WorldWideScience

Sample records for tantalum silicates

  1. Niobium and tantalum

    Science.gov (United States)

    Schulz, Klaus J.; Piatak, Nadine M.; Papp, John F.; Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.

    2017-12-19

    Niobium and tantalum are transition metals that are almost always found together in nature because they have very similar physical and chemical properties. Their properties of hardness, conductivity, and resistance to corrosion largely determine their primary uses today. The leading use of niobium (about 75 percent) is in the production of high-strength steel alloys used in pipelines, transportation infrastructure, and structural applications. Electronic capacitors are the leading use of tantalum for high-end applications, including cell phones, computer hard drives, and such implantable medical devices as pacemakers. Niobium and tantalum are considered critical and strategic metals based on the potential risks to their supply (because current production is restricted to only a few countries) and the significant effects that a restriction in supply would have on the defense, energy, high-tech industrial, and medical sectors.The average abundance of niobium and tantalum in bulk continental crust is relatively low—8.0 parts per million (ppm) niobium and 0.7 ppm tantalum. Their chemical characteristics, such as small ionic size and high electronic field strength, significantly reduce the potential for these elements to substitute for more common elements in rock-forming minerals and make niobium and tantalum essentially immobile in most aqueous solutions. Niobium and tantalum do not occur naturally as pure metals but are concentrated in a variety of relatively rare oxide and hydroxide minerals, as well as in a few rare silicate minerals. Niobium is primarily derived from the complex oxide minerals of the pyrochlore group ((Na,Ca,Ce)2(Nb,Ti,Ta)2(O,OH,F)7), which are found in some alkaline granite-syenite complexes (that is, igneous rocks containing sodium- or potassium-rich minerals and little or no quartz) and carbonatites (that is, igneous rocks that are more than 50 percent composed of primary carbonate minerals, by volume). Tantalum is derived mostly from the

  2. Vapor deposition of tantalum and tantalum compounds

    International Nuclear Information System (INIS)

    Trkula, M.

    1996-01-01

    Tantalum, and many of its compounds, can be deposited as coatings with techniques ranging from pure, thermal chemical vapor deposition to pure physical vapor deposition. This review concentrates on chemical vapor deposition techniques. The paper takes a historical approach. The authors review classical, metal halide-based techniques and current techniques for tantalum chemical vapor deposition. The advantages and limitations of the techniques will be compared. The need for new lower temperature processes and hence new precursor chemicals will be examined and explained. In the last section, they add some speculation as to possible new, low-temperature precursors for tantalum chemical vapor deposition

  3. A novel tantalum-containing bioglass. Part I. Structure and solubility

    Energy Technology Data Exchange (ETDEWEB)

    Alhalawani, Adel MF. [Department of Mechanical & Industrial Engineering, Ryerson University, Toronto, Ontario (Canada); Towler, Mark R., E-mail: mtowler@ryerson.ca [Department of Mechanical & Industrial Engineering, Ryerson University, Toronto, Ontario (Canada); Li Ka Shing Knowledge Institute, St. Michael' s Hospital, Toronto, Ontario (Canada)

    2017-03-01

    Bioglasses are employed for surgical augmentation in a range of hard tissue applications. Tantalum is a bioactive and biocompatible transition metal that has been used as an orthopedic medical device. It has a range of biological and physical properties that make its incorporation into ionic form into bioactive glass systems promising for various clinical applications. The work herein reports the characterization and properties of novel tantalum-containing glasses. A series of glasses based on the system 48SiO{sub 2}-(36-X)ZnO-6CaO-8SrO-2P{sub 2}O{sub 5}-XTa{sub 2}O{sub 5} with X varying from 0 mol% (TA0) to 0.5 mol% (TA2) were synthesized. The addition of small amounts of Ta{sub 2}O{sub 5} did not cause crystallization of the glasses but increasing Ta{sub 2}O{sub 5} content at the expense of ZnO was found to result in an increased number of bridging oxygens (BOs). This, along with the data recorded by differential thermal analysis (DTA) and magic angle spinning-nuclear magnetic resonance (MAS-NMR), confirms that Ta acts as a glass former in this series. Solubility experiments showed that minor changes in the glass structure caused by Ta incorporation (0.5 mol%) exhibited greater cumulative % weight loss, pH values and cumulative Zn{sup 2+} and Sr{sup 2+} ion concentration over a period of 30 days of maturation, when compared to Ta{sub 2}O{sub 5}-free glasses. The results presented in this article confirm that replacing ZnO with Ta{sub 2}O{sub 5} in silicate glasses results in the formation of stronger bonds within the glass network without any adverse effects on the solubility of the glasses prepared from them. - Highlights: • Ta{sub 2}O{sub 5} can be incorporated into silicate based ionomer glasses up to 0.5 mol%. • Incorporation resulted in amorphous glasses. • Insertion of TaO units into the silicate network confirms the former role of Ta{sub 2}O{sub 5}. • The incorporation increased the glass solubility.

  4. Properties of Tricalcium Silicate Sealers.

    Science.gov (United States)

    Khalil, Issam; Naaman, Alfred; Camilleri, Josette

    2016-10-01

    Sealers based on tricalcium silicate cement aim at an interaction of the sealer with the root canal wall, alkalinity with potential antimicrobial activity, and the ability to set in a wet field. The aim of this study was to characterize and investigate the properties of a new tricalcium silicate-based sealer and verify its compliance to ISO 6876 (2012). A new tricalcium silicate-based sealer (Bio MM; St Joseph University, Beirut, Lebanon), BioRoot RCS (Septodont, St Maure de Fosses, France), and AH Plus (Dentsply, DeTrey, Konstanz, Germany) were investigated. Characterization using scanning electron microscopy, energy-dispersive spectroscopy, and X-ray diffraction analysis was performed. Furthermore, sealer setting time, flow, film thickness, and radiopacity were performed following ISO specifications. pH and ion leaching in solution were assessed by pH analysis and inductively coupled plasma. Bio MM and BioRoot RCS were both composed of tricalcium silicate and tantalum oxide in Bio MM and zirconium oxide in BioRoot RCS. In addition, the Bio MM contained calcium carbonate and a phosphate phase. The inorganic components of AH Plus were calcium tungstate and zirconium oxide. AH Plus complied with the ISO norms for both flow and film thickness. BioRoot RCS and Bio MM exhibited a lower flow and a higher film thickness than that specified for sealer cements in ISO 6876. All test sealers exhibited adequate radiopacity. Bio MM interacted with physiologic solution, thus showing potential for bioactivity. Sealer properties were acceptable and comparable with other sealers available clinically. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  5. Electrorecovery of tantalum in molten fluorides

    International Nuclear Information System (INIS)

    Espinola, A.; Dutra, A.J.B.; Silva, F.T. da

    1988-01-01

    Considering the privileged situation of Brazil as a productor of tantaliferous minerals, the authors have in view the development of a technology for production of metallic tantalum via molten salts electrolysis; this has the advantage of improving the aggregate value of exportation products, additionally to tantalum oxide and tantalum concentrates. Having in view the preliminary determintion of better conditions of temperature, electrolyte composition and current density for this process, electrolysis were conducted with a solvent composed of an eutetic mixture of lithium, sodium and potassium fluoride for dipotassium fluotantalate and occasionally for tantalum oxide. Current efficiencies as high as 83% were obtained in favoured conditions. (author) [pt

  6. Properties of calcium silicate-monobasic calcium phosphate materials for endodontics containing tantalum pentoxide and zirconium oxide.

    Science.gov (United States)

    Zamparini, Fausto; Siboni, Francesco; Prati, Carlo; Taddei, Paola; Gandolfi, Maria Giovanna

    2018-05-08

    The aim of the study was to evaluate chemical-physical properties and apatite-forming ability of three premixed calcium silicate materials containing monobasic calcium phosphate (CaH 4 P 2 O 8 ) bioceramic, tantalum pentoxide and zirconium oxide, recently marketed for endodontics (TotalFill BC-Sealer, BC-RRM-Paste, BC-RRM-Putty). Microchemical and micromorphological analyses, radiopacity, initial and final setting times, calcium release and alkalising activity were tested. The nucleation of calcium phosphates (CaPs) and/or apatite after 28 days ageing was evaluated by ESEM-EDX and micro-Raman spectroscopy. BC-Sealer and BC-RRM-Paste showed similar initial (23 h), prolonged final (52 h) setting times and good radiopacity (> 7 mm Al); BC-RRM-Putty showed fast initial (2 h) and final setting times (27 h) and excellent radiopacity (> 9 mm Al). All materials induced a marked alkalisation (pH 11-12) up to 28 days and showed the release of calcium ions throughout the entire test period (cumulative calcium release 641-806 ppm). After 28 days ageing, a well-distributed mineral layer was present on all samples surface; EDX demonstrated relevant calcium and phosphorous peaks. B-type carbonated apatite and calcite deposits were identified by micro-Raman spectroscopy on all the 28-day-aged samples; the deposit thickness was higher on BC-RRM-Paste and BC-RRM-Putty, in agreement with calcium release data. These materials met the required chemical and physical standards and released biologically relevant ions. The CaSi-CaH 4 P 2 O 8 system present in the materials provided Ca and OH ions release with marked abilities to nucleate a layer of B-type carbonated apatite favoured/accelerated by the bioceramic presence. The ability to nucleate apatite may lead many clinical advantages: In orthograde endodontics, it may improve the sealing ability by the deposition of CaPs at the material-root dentine interface, and in endodontic surgery, it could promote bone and

  7. Tantalum-based semiconductors for solar water splitting.

    Science.gov (United States)

    Zhang, Peng; Zhang, Jijie; Gong, Jinlong

    2014-07-07

    Solar energy utilization is one of the most promising solutions for the energy crises. Among all the possible means to make use of solar energy, solar water splitting is remarkable since it can accomplish the conversion of solar energy into chemical energy. The produced hydrogen is clean and sustainable which could be used in various areas. For the past decades, numerous efforts have been put into this research area with many important achievements. Improving the overall efficiency and stability of semiconductor photocatalysts are the research focuses for the solar water splitting. Tantalum-based semiconductors, including tantalum oxide, tantalate and tantalum (oxy)nitride, are among the most important photocatalysts. Tantalum oxide has the band gap energy that is suitable for the overall solar water splitting. The more negative conduction band minimum of tantalum oxide provides photogenerated electrons with higher potential for the hydrogen generation reaction. Tantalates, with tunable compositions, show high activities owning to their layered perovskite structure. (Oxy)nitrides, especially TaON and Ta3N5, have small band gaps to respond to visible-light, whereas they can still realize overall solar water splitting with the proper positions of conduction band minimum and valence band maximum. This review describes recent progress regarding the improvement of photocatalytic activities of tantalum-based semiconductors. Basic concepts and principles of solar water splitting will be discussed in the introduction section, followed by the three main categories regarding to the different types of tantalum-based semiconductors. In each category, synthetic methodologies, influencing factors on the photocatalytic activities, strategies to enhance the efficiencies of photocatalysts and morphology control of tantalum-based materials will be discussed in detail. Future directions to further explore the research area of tantalum-based semiconductors for solar water splitting

  8. Process for the production of a tantalum and niobium bearing concentrate from a tantalum and niobium bearing ferro-alloy

    International Nuclear Information System (INIS)

    Deweck, J.; Van, H.

    1980-01-01

    In a process for the production of a tantalum and niobium bearing concentrate from a tantalum and niobium bearing ferro-alloy containing tantalum and niobium as carbide, by treating the ferro-alloy in molten state with a controlled amount of an oxidizing agent in order to slag at least most of the tantalum and at least part of the niobium and by separting the so obtained slag phase from the metal phase, the improvement which comprises using air, oxygen enriched air or oxygen as oxidizing agent and adjusting the iron content to the ferro-alloy by adding at least 70% by weight of iron prior to the step of forming the slag so that at least most of the tantalum carbide is dissolved in the molten ferro-alloy

  9. Tantalum: A strategic metal; Tantalo: Un metal estrategico

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Lopez, G.; Lopez-Lopez, J.; Garcia-Yagues, M. R.

    2009-07-01

    In nature, the main source of tantalum is an isomorphous series of minerals containing oxides of tantalum, niobium, iron and manganese, which are collectively known as columbine-tantalite (coltan). Upgraded Ta{sub 2}O{sub 5}-containing tin slags are also used as a secondary source of tantalum. Coltan, either naturally occurring or synthetically produced as concentrates from tin slags, are digested with hydrofluoric and sulphuric acid at an elevated temperature. the aqueous solution of ta-Nb in hydrofluoric acid is extracted in several continuously operating mixer-settler systems or extraction columns with an organic solvent like methyl isobutyl ketone. The organic phase is then scrubbed with 6-15 N H{sub 2}SO{sub 4} to separate the niobium from the tantalum by selective stripping. The tantalum salt is extracted from the organic phase with water or diluted aqueous ammonium fluoride solution, the demands of the solid tantalum capacitor industry for high quality, high surface area tantalum powders have driven improvements in the sodium reduction of K{sub 2}TaF{sub 7}. The much-improved chemistry reflects the many modifications to the process put in place after 1990 and the subsequent improvements in the electrical quality as measured by the performance of tantalum capacitors. (Author) 5 refs.

  10. Formation of nickel-tantalum compounds in tantalum fluoride halide melts

    International Nuclear Information System (INIS)

    Matychenko, Eh.S.; Zalkind, O.A.; Kuznetsov, B.Ya.; Orlov, V.M.; Sukhorzhevskaya, S.L.

    2001-01-01

    Interaction of nickel with NaCl-K 2 TaF 7 melt (14 mol.%) at 750 deg C was studied, the composition of intermetallic compounds formed in Ni-Ta system being analyzed, using the methods of chemical and X-ray phase analyses, IR spectroscopy. It was ascertained that composition of intermetallic compounds (Ni 3 Ta, Ni 2 Ta) depends on K 2 TaF 7 concentration in the melt, metallic tantalum additions, nickel substrate thickness and experiment duration. The mechanism of currentless deposition of tantalum on nickel was considered and the assumption was made that disproportionation reaction lies in the basis of the process [ru

  11. Hydride Olefin complexes of tantalum and niobium

    NARCIS (Netherlands)

    Klazinga, Aan Hendrik

    1979-01-01

    This thesis describes investigations on low-valent tantalum and niobium hydride and alkyl complexes, particularly the dicyclopentadienyl tantalum hydride olefin complexes Cp2Ta(H)L (L=olefin). ... Zie: Summary

  12. Human bone ingrowth into a porous tantalum acetabular cup

    Directory of Open Access Journals (Sweden)

    Gregory N. Haidemenopoulos

    2017-11-01

    Full Text Available Porous Tantalum is increasingly used as a structural scaffold in orthopaedic applications. Information on the mechanisms of human bone ingrowth into trabecular metal implants is rather limited. In this work we have studied, qualitatively, human bone ingrowth into a retrieved porous tantalum monoblock acetabular cup using optical microscopy, scanning electron microscopy and energy dispersive X-ray analysis. According to the results and taking into account the short operational life (4 years of the implant, bone ingrowth on the acetabular cup took place in the first two-rows of porous tantalum cells to an estimated depth of 1.5 to 2 mm. The bone material, grown inside the first raw of cells, had almost identical composition with the attached bone on the cup surface, as verified by the same Ca:P ratio. Bone ingrowth has been a gradual process starting with Ca deposition on the tantalum struts, followed by bone formation into the tantalum cells, with gradual densification of the bone tissue into hydroxyapatite. A critical step in this process has been the attachment of bone material to the tantalum struts following the topology of the porous tantalum scaffold. These results provide insight to the human bone ingrowth process into porous tantalum implants.

  13. Preparation of potassium-reduced tantalum powders

    International Nuclear Information System (INIS)

    Kolosov, V.N.; Miroshnichenko, M.N.; Orlov, V.M.; Prokhorova, T.Yu.

    2005-01-01

    Characteristics of tantalum powders prepared by reduction of molten potassium heptafluorotantalate with liquid potassium are studied in a temperature range of 750 - 850 deg C using potassium chloride as a flux at a ratio of K 2 TaF 7 : KCl = 1, 2, and 3. The use of potassium as a reducing agent facilitates washing of tantalum powders for impurity salt removal, reduces sodium content and leakage currents in the anodes. As compared to sodium process, the potassium reduction results in a high yield of sponge material, a decrease in the specific surface area and yield of tantalum powder suitable for manufacture of capacitor anodes [ru

  14. Fabrication of a tantalum-clad tungsten target for KENS

    International Nuclear Information System (INIS)

    Kawai, Masayoshi; Kikuchi, Kenji; Kurishita, Hiroaki; Li, J.-F.; Furusaka, Michihiro

    2001-01-01

    Since the cold neutron source intensity of KENS (the spallation neutron source at High Energy Accelerator Research Organization) was decreased into about a third of the designed value because a cadmium liner at the cold neutron source deformed and obstructed the neutron beam line, the target-moderator-and-reflector assembly (TMRA) has been replaced by a new one aimed at improving the neutron performance and recovering the cold neutron source. The tantalum target has also been replaced by a tantalum-clad tungsten one. In order to bond the tantalum-clad with the tungsten block, a hot isostatic press (HIP) process was applied and optimized. It was found that gaseous interstitial impurity elements severely attacked tantalum and embrittled, and that the getter materials such as zirconium and tantalum were effective to reduce the embrittlement

  15. 21 CFR 886.3100 - Ophthalmic tantalum clip.

    Science.gov (United States)

    2010-04-01

    ... blood vessels in the eye. (b) Classification. Class II (special controls). The device is exempt from the...) MEDICAL DEVICES OPHTHALMIC DEVICES Prosthetic Devices § 886.3100 Ophthalmic tantalum clip. (a) Identification. An ophthalmic tantalum clip is a malleable metallic device intended to be implanted permanently...

  16. Valence electronic structure of tantalum carbide and nitride

    Institute of Scientific and Technical Information of China (English)

    FAN; ChangZeng

    2007-01-01

    The valence electronic structures of tantalum carbide (TaC) and tantalum nitride (TaN) are studied by using the empirical electronic theory (EET). The results reveal that the bonds of these compounds have covalent, metallic and ionic characters. For a quantitative analysis of the relative strength of these components, their ionicities have been calculated by implanting the results of EET to the PVL model. It has been found that the ionicity of tantalum carbide is smaller than that of tantalum nitride. The EET results also reveal that the covalent electronic number of the strongest bond in the former is larger than that of the latter. All these suggest that the covalent bond of TaC is stronger than that of TaN, which coincides to that deduced from the first-principles method.……

  17. Valence electronic structure of tantalum carbide and nitride

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ The valence electronic structures of tantalum carbide (TaC) and tantalum nitride (TaN) are studied by using the empirical electronic theory (EET). The results reveal that the bonds of these compounds have covalent, metallic and ionic characters. For a quantitative analysis of the relative strength of these components, their ionicities have been calculated by implanting the results of EET to the PVL model. It has been found that the ionicity of tantalum carbide is smaller than that of tantalum nitride. The EET results also reveal that the covalent electronic number of the strongest bond in the former is larger than that of the latter. All these suggest that the covalent bond of TaC is stronger than that of TaN, which coincides to that deduced from the first-principles method.

  18. Efficacy of Tantalum Tungsten Alloys for Diffusion Barrier Applications

    Science.gov (United States)

    Smathers, D. B.; Aimone, P. R.

    2017-12-01

    Traditionally either Niobium, Tantalum or a combination of both have been used as diffusion barriers in Nb3Sn Multi-filament wire. Vanadium has also been used successfully but the ultimate RRR of the copper is limited unless an external shell of Niobium is included. Niobium is preferred over Tantalum when alternating current losses are not an issue as the Niobium will react to form Nb3Sn. Pure Tantalum tends to deform irregularly requiring extra starting thickness to ensure good barrier qualities. Our evaluations showed Tantalum lightly alloyed with 3 wt% Tungsten is compatible with the wire drawing process while deforming as well as or better than pure Niobium. Ta3wt%W has been processed as a single barrier and as a distributed barrier to fine dimensions. In addition, the higher modulus and strength of the Tantalum Tungsten alloy improves the overall tensile properties of the wire.

  19. Uptake and retention of insufflated tantalum by lymph nodes

    International Nuclear Information System (INIS)

    Kilpper, R.W.; Bianco, A.; Gibb, F.R.; Landman, S.; Morrow, P.E.

    1976-01-01

    A nonsacrifice, radiographic technique is presented for evaluating the lymph node uptake of radiographically dense materials from the lungs of beagle dogs into which the material was insufflated. With tantalum as the contrast agent, lymph nodes sometimes become visible within 2 days after exposure when the insufflation resulted in radiographic ''alveolarization'' of some of the tantalum. Localization of the material within the nodes was observed in subsequent radiographs as well as persistent retention after as much as 1 year. Through the use of preinsufflation control films and tantalum foils of varying thickness, densitometric methods for determining the amount of tantalum within the lymph nodes are being investigated. Tantalum-182 is being used to follow the lung retention of the material as well as to verify estimates of burdens in harvested nodes. Preliminary lymphokinetic data are presented from experiments utilizing powders of 1 and 5 μm (mean) particle sizes

  20. Extraction of Tantalum from locally sourced Tantalite using ...

    African Journals Online (AJOL)

    acer

    Extraction of Tantalum from locally sourced Tantalite using ... ABSTRACT: The ability of polyethylene glycol solution to extract tantalum from locally .... metal ion in question by the particular extractant. ... Loparite, a rare-earth ore (Ce, Na,.

  1. Tantalum high-temperature oxidation kinetics

    International Nuclear Information System (INIS)

    Grigor'ev, Yu.M.; Sarkisyan, A.A.; Merzhanov, A.G.

    1981-01-01

    Kinetics of heat release and scale growth during tantalum oxidation within 650-1300 deg C temperature range in oxygen-containing media is investigated. Kinetic equations and temperature and pressure dependences of constants are ound Applicability of the kinetic Lorie mechanism for the description of the tantalum oxidation kinetics applicably to rapid-passing processes is shown. It is stated that the process rate (reaction ability) is determined by adsorption desorption factors on the external surface of the ''protective'' oxide for the ''linear'' oxidation stage [ru

  2. Modeling the mechanical behavior of tantalum

    International Nuclear Information System (INIS)

    Lee, B.J.; Ahzi, S.

    1997-01-01

    A crystal plasticity model is proposed to simulate the large plastic deformation and texture evolution in tantalum over a wide range of strain rates. In the model, a modification of the viscoplastic power law for slip and a Taylor interaction law for polycrystals are employed, which account for the effects of strain hardening, strain-rate hardening, and thermal softening. A series of uniaxial compression tests in tantalum at strain rates ranging from 10 -3 to 10 4 s -1 were conducted and used to verify the model's simulated stress-strain response. Initial and evolved deformation textures were also measured for comparison with predicted textures from the model. Applications of this crystal plasticity model are made to examine the effect of different initial crystallographic textures in tantalum subjected to uniaxial compression deformation or biaxial tensile deformation

  3. Reaction of tantalum-alkyne complexes with isocyanates or acyl cyanides

    International Nuclear Information System (INIS)

    Kataoka, Yasutaka; Oguchi, Yoshiyuki; Yoshizumi, Kazuyuki; Miwatashi, Seiji; Takai, Kazuhiko; Utimoto, Kiitiro

    1992-01-01

    Treatment of alkynes with low-valent tantalum derived from TiCl 5 and zinc produces tantalum-alkyne complexes (not isolated), which react in situ with phenyl isocyanate (or butyl isocyanate) to give (E)-α, β-unsaturated amides stereoselectively. The tantalum-alkyne complexes also react with acyl cyanides in the presence of BF 3 ·OEt 2 to give α-cyanohydrins. In both reactions, filtration of the reaction mixture containing the tantalum-alkyne complexes before addition of isocyanates (or acyl cyanides) is indispensable to obtain good yields. (author)

  4. Study of electrochemical behaviour of tantalum in molten alkali metal chlorides

    International Nuclear Information System (INIS)

    Bajmakov, A.N.; Ezrokhina, A.M.; Sashinina, O.A.; Shkol'nikov, S.N.

    1985-01-01

    Equilibrium potentials of metallic tantalum in the melt TaCl 5 +KCl-NaCl are studied. Are average degree of tantalum ion oxidation, which are in equilibrium with metallic tantalum, is determined. Anodic behaviour of tantalum in equimolar mixture of potassium and sodium chlorides with Ta and F ion additions is considered. An average degree of oxidation of Ta ions, which transfer into the melt, depending on current density, is determined. It is established that tantalum is dissolved in the regime of diffusional kinetics. It is shown that tantalum corrodes in equimolar mixture of potassium and sodiUm chlorides, at that, corrosion rate increases with introdUction of Ta and F ions into solution. The corrosion is of electrochemical nature and it proceeds in the regime of diffusional kinetics

  5. Tantalum oxide thin films as protective coatings for sensors

    DEFF Research Database (Denmark)

    Christensen, Carsten; Reus, Roger De; Bouwstra, Siebe

    1999-01-01

    Reactively sputtered tantalum oxide thin films have been investigated as protective coatings for aggressive media exposed sensors. Tantalum oxide is shown to be chemically very robust. The etch rate in aqueous potassium hydroxide with pH 11 at 140°C is lower than 0.008 Å h-l. Etching in liquids...... with pH values in the range from pH 2 to 11 have generally given etch rates below 0.04 Å h-l. On the other hand patterning is possible in hydrofluoric acid. Further, the passivation behaviour of amorphous tantalum oxide and polycrystalline Ta2O5 is different in buffered hydrofluoric acid. By ex situ...... annealing O2 in the residual thin-film stress can be altered from compressive to tensile and annealing at 450°C for 30 minutes gives a stress-free film. The step coverage of the sputter deposited amorphous tantalum oxide is reasonable, but metallization lines are hard to cover. Sputtered tantalum oxide...

  6. Tantalum oxide thin films as protective coatings for sensors

    DEFF Research Database (Denmark)

    Christensen, Carsten; Reus, Roger De; Bouwstra, Siebe

    1999-01-01

    Reactively sputtered tantalum oxide thin-films have been investigated as protective coating for aggressive media exposed sensors. Tantalum oxide is shown to be chemically very robust. The etch rate in aqueous potassium hydroxide with pH 11 at 140°C is lower than 0.008 Å/h. Etching in liquids with p......H values in the range from pH 2-11 have generally given etch rates below 0.04 Å/h. On the other hand patterning is possible in hydrofluoric acid. Further, the passivation behaviour of amorphous tantalum oxide and polycrystalline Ta2O5 is different in buffered hydrofluoric acid. By ex-situ annealing in O2...... the residual thin-film stress can be altered from compressive to tensile and annealing at 450°C for 30 minutes gives a stress-free film. The step coverage of the sputter deposited amorphous tantalum oxide is reasonable, but metallisation lines are hard to cover. Sputtered tantalum oxide exhibits high...

  7. Phenomenological effets of tantalum incorporation into diamond films: Experimental and first principle studies

    Energy Technology Data Exchange (ETDEWEB)

    Ullah, Mahtab, E-mail: mahtabullah@bzu.edu.pk [Department of Physics, Bahauddin Zakariya University Multan (Pakistan); Rana, Anwar Manzoor; Ahmad, E. [Department of Physics, Bahauddin Zakariya University Multan (Pakistan); Raza, Rizwan [Department of Physics, COMSATS Institute of Information Technology, Lahore-54000 (Pakistan); Hussain, Fayyaz [Department of Physics, Bahauddin Zakariya University Multan (Pakistan); Hussain, Akhtar; Iqbal, Muhammad [Theoretical Physics Division, PINSTECH, P.O. Nilore, Islamabad (Pakistan)

    2016-09-01

    Graphical abstract: - Highlights: • Fabrication of tantalum incorporated diamonds films using HFCVD technique. • Decrease in resistivity by increasing tantalum content in diamond thin films. • Electronic structure calculations of tantalum incorporated diamonds films through VASP code. • A rise of bond length and bond angles by addition of tantalum in the diamond lattice. • Confirmation of decrease of resistivity by adding tantalum due to creation of impurity states in the bandgap. - Abstract: Tantalum (Ta) incorporated diamond films are synthesized on silicon substrate by chemical vapor deposition under gas mixture of CH{sub 4} + H{sub 2}. Characterizations of the resulting films indicate that morphology and resistivity of as-grown diamond films are significantly influenced by the process parameters and the amount of tantalum incorporated in the diamond films. XRD plots reveal that diamond films are composed of TaC along with diamond for higher concentration of tantalum and Ta{sub 2}C phases for lower concentration of tantalum. EDS spectra confirms the existence of tantalum in the diamond films. Resistivity measurements illustrate a sudden fall of about two orders of magnitude by the addition of tantalum in the diamond films. Band structure of Ta-incorporated diamond has been investigated based on density functional theory (DFT) using VASP code. Band structure calculations lead to the semiconducting behavior of Ta-incorporated diamond films because of the creation of defects states inside the band gap extending towards conduction band minimum. Present DFT results support experimental trend of resistivity that with the incorporation of tantalum into diamond lattice causes a decrease in the resistivity of diamond films so that tantalum-incorporated diamond films behave like a good semiconductor.

  8. Tantalum strength model incorporating temperature, strain rate and pressure

    Science.gov (United States)

    Lim, Hojun; Battaile, Corbett; Brown, Justin; Lane, Matt

    Tantalum is a body-centered-cubic (BCC) refractory metal that is widely used in many applications in high temperature, strain rate and pressure environments. In this work, we propose a physically-based strength model for tantalum that incorporates effects of temperature, strain rate and pressure. A constitutive model for single crystal tantalum is developed based on dislocation kink-pair theory, and calibrated to measurements on single crystal specimens. The model is then used to predict deformations of single- and polycrystalline tantalum. In addition, the proposed strength model is implemented into Sandia's ALEGRA solid dynamics code to predict plastic deformations of tantalum in engineering-scale applications at extreme conditions, e.g. Taylor impact tests and Z machine's high pressure ramp compression tests, and the results are compared with available experimental data. Sandia National Laboratories is a multi program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  9. The global tantalum industry and Sons of Gwalia Ltd

    International Nuclear Information System (INIS)

    Paull, D.

    2002-01-01

    Sons of Gwalia Ltd., in Perth Australia is a long-term supplier of tantalum (Ta), a valuable rare metal with adequate supply. Tantalum is soft and ductile with high melting and boiling points and a low co-efficient of thermal expansion. It has excellent capacity to store and release electrical charge and offers exceptional resistance to corrosion. Its' main use is in consumer electronics such as mobile phones, laptop computers, DVD players, personal video recorders and MP-3 players. For automotive electronics, tantalum is used for air-bags, audio systems, navigation systems, anti-lock break systems and under the hood vehicle management systems. The super alloy is also in demand by the aerospace industry and for turbine blades for power stations. The total demand of Tantalum in 2000 was 5 million lbs. Demand growth has increased steadily since 1993 with perhaps a slight increase in the past 5 years. Resources are estimated at a 125 year supply based on year 2000 production rates. 41 per cent of the world supply of tantalum is obtained from Australia, 13 per cent from Africa, 16 per cent from America, 22 per cent from Asia. The Greenbushes mine in Australia is the world's largest tantalum mine with 80 million lbs Ta, followed by Australia's Wodgina Mine with 50 million lbs Ta. Both mines are expected to be operational for the next 25 years. 12 figs

  10. PREPARATION OF TANTALUM CARBIDE FROM AN ORGANOMETALLIC PRECURSOR

    Directory of Open Access Journals (Sweden)

    C. P. SOUZA

    1999-03-01

    Full Text Available In this work we have synthesized an organometallic oxalic precursor from tantalum oxide. This oxide was solubilized by heating with potassium hydrogen sulfate. In order to precipitate Ta2O5.nH2O, the fused mass obtained was dissolved in a sulfuric acid solution and neutralized with ammonia. The hydrated tantalum oxide precipitated was dissolved in an equimolar solution of oxalic acid/ammonium oxalate. The synthesis and the characterization of the tantalum oxalic precursor are described. Pyrolysis of the complex in a mixture of hydrogen and methane at atmospheric pressure was studied. The gas-solid reaction made it possible to obtain tantalum carbide, TaC, in the powder form at 1000oC. The natural sintering of TaC powder in an inert atmosphere at 1400°C during 10 hours, under inert atmosphere made it possible to densify the carbide to 96% of the theoretical value.

  11. Force-dominated non-equilibrium oxidation kinetics of tantalum

    International Nuclear Information System (INIS)

    Kar, Prasenjit; Wang, Ke; Liang, Hong

    2008-01-01

    Using a combined electrochemical and mechanical manipulation technique, we compared the equilibrium and non-equilibrium oxidation processes and states of tantalum. Experimentally, a setup was developed with an electrochemical system attached to a sliding mechanical configuration capable of friction force measurement. The surface chemistry of a sliding surface, i.e., tantalum, was modified through the electrolyte. The mechanically applied force was fixed and the dynamics of the surface was monitored in situ through a force sensor. The formation of non-equilibrium oxidation states of tantalum was found in oxidation limiting environment of acetic acid. An oxidative environment of deionized water saturated with KCl was used as comparison. We proposed a modified Arrhenius-Eyring equation in which the mechanical factor was considered. We found that the mechanical energy induced the non-stable-state reactions leading to metastable oxidation states of tantalum. This equation can be used to predict mechanochemical reactions that are important in many industrial applications

  12. Electronic structure and charge transport in nonstoichiometric tantalum oxide

    Science.gov (United States)

    Perevalov, T. V.; Gritsenko, V. A.; Gismatulin, A. A.; Voronkovskii, V. A.; Gerasimova, A. K.; Aliev, V. Sh; Prosvirin, I. A.

    2018-06-01

    The atomic and electronic structure of nonstoichiometric oxygen-deficient tantalum oxide TaO x<2.5 grown by ion beam sputtering deposition was studied. The TaO x film content was analyzed by x-ray photoelectron spectroscopy and by quantum-chemistry simulation. TaO x is composed of Ta2O5, metallic tantalum clusters and tantalum suboxides. A method for evaluating the stoichiometry parameter of TaO x from the comparison of experimental and theoretical photoelectron valence band spectra is proposed. The charge transport properties of TaO x were experimentally studied and the transport mechanism was quantitatively analyzed with four theoretical dielectric conductivity models. It was found that the charge transport in almost stoichiometric and nonstoichiometric tantalum oxide can be consistently described by the phonon-assisted tunneling between traps.

  13. Titrimetric determination of tungsten in its alloys with tantalum

    International Nuclear Information System (INIS)

    Elinson, S.V.; Nezhnova, T.I.

    1982-01-01

    Titrimetric method of tungsten determination in tantalum base alloys has been developed. The method permits to determine 5-10% tungsten in the alloys with relative standard deviation of 0.013. The conditions are created by application of precipitation from homogeieous solutions or by the method of appearing reagents at pH values, which condition gradual hydrolytic precipitation of tantalum, and sodium tungstate remains in the solution and is not sorbed on tantalum hydroxide. After separation of tantalum oxide tungsten is precipitated in the form of lead tungstate by the excess of ti trated solution of lead salt during boiling and then at the background of lead tungstate precipitate without its separation lead excess is titrated by EDTA in the presence of mixed indicator-4-(2-pyridylazo)resocinol and xylenole orange in acetate buffer solution

  14. Preparation of tantalum targets of known thicknesses

    International Nuclear Information System (INIS)

    Alexander, J.R.; Wirth, H.L.

    1985-01-01

    A series of carbon-backed tantalum targets were produced in a heavy ion sputtering system with a Penning ion source. The target thicknesses were then measured using the alpha-ray energy loss method. The resulting tabulated measurements were reproducible and make possible the production of carbon-backed tantalum targets with pre-determined thicknesses ranging from 20 μg/cm 2 to 1 mg/cm 2 . (orig.)

  15. Producing tantalum or columbium powder

    International Nuclear Information System (INIS)

    Rerat, C.F.

    1979-01-01

    A process is described for the production of tantalum or columbium powder with a high yield within a desired range of particle sizes. A molten salt bath of a double salt comprising either an alkali metal tantalum fluoride or an alkali metal columbium fluoride and a relatively large amount of alkali metal halide diluent salt to act as a heat sink is initially maintained at a temperature a little above the liquidus temperature of the salt mixture. A liquid alkali metal at a comparatively low temperature is added to the continuously stirred bath at a high mass flow rate, and reduces the double salt, producing tantalum or columbium. The reaction is exothermic and causes the temperature to rise rapidly to a desired final reaction temperature within the range 760 to 1000 0 . The liquid alkali metal is thereafter fed at a high mass flow rate to complete the reaction quickly at the final reaction temperature. Forced cooling at a heat extraction rate not less than 42 kilojoules/min./kg. of double salt is used during at least a portion of the reaction cycle at a rate sufficient to maintain the final reaction temperature within a desired range. (author)

  16. Bacterial adherence to tantalum versus commonly used orthopedic metallic implant materials.

    Science.gov (United States)

    Schildhauer, Thomas A; Robie, Bruce; Muhr, Gert; Köller, Manfred

    2006-07-01

    Evaluation of bacterial adhesion to pure tantalum and tantalum-coated stainless steel versus commercially pure titanium, titanium alloy (Ti-6Al-4V), and grit-blasted and polished stainless steel. Experimental in vitro cell culture study using Staphylococcus aureus and Staphylococcus epidermidis to evaluate qualitatively and quantitatively bacterial adherence to metallic implants. A bacterial adhesion assay was performed by culturing S. aureus (ATCC 6538) and S. epidermidis (clinical isolate) for one hour with tantalum, tantalum-coated stainless steel, titanium, titanium alloy, grit-blasted and polished stainless steel metallic implant discs. Adhered living and dead bacteria were stained using a 2-color fluorescence assay. Adherence was then quantitatively evaluated by fluorescence microscopy and digital image processing. Qualitative adherence of the bacteria was analyzed with a scanning electron microscope. The quantitative data were related to the implant surface roughness (Pa-value) as measured by confocal laser scanning microscopy. Bacterial adherence of S. aureus varied significantly (p = 0.0035) with the type of metallic implant. Pure tantalum presented with significantly (p titanium alloy, polished stainless steel, and tantalum-coated stainless steel. Furthermore, pure tantalum had a lower, though not significantly, adhesion than commercially pure titanium and grit-blasted stainless steel. Additionally, there was a significantly higher S. aureus adherence to titanium alloy than to commercially pure titanium (p = 0.014). S. epidermidis adherence was not significantly different among the tested materials. There was no statistically significant correlation between bacterial adherence and surface roughness of the tested implants. Pure tantalum presents with a lower or similar S. aureus and S. epidermidis adhesion when compared with commonly used materials in orthopedic implants. Because bacterial adhesion is an important predisposing factor in the development of

  17. Tantalum markers in radiography

    International Nuclear Information System (INIS)

    Aronson, A.S.; Jonsson, N.; Alberius, P.

    1985-01-01

    The biocompatibility of two types of radiopaque tantalum markers was evaluated histologically. Reactions to pin markers (99.9% purity) and spherical markers (95.2% purity) were investigated after 3-6 weeks in rabbits and 5-48 weeks in children with abnormal growth. Both marker types were firmly attached to bone trabeculae; this was most pronounced in rabbit bone, and no adverse macroscopic reactions were observed. Microscopically, no reactions or only slight fibrosis of bone tissue were detected, while soft tissues only demonstrated a minor inflammatory reaction. Nevertheless, the need for careful preparation and execution of marker implantations is stressed, and particularly avoidance iof the use of emery in sharpening of cannulae. The bioinertness of tantalum was reconfirmed as was its suitability for use as skeletal and soft tissue radiographic markers. (orig.)

  18. Dynamic material properties of refractory metals: tantalum and tantalum/tungsten alloys

    International Nuclear Information System (INIS)

    Furnish, M.D.; Lassila, D.H.; Chhabildas, L.C.; Steinberg, D.J.

    1996-01-01

    We have made a careful set of impact wave-profile measurements (16 profiles) on tantalum and tantalum-tungsten alloys at relatively low stresses (to 15 GPa). Alloys used were Ta 96.5 W 3.5 and Ta 86.5 W 13.5 (wt%) with oxygen contents of 30 endash 70 ppm. Information available from these experiments includes Hugoniot, elastic limits, loading rates, spall strength, unloading paths, reshock structure and specimen thickness effects. Hugoniot and spall properties are illustrated, and are consistent with expectations from earlier work. Modeling the tests with the Steinberg-Guinan-Lund rate-dependent material model provides for an excellent match of the shape of the plastic loading wave. The release wave is not well modeled due to the absence of the dynamic Bauschinger effect. There is also a discrepancy between experiments and calculations regarding the relative timing of the elastic and plastic waves that may be due to texture effects. copyright 1996 American Institute of Physics

  19. Fabrication of a Tantalum-Based Josephson Junction for an X-Ray Detector

    Science.gov (United States)

    Morohashi, Shin'ichi; Gotoh, Kohtaroh; Yokoyama, Naoki

    2000-06-01

    We have fabricated a tantalum-based Josephson junction for an X-ray detector. The tantalum layer was selected for the junction electrode because of its long quasiparticle lifetime, large X-ray absorption efficiency and stability against thermal cycling. We have developed a buffer layer to fabricate the tantalum layer with a body-centered cubic structure. Based on careful consideration of their superconductivity, we have selected a niobium thin layer as the buffer layer for fabricating the tantalum base electrode, and a tungsten thin layer for the tantalum counter electrode. Fabricated Nb/AlOx-Al/Ta/Nb and Nb/Ta/W/AlOx-Al/Ta/Nb Josephson junctions exhibited current-voltage characteristics with a low subgap leakage current.

  20. Work hardening and plastic equation of state of tantalum

    International Nuclear Information System (INIS)

    Gypen, L.A.; Aernoudt, E.; Deruyttere, A.

    1983-01-01

    The influence of cold deformation on the thermal and athermal components of the flow stress of tantalum was investigated. Up to high deformation levels the strain hardening is due only to the development of internal stress fields; the effective stress remains almost constant. The athermal strain hardening of tantalum is parabolic at low deformation levels (epsilon < 0.5) and linear at high deformation levels, as for other bcc metals. Hart's plastic equation of state is shown to be valid for tantalum at room temperature in the whole deformation range investigated (from epsilon = 0.005 to epsilon = 2.8). (author)

  1. Advances in the chemical vapor deposition (CVD) of Tantalum

    DEFF Research Database (Denmark)

    Mugabi, James Atwoki; Eriksen, Søren; Christensen, Erik

    2014-01-01

    The chemical stability of tantalum in hot acidic media has made it a key material in the protection of industrial equipment from corrosion under such conditions. The Chemical Vapor Deposition of tantalum to achieve such thin corrosion resistant coatings is one of the most widely mentioned examples...

  2. Multi-scale Modeling of Plasticity in Tantalum.

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Hojun [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Battaile, Corbett Chandler. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Carroll, Jay [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Buchheit, Thomas E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Boyce, Brad [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Weinberger, Christopher [Drexel Univ., Philadelphia, PA (United States)

    2015-12-01

    In this report, we present a multi-scale computational model to simulate plastic deformation of tantalum and validating experiments. In atomistic/ dislocation level, dislocation kink- pair theory is used to formulate temperature and strain rate dependent constitutive equations. The kink-pair theory is calibrated to available data from single crystal experiments to produce accurate and convenient constitutive laws. The model is then implemented into a BCC crystal plasticity finite element method (CP-FEM) model to predict temperature and strain rate dependent yield stresses of single and polycrystalline tantalum and compared with existing experimental data from the literature. Furthermore, classical continuum constitutive models describing temperature and strain rate dependent flow behaviors are fit to the yield stresses obtained from the CP-FEM polycrystal predictions. The model is then used to conduct hydro- dynamic simulations of Taylor cylinder impact test and compared with experiments. In order to validate the proposed tantalum CP-FEM model with experiments, we introduce a method for quantitative comparison of CP-FEM models with various experimental techniques. To mitigate the effects of unknown subsurface microstructure, tantalum tensile specimens with a pseudo-two-dimensional grain structure and grain sizes on the order of millimeters are used. A technique combining an electron back scatter diffraction (EBSD) and high resolution digital image correlation (HR-DIC) is used to measure the texture and sub-grain strain fields upon uniaxial tensile loading at various applied strains. Deformed specimens are also analyzed with optical profilometry measurements to obtain out-of- plane strain fields. These high resolution measurements are directly compared with large-scale CP-FEM predictions. This computational method directly links fundamental dislocation physics to plastic deformations in the grain-scale and to the engineering-scale applications. Furthermore, direct

  3. Use of sulfoxides for extraction-gravimetric determination of niobium and tantalum

    International Nuclear Information System (INIS)

    Nikolaev, A.I.; Babkin, A.G.; Tkachenko, V.G.

    1977-01-01

    An extraction-gravimetrical technique has been developed for determination of niobium and tantalum. The technique permits simultaneous extraction of tantalum and its concentrating in the aqueous phase; the range of Ta concentrations determined is essentially wider than in case of the routine gravimetric methods. The technique is based upon the fact, that tantalum is extracted by sulfoxides from fluorine-sulphate solutions at lower concentration of Hf and at lower ratios between the volumes of organic and aqueous phases than niobium. Two subsequent extractions by 1M sulfoxide solutions provide for practically complete transfer of tantalum into the organic phase, whereas extraction of niobium is only 3-20%. Sufficient recovery of Ta and Nb from organic phases is provided by re-extraction by NH 4 F solution. The technique is suitable for niobium and tantalum determination at the ratios of their pentoxides from 1:100 to 100:1. The disturbing influence of Fe(3) is suppressed by reductions to Fe(2)

  4. Spectrographic determination of impurities in high-purity tantalum oxide and niobium oxide

    International Nuclear Information System (INIS)

    Anderson, S.T.G.; Russell, G.M.

    1990-01-01

    The development of spectrographic methods by direct current arc excitation and carrier distillation for the determination of impurities in tantalum and niobium oxides are described. Iron, silicon, aluminium, titanium, calcium, silver, tin, magnesium, and manganese can be determined in tantalum oxide and niobium oxide in concentrations ranging from 3 to 300 p.p.m. Niobium can be determined in tantalum oxide in concentrations ranging from 10 to 300 p.p.m. Tantalum cannot be determined in niobium oxide, and tungsten cannot be determined in either matrix as a result of the absence of sensitive lines in the spectra of these elements. Relative standard deviations of analyte element concentrations are in the region of 0,18 for tantalum oxide samples, and 0,13 for niobium oxide samples. A detailed laboratory method is included. 4 figs., 4 tabs., 3 refs

  5. Separation of niobium and tantalum by paper chromatography and their following spectrographic determination

    International Nuclear Information System (INIS)

    Moroshkina, T.M.; Peres Sanfiel', F.

    1975-01-01

    The paper presents the results of an investigation into the use of water-saturated furfural to separate niobium and tantalum in a 1:1 ratio by means of ascending paper chromatography. The influence of sulphuric acid, ammonium fluoride and hydrofluoric acid concentrations on the completeness of the niobium and tantalum separation was investigated, the extent of the separation being checked by a spectral method. The results indicate that the use of furfural creates favourable conditions for niobium and tantalum separation. The purest tantalum is obtained at concentrations of sulphuric acid 600 k/l, hydrofluoric acid 4.6% and ammonium fluoride 30 g/l. To obtain pure niobium the acid concentrations remain the same but the quantity of ammonium fluoride is doubled. The fluoride ion concentration has a significant effect on the completeness of niobium and tantalum separation. The variation coefficient for the niobium determination is 14%, for the tantalum determination 1O% (author)

  6. HIP (hot isostatic pressing) sintering of Tantalum (Ta) and tantalum carbide (TaC) powder mixture: relations between microstructure and properties

    International Nuclear Information System (INIS)

    Valin, F.; Schnedecker, M.

    1994-01-01

    HIP sintering at 1630 C and 195 MPa, during 2 hours, can be used for complete densification of mixtures of commercial tantalum carbide and tantalum powders. HIPed material properties are depending upon initial compositions. For C/Ta ratios inferior to 80%, the monocarbide structure is preserved. A partial ordering of the carbon vacancies will result, for TaC(0.80), in microhardness maximization. The microstructurally homogenous TaC(0.45) shows an excellent toughness. 2 figs., 2 refs

  7. Preparation of potassium tantalum fluoride from tantalum hydroxide

    International Nuclear Information System (INIS)

    Silva, F.T. da; Espinola, A.; Dutra, A.J.B.

    1987-01-01

    Potassium tantalum fluoride (K 2 TaF 7 ) is an intermediary product in the processing of tantaliferous materials; it is the basic raw material for both reduction processes in use presently: reduction by metallic sodium and electrolysis in molten halides. It is normally obtained from a fluorotantalic acid solution to which potassium ions are added the precipitation of white acicular crystals of K 2 TaF 7 . The conditions for precipitation and recrystallization were studied, and crystal characterization were done by scanning electron microscopy, X-ray diffraction and thermogravimetric and thermodifferential analyses. (Author) [pt

  8. Mineral-deposit model for lithium-cesium-tantalum pegmatites

    Science.gov (United States)

    Bradley, Dwight C.; McCauley, Andrew D.; Stillings, Lisa L.

    2017-06-20

    Lithium-cesium-tantalum (LCT) pegmatites comprise a compositionally defined subset of granitic pegmatites. The major minerals are quartz, potassium feldspar, albite, and muscovite; typical accessory minerals include biotite, garnet, tourmaline, and apatite. The principal lithium ore minerals are spodumene, petalite, and lepidolite; cesium mostly comes from pollucite; and tantalum mostly comes from columbite-tantalite. Tin ore as cassiterite and beryllium ore as beryl also occur in LCT pegmatites, as do a number of gemstones and high-value museum specimens of rare minerals. Individual crystals in LCT pegmatites can be enormous: the largest spodumene was 14 meters long, the largest beryl was 18 meters long, and the largest potassium feldspar was 49 meters long.Lithium-cesium-tantalum pegmatites account for about one-fourth of the world’s lithium production, most of the tantalum production, and all of the cesium production. Giant deposits include Tanco in Canada, Greenbushes in Australia, and Bikita in Zimbabwe. The largest lithium pegmatite in the United States, at King’s Mountain, North Carolina, is no longer being mined although large reserves of lithium remain. Depending on size and attitude of the pegmatite, a variety of mining techniques are used, including artisanal surface mining, open-pit surface mining, small underground workings, and large underground operations using room-and-pillar design. In favorable circumstances, what would otherwise be gangue minerals (quartz, potassium feldspar, albite, and muscovite) can be mined along with lithium and (or) tantalum as coproducts.Most LCT pegmatites are hosted in metamorphosed supracrustal rocks in the upper greenschist to lower amphibolite facies. Lithium-cesium-tantalum pegmatite intrusions generally are emplaced late during orogeny, with emplacement being controlled by pre-existing structures. Typically, they crop out near evolved, peraluminous granites and leucogranites from which they are inferred to be

  9. Bronchography by tantalum aerosols, an experimental investigation of lung clearance and retention

    International Nuclear Information System (INIS)

    Causse, Andre.

    1974-01-01

    Lung clearance of tantalum used as contrast medium has been studied in three animal species: rat, monkey and cat. In rats and monkeys, 80 to 90 percent of the inhaled tantalum was removed with a half life of 10 to 30 hr, but the residual fraction was removed with a half life longer than 100 days; consequently persistent roentgenographic pictures could be observed. These results were in accordance with those obtained by other authors studying dogs and men (accidental inhalation of radioactive tantalum). In cats, about 98 percent was removed with a half life of 15 hr and the remaining fraction with a half life of 18 days. In the three species, the physiological lung clearance mechanisms did not seem disturbed. Microscopic examination showed the peribronchiolar localisation of remaining tantalum in rats and monkeys, with proliferation of granulomes and fibrotic reaction. These results must induce to the greatest care when using tantalum in man in order to outline peripheral airways [fr

  10. Material removal mechanisms in electrochemical-mechanical polishing of tantalum

    International Nuclear Information System (INIS)

    Gao, F.; Liang, H.

    2009-01-01

    Material removal mechanisms in tantalum chemical-mechanical polishing (CMP) and electrochemical-mechanical polishing (ECMP) were investigated using the single frequency electrochemical impedance spectroscopy (EIS). Through measuring the impedance of the tantalum surface, the single frequency EIS scan made it possible to observe the CMP and ECMP processes in situ. The impedance results presented competing mechanisms of removal and formation of a surface oxide layer of tantalum. Analysis indicated that the thickness of the oxide layer formed during polishing was related to the mechanical power correlated to the friction force and the rotating speed. Furthermore, the rate of growth and removal of the oxide film was a function of the mechanical power. This understanding is beneficial for optimization of CMP and ECMP processes.

  11. Photo field emission spectroscopy of the tantalum band structure

    International Nuclear Information System (INIS)

    Kleint, Ch.; Radon, T.

    1978-01-01

    Photo field emission (PFE) currents of clean and barium covered tantalum tips have been measured with single lines of the mercury arc spectrum and phase-sensitive detection. Field strength and work function were determined from Fowler-Nordheim plots of the FE currents. Shoulders in the PFE current-voltage characteristics could be correlated to transitions in the band structure of tantalum according to a recently proposed two-step PFE model. A comparison with the relativistic calculations of Mattheiss and the nonrelativistic bands of Petroff and Viswanathan shows that Mattheiss' bands are more appropriate. Beside direct transitions several nondirect transitions from the different features composing the upper two density of states maxima below the Fermi edge of tantalum have been found. (Auth.)

  12. Development of technology of high-purity compounds of tantalum and niobium with octanol use

    International Nuclear Information System (INIS)

    Majorov, V.G.; Nikolaev, A.I.; Kopkov, V.K.; Baklanova, I.V.; Safonova, L.A.

    2001-01-01

    Effect of composition of solutions and extractant expenditure on tantalum and niobium distribution during extraction by octanol and purification of tantalum and niobium extracts from impurities was studied. Scheme was developed according to which samples of high-pure tantalum and niobium pentaoxides were prepared [ru

  13. The Chemical Vapour Deposition of Tantalum - in long narrow channels

    DEFF Research Database (Denmark)

    Mugabi, James Atwoki

    protective layers of tantalum because of the process’ ability to coat complex geometries and its relative ease to control. This work focuses on studying the CVD of tantalum in long narrow channels with the view that the knowledge gained during the project can be used to optimise the commercial coating...... and that there is a major change in morphology between 850 – 900 °C. The effects of system pressure and precursor partial pressure are also studied, and were found to have relevance to the tantalum distribution along the substrates but little effect on the structural morphology of the deposited layer. In the implemented...

  14. Synthesis and characterization of tantalum organometallic complexes. Catalytic activity for olefins

    International Nuclear Information System (INIS)

    Baley, A.S.

    1990-11-01

    Synthesis of monoaryloxy (alcoxy) neopentyl compounds is investigated. The tantalum-oxygen bond is formed by two parallel ways from TaCl 5 or TaR 2 Cl 3 with R = neopentyl and the tantalum carbon bond from a neopentyl derivative of the main series. Some compounds were isolated and characterized by NMR, elemental analysis and sometimes X-ray structure, some others are characterized in solution only. Catalytic effect is tested by ethylene dimerization and olefin polymerization. Reactivity of tantalum aryloxy neopentyl in respect to complexing and chelating ligands is studied for preparation of neopentylidene complexes

  15. Additively manufactured porous tantalum implants

    NARCIS (Netherlands)

    Wauthle, Ruben; Van Der Stok, Johan; Yavari, Saber Amin; Van Humbeeck, Jan; Kruth, Jean Pierre; Zadpoor, Amir Abbas; Weinans, Harrie; Mulier, Michiel; Schrooten, Jan

    2015-01-01

    The medical device industry's interest in open porous, metallic biomaterials has increased in response to additive manufacturing techniques enabling the production of complex shapes that cannot be produced with conventional techniques. Tantalum is an important metal for medical devices because of

  16. Tribological performance of polycrystalline tantalum-carbide-incorporated diamond films on silicon substrates

    Science.gov (United States)

    Ullah, Mahtab; Rana, Anwar Manzoor; Ahmed, E.; Malik, Abdul Sattar; Shah, Z. A.; Ahmad, Naseeb; Mehtab, Ujala; Raza, Rizwan

    2018-05-01

    Polycrystalline tantalum-carbide-incorporated diamond coatings have been made on unpolished side of Si (100) wafer by hot filament chemical vapor deposition process. Morphology of the coatings has been found to vary from (111) triangular-facetted to predominantly (111) square-faceted by increasing the concentration of tantalum carbide. The results have been compared to those of a diamond reference coating with no tantalum content. An increase in roughness has been observed with the increase of tantalum carbide (TaC) due to change in morphology of the diamond films. It is noticed that roughness of the coatings increases as grains become more square-faceted. It is found that diamond coatings involving tantalum carbide are not as resistant as diamond films with no TaC content and the coefficient of friction for such coatings with microcrystalline grains can be manipulated to 0·33 under high vacuum of 10-7 Torr. Such a low friction coefficient value enhances tribological behavior of unpolished Si substrates and can possibly be used in sliding applications.

  17. Kinetic Study of the Chemical Vapor Deposition of Tantalum in Long Narrow Channels

    DEFF Research Database (Denmark)

    Mugabi, James Atwoki; Eriksen, Søren; Petrushina, Irina

    2016-01-01

    A kinetic study of the chemical vapor deposition of tantalum in long narrow channels is done to optimize the industrial process for the manufacture of tantalum coated plate heat exchangers. The developed model fits well at temperatures between 750 and 850 °C, and in the pressure range of25–990 mbar....... According to the model, the predominant tantalum growth species is TaCl3. The temperature is shown to have a pronounced effect onthe morphology and rate of deposition of the tantalum and an apparent change in deposition mechanism occurs between 850–900 °C, resulting in the deposition rate at 900 °C being...

  18. An investigation of tantalum and niobium contents by nuclear technique

    International Nuclear Information System (INIS)

    Patmasiriwat, N.

    1981-01-01

    The objective of this experimental study was to find suitable nuclear techniques to determine the quantities of niobium and tantalum in columbite. The study has been performed by using radioisotope X-ray fluorescent technique (X RF) and neutron activation analysis (NAA). The results showed a good agreement between these two techniques. Nevertheless, with NAA, if there is uranium in the sample, the spectrum of niobium will be interfered. So practically, on the basis of accuracy and speed of determination, X-ray fluorescence is more suitable than NAA to determine the quantity of niobium while tantalum is preferable to use NAA. The detection limit of niobium and tantalum using the above techniques are 0.661% and 0.1 mg respectively

  19. Hydrogen adsorption on skeletal rhodium-tantalum electrodes-catalysts

    International Nuclear Information System (INIS)

    Tsinstevich, V.M.; Krejnina, N.M.

    1975-01-01

    Skeleton rhodium-tantalic catalyst electrodes with a tantalum mass percentage of 0 to 100 have been obtained by the methodology of Crupp and others. The hydrogen adsorption is studied through the method of removing the galvano-static and potentiodynamic curves of charging in sulfuric acid and potassium hydroxide. It has been discovered that the maximum adsorption ability relatively to the hydrogen can be observed in an alloy with a 5% tantalum contents. The energetic characteristics of the alloys are higher in alkali than in acid

  20. Standard specification for tantalum and tantalum alloy plate, sheet, and strip. ASTM standard

    International Nuclear Information System (INIS)

    1998-09-01

    This specification is under the jurisdiction of ASTM Committee B-10 on Reactive and Refractory Metals and Alloys and is the direct responsibility of Subcommittee B10.03 on Niobium and Tantalum. Current edition approved May 10, 1998 and published September 1998. Originally published as B 708-82. Last previous edition was B 708-92

  1. Effect of sputtering parameters and substrate composition on the structure of tantalum thin films

    Energy Technology Data Exchange (ETDEWEB)

    Hallmann, Lubica, E-mail: lubica.hallmann@zzm.uzh.c [Clinic of Fixed and Removable Prosthodontics and Dental Material Science, Center of Dental Medicine, University of Zürich (Switzerland); Ulmer, Peter [Institute of Geochemistry and Petrology, ETH Zürich (Switzerland)

    2013-10-01

    The crystallographic properties of tantalum films deposited as a bioactive coating on Co–Cr–Mo and Ti–Al–Nb alloys have been investigated. The desired tough and ductile alpha phase of tantalum has been obtained by DC magnetron sputtering on Co–Cr–Mo and Ti–Al–Nb substrates. The thickness of the tantalum layer was between 20 and 600 nm. The crystallographic structure of tantalum thin film was dependent on the sputtering parameters such as DC power, bias voltage and gas impurities. Oxygen is an important factor for the stabilization of the tantalum alpha phase on Co–Cr–Mo substrate. The crystallographic structure and texture of tantalum thin films was found to be additionally dependent on the substrate composition. For Ti–Al–Nb substrate, oxygen content was not an important factor for the stabilization of the alpha phase. The observed shift of X-ray diffraction peaks to lower 2(θ) is an indication of stress evolving during the sputtering process and was dependent on bias voltage and oxygen content of the carrier gas.

  2. Experimental lumbar spine fusion with novel tantalum-coated carbon fiber implant

    DEFF Research Database (Denmark)

    Li, Haisheng; Zou, Xuenong; Woo, Charlotte

    2007-01-01

    the possibility of coating a biocompatible metal layer on top of the carbon fiber material, to improve its biological performance. Tantalum was chosen because of its bone compatibility, based on our previous studies. A novel spinal fusion cage was fabricated by applying a thin tantalum coating on the surface...

  3. Tantalum(V) impurity extraction by octanol from niobium(V) fluoride solutions

    International Nuclear Information System (INIS)

    Majorov, V.G.; Nikolaev, A.I.; Kopkov, V.K.

    2002-01-01

    The conditions of the niobium and tantalum extraction separation by octanol in the fluoride solutions, depending on the metals and free hydrofluoric acid concentration as well as on the organic and water phases voluminous relation, are studied for the purpose of developing the technology of niobium deep purification from the tantalum impurities. The technological scheme of the niobium solutions(V) extraction purification from the tantalum impurities(V), which provides for obtaining the niobium oxide(V), containing less than 0.005 mass % Ta 2 O 5 , is proposed on the basis of the established optimal separation conditions. The possibility of using the developed technology by the pyrochlore reprocessing is indicated [ru

  4. Behaviour of tantalum- and ceramics implants in the organism

    International Nuclear Information System (INIS)

    Reich, M.

    1987-01-01

    Studies of human and animal tissues after the use of orthopaedic implants were carried out by means of instrumental neutron activation analysis (INAA), as well as studies on the corrosion behaviour of tantalum by means of tracer techniques. After the use of an Al 2 O 3 -ceramic-metal compound prosthesis of the hip joint samples from the joint capsule and the Fascia Lata of 9 patients were studied. The measured Al amounts in the capsule tissues were greater than the normal values by up to 3 orders of magnitude. The corrosion experiment with tantalum was carried out in Ringer's solution as a model of body fluids. Local and systemic changes because of tantalum implants in animal experiments showed massive local stress of the contact tissue as a result of corrosion. Along with this, increased values of Ta were found in the spleen and the liver. (orig./RB) [de

  5. Carbon monoxide and carbon dioxide interaction with tantalum

    International Nuclear Information System (INIS)

    Belov, V.D.; Ustinov, Yu.K.; Komar, A.P.

    1978-01-01

    The adsorption of carbon monoxide and carbon dioxide on tantalum and the dissolution of these gases in the adsorbent at T >= 300 K have been studied. The flash-filament method (FFM) in a monopole mass-spectrometer and a field emission microscopy was used in the same apparatus. Carbon monoxide and carbon dioxide dissociate on the tantalum surface, carbon monoxide being desorbed in both cases during the flash. The desorption curves of CO reveal three different binding states: two of them (α and β' 1 ) for the adsorbed particles whereas the high temperature desorption state relates to the adsorbate dissolved in the metal. For the β' 1 state of CO the activation energy, the pre-exponential factor and the kinetic order in the kinetic equation of desorption have been estimated. They turned out to be E = 110 kcal/mol, C = 3 X 10 12 sec -1 , and γ = 1. The activation energy of diffusion for CO in tantalum and the energy of outgassing for the metal were found to be 9.4 and 49 kcal/mole, respectively. (Auth.)

  6. Carbon monoxide and carbon dioxide interaction with tantalum

    Energy Technology Data Exchange (ETDEWEB)

    Belov, V D; USTINOV, YU K; KOMAR, A P [AN SSSR, LENINGRAD. FIZIKO-TEKHNICHESKIJ INST.

    1978-03-01

    The adsorption of carbon monoxide and carbon dioxide on tantalum and the dissolution of these gases in the adsorbent at T >= 300 K have been studied. The flash-filament method (FFM) in a monopole mass-spectrometer and a field emission microscopy was used in the same apparatus. Carbon monoxide and carbon dioxide dissociate on the tantalum surface, carbon monoxide being desorbed in both cases during the flash. The desorption curves of CO reveal three different binding states: two of them (..cap alpha.. and ..beta..'/sub 1/) for the adsorbed particles whereas the high temperature desorption state relates to the adsorbate dissolved in the metal. For the ..beta..'/sub 1/ state of CO the activation energy, the pre-exponential factor and the kinetic order in the kinetic equation of desorption have been estimated. They turned out to be E = 110 kcal/mol, C = 3 X 10/sup 12/ sec/sup -1/, and ..gamma.. = 1. The activation energy of diffusion for CO in tantalum and the energy of outgassing for the metal were found to be 9.4 and 49 kcal/mole, respectively.

  7. Niobium and tantalum

    International Nuclear Information System (INIS)

    Polupanova, L.I.; Volkova, G.A.

    1983-01-01

    General mineralogical-geochemical and analytical characteristics of niobium and tantalum are presented. Potentialities of any analytical methods for determining these elements in various geologic samples are estimated. The following specific techniques are described: neutron + activation determination of Ta, fluorescence X-radiometric determination of Nb and Ta, fluorescence X-ray spectral determination of Nb and Ta, spectrographic determination of Nb and Ta, gravimetric determination of Nb and Ta, their extraction-photometric determination with various reagents (crystal violet, rhodamine 6 Y, butylrhodamine B)

  8. Durability of adhesive bonds to uranium alloys, tungsten, tantalum, and thorium

    International Nuclear Information System (INIS)

    Childress, F.G.

    1975-01-01

    Long-term durability of epoxy bonds to alloys of uranium (U-Nb and Mulberry), nickel-plated uranium, thorium, tungsten, tantalum, tantalum--10 percent tungsten, and aluminum was evaluated. Significant strengths remain after ten years of aging; however, there is some evidence of bond deterioration with uranium alloys and thorium stored in ambient laboratory air

  9. Microstructures and phase transformations in interstitial alloys of tantalum

    International Nuclear Information System (INIS)

    Dahmen, U.

    1979-01-01

    The analysis of microstructures, phases, and possible ordering of interstitial solute atoms is fundamental to an understanding of the properties of metal-interstitial alloys in general. As evidenced by the controversies on phase transformations in the particular system tantalum--carbon, our understanding of this class of alloys is inferior to our knowledge of substitutional metal alloys. An experimental clarification of these controversies in tantalum was made. Using advanced techniques of electron microscopy and ultrahigh vacuum techology, an understanding of the microstructures and phase transformations in dilute interstitial tantalum--carbon alloys is developed. Through a number of control experiments, the role and sources of interstitial contamination in the alloy preparation (and under operating conditions) are revealed. It is demonstrated that all previously published work on the dilute interstitially ordered phase Ta 64 C can be explained consistently in terms of ordering of the interstitial contaminants oxygen and hydrogen, leading to the formation of the phases Ta 12 O and Ta 2 H

  10. Structural characterisation of oxygen diffusion hardened alpha-tantalum PVD-coatings on titanium.

    Science.gov (United States)

    Hertl, C; Koll, L; Schmitz, T; Werner, E; Gbureck, U

    2014-08-01

    Titanium substrates were coated with tantalum layers of 5 μm thickness using physical vapour deposition (PVD). The tantalum layers showed a (110)-preferred orientation. The coated samples were hardened by oxygen diffusion. Using X-ray diffraction the crystallographic structure of the tantalum coatings was characterised, comparing untreated and diffusion hardened specimen conditions. Oxygen depth profiles were determined by glow discharge spectrometry. The hardening effect of the heat treatment was examined by Vickers microhardness testing. The increase of surface hardness caused by oxygen diffusion was at least 50%. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Biological Response of Human Bone Marrow-Derived Mesenchymal Stem Cells to Commercial Tantalum Coatings with Microscale and Nanoscale Surface Topographies

    Science.gov (United States)

    Skoog, Shelby A.; Kumar, Girish; Goering, Peter L.; Williams, Brian; Stiglich, Jack; Narayan, Roger J.

    2016-06-01

    Tantalum is a promising orthopaedic implant coating material due to its robust mechanical properties, corrosion resistance, and excellent biocompatibility. Previous studies have demonstrated improved biocompatibility and tissue integration of surface-treated tantalum coatings compared to untreated tantalum. Surface modification of tantalum coatings with biologically inspired microscale and nanoscale features may be used to evoke optimal tissue responses. The goal of this study was to evaluate commercial tantalum coatings with nanoscale, sub-microscale, and microscale surface topographies for orthopaedic and dental applications using human bone marrow-derived mesenchymal stem cells (hBMSCs). Tantalum coatings with different microscale and nanoscale surface topographies were fabricated using a diffusion process or chemical vapor deposition. Biological evaluation of the tantalum coatings using hBMSCs showed that tantalum coatings promote cellular adhesion and growth. Furthermore, hBMSC adhesion to the tantalum coatings was dependent on surface feature characteristics, with enhanced cell adhesion on sub-micrometer- and micrometer-sized surface topographies compared to hybrid nano-/microstructures. Nanostructured and microstructured tantalum coatings should be further evaluated to optimize the surface coating features to promote osteogenesis and enhance osseointegration of tantalum-based orthopaedic implants.

  12. The evaluation of hydroxyapatite (HA) coated and uncoated porous tantalum for biomedical material applications

    International Nuclear Information System (INIS)

    Safuan, Nadia; Sukmana, Irza; Kadir, Mohammed Rafiq Abdul; Noviana, Deni

    2014-01-01

    Porous tantalum has been used as an orthopedic implant for bone defects as it has a good corrosion resistance and fatigue behaviour properties. However, there are some reports on the rejection of porous Ta after the implantation. Those clinical cases refer to the less bioactivity of metallic-based materials. This study aims to evaluate hydroxyapatite coated and uncoated porous Tantalum in order to improve the biocompatibility of porous tantalum implant and osseointegration. Porous tantalum was used as metallic-base substrate and hydroxyapatite coating has been done using plasma-spraying technique. Scanning Electron Microscopy (SEM) and Field Emission Scanning Electron Microscopy (FESEM) techniques were utilizes to investigate the coating characteristics while Confocal Raman Microscopy to investigate the interface and image. The effect of coating to the corrosion behaviour was assessed by employing potentiodynamic polarization tests in simulated body fluid at 37±1 °C. Based on SEM and FESEM results, the morphologies as well the weight element consists in the uncoated and hydroxyapatite coated porous tantalum were revealed. The results indicated that the decrease in corrosion current density for HA coated porous Ta compared to the uncoated porous Ta. This study concluded that by coating porous tantalum with HA supports to decrease the corrosion rate of pure porous.

  13. The Evaluation of Hydroxyapatite (HA) Coated and Uncoated Porous Tantalum for Biomedical Material Applications

    Science.gov (United States)

    Safuan, Nadia; Sukmana, Irza; Kadir, Mohammed Rafiq Abdul; Noviana, Deni

    2014-04-01

    Porous tantalum has been used as an orthopedic implant for bone defects as it has a good corrosion resistance and fatigue behaviour properties. However, there are some reports on the rejection of porous Ta after the implantation. Those clinical cases refer to the less bioactivity of metallic-based materials. This study aims to evaluate hydroxyapatite coated and uncoated porous Tantalum in order to improve the biocompatibility of porous tantalum implant and osseointegration. Porous tantalum was used as metallic-base substrate and hydroxyapatite coating has been done using plasma-spraying technique. Scanning Electron Microscopy (SEM) and Field Emission Scanning Electron Microscopy (FESEM) techniques were utilizes to investigate the coating characteristics while Confocal Raman Microscopy to investigate the interface and image. The effect of coating to the corrosion behaviour was assessed by employing potentiodynamic polarization tests in simulated body fluid at 37±1 °C. Based on SEM and FESEM results, the morphologies as well the weight element consists in the uncoated and hydroxyapatite coated porous tantalum were revealed. The results indicated that the decrease in corrosion current density for HA coated porous Ta compared to the uncoated porous Ta. This study concluded that by coating porous tantalum with HA supports to decrease the corrosion rate of pure porous.

  14. Evaluation of residual stress in sputtered tantalum thin-film

    Energy Technology Data Exchange (ETDEWEB)

    Al-masha’al, Asa’ad, E-mail: asaad.al@ed.ac.uk; Bunting, Andrew; Cheung, Rebecca

    2016-05-15

    Highlights: • Tantalum thin-films have been deposited by DC magnetron sputtering system. • Thin-film stress is observed to be strongly influenced by sputtering pressure. • Transition towards the compressive stress is ascribed to the annealing at 300 °C. • Expose thin-film to air ambient or ion bombardment lead to a noticeable change in the residual stress. - Abstract: The influence of deposition conditions on the residual stress of sputtered tantalum thin-film has been evaluated in the present study. Films have been deposited by DC magnetron sputtering and curvature measurement method has been employed to calculate the residual stress of the films. Transitions of tantalum film stress from compressive to tensile state have been observed as the sputtering pressure increases. Also, the effect of annealing process at temperature range of 90–300 °C in oxygen ambient on the residual stress of the films has been studied. The results demonstrate that the residual stress of the films that have been deposited at lower sputtering pressure has become more compressive when annealed at 300 °C. Furthermore, the impact of exposure to atmospheric ambient on the tantalum film stress has been investigated by monitoring the variation of the residual stress of both annealed and unannealed films over time. The as-deposited films have been exposed to pure Argon energy bombardment and as result, a high compressive stress has been developed in the films.

  15. Tantalum oxide-based compounds as new non-noble cathodes for polymer electrolyte fuel cell

    International Nuclear Information System (INIS)

    Ishihara, Akimitsu; Tamura, Motoko; Matsuzawa, Koichi; Mitsushima, Shigenori; Ota, Ken-ichiro

    2010-01-01

    Tantalum oxide-based compounds were examined as new non-noble cathodes for polymer electrolyte fuel cell. Tantalum carbonitride powder was partially oxidized under a trace amount of oxygen gas at 900 o C for 4 or 8 h. Onset potential for oxygen reduction reaction (ORR) of the specimen heat-treated for 8 h was 0.94 V vs. reversible hydrogen electrode in 0.1 mol dm -3 sulfuric acid at 30 o C. The partial oxidation of tantalum carboniride was effective to enhance the catalytic activity for the ORR. The partially oxidized specimen with highest catalytic activity had ca. 5.25 eV of ionization potential, indicating that there was most suitable strength of the interaction of oxygen and tantalum on the catalyst surface.

  16. A study for an electrolytic reduction of tantalum oxide in a LiCl-Li2O molten salt

    International Nuclear Information System (INIS)

    Park, Sung Bin; Park, Byung Heung; Seo, Chung Seok; Kang, Dae Seung; Kwon, Seon Gil; Park, Seong Won

    2005-01-01

    Korea Atomic Energy Research Institute (KAERI) has developed the Advanced Spent Fuel Conditioning Process (ACP) to be an innovative technology for handling the PWR spent fuel. As part of ACP, the electrolytic reduction process (ER process) is the electrochemical reduction process of uranium oxide to uranium metal in a molten salt. The ER process has advantages in a technical stability, an economic potential and a good proliferation resistance. KAERI has reported on the good experimental results of an electrochemical reduction of the uranium oxide in a 20 kg HM/batch lab-scale. The ER process can be applicable to the reduction of other metal oxides. Metal tantalum powder has attracted attention for a variety of applications. A tantalum capacitor made from superfine and pliable tantalum powders is very small in size and it has a higher-capacitance part, therefore it is useful for microelectronic devices. By the ER process the metal tantalum can be obtained from tantalum pentoxide. In this work, a 40 g Ta 2 O 5 /batch electrochemical reactor was used for the synthesis of the metal tantalum. From the results of the cyclic voltammograms for the Ta 2 O 5 -LiCl-Li 2 O system, the mechanism of the tantalum reduction in a molten LiCl-Li 2 O salt system was investigated. Tantalum pentoxide is chemically reduced to tantalum metal by the lithium metal which is electrochemically deposited into an integrated cathode assembly in the LiCl-Li 2 O molten salt. The experiments for the tantalum reduction were performed with a chronopotentiometry in the reactor cell, the reduced products were analyzed from an analysis of the X-ray diffraction (XRD), scanning electron microscope and energy dispersive X-ray (SEM-EDX). From the results, the electrolytic reduction process is applicable to the synthesis of metal tantalum

  17. Recent advances in P/M-tantalum products

    International Nuclear Information System (INIS)

    Kumar, P.; Uhlenhut, H.

    2001-01-01

    The metallurgical grade tantalum powder is used for producing parts and mill products. Some of the key requirements include purity, physical characteristics (flow, fill density and compressibility) and interstitial contents. A process to produce 99.99 % pure tantalum powder with less than 150 ppm oxygen has been developed. This powder was consolidated into metallurgical products via conventional P/M processing; resulting products had high purity and low oxygen. It also retained fine grain-size and uniform properties inherent in P/M-derived products. In addition, the desired crystallographic texture was obtained by controlled thermo-mechanical processing (TMP) of the consolidated powder. Fully dense products of this powder were tested for various applications, such as deep drawing, sputtering, ballistics and capacitors. Critical functional requirements in these applications along with the results of evaluations are discussed. (author)

  18. Tantalum and niobium carbides obtention by carbothermic reduction of columbotantalite ores

    International Nuclear Information System (INIS)

    Gordo, E.; Garcia-Carcedo, F.; Torralba, J.M.

    1998-01-01

    Tantalum and niobium carbides are characterized by its high hardness and chemical corrosion resistance. Both carbides, but mainly TaC, are used in hard metals (sintered carbides), together with their carbides, to manufacture cutting tools and dies in special machining applications involving mechanical shock at high temperature. Its use as reinforcement of wear resistant materials through powder metallurgy techniques are being investigated. However, the use of TaC is usually limited because of its high cost. Therefore tantalum carbide with niobium content, which is cheaper, is used. In this work the obtention of complex tantalum and niobium carbides from a Spanish columbotantalite ore is studied through relatively cheap and simple process as it is carbothermic reduction. Concentration of the ore, its reduction and the characterization of products are described. (Author) 11 refs

  19. Micro/Nano Structural Tantalum Coating for Enhanced Osteogenic Differentiation of Human Bone Marrow Stem Cells.

    Science.gov (United States)

    Ding, Ding; Xie, Youtao; Li, Kai; Huang, Liping; Zheng, Xuebin

    2018-04-03

    Recently, tantalum has been attracting much attention for its anticorrosion resistance and biocompatibility, and it has been widely used in surface modification for implant applications. To improve its osteogenic differentiation of human bone marrow stem cells (hBMSCs), a micro/nano structure has been fabricated on the tantalum coating surface through the combination of anodic oxidation and plasma spraying method. The morphology, composition, and microstructure of the modified coating were comprehensively studied by employing scanning electron microscopy (SEM), X-ray diffraction (XRD) as well as transmission electron microscopy (TEM). The effects of hierarchical structures as well as micro-porous structure of tantalum coating on the behavior for human bone marrow stem cells (hBMSCs) were evaluated and compared at both cellular and molecular levels in vitro. The experimental results show that a hierarchical micro/nano structure with Ta₂O₅ nanotubes spread onto a micro-scale tantalum coating has been fabricated successfully, which is confirmed to promote cell adhesion and spreading. Besides, the hierarchical micro/nano tantalum coating can provide 1.5~2.1 times improvement in gene expression, compared with the micro-porous tantalum coating. It demonstrates that it can effectively enhance the proliferation and differentiation of hBMSCs in vitro.

  20. Micro/Nano Structural Tantalum Coating for Enhanced Osteogenic Differentiation of Human Bone Marrow Stem Cells

    Directory of Open Access Journals (Sweden)

    Ding Ding

    2018-04-01

    Full Text Available Recently, tantalum has been attracting much attention for its anticorrosion resistance and biocompatibility, and it has been widely used in surface modification for implant applications. To improve its osteogenic differentiation of human bone marrow stem cells (hBMSCs, a micro/nano structure has been fabricated on the tantalum coating surface through the combination of anodic oxidation and plasma spraying method. The morphology, composition, and microstructure of the modified coating were comprehensively studied by employing scanning electron microscopy (SEM, X-ray diffraction (XRD as well as transmission electron microscopy (TEM. The effects of hierarchical structures as well as micro-porous structure of tantalum coating on the behavior for human bone marrow stem cells (hBMSCs were evaluated and compared at both cellular and molecular levels in vitro. The experimental results show that a hierarchical micro/nano structure with Ta2O5 nanotubes spread onto a micro-scale tantalum coating has been fabricated successfully, which is confirmed to promote cell adhesion and spreading. Besides, the hierarchical micro/nano tantalum coating can provide 1.5~2.1 times improvement in gene expression, compared with the micro-porous tantalum coating. It demonstrates that it can effectively enhance the proliferation and differentiation of hBMSCs in vitro.

  1. Random Vibration Testing of Advanced Wet Tantalum Capacitors

    Science.gov (United States)

    Teverovsky, Alexander

    2015-01-01

    Advanced wet tantalum capacitors allow for improved performance of power supply systems along with substantial reduction of size and weight of the systems that is especially beneficial for space electronics. Due to launch-related stresses, acceptance testing of all space systems includes random vibration test (RVT). However, many types of advanced wet tantalum capacitors cannot pass consistently RVT at conditions specified in MIL-PRF-39006, which impedes their use in space projects. This requires a closer look at the existing requirements, modes and mechanisms of failures, specifics of test conditions, and acceptance criteria. In this work, different lots of advanced wet tantalum capacitors from four manufacturers have been tested at step stress random vibration conditions while their currents were monitored before, during, and after the testing. It has been shown that the robustness of the parts and their reliability are mostly due to effective self-healing processes and limited current spiking or minor scintillations caused by RVT do not increase the risk of failures during operation. A simple model for scintillations events has been used to simulate current spiking during RVT and optimize test conditions. The significance of scintillations and possible effects of gas generation have been discussed and test acceptance criteria for limited current spiking have been suggested.

  2. Superconducting properties and uniaxial strain characteristics of Nb3Sn fiber-reinforced superconductors with tantalum reinforcement fibers

    International Nuclear Information System (INIS)

    Arai, Kazuaki; Umeda, Masaichi; Agatsuma, Koh; Tateishi, Hiroshi

    1998-01-01

    We have been developing fiber-reinforced superconductors (FRS) for high-field and large-scale magnets. Tungsten fibers have been selected as the reinforcement fiber for FRS so far because tungsten has the highest elastic modulus of approximately 400 GPa which can minimize the strain from electromagnetic force. The preparation process of FRS consists of sputtering deposition and heat treatment because it may be difficult to apply drawing methods to materials of high-elastic modulus such as tungsten. Tantalum has high elastic modulus of 178 GPa and its thermal expansion coefficient that is closer to that of Nb 3 Sn than tungsten's, which means prestrain in Nb 3 Sn in FRS is reduced by adopting tantalum fibers. Tantalum has been used as barriers between bronze and copper in conventional Nb 3 Sn superconductors which are usually prepared with drawing process despite of the tantalum's high elastic modulus. That implies drawing process may be applied to prepare FRS with tantalum reinforcement fibers. In this paper, FRS using tantalum fibers prepared with sputtering process are described with making comparison with FRS of tungsten to clarify the basic properties of FRS using tantalum fibers. Depth profiles in Nb 3 Sn layer in FRS were measured to examine reaction between superconducting layers and reinforcement fibers. Superconducting properties including strain and stress characteristics were shown. Those data will contribute to design of FRS using tantalum reinforcement fibers with adopts the drawing processes. (author)

  3. Electromigration of hydrogen and deuterium in vanadium, niobium, and tantalum

    International Nuclear Information System (INIS)

    Jensen, C.L.

    1977-10-01

    The electric mobility and effective valence of hydrogen and deuterium in vanadium, niobium, tantalum and three niobium-tantalum alloys were measured. A resistance technique was used to directly determine the electric mobility of hydrogen and deuterium at 30 0 C while a steady-state method was used to measure the effective valence. The use of mass spectrographic techniques on a single specimen which contained both hydrogen and deuterium greatly increased the precision with which the isotope effect in the effective valence could be measured

  4. Comparison of the mechanical properties between tantalum and nickel-titanium foams implant materials for bone ingrowth applications

    International Nuclear Information System (INIS)

    Sevilla, P.; Aparicio, C.; Planell, J.A.; Gil, F.J.

    2007-01-01

    Metallic porous materials are designed to allow the ingrowth of living tissue inside the pores and to improve the mechanical anchorage of the implant. In the present work, tantalum and nickel-titanium porous materials have been characterized. The tantalum foams were produced by vapour chemical deposition (CVD/CVI) and the NiTi foams by self-propagating high temperature synthesis (SHS). The former exhibited an open porosity ranging between 65 and 73% and for the latter it ranged between 63 and 68%. The pore sizes were between 370 and 440 μm for tantalum and between 350 and 370 μm for nickel-titanium. The Young's modulus in compression of the foams studied, especially for tantalum, were very similar to those of cancellous bone. This similitude may be relevant in order to minimize the stress shielding effect in the load transfer from the implant to bone. The strength values for NiTi foam are higher than for tantalum, especially of the strain to fracture which is about 23% for NiTi and only 8% for tantalum. The fatigue endurance limit set at 10 8 cycles is about 7.5 MPa for NiTi and 13.2 MPa for tantalum. The failure mechanisms have been studied by scanning electron microscopy

  5. Spectrochemical determination of tantalum in plutonium metal using direct current plasma emission spectrometry

    International Nuclear Information System (INIS)

    Fadeff, S.K.; Morris, W.F.

    1983-01-01

    Tantalum is determined by direct current plasma spectrometry after separation of plutonium from solution as PuF 3 . After centrifugation of the PuF 3 precipitate, a low level of plutonium remains in solution in sufficient quantity to cause spectral interferences. It is necessary to determine the plutonium by dc plasma spectrometry and apply a correction to determine low tantalum concentrations with good accuracy and precision. Tantalum can be determined down to 0.4 ppM in solution with a relative standard deviation of 10 percent. Better precision can be achieved at higher concentrations. The procedure is simple and convenient for glovebox work. 5 references, 1 figure, 1 table

  6. Bone remodeling around cementless tantalum cups

    NARCIS (Netherlands)

    Grillo, J. -C.; Flecher, X.; Bouvenot, J.; Argenson, J. -N.

    2008-01-01

    Purpose of the study.-Most studies have reported a significant decrease in periacetabular bone stock one year after implantation of a cementless cup. The purpose of this work was to study the bone-implant interface of the tantalum cup using plain X-rays and dual-energy X-ray absorptiometry (DEXA).

  7. Wear and chemistry of zirconium-silicate, aluminium-silicate and zirconium-aluminium-silicate glasses in alkaline medium

    International Nuclear Information System (INIS)

    Rouse, C.G.; Lemos Guenaga, C.M. de

    1984-01-01

    A study of the chemical durability, in alkaline solutions, of zirconium silicate, aluminium silicate, zirconium/aluminium silicate glasses as a function of glass composition is carried out. The glasses were tested using standard DIN-52322 method, where the glass samples are prepared in small polished pieces and attacked for 3 hours in a 800 ml solution of 1N (NaOH + NA 2 CO 3 ) at 97 0 C. The results show that the presence of ZrO 2 in the glass composition increases its chemical durability to alkaline attack. Glasses of the aluminium/zirconium silicate series were melted with and without TiO 2 . It was shown experimentally that for this series of glasses, the presence of both TiO 2 and ZrO 2 gave better chemical durability results. However, the best overall results were obtained from the simpler zirconium silicate glasses, where it was possible to make glasses with higher values of ZrO 2 . (Author) [pt

  8. The recovery of tin, and the production of niobium pentoxide and potassium tantalum fluoride, from a tin slag

    International Nuclear Information System (INIS)

    Iorio, G.; Tyler, M.S.

    1987-01-01

    This report describes the results of testwork on the recovery of tin, niobium, and tantalum from a tin slag. The slag, which consisted mainly of amorphous silica, with varying amounts of calcuim, magnesium, manganese, iron, and aluminium, contained an average of 8,8 per cent niobium pentoxide and 6,2 per cent tantalum pentoxide. The metallic tin-ion phase was removed from the crushed slag by magnetic separation. The slag was then leached with hydrochloric acid to remove magnesium, calcium, aluminium, iron, manganese, and the remainder of the tin. Leaching with sodium hydroxide for the removal of silica and phosphorous was followed by a final leach with hydrochloric acid for the removal of sodium. The upgraded concentrate thus obtained was purified by leaching with hydrofluoric acid, solvent extraction of niobium and tantalum into tri-n-butyl phosphate and methyl isobutyl ketone, and selective stripping of niobium with sulphuric acid and tantalum with ammonium floride. Niobium pentoxide and potassium tantalum fluoride were then precipitated by the addition of ammonium hydroxide and potassium fluoride to the respective strip liquors. The overall recoveries in the upgraded concentrate were 98 per cent for tantalum and 92 per cent for niobium. Dissolutions and recoveries of over 99 per cent were obtained for both tantalum and niobium in the purification steps. The niobium pentoxide and potassium tantalum fluoride precipitates obtained were of high purity

  9. Laser welding of a beryllium/tantalum collimator

    International Nuclear Information System (INIS)

    Lingenfelter, A.C.; Anglin, C.D.

    1985-01-01

    This report describes the methods utilized in the fabrication of a collimator from 0.001 inch thick beryllium and tantalum foil. The laser welding process proved to be an acceptable method for joining the beryllium in a standing edge joint configuration

  10. Intercalated compounds of niobium and tantalum dicalcogenides

    International Nuclear Information System (INIS)

    Wypych, F.

    1988-01-01

    The synthesis of niobium and tantalum lamellar compounds and its intercalated derivatives is described. The intercalated compounds with lithium, with alkaline metal and with metals of the first-row transition are studied, characterized by X-ray diffraction. (C.G.C.) [pt

  11. A preliminary deposit model for lithium-cesium-tantalum (LCT) pegmatites

    Science.gov (United States)

    Bradley, Dwight; McCauley, Andrew

    2013-01-01

    This report is part of an effort by the U.S. Geological Survey to update existing mineral deposit models and to develop new ones. We emphasize practical aspects of pegmatite geology that might directly or indirectly help in exploration for lithium-cesium-tantalum (LCT) pegmatites, or for assessing regions for pegmatite-related mineral resource potential. These deposits are an important link in the world’s supply chain of rare and strategic elements, accounting for about one-third of world lithium production, most of the tantalum, and all of the cesium.

  12. Selective Precipitation of Thorium lodate from a Tartaric Acid-Hydrogen Peroxide Medium Application to Rapid Spectrophotometric Determination of Thorium in Silicate Rocks and in Ores

    Science.gov (United States)

    Grimaldi, F.S.

    1957-01-01

    This paper presents a selective iodate separation of thorium from nitric acid medium containing d-tartaric acid and hydrogen peroxide. The catalytic decomposition of hydrogen peroxide is prevented by the use of 8quinolinol. A few micrograms of thorium are separated sufficiently clean from 30 mg. of such oxides as cerium, zirconium, titanium, niobium, tantalum, scandium, or iron with one iodate precipitation to allow an accurate determination of thorium with the thoronmesotartaric acid spectrophotometric method. The method is successful for the determination of 0.001% or more of thorium dioxide in silicate rocks and for 0.01% or more in black sand, monazite, thorite, thorianite, eschynite, euxenite, and zircon.

  13. Oxidation and Volatilization from Tantalum Alloy T-222 During Air Exposure

    Energy Technology Data Exchange (ETDEWEB)

    Smolik, Galen Richard; Petti, David Andrew; Sharpe, John Phillip; Schuetz, Stanley Thomas

    2000-10-01

    Tantalum alloys are one of the refractory metals with renewed consideration for high temperatures in fusion reactor applications. Tantalum alloys perform well in protective environments but oxidized readily in gases containing higher oxygen levels. In addition, the radioactive isotope Ta-182 would be produced in tantalum and could be a significant contributor to dose if mobilized. Other isotopes of importance are produced from tungsten and hafnium. Mobilization of activated products during an accident with air ingress is therefore a safety issue. In this study, we measured the extent of oxidation and mobilization from tantalum alloy T-222 oxidized in flowing air between 500 and 1200°C. This alloy nominally contains 10 wt% tungsten, 2.5 wt% hafnium and 0.01 wt% carbon. We found that the mobilization of Ta and Hf was closely linked to the occurrence of oxide spalling. These elements showed no migration from the test chamber. Some W was mobilized by volatilization as evidenced by transport from the chamber. Tungsten volatilization could occur primarily during initial stages of oxidation before an oxide scale forms and impedes the process. The mobilization of Ta and W are presented in terms of the mass flux (g/m 2 -h) as a function of test temperature. These measurements along with specific designs, activation calculations, and accident scenarios provide information useful for dose calculations of future fusion devices

  14. Oxidation and Volatilization from Tantalum Alloy T-222 During Air Exposure

    Energy Technology Data Exchange (ETDEWEB)

    Smolik, G.R.; Petti, D.A.; Sharpe, J.P.; Schuetz, S.T.

    2000-10-31

    Tantalum alloys are one of the refractory metals with renewed consideration for high temperatures in fusion reactor applications. Tantalum alloys perform well in protective environments but oxidized readily in gases containing higher oxygen levels. In addition, the radioactive isotope Ta-182 would be produced in tantalum and could be a significant contributor to dose if mobilized. Other isotopes of importance are produced from tungsten and hafnium. Mobilization of activated products during an accident with air ingress is therefore a safety issue. In this study, we measured the extent of oxidation and mobilization from tantalum alloy T-222 oxidized in flowing air between 500 and 1200 C. This alloy nominally contains 10 wt% tungsten, 2.5 wt% hafnium and 0.01 wt% carbon. We found that the mobilization of Ta and Hf was closely linked to the occurrence of oxide spalling. These elements showed no migration from the test chamber. Some W was mobilized by volatilization as evidenced by transport from the chamber. Tungsten volatilization could occur primarily during initial stages of oxidation before an oxide scale forms and impedes the process. The mobilization of Ta and W are presented in terms of the mass flux (g/m 2 -h) as a function of test temperature. These measurements along with specific designs, activation calculations, and accident scenarios provide information useful for dose calculations of future fusion devices.

  15. Recovery of hafnium radioisotopes from a proton irradiated tantalum target

    International Nuclear Information System (INIS)

    Taylor, W.A.; Garcia, J.G.; Hamilton, V.T.; Heaton, R.C.; Jamriska, D.J.; Ott, M.A.; Philips, D.R.; Radzinski, S.D.

    1998-01-01

    The 178m2 Hf nucleus, with its long half-life (31 y) and high-spin isomeric state (16 + ) is desired for new and exotic nuclear physics studies. The Los Alamos Radioisotope Program irradiated a kilogram of natural tantalum at the Los Alamos Meson Physics Facility in early 1981. After fifteen years of decay, this target was ideal for the recovery of 178m2 Hf. There was more than a millicurie of 178m2 Hf produced during this irradiation and there has been a sufficient period of time for most of the other hafnium radioisotopes to decayed away. Traditionally, separation techniques for recovering hafnium isotopes from tantalum targets employ solvent extractions with reagents that are considered hazardous. These techniques are no longer condoned because they generate a mixed-waste (radioactive and hazardous components) that can not be treated for disposal. In this paper we describe a new and unique procedure for the recovery of hafnium radioisotopes from a highly radioactive, proton irradiated, tantalum target using reagents that do not contribute a hazardous waste component. (author)

  16. A Novel Method for Assessment of Polyethylene Liner Wear in Radiopaque Tantalum Acetabular Cups

    DEFF Research Database (Denmark)

    Troelsen, Anders; Greene, Meridith E; Ayers, David C

    2015-01-01

    Conventional radiostereometric analysis (RSA) for wear is not possible in patients with tantalum cups. We propose a novel method for wear analysis in tantalum cups. Wear was assessed by gold standard RSA and the novel method in total hip arthroplasty patients enrolled in a randomized controlled...

  17. Catalytic Hydroamination of Alkynes and Norbornene with Neutral and Cationic Tantalum Imido Complexes

    Science.gov (United States)

    Anderson, Laura L.; Arnold, John; Bergman, Robert G.

    2005-01-01

    Several tantalum imido complexes have been synthesized and shown to efficiently catalyze the hydroamination of internal and terminal alkynes. An unusual hydroamination/hydroarylation reaction of norbornene catalyzed by a highly electrophilic cationic tantalum imido complex is also reported. Factors affecting catalyst activity and selectivity are discussed along with mechanistic insights gained from stoichiometric reactions. PMID:15255680

  18. Swelling and tensile properties of EBR-II-irradiated tantalum alloys for space reactor applications

    International Nuclear Information System (INIS)

    Grossbeck, M.L.; Wiffen, F.W.

    1985-01-01

    The tantalum alloys T-111, ASTAR-811C, Ta-10 W, and unalloyed tantalum were examined following EBR-II irradiation to a fluence of 1.7 x 10 26 neutrons/m 2 (E > 0.1 MeV) at temperatures from 650 to 950 K. Swelling was found to be negligible for all alloys; only tantalum was found to exhibit swelling, 0.36%. Tensile testing revealed that irradiated T-111 and Ta-10 W are susceptible to plastic instability, but ASTAR-811C and tantalum were not. The tensile properties of ASTAR-811C appeared adequate for current SP-100 space nuclear reactor designs. Irradiated, oxygen-doped T-111 exhibited no plastic deformation, and the abrupt failure was intergranular in nature. The absence of plastic instability in ASTAR-811C is encouraging for alloys containing carbide precipitates. These fine precipitates might prevent dislocation channeling, which leads to plastic instability in many bcc metals after irradiation. 10 refs., 13 figs., 8 tabs

  19. Sputter deposition of tantalum-nitride films on copper using an rf-plasma

    International Nuclear Information System (INIS)

    Walter, K.C.; Fetherston, R.P.; Sridharan, K.; Chen, A.; Shamim, M.M.; Conrad, J.R.

    1994-01-01

    A tantalum-nitride film was successfully deposited at ambient temperature on copper with a modified ion-assisted-deposition (IAD) technique. The process uses an argon and nitrogen plasma to sputter deposit from a tantalum rf-cathode and ion implant the deposited film simultaneously. Both argon and nitrogen ions are used for sputtering and ion implantation. Auger spectroscopy and x-ray diffraction were used to characterize the resulting film

  20. Review of tantalum and niobium alloy production

    International Nuclear Information System (INIS)

    Buckman, R.W. Jr.

    1984-01-01

    This paper concentrates on the current state of niobium- and tantalum-base alloy production. The materials requirements, alloy compositions of interest, and production status are discussed. Finally, a list of developments needed to support the SP-100 program will be identified. A bibliography is included

  1. Change in lattice parameter of tantalum due to dissolved hydrogen

    Directory of Open Access Journals (Sweden)

    Gyanendra P. Tiwari

    2012-06-01

    Full Text Available The volume expansion of tantalum due to the dissolved hydrogen has been determined using Bragg equation. The hydrogen was dissolved in the pure tantalum metal at constant temperature (360 °C and constant pressure (132 mbar by varying the duration of hydrogen charging. The amount of dissolved hydrogen was within the solid solubility limit. The samples with different hydrogen concentration were analyzed by X-ray diffraction technique. Slight peak shifts as well as peak broadening were observed. The relative changes of lattice parameters plotted against the hydrogen concentration revealed that the lattice parameters varied linearly with the hydrogen concentration.

  2. [Short-term curative effects of Tantalum rod treatment in early avascular necrosis].

    Science.gov (United States)

    Ye, Fu-Sheng; Ni, Zhe-Ji; Chu, Xiao-Bing; He, Bang-Jian; Li, Ju; Tong, Pei-Jian

    2013-08-01

    To explore the recent clinical curative effect of Tantalum rod in treating the early avascular necrosis. From January 2008 to November 2008, the 25 patients (39 hips) with early avascular necrosis accepted tantalum rod placement and included 9 males (11 hips) and 16 females (28 hips) with an average age of 37 years old ranging from 18 to 74 years old. Four patients (6 hips) caused by Alcoholic, 6 patients (8 hips) by hormone, 2 cases (2 hips) by traumatic, 13 cases (23 hips) by idiopathic. Steinberg preoperative stage involved 7 hips in period I, 24 hips in period II, 8 hips in period III. Curative effect analysis included preoperative and postoperative Harris score, radiographic changes and hip replacement for follow-up to accept the end of the femoral head survival rate. All patients were followed up for 6 to 47 months (averaged 37.4 months). All 12 hips imaging appeard progress,including tantalum rod exit in 1 hip, hip hemiarthroplasty collapse in 3 hips, the area increased to avascular necrosis in 8 hips. Six hips accepted total hip replacement, including imaging progress in 5 hips (41.7%, 5/12), no imaging progress in 1 hip (3.7%,1/27). All hips' Kaplan-Meier survival curves showed 6-month survival rate was (97.4 +/- 2.5)% after tantalum stick insertion, 1-year survival rate was (94.7 +/- 3.6), and 2-year survival rate was (88.6 +/- 5.4)%, 3-year survival rate was (72.5 +/- 11.2). It is effective for treatment of avascular necrosis of femoral head in Steinberg I and II by Tantalum rod, and it can effectively relieve femoral head replacement time.

  3. The effects of argon ion bombardment on the corrosion resistance of tantalum

    Science.gov (United States)

    Ramezani, A. H.; Sari, A. H.; Shokouhy, A.

    2017-02-01

    Application of ion beam has been widely used as a surface modification method to improve surface properties. This paper investigates the effect of argon ion implantation on surface structure as well as resistance against tantalum corrosion. In this experiment, argon ions with energy of 30 keV and in doses of 1 × 1017-10 × 1017 ions/cm2 were used. The surface bombardment with inert gases mainly produces modified topography and morphology of the surface. Atomic Force Microscopy was also used to patterned the roughness variations prior to and after the implantation phase. Additionally, the corrosion investigation apparatus wear was applied to compare resistance against tantalum corrosion both before and after ion implantation. The results show that argon ion implantation has a substantial impact on increasing resistance against tantalum corrosion. After the corrosion test, scanning electron microscopy (SEM) analyzed the samples' surface morphologies. In addition, the elemental composition is characterized by energy-dispersive X-ray (EDX) analysis. The purpose of this paper was to obtain the perfect condition for the formation of tantalum corrosion resistance. In order to evaluate the effect of the ion implantation on the corrosion behavior, potentiodynamic tests were performed. The results show that the corrosion resistance of the samples strongly depends on the implantation doses.

  4. An exploration in mineral supply chain mapping using tantalum as an example

    Science.gov (United States)

    Soto-Viruet, Yadira; Menzie, W. David; Papp, John F.; Yager, Thomas R.

    2013-01-01

    This report uses the supply chain of tantalum (Ta) to investigate the complexity of mineral and metal supply chains in general and show how they can be mapped. A supply chain is made up of all the manufacturers, suppliers, information networks, and so forth, that provide the materials and parts that go into making up a final product. The mineral portion of the supply chain begins with mineral material in the ground (the ore deposit); extends through a series of processes that include mining, beneficiation, processing (smelting and refining), semimanufacture, and manufacture; and continues through transformation of the mineral ore into concentrates, refined mineral commodities, intermediate forms (such as metals and alloys), component parts, and, finally, complex products. This study analyses the supply chain of tantalum beginning with minerals in the ground to many of the final goods that contain tantalum.

  5. Assembly of tantalum porous films with graded oxidation profile from size-selected nanoparticles

    Science.gov (United States)

    Singh, Vidyadhar; Grammatikopoulos, Panagiotis; Cassidy, Cathal; Benelmekki, Maria; Bohra, Murtaza; Hawash, Zafer; Baughman, Kenneth W.; Sowwan, Mukhles

    2014-05-01

    Functionally graded materials offer a way to improve the physical and chemical properties of thin films and coatings for different applications in the nanotechnology and biomedical fields. In this work, design and assembly of nanoporous tantalum films with a graded oxidation profile perpendicular to the substrate surface are reported. These nanoporous films are composed of size-selected, amorphous tantalum nanoparticles, deposited using a gas-aggregated magnetron sputtering system, and oxidized after coalescence, as samples evolve from mono- to multi-layered structures. Molecular dynamics computer simulations shed light on atomistic mechanisms of nanoparticle coalescence, which govern the films porosity. Aberration-corrected (S) TEM, GIXRD, AFM, SEM, and XPS were employed to study the morphology, phase and oxidation profiles of the tantalum nanoparticles, and the resultant films.

  6. New Sesame equation of state for tantalum

    International Nuclear Information System (INIS)

    Greeff, C. W.; Johnson, J. D.

    2000-01-01

    A new Sesame equation of state (EOS) table has been created for tantalum. This EOS incorporates new high pressure Hugoniot data and diamond anvil cell compression data. The new EOS gives better agreement with this data as well as with sound speeds and Hugoniot curves of porous samples

  7. Cast and hipped gamma titanium aluminum alloys modified by chromium, boron, and tantalum

    International Nuclear Information System (INIS)

    Huang, Shyhchin.

    1993-01-01

    A cast body is described of a chromium, boron, and tantalum modified titanium aluminum alloy, said alloy consisting essentially of titanium, aluminum, chromium, boron, and tantalum in the following approximate atomic ratio: Ti-Al 45-50 Cr 1-3 Ta 1-8 B 0.1-0.3 , and said alloy having been prepared by casting the alloy to form said cast body and by HIPping said body

  8. Tantalum-based multilayer coating on cobalt alloys in total hip and knee replacement

    Energy Technology Data Exchange (ETDEWEB)

    Balagna, C., E-mail: cristina.balagna@polito.it [Institute of Materials Engineering and Physics, Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24,10129 Torino (Italy); Faga, M.G. [Istituto di Scienza e Tecnologia dei Materiali Ceramici, Consiglio Nazionale delle Ricerche, Strada delle Cacce 73, 10135 Torino (Italy); Spriano, S. [Institute of Materials Engineering and Physics, Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24,10129 Torino (Italy)

    2012-05-01

    Cobalt-chromium-molybdenum (CoCrMo) alloys are widely used in total hip and knee joint replacement, due to high mechanical properties and resistance to wear and corrosion. They are able to form efficient artificial joints by means of coupling metal-on-polymer or metal-on-metal contacts. However, a high concentration of stress and direct friction between surfaces leads to the formation of polyethylene wear debris and the release of toxic metal ions into the human body, limiting, as a consequence, the lifetime of implants. The aim of this research is a surface modification of CoCrMo alloys in order to improve their biocompatibility and to decrease the release of metal ions and polyethylene debris. Thermal treatment in molten salts was the process employed for the deposition of tantalum-enriched coating. Tantalum and its compounds are considered biocompatible materials with low ion release and high corrosion resistance. Three different CoCrMo alloys were processed as substrates. An adherent coating of about 1 {mu}m of thickness, with a multilayer structure consisting of two tantalum carbides and metallic tantalum was deposited. The substrates and modified layers were characterized by means of structural, chemical and morphological analysis. Moreover nanoindentation, scratch and tribological tests were carried out in order to evaluate the mechanical behavior of the substrates and coating. The hardness of the coated samples increases more than double than the untreated alloys meanwhile the presence of the coating reduced the wear volume and rate of about one order of magnitude. - Highlights: Black-Right-Pointing-Pointer Thermal treatment in molten salts deposits a Ta-based coating on Co-based alloys. Black-Right-Pointing-Pointer Coating is composed by one or two tantalum carbides and/or metallic tantalum. Black-Right-Pointing-Pointer The coating structure depends on thermal temperature and substrates carbon content. Black-Right-Pointing-Pointer Coating is able to

  9. Poisoning Experiments Aimed at Discriminating Active and Less-Active Sites of Silica-Supported Tantalum Hydride for Alkane Metathesis

    KAUST Repository

    Saggio, Guillaume

    2010-10-04

    Only 50% of the silica-supported tantalum hydride sites are active in the metathesis of propane. Indeed, more than 45% of the tantalum hydride can be eliminated by a selective oxygen poisoning of inactive sites with no significant decrease in the global turnover. Conversely, cyclopentane induces no such selective poisoning. Hence, the active tantalum hydride sites that show greater resistance to oxygen poisoning correspond to the νTa-H bands of higher wavenumbers, particularly that at 1860cm-1. These active tantalum hydride sites should correspond to tris- or monohydride species relatively far from silica surface oxygen atoms. © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Recovery of metal values and hydrofluoric acid from tantalum and columbium waste sludge

    International Nuclear Information System (INIS)

    Bielecki, E.; Romberger, K.; Bakke, B.; Hobin, M.A.; Clark, C.

    1992-01-01

    A metallurgical processing system for economically recovering metal values, such as columbium, tantalum, thorium, and uranium from dilute source solids, such as digestion sludges, by a series of steps including: (1) slurrying the source solids with dilute hydrofluoric acid to produce a solid phase and a liquid phase containing dissolved tantalum and columbium, then extracting tantalum and/or columbium from the liquid phase by means of a liquid ion-exchange process and then, additionally; (2) roasting the solid phase with sulfuric acid to recover and recycle hydrofluoric acid, leaching the roasted solids with dilute sulfuric acid to produce a disposable solid phase and a liquid phase containing thorium and uranium, and extracting thorium and uranium from the liquid phase by means of a liquid-liquid amine extraction process

  11. Tantalum-containing Z-phase in 12%Cr martensitic steels

    DEFF Research Database (Denmark)

    Danielsen, Hilmar Kjartansson; Hald, John

    2009-01-01

    Z-phases in tantalum-containing 12%Cr steels have been investigated. In 12%Cr steel without any Nb or V, the formation of CrTaN Z-phases was observed. In 12%Cr steel which also contained V, the Ta entered Z-phase as a minor element, Cr(V,Ta)N. The crystal structure of Cr(V,Ta)N seems to be identi......Z-phases in tantalum-containing 12%Cr steels have been investigated. In 12%Cr steel without any Nb or V, the formation of CrTaN Z-phases was observed. In 12%Cr steel which also contained V, the Ta entered Z-phase as a minor element, Cr(V,Ta)N. The crystal structure of Cr(V,Ta)N seems...

  12. Evaluation of corrosion behaviour of tantalum coating obtained by low pressure chemical vapor deposition using electrochemical polarization

    Science.gov (United States)

    Levesque, A.; Bouteville, A.; de Baynast, H.; Laveissière, B.

    2002-06-01

    antalum coatings are elaborated on titanium substrates through Low Pressure Chemical Vapor Deposition from tantalum pentachloride-hydrogen gaseous phase at a deposition temperature of 800 °C and a total pressure of 3.3 mbar. The aim of this paper is to evaluate the effectiveness of this tantalum coating in corrosive solution. Optical Microscopy and Scanning Electron Microscopy observations reveal that deposits are of 1.7 μm in thickness and conformal. The corrosion resistance of tantalum coated titanium substrates is quantified through standard potentiodynamic polarization method. Even for tantalum coatings exhibiting some defects as pores, the corrosion current density is as low as 0.25 mA/cm^2.in very agressive solutions like kroll reagent (HN03/HF).

  13. Effect of Reverse Bias Stress on Leakage Currents and Breakdown Voltages of Solid Tantalum Capacitors

    Science.gov (United States)

    Teverovsky, Alexander A.

    2011-01-01

    The majority of solid tantalum capacitors are produced by high-temperature sintering of a fine tantalum powder around a tantalum wire followed by electrolytic anodization that forms a thin amorphous Ta2O5 dielectric layer and pyrolysis of manganese nitrite on the oxide to create a conductive manganese dioxide electrode. A contact to tantalum wire is used as anode terminal and to the manganese layer as a cathode terminal of the device. This process results in formation of an asymmetric Ta -- Ta2O5 -- MnO2 capacitor that has different characteristics at forward (positive bias applied to tantalum) and reverse (positive bias applied to manganese cathode) voltages. Reverse bias currents might be several orders of magnitude larger than forward leakage currents so I-V characteristics of tantalum capacitors resemble characteristics of semiconductor rectifiers. Asymmetric I-V characteristics of Ta -- anodic Ta2O5 systems have been observed at different top electrode materials including metals, electrolytes, conductive polymers, and manganese oxide thus indicating that this phenomenon is likely related to the specifics of the Ta -- Ta2O5 interface. There have been multiple attempts to explain rectifying characteristics of capacitors employing anodic tantalum pentoxide dielectrics. A brief review of works related to reverse bias (RB) behavior of tantalum capacitors shows that the mechanism of conduction in Ta -- Ta2O5 systems is still not clear and more testing and analysis is necessary to understand the processes involved. If tantalum capacitors behave just as rectifiers, then the assessment of the safe reverse bias operating conditions would be a relatively simple task. Unfortunately, these parts can degrade with time under reverse bias significantly, and this further complicates analysis of the I-V characteristics and establishing safe operating areas of the parts. On other hand, time dependence of reverse currents might provide additional information for investigation of

  14. Clustering of transmutation elements tantalum, rhenium and osmium in tungsten in a fusion environment

    Science.gov (United States)

    You, Yu-Wei; Kong, Xiang-Shan; Wu, Xuebang; Liu, C. S.; Fang, Q. F.; Chen, J. L.; Luo, G.-N.

    2017-08-01

    The formation of transmutation solute-rich precipitates has been reported to seriously degrade the mechanical properties of tungsten in a fusion environment. However, the underlying mechanisms controlling the formation of the precipitates are still unknown. In this study, first-principles calculations are therefore performed to systemically determine the stable structures and binding energies of solute clusters in tungsten consisting of tantalum, rhenium and osmium atoms as well as irradiation-induced vacancies. These clusters are known to act as precursors for the formation of precipitates. We find that osmium can easily segregate to form clusters even in defect-free tungsten alloys, whereas extremely high tantalum and rhenium concentrations are required for the formation of clusters. Vacancies greatly facilitate the clustering of rhenium and osmium, while tantalum is an exception. The binding energies of vacancy-osmium clusters are found to be much higher than those of vacancy-tantalum and vacancy-rhenium clusters. Osmium is observed to strongly promote the formation of vacancy-rhenium clusters, while tantalum can suppress the formation of vacancy-rhenium and vacancy-osmium clusters. The local strain and electronic structure are analyzed to reveal the underlying mechanisms governing the cluster formation. Employing the law of mass action, we predict the evolution of the relative concentration of vacancy-rhenium clusters. This work presents a microscopic picture describing the nucleation and growth of solute clusters in tungsten alloys in a fusion reactor environment, and thereby explains recent experimental phenomena.

  15. Silicon transport in sputter-deposited tantalum layers grown under ion bombardment

    International Nuclear Information System (INIS)

    Gallais, P.; Hantzpergue, J.J.; Remy, J.C.; Roptin, D.

    1988-01-01

    Tantalum was sputter deposited on (111) Si substrate under low-energy ion bombardment in order to study the effects of the ion energy on the silicon transport into the Ta layer. The Si substrate was heated up to 500 0 C during growth. For ion energies up to 180 eV silicon is not transported into tantalum and the growth temperature has no effect. An ion bombardment energy of 280 eV enhances the transport of silicon throughout the tantalum layer. Growth temperatures up to 300 0 C have no effect on the silicon transport which is mainly enhanced by the ion bombardment. For growth temperatures between 300 and 500 0 C, the silicon transport is also enhanced by the thermal diffusion. The experimental depth distribution of silicon is similar to the theoretical depth distribution calculated for the case of an interdiffusion. The ion-enhanced process of silicon transport is characterized by an activation energy of 0.4 eV. Silicon into the layers as-grown at 500 0 C is in both states, amorphous silicide and microcrystalline cubic silicon

  16. Obtainment of tantalum oxide from national ores

    International Nuclear Information System (INIS)

    Pinatti, D.G.; Ribeiro, S.; Martins, A.H.

    1988-01-01

    The experimental results of tantalum oxides (Ta 2 O 5 ) obtainment from Brazilian ores of tantalite and columbite are described. This study is a part of the technologic and scientific research design of refractory metals (Ti, Zr, Hf, V, Nb, Ta, Cr, Mo and W) and correlate ceramics. (C.G.C.) [pt

  17. Tantalum coating of porous carbon scaffold supplemented with autologous bone marrow stromal stem cells for bone regeneration in vitro and in vivo.

    Science.gov (United States)

    Wei, Xiaowei; Zhao, Dewei; Wang, Benjie; Wang, Wei; Kang, Kai; Xie, Hui; Liu, Baoyi; Zhang, Xiuzhi; Zhang, Jinsong; Yang, Zhenming

    2016-03-01

    Porous tantalum metal with low elastic modulus is similar to cancellous bone. Reticulated vitreous carbon (RVC) can provide three-dimensional pore structure and serves as the ideal scaffold of tantalum coating. In this study, the biocompatibility of domestic porous tantalum was first successfully tested with bone marrow stromal stem cells (BMSCs) in vitro and for bone tissue repair in vivo. We evaluated cytotoxicity of RVC scaffold and tantalum coating using BMSCs. The morphology, adhesion, and proliferation of BMSCs were observed via laser scanning confocal microscope and scanning electron microscopy. In addition, porous tantalum rods with or without autologous BMSCs were implanted on hind legs in dogs, respectively. The osteogenic potential was observed by hard tissue slice examination. At three weeks and six weeks following implantation, new osteoblasts and new bone were observed at the tantalum-host bone interface and pores. At 12 weeks postporous tantalum with autologous BMSCs implantation, regenerated trabecular equivalent to mature bone was found in the pore of tantalum rods. Our results suggested that domestic porous tantalum had excellent biocompatibility and could promote new bone formation in vivo. Meanwhile, the osteogenesis of porous tantalum associated with autologous BMSCs was more excellent than only tantalum implantation. Future clinical studies are warranted to verify the clinical efficacy of combined implantation of this domestic porous tantalum associated with autologous BMSCs implantation and compare their efficacy with conventional autologous bone grafting carrying blood vessel in patients needing bone repairing. © 2016 by the Society for Experimental Biology and Medicine.

  18. Porous tantalum coatings prepared by vacuum plasma spraying enhance bmscs osteogenic differentiation and bone regeneration in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Ze Tang

    Full Text Available Tantalum, as a potential metallic implant biomaterial, is attracting more and more attention because of its excellent anticorrosion and biocompatibility. However, its significantly high elastic modulus and large mechanical incompatibility with bone tissue make it unsuitable for load-bearing implants. In this study, porous tantalum coatings were first successfully fabricated on titanium substrates by vacuum plasma spraying (VPS, which would exert the excellent biocompatibility of tantalum and alleviate the elastic modulus of tantalum for bone tissue. We evaluated cytocompatibility and osteogenesis activity of the porous tantalum coatings using human bone marrow stromal cells (hBMSCs and its ability to repair rabbit femur bone defects. The morphology and actin cytoskeletons of hBMSCs were observed via electron microscopy and confocal, and the cell viability, proliferation and osteogenic differentiation potential of hBMSCs were examined quantitatively by PrestoBlue assay, Ki67 immunofluorescence assay, real-time PCR technology and ALP staining. For in vivo detection, the repaired femur were evaluated by histomorphology and double fluorescence labeling 3 months postoperation. Porous tantalum coating surfaces promoted hBMSCs adhesion, proliferation, osteogenesis activity and had better osseointegration and faster new bone formation rate than titanium coating control. Our observation suggested that the porous tantalum coatings had good biocompatibility and could enhance osseoinductivity in vitro and promote new bone formation in vivo. The porous tantalum coatings prepared by VPS is a promising strategy for bone regeneration.

  19. Antimicrobial activity of tantalum oxide coatings decorated with Ag nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Huiliang, E-mail: hlc@mail.sic.ac.cn; Meng, Fanhao; Liu, Xuanyong, E-mail: xyliu@mail.sic.ac.cn [State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China)

    2016-07-15

    Silver plasma immersion ion implantation was used to decorate silver nanoparticles (Ag NPs) on tantalum oxide (TO) coatings. The coatings acted against bacterial cells (Staphylococcus epidermidis) in the dark by disrupting their integrity. The action was independent of silver release and likely driven by the electron storage capability of the Schottky barriers established at the interfaces between Ag NPs and the TO support. Moreover, no apparent side effect on the adhesion and differentiation of rat bone mesenchymal stem cells was detected when using Ag NPs-modified TO coatings. These results demonstrate that decoration of tantalum oxide using Ag NPs could be a promising procedure for improving the antibacterial properties for orthopedic and dental implants.

  20. Final report on the safety assessment of potassium silicate, sodium metasilicate, and sodium silicate.

    Science.gov (United States)

    Elmore, Amy R

    2005-01-01

    Potassium Silicate, Sodium Metasilicate, and Sodium Silicate combine metal cations with silica to form inorganic salts used as corrosion inhibitors in cosmetics. Sodium Metasilicate also functions as a chelating agent and Sodium Silicate as a buffering and pH adjuster. Sodium Metasilicate is currently used in 168 formulations at concentrations ranging from 13% to 18%. Sodium Silicate is currently used in 24 formulations at concentrations ranging from 0.3% to 55%. Potassium Silicate and Sodium Silicate have been reported as being used in industrial cleaners and detergents. Sodium Metasilicate is a GRAS (generally regarded as safe) food ingredient. Aqueous solutions of Sodium Silicate species are a part of a chemical continuum of silicates based on an equilibrium of alkali, water, and silica. pH determines the solubility of silica and, together with concentration, determines the degree of polymerization. Sodium Silicate administered orally is readily absorbed from the alimentary canal and excreted in the urine. The toxicity of these silicates has been related to the molar ratio of SiO2/Na2O and the concentration being used. The Sodium Metasilicate acute oral LD50 ranged from 847 mg/kg in male rats to 1349.3 mg/kg in female rats and from 770 mg/kg in female mice to 820 mg/kg in male mice. Gross lesions of variable severity were found in the oral cavity, pharynx, esophagus, stomach, larynx, lungs, and kidneys of dogs receiving 0.25 g/kg or more of a commercial detergent containing Sodium Metasilicate; similar lesions were also seen in pigs administered the same detergent and dose. Male rats orally administered 464 mg/kg of a 20% solution containing either 2.0 or 2.4 to 1.0 ratio of sodium oxide showed no signs of toxicity, whereas doses of 1000 and 2150 mg/kg produced gasping, dypsnea, and acute depression. Dogs fed 2.4 g/kg/day of Sodium Silicate for 4 weeks had gross renal lesions but no impairment of renal function. Dermal irritation of Potassium Silicate, Sodium

  1. Activation analysis of trace amounts of rare earth in high purity tantalum

    International Nuclear Information System (INIS)

    Ishibashi, Wataru; Saito, Shinichi; Hirayama, Tooru.

    1975-01-01

    It is necessary to separate rare earth from tantalum by rapid methods in order to remove effects of a strong radioactivity and a short half-life. Tantalum is extracted with 10%N-lauryl (trialkylmethyl) amino-benzene pre-equilibrated with a solution of 9 M hydrochloric and 0.15 M hydrofluoric acid. A non-radioactive rare earth element is added to this aqueous solution, a precipitate of trace amounts of radioactive rare earth in aqueous solution is formed by this addition of rare earth. Some factors in the determination are: 1) the effect of the irradiation position of the sample in the atomic reactor, 2) the effect on the extraction with 10%N-lauryl (trialkylmethyl) amino-benzene for the radioactive rare earth, 3) the effect of the concentration of hydrofluoric acid, ammonia water and nitric acid on co-precipitation. As a result of the investigation we obtained the following satisfactory results: 1) Rare earth was not effected by the extraction of tantalum with 10%N-lauryl (trialkylmethyl) amino-benzene. 2) The recovery of rare earth by co-precipitation increases when an ammonium ion coexists, and when the concentration of hydrofluoric acid decreases, but the recovery decreases with the increase of nitric acid concentration. 3) The time required for the extraction is 9 hours. In case of determination for dysprosium, tantalum extracted with 10%N-lauryl (trialkylmethyl) amino-benzene before activation and the time for separation is 2 hours. (auth.)

  2. Nanostructured silicate polymer concrete

    Directory of Open Access Journals (Sweden)

    Figovskiy Oleg L'vovich

    2014-03-01

    Full Text Available It has been known that acid-resistant concretes on the liquid glass basis have high porosity (up to 18~20 %, low strength and insufficient water resistance. Significant increasing of silicate matrix strength and density was carried out by incorporation of special liquid organic alkali-soluble silicate additives, which block superficial pores and reduce concrete shrinkage deformation. It was demonstrated that introduction of tetrafurfuryloxisilane additive sharply increases strength, durability and shock resistance of silicate polymer concrete in aggressive media. The experiments showed, that the strength and density of silicate polymer concrete increase in case of decreasing liquid glass content. The authors obtained optimal content of silicate polymer concrete, which possesses increased strength, durability, density and crack-resistance. Diffusive permeability of concrete and its chemical resistance has been investigated in various corroding media.

  3. Synthesis and characterization of polystyrene embolization particles doped with tantalum oxide nanoparticles for X-ray contrast.

    Science.gov (United States)

    Morrison, Rachel; Thompson, James; Bird, Luke; Hill, Mark A; Townley, Helen

    2015-08-01

    Radiopaque and fluorescent embolic particles have been synthesized and characterised to match the size of vasculature found in tumours to ensure effective occlusion of the vessels. A literature search showed that the majority of vessels surrounding a tumour were less than 50 µm and therefore polydispersed polystyrene particles with a peak size of 50 µm have been synthesised. The embolic particles contain 5-8 nm amorphous tantalum oxide nanoparticles which provide X-ray contrast. Embolic particles containing up to 9.4 wt% tantalum oxide were prepared and showed significant contrast compared to the undoped polystyrene particles. The X-ray contrast of the embolic particles was shown to be linear (R(2) = 0.9) with respect to the concentration of incorporated tantalum nanoparticles. A model was developed which showed that seventy-five 50 µm embolic particles containing 10% tantalum oxide could provide the same contrast as 5 cm of bone. Therefore, the synthesized particles would provide sufficient X-ray contrast to enable visualisation within a tumour.

  4. Potentiometric determination of the tungsten content of tantalum-tungsten alloys with chromium II

    International Nuclear Information System (INIS)

    Gavra, Z.; Ronen, S.; Levin, R.

    1977-05-01

    A method was developed for the potentiometric determination of the tungsten content of tantalum-tungsten alloys of different compositions. These were dissolved under conditions that enabled the tungsten content to be determined with chromium (II). Phosphoric acid was selected as a suitable complexing agent for the prevention of the precipitation of tungsten and tantalum compounds. The use of chromium (II) required an oxygen-tight system and therefore the work was carried out in suitable vessels for storage and tritation

  5. Niobium, tantalum and titanium extraction from natural and technogenic raw materials of the Kola Peninsula by liquid-liquid extraction methods

    International Nuclear Information System (INIS)

    Kassikova, N.I.; Kassikov, A.G.; Balabanov, Yu.I.; Petrov, V.B.; Kalinnikov, V.T.

    2003-01-01

    Such rare metals as niobium and tantalum are important strategic materials underlying many of the modern advanced technologies. Since the extraction and processing of rare metal concentrates from own deposits has diminished abruptly in recent years, it is essential to look into the possibility of extracting these elements from various production wastes. This work discusses liquid-liquid extraction and purification of niobium, tantalum and titanium from process solutions of loparite, perovskite and sphene concentrate decomposition with sulphuric and hydrochloric acids; niobium from lithium niobate production wastes decomposed by hydrochloric acid; and tantalum from tantalum capacitor and heat-resistant alloy wastes. (Original)

  6. Tantalum X-ray contrast media, by M.G. Zuev and L.P. Larionov (Ekaterinburg: UrO RAN, 2002. 155 p.)

    International Nuclear Information System (INIS)

    Zhuravleva, E.Yu.

    2004-01-01

    The monograph of M.G. Zuev and L.P. Larionov Tantalum X-ray contrast media (Solid state chemistry for medicine series) is discussed. The monograph includes information on physical and chemical properties of tantalum, rare earths, and their oxides, phase compositions and phase diagrams of M 2 O 3 -Ta 2 O 5 (M - rare earths) systems is performed. Data on preclinical tests of yttrium orthotantalate and lanthanum orthotantalate as X-ray contrast media are given. Procedures for the production of X-ray contrast media involving tantalum oxide, rare earth tantalate and tantalum powder are described [ru

  7. 21 CFR 573.260 - Calcium silicate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Calcium silicate. 573.260 Section 573.260 Food and... Listing § 573.260 Calcium silicate. Calcium silicate, including synthetic calcium silicate, may be safely used as an anticaking agent in animal feed, provided that the amount of calcium silicate does not...

  8. Preparation of tantalum carbide layers on carbon using the metalliding process

    Energy Technology Data Exchange (ETDEWEB)

    Massot, L. [Laboratoire de Genie Chimique UMR 5503, Departement Procedes Electrochimiques, Universite Paul Sabatier, 31062 Toulouse Cedex 9 (France)], E-mail: massot@chimie.ups-tlse.fr; Chamelot, P. [Laboratoire de Genie Chimique UMR 5503, Departement Procedes Electrochimiques, Universite Paul Sabatier, 31062 Toulouse Cedex 9 (France); Winterton, P. [UFR Langues vivantes, Universite Paul Sabatier, 31062 Toulouse Cedex 9 (France); Taxil, P. [Laboratoire de Genie Chimique UMR 5503, Departement Procedes Electrochimiques, Universite Paul Sabatier, 31062 Toulouse Cedex 9 (France)

    2009-03-05

    This work concerns the preparation of tantalum carbide films on carbon-based substrates using the metalliding process in LiF/NaF molten medium (60-40 mol%), containing tantalum heptafluorotantalate ions TaF{sub 7}{sup 2-}, in the 800-900 deg. C temperature range. The process uses a metalliding cell symbolised as: (+) C, TaC{sub x}/LiF-NaF-K{sub 2}TaF{sub 7}/Ta (-) involving the dissolution of Ta at the anode and the reduction of Ta ions in TaC{sub x} at the cathode. The experiments of this process were performed with different carbon substrates as cathodic material: graphite, glassy carbon and carbon braid. Samples analysis (SEM-EDS and XRD) after metalliding showed the formation of tantalum carbides (TaC and Ta{sub 2}C) at the surface of the substrate at a relatively low temperature. A kinetic study, based on the control of the cathodic reaction by the intermetallic diffusion, allowed the diffusion parameters, such as Ta/C diffusion coefficient, to be determined at several temperatures. Furthermore, the results are shown to be independent of the type of carbon substrate.

  9. Conflict minerals from the Democratic Republic of the Congo: global tantalum processing plants, a critical part of the tantalum supply chain

    Science.gov (United States)

    Papp, John F.

    2014-01-01

    The U.S. Geological Survey (USGS) analyzes mineral and metal supply chains to identify and describe major components of mineral and metal material flows from ore extraction, through intermediate forms, to a final product. Supply chain analyses may be used (1) to identify risks to the United States associated with the supply of critical and strategic minerals and metals and (2) to provide greater supply chain transparency so that policymakers have the fact-based information needed to formulate public policy. This fact sheet focuses on the post-mining/pre-consumer-product part of the tantalum supply chain. The USGS National Minerals Information Center (NMIC) has been asked by governmental and non-governmental organizations to provide information about tantalum, tin, tungsten, and gold (collectively known as “3TG minerals”) processing facilities worldwide in response to U.S. legislation aimed at identifying and removing the supply chain links between the trade in these minerals and civil unrest in the Democratic Republic of the Congo and adjacent countries.

  10. Niobium Nb and tantalum Ta

    International Nuclear Information System (INIS)

    Busev, A.I.; Tiptsova, V.G.; Ivanov, V.M.

    1978-01-01

    The basic methods for determining niobium and tantalum in various objects are described. Nb and Ta are separated with the aid of N-benzoyl-N-phenylhydroxylamine by precipitating Nb(5) from a tartaric acid solution with subsequent precipitation of Ta from the filtrate. The gravimetric determination of Nb and Ta in steels is based on their quantitative separation from a diluted solution by way of hydrolysis with subsequent after-precipitation with phenylarsonic acid (in the absence of W). The gravimetric determination of Nb in the presence of W is carried out with the aid of Cupferron. To determine Nb in its carbide, Nb(5) reduced to Nb(3) is titrated with a solution of K 2 Cr 2 O 7 in the presence of phenyl-anthranilic acid. The photometric determination of Nb in tungsten-containing steels and in ores containing Ti, W, Mo and Cr is based on the rhodanide method. Nb is determined in alloys with Zr and Ti photometrically with the aid of 4-(2-pyridylazo)-resorcin and in alloyed steels with the aid of benzhydroxamic acid. The latter complex is extracted with chloroform. This method is used to determine Nb in rocks. The photometric determination of Ta in TiCl 4 is carried out with the aid of pyrogallol, in commercial niobium with the aid of methyl violet, and in steel with the aid of 4-(-pyridylazo)-resorcin. Also described is the polarographic determination of Nb in tantalum pentoxide

  11. Case history of tantalum-weld cracking

    International Nuclear Information System (INIS)

    Knorovsky, G.A.

    1982-01-01

    Tantalum welding is normally a routine operation. Of course, the routine involves careful cleaning beforehand, and welding in an atmosphere which excludes reactive gases (O 2 , N 2 , H 2 ). Recently a weld cracking problem was encountered at SNLA despite the fact that normal precautions had been taken. This account reviews what happened, the analytical procedures followed to determine the unusual source of the problem, and the remedy which solved the problem

  12. A novel tantalum-based sol-gel packed microextraction syringe for highly specific enrichment of phosphopeptides in MALDI-MS applications.

    Science.gov (United States)

    Çelikbıçak, Ömür; Atakay, Mehmet; Güler, Ülkü; Salih, Bekir

    2013-08-07

    A new tantalum-based sol-gel material was synthesized using a unique sol-gel synthesis pathway by PEG incorporation into the sol-gel structure without performing a calcination step. This improved its chemical and physical properties for the high capacity and selective enrichment of phosphopeptides from protein digests in complex biological media. The specificity of the tantalum-based sol-gel material for phosphopeptides was evaluated and compared with tantalum(V) oxide (Ta2O5) in different phosphopeptide enrichment applications. The tantalum-based sol-gel and tantalum(V) oxide were characterized in detail using FT-IR spectroscopy, X-ray diffraction (XRD) and scanning electron microscopy (SEM), and also using a surface area and pore size analyzer. In the characterization studies, the surface morphology, pore volume, crystallinity of the materials and PEG incorporation into the sol-gel structure to produce a more hydrophilic material were successfully demonstrated. The X-ray diffractograms of the two different materials were compared and it was noted that the broad signals of the tantalum-based sol-gel clearly represented the amorphous structure of the sol-gel material, which was more likely to create enough surface area and to provide more accessible tantalum atoms for phosphopeptides to be easily adsorbed when compared with the neat and more crystalline structure of Ta2O5. Therefore, the phosphopeptide enrichment performance of the tantalum-based sol-gels was found to be remarkably higher than the more crystalline Ta2O5 in our studies. Phosphopeptides at femtomole levels could be selectively enriched using the tantalum-based sol-gel and detected with a higher signal-to-noise ratio by matrix-assisted laser desorption/ionization-mass spectrometer (MALDI-MS). Moreover, phosphopeptides in a tryptic digest of non-fat bovine milk as a complex real-world biological sample were retained with higher yield using a tantalum-based sol-gel. Additionally, the sol-gel material

  13. Hot pressing of nanocrystalline tantalum using high frequency induction heating and pulse plasma sintering

    Science.gov (United States)

    Jakubowicz, J.; Adamek, G.; Sopata, M.; Koper, J. K.; Siwak, P.

    2017-12-01

    The paper presents the results of nanocrystalline powder tantalum consolidation using hot pressing. The authors used two different heating techniques during hot pressing: high-frequency induction heating (HFIH) and pulse plasma sintering (PPS). A comparison of the structure, microstructure, mechanical properties and corrosion resistance of the bulk nanocrystalline tantalum obtained in both techniques was performed. The nanocrystalline powder was made to start from the microcrystalline one using the high-energy ball milling process. The nanocrystalline powder was hot-pressed at 1000 °C, whereas, for comparison, the microcrystalline powder was hot pressed up to 1500 °C for proper consolidation. The authors found that during hot pressing, the powder partially reacts with the graphite die covered by boron nitride, which facilitated punches and powder displacement in the die during densification. Tantalum carbide and boride in the nanocrystalline material was found, which can improve the mechanical properties. The hardness of the HFIH and PPS nanocrystalline tantalum was as high as 625 and 615 HV, respectively. The microstructure was more uniform in the PPS nanomaterial. The corrosion resistance in both cases deteriorated, in comparison to the microcrystalline material, while the PPS material corrosion resistance was slightly better than that of the HFIH one.

  14. TiO2 effect on break-down of low-grade tantalum-niobium concentrates in the process of sulphatization

    International Nuclear Information System (INIS)

    Petrova, N.V.; Popov, A.D.; Mulenko, V.N.

    1982-01-01

    The effect of TiO 2 additive or materials containing it on tantalum-niobate decomposition in the process of sulphatization is investigated. It is shown that favourable effect of titanium dioxide in the process of sulphatization is especially noticeable in reprocessing of hard-brokening down tantalum-niobium concentrates with low Nb:Ta ratio etc. Chemical composition and type of tantalum-niobium mineralization of enrichment products used in the given investigation is presented. It is stated that the degree of concentrate break-down under similar sulphatization conditions (t=230 deg C; tau=2 h) essentially depends on the quantity of the introduced titanium dioxide. It is shown that sulphatization in the presence of titanium dioxide additive or materials containing it permits to exercise practically complete break-down of lean tantalum-niobium raw material, to avoid application of complexers in leaching of sulphatization products

  15. Electron microprobe analysis of tantalum--nitride thin films

    International Nuclear Information System (INIS)

    Stoltz, D.L.; Starkey, J.P.

    1979-06-01

    Quantitative chemical analysis of 500- and 2000-angstrom tantalum--nitride films on glass substrates has been accomplished using an electron microprobe x-ray analyzer. In order to achieve this analysis, modifications to the microprobe were necessary. A description of the calibration procedure, the method of analysis, and the quantitative results are discussed

  16. Poisoning Experiments Aimed at Discriminating Active and Less-Active Sites of Silica-Supported Tantalum Hydride for Alkane Metathesis

    KAUST Repository

    Saggio, Guillaume; Taoufik, Mostafa; Basset, Jean-Marie; Thivolle-Cazat, Jean

    2010-01-01

    Only 50% of the silica-supported tantalum hydride sites are active in the metathesis of propane. Indeed, more than 45% of the tantalum hydride can be eliminated by a selective oxygen poisoning of inactive sites with no significant decrease

  17. Corrosion resistance of high-performance materials titanium, tantalum, zirconium

    CERN Document Server

    2012-01-01

    Corrosion resistance is the property of a material to resist corrosion attack in a particular aggressive environment. Although titanium, tantalum and zirconium are not noble metals, they are the best choice whenever high corrosion resistance is required. The exceptionally good corrosion resistance of these high–performance metals and their alloys results from the formation of a very stable, dense, highly adherent, and self–healing protective oxide film on the metal surface. This naturally occurring oxide layer prevents chemical attack of the underlying metal surface. This behavior also means, however, that high corrosion resistance can be expected only under neutral or oxidizing conditions. Under reducing conditions, a lower resistance must be reckoned with. Only very few inorganic and organic substances are able to attack titanium, tantalum or zirconium at ambient temperature. As the extraordinary corrosion resistance is coupled with an excellent formability and weldability these materials are very valua...

  18. Electrodepositions on Tantalum in Alkali Halide Melts

    DEFF Research Database (Denmark)

    Barner, Jens H. Von; Jensen, Annemette Hindhede; Christensen, Erik

    2013-01-01

    Surface layers of tantalum metal were electrodeposited on steel from K2TaF7-LiF-NaF-KF melts. With careful control of the oxide contents dense and adherent deposits could be obtained by pulse plating. In NaCl-KCl-NaF-Na2CO3 and NaCl-KCl-Na2CO3 melts carbonate ions seems to be reduced to carbon in...

  19. Electrodepositions on Tantalum in alkali halide melts

    DEFF Research Database (Denmark)

    Barner, Jens H. Von; Jensen, Annemette Hindhede; Christensen, Erik

    2012-01-01

    Surface layers of tantalum metal were electrodeposited on steel from K 2TaF7-LiF-NaF-KF melts. With careful control of the oxide contents dense and adherent deposits could be obtained by pulse plating. In NaCl-KCl-NaF-Na2CO3 and NaCl-KCl-Na2CO 3 melts carbonate ions seems to be reduced to carbon ...

  20. Technological challenges in extractive metallurgy and refining of niobium, tantalum and preparation of their alloys

    International Nuclear Information System (INIS)

    Mirji, K.V.; Sheela; Saibaba, N.

    2016-01-01

    Manufacturing of refractory and reactive metals, their alloys and fabricated products has been always difficult due to their high affinity with atmospheric gases, stringent specifications and exhaustive quality requirements. In the field of development of these materials, Nuclear Fuel Complex (NFC), Hyderabad has been at the fore front in accepting the challenges for the advancement of technological growth. Extensive developments have been carried out during the last few decades in the field of niobium, tantalum, zirconium etc in the form of pure metal, their compounds and alloys. Over the period of time, efforts have been made for developing sophisticated facilities along with trained man power for manufacturing of critical items for which technical knowhow is not available either with private industries or any other organizations in the country. In the field of reactive metals, though general theory is well established, production is intriguing and requires expert handling on the field. At NFC, efforts were put towards industrial adoptability of the useful knowledge gained from lab scale to reliable production scale. Comprehensive study was conducted to systematically study the effects of various process parameters starting from ore to the metals and their alloys, equipment were modified for ease of operation with stress on recycling/reusing of the waste and handling of effluents. However scale of operation and therefore cost of production has been matter of concern in the field of tantalum and niobium. Electron beam refining is used for production of highly pure reactive and refractory metals like tantalum, niobium, zirconium etc. and their alloys under high vacuum. Special Materials Plant (SMP) at Nuclear Fuel Complex, Hyderabad has developed processes for production of niobium oxide, tantalum oxide, tantalum metal powder, tantalum anodes/capacitors, potassium tantalum fluoride, Nb thermit, Nb metal granules, RRR grade niobium, Nb base alloys such as Zr

  1. Use of a Tantalum Liner to Reduce Bore Erosion and Increase Muzzle Velocity in Two-Stage Light Gas Guns

    Science.gov (United States)

    Bogdanoff, David W.

    2015-01-01

    Muzzle velocities and gun erosion predicted by earlier numerical simulations of two stage light gas guns with steel gun tubes were in good agreement with experimental values. In a subsequent study, simulations of high performance shots were repeated with rhenium (Re) gun tubes. Large increases in muzzle velocity (2 - 4 km/sec) were predicted for Re tubes. In addition, the hydrogen-produced gun tube erosion was, in general, predicted to be zero with Re tubes. Tantalum (Ta) has some mechanical properties superior to those of Re. Tantalum has a lower modulus of elasticity than Re for better force transmission from the refractory metal liner to an underlying thick wall steel tube. Tantalum also has greater ductility than Re for better survivability during severe stress/strain cycles. Also, tantalum has been used as a coating or liner in military powder guns with encouraging results. Tantalum has, however, somewhat inferior thermal properties to those of rhenium, with a lower melting point and lower density and thermal conductivity. The present study was undertaken to see to what degree the muzzle velocity gains of rhenium gun tubes (over steel tubes) could be achieved with tantalum gun tubes. Nine high performance shots were modeled with a new version of our CFD gun code for steel, rhenium and tantalum gun tubes. For all except the highest velocity shot, the results with Ta tubes were nearly identical with those for Re tubes. Even for the highest velocity shot, the muzzle velocity gain over a steel tube using Ta was 82% of the gain obtained using Re. Thus, the somewhat inferior thermal properties of Ta (when compared to those of Re) translate into only very slightly poorer overall muzzle velocity performance. When this fact is combined with the superior mechanical properties of Ta and the encouraging performance of Ta liners/coatings in military powder guns, tantalum is to be preferred over Re as a liner/coating material for two stage light gas guns to increase muzzle

  2. Evaluation of Ferrite Chip Beads as Surge Current Limiters in Circuits with Tantalum Capacitors

    Science.gov (United States)

    Teverovsky, Alexander

    2014-01-01

    Limiting resistors are currently required to be connected in series with tantalum capacitors to reduce the risk of surge current failures. However, application of limiting resistors decreases substantially the efficiency of the power supply systems. An ideal surge current limiting device should have a negligible resistance for DC currents and high resistance at frequencies corresponding to transients in tantalum capacitors. This work evaluates the possibility of using chip ferrite beads (FB) as such devices. Twelve types of small size FBs from three manufacturers were used to evaluate their robustness under soldering stresses and at high surge current spikes associated with transients in tantalum capacitors. Results show that FBs are capable to withstand current pulses that are substantially greater than the specified current limits. However, due to a sharp decrease of impedance with current, FBs do not reduce surge currents to the required level that can be achieved with regular resistors.

  3. Radiographic examination of tracheal strictures by means of powdered tantalum

    International Nuclear Information System (INIS)

    Scheel, W.; Dippmann, A.

    1979-01-01

    This report deals with the diagnostic value of a tracheobronchography with powdered tantalum in 5 patients who suffer from a severe stricture of the trachea. The own experiences with this method are described. (orig.) [de

  4. Tantalum Nitride Electron-Selective Contact for Crystalline Silicon Solar Cells

    KAUST Repository

    Yang, Xinbo; Aydin, Erkan; Xu, Hang; Kang, Jingxuan; Hedhili, Mohamed N.; Liu, Wenzhu; Wan, Yimao; Peng, Jun; Samundsett, Christian; Cuevas, Andres; De Wolf, Stefaan

    2018-01-01

    novel electron‐selective, passivating contact for c‐Si solar cells is presented. Tantalum nitride (TaN x ) thin films deposited by atomic layer deposition are demonstrated to provide excellent electron‐transporting and hole‐blocking properties

  5. Twinning anisotropy of tantalum during nanoindentation

    Energy Technology Data Exchange (ETDEWEB)

    Goel, Saurav, E-mail: S.GOEL@qub.ac.uk [School of Mechanical and Aerospace Engineering, Queen' s University, Belfast, BT9 5AH (United Kingdom); Beake, Ben [Micro Materials Limited, Willow House, Yale Business Village, Ellice Way, Wrexham LL13 7YL (United Kingdom); Dalton Research Institute, Manchester Metropolitan University, Manchester, M15GD (United Kingdom); Chan, Chi-Wai [School of Mechanical and Aerospace Engineering, Queen' s University, Belfast, BT9 5AH (United Kingdom); Haque Faisal, Nadimul [School of Engineering, Robert Gordon University, Garthdee Road, Aberdeen AB10 7GJ (United Kingdom); Dunne, Nicholas [School of Mechanical and Aerospace Engineering, Queen' s University, Belfast, BT9 5AH (United Kingdom)

    2015-03-11

    Unlike other BCC metals, the plastic deformation of nanocrystalline Tantalum (Ta) during compression is regulated by deformation twinning. Whether or not this twinning exhibits anisotropy was investigated through simulation of displacement-controlled nanoindentation test using molecular dynamics (MD) simulation. MD data was found to correlate well with the experimental data in terms of surface topography and hardness measurements. The mechanism of the transport of material was identified due to the formation and motion of prismatic dislocations loops (edge dislocations) belonging to the 1/2〈111〉 type and 〈100〉 type Burgers vector family. Further analysis of crystal defects using a fully automated dislocation extraction algorithm (DXA) illuminated formation and migration of twin boundaries on the (110) and (111) orientation but not on the (010) orientation and most importantly after retraction all the dislocations disappeared on the (110) orientation suggesting twinning to dominate dislocation nucleation in driving plasticity in tantalum. A significant finding was that the maximum shear stress (critical Tresca stress) in the deformation zone exceeded the theoretical shear strength of Ta (Shear modulus/2π~10.03 GPa) on the (010) orientation but was lower than it on the (110) and the (111) orientations. In light of this, the conventional lore of assuming the maximum shear stress being 0.465 times the mean contact pressure was found to break down at atomic scale.

  6. The physicochemical/biological properties of porous tantalum and the potential surface modification techniques to improve its clinical application in dental implantology

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yindong [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu (China); Bao, Chongyun, E-mail: cybao9933@scu.edu.cn [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu (China); Wismeijer, Daniel [Department of Oral Implantology and Prosthetic Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), MOVE Research Institute Amsterdam, VU University Amsterdam and University of Amsterdam, Amsterdam (Netherlands); Wu, Gang, E-mail: g.wu@acta.nl [Department of Oral Implantology and Prosthetic Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), MOVE Research Institute Amsterdam, VU University Amsterdam and University of Amsterdam, Amsterdam (Netherlands)

    2015-04-01

    More rapid restoration and more rigid functionality have been pursued for decades in the field of dental implantology. Under such motivation, porous tantalum has been recently introduced to design a novel type of dental implant. Porous tantalum bears interconnected porous structure with pore size ranging from 300 to 600 μm and a porosity of 75–85%. Its elastic modulus (1.3–10 GPa) more closely approximates that of natural cortical (12–18 GPa) and cancellous bone (0.1–0.5 GPa) in comparison with the most commonly used dental materials, such as titanium and titanium alloy (106–115 GPa). Porous tantalum is highly corrosion-resistant and biocompatible. It can significantly enhance the proliferation and differentiation of primary osteoblasts derived from elderly people than titanium. Porous tantalum can allow bone ingrowth and establish not only osseointegration but also osseoincorporation, which will significantly enhance the secondary stability of implants in bone tissue. In this review, we summarize the physicochemical, mechanical and biological properties of porous tantalum. We further discuss the performance of current tantalum dental implants and present the methodologies of surface modifications in order to improve their biological performance.

  7. The physicochemical/biological properties of porous tantalum and the potential surface modification techniques to improve its clinical application in dental implantology

    International Nuclear Information System (INIS)

    Liu, Yindong; Bao, Chongyun; Wismeijer, Daniel; Wu, Gang

    2015-01-01

    More rapid restoration and more rigid functionality have been pursued for decades in the field of dental implantology. Under such motivation, porous tantalum has been recently introduced to design a novel type of dental implant. Porous tantalum bears interconnected porous structure with pore size ranging from 300 to 600 μm and a porosity of 75–85%. Its elastic modulus (1.3–10 GPa) more closely approximates that of natural cortical (12–18 GPa) and cancellous bone (0.1–0.5 GPa) in comparison with the most commonly used dental materials, such as titanium and titanium alloy (106–115 GPa). Porous tantalum is highly corrosion-resistant and biocompatible. It can significantly enhance the proliferation and differentiation of primary osteoblasts derived from elderly people than titanium. Porous tantalum can allow bone ingrowth and establish not only osseointegration but also osseoincorporation, which will significantly enhance the secondary stability of implants in bone tissue. In this review, we summarize the physicochemical, mechanical and biological properties of porous tantalum. We further discuss the performance of current tantalum dental implants and present the methodologies of surface modifications in order to improve their biological performance

  8. 21 CFR 172.410 - Calcium silicate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Calcium silicate. 172.410 Section 172.410 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Agents § 172.410 Calcium silicate. Calcium silicate, including synthetic calcium silicate, may be safely...

  9. Micro/Nano Structural Tantalum Coating for Enhanced Osteogenic Differentiation of Human Bone Marrow Stem Cells

    OpenAIRE

    Ding Ding; Youtao Xie; Kai Li; Liping Huang; Xuebin Zheng

    2018-01-01

    Recently, tantalum has been attracting much attention for its anticorrosion resistance and biocompatibility, and it has been widely used in surface modification for implant applications. To improve its osteogenic differentiation of human bone marrow stem cells (hBMSCs), a micro/nano structure has been fabricated on the tantalum coating surface through the combination of anodic oxidation and plasma spraying method. The morphology, composition, and microstructure of the modified coating were co...

  10. Spark plasma sintering of tantalum carbide

    International Nuclear Information System (INIS)

    Khaleghi, Evan; Lin, Yen-Shan; Meyers, Marc A.; Olevsky, Eugene A.

    2010-01-01

    A tantalum carbide powder was consolidated by spark plasma sintering. The specimens were processed under various temperature and pressure conditions and characterized in terms of relative density, grain size, rupture strength and hardness. The results are compared to hot pressing conducted under similar settings. It is shown that high densification is accompanied by substantial grain growth. Carbon nanotubes were added to mitigate grain growth; however, while increasing specimens' rupture strength and final density, they had little effect on grain growth.

  11. Plasma-sprayed tantalum/alumina cermets

    International Nuclear Information System (INIS)

    Kramer, C.M.

    1977-12-01

    Cermets of tantalum and alumina were fabricated by plasma spraying, with the amount of alumina varied from 0 to 65 percent (by volume). Each of four compositions was then measured for tensile strength, elastic modulus, and coefficient of thermal expansion. In general, strength and strain to failure decreased with increasing alumina content: 62 MPa for 100 percent Ta to 19 MPa for 35 v percent Ta. A maximum of 0.1 percent strain was observed for the sprayed 100 percent Ta specimens. The coefficient of thermal expansion measured for the pure Ta was 6.2 (10 -6 )/K

  12. Partial molar volumes of hydrogen and deuterium in niobium, vanadium, and tantalum

    International Nuclear Information System (INIS)

    Peterson, D.T.; Herro, H.M.

    1983-01-01

    The partial molar volumes of hydrogen and deuterium were measured in vanadium, niobium, and tantalum by a differential pressure technique. One-half of an electrolytically charged sample plat was compressed between hardened steel blocks in a hydraulic press. The activity of hydrogen in the hig pressure region was raised and caused hydrogen to diffuse into the low pressure region. The partia molar volume was calculated from the ratio of the hydrogen concentrations in the high and low pressure regions of the sample. Small isotope effects were found in the partial molar volume. Hydrogen had the larger volume in niobium and tantalum, but the reverse was true in vanadium

  13. Tin(2) difluoride and antimony(3) trifluoride as fluorine donors in reactions with tantalum halides in various solvents

    International Nuclear Information System (INIS)

    Kokunov, Yu.V.; Ershova, M.M.; Razgonyaeva, G.A.; Buslaev, Yu.A.

    2001-01-01

    The reactions of SnF 2 , SbF 3 with TaF 5 and TaCl 5 in acetonitrile and dimethylsulfoxide were studied by means of 19 F and 119 Sn NMR. SnF 2 and SbF 3 were established to be donors of fluorine ions for the tantalum(5). It was found that the anion and cation tantalum fluorochloride complexes were formed in acetonitrile, and [TaF 6 ] - was dominated in dimethylsulfoxide. In the solution the tin(2) is present as fluorine-containing polymer cations. Dimethylsulfoxide, as distinct from acetonitrile, leads to disproportionation of tantalum fluorochlorides [ru

  14. Redox Chemisty of Tantalum Clusters on Silica Characterized by X-ray Absorption Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Nemana,S.; Gates, B.

    2006-01-01

    SiO{sub 2}-supported clusters of tantalum were synthesized from adsorbed Ta(CH{sub 2}Ph){sub 5} by treatment in H{sub 2} at 523 K. The surface species were characterized by X-ray absorption spectroscopy (extended X-ray absorption fine structure (EXAFS) spectroscopy and X-ray absorption near edge spectroscopy (XANES)) and ultraviolet-visible spectroscopy. The EXAFS data show that SiOO{sub 2}-supported tantalum clusters were characterized by a Ta-Ta coordination number of approximately 2, consistent with the presence of tritantalum clusters, on average. When these were reduced in H{sub 2} and reoxidized in O{sub 2}, the cluster nuclearity remained essentially unchanged, although reduction and oxidation occurred, respectively, as shown by XANES and UV-vis spectra; in the reoxidation, the tantalum oxidation state change was approximately two electronic charges per tritantalum cluster. The data demonstrate an analogy between the chemistry of group 5 metals on the SiO{sub 2} support and their chemistry in solution, as determined by the group of Cotton.

  15. Environmental silicate nano-biocomposites

    CERN Document Server

    Pollet, Eric

    2012-01-01

    Environmental Silicate Nano-Biocomposites focuses on nano-biocomposites, which are obtained by the association of silicates such as bioclays with biopolymers. By highlighting recent developments and findings, green and biodegradable nano-composites from both renewable and biodegradable polymers are explored. This includes coverage of potential markets such as packaging, agricultures, leisure and the fast food industry. The knowledge and experience of more than twenty international experts in diverse fields, from chemical and biochemical engineering to applications, is brought together in four different sections covering: Biodegradable polymers and Silicates, Clay/Polyesters Nano-biocomposites, Clay/Agropolymers Nano-biocomposites, and Applications and biodegradation of Nano-biocomposites. By exploring the relationships between the biopolymer structures, the processes, and the final properties Environmental Silicate Nano-Biocomposites explains how to design nano-materials to develop new, valuable, environmenta...

  16. Upgrading tantalum and niobium oxides content in Bangka tin slag with double leaching

    Science.gov (United States)

    Soedarsono, J. W.; Permana, S.; Hutauruk, J. K.; Adhyputra, R.; Rustandi, A.; Maksum, A.; Widana, K. S.; Trinopiawan, K.; Anggraini, M.

    2018-03-01

    Tantalum has become one of the 14 types of critical materials where the level of its availability is assumed as the midterm critical metal. Benefits of the element tantalum in the electronics field increased the deficit balance of supply / demand, as more variations of electronic products developed. The tantalum experts calculated the level of availability until 2020. Base on the previous studies, tin slag is a secondary source of tantalum and niobium. This study uses tin slag from Bangka, Indonesia, abbreviated, Bangka Tin Slag (BTS). BTS was roasted, water quenched and sieved, abbreviated BTS-RQS.BTS was roasted, water quenched and sieved, abbreviated BTS-RQS.BTS-RQS was roasted at a temperature 700□C given sample code BTS-R700QS, while roasted at 800°C given sample code BTS-R800QS.A variable leaching experiment on BTS-R700QS was solvent concentration variable and on BTS-R800QS was time variable. The entire residue was characterized by X-Ray Fluorescence (XRF), and the optimum results are on the BTS-R800QS leaching into 5 M NaOH for 20 min followed by 5M HCl for 50 min, with content of Ta2O5 and Nb2O51.56% and 1.11%, respectively. The result of XRF measurement showed was the increasing of TNO content due to the increasing solvent concentration and time of acid leaching. The discussion of thermodynamics this study used was HSC Chemistry 6 as a supporting data.

  17. SILICATE COMPOSITION OF THE INTERSTELLAR MEDIUM

    International Nuclear Information System (INIS)

    Fogerty, S.; Forrest, W.; Watson, D. M.; Koch, I.; Sargent, B. A.

    2016-01-01

    The composition of silicate dust in the diffuse interstellar medium and in protoplanetary disks around young stars informs our understanding of the processing and evolution of the dust grains leading up to planet formation. An analysis of the well-known 9.7 μ m feature indicates that small amorphous silicate grains represent a significant fraction of interstellar dust and are also major components of protoplanetary disks. However, this feature is typically modeled assuming amorphous silicate dust of olivine and pyroxene stoichiometries. Here, we analyze interstellar dust with models of silicate dust that include non-stoichiometric amorphous silicate grains. Modeling the optical depth along lines of sight toward the extinguished objects Cyg OB2 No. 12 and ζ Ophiuchi, we find evidence for interstellar amorphous silicate dust with stoichiometry intermediate between olivine and pyroxene, which we simply refer to as “polivene.” Finally, we compare these results to models of silicate emission from the Trapezium and protoplanetary disks in Taurus.

  18. SILICATE COMPOSITION OF THE INTERSTELLAR MEDIUM

    Energy Technology Data Exchange (ETDEWEB)

    Fogerty, S.; Forrest, W.; Watson, D. M.; Koch, I. [Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627 (United States); Sargent, B. A., E-mail: sfogerty@pas.rochester.edu [Center for Imaging Science and Laboratory for Multiwavelength Astrophysics, Rochester Institute of Technology, 54 Lomb Memorial Drive, Rochester, NY 14623 (United States)

    2016-10-20

    The composition of silicate dust in the diffuse interstellar medium and in protoplanetary disks around young stars informs our understanding of the processing and evolution of the dust grains leading up to planet formation. An analysis of the well-known 9.7 μ m feature indicates that small amorphous silicate grains represent a significant fraction of interstellar dust and are also major components of protoplanetary disks. However, this feature is typically modeled assuming amorphous silicate dust of olivine and pyroxene stoichiometries. Here, we analyze interstellar dust with models of silicate dust that include non-stoichiometric amorphous silicate grains. Modeling the optical depth along lines of sight toward the extinguished objects Cyg OB2 No. 12 and ζ Ophiuchi, we find evidence for interstellar amorphous silicate dust with stoichiometry intermediate between olivine and pyroxene, which we simply refer to as “polivene.” Finally, we compare these results to models of silicate emission from the Trapezium and protoplanetary disks in Taurus.

  19. Evaluation of Polymer Hermetically Sealed Tantalum Capacitors

    Science.gov (United States)

    Teverovsky, Alexander A.

    2014-01-01

    Polymer cathode tantalum capacitors have lower ESR (equivalent series resistance) compared to other types of tantalum capacitors and for this reason have gained popularity in the electronics design community. Their use allows improved performance of power supply systems along with substantial reduction of size and weight of the components used. However, these parts have poor thermal stability and can degrade in humid environments. Polymer hermetically sealed (PHS) capacitors avoid problems related to environmental degradation of molded case parts and can potentially replace current wet and solid hermetically sealed capacitors. In this work, PHS capacitors manufactured per DLA LAM DWG#13030 are evaluated for space applications. Several lots of capacitors manufactured over period from 2010 to 2014 were tested for the consistency of performance, electrical and thermal characteristics, highly accelerated life testing, and robustness under reverse bias and random vibration conditions. Special attention was given to analysis of leakage currents and the effect of long-term high temperature storage on capacitors in as is condition and after hermeticity loss. The results show that PHS capacitors might be especially effective for low-temperature applications or for system requiring a cold start-up. Additional screening and qualification testing have been recommended to assure the necessary quality of capacitors for space projects.

  20. Establishment of an analytical procedure for the determination of niobium and tantalum in minerals containing these elements using X-ray fluorescence technique

    International Nuclear Information System (INIS)

    Nguyen Xuan Chien

    2003-01-01

    The study of determination of niobium, tantalum in mineral and tin slags using X-ray fluorescence spectrometry was carried out. Analytical samples of powder and pellet were prepared. the interference of the major accompanied elements in sample with the determination of niobium and tantalum was also studied. The analysis of niobium and tantalum in mineral and in tin slags samples was given in this work. (author)

  1. Modifying Silicates for Better Dispersion in Nanocomposites

    Science.gov (United States)

    Campbell, Sandi

    2005-01-01

    An improved chemical modification has been developed to enhance the dispersion of layered silicate particles in the formulation of a polymer/silicate nanocomposite material. The modification involves, among other things, the co-exchange of an alkyl ammonium ion and a monoprotonated diamine with interlayer cations of the silicate. The net overall effects of the improved chemical modification are to improve processability of the nanocomposite and maximize the benefits of dispersing the silicate particles into the polymer. Some background discussion is necessary to give meaning to a description of this development. Polymer/silicate nanocomposites are also denoted polymer/clay composites because the silicate particles in them are typically derived from clay particles. Particles of clay comprise layers of silicate platelets separated by gaps called "galleries." The platelet thickness is 1 nm. The length varies from 30 nm to 1 m, depending on the silicate. In order to fully realize the benefits of polymer/silicate nanocomposites, it is necessary to ensure that the platelets become dispersed in the polymer matrices. Proper dispersion can impart physical and chemical properties that make nanocomposites attractive for a variety of applications. In order to achieve nanometer-level dispersion of a layered silicate into a polymer matrix, it is typically necessary to modify the interlayer silicate surfaces by attaching organic functional groups. This modification can be achieved easily by ion exchange between the interlayer metal cations found naturally in the silicate and protonated organic cations - typically protonated amines. Long-chain alkyl ammonium ions are commonly chosen as the ion-exchange materials because they effectively lower the surface energies of the silicates and ease the incorporation of organic monomers or polymers into the silicate galleries. This completes the background discussion. In the present improved modification of the interlayer silicate surfaces

  2. Origins of Beta Tantalum in Sputtered Coatings

    National Research Council Canada - National Science Library

    Mulligan, C

    2001-01-01

    .... Some of the most recent work has attempted to relate the energetics (i.e., atom/ion energy) of the plasma to the alpha right arrow beta transition. It has been shown that the energetics of the plasma can relate to the most crucial sputtering parameters. The most significant feature of the use of plasma energy to explain the alpha right arrow beta transition is that it relates the formation of beta-tantalum to a quantifiable measure.

  3. 2014 NEPP Tasks Update for Ceramic and Tantalum Capacitors

    Science.gov (United States)

    Teverovsky, Alexander A.

    2014-01-01

    Presentation describes recent development in research on MnO2, wet, and polymer tantalum capacitors. Low-voltage failures in multilayer ceramic capacitors and techniques to reveal precious metal electrode (PME) and base metal electrode (BME) capacitors with cracks are discussed. A voltage breakdown technique is suggested to select high quality low-voltage BME ceramic capacitors.

  4. Synergistic helium and deuterium blistering in tungsten–tantalum composites

    International Nuclear Information System (INIS)

    Dias, M.; Mateus, R.; Catarino, N.; Franco, N.; Nunes, D.; Correia, J.B.; Carvalho, P.A.; Hanada, K.; Sârbu, C.

    2013-01-01

    Abstruct: Tungsten–tantalum composites with 10 and 20 at.% Ta were prepared by ball milling W powder with Ta fibers and by consolidating the milled materials with spark plasma sintering. The composites were implanted at room temperature with He + (30 keV with a fluence 5 × 10 21 at/m 2 ) and/or D + (15 keV with a fluence 5 × 10 21 at/m 2 ) ion beams. The materials were studied by scanning and high-resolution transmission electron microscopy, both coupled with energy dispersive X-ray spectroscopy, and by X-ray diffraction, Rutherford backscattering spectrometry and nuclear reaction analysis. The microstructure observations revealed that the milling operation resulted in severe fragmentation of the Ta fibers. Furthermore, during the consolidation process the Ta phase acted as oxygen getter and reduced the W oxide present in the original material. The surface of the tungsten–tantalum composites implanted with D + remained essentially unaltered, while the materials implanted with He + evidenced blisters on the Ta-rich regions. D retention in the composites increased with He + pre-implantation

  5. Sol–gel synthesis of tantalum oxide and phosphonic acid-modified carbon nanotubes composite coatings on titanium surfaces

    International Nuclear Information System (INIS)

    Maho, Anthony; Detriche, Simon; Delhalle, Joseph; Mekhalif, Zineb

    2013-01-01

    Carbon nanotubes used as fillers in composite materials are more and more appreciated for the outstanding range of accessible properties and functionalities they generate in numerous domains of nanotechnologies. In the framework of biological and medical sciences, and particularly for orthopedic applications and devices (prostheses, implants, surgical instruments, …), titanium substrates covered by tantalum oxide/carbon nanotube composite coatings have proved to constitute interesting and successful platforms for the conception of solid and biocompatible biomaterials inducing the osseous regeneration processes (hydroxyapatite growth, osteoblasts attachment). This paper describes an original strategy for the conception of resistant and homogeneous tantalum oxide/carbon nanotubes layers on titanium through the introduction of carbon nanotubes functionalized by phosphonic acid moieties (-P(=O)(OH) 2 ). Strong covalent C-P bonds are specifically inserted on their external sidewalls with a ratio of two phosphonic groups per anchoring point. Experimental results highlight the stronger “tantalum capture agent” effect of phosphonic-modified nanotubes during the sol–gel formation process of the deposits compared to nanotubes bearing oxidized functions (-OH, -C=O, -C(=O)OH). Particular attention is also paid to the relative impact of the rate of functionalization and the dispersion degree of the carbon nanotubes in the coatings, as well as their wrapping level by the tantalum oxide matrix material. The resulting effect on the in vitro growth of hydroxyapatite is also evaluated to confirm the primary osseous bioactivity of those materials. Chemical, structural and morphological features of the different composite deposits described herein are assessed by X-ray photoelectron spectroscopy (XPS), scanning (SEM) and transmission (TEM) electronic microscopies, energy dispersive X-rays analysis (EDX) and peeling tests. Highlights: ► Formation of tantalum/carbon nanotube

  6. Sol–gel synthesis of tantalum oxide and phosphonic acid-modified carbon nanotubes composite coatings on titanium surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Maho, Anthony [Laboratory of Chemistry and Electrochemistry of Surfaces, University of Namur (FUNDP), Rue de Bruxelles 61, B-5000 Namur (Belgium); Fonds pour la Formation à la Recherche dans l' Industrie et dans l' Agriculture (FRIA), Rue d' Egmont 5, B-1000 Bruxelles (Belgium); Detriche, Simon; Delhalle, Joseph [Laboratory of Chemistry and Electrochemistry of Surfaces, University of Namur (FUNDP), Rue de Bruxelles 61, B-5000 Namur (Belgium); Mekhalif, Zineb, E-mail: zineb.mekhalif@fundp.ac.be [Laboratory of Chemistry and Electrochemistry of Surfaces, University of Namur (FUNDP), Rue de Bruxelles 61, B-5000 Namur (Belgium)

    2013-07-01

    Carbon nanotubes used as fillers in composite materials are more and more appreciated for the outstanding range of accessible properties and functionalities they generate in numerous domains of nanotechnologies. In the framework of biological and medical sciences, and particularly for orthopedic applications and devices (prostheses, implants, surgical instruments, …), titanium substrates covered by tantalum oxide/carbon nanotube composite coatings have proved to constitute interesting and successful platforms for the conception of solid and biocompatible biomaterials inducing the osseous regeneration processes (hydroxyapatite growth, osteoblasts attachment). This paper describes an original strategy for the conception of resistant and homogeneous tantalum oxide/carbon nanotubes layers on titanium through the introduction of carbon nanotubes functionalized by phosphonic acid moieties (-P(=O)(OH){sub 2}). Strong covalent C-P bonds are specifically inserted on their external sidewalls with a ratio of two phosphonic groups per anchoring point. Experimental results highlight the stronger “tantalum capture agent” effect of phosphonic-modified nanotubes during the sol–gel formation process of the deposits compared to nanotubes bearing oxidized functions (-OH, -C=O, -C(=O)OH). Particular attention is also paid to the relative impact of the rate of functionalization and the dispersion degree of the carbon nanotubes in the coatings, as well as their wrapping level by the tantalum oxide matrix material. The resulting effect on the in vitro growth of hydroxyapatite is also evaluated to confirm the primary osseous bioactivity of those materials. Chemical, structural and morphological features of the different composite deposits described herein are assessed by X-ray photoelectron spectroscopy (XPS), scanning (SEM) and transmission (TEM) electronic microscopies, energy dispersive X-rays analysis (EDX) and peeling tests. Highlights: ► Formation of tantalum

  7. Shock compression and quasielastic release in tantalum

    International Nuclear Information System (INIS)

    Johnson, J.N.; Hixson, R.S.; Tonks, D.L.; Gray, G.T. III

    1994-01-01

    Previous studies of quasielastic release in shock-loaded FCC metals have shown a strong influence of the defect state on the leading edge, or first observable arrival, of the release wave. This is due to the large density of pinned dislocation segments behind the shock front, their relatively large pinning separation, and a very short response time as determined by the drag coefficient in the shock-compressed state. This effect is entirely equivalent to problems associated with elastic moduli determination using ultrasonic methods. This is particularly true for FCC metals, which have an especially low Peierls stress, or inherent lattice resistance, that has little influence in pinning dislocation segments and inhibiting anelastic deformation. BCC metals, on the other hand, have a large Peierls stress that essentially holds dislocation segments in place at low net applied shear stresses and thus allows fully elastic deformation to occur in the complete absence of anelastic behavior. Shock-compression and release experiments have been performed on tantalum (BCC), with the observation that the leading release disturbance is indeed elastic. This conclusion is established by examination of experimental VISAR records taken at the tantalum/sapphire (window) interface in a symmetric-impact experiment which subjects the sample to a peak longitudinal stress of approximately 7.3 GPa, in comparison with characteristic code calculations. copyright 1994 American Institute of Physics

  8. 21 CFR 582.2227 - Calcium silicate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Calcium silicate. 582.2227 Section 582.2227 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium silicate. (a) Product. Calcium silicate. (b) Tolerance. 2 percent and 5 percent. (c) Limitations...

  9. Determination of tantalum in standard steels by INAA and absorption spectrophotometry

    Energy Technology Data Exchange (ETDEWEB)

    Obrusnik, I; Posta, S [Ustav Jaderneho Vyzkumu, Rez (Czechoslovakia)

    1978-02-14

    Two analytical methods, instrumental neutron activation analysis (INAA) and absorption spectrophotometry with malachite green, have been used for the determination of tantalum in standard steels produced by the Research Institute of CKD Prague - steels No. 167 and No. 169 with expected concentrations of Ta 0.01% and 0.03%, respectively. INAA method consisted of irradiation of steel samples (chips) in a nuclear reactor and Ge(Li) ..gamma..-ray spectrometry after a cooling period of one month. A spectrophotometric determination is based on the extraction of ionic associate of TaF/sub 6//sup -/ with malachite green into Oenzene from a solution of diluted sulphuric acid and hydrofluoric acid. The results obtained by the two methods are in a good agreement. However, INAA method is more sensitive and precise then spectrophotometry for the determination of tantalum in steels in the above-mentioned concentration ranges.

  10. Determination of tantalum in standard steels by INAA and absorption spectrophotometry

    International Nuclear Information System (INIS)

    Obrusnik, I.; Posta, S.

    1978-01-01

    Two analytical methods, instrumental neutron activation analysis (INAA) and absorption spectrophotometry with malachite green, have been used for the determination of tantalum in standard steels produced by the Research Institute of CKD Prague - steels No. 167 and No. 169 with expected concentrations of Ta 0.01% and 0.03%, respectively. INAA method consisted of irradiation of steel samples (chips) in a nuclear reactor and Ge(Li) γ-ray spectrometry after a cooling period of one month. A spectrophotometric determination is based on the extraction of ionic associate of TaF 6 - with malachite green into Oenzene from a solution of diluted sulphuric acid and hydrofluoric acid. The results obtained by the two methods are in a good agreement. However, INAA method is more sensitive and precise then spectrophotometry for the determination of tantalum in steels in the above-mentioned concentration ranges. (author)

  11. Diffusion-Cooled Tantalum Hot-Electron Bolometer Mixers

    Science.gov (United States)

    Skalare, Anders; McGrath, William; Bumble, Bruce; LeDuc, Henry

    2004-01-01

    A batch of experimental diffusion-cooled hot-electron bolometers (HEBs), suitable for use as mixers having input frequencies in the terahertz range and output frequencies up to about a gigahertz, exploit the superconducting/normal-conducting transition in a thin strip of tantalum. The design and operation of these HEB mixers are based on mostly the same principles as those of a prior HEB mixer that exploited the superconducting/normal- conducting transition in a thin strip of niobium and that was described elsewhere.

  12. 21 CFR 182.2227 - Calcium silicate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Calcium silicate. 182.2227 Section 182.2227 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Calcium silicate. (a) Product. Calcium silicate. (b) Tolerance. 2 percent and 5 percent. (c) Limitations...

  13. Tantalum acetabular augments in one-stage exchange of infected total hip arthroplasty: a case-control study.

    Science.gov (United States)

    Klatte, Till Orla; Kendoff, Daniel; Sabihi, Reza; Kamath, Atul F; Rueger, Johannes M; Gehrke, Thorsten

    2014-07-01

    During the one-stage exchange procedure for periprosthetic joint infection (PJI) after total hip arthroplasty (THA), acetabular defects challenge reconstructive options. Porous tantalum augments are an established tool for addressing acetabular destruction in aseptic cases, but their utility in septic exchange is unknown. This retrospective case-control study presents the initial results of tantalum augmentation during one-stage exchange for PJI. Primary endpoints were rates of re-infection and short-term complications associated with this technique. Study patients had no higher risk of re-infection with equivalent durability at early follow-up with a re-infection rate in both groups of 4%. In conclusion, tantalum augments are a viable option for addressing acetabular defects in one-stage exchange for septic THA. Further study is necessary to assess long-term durability when compared to traditional techniques for acetabular reconstruction. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Biological and therapeutic effects of ortho-silicic acid and some ortho-silicic acid-releasing compounds: New perspectives for therapy

    Directory of Open Access Journals (Sweden)

    Jurkić Lela Munjas

    2013-01-01

    Full Text Available Abstract Silicon (Si is the most abundant element present in the Earth's crust besides oxygen. However, the exact biological roles of silicon remain unknown. Moreover, the ortho-silicic acid (H4SiO4, as a major form of bioavailable silicon for both humans and animals, has not been given adequate attention so far. Silicon has already been associated with bone mineralization, collagen synthesis, skin, hair and nails health atherosclerosis, Alzheimer disease, immune system enhancement, and with some other disorders or pharmacological effects. Beside the ortho-silicic acid and its stabilized formulations such as choline chloride-stabilized ortho-silicic acid and sodium or potassium silicates (e.g. M2SiO3; M= Na,K, the most important sources that release ortho-silicic acid as a bioavailable form of silicon are: colloidal silicic acid (hydrated silica gel, silica gel (amorphous silicon dioxide, and zeolites. Although all these compounds are characterized by substantial water insolubility, they release small, but significant, equilibrium concentration of ortho-silicic acid (H4SiO4 in contact with water and physiological fluids. Even though certain pharmacological effects of these compounds might be attributed to specific structural characteristics that result in profound adsorption and absorption properties, they all exhibit similar pharmacological profiles readily comparable to ortho-silicic acid effects. The most unusual ortho-silicic acid-releasing agents are certain types of zeolites, a class of aluminosilicates with well described ion(cation-exchange properties. Numerous biological activities of some types of zeolites documented so far might probably be attributable to the ortho-silicic acid-releasing property. In this review, we therefore discuss biological and potential therapeutic effects of ortho-silicic acid and ortho-silicic acid -releasing silicon compounds as its major natural sources.

  15. Rapid synthesis of tantalum oxide dielectric films by microwave microwave-assisted atmospheric chemical vapor deposition

    International Nuclear Information System (INIS)

    Ndiege, Nicholas; Subramanian, Vaidyanathan; Shannon, Mark A.; Masel, Richard I.

    2008-01-01

    Microwave-assisted chemical vapor deposition has been used to generate high quality, high-k dielectric films on silicon at high deposition rates with film thicknesses varying from 50 nm to 110 μm using inexpensive equipment. Characterization of the post deposition products was performed by scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, Auger electron spectroscopy and Raman spectroscopy. Film growth was determined to occur via rapid formation and accumulation of tantalum oxide clusters from tantalum (v) ethoxide (Ta(OC 2 H 5 ) 5 ) vapor on the deposition surface

  16. Effect of oxygen deficiency on electronic properties and local structure of amorphous tantalum oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Denny, Yus Rama [Department of Physics Education, University of Sultan Ageng Tirtayasa, Banten 42435 (Indonesia); Firmansyah, Teguh [Department of Electrical Engineering, University of Sultan Ageng Tirtayasa, Banten 42435 (Indonesia); Oh, Suhk Kun [Department of Physics, Chungbuk National University, Cheongju 28644 (Korea, Republic of); Kang, Hee Jae, E-mail: hjkang@cbu.ac.kr [Department of Physics, Chungbuk National University, Cheongju 28644 (Korea, Republic of); Yang, Dong-Seok [Department of Physics Education, Chungbuk National University, Cheongju 28644 (Korea, Republic of); Heo, Sung; Chung, JaeGwan; Lee, Jae Cheol [Analytical Engineering Center, Samsung Advanced Institute of Technology, Suwon 16678 (Korea, Republic of)

    2016-10-15

    Highlights: • The effect of oxygen flow rate on electronic properties and local structure of tantalum oxide thin films was studied. • The oxygen deficiency induced the nonstoichiometric state a-TaOx. • A small peak at 1.97 eV above the valence band side appeared on nonstoichiometric Ta{sub 2}O{sub 5} thin films. • The oxygen flow rate can change the local electronic structure of tantalum oxide thin films. - Abstract: The dependence of electronic properties and local structure of tantalum oxide thin film on oxygen deficiency have been investigated by means of X-ray photoelectron spectroscopy (XPS), Reflection Electron Energy Loss Spectroscopy (REELS), and X-ray absorption spectroscopy (XAS). The XPS results showed that the oxygen flow rate change results in the appearance of features in the Ta 4f at the binding energies of 23.2 eV, 24.4 eV, 25.8, and 27.3 eV whose peaks are attributed to Ta{sup 1+}, Ta{sup 2+}, Ta{sup 3+}/Ta{sup 4+}, and Ta{sup 5+}, respectively. The presence of nonstoichiometric state from tantalum oxide (TaOx) thin films could be generated by the oxygen vacancies. In addition, XAS spectra manifested both the increase of coordination number of the first Ta-O shell and a considerable reduction of the Ta-O bond distance with the decrease of oxygen deficiency.

  17. NON-AUTOCLAVE SILICATE BRICK

    Directory of Open Access Journals (Sweden)

    V. N. Yaglov

    2015-01-01

    Full Text Available The paper proposes a technology for obtaining bricks on the basis of lime-silica mixtures where chemical interactions are practically completely realized in dispersive state at the stage of preparation of binding contact maturing and raw mixture as a whole. The role of forming operation (moulding is changed in principle because in this case conversion of dispersive system into a rock-like solid occurs and due to this the solid obtains complete water-resistance in contact with water immediately after forming operation. Theoretical basis for the developed technology is capability of silicate dispersive substances (hydrated calcium silicate to transit in non-stable state, to form a rock-like water-resistant solid in the moment of mechanical load application during forming process. Specific feature of the proposed method is an exclusion of additional operations for autoclaving of products from the process of obtaining a silicate brick.Synthetic hydrated calcium silicate in contrast to natural ones are more uniform in composition and structure, they contain less impurities and they are characterized by dispersive composition and due to the mentioned advantages they find wider practical application. Contact-condensation binders permit to manipulate product properties on their basis and ensure maximum correspondence to the requirements of the concrete application. Raw material sources for obtaining synthetic hydrated calcium silicates are practically un-limited because calcium-silicon containing substances are found as in various technogenic wastes so in natural compounds as well. So the problem for obtaining hydrated calcium silicates having contact-condensation ability for structure formation becomes more and more actual one. This transition is considered as dependent principally on arrangement rate of substance particles which determined the level of its instability.

  18. Hydroxyaromatic compounds of tantalum, tungsten, and the lighter actinides

    International Nuclear Information System (INIS)

    Gfaller, H.

    1980-01-01

    Some hydroxyaromatic compounds of the elements tantalum, tungsten, thorium and uranium were prepared as well as the basic materials for these synthesis processes, i.e. metal halides and metal alkoxides. The hydroxyaromatic compounds were studied by elemental analysis, IR spectroscopy, 1 H-NMR spectroscopy (if soluble in suitable solvents) and, in some cases, by X-ray fine structure analysis. (orig./EF) [de

  19. Regularities in Low-Temperature Phosphatization of Silicates

    Science.gov (United States)

    Savenko, A. V.

    2018-01-01

    The regularities in low-temperature phosphatization of silicates are defined from long-term experiments on the interaction between different silicate minerals and phosphate-bearing solutions in a wide range of medium acidity. It is shown that the parameters of the reaction of phosphatization of hornblende, orthoclase, and labradorite have the same values as for clayey minerals (kaolinite and montmorillonite). This effect may appear, if phosphotization proceeds, not after silicate minerals with a different structure and composition, but after a secondary silicate phase formed upon interaction between silicates and water and stable in a certain pH range. Variation in the parameters of the reaction of phosphatization at pH ≈ 1.8 is due to the stability of the silicate phase different from that at higher pH values.

  20. Mass transfer modeling on the separation of tantalum and niobium from dilute hydrofluoric media through a hollow fiber supported liquid membrane

    International Nuclear Information System (INIS)

    Buachuang, Duenphen; Ramakul, Prakorn; Leepipatpiboon, Natchanun; Pancharoen, Ura

    2011-01-01

    Highlights: → Simultaneous separation of tantalum and niobium from the mixture solution. → An extraction through a hollow fiber supported liquid membrane (HFSLM). → The effect on tantalum removal found from Aliquat 336. → The mathematical model focusing on the extraction side of the liquid membrane system was presented. → The mass transfer coefficients of the aqueous feed (k i ) and the organic membrane phase (k m ) for the system were estimated as 1.19 x 10 -5 and 1.39 x 10 -7 cm/s, respectively. → Experimental data and theoretical values were found to be in good agreement when the concentration of Aliquat336 in the membrane phase was below 4% (v/v). - Abstract: The separation of a mixture of tantalum and niobium in dilute hydrofluoric media via hollow fiber supported liquid membrane (HFSLM) was examined. Quaternary ammonium salt (Aliquat336) diluted in kerosene was used as a carrier. The various effects on the transport and separation of tantalum and niobium were studied: concentration of hydrofluoric acid in the feed solution, concentration of the carrier (Aliquat336) in the membrane phase, types of stripping solutions (NaClO 4 , thiourea and HCl) and their concentration. The extraction of tantalum in the membrane phase from 0.3 M hydrofluoric acid (HF) by 3% (v/v) Aliquat336 was achieved by leaving niobium in the feed solution. Quantitative recovery of tantalum was achieved by 0.2 M NaClO 4 . Furthermore, a mathematical model focusing on the extraction side of the liquid membrane system was presented in order to predict the concentration of tantalum at different times. The mass transfer coefficients of the aqueous feed (k i ) and the organic membrane phase (k m ) were estimated as 1.19 x 10 -5 and 1.39 x 10 -7 cm/s, respectively. Therefore, the mass transfer limiting step is the diffusion of tantalum-Aliquat336 through the liquid membrane. Moreover, mass transfer modeling was performed and the validity of the developed model evaluated. Experimental

  1. Mass transfer modeling on the separation of tantalum and niobium from dilute hydrofluoric media through a hollow fiber supported liquid membrane

    Energy Technology Data Exchange (ETDEWEB)

    Buachuang, Duenphen [Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330 (Thailand); Ramakul, Prakorn [Department of Chemical Engineering, Faculty of Engineering and Industrial Technology, Silpakorn University, Nakhon Pathom 73000 (Thailand); Leepipatpiboon, Natchanun [Chromatography and Separation Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Patumwan, Bangkok 10330 (Thailand); Pancharoen, Ura, E-mail: ura.p.@chula.ac.th [Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330 (Thailand)

    2011-09-29

    Highlights: > Simultaneous separation of tantalum and niobium from the mixture solution. > An extraction through a hollow fiber supported liquid membrane (HFSLM). > The effect on tantalum removal found from Aliquat 336. > The mathematical model focusing on the extraction side of the liquid membrane system was presented. > The mass transfer coefficients of the aqueous feed (k{sub i}) and the organic membrane phase (k{sub m}) for the system were estimated as 1.19 x 10{sup -5} and 1.39 x 10{sup -7} cm/s, respectively. > Experimental data and theoretical values were found to be in good agreement when the concentration of Aliquat336 in the membrane phase was below 4% (v/v). - Abstract: The separation of a mixture of tantalum and niobium in dilute hydrofluoric media via hollow fiber supported liquid membrane (HFSLM) was examined. Quaternary ammonium salt (Aliquat336) diluted in kerosene was used as a carrier. The various effects on the transport and separation of tantalum and niobium were studied: concentration of hydrofluoric acid in the feed solution, concentration of the carrier (Aliquat336) in the membrane phase, types of stripping solutions (NaClO{sub 4}, thiourea and HCl) and their concentration. The extraction of tantalum in the membrane phase from 0.3 M hydrofluoric acid (HF) by 3% (v/v) Aliquat336 was achieved by leaving niobium in the feed solution. Quantitative recovery of tantalum was achieved by 0.2 M NaClO{sub 4}. Furthermore, a mathematical model focusing on the extraction side of the liquid membrane system was presented in order to predict the concentration of tantalum at different times. The mass transfer coefficients of the aqueous feed (k{sub i}) and the organic membrane phase (k{sub m}) were estimated as 1.19 x 10{sup -5} and 1.39 x 10{sup -7} cm/s, respectively. Therefore, the mass transfer limiting step is the diffusion of tantalum-Aliquat336 through the liquid membrane. Moreover, mass transfer modeling was performed and the validity of the

  2. Synergistic helium and deuterium blistering in tungsten–tantalum composites

    Energy Technology Data Exchange (ETDEWEB)

    Dias, M., E-mail: marta.dias@itn.pt [Associação Euratom/IST, Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Mateus, R.; Catarino, N.; Franco, N. [Associação Euratom/IST, Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Nunes, D. [CENIMAT-I3N, Departamento de Ciência dos Materiais, Faculdade de Ciências e Tecnologia, FCT, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Correia, J.B. [LNEG, Laboratório Nacional de Energia e Geologia, Estrada do Paço do Lumiar, 1649-038 Lisboa (Portugal); Carvalho, P.A. [Associação Euratom/IST, Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); ICEMS, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Hanada, K. [AIST, National Institute of Advanced Industrial Science and Technology, 1-2-1 Namiki, Tsukuba, 305-8564 Ibaraki (Japan); Sârbu, C. [National Institute of Materials and Physics, 105bis Atomistilor street, 077125 Magurele-Ilfov (Romania); and others

    2013-11-15

    Abstruct: Tungsten–tantalum composites with 10 and 20 at.% Ta were prepared by ball milling W powder with Ta fibers and by consolidating the milled materials with spark plasma sintering. The composites were implanted at room temperature with He{sup +} (30 keV with a fluence 5 × 10{sup 21} at/m{sup 2}) and/or D{sup +} (15 keV with a fluence 5 × 10{sup 21} at/m{sup 2}) ion beams. The materials were studied by scanning and high-resolution transmission electron microscopy, both coupled with energy dispersive X-ray spectroscopy, and by X-ray diffraction, Rutherford backscattering spectrometry and nuclear reaction analysis. The microstructure observations revealed that the milling operation resulted in severe fragmentation of the Ta fibers. Furthermore, during the consolidation process the Ta phase acted as oxygen getter and reduced the W oxide present in the original material. The surface of the tungsten–tantalum composites implanted with D{sup +} remained essentially unaltered, while the materials implanted with He{sup +} evidenced blisters on the Ta-rich regions. D retention in the composites increased with He{sup +} pre-implantation.

  3. Thermodynamics and Kinetics of Silicate Vaporization

    Science.gov (United States)

    Jacobson, Nathan S.; Costa, Gustavo C. C.

    2015-01-01

    Silicates are a common class of materials that are often exposed to high temperatures. The behavior of these materials needs to be understood for applications as high temperature coatings in material science as well as the constituents of lava for geological considerations. The vaporization behavior of these materials is an important aspect of their high temperature behavior and it also provides fundamental thermodynamic data. The application of Knudsen effusion mass spectrometry (KEMS) to silicates is discussed. There are several special considerations for silicates. The first is selection of an appropriate cell material, which is either nearly inert or has well-understood interactions with the silicate. The second consideration is proper measurement of the low vapor pressures. This can be circumvented by using a reducing agent to boost the vapor pressure without changing the solid composition or by working at very high temperatures. The third consideration deals with kinetic barriers to vaporization. The measurement of these barriers, as encompassed in a vaporization coefficient, is discussed. Current measured data of rare earth silicates for high temperature coating applications are discussed. In addition, data on magnesium-iron-silicates (olivine) are presented and discussed.

  4. Application of on-line HPLC-ICP-MS for the determination of the nuclide abundances of lanthanides produced via spallation reactions in an irradiated tantalum target of a spallation neutron source

    International Nuclear Information System (INIS)

    Kerl, W.; Becker, J.S.; Dietze, H.J.

    1998-01-01

    An analytical procedure has been developed for the determination of spallation nuclides in an irradiated tantalum target using HPLC coupled on-line to ICP-MS after dissolution and separation of the tantalum matrix. Pieces of tantalum were taken from different locations of the irradiated tantalum target which had been used as the target material in a spallation neutron source. Tantalum was dissolved in a HNO 3 /HF mixture and the tantalum matrix was separated by liquid-liquid extraction so that only the spallation nuclides were left in the sample solutions. The major fraction of the spallation nuclides in the tantalum target are lanthanide metals in the μg g -1 concentration range determined in the present study. Additional reaction products are formed by the irradiation of trace impurities in the original tantalum target. The nuclide abundances of the lanthanide metals measured in the tantalum target differ significantly from the natural isotopic composition so that a lot of isobaric interferences of long-lived radionuclides and stable isotopes in the mass spectrum are to be expected. Therefore, all the lanthanide metals had to be separated chemically prior to their mass spectrometric determination. The separation of all rare earth elements was performed by ion chromatography on-line to ICP-MS. The nuclide abundances of each lanthanide were determined using a sensitive double-focusing sector field inductively coupled plasma mass spectrometer. The nuclide abundances of the lanthanides in the irradiated tantalum target calculated theoretically and the experimental results obtained by on-line HPLC-ICP-MS proved to be in good agreement. (orig.)

  5. Polymer-Layer Silicate Nanocomposites

    DEFF Research Database (Denmark)

    Potarniche, Catalina-Gabriela

    Nowadays, some of the material challenges arise from a performance point of view as well as from recycling and biodegradability. Concerning these aspects, the development of polymer layered silicate nanocomposites can provide possible solutions. This study investigates how to obtain polymer layered...... with a spectacular improvement up to 300 % in impact strength were obtained. In the second part of this study, layered silicate bio-nanomaterials were obtained starting from natural compounds and taking into consideration their biocompatibility properties. These new materials may be used for drug delivery systems...... and as biomaterials due to their high biocompatible properties, and because they have the advantage of being biodegradable. The intercalation process of natural compounds within silicate platelets was investigated. By uniform dispersing of binary nanohybrids in a collagen matrix, nanocomposites with intercalated...

  6. LABORATORY INVESTIGATIONS OF SILICATE MUD CONTAMINATION WITH CALCIUM

    Directory of Open Access Journals (Sweden)

    Nediljka Gaurina-Međimurec

    2004-12-01

    Full Text Available The silicate-based drilling fluid is a low solids KCl/polymer system with the addition of soluble sodium or potassium silicate to enhance inhibition and wellbore stability. Silicate-based drilling fluids exhibit remarkable shale and chalk stabilizing properties, resulting in gauge hole and the formation of firm cuttings when drilling reactive shales and soft chalks. Silicates protect shales by in-situ gellation when exposed to the neutral pore fluid and precipitation, which occurs on contact with divalent ions present at the surface of the shale. Also, silicates prevent the dispersion and washouts when drilling soft chalk by reacting with the Ca2+ ions present on chalk surfaces of cutting and wellbore to form a protective film. The silicate-based drilling fluid can be used during drilling hole section through shale interbeded anhydrite formations because of its superior shale stabilizing characteristics. However, drilling through the anhydrite can decrease the silicate concentration and change rheological and filtration fluid properties. So, the critical concentration of calcium ions should be investigated by lab tests. This paper details the mechanism of shale inhibition using silicate-based drilling fluid, and presents results of lab tests conducted to ascertain the effect of Ca2+ ions on silicate level in the fluid and the fluid properties.

  7. Cation mobility in H+/Na+ ion exchange products of acid tantalum and zirconium phosphates

    International Nuclear Information System (INIS)

    Tarnopol'skij, V.A.; Yaroslavtsev, A.B.

    2000-01-01

    Ionic conductivity of Na + /H + exchange products on acid zirconium phosphate with different substitution degree and on acid tantalum phosphate, where ion exchange occurs via formation of a continuous series of solid solutions, was studied by the method of conductometry. It was ascertained that ionic conductivity decreases monotonously with growth in substitution degree of H + for Na + in acid tantalum phosphate. Anomalous increase in ionic conductivity of ion exchange products on acid zirconium phosphate with a low substitution degree has been detected for the first time. Formation of a double electric layer with a high concentration of cationic defects on the interface surface is the reason for increase in ionic conductivity [ru

  8. 21 CFR 582.2122 - Aluminum calcium silicate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Aluminum calcium silicate. 582.2122 Section 582.2122 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....2122 Aluminum calcium silicate. (a) Product. Aluminum calcium silicate. (b) Tolerance. 2 percent. (c...

  9. 21 CFR 182.2122 - Aluminum calcium silicate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Aluminum calcium silicate. 182.2122 Section 182.2122 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....2122 Aluminum calcium silicate. (a) Product. Aluminum calcium silicate. (b) Tolerance. 2 percent. (c...

  10. Characterization of a texture gradient in tantalum plate

    International Nuclear Information System (INIS)

    Wright, S.I.; Gray, G.T. III.

    1994-01-01

    Clark et al. have shown that significant texture gradients can be produced in rolled tantalum plate and that the strength of the gradient is dependent on the processing path. Texture gradients are often ignored because they are time consuming to characterize and add significant complexity to materials modeling. The variation in texture through the thickness of rolled materials is most commonly measured by sectioning samples to different depths through the thickness of the plate and then measuring the texture from these section planes by X-ray diffraction. A new technique based on automatic indexing of electron backscatter diffraction patterns in the scanning electron microscope enables spatially specific orientations to be measured in a practical manner. This technique allows spatial variations in texture to be measured directly enabling gradients in texture to be investigated in more detail than previously possible. This data can be used directly in coupled finite-element/polycrystal-plasticity models to simulate the effects of variations in texture on the plastic behavior of polycrystals. This work examines the variation in texture through the thickness of a tantalum plate and its resultant effect on the compressive deformation of samples prepared from the plate. The characterization of the texture gradient using the automatic point-by-point measurement technique mentioned above is described in detail. The effect of the gradient on the plastic response of through-thickness compression tests is also discussed

  11. Cracking and delamination of vapor-deposited tantalum films

    International Nuclear Information System (INIS)

    Fisher, R.M.; Duan, J.Z.; Liu, J.B.

    1990-01-01

    This paper reports on tantalum films which begin to crack and spall during vapor deposition on glass at a thickness of 180 nm. Islands and ribbons, 10 - 30 μm in size, delaminate by crack growth along the Ta/glass interface for several μm after which the crack penetrates into the glass to a depth of 0.5 - 1 μm and complete spalling occurs. X-ray diffraction showed that about 50% of the original bct, β-tantalum, phase had transformed to the bcc α-Ta phase. When Ta was deposited on glass that was first covered with 52 nm of copper, spalling was observed to begin at a thickness of 105 nm. In this case, the film first cracks and then peels along the Cu/glass interface and curls into scrolls indicating the presence of a small stress gradient. X-ray diffraction of the as-deposited film, and electron diffraction of ion-milled flakes, showed that the Ta films deposited on Cu-coated glass almost completely transform to bcc α-Ta. The critical thickness for delamination along the Cu/glass interface is about 1/2 that for cracking in the glass substrate when an intermediate layer of Cu is not present. All of the above findings are in good agreement with previous observations on Cr films

  12. Antibacterial Activity of Silicate Bioceramics

    Institute of Scientific and Technical Information of China (English)

    HU Sheng; NING Congqin; ZHOU Yue; CHEN Lei; LIN Kaili; CHANG Jiang

    2011-01-01

    Four kinds of pure silicate ceramic particles, CaSiO3, Ca3SiO5, bredigite and akermanite were prepared and their bactericidal effects were systematically investigated. The phase compositions of these silicate ceramics were characterized by XRD. The ionic concentration meas urement revealed that the Calcium (Ca) ion concentration were relatively higher in Ca3SiO5 and bredigite, and much lower in CaSiO3 and akermanite. Accordingly, the pH values of the four silicate ceramics extracts showed a positive correlation with the particle concentrations. Meanwhile, by decreasing the particle size, higher Ca ion concentrations can be achieved, leading to the increase of aqueous pH value as well. In summary, all of the four silicate ceramics tested in our study showed antibacterial effect in a dose-dependent manner. Generally, the order of their antibacterial activity against E.coli from strong to weak is Ca3SiO5, bredigite, CaSiO3 and akermanite.

  13. Amended Silicated for Mercury Control

    Energy Technology Data Exchange (ETDEWEB)

    James Butz; Thomas Broderick; Craig Turchi

    2006-12-31

    Amended Silicates{trademark}, a powdered, noncarbon mercury-control sorbent, was tested at Duke Energy's Miami Fort Station, Unit 6 during the first quarter of 2006. Unit 6 is a 175-MW boiler with a cold-side electrostatic precipitator (ESP). The plant burns run-of-the-river eastern bituminous coal with typical ash contents ranging from 8-15% and sulfur contents from 1.6-2.6% on an as-received basis. The performance of the Amended Silicates sorbent was compared with that for powdered activated carbon (PAC). The trial began with a period of baseline monitoring during which no sorbent was injected. Sampling during this and subsequent periods indicated mercury capture by the native fly ash was less than 10%. After the baseline period, Amended Silicates sorbent was injected at several different ratios, followed by a 30-day trial at a fixed injection ratio of 5-6 lb/MMACF. After this period, PAC was injected to provide a comparison. Approximately 40% mercury control was achieved for both the Amended Silicates sorbent and PAC at injection ratios of 5-6 lbs/MMACF. Higher injection ratios did not achieve significantly increased removal. Similar removal efficiencies have been reported for PAC injection trials at other plants with cold-side ESPs, most notably for plants using medium to high sulfur coal. Sorbent injection did not detrimentally impact plant operations and testing confirmed that the use of Amended Silicates sorbent does not degrade fly ash quality (unlike PAC). The cost for mercury control using either PAC or Amended Silicates sorbent was estimated to be equivalent if fly ash sales are not a consideration. However, if the plant did sell fly ash, the effective cost for mercury control could more than double if those sales were no longer possible, due to lost by-product sales and additional cost for waste disposal. Accordingly, the use of Amended Silicates sorbent could reduce the overall cost of mercury control by 50% or more versus PAC for locations where

  14. Effect of silicon, tantalum, and tungsten doping and polarization on bioactivity of hydroxyapatite

    Science.gov (United States)

    Dhal, Jharana

    Hydroxyapatite (HAp) ceramics has important applications as bone graft because of the structural and compositional similarities with bone tissue. However, inferior osteogenic capacity to bone and poor mechanical properties have been identified to be major disadvantages of synthetic HAp compared to the living bone tissue. The objective of the current study is to evaluate the effect of doping with higher valent cations (Tungsten, tantalum, and silicon) and polarization or combination of both on change in property of doped HAp and subsequent impact its bioactivity. In vitro study with human osteoblast cells was used to investigate the influences of doping and polarization on bone cell-materials interactions. The bioactivity of doped HAp was compared with pure HAp. Effect of doping and polarization on the change in HAp was investigated by monitoring change in mineral phases, stored charge, and activation energy of HAp. Activation energy of depolarization was used to explain the possible mechanism of polarization in doped samples. Bioactivity of HAp increased when doped with tantalum and tungsten. Polarization further increased the bioactivity of tungsten- and tantalum-doped samples. Increase in bioactivity on polarized and doped samples was attributed to increase in surface energy and increase in surface wettability. Whereas, an increase in bioactivity on doped unpolarized surface was attributed to change in microstructure. Polarized charge calculated from TSDC indicates that polarized charge decreases on tantalum- and tungsten-doped HAp. The decrease in polarized charge was attributed to the presence of significant amount of different phases that may hinder the ionic motion in doped samples. However, for silicon-doped HAp, TSDC study showed no difference in the mechanism of polarization between doped and undoped samples. Increase in silicon doping decreased the grain size though mechanism is not affected by grain size. Total stored charge decreased with increase in

  15. Interstellar silicate analogs for grain-surface reaction experiments: Gas-phase condensation and characterization of the silicate dust grains

    Energy Technology Data Exchange (ETDEWEB)

    Sabri, T.; Jäger, C. [Laboratory Astrophysics Group of the Max Planck Institute for Astronomy at the Friedrich Schiller University Jena Institute of Solid State Physics, Helmholtzweg 3, D-07743 Jena (Germany); Gavilan, L.; Lemaire, J. L.; Vidali, G. [Observatoire de Paris/Université de Cergy-Pontoise, 5 mail Gay Lussac, F-95000 Cergy-Pontoise (France); Mutschke, H. [Laboratory Astrophysics Group of the Astrophysical Institute and University Observatory, Friedrich Schiller University Jena Schillergässchen 3, D-07743 Jena (Germany); Henning, T., E-mail: tolou.sabri@uni-jena.de [Max Planck Institute for Astronomy Königstuhl 17, D-69117 Heidelberg (Germany)

    2014-01-10

    Amorphous, astrophysically relevant silicates were prepared by laser ablation of siliceous targets and subsequent quenching of the evaporated atoms and clusters in a helium/oxygen gas atmosphere. The described gas-phase condensation method can be used to synthesize homogeneous and astrophysically relevant silicates with different compositions ranging from nonstoichiometric magnesium iron silicates to pyroxene- and olivine-type stoichiometry. Analytical tools have been used to characterize the morphology, composition, and spectral properties of the condensates. The nanometer-sized silicate condensates represent a new family of cosmic dust analogs that can generally be used for laboratory studies of cosmic processes related to condensation, processing, and destruction of cosmic dust in different astrophysical environments. The well-characterized silicates comprising amorphous Mg{sub 2}SiO{sub 4} and Fe{sub 2}SiO{sub 4}, as well as the corresponding crystalline silicates forsterite and fayalite, produced by thermal annealing of the amorphous condensates, have been used as real grain surfaces for H{sub 2} formation experiments. A specifically developed ultra-high vacuum apparatus has been used for the investigation of molecule formation experiments. The results of these molecular formation experiments on differently structured Mg{sub 2}SiO{sub 4} and Fe{sub 2}SiO{sub 4} described in this paper will be the topic of the next paper of this series.

  16. Inter-diffusion study of rhodium and tantalum by RBS

    International Nuclear Information System (INIS)

    Nuttens, V.E.; Hubert, R.L.; Bodart, F.; Lucas, S.

    2005-01-01

    The inter-diffusion of rhodium and tantalum has been studied with the goal of synthesizing an alloy acting as a diffusion barrier for high temperature applications. Rh/Ta sandwiched samples were annealed in vacuum at temperature ranging from 800 to 900 deg. C and from 1000 to 1075 deg. C. The diffusion profiles were obtained by RBS. They suggest the formation of two clearly different phases in each temperature range considered

  17. Synthesis, Consolidation and Characterization of Sol-gel Derived Tantalum-Tungsten Oxide Thermite Composites

    Energy Technology Data Exchange (ETDEWEB)

    Cervantes, O [Univ. of California, Davis, CA (United States)

    2010-06-01

    Energetic composite powders consisting of sol-gel (SG) derived nanostructured tungsten oxide were produced with various amounts of micrometer-scale tantalum fuel metal. Such energetic composite powders were ignition-tested and results show that the powders are not sensitive to friction, spark and/or impact ignition. Initial consolidation experiments, using the High Pressure Spark Plasma Sintering (HPSPS) technique, on the SG derived nanostructured tungsten oxide produced samples with higher relative density than can be achieved with commercially available tungsten oxide. The SG derived nanostructured tungsten oxide with immobilized tantalum fuel metal (Ta - WO3) energetic composite was consolidated to a density of 9.17 g·cm-3 or 93% relative density. In addition, those samples were consolidated without significant pre-reaction of the constituents, thus retaining their stored chemical energy.

  18. Ion beam and dual ion beam sputter deposition of tantalum oxide films

    Science.gov (United States)

    Cevro, Mirza; Carter, George

    1994-11-01

    Ion beam sputter deposition (IBS) and dual ion beam sputter deposition (DIBS) of tantalum oxide films was investigated at room temperature and compared with similar films prepared by e-gun deposition. Optical properties ie refractive index and extinction coefficient of IBS films were determined in the 250 - 1100 nm range by transmission spectrophotometry and at (lambda) equals 632.8 nm by ellipsometry. They were found to be mainly sensitive to the partial pressure of oxygen used as a reactive gas in the deposition process. The maximum value of the refractive index of IBS deposited tantalum oxide films was n equals 2.15 at (lambda) equals 550 nm and the extinction coefficient of order k equals 2 X 10-4. Films deposited by e-gun deposition had refractive index n equals 2.06 at (lambda) equals 550 nm. Films deposited using DIBS ie deposition assisted by low energy Ar and O2 ions (Ea equals 0 - 300 eV) and low current density (Ji equals 0 - 40 (mu) A/cm2) showed no improvement in the optical properties of the films. Preferential sputtering occurred at Ea(Ar) equals 300 eV and Ji equals 20 (mu) A/cm2 and slightly oxygen deficient films were formed. Different bonding states in the tantalum-oxide films were determined by x-ray spectroscopy while composition of the film and contaminants were determined by Rutherford scattering spectroscopy. Tantalum oxide films formed by IBS contained relatively high Ar content (approximately equals 2.5%) originating from the reflected argon neutrals from the sputtering target while assisted deposition slightly increased the Ar content. Stress in the IBS deposited films was measured by the bending technique. IBS deposited films showed compressive stress with a typical value of s equals 3.2 X 109 dyn/cm2. Films deposited by concurrent ion bombardment showed an increase in the stress as a function of applied current density. The maximum was s approximately equals 5.6 X 109 dyn/cm2 for Ea equals 300 eV and Ji equals 35 (mu) A/cm2. All

  19. Ion-beam and dual-ion-beam sputter deposition of tantalum oxide films

    Science.gov (United States)

    Cevro, Mirza; Carter, George

    1995-02-01

    Ion-beam sputter deposition (IBS) and dual-ion-beam sputter deposition (DIBS) of tantalum oxide films was investigated at room temperature and compared with similar films prepared by e-gun deposition. The optical properties, i.e., refractive index and extinction coefficient, of IBS films were determined in the 250- to 1100-nm range by transmission spectrophotometry and at (lambda) equals 632.8 nm by ellipsometry. They were found to be mainly sensitive to the partial pressure of oxygen used as a reactive gas in the deposition process. The maximum value of the refractive index of IBS deposited tantalum oxide films was n equals 2.15 at (lambda) equals 550 nm and the extinction coefficient of order k equals 2 X 10-4. Films deposited by e-gun deposition had refractive index n 2.06 at (lambda) equals 550 nm. Films deposited using DIBS, i.e., deposition assisted by low energy Ar and O2 ions (Ea equals 0 to 300 eV) and low current density (Ji equals 0 to 40 (mu) A/cm2), showed no improvement in the optical properties of the films. Preferential sputtering occurred at Ea(Ar) equals 300 eV and Ji equals 20 (mu) A/cm2 and slightly oxygen deficient films were formed. Different bonding states in the tantalum-oxide films were determined by x-ray spectroscopy, whereas composition of the film and contaminants were determined by Rutherford backscattering spectroscopy (RBS). Tantalum oxide films formed by IBS contained relatively high Ar content (approximately equals 2.5%) originating from the reflected argon neutrals from the sputtering target whereas assisted deposition slightly increased the Ar content. Stress in the IBS-deposited films was measured by the bending technique. IBS-deposited films showed compressive stress with a typical value of s equals 3.2 X 109 dyn/cm2. Films deposited by concurrent ion bombardment showed an increase in the stress as a function of applied current density. The maximum was s approximately equals 5.6 X 109 dyn/cm2 for Ea equals 300 eV and Ji equals

  20. Effect of moisture and chitosan layered silicate on morphology and properties of chitosan/layered silicates films

    International Nuclear Information System (INIS)

    Silva, J.R.M.B. da; Santos, B.F.F. dos; Leite, I.F.

    2014-01-01

    Thin chitosan films have been for some time an object of practical assessments. However, to obtain biopolymers capable of competing with common polymers a significant improvement in their properties is required. Currently, the technology of obtaining polymer/layered silicates nanocomposites has proven to be a good alternative. This work aims to evaluate the effect of chitosan content (CS) and layered silicates (AN) on the morphology and properties of chitosan/ layered silicate films. CS/AN bionanocomposites were prepared by the intercalation by solution in the proportion 1:1 and 5:1. Then were characterized by infrared spectroscopy (FTIR), diffraction (XRD) and X-ray thermogravimetry (TG). It is expected from the acquisition of films, based on different levels of chitosan and layered silicates, choose the best composition to serve as a matrix for packaging drugs and thus be used for future research. (author)

  1. Effect of tantalum on α-martensite crystal structure in Co-Ta alloy

    International Nuclear Information System (INIS)

    Skorodzievskij, V.S.; Ustinov, A.I.; Chuistov, K.V.

    1985-01-01

    Changes in the crystal structure of α-martensite, formed during Co-Ta alloy hardening from the region of a homogeneous solid solution, are investigated by X-ray analysis methods. In case of increasing tantalum content in the alloy, intensity redistribution of X-ray scattering along the direction of the reverse space of H-K not equal to 3N (N=0, +-1, +-2...) type is fixed, which appears, depending on concentration, in continuous displacement of maxima from positions being characteristic for the initial 2H structure, as well as in occurring additional maxima and in changing the ratio between them by ipteΣity. For limiting values of tantalum concentration, where β → α-transformations are still observed, the number of intepsity maxima and their positions an the period of α-martensite reverse lattice recurrence period is closer to the location of 15R 1 -structure reverse structure unit

  2. Fast-neutrons incident on rotors: Tantalum

    International Nuclear Information System (INIS)

    Smith, Alan B.

    2005-01-01

    Mono-energetic neutrons are elastically and inelastically scattered from elemental tantalum at incident energies of ∼0.3-10.0 MeV. These experimental results are augmented with neutron total-cross-section and additional neutron-scattering data from the literature to form a composite experimental database. The latter is interpreted in the context of optical-statistical and coupled-channels models, including consideration of collective rotations, dispersion effects and other physical properties. The results are compared with those of similar processes in this region of collective nuclei. A regional model is proposed for the interpretation and prediction of such interactions. The model and the experimental results are compared with corresponding values given in ENDF/B-VI

  3. Ceramic material suitable for repair of a space vehicle component in a microgravity and vacuum environment, method of making same, and method of repairing a space vehicle component

    Science.gov (United States)

    Riedell, James A. (Inventor); Easler, Timothy E. (Inventor)

    2009-01-01

    A precursor of a ceramic adhesive suitable for use in a vacuum, thermal, and microgravity environment. The precursor of the ceramic adhesive includes a silicon-based, preceramic polymer and at least one ceramic powder selected from the group consisting of aluminum oxide, aluminum nitride, boron carbide, boron oxide, boron nitride, hafnium boride, hafnium carbide, hafnium oxide, lithium aluminate, molybdenum silicide, niobium carbide, niobium nitride, silicon boride, silicon carbide, silicon oxide, silicon nitride, tin oxide, tantalum boride, tantalum carbide, tantalum oxide, tantalum nitride, titanium boride, titanium carbide, titanium oxide, titanium nitride, yttrium oxide, zirconium diboride, zirconium carbide, zirconium oxide, and zirconium silicate. Methods of forming the ceramic adhesive and of repairing a substrate in a vacuum and microgravity environment are also disclosed, as is a substrate repaired with the ceramic adhesive.

  4. Electrochemical Properties of Transparent Conducting Films of Tantalum-Doped Titanium Dioxide

    Czech Academy of Sciences Publication Activity Database

    Krýsová, Hana; Mazzolini, P.; Casari, C. S.; Russo, V.; Li Bassi, A.; Kavan, Ladislav

    2017-01-01

    Roč. 232, APR 2017 (2017), s. 44-53 ISSN 0013-4686 R&D Projects: GA ČR GA13-07724S Institutional support: RVO:61388955 Keywords : titanium dioxide * tantalum doping * electrochemistry Subject RIV: CG - Electrochemistry OBOR OECD: Electrochemistry (dry cells, batteries, fuel cells, corrosion metals, electrolysis) Impact factor: 4.798, year: 2016

  5. Electrosynthesis of tantalum borides in oxygen-free and oxygen-containing fluoride melts

    DEFF Research Database (Denmark)

    Polyakova, L.P.; Polyakov, E.G.; Makarova, O.V.

    2001-01-01

    Results of electrosynthesis of tantalum borides in fluoride and oxyfluoride melts are compared. It is shown that the single-phase X-ray-amorphous micro-layered coatings form only in the latter case. Linear and square-wave voltammetry, complemented by X-ray diffraction analysis, IR spectroscopy...

  6. Direct electroplating of copper on tantalum from ionic liquids in high vacuum: origin of the tantalum oxide layer.

    Science.gov (United States)

    Schaltin, Stijn; D'Urzo, Lucia; Zhao, Qiang; Vantomme, André; Plank, Harald; Kothleitner, Gerald; Gspan, Christian; Binnemans, Koen; Fransaer, Jan

    2012-10-21

    In this paper, it is shown that high vacuum conditions are not sufficient to completely remove water and oxygen from the ionic liquid 1-ethyl-3-methylimidazolium chloride. Complete removal of water demands heating above 150 °C under reduced pressure, as proven by Nuclear Reaction Analysis (NRA). Dissolved oxygen gas can only be removed by the use of an oxygen scavenger such as hydroquinone, despite the fact that calculations show that oxygen should be removed completely by the applied vacuum conditions. After applying a strict drying procedure and scavenging of molecular oxygen, it was possible to deposit copper directly on tantalum without the presence of an intervening oxide layer.

  7. Adsorption of aqueous silicate on hematite

    International Nuclear Information System (INIS)

    Taylor, P.; Ticknor, K.V.

    1997-08-01

    During radioisotope sorption studies, adsorption of silicate from synthetic groundwaters by synthetic hematite was observed. To further investigate this observation, the adsorption of silicate onto hematite (α-Fe 2 O 3 ) powder from a neutral, aqueous NaC1 solution (0.1 mol/dm 3 ), containing 2.56 x 10 -4 mol/dm 3 of Si added as Na 2 SiO 3 ·9H 2 O, was measured at ∼21 deg C. Equilibrium adsorption of silicate amounted to ∼1.93 μmol/m 2 (one Si(O,OH) 4 moiety per 86 A 2 ). It is important to take this adsorption into account when evaluating the ability of iron oxides to adsorb other species, especially anions, from groundwaters. Silicate adsorption is known to diminish the ability of iron oxides to adsorb other anions. (author)

  8. Effect of Preconditioning and Soldering on Failures of Chip Tantalum Capacitors

    Science.gov (United States)

    Teverovsky, Alexander A.

    2014-01-01

    Soldering of molded case tantalum capacitors can result in damage to Ta205 dielectric and first turn-on failures due to thermo-mechanical stresses caused by CTE mismatch between materials used in the capacitors. It is also known that presence of moisture might cause damage to plastic cases due to the pop-corning effect. However, there are only scarce literature data on the effect of moisture content on the probability of post-soldering electrical failures. In this work, that is based on a case history, different groups of similar types of CWR tantalum capacitors from two lots were prepared for soldering by bake, moisture saturation, and longterm storage at room conditions. Results of the testing showed that both factors: initial quality of the lot, and preconditioning affect the probability of failures. Baking before soldering was shown to be effective to prevent failures even in lots susceptible to pop-corning damage. Mechanism of failures is discussed and recommendations for pre-soldering bake are suggested based on analysis of moisture characteristics of materials used in the capacitors' design.

  9. NEPP Evaluation of Automotive Grade Tantalum Chip Capacitors

    Science.gov (United States)

    Sampson, Mike; Brusse, Jay

    2018-01-01

    Automotive grade tantalum (Ta) chip capacitors are available at lower cost with smaller physical size and higher volumetric efficiency compared to military/space grade capacitors. Designers of high reliability aerospace and military systems would like to take advantage of these attributes while maintaining the high standards for long-term reliable operation they are accustomed to when selecting military-qualified established reliability tantalum chip capacitors (e.g., MIL-PRF-55365). The objective for this evaluation was to assess the long-term performance of off-the-shelf automotive grade Ta chip capacitors (i.e., manufacturer self-qualified per AEC Q-200). Two (2) lots of case size D manganese dioxide (MnO2) cathode Ta chip capacitors from 1 manufacturer were evaluated. The evaluation consisted of construction analysis, basic electrical parameter characterization, extended long-term (2000 hours) life testing and some accelerated stress testing. Tests and acceptance criteria were based upon manufacturer datasheets and the Automotive Electronics Council's AEC Q-200 qualification specification for passive electronic components. As-received a few capacitors were marginally above the specified tolerance for capacitance and ESR. X-ray inspection found that the anodes for some devices may not be properly aligned within the molded encapsulation leaving less than 1 mil thickness of the encapsulation. This evaluation found that the long-term life performance of automotive grade Ta chip capacitors is generally within specification limits suggesting these capacitors may be suitable for some space applications.

  10. Antibacterial properties and cytocompatibility of tantalum oxide coatings with different silver content

    International Nuclear Information System (INIS)

    Huang, Heng-Li; Chang, Yin-Yu; Chen, Hung-Jui; Chou, Yu-Kai; Lai, Chih-Ho; Chen, Michael Y. C.

    2014-01-01

    Tantalum (Ta) oxides and their coatings have been proved to increase their applications in the biomedical fields by improving osseointegration and wear resistance. In this study, Ta oxide coatings containing different proportions of Ag are deposited on SS304 materials. A twin-gun magnetron sputtering system is used to deposit the tantalum oxide-Ag coating. In this study, Staphylococcus aureus, which exhibits physiological commensalism on the human skin, nares, and mucosal and oral areas, is chosen as the model for in vitro antibacterial analyses via a fluorescence staining method using Syto9. The cytocompatibility and adhesive morphology of human skin fibroblast cells (CCD-966SK) on the coatings are also determined by using the microculture tetrazolium assay. This study shows that Ta 2 O 5 and Ta 2 O 5 -Ag coatings with 12.5 at. % of Ag exhibit improved antibacterial effects against S. aureus and have good skin fibroblast cell cellular biocompatibility

  11. Antibacterial properties and cytocompatibility of tantalum oxide coatings with different silver content

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Heng-Li [School of Dentistry, China Medical University, Taichung 404, Taiwan (China); Chang, Yin-Yu, E-mail: yinyu@mail2000.com.tw; Chen, Hung-Jui; Chou, Yu-Kai [Department of Mechanical and Computer-Aided Engineering, National Formosa University, Yunlin 632, Taiwan (China); Lai, Chih-Ho [School of Medicine, China Medical University, Taichung 404, Taiwan (China); Chen, Michael Y. C. [Division of Oral and Maxillofacial Surgery, China Medical University Hospital, Taichung 404, Taiwan (China)

    2014-03-15

    Tantalum (Ta) oxides and their coatings have been proved to increase their applications in the biomedical fields by improving osseointegration and wear resistance. In this study, Ta oxide coatings containing different proportions of Ag are deposited on SS304 materials. A twin-gun magnetron sputtering system is used to deposit the tantalum oxide-Ag coating. In this study, Staphylococcus aureus, which exhibits physiological commensalism on the human skin, nares, and mucosal and oral areas, is chosen as the model for in vitro antibacterial analyses via a fluorescence staining method using Syto9. The cytocompatibility and adhesive morphology of human skin fibroblast cells (CCD-966SK) on the coatings are also determined by using the microculture tetrazolium assay. This study shows that Ta{sub 2}O{sub 5} and Ta{sub 2}O{sub 5}-Ag coatings with 12.5 at. % of Ag exhibit improved antibacterial effects against S. aureus and have good skin fibroblast cell cellular biocompatibility.

  12. Silicates materials of high vacuum technology

    CERN Document Server

    Espe, Werner

    2013-01-01

    Materials of High Vacuum Technology, Volume 2: Silicates covers silicate insulators of special importance to vacuum technology. The book discusses the manufacture, composition, and physical and chemical properties of technical glasses, quartz glass, quartzware, vycor glass, ceramic materials, mica, and asbestos.

  13. Yield strength of molybdenum, tantalum and tungsten at high strain rates and very high temperatures

    International Nuclear Information System (INIS)

    Škoro, G.P.; Bennett, J.R.J.; Edgecock, T.R.; Booth, C.N.

    2012-01-01

    Highlights: ► New experimental data on the yield strength of molybdenum, tantalum and tungsten. ► High strain rate effects at record high temperatures (up to 2700 K). ► Test of the consistency of the Zerilli–Armstrong model at very high temperatures. - Abstract: Recently reported results of the high strain rate, high temperature measurements of the yield strength of tantalum and tungsten have been analyzed along with new experimental results on the yield strength of molybdenum. Thin wires are subjected to high stress by passing a short, fast, high current pulse through a thin wire; the amplitude of the current governs the stress and the repetition rate of the pulses determines the temperature of the wire. The highest temperatures reached in the experiments were 2100 °C (for molybdenum), 2250 °C (for tantalum) and 2450 °C (for tungsten). The strain-rates in the tests were in the range from 500 to 1500 s −1 . The parameters for the constitutive equation developed by Zerilli and Armstrong have been determined from the experimental data and the results have been compared with the data obtained at lower temperatures. An exceptionally good fit is obtained for the deformation of tungsten.

  14. The development of fast tantalum foil targets for short-lived isotopes

    CERN Document Server

    Bennett, J R J; Drumm, P V; Ravn, H L

    2003-01-01

    The development of fast tantalum foil targets for short-lived isotopes was discussed. It was found that the effusion was faster but the diffusion out of the foils was a limiting factor. The performance of the targets at ISOLDE with beams of **1**1Li, **1**2Be and **1**4Be was also analyzed. (Edited abstract) 13 Refs.

  15. In situ production of tantalum carbide nanodispersoids in a copper matrix by reactive milling and hot extrusion

    Energy Technology Data Exchange (ETDEWEB)

    Manotas-Albor, Milton, E-mail: manotasm@uninorte.edu.co [Grupo de Investigación en Física Aplicada, Departamento de Física, Universidad del Norte, Km. 5 vía a Puerto Colombia, Barranquilla (Colombia); Departamento de Ingeniería Mecánica, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Beauchef 850, Santiago (Chile); Vargas-Uscategui, Alejandro [Laboratorio de Materiales a Nanoescala, Departamento de Ciencia de los Materiales, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Tupper Av. 2069, Santiago (Chile); Palma, Rodrigo [Departamento de Ingeniería Mecánica, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Beauchef 850, Santiago (Chile); Mosquera, Edgar [Laboratorio de Materiales a Nanoescala, Departamento de Ciencia de los Materiales, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Tupper Av. 2069, Santiago (Chile)

    2014-06-15

    Highlights: • Tantalum carbide nanodispersoids were obtained in a copper matrix. • Nanodispersoids were obtained by means of reactive milling followed by hot extrusion. • Hexane was used as the liquid medium for the reactive mechanical alloying process. • Hexane provides the carbon (C) needed for the process. • The reaction of tantalum carbide formation takes place in the hot extrusion. - Abstract: This paper presents a study of the in situ production of tantalum carbide nanodispersoids in a copper matrix. The copper matrix composites were produced by means of reactive milling in hexane (C{sub 6}H{sub 14}) followed by hot extrusion. The composite materials were characterized by means of optical emission spectroscopy (OES), X-ray fluorescence (XRF), scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM) and Vickers micro-hardness. The effect of milling time was analyzed in 10, 20 and 30 h in a composite with a nominal composition Cu–5 vol.% TaC. A systematic increase of the dislocations density and the carbon concentration were observed when the milling time was increased, whereas the crystallite size of the composite matrix decreased. The material milled for 30 h and hot-extruded showed a density of 9037 kg m{sup −3} (98.2% densification) and a softening resistance of 204 HV; however the latter value showed an abrupt drop after an annealing treatment at 923 K for 1 h. Finally, the TEM analysis showed the presence of tantalum carbide (Ta{sub 4}C{sub 3}) nanodispersoids.

  16. Environment sensitive embedding energies of impurities, and grain boundary stability in tantalum

    International Nuclear Information System (INIS)

    Krasko, G.L.

    1996-01-01

    Metalloid impurities have a very low solubility in tantalum, and therefore prefer to segregate at the grain boundaries (GBs). In order to analyze the energetics of the impurities on the tantalum GB, the LMTO calculations were performed on a simple 8-atom supercell emulating a typical (capped trigonal prism) GB environment. The so-called environment-sensitive embedding energies were calculated for hydrogen, boron, carbon, nitrogen, oxygen, phosphorus, and sulphur, as a function of the electron charge density due to the host atoms at the impurity site. The calculations showed that, at the electron density typical of a GB, carbon has the lowest energy (followed by Nitrogen and Boron) and thus would compete with the other impurities for the site on the GB, tending to displace them from the GB. The above energies were then used in a modified Finnis-Sinclair embedded atom approach for calculating the cohesive energies and the equilibrium interplanar distances in the vicinity of a (111) Σ3 tilt GB plane, both for the clean GB and that with an impurity. These distances were found to oscillate, returning to the value corresponding to the equilibrium spacing between (111) planes in bulk BCC tantalum by the 10th--12th plane off the GB. Carbon, nitrogen and boron somewhat dampen the deformation wave (making the oscillations less than in the clean GB), while oxygen, phosphorus and sulphur result in an increase of the oscillations. The cohesive energies follow the same trend, the GB with carbon being the most stable. Thus, carbon, nitrogen and boron may be thought of as being cohesion enhancers, while oxygen, phosphorus and sulphur result in decohesion effects

  17. Fracture of an uncemented tantalum patellar component

    Directory of Open Access Journals (Sweden)

    Nathan L. Grimm, MD

    2016-06-01

    Full Text Available A 62-year-old man presented with the acute, atraumatic onset of pain 3 years after uncemented right total knee arthroplasty. He complained of new mechanical locking with the knee held in extension on examination and unable to flex the knee. On the plain radiographs, the patellar component peg was fractured and the plate was dislocated. The knee was immobilized, and revision to a cemented 3-peg component was performed. Fracture of a single-peg, tantalum-backed uncemented patellar component has not been described. Clinical suspicion for this should be given in the setting of acute locking. We recommend revision with a cemented polyethylene component.

  18. Location of silicic caldera formation in arc settings

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, Gwyneth R; Mahood, Gail A [Department of Geological and Environmental Sciences, Stanford University, 450 Serra, Mall, Building 320, Stanford, CA 94305-2115 (United States)

    2008-10-01

    Silicic calderas are the surface expressions of silicic magma chambers, and thus their study may yield information about what tectonic and crustal features favor the generation of evolved magma. The goal of this study is to determine whether silicic calderas in arc settings are preferentially located behind the volcanic front. After a global analysis of young, arc-related calderas, we find that silicic calderas at continental margins do form over a wide area behind the front, as compared to other types of arc volcanoes.

  19. Tantalum coating on TiO2 nanotubes induces superior rate of matrix mineralization and osteofunctionality in human osteoblasts

    International Nuclear Information System (INIS)

    Frandsen, Christine J.; Brammer, Karla S.; Noh, Kunbae; Johnston, Gary; Jin, Sungho

    2014-01-01

    Nanostructured surface geometries have been the focus of a multitude of recent biomaterial research, and exciting findings have been published. However, only a few publications have directly compared nanostructures of various surface chemistries. The work herein directly compares the response of human osteoblast cells to surfaces of identical nanotube geometries with two well-known orthopedic biomaterials: titanium oxide (TiO 2 ) and tantalum (Ta). The results reveal that the Ta surface chemistry on the nanotube architecture enhances alkaline phosphatase activity, and promotes a ∼ 30% faster rate of matrix mineralization and bone-nodule formation when compared to results on bare TiO 2 nanotubes. This study implies that unique combinations of surface chemistry and nanostructure may influence cell behavior due to distinctive physico-chemical properties. These findings are of paramount importance to the orthopedics field for understanding cell behavior in response to subtle alterations in nanostructure and surface chemistry, and will enable further insight into the complex manipulation of biomaterial surfaces. With increased focus in the field of orthopedic materials research on nanostructured surfaces, this study emphasizes the need for careful and systematic review of variations in surface chemistry in concurrence with nanotopographical changes. - Highlights: • A TiO 2 nanotube surface structure was coated with tantalum. • Osteoblast cell response was compared between the tantalum coated and as-formed TiO 2 nanotube surface. • We observed superior rates of bone matrix mineralization and osteoblast maturation on the tantalum coated nanotube surface

  20. The effect of yttrium addition on oxidation of a sputtered nanocrystalline coating with moderate amount of tantalum in composition

    International Nuclear Information System (INIS)

    Wang, Jinlong; Chen, Minghui; Yang, Lanlan; Liu, Li; Zhu, Shenglong; Wang, Fuhui; Meng, Guozhe

    2016-01-01

    Graphical abstract: - Highlights: • Effect of Y addition on oxidation of nanocrystalline coating is studied. • Y addition delays transformation of q-Al_2O_3 to a-Al_2O_3 during oxidation. • Y addition prevents scale rumpling. • Y segregates at grain boundaries of the nanocrystalline coating. • Y retards the transportation of Ta thus reduces its oxidation. - Abstract: The effect of yttrium addition on isothermal oxidation at 1050 °C of a sputtered nanocrystalline coating with moderate amount of tantalum in composition was investigated. Results indicate that yttrium addition delays transformation of metastable θ-Al_2O_3 to equilibrium α-Al_2O_3 grown on the nanocrystalline coatings. It prevents scale rumpling and promotes the formation of oxide pegs at interface between the oxide scale and the underlying coating. Besides, yttrium prefers to segregate at grain boundaries of the nanocrystalline coating and retards the outward transportation of tantalum from coating to oxide scale, thus reducing the excessive oxidation of tantalum.

  1. [(≡SiO)TaV (=CH2)Cl2], the first tantalum methylidene species prepared and identified on the silica surface

    KAUST Repository

    Chen, Yin

    2013-11-01

    A novel surface tantalum methylidene [(≡SiO)TaV (=CH 2)Cl2] was obtained via thermal decomposition of the well-defined surface species [(≡SiO)TaVCl2Me 2]. This first surface tantalum methylidene ever synthesized has been fully characterized and the kinetics of the a-hydrogen abstraction reaction has also been investigated in the heterogeneous system. © 2013 Elsevier B.V. All rights reserved.

  2. [(≡SiO)TaV (=CH2)Cl2], the first tantalum methylidene species prepared and identified on the silica surface

    KAUST Repository

    Chen, Yin; Callens, Emmanuel; Abou-Hamad, Edy; Basset, Jean-Marie

    2013-01-01

    A novel surface tantalum methylidene [(≡SiO)TaV (=CH 2)Cl2] was obtained via thermal decomposition of the well-defined surface species [(≡SiO)TaVCl2Me 2]. This first surface tantalum methylidene ever synthesized has been fully characterized and the kinetics of the a-hydrogen abstraction reaction has also been investigated in the heterogeneous system. © 2013 Elsevier B.V. All rights reserved.

  3. On crystallochemistry of uranil silicates

    International Nuclear Information System (INIS)

    Sidorenko, G.A.; Moroz, I.Kh.; Zhil'tsova, I.G.

    1975-01-01

    A crystallochemical analysis has been made of uranil silicates. It is shown that on crystallochemical grounds it is justified to distinguish among them uranophane-kasolite, soddyite and viksite groups differing in the uranil-anion [SiO 4 ] -4 ratio and, as a consequence, in their crystallochemical structures. Widespread silicates of the uranophane-kasolite group is the formation of polytype modifications where, depending on the interlaminar cation, crystalline structures are formed with various packing of single-type uranil-anion layers. It has been shown experimentally that silicates of the uranophanekasolite group contain no oxonium ion in their crystalline structures. Minerals of the viksite group belong to a group of isostructural (homeotypic) laminated formation apt to form phases of different degrees of hydration. Phases with a smaller interlaminar cation form hydrates with a greater number of water molecules in the formulas unit

  4. Low-temperature diffusion of hydrogen isotopes in tantalum

    International Nuclear Information System (INIS)

    Peichl, R.; Ziegler, P.; Weidinger, A.

    1987-01-01

    The mobility of hydrogen and deuterium in tantalum is investigated in the temperature range between 4.2 and 30 K. On the time scale of the present experiment (25 μs) we find that hydrogen begins to move above 15 K whereas deuterium remains immobile at least up to 30 K. Since the interpretation of the data depends critically on the exact hydrogen configurations a major part of the paper is devoted to this problem. We suggest that hydrogen can exist in fairly localized or more extended states depending on the local homogeneity of the crystal. (orig.)

  5. Synthesis of Monodispersed Tantalum(V) oxide Nanospheres by an Ethylene Glycol Mediated Route

    Science.gov (United States)

    Tantalum(V) oxide (Ta2O5) nanospheres have been synthesized by a very simple ethylene glycol mediated route. The two-step process involves the formation of glycolate nanoparticles and their subsequent hydrolysis and calcination to generate the final Ta2O5 nanospheres. The synthes...

  6. Characterization of un-hydrated and hydrated BioAggregate™ and MTA Angelus™.

    Science.gov (United States)

    Camilleri, J; Sorrentino, F; Damidot, D

    2015-04-01

    BioAggregate™ is a novel material introduced for use as a root-end filling material. It is tricalcium silicate-based, free of aluminium and uses tantalum oxide as radiopacifier. BioAggregate contains additives to enhance the material performance. The purpose of this research was to characterize the un-hydrated and hydrated forms of BioAggregate using a combination of techniques, verify whether the additives if present affect the properties of the set material and compare these properties to those of MTA Angelus™. Un-hydrated and hydrated BioAggregate and MTA Angelus were assessed. Un-hydrated cement was tested for chemical composition, specific surface area, mineralogy and kinetics of hydration. The set material was investigated for mineralogy, microstructure and bioactivity. Scanning electron microscopy, X-ray energy dispersive spectroscopic analysis, X-ray fluorescence spectroscopy, X-ray diffraction and isothermal calorimetry were employed. The specific surface area was investigated using a gas adsorption method with nitrogen as the probe. BioAggregate was composed of tricalcium silicate, tantalum oxide, calcium phosphate and silicon dioxide and was free of aluminium. On hydration, the tricalcium silicate produced calcium silicate hydrate and calcium hydroxide. The former was deposited around the cement grains, while the latter reacted with the silicon dioxide to form additional calcium silicate hydrate. This resulted in reduction of calcium hydroxide in the aged cement. MTA Angelus reacted in a similar fashion; however, since it contained no additives, the calcium hydroxide was still present in the aged cement. Bioactivity was demonstrated by deposition of hydroxyapatite. BioAggregate exhibited a high specific surface area. Nevertheless, the reactivity determined by isothermal calorimetry appeared to be slow compared to MTA Angelus. The tantalum oxide as opposed to bismuth oxide was inert, and tantalum was not leached in solution. BioAggregate exhibited

  7. Characterization of anodic barrier films on tantalum and 1100 aluminum by ISS/SIMS

    International Nuclear Information System (INIS)

    McCune, R.C.

    1978-01-01

    Ion scattering spectrometry (ISS) and concurrent secondary ion mass spectrometry (SIMS) were used to determine the depth profiles of anodic barrier oxide films grown on tantalum and type 1100 aluminum. The sputter rate in each case was determined from the film thickness measured by the anodic overvoltage, and the penetration time determined by the decrease in intensity of the metal oxide fragment observed using SIMS. A mixture of helium and neon ions was used to sputter aluminum oxide films in order to observe ion scattering of helium by oxygen, while taking advantage of the higher sputtering rate available with neon. A comparison of sputter rates for helium and neon on tantalum oxide indicated that neon sputtered the film at a rate eight times that of helium. SIMS depth profiling of the residual boron in the anodic aluminum oxide indicated a mixing effect which did not permit adequate resolution of the interface between the oxide film and the underlying metal

  8. Tantalum coating on TiO{sub 2} nanotubes induces superior rate of matrix mineralization and osteofunctionality in human osteoblasts

    Energy Technology Data Exchange (ETDEWEB)

    Frandsen, Christine J.; Brammer, Karla S. [Materials Science and Engineering, University of California at San Diego, La Jolla, CA 92093 (United States); Noh, Kunbae [Corporate Research Institute, Cheil Industries, Inc., Gocheon-Dong, Uiwang-Si, Gyeonggi-Do, 437-711 (Korea, Republic of); Johnston, Gary [Materials Science and Engineering, University of California at San Diego, La Jolla, CA 92093 (United States); Jin, Sungho, E-mail: jin@ucsd.edu [Materials Science and Engineering, University of California at San Diego, La Jolla, CA 92093 (United States); Mechanical and Aerospace Engineering, University of California at San Diego, La Jolla, CA 92093 (United States)

    2014-04-01

    Nanostructured surface geometries have been the focus of a multitude of recent biomaterial research, and exciting findings have been published. However, only a few publications have directly compared nanostructures of various surface chemistries. The work herein directly compares the response of human osteoblast cells to surfaces of identical nanotube geometries with two well-known orthopedic biomaterials: titanium oxide (TiO{sub 2}) and tantalum (Ta). The results reveal that the Ta surface chemistry on the nanotube architecture enhances alkaline phosphatase activity, and promotes a ∼ 30% faster rate of matrix mineralization and bone-nodule formation when compared to results on bare TiO{sub 2} nanotubes. This study implies that unique combinations of surface chemistry and nanostructure may influence cell behavior due to distinctive physico-chemical properties. These findings are of paramount importance to the orthopedics field for understanding cell behavior in response to subtle alterations in nanostructure and surface chemistry, and will enable further insight into the complex manipulation of biomaterial surfaces. With increased focus in the field of orthopedic materials research on nanostructured surfaces, this study emphasizes the need for careful and systematic review of variations in surface chemistry in concurrence with nanotopographical changes. - Highlights: • A TiO{sub 2} nanotube surface structure was coated with tantalum. • Osteoblast cell response was compared between the tantalum coated and as-formed TiO{sub 2} nanotube surface. • We observed superior rates of bone matrix mineralization and osteoblast maturation on the tantalum coated nanotube surface.

  9. Development of India-specific RAFM steel through optimization of tungsten and tantalum contents for better combination of impact, tensile, low cycle fatigue and creep properties

    Energy Technology Data Exchange (ETDEWEB)

    Laha, K., E-mail: laha@igcar.gov.in [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, TN (India); Saroja, S.; Moitra, A.; Sandhya, R.; Mathew, M.D.; Jayakumar, T. [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, TN (India); Rajendra Kumar, E. [Institute for Plasma Research, Bhat, Gandhinagar 382 428, Gujarat (India)

    2013-08-15

    Effects of tungsten and tantalum contents on impact, tensile, low cycle fatigue and creep properties of Reduced Activation Ferritic–Martensitic (RAFM) steel were studied to develop India-specific RAFM steel. Four heats of the steel have been melted with tungsten and tantalum contents in the ranges 1–2 wt.% and 0.06–0.14 wt.% respectively. Increase in tungsten content increased the ductile-to-brittle transition temperature (DBTT), low cycle fatigue and creep strength of the steel, whereas the tensile strength was not changed significantly. Increase in tantalum content increased the DBTT and low cycle fatigue strength of the steel whereas the tensile and creep strength decreased. Detailed TEM investigations revealed enhanced microstructural stability of the steel against creep exposure on tungsten addition. The RAFM steel having 1.4 wt.% tungsten with 0.06 wt.% tantalum was found to possess optimum combination of impact, tensile, low cycle fatigue and creep properties and is considered for Indian-specific RAFM steel.

  10. Estimation of niobium, tantalum and zirconium in a carbonate rich ore

    International Nuclear Information System (INIS)

    Navale, A.S.; Venkatakrishnan, R.R.; Sreenivas, T.

    2013-01-01

    A simple method using ICP-OES for estimation of tantalum, niobium and zirconium in a carbonate rich matrix is described. The sample is boiled with 10% v/v hydrochloric acid for 15 min and filtered. The residue is fused with ammonium bifluoride-ammonium sulphate flux and the melt is leached with water. Nb, Ta and Zr are estimated in the water leach by ICP-OES. (author)

  11. Effect of silicate module of water glass on rheological parameters of poly(sodium acrylate)/sodium silicate hydrogels

    Science.gov (United States)

    Mastalska-Popiawska, J.; Izak, P.

    2017-01-01

    The poly(sodium acrylate)/sodium silicate hydrogels were synthesized in the presence of sodium thiosulphate and potassium persulphate as the redox initiators and N,N’-methylene-bisacrylamide as the cross-linking monomer. 20 wt% aqueous solution of sodium acrylate was polymerized together with water glass with different silicate modules (M) from 1.74 to 2.29, in three mass ratio of the monomer solution to the water glass 2:1, 1:1 and 1:2. Such obtained hybrid composites were rheologically tested using the oscillation method. It allowed to designate the crossover point during polymerization, as well as to define the viscoelastic properties of the casted hydrogel samples one week after the reaction. The obtained results of the oscillation measurements showed that cross-linking reaction proceeds very quickly and the lower the silicate module is, the process starts faster. After the completion of the reaction the silicate-polymer hydrogels are strongly elastic materials and the highest elasticity characterizes systems with the mass ratio 1:2, i.e. with the highest water glass content.

  12. 40 CFR 721.9513 - Modified magnesium silicate polymer (generic).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Modified magnesium silicate polymer... Specific Chemical Substances § 721.9513 Modified magnesium silicate polymer (generic). (a) Chemical... as modified magnesium silicate polymer (PMN P-98-604) is subject to reporting under this section for...

  13. Extraction - spectrophotometric determination of tantalum (V) with 2-(2-thiazolylazo)-5-dimethylaminophenol and 1,3-diphenylguanidine

    International Nuclear Information System (INIS)

    Tsurumi, C.; Furuya, K.; Kamada, H.

    1981-01-01

    Tantalum(V)-2-(2-thiazolylazo)-5-dimethylaminophenol (TAM) chelate anion is extracted quantitatively into benzyl alcohol with 1,3-diphenylguanidine (DPG) to form a ternary complex. In the organic phase, the complex has an absorption maximum at 605 nm. The optimum pH range for the extraction is 4.1 to 4.9 and the ternary complex is stable for at least 50 min. Beer's law is obeyed over a concentration range of 2 to 18 μg of tantalum(V) in 10 ml of the organic phase. The molar absorptivity of the ternary complex is 4.1 x 10 4 l mol -1 at 605 nm. The composition of the ternary complex is considered to be (TaO 2 ) 2 (TAM) 3 (DPG + ). (author)

  14. Lattice thermal conductivity of silicate glasses at high pressures

    Science.gov (United States)

    Chang, Y. Y.; Hsieh, W. P.

    2016-12-01

    Knowledge of the thermodynamic and transport properties of magma holds the key to understanding the thermal evolution and chemical differentiation of Earth. The discovery of the remnant of a deep magma ocean above the core mantle boundary (CMB) from seismic observations suggest that the CMB heat flux would strongly depend on the thermal conductivity, including lattice (klat) and radiative (krad) components, of dense silicate melts and major constituent minerals around the region. Recent measurements on the krad of dense silicate glasses and lower-mantle minerals show that krad of dense silicate glasses could be significantly smaller than krad of the surrounding solid mantle phases, and therefore the dense silicate melts would act as a thermal insulator in deep lower mantle. This conclusion, however, remains uncertain due to the lack of direct measurements on the lattice thermal conductivity of silicate melts under relevant pressure-temperature conditions. Besides the CMB, magmas exist in different circumstances beneath the surface of the Earth. Chemical compositions of silicate melts vary with geological and geodynamic settings of the melts and have strong influences on their thermal properties. In order to have a better view of heat transport within the Earth, it is important to study compositional and pressure dependences of thermal properties of silicate melts. Here we report experimental results on lattice thermal conductivities of silicate glasses with basaltic and rhyolitic compositions up to Earth's lower mantle pressures using time-domain thermoreflectance coupled with diamond-anvil cell techniques. This study not only provides new data for the thermal conductivity of silicate melts in the Earth's deep interior, but is crucial for further understanding of the evolution of Earth's complex internal structure.

  15. Electron tunneling in tantalum surface layers on niobium

    International Nuclear Information System (INIS)

    Ruggiero, S.T.; Track, E.K.; Prober, D.E.; Arnold, G.B.; DeWeert, M.J.

    1986-01-01

    We have performed electron tunneling measurements on tantalum surface layers on niobium. The tunnel junctions comprise 2000-A-circle Nb base electrodes with 10--100-A-circle in situ--deposited Ta overlayers, an oxide barrier, and Ag, Pb, or Pb-Bi alloy counterelectrodes. The base electrodes were prepared by ion-beam sputter deposition. The characteristics of these junctions have been studied as a function of Ta-layer thickness. These include the critical current, bound-state energy, phonon structure, and oxide barrier shape. We have compared our results for the product I/sub c/R versus tantalum-layer thickness with an extended version of the Gallagher theory which accounts for both the finite mean free path in the Ta overlayers and suppression of the I/sub c/R product due to strong-coupling effects. Excellent fits to the data yield a value of the intrinsic scattering probability for electrons at the Ta/Nb interface of r 2 = 0.01. This is consistent with the value expected from simple scattering off the potential step created by the difference between the Fermi energies of Ta and Nb. We have found a universal empirical correlation in average barrier height phi-bar and width s in the form phi-bar = 6 eV/(s-10 A-circle) for measured junctions which holds both for our data and results for available data in the literature for oxide-barrier junctions. The latter are composed of a wide variety of base and counterelectrode materials. These results are discussed in the general context of oxide growth and compared with results for artificial tunnel barriers

  16. Multifunctional hybrid coating on titanium towards hydroxyapatite growth: Electrodeposition of tantalum and its molecular functionalization with organophosphonic acids films

    International Nuclear Information System (INIS)

    Arnould, Christelle; Delhalle, Joseph; Mekhalif, Zineb

    2008-01-01

    Titanium and its alloys are base materials used in the dental and orthopaedic fields owing to suitable intrinsic properties: good biocompatibility, high corrosion resistance and excellent mechanical properties. However, the bonding between titanium and bone tissue is not always strong enough and can become a critical problem. In this context, the two main objectives of this paper are the increase of the corrosion resistance and the improvement of the hydroxyapatite (HAp) growth. The surface modification considered here is achieved in three main steps and consists in the elaboration of different inorganic and organic coatings. The first step is the elaboration of electrodeposition of tantalum on the titanium oxide film of a titanium substrate. The second step is the modification of the tantalum oxide coating with organophosphonic acids. The last step is the nucleation and growth of HAP on the outermost layer of the system by immersion in a simulated body fluid. The hybrid coating tantalum oxide/organophosphonic acids/molecular layer is shown to be promising for orthopaedic implants

  17. Dissolution kinetics of small amounts of oxygen in tantalum alloy T-111 and internal oxide displacement reactions during annealing

    Science.gov (United States)

    Stecura, S.

    1976-01-01

    Oxygen was added to T-111 (Ta-8W-2Hf, wt. %) at 820 and 990 C at an oxygen pressure of about 0.0003 torr. The technique employed permitted predetermined and reproducible doping of T-111 up to 3.0 at. % oxygen. Based on the temperature dependence of the doping reaction, it is concluded that the initial rates of oxygen pickup are probably controlled by solution of oxygen into the T-111 lattice. Although hafnium oxides are more stable than those of tantalum or tungsten, analyses of extracted residues indicate that the latter oxides predominate in the as-doped specimens, presumably because of the higher concentrations of tantalum and tungsten in the alloy. However, high-temperature annealing promotes gettering of dissolved oxygen and of other oxides to form hafnium oxides. Small amounts of tantalum and tungsten oxides were still present after high-temperature annealing. Tungsten oxide (WO3) volatilizes slightly from the surface of T-111 at 990 C. The vaporization of WO3 has no apparent affect on the doping reaction.

  18. High Pressure/Temperature Metal Silicate Partitioning of Tungsten

    Science.gov (United States)

    Shofner, G. A.; Danielson, L.; Righter, K.; Campbell, A. J.

    2010-01-01

    The behavior of chemical elements during metal/silicate segregation and their resulting distribution in Earth's mantle and core provide insight into core formation processes. Experimental determination of partition coefficients allows calculations of element distributions that can be compared to accepted values of element abundances in the silicate (mantle) and metallic (core) portions of the Earth. Tungsten (W) is a moderately siderophile element and thus preferentially partitions into metal versus silicate under many planetary conditions. The partitioning behavior has been shown to vary with temperature, silicate composition, oxygen fugacity, and pressure. Most of the previous work on W partitioning has been conducted at 1-bar conditions or at relatively low pressures, i.e. pressure. Predictions based on extrapolation of existing data and parameterizations suggest an increased pressured dependence on metal/ silicate partitioning of W at higher pressures 5. However, the dependence on pressure is not as well constrained as T, fO2, and silicate composition. This poses a problem because proposed equilibration pressures for core formation range from 27 to 50 GPa, falling well outside the experimental range, therefore requiring exptrapolation of a parametereized model. Higher pressure data are needed to improve our understanding of W partitioning at these more extreme conditions.

  19. Synthesis and magnetic properties of highly dispersed tantalum carbide nanoparticles decorated on carbon spheres

    CSIR Research Space (South Africa)

    Bhattacharjee, K

    2016-01-01

    Full Text Available The decoration of carbon spheres (CS) by highly dispersed tantalum carbide nanoparticles (TaC NPs) was achieved, for the first time by a unique carbothermal reduction method at 1350 °C for 30 min under reduced oxygen partial pressure. TaC NPs...

  20. The extraction of trace amounts of tantalum(V) from different mineral acid solutions by 4-(5-nonyl) pyridine oxide and trioctylamine oxide

    International Nuclear Information System (INIS)

    Ejaz, M.; Carswell, D.J.

    1976-01-01

    Data are presented on the distribution of trace amounts of tantalum(V) between different mineral acid solutions and 0.1M solutions of N-oxides of 4-(5-nonyl) pyridine and trioctylamine. The optimal acidity is 0.01-0.5M, depending on the nature of the acid. Common anions have little effect on extraction. Possible mechanism of extraction are suggested making use of slope analysis data. Separation factors for a number of metal ions with respect to tantalum are reported for the 0.1M 4-(5-nonyl)pyridine oxide - 1M sulphuric acid extraction system. Separation from uranium(VI), thorium(IV) and a number of fission products is suggested. The conclusions are unique as follows: Amine oxides are as unique as oxygen-donor extractants in their extraction of tantalum(V) from weakly acid solutions; tantalum is almost completely extracted from weakly nitric, hydrochloric and sulphuric acid solutions by both of the amine oxides; the extraction in low acidity solutions is independent of the nature of the anion of the acids present, indicating the ability of amine oxides to extract the product of hydrolysis of hydrolysable elements. In this respect amine oxides are much better than tributyl phosphate. (T.G.)

  1. Suppressive effects of a polymer sodium silicate solution on ...

    African Journals Online (AJOL)

    Sodium silicate was dissolved in water in either a monomer form or polymer form; the effects of both forms of sodium silicate aqueous solution on rose powdery mildew and root rot diseases of miniature rose were examined. Both forms of sodium silicate aqueous solution were applied to the roots of the miniature rose.

  2. Spectral properties of porphyrins in the systems with layered silicates

    International Nuclear Information System (INIS)

    Ceklovsky, A.

    2009-03-01

    This work is focused on investigation of hybrid materials based on layered silicates, representing host inorganic component, and porphyrin dyes as organic guest. Aqueous colloidal dispersions, as well as thin solid films of layered silicate/porphyrin systems were studied. Modification of photophysical properties, such as absorption and fluorescence of molecules, adsorbed or incorporated in layered silicate hosts, were studied mainly to spread the knowledge about the environments suitable for incorporating aromatic compounds, providing photoactive properties of potential technological interest. TMPyP cations interact with the surfaces of layered silicates via electrostatic interactions. The extent of dye adsorption on colloidal particles of the silicates is influenced by the CEC values and swelling ability of silicates. Interaction of porphyrins with layered silicate hosts leads to significant changes of dye spectral properties. One of the key parameters that has a crucial impact on this interaction is the layer charge of silicate template. Other factors influence the resulting spectral properties of hybrid systems, such as the method of hybrid material preparation, the material's type (colloid, film), and the modification of the silicate host. Molecular orientation studies using linearly-polarized spectroscopies in VIS and IR regions revealed that TMPyP molecules were oriented in almost parallel fashion with respect to the silicate surface plane. Slightly higher values of the orientation angle of TMPyP transition moment were observed for the TMPyP/FHT system. Thus, flattening of the guest TMPyP molecules is the next important factor (mainly in the systems with lower layer charge), influencing its spectral properties upon the interaction with layered silicates. Fluorescence was effectively quenched in the systems based on solid films prepared from the high concentration of the dye (10-3 mol.dm-3). The quenching is most probably related to the structure of the

  3. The kinetic fragility of natural silicate melts

    International Nuclear Information System (INIS)

    Giordano, Daniele; Dingwell, Donald B

    2003-01-01

    Newtonian viscosities of 19 multicomponent natural and synthetic silicate liquids, with variable contents of SiO 2 (41-79 wt%), Al 2 O 3 (10-19 wt%), TiO 2 (0-3 wt%), FeO tot (0-11 wt%); alkali oxides (5-17 wt%), alkaline-earth oxides (0-35 wt%), and minor oxides, obtained at ambient pressure using the high-temperature concentric cylinder, the low-temperature micropenetration, and the parallel plates techniques, have been analysed. For each silicate liquid, regression of the experimentally determined viscosities using the well known Vogel-Fulcher-Tammann (VFT) equation allowed the viscosity of all these silicates to be accurately described. The results of these fits, which provide the basis for the subsequent analysis here, permit qualitative and quantitative correlations to be made between the VFT adjustable parameters (A VFT , B VFT , and T 0 ). The values of B VFT and T 0 , calibrated via the VFT equation, are highly correlated. Kinetic fragility appears to be correlated with the number of non-bridging oxygens per tetrahedrally coordinated cation (NBO/T). This is taken to infer that melt polymerization controls melt fragility in liquid silicates. Thus NBO/T might form an useful ingredient of a structure-based model of non-Arrhenian viscosity in multicomponent silicate melts

  4. Synthesis of non-siliceous mesoporous oxides.

    Science.gov (United States)

    Gu, Dong; Schüth, Ferdi

    2014-01-07

    Mesoporous non-siliceous oxides have attracted great interest due to their unique properties and potential applications. Since the discovery of mesoporous silicates in 1990s, organic-inorganic assembly processes by using surfactants or block copolymers as soft templates have been considered as a feasible path for creating mesopores in metal oxides. However, the harsh sol-gel conditions and low thermal stabilities have limited the expansion of this method to various metal oxide species. Nanocasting, using ordered mesoporous silica or carbon as a hard template, has provided possibilities for preparing novel mesoporous materials with new structures, compositions and high thermal stabilities. This review concerns the synthesis, composition, and parameter control of mesoporous non-siliceous oxides. Four synthesis routes, i.e. soft-templating (surfactants or block copolymers as templates), hard-templating (mesoporous silicas or carbons as sacrificial templates), colloidal crystal templating (3-D ordered colloidal particles as a template), and super lattice routes, are summarized in this review. Mesoporous metal oxides with different compositions have different properties. Non-siliceous mesoporous oxides are comprehensively described, including a discussion of constituting elements, synthesis, and structures. General aspects concerning pore size control, atomic scale crystallinity, and phase control are also reviewed.

  5. Elasticity of Tantalum to 105 Gpa using a stress and angle-resolved x-ray diffraction

    International Nuclear Information System (INIS)

    Cynn, H; Yoo, C S

    1999-01-01

    Determining the mechanical properties such as elastic constants of metals at Mbar pressures has been a difficult task in experiment. Following the development of anisotropic elastic theory by Singh et al.[l], Mao et a1.[2] have recently developed a novel experimental technique to determine the elastic constants of Fe by using the stress and energy-dispersive x-ray diffraction (SEX). In this paper, we present an improved complementary technique, stress and angle-resolved x-ray diffraction (SAX), which we have applied to determine the elastic constants of tantalum to 105 GPa. The extrapolation of the tantalum elastic data shows an excellent agreement with the low-pressure ultrasonic data[3]. We also discuss the improvement of this SAX method over the previous SEX.[elastic constant, anisotropic elastic theory, angle-dispersive synchrotron x-ray diffraction, mechanical properties

  6. The plastic response of Tantalum in Quasi-Isentropic Compression Ramp and Release

    Science.gov (United States)

    Moore, Alexander; Brown, Justin; Lim, Hojun; Lane, J. Matthew D.

    2017-06-01

    The mechanical response of various forms of tantalum under extreme pressures and strain rates is studied using dynamic quasi-isentropic compression loading conditions in atomistic simulations. Ramp compression in bcc metals under these conditions tend to show a significant strengthening effect with increasing pressure; however, due to limitations of experimental methods in such regimes, the underlying physics for this phenomenon is not well understood. Molecular dynamics simulations provide important information about the plasticity mechanisms and can be used to investigate this strengthening. MD simulations are performed on nanocrystalline Ta and single crystal defective Ta with dislocations and point defects to uncover how the material responds and the underlying plasticity mechanisms. The different systems of solid Ta are seen to plastically deform through different mechanisms. Fundamental understanding of tantalum plasticity in these high pressure and strain rate regimes is needed to model and fully understand experimental results. Sandia National Labs is a multi program laboratory managed and operated by Sandia Corp., a wholly owned subsidiary of Lockheed Martin Corp., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  7. Effect of strain rate and dislocation density on the twinning behavior in tantalum

    Energy Technology Data Exchange (ETDEWEB)

    Florando, Jeffrey N., E-mail: florando1@llnl.gov; Swift, Damian C.; Barton, Nathan R.; McNaney, James M.; Kumar, Mukul [Lawrence Livermore National Laboratory, 7000 East Ave., Livermore, CA 94550 (United States); El-Dasher, Bassem S. [TerraPower LLC, Bellevue, WA 98005 (United States); Chen, Changqiang [Materials Research Laboratory, University of Illinois at Urbana Champaign, Urbana, IL 61801 (United States); Ramesh, K. T.; Hemker, Kevin J. [Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218 (United States)

    2016-04-15

    The conditions which affect twinning in tantalum have been investigated across a range of strain rates and initial dislocation densities. Tantalum samples were subjected to a range of strain rates, from 10{sup −4}/s to 10{sup 3}/s under uniaxial stress conditions, and under laser-induced shock-loading conditions. In this study, twinning was observed at 77 K at strain rates from 1/s to 10{sup 3}/s, and during laser-induced shock experiments. The effect of the initial dislocation density, which was imparted by deforming the material to different amounts of pre-strain, was also studied, and it was shown that twinning is suppressed after a given amount of pre-strain, even as the global stress continues to increase. These results indicate that the conditions for twinning cannot be represented solely by a critical global stress value, but are also dependent on the evolution of the dislocation density. In addition, the analysis shows that if twinning is initiated, the nucleated twins may continue to grow as a function of strain, even as the dislocation density continues to increase.

  8. Measurement of the production of charged pions by protons on a tantalum target

    CERN Document Server

    Catanesi, M.G.; Edgecock, R.; Ellis, Malcolm; Robbins, S.; Soler, F.J.P.; Gossling, C.; Bunyatov, S.; Krasnoperov, A.; Popov, B.; Serdiouk, V.; Tereschenko, V.; Di Capua, E.; Vidal-Sitjed, G.; Artamonov, A.; Arce, P.; Giani, S.; Gilardoni, S.; Gorbunov, P.; Grant, A.; Grossheim, A.; Gruber, P.; Ivanchenko, V.; Kayis-Topaksu, A.; Panman, J.; Papadopoulos, I.; Pasternak, J.; Tcherniaev, E.; Tsukerman, I.; Veenhof, R.; Wiebusch, C.; Zucchelli, P.; Blondel, A.; Borghi, S.; Campanelli, M.; Morone, M.C.; Prior, G.; Schroeter, R.; Engel, R.; Meurer, C.; Kato, I.; Gastaldi, U.; Mills, G.B.; Graulich, J.S.; Gregoire, G.; Bonesini, M.; De Min, A.; Ferri, F.; Paganoni, M.; Paleari, F.; Kirsanov, M.; Bagulya, A.; Grichine, V.; Polukhina, N.; Palladino, V.; Coney, L.; Schmitz, D.; Barr, G.; De Santo, A.; Pattison, C.; Zuber, K.; Bobisut, F.; Gibin, D.; Guglielmi, A.; Mezzetto, M.; Dumarchez, J.; Vannucci, F.; Dore, U.; Orestano, D.; Pastore, F.; Tonazzo, A.; Tortora, L.; Booth, C.; Buttar, C.; Hodgson, P.; Howlett, L.; Bogomilov, M.; Chizhov, M.; Kolev, D.; Tsenov, R.; Apollonio, M.; Chimenti, P.; Giannini, G.; Santin, G.; Burguet-Castell, J.; Cervera-Villanueva, A.; Gomez-Cadenas, J.J.; Martin-Albo, J.; Novella, P.; Sorel, M.; Tornero, A.

    2007-01-01

    A measurement of the double-differential cross-section for the production of charged pions in proton--tantalum collisions emitted at large angles from the incoming beam direction is presented. The data were taken in 2002 with the HARP detector in the T9 beam line of the CERN PS. The pions were produced by proton beams in a momentum range from 3 \\GeVc to 12 \\GeVc hitting a tantalum target with a thickness of 5% of a nuclear interaction length. The angular and momentum range covered by the experiment ($100 \\MeVc \\le p < 800 \\MeVc$ and $0.35 \\rad \\le \\theta <2.15 \\rad$) is of particular importance for the design of a neutrino factory. The produced particles were detected using a small-radius cylindrical time projection chamber (TPC) placed in a solenoidal magnet. Track recognition, momentum determination and particle identification were all performed based on the measurements made with the TPC. An elaborate system of detectors in the beam line ensured the identification of the incident particles. Results a...

  9. Hydrogen in niobium, tantalum, and vanadium: Structures, phase diagrams, and morphologies

    International Nuclear Information System (INIS)

    Schober, T.

    1978-07-01

    The paper discusses basic aspects of the reactions between the metals niobium, tantalum, vanadium, and hydrogen or deuterium. After an introduction to problems of preparation experimental technqiues for the investigation of hydrides are presented. The possible hydride structures are discussed. With vanadium, there are great differences between the structures of hydrides and deuterides. Detailed mention is also made of recent measurements of the NGH, TaH, VH, and VD phase diagrams. (orig./WBU) [de

  10. Influence of process parameters on plasma electrolytic surface treatment of tantalum for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Sowa, Maciej, E-mail: maciej.sowa@polsl.pl [Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego Street 6, 44-100 Gliwice (Poland); Woszczak, Maja; Kazek-Kęsik, Alicja [Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego Street 6, 44-100 Gliwice (Poland); Dercz, Grzegorz [Institute of Materials Science, University of Silesia, 75 Pułku Piechoty Street 1A, 41-500 Chorzów (Poland); Korotin, Danila M. [M.N. Mikheev Institute of Metal Physics of the Ural Branch of Russian Academy of Sciences, S. Kovalevskoi Street 18, 620990 Yekaterinburg (Russian Federation); Institute of Physics and Technology, Ural Federal University, Mira Street 19, 620002 Yekaterinburg (Russian Federation); Zhidkov, Ivan S. [Institute of Physics and Technology, Ural Federal University, Mira Street 19, 620002 Yekaterinburg (Russian Federation); Kurmaev, Ernst Z. [M.N. Mikheev Institute of Metal Physics of the Ural Branch of Russian Academy of Sciences, S. Kovalevskoi Street 18, 620990 Yekaterinburg (Russian Federation); Institute of Physics and Technology, Ural Federal University, Mira Street 19, 620002 Yekaterinburg (Russian Federation); Cholakh, Seif O. [Institute of Physics and Technology, Ural Federal University, Mira Street 19, 620002 Yekaterinburg (Russian Federation); Basiaga, Marcin [Faculty of Biomedical Engineering, Silesian University of Technology, Gen. de Gaulle’a Street 66, 41-800 Zabrze (Poland); Simka, Wojciech, E-mail: wojciech.simka@polsl.pl [Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego Street 6, 44-100 Gliwice (Poland)

    2017-06-15

    Highlights: • 2-step plasma electrolytic oxidation (PEO) of tantalum was investigated. • PEO coatings surface composition were reflected by the composition of anodizing baths. • Hydrophobic surfaces were obtained from acetate and formate containing baths. • Bioactive phases were identified. - Abstract: This work aims to quantify the effect of anodization voltage and electrolyte composition used during DC plasma electrolytic oxidation (PEO), operated as a 2-step process, on the surface properties of the resulting oxide coatings on tantalum. The first step consisted of galvanostatic anodization (150 mA cm{sup −2}) of the tantalum workpiece up to several limiting voltages (200, 300, 400 and 500 V). After attaining the limiting voltage, the process was switched to voltage control, which resulted in a gradual decrease of the anodic current density. The anodic treatment was realized in a 0.5 M Ca(H{sub 2}PO{sub 2}){sub 2} solution, which was then modified by the addition of 1.15 M Ca(HCOO){sub 2} as well as 1.15 M and 1.5 M Mg(CH{sub 3}COO){sub 2}. The increasing voltage of anodization led to the formation of thicker coatings, with larger pores and enriched with electrolytes species to a higher extent. The solutions containing HCOO{sup −} and CH{sub 3}COO{sup −} ions caused the formation of coatings which were slightly hydrophobic (high contact angle). In the case of the samples anodized up to 500 V, scattered crystalline deposits were observed. Bioactive phases, such as hydroxyapatite, were detected in the treated oxide coatings by XRD and XPS.

  11. Comparison of silicon nanoparticles and silicate treatments in fenugreek.

    Science.gov (United States)

    Nazaralian, Sanam; Majd, Ahmad; Irian, Saeed; Najafi, Farzaneh; Ghahremaninejad, Farrokh; Landberg, Tommy; Greger, Maria

    2017-06-01

    Silicon (Si) fertilization improves crop cultivation and is commonly added in the form of soluble silicates. However, most natural plant-available Si originates from plant formed amorphous SiO 2 particles, phytoliths, similar to SiO 2 -nanoparticles (SiNP). In this work we, therefore, compared the effect by sodium silicate and that of SiNP on Si accumulation, activity of antioxidative stress enzymes catalase, peroxidase, superoxide dismutase, lignification of xylem cell walls and activity of phenylalanine ammonia-lyase (PAL) as well as expression of genes for the putative silicon transporter (PST), defensive (Tfgd 1) and phosphoenolpyruvate carboxykinase (PEPCK) and protein in fenugreek (Trigonella foenum-graecum L.) grown in hydroponics. The results showed that Si was taken up from both silicate and SiNP treatments and increasing sodium silicate addition increased the translocation of Si to the shoot, while this was not shown with increasing SiNP addition. The silicon transporter PST was upregulated at a greater level when sodium silicate was added compared with SiNP addition. There were no differences in effects between sodium silicate and SiNP treatments on the other parameters measured. Both treatments increased the uptake and accumulation of Si, xylem cell wall lignification, cell wall thickness, PAL activity and protein concentration in seedlings, while there was no effect on antioxidative enzyme activity. Tfgd 1 expression was strongly downregulated in leaves at Si addition. The similarity in effects by silicate and SiNP would be due to that SiNP releases silicate, which may be taken up, shown by a decrease in SiNP particle size with time in the medium. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  12. The pressure, internal energy, and conductivity of tantalum plasma

    Energy Technology Data Exchange (ETDEWEB)

    Apfelbaum, E.M. [Russian Academy of Sciences, Joint Institute for High Temperatures, Department of Computational Physics, Moscow (Russian Federation)

    2017-11-15

    The pressure, internal energy, and conductivity of a tantalum plasma were calculated at the temperatures 10-100 kK and densities less than 3 g/cm{sup 3}. The plasma composition, pressure, and internal energy were obtained by means of the corresponding system of the coupled mass action law equations. We have considered atom ionization up to +3. The conductivity was calculated within the relaxation time approximation. Comparisons of our results with available measurements and calculation data show good agreement in the area of correct applicability of the present model. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Silicate enamel for alloyed steel

    International Nuclear Information System (INIS)

    Ket'ko, K.K.

    1976-01-01

    The use of silicate enamels in the metallurgical industry is discussed. Presented are the composition and the physico-chemical properties of the silicate enamel developed at the factory 'Krasnyj Oktyabr'. This enamel can be used in the working conditions both in the liquid and the solid state. In so doing the enamel is melted at 1250 to 1300 deg C, granulated and then reduced to a fraction of 0.3 to 0.5 mm. The greatest homogeneity is afforded by a granulated enamel. The trials have shown that the conversion of the test ingots melted under a layer of enamel leads to the smaller number of the ingots rejected for surface defect reasons and the lower metal consumption for slab cleaning. The cost of the silicate enamel is somewhat higher than that of synthetic slags but its application to the melting of stainless steels is still economically beneficial and technologically reasonable. Preliminary calculations only for steel EhI4IEh have revealed that the use of this enamel saves annually over 360000 roubles [ru

  14. Synthesis of a Bis(thiophenolate)pyridine Ligand and Its Titanium, Zirconium, and Tantalum Complexes

    KAUST Repository

    Lenton, Taylor N.; VanderVelde, David G.; Bercaw, John E.

    2012-01-01

    -membered chelate with longer metal-sulfur and carbon-sulfur bonds. Solid-state structures of tantalum complexes (SNS)Ta(NMe 2) 3 (5) and (SNS)TaCl(NEt 2) 2 (6) also display pronounced C 2 twisting of the SNS ligand. 1D and 2D NMR experiments show that 5

  15. XPS and GDOES Characterization of Porous Coating Enriched with Copper and Calcium Obtained on Tantalum via Plasma Electrolytic Oxidation

    Directory of Open Access Journals (Sweden)

    Krzysztof Rokosz

    2016-01-01

    Full Text Available XPS and GDOES characterizations of porous coatings on tantalum after Plasma Electrolytic Oxidation (PEO at 450 V for 3 minutes in electrolyte containing concentrated (85% phosphoric acid with calcium nitrate and copper (II nitrate are described. Based on the obtained data, it may be concluded that the PEO coating consists of tantalum (Ta5+, calcium (Ca2+, copper (Cu2+  and Cu+, and phosphates (PO43-. It has to be pointed out that copper and calcium are distributed throughout the volume. The authors also propose a new model of PEO, based on the derivative of GDOES signals with sputtering time.

  16. Heterogeneous nucleation of protein crystals on fluorinated layered silicate.

    Directory of Open Access Journals (Sweden)

    Keita Ino

    Full Text Available Here, we describe an improved system for protein crystallization based on heterogeneous nucleation using fluorinated layered silicate. In addition, we also investigated the mechanism of nucleation on the silicate surface. Crystallization of lysozyme using silicates with different chemical compositions indicated that fluorosilicates promoted nucleation whereas the silicates without fluorine did not. The use of synthesized saponites for lysozyme crystallization confirmed that the substitution of hydroxyl groups contained in the lamellae structure for fluorine atoms is responsible for the nucleation-inducing property of the nucleant. Crystallization of twelve proteins with a wide range of pI values revealed that the nucleation promoting effect of the saponites tended to increase with increased substitution rate. Furthermore, the saponite with the highest fluorine content promoted nucleation in all the test proteins regardless of their overall net charge. Adsorption experiments of proteins on the saponites confirmed that the density of adsorbed molecules increased according to the substitution rate, thereby explaining the heterogeneous nucleation on the silicate surface.

  17. Effect of tungsten and tantalum on the low cycle fatigue behavior of reduced activation ferritic/martensitic steels

    Energy Technology Data Exchange (ETDEWEB)

    Shankar, Vani, E-mail: vani@igcar.gov.in [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam-603102 (India); Mariappan, K.; Nagesha, A.; Prasad Reddy, G.V.; Sandhya, R.; Mathew, M.D.; Jayakumar, T. [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam-603102 (India)

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer Effect of tungsten and tantalum on low cycle fatigue behavior of RAFM steels. Black-Right-Pointing-Pointer Both alloying elements W and Ta improved fatigue life. Black-Right-Pointing-Pointer Increase in Ta content improved fatigue life more than W. Black-Right-Pointing-Pointer Optimization of W content at 1.4 wt.%. Black-Right-Pointing-Pointer Softening behavior closely related to W and Ta content. - Abstract: Reduced activation ferritic/martensitic (RAFM) steels are candidate materials for the test blanket modules of International Thermonuclear Experimental Reactor (ITER). Several degradation mechanisms such as thermal fatigue, low cycle fatigue, creep fatigue interaction, creep, irradiation hardening, swelling and phase instability associated irradiation embrittlement must be understood in order to estimate the component lifetime and issues concerning the structural integrity of components. The current work focuses on the effect of tungsten and tantalum on the low cycle fatigue (LCF) behavior of RAFM steels. Both alloying elements tungsten and tantalum improved the fatigue life. Influence of Ta on increasing fatigue life was an order of magnitude higher than the influence of W on improving the fatigue life. Based on the present study, the W content was optimized at 1.4 wt.%. Softening behavior of RAFM steels showed a strong dependence on W and Ta content in RAFM steels.

  18. Wind-eroded silicate as a source of hydrogen peroxide on Mars

    DEFF Research Database (Denmark)

    Bak, Ebbe Norskov; Merrison, Jonathan P.; Jensen, Svend Knak

    -sists of silicates [4] that due to wind erosion has a very fine grained texture. Based on the composition of the surface material and investigations showing that crushing of silicates can give rise to reactive oxygen species [5], we hypothesized that wind erosion of silicates can explain the reactivity of Martian...... soil. Wind-erosion of silicate could thus be one of several causes of the soil’s reactivity. As our experiments show, the globally distributed wind eroded silicate dust can lead to the production of hydrogen peroxide which might explain the reactivity of the Martian soil. The reactivity of eroded...

  19. A polycrystalline model for stress-strain behaviour of tantalum at 300 K

    International Nuclear Information System (INIS)

    Frenois, S.; Munier, E.; Pilvin, P.

    2001-01-01

    A polycrystalline model is proposed to model the large plastic deformation and texture evolutions in tantalum over a wide range of strain rates at room temperature. The mechanical behaviour is discussed in terms of back and effective stresses with the help of qualitative and quantitative TEM observations. Using these observations, an elasto-visco-plastic formulation for b.c.c. crystals is developed in the thermal activation framework. (orig.)

  20. Formation of oxide layers on aluminum, niobium, and tantalum in molten alkali metal carbonates

    Science.gov (United States)

    Nikitina, E. V.; Kazakovtseva, N. A.

    2013-08-01

    The electrochemical synthesis of niobium, tantalum, and aluminum oxide nanolayers is studied in the melt of lithium, sodium, and potassium carbonates with various additives to a salt phase in an oxidizing atmosphere at a temperature of 773 and 873 K. A scheme is proposed for high-temperature anion local activation of the process.

  1. Metal halide-phosphorus halide-alkyl halide complexes: reaction with niobium and tantalum pentachlorides

    International Nuclear Information System (INIS)

    Puri, D.M.; Saini, M.S.

    1978-01-01

    The reactions of niobium and tantalum pentachlorides with trichlorophosphine and phenyldichlorophosphine have been studied in presence of alkylating agents such as sec-butyl chloride, iso-butyl chloride, tert-butyl chloride, tert-anylchloride, cyclohexyl chloride and triphenylmethyl chloride. Solid products have been isolated and characterised by vibrational spectroscopy as ionic complexes of alkyl- and/or aryl-phosphonium cations with hexachloroniobate and hexachlorotantalate anions. (author)

  2. On-line separation of refractory hafnium and tantalum isotopes at the ISOCELE separator

    CERN Document Server

    Liang, C F; Obert, J; Paris, P; Putaux, J C

    1981-01-01

    By chemical evaporation technique, neutron deficient hafnium nuclei have been on-line separated at the ISOCELE facility, from the isobar rare-earth elements, in the metal-fluoride HfF/sub 3//sup +/ ion form. Half-lives of /sup 162-165/Hf have been measured. Similarly, tantalum has been selectively separated on the TaF/sub 4//sup +/ form. (4 refs) .

  3. PETROLOGY AND GEOCHEMISTRY OF CALC-SILICATE SCHISTS ...

    African Journals Online (AJOL)

    DR OKONKOWO

    2012-02-29

    silicate reaction bands have higher contents of CaO and Sr and lower concentrations of K2O, Rb, Ni, and Ba relative to the calc-silicate schists; and relatively higher SiO2, TiO2, Al2O3, Fe2O3, MgO, Na2O, K2O and P2O5 and lower ...

  4. The application of silicon and silicates in dentistry: a review.

    Science.gov (United States)

    Lührs, A-K; Geurtsen, Werner

    2009-01-01

    Silicates and silicate-based compounds are frequently used materials in dentistry. One of their major applications is their use as fillers in different dental filling materials such as glass-ionomer cements, compomers, composites, and adhesive systems. In these materials, the fillers react with acids during the setting process or they improve the mechanical properties by increasing physical resistance, thermal expansion coefficient and radiopacity in acrylic filling materials. They also reduce polymerization shrinkage, and increase esthetics as well as handling properties. Furthermore, silicates are used for the tribochemical silication of different surfaces such as ceramics or alloys. The silicate layer formed in this process is the chemical basis for silanes that form a bond between this layer and the organic composite matrix. It also provides a micromechanical bond between the surface of the material and the composite matrix. Silicates are also a component of dental ceramics, which are frequently used in dentistry, for instance for veneers, inlays, and onlays, for denture teeth, and for full-ceramic crowns or as crown veneering materials.

  5. Surface charges and Np(V) sorption on amorphous Al- and Fe- silicates

    International Nuclear Information System (INIS)

    Del Nero, M.; Assada, A.; Barillon, R.; Duplatre, G.; Made, B.

    2005-01-01

    Full text of publication follows: Sorption onto Si-rich alteration layers of crystalline minerals and nuclear glasses, and onto amorphous secondary silicates of rocks and soils, are expected to retard the migration of actinides in the near- and far-field of HLW repositories. We present experimental and modeling studies on the effects of silicate structure and bulk chemistry, and of solution chemistry, on charges and adsorption of neptunyl ions at surfaces of synthetic, amorphous or poorly ordered silica, Al-silicates and Fe-silicates. The Al-silicates display similar pH-dependent surface charges characterized by predominant Si-O - Si sites, and similar surface affinities for neptunyl ions, irrespective to their Si/Al molar ratio (varying from 10 to 4.3). Such experimental features are explained by incorporation of Al atoms in tetrahedral position in the silicate lattice, leading to only trace amounts of high-affinity Al-OH surface groups due to octahedral Al. By contrast, the structure of the Fe-silicates ensures the occurrence of high-affinity Fe-OH surface groups, whose concentration is shown by proton adsorption measurements to increase with decreasing of the silicate Si/Fe molar ratio (from 10 to 2.3). Nevertheless, experimental data of the adsorption of neptunyl and electrolyte ions show unexpectedly weak effect of the Si/Fe ratio, and suggest predominant Si-OH surface groups. A possible explanation is that aqueous silicate anions, released by dissolution, adsorb at OH Fe - surface groups and / or precipitate as silica gel coatings, because experimental solutions were found at near-equilibrium with respect to amorphous silica. Therefore, the environmental sorption of Np(V) onto Si-rich, amorphous or poorly ordered Al-silicates may primarily depend on pH and silicate specific surface areas, given the low overall chemical affinity of such phases for dissolved metals. By contrast, the sorption of Np(V) on natural, amorphous or poorly ordered Fe-silicates may be a

  6. Electrochemical Capacitors Based on Aligned Carbon Nanotubes Directly Synthesized on Tantalum Substrates

    International Nuclear Information System (INIS)

    Kim, Byung Woo; Chung, Hae Geun; Kim, Woong; Min, Byoung Koun; Kim, Hong Gon

    2010-01-01

    We demonstrate that vertically aligned carbon nanotubes can be synthesized directly on tantalum substrate via waterassisted chemical vapor deposition and evaluate their properties as electrochemical capacitors. The mean diameter of the carbon nanotubes was 7.1 ± 1.5 nm, and 70% of them had double walls. The intensity ratio of G-band to D-band in Raman spectra was as high as 5, indicating good quality of the carbon nanotubes. Owing to the alignment and low equivalent series resistance, the carbon nanotube based supercapacitors showed good rate performance. Rectangular shape of cyclic voltammogram was maintained even at the scan rate of > 1 V/s in 1 M sulfuric acid aqueous solution. Specific capacitance was well-retained (∼94%) even when the discharging current density dramatically increased up to 145 A/g. Consequently, specific power as high as 60 kW/kg was obtained from as-grown carbon nanotubes in aqueous solution. Maximum specific energy of ∼20 Wh/kg was obtained when carbon nanotubes were electrochemically oxidized and operated in organic solution. Demonstration of direct synthesis of carbon nanotubes on tantalum current collectors and their applications as supercapacitors could be an invaluable basis for fabrication of high performance carbon nanotube supercapacitors

  7. M551 metals melting experiment. [space manufacturing of aluminum alloys, tantalum alloys, stainless steels

    Science.gov (United States)

    Li, C. H.; Busch, G.; Creter, C.

    1976-01-01

    The Metals Melting Skylab Experiment consisted of selectively melting, in sequence, three rotating discs made of aluminum alloy, stainless steel, and tantalum alloy. For comparison, three other discs of the same three materials were similarly melted or welded on the ground. The power source of the melting was an electron beam unit. Results are presented which support the concept that the major difference between ground base and Skylab samples (i.e., large elongated grains in ground base samples versus nearly equiaxed and equal sized grains in Skylab samples) can be explained on the basis of constitutional supercooling, and not on the basis of surface phenomena. Microstructural observations on the weld samples and present explanations for some of these observations are examined. In particular, ripples and their implications to weld solidification were studied. Evidence of pronounced copper segregation in the Skylab A1 weld samples, and the tantalum samples studied, indicates a weld microhardness (and hence strength) that is uniformly higher than the ground base results, which is in agreement with previous predictions. Photographs are shown of the microstructure of the various alloys.

  8. Silicic magma generation at Askja volcano, Iceland

    Science.gov (United States)

    Sigmarsson, O.

    2009-04-01

    Rate of magma differentiation is an important parameter for hazard assessment at active volcanoes. However, estimates of these rates depend on proper understanding of the underlying magmatic processes and magma generation. Differences in isotope ratios of O, Th and B between silicic and in contemporaneous basaltic magmas have been used to emphasize their origin by partial melting of hydrothermally altered metabasaltic crust in the rift-zones favoured by a strong geothermal gradient. An alternative model for the origin of silicic magmas in the Iceland has been proposed based on U-series results. Young mantle-derived mafic protolith is thought to be metasomatized and partially melted to form the silicic end-member. However, this model underestimates the compositional variations of the hydrothermally-altered basaltic crust. New data on U-Th disequilibria and O-isotopes in basalts and dacites from Askja volcano reveal a strong correlation between (230Th/232Th) and delta 18O. The 1875 AD dacite has the lowest Th- and O isotope ratios (0.94 and -0.24 per mille, respectively) whereas tephra of evolved basaltic composition, erupted 2 months earlier, has significantly higher values (1.03 and 2.8 per mille, respectively). Highest values are observed in the most recent basalts (erupted in 1920 and 1961) inside the Askja caldera complex and out on the associated fissure swarm (Sveinagja basalt). This correlation also holds for older magma such as an early Holocene dacites, which eruption may have been provoked by rapid glacier thinning. Silicic magmas at Askja volcano thus bear geochemical signatures that are best explained by partial melting of extensively hydrothermally altered crust and that the silicic magma source has remained constant during the Holocene at least. Once these silicic magmas are formed they appear to erupt rapidly rather than mixing and mingling with the incoming basalt heat-source that explains lack of icelandites and the bi-modal volcanism at Askja

  9. COMPARISON OF SOL-GEL SILICATE COATINGS ON Ti SUBSTRATE

    Directory of Open Access Journals (Sweden)

    DIANA HORKAVCOVÁ

    2012-12-01

    Full Text Available The objective of the submitted work was to prepare and to characterize two types of silicate coatings prepared by the sol-gel method using the dip-coating technique on a titanium substrate. Efforts have been made to use mechanical properties of bio-inert titanium and bioactive properties of a silicate layer enriched with an admixture of compounds identified below. The first group consisted of silicate coatings containing silver, brushite and monetite. The other group of silicate coatings contained calcium nitrate and triethyl phosphate. Mechanically and chemically treated titanium substrates were dipped into sols and dried and fired. Silicate coatings from the first group were also chemically treated in 10 mol.l-1 solution of sodium hydroxide. All coatings were measured to determine their adhesive and bioactive properties and furthermore the antibacterial properties were tested in the case of first group. Surfaces of the coated substrates were investigated after the firing and after the individual tests with optical and electron microscopy and X-ray microdiffraction. A tape test demonstrated excellent adhesive property of all coatings to the substrate, classified with degree 5. A static in vitro test demonstrated bioactivity of nearly all the coatings. The basic silicate coating from the first group and one type of coating from the second group were identified as inert. Antibacterial properties of silicate coatings containing silver showed to be different when tested against Escherichia coli bacteria. A complete inhibition of the growth of bacteria under our experimental conditions was observed for the coating containing silver and monetite and a partial inhibition of the growth of bacteria for coatings containing silver and silver in combination with brushite.

  10. Leakage Current Degradation Due to Ion Drift and Diffusion in Tantalum and Niobium Oxide Capacitors

    Directory of Open Access Journals (Sweden)

    Kuparowitz Martin

    2017-06-01

    Full Text Available High temperature and high electric field applications in tantalum and niobium capacitors are limited by the mechanism of ion migration and field crystallization in a tantalum or niobium pentoxide insulating layer. The study of leakage current (DCL variation in time as a result of increasing temperature and electric field might provide information about the physical mechanism of degradation. The experiments were performed on tantalum and niobium oxide capacitors at temperatures of about 125°C and applied voltages ranging up to rated voltages of 35 V and 16 V for tantalum and niobium oxide capacitors, respectively. Homogeneous distribution of oxygen vacancies acting as positive ions within the pentoxide layer was assumed before the experiments. DCL vs. time characteristics at a fixed temperature have several phases. At the beginning of ageing the DCL increases exponentially with time. In this period ions in the insulating layer are being moved in the electric field by drift only. Due to that the concentration of ions near the cathode increases producing a positively charged region near the cathode. The electric field near the cathode increases and the potential barrier between the cathode and insulating layer decreases which results in increasing DCL. However, redistribution of positive ions in the insulator layer leads to creation of a ion concentration gradient which results in a gradual increase of the ion diffusion current in the direction opposite to the ion drift current component. The equilibrium between the two for a given temperature and electric field results in saturation of the leakage current value. DCL vs. time characteristics are described by the exponential stretched law. We found that during the initial part of ageing an exponent n = 1 applies. That corresponds to the ion drift motion only. After long-time application of the electric field at a high temperature the DCL vs. time characteristics are described by the exponential

  11. Conversion of rice hull ash into soluble sodium silicate

    Directory of Open Access Journals (Sweden)

    Edson Luiz Foletto

    2006-09-01

    Full Text Available Sodium silicate is used as raw material for several purposes: silica gel production, preparation of catalysts, inks, load for medicines, concrete hardening accelerator, component of detergents and soaps, refractory constituent and deflocculant in clay slurries. In this work sodium silicate was produced by reacting rice hull ash (RHA and aqueous sodium hydroxide, in open and closed reaction systems. The studied process variables were time, temperature of reaction and composition of the reaction mixture (expressed in terms of molar ratios NaOH/SiO2 and H2O/SiO2. About 90% silica conversion contained in the RHA into sodium silicate was achieved in closed system at 200 °C. The results showed that sodium silicate production from RHA can generate aggregate value to this residue.

  12. Structural and photoluminescent properties of a composite tantalum oxide and silicon nanocrystals embedded in a silicon oxide film

    International Nuclear Information System (INIS)

    Díaz-Becerril, T.; Herrera, V.; Morales, C.; García-Salgado, G.; Rosendo, E.; Coyopol, A.; Galeazzi, R.; Romano, R.; Nieto-Caballero, F.G.; Sarmiento, J.

    2017-01-01

    Tantalum oxide crystals encrusted in a silicon oxide matrix were synthesized by using a hot filament chemical vapor deposition system (HFCVD). A solid source composed by a mixture in different percentages of Ta 2 O 5 and silicon (Si) powders were used as reactants. The films were grown at 800 °C and 1000 °C under hydrogen ambient. The deposited films were characterized by X-ray photoelectron spectroscopy (XPS), high-resolution transmission electron microscopy (HRTEM) and photoluminescence (PL) at room temperature. From the XPS results it was confirmed the formation of a mixture of Tantalum oxide, silicon oxide and Si nanoparticles (Ta 2 O 5- SiO 2 -Si(nc)) as seen from the Si (2p) and Ta (4f) lines corresponding to Si + and Ta + states respectively. Ta 2 O 5 and Si nanocrystals (Si-NCs) embedded in the silicon oxide films were observed on HRTEM images which corroborate the XPS results. Finally the emission properties of the films exhibited a broad band from 400 to 850 nm caused by the independent PL properties of tantalum oxide and Si-NCs that compose the film. The intensity of the emissions was observed to be dependent on both temperature of deposition and the ratio Ta 2 O 5 /Si, used as initial reactants. Results from this work might supply useful data for the development of future light emitter devices.

  13. Activation of human leukocytes on tantalum trabecular metal in comparison to commonly used orthopedic metal implant materials.

    Science.gov (United States)

    Schildhauer, T A; Peter, E; Muhr, G; Köller, M

    2009-02-01

    We analyzed leukocyte functions and cytokine response of human leukocytes toward porous tantalum foam biomaterial (Trabecular Metaltrade mark, TM) in comparison to equally sized solid orthopedic metal implant materials (pure titanium, titanium alloy, stainless steel, pure tantalum, and tantalum coated stainless steel). Isolated peripheral blood mononuclear cells (PBMC) and polymorphonuclear neutrophil leukocytes (PMN) were cocultured with equally sized metallic test discs for 24 h. Supernatants were analyzed for cytokine content by enzyme-linked immunosorbent assay. Compared to the other used test materials there was a significant increase in the release of IL (interleukin)-1ra and IL-8 from PMN, and of IL-1ra, IL-6, and TNF-alpha from PBMC in response to the TM material. The cytokine release correlated with surface roughness of the materials. In contrast, the release of IL-2 was not induced showing that mainly myeloid leukocytes were activated. In addition, supernatants of these leukocyte/material interaction (conditioned media, CM) were subjected to whole blood cell function assays (phagocytosis, chemotaxis, bacterial killing). There was a significant increase in the phagocytotic capacity of leukocytes in the presence of TM-conditioned media. The chemotactic response of leukocytes toward TM-conditioned media was significantly higher compared to CM obtained from other test materials. Furthermore, the bactericidal capacity of whole blood was enhanced in the presence of TM-conditioned media. These results indicate that leukocyte activation at the surface of TM material induces a microenvironment, which may enhance local host defense mechanisms.

  14. Morphology, proliferation, and osteogenic differentiation of mesenchymal stem cells cultured on titanium, tantalum, and chromium surfaces

    DEFF Research Database (Denmark)

    Stiehler, Maik; Lind, M.; Mygind, Tina

    2007-01-01

    the interactions between human mesenchymal stem cells (MSCs) and smooth surfaces of titanium (Ti), tantalum (Ta), and chromium (Cr). Mean cellular area was quantified using fluorescence microscopy (4 h). Cellular proliferation was assessed by (3)H-thymidine incorporation and methylene blue cell counting assays (4...

  15. Trace diffusion of different nuclear reactions products in polycrystalline tantalum

    International Nuclear Information System (INIS)

    Beyer, G.J.; Fromm, W.D.; Novgorodov, A.F.

    1976-07-01

    Measurements of the lattice diffusion coefficients for carrier free isotopes of Hf, Lu, Yb, Tm, Tb, Gd, Eu, Ba, Cs, Y, Sr, Rb and As in polycrystalline tantalum were made over the temperature range 1700 Fsub(As)>Fsub(lanthanides)>Fsub(Sr)>Fsub(Ba)>Fsub(Hf)>Fsub(Rb)>Fsub(Cs). The data indicate, that the Arrhenius relation was obeyed over the entire temperature range. Within the lanthanide-group no differences in the diffusion velocities could be detected, this fact points to a diffusion mechanism of Me 3+ -ions of lanthanides, Me 2+ -ions of earth alkaline elements and Me + -ions of alkaline elements. (author)

  16. Effects of the [OC6F5] moiety upon structural geometry: crystal structures of half-sandwich tantalum(V) aryloxide complexes from reaction of Cp*Ta(N(t)Bu)(CH2R)2 with pentafluorophenol.

    Science.gov (United States)

    Cole, Jacqueline M; Chan, Michael C W; Gibson, Vernon C; Howard, Judith A K

    2011-10-01

    The synthesis, chemical and structural characterization of a series of pentamethylcyclopentadienyl (Cp*) tantalum imido complexes and aryloxide derivatives are presented. Specifically, the imido complexes Cp*Ta(N(t)Bu)(CH(2)R)(2), where R = Ph [dibenzyl(tert-butylamido) (η(5)-pentamethylcyclopentadienyl)tantalum(IV) (1)], Me(2)Ph [tert-butylamido)bis(2-methyl-2-phenylpropyl) (η(5)-pentamethylcyclopentadienyl)tantalum(IV) (2)], CMe(3) [(tert-butylamido)bis(2,2-dimethylpropyl) (η(5)-pentamethylcyclopentadienyl)tantalum(IV) (3)], are reported. The crystal structure of (3) reveals α-agostic interactions with the Ta atom. The resulting increase in the tantalum core coordination improves electronic stability. As such it does not react with pentafluorophenol, in contrast to the other two reported imido complexes [(1) and (2)]. Addition of C(6)F(5)OH to (1) yields a dimeric aryl-oxide derivative, [Cp*Ta(CH(2)Ph)(OC(6)H(5))(μ-O)](2) [di-μ-oxido-bis[benzyl(pentafluorophenolato) (η(5)-pentamethylcyclopentadienyl)tantalum(V)] (4)]. Its crystal structure reveals long Ta-O(C(6)H(5)) bonds but short oxo-bridging Ta-O bonds. This is explained by accounting for the fierce electronic competition for the vacant d(π) orbitals of the electrophilic Ta(V) centre. Steric congestion around each metal is alleviated by a large twist angle (77.1°) between the benzyl and pentafluorophenyl ligands and the ordering of each of these groups into stacked pairs. The imido complex (2) reacts with C(6)F(5)OH to produce a mixture of Cp*Ta(OC(6)F(5))(4) [tetrakis(pentafluorophenolato)(η(5)-pentamethylcyclopentadienyl)tantalum(V) (5)] and [Cp*Ta(OC(6)F(5))(2)(μ-O)](2) [di-μ-oxido-bis[bis(pentafluorophenolato)(η(5)-pentamethylcyclopentadienyl)tantalum(V)] (6)]. Steric congestion is offset in both cases by the twisting of its pentafluorophenyl ligands. Particularly strong electronic competition for the empty d(π) metal orbitals in (6) is reflected in its bond geometry, and owes itself to the

  17. Modified porous tantalum rod technique for the treatment of femoral head osteonecrosis.

    Science.gov (United States)

    Pakos, Emilios E; Megas, Panayiotis; Paschos, Nikolaos K; Syggelos, Spyridon A; Kouzelis, Antonios; Georgiadis, Georgios; Xenakis, Theodoros A

    2015-11-18

    To study a modified porous tantalum technique for the treatment of osteonecrosis of the femoral head. The porous tantalum rod was combined with endoscopy, curettage, autologous bone grafting and use of bone marrow aspirates from iliac crest aspiration in 49 patients (58 hips) with a mean age of 38 years. The majority of the patients had idiopathic osteonecrosis, followed by corticosteroid-induced osteonecrosis. Thirty-eight hips were of Steinberg stage II disease and 20 hips were of stage III disease. Patients were followed for 5 years and were evaluated clinically with the Merle D'Aubigne and Postel score and radiologically. The primary outcome of the study was survival based on the conversion to total hip arthroplasty (THA). Secondary outcomes included deterioration of the osteonecrosis to a higher disease stage at 5 years compared to the preoperative period and identification of factors that were associated with survival. The Kaplan-Meier survival analysis was performed to evaluate the survivorship of the prosthesis, and the Fisher exact test was performed to test associations between various parameters with survival. No patient developed any serious intraoperative or postoperative complication including implant loosening or migration and donor site morbidity. During the 5-year follow up, 1 patient died, 7 patients had disease progression and 4 hips were converted to THA. The 5-year survival based on conversion to THA was 93.1% and the respective rate based on disease progression was 87.9%. Stage II disease was associated with statistically significant better survival rates compared to stage III disease (P = 0.04). The comparison between idiopathic and non-idiopathic osteonecrosis and between steroid-induced and non-steroid-induced osteonecrosis did not showed any statistically significant difference in survival rates. The clinical evaluation revealed statistically significantly improved Merle d'Aubigne scores at 12 mo postoperatively compared to the

  18. Structure and properties of polymer-silicate nanocomposites based on polytetrafluoroethylene

    Energy Technology Data Exchange (ETDEWEB)

    Sleptsova, Sardana A.; Okhlopkova, Aitalina A. [North-Eastern Federal University, Yakutsk (Russian Federation)

    2011-07-01

    The results of physicomechanical, tribological , and structural investigation of polytetrafluoroethylene based polymers and natural layered silicates are reported. It is shown that the tribological behaviour of the composites can be significantly improved by introducing a small amount of activated silicates. The results of structural examination of the composite friction surfaces by scanning-probe microscopy and IR spectroscopy are discussed. Key words: polytetrafluoroethylene, layered silicates, wear resistance, friction coefficient, structure, IR-spectrum.

  19. Silicon K-edge XANES spectra of silicate minerals

    Science.gov (United States)

    Li, Dien; Bancroft, G. M.; Fleet, M. E.; Feng, X. H.

    1995-03-01

    Silicon K-edge x-ray absorption near-edge structure (XANES) spectra of a selection of silicate and aluminosilicate minerals have been measured using synchrotron radiation (SR). The spectra are qualitatively interpreted based on MO calculation of the tetrahedral SiO{4/4-}cluster. The Si K-edge generally shifts to higher energy with increased polymerization of silicates by about 1.3 eV, but with considerable overlap for silicates of different polymerization types. The substitution of Al for Si shifts the Si K-edge to lower energy. The chemical shift of Si K-edge is also sensitive to cations in more distant atom shells; for example, the Si K-edge shifts to lower energy with the substitution of Al for Mg in octahedral sites. The shifts of the Si K-edge show weak correlation with average Si-O bond distance (dSi-O), Si-O bond valence (sSi-O) and distortion of SiO4 tetrahedra, due to the crystal structure complexity of silicate minerals and multiple factors effecting the x-ray absorption processes.

  20. Preparation of β-belite using liquid alkali silicates

    International Nuclear Information System (INIS)

    Koutník, P.

    2017-01-01

    The aim of this study is the preparation of β-belite by a solid-state reaction using powdered limestone, amorphous silica and liquid alkali silicates. The raw materials were blended, the mixtures were agglomerated and then burnt. The resulting samples were characterized by X-ray diffraction analysis and scanning electron microscopy. Free lime content in the β-belite samples was also determined. The effects of CaO/SiO2 ratio (1.6–2.1), burning temperature (800–1400 °C), utilization of different raw materials (silica fume, synthetic silica, potassium silicate, sodium silicate, potassium hydroxide) and burning time (0.5–16 h) on free lime content and mineralogical composition were investigated. The purest ?-belite samples were prepared from a mixture of powdered limestone, silica fume and liquid potassium silicate with a ratio CaO/SiO2 = 2 by burning at temperatures between 1100 and 1300 °C for more than 2 h. Decreasing of the CaO/SiO2 ratio led to rankinite formation and lower a burning temperature led to the formation of wollastonite. [es

  1. Lead-silicate glass optical microbubble resonator

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Pengfei, E-mail: pengfei.wang@dit.ie [Photonics Research Centre, Dublin Institute of Technology, Kevin Street, Dublin 8 (Ireland); Optoelectronics Research Centre, University of Southampton, Southampton SO17 1BJ (United Kingdom); Ward, Jonathan; Yang, Yong; Chormaic, Síle Nic [Light-Matter Interactions Unit, OIST Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495 (Japan); Feng, Xian; Brambilla, Gilberto [Optoelectronics Research Centre, University of Southampton, Southampton SO17 1BJ (United Kingdom); Farrell, Gerald [Photonics Research Centre, Dublin Institute of Technology, Kevin Street, Dublin 8 (Ireland)

    2015-02-09

    Microbubble whispering gallery resonators have the potential to become key components in a variety of active and passive photonic circuit devices by offering a range of significant functionalities. Here, we report on the fabrication, optical characterization, and theoretical analysis of lead-silicate glass and optical microbubble resonators. Evanescent field coupling to the microbubbles was achieved using a 1 μm diameter, silica microfiber at a wavelength of circa 775 nm. High Q-factor modes were efficiently excited in both single-stem and two-stem, lead-silicate glass, and microbubble resonators, with bubble diameters of 38 μm (single-stem) and 48 μm (two-stem). Whispering gallery mode resonances with Q-factors as high as 2.3 × 10{sup 5} (single-stem) and 7 × 10{sup 6} (two-stem) were observed. By exploiting the high-nonlinearity of the lead-silicate glass, this work will act as a catalyst for studying a range of nonlinear optical effects in microbubbles, such as Raman scattering and four-wave mixing, at low optical powers.

  2. Tantalum films with well-controlled roughness grown by oblique incidence deposition

    Science.gov (United States)

    Rechendorff, K.; Hovgaard, M. B.; Chevallier, J.; Foss, M.; Besenbacher, F.

    2005-08-01

    We have investigated how tantalum films with well-controlled surface roughness can be grown by e-gun evaporation with oblique angle of incidence between the evaporation flux and the surface normal. Due to a more pronounced shadowing effect the root-mean-square roughness increases from about 2 to 33 nm as grazing incidence is approached. The exponent, characterizing the scaling of the root-mean-square roughness with length scale (α), varies from 0.75 to 0.93, and a clear correlation is found between the angle of incidence and root-mean-square roughness.

  3. Graphene-induced strengthening in spark plasma sintered tantalum carbide–nanotube composite

    International Nuclear Information System (INIS)

    Lahiri, Debrupa; Khaleghi, Evan; Bakshi, Srinivasa Rao; Li, Wei; Olevsky, Eugene A.; Agarwal, Arvind

    2013-01-01

    Transverse rupture strength of spark plasma sintered tantalum carbide (TaC) composites reinforced with long and short carbon nanotubes (CNTs) is reported. The rupture strength depends on the transformation behavior of the CNTs during spark plasma sintering, which is dependent on their length. The TaC composite with short nanotubes shows the highest specific rupture strength. Shorter CNTs transform into multi-layered graphene sheets between TaC grains, whereas long ones retain the tubular structure. Two-dimensionsal graphene platelets offer higher resistance to pull-out, resulting in delayed fracture and higher strength.

  4. Thermal and electrical conductivities of high purity tantalum

    International Nuclear Information System (INIS)

    Archer, S.L.

    1978-01-01

    The electrical resistivity and thermal conductivity of three high purity tantalum samples have been measured as functions of temperature over a temperature range of 5K to 65K. Sample purities ranged up to a resistivity ratio of 1714. The highest purity sample had a residual resistivity of .76 x 10 -10 OMEGA-m. The intrinsic resistivity varied as T 3 . 9 from 10K to 31K. The thermal conductivity of the purest sample had a maximum of 840 W/mK at 9.8K. The intrinsic thermal resistivity varied as T 2 . 4 from 10K to 35K. At low temperatures electrons were scattered primarily by impurities and by phonons with both interband and intraband transitions observed. The electrical and thermal resistivity is departed from Matthiessen's rule at low temperatures

  5. I-Xe dating of silicate and troilite from IAB iron meteorites

    International Nuclear Information System (INIS)

    Niemeyer, S.

    1979-01-01

    Silicate and troilite (FeS) from IAB irons were analyzed by the I-Xe technique. Four IAB silicate samples gave well-defined I-Xe ages [in millions of years relative to Bjurbole: - 3.7 +- 0.3 for Woodbine, -0.7 +- 0.6 for Mundrabilla, + 1.4 +- 0.7 for Copiapo, and +2.6 +- 0.6 for Landes. The ( 129 Xe/ 132 Xe)sub(trapped) ratios are consistent with previous values for chondrites, with the exception of Landes which has an extraordinary trapped ratio of 3.5 +- 0.2. Both analyses of silicate from Pitts gave anomalous I-Xe patterns. Troilite samples were also analyzed: Pitts troilite gave a complex I-Xe pattern, which suggests an age of +17 Myr; Mundrabilla troilite defined a good I-Xe correlation, which after correction for neutron capture on 128 Te gave an age of -10.8 +- 0.7 Myr. Thus, low-melting troilite predates high-melting silicate in Mundrabilla. Abundances of Ga, Ge, and Ni in metal from these meteorites are correlated with I-Xe ages of the silicate; meteorites with older silicates have greater Ni contents. No model easily accounts for this result as well as other properties of IAB irons; nevertheless, these results, taken at face value, favour a nebular formation model. The great age of troilite from Mundrabilla suggests that this troilite formed in a different nebular region from the silicate and metal, and was later mechanically mixed with these other phases. The correlation between the trace elements in the metal and the I-Xe ages of the silicate provides one of the first known instances in which another well-defined meteoritic property correlates with I-Xe ages. In addition, almost all the 129 Xe in Mundrabilla silicate (etched in acid) was correlated with 128 Xe. These two results further support the validity of the I-Xe dating method. (author)

  6. On the Relation of Silicates and SiO Maser in Evolved Stars

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jiaming; Jiang, Biwei, E-mail: bjiang@bnu.edu.cn [Department of Astronomy, Beijing Normal University, Beijing 100875 (China)

    2017-04-01

    The SiO molecule is one of the candidates for the seed of silicate dust in the circumstellar envelope of evolved stars, but this opinion is challenged. In this work we investigate the relation of the SiO maser emission power and the silicate dust emission power. With both our own observation by using the PMO/Delingha 13.7 m telescope and archive data, a sample is assembled of 21 SiO v  = 1, J  = 2 − 1 sources and 28 SiO v  = 1, J  = 1 − 0 sources that exhibit silicate emission features in the ISO /SWS spectrum as well. The analysis of their SiO maser and silicate emission power indicates a clear correlation, which is not against the hypothesis that the SiO molecules are the seed nuclei of silicate dust. On the other hand, no correlation is found between SiO maser and silicate crystallinity, which may imply that silicate crystallinity does not correlate with mass-loss rate.

  7. Contact Resistance of Tantalum Coatings in Fuel Cells and Electrolyzers using Acidic Electrolytes at Elevated Temperatures

    DEFF Research Database (Denmark)

    Jensen, Annemette Hindhede; Christensen, Erik; Barner, Jens H. Von

    2014-01-01

    stainless steel were found to be far below the US Department of Energy target value of 10mcm2. The good contact resistance of tantalum was demonstrated by simulating high temperature polymer electrolyte membrane electrolysis conditions by anodization performed in 85% phosphoric acid at 130◦C, followed...

  8. Influence of laser alloyed layer of carbon steel with tantalum on the structure and surface layer properties

    International Nuclear Information System (INIS)

    Woldan, A.; Kusinski, J.; Kac, S.

    1999-01-01

    The paper describes the microstructure and properties (chemical composition and microhardness) of the surface laser alloyed layer with tantalum. The surface alloyed zones varied in microstructure, zones depth and width, as well as Ta content according to the thickness of the coated layer, bonding paint type and process parameters (power and scanning velocity). The electron microprobe analysis of melts showed that higher tantalum content in the melted zone resulted from the thicker original Ta coating as well as slower scanning velocity. Scanning electron microscopy examinations show that dendritic structure of the melted zone becomes evident when carbon was used as one of the components of the binder, while structure is typically martensitic when silicon containing binder was used for powder deposition. Samples covered with Ta and carbon containing binder showed after laser alloying higher hardness than in case of using silicon containing binder. (author)

  9. Structural changes in the human vas deferens after tantalum clip occlusion and conventional vasectomy.

    Science.gov (United States)

    Kothari, L K; Gupta, A S

    1978-02-01

    In 15 human subjects, the vasa deferentia were occluded by applying two tantalum clips on one side and by conventional vasectomy with silk ligatures on the other. After 2 weeks, the occluded segments were recovered for histopathologic examination of serial sections. Obstructing the seminal tract did not, as such, produce any significant change in the vas: the distal and proximal segments appeared to be essentially similar and normal. At the actual site of occlusion, however, tantalum clips produced marked flattening of the tube, complete loss of lining epithelium, distortion of the muscular lamellae, and areas of hemorrhage. The lumen was converted into a narrow slit. Under the ligatures, the damage was largely confined to denudation of the mucosal epithelium. The mucosa of the intersegment left unexcised between two clips showed hyalinization, invasion by macrophages, and degeneration of the epithelium. The changes under the clips suggest that, although clip occlusion may offer several advantages, sterility cannot be reversed merely by removing the clips. The mechanisms of these changes, different in the case of clips and ligatures, are discussed and some possible long-term consequences are considered.

  10. EFFECT OF SILICATE ON GRAM STAINING AND VIABILITY OF PNEUMOCOCCI AND OTHER BACTERIA

    Science.gov (United States)

    MacLeod, Colin M.; Roe, Amy S.

    1956-01-01

    Application of silicate solutions to living or heat-killed pneumococci and to certain "viridans" streptococci causes their conversion from a Gram-positive to a Gram-negative state. The original staining properties can be restored by suspending the silicate-treated bacteria in alkaline solutions of various salts but not by simple washing in water. Living pneumococci and the strains of streptococci whose staining properties are similarly affected are killed when suspended in silicate solutions. In other Gram-positive species silicate causes conversion to Gram negativity but restoration to positivity occurs upon washing in water. In a third group of Gram-positive organisms silicate has no effect on the Gram reaction. The viability of organisms in these two groups is unaffected by silicate under the conditions employed. No effect on staining or viability of Gram-negative bacteria has been observed. The effects of silicate on staining and viability are inhibited by nutrient broth or whole serum but not by purified serum albumin. Lecithin, choline, and other substituted ammonium compounds also inhibit the effects of silicate on pneumococci. PMID:13306854

  11. Carbonation of metal silicates for long-term CO2 sequestration

    Science.gov (United States)

    Blencoe, James G; Palmer, Donald A; Anovitz, Lawrence M; Beard, James S

    2014-03-18

    In a preferred embodiment, the invention relates to a process of sequestering carbon dioxide. The process comprises the steps of: (a) reacting a metal silicate with a caustic alkali-metal hydroxide to produce a hydroxide of the metal formerly contained in the silicate; (b) reacting carbon dioxide with at least one of a caustic alkali-metal hydroxide and an alkali-metal silicate to produce at least one of an alkali-metal carbonate and an alkali-metal bicarbonate; and (c) reacting the metal hydroxide product of step (a) with at least one of the alkali-metal carbonate and the alkali-metal bicarbonate produced in step (b) to produce a carbonate of the metal formerly contained in the metal silicate of step (a).

  12. Viscosity of Heterogeneous Silicate Melts: A Non-Newtonian Model

    Science.gov (United States)

    Liu, Zhuangzhuang; Blanpain, Bart; Guo, Muxing

    2017-12-01

    The recently published viscosity data of heterogeneous silicate melts with well-documented structure and experimental conditions are critically re-analyzed and tabulated. By using these data, a non-Newtonian viscosity model incorporating solid fraction, solid shape, and shear rate is proposed on the basis of the power-law equation. This model allows calculating the viscosity of the heterogeneous silicate melts with solid fraction up to 34 vol pct. The error between the calculated and measured data is evaluated to be 32 pct, which is acceptable considering the large error in viscosity measurement of the completely liquid silicate melt.

  13. Structural and photoluminescent properties of a composite tantalum oxide and silicon nanocrystals embedded in a silicon oxide film

    Energy Technology Data Exchange (ETDEWEB)

    Díaz-Becerril, T., E-mail: tomas.diaz.be@gmail.com; Herrera, V.; Morales, C.; García-Salgado, G.; Rosendo, E.; Coyopol, A., E-mail: acoyopol@gmail.com; Galeazzi, R.; Romano, R.; Nieto-Caballero, F.G.; Sarmiento, J.

    2017-04-15

    Tantalum oxide crystals encrusted in a silicon oxide matrix were synthesized by using a hot filament chemical vapor deposition system (HFCVD). A solid source composed by a mixture in different percentages of Ta{sub 2}O{sub 5} and silicon (Si) powders were used as reactants. The films were grown at 800 °C and 1000 °C under hydrogen ambient. The deposited films were characterized by X-ray photoelectron spectroscopy (XPS), high-resolution transmission electron microscopy (HRTEM) and photoluminescence (PL) at room temperature. From the XPS results it was confirmed the formation of a mixture of Tantalum oxide, silicon oxide and Si nanoparticles (Ta{sub 2}O{sub 5-}SiO{sub 2}-Si(nc)) as seen from the Si (2p) and Ta (4f) lines corresponding to Si{sup +} and Ta{sup +} states respectively. Ta{sub 2}O{sub 5} and Si nanocrystals (Si-NCs) embedded in the silicon oxide films were observed on HRTEM images which corroborate the XPS results. Finally the emission properties of the films exhibited a broad band from 400 to 850 nm caused by the independent PL properties of tantalum oxide and Si-NCs that compose the film. The intensity of the emissions was observed to be dependent on both temperature of deposition and the ratio Ta{sub 2}O{sub 5}/Si, used as initial reactants. Results from this work might supply useful data for the development of future light emitter devices.

  14. Decomposition of pre calcined aluminium silicate ores of Afghanistan by hydrochloric acid

    International Nuclear Information System (INIS)

    Khomidi, A.K.; Mamatov, E.D.

    2015-01-01

    Present article is devoted to decomposition of pre calcined aluminium silicate ores of Afghanistan by hydrochloric acid. The physicochemical properties of initial aluminium silicate ores were studied by means of X-ray phase, differential thermal and silicate analysis. The chemical composition of aluminium containing ores was determined. The optimal conditions of interaction of initial and pre calcined siallites with hydrochloric acid were defined. The kinetics of acid decomposition of aluminium silicate ores was studied as well.

  15. Analysis of cobalt, tantalum, titanium, vanadium and chromium in tungsten carbide by inductively coupled plasma-optical emission spectrometry

    CSIR Research Space (South Africa)

    Archer, M

    2003-12-01

    Full Text Available Inductively coupled plasma optical emission spectroscopy (ICP-OES) was used to measure the concentrations of cobalt, tantalum, titanium, vanadium and chromium in solutions of tungsten carbide. The main advantage of the method described here lies...

  16. Sodium Silicate Behavior in Porous Media Applied for In-Depth Profile Modifications

    Directory of Open Access Journals (Sweden)

    Hossein A. Akhlaghi Amiri

    2014-03-01

    Full Text Available This paper addresses alkaline sodium silicate (Na-silicate behavior in porous media. One of the advantages of the Na-silicate system is its water-like injectivity during the placement stage. Mixing Na-silicate with saline water results in metal silicate precipitation as well as immediate gelation. This work demonstrated that low salinity water (LSW, sea water diluted 25 times could be used as a pre-flush in flooding operations. A water override phenomenon was observed during gel formation which is caused by gravity segregation. Dynamic adsorption tests in the sand-packed tubes showed inconsiderable adsorbed silicon density (about 8.5 × 10−10 kg/cm3 for a solution with 33 mg/L silicon content, which is less than the estimated mono-layer adsorption density of 1.4 × 10−8 kg/cm3. Na-silicate enhanced water sweep efficiency after application in a dual-permeability sand-pack system, without leak off into the oil-bearing low permeability (LP zone. Field-scale numerical sensitivity studies in a layered reservoir demonstrated that higher permeability and viscosity contrasts and lower vertical/horizontal permeability ratio result in lower Na-silicate leakoff into the matrix. The length of the mixing zone between reservoir water and the injected Na-silicate solution, which is formed by low salinity pre-flush, acts as a buffer zone.

  17. SILICATE EVOLUTION IN BROWN DWARF DISKS

    International Nuclear Information System (INIS)

    Riaz, B.

    2009-01-01

    We present a compositional analysis of the 10 μm silicate spectra for brown dwarf disks in the Taurus and Upper Scorpius (UppSco) star-forming regions, using archival Spitzer/Infrared Spectrograph observations. A variety in the silicate features is observed, ranging from a narrow profile with a peak at 9.8 μm, to nearly flat, low-contrast features. For most objects, we find nearly equal fractions for the large-grain and crystalline mass fractions, indicating both processes to be active in these disks. The median crystalline mass fraction for the Taurus brown dwarfs is found to be 20%, a factor of ∼2 higher than the median reported for the higher mass stars in Taurus. The large-grain mass fractions are found to increase with an increasing strength in the X-ray emission, while the opposite trend is observed for the crystalline mass fractions. A small 5% of the Taurus brown dwarfs are still found to be dominated by pristine interstellar medium-like dust, with an amorphous submicron grain mass fraction of ∼87%. For 15% of the objects, we find a negligible large-grain mass fraction, but a >60% small amorphous silicate fraction. These may be the cases where substantial grain growth and dust sedimentation have occurred in the disks, resulting in a high fraction of amorphous submicron grains in the disk surface. Among the UppSco brown dwarfs, only usd161939 has a signal-to-noise ratio high enough to properly model its silicate spectrum. We find a 74% small amorphous grain and a ∼26% crystalline mass fraction for this object.

  18. I-Xe dating of silicate and troilite from IAB iron meteorites

    International Nuclear Information System (INIS)

    Niemeyer, S.

    1978-01-01

    The IAB iron meteorites may be related to the chondrites; siderophile elements in the metal matrix have chondritic abundances, and the abundant silicate inclusions are chondritic both in mineralogy and in chemical composition. Silicate and troilite (FeS) and IAB irons were analyzed by the I-Xe technique. Four IAB silicate samples gave well-defined I-Xe ages [in millions of years relative to Bjurboele; the monitor error (+-2.5 m.y.) is not included]: -3.7 +- 0.3 for Woodbine, -0.7 +- 0.6 for Mundrabilla, +1.4 +- 0.7 for Copiapo, and +2.6 +- 0.6 for Landes. The ( 129 Xe/ 132 Xe)/sub trapped/ ratios are consistent with previous values for chondrites, with the exception of Landes which has an extraordinary trapped ratio of 3.5 +- 0.2. Both analyses of silicate from Pitts gave anomalous I-Xe patterns: intermediate-temperature points defined good correlations but higher-temperature (greater than or equal to 1400 0 C) points lay above (extra 129 Xe) these lines. The two correlations have different slopes, so it cannot be assigned a definite I-Xe age to Pitts silicate. Troilite samples from Mundrabilla and Pitts were also analyzed: Pitts troilite gave a complex I-Xe pattern, which suggests an age of +17 m.y.; Mundrabilla troilite defined a good I-Xe correlation, which after correction for neutron capture on 128 Te an age of -10.8 +- 0.7 m.y. Thus, surprisingly, low-melting troilite substantially predates high-melting silicate in Mundrabilla. Abundances of Ga, Ge, and Ni in metal from these meteorites are correlated with I-Xe ages of the silicate (referred to henceforth as the metal-silicate correlation). After exploring possible relationships between the I-Xe ages and other properties of the IAB group, it was concluded that the metal-silicate correlation, the old Mundrabilla troilite, and other results favor a nebular formation model (e.g. Wasson, 1970a)

  19. Dielectric properties of tantalum powder with broccoli-like morphology

    Energy Technology Data Exchange (ETDEWEB)

    Baba, Masahiko [Department of Energy Science and Technology, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501 (Japan); Suzuki, Ryosuke O [Department of Energy Science and Technology, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501 (Japan)

    2005-04-19

    Metallic tantalum powder with broccoli-like morphology, consisting of spherical fine particles and of long rods or thin plates, was prepared in a hundred gram scale by calcium reduction of Ta{sub 2}O{sub 5} in molten CaCl{sub 2}. The properties as electrolytic capacitor were evaluated in comparison with commercial powder obtained by Na reduction and with powder consisting of only fine particles obtained by Ca reduction. The capacitance was larger than that of conventional powder with the same surface area, because the broccoli-like powder showed a strong resistance against shrinkage during high temperature annealing due to the framework of branches. The powder with new broccoli-like morphology can circumvent the conventional treatments for grain size control and gas removal.

  20. Dielectric properties of tantalum powder with broccoli-like morphology

    International Nuclear Information System (INIS)

    Baba, Masahiko; Suzuki, Ryosuke O.

    2005-01-01

    Metallic tantalum powder with broccoli-like morphology, consisting of spherical fine particles and of long rods or thin plates, was prepared in a hundred gram scale by calcium reduction of Ta 2 O 5 in molten CaCl 2 . The properties as electrolytic capacitor were evaluated in comparison with commercial powder obtained by Na reduction and with powder consisting of only fine particles obtained by Ca reduction. The capacitance was larger than that of conventional powder with the same surface area, because the broccoli-like powder showed a strong resistance against shrinkage during high temperature annealing due to the framework of branches. The powder with new broccoli-like morphology can circumvent the conventional treatments for grain size control and gas removal

  1. Diffusion coefficient of hydrogen in niobium and tantalum

    International Nuclear Information System (INIS)

    Vargas, P.; Miranda, L.; Lagos, M.

    1988-08-01

    We show that the current data on hydrogen diffusion in Tantalum between 15K and 550K and in Niobium between 135K and 400K can be quantitatively explained by the small polaron theory. The experimental data can be understood assuming ground-state to ground-state tunneling between interstitial sites with tetrahedral symmetry plus an activated contribution due to tunneling between excited states having octahedral symmetry. The break of the diffusivity curve at T approx. = 250K follows naturally. It evidences the transition between the tetrahedral and octahedral hopping. For Ta the second break of the diffusivity curve at T approx. = 20K indicated the recovering of the ground-state hopping with tetrahedral symmetry. Below T approx. = 10K for Ta and T approx. = 7K for Nb the diffusion coefficient becomes independent of T. (author). 17 refs, 3 figs, 1 tab

  2. Split-Hopkinson pressure bar tests on pure tantalum

    International Nuclear Information System (INIS)

    Dick, Richard D.; Armstrong, Ronald W.; Williams, John D.

    1998-01-01

    Pure tantalum (Ta) was loaded in compression by a split-Hopkinson pressure bar (SHPB) to strain rates from 450 to 6350 s -1 . The results are compared with SHPB data for commercial Ta and with predictions from the constitutive model for Ta developed by Zerilli and Armstrong (Z-A). The main conclusions are: (1) the flow stress versus log strain rate agree with the Z-A constitutive model and other reported data, (2) uniform strain exponents computed on a true stress-strain basis for pure Ta are somewhat greater than those determined from SHPB data for commercial Ta, and (3) in both cases the uniform strain exponents versus log strain rate are in good agreement with predictions from the Z-A constitutive model for strain rates above 1500 s -1 without a clear indication of dislocation generation

  3. Graphite furnace atomic absorption spectrometry with a tantalum boat for the determination of yttrium, samarium, and dysprosium in a mish metal

    International Nuclear Information System (INIS)

    Daidoji, Hidehiro; Tamura, Shohei

    1982-01-01

    The determination of yttrium, samarium, and dysprodium by means of graphite-furnace atomic absorption spectrometry (AAS) was studied by a tantalum boat inserted into a graphite tube atomizer. These elements could not be determined by the use of a commercial graphite tube, In the atomization from a tantalum boat, better analytical sensitivities and negligible memory effects for these rare earths are obtained. The analytical sensitivities of yttrium, samarium, and dysprodium with the tantalum boat were 0.60 ng, 0.86 ng, and 0.17 ng respectively. This method was applied for the determination of yttrium, samarium, and dysprosium in a mish metal. The measurements were performed with slightly acidified solutions (0.01 mol dm 3 HCI or HNO 3 ). The sensitivities and the precisions for these elements decreased with increasing acid concentration. An enhancement in the sensitivities of yttrium and dysprosium upon the addition of a large excess of lanthanum, neodymium, and praseodymium salts were observed. The yttrium, samarium, and dysprosium in a mish metal were determined with both analytical curves of standard solutions containing an excess of lanthanum, cerium, and neodymium ions and of the standard addition. The precisions for this work were in the 3 - 9.3% range. (author)

  4. Production of a calcium silicate cement material from alginate impression material.

    Science.gov (United States)

    Washizawa, Norimasa; Narusawa, Hideaki; Tamaki, Yukimichi; Miyazaki, Takashi

    2012-01-01

    The purpose of this study was to synthesize biomaterials from daily dental waste. Since alginate impression material contains silica and calcium salts, we aimed to synthesize calcium silicate cement from alginate impression material. Gypsum-based investment material was also investigated as control. X-ray diffraction analyses revealed that although firing the set gypsum-based and modified investment materials at 1,200°C produced calcium silicates, firing the set alginate impression material did not. However, we succeeded when firing the set blend of pre-fired set alginate impression material and gypsum at 1,200°C. SEM observations of the powder revealed that the featured porous structures of diatomite as an alginate impression material component appeared useful for synthesizing calcium silicates. Experimentally fabricated calcium silicate powder was successfully mixed with phosphoric acid solution and set by depositing the brushite. Therefore, we conclude that the production of calcium silicate cement material is possible from waste alginate impression material.

  5. Potassium Silicate Foliar Fertilizer Grade from Geothermal Sludge and Pyrophyllite

    Directory of Open Access Journals (Sweden)

    Muljani Srie

    2016-01-01

    Full Text Available Potassium silicate fertilizer grade were successfully produced by direct fusion of silica (SiO2 and potasium (KOH and K2CO3 in furnaces at temperatures up to melting point of mixture. The geothermal sludge (98% SiO2 and the pyrophyllite (95% SiO2 were used as silica sources. The purposes of the study was to synthesise potassium silicate fertilizer grade having solids concentrations in the range of 31-37% K2O, and silica in the range of 48-54% SiO2. The weight ratio of silicon dioxide/potasium solid being 1:1 to 5:1. Silica from geothermal sludge is amorphous, whereas pyrophylite is crystalline phase. The results showed that the amount of raw materials needed to get the appropriate molar ratio of potassium silicate fertilizer grade are different, as well as the fusion temperature of the furnace. Potassium silicate prepared from potassium hydroxide and geothermal sludge produced a low molar ratio (2.5: 1 to 3: 1. The potassium required quite small (4:1 in weight ratio, and on a fusion temperature of about 900 °C. Meanwhile, the potassium silicate prepared from pyrophyllite produced a high molar ratio (1.4 - 9.4 and on a fusion temperature of about 1350 °C, so that potassium needed large enough to meet the required molar ratio for the fertilizer grade. The product potassium silicate solid is amorphous with a little trace of crystalline.

  6. Synthesis of tantalum carbide and nitride nanoparticles using a reactive mesoporous template for electrochemical hydrogen evolution

    KAUST Repository

    Alhajri, Nawal Saad; Yoshida, Hiroshi; Anjum, Dalaver H.; Garcia Esparza, Angel T.; Kubota, Jun; Domen, Kazunari; Takanabe, Kazuhiro

    2013-01-01

    Tantalum carbide and nitride nanocrystals were prepared through the reaction of a tantalum precursor with mesoporous graphitic (mpg)-C 3N4. The effects of the reaction temperature, the ratio of the Ta precursor to the reactive template (mpg-C3N4), and the selection of the carrier gas (Ar, N2 and NH3) on the resultant crystal phases and structures were investigated. The produced samples were characterized using powder X-ray diffraction (XRD), CHN elemental analyses, thermogravimetric analyses (TGA), nitrogen sorption, a temperature-programmed reaction with mass spectroscopy (MS), X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM). The results indicate that the different tantalum phases with cubic structure, TaN, Ta2CN, and TaC, can be formed under a flow of nitrogen when formed at different temperatures. The Ta3N5 phase with a Ta5+ oxidation state was solely obtained at 1023 K under a flow of ammonia, which gasified the C 3N4 template and was confirmed by detecting the decomposed gaseous products via MS. Significantly, the formation of TaC, Ta2CN, and TaN can be controlled by altering the weight ratio of the C 3N4 template relative to the Ta precursor at 1573 K under a flow of nitrogen. The high C3N4/Ta precursor ratio generally resulted in high carbide content rather than a nitride one, consistent with the role of mpg-C3N4 as a carbon source. Electrochemical measurements revealed that the synthesized nanomaterials were consistently able to produce hydrogen under acidic conditions (pH 1). The obtained Tafel slope indicates that the rate-determining step is the Volmer discharge step, which is consistent with adsorbed hydrogen being weakly bound to the surface during electrocatalysis. © 2013 The Royal Society of Chemistry.

  7. Determination of niobium, tantalum, and uranium in tantalite-columbite ores by X-ray fluorescence spectrometry; Application de la spectrometrie de fluorescence de rayos X a la determination de niobium, tantale et uranium dans niobiotantalites

    Energy Technology Data Exchange (ETDEWEB)

    Latorre, O; Bermudez Polonio, J

    1964-07-01

    A simple and quick procedure is carried out to determine niobium, tantalum and uranium employing the internal standard technique; zinc as internal standard for tantalum and molybdenum for niobium and uranium were selected. Some inter element effects were studied and the ratios. (Author)

  8. Controlled structure and properties of silicate nanoparticle networks for incorporation of biosystem components

    International Nuclear Information System (INIS)

    Sakai-Kato, Kumiko; Kawanishi, Toru; Hasegawa, Toshiaki; Takaoka, Akio; Kato, Masaru; Toyo'oka, Toshimasa; Utsunomiya-Tate, Naoko

    2011-01-01

    Inorganic nanoparticles are of technological interest in many fields. We created silicate nanoparticle hydrogels that effectively incorporated biomolecules that are unstable and involved in complicated reactions. The size of the silicate nanoparticles strongly affected both the physical characteristics of the resulting hydrogel and the activity of biomolecules incorporated within the hydrogel. We used high-resolution transmission electron microscopy (TEM) to analyze in detail the hydrogel network patterns formed by the silicate nanoparticles. We obtained clear nanostructured images of biomolecule-nanoparticle composite hydrogels. The TEM images also showed that larger silicate nanoparticles (22 nm) formed more loosely associated silicate networks than did smaller silicate nanoparticles (7 nm). The loosely associated networks formed from larger silicate nanoparticles might facilitate substrate diffusion through the network, thus promoting the observed increased activity of the entrapped biomolecules. This doubled the activity of the incorporated biosystems compared with that of biosystems prepared by our own previously reported method. We propose a reaction scheme to explain the formation of the silicate nanoparticle networks. The successful incorporation of biomolecules into the nanoparticle hydrogels, along with the high level of activity exhibited by the biomolecules required for complicated reaction within the gels, demonstrates the nanocomposites' potential for use in medical applications.

  9. Synthesis and crystal structure of triammine pentafluorido tantalum(V) [TaF{sub 5}(NH{sub 3}){sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Baer, Sebastian A.; Kraus, Florian [Department Chemie, Technische Universitaet Muenchen, Lichtenbergstrasse 4, 85747 Garching (Germany); Lozinsek, Matic [Department of Inorganic Chemistry and Technology, Jozef Stefan Institute, Jamova 39, 1000 Ljubljana (Slovenia)

    2013-07-01

    [Sr(HF){sub 3}(TaF{sub 6}){sub 2}] reacts with liquid ammonia under the formation of colorless crystals of triammine pentafluorido tantalum(V) [TaF{sub 5}(NH{sub 3}){sub 3}] (1). The structure was elucidated by low-temperature X-ray structure analysis. Compound 1 crystallizes in the monoclinic space group P2{sub 1}/c with a = 5.1525(6), b = 11.736(1), c = 10.171(1) Aa, β = 94.843(9) , V = 612.8(1) Aa{sup 3} at 123 K with Z = 4. Its structure displays discrete TaF{sub 5}(NH{sub 3}){sub 3} molecules, which are interconnected by N-H..F hydrogen bonds to form a complex three-dimensional network. The title compound is a rare example of a neutral, molecular, eight-coordinate tantalum species. (Copyright copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Identification of an Extremely 180-Rich Presolar Silicate Grain in Acfer 094

    Science.gov (United States)

    Nguyen, A. N.; Messenger, S.

    2009-01-01

    Presolar silicate grains have been abundantly identified since their first discovery less than a decade ago [1,2,3]. The O isotopic compositions of both silicate and oxide stardust indicate the vast majority (>90%) condensed around Orich asymptotic giant branch (AGB) stars. Though both presolar phases have average sizes of 300 nm, grains larger than 1 m are extremely uncommon for presolar silicates. Thus, while numerous isotopic systems have been measured in presolar oxide grains [4], very few isotopic analyses for presolar silicates exist outside of O and Si [2,5]. And still, these measurements suffer from isotopic dilution with surrounding matrix material [6]. We conduct a search for presolar silicates in the primitive carbonaceous chondrite Acfer 094 and in some cases obtain high spatial resolution, high precision isotopic ratios.

  11. Nanostructure of Calcium Silicate Hydrates in Cements

    KAUST Repository

    Skinner, L. B.; Chae, S. R.; Benmore, C. J.; Wenk, H. R.; Monteiro, P. J. M.

    2010-01-01

    Calcium silicate hydrate (CSH) is the major volume phase in the matrix of Portland cement concrete. Total x-ray scattering measurements with synchrotron x rays on synthetic CSH(I) shows nanocrystalline ordering with a particle diameter of 3.5(5) nm, similar to a size-broadened 1.1 nm tobermorite crystal structure. The CSH component in hydrated tricalcium silicate is found to be similar to CSH(I). Only a slight bend and additional disorder within the CaO sheets is required to explain its nanocrystalline structure. © 2010 The American Physical Society.

  12. Nanostructure of Calcium Silicate Hydrates in Cements

    KAUST Repository

    Skinner, L. B.

    2010-05-11

    Calcium silicate hydrate (CSH) is the major volume phase in the matrix of Portland cement concrete. Total x-ray scattering measurements with synchrotron x rays on synthetic CSH(I) shows nanocrystalline ordering with a particle diameter of 3.5(5) nm, similar to a size-broadened 1.1 nm tobermorite crystal structure. The CSH component in hydrated tricalcium silicate is found to be similar to CSH(I). Only a slight bend and additional disorder within the CaO sheets is required to explain its nanocrystalline structure. © 2010 The American Physical Society.

  13. Structural changes and tribological behaviors of nitrogen ion-implanted tantalum

    International Nuclear Information System (INIS)

    Wang, W.J.; Wang, T.M.; Wang, X.J.

    1996-01-01

    Single-crystal tantalum sheets were implanted by 110 keV nitrogen ions to a dose of 5 x 10 17 ions/cm 2 at a temperature less than 100 C. The structural changes and the concentration depth profiles of the implanted layers were characterized by glancing-angle X-ray diffraction (GXRD), selected area diffraction (SAD) and Auger electron spectroscopy (AES), respectively. The microhardness, the friction coefficient and the wear rate of the specimens against hardened GCr15 steel balls were also determined before and after the implantation. Scanning electron microscopy (SEM) and electron probe micro-analyzer (EPMA) were used to analyze the wear tracks. The results showed that there exist deviations between the characterization results of AES and GXRD or SAD. The AES measurement suggests the formation of the tantalum nitrides with a maximum N/Ta ratio of 1/2, while the GXRD and SAD reveal the formation of bcc Ta(N), fcc TaN and a trace amount of hcp Ta 2 N. This can be explained by considering the inhomogeneous distribution of nitrogen atoms in micro-regions: the enrichment of nitrogen atoms in local micro-regions leads to the formation of fcc TaN; however, the unfavorable structural compatibility between bcc Ta and hcp Ta 2 N hinders the formation of hcp Ta 2 N in the regions where the N/Ta ratio reaches 1/2. The detected trace amount of the hcp Ta 2 N phase in the implanted layers can be considered as an after effect of nitrogen loss from the originally formed nitrides. The results also showed that the tribological properties of the Ta surfaces were improved due to the implantation. It is believed that the implantation-induced Ta(N), fcc TaN, and hcp Ta 2 N phases are responsible for this improvement. (orig.)

  14. Crystallochemical characteristics of alkali calcium silicates from charoitites

    International Nuclear Information System (INIS)

    Rozhdestvenskaya, I.V.; Nikishova, L.V.

    2002-01-01

    The characteristic features of the crystal structures of alkali calcium silicates from various deposits are considered. The structures of these minerals, which were established by single-crystal X-ray diffraction methods, are described as the combinations of large construction modules, including the alternating layers of alkali cations and tubular silicate radicals (in canasite, frankamenite, miserite, and agrellite) and bent ribbons linked through hydrogen bonds in the layers (in tinaksite and tokkoite). The incorporation of impurities and the different ways of ordering them have different effects on the structures of these minerals and give rise to the formation of superstructures accompanied by a change of the space group (frankamenite-canasite), leading, in turn, to different mutual arrangements of the layers of silicate tubes and the formation of pseudopolytypes (agrellites), structure deformation, and changes in the unit-cell parameters (tinaksite-tokkoite)

  15. Energetic Processing of Interstellar Silicate Grains by Cosmic Rays

    Energy Technology Data Exchange (ETDEWEB)

    Bringa, E M; Kucheyev, S O; Loeffler, M J; Baragiola, R A; Tielens, A G Q M; Dai, Z R; Graham, G; Bajt, S; Bradley, J; Dukes, C A; Felter, T E; Torres, D F; van Breugel, W

    2007-03-28

    While a significant fraction of silicate dust in stellar winds has a crystalline structure, in the interstellar medium nearly all of it is amorphous. One possible explanation for this observation is the amorphization of crystalline silicates by relatively 'low' energy, heavy ion cosmic rays. Here we present the results of multiple laboratory experiments showing that single-crystal synthetic forsterite (Mg{sub 2}SiO{sub 4}) amorphizes when irradiated by 10 MeV Xe{sup ++} ions at large enough fluences. Using modeling, we extrapolate these results to show that 0.1-5.0 GeV heavy ion cosmic rays can rapidly ({approx}70 Million yrs) amorphize crystalline silicate grains ejected by stars into the interstellar medium.

  16. In situ STM and EQCM studies of tantalum electrodeposition from TaF5 in the air- and water-stable ionic liquid 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)amide

    International Nuclear Information System (INIS)

    Borisenko, N.; Ispas, A.; Zschippang, E.; Liu, Q.; Zein El Abedin, S.; Bund, A.; Endres, F.

    2009-01-01

    The electroreduction of 0.5 M TaF 5 on Au(1 1 1) and on polycrystalline gold substrates was investigated at room temperature in the ionic liquid 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)amide, [Py 1,4 ]TFSA, by cyclic voltammetry, in situ scanning tunneling microscopy (STM) and electrochemical quartz crystal microbalance (EQCM). The electrochemical reduction of TaF 5 in the employed ionic liquid occurs in several steps. The first redox process is attributed to the reduction of TaF 5 to TaF 3 , which likely occurs in the solution, as EQCM indicates no mass change. The electrodeposition of tantalum occurs only in a very narrow potential window and is preceded by the formation of various non-stoichiometric tantalum subhalides. Attempts to deposit micrometer thick tantalum layers at room temperature fail, presumably because of kinetic reasons

  17. ICP-MS determination of rare earth elements, yttrium, uranium and thorium in niobium-tantalum rich samples

    International Nuclear Information System (INIS)

    Sunilkumar, Beena; Padmasubashini, V.

    2013-01-01

    ICP-MS is a powerful and extremely sensitive technique which has been applied successfully for the determination of REEs in diverse geological samples. In the present work, ICP-MS has been applied for the rapid determination of REEs, yttrium as well as uranium and thorium in niobium and tantalum rich samples, using a fluoride fusion method for sample dissolution

  18. Tantalum powder consolidation, modeling and properties

    International Nuclear Information System (INIS)

    Bingert, S.R.; Vargas, V.D.; Sheinberg, H.C.

    1996-01-01

    A systematic approach was taken to investigate the consolidation of tantalum powders. The effects of sinter time, temperature and ramp rate; hot isostatic pressing (HIP) temperature and time; and powder oxygen content on consolidation density, kinetics, microstructure, crystallographic texture, and mechanical properties have been evaluated. In general, higher temperatures and longer hold times resulted in higher density compacts with larger grain sizes for both sintering and HIP'ing. HIP'ed compacts were consistently higher in density than sintered products. The higher oxygen content powders resulted in finer grained, higher density HIP'ed products than the low oxygen powders. Texture analysis showed that the isostatically processed powder products demonstrated a near random texture. This resulted in isotropic properties in the final product. Mechanical testing results showed that the HIP'ed powder products had consistently higher flow stresses than conventionally produced plates, and the sintered compacts were comparable to the plate material. A micromechanics model (Ashby HIP model) has been employed to predict the mechanisms active in the consolidation processes of cold isostatic pressing (CIP), HIP and sintering. This model also predicts the density of the end product and whether grain growth should be expected under the applied processing conditions

  19. Deep-Earth Equilibration between Molten Iron and Solid Silicates

    Science.gov (United States)

    Brennan, M.; Zurkowski, C. C.; Chidester, B.; Campbell, A.

    2017-12-01

    Elemental partitioning between iron-rich metals and silicate minerals influences the properties of Earth's deep interior, and is ultimately responsible for the nature of the core-mantle boundary. These interactions between molten iron and solid silicates were influential during planetary accretion, and persist today between the mantle and liquid outer core. Here we report the results of diamond anvil cell experiments at lower mantle conditions (40 GPa, >2500 K) aimed at examining systems containing a mixture of metals (iron or Fe-16Si alloy) and silicates (peridotite). The experiments were conducted at pressure-temperature conditions above the metallic liquidus but below the silicate solidus, and the recovered samples were analyzed by FIB/SEM with EDS to record the compositions of the coexisting phases. Each sample formed a three-phase equilibrium between bridgmanite, Fe-rich metallic melt, and an oxide. In one experiment, using pure Fe, the quenched metal contained 6 weight percent O, and the coexisting oxide was ferropericlase. The second experiment, using Fe-Si alloy, was highly reducing; its metal contained 10 wt% Si, and the coexisting mineral was stishovite. The distinct mineralogies of the two experiments derived from their different starting metals. These results imply that metallic composition is an important factor in determining the products of mixed phase iron-silicate reactions. The properties of deep-Earth interfaces such as the core-mantle boundary could be strongly affected by their metallic components.

  20. Carbonation of metal silicates for long-term CO.sub.2 sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Blencoe, James G.; Palmer, Donald A.; Anovitz, Lawrence M.; Beard, James S.

    2017-08-01

    In a preferred embodiment, the invention relates to a process of sequestering carbon dioxide. The process comprises the steps of: (a) reacting a metal silicate with a caustic alkali-metal hydroxide to produce a hydroxide of the metal formerly contained in the silicate; (b) reacting carbon dioxide with at least one of a caustic alkali-metal hydroxide and an alkali-metal silicate to produce at least one of an alkali-metal carbonate and an alkali-metal bicarbonate; and (c) reacting the metal hydroxide product of step (a) with at least one of the alkali-metal carbonate and the alkali-metal bicarbonate produced in step (b) to produce a carbonate of the metal formerly contained in the metal silicate of step (a).

  1. Carbonation of metal silicates for long-term CO.sub.2 sequestration

    Science.gov (United States)

    Blencoe, James G [Harriman, TN; Palmer, Donald A [Oliver Springs, TN; Anovitz, Lawrence M [Knoxville, TN; Beard, James S [Martinsville, VA

    2012-02-14

    In a preferred embodiment, the invention relates to a process of sequestering carbon dioxide. The process comprises the steps of: (a) reacting a metal silicate with a caustic alkali-metal hydroxide to produce a hydroxide of the metal formerly contained in the silicate; (b) reacting carbon dioxide with at least one of a caustic alkali-metal hydroxide and an alkali-metal silicate to produce at least one of an alkali-metal carbonate and an alkali-metal bicarbonate; and (c) reacting the metal hydroxide product of step (a) with at least one of the alkali-metal carbonate and the alkali-metal bicarbonate produced in step (b) to produce a carbonate of the metal formerly contained in the metal silicate of step (a).

  2. Synthesis and characterization of silica gel from siliceous sands of southern Tunisia

    Directory of Open Access Journals (Sweden)

    Ali Sdiri

    2014-09-01

    Full Text Available The present work aimed to achieve valorization of Albian sands for the preparation of sodium silicates that are commonly used as a precursor to prepare silica gel. A siliceous sand sample was mixed with sodium carbonate and heated at a high temperature (1060 °C to prepare sodium silicates. The sodium silicates were dissolved in distilled water to obtain high quality sodium silicate solution. Hydrochloric acid was then slowly added to the hydrated sodium silicates to obtain silica gel. The collected raw siliceous sands, as well as the prepared silica gels, were characterized by different techniques, such as X-ray fluorescence (XRF, X-ray diffraction (XRD, scanning electron microscopy (SEM and thermal analysis (DSC. XRF confirmed that the detrital sand deposits of southern Tunisia contain high amounts of silica, with content ranging from 88.8% to 97.5%. The internal porosity varied between 17% and 22%, and the specific surface area was less than 5 m2/g. After the treatment described above, it was observed that the porosity of the obtained silica gel reached 57% and the specific surface area exceeded 340 m2/g. Nitrogen adsorption isotherms showed that the prepared silica gels are microporous and mesoporous materials with high adsorption capacities. These results suggest that the obtained silica gels are promising materials for numerous environmental applications.

  3. Q-Speciation and Network Structure Evolution in Invert Calcium Silicate Glasses.

    Science.gov (United States)

    Kaseman, Derrick C; Retsinas, A; Kalampounias, A G; Papatheodorou, G N; Sen, S

    2015-07-02

    Binary silicate glasses in the system CaO-SiO2 are synthesized over an extended composition range (42 mol % ≤ CaO ≤ 61 mol %), using container-less aerodynamic levitation techniques and CO2-laser heating. The compositional evolution of Q speciation in these glasses is quantified using (29)Si and (17)O magic angle spinning nuclear magnetic resonance spectroscopy. The results indicate progressive depolymerization of the silicate network upon addition of CaO and significant deviation of the Q speciation from the binary model. The equilibrium constants for the various Q species disproportionation reactions for these glasses are found to be similar to (much smaller than) those characteristic of Li (Mg)-silicate glasses, consistent with the corresponding trends in the field strengths of these modifier cations. Increasing CaO concentration results in an increase in the packing density and structural rigidity of these glasses and consequently in their glass transition temperature Tg. This apparent role reversal of conventional network-modifying cations in invert alkaline-earth silicate glasses are compared and contrasted with that in their alkali silicate counterparts.

  4. A genetic algorithm approach for evaluation of optical functions of very thin tantalum pentoxide films on Si substrate

    International Nuclear Information System (INIS)

    Sharlandjiev, P S; Nazarova, D I

    2013-01-01

    The optical characteristics of tantalum pentoxide films, deposited on Si(100) substrate by reactive sputtering, are studied. These films are investigated as high-kappa materials for the needs of nano-electronics, i.e. design of dynamic random access memories, etc. One problem in their implementation is that metal oxides are thermodynamically unstable with Si and an interfacial layer is formed between the oxide film and the silicon substrate during the deposition process. Herein, the center of attention is on the optical properties of that interfacial layer, which is studied by spectral photometric measurements. The evaluation of the optical parameters of the structure is fulfilled with the genetic algorithm approach. The spectral range of evaluation covers deep UV to NIR. The equivalent physical thickness (2.5 nm) and the equivalent refractive index of the interfacial layer are estimated from 236 to 750 nm as well as the thickness of the tantalum pentoxide film (9.5 nm). (paper)

  5. Conflict minerals in the compute sector: estimating extent of tin, tantalum, tungsten, and gold use in ICT products.

    Science.gov (United States)

    Fitzpatrick, Colin; Olivetti, Elsa; Miller, Reed; Roth, Richard; Kirchain, Randolph

    2015-01-20

    Recent legislation has focused attention on the supply chains of tin, tungsten, tantalum, and gold (3TG), specifically those originating from the eastern part of the Democratic Republic of Congo. The unique properties of these so-called “conflict minerals” lead to their use in many products, ranging from medical devices to industrial cutting tools. This paper calculates per product use of 3TG in several information, communication, and technology (ICT) products such as desktops, servers, laptops, smart phones, and tablets. By scaling up individual product estimates to global shipment figures, this work estimates the influence of the ICT sector on 3TG mining in covered countries. The model estimates the upper bound of tin, tungsten, tantalum, and gold use within ICT products to be 2%, 0.1%, 15%, and 3% of the 2013 market share, respectively. This result is projected into the future (2018) based on the anticipated increase in ICT device production.

  6. Study of the formation process and the characteristics of tantalum layers electrodeposited on Nitinol plates in the 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ionic liquid

    International Nuclear Information System (INIS)

    Maho, A.; Delhalle, J.; Mekhalif, Z.

    2013-01-01

    Highlights: ► Tantalum electrodeposition on Nitinol plates in the [BMP]Tf 2 N ionic liquid at room temperature. ► Generation of intrinsically nanostructured porous tantalum layers in “soft” cathodic current conditions. ► Important impact of substrate nature, working solution composition and electrodeposition duration. ► Primary assessment of surface corrosion resistance and bioactivity. -- Abstract: Thanks to excellent mechanical and biochemical properties, the nickel–titanium shape memory alloy (Nitinol) constitutes an increasingly praised platform material in dental, cardiovascular and orthopedic biomedical devices. In order to strengthen their protective abilities toward corrosion, to reinforce their biocompatibility and to confer them specific osseointegrative capacities, Nitinol plates are covered with a thin tantalum layer by electrodeposition in the 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ionic liquid. XPS and SEM/EDX analyses highlight the chemical and morphological characteristics of the deposits: notably, these present an intrinsic dimpled nanometric structuration which is particularly remarkable considering the “soft” experimental conditions and very interesting for fundamental and applied bioactive perspectives. The present study investigates the specific and synergic effects of the Ni occurrence on the surface of the Nitinol substrates, the presence of fluorine species in the working bath, and the electrodeposition duration on the resulting formation process, morphology and chemical composition of the tantalum coating. Finally, samples are submitted to electrochemical characterizations and in vitro hydroxyapatite growth tests for a primary assessment of their corrosion resistance and osseoinductive features

  7. Stability constants for silicate adsorbed to ferrihydrite

    DEFF Research Database (Denmark)

    Hansen, Hans Christian Bruun; Wetche, T.P.; Raulund-Rasmussen, Karsten

    1994-01-01

    Intrinsic surface acidity constants (K(a1)intr, K(a2)intr) and surface complexation constant for adsorption of orthosilicate onto synthetic ferrihydrite (K(Si) for the complex = FeOSi(OH)3) have been determined from acid/base titrations in 0.001-0.1 m NaClO4 electrolytes and silicate adsorption...... experiments in 0.01 m NaNO3 electrolyte (pH 3-6). The surface equilibrium constants were calculated according to the two-layer model by Dzombak & Morel (1990). Near equilibrium between protons/hydroxyls in solution and the ferrihydrite surface was obtained within minutes while equilibration with silicate...

  8. The stable Cr isotopic compositions of chondrites and silicate planetary reservoirs

    Science.gov (United States)

    Schoenberg, Ronny; Merdian, Alexandra; Holmden, Chris; Kleinhanns, Ilka C.; Haßler, Kathrin; Wille, Martin; Reitter, Elmar

    2016-06-01

    The depletion of chromium in Earth's mantle (∼2700 ppm) in comparison to chondrites (∼4400 ppm) indicates significant incorporation of chromium into the core during our planet's metal-silicate differentiation, assuming that there was no significant escape of the moderately volatile element chromium during the accretionary phase of Earth. Stable Cr isotope compositions - expressed as the ‰-difference in 53Cr/52Cr from the terrestrial reference material SRM979 (δ53/52CrSRM979 values) - of planetary silicate reservoirs might thus yield information about the conditions of planetary metal segregation processes when compared to chondrites. The stable Cr isotopic compositions of 7 carbonaceous chondrites, 11 ordinary chondrites, 5 HED achondrites and 2 martian meteorites determined by a double spike MC-ICP-MS method are within uncertainties indistinguishable from each other and from the previously determined δ53/52CrSRM979 value of -0.124 ± 0.101‰ for the igneous silicate Earth. Extensive quality tests support the accuracy of the stable Cr isotope determinations of various meteorites and terrestrial silicates reported here. The uniformity in stable Cr isotope compositions of samples from planetary silicate mantles and undifferentiated meteorites indicates that metal-silicate differentiation of Earth, Mars and the HED parent body did not cause measurable stable Cr isotope fractionation between these two reservoirs. Our results also imply that the accretionary disc, at least in the inner solar system, was homogeneous in its stable Cr isotopic composition and that potential volatility loss of chromium during accretion of the terrestrial planets was not accompanied by measurable stable isotopic fractionation. Small but reproducible variations in δ53/52CrSRM979 values of terrestrial magmatic rocks point to natural stable Cr isotope variations within Earth's silicate reservoirs. Further and more detailed studies are required to investigate whether silicate

  9. Non-conservative controls on distribution of dissolved silicate in Cochin Backwaters

    Digital Repository Service at National Institute of Oceanography (India)

    Balachandran, K.K.; Sankaranarayanan, V.N.; Joseph, T.; Nair, M.

    Cochin backwater system was studied with regard to dissolved silicate (DSi) to understand its seasonal distribution and behaviour during estuarine mixing. Silicate had a linear relationship with salinity during the high river discharge period...

  10. E-Beam-Cured Layered-Silicate and Spherical Silica Epoxy Nanocomposites (Preprint)

    National Research Council Canada - National Science Library

    Chen, Chenggang; Anderson, David P

    2007-01-01

    .... The nanofillers can be two dimensional (layered-silicate) and zero dimensional (spherical silica). Both the spherical silica epoxy nanocomposite and the layered-silicate epoxy nanocomposite can be cured to a high degree of curing...

  11. SOFT X-RAY IRRADIATION OF SILICATES: IMPLICATIONS FOR DUST EVOLUTION IN PROTOPLANETARY DISKS

    Energy Technology Data Exchange (ETDEWEB)

    Ciaravella, A.; Cecchi-Pestellini, C.; Jiménez-Escobar, A. [INAF—Osservatorio Astronomico di Palermo, P.za Parlamento 1, I-90134 Palermo (Italy); Chen, Y.-J.; Huang, C.-H. [Department of Physics, National Central University, Jhongli City, Taoyuan County 32054, Taiwan (China); Muñoz Caro, G. M. [Centro de Astrobiología (INTA-CSIC), Carretera de Ajalvir, km 4, Torrejón de Ardoz, E-28850 Madrid (Spain); Venezia, A. M., E-mail: aciaravella@astropa.unipa.it [ISMN—CNR, Via Ugo La Malfa 153, I-90146 Palermo (Italy)

    2016-09-01

    The processing of energetic photons on bare silicate grains was simulated experimentally on silicate films submitted to soft X-rays of energies up to 1.25 keV. The silicate material was prepared by means of a microwave assisted sol–gel technique. Its chemical composition reflects the Mg{sub 2}SiO{sub 4} stoichiometry with residual impurities due to the synthesis method. The experiments were performed using the spherical grating monochromator beamline at the National Synchrotron Radiation Research Center in Taiwan. We found that soft X-ray irradiation induces structural changes that can be interpreted as an amorphization of the processed silicate material. The present results may have relevant implications in the evolution of silicate materials in X-ray-irradiated protoplanetary disks.

  12. Effect of antioxidants and silicates on peroxides in povidone.

    Science.gov (United States)

    Narang, Ajit S; Rao, Venkatramana M; Desai, Divyakant S

    2012-01-01

    Reactive peroxides in povidone often lead to degradation of oxidation-labile drugs. To reduce peroxide concentration in povidone, the roles of storage conditions, antioxidants, and silicates were investigated. Povidone alone and its physical mixtures with ascorbic acid, propyl gallate, sodium sulfite, butylated hydroxyanisole (BHA), or butylated hydroxytoluene (BHT) were stored at 25 °C and 40 °C, at 11%, 32%, and 50% relative humidity. In addition, povidone solution in methanol was equilibrated with silicates (silica gel and molecular sieves), followed by solvent evaporation to recover povidone powder. Peroxide concentrations in povidone were measured. The concentration of peroxides in povidone increased under very-low-humidity storage conditions. Among the antioxidants, ascorbic acid, propyl gallate, and sodium sulfite reduced the peroxide concentration in povidone, whereas BHA and BHT did not. Water solubility appeared to determine the effectiveness of antioxidants. Also, some silicates significantly reduced peroxide concentration in povidone without affecting its functionality as a tablet binder. Porosity of silicates was critical to their ability to reduce the peroxide concentration in povidone. A combination of these approaches can reduce the initial peroxide concentration in povidone and minimize peroxide growth under routine storage conditions. Copyright © 2011 Wiley-Liss, Inc.

  13. Sorption of Europium in zirconium silicate

    International Nuclear Information System (INIS)

    Garcia R, G.

    2004-01-01

    Some minerals have the property of sipping radioactive metals in solution, that it takes advantage to manufacture contention barriers that are placed in the repositories of nuclear wastes. The more recent investigations are focused in the development of new technologies guided to the sorption of alpha emissors on minerals which avoid their dispersion in the environment. In an effort to contribute to the understanding of this type of properties, some studies of sorption of Europium III are presented like homologous of the americium, on the surface of zirconium silicate (ZrSiO 4 ). In this work the results of sorption experiences are presented as well as the interpretation of the phenomena of the formation of species in the surface of the zirconium silicate. (Author)

  14. Effects of ionization on silicate glasses

    International Nuclear Information System (INIS)

    Primak, W.

    1982-02-01

    This evaluation of radiation effects in silicate glasses caused by ionization is based on our own investigations, on material collected in our files (reports, articles, and notes), and on a computer literature search through recent issues of Physics Abstracts and Chemical Abstracts (and the apparently pertinent references which appeared). Some of our recent results, available heretofore only in internal correspondence, are presented in some detail. It is concluded that research into the behavior of silicate glasses generally will be required before the specific effects in the radioactive waste storage glasses can be properly understood and evaluated. Two particular neglected areas of investigation are targeted for immediate concern: a kinetic analysis of annealing data and the acquisition of data on effects of irradiation at controlled elevated temperatures

  15. Titanium modified with layer-by-layer sol-gel tantalum oxide and an organodiphosphonic acid: a coating for hydroxyapatite growth.

    Science.gov (United States)

    Arnould, C; Volcke, C; Lamarque, C; Thiry, P A; Delhalle, J; Mekhalif, Z

    2009-08-15

    Titanium and its alloys are widely used in surgical implants due to their appropriate properties like corrosion resistance, biocompatibility, and load bearing. Unfortunately when metals are used for orthopedic and dental implants there is the possibility of loosening over a long period of time. Surface modification is a good way to counter this problem. A thin tantalum oxide layer obtained by layer-by-layer (LBL) sol-gel deposition on top of a titanium surface is expected to improve biocorrosion resistance in the body fluid, biocompatibility, and radio-opacity. This elaboration step is followed by a modification of the tantalum oxide surface with an organodiphosphonic acid self-assembled monolayer, capable of chemically binding to the oxide surface, and also improving hydroxyapatite growth. The different steps of this proposed process are characterized by surfaces techniques like contact angle, X-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM).

  16. Obtainment and characterization of pure and doped gadolinium oxy ortho silicates with terbium III, precursor of luminescent silicates with sulphur

    International Nuclear Information System (INIS)

    Simoneti, J.A.

    1992-01-01

    Silicate and sulfide lattices are uniquely efficient luminescent materials to excitation by cathodic rays and furthermore the cathodoluminescence study of these compounds have been few investigated. In this work it has been prepared, characterized and investigated some spectroscopic properties of pure and Tb a+ - activated Gd 2 Si O 3 system and it has been tried to substitute oxygen by sulphur in order to obtain this or sulfide-silicate lattices. Products were characterized by vibrational infrared spectroscopy, powder X-ray diffraction patterns and electronic emission in UV-VIS region. (author)

  17. Wind-Eroded Silicate as a Source of Hydrogen Peroxide on Mars

    Science.gov (United States)

    Bak, E. N.; Merrison, J. P.; Jensen, S. K.; Nørnberg, P.; Finster, K.

    2014-07-01

    Laboratory simulations show that wind-eroded silicate can be a source of hydrogen peroxide. The ubiquitous, fine-grained silicate dust might thus explain the oxidizing properties of the martian soil and affect the preservation of organic compounds.

  18. Tantalum coating on porous Ti6Al4V scaffold using chemical vapor deposition and preliminary biological evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiang, E-mail: xiangliwj@sjtu.edu.cn [School of Mechanical Engineering, Shanghai Jiao Tong University, State Key Laboratory of Mechanical System and Vibration, Shanghai, 200240 (China); Wang, Lin [Institute of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi' an, 710032 (China); Yu, Xiaoming [The Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016 (China); Feng, Yafei [Institute of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi' an, 710032 (China); Wang, Chengtao [School of Mechanical Engineering, Shanghai Jiao Tong University, State Key Laboratory of Mechanical System and Vibration, Shanghai, 200240 (China); Yang, Ke [The Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016 (China); Su, Daniel [School of Mechanical Engineering, Shanghai Jiao Tong University, State Key Laboratory of Mechanical System and Vibration, Shanghai, 200240 (China)

    2013-07-01

    Porous tantalum (Ta), produced via chemical vapor deposition (CVD) of commercially pure Ta onto a vitreous carbon, is currently available for use in orthopedic applications. However, the relatively high manufacturing cost and the incapability to produce customized implant using medical image data have limited its application to gain widespread acceptance. In this study, Ta film was deposited on porous Ti6Al4V scaffolds using CVD technique. Digital microscopy and scanning electron microscopy indicated that the Ta coating evenly covered the entire scaffold structure. X-ray diffraction analysis showed that the coating consisted of α and β phases of Ta. Goat mesenchymal stem cells were seeded and cultured on the Ti6Al4V scaffolds with and without coating. The tetrazolium-based colorimetric assay exhibited better cell adhesion and proliferation on Ta-coated scaffolds compared with uncoated scaffolds. The porous scaffolds were subsequently implanted in goats for 12 weeks. Histological analysis revealed similar bone formation around the periphery of the coated and uncoated implants, but bone ingrowth is better within the Ta-coated scaffolds. To demonstrate the ability of producing custom implant for clinical applications via this technology, we designed and fabricated a porous Ti6Al4V scaffold with segmental mandibular shape derived from patient computerized tomography data. - Highlights: • Ta film was coated on porous Ti6Al4V scaffold using chemical vapor deposition. • Tantalum coating allowed for higher levels of cell adhesion and proliferation. • Better new bone formation occurred inside the tantalum-coated scaffolds. • Clinical image data was integrated with EBM to fabricate customized scaffold.

  19. Tantalum coating on porous Ti6Al4V scaffold using chemical vapor deposition and preliminary biological evaluation

    International Nuclear Information System (INIS)

    Li, Xiang; Wang, Lin; Yu, Xiaoming; Feng, Yafei; Wang, Chengtao; Yang, Ke; Su, Daniel

    2013-01-01

    Porous tantalum (Ta), produced via chemical vapor deposition (CVD) of commercially pure Ta onto a vitreous carbon, is currently available for use in orthopedic applications. However, the relatively high manufacturing cost and the incapability to produce customized implant using medical image data have limited its application to gain widespread acceptance. In this study, Ta film was deposited on porous Ti6Al4V scaffolds using CVD technique. Digital microscopy and scanning electron microscopy indicated that the Ta coating evenly covered the entire scaffold structure. X-ray diffraction analysis showed that the coating consisted of α and β phases of Ta. Goat mesenchymal stem cells were seeded and cultured on the Ti6Al4V scaffolds with and without coating. The tetrazolium-based colorimetric assay exhibited better cell adhesion and proliferation on Ta-coated scaffolds compared with uncoated scaffolds. The porous scaffolds were subsequently implanted in goats for 12 weeks. Histological analysis revealed similar bone formation around the periphery of the coated and uncoated implants, but bone ingrowth is better within the Ta-coated scaffolds. To demonstrate the ability of producing custom implant for clinical applications via this technology, we designed and fabricated a porous Ti6Al4V scaffold with segmental mandibular shape derived from patient computerized tomography data. - Highlights: • Ta film was coated on porous Ti6Al4V scaffold using chemical vapor deposition. • Tantalum coating allowed for higher levels of cell adhesion and proliferation. • Better new bone formation occurred inside the tantalum-coated scaffolds. • Clinical image data was integrated with EBM to fabricate customized scaffold

  20. Influence of strain-rate on the flow stress and ductility of copper and tantalum

    International Nuclear Information System (INIS)

    Regazzoni, G.; Montheillet, F.; Dormeval, R.; Stelly, M.

    1981-09-01

    Tensile experiments were carried out at strain-rates in a range from epsilon = 6.10 -5 to 3.10 3 s -1 at 293 K and 673 K or 773 K. Two types of copper (FCC) and pure tantalum (BCC) were tested. The variations of ductility have been investigated in relation with the σ - epsilon equations of the materials and the examinations of fracture surfaces. They can be explained in terms of stability and intrinsic ductility

  1. Application of Sodium Silicate Enhances Cucumber Resistance to Fusarium Wilt and Alters Soil Microbial Communities

    Directory of Open Access Journals (Sweden)

    Xingang Zhou

    2018-05-01

    Full Text Available Exogenous silicates can enhance plant resistance to pathogens and change soil microbial communities. However, the relationship between changes in soil microbial communities and enhanced plant resistance remains unclear. Here, effects of exogenous sodium silicate on cucumber (Cucumis sativus L. seedling resistance to Fusarium wilt caused by the soil-borne pathogen Fusarium oxysporum f.sp. cucumerinum Owen (FOC were investigated by drenching soil with 2 mM sodium silicate. Soil bacterial and fungal community abundances and compositions were estimated by real-time PCR and high-throughput amplicon sequencing; then, feedback effects of changes in soil biota on cucumber seedling resistance to FOC were assessed. Moreover, effects of sodium silicate on the growth of FOC and Streptomyces DHV3-2, an antagonistic bacterium to FOC, were investigated both in vitro and in the soil environment. Results showed that exogenous sodium silicate enhanced cucumber seedling growth and resistance to FOC. In bare soil, sodium silicate increased bacterial and fungal community abundances and diversities. In cucumber-cultivated soil, sodium silicate increased bacterial community abundances, but decreased fungal community abundances and diversities. Sodium silicate also changed soil bacterial and fungal communality compositions, and especially, decreased the relative abundances of microbial taxa containing plant pathogens but increased these with plant-beneficial potentials. Moreover, sodium silicate increased the abundance of Streptomyces DHV3-2 in soil. Soil biota from cucumber-cultivated soil treated with sodium silicate decreased cucumber seedling Fusarium wilt disease index, and enhanced cucumber seedling growth and defense-related enzyme activities in roots. Sodium silicate at pH 9.85 inhibited FOC abundance in vitro, but did not affect FOC abundance in soil. Overall, our results suggested that, in cucumber-cultivated soil, sodium silicate increased cucumber seedling

  2. Experimental evidence for Mo isotope fractionation between metal and silicate liquids

    Science.gov (United States)

    Hin, Remco C.; Burkhardt, Christoph; Schmidt, Max W.; Bourdon, Bernard; Kleine, Thorsten

    2013-10-01

    Stable isotope fractionation of siderophile elements may inform on the conditions and chemical consequences of core-mantle differentiation in planetary objects. The extent to which Mo isotopes fractionate during such metal-silicate segregation, however, is so far unexplored. We have therefore investigated equilibrium fractionation of Mo isotopes between liquid metal and liquid silicate to evaluate the potential of Mo isotopes as a new tool to study core formation. We have performed experiments at 1400 and 1600 °C in a centrifuging piston cylinder. Tin was used to lower the melting temperature of the Fe-based metal alloys to double spike technique. In experiments performed at 1400 °C, the 98Mo/95Mo ratio of silicate is 0.19±0.03‰ (95% confidence interval) heavier than that of metal. This fractionation is not significantly affected by the presence or absence of carbon. Molybdenum isotope fractionation is furthermore independent of oxygen fugacity in the range IW -1.79 to IW +0.47, which are plausible values for core formation. Experiments at 1600 °C show that, at equilibrium, the 98Mo/95Mo ratio of silicate is 0.12±0.02‰ heavier than that of metal and that the presence or absence of Sn does not affect this fractionation. Equilibrium Mo isotope fractionation between liquid metal and liquid silicate as a function of temperature can therefore be described as ΔMoMetal-Silicate98/95=-4.70(±0.59)×105/T2. Our experiments show that Mo isotope fractionation may be resolvable up to metal-silicate equilibration temperatures of about 2500 °C, rendering Mo isotopes a novel tool to investigate the conditions of core formation in objects ranging from planetesimals to Earth sized bodies.

  3. Polymer/Silicate Nanocomposites Developed for Improved Strength and Thermal Stability

    Science.gov (United States)

    Campbell, Sandi G.

    2003-01-01

    Over the past decade, polymer-silicate nanocomposites have been attracting considerable attention as a method of enhancing polymer properties. The nanometer dimensions of the dispersed silicate reinforcement can greatly improve the mechanical, thermal, and gas barrier properties of a polymer matrix. In a study at the NASA Glenn Research Center, the dispersion of small amounts (less than 5 wt%) of an organically modified layered silicate (OLS) into the polymer matrix of a carbon-fiber-reinforced composite has improved the thermal stability of the composite. The enhanced barrier properties of the polymer-clay hybrid are believed to slow the diffusion of oxygen into the bulk polymer, thereby slowing oxidative degradation of the polymer. Electron-backscattering images show cracking of a nanocomposite matrix composite in comparison to a neat resin matrix composite. The images show that dispersion of an OLS into the matrix resin reduces polymer oxidation during aging and reduces the amount of cracking in the matrix significantly. Improvements in composite flexural strength, flexural modulus, and interlaminar shear strength were also obtained with the addition of OLS. An increase of up to 15 percent in these mechanical properties was observed in composites tested at room temperature and 288 C. The best properties were seen with low silicate levels, 1 to 3 wt%, because of the better dispersion of the silicate in the polymer matrix.

  4. Relationships between mineralization and silicic volcanism in the central Andes

    Energy Technology Data Exchange (ETDEWEB)

    Francis, P.W.; Halls, C.; Baker, M.C.W.

    1983-10-01

    Studies of late Tertiary silicic volcanic centers in the Western and Eastern Cordilleras of the Central Andes show that three volcanic environments are appropriate sites for mineralization: (1) ring-fracture extrusions post-dating large calderas; (2) similar extrusions within ignimbrite shields; and (3) isolated, small silicic volcanoes. Subvolcanic tin mineralization in the Eastern Cordillera is located in silicic stocks and associated breccias of Miocene age. The Cerro Rico stock, Potosi, Bolivia, contains tin and silver mineralization and has an intrusion age apparently millions of years younger than that of the associated Kari Kari caldera. Similar age relationships between mineralization and caldera formation have been described from the San Juan province, Colorado. The vein deposits of Chocaya, southern Bolivia, were emplaced in the lower part of an ignimbrite shield, a type of volcanic edifice as yet unrecognized in comparable areas of silicic volcanism. The El Salvador porphyry copper deposit, Chile, is related to silicic stocks which may have been intruded along a caldera ring fracture. Existing models for the genesis of porphyry copper deposits suggest that they formed in granodioritic stocks located in the infrastructure of andesitic stratovolcanoes. The dome of La Soufriere, Guadeloupe is proposed as a modern analog for the surface expression of subvolcanic mineralization processes, the phreatic eruptions there suggesting the formation of hydrothermal breccia bodies in depth.

  5. Synthesis, characterization and modelling of zinc and silicate co-substituted hydroxyapatite.

    Science.gov (United States)

    Friederichs, Robert J; Chappell, Helen F; Shepherd, David V; Best, Serena M

    2015-07-06

    Experimental chemistry and atomic modelling studies were performed here to investigate a novel ionic co-substitution in hydroxyapatite (HA). Zinc, silicate co-substituted HA (ZnSiHA) remained phase pure after heating to 1100 °C with Zn and Si amounts of 0.6 wt% and 1.2 wt%, respectively. Unique lattice expansions in ZnSiHA, silicate Fourier transform infrared peaks and changes to the hydroxyl IR stretching region suggested Zn and silicate co-substitution in ZnSiHA. Zn and silicate insertion into HA was modelled using density functional theory (DFT). Different scenarios were considered where Zn substituted for different calcium sites or at a 2b site along the c-axis, which was suspected in singly substituted ZnHA. The most energetically favourable site in ZnSiHA was Zn positioned at a previously unreported interstitial site just off the c-axis near a silicate tetrahedron sitting on a phosphate site. A combination of experimental chemistry and DFT modelling provided insight into these complex co-substituted calcium phosphates that could find biomedical application as a synthetic bone mineral substitute. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  6. Synthesis, characterization and modelling of zinc and silicate co-substituted hydroxyapatite

    Science.gov (United States)

    Friederichs, Robert J.; Chappell, Helen F.; Shepherd, David V.; Best, Serena M.

    2015-01-01

    Experimental chemistry and atomic modelling studies were performed here to investigate a novel ionic co-substitution in hydroxyapatite (HA). Zinc, silicate co-substituted HA (ZnSiHA) remained phase pure after heating to 1100°C with Zn and Si amounts of 0.6 wt% and 1.2 wt%, respectively. Unique lattice expansions in ZnSiHA, silicate Fourier transform infrared peaks and changes to the hydroxyl IR stretching region suggested Zn and silicate co-substitution in ZnSiHA. Zn and silicate insertion into HA was modelled using density functional theory (DFT). Different scenarios were considered where Zn substituted for different calcium sites or at a 2b site along the c-axis, which was suspected in singly substituted ZnHA. The most energetically favourable site in ZnSiHA was Zn positioned at a previously unreported interstitial site just off the c-axis near a silicate tetrahedron sitting on a phosphate site. A combination of experimental chemistry and DFT modelling provided insight into these complex co-substituted calcium phosphates that could find biomedical application as a synthetic bone mineral substitute. PMID:26040597

  7. AC electrical breakdown phenomena of epoxy/layered silicate nanocomposite in needle-plate electrodes.

    Science.gov (United States)

    Park, Jae-Jun; Lee, Jae-Young

    2013-05-01

    Epoxy/layered silicate nanocomposite for the insulation of heavy electric equipments were prepared by dispersing 1 wt% of a layered silicate into an epoxy matrix with a homogenizing mixer and then AC electrical treeing and breakdown tests were carried out. Wide-angle X-ray diffraction (WAXD) analysis and transmission electron microscopy (TEM) observation showed that nano-sized monolayers were exfoliated from a multilayered silicate in the epoxy matrix. When the nano-sized silicate layers were incorporated into the epoxy matrix, the breakdown rate in needle-plate electrode geometry was 10.6 times lowered than that of the neat epoxy resin under the applied electrical field of 520.9 kV/mm at 30 degrees C, and electrical tree propagated with much more branches in the epoxy/layered silicate nanocomposite. These results showed that well-dispersed nano-sized silicate layers retarded the electrical tree growth rate. The effects of applied voltage and ambient temperature on the tree initiation, growth, and breakdown rate were also studied, and it was found that the breakdown rate was largely increased, as the applied voltage and ambient temperature increased.

  8. Raman spectra of ruthenium and tantalum trimers in argon matrices

    Science.gov (United States)

    Fang, Li; Shen, Xiaole; Chen, Xiaoyu; Lombardi, John R.

    2000-12-01

    The resonance Raman spectra of ruthenium trimers (Ru 3) in argon matrices have been obtained. Three resonance Raman transitions were observed between 570 and 590 nm. Two of them (303.4 and 603.7 cm -1) are assigned to the totally symmetric vibrational progression, giving k e=1.86 mdyne/ Å. The line at 581.5 cm-1 is assigned as the origin of a low-lying electronic state. We also report on the observation of a resonance Raman spectrum of tantalum trimers (Ta 3). Observed lines include 251.2 and 501.9 cm-1 which we assign to the fundamental and the first overtone of the symmetric stretch in Ta 3. This gives k e=2.25 mdyne/ Å.

  9. New Silicate Phosphors for a White LED(Electronic Displays)

    OpenAIRE

    Toda, Kenji; Kawakami, Yoshitaka; Kousaka, Shin-ichiro; Ito, Yutaka; Komeno, Akira; Uematsu, Kazuyoshi; Sato, Mineo

    2006-01-01

    We focus on the development of new silicate phosphors for a white LED. In the europium doped silicate system, four LED phosphor candidates-Li_2SrSiO_4:Eu^, Ba_9Sc_2Si_6O_:Eu^, Ca_3Si_2O_7:Eu^ and Ba_2MgSi_2O_7:Eu^ were found. Luminescent properties under near UV and visible excitation were investigated for the new Eu^ doped LED silicate phosphors. These new phosphors have a relatively strong absorption band in a long wavelength region.

  10. Development of Li+ alumino-silicate ion source

    International Nuclear Information System (INIS)

    Roy, P.K.; Seidl, P.A.; Waldron, W.; Greenway, W.; Lidia, S.; Anders, A.; Kwan, J.

    2009-01-01

    To uniformly heat targets to electron-volt temperatures for the study of warm dense matter, one strategy is to deposit most of the ion energy at the peak of energy loss (dE/dx) with a low (E < 5 MeV) kinetic energy beam and a thin target. Lower mass ions have a peak dE/dx at a lower kinetic energy. To this end, a small lithium (Li+) alumino-silicate source has been fabricated, and its emission limit has been measured. These surface ionization sources are heated to 1000-1150 C where they preferentially emit singly ionized alkali ions. Alumino-silicates sources of K+ and Cs+ have been used extensively in beam experiments, but there are additional challenges for the preparation of high-quality Li+ sources: There are tighter tolerances in preparing and sintering the alumino-silicate to the substrate to produce an emitter that gives uniform ion emission, sufficient current density and low beam emittance. We report on recent measurements ofhigh ( up to 35 mA/cm2) current density from a Li+ source. Ion species identification of possible contaminants is being verified with a Wien (E x B) filter, and via time-of-flight.

  11. Confined Water in Layered Silicates: The Origin of Anomalous Thermal Expansion Behavior in Calcium-Silicate-Hydrates

    International Nuclear Information System (INIS)

    Krishnan, N. M. Anoop; Wang, Bu; Falzone, Gabriel; Le Pape, Yann; Neithalath, Narayanan

    2016-01-01

    Water, under conditions of nanoscale confinement, exhibits anomalous dynamics, and enhanced thermal deformations, which may be further enhanced when such water is in contact with hydrophilic surfaces. Such heightened thermal deformations of water could control the volume stability of hydrated materials containing nanoconfined structural water. Understanding and predicting the thermal deformation coefficient (TDC, often referred to as the CTE, coefficient of thermal expansion), which represents volume changes induced in materials under conditions of changing temperature, is of critical importance for hydrated solids including: hydrogels, biological tissues, and calcium silicate hydrates, as changes in their volume can result in stress development, and cracking. By pioneering atomistic simulations, we examine the physical origin of thermal expansion in calcium-silicate-hydrates (C–S–H), the binding agent in concrete that is formed by the reaction of cement with water. We report that the TDC of C–S–H shows a sudden increase when the CaO/SiO_2 (molar ratio; abbreviated as Ca/Si) exceeds 1.5. This anomalous behavior arises from a notable increase in the confinement of water contained in the C–S–H’s nanostructure. We identify that confinement is dictated by the topology of the C–S–H’s atomic network. Altogether, the results suggest that thermal deformations of hydrated silicates can be altered by inducing compositional changes, which in turn alter the atomic topology and the resultant volume stability of the solids.

  12. Confined Water in Layered Silicates: The Origin of Anomalous Thermal Expansion Behavior in Calcium-Silicate-Hydrates.

    Science.gov (United States)

    Krishnan, N M Anoop; Wang, Bu; Falzone, Gabriel; Le Pape, Yann; Neithalath, Narayanan; Pilon, Laurent; Bauchy, Mathieu; Sant, Gaurav

    2016-12-28

    Water, under conditions of nanoscale confinement, exhibits anomalous dynamics, and enhanced thermal deformations, which may be further enhanced when such water is in contact with hydrophilic surfaces. Such heightened thermal deformations of water could control the volume stability of hydrated materials containing nanoconfined structural water. Understanding and predicting the thermal deformation coefficient (TDC, often referred to as the CTE, coefficient of thermal expansion), which represents volume changes induced in materials under conditions of changing temperature, is of critical importance for hydrated solids including: hydrogels, biological tissues, and calcium silicate hydrates, as changes in their volume can result in stress development, and cracking. By pioneering atomistic simulations, we examine the physical origin of thermal expansion in calcium-silicate-hydrates (C-S-H), the binding agent in concrete that is formed by the reaction of cement with water. We report that the TDC of C-S-H shows a sudden increase when the CaO/SiO 2 (molar ratio; abbreviated as Ca/Si) exceeds 1.5. This anomalous behavior arises from a notable increase in the confinement of water contained in the C-S-H's nanostructure. We identify that confinement is dictated by the topology of the C-S-H's atomic network. Taken together, the results suggest that thermal deformations of hydrated silicates can be altered by inducing compositional changes, which in turn alter the atomic topology and the resultant volume stability of the solids.

  13. Tip-induced nanoreactor for silicate

    Science.gov (United States)

    Gao, Ming; Ma, Liran; Liang, Yong; Gao, Yuan; Luo, Jianbin

    2015-09-01

    Nanoscale scientific issues have attracted an increasing amount of research interest due to their specific size-effect and novel structure-property. From macro to nano, materials present some unique chemical reactivity that bulk materials do not own. Here we introduce a facile method to generate silicate with nanoscale control based on the establishment of a confined space between a meso/nanoscale tungsten tip and a smooth silica/silicon substrate. During the process, local water-like droplets deposition can be obviously observed in the confinement between the Si/SiO2 surfaces and the KOH-modified tungsten tip. By the combination of in-situ optical microscopy and Raman spectroscopy, we were able to take a deep insight of both the product composition and the underlying mechanism of such phenomena. It was indicated that such nanoreactor for silicate could be quite efficient as a result of the local capillarity and electric field effect, with implications at both nano and meso scales.

  14. Radiation effects in silicate glasses

    International Nuclear Information System (INIS)

    Bibler, N.E.; Howitt, D.G.

    1988-01-01

    The study of radiation effects in complex silicate glasses has received renewed attention because of their use in special applications such as high level nuclear waste immobilization and fiber optics. Radiation changes the properties of these glasses by altering their electronic and atomic configurations. These alterations or defects may cause dilatations or microscopic phase changes along with absorption centers that limit the optical application of the glasses. Atomic displacements induced in the already disordered structure of the glasses may affect their use where heavy irradiating particles such as alpha particles, alpha recoils, fission fragments, or accelerated ions are present. Large changes (up to 1%) in density may result. In some cases the radiation damage may be severe enough to affect the durability of the glass in aqueous solutions. In the paper, the authors review the literature concerning radiation effects on density, durability, stored energy, microstructure and optical properties of silicate glasses. Both simple glasses and complex glasses used for immobilization of nuclear waste are considered

  15. In situ STM and EQCM studies of tantalum electrodeposition from TaF{sub 5} in the air- and water-stable ionic liquid 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)amide

    Energy Technology Data Exchange (ETDEWEB)

    Borisenko, N. [Chair of Interface Processes, Institute of Particle Technology, Clausthal University of Technology, 38678 Clausthal-Zellerfeld (Germany); Ispas, A.; Zschippang, E. [Lehrstuhl fuer Physikalische Chemie und Elektrochemie, Technische Universitaet Dresden, 01062 Dresden (Germany); Liu, Q.; Zein El Abedin, S. [Chair of Interface Processes, Institute of Particle Technology, Clausthal University of Technology, 38678 Clausthal-Zellerfeld (Germany); Bund, A. [Lehrstuhl fuer Physikalische Chemie und Elektrochemie, Technische Universitaet Dresden, 01062 Dresden (Germany)], E-mail: andreas.bund@chemie.tu-dresden.de; Endres, F. [Chair of Interface Processes, Institute of Particle Technology, Clausthal University of Technology, 38678 Clausthal-Zellerfeld (Germany)], E-mail: frank.endres@tu-clausthal.de

    2009-02-01

    The electroreduction of 0.5 M TaF{sub 5} on Au(1 1 1) and on polycrystalline gold substrates was investigated at room temperature in the ionic liquid 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)amide, [Py{sub 1,4}]TFSA, by cyclic voltammetry, in situ scanning tunneling microscopy (STM) and electrochemical quartz crystal microbalance (EQCM). The electrochemical reduction of TaF{sub 5} in the employed ionic liquid occurs in several steps. The first redox process is attributed to the reduction of TaF{sub 5} to TaF{sub 3}, which likely occurs in the solution, as EQCM indicates no mass change. The electrodeposition of tantalum occurs only in a very narrow potential window and is preceded by the formation of various non-stoichiometric tantalum subhalides. Attempts to deposit micrometer thick tantalum layers at room temperature fail, presumably because of kinetic reasons.

  16. Reduction of a dimeric tantalum(III) compound in acetonitrile solution by pulse radiolysis

    International Nuclear Information System (INIS)

    Koulkes-Pujo, A.-M.; Le Motais, B.; Hubert-Pfalzgraf, L.G.

    1986-01-01

    The reduction of the compound [Ta 2 Cl 6 (4Me-py) 4 ] (4Me-py 4-methylpyridine), having a metal-metal double bond, has been achieved by pulse radiolysis in dry oxygen-free acetonitrile. The reduction occurs by CH 3 CN - which leads to a transient species assigned to a tantalum dimer in a 2.5 oxidation state. The spectrum of this species has been established. It decays by a first-order process to give a new transient species which in turn decays more slowly by a second-order reaction. (author)

  17. Pre-equilibrium decay process in alpha particle induced reactions on thulium and tantalum

    International Nuclear Information System (INIS)

    Mohan, Rao, A.V.; Chintalapudi, S.N.

    1994-01-01

    Alpha particle induced reactions on the target elements Thulium and Tantalum were investigated upto 60 MeV using stacked foil activation technique and Ge(Li) gamma ray spectroscopy method. Excitation functions for six reactions of 169 Tm(α,xn); x=1-4 and 181 Ta(α,xn); x=2,4 were studied. The experimental results were compared with the updated version of Hybrid model (ALICE/90) using initial exciton configuration n 0 =4(4pOh). A general agreement was found for all the reactions with this option. (author)

  18. Pre-equilibrium decay process in alpha particle induced reactions on thulium and tantalum

    Energy Technology Data Exchange (ETDEWEB)

    Mohan, Rao, A.V.; Chintalapudi, S.N. (Inter Univ. Consortium for Dept. of atomic Energy Facilities, Calcutta (India))

    1994-01-01

    Alpha particle induced reactions on the target elements Thulium and Tantalum were investigated upto 60 MeV using stacked foil activation technique and Ge(Li) gamma ray spectroscopy method. Excitation functions for six reactions of [sup 169]Tm([alpha],xn); x=1-4 and [sup 181]Ta([alpha],xn); x=2,4 were studied. The experimental results were compared with the updated version of Hybrid model (ALICE/90) using initial exciton configuration n[sub 0]=4(4pOh). A general agreement was found for all the reactions with this option. (author).

  19. Linkage of molecular units in the chemistry of niobium and tantalum cluster halides

    International Nuclear Information System (INIS)

    Perrin, C.; Sergent, M.

    1991-01-01

    In low valency niobium and tantalum halides, interunit linkages are observed between the (Me 6 X 12 )X 6 units. They are insulators and interesting magnetic properties are observed, due to the intrinsic potential magnetism of the Me 6 cluster and depending on the inserted cations, for instance rare earths in MM'Nb 6 Cl 18 (M = monovalent cation, M' = rare earth). Of special interest are the niobium iodides which exhibit (Me 6 X 8 )X 6 units, an exception in the niobium chemistry; interesting properties have been reported for some of these iodides

  20. Natural penetrating radiation inside silicate dwellings in Chengdu and recommendation on permissible limits for radioactivity of building material made of silicate cinders

    International Nuclear Information System (INIS)

    Li Guangzao

    1984-01-01

    This paper reports the results of external exposure rate of penetrating radiation inside silicate dwellings in Chengdu. The average exposure rate was 24.3+-3.5 R/h. It was evidently higher than of red brick dwellings. The average effective equivalent of the population in silicate dwellings was 123.4+-10.4 mrem/y and the average additional dose was 29.5+-12.5 mrem/y. The permissible limits recommended for silicate building material would be 6 pCi/g, 7 pCi/g and 102 pCi/g for 226 Ra, 232 Th and 40 K, respectively. The total activity must fulfill the formula of Csub(Ra)/6 + Csub(Th)/7 + Csub(k)/102 1. Under ordinary condition the exposure rate (10+background) R/h of penetrating radiation from the surface of dry building material might be taken as the permissible limit for dwellings and other public buildings

  1. Calcium and magnesium silicate hydrates

    International Nuclear Information System (INIS)

    Lothenbach, B.; L'Hopital, E.; Nied, D.; Achiedo, G.; Dauzeres, A.

    2015-01-01

    Deep geological disposals are planed to discard long-lived intermediate-level and high-level radioactive wastes. Clay-based geological barriers are expected to limit the ingress of groundwater and to reduce the mobility of radioelements. In the interaction zone between the cement and the clay based material alteration can occur. Magnesium silicate hydrates (M-S-H) have been observed due to the reaction of magnesium sulfate containing groundwater with cements or in the interaction zone between low-pH type cement and clays. M-S-H samples synthesized in the laboratory showed that M-S-H has a variable composition within 0.7 ≤ Mg/Si ≤ 1.5. TEM/EDS analyses show an homogeneous gel with no defined structure. IR and 29 Si NMR data reveal a higher polymerization degree of the silica network in M-S-H compared to calcium silicate hydrates (C-S-H). The presence of mainly Q 3 silicate tetrahedrons in M-S-H indicates a sheet like or a triple-chain silica structure while C-S-H is characterised by single chain-structure. The clear difference in the silica structure and the larger ionic radius of Ca 2+ (1.1 Angstrom) compared to Mg 2+ (0.8 Angstrom) make the formation of an extended solid solution between M-S-H and C-S-H gel improbable. In fact, the analyses of synthetic samples containing both magnesium and calcium in various ratios indicate the formation of separate M-S-H and C-S-H gels with no or very little uptake of magnesium in CS-H or calcium in M-S-H

  2. Rubber curing chemistry governing the orientation of layered silicate

    Directory of Open Access Journals (Sweden)

    2007-11-01

    Full Text Available The effect of curing systems on the orientation and the dispersion of the layered silicates in acrylonitrile butadiene rubber nanocomposite is reported. Significant differences in X-ray diffraction pattern between peroxide curing and sulfur curing was observed. Intense X-ray scattering values in the XRD experiments from peroxide cured vulcanizates indicate an orientation of the layers in a preferred direction as evinced by transmission electron micrographs. However, sulfur cured vulcanizates show no preferential orientation of the silicate particles. Nevertheless, a closer inspection of transmission electron microscopy (TEM images of peroxide and sulfur cured samples shows exfoliated silicate layers in the acrylonitrile butadiene rubber (NBR matrix. It was revealed in the prevailing study that the use of an excess amount of stearic acid in the formulation of the sulfur curing package leads to almost exfoliated type X-ray scattering pattern.

  3. Tantalum induced butterfly-like clusters on Si (111)-7 x 7 surface: STM/STS study at low coverage

    Czech Academy of Sciences Publication Activity Database

    Shukrynau, Pavel; Mutombo, Pingo; Švec, Martin; Hietschold, M.; Cháb, Vladimír

    2012-01-01

    Roč. 606, 3-4 (2012), s. 356-361 ISSN 0039-6028 R&D Projects: GA AV ČR IAA1010413 Institutional research plan: CEZ:AV0Z10100521 Keywords : tantalum * silicon * chemisorption * scanning tunneling microscopy * scanning tunneling spectroscopy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.838, year: 2012

  4. Silicate Phases on the Surfaces of Trojan Asteroids

    Science.gov (United States)

    Martin, Audrey; Emery, Joshua P.; Lindsay, Sean S.

    2017-10-01

    Determining the origin of asteroids provides an effective means of constraining the solar system’s dynamic past. Jupiter Trojan asteroids (hereafter Trojans) may help in determining the amount of radial mixing that occurred during giant planet migration. Previous studies aimed at characterizing surface composition show that Trojans have low albedo surfaces and are spectrally featureless in the near infrared. The thermal infrared (TIR) wavelength range has advantages for detecting silicates on low albedo asteroids such as Trojans. The 10 μm region exhibits strong features due to the Si-O fundamental molecular vibrations. Silicates that formed in the inner solar system likely underwent thermal annealing, and thus are crystalline, whereas silicates that accreted in the outer solar system experienced less thermal processing, and therefore are more likely to have remained in an amorphous phase. We hypothesize that the Trojans formed in the outer solar system (i.e., the Kuiper Belt), and therefore will have a more dominant amorphous spectral silicate component. With TIR spectra from the Spitzer Space Telescope, we identify mineralogical features from the surface of 11 Trojan asteroids. Fine-grain mixtures of crystalline pyroxene and olivine exhibit a 10 μm feature with sharp cutoffs between about 9 μm and 12 μm, which create a broad flat plateau. Amorphous phases, when present, smooth the sharp emission features, resulting in a dome-like shape. Preliminary results indicate that the surfaces of analyzed Trojans contain primarily amorphous silicates. Emissivity spectra of asteroids 1986 WD and 4709 Ennomos include small peaks in the 10 μm region, diagnostic of small amounts of crystalline olivine. One explanation is that Trojans formed in the same region as Kuiper Belt objects, and when giant planet migration ensued, they were swept into Jupiter’s stable Lagrange points where they are found today. As such, it is possible that an ancestral group of Kuiper Belt

  5. Steam based conversion coating on AA6060 alloy: Effect of sodium silicate chemistry and corrosion performance

    Science.gov (United States)

    Din, Rameez Ud; Bordo, Kirill; Tabrizian, Naja; Jellesen, Morten Stendahl; Ambat, Rajan

    2017-11-01

    Surface treatment of aluminium alloy AA6060 using an industrially applicable pilot steam jet system with and without silicate chemistry has been investigated. Treatment using steam alone and steam with silicate, resulted in an oxide layer formation with thickness ∼425 nm and ∼160 nm, respectively. Moreover, the use of sodium silicate resulted in the formation of distinct microstructure and incorporation of silicate into the oxide film. These oxide films reduced the anodic activity 4 times, while the corrosion protection by silicate containing oxide was the function of its concentration. Further, in acid salt spray and filiform corrosion tests, oxide layer containing silicate exhibited two times higher corrosion resistance.

  6. Estimation of niobium, tantalum and zirconium in a carbonate rich ore

    International Nuclear Information System (INIS)

    Navale, A.S.; Venkatakrishnan, R.R.; Sreenivas, T.

    2013-01-01

    Tantalum, niobium and zirconium form refractory compounds and therefore pose problems in estimation by methods like spectrophotometry, AAS etc. Their estimation is best carried out with ICP-OES as the plasma is capable of breaking the refractory compounds and releases these elements in the form of excited atoms. But another major problem is bringing these elements in solution as they require very strong reagents and tend to hydrolyze easily in solution. Complexing agents need to be added to maintain these elements in dissolved condition. The commonly employed dissolution techniques for these elements are fusion with potassium pyrosulfate (for Nb and Ta), sodium hydroxide or peroxide (for zirconium). Digestion with mineral acids in combination with hydrofluoric acid is also employed

  7. Uranium-thorium silicates, with specific reference to the species in the Witwatersrand reefs

    International Nuclear Information System (INIS)

    Smits, G.

    1987-01-01

    (U,Th)-silicates form two complete series of anhydrous and hydrated species with general formulae (U,Th)SiO 4 and (U,Th)SiO 4 .nH 2 O respectively. The end-members of the anhydrous series are anhydrous coffinite and thorite, and those of the hydrated series, coffinite and thorogummite. Although the silicates are relatively rare in nature, coffinite is a common ore mineral in uranium deposits of the sandstone type. In the Witwatersrand reefs, (U,Th)-silicates are extremely rare in most reefs, except for the Elsburg Reefs on the West Rand Goldfield and the Dominion Reef. In these reefs detrital uraninite has been partly or entirely transformed to (U,Th)-silicates of coffinite composition, but thorite and thorogummite of detrital origin are also found in the Dominion Reef. In leaching tests on polished sections of rock samples containing (U,Th)-silicates, a dilute sulphuric acid solution, to which ferric iron had been added, was used as the lixiviant. It appeared that the dissolution of coffinite is less rapid than that of uraninite and uraniferous leucoxene. However, the reaction of silicates of high thorium content is much slower, and was not completed during the tests

  8. A Proposed Computed Tomography Contrast Agent Using Carboxybetaine Zwitterionic Tantalum Oxide Nanoparticles: Imaging, Biological, and Physicochemical Performance.

    Science.gov (United States)

    FitzGerald, Paul F; Butts, Matthew D; Roberts, Jeannette C; Colborn, Robert E; Torres, Andrew S; Lee, Brian D; Yeh, Benjamin M; Bonitatibus, Peter J

    2016-12-01

    The aim of this study was to produce and evaluate a proposed computed tomography (CT) contrast agent based on carboxybetaine zwitterionic (CZ)-coated soluble tantalum oxide (TaO) nanoparticles (NPs). We chose tantalum to provide superior imaging performance compared with current iodine-based clinical CT contrast agents. We developed the CZ coating to provide biological and physical performance similar to that of current iodinated contrast agents. In addition, the aim of this study was to evaluate the imaging, biological, and physicochemical performance of this proposed contrast agent compared with clinically used iodinated agents. We evaluated CT imaging performance of our CZ-TaO NPs compared with that of an iodinated agent in live rats, imaged centrally located within a tissue-equivalent plastic phantom that simulated a large patient. To evaluate vascular contrast enhancement, we scanned the rats' great vessels at high temporal resolution during and after contrast agent injection. We performed several in vivo CZ-TaO NP studies in healthy rats to evaluate tolerability. These studies included injecting the agent at the anticipated clinical dose (ACD) and at 3 times and 6 times the ACD, followed by longitudinal hematology to assess impact to blood cells and organ function (from 4 hours to 1 week). Kidney histological analysis was performed 48 hours after injection at 3 times the ACD. We measured the elimination half-life of CZ-TaO NPs from blood, and we monitored acute kidney injury biomarkers with a kidney injury assay using urine collected from 4 hours to 1 week. We measured tantalum retention in individual organs and in the whole carcass 48 hours after injection at ACD. Carboxybetaine zwitterionic TaO NPs were synthesized and analyzed in detail. We used multidimensional nuclear magnetic resonance to determine surface functionality of the NPs. We measured NP size and solution properties (osmolality and viscosity) of the agent over a range of tantalum concentrations

  9. Synthesis of yttrium silicate luminescent materials by sol-gel method

    International Nuclear Information System (INIS)

    Arkhipov, D.V.; Vasina, O.Yu.; Popovich, N.V.; Galaktionov, S.S.; Soshchin, N.P.

    1996-01-01

    Several yttrium-silicate composition with Y 2 O 3 content within 44-56% have been synthesized. it is ascertained that employment of sol-gel technique permits preparation of luminescent materials on yttrium silicate basis, which compare favourably with bath-produced specimens. The influence of phase composition of sol-gel phosphors on basic performance indices: intensity and luminescence spectrum, has been analyzed

  10. Development of Biomedical Polymer-Silicate Nanocomposites: A Materials Science Perspective

    Directory of Open Access Journals (Sweden)

    Chia-Jung Wu

    2010-04-01

    Full Text Available Biomedical polymer-silicate nanocomposites have potential to become critically important to the development of biomedical applications, ranging from diagnostic and therapeutic devices, tissue regeneration and drug delivery matrixes to various bio-technologies that are inspired by biology but have only indirect biomedical relation. The fundamental understanding of polymer-nanoparticle interactions is absolutely necessary to control structure-property relationships of materials that need to work within the chemical, physical and biological constraints required by an application. This review summarizes the most recent published strategies to design and develop polymer-silicate nanocomposites (including clay based silicate nanoparticles and bioactive glass nanoparticles for a variety of biomedical applications. Emerging trends in bio-technological and biomedical nanocomposites are highlighted and potential new fields of applications are examined.

  11. A study on the effect of tantalum-impurity content on the superconducting properties of niobium materials used for making superconducting radio frequency cavities

    Science.gov (United States)

    Roy, S. B.; Sharath Chandra, L. S.; Chattopadhyay, M. K.; Tiwari, M. K.; Lodha, G. S.; Myneni, G. R.

    2012-11-01

    Niobium materials in highly pure form are used in the fabrication of superconducting radio frequency cavities. We present here a study of the superconducting properties of such niobium materials that have been used in the fabrication of high accelerating gradient superconducting radio frequency cavities after determining their tantalum-impurity contents using a synchrotron-based x-ray fluorescence spectroscopy technique. Our results show that there is a small change in superconducting parameters such as TC,HC1 and HC2 when the tantalum-impurity content varies from ≈150 to ≈1300 ppm. In contrast, a buffered chemical polishing of the same niobium samples changes all these superconducting parameters more significantly. The implications of these results on the performance of niobium superconducting radio frequency cavities are discussed.

  12. Alkane metathesis with the tantalum methylidene [(≡SiO)Ta(=CH2)Me2]/[(≡SiO)2Ta(=CH2)Me] generated from well-defined surface organometallic complex [(≡SiO)TaVMe4

    KAUST Repository

    Chen, Yin; Abou-Hamad, Edy; Hamieh, Ali Imad Ali; Hamzaoui, Bilel; Emsley, Lyndon; Basset, Jean-Marie

    2015-01-01

    By grafting TaMe5 on Aerosil700, a stable, well-defined, silica-supported tetramethyl tantalum(V) complex, [(≡SiO)TaMe4], is obtained on the silica surface. After thermal treatment at 150 °C, the complex is transformed into two surface tantalum methylidenes, [(≡SiO)2Ta(=CH2)Me] and [(≡SiO)Ta(=CH2)Me2], which are active in alkane metathesis and comparable to the previously reported [(≡SiO)2TaHx]. Here we present the first experimental study to isolate and identify a surface tantalum carbene as the intermediate in alkane metathesis. A systematic experimental study reveals a new reasonable pathway for this reaction.

  13. Alkane metathesis with the tantalum methylidene [(≡SiO)Ta(=CH2)Me2]/[(≡SiO)2Ta(=CH2)Me] generated from well-defined surface organometallic complex [(≡SiO)TaVMe4

    KAUST Repository

    Chen, Yin

    2015-01-21

    By grafting TaMe5 on Aerosil700, a stable, well-defined, silica-supported tetramethyl tantalum(V) complex, [(≡SiO)TaMe4], is obtained on the silica surface. After thermal treatment at 150 °C, the complex is transformed into two surface tantalum methylidenes, [(≡SiO)2Ta(=CH2)Me] and [(≡SiO)Ta(=CH2)Me2], which are active in alkane metathesis and comparable to the previously reported [(≡SiO)2TaHx]. Here we present the first experimental study to isolate and identify a surface tantalum carbene as the intermediate in alkane metathesis. A systematic experimental study reveals a new reasonable pathway for this reaction.

  14. Synthesis of chemical vapor deposition graphene on tantalum wire for supercapacitor applications

    International Nuclear Information System (INIS)

    Li, Mingji; Guo, Wenlong; Li, Hongji; Xu, Sheng; Qu, Changqing; Yang, Baohe

    2014-01-01

    Highlights: • The capacitance of graphene/tantalum (Ta) wire electrodes is firstly reported. • Graphene was grown on the Ta surface by hot-filament chemical vapor deposition. • Graphene/Ta wire structure is favorable for fast ion and electron transfer. • The graphene/Ta wire electrode shows high capacitive properties. - Abstract: This paper studies the synthesis and electrochemical characterization of graphene/tantalum (Ta) wires as high-performance electrode material for supercapacitors. Graphene on Ta wires is prepared by the thermal decomposition of methane under various conditions. The graphene nanosheets on the Ta wire surface have an average thickness of 1.3–3.4 nm and consist typically of a few graphene monolayers, and TaC buffer layers form between the graphene and Ta wire. A capacitor structure is fabricated using graphene/Ta wire with a length of 10 mm and a diameter of 0.6 mm as the anode and Pt wire of the same size as the cathode. The electrochemical behavior of the graphene/Ta wires as supercapacitor electrodes is characterized by cyclic voltammetry, galvanostatic charge/discharge, and electrochemical impedance spectroscopy in 1 M Na 2 SO 4 aqueous electrolyte. The as-prepared graphene/Ta electrode has highest capacitance of 345.5 F g −1 at current density of 0.5 A g −1 . The capacitance remains at about 84% after 1000 cycles at 10 A g −1 . The good electrochemical performance of the graphene/Ta wire electrode is attributed to the unique nanostructural configuration, high electrical conductivity, and large specific surface area of the graphene layer. This suggests that graphene/Ta wire electrode materials have potential applications in high-performance energy storage devices

  15. Measurement of the efficacy of calcium silicate for the protection and repair of dental enamel.

    Science.gov (United States)

    Parker, Alexander S; Patel, Anisha N; Al Botros, Rehab; Snowden, Michael E; McKelvey, Kim; Unwin, Patrick R; Ashcroft, Alexander T; Carvell, Mel; Joiner, Andrew; Peruffo, Massimo

    2014-06-01

    To investigate the formation of hydroxyapatite (HAP) from calcium silicate and the deposition of calcium silicate onto sound and acid eroded enamel surfaces in order to investigate its repair and protective properties. Calcium silicate was mixed with phosphate buffer for seven days and the resulting solids analysed for crystalline phases by Raman spectroscopy. Deposition studies were conducted on bovine enamel surfaces. Acid etched regions were produced on the enamel surfaces using scanning electrochemical cell microscopy (SECCM) with acid filled pipettes and varying contact times. Following treatment with calcium silicate, the deposition was visualised with FE-SEM and etch pit volumes were measured by AFM. A second set of bovine enamel specimens were pre-treated with calcium silicate and fluoride, before acid exposure with the SECCM. The volumes of the resultant acid etched pits were measured using AFM and the intrinsic rate constant for calcium loss was calculated. Raman spectroscopy confirmed that HAP was formed from calcium silicate. Deposition studies demonstrated greater delivery of calcium silicate to acid eroded than sound enamel and that the volume of acid etched enamel pits was significantly reduced following one treatment (penamel was 0.092 ± 0.008 cm/s. This was significantly reduced, 0.056 ± 0.005 cm/s, for the calcium silicate treatments (penamel surfaces. Calcium silicate can provide significant protection of sound enamel from acid challenges. Calcium silicate is a material that has potential for a new approach to the repair of demineralised enamel and the protection of enamel from acid attacks, leading to significant dental hard tissue benefits. © 2014 Elsevier Ltd. All rights reserved.

  16. Steam based conversion coating on AA6060 alloy: Effect of sodium silicate chemistry and corrosion performance

    DEFF Research Database (Denmark)

    Din, Rameez Ud; Bordo, Kirill; Tabrizian, Naja

    2017-01-01

    . Moreover, the use of sodium silicate resulted in the formation of distinct microstructure and incorporation of silicate into the oxide film. These oxide films reduced the anodic activity 4 times, while the corrosion protection by silicate containing oxide was the function of its concentration. Further......Surface treatment of aluminium alloy AA6060 using an industrially applicable pilot steam jet system with and without silicate chemistry has been investigated. Treatment using steam alone and steam with silicate, resulted in an oxide layer formation with thickness ∼425 nm and ∼160 nm, respectively......, in acid salt spray and filiform corrosion tests, oxide layer containing silicate exhibited two times higher corrosion resistance....

  17. KAJIAN SIFAT OPTIK FILM TIPIS BST DIDADAH NIOBIUM DAN TANTALUM

    Directory of Open Access Journals (Sweden)

    Farida Huriawati

    2016-11-01

    Full Text Available In this research thin films of Barium Strontium Titanate (BST has been synthesis with different compositions Ba0,5Sr0,5TiO3 and Ba0,25Sr0,75TiO3 which doped by Nb2O5 (Niobium and Ta2O5 (Tantalum on Si (100 type-p substrate. Thin films were produced by chemical solution deposition technique (CSD and spin coating technique with annealing temperature at 850oC, 900oC dan 950oC. Rotation velocity at 3000 rpm and time of rotation is 30 seconds. Characterization of Films is optic Characterization (absorbance ana reflectance. From the Characterizations were obtained BNST thin film with 5% doping and anneling temperature at 8500C as photodiode light sensor which applied in electronic circuit.

  18. The utilization of waste by-products for removing silicate from mineral processing wastewater via chemical precipitation.

    Science.gov (United States)

    Kang, Jianhua; Sun, Wei; Hu, Yuehua; Gao, Zhiyong; Liu, Runqing; Zhang, Qingpeng; Liu, Hang; Meng, Xiangsong

    2017-11-15

    This study investigates an environmentally friendly technology that utilizes waste by-products (waste acid and waste alkali liquids) to treat mineral processing wastewater. Chemical precipitation is used to remove silicate from scheelite (CaWO 4 ) cleaning flotation wastewater and the waste by-products are used as a substitute for calcium chloride (CaCl 2 ). A series of laboratory experiments is conducted to explain the removal of silicate and the characterization and formation mechanism of calcium silicate. The results show that silicate removal reaches 90% when the Ca:Si molar ratio exceeds 1.0. The X-ray diffraction (XRD) results confirm the characterization and formation of calcium silicate. The pH is the key factor for silicate removal, and the formation of polysilicic acid with a reduction of pH can effectively improve the silicate removal and reduce the usage of calcium. The economic analysis shows that the treatment costs with waste acid (0.63 $/m 3 ) and waste alkali (1.54 $/m 3 ) are lower than that of calcium chloride (2.38 $/m 3 ). The efficient removal of silicate is confirmed by industrial testing at a plant. The results show that silicate removal reaches 85% in the recycled water from tailings dam. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Carbonate formation in non-aqueous environments by solid-gas carbonation of silicates

    Science.gov (United States)

    Day, S. J.; Thompson, S. P.; Evans, A.; Parker, J. E.

    2012-02-01

    We have produced synthetic analogues of cosmic silicates using the Sol Gel method, producing amorphous silicates of composition Mg(x)Ca(1-x)SiO3. Using synchrotron X-ray powder diffraction on Beamline I11 at the Diamond Light Source, together with a newly-commissioned gas cell, real-time powder diffraction scans have been taken of a range of silicates exposed to CO2 under non-ambient conditions. The SXPD is complemented by other techniques including Raman and Infrared Spectroscopy and SEM imaging.

  20. Activation of Ca(OH){sub 2} using different siliceous materials

    Energy Technology Data Exchange (ETDEWEB)

    Karatepe, N.; Ersoy-Mericboyu, A.; Kucukbayrak, S. [Istanbul Technical University, Istanbul (Turkey)

    1999-04-01

    Siliceous materials such as silica fume, bentonite and diatomite were mixed with Ca(OH){sub 2} and hydrated at different conditions to produce reactive SO{sub 2} sorbents. Two different hydration methods were used, namely atmospheric and pressure hydration. The effects of the hydration temperature, time and siliceous material/Ca(OH){sub 2} weight ratio on the physical properties of the activated sorbents wereinvestigated. A statistical design technique was applied by use of a two-level factorial design matrix to interpret experimental results. In atmospheric hydration, it was found that increasing the temperature and hydration time caused an increase in the total surface area of the sorbents. But, increasing the siliceous material/Ca(OH){sub 2} weight ratio caused a decrease in the total surface area of the sorbents. In pressure hydration, mathematical analysis showed that the surface area of the activated sorbents was positively affected by the hydration variables. Thermogravimetric measurements showed that increasing the amount of reacted Ca(OH){sub 2} during hydration caused an increase in the surface area of the sorbent. X-ray diffraction studies also indicated that calcium silicate hydrates were the principal Ca-containing species formed during hydration.

  1. Experimental investigation of thermophysical properties of eutectic Mo–C, graphite and tantalum at high temperatures

    International Nuclear Information System (INIS)

    Senchenko, V N; Belikov, R S; Popov, V S

    2016-01-01

    An experimental technique based on fast electrical heating for investigation of thermophysical properties of refractory materials under high pressures and at high temperatures is considered. A set of thermophysical properties of refractory materials such as specific enthalpy, specific heat capacity, specific resistivity, melting heat of eutectic Mo-C and thermal expansion of graphite and tantalum were determined. The obtained temperature of eutectic melting of MoC 0.82 shows close agreement with equilibrium Mo-C phase diagram. (paper)

  2. High temperature thermodynamics of solutions of oxygen in vanadium, niobium and tantalum

    International Nuclear Information System (INIS)

    Boureau, G.; Gerdanian, P.

    1981-01-01

    The Tian-Calvet microcalorimetric method has been applied to the determination at 1323 K of ΔH(O 2 ), the partial molar enthalpy of mixing of oxygen in vanadium, niobium and tantalum. The present results are in good agreement with earlier studies using e.m.f. techniques. Nevertheless in the first two solutions, ΔH(O 2 ) has been found somewhat more negative than previously reported. The partial molar entropies of mixing have been recalculated. The low values of the excess entropies are explained by a strong increase of the Debye temperature and a decrease of the electronic density of states at the Fermi level as the oxygen content increases. (author)

  3. Some organoperoxo complexes of antimony, niobium and tantalum and their oxidation properties

    International Nuclear Information System (INIS)

    Tarafder, M.T.H.

    1999-05-01

    Several novel organoperoxo complexes of Nb(V), Ta(V) and Sb(V) have been synthesized and characterized. The complexes have the compositions [M(O 2 ) 2 L Cl] and [M(O 2 ) 2 L'] [L = monodentate and bidentate, neutral ligand; L' = bidentate, uninegative ligand]. These complexes are very reactive to both organic and inorganic substrates. Niobium and tantalum complexes were found to oxidize phosphines and arsines to their oxides. These also oxidize olefins to epoxides under stoichiometric conditions while under catalytic conditions, ring opening of the epoxides occur producing α-hydroxyketone when the substrate is trans-stilbene. The antimony complexes are decidedly inert towards oxidation. (author)

  4. Carbochlorination kinetics of tantalum and niobium pentoxides

    International Nuclear Information System (INIS)

    Allain, E.; Gaballah, I.; Garcia, F.; Ferreira, S.; Ayala, J. N.; Hernandez, A.

    1999-01-01

    The carbochlorination kinetics of pure Nb 2 O 5 and Ta 2 O 5 by gas mixture (CL 2 +CO+N 2 ) between 380 and 1,000 degree centigree is studied. A calculation of the standard free energy of the carbochlorination reactions is made. A diagram of the phases stability is drawn. The influence of the gas flow, temperature and the partial pressure of Cl 2 and Co at temperatures below 650 degree centigree on the reaction rate is studied. The apparent activation energy is approximately 75 and 110 kJ/mol for Nb 2 O 5 and Ta 2 O 5 , respectively. At temperatures above 650 degree centigree the Arrhenius diagram presents and anomaly which may be attributed to the decomposition of the COCL 2 formed in situ. The apparent reaction order of the carbochlorination of these oxides against Cl 2 +CO is approximately 2. The carbochlorination rates of these oxides are much greater than those of chlorination by Cl 2 +N 2 . The carbochlorination kinetics of tin furnace slag leaching concentrates containing tantalum and niobium compounds are also studied and compared with the carbochlorination kinetics of the pure oxides. (Author) 14 refs

  5. Determination of reactivity rates of silicate particle-size fractions

    Directory of Open Access Journals (Sweden)

    Angélica Cristina Fernandes Deus

    2014-04-01

    Full Text Available The efficiency of sources used for soil acidity correction depends on reactivity rate (RR and neutralization power (NP, indicated by effective calcium carbonate (ECC. Few studies establish relative efficiency of reactivity (RER for silicate particle-size fractions, therefore, the RER applied for lime are used. This study aimed to evaluate the reactivity of silicate materials affected by particle size throughout incubation periods in comparison to lime, and to calculate the RER for silicate particle-size fractions. Six correction sources were evaluated: three slags from distinct origins, dolomitic and calcitic lime separated into four particle-size fractions (2, 0.84, 0.30 and <0.30-mm sieves, and wollastonite, as an additional treatment. The treatments were applied to three soils with different texture classes. The dose of neutralizing material (calcium and magnesium oxides was applied at equal quantities, and the only variation was the particle-size material. After a 90-day incubation period, the RER was calculated for each particle-size fraction, as well as the RR and ECC of each source. The neutralization of soil acidity of the same particle-size fraction for different sources showed distinct solubility and a distinct reaction between silicates and lime. The RER for slag were higher than the limits established by Brazilian legislation, indicating that the method used for limes should not be used for the slags studied here.

  6. Electrical conductivity studies of nanocrystalline lanthanum silicate synthesized by sol-gel route

    International Nuclear Information System (INIS)

    Nallamuthu, N.; Prakash, I.; Satyanarayana, N.; Venkateswarlu, M.

    2011-01-01

    Research highlights: → Nanocrystalline La 10 Si 6 O 27 material was synthesized by sol-gel method. → TG/DTA curves predicted the thermal behavior of the material. → FTIR spectra confirmed the formation of SiO 4 and La-O network in the La 10 Si 6 O 27 . → XRD patterns confirmed the formation of pure crystalline La 10 Si 6 O 27 phase. → The grain interior and the grain boundary conductivities are evaluated. - Abstract: Nanocrystalline apatite type structured lanthanum silicate (La 10 Si 6 O 27 ) sample was synthesized by sol-gel process. Thermal behavior of the dried gel of lanthanum silicate sample was studied using TG/DTA. The structural coordination of the dried gel of lanthanum silicate, calcined at various temperatures, was identified from the observed FTIR spectral results. The observed XRD patterns of the calcined dried gel were compared with the ICDD data and confirmed the formation of crystalline lanthanum silicate phase. The average crystalline size of La 10 Si 6 O 27 was calculated using the Scherrer formula and it is found to be ∼80 nm. The observed SEM images of the lanthanum silicate indicate the formation of the spherical particles and the existence of O, Si and La in the lanthanum silicate are confirmed from the SEM-EDX spectrum. The grain and grain boundary conductivities are evaluated by analyzing the measured impedance data, using winfit software, obtained at different temperatures, of La 10 Si 6 O 27 sample. Also, the observed grain and grain boundary conductivity behaviors of the La 10 Si 6 O 27 sample are analysed using brick layer model. The electrical permittivity and electrical modulus were calculated from the measured impedance data and were analyzed by fitting through the Havriliak and Negami function to describe the dielectric relaxation behavior of the nanocrystalline lanthanum silicate.

  7. Development of tantalum oxynitride thin films produced by PVD: Study of structural stability

    Energy Technology Data Exchange (ETDEWEB)

    Cristea, D. [Centro de Física, Universidade do Minho, Campus de Gualtar, 4710-057 Braga (Portugal); Department of Materials Science, Transylvania University, 500036 Brasov (Romania); Crisan, A. [Department of Materials Science, Transylvania University, 500036 Brasov (Romania); Barradas, N.P.; Alves, E. [Instituto Superior Técnico, Universidade Técnica de Lisboa Estrada Nacional 10, ao km 139,7 2695-066, Bobadela LRS (Portugal); Moura, C.; Vaz, F. [Centro de Física, Universidade do Minho, Campus de Gualtar, 4710-057 Braga (Portugal); Cunha, L., E-mail: lcunha@fisica.uminho.pt [Centro de Física, Universidade do Minho, Campus de Gualtar, 4710-057 Braga (Portugal)

    2013-11-15

    The purpose of this work is to study the evolution of the structure and of the thermal stability of a group of tantalum oxynitride thin films, prepared by magnetron sputtering, under the influence of vacuum annealing, up to a temperature of 800 °C. When varying the partial pressure of the reactive gases (P{sub O{sub 2+N{sub 2}}}), during the deposition process, the films change from a structure with a combination of poorly developed crystallites of the tetragonal β-Ta and of the face centred cubic (fcc) Ta(O,N) phases, for the films deposited with low P{sub O2+N2}, to a quasi-amorphous structure, for the films deposited with highest pressures. For intermediate pressures, the films reveal the presence of the fcc-Ta(O,N) structure. This structure corresponds to O atoms substituting some of the N atoms on the fcc-TaN structure and/or N atoms substituting O atoms of the fcc-γ-TaO structure. When subjected to the thermal annealing at 700 °C or higher, the film produced with lowest partial pressure revealed a remarkable structural change. New diffraction peaks appear and can only be attributed to a sub-stoichiometric hexagonal tantalum nitride structure. The film did not reveal any signs of delamination or cracks after all annealing temperatures. The two films produced with highest partial pressure proved to be the most stable. Structurally, they maintain the amorphous structure after all the annealing treatments and, in addition, no cracks or delamination were detected.

  8. Methylated silicates may explain the release of chlorinated methane from Martian soil

    Science.gov (United States)

    Bak, Ebbe N.; Jensen, Svend J. Knak; Nørnberg, Per; Finster, Kai

    2016-01-01

    The only organic compounds that have been detected in the Martian soil are simple chlorinated compounds released from heated surface material. However, the sources of the organic carbon are in dispute. Wind abraded silicates, which are widespread on the Martian surface, can sequester atmospheric methane which generates methylated silicates and thus could provide a mechanism for accumulation of reduced carbon in the surface soil. In this study we show that thermal volatilization of methylated silicates in the presence of perchlorate leads to the production of chlorinated methane. Thus, methylated silicates could be a source of the organic carbon released as chlorinated methane upon thermal volatilization of Martian soil samples. Further, our experiments show that the ratio of the different chlorinated compounds produced is dependent on the mass ratio of perchlorate to organic carbon in the soil.

  9. Silicates in Alien Asteroids

    Science.gov (United States)

    2009-01-01

    This plot of data from NASA's Spitzer Space Telescopes shows that asteroid dust around a dead 'white dwarf' star contains silicates a common mineral on Earth. The data were taken primarily by Spitzer's infrared spectrograph, an instrument that breaks light apart into its basic constituents. The yellow dots show averaged data from the spectrograph, while the orange triangles show older data from Spitzer's infrared array camera. The white dwarf is called GD 40.

  10. Biological characteristics of the MG-63 human osteosarcoma cells on composite tantalum carbide/amorphous carbon films.

    Directory of Open Access Journals (Sweden)

    Yin-Yu Chang

    Full Text Available Tantalum (Ta is a promising metal for biomedical implants or implant coating for orthopedic and dental applications because of its excellent corrosion resistance, fracture toughness, and biocompatibility. This study synthesizes biocompatible tantalum carbide (TaC and TaC/amorphous carbon (a-C coatings with different carbon contents by using a twin-gun magnetron sputtering system to improve their biological properties and explore potential surgical implant or device applications. The carbon content in the deposited coatings was regulated by controlling the magnetron power ratio of the pure graphite and Ta cathodes. The deposited TaC and TaC/a-C coatings exhibited better cell viability of human osteosarcoma cell line MG-63 than the uncoated Ti and Ta-coated samples. Inverted optical and confocal imaging was used to demonstrate the cell adhesion, distribution, and proliferation of each sample at different time points during the whole culture period. The results show that the TaC/a-C coating, which contained two metastable phases (TaC and a-C, was more biocompatible with MG-63 cells compared to the pure Ta coating. This suggests that the TaC/a-C coatings exhibit a better biocompatible performance for MG-63 cells, and they may improve implant osseointegration in clinics.

  11. Fabrication of Nano-Crossbar Resistive Switching Memory Based on the Copper-Tantalum Pentoxide-Platinum Device Structure

    Science.gov (United States)

    Olga Gneri, Paula; Jardim, Marcos

    Resistive switching memory has been of interest lately not only for its simple metal-insulator-metal (MIM) structure but also for its promising ease of scalability an integration into current CMOS technologies like the Field Programmable Gate Arrays and other non-volatile memory applications. There are several resistive switching MIM combinations but under this scope of research, attention will be paid to the bipolar resistive switching characteristics and fabrication of Tantalum Pentaoxide sandwiched between platinum and copper. By changing the polarity of the voltage bias, this metal-insulator-metal (MIM) device can be switched between a high resistive state (OFF) and low resistive state (ON). The change in states is induced by an electrochemical metallization process, which causes a formation or dissolution of Cu metal filamentary paths in the Tantalum Pentaoxide insulator. There is very little thorough experimental information about the Cu-Ta 2O5-Pt switching characteristics when scaled to nanometer dimensions. In this light, the MIM structure was fabricated in a two-dimensional crossbar format. Also, with the limited available resources, a multi-spacer technique was formulated to localize the active device area in this MIM configuration to less than 20nm. This step is important in understanding the switching characteristics and reliability of this structure when scaled to nanometer dimensions.

  12. Mid-term results of total knee arthroplasty with a porous tantalum monoblock tibial component.

    Science.gov (United States)

    Hayakawa, Kazue; Date, Hideki; Tsujimura, Shunzo; Nojiri, Sho; Yamada, Harumoto; Nakagawa, Kenji

    2014-01-01

    The objectives of the present study were to assess the mid-term results of cementless total knee arthroplasty (TKA) with the porous tantalum monoblock tibial component and to examine the time course of bone changes on plain radiographs. The subjects were 32 patients, 29 patients were available for follow-up. We investigated the mid-term results of TKA after a mean follow-up period of 7 years and 8 months. We also examined changes of the bone over time on plain radiographs. The Knee Society Clinical Rating scores showed significant improvement. Bone changes around the tibial component were as follows: new bone formation and longitudinal trabecular thickening in 41.4% (Type A), only longitudinal trabecular thickening in 41.4% (Type B), and no changes in 17.2% (Type C). Type A and B changes were more frequent in patients with osteoarthritis, whereas Type C was only seen in patients with rheumatoid arthritis. Three knees had an initial gap, but this disappeared in all cases, and no new radiolucent lines were detected. Stress shielding was observed in seven knees (21.9%), but there was no implant loosening related to it. When we examined the relationship between the mechanical axis and the locations of the tips of the tibial pegs in patients with or without stress shielding, no significant differences were found. The results of mid-term follow-up have demonstrated favorable bone ingrowth, suggesting that porous tantalum is a promising material for cementless TKA. © 2013.

  13. Influence of tantalum underlayer on magnetization dynamics in Ni81Fe19 films

    International Nuclear Information System (INIS)

    Kwon, Jae Hyun; Deorani, Praveen; Yoon, Jungbum; Yang, Hyunsoo; Hayashi, Masamitsu

    2015-01-01

    The effect of tantalum (Ta) underlayer is investigated in Ni 81 Fe 19 thin films for magnetization dynamics. The damping parameters extracted from spin wave measurements increase systematically with increasing Ta thickness, whereas the damping parameters from ferromagnetic resonance measurements are found to be weakly dependent on the Ta thickness. The difference is attributed to propagating properties of spin wave and short spin diffusion length in Ta. The group velocity of spin waves is found to be constant for different Ta thicknesses, and nonreciprocity of spin waves is not affected by the Ta thickness. The experimental observations are supported by micromagnetic simulations

  14. Synthesis and luminescence properties of erbium silicate thin films

    International Nuclear Information System (INIS)

    Miritello, Maria; Lo Savio, Roberto; Iacona, Fabio; Franzo, Giorgia; Bongiorno, Corrado; Priolo, Francesco

    2008-01-01

    We have studied the structure and the room temperature luminescence of erbium silicate thin films deposited by rf magnetron sputtering. Films deposited on silicon oxide layers are characterized by good structural properties and excellent stability. The optical properties of these films are strongly improved by rapid thermal annealing processes performed in the range of temperature 800-1250 deg. C. In fact through the reduction of the defect density of the material, a very efficient room temperature photoluminescence at 1535 nm is obtained. We have also investigated the influence of the annealing ambient, by finding that treatments in O 2 atmosphere are significantly more efficient in improving the optical properties of the material with respect to processes in N 2 . Upconversion effects become effective only when erbium silicate is excited with high pump powers. The evidence that all Er atoms (about 10 22 cm -3 ) in erbium silicate films are optically active suggests interesting perspectives for optoelectronic applications of this material

  15. Calc-silicate mineralization in active geothermal systems

    Energy Technology Data Exchange (ETDEWEB)

    Bird, D.K.; Schiffman, P.; Elders, W.A.; Williams, A.E.; McDowell, S.D.

    1983-01-01

    The detailed study of calc-silicate mineral zones and coexisting phase relations in the Cerro Prieto geothermal system were used as examples for thermodynamic evaluation of phase relations among minerals of variable composition and to calculate the chemical characteristics of hydrothermal solutions compatible with the observed calc-silicate assemblages. In general there is a close correlation between calculated and observed fluid compositions. Calculated fugacities of O{sub 2} at about 320{degrees}C in the Cerro Prieto geothermal system are about five orders of magnitude less than that at the nearby Salton Sea geothermal system. This observation is consistent with the occurrence of Fe{sup 3+} rich epidotes in the latter system and the presence of prehnite at Cerro Prieto.

  16. Insight into silicate-glass corrosion mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Cailleteau, C; Angeli, F; Gin, S; Jollivet, P [CEA VALRHO, DEN, Lab Etude Comportement Long Terme, F-30207 Bagnols Sur Ceze, (France); Devreux, F [Ecole Polytech, CNRS, Lab Phys Mat Condensee, F-91128 Palaiseau, (France); Jestin, J [CEA, CNRS, Lab Leon Brillouin, F-91191 Gif Sur Yvette, (France); Spalla, O [CEA, DSM, Lab Interdisciplinaire Org Nanometr et Supramol, F-91191 Gif Sur Yvette, (France)

    2008-07-01

    The remarkable chemical durability of silicate glass makes it suitable for a wide range of applications. The slowdown of the aqueous glass corrosion kinetics that is frequently observed at long time is generally attributed to chemical affinity effects (saturation of the solution with respect to silica). Here, we demonstrate a new mechanism and highlight the impact of morphological transformations in the alteration layer on the leaching kinetics. A direct correlation between structure and reactivity is revealed by coupling the results of several structure-sensitive experiments with numerical simulations at mesoscopic scale. The sharp drop in the corrosion rate is shown to arise from densification of the outer layers of the alteration film, leading to pore closure. The presence of insoluble elements in the glass can inhibit the film restructuring responsible for this effect. This mechanism may be more broadly applicable to silicate minerals. (authors)

  17. Successive heterolytic cleavages of H2 achieve N2 splitting on silica-supported tantalum hydrides: A DFT proposed mechanism

    KAUST Repository

    Solá ns, Xavier Luis; Chow, Catherine; Gouré , Eric; Kaya, Yasemin; Basset, Jean-Marie; Taoufik, Mostafa; Quadrelli, Elsje Alessandra; Eisenstein, Odile

    2012-01-01

    DFT(B3PW91) calculations have been carried out to propose a pathway for the N2 cleavage by H2 in the presence of silica-supported tantalum hydride complexes [(≡ SiO)2TaHx] that forms [(≡SiO)2Ta(NH)(NH2)] (Science2007, 317, 1056). The calculations

  18. The preparation of zinc silicate/ZnO particles and their use as an efficient UV absorber

    Energy Technology Data Exchange (ETDEWEB)

    Podbrscek, Peter [National Institute of Chemistry, Hajdrihova 19, SI 1000 Ljubljana (Slovenia); Drazic, Goran [Department for Nanostructured Materials, Jozef Stefan Institute, Jamova 39, SI 1000 Ljubljana (Slovenia); Anzlovar, Alojz [National Institute of Chemistry, Hajdrihova 19, SI 1000 Ljubljana (Slovenia); Center of Excellence for Polymer Materials and Technologies, Tehnoloski Park 24, 1000 Ljubljana (Slovenia); Orel, Zorica Crnjak, E-mail: zorica.crnjak.orel@ki.si [National Institute of Chemistry, Hajdrihova 19, SI 1000 Ljubljana (Slovenia); Center of Excellence for Polymer Materials and Technologies, Tehnoloski Park 24, 1000 Ljubljana (Slovenia)

    2011-11-15

    Highlights: {yields} We used innovative gel-route in order to prepare zinc silicate/ZnO nano-particles. {yields} Continuous reactor was efficient for synthesizing ZnO and zinc silicate/ZnO precursors. {yields} Introduction of Si into reaction mixture influenced on particle size and their photoactivity. {yields} Prepared particles are appropriate for UV absorbers in polymers. -- Abstract: The formation of zinc silicate/ZnO particles synthesized by a two-step method and their incorporation into PMMA is presented. In the first step a segmented-flow tubular reactor was used for the continuous room-temperature preparation of a zinc silicate/Zn(OH){sub 2} gel that was thermally treated after rinsing and drying in the second step. The same preparation procedure was also employed for the synthesis of pure ZnO and pure zinc silicate particles. It was found that the presence of the zinc silicate phase significantly influenced the final particle size, decreased the degree of crystallization and reduced the particles' UV absorption capabilities. The reduced photocatalytic activity of the zinc silicate/ZnO particles indicated that the majority of ZnO crystallites were formed inside the zinc silicate matrix. The nanocomposite prepared from zinc silicate/ZnO particles (0.04 wt.%) and PMMA showed high UV shielding and at the same time sufficient transmittance in the visible-light region.

  19. The preparation of zinc silicate/ZnO particles and their use as an efficient UV absorber

    International Nuclear Information System (INIS)

    Podbrscek, Peter; Drazic, Goran; Anzlovar, Alojz; Orel, Zorica Crnjak

    2011-01-01

    Highlights: → We used innovative gel-route in order to prepare zinc silicate/ZnO nano-particles. → Continuous reactor was efficient for synthesizing ZnO and zinc silicate/ZnO precursors. → Introduction of Si into reaction mixture influenced on particle size and their photoactivity. → Prepared particles are appropriate for UV absorbers in polymers. -- Abstract: The formation of zinc silicate/ZnO particles synthesized by a two-step method and their incorporation into PMMA is presented. In the first step a segmented-flow tubular reactor was used for the continuous room-temperature preparation of a zinc silicate/Zn(OH) 2 gel that was thermally treated after rinsing and drying in the second step. The same preparation procedure was also employed for the synthesis of pure ZnO and pure zinc silicate particles. It was found that the presence of the zinc silicate phase significantly influenced the final particle size, decreased the degree of crystallization and reduced the particles' UV absorption capabilities. The reduced photocatalytic activity of the zinc silicate/ZnO particles indicated that the majority of ZnO crystallites were formed inside the zinc silicate matrix. The nanocomposite prepared from zinc silicate/ZnO particles (0.04 wt.%) and PMMA showed high UV shielding and at the same time sufficient transmittance in the visible-light region.

  20. Potassium silicate and calcium silicate on the resistance of soybean to Phakopsora pachyrhizi infection

    Directory of Open Access Journals (Sweden)

    Maria Fernanda Cruz

    2013-01-01

    Full Text Available The control of Asian Soybean Rust (ASR, caused by Phakopsora pachyrhizi, has been difficult due to the aggressiveness of the pathogen and the lack of resistant cultivars. The objective of this study was to evaluate the effects of spray of potassium silicate (PS and soil amendment with calcium silicate (CS on soybean resistance to ASR. The PS solution was sprayed to leaves 24 hours prior to fungal inoculation while CS was amended to the soil at thirty-five days before sowing. The infection process of P. pachyrhizi was investigated by scanning electron microscopy. The uredia on leaves of plants sprayed with PS were smaller and more compact than those observed on the leaves of plants grown in soil amended with CS or in soil non-amended with CS (control treatment. On leaves of plants from the control treatment, uredia produced many urediniospores at 9 days after inoculation, and the ASR severity was 15, 8 and 9%, respectively, for plants from control, PS and CS treatments. In conclusion, the spray of PS contributed to reduce the number of uredia per cm² of leaf area and both PS spray and CS resulted in lower ASR symptoms.

  1. Valence determination of rare earth elements in lanthanide silicates by L 3-XANES spectroscopy

    International Nuclear Information System (INIS)

    Kravtsova, Antonina N; Guda, Alexander A; Soldatov, Alexander V; Goettlicher, Joerg; Taroev, Vladimir K; Suvorova, Lyudmila F; Tauson, Vladimir L; Kashaev, Anvar A

    2016-01-01

    Lanthanide silicates have been hydrothermally synthesized using Cu and Ni containers. Chemical formulae of the synthesized compounds correspond to K 3 Eu[Si 6 O 15 ] 2H 2 O, HK 6 Eu[Si 10 O 25 ], K 7 Sm 3 [Si 12 O 32 ], K 2 Sm[AlSi 4 O 12 ] 0.375H 2 O, K 4 Yb 2 [Si 8 O 21 ], K 4 Ce 2 [Al 2 Si 8 O 24 ]. The oxidation state of lanthanides (Eu, Ce, Tb, Sm, Yb) in these silicates has been determined using XANES spectroscopy at the Eu, Ce, Tb, Sm, Yb, L 3 - edges. The experimental XANES spectra were recorded using the synchrotron radiation source ANKA (Karlsruhe Institute of Technology) and the X-ray laboratory spectrometer Rigaku R- XAS. By comparing the absorption edge energies and white line intensities of the silicates with the ones of reference spectra the oxidation state of lanthanides Eu, Ce, Tb, Sm, Yb has been found to be equal to +3 in all investigated silicates except of the Ce-containing silicate from the run in Cu container where the cerium oxidation state ranges from +3 (Ce in silicate apatite and in a KCe silicate with Si 12 O 32 layers) to +4 (starting CeO 2 or oxidized Ce 2 O 3 ). (paper)

  2. Carbonate-silicate liquid immiscibility in the mantle propels kimberlite magma ascent

    Science.gov (United States)

    Kamenetsky, Vadim S.; Yaxley, Gregory M.

    2015-06-01

    Kimberlite is a rare volcanic rock renowned as the major host of diamonds and originated at the base of the subcontinental lithospheric mantle. Although kimberlite magmas are dense in crystals and deeply-derived rock fragments, they ascend to the surface extremely rapidly, enabling diamonds to survive. The unique physical properties of kimberlite magmas depend on the specific compositions of their parental melts that, in absence of historical eruptions and due to pervasive alteration of kimberlite rocks, remain highly debatable. We explain exceptionally rapid ascent of kimberlite magma from mantle depths by combining empirical data on the essentially carbonatite composition of the kimberlite primary melts and experimental evidence on interaction of the carbonate liquids with mantle minerals. Our experimental study shows that orthopyroxene is completely dissolved in a Na2CO3 melt at 2.0-5.0 GPa and 1000-1200 °C. The dissolution of orthopyroxene results in homogeneous silicate-carbonate melt at 5.0 GPa and 1200 °C, and is followed by unmixing of carbonate and carbonated silicate melts and formation of stable magmatic emulsion at lower pressures and temperatures. The dispersed silicate melt has a significant capacity for storing a carbonate component in the deep mantle (13 wt% CO2 at 2.0 GPa). We envisage that this component reaches saturation and is gradually released as CO2 bubbles, as the silicate melt globules are transported upwards through the lithosphere by the carbonatite magma. The globules of unmixed, CO2-rich silicate melt are continuously produced upon further reaction between the natrocarbonatite melt and mantle peridotite. On decompression the dispersed silicate melt phase ensures a continuous supply of CO2 bubbles that decrease density and increase buoyancy and promote rapid ascent of the magmatic emulsion.

  3. Field and Experimental Constraints on the Dynamics of Replenished Silicic Magma Chambers

    Science.gov (United States)

    Bain, A. A.; Jellinek, M.

    2008-12-01

    The underlying causes of catastrophic caldera-forming volcanic eruptions remain poorly understood. However, the occurrence of magma mixing within bimodal systems has become increasingly linked with such eruptions. In particular, buoyancy effects related to unstable density contrasts arising as a result of silicic- basaltic magma interactions may play an important role in the growth, differentiation and catastrophic eruption of silicic magma chambers. Evidence of such magmatic interactions can be found in layered intrusions from the Coastal Maine Magmatic Province (USA), where well-exposed cross-sections reveal hundreds of laterally-extensive basaltic sheets, apparently injected as intrusive lava flows onto the growing floors of silicic magma chambers. Interfaces between mafic and silicic layers are commonly sharply defined and exhibit deformation parallel to the inferred direction of palaeo-gravity. Our field observations suggest that the cooling, settling and buckling of gravitationally-unstable mafic replenishments may have driven large-scale (basalt layer depth) and small- scale (crystal diameter) upwelling and/or overturning of underlying buoyant silicic cumulate material. In order to characterize the full range of buoyancy effects, we carried out extensive spectral analysis of high- resolution digital field measurements from the Pleasant Bay and Mount Desert Island intrusions. In many cases, Rayleigh-Taylor theory and the longest measured wavelength of deformation indicate that a large and potentially-quantifiable fraction of the original, pre-replenishment silicic cumulate thickness may be missing, implying that vertical mass transfer has occurred. In addition, the shortest wavelengths of deformation are generally consistent with observed length-scales of crystals and clumps of crystals at these localities. With the aim of understanding the initial conditions that gave rise to these field observations, we conduct a series of laboratory experiments in which we

  4. Multistate Memristive Tantalum Oxide Devices for Ternary Arithmetic

    Science.gov (United States)

    Kim, Wonjoo; Chattopadhyay, Anupam; Siemon, Anne; Linn, Eike; Waser, Rainer; Rana, Vikas

    2016-11-01

    Redox-based resistive switching random access memory (ReRAM) offers excellent properties to implement future non-volatile memory arrays. Recently, the capability of two-state ReRAMs to implement Boolean logic functionality gained wide interest. Here, we report on seven-states Tantalum Oxide Devices, which enable the realization of an intrinsic modular arithmetic using a ternary number system. Modular arithmetic, a fundamental system for operating on numbers within the limit of a modulus, is known to mathematicians since the days of Euclid and finds applications in diverse areas ranging from e-commerce to musical notations. We demonstrate that multistate devices not only reduce the storage area consumption drastically, but also enable novel in-memory operations, such as computing using high-radix number systems, which could not be implemented using two-state devices. The use of high radix number system reduces the computational complexity by reducing the number of needed digits. Thus the number of calculation operations in an addition and the number of logic devices can be reduced.

  5. Metal derivatives of organo-phosphorous compounds. Part II : niobium(V) and tantalum(V) derivatives

    International Nuclear Information System (INIS)

    Puri, D.M.; Singh, Soran

    1981-01-01

    Reactions between niobium(V) chloride, tantalum(V) chloride and dialkyl/diaryl (Et-, Prsup(i)-, Busup(n)- and Ph-) phosphites have been studied in different molar ratios and under different conditions of temperature and solvent systems. The isolated complex compounds have been characterised on the basis of infrared spectral measurements, elemental analyses and magnetic susceptibility data. The polymeric nature of the products has been indicated by their molecular weights. The coordination of phosphite units to metal atom of the other molecule through phosphoryl oxygen gave rise to O-P-O-bridges. (author)

  6. Silicate glasses

    International Nuclear Information System (INIS)

    Lutze, W.

    1988-01-01

    Vitrification of liquid high-level radioactive wastes has received the greatest attention, world-wide, compared to any other HLW solidification process. The waste form is a borosilicate-based glass. The production of phosphate-based glass has been abandoned in the western world. Only in the Soviet Union are phosphate-based glasses still being developed. Vitrification techniques, equipment and processes and their remote operation have been developed and studied for almost thirty years and have reached a high degree of technical maturity. Industrial demonstration of the vitrification process has been in progress since 1978. This chapter is a survey of world-wide research and development efforts in nuclear waste glasses and its production technology. The principal glasses considered are silicate glasses which contain boron, i.e., borosilicate glasses

  7. Thermomechanical characterization of pure polycrystalline tantalum

    International Nuclear Information System (INIS)

    Rittel, D.; Bhattacharyya, A.; Poon, B.; Zhao, J.; Ravichandran, G.

    2007-01-01

    The thermomechanical behavior of pure polycrystalline tantalum has been characterized over a wide range of strain rates, using the recently developed shear compression specimen [D. Rittel, S. Lee, G. Ravichandran, Experimental Mechanics 42 (2002) 58-64]. Dynamic experiments were carried out using a split Hopkinson pressure bar, and the specimen's temperature was monitored throughout the tests using an infrared radiometer. The results of the mechanical tests confirm previous results on pure Ta. Specifically, in addition to its significant strain rate sensitivity, it was observed that pure Ta exhibits very little strain hardening at high strain rates. The measured temperature rise in the specimen's gauge was compared to theoretical predictions which assume a total conversion of the mechanical energy into heat (β = 1) [G.I. Taylor, H. Quinney, Proceedings of the Royal Society of London, vol. A, 1934, pp. 307-326], and an excellent agreement was obtained. This result confirms the previous result of Kapoor and Nemat-Nasser [R. Kapoor, S. Nemat-Nasser, Mech. Mater. 27 (1998) 1-12], while a different experimental approach was adopted here. The assumption that β = 1 is found to be justified in this specific case by the lack of dynamic strain hardening of pure Ta. However, this assumption should be limited to non-hardening materials, to reflect the fact that strain hardening implies that part of the mechanical energy is stored into the material's microstructure

  8. Corrosion resistance of tantalum base alloys

    International Nuclear Information System (INIS)

    Gypen, L.A.; Brabers, M.; Deruyttre, A.

    1984-01-01

    The corrosion behaviour of substitutional Ta-Mo, Ta-W, Ta-Nb, Ta-Hf, Ta-Zr, Ta-Re, Ta-Ni, Ta-V, Ta-W-Mo, Ta-W-Nb, Ta-W-Hf and Ta-W-Re alloys has been investigated in various corrosive media, i.e. (1) concentrated sulfuric acid at 250 0 C and 200 0 C, (2) boiling hydrochloric acid of azeotropic composition, (3) concentrated hydrochloric acid at 150 0 C under pressure, (4) HF-Containing solutions and (5) 0.5% H 2 SO 4 at room temperature (anodisation). In highly corrosive media such as concentrated H 2 SO 4 at 250 0 C and concentrated HCl at 150 0 C tantalum is hydrogen embrittled, probably by stress induced precipitation of β-hydride. Both corrosion rate and hydrogen embrittlement in concentrated H 2 SO 4 at 250 0 C are strongly influenced by alloying elements. Small alloying additions of either Mo or Re decrease the corrosion rate and the hydrogen embrittlement, while Hf has the opposite effect. Hydrogen embrittlement in concentrated H 2 SO 4 at 250 0 C is completely eliminated by alloying Ta with 1 to 3 at % Mo (0.5 to 1.5 wt % Mo). These results can be explained in terms of oxygen deficiency of the Ta 2 O 5 film and the electronic structure of these alloys. (orig.) [de

  9. A study on the effect of tantalum-impurity content on the superconducting properties of niobium materials used for making superconducting radio frequency cavities

    International Nuclear Information System (INIS)

    Roy, S B; Sharath Chandra, L S; Chattopadhyay, M K; Tiwari, M K; Lodha, G S; Myneni, G R

    2012-01-01

    Niobium materials in highly pure form are used in the fabrication of superconducting radio frequency cavities. We present here a study of the superconducting properties of such niobium materials that have been used in the fabrication of high accelerating gradient superconducting radio frequency cavities after determining their tantalum-impurity contents using a synchrotron-based x-ray fluorescence spectroscopy technique. Our results show that there is a small change in superconducting parameters such as T C ,H C1 and H C2 when the tantalum-impurity content varies from ≈150 to ≈1300 ppm. In contrast, a buffered chemical polishing of the same niobium samples changes all these superconducting parameters more significantly. The implications of these results on the performance of niobium superconducting radio frequency cavities are discussed. (paper)

  10. Selective silicate-directed motility in diatoms

    DEFF Research Database (Denmark)

    Bondoc, Karen Grace V.; Heuschele, Jan; Gillard, Jeroen

    2016-01-01

    the major sink in the global Si cycle. Dissolved silicic acid (dSi) availability frequently limits diatom productivity and influences species composition of communities. We show that benthic diatoms selectively perceive and behaviourally react to gradients of dSi. Cell speed increases under d...

  11. Mid-infrared spectra of cometary dust: the evasion of its silicate mineralogy

    Science.gov (United States)

    Kimura, H.; Chigai, T.; Yamamoto, T.

    2008-04-01

    Infrared spectra of dust in cometary comae provide a way to identify its silicate constituents, and this is crucial for correctly understanding the condition under which our planetary system is formed. Recent studies assign a newly detected peak at a wavelength of 9.3 μm to pyroxenes and regard them as the most abundant silicate minerals in comets. Here we dispense with this pyroxene hypothesis to numerically reproduce the infrared features of cometary dust in the framework of our interstellar dust models. Presolar interstellar dust in a comet is modeled as fluffy aggregates consisting of submicrometer-sized organic grains with an amorphous-silicate core that undergoes nonthermal crystallization in a coma. We assert that forsterite (Mg2SiO4) is the carrier of all the observed features, including the 9.3 μm peak and that the major phase of iron is sulfides rather than iron-rich silicates.

  12. X-ray emission spectroscopy study of iron silicate catalyst FeZSM-5

    International Nuclear Information System (INIS)

    Csencsits, R.; Lyman, C.E.; Gronsky, R.

    1988-03-01

    Iron silicate analogs of the zeolite ZMS-5 may be directly synthesized from iron silicate gels in a manner which differs slightly from the alumino-silicate ZSM-5. The resultant white, crystalline iron silicate is referred to as FeZSM-5 in the as-synthesized form. Thermal treatment removes the organic crystal-directing agent and moves some of the framework iron into non-framework sites producing the calcined form of the molecular sieve FeZSM-5. Homogeneity in the distribution of catalytic iron throughout the particles is desired in an optimal catalyst. Distribution of the iron throughout the framework in the as-synthesized forms would affect the final distribution of catalytic iron in the calcined and steamed forms; thus, the iron distribution throughout the as-synthesized and calcined forms of FeZSM-5 were studied using the high spatial resolution on the analytical electron microscope. 7 refs., 3 figs

  13. Silicate bonding properties: Investigation through thermal conductivity measurements

    Energy Technology Data Exchange (ETDEWEB)

    Lorenzini, M; Cesarini, E; Cagnoli, G; Campagna, E; Losurdo, G; Martelli, F; Piergiovanni, F; Vetrano, F [INFN, Istituto Nazionale di Fisica Nucleare, Sez. di Firenze, via G. Sansone 1, 50019 Sesto Fiorentino (Italy); Haughian, K; Hough, J; Martin, I; Reid, S; Rowan, S; Veggel, A A van, E-mail: lorenzini@fi.infn.i [SUPA, University of Glasgow, Department of Physics and Astronomy, Kelvin Building G12 8QQ Glasgow, Scotland (United Kingdom)

    2010-05-01

    A direct approach to reduce the thermal noise contribution to the sensitivity limit of a GW interferometric detector is the cryogenic cooling of the mirrors and mirrors suspensions. Future generations of detectors are foreseen to implement this solution. Silicon has been proposed as a candidate material, thanks to its very low intrinsic loss angle at low temperatures and due to its very high thermal conductivity, allowing the heat deposited in the mirrors by high power lasers to be efficiently extracted. To accomplish such a scheme, both mirror masses and suspension elements must be made of silicon, then bonded together forming a quasi-monolithic stage. Elements can be assembled using hydroxide-catalysis silicate bonding, as for silica monolithic joints. The effect of Si to Si bonding on suspension thermal conductance has therefore to be experimentally studied. A measurement of the effect of silicate bonding on thermal conductance carried out on 1 inch thick silicon bonded samples, from room temperature down to 77 K, is reported. In the explored temperature range, the silicate bonding does not seem to affect in a relevant way the sample conductance.

  14. Silicate fertilization of tropical soils: silicon availability and recovery index of sugarcane

    Directory of Open Access Journals (Sweden)

    Mônica Sartori de Camargo

    2013-10-01

    Full Text Available Sugarcane is considered a Si-accumulating plant, but in Brazil, where several soil types are used for cultivation, there is little information about silicon (Si fertilization. The objectives of this study were to evaluate the silicon availability, uptake and recovery index of Si from the applied silicate on tropical soils with and without silicate fertilization, in three crops. The experiments in pots (100 L were performed with specific Si rates (0, 185, 370 and 555 kg ha-1 Si, three soils (Quartzipsamment-Q, 6 % clay; Rhodic Hapludox-RH, 22 % clay; and Rhodic Acrudox-RA, 68 % clay, with four replications. The silicon source was Ca-Mg silicate. The same Ca and Mg quantities were applied to all pots, with lime and/or MgCl2, when necessary. Sugarcane was harvested in the plant cane and first- and second-ratoon crops. The silicon rates increased soil Si availability and Si uptake by sugarcane and had a strong residual effect. The contents of soluble Si were reduced by harvesting and increased with silicate application in the following decreasing order: Q>RH>RA. The silicate rates promoted an increase in soluble Si-acetic acid at harvest for all crops and in all soils, except RA. The amounts of Si-CaCl2 were not influenced by silicate in the ratoon crops. The plant Si uptake increased according to the Si rates and was highest in RA at all harvests. The recovery index of applied Si (RI of sugarcane increased over time, and was highest in RA.

  15. Cracking in dissimilar laser welding of tantalum to molybdenum

    Science.gov (United States)

    Zhou, Xingwen; Huang, Yongde; Hao, Kun; Chen, Yuhua

    2018-06-01

    Dissimilar joining of tantalum (Ta) to molybdenum (Mo) is of great interest in high temperature structural component applications. However, few reports were found about joining of these two hard-to-weld metals. The objective of this experimental study was to assess the weldability of laser butt joining of 0.2 mm-thick Ta and Mo. In order to study cracking mechanism in Ta/Mo joint, similar Ta/Ta and Mo/Mo joints were compared under the same welding conditions. An optical microscope observation revealed presence of intergranular cracks in the Mo/Mo joint, while both transgranular and intergranular cracks were observed in Ta/Mo joint. The cracking mechanism of the Ta/Mo joint was investigated further by micro-hardness testing, micro X-ray diffraction and scanning electron microscopy. The results showed that solidification cracking tendency of Mo is a main reason for crack initiation in the Ta/Mo joint. Low ductility feature in fusion zone most certainly played a role in the transgranular propagation of cracking.

  16. A niobium and tantalum co-doped perovskite cathode for solid oxide fuel cells operating below 500 °C

    Science.gov (United States)

    Li, Mengran; Zhao, Mingwen; Li, Feng; Zhou, Wei; Peterson, Vanessa K.; Xu, Xiaoyong; Shao, Zongping; Gentle, Ian; Zhu, Zhonghua

    2017-01-01

    The slow activity of cathode materials is one of the most significant barriers to realizing the operation of solid oxide fuel cells below 500 °C. Here we report a niobium and tantalum co-substituted perovskite SrCo0.8Nb0.1Ta0.1O3−δ as a cathode, which exhibits high electroactivity. This cathode has an area-specific polarization resistance as low as ∼0.16 and ∼0.68 Ω cm2 in a symmetrical cell and peak power densities of 1.2 and 0.7 W cm−2 in a Gd0.1Ce0.9O1.95-based anode-supported fuel cell at 500 and 450 °C, respectively. The high performance is attributed to an optimal balance of oxygen vacancies, ionic mobility and surface electron transfer as promoted by the synergistic effects of the niobium and tantalum. This work also points to an effective strategy in the design of cathodes for low-temperature solid oxide fuel cells. PMID:28045088

  17. Synthesis of chemical vapor deposition graphene on tantalum wire for supercapacitor applications

    Energy Technology Data Exchange (ETDEWEB)

    Li, Mingji, E-mail: limingji@163.com [Tianjin Key Laboratory of Film Electronic and Communicate Devices, School of Electronics Information Engineering, Tianjin University of Technology, Tianjin 300384 (China); Guo, Wenlong [Tianjin Key Laboratory of Film Electronic and Communicate Devices, School of Electronics Information Engineering, Tianjin University of Technology, Tianjin 300384 (China); Li, Hongji, E-mail: hongjili@yeah.net [Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384 (China); Xu, Sheng [School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072 (China); Qu, Changqing; Yang, Baohe [Tianjin Key Laboratory of Film Electronic and Communicate Devices, School of Electronics Information Engineering, Tianjin University of Technology, Tianjin 300384 (China)

    2014-10-30

    Highlights: • The capacitance of graphene/tantalum (Ta) wire electrodes is firstly reported. • Graphene was grown on the Ta surface by hot-filament chemical vapor deposition. • Graphene/Ta wire structure is favorable for fast ion and electron transfer. • The graphene/Ta wire electrode shows high capacitive properties. - Abstract: This paper studies the synthesis and electrochemical characterization of graphene/tantalum (Ta) wires as high-performance electrode material for supercapacitors. Graphene on Ta wires is prepared by the thermal decomposition of methane under various conditions. The graphene nanosheets on the Ta wire surface have an average thickness of 1.3–3.4 nm and consist typically of a few graphene monolayers, and TaC buffer layers form between the graphene and Ta wire. A capacitor structure is fabricated using graphene/Ta wire with a length of 10 mm and a diameter of 0.6 mm as the anode and Pt wire of the same size as the cathode. The electrochemical behavior of the graphene/Ta wires as supercapacitor electrodes is characterized by cyclic voltammetry, galvanostatic charge/discharge, and electrochemical impedance spectroscopy in 1 M Na{sub 2}SO{sub 4} aqueous electrolyte. The as-prepared graphene/Ta electrode has highest capacitance of 345.5 F g{sup −1} at current density of 0.5 A g{sup −1}. The capacitance remains at about 84% after 1000 cycles at 10 A g{sup −1}. The good electrochemical performance of the graphene/Ta wire electrode is attributed to the unique nanostructural configuration, high electrical conductivity, and large specific surface area of the graphene layer. This suggests that graphene/Ta wire electrode materials have potential applications in high-performance energy storage devices.

  18. Origins of saccharide-dependent hydration at aluminate, silicate, and aluminosilicate surfaces.

    Science.gov (United States)

    Smith, Benjamin J; Rawal, Aditya; Funkhouser, Gary P; Roberts, Lawrence R; Gupta, Vijay; Israelachvili, Jacob N; Chmelka, Bradley F

    2011-05-31

    Sugar molecules adsorbed at hydrated inorganic oxide surfaces occur ubiquitously in nature and in technologically important materials and processes, including marine biomineralization, cement hydration, corrosion inhibition, bioadhesion, and bone resorption. Among these examples, surprisingly diverse hydration behaviors are observed for oxides in the presence of saccharides with closely related compositions and structures. Glucose, sucrose, and maltodextrin, for example, exhibit significant differences in their adsorption selectivities and alkaline reaction properties on hydrating aluminate, silicate, and aluminosilicate surfaces that are shown to be due to the molecular architectures of the saccharides. Solid-state (1)H, (13)C, (29)Si, and (27)Al nuclear magnetic resonance (NMR) spectroscopy measurements, including at very high magnetic fields (19 T), distinguish and quantify the different molecular species, their chemical transformations, and their site-specific adsorption on different aluminate and silicate moieties. Two-dimensional NMR results establish nonselective adsorption of glucose degradation products containing carboxylic acids on both hydrated silicates and aluminates. In contrast, sucrose adsorbs intact at hydrated silicate sites and selectively at anhydrous, but not hydrated, aluminate moieties. Quantitative surface force measurements establish that sucrose adsorbs strongly as multilayers on hydrated aluminosilicate surfaces. The molecular structures and physicochemical properties of the saccharides and their degradation species correlate well with their adsorption behaviors. The results explain the dramatically different effects that small amounts of different types of sugars have on the rates at which aluminate, silicate, and aluminosilicate species hydrate, with important implications for diverse materials and applications.

  19. Thermal properties and application of potential lithium silicate breeder materials

    International Nuclear Information System (INIS)

    Skokan, A.; Wedemeyer, H.; Vollath, D.; Gunther, E.

    1987-01-01

    Phase relations, thermal stability and preparation methods of the Li 2 O-rich silicates Li 8 SiO 6 and ''Li 6 SiO 5 '' have been investigated experimentally, the application of these compounds as solid breeder materials is discussed. In the second part of this contribution, the results of thermal expansion measurements on the silicates Li 2 SiO 3 , Li 4 SiO 4 and Li 8 SiO 6 are presented

  20. Thermal properties and application of potential lithium silicate breeder materials

    International Nuclear Information System (INIS)

    Skokan, A.; Wedemeyer, H.; Vollath, D.; Guenther, E.

    1986-01-01

    Phase relations, thermal stability and preparation methods of the Li 2 O-rich silicates Li 8 SiO 6 and 'Li 6 SiO 5 ' have been investigated experimentally, the application of these compounds as solid breeder materials is discussed. In the second part of this contribution, the results of thermal expansion measurements on the silicates Li 2 SiO 3 , Li 4 SiO 4 and Li 8 SiO 6 are presented. (author)

  1. Influence of the type of aqueous sodium silicate on the stabilization and rheology of kaolin clay suspensions

    Science.gov (United States)

    Izak, Piotr; Ogłaza, Longin; Mozgawa, Włodzimierz; Mastalska-Popławska, Joanna; Stempkowska, Agata

    2018-05-01

    To avoid agglomeration and sedimentation of grains, ceramic slurries should be modified by stabilizers in order to increase the electrostatic interactions between the dispersed particles. In this study we present the spectral analysis of aqueous sodium silicates obtained by different synthesis methods and their influence on the rheological properties of kaolin based slurries. Infrared and Raman spectra can be used to describe the structure of silicate structural units present in aqueous sodium silicates. It was confirmed that the best stabilization results possess aqueous sodium silicates of the silicate moduli of about 2 and the optimal concentration of the used fluidizer is 0.3 wt% to the kaolin clay dry mass. One of the most important conclusions is that the synthesis method of the fluidizer has no significant effect on its stabilization properties but used medium does create adequate stabilization mechanism depending on the silicate structures present in the sodium silicate solution.

  2. Analyses and predictions of the thermodynamic properties and phase diagrams of silicate systems

    Energy Technology Data Exchange (ETDEWEB)

    Blander, M. (Argonne National Lab., IL (United States)); Pelton, A.; Eriksson, G. (Ecole Polytechnique, Montreal, PQ (Canada). Dept. of Metallurgy and Materials Engineering)

    1992-01-01

    Molten silicates are ordered solutions which can not be well represented by the usual polynomial representation of deviations from ideal solution behavior (i.e. excess free energies of mixing). An adaptation of quasichemical theory which is capable of describing the properties of ordered solutions represents the measured properties of binary silicates over broad ranges of composition and temperature. For simple silicates such as the MgO-FeO-SiO{sub 2} ternary system, in which silica is the only acid component, a combining rule generally leads to good predictions of ternary solutions from those of the binaries. In basic solutions, these predictions are consistent with those of the conformal ionic solution theory. Our results indicate that our approach could provide a potentially powerful tool for representing and predicting the properties of multicomponent molten silicates.

  3. Analyses and predictions of the thermodynamic properties and phase diagrams of silicate systems

    Energy Technology Data Exchange (ETDEWEB)

    Blander, M. [Argonne National Lab., IL (United States); Pelton, A.; Eriksson, G. [Ecole Polytechnique, Montreal, PQ (Canada). Dept. of Metallurgy and Materials Engineering

    1992-07-01

    Molten silicates are ordered solutions which can not be well represented by the usual polynomial representation of deviations from ideal solution behavior (i.e. excess free energies of mixing). An adaptation of quasichemical theory which is capable of describing the properties of ordered solutions represents the measured properties of binary silicates over broad ranges of composition and temperature. For simple silicates such as the MgO-FeO-SiO{sub 2} ternary system, in which silica is the only acid component, a combining rule generally leads to good predictions of ternary solutions from those of the binaries. In basic solutions, these predictions are consistent with those of the conformal ionic solution theory. Our results indicate that our approach could provide a potentially powerful tool for representing and predicting the properties of multicomponent molten silicates.

  4. Solidification of low-level radioactive liquid waste using a cement-silicate process

    International Nuclear Information System (INIS)

    Grandlund, R.W.; Hayes, J.F.

    1979-01-01

    Extensive use has been made of silicate and Portland cement for the solidification of industrial waste and recently this method has been successfully used to solidify a variety of low level radioactive wastes. The types of wastes processed to date include fuel fabrication sludges, power reactor waste, decontamination solution, and university laboratory waste. The cement-silicate process produces a stable solid with a minimal increase in volume and the chemicals are relatively inexpensive and readily available. The method is adaptable to either batch or continuous processing and the equipment is simple. The solid has leaching characteristics similar to or better than plain Portland cement mixtures and the leaching can be further reduced by the use of ion-exchange additives. The cement-silicate process has been used to solidify waste containing high levels of boric acid, oils, and organic solvents. The experience of handling the various types of liquid waste with a cement-silicate system is described

  5. Dynamic shear stiffness and damping ratio of marine calcareous and siliceous sands

    Science.gov (United States)

    Javdanian, Hamed; Jafarian, Yaser

    2018-03-01

    Shear stiffness and damping ratio of two marine calcareous and siliceous sands were evaluated through an experimental program. Resonant column and cyclic triaxial experiments were conducted to measure the dynamic properties of the sands in small and large shear strain amplitudes. The tests were conducted under various initial stress-density conditions. The influence of effective confining pressure on the dynamic properties of the sands was assessed and compared in a preceding paper. It was shown that the calcareous sand has higher shear stiffness and lower damping ratio in comparison to the siliceous sand. In this note, the results are presented in more details and the dynamic behavior curves of the studied sands are compared with some available models, mostly developed based on the laboratory data of siliceous sands. This comparative study reveals that the previous models predict the dynamic properties of the calcareous sand in less precision than those of the siliceous sand.

  6. Polymer/Silicate Nanocomposites Used to Manufacture Gas Storage Tanks With Reduced Permeability

    Science.gov (United States)

    Campbell, Sandi G.; Johnston, Chris

    2004-01-01

    Over the past decade, there has been considerable research in the area of polymer-layered silicate nanocomposites. This research has shown that the dispersion of small amounts of an organically modified layered silicate improves the polymer strength, modulus, thermal stability, and barrier properties. There have been several reports on the dispersion of layered silicates in an epoxy matrix. Potential enhancements to the barrier properties of epoxy/silicate nanocomposites make this material attractive for low permeability tankage. Polymer matrix composites (PMCs) have several advantages for cryogenic storage tanks. They are lightweight, strong, and stiff; therefore, a smaller fraction of a vehicle's potential payload capacity is used for propellant storage. Unfortunately, the resins typically used to make PMC tanks have higher gas permeability than metals. This can lead to hydrogen loss through the body of the tank instead of just at welds and fittings. One approach to eliminate this problem is to build composite tanks with thin metal liners. However, although these tanks provide good permeability performance, they suffer from a substantial mismatch in the coefficient of thermal expansion, which can lead to failure of the bond between the liner and the body of the tank. Both problems could be addressed with polymersilicate nanocomposites, which exhibit reduced hydrogen permeability, making them potential candidates for linerless PMC tanks. Through collaboration with Northrop Grumman and Michigan State University, nanocomposite test tanks were manufactured for the NASA Glenn Research Center, and the helium permeability was measured. An organically modified silicate was prepared at Michigan State University and dispersed in an epoxy matrix (EPON 826/JeffamineD230). The epoxy/silicate nanocomposites contained either 0 or 5 wt% of the organically modified silicate. The tanks were made by filament winding carbon fibers with the nanocomposite resin. Helium permeability

  7. Silicate bonded ceramics of laterites

    International Nuclear Information System (INIS)

    Wagh, A.S.; Douse, V.

    1989-05-01

    Sodium silicate is vacuum impregnated in bauxite waste (red mud) at room temperature to develop ceramics of mechanical properties comparable to the sintered ceramics. For a concentration up to 10% the fracture toughness increases from 0.12 MNm -3/2 to 0.9 MNm -3/2 , and the compressive strength from 7 MNm -2 to 30 MNm -2 . The mechanical properties do not deteriorate, when soaked in water for an entire week. The viscosity and the concentration of the silicate solution are crucial, both for the success of the fabrication and the economics of the process. Similar successful results have been obtained for bauxite and lime stone, even though the latter has poor weathering properties. With scanning electron microscopy and energy dispersive analysis, an attempt is made to identify the crystals formed in the composite, which are responsible for the strength. The process is an economic alternative to the sintered ceramics in the construction industry in the tropical countries, rich in lateritic soils and poor in energy. Also the process has all the potential for further development in arid regions abundant in limestone. (author). 6 refs, 20 figs, 3 tabs

  8. Experimental determination of the Mo isotope fractionation factor between metal and silicate liquids

    Science.gov (United States)

    Hin, R. C.; Burkhardt, C.; Schmidt, M. W.; Bourdon, B.

    2011-12-01

    The conditions and chemical consequences of core formation have mainly been reconstructed from experimentally determined element partition coefficients between metal and silicate liquids. However, first order questions such as the mode of core formation or the nature of the light element(s) in the Earth's core are still debated [1]. In addition, the geocentric design of most experimental studies leaves the conditions of core formation on other terrestrial planets and asteroids even more uncertain than for Earth. Through mass spectrometry, records of mass-dependent stable isotope fractionation during high-temperature processes such as metal-silicate segregation are detectable. Stable isotope fractionation may thus yield additional constrains on core formation conditions and its consequences for the chemical evolution of planetary objects. Experimental investigations of equilibrium mass-dependent stable isotope fractionation have shown that Si isotopes fractionate between metal and silicate liquids at temperatures of 1800°C and pressures of 1 GPa, while Fe isotopes leave no resolvable traces of core formation processes [2,3]. Molybdenum is a refractory and siderophile trace element in the Earth, and thus much less prone to complications arising from mass balancing core and mantle and from potential volatile behaviour than other elements. To determine equilibrium mass-dependent Mo isotope fractionation during metal-silicate segregation, we have designed piston cylinder experiments with a basaltic silicate composition and an iron based metal with ~8 wt% Mo, using both graphite and MgO capsules. Metal and silicate phases are completely segregated by the use of a centrifuging piston cylinder at ETH Zurich, thus preventing analysis of mixed metal and silicate signatures. Molybdenum isotope compositions were measured using a Nu Instruments 1700 MC-ICP-MS at ETH Zurich. To ensure an accurate correction of analytical mass fractionation a 100Mo-97Mo double spike was admixed

  9. Petrophysical Analysis of Siliceous Ooze Sediments, Ormen Lange Field, Norway

    DEFF Research Database (Denmark)

    Awedalkarim, Ahmed; Fabricius, Ida Lykke

    , but apparent porosity indications in any other lithology, such as siliceous ooze, are wrong and they should be corrected. The apparent bulk density log should be influenced by the hydrogen in opal as also the neutron porosity tools because they are sensitive to the amount of hydrogen in a formation...... present in the solid. Some minerals of siliceous ooze, such as opal, have hydrogen in their structures which influences the measured hydrogen index (HI). The neutron tool obtains the combined signal of the HI of the solid phase and of the water that occupies the true porosity. The HI is equal to true...... to interpret lithology and the unusual physical properties of the studied intervals. The integration of all these data revealed that the studied siliceous ooze is a mixture of opal and non-opal (shale). Our results proved to be reasonably consistent. The studied intervals apparently do not contain hydrocarbons....

  10. Wastewater reuse in liquid sodium silicate manufacturing in alexandria, egypt.

    Science.gov (United States)

    Ismail, Gaber A; Abd El-Salam, Magda M; Arafa, Anwar K

    2009-01-01

    Soluble sodium silicates (waterglass) are liquids containing dissolved glass which have some water like properties. They are widely used in industry as sealants, binders, deflocculants, emulsifiers and buffers. Their most common applications in Egypt are in the pulp and paper industry (where they improve the brightness and efficiency of peroxide bleaching) and the detergent industry, in which they improve the action of the detergent and lower the viscosity of liquid soaps. The survey results showed that the production was carried out batch-wise, in an autoclave (dissolver). Sodium silicate in the state of crushed glass was charged in an autoclave (dissolver) with sodium hydroxide and water. The product is filtered through a press. The left over sludge (mud and silicates impurities) is emptied into the local sewer system. Also, sludge (silica gel) was discharged from the neutralization process of the generated alkaline wastewater and consequently clogging the sewerage system. So this study was carried out to modify the current wastewater management system which eliminates sludge formation, the discharge of higher pH wastewater to the sewer system, and to assess its environmental and economic benefits. To assess the characteristics of wastewater to be reused, physico-chemical parameters of 12 samples were tested using standard methods. The survey results showed that a total capacity of the selected enterprise was 540 tons of liquid sodium silicates monthly. The total amount of wastewater being discharged was 335 m3/month. Reusing of wastewater as feed autoclave water reduced water consumption of 32.1% and reduced wastewater discharge/month that constitutes 89.6% as well as saving in final product of 6 ton/month. It was concluded that reusing of wastewater generated from liquid sodium silicate manufacturing process resulted in cheaper and environmental-friendly product.

  11. Energetics of silicate melts from thermal diffusion studies. Final report

    International Nuclear Information System (INIS)

    Walker, D.

    1997-01-01

    Initially this project was directed towards exploiting Soret diffusion of silicate liquids to learn about the internal energetics of the constituents of the liquids. During the course of this project this goal was realized at the same time a series of intellectual and technical developments expanded the scope of the undertaking. Briefly recapping some of the highlights, the project was initiated after the discovery that silicate liquids were strongly Soret-active. It was possible to observe the development of strong diffusive gradients in silicate liquid composition in response to laboratory-imposed thermal gradients. The character of the chemical separations was a direct window into the internal speciation of the liquids; the rise time of the separation was a useful entree to quantitatively measuring chemical diffusivity; and the steady state magnitude of the separation proved to be an excellent determinant of the constituents' mixing energies. A comprehensive program was initiated to measure the separations, rise times, and mixing energies of a range of geologically and technically interesting silicate liquids. An additional track of activities in the DOE project has run in parallel to the Soret investigation of single-phase liquids in a thermal gradient. This additional track is the study of liquid-plus-crystal systems in a thermal gradient. In these studies solubility-driven diffusion introduced many useful effects, some quite surprising. In partially molten silicate liquids the authors applied their experiments to understanding magmatic cumulate rocks. They have also applied their understanding of these systems to aspects of evaporite deposits in the geological record. They also undertook studies of this sort in systems with retrograde solubility in order to form the basis for understanding remediation for brine migration problems in evaporite-hosted nuclear waste repositories such as the WIPP

  12. Laser-induced breakdown spectroscopy of tantalum plasma

    International Nuclear Information System (INIS)

    Khan, Sidra; Bashir, Shazia; Hayat, Asma; Khaleeq-ur-Rahman, M.; Faizan–ul-Haq

    2013-01-01

    Laser Induced Breakdown spectroscopy (LIBS) of Tantalum (Ta) plasma has been investigated. For this purpose Q-switched Nd: YAG laser pulses (λ∼ 1064 nm, τ∼ 10 ns) of maximum pulse energy of 100 mJ have been employed as an ablation source. Ta targets were exposed under the ambient environment of various gases of Ar, mixture (CO 2 : N 2 : He), O 2 , N 2 , and He under various filling pressure. The emission spectrum of Ta is observed by using LIBS spectrometer. The emission intensity, excitation temperature, and electron number density of Ta plasma have been evaluated as a function of pressure for various gases. Our experimental results reveal that the optical emission intensity, the electron temperature and density are strongly dependent upon the nature and pressure of ambient environment. The SEM analysis of the ablated Ta target has also been carried out to explore the effect of ambient environment on the laser induced grown structures. The growth of grain like structures in case of molecular gases and cone-formation in case of inert gases is observed. The evaluated plasma parameters by LIBS analysis such as electron temperature and the electron density are well correlated with the surface modification of laser irradiated Ta revealed by SEM analysis

  13. Laser-induced breakdown spectroscopy of tantalum plasma

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Sidra; Bashir, Shazia; Hayat, Asma; Khaleeq-ur-Rahman, M.; Faizan–ul-Haq [Centre for Advanced Studies in Physics, GC University, Lahore (Pakistan)

    2013-07-15

    Laser Induced Breakdown spectroscopy (LIBS) of Tantalum (Ta) plasma has been investigated. For this purpose Q-switched Nd: YAG laser pulses (λ∼ 1064 nm, τ∼ 10 ns) of maximum pulse energy of 100 mJ have been employed as an ablation source. Ta targets were exposed under the ambient environment of various gases of Ar, mixture (CO{sub 2}: N{sub 2}: He), O{sub 2}, N{sub 2}, and He under various filling pressure. The emission spectrum of Ta is observed by using LIBS spectrometer. The emission intensity, excitation temperature, and electron number density of Ta plasma have been evaluated as a function of pressure for various gases. Our experimental results reveal that the optical emission intensity, the electron temperature and density are strongly dependent upon the nature and pressure of ambient environment. The SEM analysis of the ablated Ta target has also been carried out to explore the effect of ambient environment on the laser induced grown structures. The growth of grain like structures in case of molecular gases and cone-formation in case of inert gases is observed. The evaluated plasma parameters by LIBS analysis such as electron temperature and the electron density are well correlated with the surface modification of laser irradiated Ta revealed by SEM analysis.

  14. Corrosion of low Si-alloyed steels in aqueous solution at 90 deg. C. Inhibitive action of silicates; Corrosion d'aciers faiblement allies au silicium en solution aqueuse a 90 deg. C. Action inhibitrice des silicates

    Energy Technology Data Exchange (ETDEWEB)

    Giordana, S

    2002-02-01

    Low-Si alloyed steels, with Si content ranging from 0.25 to 3.2 wt%, as potential candidate materials for high-level nuclear waste disposal containers, have been studied four the point of view of their corrosion behaviour at 90 deg C in an aqueous solution simulating groundwater (0.1 M NaCl borate-buffered solution with a pH of 8.5) both in reducing and in aerated conditions. The influence of silicate addition to the solution is examined so as to represent the silicon of groundwater, coming from the clay dissolution. When no silicate was added to the solution, silicon as an alloying element was proved to degrade in the first moments the steel ability to passivate. For longer immersion times, protective effects developed most efficiently on the steel containing 3.2 wt% silicon both in reducing an in aerating conditions, Infrared spectroscopy, EDSX, XRD and Raman microprobe were applied to characterise the oxide layer composition, which was found to be a mixture of magnetite and maghemite. In the presence of silicate in the solution, clay-like iron silicates appeared in the corrosion layer. Electrochemical tests results show that adding silicate into solution resulted in increasing the steel ability to passivate. In the short term, the inhibiting effect of silicate was confirmed by mass loss tests, but the tendency was inverse in the long term. Silicate iron layers were eventually less protective than the magnetite layers formed in the absence of silicate. (author)

  15. Development of Silicate Extraction Method for Detection of Irradiated Potatoes by Thermoluminescence

    International Nuclear Information System (INIS)

    Teerasarn, Wannapha; Sudprasert, Wanwisa

    2009-07-01

    Full text: Thermoluminescence (TL) is a promising technique used for detection of irradiated foods. In practice, silicate minerals are first isolated from foods by density gradient with sodium poly tungstate of a density 2.0 g/cm 3 , which is very expensive. The study was carried out to develop a new low-cost reagent for silicate extraction. The silicate minerals were extracted from irradiated potatoes (at doses of 0, 0.05, 0.15, 0.25, 0.5 and 1 kGy) using potassium carbonate of a density 2 g/cm 3 . X-ray diffraction spectroscopy (XRD) was employed to investigate the types of silicate minerals present in the extracts. The TL measurement was performed to identify the irradiation status of the samples using a TL reader. The results showed that quartz was found as the major mineral of the samples. The TL analysis of glow curve showed that irradiated potatoes exhibited a maximum glow peak between 208-280 c degree, where as non-irradiated potatoes exhibited a maximum glow peak between 289-351 C degree. The results clearly indicated that the silicate minerals can effectively be isolated from potatoes by using potassium carbonate instead of sodium poly tungstate for the purpose of irradiation identification. In this sense, the cost of irradiation identification will be reduced at least 20 times comparing to using the conventional extraction reagent

  16. Adsorption of dimeric surfactants in lamellar silicates

    Energy Technology Data Exchange (ETDEWEB)

    Balcerzak, Mateusz; Pietralik, Zuzanna [Department of Macromolecular Physics, Faculty of Physics, A. Mickiewicz University, Umultowska 85, 61-614 Poznań (Poland); Domka, Ludwik [Department of Metalorganic Chemistry, Faculty of Chemistry, A. Mickiewicz University, Grunwaldzka 6, 60-780 Poznań (Poland); Skrzypczak, Andrzej [Institute of Chemical Technology, Poznań University of Technology, Berdychowo 4, 60-965 Poznań (Poland); Kozak, Maciej, E-mail: mkozak@amu.edu.pl [Department of Macromolecular Physics, Faculty of Physics, A. Mickiewicz University, Umultowska 85, 61-614 Poznań (Poland)

    2015-12-01

    Highlights: • The intercalation of dimeric surfactants changed the morphology of MMT samples. • XRD indicated structures formed by surfactant molecules in interlayer space. • The four-step thermal decomposition of dimeric surfactant, confirms intercalation. - Abstract: The adsorption of different types of cationic surfactants in lamellar silicates changes their surface character from hydrophilic to hydrophobic. This study was undertaken to obtain lamellar silicates modified by a series of novel dimeric (gemini) surfactants of different length alkyl chains and to characterise these organophilised materials. Synthetic sodium montmorillonite SOMASIF® ME 100 (M) and enriched bentonite of natural origin (Nanoclay – hydrophilic bentonite®) were organophilised with dimeric (gemini) surfactants (1,1′-(1,4-butanediyl)bis(alkoxymethyl)imidazolium dichlorides). As a result of surfactant molecule adsorption in interlamellar space, the d-spacing (d{sub 001}) increased from 0.97 nm (for the anhydrous structure) to 2.04 nm. A Fourier transform infrared spectroscopy (FTIR) analysis of the modified systems reveals bands assigned to the stretching vibrations of the CH{sub 2} and CH{sub 3} groups and the scissoring vibrations of the NH group from the structure of the dimeric surfactants. Thermogravimetric (TG) and derivative thermogravimetric (DTG) studies imply a four-stage process of surfactant decomposition. Scanning electron microscopy (SEM) images provide information on the influence of dimeric surfactant intercalation into the silicate structures. Particles of the modified systems show a tendency toward the formation of irregularly shaped agglomerates.

  17. Discovery of Ni-smectite-rich saprolite at Loma Ortega, Falcondo mining district (Dominican Republic): geochemistry and mineralogy of an unusual case of "hybrid hydrous Mg silicate - clay silicate" type Ni-laterite

    Science.gov (United States)

    Tauler, Esperança; Lewis, John F.; Villanova-de-Benavent, Cristina; Aiglsperger, Thomas; Proenza, Joaquín A.; Domènech, Cristina; Gallardo, Tamara; Longo, Francisco; Galí, Salvador

    2017-10-01

    Hydrous Mg silicate-type Ni-laterite deposits, like those in the Falcondo district, Dominican Republic, are dominated by Ni-enriched serpentine and garnierite. Recently, abundant Ni-smectite in the saprolite zone have been discovered in Loma Ortega, one of the nine Ni-laterite deposits in Falcondo. A first detailed study on these Ni-smectites has been performed (μXRD, SEM, EPMA), in addition to a geochemical and mineralogical characterisation of the Loma Ortega profile (XRF, ICP-MS, XRD). Unlike other smectite occurrences in laterite profiles worldwide, the Loma Ortega smectites are trioctahedral and exhibit high Ni contents never reported before. These Ni-smectites may be formed from weathering of pyroxene and olivine, and their composition can be explained by the mineralogy and the composition of the Al-depleted, olivine-rich parent ultramafic rock. Our study shows that Ni-laterites are mineralogically complex, and that a hydrous Mg silicate ore and a clay silicate ore can be confined to the same horizon in the weathering profile, which has significant implications from a recovery perspective. In accordance, the classification of "hybrid hydrous Mg silicate - clay silicate" type Ni-laterite deposit for Loma Ortega would be more appropriate.

  18. The effect of low energy helium ion irradiation on tungsten-tantalum (W-Ta) alloys under fusion relevant conditions

    Science.gov (United States)

    Gonderman, S.; Tripathi, J. K.; Novakowski, T. J.; Sizyuk, T.; Hassanein, A.

    2017-08-01

    Currently, tungsten remains the best candidate for plasma-facing components (PFCs) for future fusion devices because of its high melting point, low erosion, and strong mechanical properties. However, continued investigation has shown tungsten to undergo severe morphology changes under fusion-like conditions. These results motivate the study of innovative PFC materials which are resistant to surface morphology evolution. The goal of this work is to examine tungsten-tantalum (W-Ta) alloys, a potential PFC material, and their response to low energy helium ion irradiation. Specifically, W-Ta samples are exposed to 100 eV helium irradiations with a flux of 1.15 × 1021 ions m-2 s-1, at 873 K, 1023 K, and 1173 K for 1 h duration. Scanning electron microscopy (SEM) reveals significant changes in surface deterioration due to helium ion irradiation as a function of both temperature and tantalum concentration in W-Ta samples. X-Ray Diffraction (XRD) studies show a slight lattice parameter expansion in W-Ta alloy samples compared to pure W samples. The observed lattice parameter expansion in W-Ta alloy samples (proportional to increasing Ta wt.% concentrations) reflect significant differences observed in the evolution of surface morphology, i.e., fuzz development processes for both increasing Ta wt.% concentration and target temperature. These results suggest a correlation between the observed morphology differences and the induced crystal structure change caused by the presence of tantalum. Shifts in the XRD peaks before and after 100 eV helium irradiation with a flux of 1.15 × 1021 ions m-2 s-1, 1023 K, for 1 h showed a significant difference in the magnitude of the shift. This has suggested a possible link between the atomic spacing of the material and the accumulated damage. Ongoing research is needed on W-Ta alloys and other innovative materials for their application as irradiation resistant materials in future fusion or irradiation environments.

  19. Reduction experiment of FeO-bearing amorphous silicate: application to origin of metallic iron in GEMS

    Energy Technology Data Exchange (ETDEWEB)

    Matsuno, Junya; Tsuchiyama, Akira; Miyake, Akira [Department of Geology and Mineralogy, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwake, Sakyo-ku, Kyoto 606-8502 (Japan); Noguchi, Ryo [Department of Earth and Space Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043 (Japan); Ichikawa, Satoshi, E-mail: jmatsuno@kueps.kyoto-u.ac.jp [Institute for Nano-science Design, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531 (Japan)

    2014-09-10

    Glass with embedded metal and sulfides (GEMS) are amorphous silicates included in anhydrous interplanetary dust particles (IDPs) and can provide information about material evolution in our early solar system. Several formation processes for GEMS have been proposed so far, but these theories are still being debated. To investigate a possible GEMS origin by reduction of interstellar silicates, we synthesized amorphous silicates with a mean GEMS composition and performed heating experiments in a reducing atmosphere. FeO-bearing amorphous silicates were heated at 923 K and 973 K for 3 hr, and at 1023 K for 1-48 hr at ambient pressure in a reducing atmosphere. Fe grains formed at the interface between the silicate and the reducing gas through a reduction. In contrast, TEM observations of natural GEMS show that metallic grains are uniformly embedded in amorphous silicates. Therefore, the present study suggests that metallic inclusions in GEMS could not form as reduction products and that other formation process such as condensation or irradiation are more likely.

  20. Structural and dielectric characterization of sputtered Tantalum Titanium Oxide thin films for high temperature capacitor applications

    Energy Technology Data Exchange (ETDEWEB)

    Rouahi, A., E-mail: rouahi_ahlem@yahoo.fr [Univ. Grenoble Alpes, G2Elab, F-38000 (France); Laboratoire Matériaux Organisation et Propriétés (LMOP), Université de Tunis El Manar, 2092 Tunis (Tunisia); Challali, F. [Laboratoire des Sciences des Procédés et des Matériaux (LSPM)-CNRS-UPR3407, Université Paris13, 99 Avenue Jean-Baptiste Clément, 93430, Villetaneuse (France); Dakhlaoui, I. [Laboratoire Matériaux Organisation et Propriétés (LMOP), Université de Tunis El Manar, 2092 Tunis (Tunisia); Vallée, C. [CNRS, LTM, CEA-LETI, F-38000 Grenoble (France); Salimy, S. [Institut des Matériaux Jean Rouxel (IMN) UMR CNRS 6502, Université de Nantes, 2, rue de la Houssinière, B.P. 32229, 44322, Nantes, Cedex 3 (France); Jomni, F.; Yangui, B. [Laboratoire Matériaux Organisation et Propriétés (LMOP), Université de Tunis El Manar, 2092 Tunis (Tunisia); Besland, M.P.; Goullet, A. [Institut des Matériaux Jean Rouxel (IMN) UMR CNRS 6502, Université de Nantes, 2, rue de la Houssinière, B.P. 32229, 44322, Nantes, Cedex 3 (France); Sylvestre, A. [Univ. Grenoble Alpes, G2Elab, F-38000 (France)

    2016-05-01

    In this study, the dielectric properties of metal-oxide-metal capacitors based on Tantalum Titanium Oxide (TiTaO) thin films deposited by reactive magnetron sputtering on aluminum bottom electrode are investigated. The structure of the films was characterized by Atomic Force Microscopy, X-ray diffraction and X-ray photoelectron spectroscopy. The dielectric properties of TiTaO thin films were studied by complex impedance spectroscopy over a wide frequency range (10{sup -2} - to 10{sup 5} Hz) and temperatures in -50 °C to 325 °C range. The contributions of different phases, phases’ boundaries and conductivity effect were highlighted by Cole – Cole diagram (ε” versus ε’). Two relaxation processes have been identified in the electric modulus plot. A first relaxation process appears at low temperature with activation energy of 0.37 eV and it is related to the motion of Ti{sup 4+} (Skanavi’s model). A second relaxation process at high temperature is related to Maxwell-Wagner-Sillars relaxation with activation energy of 0.41 eV. - Highlights: • Titanium Tantalum Oxide thin films are grown on Aluminum substrate. • The existence of phases was confirmed by X-ray photoelectron spectroscopy. • Conductivity effect appears in Cole-Cole plot. • At low temperatures, a relaxation phenomenon obeys to Skanavi’s model. • Maxwell-Wagner-Sillars polarization is processed at high temperatures.

  1. Characteristics of laser produced plasmas of hafnium and tantalum in the 1-7 nm region

    Science.gov (United States)

    Li, Bowen; Otsuka, Takamitsu; Sokell, Emma; Dunne, Padraig; O'Sullivan, Gerry; Hara, Hiroyuki; Arai, Goki; Tamura, Toshiki; Ono, Yuichi; Dinh, Thanh-Hung; Higashiguchi, Takeshi

    2017-11-01

    Soft X-ray (SXR) spectra from hafnium and tantalum laser produced plasmas were recorded in the 1-7 nm region using two Nd:YAG lasers with pulse lengths of 170 ps and 10 ns, respectively, operating at a range of power densities. The maximum focused peak power density was 2. 3 × 1014 W cm-2 for 170 ps pulses and 1. 8 × 1012 W cm-2 for 10 ns pulses, respectively. Two intense quasicontinuous intensity bands resulting from n = 4 - n = 4 and n = 4 - n = 5 unresolved transition arrays (UTAs) dominate both sets of experimental spectra. Comparison with calculations performed with the Cowan suite of atomic structure codes as well as consideration of previous experimental and theoretical results aided identification of the most prominent features in the spectra. For the 10 ns spectrum, the highest ion stage that could be identified from the n = 4 - n = 5 arrays were lower than silver-like Hf25+ and Ta26+ (which has a 4 d 104 f ground configuration) indicating that the plasma temperature attained was too low to produce ions with an outermost 4 d subshell, while for the 170 ps plasmas the presence of significantly higher stages was deduced and lines due to 4 d-5 p transitions were clearly evident. Furthermore, we show an enhancement of emission from tantalum using dual laser irradiation, and the effect of pre-pulse durations and delay times between two pulses are demonstrated.

  2. Tibiocalcaneal Arthrodesis With a Porous Tantalum Spacer and Locked Intramedullary Nail for Post-Traumatic Global Avascular Necrosis of the Talus.

    Science.gov (United States)

    Cohen, Michael M; Kazak, Marat

    2015-01-01

    Global avascular necrosis of the talus is a devastating complication that usually occurs as a result of a post-traumatic or metabolic etiology. When conservative options fail, tibiocalcaneal arthrodesis is generally indicated in conjunction with massive bone grafting to maintain the functional length of the extremity. Several bone grafting options are available, including the use of a freeze-dried or fresh-frozen femoral head allograft or autograft obtained from the iliac crest or fibula, all of which pose their own inherent risks. The noted complications with massive bone grafting techniques have included graft collapse, infection, immune response, donor site morbidity, and nonunion. In an effort to avoid many of these complications, we present a case report involving post-traumatic talar avascular necrosis in a 59-year-old male who was successfully treated with the use of a porous tantalum spacer, an autogenic morselized fibular bone graft, and 30 mL of bone marrow aspirate in conjunction with a retrograde tibiocalcaneal nail. Porous tantalum is an attractive substitute for bone grafting because of its structural integrity, biocompatibility, avoidance of donor site complications, and lack of an immune response. The successful use of porous tantalum has been well-documented in hip and knee surgery. We present a practical surgical approach to tibiotalocalcaneal arthrodesis with a large segmental deficit. To our knowledge, this is the first published report describing an alternative surgical technique to address global avascular necrosis of the talus that could have additional applications in salvaging the ankle with a large bone deficiency. Copyright © 2015 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  3. Sulfur Saturation Limits in Silicate Melts and their Implications for Core Formation Scenarios for Terrestrial Planets

    Science.gov (United States)

    Holzheid, Astrid; Grove, Timothy L.

    2002-01-01

    This study explores the controls of temperature, pressure, and silicate melt composition on S solubility in silicate liquids. The solubility of S in FeO-containing silicate melts in equilibrium with metal sulfide increases significantly with increasing temperature but decreases with increasing pressure. The silicate melt structure also exercises a control on S solubility. Increasing the degree of polymerization of the silicate melt structure lowers the S solubility in the silicate liquid. The new set of experimental data is used to expand the model of Mavrogenes and O'Neill(1999) for S solubility in silicate liquids by incorporating the influence of the silicate melt structure. The expected S solubility in the ascending magma is calculated using the expanded model. Because the negative pressure dependence of S solubility is more influential than the positive temperature dependence, decompression and adiabatic ascent of a formerly S-saturated silicate magma will lead to S undersaturation. A primitive magma that is S-saturated in its source region will, therefore, become S-undersaturated as it ascends to shallower depth. In order to precipitate magmatic sulfides, the magma must first cool and undergo fractional crystallization to reach S saturation. The S content in a metallic liquid that is in equilibrium with a magma ocean that contains approx. 200 ppm S (i.e., Earth's bulk mantle S content) ranges from 5.5 to 12 wt% S. This range of S values encompasses the amount of S (9 to 12 wt%) that would be present in the outer core if S is the light element. Thus, the Earth's proto-mantle could be in equilibrium (in terms of the preserved S abundance) with a core-forming metallic phase.

  4. Les silicates alcalins, matière de base des mousses minérales isolantes. Etude bibliographique Alkaline Silicates, As a Basic Material for Insulating Mineral Foams. Bibliographie Study

    Directory of Open Access Journals (Sweden)

    Lesage J.

    2006-11-01

    Full Text Available Dans cette étude bibliographique, on décrit les méthodes d'obtention des silicates alcalins ainsi que leurs propriétés et les propriétés de leurs polymères en insistant sur l'influence du pH, de la concentration et de la température sur la polymérisation et les caractéristiques des polymères obtenus. On présente ensuite le mode d'obtention des mousses à partir de solutions aqueuses de silicates, ainsi que leurs propriétés et l'influence de divers additifs tels que les agents tensioactifs, moussants, gélifiants ou les agents de durcissement sur les propriétés des mousses. II ressort de cette bibliographie que des mousses polysilicates solubles peuvent être obtenues à partir de solutions de silicates à faible rapport molaire SiO2/Na2O. Par ailleurs, en faisant varier la composition des solutions de silicates alcalins et par l'emploi d'additifs, il est possible de produire une gamme très variée de mousses polysilicates dont les propriétés d'isolation, de solubilité et de résistance mécanique, voire de perméabilité, sont très variées, ce qui leur ouvre la voie à de nombreuses possibilités de débouchés industriels. This article gives a bibliographic description of methods for obtaining alkaline silicates as well as their properties and the properties of their polymers. Emphasis is placed on the influence of the pH, and on the influence of the concentration and temperature on the polymerization and the characteristics of the polymers obtained. Then a method is recommended for obtaining foams from aqueous silicate solutions together with the properties of such foams and the influence of different additives such as surfactants, foaming agents, gelling agents and hardening agents on the properties of foams. This bibliographic study shows that soluble polysilicate foams may be obtained from silicate solutions with a low SiO2/Na2O molar ratio. Furthermore, by varying the composition of alkaline silicate solutions and by

  5. Dielectric properties of plasma sprayed silicates

    Czech Academy of Sciences Publication Activity Database

    Ctibor, Pavel; Sedláček, J.; Neufuss, Karel; Dubský, Jiří; Chráska, Pavel

    -, č. 31 (2005), s. 315-321 ISSN 0272-8842 R&D Projects: GA ČR(CZ) GA202/03/0708 Institutional research plan: CEZ:AV0Z20430508 Keywords : Optical microscopy * electrical properties * silicates * insulators * plasma spraying Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 0.702, year: 2005

  6. Extraction of niobium and tantalum isotopes using organophosphorus compounds. Pt. 1. Extraction of 'carrier-free' metal concentrations from HCl solutions

    International Nuclear Information System (INIS)

    Gates, J.M.; California Univ., Berkeley, CA; Sudowe, R.; Stavsetra, L.

    2009-01-01

    The extraction of niobium (Nb) and tantalum (Ta) from hydrochloric acid media by bis(2-ethylhexyl) hydrogen phosphate (HDEHP) and bis(2-ethylhexyl) hydrogen phosphite (BEHP) was studied. The goal of the experiments is to find a system that demonstrates selectivity between the members of group five of the Periodic Table and is also suitable for the study of dubnium (Db, Z=105). Experiments were performed at the trace level (10 -16 M Nb or Ta) using hydrochloric acid with concentrations ranging from 1-11 M and short-lived isotopes of Nb and Ta produced in nuclear reactions. When HDEHP was used as the extractant, the Nb extraction yield decreased with increasing acid concentrations above 6 M, while the amount of Ta extracted remained over 75% for all acid concentrations studied. Tantalum was found to be extracted by BEHP at acid concentrations above 6 M, while niobium was not significantly extracted. The data obtained are used as the basis to discuss the speciation of Nb and Ta under the conditions studied and to evaluate possible extraction mechanisms. (orig.)

  7. Tantalum-178 - a short-lived nuclide for nuclear medicine: development of a potential generator system

    International Nuclear Information System (INIS)

    Neirinckx, R.D.; Jones, A.G.; Davis, M.A.; Harris, G.I.; Holman, B.L.

    1978-01-01

    We describe a chemical separation that may form the basis of a generator system for the short-lived radionuclide Ta-178 (T/sub 1/2/ = 9 min). The parent nuclide W-178 (T/sub 1/2/ = 21.7 days) is loaded on an anion-exchange column and the daughter eluted with a mixture of dilute hydrochloric acid and hydrogen peroxide. The yields of tantalum and the breakthrough of the tungsten parent as a function of the eluting conditions are discussed, and preliminary animal distribution data are presented for various treatments of the eluant solution

  8. Topotactic conversion of β-helix-layered silicate into AST-type zeolite through successive interlayer modifications.

    Science.gov (United States)

    Asakura, Yusuke; Takayama, Ryosuke; Shibue, Toshimichi; Kuroda, Kazuyuki

    2014-02-10

    AST-type zeolite with a plate morphology can be synthesized by topotactic conversion of a layered silicate (β-helix-layered silicate; HLS) by using N,N-dimethylpropionamide (DPA) to control the layer stacking of silicate layers and the subsequent interlayer condensation. Treatment of HLS twice with 1) hydrochloric acid/ethanol and 2) dimethylsulfoxide (DMSO) are needed to remove interlayer hydrated Na ions and tetramethylammonium (TMA) ions in intralayer cup-like cavities (intracavity TMA ions), both of which are introduced during the preparation of HLS. The utilization of an amide molecule is effective for the control of the stacking sequence of silicate layers. This method could be applicable to various layered silicates that cannot be topotactically converted into three-dimensional networks by simple interlayer condensation by judicious choice of amide molecules. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Effect of temperature on hydration kinetics and polymerization of tricalcium silicate in stirred suspensions of CaO-saturated solutions

    International Nuclear Information System (INIS)

    Grant, Steven A.; Boitnott, Ginger E.; Korhonen, Charles J.; Sletten, Ronald S.

    2006-01-01

    Tricalcium silicate was hydrated at 274, 278, 283, 298, and 313 K in stirred suspensions of saturated CaO solutions under a nitrogen-gas atmosphere until the end of deceleratory period. The suspension conductivities and energy flows were measured continuously. The individual reaction rates for tricalcium silicate dissolution, calcium silicate hydrate precipitation, and calcium hydroxide precipitation were calculated from these measurements. The results suggest that the proportion of tricalcium silicate dissolved was determined by the rate of tricalcium silicate dissolution and the time to very rapid calcium hydroxide precipitation. The time to very rapid calcium hydroxide precipitation was more sensitive to changes in temperature than was the rate of tricalcium silicate dissolution, so that the proportion of tricalcium silicate hydration dissolved by the deceleratory period increased with decreasing temperature. The average chain length of the calcium silicate hydrate ascertained by magic-angle spinning nuclear magnetic resonance spectroscopy increased with increasing temperature

  10. ION-INDUCED PROCESSING OF COSMIC SILICATES: A POSSIBLE FORMATION PATHWAY TO GEMS

    Energy Technology Data Exchange (ETDEWEB)

    Jäger, C.; Sabri, T. [Max Planck Institute for Astronomy, Heidelberg, Laboratory Astrophysics and Cluster Physics Group, Institute of Solid State Physics, Friedrich Schiller University Jena, Helmholtzweg 3, D-07743 Jena (Germany); Wendler, E. [Institute of Solid State Physics, Friedrich Schiller University Jena, Helmholtzweg 3, D-07743 Jena (Germany); Henning, Th., E-mail: cornelia.jaeger@uni-jena.de [Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany)

    2016-11-01

    Ion-induced processing of dust grains in the interstellar medium and in protoplanetary and planetary disks plays an important role in the entire dust cycle. We have studied the ion-induced processing of amorphous MgFeSiO{sub 4} and Mg{sub 2}SiO{sub 4} grains by 10 and 20 keV protons and 90 keV Ar{sup +} ions. The Ar{sup +} ions were used to compare the significance of the light protons with that of heavier, but chemically inert projectiles. The bombardment was performed in a two-beam irradiation chamber for in situ ion-implantation at temperatures of 15 and 300 K and Rutherford Backscattering Spectroscopy to monitor the alteration of the silicate composition under ion irradiation. A depletion of oxygen from the silicate structure by selective sputtering of oxygen from the surface of the grains was observed in both samples. The silicate particles kept their amorphous structure, but the loss of oxygen caused the reduction of ferrous (Fe{sup 2+}) ions and the formation of iron inclusions in the MgFeSiO{sub 4} grains. A few Si inclusions were produced in the iron-free magnesium silicate sample pointing to a much less efficient reduction of Si{sup 4+} and formation of metallic Si inclusions. Consequently, ion-induced processing of magnesium-iron silicates can produce grains that are very similar to the glassy grains with embedded metals and sulfides frequently observed in interplanetary dust particles and meteorites. The metallic iron inclusions are strong absorbers in the NIR range and therefore a ubiquitous requirement to increase the temperature of silicate dust grains in IR-dominated astrophysical environments such as circumstellar shells or protoplanetary disks.

  11. The dislocation-internal friction peak γ in tantalum

    International Nuclear Information System (INIS)

    Baur, J.; Benoit, W.; Schultz, H.

    1989-01-01

    Torsion-pendulum measurements were carried out on high-purity single crystal specimens of tantalum, having extremely low oxygen contents ( 2 peak, which appears close to γ is small traces of oxygen are presents. The γ 2 peak was formerly explained as a ''dislocation-enhanced Snoek peak''. The γ peak recovers at the peak temperature, whereas the γ 2 peak is more stable. On the basis of their results, and making use of earlier investigations of Rodrian and Schultz, the authors suggest that γ 2 is modified γ relaxation, related to screw-dislocation segments, stabilized by oxygen-decorated kinks. The stability of the γ 2 peak allows an accurate determination of the activation energy, found to be 1.00 +- 0.03 eV. This value is distinctly lower than the activation energy of the oxygen Snoek effect (1.10 eV) and is related here to the mechanism of ''kink-pair formation'' in screw dislocations, as the original γ peak. The numerical value is compatible with recent values derived from flow-stress measurements. The peak γ 2 shows increasing stability with increasing oxygen content. This is explained by single- and multi-decorated kinks

  12. KINETICS OF A SILICATE COMPOSITION GELATION IN PRESENCE OF REACTION RATE REGULATING COMPOUNDS

    Directory of Open Access Journals (Sweden)

    Olga Titova

    2013-12-01

    Full Text Available The influence of organic and inorganic additions on the formation rate of the silicate gels standard systems – sodium silicate solution in model fresh water was studied. As a result of the experiments were selected optimum concentrations of additives - gelation time regulators

  13. FT-IR and 29 Si-NMR for evaluating aluminium silicate precursors for geopolymers

    NARCIS (Netherlands)

    Valcke, S.L.A.; Pipilikaki, P.; Fischer, H.R.; Verkuijlen, M.H.W.; Eck, E.R.H.

    2014-01-01

    Geopolymers are systems of inorganic binders that can be used for sustainable, cementless concrete and are formed by alkali activation of an aluminium–silicate precursor (often secondary resources like fly ash or slag). The type of aluminium– silicate precursor and its potential variations within

  14. Evaluation of the level of norms and associated logical hazards and risks from mining activities of Kenticha Tantalum mines in Ethiopia

    International Nuclear Information System (INIS)

    Dawd, Jemal Edris

    2016-07-01

    In this study radiological hazards to members of the public and workers from exposure to natural radioactivity as a result of mining activities from Kenticha Tantalum Mines in Ethiopia, have been studied through several exposure pathways using direct gamma spectrometry to determine "2"3"8U, "2"3"2Th, "4"0K, "2"2"6Ra and "2"2"2Rn in tantalum ore, soil, waste, waste tailing and water samples. Additionally, cancer risk assessment associated with NORM was estimated. The average activity concentrations of "2"3"8U, "2"3"2Th, "4"0K, "2"2"6Ra and "2"2"2Rn in tantalum ore were 78.653±1.431 Bq/kg, 24.945±0.492 Bq/kg, 603.170±55.013 Bq/kg, 69.478±31.0 Bq/kg and 112.554±50.249 kBq/m"3, respectively. In soil the activity concentrations were 69.354±1.081 Bq/kg, 15.479±0.231 Bq/kg, 718.880±65.531 Bq/kg, 68.923±1.7 Bq/kg and 111.655±2.681 kBq/m"3, respectively and in solid waste samples 110.496±1.907 Bq/kg, 15.009±0.274 Bq/kg, 607.269±55.375 Bq/kg, 98.300±38.6 Bq/kg and 159.246±62.607 kBq/m"3 respectively. The values were generally above the worldwide average activity concentrations in all samples, except thorium-232. This might be due to the high contents of "2"3"8U decay families and "4"0K in the granite – pegmatite rocks of Kenticha area. The corresponding average external dose rate at 1m above the ground in air for tantalum ore, soil and solid waste samples were 76.407 nGy/h, 71.337 nGy/h, 85.408 nGy/h respectively which were above worldwide average value of 60 nGy/h. The annual equivalent doses were also estimated as 0.021±0.003 mSv, 0.020±0.001 mSv and 0.023±0.004 mSv for ore, soil and solid waste samples, respectively and were found to be lower than the worldwide average of 2.42 mSv/y. Likewise, the radon emanation coefficient which is the fraction of radon generated within the grains of materials and escaped to the pore space, varied from 82±2% to 85±2% for ores, from 82±2% to 84±2% for soil, and from 53±15% to 83±15% for solid waste samples. Also

  15. Spectroscopic properties of 1.8 μm emission in Tm3+ doped bismuth silicate glass

    International Nuclear Information System (INIS)

    Zhao, Guoying; Tian, Ying; Wang, Xin; Fan, Huiyan; Hu, Lili

    2013-01-01

    The emission properties around 1.8 μm in Tm 3+ doped bismuth silicate glass have been investigated. Based on the obtained Raman spectroscopy and differential scanning calorimetry curves, it is found the introduced Bi 2 O 3 can efficiently reduce the phonon energy of silicate glass to 926 cm −1 . The energy gap between glass transition temperature and onset temperature of crystallization is 169 °C. The OH − content maintains lower in glass by bubbling dry O 2 during the melting process. The cut-off wavelength in mid-infrared range is as long as 5 μm. Bismuth silicate glass has high radiative transition probability of 238.80 s −1 corresponding to the Tm 3+ : 3 F 4 → 3 H 6 transition compared with conventional silicate glasses. The strongest emission at 1.8 μm with a large full width at half-maximum of 238 nm is achieved from this bismuth silicate glass doped with 0.9 mol% Tm 2 O 3 . Its fluorescence lifetime at 1.8 μm is 640 μs. - Highlights: ► The 1.8 μm fluorescence of Tm 3+ -doped bismuth silicate glass is investigated. ► The prepared glass has lower phonon energy than other typical silicate glasses. ► A broadband 1.8 μm emission with the FWHM of 238 nm is observed. ► The fluorescence lifetime of Tm 3+ : 3 F 4 level reaches 640 μs.

  16. Evaluation of the effect of sodium silicate addition to mine backfill, Gelfill − Part 1

    Directory of Open Access Journals (Sweden)

    M. Kermani

    2015-06-01

    Full Text Available In this paper, the mechanical properties of sodium silicate-fortified backfill, called Gelfill, were investigated by conducting a series of laboratory experiments. Two configurations were tested, i.e. Gelfill and cemented hydraulic fill (CHF. The Gelfill has an alkali activator such as sodium silicate in its materials in addition to primary materials of mine backfill which are tailings, water and binders. Large numbers of samples of Gelfill and CHF with various mixture designs were cast and cured for over 28 d. The mechanical properties of samples were investigated using uniaxial compression test, and the results were compared with those of reference samples made without sodium silicate. The test results indicated that the addition of an appropriate amount of an alkali activator such as sodium silicate can enhance the mechanical (uniaxial compressive strength and physical (water retention properties of backfill. The microstructure analysis conducted by mercury intrusion porosimetry (MIP revealed that the addition of sodium silicate can modify the pore size distribution and total porosity of Gelfill, which can contribute to the better mechanical properties of Gelfill. It was also shown that the time and rate of drainage in the Gelfill specimens are less than those in CHF specimens made without sodium silicate. Finally, the study showed that the addition of sodium silicate can reduce the required setting time of mine backfill, which can contribute to increase mine production in accordance with the mine safety.

  17. Lettuce production in greenhouse under fertirrgation with nitrogen and potassium silicate

    Directory of Open Access Journals (Sweden)

    Renan Soares de Souza

    2017-04-01

    Full Text Available The objective of this study was to evaluate the effect of nitrogen and potassium silicate on the productive and commercial aspects of curly lettuce, Vera cultivar. The experimental design was completely randomized (CRD, with ten treatments and three replications. The treatments, arranged in a factorial design according to the Plan Puebla III matrix (Turrent & Laird, 1975, consisted of the combination of five doses of nitrogen (9; 54; 90; 126 and 171 kg ha-1 and five doses of potassium silicate (1.15; 6.90; 11.50; 16.10 and 21.85 kg ha-1. A control treatment without application of nitrogen and potassium silicate was also inserted. The crop was grown in a greenhouse and the doses were applied as sidedressing using drip micro-irrigation system. Total fresh matter, commercial fresh matter, non-commercial fresh matter, number of leaves and commercial trade index were evaluated. The commercial fresh matter and the number of commercial leaves per plant were affected only by nitrogen fertigation and increased linearly with the increase in the nitrogen dose of N, with the best responses observed at the highest dose of this element (171 kg ha-1. Potassium silicate had effect only in non-commercial fresh matter, not influencing the other characteristics.

  18. Electrochemical lithium and sodium intercalation into the tantalum-rich layered chalcogenides Ta2Se and Ta2Te3

    International Nuclear Information System (INIS)

    Lavela, P.; Tirado, J.L.

    1999-01-01

    Two-layered tantalum chalcogenides are evaluated as alkali metal intercalation hosts in lithium and sodium electrochemical cells. The metal-rich pseudo-two-dimensional solid Ta 2 Se shows a poor intercalation behaviour. Lithium reacts with the selenide by deintercalating selenium from the blocks of Ta-related b.c.c. structure leading to a collapse of the structure and the formation of tantalum metal. Sodium is reversibly intercalated to a limited extent leading to complex structural changes in the selenide, as revealed by electron diffraction. The two-dimensional telluride Ta 2 Te 3 allows a topotactic intercalation of lithium below 1 F/mol, while a more extended reaction leads to sample amorphization. The better intercalation behaviour of this solid can be related with the one-atom thick metal layer and the van der Waals gap separating tellurium atoms of successive layers. Sodium can be reversibly intercalated into Ta 2 Te 3 in sodium cells which show a good cycling behaviour. Exposure of the intercalated solid to water vapour allows the preparation of hydrated products with a monolayer or a bilayer of water molecules solvating sodium in the interlayer space. (orig.)

  19. Eu-, Tb-, and Dy-Doped Oxyfluoride Silicate Glasses for LED Applications

    DEFF Research Database (Denmark)

    Zhu, C.F.; Wang, J.; Zhang, M.M.

    2014-01-01

    Luminescence glass is a potential candidate for the light-emitting diodes (LEDs) applications. Here, we study the structural and optical properties of the Eu-, Tb-, and Dy-doped oxyfluoride silicate glasses for LEDs by means of X-ray diffraction, photoluminescence spectra, Commission Internationale...... de L’Eclairage (CIE) chromaticity coordinates, and correlated color temperatures (CCTs). The results show that the white light emission can be achieved in Eu/Tb/Dy codoped oxyfluoride silicate glasses under excitation by near-ultraviolet light due to the simultaneous generation of blue, green, yellow......, and red-light wavelengths from Tb, Dy, and Eu ions. The optical performances can be tuned by varying the glass composition and excitation wavelength. Furthermore, we observed a remarkable emission spectral change for the Tb3+ single-doped oxyfluoride silicate glasses. The 5D3 emission of Tb3+ can...

  20. Mechanical properties of zirconia reinforced lithium silicate glass-ceramic.

    Science.gov (United States)

    Elsaka, Shaymaa E; Elnaghy, Amr M

    2016-07-01

    The aim of this study was to assess the mechanical properties of recently introduced zirconia reinforced lithium silicate glass-ceramic. Two types of CAD/CAM glass-ceramics (Vita Suprinity (VS); zirconia reinforced lithium silicate and IPS e.max CAD (IC); lithium disilicate) were used. Fracture toughness, flexural strength, elastic modulus, hardness, brittleness index, and microstructures were evaluated. Data were analyzed using independent t tests. Weibull analysis of flexural strength data was also performed. VS had significantly higher fracture toughness (2.31±0.17MPam(0.5)), flexural strength (443.63±38.90MPa), elastic modulus (70.44±1.97GPa), and hardness (6.53±0.49GPa) than IC (Pglass-ceramic revealed significantly a higher brittleness index (2.84±0.26μm(-1/2)) (lower machinability) than IC glass-ceramic (Pglass-ceramic revealed a lower probability of failure and a higher strength than IC glass-ceramic according to Weibull analysis. The VS zirconia reinforced lithium silicate glass-ceramic revealed higher mechanical properties compared with IC lithium disilicate glass-ceramic. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  1. Hydrocode analysis of lateral stress gauges in shocked tantalum

    International Nuclear Information System (INIS)

    Harris, E. J.; Winter, R. E.

    2007-01-01

    Experiments published by other workers, on the resistance change of manganin stress gauges embedded in a lateral orientation in tantalum targets shocked to a range of stresses, have been analysed using an adaptive mesh refinement hydrocode. It was found that for all of the four experiments the shape of the time profile of the computed lateral stress in the mounting layer closely matched the shape of the experimental lateral stress profiles. However, the calculated lateral stresses at the gauge location in the mounting layer are significantly less than the lateral stresses that would have been produced in the target if no gauge had been present. The perturbation caused by the gauge increased as the strength of the applied shock increased. When the perturbations are taken into account values of flow stress that are significantly smaller than those reported in the original research paper are derived. The work shows that the lateral gauge technique can give valuable information on strength provided high resolution simulation is used to compensate for the perturbations caused by the gauges

  2. Universality of the high-temperature viscosity limit of silicate liquids

    DEFF Research Database (Denmark)

    Zheng, Qiuju; Mauro, John C.; Ellison, Adam J.

    2011-01-01

    We investigate the high-temperature limit of liquid viscosity by analyzing measured viscosity curves for 946 silicate liquids and 31 other liquids including metallic, molecular, and ionic systems. Our results show no systematic dependence of the high-temperature viscosity limit on chemical...... composition for the studied liquids. Based on theMauro-Yue-Ellison-Gupta-Allan (MYEGA) model of liquid viscosity, the high-temperature viscosity limit of silicate liquids is 10−2.93 Pa·s. Having established this value, there are only two independent parameters governing the viscosity-temperature relation...

  3. Water speciation in sodium silicate glasses (quenched melts): A comprehensive NMR study

    Science.gov (United States)

    Xue, X.; Kanzaki, M.; Eguchi, J.

    2012-12-01

    Dissolution mechanism of water is an important factor governing how the dissolved water affects the physical and thermodynamic properties of silicate melts and glasses. Our previous studies have demonstrated that 1H MAS NMR in combination with 29Si-1H and 27Al-1H double-resonance NMR experiments is an effective approach for unambiguously differentiating and quantifying different water species in quenched silicate melts (glasses). Several contrasting dissolution mechanisms have been revealed depending on the melt composition: for relatively polymerized melts, the formation of SiOH/AlOH species (plus molecular H2O) and depolymerization of the network structure dominate; whereas for depolymerized Ca-Mg silicate melts, free OH (e.g. MgOH) become increasingly important (cf. [1]). The proportion of free OH species has been shown to decrease with both increasing melt polymerization (silica content) and decreasing field strength of the network modifying cations (from Mg to Ca). Our previous 1H and 29Si MAS NMR results for hydrous Na silicate glasses of limited compositions (Na2Si4O9 and Na2Si2O5) were consistent with negligible free OH (NaOH) species and depolymerizing effect of water dissolution [2]. On the other hand, there were also other studies that proposed the presence of significant NaOH species in hydrous glasses near the Na2Si2O5 composition. The purpose of this study is apply the approach of combined 1H MAS NMR and double-resonance (29Si-1H and 23Na-1H) NMR to gain unambiguous evidence for the OH speciation in Na silicate glasses (melts) as a function of composition. Hydrous Na silicate glasses containing mostly ≤ 1 wt% H2O for a range of Na/Si ratios from 0.33 to 1.33 have been synthesized by rapidly quenching melts either at 0.2 GPa using an internally heated gas pressure vessel or at 1 GPa using a piston cylinder high-pressure apparatus. NMR spectra have been acquired using a 9.4 T Varian Unity-Inova spectrometer. The 29Si and 1H chemical shifts are

  4. Study on the property of low friction complex graphite-like coating containing tantalum

    Science.gov (United States)

    Wang, Zuoping; Feng, Lajun; Shen, Wenning

    2018-03-01

    In order to enhance equipment lifetime under low oil or even dry conditions, tantalum was introduced into the graphite-like coating (GLC) by sputtering mosaic targets. The results showed that the introduction of Ta obviously reduced the friction coefficient and hardness of the GLC, while improved the wearability. When the atomic percentage of Ta was larger than 3%, the steady friction coefficient was lower than 0.01, suggesting the coating exhibited super lubricity. When the content of Ta was about 5.0%, the average friction coefficient was 0.02 by a sliding friction test under load of 20 N in unlubricated condition. Its average friction coefficient reduced by 75%, compared with that of control GLC (0.0825).

  5. Attractive short-range interatomic potential in the lattice dynamics of niobium and tantalum

    International Nuclear Information System (INIS)

    Onwuagba, B.N.; Pal, S.

    1987-01-01

    It is shown in the framework of the pseudopotential approach that there is a sizable attractive short-range component of the interatomic potential due to the s-d interaction which has the same functional form in real space as the Born-Mayer repulsion due to the overlap of core electron wave functions centred on neighbouring ions. The magnitude of this attractive component is such as to completely cancel the conventional Born-Mayer repulsion, making the resultant short-range interatomic potential attractive rather than repulsive. Numerical calculations show that the attractive interatomics potential, which represents the local-field correction, leads to a better understanding of the occurrence of the soft modes in the phonon dispersion curves of niobium and tantalum

  6. Optical waveguides in fluoride lead silicate glasses fabricated by carbon ion implantation

    Science.gov (United States)

    Shen, Xiao-liang; Wang, Yue; Zhu, Qi-feng; Lü, Peng; Li, Wei-nan; Liu, Chun-xiao

    2018-03-01

    The carbon ion implantation with energy of 4.0 MeV and a dose of 4.0×1014 ions/cm2 is employed for fabricating the optical waveguide in fluoride lead silicate glasses. The optical modes as well as the effective refractive indices are measured by the prism coupling method. The refractive index distribution in the fluoride lead silicate glass waveguide is simulated by the reflectivity calculation method (RCM). The light intensity profile and the energy losses are calculated by the finite-difference beam propagation method (FD-BPM) and the program of stopping and range of ions in matter (SRIM), respectively. The propagation properties indicate that the C2+ ion-implanted fluoride lead silicate glass waveguide is a candidate for fabricating optical devices.

  7. Shear-peel strength comparison of orthodontic band cements including novel calcium silicate

    DEFF Research Database (Denmark)

    Leo, Mariantonietta; Løvschall, Henrik

    calcium silicate with fluoride and fast-setting, Glass ionomer, and Zinc phosphate cement, used for luting of orthodontic bands on molars kept one month in phosphate buffering solution (PBS). Materials and methods: The roots of 35 extracted human molars were embedded in acryl. Three groups were allocated....... An orthodontic band (AO) was fitted on the free crown. Each group of the teeth (n>10) was cemented with novel calcium silicate (Protooth), Glass ionomer (Orthocem), or Zinc phosphate (DeTrey Zinc). The cements were mixed according to the manufacturers instructions. Samples were stored at 37ºC in humid chamber...... Silicate (Protooth) and Zinc phosphate cement (DeTrey Zinc) were significantly higher than Glass ionomer cement (Orthocem) when looking for the force (N, p

  8. Two-dimensional tantalum disulfide: controlling structure and properties via synthesis

    Science.gov (United States)

    Zhao, Rui; Grisafe, Benjamin; Krishna Ghosh, Ram; Holoviak, Stephen; Wang, Baoming; Wang, Ke; Briggs, Natalie; Haque, Aman; Datta, Suman; Robinson, Joshua

    2018-04-01

    Tantalum disulfide (TaS2) is a transition metal dichalcogenide (TMD) that exhibits phase transition induced electronic property modulation at low temperature. However, the appropriate phase must be grown to enable the semiconductor/metal transition that is of interest for next generation electronic applications. In this work, we demonstrate direct and controllable synthesis of ultra-thin 1T-TaS2 and 2H-TaS2 on a variety of substrates (sapphire, SiO2/Si, and graphene) via powder vapor deposition. The synthesis process leads to single crystal domains ranging from 20 to 200 nm thick and 1-10 µm on a side. The TaS2 phase (1T or 2H) is controlled by synthesis temperature, which subsequently is shown to control the electronic properties. Furthermore, this work constitutes the first demonstration of a metal-insulator phase transition in directly synthesized 1T-TaS2 films and domains by electronic means.

  9. Implantation of titanium, chromium, yttrium, molybdenum, silver, hafnium, tantalum, tungsten and platinum ions generated by a metal vapor vacuum ion source into 440C stainless steel

    International Nuclear Information System (INIS)

    Sasaki, Jun; Hayashi, Kazunori; Sugiyama, Kenji; Ichiko, Osami; Hashiguchi, Yoshihiro

    1992-01-01

    Titanium, yttrium, molybdenum, silver, chromium, hafnium, tantalum, tungsten and platinum ions generated by a metal vapor vacuum arc (MEVVA) ion source were implanted into 440C stainless steel in the dose region 10 17 ions cm -2 with extraction voltages of up to 70 kV. Glow discharge spectroscopy (GDS), friction coefficient, and Vickers microhardness of the specimens were studied. Grooves made by friction tests were investigated by electron probe microanalysis (EPMA). GDS showed incorporation of carbon in the yttrium, hafnium, tantalum, tungsten and platinum implanted specimens, as well as titanium implanted samples. A large amount of oxygen was observed in the yttrium implanted specimen. The friction coefficient was measured by reciprocating sliding of an unimplanted 440C ball without lubricant at a load of 0.245 N. The friction decreased and achieved a stable state after implantation of titanium, hafnium and tantalum. The friction coefficient of the platinum implanted specimen showed a gradual decrease after several cycles of sliding at high friction coefficient. The yttrium implanted sample exhibited a decreased but slightly unstable friction coefficient. Results from EPMA showed that the implanted elements, which gave decreased friction, remained even after sliding of 200 cycles. Implantation of chromium, molybdenum, silver and tungsten did not provide a decrease in friction and the implants were gone from the wear grooves after the sliding tests. (orig.)

  10. Sputtering analysis of silicates by XY-TOF-SIMS: Astrophysical applications

    Science.gov (United States)

    Martinez, Rafael; Langlinay, Thomas; Ponciano, Cassia; da Silveira, Enio F.; Palumbo, Maria Elisabetta; Strazzulla, Giovanni; Brucato, John R.; Hijazi, Hussein; Boduch, Philippe; Cassimi, Amine; Domaracka, Alicja; Ropars, Frédéric; Rothard, Hermann

    2015-08-01

    Silicates are the dominant material of many objects in the Solar System, e.g. asteroids, the Moon, the planet Mercury and meteorites. Ion bombardment by cosmic rays and solar wind may alter the reflectance spectra of irradiated silicates by inducing physico-chemical changes known as “space weathering”. Furthermore, sputtered particles contribute to the composition of the exosphere of planets or moons. Mercury’s complex particle environment surrounding the planet is composed by thermal and directional neutral atoms (exosphere) originating via surface release and charge-exchange processes, and by ionized particles originated through photo-ionization and again by surface release processes such as ion induced sputtering.As a laboratory approach to understand the evolution of the silicate surfaces and the Na vapor (as well as, in lower concentration, K and Ca) discovered on the solar facing side of Mercury, we measured sputtering yields, velocity spectra and angular distributions of secondary ions from terrestrial silicate analogs. Experiments were performed using highly charged MeV/u and keV/u ions at GANIL in a new UHV set-up (under well controlled surface conditions) [1]. Other experiments were conducted at the Pontifical Catholic University of Rio de Janeiro (PUC-Rio) by using Cf fission fragments (~ 1 MeV/u). Nepheline, an aluminosilicate containing Na and K, evaporated on Si substrates (wafers) was used as model for silicates present in Solar System objects. Production yields, measured as a function of the projectile fluence, allow to study the possible surface stoichiometry changes during irradiation. In addition, from the energy distributions N(E) of sputtered particles it is possible to estimate the fraction of particles that can escape from the gravitational field of Mercury, and those that fall back to the surface and contribute to populate the atmosphere (exosphere) of the planet.The CAPES-COFECUB French-Brazilian exchange program, a CNPq postdoctoral

  11. Fabrication and characterization of powder metallurgy tantalum components prepared by high compaction pressure technique

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Youngmoo [Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141 (Korea, Republic of); Agency for Defense Development, Yuseong, P.O. Box 35, Yuseong-gu, Daejeon 34186, Republic of Korea. (Korea, Republic of); Lee, Dongju [Korea Atomic Energy Research Institute, 111 Daedeok-daero, Yuseong-gu, Daejeon 34057 (Korea, Republic of); Hwang, Jaewon [Samsung Electronics, 129 Samsung-ro, Youngtong-gu, Suwon 16677 (Korea, Republic of); Ryu, Ho Jin, E-mail: hojinryu@kaist.ac.kr [Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141 (Korea, Republic of); Hong, Soon Hyung, E-mail: shhong@kaist.ac.kr [Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141 (Korea, Republic of)

    2016-04-15

    The present study has investigated the consolidation behaviors of tantalum powders during compaction and sintering, and the characteristics of sintered components. For die compaction, the densification behaviors of the powders are simulated by finite element analyses based on the yield function proposed by Shima and Oyane. Accordingly, the green density distribution for coarser particles is predicted to be more uniform because they exhibits higher initial relative tap density owing to lower interparticle friction. It is also found that cold isostatic pressing is capable of producing higher dense compacts compared to the die pressing. However, unlike the compaction behavior, the sintered density of smaller particles is found to be higher than those of coarser ones owing to their higher specific surface area. The maximum sintered density was found to be 0.96 of theoretical density where smaller particles were pressed isostatically at 400 MPa followed by sintering at 2000 °C. Moreover, the effects of processing conditions on grain size and texture were also investigated. The average grain size of the sintered specimen is 30.29 μm and its texture is less than 2 times random intensity. Consequently, it is concluded that the higher pressure compaction technique is beneficial to produce high dense and texture-free tantalum components compared to hot pressing and spark plasma sintering. - Highlights: • Higher Ta density is obtained from higher pressure and sintering temperature. • High compaction method enables P/M Ta to achieve the density of 16.00 g·cm{sup −3}. • A P/M Ta component with fine microstructure and random orientation is developed.

  12. EXPERIMENTAL INVESTIGATION OF IRRADIATION-DRIVEN HYDROGEN ISOTOPE FRACTIONATION IN ANALOGS OF PROTOPLANETARY HYDROUS SILICATE DUST

    Energy Technology Data Exchange (ETDEWEB)

    Roskosz, Mathieu; Remusat, Laurent [IMPMC, CNRS UMR 7590, Sorbonne Universités, Université Pierre et Marie Curie, IRD, Muséum National d’Histoire Naturelle, CP 52, 57 rue Cuvier, Paris F-75231 (France); Laurent, Boris; Leroux, Hugues, E-mail: mathieu.roskosz@mnhn.fr [Unité Matériaux et Transformations, Université Lille 1, CNRS UMR 8207, Bâtiment C6, F-59655 Villeneuve d’Ascq (France)

    2016-11-20

    The origin of hydrogen in chondritic components is poorly understood. Their isotopic composition is heavier than the solar nebula gas. In addition, in most meteorites, hydrous silicates are found to be lighter than the coexisting organic matter. Ionizing irradiation recently emerged as an efficient hydrogen fractionating process in organics, but its effect on H-bearing silicates remains essentially unknown. We report the evolution of the D/H of hydrous silicates experimentally irradiated by electrons. Thin films of amorphous silica, amorphous “serpentine,” and pellets of crystalline muscovite were irradiated at 4 and 30 keV. For all samples, irradiation leads to a large hydrogen loss correlated with a moderate deuterium enrichment of the solid residue. The entire data set can be described by a Rayleigh distillation. The calculated fractionation factor is consistent with a kinetically controlled fractionation during the loss of hydrogen. Furthermore, for a given ionizing condition, the deuteration of the silicate residues is much lower than the deuteration measured on irradiated organic macromolecules. These results provide firm evidence of the limitations of ionizing irradiation as a driving mechanism for D-enrichment of silicate materials. The isotopic composition of the silicate dust cannot rise from a protosolar to a chondritic signature during solar irradiations. More importantly, these results imply that irradiation of the disk naturally induces a strong decoupling of the isotopic signatures of coexisting organics and silicates. This decoupling is consistent with the systematic difference observed between the heavy organic matter and the lighter water typically associated with minerals in the matrix of most carbonaceous chondrites.

  13. Microstructure engineering of Portland cement pastes and mortars through addition of ultrafine layer silicates

    DEFF Research Database (Denmark)

    Lindgreen, Holger; Geiker, Mette; Krøyer, Hanne

    2008-01-01

    Pozzolanic submicron-sized silica fume and the non-pozzolanic micron- and nano-sized layer silicates (clay minerals) kaolinite, smectite and palygorskite have been used as additives in Portland cement pastes and mortars. These layer silicates have different particle shape (needles and plates......), surface charge, and size (micron and nano). The structure of the resulting cement pastes and mortars has been investigated by atomic force microscopy (AFM), helium porosimetry, nitrogen adsorption (specific surface area and porosity), low-temperature calorimetry (LTC) and thermal analysis. The main result...... is that the cement paste structure and porosity can be engineered by addition of selected layer silicates having specific particle shapes and surface properties (e.g., charge and specific surface area). This seems to be due to the growth of calcium-silicate hydrates (C-S-H) on the clay particle surfaces...

  14. Optical, electrical and mechanical properties of the tantalum oxynitride thin films deposited by pulsing reactive gas sputtering

    International Nuclear Information System (INIS)

    Le Dreo, H.; Banakh, O.; Keppner, H.; Steinmann, P.-A.; Briand, D.; Rooij, N.F. de

    2006-01-01

    Thin films of tantalum oxynitride were prepared by reactive magnetron sputtering using a Ta target and N 2 and O 2 as reactive gases. The nitrogen flow was kept constant while the oxygen flow was pulsed periodically. The film composition evolves progressively from TaO 0.25 N 1.51 to TaO 2.42 N 0.25 while increasing the oxygen pulse duty cycle without any abrupt change in the elemental content. The optical transmission spectra of the films deposited on glass show a 'blue shift' of the absorption edge with increasing oxygen content. X-ray diffraction (XRD) patterns of all films exhibit broad peaks typical for nanocrystalline materials. Cross-section film morphology is rather featureless and surface topography is smooth exhibiting very small grains, in agreement with the results obtained by XRD. The optical properties of the films are very sensitive to their chemical composition. All films exhibit semiconducting behaviour with an optical band gap changing from 1.85 to 4.0 eV with increasing oxygen content. In order to evaluate the potential of the tantalum oxynitride films for microelectronic applications some Ta-O-N films were integrated in a MOS structure. The results of the capacitance-voltage measurements of the system Al//Ta-O-N//p-Si are discussed with respect to the chemical composition of the Ta-O-N films

  15. Effect of arc suppression on the physical properties of low temperature dc magnetron sputtered tantalum thin films

    International Nuclear Information System (INIS)

    Subrahmanyam, A.; Valleti, Krishna; Joshi, Srikant V.; Sundararajan, G.

    2007-01-01

    Arcing is a common phenomenon in the sputtering process. Arcs and glow discharges emit electrons which may influence the physical properties of films. This article reports the properties of tantalum (Ta) thin films prepared by continuous dc magnetron sputtering in normal and arc-suppression modes. The substrate temperature was varied in the range of 300-673 K. The tantalum films were ∼1.8 μm thick and have good adherence to 316 stainless steel and single-crystal silicon substrates. The phase of the Ta thin film determines the electrical and tribological properties. The films deposited at 300 K using both methods were crystallized in a tetragonal structure (β phase) with a smooth surface (grain size of ∼10 nm) and exhibited an electrical resistivity of ∼194 μΩ cm and a hardness of ∼20 GPa. When the substrate temperature was 473 K and higher, the arc-suppression mode appears to influence the films to crystallize in the α phase with a grain size of ∼40 nm, whereas the normal power mode gave mixed phases β and α beyond 473 K, the arc-suppression mode yields larger grain sizes in the Ta thin films and the hardness decreases. These changes in the physical properties in arc-suppression mode are attributed to either the change in plasma characteristics or the energetic particle bombardment onto the substrate, or both

  16. Preparation and characterization of magnesium–aluminium–silicate ...

    Indian Academy of Sciences (India)

    A three-stage heating schedule involving calcination, nucleation and crystallization, has been evolved for the preparation of magnesium aluminium silicate (MAS) glass ceramic with MgF2 as a nucleating agent. The effect of sintering temperature on the density of compacted material was studied. Microstructure and ...

  17. A NEAR-INFRARED SEARCH FOR SILICATES IN JOVIAN TROJAN ASTEROIDS

    International Nuclear Information System (INIS)

    Yang Bin; Jewitt, David

    2011-01-01

    We obtained near-infrared (NIR; 0.8-2.5 μm) spectra of seven Jovian Trojan asteroids that have been formerly reported to show silicate-like absorption features near 1 μm. Our sample includes the Trojan (1172) Aneas, which is one of the three Trojans known to possess a comet-like 10 μm emission feature, indicative of fine-grained silicates. Our observations show that all seven Trojans appear featureless in high signal-to-noise ratio spectra. The simultaneous absence of the 1 μm band and the presence of the 10 μm emission can be understood if the silicates on (1172) Aneas are iron-poor. In addition, we present NIR observations of five optically gray Trojans, including three objects from the collisionally produced Eurybates family. The five gray Trojans appear featureless in the NIR with no diagnostic absorption features. The NIR spectrum of Eurybates can be best fitted with the spectrum of a CM2 carbonaceous chondrite, which hints that the C-type Eurybates family members may have experienced aqueous alteration.

  18. Radiochemical investigations to the complex formation of uranium (VI) with silicic acid

    International Nuclear Information System (INIS)

    Hrnecek, E.

    1997-12-01

    The complexation of tracer amounts of UO 2 2+ by silicic acid was investigated by an extraction method using 2,5. 10 -3 M 1-(2-thenoyl)-3,3,3-trifloroacetone (IMA) in benzene as extractant at 25 degree C. The tracer used in the experiments was uranium-232, which has been separated from its daughter nuclides by ion exchange from 10 M HCl on Dowex 1x2. The ionic strength in the aqueous phase for the extractions was kept constant at 0,2 M (Na, H)ClO 4 and the pH was varied between pH 2,5 and pH 4,5. For the determination of the stability constants, a silicic acid concentration of 0,01 M, 0,03 M and 0,067 M in the (Na, H)ClO 4 solution was used. The time- and pH- dependence of the polymerization of these silicic acid solutions was determined by kinetical investigations with an ammoniumheptamolybdate-reagent. The uranium concentration in the aqueous and organic phases was determined by liquid scintillation counting using α/β -discrimination. The stability constants determined were log Q1, = -2,20 for the reaction UO 2 2+ Si(OH) 4 = UO 2 OSi(OH) 3 + + H + and Q 2 = -5,87 for the reaction of the polymeric silicate UO 2 2+ (-SiOH) j (-SiOH) j-2 (SiO) 2 UO 2 +2 H + . The influence of silicate on the speciation calculations for uranium in a model natural water is also discussed. (author)

  19. Water purification from cesium-137 and strontium-90 using natural and activated laminar and laminar-band silicates

    International Nuclear Information System (INIS)

    Kornilovich, B.Yu.; Pshinko, G.N.; Kosorukov, A.A.; Mas'ko, A.N.; Spasenova, L.N.; Dregval', T.N.

    1991-01-01

    Cesium-137 and strontium-90 radionuclides are studied for the process of their sorption from natural waters by basic representatives of disperse silicates: kaolinites of Glukhovetskoe and Glukhovskoe deposits (Ukraine), montmorillonites of the Cherkassy (Ukraine) and Oglanlin (Turkmenia) deposits, palygorskite and natural mixture of montmorillonite and palygorskite of the Cherkassy deposit. The best sorption properties are revealed for laminated silicates with a swelling structure (montmorillonites) and high-dispersive laminar-band silicates (palygorskite). It proved possible to improve sorption properties of silicate minerals for radionuclides by means of their mechanochemical activation

  20. In Situ Soft X-ray Spectromicroscopy of Early Tricalcium Silicate Hydration

    Directory of Open Access Journals (Sweden)

    Sungchul Bae

    2016-12-01

    Full Text Available The understanding and control of early hydration of tricalcium silicate (C3S is of great importance to cement science and concrete technology. However, traditional characterization methods are incapable of providing morphological and spectroscopic information about in situ hydration at the nanoscale. Using soft X-ray spectromicroscopy, we report the changes in morphology and molecular structure of C3S at an early stage of hydration. In situ C3S hydration in a wet cell, beginning with induction (~1 h and acceleration (~4 h periods of up to ~8 h, was studied and compared with ex situ measurements in the deceleration period after 15 h of curing. Analysis of the near-edge X-ray absorption fine structure showed that the Ca binding energy and energy splitting of C3S changed rapidly in the early age of hydration and exhibited values similar to calcium silicate hydrate (C–S–H. The formation of C–S–H nanoseeds in the C3S solution and the development of a fibrillar C–S–H morphology on the C3S surface were visualized. Following this, silicate polymerization accompanied by C–S–H precipitation produced chemical shifts in the peaks of the main Si K edge and in multiple scattering. However, the silicate polymerization process did not significantly affect the Ca binding energy of C–S–H.

  1. Production of precipitated calcium carbonate from calcium silicates and carbon dioxide

    International Nuclear Information System (INIS)

    Teir, Sebastian; Eloneva, Sanni; Zevenhoven, Ron

    2005-01-01

    The possibilities for reducing carbon dioxide emissions from the pulp and paper industry by calcium carbonation are presented. The current precipitated calcium carbonate (PCC) production uses mined, crushed calcium carbonate as raw materials. If calcium silicates were used instead, carbon dioxide emissions from the calcination of carbonates would be eliminated. In Finland, there could, thus, be a potential for eliminating 200 kt of carbon dioxide emissions per year, considering only the PCC used in the pulp and paper industry. A preliminary investigation of the feasibility to produce PCC from calcium silicates and the potential to replace calcium carbonate as the raw material was made. Calcium carbonate can be manufactured from calcium silicates by various methods, but only a few have been experimentally verified. The possibility and feasibility of these methods as a replacement for the current PCC production process was studied by thermodynamic equilibrium calculations using HSC software and process modelling using Aspen Plus[reg]. The results from the process modelling showed that a process that uses acetic acid for extraction of the calcium ions is a high potential option for sequestering carbon dioxide by mineral carbonation. The main obstacle seems to be the limited availability and relatively high price of wollastonite, which is a mineral with high calcium silicate content. An alternative is to use the more common, but also more complex, basalt rock instead

  2. Ore-forming environment and ore-forming system of carbonaceous-siliceous-pelitic rock type uranium deposit in China

    International Nuclear Information System (INIS)

    Qi Fucheng; Zhang Zilong; Li Zhixing; He Zhongbo; Wang Wenquan

    2012-01-01

    It is proposed that there are four types of ore-forming systems about carbonaceous-siliceous-pelitic rock type uranium deposit in China based on systematic study on structural environment and distribution regularity of uraniferous construction of marine carbonaceous-siliceous-pelitic rock in China: continental margin rift valley ore-forming systems, continental margin rifting deep fracture zone ore-forming systems, landmass boundary borderland basin ore-forming systems and epicontinental mobile belt downfaulted aulacogen ore-forming systems. It is propounded definitely that it is controlled by margin rift valley ore-forming systems and continental margin rifting deep fracture zone ore-forming systems for large-scale uranium mineralization of carbonaceous-siliceous-pelitic rock type uranium deposit in China, which is also controlled by uraniferous marine carbonaceous-siliceous-pelitic rock construction made up of silicalite, siliceous phosphorite and carbonaceous-siliceous-pelitic rock, which settled down accompany with submarine backwash and sub marine volcanic eruption in margin rift valley and continental margin rifting mineralizing environment. Continental mar gin rift valley and continental margin rifting thermal sedimentation or exhalation sedimentation is the mechanism of forming large-scale uraniferous marine carbonaceous-siliceous-pelitic rock construction Early Palaeozoic Era in China or large-scale uranium-polymetallic mineralization. (authors)

  3. Combustion synthesis and photoluminescence study of silicate ...

    Indian Academy of Sciences (India)

    sorbable and durable materials for orthopaedic and dental implants, that are capable of bearing high stress ... Other studies showed that these silicate ceramics also possess good in vivo bioactivity (Hench 1998; ... ceramic powders without the intermediate decomposition and/or calcining steps has attracted a good deal of ...

  4. Evolution of silicate dust in interstellar, circumstellar and cometary environments: the role of irradiation and temperature

    International Nuclear Information System (INIS)

    Davoisne, Carine

    2006-01-01

    Due to the development of observational and analytical tools, our knowledge of the silicate dust has considerably increased these last years. Dust is formed around evolved stars and injected in the interstellar medium (ISM) in which it travels. Dust is then incorporated in the proto-planetary disks around young stars. During its life cycle, the silicate dust is subjected by numerous processes. The aim of this PhD work is firstly to study the chemical and morphological modifications of silicate dust in supernovae shock waves then to indicate its evolution when it is incorporated around young stars. We have developed low energy ion irradiations in situ in a photoelectron spectrometer (XPS). The chemical and morphological changes have been measured respectively by XPS and atomic force microscopy. We have also carried out thermal annealing under controlled atmosphere of amorphous silicates. The structural and chemical modifications have been observed by analytical transmission electron microscopy. We have shown that ion irradiation induces chemical and morphological changes in silicate. In the ISM, supernovae shock waves are thus a major process which could affect the silicate dust evolution. The microstructure obtained after thermal annealing strongly depends on oxygen fugacity. They often offer a good comparison with those observed in primitive materials present in our solar system. The recrystallization of amorphous interstellar precursors in the inner accretion disk is thus an efficient process to form crystalline silicates which are furthermore incorporated in small parent bodies (asteroids or comets). (author) [fr

  5. Preparation and properties of isotropic Nd-Fe-B bonded magnets with sodium silicate binder

    Energy Technology Data Exchange (ETDEWEB)

    Liu, W.Q.; Hu, R.J.; Yue, M., E-mail: yueming@bjut.edu.cn; Yin, Y.X.; Zhang, D.T.

    2017-08-01

    Graphical abstract: To improve the working temperature of bonded Nd-Fe-B magnets, the heat-resistant binder, sodium silicate, was used to prepare new type bonded Nd-Fe-B magnets. The three-dimensional Si-O-Si structure formed in the curing process has excellent strength; it can ensure that the bonded magnets have a certain shape and usable magnetic properties when working at 200 °C. - Highlights: • Sodium silicate enables bonded Nd-Fe-B magnets to be used for higher operation temperatures. • The sodium silicate bonded magnets exhibit usable maximum energy product of 4.057 MGOe at 200 °C. • The compressive strength of sodium silicate bonded magnets is twice bigger than that of epoxy resin bonded magnets. - Abstract: In present study, sodium silicate, a kind of heat-resistant binder, was used to prepare bonded Nd-Fe-B magnets with improved thermal stability and mechanical strength. Effect of curing temperature and curing time of the new binder to the magnetic properties, microstructure, and mechanical strength of the magnets was systematically investigated. Fracture surface morphology observation show that sodium silicate in bonded magnets could completely be cured at 175 °C for 40 min, and the magnets prepared under this condition exhibit optimal properties. They exhibit usable magnetic properties of B{sub r} of 4.66 kGs, H{sub cj} of 4.84 kOe, and (BH){sub max} of 4.06 MGOe at 200 °C. Moreover, the magnets possess high compressive strength of 63 MPa.

  6. Core Formation on Asteroid 4 Vesta: Iron Rain in a Silicate Magma Ocean

    Science.gov (United States)

    Kiefer, Walter S.; Mittlefehldt, David W.

    2017-01-01

    Geochemical observations of the eucrite and diogenite meteorites, together with observations made by NASA's Dawn spacecraft, suggest that Vesta resembles H chondrites in bulk chemical composition, possibly with about 25% of a CM-chondrite like composition added in. For this model, the core is 15% by mass (or 8 volume %) of the asteroid. The abundances of moderately siderophile elements (Ni, Co, Mo, W, and P) in eucrites require that essentially all of the metallic phase in Vesta segregated to form a core prior to eucrite solidification. Melting in the Fe-Ni-S system begins at a cotectic temperature of 940 deg. C. Only about 40% of the total metal phase, or 3-4 volume % of Vesta, melts prior to the onset of silicate melting. Liquid iron in solid silicate initially forms isolated pockets of melt; connected melt channels, which are necessary if the metal is to segregate from the silicate, are only possible when the metal phase exceeds about 5 volume %. Thus, metal segregation to form a core does not occur prior to the onset of silicate melting.

  7. Corrosion studies of tantalum in oxidizing media - intercomparison of data obtained in model media and in a test facility

    International Nuclear Information System (INIS)

    Vehlow, J.; Wieczorek, H.

    1989-01-01

    The suitability of tantalum as a material for wet incineration of combustible wastes has been tested in model mixtures of sulfuric and nitric acid at about 250deg C. In addition parts of a semi-technical test facility have been investigated, which had been in operation for more than 3000 h. In general there is good correspondence between predicted wall losses and those found under real conditions. (orig.) [de

  8. The thermodynamic activity of ZnO in silicate melts

    Science.gov (United States)

    Reyes, R. A.; Gaskell, D. R.

    1983-12-01

    The activity of ZnO in ZnO-SiO2 and CaO-ZnO-SiO2 melts has been measured at 1560 °C using a transpiration technique with CO-CO2 mixtures as the carrier gas. The activities of ZnO in dilute solution in 42 wt pct SiO2-38 wt pct CaO-20 wt pct A12O3 in the range 1400° to 1550 °C and in 62 wt pct SiO2-23.3 wt pct CaO-14.7 wt pct A12O3 at 1550 °C have also been measured. The measured free energies of formation of ZnO-SiO2 melts are significantly more negative than published estimated values and this, together with the behavior observed in the system CaO-Al2O3-SiO2, indicate that ZnO is a relatively basic oxide. The results are discussed in terms of the polymerization model of binary silicate melts and ideal silicate mixing in ternary silicate melts. The behavior of ZnO in dilute solution in CaO-Al2O3-SiO2 melts is discussed in terms of the possibility of the fluxing of ZnO by iron blast furnace slags.

  9. Suspension hydration of tricalcium silicate at constant pH. I. Variation of particle size and tricalcium silicate content

    NARCIS (Netherlands)

    McCurdy, K.G.; Stein, H.N.

    1973-01-01

    Calcium and silicate ion concentrations during suspension hydration of C3S indicate that at pH 11.5 an equilibrium is established between one of the hydrates and the solution during about 80 minutes. The concentrations found in this period are indipendent of the particle size of the C3S and (within

  10. The mitochondrial activation of silicate and its role in silicosis, black lung disease and lung cancer.

    Science.gov (United States)

    Hadler, H I; Cook, G L

    1979-01-01

    Silicate substitutes for phosphate in the transitory uncoupling of rat liver mitochondria induced by hydrazine when beta-hydroxy-butyrate is the substrate. Uncoupling is blocked by rutamycin. Just as in the case when phosphate is combined with hydrazine, ATP, ADP, PPi, and Mg++ protect against hydrazine when silicate is combined with hydrazine. A high level of ADP in the absence of added phosphate, but in the presence of silicate, induces a pseudo state three of the mitochondria. Silicate, like sulfate and arsenate which have been reported previously, is activated by the enzymes which mediate oxidative phosphorylation. These results serve to explain a role for silicate in silicosis, black lung disease, and cancer. In addition, since there is suggestive evidence in the literature that lung tissue solubilizes asbestos fibers, these results not only expand the confluence between oxidative phosphorylation and chemical carcinogenesis but are correlated with the synergistic carcinogenicity of asbestos and smoking observed by epidemiologists.

  11. Influence of iron on crystallization behavior and thermal stability of the insulating materials - porous calcium silicates

    DEFF Research Database (Denmark)

    Haastrup, Sonja; Yu, Donghong; Yue, Yuanzheng

    2017-01-01

    The properties of porous calcium silicate for high temperature insulation are strongly influenced by impurities. In this work we determine the influence of Fe3+ on the crystallization behavior and thermal stability of hydrothermally derived calcium silicate. We synthesize porous calcium silicate...... with Ca/Si molar ratio of 1, to which Fe2O3 is added with Fe/Si molar ratios of 0.1, 0.5, 0.7, 1.0, and 1.3%. Structure and morphology of the porous calcium silicate, with different iron concentrations, are investigated using Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). FTIR...... measurements reveal a pronounced decrease in the number of Q3 sites in the calcium silicate with an increase of Fe3+, and thereby lower the crystal fraction of xonotlite (Ca6Si6O17(OH)2) phase, and increase the crystal fractions of tobermorite(Ca5Si6O16(OH)2·4H2O) and calcite (CaCO3) phases, as confirmed...

  12. Single-ion conducting polymer-silicate nanocomposite electrolytes for lithium battery applications

    International Nuclear Information System (INIS)

    Kurian, Mary; Galvin, Mary E.; Trapa, Patrick E.; Sadoway, Donald R.; Mayes, Anne M.

    2005-01-01

    Solid-state polymer-silicate nanocomposite electrolytes based on an amorphous polymer poly[(oxyethylene) 8 methacrylate], POEM, and lithium montmorillonite clay were fabricated and characterized to investigate the feasibility of their use as 'salt-free' electrolytes in lithium polymer batteries. X-ray scattering and transmission electron microscopy studies indicate the formation of an intercalated morphology in the nanocomposites due to favorable interactions between the polymer matrix and the clay. The morphology of the nanocomposite is intricately linked to the amount of silicate in the system. At low clay contents, dynamic rheological testing verifies that silicate incorporation enhances the mechanical properties of POEM, while impedance spectroscopy shows an improvement in electrical properties. With clay content ≥15 wt.%, mechanical properties are further improved but the formation of an apparent superlattice structure correlates with a loss in the electrical properties of the nanocomposite. The use of suitably modified clays in nanocomposites with high clay contents eliminates this superstructure formation, yielding materials with enhanced performance

  13. Does Silicate Weathering of Loess Affect Atmospheric CO2?

    Science.gov (United States)

    Anderson, S. P.

    2002-12-01

    Weathering of glacial loess may be a significant, yet unrecognized, component of the carbon cycle. Glaciers produce fine-grained sediment, exposing vast amounts of mineral surface area to weathering processes, yet silicate mineral weathering rates at glacier beds and of glacial till are not high. Thus, despite the tremendous potential for glaciers to influence global weathering rates and atmospheric CO2 levels, this effect has not been demonstrated. Loess, comprised of silt-clay sizes, may be the key glacial deposit in which silicate weathering rates are high. Loess is transported by wind off braid plains of rivers, and deposited broadly (order 100 km from the source) in vegetated areas. Both the fine grain size, and hence large mineral surface area, and presence of vegetation should render loess deposits highly susceptible to silicate weathering. These deposits effectively extend the geochemical impact of glaciation in time and space, and bring rock flour into conditions conducive to chemical weathering. A simple 1-d model of silicate weathering fluxes from a soil profile demonstrates the potential of loess deposition to enhance CO2 consumption. At each time step, computed mineral dissolution (using anorthite and field-based rate constants) modifies the size of mineral grains within the soil. In the case of a stable soil surface, this results in a gradual decline in weathering fluxes and CO2 consumption through time, as finer grain sizes dissolve away. Computed weathering fluxes for a typical loess, with an initial mean grain size of 25 μm, are an order of magnitude greater than fluxes from a non-loess soil that differs only in having a mean grain size of 320 μm. High weathering fluxes are maintained through time if loess is continually deposited. Deposition rates as low as 0.01 mm/yr (one loess grain thickness per year) can lead to a doubling of CO2 consumption rates within 5 ka. These results suggest that even modest loess deposition rates can significantly

  14. Experimental investigation into the crack propagation in multiphase tantalum carbide ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, Bradford C. [Department of Metallurgical & Materials Engineering, The University of Alabama, 301 7th Avenue, 116 Houser Hall, Tuscaloosa, AL 35487-0202 (United States); Lee, HeeDong; Mogilevsky, Pavel [UES, Inc., 4401 Dayton-Xenia Road, Dayton, OH 45432-1894 (United States); Weinberger, Christopher R. [Department of Mechanical Engineering, Colorado State University, 1374 Campus Delivery, Fort Collins, CO 80523 (United States); Parthasarathy, Triplicane A. [UES, Inc., 4401 Dayton-Xenia Road, Dayton, OH 45432-1894 (United States); Matson, Lawrence E. [Air Force Research Laboratory Materials & Manufacturing Directorate, Structural Material Division (AFRL/RXLN), 2230 Tenth St., Wright-Patterson AFB, OH 4543307817 (United States); Smith, Chase [Department of Metallurgical & Materials Engineering, The University of Alabama, 301 7th Avenue, 116 Houser Hall, Tuscaloosa, AL 35487-0202 (United States); Thompson, Gregory B., E-mail: gthompson@eng.ua.edu [Department of Metallurgical & Materials Engineering, The University of Alabama, 301 7th Avenue, 116 Houser Hall, Tuscaloosa, AL 35487-0202 (United States)

    2017-05-17

    Tantalum carbide ceramics with high volume fractions of the ζ-Ta{sub 4}C{sub 3} phase have been shown to exhibit high fracture strength and toughness as compared to those in absence of this phase. In this work, we investigated how microcracks propagated in this these high toughness ceramics using Knoop and Vickers microindentation. The Knoop indentations demonstrated that cracking preferentially occurred parallel to the lath structure in ζ-Ta{sub 4}C{sub 3}; however shorter cracks did form between the laths when a sufficient driving force was present. The resulting crack path was tortuous providing direct evidence for toughening through crack deflection; however, the microscale nature of the work cannot rule out crack bridging as a toughening mechanism as well. Plasticity is also observed under the indents, but is likely a result of the high confining pressures that occurred during indentation allowing for plastic flow.

  15. Variability in dynamic properties of tantalum : spall, attenuation and load/unload.

    Energy Technology Data Exchange (ETDEWEB)

    Furnish, Michael David; Reinhart, William Dodd; Trott, Wayne Merle; Vogler, Tracy John; Chhabildas, Lalit Chandra

    2005-07-01

    A suite of impact experiments was conducted to assess spatial and shot-to-shot variability in dynamic properties of tantalum. Samples had a uniform refined {approx}20 micron grain structure with a strong axisymmetric [111] crystallographic texture. Two experiments performed with sapphire windows (stresses of approximately 7 and 12 GPa) clearly showed elastic-plastic loading and slightly hysteretic unloading behavior. An HEL amplitude of 2.8 GPa (corresponding to Y 1.5 GPa) was observed. Free-surface spall experiments showed clear wave attenuation and spallation phenomena. Here, loading stresses were {approx} 12.5 GPa and various ratios of impactor to target thicknesses were used. Spatial and shot-to-shot variability of the spall strength was {+-} 20%, and of the HEL, {+-} 10%. Experiments conducted with smaller diameter flyer plates clearly showed edge effects in the line and point VISAR records, indicating lateral release speeds of roughly 5 km/s.

  16. A framework for predicting global silicate weathering and CO2 drawdown rates over geologic time-scales.

    Science.gov (United States)

    Hilley, George E; Porder, Stephen

    2008-11-04

    Global silicate weathering drives long-time-scale fluctuations in atmospheric CO(2). While tectonics, climate, and rock-type influence silicate weathering, it is unclear how these factors combine to drive global rates. Here, we explore whether local erosion rates, GCM-derived dust fluxes, temperature, and water balance can capture global variation in silicate weathering. Our spatially explicit approach predicts 1.9-4.6 x 10(13) mols of Si weathered globally per year, within a factor of 4-10 of estimates of global silicate fluxes derived from riverine measurements. Similarly, our watershed-based estimates are within a factor of 4-18 (mean of 5.3) of the silica fluxes measured in the world's ten largest rivers. Eighty percent of total global silicate weathering product traveling as dissolved load occurs within a narrow range (0.01-0.5 mm/year) of erosion rates. Assuming each mol of Mg or Ca reacts with 1 mol of CO(2), 1.5-3.3 x 10(8) tons/year of CO(2) is consumed by silicate weathering, consistent with previously published estimates. Approximately 50% of this drawdown occurs in the world's active mountain belts, emphasizing the importance of tectonic regulation of global climate over geologic timescales.

  17. Corrosion resistance and cytocompatibility of tantalum-surface-functionalized biomedical ZK60 Mg alloy

    International Nuclear Information System (INIS)

    Jin, Weihong; Wang, Guomin; Lin, Zhengjie; Feng, Hongqing; Li, Wan; Peng, Xiang; Qasim, Abdul Mateen; Chu, Paul K.

    2017-01-01

    Highlights: • Films comprising Ta_2O_5, Ta suboxide, and Ta are sputter-deposited on ZK60 Mg alloy. • The Ta-containing film significantly mitigates degradation of ZK60. • The modified ZK60 exhibits notably enhanced cell adhesion and proliferation. - Abstract: Tantalum (Ta) is introduced to the surface of the ZK60 Mg alloy by reactive magnetron sputtering to enhance the corrosion resistance and cytocompatibility. The film thickness and composition, corrosion behavior, and cytocompatibility are studied by various techniques systematically. The surface layer composed of Ta_2O_5, Ta suboxide, and Ta increases the corrosion resistance of ZK60 while simultaneously improving cell attachment, spreading, and proliferation in vitro. The enhancement mechanism is proposed and discussed.

  18. The importance of the Maillard-metal complexes and their silicates in astrobiology

    Science.gov (United States)

    Liesch, Patrick J.; Kolb, Vera M.

    2007-09-01

    The Maillard reaction occurs when sugars and amino acids are mixed together in the solid state or in the aqueous solution. Since both amino acids and sugar-like compounds are found on meteorites, we hypothesized that they would also undergo the Maillard reaction. Our recent work supports this idea. We have shown previously that the water-insoluble Maillard products have substantial similarities with the insoluble organic materials from the meteorites. The Maillard organic materials are also part of the desert varnish on Earth, which is a dark, shiny, hard rock coating that contains iron and manganese and is glazed in silicate. Rocks that are similar in appearance to the desert varnish have been observed on the Martian surface. They may also contain the organic materials. We have undertaken study of the interactions between the Maillard products, iron and other metals, and silicates, to elucidate the role of the Maillard products in the chemistry of desert varnish and meteorites. Specifically, we have synthesized a series of the Maillard-metal complexes, and have tested their reactivity towards silicates. We have studied the properties of these Maillard-metal-silicate products by the IR spectroscopy. The astrobiological potential of the Maillard-metal complexes is assessed.

  19. Role of the oxidation state of cerium on the ceria surfaces for silicate adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Jihoon [WCD Department of Energy Engineering, Hanyang University, Seoul (Korea, Republic of); Moon, Jinok [WCD Department of Energy Engineering, Hanyang University, Seoul (Korea, Republic of); Clean/CMP Technology Team, Memory, Samsung Electronics, Hwaseong (Korea, Republic of); Kim, Joo Hyun; Lee, Kangchun [WCD Department of Energy Engineering, Hanyang University, Seoul (Korea, Republic of); Hwang, Junha [WCD Department of Energy Engineering, Hanyang University, Seoul (Korea, Republic of); Materials R& D Center, K.C.Tech, Anseong (Korea, Republic of); Yoon, Heesung [WCD Department of Energy Engineering, Hanyang University, Seoul (Korea, Republic of); Yi, Dong Kee, E-mail: vitalis@mju.ac.kr [Department of Chemistry, Myongji University, Yongin (Korea, Republic of); Paik, Ungyu, E-mail: upaik@hanyang.ac.kr [WCD Department of Energy Engineering, Hanyang University, Seoul (Korea, Republic of)

    2016-12-15

    Highlights: • We investigated the role of Ce oxidation state (Ce{sup 3+}/Ce{sup 4+}) on the CeO{sub 2} surfaces for the silicate adsorption. • As the Ce{sup 3+} concentration increased from 19.3 to 27.6%, the surface density of −OH group increased from 0.34 to 0.72 OH/nm{sup 2}. • The Freundlich constant for the relative adsorption capacity (K{sub F}) and adsorption intensity (1/n) indicated that CeO{sub 2} NPs with high Ce{sup 3+} concentration show higher adsorption affinity with silicate ions. - Abstract: In this study, we have investigated the role of the Ce oxidation state (Ce{sup 3+}/Ce{sup 4+}) on the CeO{sub 2} surfaces for silicate adsorption. In aqueous medium, the Ce{sup 3+} sites lead to the formation of −OH groups at the CeO{sub 2} surface through H{sub 2}O dissociation. Silicate ions can adsorb onto the CeO{sub 2} surface through interaction with the −OH groups (−Ce−OH− + −Si−O{sup −} ↔ −Ce−O−Si− + OH{sup −}). As the Ce{sup 3+} concentration increased from 19.3 to 27.6%, the surface density of −OH group increased from 0.34 to 0.72 OH/nm{sup 2}. To evaluate the adsorption behaviors of silicate ions onto CeO{sub 2} NPs, we carried out an adsorption isothermal analysis, and the adsorption isotherm data followed the Freundlich model. The Freundlich constant for the relative adsorption capacity (K{sub F}) and adsorption intensity (1/n) indicated that CeO{sub 2} NPs with high Ce{sup 3+} concentration show higher adsorption affinity with silicate ions. As a result, we have demonstrated that the Ce oxidation state (Ce{sup 3+}/Ce{sup 4+}) on the CeO{sub 2} surface can have a significant influence on the silicate adsorption.

  20. In vitro bioactivity and cytocompatibility of tricalcium silicate

    Indian Academy of Sciences (India)

    tricalcium silicate powder showed that it could induce bone- like apatite formation after ... ated by soaking them in SBF, cell adhesion and MTT assay, respectively. 2. .... tibility, which might be used as one of the bioactive coating materials and ...