution of the cement/clay interface is simulated in the framework of the multi-barrier system of radioactive waste disposal and the Tournemire engineering analog; discriminating between the physical and chemical key processes. The physico-chemical processes of cement biodegradation by fungi are investigated with a focus on acidic hydrolysis and complexation by biogenic carboxylic acids. Modeling of source-terms and ageing with respect to contaminant migration is discussed in the case of the chemical alteration of spent fuel pellets under disposal conditions by considering radiolytic dissolution, inhibiting effect and radioactive decay, and by analyzing the effect of fractures on the containment properties of subsurface disposal facilities of stabilized/solidified waste. Leaching lab experiments applied to steel slag and the chemical evolution of leachate from MSWI sub-bases of two pilot roads over 10 years are eventually modelled to better estimate the environmental impact of such recycling scenarios. On-going research In the straight lines of the modeling of radioactive waste disposal, a first perspective is to investigate the transient states driven by thermal gradient and water re-saturation of the near-field barriers and

  1. You're a "What"? Recycling Coordinator

    Science.gov (United States)

    Torpey, Elka Maria

    2011-01-01

    Recycling coordinators supervise curbside and dropoff recycling programs for municipal governments or private firms. Today, recycling is mandatory in many communities. And advancements in collection and processing methods have helped to increase the quantity of materials for which the recycling coordinator is responsible. In some communities,…

  2. Materials recycle and waste management in fusion power reactors. Progress report for 1982

    International Nuclear Information System (INIS)

    Vogler, S.; Jung, J.; Steindler, M.J.; Maya, I.; Levine, H.E.; Peterman, D.D.; Strausburg, S.; Schultz, K.R.

    1983-01-01

    Several components of a STARFIRE fusion reactor have been studied. The breeding ratios were calculated as a function of lithium enrichment and neutron multiplier for systems containing either Li 2 O or LiAlO 2 . The lithium requirements for a fusion economy were also estimated for those cases and the current US resources were found to be adequate. However, competition with other lithium demands in the future emphasizes the need for recovering and reusing lithium. The radioactivities induced in the breeder and the impurities responsible for their formation were determined. The residual radioactivities of several low-activation structural materials were compared with the radioactivity from the prime candidate alloy (PCA) a titanium modified Type 316 stainless steel used in STARFIRE. The impurities responsible for the radioactivity levels were identified. From these radioactive impurity levels it was determined that V15Cr5Ti could meet the requirements for shallow land burial as specified by the Nuclear Regulatory Commission (10CFR61), whereas PCA would require a more restrictive disposal mode, i.e. in a geologic medium. The costs for each of these disposal modes were then estimated

  3. Recycling steel-manufacturing slag and harbor sediment into construction materials.

    Science.gov (United States)

    Wei, Yu-Ling; Lin, Chang-Yuan; Cheng, Shao-Hsiang; Wang, H Paul

    2014-01-30

    Mixtures consisting of harbor sediment and slag waste from steel industry containing toxic components are fired to produce non-hazardous construction materials. The fired pellets become lighter as firing temperature increases. At a sintering temperature of ≦1050°C, the fired pellets are in a form of brick-like product, while at 1100°C, they become lightweight aggregates. Calcium silicate, kyanite, and cristobalite are newly formed in the pellets after firing, demonstrating that calcium oxide acts as a flux component and chemically reacted with Si- and/or Al-containing components to promote sintering. Dioxin/furan content present in the pure slag is 0.003ng I-TEQg(-1) and, for the fired pellet consisting of slag and sediment, the content appears to be destructed and diminishes to 0.0003ng I-TEQg(-1) after 950°C-firing; while it is 0.002ng I-TEQg(-1) after firing at 1100°C, suggesting that dioxins/furans in the 950°C-fired pellets have a greater chance to escape to atmosphere due to a slower sintering reaction and/or that construction of dioxins/furans from molten chloride salts co-exists with their destruction. Multiple toxicity characteristic leaching procedure extracts Cu, Cr, Zn, Se, Cd, Pb, Ba, As, and Hg from all fired products at negligible levels. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Recycling of nonmetallics

    Science.gov (United States)

    Amey, E.B.; Kelly, T.D.

    1996-01-01

    The first factor determining recyclability is the composition of the material itself. Metals, for example, can be reused with little or no loss in quality. Paper and rubber, by this criterion, are less recyclable. Each time paper is recycled, some cellulose fibers are broken. Shorter fibers can mean weaker paper of perceived lower quality and value. Vulcanizing is an irreversible chemical process that precludes recycling rubber in its original form. Both materials may be reused in other applications often of lower value than the original one. To be recyclable, the discarded material must have a collection infrastructure at the source of waste generation, at a central collection site, or at curbside. The recovered material must also have a market. If it is priced noncompetitively or no market exists, if it does not meet specifications, or if it requires special technology investments which cannot be recovered through future sales, the recovered material may be stockpiled or discarded rather than recycled. ?? 1996 International Association for Mathematical Geology.

  5. Recycling and Reuse of Materials Arising from the Decommissioning of Nuclear Facilities. A Report by the NEA Co-operative Program on Decommissioning

    International Nuclear Information System (INIS)

    Ooms, Bart; Verwaest, Isi; Legee, Frederic; Nokhamzon, Jean-Guy; Pieraccini, Michel; Poncet, Philippe; Franzen, Nicole; Vignaroli, Tiziano; Herschend, Bjoern; Benest, Terry; Loudon, David; Favret, Derek; Weber, Inge; )

    2017-01-01

    Large quantities of materials arising from the decommissioning of nuclear facilities are non-radioactive per se. An additional, significant share of materials is of very low-level or low-level radioactivity and can, after having undergone treatment and a clearance process, be recycled and reused in a restricted or unrestricted way. Recycle and reuse options today provide valuable solutions to minimise radioactive waste from decommissioning and at the same time maximise the recovery of valuable materials. The NEA Co-operative Programme on Decommissioning (CPD) prepared this overview on the various approaches being undertaken by international and national organisations for the management of slightly contaminated material resulting from activities in the nuclear sector. The report draws on CPD member organisations' experiences and practices related to recycling and reuse, which were gathered through an international survey. It provides information on improvements and changes in technologies, methodologies and regulations since the 1996 report on this subject, with the conclusions and recommendations taking into account 20 years of additional experience that will be useful for current and future practitioners. Case studies are provided to illustrate significant points of interest, for example in relation to scrap metals, concrete and soil

  6. Recycling of agroindustrial solid wastes as additives in brick manufacturing for development of sustainable construction materials

    Directory of Open Access Journals (Sweden)

    Lisset Maritza Luna-Cañas

    2014-01-01

    Full Text Available La acumulación de residuos sólidos agroindustriales no administ rados especialmente en los países en vías de desarrollo ha dado lugar a una creciente preocupación ambiental. El reciclaje de tales res iduos como un material de construcción sostenible parece ser un a solución viable no sólo al problema de la contaminación, sino también un a opción económica para diseñar edificios verdes. El presente t rabajo estudia la aplicación de varios residuos agroindustriales en la fabricación de ladrillos, que incluyen cáscara de cacao, aserr ín, cáscara de arroz y caña de azúcar. En primer lugar, se determinó la compos ición mineralógica y química de los residuos y del suelo arcill oso. A continuación, los ladrillos se fabricaron con diferentes cantid ades de residuos (5%, 10% y 20%. El efecto de la adición de es tos residuos en el comportamiento tecnológico del ladrillo se evaluó mediant e ensayos de resistencia a la compresión, resistencia a la flex ión y durabilidad. Con base en los resultados obtenidos, las cantidad es óptimas de residuos agroindustriales para obtener ladrillos fueron mezclando 10% de cáscara de cacao y 90% de suelo arcilloso. Est os porcentajes producen ladrillos cuyas propiedades mecánicas e ran adecuadas para su uso como materias primas secundarias en la pr oducción de ladrillos.

  7. Assessment Of Usability Of Molten Salt Mixtures In Metallurgy Of Aluminum Alloys And Recycling Of Composite Materials Based On The Matrix Of Al Alloys

    Directory of Open Access Journals (Sweden)

    Jackowski J.

    2015-09-01

    Full Text Available Effectiveness of the slags used in metallurgy of aluminum alloys and in recycling of composite materials containing these alloys depends on their surface properties at the phase boundaries they are in contact with. An index of surface properties of molten mixtures of slag-forming salts has been formulated. Its calculated values are compared with measured results of surface tension (liquid – atmosphere and interfacial tension (liquid – liquid in the considered systems. It was found that the index can be helpful for purposes of proper choice of the mixtures of slag-forming salts used both in Al alloys metallurgy and in recycling of composite materials based on the matrix of Al alloys.

  8. Two intelligent materials, both of which are self-forming and self-repairing; one also self-senses and recycles

    Science.gov (United States)

    Dry, Carolyn M.

    1996-04-01

    Two self-forming and repair polymer cementitious composites were developed over a decade apart by the author. Both relied on a nature based paradigm as a model for building, in particular bone formation, repair, and degradation. For the first composite, the proposed material accreted from the ocean, made from a fluids based chemistry, that of seawater. The land based system was not built in-situ but relied on a man made supply of materials which were self-forming, self-repairing and dissolving. But in both cases a fluid based chemistry was necessary for self-building, repair and recycling of a bone-like composite material.

  9. Label-free colorimetric detection of Hg²⁺ based on Hg²⁺-triggered exonuclease III-assisted target recycling and DNAzyme amplification.

    Science.gov (United States)

    Ren, Wang; Zhang, Ying; Huang, Wei Tao; Li, Nian Bing; Luo, Hong Qun

    2015-06-15

    This work reported a label-free colorimetric assay for sensitive detection of Hg(2+) based on Hg(2+)-triggered hairpin DNA probe (H-DNA) termini-binding and exonuclease Ш (Exo Ш)-assisted target recycling, as well as hemin/G-quadruplex (DNAzyme) signal amplification. The specific binding of free Hg(2+) with the thymine-thymine (T-T) mismatches termini of H-DNA could immediately trigger the Exo Ш digestion, and then set free G-quadruplex segments and Hg(2+). The Exo Ш impellent recycling of ultratrace Hg(2+) produced numerous G-quadruplexes. The corresponding DNAzymes catalyzed efficiently the H2O2-mediated oxidation of the ABTS(2-) to the colored product in the presence of hemin. Using the color change as the output signal, and the Exo Ш-aided Hg(2+) recycling and DNAzyme as the signal amplifier, the ultrasensitive assay system successfully achieved visual detection of Hg(2+) as low as 1.0 nM by the naked eye, and was suitable for field monitoring. The calibration curve was linear in the range of 50.0 pM to 20.0 nM for Hg(2+) (R=0.9962) with a detection limit of 10.0 pM. Moreover, this proposed strategy showed excellent selectivity, portability and low-cost, and was successfully applied to colorimetric detection of Hg(2+) in laboratory tap water and Jialing river water samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Recycled water reuse permit renewal application for the materials and fuels complex industrial waste ditch and industrial waste pond

    Energy Technology Data Exchange (ETDEWEB)

    Name, No

    2014-10-01

    This renewal application for the Industrial Wastewater Reuse Permit (IWRP) WRU-I-0160-01 at Idaho National Laboratory (INL), Materials and Fuels Complex (MFC) Industrial Waste Ditch (IWD) and Industrial Waste Pond (IWP) is being submitted to the State of Idaho, Department of Environmental Quality (DEQ). This application has been prepared in compliance with the requirements in IDAPA 58.01.17, Recycled Water Rules. Information in this application is consistent with the IDAPA 58.01.17 rules, pre-application meeting, and the Guidance for Reclamation and Reuse of Municipal and Industrial Wastewater (September 2007). This application is being submitted using much of the same information contained in the initial permit application, submitted in 2007, and modification, in 2012. There have been no significant changes to the information and operations covered in the existing IWRP. Summary of the monitoring results and operation activity that has occurred since the issuance of the WRP has been included. MFC has operated the IWP and IWD as regulated wastewater land treatment facilities in compliance with the IDAPA 58.01.17 regulations and the IWRP. Industrial wastewater, consisting primarily of continuous discharges of nonhazardous, nonradioactive, routinely discharged noncontact cooling water and steam condensate, periodic discharges of industrial wastewater from the MFC facility process holdup tanks, and precipitation runoff, are discharged to the IWP and IWD system from various MFC facilities. Wastewater goes to the IWP and IWD with a permitted annual flow of up to 17 million gallons/year. All requirements of the IWRP are being met. The Operations and Maintenance Manual for the Industrial Wastewater System will be updated to include any new requirements.

  11. A versatile and highly sensitive homogeneous electrochemical strategy based on the split aptamer binding-induced DNA three-way junction and exonuclease III-assisted target recycling.

    Science.gov (United States)

    Hou, Ting; Li, Wei; Zhang, Lianfang; Li, Feng

    2015-08-21

    Herein, a highly sensitive and versatile homogeneous electrochemical biosensing strategy is proposed, based on the split aptamer-incorporated DNA three-way junction and the exonuclease (Exo) III-assisted target recycling. The aptamer of adenosine triphosphate (ATP, chosen as the model analyte) is split into two fragments and embedded in single-stranded DNA1 and DNA2, respectively. ATP specifically binds with the split aptamers, bringing DNA1 and DNA2 close to each other, thus inducing the DNA three-way junction formation through the partial hybridization among DNA1, DNA2 and the methylene blue-labelled MB-DNA. Subsequently, MB-DNA is specifically digested by Exo III, releasing a MB-labelled mononucleotide, as well as a DNA1-ATP-DNA2 complex, which acts as the recycled target and hybridizes with another intact MB-DNA to initiate the subsequent cycling cleavage process. As a result, large amounts of MB-labelled mononucleotides are released, generating a significantly amplified electrochemical signal toward the ATP assay. To the best of our knowledge, it is the first example to successfully incorporate split aptamers into DNA three-way junctions and to be adopted in a homogeneous electrochemical assay. In addition to high sensitivity, this strategy also exhibits the advantages of simplicity and convenience, because it is carried out in a homogeneous solution, and sophisticated electrode modification processes are avoided. By simply changing the sequences of the split aptamer fragments, this versatile strategy can be easily adopted to assay a large spectrum of targets. Due to its advantages of high sensitivity, excellent selectivity, versatility and simple operation, the as-proposed approach has great potential to be applied in biochemical research and clinical practices.

  12. Criteria for selection of target materials and design of high-efficiency-release targets for radioactive ion beam generation

    CERN Document Server

    Alton, G D; Liu, Y

    1999-01-01

    In this report, we define criteria for choosing target materials and for designing, mechanically stable, short-diffusion-length, highly permeable targets for generation of high-intensity radioactive ion beams (RIBs) for use at nuclear physics and astrophysics research facilities based on the ISOL principle. In addition, lists of refractory target materials are provided and examples are given of a number of successful targets, based on these criteria, that have been fabricated and tested for use at the Holifield Radioactive Ion Beam Facility (HRIBF).

  13. Networks of recyclable material waste-picker's cooperatives: an alternative for the solid waste management in the city of Rio de Janeiro.

    Science.gov (United States)

    Tirado-Soto, Magda Martina; Zamberlan, Fabio Luiz

    2013-04-01

    The objective of this study is to discuss the role of networks formed of waste-picker cooperatives in ameliorating problems of final disposal of solid waste in the city of Rio de Janeiro, since the city's main landfill will soon have to close because of exhausted capacity. However, it is estimated that in the city of Rio de Janeiro there are around five thousand waste-pickers working in poor conditions, with lack of physical infrastructure and training, but contributing significantly by diverting solid waste from landfills. According to the Sustainable Development Indicators (IBGE, 2010a,b) in Brazil, recycling rates hover between 45% and 55%. In the municipality of Rio de Janeiro, only 1% of the waste produced is collected selectively by the government (COMLURB, 2010), demonstrating that recycling is mainly performed by waste-pickers. Furthermore, since the recycling market is an oligopsony that requires economies of scale to negotiate directly with industries, the idea of working in networks of cooperatives meets the demands for joint marketing of recyclable materials. Thus, this work presents a method for creating and structuring a network of recycling cooperatives, with prior training for working in networks, so that the expected synergies and joint efforts can lead to concrete results. We intend to demonstrate that it is first essential to strengthen the waste-pickers' cooperatives in terms of infrastructure, governance and training so that solid waste management can be environmentally, socially and economically sustainable in the city of Rio de Janeiro. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Plastic recycling in the Nordics: A value chain market analysis.

    Science.gov (United States)

    Milios, Leonidas; Holm Christensen, Lena; McKinnon, David; Christensen, Camilla; Rasch, Marie Katrine; Hallstrøm Eriksen, Mikael

    2018-03-26

    There is low utilisation of plastic waste in the Nordic region and only a fraction of plastic materials go back into production processes through reuse and recycling practices. This paper aims to increase knowledge concerning factors that inhibit demand for recycled plastics, and to identify critical barriers for plastic recycling across the regional plastics value chain. A literature review and targeted interviews with key actors across the plastics value chain enabled the mapping of interactions between the major actors and identified hotspots that act as barriers to the flow of plastic materials. Barriers identified include the lack of both supply and demand of recycled plastic and are mainly attributed to the fragmented market of secondary materials. The main hotspots identified are the low demand due to price considerations, insufficient traceability and transparency in value chain transactions, and general design deficiencies in the recyclability of products. Value chain coordination is considered as the most important intervention by the interviewees, followed by the need for increased investment in innovation and technology development. Complementary measures that could counteract the identified barriers include public procurement for resource efficiency, ban on the incineration of recyclable materials, and specifications on the design of plastic products for reducing the number of different polymers, and the number and usage of additives. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. The Dynamic Earth: Recycling Naturally!

    Science.gov (United States)

    Goldston, M. Jenice; Allison, Elizabeth; Fowler, Lisa; Glaze, Amanda

    2013-01-01

    This article begins with a thought-provoking question: What do you think of when you hear the term "recycle?" Many think about paper, glass, aluminum cans, landfills, and reducing waste by reusing some of these materials. How many of us ever consider the way the systems of Earth dynamically recycle its materials? In the following…

  16. Processing and Validation of Whey-Protein-Coated Films and Laminates at Semi-Industrial Scale as Novel Recyclable Food Packaging Materials with Excellent Barrier Properties

    Directory of Open Access Journals (Sweden)

    E. Bugnicourt

    2013-01-01

    Full Text Available A biopolymer coating for plastic films was formulated based on whey protein, and its potential to replace current synthetic oxygen barrier layers used in food packaging such as ethylene vinyl alcohol copolymers (EVOH was tested. The whey-coating application was performed at semi-industrial scale. High barrier to oxygen with transmission rate down to ranges of 1 cm3 (STP m−2 d−1 bar−1 at and 50% relative humidity (r.h. but interesting humidity barrier down to ranges of 3 g m−2 d−1 (both normalized to 100 μm thickness were reached, outperforming most existing biopolymers. Coated films were validated for storing various food products showing that the shelf life and sensory attributes were maintained similar to reference packaging films while complying with food safety regulations. The developed whey coating could be enzymatically removed within 2 hours and is therefore compatible with plastic recycling operations to allow multilayer films to become recyclable by separating the other combined layers. A life cycle assessment was performed showing a significant reduction in the environmental impact of the packaging thanks in particular to the possibility of recycling materials as opposed to incinerating those containing EVOH or polyamide (PA, but due to the use of biosourced raw materials.

  17. Proposed industrial recoverd materials utilization targets for the textile mill products industry

    Energy Technology Data Exchange (ETDEWEB)

    1979-05-01

    Materials recovery targets were established to represent the maximum technically and economically feasible increase in the use of energy-saving materials by January 1, 1987. This report describes targets for the textile industry and describes how those targets were determined. (MCW)

  18. Effects of recycled shingles and increased RAP percentages : [research brief].

    Science.gov (United States)

    2012-01-01

    As asphalt binder becomes more expensive, the use of recycled asphalt materials becomes : more attractive. Recycled asphalt pavement (RAP) and recycled asphalt shingles (RAS) offer a partial substitute for virgin aggregate and binder in asphalt pavem...

  19. Long-term aging of recycled binders : [summary].

    Science.gov (United States)

    2015-10-01

    At 80 million tons a year representing more than 80% of all milled asphalt pavement : asphalt paving is Americas most recycled material. Asphalt can be recycled in place, which is : very cost effective; however, aging of recycled binder ca...

  20. Energetic reuse: the use of energy from organic material from urban waste for plastics recycling; Reaproveitamento energetico: uso de energia proveniente de material organico dos residuos urbanos para reciclar plasticos

    Energy Technology Data Exchange (ETDEWEB)

    Carneiro, Priscila Alves; Rocha, Carlos Roberto [Universidade Federal de Itajuba (EXCEN/UNIFEI), MG (Brazil). Centro de Excelencia em Eficiencia Energetica

    2008-07-01

    The population growth and the elevation of the purchasing status due to economic development impel the gradual increase of residues produced a year. The discarding of these residues represents a great economic and environmental challenge, mainly because of discarded plastic concentration with no energetic and economic use, a also because of the organic material that, after decomposing, produces methane, one of the most responsible for global heating when in contact with atmosphere with no control. The recycling of plastic residues is a solution to minimize its discard and to guarantee an environmental improvement for saving raw matter, however the high consumption of energy endears the process, making it difficult its economic viability. This takes the search of new alternatives for attainment of low cost energy. In the problem of discard of the organic matter it can be the solution for the recycling of these residues. The decomposition of the organic matter produces fuel (biogas) useful as power plant for the generation of necessary electricity to the recycling process. The present study analyses an alternative to recycle plastic residues, after being consumed, in some places for discarding and using energy from biogas produced in landfills or biodigestors. Initially it was carried through a data-collecting and analysis of the physical composition of the residues, indispensable to the development of the study, which allowed to daily find the average percentage of plastics (12,9%) and organic matter (41,9%) made use by the involved population. On the basis of the data of organic matter the determination in such a way of the potential of generation of the biogas as of the electric power 'recycled' was possible to leave of that they would be discarded without any use. Data-collecting on equipment used in the plastic recycling had been essential for attainment of the necessary average energy demand to the process in such a way not only for soft plastic and

  1. Application of Regulation for recycling metals arising from Decommissioning of an Italian Nuclear Facility - Application of national regulations for metallic materials' recycling from the decommissioning of an Italian nuclear facility

    International Nuclear Information System (INIS)

    Varasano, Giovanni; Baldassarre, Leonardo; Petagna, Edoardo

    2014-01-01

    The start of the decommissioning of nuclear Italian sites requires proper management of clearance for large volumes of metallic materials. This paper describes the current legal framework relating to the Italian regulatory system of reference for the verification of the conditions of unconditional release of materials from nuclear installations, with particular reference to the recycling of metals. The definition of clearance levels, whether general or specific, ensures the clearance of materials arising from nuclear sites without further examinations. The Italian legislation on radiation protection requires that the removal of materials from authorized practices be subject to special requirements included in the authorization provisions. These requirements provide clearance levels that take account of the recommendations and technical guidelines supplied by the European Commission. The regulatory framework requires compliance with current technical and managerial requirements, issued by the National Regulatory Authority and annexed to the Ministerial Authorization, in which are shown the levels of surface activity and specific activity established for the unconditional release of metals from nuclear sites. The real challenge for the nuclear operator is the management of large amounts of waste materials arising from decommissioning activities. For the Italian operator SOGIN SpA is of extreme importance the correct application of national regulatory framework, in order to allow the most effective reduction of the amount of radioactive waste during decommissioning activities. (authors)

  2. Tire recycling technologies: What is the future?

    NARCIS (Netherlands)

    Saiwari, Sitisaiyidah; van Hoek, Johannes Wilhelmus; Dierkes, Wilma K.; Noordermeer, Jacobus W.M.; Blume, Anke; Heideman, G.

    2016-01-01

    Recycling is a heavily discussed topic nowadays, and recycled tire material to be re-used for the same application is one of the spear points of current R&D activities. Regarding the immense amount of used tires, more than just one outlet for the recycled material is needed. Besides the commonly

  3. Recycling of Glass

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Damgaard, Anders

    2011-01-01

    Glass is used for many purposes, but in the waste system glass is predominantly found in terms of beverage and food containers with a relatively short lifetime before ending up in the waste. Furthermore there is a large amount of flat glass used in building materials which also ends up in the waste...... system; this glass though has a long lifetime before ending up in the waste. Altogether these product types add up to 82% of the production of the European glass industry (IPCC, 2001). Recycling of glass in terms of cleaning and refilling of bottles as well as the use of broken glass in the production...... of new glass containers is well established in the glass industry. This chapter describes briefly howglass is produced and howwaste glass is recycled in the industry. Quality requirements and use of recycled products are discussed, as are the resource and environmental issues of glass recycling....

  4. Quantify the energy and environmental effects of using recycled asphalt and recycled concrete for pavement construction phase I : final report.

    Science.gov (United States)

    2009-08-01

    The objective of this study is to quantify the energy and environment impacts from using recycled materials : for highway construction. Specifically, when recycled asphalt pavement is re-used for producing hot mix : asphalt or when recycled concrete ...

  5. Cascaded strand displacement for non-enzymatic target recycling amplification and label-free electronic detection of microRNA from tumor cells

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Kai; Dou, Baoting; Yang, Jianmei; Yuan, Ruo; Xiang, Yun, E-mail: yunatswu@swu.edu.cn

    2016-04-15

    The monitoring of microRNA (miRNA) expression levels is of great importance in cancer diagnosis. In the present work, based on two cascaded toehold-mediated strand displacement reactions (TSDRs), we have developed a label- and enzyme-free target recycling signal amplification approach for sensitive electronic detection of miRNA-21 from human breast cancer cells. The junction probes containing the locked G-quadruplex forming sequences are self-assembled on the senor surface. The presence of the target miRNA-21 initiates the first TSDR and results in the disassembly of the junction probes and the release of the active G-quadruplex forming sequences. Subsequently, the DNA fuel strand triggers the second TSDR and leads to cyclic reuse of the target miRNA-21. The cascaded TSDRs thus generate many active G-quadruplex forming sequences on the sensor surface, which associate with hemin to produce significantly amplified current response for sensitive detection of miRNA-21 at 1.15 fM. The sensor is also selective and can be employed to monitor miRNA-21 from human breast cancer cells. - Highlights: • Amplified and sensitive detection of microRNA from tumor cells is achieved. • Signal amplification is realized by two cascaded strand displacement reactions. • The developed sensor is selective and label-free without involving any enzymes.

  6. Recycling of Reinforced Plastics

    Science.gov (United States)

    Adams, R. D.; Collins, Andrew; Cooper, Duncan; Wingfield-Digby, Mark; Watts-Farmer, Archibald; Laurence, Anna; Patel, Kayur; Stevens, Mark; Watkins, Rhodri

    2014-02-01

    This work has shown is that it is possible to recycle continuous and short fibre reinforced thermosetting resins while keeping almost the whole of the original material, both fibres and matrix, within the recyclate. By splitting, crushing hot or cold, and hot forming, it is possible to create a recyclable material, which we designate a Remat, which can then be used to remanufacture other shapes, examples of plates and tubes being demonstrated. Not only can remanufacturing be done, but it has been shown that over 50 % of the original mechanical properties, such as the E modulus, tensile strength, and interlaminar shear strength, can be retained. Four different forms of composite were investigated, a random mat Glass Fibre Reinforced Plastic (GFRP) bathroom component and boat hull, woven glass and carbon fibre cloth impregnated with an epoxy resin, and unidirectional carbon fibre pre-preg. One of the main factors found to affect composite recyclability was the type of resin matrix used in the composite. Thermoset resins tested were shown to have a temperature range around the Glass Transition Temperature (Tg) where they exhibit ductile behaviour, hence aiding reforming of the material. The high-grade carbon fibre prepreg was found to be less easy to recycle than the woven of random fibre laminates. One method of remanufacturing was by heating the Remat to above its glass transition temperature, bending it to shape, and then cooling it. However, unless precautions are taken, the geometric form may revert. This does not happen with the crushed material.

  7. Sustainability issues in circuit board recycling

    DEFF Research Database (Denmark)

    Legarth, Jens Brøbech; Alting, Leo; Baldo, Gian Luca

    1995-01-01

    The resource recovery and environmental impact issues of printed circuit board recycling by secondary copper smelters are discussed. Guidelines concerning material selection for circuit board manufacture and concerning the recycling processes are given to enhance recovery efficiency and to lower...

  8. Long-term aging of recycled binders.

    Science.gov (United States)

    2015-07-01

    Asphalt pavement is Americas most recycled material. Eighty million tons of asphalt, nearly 80% of all milled asphalt pavement, : is recycled every year [1]. To effectively maintain its 40,000 miles of paved roads, the Florida Department of Transp...

  9. Material and Structural Performance Evaluations of Hwangtoh Admixtures and Recycled PET Fiber-Added Eco-Friendly Concrete for CO2 Emission Reduction

    Science.gov (United States)

    Koo, Bon-Min; Kim, Jang-Ho Jay; Kim, Sung-Bae; Mun, Sungho

    2014-01-01

    In order to reduce carbon dioxide (CO2) emissions and produce an eco-friendly construction material, a type of concrete that uses a minimal amount of cement, yet still retains equivalent properties to ordinary cement concrete, has been developed and studied all over the world. Hwangtoh, a type of red clay broadly deposited around the world, has traditionally been considered an eco-friendly construction material, with bonus advantages of having health and cost benefits. Presently, Hwangtoh is not commonly used as a modern construction material due to properties such as low strength and high rates of shrinkage cracking. Recent studies, however, have shown that Hwangtoh can be used as a mineral admixture to improve the strength of concrete. In addition, polyethylene terephthalate (PET) fibers recycled from PET bottle waste can be used to control shrinkage cracks in Hwangtoh concrete. Therefore, in this study, performance verification is conducted on newly developed Hwangtoh concrete mixed with short recycled PET fibers. The results show that Hwangtoh concrete has compressive strength, elastic modulus, and pH properties that are similar to these features in ordinary cement concrete. The properties of carbonation depth and creep strain of Hwangtoh concrete, however, are larger and smaller, respectively, than in ordinary cement concrete. According to flexural tests, reinforced concrete (RC) specimens cast with Hwangtoh admixtures (with and without PET fibers) possess similar or better capacities than ordinary RC specimens. The addition of PET fibers significantly improves the structural ductility of RC specimens under normal environmental conditions. However, the implementations of the concrete in aggressive environment must be carefully considered, since a previous study result indicates degradation of its durability performance in aggressive environments, such as seawater [1]. The results of this study validate the possibility of using eco-friendly Hwangtoh concrete

  10. Material and Structural Performance Evaluations of Hwangtoh Admixtures and Recycled PET Fiber-Added Eco-Friendly Concrete for CO₂ Emission Reduction.

    Science.gov (United States)

    Koo, Bon-Min; Kim, Jang-Ho Jay; Kim, Sung-Bae; Mun, Sungho

    2014-08-19

    In order to reduce carbon dioxide (CO₂) emissions and produce an eco-friendly construction material, a type of concrete that uses a minimal amount of cement, yet still retains equivalent properties to ordinary cement concrete, has been developed and studied all over the world. Hwangtoh, a type of red clay broadly deposited around the world, has traditionally been considered an eco-friendly construction material, with bonus advantages of having health and cost benefits. Presently, Hwangtoh is not commonly used as a modern construction material due to properties such as low strength and high rates of shrinkage cracking. Recent studies, however, have shown that Hwangtoh can be used as a mineral admixture to improve the strength of concrete. In addition, polyethylene terephthalate (PET) fibers recycled from PET bottle waste can be used to control shrinkage cracks in Hwangtoh concrete. Therefore, in this study, performance verification is conducted on newly developed Hwangtoh concrete mixed with short recycled PET fibers. The results show that Hwangtoh concrete has compressive strength, elastic modulus, and pH properties that are similar to these features in ordinary cement concrete. The properties of carbonation depth and creep strain of Hwangtoh concrete, however, are larger and smaller, respectively, than in ordinary cement concrete. According to flexural tests, reinforced concrete (RC) specimens cast with Hwangtoh admixtures (with and without PET fibers) possess similar or better capacities than ordinary RC specimens. The addition of PET fibers significantly improves the structural ductility of RC specimens under normal environmental conditions. However, the implementations of the concrete in aggressive environment must be carefully considered, since a previous study result indicates degradation of its durability performance in aggressive environments, such as seawater [1]. The results of this study validate the possibility of using eco-friendly Hwangtoh concrete

  11. Material and Structural Performance Evaluations of Hwangtoh Admixtures and Recycled PET Fiber-Added Eco-Friendly Concrete for CO2 Emission Reduction

    Directory of Open Access Journals (Sweden)

    Bon-Min Koo

    2014-08-01

    Full Text Available In order to reduce carbon dioxide (CO2 emissions and produce an eco-friendly construction material, a type of concrete that uses a minimal amount of cement, yet still retains equivalent properties to ordinary cement concrete, has been developed and studied all over the world. Hwangtoh, a type of red clay broadly deposited around the world, has traditionally been considered an eco-friendly construction material, with bonus advantages of having health and cost benefits. Presently, Hwangtoh is not commonly used as a modern construction material due to properties such as low strength and high rates of shrinkage cracking. Recent studies, however, have shown that Hwangtoh can be used as a mineral admixture to improve the strength of concrete. In addition, polyethylene terephthalate (PET fibers recycled from PET bottle waste can be used to control shrinkage cracks in Hwangtoh concrete. Therefore, in this study, performance verification is conducted on newly developed Hwangtoh concrete mixed with short recycled PET fibers. The results show that Hwangtoh concrete has compressive strength, elastic modulus, and pH properties that are similar to these features in ordinary cement concrete. The properties of carbonation depth and creep strain of Hwangtoh concrete, however, are larger and smaller, respectively, than in ordinary cement concrete. According to flexural tests, reinforced concrete (RC specimens cast with Hwangtoh admixtures (with and without PET fibers possess similar or better capacities than ordinary RC specimens. The addition of PET fibers significantly improves the structural ductility of RC specimens under normal environmental conditions. However, the implementations of the concrete in aggressive environment must be carefully considered, since a previous study result indicates degradation of its durability performance in aggressive environments, such as seawater [1]. The results of this study validate the possibility of using eco

  12. A three-line lateral flow biosensor for logic detection of microRNA based on Y-shaped junction DNA and target recycling amplification.

    Science.gov (United States)

    Huang, Yan; Wang, Wenqian; Wu, Tingting; Xu, Li-Ping; Wen, Yongqiang; Zhang, Xueji

    2016-11-01

    A rapid, sensitive, and accurate detection strategy for microRNA 16 (miR-16) was developed, which combined the convenience of lateral flow biosensors (LFBs), the design flexibility of Y-shaped junction DNA probe, and the enhancement ability of endonuclease-assisted target recycling amplification. The system is composed of a molecular beacon (MB) probe, an assistant probe, and endonuclease Nt.BbvCI, which plays the role of signal translation and amplification. In the presence of the target microRNAs (miRNAs), three chains of nucleic acid could hybridize with each other to form a Y-shaped junction structure, which could be recognized by the endonuclease Nt.BbvCI. The MB probe was efficiently cleaved by endonuclease and produced two new DNA fragments, while the regenerated assistant probe and target were hybridized to another MB probe and entered into the next cycle of the amplification. In this way, the detection of the readily biodegradable miRNA was turned into the detection of two DNA fragments in the LFB. Meanwhile, the detection of two different DNAs would improve the accuracy and effectively avoid false results. The amplified products containing DNA fragments were then applied to the lateral flow nucleic acid biosensor (LFNAB) with two test zones, on which specific DNA probes were designed. The formed DNA-DNA/gold nanoparticle (GNP) conjugates were captured and accumulated to produce two red bands in two test zones. The logic judgment of the two test zones provided more accurate and convincing results. Under optimal conditions, the visual detection limit of miR-16 in aqueous solutions was 0.1 pM, which is 100-1000 times lower than that of visual or colorimetric methods in the literature. It could be used for on-field and point-of-care testing and meet the urgent demand of sensitive and selective miRNA detection in remote rural areas without costly equipment. The system displayed good universality, compatibility, high specificity, and stability of mi

  13. Commercial-scale recycling of NdFeB-type magnets with grain boundary modification yields products with 'designer properties' that exceed those of starting materials.

    Science.gov (United States)

    Zakotnik, M; Tudor, C O

    2015-10-01

    NdFeB-type magnets dominate the market for high performance magnetic materials, yet production of 'virgin' magnets via mining is environmentally, financially and energetically costly. Hence, interest is growing in 'magnet to magnet' recycling schemes that offer the potential for cheaper, more environmentally-friendly solutions to the world's growing appetite for rare-earth based magnetic materials. Unfortunately, previously described recycling processes only partially capitalise on this potential, because the methods described to date are limited to 'laboratory scale' or operate only under ideal conditions and result in products that fail to recapture the coercivity of the starting, scrap materials. Herein, we report a commercial scale process (120 kg batches) that completely recovers the properties of the starting scrap magnets. Indeed, 'grain boundary modification', via careful addition of a proprietary mix of blended elements, produces magnets with 'designer properties' that can exceed those of the starting materials and can be closely tailored to meet a wide variety of end-user applications, including high-coercivity (>2000 kA/m), sintered magnets suitable for motor applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. An investigation of zincite from spent anodic portions of alkaline batteries: An industrial mineral approach for evaluating stock material for recycling potential

    Science.gov (United States)

    Barrett, Heather A.; Borkiewicz, Olaf; Krekeler, Mark P. S.

    The mineralogy of anodic portions of spent alkaline batteries from a leading brand (Duracell) that had been equilibrated in ambient air for approximately 4 months was investigated to determine if material generated from this low energy process may be suitable stock material for recycling. Powder X-ray diffraction (XRD) identified the bulk of the ambient air oxidized anodic material as zincite (ZnO). Scanning electron microscopy investigation indicates a variety of textures of zincite are present with euhedral hexagonal prisms being the most common crystal form. Energy dispersive spectroscopy (EDS) analysis indicates that there are no minor amounts of Mn within the zincite. Transmission electron microscopy investigation indicates a variety of textures exist in the zinc oxide. Impurities in the batteries. A promising applications of zincite are numerous, including the development of new solar cell materials. The spent alkaline battery waste stream may serve as promising resource for driving further development of this sector of the economy.

  15. Radiological characterisation and its role in the efficient management of low-level radioactive material supporting concurrent reuse, recycling and disposal. WNA Statement - Towards Greater Efficiency in the Management of Low-Level Radioactive Material that Concurrently Supports Reuse, Recycling and Disposal

    International Nuclear Information System (INIS)

    Townes, Jamie

    2012-01-01

    There are currently 435 operating civil nuclear power reactors in the world with an impressive number planned or already under construction as well as a range of associated nuclear fuel cycle and research facilities. Advances in the prior radiological characterisation of the materials which exist within these facilities and which are produced through their operation have enabled these materials to be characterised to a very high degree of precision and sensitivity with associated improvements in the limits of detection for radioactivity. This has enabled an accurate and reliable knowledge of their radiological properties to be gained along with an evaluation of the associated risks from radioactive components even down to very small values. Following their use, either at the end of an operational process or at the end of the facility's life, these materials, if they cannot be re-used, must be recycled or disposed of. The knowledge derived from characterisation has shown that the major volume of such materials (excluding used nuclear fuel) fall into a category which is amenable to re-cycling through the application of established survey and treatment techniques. Such materials contain valuable resources which, in a world committed to greater efficiency and sustainability, must be conserved through recycling in order to optimise the demand for fresh resources which must be found, extracted and processed as well as to conserve valuable space in national disposal facilities. Despite these advances irrationality concerning the reuse, recycling and disposal of materials containing low levels of radioactivity continues to prevail, even in countries with large nuclear power programmes. Should the facts about the true nature of the materials, gained and refined through advances in radiological characterisation, become more widely known then this could depolarise an often negatively charged debate. Combined with a knowledge of the safe and effective treatment techniques that

  16. Actinide recycle

    International Nuclear Information System (INIS)

    Till, C.; Chang, Y.

    1990-01-01

    A multitude of studies and assessments of actinide partitioning and transmutation were carried out in the late 1970s and early 1980s. Probably the most comprehensive of these was a study coordinated by Oak Ridge National Laboratory. The conclusions of this study were that only rather weak economic and safety incentives existed for partitioning and transmuting the actinides for waste management purposes, due to the facts that (1) partitioning processes were complicated and expensive, and (2) the geologic repository was assumed to contain actinides for hundreds of thousands of years. Much has changed in the few years since then. A variety of developments now combine to warrant a renewed assessment of the actinide recycle. First of all, it has become increasingly difficult to provide to all parties the necessary assurance that the repository will contain essentially all radioactive materials until they have decayed. Assurance can almost certainly be provided to regulatory agencies by sound technical arguments, but it is difficult to convince the general public that the behavior of wastes stored in the ground can be modeled and predicted for even a few thousand years. From this point of view alone there would seem to be a clear benefit in reducing the long-term toxicity of the high-level wastes placed in the repository

  17. PET and Recycling

    Directory of Open Access Journals (Sweden)

    Funda Sevencan

    2007-08-01

    Full Text Available This review aims to clarify the need of decreasing the environmental effects caused by human and draw attention to the increasing environmental effects of plastics wastes. Plastics consist of organic molecules with high density molecules or polymers. Main resources of plastics are the residue of oil rafineries. Several advantages of plastics, have increased the usage continuously. Polyethylene Terephthalate (PET is the most commonly used plastics. PET is used to protect food, drinking water, fruit juice, alcoholic beverage, and food packing films. By the increasing interest on the environmental effects of plastic wastes, concerns on the recyclable packing materials also grew up. Also the daily use of recyclable containers consisting PET have increased. There are five steps for recycling of plastics. These steps are; using large amounts of plastics, collecting them in a big center, classifying and sorting the plastics, reproducing the polymers and obtaining new products with melted plastics. Providing a healthy recycling of plastics, the consumers should have knowledge and responsibility. The consumer should know what he/she has to do before putting the plastics in the recycling containers. Recycling containers and bags should be placed near the sources of plastic wastes. Consequently, the plastic wastes and environmental problems they cause will be on the agenda in future. [TAF Prev Med Bull. 2007; 6(4: 307-312

  18. PET and Recycling

    Directory of Open Access Journals (Sweden)

    Funda Sevencan

    2007-08-01

    Full Text Available This review aims to clarify the need of decreasing the environmental effects caused by human and draw attention to the increasing environmental effects of plastics wastes. Plastics consist of organic molecules with high density molecules or polymers. Main resources of plastics are the residue of oil rafineries. Several advantages of plastics, have increased the usage continuously. Polyethylene Terephthalate (PET is the most commonly used plastics. PET is used to protect food, drinking water, fruit juice, alcoholic beverage, and food packing films. By the increasing interest on the environmental effects of plastic wastes, concerns on the recyclable packing materials also grew up. Also the daily use of recyclable containers consisting PET have increased. There are five steps for recycling of plastics. These steps are; using large amounts of plastics, collecting them in a big center, classifying and sorting the plastics, reproducing the polymers and obtaining new products with melted plastics. Providing a healthy recycling of plastics, the consumers should have knowledge and responsibility. The consumer should know what he/she has to do before putting the plastics in the recycling containers. Recycling containers and bags should be placed near the sources of plastic wastes. Consequently, the plastic wastes and environmental problems they cause will be on the agenda in future. [TAF Prev Med Bull 2007; 6(4.000: 307-312

  19. Optomagnetic Detection of MicroRNA Based on Duplex-Specific Nuclease-Assisted Target Recycling and Multilayer Core-Satellite Magnetic Superstructures

    DEFF Research Database (Denmark)

    Tian, Bo; Ma, Jing; Qiu, Zhen

    2017-01-01

    Superstructural assembly of magnetic nanoparticles enables approaches to biosensing by combining specially tailored properties of superstructures and the particular advantages associated with a magnetic or optomagnetic read-out such as low background signal, easy manipulation, cost-efficiency, an......Superstructural assembly of magnetic nanoparticles enables approaches to biosensing by combining specially tailored properties of superstructures and the particular advantages associated with a magnetic or optomagnetic read-out such as low background signal, easy manipulation, cost......RNA and DSN-assisted target recycling, the core-satellite magnetic superstructures release their "satellites" to the suspension, which subsequently can be quantified accurately in a low-cost and user-friendly optomagnetic setup. Target miRNAs are preserved in the cleaving reaction and can thereby trigger more...... cleavage and release of "satellites". For singleplex detection of let-7b, a linear detection range between 10 fM and 10 nM was observed, and a detection limit of 4.8 fM was obtained within a total assay time of 70 min. Multiplexing was achieved by releasing nanoparticles of different sizes in the presence...

  20. A practical method for target preparation of powdered materials

    International Nuclear Information System (INIS)

    Sugai, Isao.

    1977-01-01

    This is the sixth report on the practical method of target preparation for use in nuclear physics experiments following the previous one (INS-TL-131, 1976). We have made various targets by developing the centrifugal precipitation method, which is particularly effective in the cases; (a) metal with high melting point and low vapor pressure, (b) oxides which are difficult to prepare by the usual vacuum evaporation technique and (c) some enriched isotopes which are very minute in quantity (less than - 10 mg) and low in recovery ratio. The samples were once suspended in liquid paraffin by ultrasonic wave vibrator, and then centrifugally precipitated on a thin backing foil such as Mylar or aluminum set and the bottom of the centrifugal tube. Uniformity of target made in this way was checked by an 24 Am-α ray thickness gauge. Contaminations smudged in the preparing process were checked by irradiating the targets with the proton beam from the FM Cyclotron at I.N.S. (auth.)

  1. Industrial recovered-materials-utilization targets for the textile-mill-products industry

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-01-01

    The Congress, in the National Energy Conservation and Policy Act of 1978 (NECPA), directed the Department of Energy to establish materials recovery targets for the metals and metal products, paper and allied products, rubber, and textile-mill-products industries. The targets were developed to provide incentives for using energy-saving recorded materials and to provied a yardstick for measuring progress and improvement in this endeavor. The NECPA indicates that the targets should represent the maximum technically and economically feasible increase in the use of energy-saving recovered materials that each industry can achieve progressively by January 1, 1987. Materials affected by recovered-materials targets include and are limited to aluminum, copper, lead, zinc, iron, steel, paper and associated products, textile-mill, products, and rubber. Using information gathered from the textile-mill-products industry and from other textile-relaed sources, DOE has developed recovered materials targets for that industry. This report presents those targets and their basis and justification. Following an overview of the textile industry, the chapters are: Textile-Mill-Products Industry Operations; Economic Analysis of the Textile-Mill-Products Industry; Governmental and Regulatory Influence on the US Textile Industry; Current Mill Use of Recovered Materials in the Textile-Mill-Products Industry; Limitations on the Use of Recovered Materials in the US Textile-Mill-Products Industry; Materials-Recovery Targets; and Government and Industry Actions That Could Increase the Use of Recovered Materials.

  2. Comparison of recycling outcomes in three types of recycling collection units.

    Science.gov (United States)

    Andrews, Ashley; Gregoire, Mary; Rasmussen, Heather; Witowich, Gretchen

    2013-03-01

    Commercial institutions have many factors to consider when implementing an effective recycling program. This study examined the effectiveness of three different types of recycling bins on recycling accuracy by determining the percent weight of recyclable material placed in the recycling bins, comparing the percent weight of recyclable material by type of container used, and examining whether a change in signage increased recycling accuracy. Data were collected over 6 weeks totaling 30 days from 3 different recycling bin types at a Midwest University medical center. Five bin locations for each bin type were used. Bags from these bins were collected, sorted into recyclable and non-recyclable material, and weighed. The percent recyclable material was calculated using these weights. Common contaminates found in the bins were napkins and paper towels, plastic food wrapping, plastic bags, and coffee cups. The results showed a significant difference in percent recyclable material between bin types and bin locations. Bin type 2 was found to have one bin location to be statistically different (p=0.048), which may have been due to lack of a trash bin next to the recycling bin in that location. Bin type 3 had significantly lower percent recyclable material (precycling bin and increased contamination due to the combination of commingled and paper into one bag. There was no significant change in percent recyclable material in recycling bins post signage change. These results suggest a signage change may not be an effective way, when used alone, to increase recycling compliance and accuracy. This study showed two or three-compartment bins located next to a trash bin may be the best bin type for recycling accuracy. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Making sense of plastics recycling

    NARCIS (Netherlands)

    Van Bruggen, E.; Koster, R.P.; Rageart, K.; Cardon, L.; Moerman, M.; Blessing, E.

    2012-01-01

    Major benefits of plastics recycling are reduced depletion of non-renewable resources and reduction of world-wide waste. Traditional thermo-mechanical recycling causes reduction of mechanical properties for most thermoplastics. Down-cycled materials may nevertheless be suited for certain useful

  4. Relict olivine grains, chondrule recycling, and implications for the chemical, thermal, and mechanical processing of nebular materials

    Science.gov (United States)

    Ruzicka, Alex; Floss, Christine; Hutson, Melinda

    2008-11-01

    Chondrules and isolated forsterites in five low-subtype ordinary chondrites [NWA 3127 (LL3.1), Sahara 97210 (LL3.2), Wells (LL3.3), Chainpur (LL3.4), and Sahara 98175 (LL3.5)] were studied using petrographic, EMPA, and SIMS techniques to better constrain the origin of chondrules and the olivine grains within them. Our results imply that igneous crystallization, vapor fractionation, redox effects, and open-system behavior were important processes. All olivine grains, including normal, relict, and isolated forsterite grains, show evidence for igneous fractionation under disequilibrium conditions, with olivine crystallizing during rapid cooling (closer to 2000 °C/h than to 100 °C/h). Vapor fractionation is manifested by anti-correlated abundances between refractory elements (Al, Sc, Y, Ti, Ca, V) and volatile elements (Cr, Mn, P, Rb, Fe) in olivine. Redox effects are evidenced in various ways, and imply that Fe, Co, Ni, and P were partitioned more into metal, and V was partitioned more into olivine, under reducing conditions in the most FeO-poor melts. There is no obvious evidence for systematic variations in olivine composition according to meteorite subtype, but shock melting in Sahara 97210 resulted in the injection of glass-derived melt into olivine, resulting in artificially high abundances of Ba, Sr, Na, Ti, and some other incompatible elements in olivine. Terrestrial weathering in a hot desert environment may have mobilized Ba and Sr in some glasses. Our data suggest that chondrules in ordinary chondrites experienced repeated thermal, chemical, and mechanical processing during a "recycling" process over an extended time period, which involved multiple episodes of melting under fluctuating redox and heating conditions, and multiple episodes of chondrule break-up in some cases. Forsterite grains, including normal grains in forsterite-bearing type I chondrules, the cores of isolated forsterites, and relict forsterite in type II chondrules, all crystallized from

  5. Environmental suitability of recycled concrete aggregate in highways.

    Science.gov (United States)

    2015-01-01

    The use of recycled concrete aggregate materials in highway constructions as compared to the use of virgin : materials reduces virgin natural resource demands on the environment. In order to evaluate their potential use of : recycle materials in high...

  6. Nonlinear Magnetic Phenomena in Highly Polarized Target Materials

    CERN Document Server

    Kiselev, Yu F

    2007-01-01

    The report introduces and surveys nonlinear magnetic phenomena which have been observed at high nuclear polarizations in polarized targets of the SMC and of the COMPASS collaborations at CERN. Some of these phenomena, namely the frequency modulation eect and the distortion of the NMR line shape, promote the development of the polarized target technique. Others, as the spin-spin cross-relaxation between spin subsystems can be used for the development of quantum statistical physics. New findings bear on an electromagnetic noise and the spectrally resolved radiation from LiD with negatively polarized nuclei detected by low temperature bolometers. These nonlinear phenomena need to be taken into account for achieving the ultimate polarizations.

  7. Nanostructured materials for selective recognition and targeted drug delivery

    International Nuclear Information System (INIS)

    Kotrotsiou, O; Kotti, K; Dini, E; Kammona, O; Kiparissides, C

    2005-01-01

    Selective recognition requires the introduction of a molecular memory into a polymer matrix in order to make it capable of rebinding an analyte with a very high specificity. In addition, targeted drug delivery requires drug-loaded vesicles which preferentially localize to the sites of injury and avoid uptake into uninvolved tissues. The rapid evolution of nanotechnology is aiming to fulfill the goal of selective recognition and optimal drug delivery through the development of molecularly imprinted polymeric (MIP) nanoparticles, tailor-made for a diverse range of analytes (e.g., pharmaceuticals, pesticides, amino acids, etc.) and of nanostructured targeted drug carriers (e.g., liposomes and micelles) with increased circulation lifetimes. In the present study, PLGA microparticles containing multilamellar vesicles (MLVs), and MIP nanoparticles were synthesized to be employed as drug carriers and synthetic receptors respectively

  8. Development of New Ecological Ceramic Tiles by Recycling of Waste Glass and Ceramic Materials; Incorporacion de residuos derivados de la fabricacion ceramica y del vidrio reciclado en el proceso ceramico integral

    Energy Technology Data Exchange (ETDEWEB)

    Lazaro, C.; Ramon Trilles, V.; Gomez, F.; Allepuz, S.; Fraga, D.; Carda, J. B.

    2012-07-01

    The following research work shows the results of the introduction of waste generated by the ceramic industry, such as the calcined clay from fired porcelain of stoneware and raw biscuit, sludge and cleaning water, as well as waste from other sectors like the recycling glass. In this way, it can be obtained a stoneware porcelain slab, engobe-glaze and satin glaze that contains high percentage of recyclable raw materials. (Author)

  9. Coal liquefaction with preasphaltene recycle

    Science.gov (United States)

    Weimer, Robert F.; Miller, Robert N.

    1986-01-01

    A coal liquefaction system is disclosed with a novel preasphaltene recycle from a supercritical extraction unit to the slurry mix tank wherein the recycle stream contains at least 90% preasphaltenes (benzene insoluble, pyridine soluble organics) with other residual materials such as unconverted coal and ash. This subject process results in the production of asphaltene materials which can be subjected to hydrotreating to acquire a substitute for No. 6 fuel oil. The preasphaltene-predominant recycle reduces the hydrogen consumption for a process where asphaltene material is being sought.

  10. Novel self-healing materials chemistries for targeted applications

    Science.gov (United States)

    Wilson, Gerald O.

    Self-healing materials of the type developed by White and co-workers [1] were designed to autonomically heal themselves when damaged, thereby extending the lifetime of various applications in which such material systems are employed. The system was based on urea-formaldehyde microcapsules containing dicyclopentadiene (DCPD) and Grubbs' catalyst particles embedded together in an epoxy matrix. When a crack propagates through the material, it ruptures the microcapsules, releasing DCPD into the crack plane, where it comes in contact and reacts with the catalyst to initiate a ring opening metathesis polymerization (ROMP), bonding the crack and restoring structural continuity. The present work builds on this concept in several ways. Firstly, it expands the scope and versatility of the ROMP self-healing chemistry by incorporation into epoxy vinyl ester matrices. Major technical challenges in this application include protection of the catalyst from deactivation by aggressive curing agents, and optimization of the concentration of healing agents in the matrix. Secondly, new ruthenium catalysts are evaluated for application in ROMP-based self-healing materials. The use of alternative derivatives of Grubbs' catalyst gave rise to self-healing systems with improved healing efficiencies and thermal properties. Evaluation of the stability of these new catalysts to primary amine curing agents used in the curing of common epoxy matrices also led to the discovery and characterization of new ruthenium catalysts which exhibited ROMP initiation kinetics superior to those of first and second generation Grubbs' catalysts. Finally, free radical polymerization was evaluated for application in the development of bio-compatible self-healing materials. [1] White, S. R.; Sottos, N. R.; Geubelle, P. R.; Moore, J. S.; Kessler, M. R.; Sriram, S. R.; Brown, E. N.; Viswanathan, S. Nature 2001, 409, 794.

  11. Investigation of polarized-proton target materials by differential calorimetry: preliminary results

    International Nuclear Information System (INIS)

    Hill, D.A.; Hill, J.J.

    1980-01-01

    A simple differential calorimeter was designed and operated for an investigation of the thermodynamic properties of polarized target materials. The calibration and use of the calorimeter are discussed, after a brief exposition of our motivation for this work. The results of a preliminary study of target materials is presented with emphasis on the relevance of the glass state to dynamic polarization in chemically-doped targets

  12. Recycling Technology: Can It Be Taught?

    Science.gov (United States)

    Clum, James A.; Loper, Carl R., Jr.

    This paper describes the content of a seminar-type engineering course dealing with materials reutilization (recycling). The course, consisting of lecture and discussion by various faculty and outside experts as well as student presentations of research papers on recycling topics, is intended to investigate current areas in which recycling of…

  13. Recycled Office Paper: Why It Costs More.

    Science.gov (United States)

    Usherson, Judy

    1992-01-01

    Discusses obstacles to making recycled office paper cheaper. Explains how the economics of recycled office paper discourages recycling by commodity mills. Includes discussion of integrated and nonintegrated mills, commodity and specialty mills, specialty printing and writing mills, postconsumer material, supply and demand, and economic…

  14. Effect of Extrusion on the Mechanical and Rheological Properties of a Reinforced Poly(Lactic Acid): Reprocessing and Recycling of Biobased Materials.

    Science.gov (United States)

    Peinado, Víctor; Castell, Pere; García, Lidia; Fernández, Ángel

    2015-10-19

    The aim of this research paper is to study the behaviour of a common used biopolymer (Poly(Lactic Acid) (PLA)) after several reprocesses and how two different types of additives (a melt strength enhancer and a nanoadditive) affect its mechanical and rheological properties. Systematic extraction of extrudate samples from a twin-screw compounder was done in order to study the effect in the properties of the reprocessed material. Detailed rheological tests on a capillary rheometer as well as mechanical studies on a universal tensile machine after preparation of injected specimens were carried out. Results evidenced that PLA and reinforced PLA materials can be reprocessed and recycled without a remarkable loss in their mechanical properties. Several processing restrictions and specific phenomena were identified and are explained in the present manuscript.

  15. Laboratory Investigation on the Effects of Natural Fine Aggregates and Recycled Waste Tire Rubber in Pervious Concrete to Develop More Sustainable Pavement Materials

    Science.gov (United States)

    Bonicelli, Alessandra; Fuentes, Luis G.; Khalil Dawd Bermejo, Ibrahim

    2017-10-01

    Pervious concrete pavement is a recognized sustainable solution for urban roads. To enhance mechanical properties of pervious concrete material, in order to allow wider use of this technology, a lot of studies are going on all over the world. The use of a little percentage of fine aggregates is proven to increase the material resistance without an excessive reduction of permeability. This study aimed to evaluate the effect of replacing the fine virgin aggregates with r cycled tire rubber. 14 different mixes were analysed in terms of indirect tensile strength resistance, void content and density. Two different dimensions of crumb rubber were studied, as well as two different dosages, which were applied to different no-fine control mixes. All results were compared with the same control mixes containing natural fine aggregate. The mixes had a fixed granulometric curve but varied in water/cement ratio; this in order to evaluate the effect of recycled rubber depending to w/c ratio of the mix. An image analysis was also conducted to verify the rubber distribution in the mixture and the cracking surfaces. The experimental analysis showed that a correct proportioning of fine sand significantly increased the strength of the material. Moreover, the use of recycled waste tire rubber, gave interesting improvements respect to the no-fine control mixes, even though the developed resistance was lower respect to mixes containing mineral sand. This result was expected because of the cementing property of mineral sand. Although, the important result was that it was possible to use waste tire rubber in pervious concrete, with an appropriate dosage and granular dimension, for increasing the performance of traditional mix design, in order to achieve pavement materials more and more sustainable.

  16. Hypervelocity penetration against mechanical properties of target materials

    Science.gov (United States)

    Ariffin, M. M.; Roslan, M. H.; Ishak, M. T.; Hamid, M. H. A.; Katim, N. I. A.; Hashim, F. R.; Razali, S.

    2018-02-01

    Sustainable development is growing importance issues nowadays and requires the consideration of environmental criteria to develop of all new materials and equipment. A better balance must be found in properties of oils so that the impact on the environment can be minimized. In transformers, a stable liquid, inert, with good electrical and thermal properties is necessary and the liquid must be non-toxic to environment and readily biodegradable. The objective of this research is to make a comparative study of different vegetable oils: palm oil, corn oil, rice bran oil and analyze the dielectric properties such as relative permittivity, dielectric constant and resistivity with variation temperature 30°C-90°C and breakdown voltage with different ageing time 30 days, 90 days and 180 days. The dielectric properties data of the vegetable oils are compared with the transformer oil (mineral oil) and appropriate causes for similarities and different have been discussed.

  17. Efficiency of recycling post-consumer plastic packages

    NARCIS (Netherlands)

    Velzen, van E.U.T.; Jansen, M.; Brouwer, M.T.; Feil, A.; Molenveld, K.; Pretz, Th.

    2017-01-01

    The recycling of packaging waste is an important part of the EU circular economy package, with a political focus on raising the recycling targets for post-consumer plastic packaging waste (PPW). The recycling of PPW involves at least three steps; collection, sorting and mechanical recycling. In

  18. Recycling of Plastic

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Fruergaard, Thilde

    2011-01-01

    Plastic is produced from fossil oil. Plastic is used for many different products. Some plastic products like, for example, wrapping foil, bags and disposable containers for food and beverage have very short lifetimes and thus constitute a major fraction of most waste. Other plastic products like......, for example, gutters, window frames, car parts and transportation boxes have long lifetimes and thus appear as waste only many years after they have been introduced on the market. Plastic is constantly being used for new products because of its attractive material properties: relatively cheap, easy to form......, good strength and long durability. Recycling of plastic waste from production is well-established, while recycling of postconsumer plastic waste still is in its infancy. This chapter describes briefly how plastic is produced and how waste plastic is recycled in the industry. Quality requirements...

  19. A study of lithium deuteride as a material for a polarized target

    CERN Document Server

    Bültmann, S; Day, D B; Fatemi, R D; Gardner, B; Harris, C M; Johnson, J R; Mccarthy, J S; McKee, P M; Meyer, Werner T; Penttilae, S I; Ponikvar, E; Rijllart, A; Rondon, Oscar A; Lorant, S S; Tobias, W A; Trentalange, S; Zhu, H; Zihlmann, B; Zimmermann, D

    1999-01-01

    Experiment E155 at the Stanford Linear Accelerator Center (SLAC) measured the spin-dependent structure of the proton and neutron, using for the first time sup 6 LiD as the polarized deuteron target material in a high-energy electron beam. This compound provides a significantly higher dilution factor than any other solid deuteron target material currently used in high-energy physics experiments. Results of the polarization behavior of the sup 6 LiD target material before and after exposure to the 50 GeV/c electron beam used in E155 are presented.

  20. Tire Recycling

    Science.gov (United States)

    1997-01-01

    Cryopolymers, Inc. tapped NASA expertise to improve a process for recycling vehicle tires by converting shredded rubber into products that can be used in asphalt road beds, new tires, hoses, and other products. In conjunction with the Southern Technology Applications Center and Stennis Space Center, NASA expertise in cryogenic fuel-handling needed for launch vehicle and spacecraft operations was called upon to improve the recycling concept. Stennis advised Cryopolymers on the type of equipment required, as well as steps to reduce the amount of liquid nitrogen used in the process. They also guided the company to use more efficient ways to control system hardware. It is estimated that more than 300 million tires nationwide are produced per year. Cryopolymers expects to reach a production rate of 5,000 tires recycled per day.

  1. Behaviour of Recycled Coarse Aggregate Concrete: Age and Successive Recycling

    Science.gov (United States)

    Sahoo, Kirtikanta; Pathappilly, Robin Davis; Sarkar, Pradip

    2016-06-01

    Recycled Coarse Aggregate (RCA) concrete construction technique can be called as `green concrete', as it minimizes the environmental hazard of the concrete waste disposal. Indian standard recommends target mean compressive strength of the conventional concrete in terms of water cement ratio ( w/ c). The present work is an attempt to study the behaviour of RCA concrete from two samples of parent concrete having different age group with regard to the relationship of compressive strength with water cement ratios. Number of recycling may influence the mechanical properties of RCA concrete. The influence of age and successive recycling on the properties such as capillary water absorption, drying shrinkage strain, air content, flexural strength and tensile splitting strength of the RCA concrete are examined. The relationship between compressive strength at different w/ c ratios obtained experimentally is investigated for the two parameters such as age of parent concrete and successive recycling. The recycled concrete using older recycled aggregate shows poor quality. While the compressive strength reduces with successive recycling gradually, the capillary water absorption increases abruptly, which leads to the conclusion that further recycling may not be advisable.

  2. Preliminary Mark-18A (Mk-18A) Target Material Recovery Program Product Acceptance Criteria

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, Sharon M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Patton, Bradley D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-09-01

    The Mk-18A Target Material Recovery Program (MTMRP) was established in 2015 to preserve the unique materials, e.g. 244Pu, in 65 previously irradiated Mk-18A targets for future use. This program utilizes existing capabilities at SRS and Savannah River National Laboratory (SRNL) to process targets, recover materials from them, and to package the recovered materials for shipping to ORNL. It also utilizes existing capabilities at ORNL to receive and store the recovered materials, and to provide any additional processing of the recovered materials or residuals required to prepare them for future beneficial use. The MTMRP is presently preparing for the processing of these valuable targets which is expected to begin in ~2019. As part of the preparations for operations, this report documents the preliminary acceptance criteria for the plutonium and heavy curium materials to be recovered from the Mk-18A targets at SRNL for transport and storage at ORNL. These acceptance criteria were developed based on preliminary concepts developed for processing, transporting, and storing the recovered Mk-18A materials. They will need to be refined as these concepts are developed in more detail.

  3. Enzyme recycling in lignocellulosic biorefineries

    DEFF Research Database (Denmark)

    Jørgensen, Henning; Pinelo, Manuel

    2017-01-01

    platform. Cellulases are the most important enzymes required in this process, but the complex nature of lignocellulose requires several other enzymes (hemicellulases and auxiliary enzymes) for efficient hydrolysis. Enzyme recycling increases the catalytic productivity of the enzymes by reusing them...... upscaled and tested in industrial settings, mainly because of many difficulties with recycling of enzymes from the complex lignocellulose hydrolyzate at industrially relevant conditions, i.e., high solids loadings. The challenges are associated with the large number of different enzymes required...... for efficient hydrolysis, enzyme stability, and the detrimental interaction between enzyme and lignin. This review provides a comprehensive overview of the various methods for enzyme recovery and recycling, for example recycling of free enzymes, readsorption to fresh material, recycling of solids, membrane...

  4. Technology options for future recycling

    International Nuclear Information System (INIS)

    Kikuchi, T.

    2001-01-01

    Recycling of nuclear material is indispensable, not only for using valuable resources but also for reducing the debt which we may leave to the next generations. Advanced reprocessing technologies have been developed in several countries to deal with the diversification of nuclear fuels. Also technologies derived from reprocessing or other fuel cycle areas have continued to be developed in terms of recycling. Cost effectiveness and waste-free processing are increasingly important factors in the applicable of an alternate recycling policy. This paper introduces an example of the studies in this field conducted in some countries including Japan and considers the establishment of effective recycling methodologies taking into account the uncertainty of future recycling policy. (author)

  5. Progress in target materials for high-efficiency X-ray backlight

    International Nuclear Information System (INIS)

    Du Ai; Zhou Bin; Li Longxiang; Zhu Xiurong; Li Yu'nong; Shen Jun; Gao Guohua; Zhang Zhihua; Wu Guangming

    2012-01-01

    The composition, microstructure and density of the target materials are the key parameters to determinate the photon energy and intensity of the laser-induced X-ray backlight. Thus the classification of backlight targets, the preparation of target materials and the interaction between targets and high power laser were introduced in this paper. Underdense targets were more competitive than traditional dense targets among the backlight targets. Nano-structured foam targets, which could be classified into nanofiber targets and aerogel targets, were regarded as novel high-efficiency underdense targets. Nanofiber, which was commonly prepared via electro spinning and thermal treatment, exhibited good formability and high concentration of emission atoms; while aerogel, which was prepared via sol-gel processes and supercritical fluid drying, possesses the advantages of homogeneous microstructure and theoretically high conversion efficiency, but accompanied with the disadvantages of complex synthetic processes and low concentration of emission atoms. To prepare monolithic aerogels with low density and high concentration of emission atoms via combined sol-gel theories may be the better design for the development of the laser-induced X-ray backlight. (authors)

  6. Auto shredder residue recycling: Mechanical separation and pyrolysis

    International Nuclear Information System (INIS)

    Santini, Alessandro; Passarini, Fabrizio; Vassura, Ivano; Serrano, David; Dufour, Javier; Morselli, Luciano

    2012-01-01

    Highlights: ► In this work, we exploited mechanical separation and pyrolysis to recycle ASR. ► Pyrolysis of the floating organic fraction is promising in reaching ELV Directive targets. ► Zeolite catalyst improve pyrolysis oil and gas yield. - Abstract: sets a goal of 85% material recycling from end-of-life vehicles (ELVs) by the end of 2015. The current ELV recycling rate is around 80%, while the remaining waste is called automotive shredder residue (ASR), or car fluff. In Europe, this is mainly landfilled because it is extremely heterogeneous and often polluted with car fluids. Despite technical difficulties, in the coming years it will be necessary to recover materials from car fluff in order to meet the ELV Directive requirement. This study deals with ASR pretreatment and pyrolysis, and aims to determine whether the ELV material recycling target may be achieved by car fluff mechanical separation followed by pyrolysis with a bench scale reactor. Results show that flotation followed by pyrolysis of the light, organic fraction may be a suitable ASR recycling technique if the oil can be further refined and used as a chemical. Moreover, metals are liberated during thermal cracking and can be easily separated from the pyrolysis char, amounting to roughly 5% in mass. Lastly, pyrolysis can be a good starting point from a “waste-to-chemicals” perspective, but further research should be done with a focus on oil and gas refining, in order both to make products suitable for the chemical industry and to render the whole recycling process economically feasible.

  7. Plastics recycling: challenges and opportunities.

    Science.gov (United States)

    Hopewell, Jefferson; Dvorak, Robert; Kosior, Edward

    2009-07-27

    Plastics are inexpensive, lightweight and durable materials, which can readily be moulded into a variety of products that find use in a wide range of applications. As a consequence, the production of plastics has increased markedly over the last 60 years. However, current levels of their usage and disposal generate several environmental problems. Around 4 per cent of world oil and gas production, a non-renewable resource, is used as feedstock for plastics and a further 3-4% is expended to provide energy for their manufacture. A major portion of plastic produced each year is used to make disposable items of packaging or other short-lived products that are discarded within a year of manufacture. These two observations alone indicate that our current use of plastics is not sustainable. In addition, because of the durability of the polymers involved, substantial quantities of discarded end-of-life plastics are accumulating as debris in landfills and in natural habitats worldwide. Recycling is one of the most important actions currently available to reduce these impacts and represents one of the most dynamic areas in the plastics industry today. Recycling provides opportunities to reduce oil usage, carbon dioxide emissions and the quantities of waste requiring disposal. Here, we briefly set recycling into context against other waste-reduction strategies, namely reduction in material use through downgauging or product reuse, the use of alternative biodegradable materials and energy recovery as fuel. While plastics have been recycled since the 1970s, the quantities that are recycled vary geographically, according to plastic type and application. Recycling of packaging materials has seen rapid expansion over the last decades in a number of countries. Advances in technologies and systems for the collection, sorting and reprocessing of recyclable plastics are creating new opportunities for recycling, and with the combined actions of the public, industry and governments it

  8. Plastics recycling: challenges and opportunities

    Science.gov (United States)

    Hopewell, Jefferson; Dvorak, Robert; Kosior, Edward

    2009-01-01

    Plastics are inexpensive, lightweight and durable materials, which can readily be moulded into a variety of products that find use in a wide range of applications. As a consequence, the production of plastics has increased markedly over the last 60 years. However, current levels of their usage and disposal generate several environmental problems. Around 4 per cent of world oil and gas production, a non-renewable resource, is used as feedstock for plastics and a further 3–4% is expended to provide energy for their manufacture. A major portion of plastic produced each year is used to make disposable items of packaging or other short-lived products that are discarded within a year of manufacture. These two observations alone indicate that our current use of plastics is not sustainable. In addition, because of the durability of the polymers involved, substantial quantities of discarded end-of-life plastics are accumulating as debris in landfills and in natural habitats worldwide. Recycling is one of the most important actions currently available to reduce these impacts and represents one of the most dynamic areas in the plastics industry today. Recycling provides opportunities to reduce oil usage, carbon dioxide emissions and the quantities of waste requiring disposal. Here, we briefly set recycling into context against other waste-reduction strategies, namely reduction in material use through downgauging or product reuse, the use of alternative biodegradable materials and energy recovery as fuel. While plastics have been recycled since the 1970s, the quantities that are recycled vary geographically, according to plastic type and application. Recycling of packaging materials has seen rapid expansion over the last decades in a number of countries. Advances in technologies and systems for the collection, sorting and reprocessing of recyclable plastics are creating new opportunities for recycling, and with the combined actions of the public, industry and governments it

  9. Lithium recycling and cathode material regeneration from acid leach liquor of spent lithium-ion battery via facile co-extraction and co-precipitation processes.

    Science.gov (United States)

    Yang, Yue; Xu, Shengming; He, Yinghe

    2017-06-01

    A novel process for extracting transition metals, recovering lithium and regenerating cathode materials based on facile co-extraction and co-precipitation processes has been developed. 100% manganese, 99% cobalt and 85% nickel are co-extracted and separated from lithium by D2EHPA in kerosene. Then, Li is recovered from the raffinate as Li 2 CO 3 with the purity of 99.2% by precipitation method. Finally, organic load phase is stripped with 0.5M H 2 SO 4 , and the cathode material LiNi 1/3 Co 1/3 Mn 1/3 O 2 is directly regenerated from stripping liquor without separating metal individually by co-precipitation method. The regenerative cathode material LiNi 1/3 Co 1/3 Mn 1/3 O 2 is miro spherical morphology without any impurities, which can meet with LiNi 1/3 Co 1/3 Mn 1/3 O 2 production standard of China and exhibits good electrochemical performance. Moreover, a waste battery management model is introduced to guarantee the material supply for spent battery recycling. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. A recycling molecular beam reactor

    International Nuclear Information System (INIS)

    Prada-Silva, G.; Haller, G.L.; Fenn, J.B.

    1974-01-01

    In a Recycling Molecular Beam Reactor, RMBR, a beam of reactant gas molecules is formed from a supersonic free jet. After collision with a target the molecules pass through the vacuum pumps and are returned to the nozzle source. Continuous recycling permits the integration of very small reaction probabilities into measurable conversions which can be analyzed by gas chromatography. Some preliminary experiments have been carried out on the isomerization of cyclopropane

  11. Innovative Vacuum Distillation for Magnesium Recycling

    Science.gov (United States)

    Zhu, Tianbai; Li, Naiyi; Mei, Xiaoming; Yu, Alfred; Shang, Shixiang

    Magnesium recycling now becomes a very important subject as magnesium consumption increases fast around the world. All commonly used magnesium die-casting alloys can be recycled and recovered to the primary metal quality. The recycled materials may be comprised of biscuits, sprues, runners, flash, overflows, dross, sludge, scrap parts, and old parts that are returned from service, An innovative magnesium recycle method, vacuum distillation, is developed and proved out to be able to recycle magnesium scraps, especially machining chips, oily magnesium, smelting sludge, dross or the mixture. With this process at a specific temperature and environment condition, magnesium in scraps can be gasified and then solidified to become crystal magnesium crown. This `recycled' magnesium crown is collected and used as the raw material of magnesium alloys. The experimental results show the vacuum distillation is a feasible and plausible method to recycle magnesium. Further, the cost analysis will be addressed in this paper.

  12. Developing Culturally Targeted Diabetes Educational Materials for Older Russian-Speaking Immigrants.

    Science.gov (United States)

    Van Son, Catherine R

    2014-07-01

    Older adults who immigrate late in life face many challenges adapting to a new country. Immigrants bring their cultural beliefs and behaviors with them, which can influence their ability to make dietary changes required when they have type 2 diabetes. Culturally targeted patient education materials are needed to improve immigrants' health literacy and abilities to self-manage diabetes. Currently, there is a scarcity of diabetes patient education materials to meet the educational needs of the Russian-speaking immigrant group. The purpose of this article is to describe a project in which culturally targeted diabetes education materials for older Russian-speaking immigrants were designed and developed. Culturally targeted patient education materials are essential if they are to be accepted and used by clients from different ethnic minority populations. The creation of culturally relevant materials requires a team effort and community stakeholder input. The availability of materials on the internet facilitates access and use by health care providers. Culturally targeted education materials are an important component in addressing health literacy in ethnic minority populations. Next steps require that these materials be evaluated to test their impact on diabetes self-management behaviors and clinical outcomes such as adherence, amount of physical activity, and blood glucose levels. © 2014 The Author(s).

  13. Control of Transboundary Movement of Radioactive Material Inadvertently Incorporated into Scrap Metal and Semi-finished Products of the Metal Recycling Industries. Results of the Meetings Conducted to Develop a Draft Code of Conduct

    International Nuclear Information System (INIS)

    2014-02-01

    In 2010, the IAEA initiated the development of a code of conduct on the transboundary movement of radioactive material inadvertently incorporated into scrap metal and semi- finished products of the metal recycling industries (Metal Recycling Code of Conduct). The Metal Recycling Code of Conduct was intended to harmonize the approaches of Member States in relation to the discovery of radioactive material that may inadvertently be present in scrap metals and semi-finished products subject to transboundary movement, and their safe handling and management to facilitate regulatory control. The Metal Recycling Code of Conduct was envisaged as being complementary to the Safety Guide on Control of Orphan Sources and Other Radioactive Material in the Metal Recycling and Production Industries (IAEA Safety Standards Series No. SSG-17), which provides recommendations, principally within a national context, on the protection of workers, members of the public and the environment in relation to the control of radioactive material inadvertently incorporated in scrap metal. In February 2013, the third open-ended meeting of technical and legal experts to develop the Metal Recycling Code of Conduct was organized. The objective of this meeting was to address the comments received from Member States and to finalize the text of the draft Metal Recycling Code of Conduct. Representatives from 55 Member States, one non-Member State and the EU, together with seven observers from the metal recycling industry, reviewed the comments and revised the draft accordingly. In September 2013, in Resolution GC(57)/RES/9, the IAEA General Conference recorded that it 'Appreciates the intensive efforts undertaken by the Secretariat to develop a code of conduct on the transboundary movement of scrap metal, or materials produced from scrap metal, that may inadvertently contain radioactive material, and encourages the Secretariat to make the results of the discussion conducted on this issue available to

  14. Universal methods of irradiating target materials for high current accelerator radioisotope production

    International Nuclear Information System (INIS)

    Stevensen, N.R.

    1997-01-01

    Five cyclotrons are situated on the TRIUMF site in Vancouver, Canada spanning a range from 1 to 520 MeV. Two of these cyclotrons are used primarily for the commercial production of medical radioisotopes: the CP42 is a 250 ,μA/42 MeV single beam H - machine that has been operating for the past 15 years. The TR30 is a 2x500 ,μA/30 MeV dual beam H - cyclotron that was commissioned in 1990. To match the increasing output capabilities of these cyclotrons we have incrementally improved our external 'solid' target systems to allow up to 1 μA at 30 MeV on electroplated materials. These advancements have incorporated design changes and choices of materials that are radiation-hard to minimize repairs and maintenance. A high current gas target and various encapsulated targets are also used for medical radioisotope production. An encapsulated target to produce radioiodines from tellurium oxide by (p,n) has been built to take advantage of beam time often available on low energy PET cyclotrons. This target provides for the on-line extraction of radioiodines as well as for the conventional batch process. A new, universal target system was designed and tested. It employs many of the tried and tested advantages of other individual target system while also allowing for the universal high current irradiation of most materials such as powders, foils, metals, fluids and low point melting materials

  15. Recycling management including transportation experience

    International Nuclear Information System (INIS)

    Ricaud, J.L.

    1994-01-01

    The nuclear industry, at least in advanced countries such as Japan, France and other European countries, has developed for years a global strategy of fuel utilization which implies an extensive recycling and reuse of spent fuel. Such recycling strategies are now increasingly required from the industry in general by the various Governments and international organizations. Nuclear fuel recycling and waste management are the two faces of the same policy: the closed fuel cycle, whereby reprocessing of spent fuel makes available for recycling the energetic contents : uranium and plutonium, while segregating the real waste in categories for their specific treatment, conditioning, storage, transportation and final disposal. Plutonium recycling is performed through the fabrication of the so-called mixed oxide fuel (MOX), where fissile plutonium replaces the U 235 isotope used in UO 2 fuel. The international trade of nuclear materials and services, under close control of IAEA and other national and international organization, has let to the circulation of materials between the producers of uranium and enrichment fuel, fabrication, reprocessing and recycling services, and the customers worldwide. The industrial transport experience now accumulated shows an excellent record in terms of safety and quality. This communication will describe the current situation and future trends of the recycling route mainly through COGEMA industrial experience. 1 fig

  16. Catador de material reciclável: uma profissão para além da sobrevivência? Recycled garbage pickers: a profession beyond survival?

    Directory of Open Access Journals (Sweden)

    Luiza Ferreira Rezende de Medeiros

    2006-08-01

    Full Text Available O artigo apresenta resultados de uma pesquisa que objetivou investigar as relações de trabalho entre catadores de materiais recicláveis e organizações de reciclagem dos materiais coletados. Os catadores atuam no município de Goiânia. A reciclagem de lixo urbano figura como atividade emergente após movimentos ambientalistas e de preservação ambiental. Embora gere vantagens ambientais indiscutíveis, sobressaem os aspectos econômicos. A catação de materiais recicláveis constitui, para muitos trabalhadores, única forma de garantir sobrevivência e possibilidade de inclusão num mercado de trabalho excludente. Essa pesquisa investigou como os catadores percebem suas relações de trabalho, as condições em que desempenham suas funções e as práticas do trabalho em cooperativas de reciclagem. Utilizou-se entrevistas com 10 catadores, que foram tratadas pela análise de conteúdo. Os dados revelaram relações de trabalho precárias e informais entre catadores e organizações de reciclagem. Os trabalhadores são expostos à periculosidade, vítimas de preconceitos e estigmas e excluídos de alguns ambientes sociais.The article presents results of a research that investigated the work relations between recycled garbage pickers working in Goiânia and organizations that recycle such materials. The recycling of urban garbage figure as an emergent activity after environmentalist movements and environment preservation. Although it generates unquestionable environmental advantages, the economic benefits excel. Collecting garbage, to many workers, is the only way of guaranteing survival and inclusion in the excluding market. This research investigated the way garbage pickers understand their work relations, under what conditions perform their functions, and the work practices in garbage picking cooperatives. Ten garbage pickers were interviewed and data analyzed by content analysis. Data showed precarious and informal work relations

  17. The direct-Mat Project: Dismantling and Recycling Techniques for road Materials. Sharing Knowledge and Practices; El proyecto DIRECT-MAT: Tecnicas de demolicion y reciclado de materiales para la carretera-Compartiendo conocimientos y practicas

    Energy Technology Data Exchange (ETDEWEB)

    Sinis Fernandez, F.; Rubio guzman, B.; Gonzalez Abadias, A. I.

    2011-07-01

    This article describes the content of the DIRECT-MAT (Dismantling and Recycling for road Materials) project. the DIRECT MAT project objectives consist of sharing and disseminating, at the European scale, national knowledge and field practices regarding the dismantling and recycling of road and road related materials, for the benefit of all European countries. Road material recycling processes have previously been studied in national research projects in the last years; unfortunately, the results of those projects almost never benefit other European countries. This is especially true for the newer Member States. The DIRECT-MAT project, within 7{sup t}h Framework Programme, is a three year project starting in 2009, and is comparised of 20 partners from 15 participating countries. to reach the aims of the project, a WEB database will be created to compile and display the extensive and already validated research and job site data and a set of Best Practices Guides on dismantling and recycling of different types of materials will be issued. Finally, guidelines will be proposed to ensure database updating, including the results of future researches. (Author) 6 refs.

  18. Reciclagem de materiais plásticos: a importância da identificação correta Plastic materials recycling: the importance of the correct identification

    Directory of Open Access Journals (Sweden)

    Leda Coltro

    2008-06-01

    Full Text Available Muitos produtos de material plástico apresentam código de identificação (normalmente um número de 1 a 7 dentro de um triângulo de três setas e sob o mesmo uma abreviatura indicando o tipo de plástico do qual o produto é feito para auxiliar sua separação e posterior reciclagem e revalorização, contribuindo com a recuperação dos materiais plásticos descartados com o resíduo sólido urbano. Como as embalagens têm rotatividade alta, é importante que as mesmas apresentem o símbolo de identificação da resina a fim de facilitar a cadeia de reciclagem do plástico. Neste trabalho, foi feito um levantamento de dados sobre os símbolos de identificação dos materiais plásticos em um total de 177 embalagens plásticas rígidas para o acondicionamento de diversos produtos alimentícios e não alimentícios disponíveis no mercado brasileiro. Apesar da norma brasileira ABNT NBR 13230 já ter 14 anos, há ainda heterogeneidade na identificação das embalagens plásticas. Somente cerca de 80% das embalagens avaliadas apresentaram o símbolo de identificação da resina. Além disso, em alguns casos até 40% das embalagens apresentaram a identificação do material de forma incorreta. Portanto, ainda existe informação errônea no mercado brasileiro sobre o tipo de material da embalagem plástica (incluindo ausência do símbolo de identificação, bem como falta de informação sobre o símbolo correto de identificação da resina, sendo que ambos os fatores prejudicam a cadeia de reciclagem do plástico.Many plastic-based products show a resin identification code - usually a number from 1 to 7 inside a three-arrow triangle above a monogram - to identify the type of plastic used to make the product, for assisting in its separation and later recycling. In other words, to facilitate the recovery of plastics discarded with the municipal solid waste. Since packages have a high rotation, the presence of the resin identification code is

  19. Heterogeneous Recycle of Transuranics Fuels in Fast Reactors

    International Nuclear Information System (INIS)

    Hoffman, Edward; Taiwo, Temitope; Hill, Robert

    2008-01-01

    A preliminary physics evaluation of the impacts of heterogeneous recycle using Pu+Np driver and minor actinide target fuel assemblies in fast reactor cores has been performed by comparing results to those obtained for a reference homogeneous recycle core using driver assemblies containing grouped transuranic (TRU) fuel. Parametric studies are performed on the reference heterogeneous recycle core to evaluate the impacts of variations in the pre- and post-separation cooling times, target material type (uranium and non-uranium based), target amount and location, and other parameters on the system performance. This study focused on startup, single-pass cores for the purpose of quantifying impacts and also included comparisons to the option of simply storing the LWR spent nuclear fuel over a 50-year period. An evaluation of homogeneous recycle cores with elevated minor actinide contents is presented to illustrate the impact of using progressively higher TRU content on the core and transmutation performance, as a means of starting with known fuel technology with the aim of ultimately employing grouped TRU fuel in such cores. Reactivity coefficients and safety parameters are presented to indicate that the cores evaluated appear workable from a safety perspective, though more detailed safety and systems evaluations are required. (authors)

  20. Repair in Mourao power plant spillway: application of recycled material concrete admixtures - stage one; Reparos no vertedouro da UHE Mourao: aplicacao de concretos com adicao de material reciclado - 1a. parte

    Energy Technology Data Exchange (ETDEWEB)

    Galvao, Jose Carlos Alves; Portella, Kleber Franke; Joukoski, Alex; Mendes, Roberto [Instituto de Tecnologia para o Desenvolvimento (LACTEC), Curitiba, PR (Brazil)], Emails: jose.galvao@lactec.org.br, portella@lactec.org.br, alex@lactec.org.br; roberto.mendes@lactec.org.br; Ferreira, Elizeu Santos [Companhia Paranaense de Energia (COPEL), Curitiba, PR (Brazil)], Email: elizeu.sf@copel.com

    2009-10-15

    The Mourao hydroelectric power plant located in the city of Campo Mourao, in the state of Parana, southern region of Brazil, was inaugurated in 1964, with 7500 kW of installed power. Defects in the spillway surface of the dam had been identified throughout the time. With the purpose of recovering the concrete hydraulic surface, repair materials were proposed in this paper, considering technology development and environment conservation. Concrete mixtures containing recycled materials - low-density polyethylene (LDPE), polyethylene terephthalate (PET) and waste tires - had its performance tested in laboratory. Mechanical properties, such as compressive strength, tensile strength and adherence were evaluated using cylindrical concrete specimens. Results were appraised and the best compositions were selected to be tested on spillway surface of Mourao dam. (author)

  1. Comparative Study on Mechanical Properties between Pure and Recycled Polypropylenes

    OpenAIRE

    Ariadne L. Juwono; Bernadeth Jong Hiong Jun

    2010-01-01

    Polypropylene (PP) is one type of thermoplastics that is widely used in our daily activities. A combination of the high demand and the easiness of recycling process, the recycled PP has been generally applied. In this study, the structure and the mechanical properties of the as-received PPs, recycled PPs, and commercial recycled PPs were compared, especially for cloth hanger application. DSC test results showed that recycling process did not cause a significant change to the material's meltin...

  2. Depth-Dose and LET Distributions of Antiproton Beams in Various Target Materials

    DEFF Research Database (Denmark)

    Herrmann, Rochus; Olsen, Sune; Petersen, Jørgen B.B.

    Purpose  Radiotherapy with antiprotons is still being investigated as a possible new beam modality. Antiprotons behave much like protons until they come to rest, where they will annihilate with a target nucleus, thereby releasing additional energy. This can potentially lead to a favourable  depth......-dose distributions and an increased biological effect in the target region from the production of secondary nuclear fragments with increased LET. Earlier it has been speculated how the target material will affect the depth-dose curve of antiprotons and secondary particle production. Intuitively, the presence...... of elements with higher Z, may lead to heavier fragments, which in turn may increase the LET and be beneficial in radiotherapy context. Also, it was speculated whether the addition of elements with high thermal neutron cross section to the target material may or may not boost the locally deposited energy from...

  3. Probabilistic Analysis of Structural Member from Recycled Aggregate Concrete

    Science.gov (United States)

    Broukalová, I.; Šeps, K.

    2017-09-01

    The paper aims at the topic of sustainable building concerning recycling of waste rubble concrete from demolition. Considering demands of maximising recycled aggregate use and minimising of cement consumption, composite from recycled concrete aggregate was proposed. The objective of the presented investigations was to verify feasibility of the recycled aggregate cement based fibre reinforced composite in a structural member. Reliability of wall from recycled aggregate fibre reinforced composite was assessed in a probabilistic analysis of a load-bearing capacity of the wall. The applicability of recycled aggregate fibre reinforced concrete in structural applications was demonstrated. The outcomes refer to issue of high scatter of material parameters of recycled aggregate concretes.

  4. Recycling of cementitious scrap inert in the manufacture of fiber composite materials; Riciclo dei materiali inerti cementizi per la produzione di materiali compositi fibrosi

    Energy Technology Data Exchange (ETDEWEB)

    Buccolieri, G. [Lecce Univ. (Italy). Dipt. Scienza dei Materiali; De Luca, F.; De Stefano, L. [Ente Nazionale per l' Energia Elettrica, Brindisi (Italy). Area Ambiente; Paglietti, F. [ECOTEC Srl, Rome (Italy); Plescia, P. [Consiglio Nazionale delle Ricerche, Rome (Italy). Istituto Trattamento Minerali

    1999-04-01

    The disposal of cementitious scrap materials, coming from demolition and construction actives, it is a problem of enormous environmental impact, either for the quantities in play, either for the lack of the fit sites to receive them. In the present work is described a recycling technology of such residual for the production of fiber composites, as thermo acoustical insulating materials or fiber-reinforced, that could be applied also to the cement-asbestos like the eter nit. In this case, inertization and re-use of refusal, also otherwise classified like special or dangerous according to his state of preservation, is archived. [Italian] Lo smaltimento dei materiali inerti cementizi, derivanti da attivita' di demolizione e costruzione, e' un problema di enorme rilevanza ambientale, sia per i quantitativi in gioco sia per la mancanza di siti a riceverli. Nel presente lavoro e' descritta una metodologia di riciclo di tali residui per la produzione di materiali compositi fibrosi, come isolanti termoacustici e fibrorinforzanti, che puo' essere applicata anche al cemento animato tipo eternit. In questo caso si ottiene anche l'inertizzazione ed il riutilizzo di un rifiuto altrimenti classificato come speciale o pericoloso a seconda del suo stato di conservazione.

  5. Recycling Lesson Plan

    Science.gov (United States)

    Okaz, Abeer Ali

    2013-01-01

    This lesson plan designed for grade 2 students has the goal of teaching students about the environmental practice of recycling. Children will learn language words related to recycling such as: "we can recycle"/"we can't recycle" and how to avoid littering with such words as: "recycle paper" and/or "don't throw…

  6. Produtos poliolefínicos reciclados com desempenho superior aos materiais virgens correspondentes Recycled polyolefin products with higher performance than the corresponding virgin materials

    Directory of Open Access Journals (Sweden)

    Agnes F. Martins

    1999-12-01

    Full Text Available O balanço das reações de reticulação e cisão em cadeias poliolefínicas, quando expostas a condições ambientais de radicais livres, pode resultar em boas propriedades e novas aplicações. Materiais descartados de alta qualidade despertam cada vez mais interesse para reciclagem. Os resíduos plásticos de embalagens alimentícias, assim como peças descartadas de grandes dimensões, provenientes da indústria automotiva, são exemplos daqueles materiais. No presente trabalho, são relatadas as propriedades mecânicas da madeira plástica IMAWOOD, obtida a partir de resíduos sólidos urbanos, principalmente embalagens de polietileno, e do material IMACAR, recuperado de pára-choques descartados de carros de passeio, constituído basicamente de misturas PP/EPDM. Verificou-se que o IMAWOOD mostrou comportamento mecânico melhorado por efeito da radiação-gama, enquanto que o IMACAR revelou alta resistência ao impacto, muito superior ao material virgem de composição correspondente.The balance of crosslinking and scission reactions in polyolefin chains when exposed to free-radical, environmental conditions may result in good properties and new applications. Discarded, post-consumer high quality materials are more and more attractive for recycling. The plastic residues from food packages and large dimension automobile residues, as car bumpers, are good examples of those materials. In the present work, we report mechanical properties of IMAWOOD®, plastic lumber from urban solid waste, mostly PE packaging residues, and IMACAR, from discarded car bumpers, mainly PP/EPDM blends. IMAWOOD® showed improved mechanical behavior after gamma-irradiation. IMACAR® was highly resistant to impact.

  7. Requirements for the recycling of hazardous waste

    International Nuclear Information System (INIS)

    Petts, M.

    1990-09-01

    The regulatory status of materials destined to be recycled is not always clear. There have been numerous questions from DOE Field Elements regarding the applicability of the Resource Conservation and Recovery Act (RCRA) to certain materials that can be recycled. The Office of Environmental Guidance, RCRA/CERCLA Division, has responded to questions relating to the RCRA regulations as they apply to materials that are recycled or are destined for recycling. Additional regulatory requirements for these materials may be promulgated upon the reauthorization of RCRA (e.g., regulation of used oil). Additional EH-23 information Briefs will be issued as these regulations develop. The Office of Environment, Safety and Health has convened a workshop to establish DOE's position on a number of issues associated with mixed waste and materials management, several relative to recycling

  8. Properties of Whey-Protein-Coated Films and Laminates as Novel Recyclable Food Packaging Materials with Excellent Barrier Properties

    Directory of Open Access Journals (Sweden)

    Markus Schmid

    2012-01-01

    Full Text Available In case of food packaging applications, high oxygen and water vapour barriers are the prerequisite conditions for preserving the quality of the products throughout their whole lifecycle. Currently available polymers and/or biopolymer films are mostly used in combination with barrier materials derived from oil based plastics or aluminium to enhance their low barrier properties. In order to replace these non-renewable materials, current research efforts are focused on the development of sustainable coatings, while maintaining the functional properties of the resulting packaging materials. This article provides an introduction to food packaging requirements, highlights prior art on the use of whey-based coatings for their barriers properties, and describes the key properties of an innovative packaging multilayer material that includes a whey-based layer. The developed whey protein formulations had excellent barrier properties almost comparable to the ethylene vinyl alcohol copolymers (EVOH barrier layer conventionally used in food packaging composites, with an oxygen barrier (OTR of <2 [cm³(STP/(m²d bar] when normalized to a thickness of 100 μm. Further requirements of the barrier layer are good adhesion to the substrate and sufficient flexibility to withstand mechanical load while preventing delamination and/or brittle fracture. Whey-protein-based coatings have successfully met these functional and mechanical requirements.

  9. Development of a system for receiving, crushing and screening recycled fuel (REF) material; Kierraetyspolttoaineen vastaanotto-, murskaus- ja seulontajaerjestelmaen kehittaeminen

    Energy Technology Data Exchange (ETDEWEB)

    Nurmi, A.; Kurki, T.; Wrang, T. [BMH Wood Technology Oy, Rauma (Finland)

    1995-12-31

    The goal of this project is to develop a system to which source sorted combustible industrial, office and municipal waste material can be dumped to be handled in such way that it can be burnt in modern fluidized bed and circulating bed boilers. One drawback of present handling systems is the fact that most of them are more or less inapplicable for handling plastic materials, especially thin plastic films and sheets. Reducing plastic waste into a particle size of 50 mm required by modern fluidized bed boilers has proved to be very difficult. An essential part of this project is the development of waste material screening after primary and/or secondary crushing. The idea is to separate plastic particles larger than the maximum allowable size from the crushed material and then feed them to a separate low-capacity plastic crusher. The main stages of the project are: (1) Study and analysis on existing technology and equipment, (2) Development of system components, (3) Development of the system, (4) Building a pilot/demonstration plant, (5) Tests and analysis and (6) Decisions on further actions

  10. Recycling of the Granite Quarries and Municipal Incinerator Wastes for the Processing of New Materials as Porcelainized Stoneware

    Directory of Open Access Journals (Sweden)

    Hernández-Crespo, M. S.

    2000-12-01

    Full Text Available In the 1980s started in the ceramic sector the material conception of porcelainized stoneware, a product with versatile and modern characteristics similar to those of the natural stone, depicting improved properties to the marble and granite. Porcelanized stoneware is a compact ceramic material, very hard and homogeneous, generally not fully vitreous (unglazed in its surface, obtained by fast firing from compositions enriched in kaolinite, which contain a large quantity of fluxes. The raw materials for body are a mixture that contains an adequate relationship of kaolinitic clays, feldspars and quartz. Such material is characterized by its low or almost zero porosity, being adequated to sustain heavy and high traffic intensity for uses in and outside of buildings with wide range of aspects, desings and colors. By considering the chemistry and mineralogical composition of the granite and incinerator wastes, this paper describes their use in the processing of construction materials, specifically, in a new type of stoneware flooring and covering materials. According to the most of the physical and mechanical properties here determined, these "Modified Porcelainized Stoneware" (MPS materials are close to the conventional porcelainized stoneware and glass ceramics products.

    Hacia la década de los años 80 se inicia en el sector cerámico la concepción del gres porcelánico, material de características modernas y versátiles semejantes a las de la piedra natural, pero que incluso supera en utilidad y prestaciones al mármol y al granito. El gres porcelánico es un material cerámico compacto, muy duro y homogéneo, no vidriado en su superficie, obtenido por cocción rápida de composiciones ricas en caolinita y una gran cantidad de fundentes; es decir, de una mezcla cerámica que contiene una relación adecuada de arcillas de tipo caolinítico, feldespatos y cuarzo. Dicho material se caracteriza por su baja o casi nula porosidad; es ideal

  11. Copper matrix composites as heat sink materials for water-cooled divertor target

    Directory of Open Access Journals (Sweden)

    Jeong-Ha You

    2015-12-01

    Full Text Available According to the recent high heat flux (HHF qualification tests of ITER divertor target mock-ups and the preliminary design studies of DEMO divertor target, the performance of CuCrZr alloy, the baseline heat sink material for DEMO divertor, seems to only marginally cover the envisaged operation regime. The structural integrity of the CuCrZr heat sink was shown to be affected by plastic fatigue at 20 MW/m². The relatively high neutron irradiation dose expected for the DEMO divertor target is another serious concern, as it would cause significant embrittlement below 250 °C or irradiation creep above 350 °C. Hence, an advanced design concept of the divertor target needs to be devised for DEMO in order to enhance the HHF performance so that the structural design criteria are fulfilled for full operation scenarios including slow transients. The biggest potential lies in copper-matrix composite materials for the heat sink. In this article, three promising Cu-matrix composite materials are reviewed in terms of thermal, mechanical and HHF performance as structural heat sink materials. The considered candidates are W particle-reinforced, W wire-reinforced and SiC fiber-reinforced Cu matrix composites. The comprehensive results of recent studies on fabrication technology, design concepts, materials properties and the HHF performance of mock-ups are presented. Limitations and challenges are discussed.

  12. Development of RBWR (Resource-renewable BWR) for recycling and transmutation of transuranium elements (3). Materials for core component

    International Nuclear Information System (INIS)

    Ishizaki, Takahiro; Maruno, Yusaku

    2017-01-01

    The next generation light water reactor called Resource Renewable BWR (RBWR) is currently under development in order to relieve radioactive waste problems such as spent nuclear fuel in Hitachi group. RBWR will be able to help shorten the isolation period of spent nuclear fuels from 100,000 years down to approximately 300 years by consuming Trans Uranium Element (TRU) as its nuclear fuel. However, for acquiring efficient combustion of TRU, the fast neutron rate in RBWR is required to be raised about 4 times higher than that in conventional ABWR, which means that the control rods of RBWR shall be irradiated by fast neutron irradiation at a dose of about 6.0×10 25 n/m 2 , much higher than 1.5×10 25 n/m 2 of ABWR. On the other hand, it is known if control rod material is irradiated with over 4.0×10 25 n/m 2 of fast neutron dose, irradiation-assisted stress corrosion cracking (IASCC) will occur, which means that the control rod of RBWR can possibly tolerate the operation of only one cycle before the critical irradiation degradation damage happens. Therefore structural material with both high corrosion resistance and high irradiation resistance is required for the development of RBWR systems. In this study, oxide dispersion strengthened austenitic stainless steels (ODS-ASUS) with high corrosion resistance have been developed for control rods designed for high-dosed neutron irradiation environment in RBWR. ODS-ASUS was produced experimentally by powder metallurgical process. It is well known that amount of oxygen in alloy has great effort on mechanical properties and corrosion resistance. The objective in this report is to evaluate effect of amount of oxygen in ODS-ASUS and selecting appropriate oxygen concentration for control rods. The materials for discussion in this study were ODS-ASUS-HO, ODS-ASUS-LO with oxygen concentration of 0.27 wt% and 0.018 wt% respectively. The current material of type 316L SS was used as a reference material. The grain size was measured

  13. Behavior of structural and target materials irradiated in spallation neutron environments

    Energy Technology Data Exchange (ETDEWEB)

    Stubbins, J.F. [Univ. of Illinois, Urbana, IL (United States); Wechsler, M. [North Carolina State Univ., Raleigh, NC (United States); Borden, M. [Los Alamos National Laboratory, NM (United States)] [and others

    1995-10-01

    This paper describes considerations for selection of structural and target materials for accelerator-driven neutron sources. Due to the operating constraints of proposed accelerator-driven neutron sources, the criteria for selection are different than those commonly applied to fission and fusion systems. Established irradiation performance of various alloy systems is taken into account in the selection criteria. Nevertheless, only limited materials performance data are available which specifically related to neutron energy spectra anticipated for spallation sources.

  14. Technology options for future recycling

    International Nuclear Information System (INIS)

    Kikuchi, T.

    2000-01-01

    It goes without saying that recycling of nuclear material is indispensable, not only for the effective use of valuable resources but also to reduce the debt which we may leave to the next generations. Many developments in advanced reprocessing technologies have been carried out in several countries to deal with the diversification of nuclear fuels. Also technologies derived from reprocessing or other fuel cycle areas have continued to be developed in terms of recycling. Cost effectiveness and waste-free processing are increasingly important factors in the applicable of an alternate recycling policy. This paper introduces an example of the studies in this field, which has been conducted in Japan and considers the establishment of effective recycling methodologies taking into account the uncertainty of future policy. (authors)

  15. Analysis of Environmental Impact for Concrete Using LCA by Varying the Recycling Components, the Compressive Strength and the Admixture Material Mixing

    Directory of Open Access Journals (Sweden)

    Taehyoung Kim

    2016-04-01

    Full Text Available Concrete is a type of construction material in which cement, aggregate, and admixture materials are mixed. When cement is produced, large amounts of substances that impact the environment are emitted during limestone extraction and clinker manufacturing. Additionally, the extraction of natural aggregate causes soil erosion and ecosystem destruction. Furthermore, in the process of transporting raw materials such as cement and aggregate to a concrete production company, and producing concrete in a batch plant, substances with an environmental impact are emitted into the air and water system due to energy use. Considering the fact that the process of producing concrete causes various environmental impacts, an assessment of various environmental impact categories is needed. This study used a life cycle assessment (LCA to evaluate the environmental impacts of concrete in terms of its global warming potential, acidification potential, eutrophication potential, ozone depletion potential, photochemical ozone creation potential, and abiotic depletion potential (GWP, AP, EP, ODP, POCP, ADP. The tendency was that the higher the strength of concrete, the higher the GWP, POCP, and ADP indices became, whereas the AP and EP indices became slightly lower. As the admixture mixing ratio of concrete increased, the GWP, AP, ODP, ADP, and POCP decreased, but EP index showed a tendency to increase slightly. Moreover, as the recycled aggregate mixing ratio of concrete increased, the AP, EP, ODP, and ADP decreased, while GWP and POCP increased. The GWP and POCP per unit compressed strength (1 MPa of high strength concrete were found to be about 13% lower than that for its normal strength concrete counterpart. Furthermore, in the case of AP, EP, ODP, and ADP per unit compressed strength (1 MPa, high-strength concrete was found to be about 10%~25% lower than its normal strength counterpart. Among all the environmental impact categories, ordinary cement was found to have

  16. Material characterization of the MSWI bottom ash as a function of particle size. Effects of glass recycling over time.

    Science.gov (United States)

    Del Valle-Zermeño, R; Gómez-Manrique, J; Giro-Paloma, J; Formosa, J; Chimenos, J M

    2017-03-01

    Differences during the last 15years in materials' composition in Municipal Solid Waste Incineration (MSWI) regarding bottom ash (BA) were assessed as a function of particle size (>16, 8-16, 4-8, 2-4, 1-2 and 0-1mm). After sieving, fractions >2mm were carefully washed in order to separate fine particles adhering to bigger particles. The characterization took into account five types of materials: glass (primary and secondary), ceramics (natural and synthetic), non-ferrous metals, ferrous metals and unburned organic matter. The evaluation was performed through a visual (>2mm) and chemical (0-2mm) classification. Results showed that total weight of glass in the particles over 16mm has decreased with respect to 1999. Moreover, the content of glass (primary and secondary) in BA was estimated to be 60.8wt%, with 26.4wt% corresponding to primary glass in >2mm size fractions. Unlike 1999, in which glass was the predominant material, ceramics are currently the major phase in bottom ash (BA) coarse fractions. As for the metals, respect to 1999, results showed a slight increase in all size fractions. The greatest content (>22wt%) of ferromagnetic was observed for the 2-4mm size fraction while the non-ferrous type was almost non-existent in particles over 16mm, remaining below 10wt% for the rest fractions. In the finest fractions (metals corresponded to metallic aluminium. The results from the chemical characterization also indicated that the finest fractions contributed significantly to the total heavy metals content, especially for Pb, Zn, Cu, Mn and Ti. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Effect of recycling activities on the heating value of solid waste: case study of the Greater Vancouver Regional District (Metro Vancouver).

    Science.gov (United States)

    Abedini, Ali R; Atwater, James W; Fu, George Yuzhu

    2012-08-01

    Two main goals of the integrated solid waste management system (ISWMS) of Metro Vancouver (MV) include further recycling of waste and energy recovery via incineration of waste. These two very common goals, however, are not always compatible enough to fit in an ISWMS depending on waste characteristics and details of recycling programs. This study showed that recent recycling activities in MV have negatively affected the net heating value (NHV) of municipal solid waste (MSW) in this regional district. Results show that meeting MV's goal for additional recycling of MSW by 2015 will further reduce the NHV of waste, if additional recycling activities are solely focused on more extensive recycling of packaging materials (e.g. paper and plastic). It is concluded that 50% additional recycling of paper and plastic in MV will increase the overall recycling rate to 70% (as targeted by the MV for 2015) and result in more than 8% reduction in NHV of MSW. This reduction translates to up to 2.3 million Canadian dollar (CAD$) less revenue at a potential waste-to-energy (WTE) plant with 500 000 tonnes year(-1) capacity. Properly designed recycling programmes, however, can make this functional element of ISWMS compatible with green goals of energy recovery from waste. Herein an explanation of how communities can increase their recycling activities without affecting the feasibility of potential WTE projects is presented.

  18. Global Warming Implications of the Use of By-Products and Recycled Materials in Western Australia?s Housing Sector

    OpenAIRE

    Lawania, Krishna; Sarker, Prabir; Biswas, Wahidul

    2015-01-01

    Western Australia’s housing sector is growing rapidly and around half a million houses are expected to be built by 2030, which not only will result in increased energy and resources demand but will have socio-economic impacts. Majority of Western Australians live in detached houses made of energy intensive clay bricks, which have a high potential to generate construction and demolition (C&D) waste. Therefore, there is a need to look into the use of alternative materials and construction m...

  19. EVALUATION OF RECYCLED PLASTIC LUMBER FOR MARINE APPLICATIONS

    Science.gov (United States)

    This report presents an evaluation of the recycled plastic materials (RPM) produced by California Recycling Company (CRC). This evaluation is performed under the Municipal Waste Innovative Technology Evaluation (MITE) Program of the U.S. EPA, Risk Reduction Engineering Laboratory...

  20. Recycling Facilities - Land Recycling Cleanup Locations

    Data.gov (United States)

    NSGIC Education | GIS Inventory — Land Recycling Cleanup Location Land Recycling Cleanup Locations (LRCL) are divided into one or more sub-facilities categorized as media: Air, Contained Release or...

  1. Recycling in the 90's - a shared responsibility

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    Recycling means different things to different people. To consumers, recycling can mean putting out bottles and cans for curbside collection. To a product maker - a manufacturer of raw materials, fabricator of goods or products, or brand owner - recycling can mean reformulating goods to include recycled materials. To recycling service providers, recycling can mean providing cost-efficient collection services. To public policy makers in all levels of government recycling can mean establishing collection and utilization regulations. For recycling to work successfully, these diverse groups must work together and share responsibility for its success. Also, if recycling is to succeed on a large scale and over the long term, three critical points must be first addressed: These points are: approach, economics, and markets. These points are discussed

  2. Admissible loads in wastewater treatment, using a recycled support materials in a biological aerated filter; Cargas admisibles en depuracion de aguas residuales, usando material reciclado como soporte de un filtro sumergido

    Energy Technology Data Exchange (ETDEWEB)

    Osorio Robles, F. [E.T.S.I. de Caminos Canales y Puertos de Granada (Spain)

    2000-07-01

    This study places in the context of the research into Biological Aerated Filters that the Environmental Technology and Environmental Microbiology Research Group (University of Granada, Spain) has been developing for several years. We have achieved a high level of optimization of the system, using a recycled ceramic-based materials as biofilm support. It enables to give some design parameters, which will make possible the practical application in the future. In this article the relations among volumetric and hydraulic loads applied and effluent concentrations and elimination rates in relation to several pollutants are presented. The oxygen supplied has been accurately controlled, and the relation among the consumption value and the loads applied and the system efficiency obtained is presented. The tests were performed at a pilot plant with full scale height. The influent used was the primary effluent of a conventional treatment plant and the operational flow was counter-current flow. (Author) 11 refs.

  3. Industrial recovered-materials-utilization targets for the metals and metal-products industry

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-03-01

    The National Energy Conservation Policy Act of 1978 directs DOE to set targets for increased utilization of energy-saving recovered materials for certain industries. These targets are to be established at levels representing the maximum feasible increase in utilization of recovered materials that can be achieved progressively by January 1, 1987 and is consistent with technical and economic factors. A benefit to be derived from the increased use of recoverable materials is in energy savings, as state in the Act. Therefore, emhasis on different industries in the metals sector has been related to their energy consumption. The ferrous industry (iron and steel, ferrour foundries and ferralloys), as defined here, accounts for approximately 3%, and all others for the remaining 3%. Energy consumed in the lead and zinc segments is less than 1% each. Emphasis is placed on the ferrous scrap users, followed by the aluminum and copper industries. A bibliography with 209 citations is included.

  4. Recycling of Pre-Washed Municipal Solid Waste Incinerator Fly Ash in the Manufacturing of Low Temperature Setting Geopolymer Materials

    Directory of Open Access Journals (Sweden)

    Raffaele Cioffi

    2013-08-01

    Full Text Available In this work, three samples of municipal solid waste incinerators fly ash (MSWI-FA have been stabilized in systems containing coal fly ash to create geopolymers through a polycondensation reaction. Monolithic products have been obtained with both MSWI fly ash as received and after the partial removal of chloride and sulfate by water washing. The polycondensation products have been characterized qualitatively by means of Fourier transform infrared spectroscopy, X-ray diffraction and scanning electron microscopy and quantitatively, through the determination of the volume of reacted water and silicate. Furthermore, the heavy metals and chloride releases together with the physico-mechanical properties have been evaluated on the hardened products. In conclusion, considering the technological and environmental performances of the obtained geopolymers, they could be suitable for many non-structural applications, such as backfilling of abandoned quarries, decorative materials or brick fireplaces, hearths, patios, etc.

  5. Recycling of Pre-Washed Municipal Solid Waste Incinerator Fly Ash in the Manufacturing of Low Temperature Setting Geopolymer Materials.

    Science.gov (United States)

    Ferone, Claudio; Colangelo, Francesco; Messina, Francesco; Santoro, Luciano; Cioffi, Raffaele

    2013-08-12

    In this work, three samples of municipal solid waste incinerators fly ash (MSWI-FA) have been stabilized in systems containing coal fly ash to create geopolymers through a polycondensation reaction. Monolithic products have been obtained with both MSWI fly ash as received and after the partial removal of chloride and sulfate by water washing. The polycondensation products have been characterized qualitatively by means of Fourier transform infrared spectroscopy, X-ray diffraction and scanning electron microscopy and quantitatively, through the determination of the volume of reacted water and silicate. Furthermore, the heavy metals and chloride releases together with the physico-mechanical properties have been evaluated on the hardened products. In conclusion, considering the technological and environmental performances of the obtained geopolymers, they could be suitable for many non-structural applications, such as backfilling of abandoned quarries, decorative materials or brick fireplaces, hearths, patios, etc.

  6. Core-shelled mesoporous CoFe2O4-SiO2 material with good adsorption and high-temperature magnetic recycling capabilities

    Science.gov (United States)

    Li, Zhi'ang; Wang, Jianlin; Liu, Min; Chen, Tong; Chen, Jifang; Ge, Wen; Fu, Zhengping; Peng, Ranran; Zhai, Xiaofang; Lu, Yalin

    2018-04-01

    Residues of organic dye in industrial effluents cause severe water system pollution. Although several methods, such as biodegradation and activated carbon adsorption, are available for treating these effluents before their discharge into waterbodies, secondary pollution by adsorbents and degrading products remains an issue. Therefore, new materials should be identified to solve this problem. In this work, CoFe2O4-SiO2 core-shell structures were synthesized using an improved Stöber method by coating mesoporous silica onto CoFe2O4 nanoparticles. The specific surface areas of the synthesized particles range from 30 m2/g to 150 m2/g and vary according to the dosage amount of tetraethoxysilane. Such core-shelled nanoparticles have the following advantages for treating industrial effluents mixed with dye: good adsorption capability, above-room-temperature magnetic recycling capability, and heat-enduring stability. Through adsorption of methylene blue, a typical dyeing material, the core-shell-structured particles show a good adsorption capability of approximately 33 mg/L. The particles are easily and completely collected by magnets, which is possible due to the magnetic property of core CoFe2O4. Heat treatment can burn out the adsorbed dyes and good adsorption performance is sustained even after several heat-treating loops. This property overcomes the common problem of particles with Fe3O4 as a core, by which Fe3O4 is oxidized to nonmagnetic α-Fe2O3 at the burning temperature. We also designed a miniature of effluent-treating pipeline, which demonstrates the potential of the application.

  7. A global, comprehensive review of literature related to paper recycling: A pressing need for a uniform system of terms and definitions.

    Science.gov (United States)

    Ervasti, Ilpo; Miranda, Ruben; Kauranen, Ilkka

    2016-02-01

    A global, comprehensive review of terms and definitions related to paper recycling was conducted in this article. Terms and definitions related to paper recycling have varied in the course of time. Different terms and different definitions for the same thing are being used in different geographical regions and by different organizations. Definitions are different based on varying conceptions of waste paper as a raw material. Definitions of how to make various calculations related to paper recycling activity are inconsistent. Even such fundamental basic definitions like how to calculate recycling rate and paper consumption are not uniform. It could be concluded that there is no uniform system of terms and definitions related to paper recycling and the implications of this deficiency are profound. For example, it is difficult to reliably compare with each other statistics from different times and from different geographical regions. It is not possible to measure if targets for recycling activities are met if the terms describing the targets are not uniformly defined. In cases of reporting data for recycling targets, the lack of uniform terminology can, for example, impede the necessary transparency between different stakeholders and may allow for deception. The authors conclude there is a pressing need to develop a uniform system of terms and definition for terms related to paper recycling. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Development of a system for receiving, crushing and screening recycled fuel (REF) material; Kierraetyspolttoaineen vastaanotto-, murskaus- ja seulontajaerjestelmaen kehittaeminen

    Energy Technology Data Exchange (ETDEWEB)

    Nurmi, A. [VTT Energy, Jyvaeskylae (Finland)

    1997-12-01

    The goal of this project is to develop a system to which source sorted combustible industrial, office and municipal waste material can be taken and where it is then processed in such way that it can be burnt in modern fluidized bed and circulating bed boilers. The project started in the end of year 1995. The main stages of the project are: (1) Study and analysis of existing technology and equipment, (2) Development of system components, (3) Development of the system, (4) Building a pilot/demonstration plant, (5) Tests and results analysis and (6) Decisions on further actions. In the year 1996 the main stage was development of system components; especially crushing. Results of running slow-speed big crushers were collected, analysed and the main development details determined. Additionally, particle size distribution from different crushing methods were analyzed using also primary and secondary crushing. Development of a heavy-duty 2-rotor ECO-Crusher and a crushing screen was started. Regarding to the development of the REF-system, different alternatives have been analyzed and possible demonstration places have been searched. The first multi-crushing line will be demonstrated in Sweden. (orig.)

  9. Development of second generation gold-supported palladium material with low-leaching and recyclable characteristics in aromatic amination.

    Science.gov (United States)

    Al-Amin, Mohammad; Arai, Satoshi; Hoshiya, Naoyoki; Honma, Tetsuo; Tamenori, Yusuke; Sato, Takatoshi; Yokoyama, Mami; Ishii, Akira; Takeuchi, Masashi; Maruko, Tomohiro; Shuto, Satoshi; Arisawa, Mitsuhiro

    2013-08-02

    An improved process for the preparation of sulfur-modified gold-supported palladium material [SAPd, second generation] is presented. The developed preparation method is safer and generates less heat (aqueous Na2S2O8 and H2SO4) for sulfur fixation on a gold surface, and it is superior to the previous method of preparing SAPd (first generation), which requires the use of the more heat-generating and dangerous piranha solution (concentrated H2SO4 and 35% H2O2) in the sulfur fixation step. This safer and improved preparation method is particularly important for the mass production of SAPd (second generation) for which the catalytic activity was examined in ligand-free Buchwald-Hartwig cross-coupling reactions. The catalytic activities were the same between the first and second generation SAPds in aromatic aminations, but the lower palladium leaching properties and safer preparative method of second generation SAPd are a significant improvement over the first generation SAPd.

  10. Recycling of spent catalyst and waste sludge from industry to substitute raw materials in the preparation of Portland cement clinker

    Directory of Open Access Journals (Sweden)

    Kae-Long Lin

    2017-09-01

    Full Text Available This study investigated the feasibility of using waste limestone sludge, waste stone sludge, iron oxide sludge, and spent catalyst as raw materials in the production of eco-cement. The compressive strength development of the Eco Cement-A (ECO-A paste was similar to that of ordinary Portland cement (OPC pastes. The compressive strength development of the ECO-B paste was higher than that of OPC pastes. In addition, the C2S (Ca2SiO4, C2S and C3S (Ca3SiO5 minerals in the eco-cement paste were continuously utilized to hydrate the Ca(OH2 and calcium silicate hydrates gel (Ca6Si3O12·H2O, C–S–H throughout the curing time. When ECO-C clinker contained 8% spent catalyst, the C3S mineral content decreased and C3A (3 CaO·Al2O3 content increased, thereby causing the structure to weaken and compressive strength to decrease. The results showed that the developed eco-cement with 4% spent catalyst possessed compressive strength properties similar to those of OPC pastes.

  11. An analysis of health promotion materials for Dutch truck drivers: Off target and too complex?

    Science.gov (United States)

    Boeijinga, Anniek; Hoeken, Hans; Sanders, José

    2017-01-01

    Despite various health promotion initiatives, unfavorable figures regarding Dutch truck drivers' eating behaviors, exercise behaviors, and absenteeism have not improved. The aim was to obtain a better understanding of the low level of effectiveness of current health interventions for Dutch truck drivers by examining to what extent these are tailored to the target group's particular mindset (focus of content) and health literacy skills (presentation of content). The article analyzes 21 health promotion materials for Dutch truck drivers using a two-step approach: (a) an analysis of the materials' focus, guided by the Health Action Process Approach; and (b) an argumentation analysis, guided by pragma-dialectics. The corpus analysis revealed: (a) a predominant focus on the motivation phase; and (b) in line with the aim of motivating the target group, a consistent use of pragmatic arguments, which were typically presented in an implicit way. The results indicate that existing health promotion materials for Dutch truck drivers are not sufficiently tailored to the target group's mindset and health literacy skills. Recommendations are offered to develop more tailored/effective health interventions targeting this high-risk, underserved occupational group.

  12. Assessment of candidates for target window material in accelerator-driven molybdenum-99 production

    Energy Technology Data Exchange (ETDEWEB)

    Strons, Philip [Argonne National Lab. (ANL), Argonne, IL (United States); Bailey, James [Argonne National Lab. (ANL), Argonne, IL (United States); Makarashvili, Vakhtang [Argonne National Lab. (ANL), Argonne, IL (United States); Chemerisov, Sergey [Argonne National Lab. (ANL), Argonne, IL (United States); Gromov, Roman [Argonne National Lab. (ANL), Argonne, IL (United States); Vandegrift, George [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-10-01

    NorthStar Medical Technologies is pursuing production of an important medical isotope, Mo-99, through a photo-nuclear reaction of a Mo-100 target using a high-power electron accelerator. The current target utilizes an Inconel 718 window. The purpose of this study was to evaluate other candidate materials for the target window, which separates the high-pressure helium gas inside the target from the vacuum inside the accelerator beamline and is subjected to significant stress. Our initial analysis assessed the properties (density, thermal conductivity, maximum stress, minimum window thickness, maximum temperature, and figure of merit) for a range of materials, from which the three most promising were chosen: Inconel 718, 250 maraging steel, and standard-grade beryllium. These materials were subjected to further analysis to determine the effects of thermal and mechanical strain versus beam power at varying thicknesses. Both beryllium and the maraging steel were calculated to withstand more than twice as high beam power than Inconel 718.

  13. Proceedings of JSPS-CAS core university program seminar on target materials

    International Nuclear Information System (INIS)

    Gu, Z.Z.; Norimatsu, T.

    2008-02-01

    China-Japan Bilateral Collaboration on the Study of Ultrahigh Density Plasma has been established since 2001 and its second phase is conducting from 2006. Target materials are key issue of the Study of Ultrahigh Density Plasma, and the second of target fabrication was opened at the 2005 Workshop on Ultrahigh Density Plasma Production, Application and theory for Laser Fusion at Nine Village Valley, Sichuan. It achieved great successes in high-level academic exchange and efficient presentation of state-of-the-art development in this research field. However, in order to attract greater attention and participation of more scientists in these fields, the organizing committee decided to further specify and enlarge the scale of the workshop to be China-Japan Bilateral Seminar on Target Materials 2007 in Huang Shan in southern Anhui Province of east China. The seminar had more than 20 participants from 7 universities and 3 institutes in Japan and China. They exchanged state-of-the-art development in nanomaterials, capsule fabrication and low density materials toward target of high power laser. This issue is the collection of the paper presented at the seminar. The 17 of the presented papers are indexed individually. (J.P.N.)

  14. Recycling retention functions

    International Nuclear Information System (INIS)

    Skrable, K.W.; Chabot, G.E.; Johnson, M.H.

    1981-01-01

    Beginning with the concept of any number of physiologically meaningful compartments that recycle material with a central extracellular fluid compartment and considering various excretion pathways, we solve the differential equations describing the kinetics by the method of Laplace to obtain concise algebraic expressions for the retentions. These expressions contain both fundamental and eigenvalue rate constants; the eigenvalue rate constants are obtained from the solution of a polynomial incorporating the fundamental rate constants. Mathematically exact expressions that predict the biodistribution resulting from continuous uptakes are used to obtain very simple mathematically exact steady state expressions as well as approximate expressions applicable to any time. These steady state and approximate expressions contain only the fundamental rate constants; also, they include a recycling factor that describes the increase in the biodistributions because of recycling. To obtain the values of the fundamental rate constants, short term kinetics studies along with data on the long term distributions are suggested. Retention functions obtained in this way predict both the short term and long term distributions; they therefore are useful in the interpretation of bioassay data and in the estimation of internal doses

  15. Nuclear microbeam analysis of ICF target material made by GDP technique

    Energy Technology Data Exchange (ETDEWEB)

    Rong, C.; He, X. [Applied Ion Beam Physics Laboratory, Institute of Modern Physics, Department of Nuclear Science and Technology, Fudan University, Shanghai 200433 (China); Meng, J., E-mail: eleanor920@163.com [Research Center of Laser Fusion, CAEP, Mianyang 621000 (China); Gao, D. [Research Center of Laser Fusion, CAEP, Mianyang 621000 (China); Zhang, Y.; Li, X.; Lyu, H.; Zhu, Y. [Applied Ion Beam Physics Laboratory, Institute of Modern Physics, Department of Nuclear Science and Technology, Fudan University, Shanghai 200433 (China); Zheng, Y. [Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204 (China); Wang, X. [Applied Ion Beam Physics Laboratory, Institute of Modern Physics, Department of Nuclear Science and Technology, Fudan University, Shanghai 200433 (China); Shen, H., E-mail: haoshen@fudan.edu.cn [Applied Ion Beam Physics Laboratory, Institute of Modern Physics, Department of Nuclear Science and Technology, Fudan University, Shanghai 200433 (China)

    2015-04-01

    Germanium doped carbon–hydrogen polymer (CH) by Glow Discharge Polymer (GDP) technique has become the preferred Inertial Confinement Fusion (ICF) target material. The nondestructive measurement of elements content in the ICF target has become a significant work in recent years. This paper presents the compositional and distributional results of the Germanium doped CH analysis. The Ge doped CH materials as thin film and as hollow sphere were investigated by the Rutherford Backscattering Spectroscopy (RBS) combined with the particle induced X-ray emission (PIXE) and the Elastic Recoil Detection Analysis (ERDA). The samples are thin film with 36 μm thickness and ICF target with 500–2000 μm diameter. The calibration and geometrical arrangement in the analysis of spherical target should be carefully considered in order to acquire accurate results. In the work, the uniformity of the sphere is shown and the ratio of carbon, hydrogen and germanium has been measured. The ratio values are in good agreement with the results obtained by the combustion method. In addition, the difference of the composition from thin film to hollow sphere is also discussed. This work demonstrates that nuclear microbeam analysis is an ideal method to evaluate the ICF target quality.

  16. Natural material-decorated mesoporous silica nanoparticle container for multifunctional membrane-controlled targeted drug delivery

    Directory of Open Access Journals (Sweden)

    Hu Y

    2017-11-01

    Full Text Available Yan Hu,1 Lei Ke,2 Hao Chen,1 Ma Zhuo,1 Xinzhou Yang,1 Dan Zhao,1 Suying Zeng,1 Xincai Xiao1 1Department of Pharmaceutics, School of Pharmaceutical Science, South-Central University for Nationalities, 2Department of Medicinal Chemistry, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China Abstract: To avoid the side effects caused by nonspecific targeting, premature release, weak selectivity, and poor therapeutic efficacy of current nanoparticle-based systems used for drug delivery, we fabricated natural material-decorated nanoparticles as a multifunctional, membrane-controlled targeted drug delivery system. The nanocomposite material coated with a membrane was biocompatible and integrated both specific tumor targeting and responsiveness to stimulation, which improved transmission efficacy and controlled drug release. Mesoporous silica nanoparticles (MSNs, which are known for their biocompatibility and high drug-loading capacity, were selected as a model drug container and carrier. The membrane was established by the polyelectrolyte composite method from chitosan (CS which was sensitive to the acidic tumor microenvironment, folic acid-modified CS which recognizes the folate receptor expressed on the tumor cell surface, and a CD44 receptor-targeted polysaccharide hyaluronic acid. We characterized the structure of the nanocomposite as well as the drug release behavior under the control of the pH-sensitive membrane switch and evaluated the antitumor efficacy of the system in vitro. Our results provide a basis for the design and fabrication of novel membrane-controlled nanoparticles with improved tumor-targeting therapy. Keywords: multifunctional, membrane-controlled, natural materials, mesoporous silica nanoparticles, targeted drug delivery

  17. Computational Magnetohydrodynamics of General Materials in Generalized Coordinates and Applications to Laser-Target Interactions

    Science.gov (United States)

    MacGillivray, Jeff T.; Peterkin, Robert E., Jr.

    2003-10-01

    We have developed a multiblock arbitrary coordinate Hydromagnetics (MACH) code for computing the time-evolution of materials of arbitrary phase (solid, liquid, gas, and plasma) in response to forces that arise from material and magnetic pressures. MACH is a single-fluid, time-dependent, arbitrary Lagrangian-Eulerian (ALE) magnetohydrodynamic (MHD) simulation environment. The 2 1/2 -dimensional MACH2 and the parallel 3-D MACH3 are widely used in the MHD community to perform accurate simulation of the time evolution of electrically conducting materials in a wide variety of laboratory situations. In this presentation, we discuss simulations of the interaction of an intense laser beam with a solid target in an ambient gas. Of particular interest to us is a laser-supported detonation wave (blast wave) that originates near the surface of the target when the laser intensity is sufficiently large to vaporize target material within the focal spot of the beam. Because the MACH3 simulations are fully three-dimensional, we are able to simulate non-normal laser incidence. A magnetic field is also produced from plasma energy near the edge of the focal spot.

  18. COPPER CABLE RECYCLING TECHNOLOGY

    International Nuclear Information System (INIS)

    Chelsea Hubbard

    2001-01-01

    The United States Department of Energy (DOE) continually seeks safer and more cost-effective technologies for use in deactivation and decommissioning (D and D) of nuclear facilities. The Deactivation and Decommissioning Focus Area (DDFA) of the DOE's Office of Science and Technology (OST) sponsors large-scale demonstration and deployment projects (LSDDPs). At these LSDDPs, developers and vendors of improved or innovative technologies showcase products that are potentially beneficial to the DOE's projects and to others in the D and D community. Benefits sought include decreased health and safety risks to personnel and the environment, increased productivity, and decreased costs of operation. The Idaho National Engineering and Environmental Laboratory (INEEL) generated a list of statements defining specific needs and problems where improved technology could be incorporated into ongoing D and D tasks. One such need is to reduce the volume of waste copper wire and cable generated by D and D. Deactivation and decommissioning activities of nuclear facilities generates hundreds of tons of contaminated copper cable, which are sent to radioactive waste disposal sites. The Copper Cable Recycling Technology separates the clean copper from contaminated insulation and dust materials in these cables. The recovered copper can then be reclaimed and, more importantly, landfill disposal volumes can be reduced. The existing baseline technology for disposing radioactively contaminated cables is to package the cables in wooden storage boxes and dispose of the cables in radioactive waste disposal sites. The Copper Cable Recycling Technology is applicable to facility decommissioning projects at many Department of Energy (DOE) nuclear facilities and commercial nuclear power plants undergoing decommissioning activities. The INEEL Copper Cable Recycling Technology Demonstration investigated the effectiveness and efficiency to recycle 13.5 tons of copper cable. To determine the effectiveness

  19. Materials Substitution and Recycling. Proceedings of the Meeting of the Structures and Materials Panel (57th) Held at Vimeiro, Portugal on 14-19 October 1983.

    Science.gov (United States)

    1984-04-01

    cycles at the first inspection with a crack. In this investigation, the fluidized hot bed temperature was increased at various incre- ments to obtain...involves roasting to a low-sulfur oxide product in a fluidized - bed converter, followed by aluinothermic reduction that produces a Cr-NI metal ingot. The...with the raw material which is composed of primary ( granules , catnodes) and secondary metal (scrap). Scrap comprises scrap gene- rated during

  20. Rubber Recycling: Chemistry, Processing, and Applications

    NARCIS (Netherlands)

    Myhre, M.; Saiwari, Sitisaiyidah; Dierkes, Wilma K.; Noordermeer, Jacobus W.M.

    2012-01-01

    For both environmental and economic reasons, there is broad interest in recycling rubber and in the continued development of recycling technologies. The use of postindustrial materials is a fairly well-established and documented business. Much effort over the past decade has been put into dealing

  1. Recycling Lesson Plans.

    Science.gov (United States)

    Pennsylvania State Dept. of Environmental Resources, Harrisburg.

    This document contains lesson plans about recycling for teachers in grades K-12. Titles include: (1) "Waste--Where Does It Come From? Where Does It Go?" (2) "Litter Detectives," (3) "Classroom Paper Recycling," (4) "Recycling Survey," (5) "Disposal and Recycling Costs," (6) "Composting…

  2. Recycling of electronic scrap

    DEFF Research Database (Denmark)

    Legarth, Jens Brøbech

    This Ph.D. thesis deals with the growingly important field of electronics recycling with special attention to the problem of printed circuit board recycling. A literature survey of contemporary electronics recycling and printed circuit board recycling is presented.Further, an analysis of the role...

  3. Studies on recycled aggregates-based concrete.

    Science.gov (United States)

    Rakshvir, Major; Barai, Sudhirkumar V

    2006-06-01

    Reduced extraction of raw materials, reduced transportation cost, improved profits, reduced environmental impact and fast-depleting reserves of conventional natural aggregates has necessitated the use of recycling, in order to be able to conserve conventional natural aggregate. In this study various physical and mechanical properties of recycled concrete aggregates were examined. Recycled concrete aggregates are different from natural aggregates and concrete made from them has specific properties. The percentages of recycled concrete aggregates were varied and it was observed that properties such as compressive strength showed a decrease of up to 10% as the percentage of recycled concrete aggregates increased. Water absorption of recycled aggregates was found to be greater than natural aggregates, and this needs to be compensated during mix design.

  4. A closed-loop process for recycling LiNixCoyMn(1−x−yO2 from mixed cathode materials of lithium-ion batteries

    Directory of Open Access Journals (Sweden)

    Rujuan Zheng

    2017-01-01

    Full Text Available With the rapid development of consumer electronics and electric vehicles (EV, a large number of spent lithium-ion batteries (LIBs have been generated worldwide. Thus, effective recycling technologies to recapture a significant amount of valuable metals contained in spent LIBs are highly desirable to prevent the environmental pollution and resource depletion. In this work, a novel recycling technology to regenerate a LiNi1/3Co1/3Mn1/3O2 cathode material from spent LIBs with different cathode chemistries has been developed. By dismantling, crushing, leaching and impurity removing, the LiNi1/3Co1/3Mn1/3O2 (selected as an example of LiNixCoyMn(1−x−yO2 powder can be directly prepared from the purified leaching solution via co-precipitation followed by solid-state synthesis. For comparison purposes, a fresh-synthesized sample with the same composition has also been prepared using the commercial raw materials via the same method. X-ray diffraction (XRD, scanning electron microscopy (SEM and electrochemical measurements have been carried out to characterize these samples. The electrochemical test result suggests that the re-synthesized sample delivers cycle performance and low rate capability which are comparable to those of the fresh-synthesized sample. This novel recycling technique can be of great value to the regeneration of a pure and marketable LiNixCoyMn(1−x−yO2 cathode material with low secondary pollution. Keywords: Spent lithium-ion battery, Cathode material recycling, Acid leaching, Purification, Co-precipitation

  5. Improvement of Bearing Capacity in Recycled Aggregates Suitable for Use as Unbound Road Sub-Base

    Directory of Open Access Journals (Sweden)

    Laura Garach

    2015-12-01

    Full Text Available Recycled concrete aggregates and mixed recycled aggregates are specified as types of aggregates with lower densities, higher water absorption capacities, and lower mechanical strength than natural aggregates. In this paper, the mechanical behaviour and microstructural properties of natural aggregates, recycled concrete aggregates and mixed recycled aggregates were compared. Different specimens of unbound recycled mixtures demonstrated increased resistance properties. The formation of new cement hydrated particles was observed, and pozzolanic reactions were discovered by electronon microscopy in these novel materials. The properties of recycled concrete aggregates and mixed recycled aggregates suggest that these recycled materials can be used in unbound road layers to improve their mechanical behaviour in the long term.

  6. Improvement of Bearing Capacity in Recycled Aggregates Suitable for Use as Unbound Road Sub-Base.

    Science.gov (United States)

    Garach, Laura; López, Mónica; Agrela, Francisco; Ordóñez, Javier; Alegre, Javier; Moya, José Antonio

    2015-12-16

    Recycled concrete aggregates and mixed recycled aggregates are specified as types of aggregates with lower densities, higher water absorption capacities, and lower mechanical strength than natural aggregates. In this paper, the mechanical behaviour and microstructural properties of natural aggregates, recycled concrete aggregates and mixed recycled aggregates were compared. Different specimens of unbound recycled mixtures demonstrated increased resistance properties. The formation of new cement hydrated particles was observed, and pozzolanic reactions were discovered by electronon microscopy in these novel materials. The properties of recycled concrete aggregates and mixed recycled aggregates suggest that these recycled materials can be used in unbound road layers to improve their mechanical behaviour in the long term.

  7. Experimental study of x-ray reemission from different material target heated by radiation

    International Nuclear Information System (INIS)

    Sun Kexu; Yi Rongqing; Yang Jiamin; Wang Hongbin; Huang Tianxuan; Cui Yanli; Chen Jiusen; Ding Yaonan; Ding Yongkun

    1998-12-01

    Experiments to study the soft X-ray reemission properties from different material heated by the radiation produced by laser plasma are reported. Thermal source is performed with the laser pulse (intensity 10 14 W/cm 2 ) to act on Au disk target in Xing Guang laser facility, which heated different material. Temporal, spatial and spectral composition measurement is performed with varied soft X-ray diagnostic facilities. Finally, reemission time delay, reemission efficiency, reradiation spectrum construction and delay emission time-space properties of the stagnation plasma are given

  8. Preliminary results for HIP bonding Ta to W targets for the materials test station

    Energy Technology Data Exchange (ETDEWEB)

    Dombrowski, David E [Los Alamos National Laboratory; Maloy, Stuart A [Los Alamos National Laboratory

    2009-01-01

    Tungsten targets for the Materials Test Station (MTS) were clad with thin tantalum cover plates and a tantalum frame using hot isostatic pressing (HIP). A preliminary HIP parameter study showed good bonding and intimate mechanical contact for Ta cover plate thicknesses of 0.25 mm (0.010 inch) and 0.38 mm (0.015 inch). HIP temperatures of full HIP runs were 1500 C (2732 F). HIP pressure was 203 MPa (30 ksi).

  9. Crumb Rubber in cold recycled bituminous mixes

    DEFF Research Database (Denmark)

    Dondi, Giulio; Tataranni, Piergiorgio; Pettinari, Matteo

    2014-01-01

    Today recycling is one of the most innovative and interesting techniques for the rehabilitation of destressed road pavements. In recent years the increased interest in this process, has led to the development of various alternative methods for the recovery and the reuse of road bituminous materials....... Cold recycling is, among the recycling techniques, certainly the most studied and developed: it allows the recovering of bituminous material from an existing pavement without the addition of heat, whilst ensuring the creation of high quality bound base layers. A wide range of materials have been tested...

  10. Recycling of used aluminum beverage cans in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Itou, Tatsuo [Mitsubishi Materials Corp., Tokyo (Japan)

    1995-12-31

    Both sales volume of aluminum cans and the recycling rate are remarkably increasing in Japan. In 1993, recycled can volume was 11.78 billion cans (116,258 metric tons) and its recycling rate 57.8 percent. Mitsubishi Materials Corporation, the leading manufacturer of aluminum cans in Japan, and their affiliated companies are very deeply involved in recycling used beverage cans (U.B.C) and recycling them back to can stock. In this paper, the author presents the following: (1) recent trends of beverage can consumption in Japan; (2) trend of aluminum cans and recycling rate in Japan; and (3) future of the aluminum can business in Japan.

  11. Overview on materials and technological developments for the LMJ cryogenic target assembly

    International Nuclear Information System (INIS)

    Reneaume, B.; Allegre, G.; Botrel, R.; Bourcier, H.; Bourdenet, R.; Breton, O.; Collier, R.; Dauteuil, C.; Durut, F.; Faivre, A.; Fleury, E.; Geoffray, I.; Geoffray, G.; Jeannot, L.; Jehanno, L.; Legaie, O.; Legay, G.; Meux, S.; Schunk, J.; Theobald, M.; Vasselin, C.; Perin, J.P.; Viargues, F.; Paquignon, G.

    2011-01-01

    The cryogenic target assemblies (CTAs) designed for Laser Megajoule (LMJ) experiments have many functions and have to meet severe specifications imposed by implosion physics, the CTA thermal environment, and the CTA interfaces with the Megajoule laser cryogenic target positioner. Therefore, CTA fabrication uses many challenging materials and requires several technological studies. During the last 2 years, many developments have enabled better collection of comprehensive data on target constitutive materials and improvements in the fabrication of the CTA base, hohlraum, and aluminum turret. Studies have been carried out (a) to better characterize thermal properties of materials allowing optimization of the thermal simulation of the hohlraum, (b) to improve the CTA base fabrication process in order optimize thermal studies of the LMJ experimental filling station (EFS), and (c) to determine coatings on the polyimide membrane that may limit the 300 K thermal effect on the micro-shell and increase the deuterium-tritium fuel lifetime. CTAs have been produced to evaluate fabrication knowledge, to characterize CTAs, to study air tightness, and to study filling and D 2 ice layering on the EFS. An overview of the results that have been obtained during the past 2 years is presented in this paper. (authors)

  12. Conclusions of the DIRECT-MAT project: Dismantling and recycling techniques for road materials; Conclusiones del proyecto DIRECT-MAT: Tecnicas de demolicion y reciclado de materiales para la carretera

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez Abadias, A. I.; Ruiz-Aucar Berlinches, E.; Sinis Fernandez, F.

    2012-07-01

    DIRECT-MAT (Dismantling and Recycling Techniques for road Materials) is a research project included in the 7{sup t}h Framework Programme of the EU, which counted with the participation of 20 partners from 15 different European countries. The Transport Research Centre of CEDEX (Spain) has been part of this project that began in January 2009. The aim of the DIRECT-MAT project has been to enable that national experience in the field of demolition and recycling of materials related to roads can be shared and disseminated among European countries for the benefit of all of them. In 2011 the paper the Direct-Mat Project: Dismantling and recycling techniques for road materials. Sharing knowledge and practices was published in the number 161 of Ingenieria Civil magazine. That paper consisted of an extensive description of the project, explaining in detail its structure, the status of the work in early 2011 and the conclusions drawn from the milestones (review of existing national documents). This paper is a continuation of the one previously published. This this article describes the work carried out since then and the collisions of the project. During this time, the main activities have been the compilation of several case studies and the developing of best practice guides. Regarding the results of the project, it is important to mention the database in which all the information gathered during the project is being uploads. Soon, it will have free online access. This database in perhaps the most remarkable results of the project, as it represents an invaluable reference tool for all the stake holders interested in the wide variety of recycling techniques that are being carried out today in Europe. (Author) 8 refs.

  13. The CERN antiproton target: hydrocode analysis of its core material dynamic response under proton beam impact

    CERN Document Server

    Martin, Claudio Torregrosa; Calviani, Marco; Muñoz-Cobo, José-Luis

    2016-01-01

    Antiprotons are produced at CERN by colliding a 26 GeV/c proton beam with a fixed target made of a 3 mm diameter, 55 mm length iridium core. The inherent characteristics of antiproton production involve extremely high energy depositions inside the target when impacted by each primary proton beam, making it one of the most dynamically demanding among high energy solid targets in the world, with a rise temperature above 2000 {\\deg}C after each pulse impact and successive dynamic pressure waves of the order of GPa's. An optimized redesign of the current target is foreseen for the next 20 years of operation. As a first step in the design procedure, this numerical study delves into the fundamental phenomena present in the target material core under proton pulse impact and subsequent pressure wave propagation by the use of hydrocodes. Three major phenomena have been identified, (i) the dominance of a high frequency radial wave which produces destructive compressive-to-tensile pressure response (ii) The existence of...

  14. Spallation reactions and energy deposition in heavy target materials comparison of measurements and MC-calculations

    International Nuclear Information System (INIS)

    Filges, D.; Enke, M.; Galin, J.

    2001-01-01

    A renascence of interest for energetic proton induced production of neutrons originates recently by the inception of new projects for target stations of intense spallation neutron sources (like the planned European Spallation Source ESS), accelerator-driven nuclear reactors, nuclear waste transmutation and also the application for radioactive beams. Here we verify the predictive power of transport codes currently on the market by confronting observables and quantities of interest with an exhaustive matrix of benchmark data essentially coming from two experiments being performed at the Cooler Synchrotron COSY at Juelich. Program packages like HERMES, LCS or MCNPX master the prevision of reaction cross sections, hadronic interaction lengths, averaged neutron multiplicities and neutron multiplicity distributions in thick and thin(!) targets for a wide spectrum of incident proton energies, geometrical shapes and materials of the target. While also the observables related to the energy deposition in thick targets are in a good agreement with the model predictions, the production cross section measurements however for light charged particles on thin targets point out that problems exist within these models. (author)

  15. CERN antiproton target: Hydrocode analysis of its core material dynamic response under proton beam impact

    Directory of Open Access Journals (Sweden)

    Claudio Torregrosa Martin

    2016-07-01

    Full Text Available Antiprotons are produced at CERN by colliding a 26  GeV/c proton beam with a fixed target made of a 3 mm diameter, 55 mm length iridium core. The inherent characteristics of antiproton production involve extremely high energy depositions inside the target when impacted by each primary proton beam, making it one of the most dynamically demanding among high energy solid targets in the world, with a rise temperature above 2000 °C after each pulse impact and successive dynamic pressure waves of the order of GPa’s. An optimized redesign of the current target is foreseen for the next 20 years of operation. As a first step in the design procedure, this numerical study delves into the fundamental phenomena present in the target material core under proton pulse impact and subsequent pressure wave propagation by the use of hydrocodes. Three major phenomena have been identified, (i the dominance of a high frequency radial wave which produces destructive compressive-to-tensile pressure response (ii The existence of end-of-pulse tensile waves and its relevance on the overall response (iii A reduction of 44% in tensile pressure could be obtained by the use of a high density tantalum cladding.

  16. Aluminum recycling in the United States in 2000

    Science.gov (United States)

    Plunkert, Patricia A.

    2006-01-01

    As one of a series of reports on metals recycling, this report discusses the flow of aluminum from production through its uses with particular emphasis on the recycling of industrial scrap (new scrap) and used products (old scrap) in 2000. This materials flow study includes a description of aluminum supply and demand factors for the United States to illustrate the extent of aluminum recycling and to identify recycling trends. Understanding the system of materials flow from source to ultimate disposition can assist in improving the management of natural resources in a manner that is compatible with sound environmental practices. In 2000, the old scrap recycling efficiency for aluminum was estimated to be 42 percent. Almost 60 percent of the aluminum that was recycled in 2000 came from new scrap, and the recycling rate was estimated to be 36 percent. The principal source of old scrap was recycled aluminum beverage cans.

  17. Physical aspects of the pulsed laser deposition technique: The stoichiometric transfer of material from target to film

    DEFF Research Database (Denmark)

    Schou, Jørgen

    2009-01-01

    The physical processes of pulsed laser deposition (PLD) change strongly from the initial light absorption in a target to the final deposition and growth of a film. One of the primary advantages of PLD is the stoichiometric transfer of material from target to a film on a substrate. Even...... for a stoichiometric flow of material from a multicomponent target, the simultaneous arrival of the target atoms is not sufficient to ensure a stoichiometric film growth. The laser fluence has to be sufficiently high to induce ablation rather than pure evaporation from target, but a high fluence may lead...

  18. Optimal Design of Gradient Materials and Bi-Level Optimization of Topology Using Targets (BOTT)

    Science.gov (United States)

    Garland, Anthony

    The objective of this research is to understand the fundamental relationships necessary to develop a method to optimize both the topology and the internal gradient material distribution of a single object while meeting constraints and conflicting objectives. Functionally gradient material (FGM) objects possess continuous varying material properties throughout the object, and they allow an engineer to tailor individual regions of an object to have specific mechanical properties by locally modifying the internal material composition. A variety of techniques exists for topology optimization, and several methods exist for FGM optimization, but combining the two together is difficult. Understanding the relationship between topology and material gradient optimization enables the selection of an appropriate model and the development of algorithms, which allow engineers to design high-performance parts that better meet design objectives than optimized homogeneous material objects. For this research effort, topology optimization means finding the optimal connected structure with an optimal shape. FGM optimization means finding the optimal macroscopic material properties within an object. Tailoring the material constitutive matrix as a function of position results in gradient properties. Once, the target macroscopic properties are known, a mesostructure or a particular material nanostructure can be found which gives the target material properties at each macroscopic point. This research demonstrates that topology and gradient materials can both be optimized together for a single part. The algorithms use a discretized model of the domain and gradient based optimization algorithms. In addition, when considering two conflicting objectives the algorithms in this research generate clear 'features' within a single part. This tailoring of material properties within different areas of a single part (automated design of 'features') using computational design tools is a novel benefit

  19. Recycling of plastics in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Masaki, K. [Clean Japan Center, Tokyo (Japan). PET Bottle Recycling Project Dept.

    1998-10-01

    The Clean Japan Center is an NGO concerned with recycling. This article presents an overview of methods for recyling products made of various types of plastic. A number of such methods are in use or being studied. Emphasis is given to the state of plastics recycling in Japan. The uses of waste plastics as materials in other industrials is outlined - these include waste plastics as a reducer in blast furnaces, replacing coke and pulverized coal; waste plastics as a source of heat in cement kilns as an alternative to pulverized coal; and waste plastics being incinerated to generate power. 3 figs.

  20. Process to recycle shredder residue

    Science.gov (United States)

    Jody, Bassam J.; Daniels, Edward J.; Bonsignore, Patrick V.

    2001-01-01

    A system and process for recycling shredder residue, in which separating any polyurethane foam materials are first separated. Then separate a fines fraction of less than about 1/4 inch leaving a plastics-rich fraction. Thereafter, the plastics rich fraction is sequentially contacted with a series of solvents beginning with one or more of hexane or an alcohol to remove automotive fluids; acetone to remove ABS; one or more of EDC, THF or a ketone having a boiling point of not greater than about 125.degree. C. to remove PVC; and one or more of xylene or toluene to remove polypropylene and polyethylene. The solvents are recovered and recycled.

  1. Reduced cost design of liquid lithium target for international fusion material irradiation facility (IFMIF)

    International Nuclear Information System (INIS)

    Nakamura, Hiroo; Ida, Mizuho; Sugimoto, Masayoshi; Takeuchi, Hiroshi; Yutani, Toshiaki

    2001-01-01

    The International Fusion Materials Irradiation Facility (IFMIF) is being jointly planned to provide an accelerator-based D-Li neutron source to produce intense high energy neutrons (2 MW/m 2 ) up to 200 dpa and a sufficient irradiation volume (500 cm 3 ) for testing the candidate materials and components up to about a full lifetime of their anticipated use in ITER and DEMO. To realize such a condition, 40 MeV deuteron beam with a current of 250 mA is injected into high speed liquid lithium flow with a speed of 20 m/s. Following Conceptual Design Activity (1995-1998), a design study with focus on cost reduction without changing its original mission has been done in 1999. The following major changes to the CAD target design have been considered in the study and included in the new design: i) number of the Li target has been changed from 2 to 1, ii) spare of impurity traps of the Li loop was removed although the spare will be stored in a laboratory for quick exchange, iii) building volume was reduced via design changes in lithium loop length. This paper describes the reduced cost design of the lithium target system and recent status of Key Element Technology activities. (author)

  2. Liquid-phase membrane extraction of targeted pesticides from manufacturing wastewaters in a hollow fibre contactor with feed-stream recycle.

    Science.gov (United States)

    Đorđević, Jelena; Vladisavljević, Goran T; Trtić-Petrović, Tatjana

    2017-01-01

    A two-phase membrane extraction in a hollow fibre contactor with feed-stream recycle was applied to remove selected pesticides (tebufenozide, linuron, imidacloprid, acetamiprid and dimethoate) from their mixed aqueous solutions. The contactor consisted of 50 polypropylene hollow fibres impregnated with 5% tri-n-octylphosphine oxide in di-n-hexyl ether. For low-polar pesticides with log P ≥ 2 (tebufenozide and linuron), the maximum removal efficiency increased linearly from 85% to 96% with increasing the feed flow rate. The maximum removal efficiencies of more polar pesticides were significantly higher under feed recirculation (86%) than in a continuous single-pass operation (30%). It was found from the Wilson's plot that the mass transfer resistance of the liquid membrane can be neglected for low-polar pesticides. The pesticide removals from commercial formulations were similar to those from pure pesticide solutions, indicating that built-in adjuvants did not affect the extraction process.

  3. Design and Demonstration of a Material-Plasma Exposure Target Station for Neutron Irradiated Samples

    Energy Technology Data Exchange (ETDEWEB)

    Rapp, Juergen [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Aaron, A. M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bell, Gary L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Burgess, Thomas W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ellis, Ronald James [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Giuliano, D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Howard, R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kiggans, James O. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lessard, Timothy L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ohriner, Evan Keith [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Perkins, Dale E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Varma, Venugopal Koikal [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-10-20

    Fusion energy is the most promising energy source for the future, and one of the most important problems to be solved progressing to a commercial fusion reactor is the identification of plasma-facing materials compatible with the extreme conditions in the fusion reactor environment. The development of plasma–material interaction (PMI) science and the technology of plasma-facing components are key elements in the development of the next step fusion device in the United States, the so-called Fusion Nuclear Science Facility (FNSF). All of these PMI issues and the uncertain impact of the 14-MeV neutron irradiation have been identified in numerous expert panel reports to the fusion community. The 2007 Greenwald report classifies reactor plasma-facing materials (PFCs) and materials as the only Tier 1 issues, requiring a “. . . major extrapolation from the current state of knowledge, need for qualitative improvements and substantial development for both the short and long term.” The Greenwald report goes on to list 19 gaps in understanding and performance related to the plasma–material interface for the technology facilities needed for DEMO-oriented R&D and DEMO itself. Of the 15 major gaps, six (G7, G9, G10, G12, G13) can possibly be addressed with ORNL’s proposal of an advanced Material Plasma Exposure eXperiment. Establishing this mid-scale plasma materials test facility at ORNL is a key element in ORNL’s strategy to secure a leadership role for decades of fusion R&D. That is to say, our end goal is to bring the “signature facility” FNSF home to ORNL. This project is related to the pre-conceptual design of an innovative target station for a future Material–Plasma Exposure eXperiment (MPEX). The target station will be designed to expose candidate fusion reactor plasma-facing materials and components (PFMs and PFCs) to conditions anticipated in fusion reactors, where PFCs will be exposed to dense high-temperature hydrogen plasmas providing steady

  4. Nano materials for the Local and Targeted Delivery of Osteoarthritis Drugs

    International Nuclear Information System (INIS)

    Periyasamy, P.C.; Leijten, J.C.H.; Dijkstra, P.J.; Karperien, M.; Post, J.N.

    2012-01-01

    Nano technology has found its potential in every possible field of science and engineering. It offers a plethora of options to design tools at the nanometer scale, which can be expected to function more effectively than micro- and macro systems for specific applications. Although the debate regarding the safety of synthetic nano materials for clinical applications endures, it is a promising technology due to its potential to augment current treatments. Various materials such as synthetic polymer, biopolymers, or naturally occurring materials such as proteins and peptides can serve as building blocks for adaptive nano scale formulations. The choice of materials depends highly on the application. We focus on the use of nanoparticles for the treatment of degenerative cartilage diseases, such as osteoarthritis (OA). Current therapies for OA focus on treating the symptoms rather than modifying the disease. The usefulness of OA disease modifying drugs is hampered by side effects and lack of suitable drug delivery systems that target, deliver, and retain drugs locally. This challenge can be overcome by using nano technological formulations. We describe the different nano drug delivery systems and their potential for cartilage repair. This paper provides the reader basal understanding of nano materials and aims at drawing new perspectives on the use of existing nano technological formulations for the treatment of osteoarthritis.

  5. Martensitic/ferritic steels as container materials for liquid mercury target of ESS

    International Nuclear Information System (INIS)

    Dai, Y.

    1996-01-01

    In the previous report, the suitability of steels as the ESS liquid mercury target container material was discussed on the basis of the existing database on conventional austenitic and martensitic/ferritic steels, especially on their representatives, solution annealed 316 stainless steel (SA 316) and Sandvik HT-9 martensitic steel (HT-9). Compared to solution annealed austenitic stainless steels, martensitic/ferritic steels have superior properties in terms of strength, thermal conductivity, thermal expansion, mercury corrosion resistance, void swelling and irradiation creep resistance. The main limitation for conventional martensitic/ferritic steels (CMFS) is embrittlement after low temperature (≤380 degrees C) irradiation. The ductile-brittle transition temperature (DBTT) can increase as much as 250 to 300 degrees C and the upper-shelf energy (USE), at the same time, reduce more than 50%. This makes the application temperature range of CMFS is likely between 300 degrees C to 500 degrees C. For the present target design concept, the temperature at the container will be likely controlled in a temperature range between 180 degrees C to 330 degrees C. Hence, CMFS seem to be difficult to apply. However, solution annealed austenitic stainless steels are also difficult to apply as the maximum stress level at the container will be higher than the design stress. The solution to the problem is very likely to use advanced low-activation martensitic/ferritic steels (LAMS) developed by the fusion materials community though the present database on the materials is still very limited

  6. Target Plate Material Influence on Fullerene-C60 Laser Desorption/Ionization Efficiency

    Science.gov (United States)

    Zeegers, Guido P.; Günthardt, Barbara F.; Zenobi, Renato

    2016-04-01

    Systematic laser desorption/ionization (LDI) experiments of fullerene-C60 on a wide range of target plate materials were conducted to gain insight into the initial ion formation in matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. The positive and negative ion signal intensities of precursor, fragment, and cluster ions were monitored, varying both the laser fluence (0-3.53 Jcm-2) and the ion extraction delay time (0-950 ns). The resulting species-specific ion signal intensities are an indication for the ionization mechanisms that contribute to LDI and the time frames in which they operate, providing insight in the (MA)LDI primary ionization. An increasing electrical resistivity of the target plate material increases the fullerene-C60 precursor and fragment anion signal intensity. Inconel 625 and Ti90/Al6/V4, both highly electrically resistive, provide the highest anion signal intensities, exceeding the cation signal intensity by a factor ~1.4 for the latter. We present a mechanism based on transient electrical field strength reduction to explain this trend. Fullerene-C60 cluster anion formation is negligible, which could be due to the high extraction potential. Cluster cations, however, are readily formed, although for high laser fluences, the preferred channel is formation of precursor and fragment cations. Ion signal intensity depends greatly on the choice of substrate material, and careful substrate selection could, therefore, allow for more sensitive (MA)LDI measurements.

  7. Recycling of polymers: a review.

    Science.gov (United States)

    Ignatyev, Igor A; Thielemans, Wim; Vander Beke, Bob

    2014-06-01

    Plastics are inexpensive, easy to mold, and lightweight. These and many other advantages make them very promising candidates for commercial applications. In many areas, they have substantially suppressed traditional materials. However, the problem of recycling still is a major challenge. There are both technological and economic issues that restrain the progress in this field. Herein, a state-of-art overview of recycling is provided together with an outlook for the future by using popular polymers such as polyolefins, poly(vinyl chloride), polyurethane, and poly(ethylene terephthalate) as examples. Different types of recycling, primary, secondary, tertiary, quaternary, and biological recycling, are discussed together with related issues, such as compatibilization and cross-linking. There are various projects in the European Union on research and application of these recycling approaches; selected examples are provided in this article. Their progress is mirrored by granted patents, most of which have a very limited scope and narrowly cover certain technologies. Global introduction of waste utilization techniques to the polymer market is currently not fully developed, but has an enormous potential. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Recycling of LiCo0.59Mn0.26Ni0.15O2 cathodic material from spent Li-ion batteries by the method of the citrate gel combustion

    Directory of Open Access Journals (Sweden)

    Senćanski Jelena V.

    2017-01-01

    Full Text Available The Li-ion batteries are the main power source for the high technology devices, such as mobile phones and electric vehicles. Because of that, the number of spent Li-ion batteries significantly increases. Today, the number of active mobile phones crossed 7.19 billion. It is estimated that the mass of the spent lithium ion batteries in China will exceed 500,000 t by 2020. The trouble is in the ingredients of these batteries. They contain Li, Co, Mn, Ni, Cu, Al and toxic and flammable electrolytes which have a harmful affection to the environment. Because of that, the recycling procedure attracts raising attention of researches. Several commercial spent Li-ion batteries were recycled by the relatively fast, economic and simple procedure. The three ways of separating the cathode material from Al collector were examined after the manual dismantling of the components of batteries with the Li(Co–Mn–NiO2 as cathode material. These were: 1. dissolution of the Al collector in the alkali medium, 2. peeling off with N-methylpyrrolidone and 3. thermal decomposition of the adhesive at 700°C. The procedure with the highest yield was the one with the dissolution in alkali medium. The chemical analysis of the single batteries'' components (the crust, Al/Cu collector, cathode material were done by the atomic absorption spectrometry. The components, before the analysis, were dissolved. The re-synthesis of the cathode material by the method of the citrate gel combustion was done after the separating the cathode material and dissolving it in the nitric acid. The obtained product was, after annealing, characterized by the methods of X-ray diffraction and Raman spectroscopy. The recycled product was LiCo0.59Mn0.26Ni0.15O2 stoichiometry, with the hexagonal layered structure α-NaFeO2 type. The functionalization of the resynthesized material was examined in the 1 M solution LiClO4 in the propylene carbonate, by galvanostatic charging, with the current density of 0

  9. Mesoporous multifunctional upconversion luminescent and magnetic "nanorattle" materials for targeted chemotherapy.

    Science.gov (United States)

    Zhang, Fan; Braun, Gary B; Pallaoro, Alessia; Zhang, Yichi; Shi, Yifeng; Cui, Daxiang; Moskovits, Martin; Zhao, Dongyuan; Stucky, Galen D

    2012-01-11

    Nanorattles consisting of hydrophilic, rare-earth-doped NaYF(4) shells each containing a loose magnetic nanoparticle were fabricated through an ion-exchange process. The inner magnetic Fe(3)O(4) nanoparticles are coated with a SiO(2) layer to avoid iron leaching in acidic biological environments. This multifunctional mesoporous nanostructure with both upconversion luminescent and magnetic properties has excellent water dispersibility and a high drug-loading capacity. The material emits visible luminescence upon NIR excitation and can be directed by an external magnetic field to a specific target, making it an attractive system for a variety of biological applications. Measurements on cells incubated with the nanorattles show them to have low cytotoxicity and excellent cell imaging properties. In vivo experiments yield highly encouraging tumor shrinkage with the antitumor drug doxorubicin (DOX) and significantly enhanced tumor targeting in the presence of an applied magnetic field. © 2011 American Chemical Society

  10. International target values 2010 for achievable measurement uncertainties in nuclear material accountancy

    International Nuclear Information System (INIS)

    Dias, Fabio C.; Almeida, Silvio G. de; Renha Junior, Geraldo

    2011-01-01

    The International Target Values (ITVs) are reasonable uncertainty estimates that can be used in judging the reliability of measurement techniques applied to industrial nuclear and fissile materials subject to accountancy and/or safeguards verification. In the absence of relevant experimental estimates, ITVs can also be used to select measurement techniques and calculate sample population during the planning phase of verification activities. It is important to note that ITVs represent estimates of the 'state-of-the-practice', which should be achievable under routine measurement conditions affecting both facility operators and safeguards inspectors, not only in the field, but also in laboratory. Tabulated values cover measurement methods used for the determination of volume or mass of the nuclear material, for its elemental and isotopic assays, and for its sampling. The 2010 edition represents the sixth revision of the International Target Values (ITVs), issued by the International Atomic Energy Agency (IAEA) as a Safeguards Technical Report (STR-368). The first version was released as 'Target Values' in 1979 by the Working Group on Techniques and Standards for Destructive Analysis (WGDA) of the European Safeguards Research and Development Association (ESARDA) and focused on destructive analytical methods. In the latest 2010 revision, international standards in estimating and expressing uncertainties have been considered while maintaining a format that allows comparison with the previous editions of the ITVs. Those standards have been usually applied in QC/QA programmes, as well as qualification of methods, techniques and instruments. Representatives of the Brazilian Nuclear Energy Commission (CNEN) and the Brazilian-Argentine Agency for Accounting and Control of Nuclear Materials (ABACC) participated in previous Consultants Group Meetings since the one convened to establish the first list of ITVs released in 1993 and in subsequent revisions, including the latest one

  11. Attributes to facilitate e-waste recycling behaviour

    Directory of Open Access Journals (Sweden)

    Senawi Nur Hidayah

    2016-01-01

    Full Text Available This study aims to identify the set of attributes to facilitate electronic waste (e-waste behaviour among the community. E-waste disposal is increasing from year to year in parallel with increasing of global population. The short lifespan of electronics and poor e-waste recycling behaviour is among the main contributors to the steadily increasing of e-waste generated. Current recycling rate among the nation is lacking behind, which is only 10.5%. A questionnaire survey has been conducted among the students in Universiti Teknologi Malaysia to evaluate the current e-waste recycling practice. The results showed that majority of the respondents did not recycle their e-waste on campus. Aggressive efforts is needed to realize the country’s target of 20% recycling rate in year 2020, one of the effective paths is to minimize e-waste generation via active e-waste recycling behaviour among the community. Extensive literatures have been reviewed to classify the attributes to facilitate effective e-waste recycling among the community. Total of five attributes that identified in this study which are Convenience of E- waste Recycling Infrastruture and Services, E-waste Recycling Information, Incentives For E-waste Recycling, Reminder to Recycle E-waste And E-waste Recycling Infrastructure and Services. The set of attributes identified in this study may serve as guideline for the management in designing program to foster e-waste recycling behaviour among the community.

  12. Polypropylene track membranes as a promising material for targets with polarized protons

    Science.gov (United States)

    Barashkova, I. I.; Bunyatova, E. I.; Kravets, L. I.

    2014-01-01

    Polypropylene track membranes made by irradiation of polypropylene films with a beam of high-energy heavy ions followed by chemical etching of latent ion tracks are proposed for being used as a polarized target material. To give membranes paramagnetic properties needed for allowing dynamic polarization of nuclei, the nitroxyl radical 2,2,6,6-tetramethylpiperidine-1-oxyl was introduced in the samples by the thermal diffusion technique. Using the electron paramagnetic resonance method, we obtained information on paramagnetic centers in the polymer matrix of the membranes and determined the nitroxyl radical concentration and rotational mobility of the spin probe in them.

  13. Integrated modelling of material migration and target plate power handling at JET

    International Nuclear Information System (INIS)

    Coster, D.P.; Bonnin, X.; Chankin, A.

    2005-01-01

    The complexity of the tokamak edge and scrape-off layer (SOL) region is such that extrapolation to ITER requires modelling to be pursued through the integration of a number of edge codes, each of which must be thoroughly tested against results from present day machines. This contribution demonstrates how the edge modelling effort at JET is focused on such an approach by considering two examples, target power loading and material erosion and migration, the understanding of which are crucial issues for ITER. (author)

  14. Spark Plasma Sintering As a Solid-State Recycling Technique: The Case of Aluminum Alloy Scrap Consolidation.

    Science.gov (United States)

    Paraskevas, Dimos; Vanmeensel, Kim; Vleugels, Jef; Dewulf, Wim; Deng, Yelin; Duflou, Joost R

    2014-08-06

    Recently, "meltless" recycling techniques have been presented for the light metals category, targeting both energy and material savings by bypassing the final recycling step of remelting. In this context, the use of spark plasma sintering (SPS) is proposed in this paper as a novel solid-state recycling technique. The objective is two-fold: (I) to prove the technical feasibility of this approach; and (II) to characterize the recycled samples. Aluminum (Al) alloy scrap was selected to demonstrate the SPS effectiveness in producing fully-dense samples. For this purpose, Al alloy scrap in the form of machining chips was cold pre-compacted and sintered bellow the solidus temperature at 490 °C, under elevated pressure of 200 MPa. The dynamic scrap compaction, combined with electric current-based joule heating, achieved partial fracture of the stable surface oxides, desorption of the entrapped gases and activated the metallic surfaces, resulting in efficient solid-state chip welding eliminating residual porosity. The microhardness, the texture, the mechanical properties, the microstructure and the density of the recycled specimens have been investigated. An X-ray computed tomography (CT) analysis confirmed the density measurements, revealing a void-less bulk material with homogeneously distributed intermetallic compounds and oxides. The oxide content of the chips incorporated within the recycled material slightly increases its elastic properties. Finally, a thermal distribution simulation of the process in different segments illustrates the improved energy efficiency of this approach.

  15. Spark Plasma Sintering As a Solid-State Recycling Technique: The Case of Aluminum Alloy Scrap Consolidation

    Directory of Open Access Journals (Sweden)

    Dimos Paraskevas

    2014-08-01

    Full Text Available Recently, “meltless” recycling techniques have been presented for the light metals category, targeting both energy and material savings by bypassing the final recycling step of remelting. In this context, the use of spark plasma sintering (SPS is proposed in this paper as a novel solid-state recycling technique. The objective is two-fold: (I to prove the technical feasibility of this approach; and (II to characterize the recycled samples. Aluminum (Al alloy scrap was selected to demonstrate the SPS effectiveness in producing fully-dense samples. For this purpose, Al alloy scrap in the form of machining chips was cold pre-compacted and sintered bellow the solidus temperature at 490 °C, under elevated pressure of 200 MPa. The dynamic scrap compaction, combined with electric current-based joule heating, achieved partial fracture of the stable surface oxides, desorption of the entrapped gases and activated the metallic surfaces, resulting in efficient solid-state chip welding eliminating residual porosity. The microhardness, the texture, the mechanical properties, the microstructure and the density of the recycled specimens have been investigated. An X-ray computed tomography (CT analysis confirmed the density measurements, revealing a void-less bulk material with homogeneously distributed intermetallic compounds and oxides. The oxide content of the chips incorporated within the recycled material slightly increases its elastic properties. Finally, a thermal distribution simulation of the process in different segments illustrates the improved energy efficiency of this approach.

  16. Modeling the interaction of high power ion or electron beams with solid target materials

    International Nuclear Information System (INIS)

    Hassanein, A.M.

    1983-11-01

    Intense energy deposition on first wall materials and other components as a result of plasma disruptions in magnetic fusion devices are expected to cause melting and vaporization of these materials. The exact amount of vaporization losses and melt layer thickness are very important to fusion reactor design and lifetime. Experiments using ion or electron beams to simulate the disruption effects have different environments than the actual disruption conditions in fusion reactors. A model has been developed to accurately simulate the beam-target interactions so that the results from such experiments can be meaningful and useful to reactor design. This model includes a two dimensional solution of the heat conduction equation with moving boundaries. It is found that the vaporization and melting of the sample strongly depends on the characteristics of the beam spatial distribution, beam diameter, and on the power-time variation of the beam

  17. Certified Electronics Recyclers

    Science.gov (United States)

    Learn how EPA encourages all electronics recyclers become certified by demonstrating to an accredited, independent third-party auditor and that they meet specific standards to safely recycle and manage electronics.

  18. Paper recycling framework, the "Wheel of Fiber".

    Science.gov (United States)

    Ervasti, Ilpo; Miranda, Ruben; Kauranen, Ilkka

    2016-06-01

    At present, there is no reliable method in use that unequivocally describes paper industry material flows and makes it possible to compare geographical regions with each other. A functioning paper industry Material Flow Account (MFA) that uses uniform terminology and standard definitions for terms and structures is necessary. Many of the presently used general level MFAs, which are called frameworks in this article, stress the importance of input and output flows but do not provide a uniform picture of material recycling. Paper industry is an example of a field in which recycling plays a key role. Additionally, terms related to paper industry recycling, such as collection rate, recycling rate, and utilization rate, are not defined uniformly across regions and time. Thus, reliably comparing material recycling activity between geographical regions or calculating any regional summaries is difficult or even impossible. The objective of this study is to give a partial solution to the problem of not having a reliable method in use that unequivocally describes paper industry material flows. This is done by introducing a new material flow framework for paper industry in which the flow and stage structure supports the use of uniform definitions for terms related to paper recycling. This new framework is termed the Detailed Wheel of Fiber. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. DWPF Recycle Evaporator Simulant Tests

    International Nuclear Information System (INIS)

    Stone, M

    2005-01-01

    Testing was performed to determine the feasibility and processing characteristics of an evaporation process to reduce the volume of the recycle stream from the Defense Waste Processing Facility (DWPF). The concentrated recycle would be returned to DWPF while the overhead condensate would be transferred to the Effluent Treatment Plant. Various blends of evaporator feed were tested using simulants developed from characterization of actual recycle streams from DWPF and input from DWPF-Engineering. The simulated feed was evaporated in laboratory scale apparatus to target a 30X volume reduction. Condensate and concentrate samples from each run were analyzed and the process characteristics (foaming, scaling, etc) were visually monitored during each run. The following conclusions were made from the testing: Concentration of the ''typical'' recycle stream in DWPF by 30X was feasible. The addition of DWTT recycle streams to the typical recycle stream raises the solids content of the evaporator feed considerably and lowers the amount of concentration that can be achieved. Foaming was noted during all evaporation tests and must be addressed prior to operation of the full-scale evaporator. Tests were conducted that identified Dow Corning 2210 as an antifoam candidate that warrants further evaluation. The condensate has the potential to exceed the ETP WAC for mercury, silicon, and TOC. Controlling the amount of equipment decontamination recycle in the evaporator blend would help meet the TOC limits. The evaporator condensate will be saturated with mercury and elemental mercury will collect in the evaporator condensate collection vessel. No scaling on heating surfaces was noted during the tests, but splatter onto the walls of the evaporation vessels led to a buildup of solids. These solids were difficult to remove with 2M nitric acid. Precipitation of solids was not noted during the testing. Some of the aluminum present in the recycle streams was converted from gibbsite to

  20. DWPF Recycle Evaporator Simulant Tests

    Energy Technology Data Exchange (ETDEWEB)

    Stone, M

    2005-04-05

    Testing was performed to determine the feasibility and processing characteristics of an evaporation process to reduce the volume of the recycle stream from the Defense Waste Processing Facility (DWPF). The concentrated recycle would be returned to DWPF while the overhead condensate would be transferred to the Effluent Treatment Plant. Various blends of evaporator feed were tested using simulants developed from characterization of actual recycle streams from DWPF and input from DWPF-Engineering. The simulated feed was evaporated in laboratory scale apparatus to target a 30X volume reduction. Condensate and concentrate samples from each run were analyzed and the process characteristics (foaming, scaling, etc) were visually monitored during each run. The following conclusions were made from the testing: Concentration of the ''typical'' recycle stream in DWPF by 30X was feasible. The addition of DWTT recycle streams to the typical recycle stream raises the solids content of the evaporator feed considerably and lowers the amount of concentration that can be achieved. Foaming was noted during all evaporation tests and must be addressed prior to operation of the full-scale evaporator. Tests were conducted that identified Dow Corning 2210 as an antifoam candidate that warrants further evaluation. The condensate has the potential to exceed the ETP WAC for mercury, silicon, and TOC. Controlling the amount of equipment decontamination recycle in the evaporator blend would help meet the TOC limits. The evaporator condensate will be saturated with mercury and elemental mercury will collect in the evaporator condensate collection vessel. No scaling on heating surfaces was noted during the tests, but splatter onto the walls of the evaporation vessels led to a buildup of solids. These solids were difficult to remove with 2M nitric acid. Precipitation of solids was not noted during the testing. Some of the aluminum present in the recycle streams was converted

  1. Empirical evidence on recycling and trade of paper and lead in developed and developing countries

    NARCIS (Netherlands)

    van Beukering, P.J.H.; Bouman, M.A.

    2001-01-01

    In recent decades most countries have experienced substantial increases in recycling. During the same period, international trade of recyclable materials between developed countries and developing countries has also grown. Increasingly, waste materials recovered in developed countries are exported

  2. Management and recycling of electronic waste

    International Nuclear Information System (INIS)

    Tanskanen, Pia

    2013-01-01

    Waste electrical and electronic equipment (WEEE) is one of the largest growing waste streams globally. Hence, for a sustainable environment and the economic recovery of valuable material for reuse, the efficient recycling of electronic scrap has been rendered indispensable, and must still be regarded as a major challenge for today’s society. In contrast to the well-established recycling of metallic scrap, it is much more complicated to recycle electronics products which have reached the end of their life as they contain many different types of material types integrated into each other. As illustrated primarily for the recycling of mobile phones, the efficient recycling of WEEE is not only a challenge for the recycling industry; it is also often a question of as-yet insufficient collection infrastructures and poor collection efficiencies, and a considerable lack of the consumer’s awareness for the potential of recycling electronics for the benefit of the environment, as well as for savings in energy and raw materials

  3. Optical Properties of Polypropylene upon Recycling

    Directory of Open Access Journals (Sweden)

    Felice De Santis

    2013-01-01

    Full Text Available In the last few years there has been an increasing interest in the possibility of recycling polymeric materials, using physical recycling. However, is it well known that polymers experience a depletion of all the properties upon recycling. These effects have been widely characterized in the literature for what concerns the mechanical or rheological properties. The changes of optical properties after recycling have been much less studied, even if, especially in food packaging, optical characteristics (above all the opacity are of extreme importance, and thus it is quite significant to assess the effect of recycling on these properties. In this work, the influence of recycling steps on the opacity of films of a commercial grade of isotactic polypropylene (i-PP was studied. The material was extruded several times to mimic the effect of recycling procedures. After extrusion, films were obtained by cooling samples of material at different cooling rates. The opacity of the obtained films was then measured and related to their crystallinity and morphology. It was found that opacity generally increases on increasing the amount of α phase and for the same amount of α phase on increasing the size of the spherulites.

  4. Optical Properties of Polypropylene upon Recycling

    Science.gov (United States)

    2013-01-01

    In the last few years there has been an increasing interest in the possibility of recycling polymeric materials, using physical recycling. However, is it well known that polymers experience a depletion of all the properties upon recycling. These effects have been widely characterized in the literature for what concerns the mechanical or rheological properties. The changes of optical properties after recycling have been much less studied, even if, especially in food packaging, optical characteristics (above all the opacity) are of extreme importance, and thus it is quite significant to assess the effect of recycling on these properties. In this work, the influence of recycling steps on the opacity of films of a commercial grade of isotactic polypropylene (i-PP) was studied. The material was extruded several times to mimic the effect of recycling procedures. After extrusion, films were obtained by cooling samples of material at different cooling rates. The opacity of the obtained films was then measured and related to their crystallinity and morphology. It was found that opacity generally increases on increasing the amount of α phase and for the same amount of α phase on increasing the size of the spherulites. PMID:24288478

  5. Optical properties of polypropylene upon recycling.

    Science.gov (United States)

    De Santis, Felice; Pantani, Roberto

    2013-01-01

    In the last few years there has been an increasing interest in the possibility of recycling polymeric materials, using physical recycling. However, is it well known that polymers experience a depletion of all the properties upon recycling. These effects have been widely characterized in the literature for what concerns the mechanical or rheological properties. The changes of optical properties after recycling have been much less studied, even if, especially in food packaging, optical characteristics (above all the opacity) are of extreme importance, and thus it is quite significant to assess the effect of recycling on these properties. In this work, the influence of recycling steps on the opacity of films of a commercial grade of isotactic polypropylene (i-PP) was studied. The material was extruded several times to mimic the effect of recycling procedures. After extrusion, films were obtained by cooling samples of material at different cooling rates. The opacity of the obtained films was then measured and related to their crystallinity and morphology. It was found that opacity generally increases on increasing the amount of α phase and for the same amount of α phase on increasing the size of the spherulites.

  6. The recycling is moving

    CERN Multimedia

    GS Department

    2011-01-01

    The recycling site currently situated near building 133 has been transferred to the car park of building 156. The site is identified by the sign “RECYCLING” and the above logo. In this new, more accessible site, you will find recycling bins for the following waste: PET (recyclable plastic bottles); Aluminium cans; Nespresso coffee capsules.  

  7. Chemical Recycle of Plastics

    OpenAIRE

    Sara Fatima

    2014-01-01

    Various chemical processes currently prevalent in the chemical industry for plastics recycling have been discussed. Possible future scenarios in chemical recycling have also been discussed. Also analyzed are the effects on the environment, the risks, costs and benefits of PVC recycling. Also listed are the various types of plastics and which plastics are safe to use and which not after rcycle

  8. The battery recycling loop: a European perspective

    Science.gov (United States)

    Ahmed, F.

    Restricting the loss of lead into the environment is essential and European legislation has reacted by requiring the recycling of lead/acid batteries. With the forecast of strong growth in the battery market over the next decade, secondary lead output will need to increase substantially to supply this demand. Battery recycling rates are vulnerable, however, to low lead prices and restrictive legislation. Effective recycling schemes are required to ensure maximum recovery and several are successfully in operation. Environmentally sound technology exists to recycle the lead and polypropylene components of batteries. A full range of lead and lead alloys are available to the battery industry from secondary material and now challenge primary products in most battery applications. It is important to optimize recycling efficiency and minimize environmental damage.

  9. Solid waste recycling in Rajshahi city of Bangladesh.

    Science.gov (United States)

    Bari, Q Hamidul; Hassan, K Mahbub; Haque, M Ehsanul

    2012-11-01

    Efficient recycling of solid wastes is now a global concern for a sustainable and environmentally sound management. In this study, traditional recycling pattern of solid waste was investigated in Rajshahi municipality which is the fourth largest city of Bangladesh. A questionnaire survey had been carried out in various recycle shops during April 2010 to January 2011. There were 140 recycle shops and most of them were located in the vicinity of Stadium market in Rajshahi. About 1906 people were found to be involved in recycling activities of the city. The major fraction of recycled wastes were sent to capital city Dhaka for further manufacture of different new products. Only a small amount of wastes, specially plastics, were processed in local recycle factories to produce small washing pots and bottle caps. Everyday, an estimated 28.13 tons of recycled solid wastes were handled in Rajshahi city area. This recycled portion accounted for 8.25% of the daily total generated wastes (341 ton d(-1)), 54.6% of total recyclable wastes (51.49 ton d(-1)) and 68.29% of readily recyclable wastes (41.19 ton d(-1)). Major recycled materials were found to be iron, glass, plastic, and papers. Only five factories were involved in preliminary processing of recyclable wastes. Collecting and processing secondary materials, manufacturing recycled-content products, and then buying recycled products created a circle or loop that ensured the overall success of recycling and generated a host of financial, environmental, and social returns. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Calorimetric measurement of afterheat in target materials for the accelerator production of tritium

    International Nuclear Information System (INIS)

    Perry, R.B.

    1994-01-01

    The estimate of afterheat in a spallation target of lead (Pb) or tungsten (W), by calorimetry, is the purpose of this experiment in support of the Accelerator Production of Tritium (APT). Such measurements are needed to confirm code calculations, these being the only practical way of gaining this type of information in a form suitable to aid the design of the APT machine. Knowledge of the magnitude and duration of afterheat resulting from decay of activation products produced by proton bombardment of the target is necessary to quantify APT safety assumptions, to design target cooling and safety systems, and to reduce technical risk. Direct calorimetric measurement of the afterheat for the appropriate incident proton energies is more reliable than the available alternative, which is indirect, based on data from gamma-ray spectroscopy measurements. The basic concept, a direct measurement of decay afterheat which bypasses the laborious classical way of determining this quantity, has been demonstrated to work. The gamma-ray energy given off by the decay products produced in the activation of lead or tungsten with high-energy protons apparently does represent a significant fraction of the total decay energy. A calorimeter designed for measurement of isotopes decaying by alpha emission must be modified to reduce energy lost with escaping gamma rays. Replacement of the aluminum liner with a tungsten liner in the SSC measurement chamber resulted in a 270% increase in measured heat, proving that the energy loss in the earlier (1992) measurements was significant. Gamma-ray measurements are needed to confirm the gamma-ray absorption calculations for the calorimeter to determine the correction for loss of heat due to transmission of high-energy gamma rays through the calorimeter walls. The experiments at BLIP have shown that calorimetry can be a useful tool in measuring the afterheat in APT target materials

  11. Key Elements of and Materials Performance Targets for Highly Insulating Window Frames

    Energy Technology Data Exchange (ETDEWEB)

    Gustavsen, Arild; Grynning, Steinar; Arasteh, Dariush; Jelle, Bjorn Petter; Goudey, Howdy

    2011-03-28

    The thermal performance of windows is important for energy efficient buildings. Windows typically account for about 30-50 percent of the transmission losses though the building envelope, even if their area fraction of the envelope is far less. The reason for this can be found by comparing the thermal transmittance (U-factor) of windows to the U-factor of their opaque counterparts (wall, roof and floor constructions). In well insulated buildings the U-factor of walls, roofs an floors can be between 0.1-0.2 W/(m2K). The best windows have U-values of about 0.7-1.0. It is therefore obvious that the U-factor of windows needs to be reduced, even though looking at the whole energy balance for windows (i.e. solar gains minus transmission losses) makes the picture more complex.In high performance windows the frame design and material use is of utmost importance, as the frame performance is usually the limiting factor for reducing the total window U-factor further. This paper describes simulation studies analyzing the effects on frame and edge-of-glass U-factors of different surface emissivities as well as frame material and spacer conductivities. The goal of this work is to define materials research targets for window frame components that will result in better frame thermal performance than is exhibited by the best products available on the market today.

  12. Recycling radium

    International Nuclear Information System (INIS)

    Blair, J.A.

    1997-01-01

    The Technology Programs Department of Fluor Daniel Fernald investigated alternatives for dealing with the World's largest concentrated supply of radium, the K-65 silos at Fernald, the United States Department of Energy's (DOE) former uranium processing facility near Cincinnati, Ohio. These two silos contain nearly 3,770 curies (by definition 3,770 grams) primarily of Ra-226 (T 1/2 = 1600 a) within 10,000 metric tons of material. Material contents of the silos were to be vitrified according to a Record of Decision (ROD) between the DOE and the United States Environmental Protection Agency (EPA). Because of cost considerations, that alternative must be reconsidered. Research showed that although Ra-226 had come mostly into disfavor as a therapeutic agent for cancer, isotopes derived from the neutron bombardment of pure Ra-226 and radioactive decay of the resulting purified isotopes could be used to good effect. One of these isotopes, bismuth-213 (Bi-213, T 1/2 = 45.6 m), is being used in clinical trials against acute myelogenous leukemia. The isotope is attached to an antibody that seeks out cancer cells. Because alpha particles dissipate most of their energy within the space of one or a few cells, virtually all the surrounding healthy tissue remains unharmed. Because of the short half life, waste disposal is no problem. Because of past policies, radium for feedstock is difficult to find. A new policy is needed in the United States acknowledging radium's value for feedstock while continuing to control its health and environmental consequences

  13. Usage of Recycled Pet

    Directory of Open Access Journals (Sweden)

    A. Ebru Tayyar

    2010-01-01

    Full Text Available The increasing industrialization, urbanization and the technological development have caused to increase depletion of the natural resources and environmental pollution's problem. Especially, for the countries which have not enough space recycling of the waste eliminating waste on regular basis or decreasing the amount and volume of waste have provided the important advantages. There are lots of studies and projects to develop both protect resources and prevent environmental pollution. PET bottles are commonly used in beverage industry and can be reused after physical and chemical recycling processes. Usage areas of recycled PET have been developed rapidly. Although recycled PET is used in plastic industry, composite industry also provides usage alternatives of recycled PET. Textile is a suitable sector for recycling of some plastics made of polymers too. In this study, the recycling technologies and applications of waste PET bottles have been investigated and scientific works in this area have been summarized.

  14. Methods of Recycling, Properties and Applications of Recycled Thermoplastic Polymers

    Directory of Open Access Journals (Sweden)

    Mădălina Elena Grigore

    2017-11-01

    Full Text Available This study aims to provide an updated survey of the main thermoplastic polymers in order to obtain recyclable materials for various industrial and indoor applications. The synthesis approach significantly impacts the properties of such materials and these properties in turn have a significant impact on their applications. Due to the ideal properties of the thermoplastic polymers such as corrosion resistance, low density or user-friendly design, the production of plastics has increased markedly over the last 60 years, becoming more used than aluminum or other metals. Also, recycling is one of the most important actions currently available to reduce these impacts and represents one of the most dynamic areas in the plastics industry today.

  15. International target values 2010 for achievable measurement uncertainties in nuclear material accountancy

    Energy Technology Data Exchange (ETDEWEB)

    Dias, Fabio C., E-mail: fabio@ird.gov.b [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil); Almeida, Silvio G. de; Renha Junior, Geraldo, E-mail: silvio@abacc.org.b, E-mail: grenha@abacc.org.b [Agencia Brasileiro-Argentina de Contabilidade e Controle de Materiais Nucleares (ABACC), Rio de Janeiro, RJ (Brazil)

    2011-07-01

    The International Target Values (ITVs) are reasonable uncertainty estimates that can be used in judging the reliability of measurement techniques applied to industrial nuclear and fissile materials subject to accountancy and/or safeguards verification. In the absence of relevant experimental estimates, ITVs can also be used to select measurement techniques and calculate sample population during the planning phase of verification activities. It is important to note that ITVs represent estimates of the 'state-of-the-practice', which should be achievable under routine measurement conditions affecting both facility operators and safeguards inspectors, not only in the field, but also in laboratory. Tabulated values cover measurement methods used for the determination of volume or mass of the nuclear material, for its elemental and isotopic assays, and for its sampling. The 2010 edition represents the sixth revision of the International Target Values (ITVs), issued by the International Atomic Energy Agency (IAEA) as a Safeguards Technical Report (STR-368). The first version was released as 'Target Values' in 1979 by the Working Group on Techniques and Standards for Destructive Analysis (WGDA) of the European Safeguards Research and Development Association (ESARDA) and focused on destructive analytical methods. In the latest 2010 revision, international standards in estimating and expressing uncertainties have been considered while maintaining a format that allows comparison with the previous editions of the ITVs. Those standards have been usually applied in QC/QA programmes, as well as qualification of methods, techniques and instruments. Representatives of the Brazilian Nuclear Energy Commission (CNEN) and the Brazilian-Argentine Agency for Accounting and Control of Nuclear Materials (ABACC) participated in previous Consultants Group Meetings since the one convened to establish the first list of ITVs released in 1993 and in subsequent revisions

  16. Copper recycling project in Japan: Super smelter and super dust concept

    Energy Technology Data Exchange (ETDEWEB)

    Maeda, Masafumi [Univ. of Tokyo (Japan). Inst. of Industrial Science; Nakamura, Takashi [Kyushu Inst. of Technology, Kitakyushu (Japan). Dept. of Materials Science and Engineering; Nishimura, Yuuji [Center for Eco-mining, Tokyo (Japan)

    1995-12-31

    The aim in this project was to develop a new copper refining technology utilizing pyrometallurgical treatment and a raw materials preparation technique. In the recycling process, raw material is not an idealized concentrate of copper sulfide but is composed of various types of scrap, industrial wastes such as sludge, ash and slag, and municipal wastes. Since the authors cannot expect oxidation heat in this process as in sulfide smelting, organic materials are viewed as an alternative energy source. Quality of the copper produced is targeted as 99.99% and an intermediate grade will also be marketable. To benefit the plant, rare metals and other nonferrous metals will also be recovered. The overall system is described in this paper, specific topics outlined and preliminary research presented. Current Japanese technology for recycling copper based materials is briefly reviewed.

  17. The development of recycling system of reactor operating scrap metal

    International Nuclear Information System (INIS)

    Umemura, Akio; Kimura, Kenji; Takahashi, Kenji

    1994-01-01

    The reasonable recycling system of reactor operating metal scrap has been studied and it was concluded that the 200-liter drum inner shielding material is a very promising product for recycling within the nuclear industry. To realize the drum inner shielding material as a recycling product, the demonstration test on manufacturing was performed. It was fundamentally cleared that the proper 200-liter drum inner shielding material as a recycling product could be manufactured from scrap steel mixtures by using a refining technique and a centrifugal casting technique through a cold demonstration test

  18. Recycling and combustion are complementary; Recycling und Verbrennung bedingen einander

    Energy Technology Data Exchange (ETDEWEB)

    Thome-Kozmiensky, Karl J. [vivis CONSULT GmbH, Nietwerder (Germany)

    2012-11-01

    In Germany, the waste management has developed to a medium position between supply and disposal. Numerous waste management companies also operate sorting plants, composting plants, biogas plants, wind power plants, biomass conversion plants and solar power plants. In addition to their traditional tasks, some companies of the energy sector are devoted to the energetic waste management and recycling. Nearly all companies have recognized this trend and have implemented the utilization of renewable energies including waste materials into their strategy.

  19. DEVELOPMENT OF A SUSTAINABLE CONCRETE WASTE RECYCLING SYSTEM

    OpenAIRE

    Truptimala Patanaik*; Niharika Patel; Shilpika Panda; Subhasmita Prusty

    2016-01-01

    Construction solid waste has caused serious environmental problems. Reuse, recycling and reduction of construction materials have been advocated for many years, and various methods have been investigated. There may be six type of building materials: plastic, paper, timber, metal, glass and concrete which can be reused and recycled. This paper examines the rate of reusable & recyclable concrete waste. On the other hand, the reuse of construction waste is highly essential ...

  20. Non-targeted screening for contaminants in paper and board food-contact materials using effect-directed analysis and accurate mass spectrometry.

    Science.gov (United States)

    Bengtström, Linda; Rosenmai, Anna Kjerstine; Trier, Xenia; Jensen, Lisbeth Krüger; Granby, Kit; Vinggaard, Anne Marie; Driffield, Malcolm; Højslev Petersen, Jens

    2016-06-01

    Due to large knowledge gaps in chemical composition and toxicological data for substances involved, paper and board food-contact materials (P&B FCM) have been emerging as a FCM type of particular concern for consumer safety. This study describes the development of a step-by-step strategy, including extraction, high-performance liquid chromatography (HPLC) fractionation, tentative identification of relevant substances and in vitro testing of selected tentatively identified substances. As a case study, we used two fractions from a recycled pizza box sample which exhibited aryl hydrocarbon receptor (AhR) activity. These fractions were analysed by gas chromatography (GC) and ultra-HPLC (UHPLC) coupled to quadrupole time-of-flight mass spectrometers (QTOF MS) in order tentatively to identify substances. The elemental composition was determined for peaks above a threshold, and compared with entries in a commercial mass spectral library for GC-MS (GC-EI-QTOF MS) analysis and an in-house built library of accurate masses for substances known to be used in P&B packaging for UHPLC-QTOF analysis. Of 75 tentatively identified substances, 15 were initially selected for further testing in vitro; however, only seven were commercially available and subsequently tested in vitro and quantified. Of these seven, the identities of three pigments found in printing inks were confirmed by UHPLC tandem mass spectrometry (QqQ MS/MS). Two pigments had entries in the database, meaning that a material relevant accurate mass database can provide a fast tentative identification. Pure standards of the seven tentatively identified substances were tested in vitro but could not explain a significant proportion of the AhR-response in the extract. Targeted analyses of dioxins and PCBs, both well-known AhR agonists, was performed. However, the dioxins could explain approximately 3% of the activity observed in the pizza box extract indicating that some very AhR active substance(s) still remain to be

  1. Self-protection in dry recycle technologies

    International Nuclear Information System (INIS)

    Hannum, W.H.; Wade, D.; Stanford, G.

    1995-01-01

    In response to the INFCE conclusions, the U.S. undertook development of a new dry fuel cycle. Dry recycle processes have been demonstrated to be feasible. Safeguarding such fuel cycles will be dramatically simpler than the PUREX fuel cycle. At every step of the processes, the materials meet the open-quotes spent-fuel standard.close quotes The scale is compatible with collocation of power reactors and their recycle facility, eliminating off-site transportation and storage of plutonium-bearing materials. Material diverted either covertly or overtly would be difficult (relative to material available by other means) to process into weapons feedstock

  2. Targeted pre-treatment of hemp bast fibres for optimal performance in biocomposite materials: A review

    DEFF Research Database (Denmark)

    Liu, Ming; Thygesen, Anders; Summerscales, John

    2017-01-01

    . In order to achieve strong NFCs, well separated and cellulose-rich fibres are required. Hemp is taking a center stage in this regard as a source of suitable natural plant cellulose fibres because natural hemp bast fibres are long and inherently possess high strength. Classical field and water retting...... methods have been used for centuries for removal of non-cellulosic components from fibrous plant stems including from hemp, but carries a risk of reducing the mechanical properties of the fibres via damaging the cellulose. For NFCs new targeted fibre pre-treatment methods are needed to selectively...... and effectively remove non-cellulosic components from the plant fibres to produce cellulose rich fibres without introducing any damage to the fibres. A key feature for successful use of natural fibres such as hemp fibres in composite materials is optimal interfacial contact between the fibres and the hydrophobic...

  3. The feasibility of recycling contaminated concrete

    International Nuclear Information System (INIS)

    Ayers, K.W.; Corroon, W.; Parker, F.L.

    1999-01-01

    The changing mission of the Department of Energy along with the aging of many of its facilities has resulted in renewed emphasis on decontaminating and decommissioning surplus structures. Currently DOE is decontaminating some concrete and sending the clean material to C and D disposal facilities. In other instance, DOE is sending contaminated concrete to LLW disposal facilities. This paper examines the economic feasibility of decontaminating the concrete and recycling the rubble as clean aggregate. A probabilistic cost model was used to examine six potential recycling and disposal scenarios. The model predicted potential costs saving across the DOE complex of nearly one billion dollars. The ability of local markets to assimilate the recycled material was estimated for Washington, Idaho, Tennessee, New Mexico, and South Carolina. The relationships between a number of the economic model's variables were examined to develop operating ranges for initial managerial evaluation of recycling

  4. Addressing Criticality in Rare Earth Elements via Permanent Magnets Recycling

    Science.gov (United States)

    Nlebedim, I. C.; King, A. H.

    2018-02-01

    Rare earth elements (REEs) are critical for many advanced technologies and are faced with potential supply disruptions. Recycling of permanent magnets (PMs) can be good sources for REEs which can help minimize global dependence on freshly mined REEs, but PMs are rarely recycled. Recycling of PMs has been discussed with respect to improving REEs resource sustainability. Some challenges to be addressed in order to establish industrially deployable technologies for PMs recycling have also been discussed, including profitability, energy efficiency and environmental impacts. Key considerations for promoting circular economy via PMs recycling is proposed with the focus on deciding the target points in the supply chain at which the recycled products will be inserted. Important technical considerations for recycling different forms of waste PMs, including swarfs, slags, shredded and intact hard disk drives magnets, have been presented. The aspects of circular economy considered include reusing magnets, remanufacturing magnets and recovering of REEs from waste PMs.

  5. Multi probes measurements at the PALS Facility Research Centre during high intense laser pulse interactions with various target materials

    Science.gov (United States)

    De Marco, Massimo; Krása, Josef; Cikhardt, Jakub; Consoli, Fabrizio; De Angelis, Riccardo; Pfeifer, Miroslav; Krůs, Miroslav; Dostál, Jan; Margarone, Daniele; Picciotto, Antonino; Velyhan, Andriy; Klír, Daniel; Dudžák, Roman; Limpouch, Jiří; Korn, Georg

    2018-01-01

    During the interaction of high intense laser pulse with solid target, a large amount of hot electrons is produced and a giant Electromagnetic Pulse (EMP) is generated due to the current flowing into the system target-target holder, as well as due to the escaping charged particles in vacuum. EMP production for different target materials is investigated inside and outside the target chamber, using monopole antenna, super wide-band microstrip antenna and Moebius antenna. The EMP consists in a fast transient magnetic field lasting hundreds of nanosecond with frequencies ranging from MHz to tens of GHz. Measurements of magnetic field and return target current in the range of kA were carried out by an inductive target probe (Cikhardt J. et al. Rev. Sci. Instrum. 85 (2014) 103507).

  6. Recent developments in the nanostructured materials functionalized with ruthenium complexes for targeted drug delivery to tumors

    Directory of Open Access Journals (Sweden)

    Thangavel P

    2017-04-01

    Full Text Available Prakash Thangavel,1 Buddolla Viswanath,1 Sanghyo Kim1,2 1Department of Bionanotechnology, Gachon University, Bokjeong-Dong, Sujeong-Gu, Seongnam-Si, Gyeonggi-Do, 2Graduate Gachon Medical Research Institute, Gil Medical Center, Incheon, Republic of Korea Abstract: In recent years, the field of metal-based drugs has been dominated by other existing precious metal drugs, and many researchers have focused their attention on the synthesis of various ruthenium (Ru complexes due to their potential medical and pharmaceutical applications. The beneficial properties of Ru, which make it a highly promising therapeutic agent, include its variable oxidation states, low toxicity, high selectivity for diseased cells, ligand exchange properties, and the ability to mimic iron binding to biomolecules. In addition, Ru complexes have favorable adsorption properties, along with excellent photochemical and photophysical properties, which make them promising tools for photodynamic therapy. At present, nanostructured materials functionalized with Ru complexes have become an efficient way to administer Ru-based anticancer drugs for cancer treatment. In this review, the recent developments in the nanostructured materials functionalized with Ru complexes for targeted drug delivery to tumors are discussed. In addition, information on “traditional” (ie, non-nanostructured Ru-based cancer therapies is included in a precise manner. Keywords: metallodrugs, nanotechnology, cancer treatment, cell apoptosis, DNA damage, toxicity

  7. Recent developments in the nanostructured materials functionalized with ruthenium complexes for targeted drug delivery to tumors.

    Science.gov (United States)

    Thangavel, Prakash; Viswanath, Buddolla; Kim, Sanghyo

    2017-01-01

    In recent years, the field of metal-based drugs has been dominated by other existing precious metal drugs, and many researchers have focused their attention on the synthesis of various ruthenium (Ru) complexes due to their potential medical and pharmaceutical applications. The beneficial properties of Ru, which make it a highly promising therapeutic agent, include its variable oxidation states, low toxicity, high selectivity for diseased cells, ligand exchange properties, and the ability to mimic iron binding to biomolecules. In addition, Ru complexes have favorable adsorption properties, along with excellent photochemical and photophysical properties, which make them promising tools for photodynamic therapy. At present, nanostructured materials functionalized with Ru complexes have become an efficient way to administer Ru-based anticancer drugs for cancer treatment. In this review, the recent developments in the nanostructured materials functionalized with Ru complexes for targeted drug delivery to tumors are discussed. In addition, information on "traditional" (ie, non-nanostructured) Ru-based cancer therapies is included in a precise manner.

  8. Cell phone recycling experiences in the United States and potential recycling options in Brazil.

    Science.gov (United States)

    Silveira, Geraldo T R; Chang, Shoou-Yuh

    2010-11-01

    This paper presents an overview of cell phone recycling programs currently available in the United States. At the same time, it also provides analyses of the current recycling situation and possible recycling alternatives for Brazil. Although there are several recycling options in the United States, collection rates are still only 10% of all potential devices because customers are not aware of these possibilities. The whole system is financially based on reselling refurbished cell phones and recycled materials to developing countries which represent an effective and strong market. Several recyclers offer funds to collection partners who are either charities or who work with charities while obtaining the materials that they need in order to run their operations. A mobile phone recycling system for Brazil considering the United States experience and the Extended Producer Responsibility (EPR) principle is suggested. A deposit/refund/advance-recycling fee is proposed which might be implemented as a voluntary industrial initiative managed by PRO Brazil, a producer responsibility organization. One widespread public-private agreement will integrate all mobile phone stakeholders, and environmental education actions and promotional events will promote citizen's participation. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. Alkali silica reaction in concrete induced by mortar adhered to recycled aggregate

    OpenAIRE

    Etxeberria, M.; Vázquez, E.

    2010-01-01

    The durability of recycled concrete must be determined before this material can be used in construction. In this paper the alkali-silica reaction in recycled concrete is analyzed. The recycled concrete is made with recycled aggregates, composed by original limestone aggregates and adhered mortar with reactive silica sand, and high alkali content cement. Due to the manufacturing process used for concrete production and the high water absorption capacity of recycled aggregates, cement accumulat...

  10. Comparing urban solid waste recycling from the viewpoint of urban metabolism based on physical input-output model: A case of Suzhou in China.

    Science.gov (United States)

    Liang, Sai; Zhang, Tianzhu

    2012-01-01

    Investigating impacts of urban solid waste recycling on urban metabolism contributes to sustainable urban solid waste management and urban sustainability. Using a physical input-output model and scenario analysis, urban metabolism of Suzhou in 2015 is predicted and impacts of four categories of solid waste recycling on urban metabolism are illustrated: scrap tire recycling, food waste recycling, fly ash recycling and sludge recycling. Sludge recycling has positive effects on reducing all material flows. Thus, sludge recycling for biogas is regarded as an accepted method. Moreover, technical levels of scrap tire recycling and food waste recycling should be improved to produce positive effects on reducing more material flows. Fly ash recycling for cement production has negative effects on reducing all material flows except solid wastes. Thus, other fly ash utilization methods should be exploited. In addition, the utilization and treatment of secondary wastes from food waste recycling and sludge recycling should be concerned. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Report on achievements in fiscal 1998. Research and development of a technology to promote non-ferrous metal based material recycling. (Research on component technologies and a total system); 1998 nendo hitetsu kinzokukei sozai recycle sokushin gijutsu seika hokokusho. Kenkyu kaihatsu yoso gijutsu kenkyu, total system kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    This project is intended to research and develop a high level aluminum recycling technology to realize the 'product to product' philosophy to return different aluminum scraps into the original materials, while attempting to develop and unify the aluminum recycling technologies and promote utilization of LNG. This fiscal year has studied the following methods as the component technology research: (1) an inclusion removing method, (2) a crystal sorting method, (3) a vacuum distillation method, and (4) a semi-melting method. The studies on (1), (2) and (3) were performed on identification of basic data and systematization to determine the life and facility specifications, with the full-swing demonstration tests being waited to start in fiscal 1999. The research and development on the item (4) was determined technologically feasible although additional discussions are required on the engineering aspect for practical application. The component technology study thereon will be finished with the current fiscal year. For the demonstration tests among the studies on total system technologies, the crystal sorting method and the vacuum distillation method had the achievements obtained in the research of the component technologies reflected directly to the facility design and fabrication. There has been no large-scale facility fabrication for the inclusion removing method and effective utilization of ash remaining in dross, and the researches were performed as scheduled. (NEDO)

  12. International target values 2000 for measurement uncertainties in safeguarding nuclear materials

    International Nuclear Information System (INIS)

    Aigner, H.; Binner, R.; Kuhn, E.

    2001-01-01

    The IAEA has prepared a revised and updated version of International Target Values (ITVs) for uncertainty components in measurements of nuclear material. The ITVs represent uncertainties to be considered in judging the reliability of analytical techniques applied to industrial nuclear and fissile material subject to safeguards verification. The tabulated values represent estimates of the 'state of the practice' which ought to be achievable under routine conditions by adequately equipped, experienced laboratories. The ITVs 2000 are intended to be used by plant operators and safeguards organizations as a reference of the quality of measurements achievable in nuclear material accountancy, and for planning purposes. The IAEA prepared a draft of a technical report presenting the proposed ITVs 2000, and in April 2000 the chairmen or officers of the panels or organizations listed below were invited to co- author the report and to submit the draft to a discussion by their panels and organizations. Euratom Safeguards Inspectorate, ESAKDA Working Group on Destructive Analysis, ESARDA Working Group on Non Destructive Analysis, Institute of Nuclear Material Management, Japanese Expert Group on ITV-2000, ISO Working Group on Analyses in Spent Fuel Reprocessing, ISO Working Group on Analyses in Uranium Fuel Fabrication, ISO Working Group on Analyses in MOX Fuel Fabrication, Agencia Brasileno-Argentina de Contabilidad y Control de Materiales Nucleares (ABACC). Comments from the above groups were received and incorporated into the final version of the document, completed in April 2001. The ITVs 2000 represent target standard uncertainties, expressing the precision achievable under stipulated conditions. These conditions typically fall in one of the two following categories: 'repeatability conditions' normally encountered during the measurements done within one inspection period; or 'reproducibility conditions' involving additional sources of measurement variability such as

  13. Combustion Byproducts Recycling Consortium

    Energy Technology Data Exchange (ETDEWEB)

    Ziemkiewicz, Paul; Vandivort, Tamara; Pflughoeft-Hassett, Debra; Chugh, Y Paul; Hower, James

    2008-08-31

    Each year, over 100 million tons of solid byproducts are produced by coal-burning electric utilities in the United States. Annual production of flue gas desulfurization (FGD) byproducts continues to increase as the result of more stringent sulfur emission restrictions. In addition, stricter limits on NOx emissions mandated by the 1990 Clean Air Act have resulted in utility burner/boiler modifications that frequently yield higher carbon concentrations in fly ash, which restricts the use of the ash as a cement replacement. Controlling ammonia in ash is also of concern. If newer, “clean coal” combustion and gasification technologies are adopted, their byproducts may also present a management challenge. The objective of the Combustion Byproducts Recycling Consortium (CBRC) is to develop and demonstrate technologies to address issues related to the recycling of byproducts associated with coal combustion processes. A goal of CBRC is that these technologies, by the year 2010, will lead to an overall ash utilization rate from the current 34% to 50% by such measures as increasing the current rate of FGD byproduct use and increasing in the number of uses considered “allowable” under state regulations. Another issue of interest to the CBRC would be to examine the environmental impact of both byproduct utilization and disposal. No byproduct utilization technology is likely to be adopted by industry unless it is more cost-effective than landfilling. Therefore, it is extremely important that the utility industry provide guidance to the R&D program. Government agencies and privatesector organizations that may be able to utilize these materials in the conduct of their missions should also provide input. The CBRC will serve as an effective vehicle for acquiring and maintaining guidance from these diverse organizations so that the proper balance in the R&D program is achieved.

  14. Recycling of automotive aluminum

    OpenAIRE

    Cui, Jirang; Roven, Hans Jørgen

    2010-01-01

    With the global warming of concern, the secondary aluminum stream is becoming an even more important component of aluminum production and is attractive because of its economic and environmental benefits. In this work, recycling of automotive aluminum is reviewed to highlight environmental benefits of aluminum recycling, use of aluminum alloys in automotive applications, automotive recycling process, and new technologies in aluminum scrap process. Literature survey shows that newly developed t...

  15. Challenges in plastics recycling

    OpenAIRE

    Pivnenko, Kostyantyn; Jakobsen, L. G.; Eriksen, Marie Kampmann; Damgaard, Anders; Astrup, Thomas Fruergaard

    2015-01-01

    Recycling of waste plastics still remains a challenging area in the waste management sector. The current and potential goals proposed on EU or regional levels are difficult to achieve, and even to partially fullfil them the improvements in collection and sorting should be considerable. A study was undertaken to investigate the factors affecting quality in plastics recycling. The preliminary results showed factors primarily influencing quality of plastics recycling to be polymer cross contamin...

  16. Benchmarking survey for recycling.

    Energy Technology Data Exchange (ETDEWEB)

    Marley, Margie Charlotte; Mizner, Jack Harry

    2005-06-01

    This report describes the methodology, analysis and conclusions of a comparison survey of recycling programs at ten Department of Energy sites including Sandia National Laboratories/New Mexico (SNL/NM). The goal of the survey was to compare SNL/NM's recycling performance with that of other federal facilities, and to identify activities and programs that could be implemented at SNL/NM to improve recycling performance.

  17. Case studies in rural recycling. Public service report series

    Energy Technology Data Exchange (ETDEWEB)

    Cosper, S.D.; Hallenbeck, W.H.; Brenniman, G.R.

    1994-02-01

    Due to state planning requirements and federal landfill regulations, solid waste management in rural areas (particularly recycling) has received much attention in recent years. The growth of recycling during the 1980s occurred mainly in urban and suburban areas. Therefore, rural recycling is still a relatively new enterprise. This report presents several rural recycling case studies from Colorado, Illinois, Indiana, Iowa, Minnesota, Tennessee, and Ontario, Canada to provide examples of successes and problems. This report also discusses the current issues of cooperative marketing of recyclables and municipal solid waste flow control. With respect to recycling, a rural region does not have ready access to markets for collected materials and has difficulty in generating easily marketable quantities of recyclables. (Copyright (c) 1994 The Board of Trustees of the University of Illinois.)

  18. Secondary resources and recycling in developing economies.

    Science.gov (United States)

    Raghupathy, Lakshmi; Chaturvedi, Ashish

    2013-09-01

    Recycling of metals extends the efficient use of minerals and metals, reduces pressure on environment and results in major energy savings in comparison to primary production. In developing economies recycling had been an integral part of industrial activity and has become a major concern due to the handling of potentially hazardous material without any regard to the occupational health and safety (OH&S) needs. With rising awareness and interest from policy makers, the recycling scenario is changing and the large scale enterprises are entering the recycling sector. There is widespread expectation that these enterprises would use the Best Available Technologies (BAT) leading to better environment management and enhanced resource recovery. The major challenge is to enhance and integrate the activities of other stakeholders in the value chain to make recycling an economically viable and profitable enterprise. This paper is an attempt to propose a sustainable model for recycling in the developing economies through integration of the informal and formal sectors. The main objective is to augment the existing practices using a scientific approach and providing better technology without causing an economic imbalance to the present practices. In this paper studies on lead acid batteries and e-waste recycling in India are presented to evolve a model for "green economy". Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Combustion Byproducts Recycling Consortium

    Energy Technology Data Exchange (ETDEWEB)

    Paul Ziemkiewicz; Tamara Vandivort; Debra Pflughoeft-Hassett; Y. Paul Chugh; James Hower

    2008-08-31

    Ashlines: To promote and support the commercially viable and environmentally sound recycling of coal combustion byproducts for productive uses through scientific research, development, and field testing.

  20. Mixed plastics recycling technology

    CERN Document Server

    Hegberg, Bruce

    1995-01-01

    Presents an overview of mixed plastics recycling technology. In addition, it characterizes mixed plastics wastes and describes collection methods, costs, and markets for reprocessed plastics products.