WorldWideScience

Sample records for tafel extrapolation method

  1. Extrapolation methods theory and practice

    CERN Document Server

    Brezinski, C

    1991-01-01

    This volume is a self-contained, exhaustive exposition of the extrapolation methods theory, and of the various algorithms and procedures for accelerating the convergence of scalar and vector sequences. Many subroutines (written in FORTRAN 77) with instructions for their use are provided on a floppy disk in order to demonstrate to those working with sequences the advantages of the use of extrapolation methods. Many numerical examples showing the effectiveness of the procedures and a consequent chapter on applications are also provided - including some never before published results and applicat

  2. The optimizied expansion method for wavefield extrapolation

    KAUST Repository

    Wu, Zedong

    2013-01-01

    Spectral methods are fast becoming an indispensable tool for wave-field extrapolation, especially in anisotropic media, because of its dispersion and artifact free, as well as highly accurate, solutions of the wave equation. However, for inhomogeneous media, we face difficulties in dealing with the mixed space-wavenumber domain operator.In this abstract, we propose an optimized expansion method that can approximate this operator with its low rank representation. The rank defines the number of inverse FFT required per time extrapolation step, and thus, a lower rank admits faster extrapolations. The method uses optimization instead of matrix decomposition to find the optimal wavenumbers and velocities needed to approximate the full operator with its low rank representation.Thus,we obtain more accurate wave-fields using lower rank representation, and thus cheaper extrapolations. The optimization operation to define the low rank representation depends only on the velocity model, and this is done only once, and valid for a full reverse time migration (many shots) or one iteration of full waveform inversion. Applications on the BP model yielded superior results than those obtained using the decomposition approach. For transversely isotopic media, the solutions were free of the shear wave artifacts, and does not require that eta>0.

  3. π π scattering by pole extrapolation methods

    International Nuclear Information System (INIS)

    Lott, F.W. III.

    1978-01-01

    A 25-inch hydrogen bubble chamber was used at the Lawrence Berkeley Laboratory Bevatron to produce 300,000 pictures of π + p interactions at an incident momentum of the π + of 2.67 GeV/c. The 2-prong events were processed using the FSD and the FOG-CLOUDY-FAIR data reduction system. Events of the nature π + p→π + pπ 0 and π + p→π + π + n with values of momentum transfer to the proton of -t less than or equal to 0.238 GeV 2 were selected. These events were used to extrapolate to the pion pole (t = m/sub π/ 2 ) in order to investigate the π π interaction with isospins of both T=1 and T=2. Two methods were used to do the extrapolation: the original Chew-Low method developed in 1959 and the Durr-Pilkuhn method developed in 1965, which takes into account centrifugal barrier penetration factors. At first it seemed that, while the Durr-Pilkuhn method gave better values for the total π π cross section, the Chew-Low method gave better values for the angular distribution. Further analysis, however, showed that, if the requirement of total OPE (one-pion-exchange) was dropped, then the Durr-Pilkuhn method gave more reasonable values of the angular distribution as well as for the total π π cross section

  4. π π scattering by pole extrapolation methods

    International Nuclear Information System (INIS)

    Lott, F.W. III.

    1977-01-01

    A 25-inch hydrogen bubble chamber was used at the Lawrence Berkeley Laboratory Bevatron to produce 300,000 pictures of π + p interactions at an incident momentum of the π + of 2.67 GeV/c. The 2-prong events were processed using the FSD and the FOG-CLOUDY-FAIR data reduction system. Events of the nature π + p → π + pπ 0 and π + p → π + π + n with values of momentum transfer to the proton of -t less than or equal to 0.238 GeV 2 were selected. These events were used to extrapolate to the pion pole (t = m/sub π/ 2 ) in order to investigate the π π interaction with isospins of both T = 1 and T = 2. Two methods were used to do the extrapolation: the original Chew-Low method developed in 1959 and the Durr-Pilkuhn method developed in 1965 which takes into account centrifugal barrier penetration factors. At first it seemed that, while the Durr-Pilkuhn method gave better values for the total π π cross section, the Chew-Low method gave better values for the angular distribution. Further analysis, however, showed that if the requirement of total OPE (one-pion-exchange) were dropped, then the Durr-Pilkuhn method gave more reasonable values of the angular distribution as well as for the total π π cross section

  5. Extrapolated stabilized explicit Runge-Kutta methods

    Science.gov (United States)

    Martín-Vaquero, J.; Kleefeld, B.

    2016-12-01

    Extrapolated Stabilized Explicit Runge-Kutta methods (ESERK) are proposed to solve multi-dimensional nonlinear partial differential equations (PDEs). In such methods it is necessary to evaluate the function nt times per step, but the stability region is O (nt2). Hence, the computational cost is O (nt) times lower than for a traditional explicit algorithm. In that way stiff problems can be integrated by the use of simple explicit evaluations in which case implicit methods usually had to be used. Therefore, they are especially well-suited for the method of lines (MOL) discretizations of parabolic nonlinear multi-dimensional PDEs. In this work, first s-stages first-order methods with extended stability along the negative real axis are obtained. They have slightly shorter stability regions than other traditional first-order stabilized explicit Runge-Kutta algorithms (also called Runge-Kutta-Chebyshev codes). Later, they are used to derive nt-stages second- and fourth-order schemes using Richardson extrapolation. The stability regions of these fourth-order codes include the interval [ - 0.01nt2, 0 ] (nt being the number of total functions evaluations), which are shorter than stability regions of ROCK4 methods, for example. However, the new algorithms neither suffer from propagation of errors (as other Runge-Kutta-Chebyshev codes as ROCK4 or DUMKA) nor internal instabilities. Additionally, many other types of higher-order (and also lower-order) methods can be obtained easily in a similar way. These methods also allow adaptation of the length step with no extra cost. Hence, the stability domain is adapted precisely to the spectrum of the problem at the current time of integration in an optimal way, i.e., with minimal number of additional stages. We compare the new techniques with other well-known algorithms with good results in very stiff diffusion or reaction-diffusion multi-dimensional nonlinear equations.

  6. A Method for Extrapolation of Atmospheric Soundings

    Science.gov (United States)

    2014-05-01

    case are not shown here. We also briefly examined data for the Anchorage, AK ( PANC ), radiosonde site for the case of the inversion height equal to...or greater than the extrapolation depth (i.e., hinv ≥ hext). PANC lies at the end of a broad inlet extending northward from the Gulf of Alaska at...type of terrain can affect the model and in turn affect the extrapolation. We examined a sounding from PANC (61.16 N and –150.01 W, elevation of 40

  7. Extrapolation Method for System Reliability Assessment

    DEFF Research Database (Denmark)

    Qin, Jianjun; Nishijima, Kazuyoshi; Faber, Michael Havbro

    2012-01-01

    of integrals with scaled domains. The performance of this class of approximation depends on the approach applied for the scaling and the functional form utilized for the extrapolation. A scheme for this task is derived here taking basis in the theory of asymptotic solutions to multinormal probability integrals......The present paper presents a new scheme for probability integral solution for system reliability analysis, which takes basis in the approaches by Naess et al. (2009) and Bucher (2009). The idea is to evaluate the probability integral by extrapolation, based on a sequence of MC approximations...... that the proposed scheme is efficient and adds to generality for this class of approximations for probability integrals....

  8. Corrosion evaluation of heat recovery steam generator superheater tube in two methods of testing: Tafel polarization and electrochemical impedance spectroscopy (EIS)

    Science.gov (United States)

    Santoso, Rio Pudjidarma; Riastuti, Rini

    2018-05-01

    The purpose of this research is to evaluate the corrosion process which occurs on the water side of Heat Recovery Steam Generator (HRSG) superheater tube. The tube was 13CrMo44 and divided into 3 types of specimen: new tube, used tube (with oxide layer on surface), cleaned-used tube (without oxide layer on surface). The evaluation of corrosion parameters wasperformed using deaerated ultra-high purity water (boiler feed water) in two methods of testing: Tafel polarization and Electrochemical Impedance Spectroscopy (EIS). Tafel polarization was excellent as its capability to show the value of corrosion current and the corrosion rate explicitly, on the other hand, EIS was excellent as its capability to explain for corrosion mechanism on metal interface in detail. Both methods showed that the increase of electrolyte temperature from 25°C to 55°C would increase the corrosion rate with the mechanism of decreasing polarization resistance due to thinning out the passive film thickness and enlarge the area of reduction reaction of cathode. Magnetite oxide scale which is laid on the surface of used tube specimen shows protective nature to reduce the corrosion rate, and clear up this oxide would increase the corrosion rate back as new tube.

  9. Multiparameter extrapolation and deflation methods for solving equation systems

    Directory of Open Access Journals (Sweden)

    A. J. Hughes Hallett

    1984-01-01

    Full Text Available Most models in economics and the applied sciences are solved by first order iterative techniques, usually those based on the Gauss-Seidel algorithm. This paper examines the convergence of multiparameter extrapolations (accelerations of first order iterations, as an improved approximation to the Newton method for solving arbitrary nonlinear equation systems. It generalises my earlier results on single parameter extrapolations. Richardson's generalised method and the deflation method for detecting successive solutions in nonlinear equation systems are also presented as multiparameter extrapolations of first order iterations. New convergence results are obtained for those methods.

  10. The optimizied expansion method for wavefield extrapolation

    KAUST Repository

    Wu, Zedong; Alkhalifah, Tariq Ali

    2013-01-01

    , for inhomogeneous media, we face difficulties in dealing with the mixed space-wavenumber domain operator.In this abstract, we propose an optimized expansion method that can approximate this operator with its low rank representation. The rank defines the number

  11. Assessment of load extrapolation methods for wind turbines

    DEFF Research Database (Denmark)

    Toft, H.S.; Sørensen, John Dalsgaard; Veldkamp, D.

    2010-01-01

    an approximate analytical solution for the distribution of the peaks is given by Rice. In the present paper three different methods for statistical load extrapolation are compared with the analytical solution for one mean wind speed. The methods considered are global maxima, block maxima and the peak over...

  12. Assessment of Load Extrapolation Methods for Wind Turbines

    DEFF Research Database (Denmark)

    Toft, Henrik Stensgaard; Sørensen, John Dalsgaard; Veldkamp, Dick

    2011-01-01

    , an approximate analytical solution for the distribution of the peaks is given by Rice. In the present paper, three different methods for statistical load extrapolation are compared with the analytical solution for one mean wind speed. The methods considered are global maxima, block maxima, and the peak over...

  13. A regularization method for extrapolation of solar potential magnetic fields

    Science.gov (United States)

    Gary, G. A.; Musielak, Z. E.

    1992-01-01

    The mathematical basis of a Tikhonov regularization method for extrapolating the chromospheric-coronal magnetic field using photospheric vector magnetograms is discussed. The basic techniques show that the Cauchy initial value problem can be formulated for potential magnetic fields. The potential field analysis considers a set of linear, elliptic partial differential equations. It is found that, by introducing an appropriate smoothing of the initial data of the Cauchy potential problem, an approximate Fourier integral solution is found, and an upper bound to the error in the solution is derived. This specific regularization technique, which is a function of magnetograph measurement sensitivities, provides a method to extrapolate the potential magnetic field above an active region into the chromosphere and low corona.

  14. Novel extrapolation method in the Monte Carlo shell model

    International Nuclear Information System (INIS)

    Shimizu, Noritaka; Abe, Takashi; Utsuno, Yutaka; Mizusaki, Takahiro; Otsuka, Takaharu; Honma, Michio

    2010-01-01

    We propose an extrapolation method utilizing energy variance in the Monte Carlo shell model to estimate the energy eigenvalue and observables accurately. We derive a formula for the energy variance with deformed Slater determinants, which enables us to calculate the energy variance efficiently. The feasibility of the method is demonstrated for the full pf-shell calculation of 56 Ni, and the applicability of the method to a system beyond the current limit of exact diagonalization is shown for the pf+g 9/2 -shell calculation of 64 Ge.

  15. Dead time corrections using the backward extrapolation method

    Energy Technology Data Exchange (ETDEWEB)

    Gilad, E., E-mail: gilade@bgu.ac.il [The Unit of Nuclear Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105 (Israel); Dubi, C. [Department of Physics, Nuclear Research Center NEGEV (NRCN), Beer-Sheva 84190 (Israel); Geslot, B.; Blaise, P. [DEN/CAD/DER/SPEx/LPE, CEA Cadarache, Saint-Paul-les-Durance 13108 (France); Kolin, A. [Department of Physics, Nuclear Research Center NEGEV (NRCN), Beer-Sheva 84190 (Israel)

    2017-05-11

    Dead time losses in neutron detection, caused by both the detector and the electronics dead time, is a highly nonlinear effect, known to create high biasing in physical experiments as the power grows over a certain threshold, up to total saturation of the detector system. Analytic modeling of the dead time losses is a highly complicated task due to the different nature of the dead time in the different components of the monitoring system (e.g., paralyzing vs. non paralyzing), and the stochastic nature of the fission chains. In the present study, a new technique is introduced for dead time corrections on the sampled Count Per Second (CPS), based on backward extrapolation of the losses, created by increasingly growing artificially imposed dead time on the data, back to zero. The method has been implemented on actual neutron noise measurements carried out in the MINERVE zero power reactor, demonstrating high accuracy (of 1–2%) in restoring the corrected count rate. - Highlights: • A new method for dead time corrections is introduced and experimentally validated. • The method does not depend on any prior calibration nor assumes any specific model. • Different dead times are imposed on the signal and the losses are extrapolated to zero. • The method is implemented and validated using neutron measurements from the MINERVE. • Result show very good correspondence to empirical results.

  16. A generalized sound extrapolation method for turbulent flows

    Science.gov (United States)

    Zhong, Siyang; Zhang, Xin

    2018-02-01

    Sound extrapolation methods are often used to compute acoustic far-field directivities using near-field flow data in aeroacoustics applications. The results may be erroneous if the volume integrals are neglected (to save computational cost), while non-acoustic fluctuations are collected on the integration surfaces. In this work, we develop a new sound extrapolation method based on an acoustic analogy using Taylor's hypothesis (Taylor 1938 Proc. R. Soc. Lon. A 164, 476-490. (doi:10.1098/rspa.1938.0032)). Typically, a convection operator is used to filter out the acoustically inefficient components in the turbulent flows, and an acoustics dominant indirect variable Dcp‧ is solved. The sound pressure p' at the far field is computed from Dcp‧ based on the asymptotic properties of the Green's function. Validations results for benchmark problems with well-defined sources match well with the exact solutions. For aeroacoustics applications: the sound predictions by the aerofoil-gust interaction are close to those by an earlier method specially developed to remove the effect of vortical fluctuations (Zhong & Zhang 2017 J. Fluid Mech. 820, 424-450. (doi:10.1017/jfm.2017.219)); for the case of vortex shedding noise from a cylinder, the off-body predictions by the proposed method match well with the on-body Ffowcs-Williams and Hawkings result; different integration surfaces yield close predictions (of both spectra and far-field directivities) for a co-flowing jet case using an established direct numerical simulation database. The results suggest that the method may be a potential candidate for sound projection in aeroacoustics applications.

  17. An efficient wave extrapolation method for anisotropic media with tilt

    KAUST Repository

    Waheed, Umair bin

    2015-03-23

    Wavefield extrapolation operators for elliptically anisotropic media offer significant cost reduction compared with that for the transversely isotropic case, particularly when the axis of symmetry exhibits tilt (from the vertical). However, elliptical anisotropy does not provide accurate wavefield representation or imaging for transversely isotropic media. Therefore, we propose effective elliptically anisotropic models that correctly capture the kinematic behaviour of wavefields for transversely isotropic media. Specifically, we compute source-dependent effective velocities for the elliptic medium using kinematic high-frequency representation of the transversely isotropic wavefield. The effective model allows us to use cheaper elliptic wave extrapolation operators. Despite the fact that the effective models are obtained by matching kinematics using high-frequency asymptotic, the resulting wavefield contains most of the critical wavefield components, including frequency dependency and caustics, if present, with reasonable accuracy. The methodology developed here offers a much better cost versus accuracy trade-off for wavefield computations in transversely isotropic media, particularly for media of low to moderate complexity. In addition, the wavefield solution is free from shear-wave artefacts as opposed to the conventional finite-difference-based transversely isotropic wave extrapolation scheme. We demonstrate these assertions through numerical tests on synthetic tilted transversely isotropic models.

  18. An efficient wave extrapolation method for anisotropic media with tilt

    KAUST Repository

    Waheed, Umair bin; Alkhalifah, Tariq Ali

    2015-01-01

    Wavefield extrapolation operators for elliptically anisotropic media offer significant cost reduction compared with that for the transversely isotropic case, particularly when the axis of symmetry exhibits tilt (from the vertical). However, elliptical anisotropy does not provide accurate wavefield representation or imaging for transversely isotropic media. Therefore, we propose effective elliptically anisotropic models that correctly capture the kinematic behaviour of wavefields for transversely isotropic media. Specifically, we compute source-dependent effective velocities for the elliptic medium using kinematic high-frequency representation of the transversely isotropic wavefield. The effective model allows us to use cheaper elliptic wave extrapolation operators. Despite the fact that the effective models are obtained by matching kinematics using high-frequency asymptotic, the resulting wavefield contains most of the critical wavefield components, including frequency dependency and caustics, if present, with reasonable accuracy. The methodology developed here offers a much better cost versus accuracy trade-off for wavefield computations in transversely isotropic media, particularly for media of low to moderate complexity. In addition, the wavefield solution is free from shear-wave artefacts as opposed to the conventional finite-difference-based transversely isotropic wave extrapolation scheme. We demonstrate these assertions through numerical tests on synthetic tilted transversely isotropic models.

  19. Can the Tafel equation be derived from first principles?

    International Nuclear Information System (INIS)

    Gutman, E.M.

    2005-01-01

    A century ago, Tafel disapproved the attempts to derive the empirical equation named after him by thermodynamic methods. He noted that his observations referred to irreversible electrochemical reactions, where thermodynamics is inapplicable. This statement seems to remain valid until today. Indeed, it is impossible as yet to predict the kinetic parameters for chemical processes by determining rate constants and reaction orders from 'first principles', unless strictly specialized and, to a great extent, artificial models are developed. Nevertheless, in this paper an attempt to derive the kinetic law of mass action from 'first principles' is made in macroscopic formulation. It has turned out to be possible owing to the methods of thermodynamics of irreversible processes that were unknown in Tafel's time

  20. The Extrapolation-Accelerated Multilevel Aggregation Method in PageRank Computation

    Directory of Open Access Journals (Sweden)

    Bing-Yuan Pu

    2013-01-01

    Full Text Available An accelerated multilevel aggregation method is presented for calculating the stationary probability vector of an irreducible stochastic matrix in PageRank computation, where the vector extrapolation method is its accelerator. We show how to periodically combine the extrapolation method together with the multilevel aggregation method on the finest level for speeding up the PageRank computation. Detailed numerical results are given to illustrate the behavior of this method, and comparisons with the typical methods are also made.

  1. A high precision extrapolation method in multiphase-field model for simulating dendrite growth

    Science.gov (United States)

    Yang, Cong; Xu, Qingyan; Liu, Baicheng

    2018-05-01

    The phase-field method coupling with thermodynamic data has become a trend for predicting the microstructure formation in technical alloys. Nevertheless, the frequent access to thermodynamic database and calculation of local equilibrium conditions can be time intensive. The extrapolation methods, which are derived based on Taylor expansion, can provide approximation results with a high computational efficiency, and have been proven successful in applications. This paper presents a high precision second order extrapolation method for calculating the driving force in phase transformation. To obtain the phase compositions, different methods in solving the quasi-equilibrium condition are tested, and the M-slope approach is chosen for its best accuracy. The developed second order extrapolation method along with the M-slope approach and the first order extrapolation method are applied to simulate dendrite growth in a Ni-Al-Cr ternary alloy. The results of the extrapolation methods are compared with the exact solution with respect to the composition profile and dendrite tip position, which demonstrate the high precision and efficiency of the newly developed algorithm. To accelerate the phase-field and extrapolation computation, the graphic processing unit (GPU) based parallel computing scheme is developed. The application to large-scale simulation of multi-dendrite growth in an isothermal cross-section has demonstrated the ability of the developed GPU-accelerated second order extrapolation approach for multiphase-field model.

  2. Extrapolation method in the Monte Carlo Shell Model and its applications

    International Nuclear Information System (INIS)

    Shimizu, Noritaka; Abe, Takashi; Utsuno, Yutaka; Mizusaki, Takahiro; Otsuka, Takaharu; Honma, Michio

    2011-01-01

    We demonstrate how the energy-variance extrapolation method works using the sequence of the approximated wave functions obtained by the Monte Carlo Shell Model (MCSM), taking 56 Ni with pf-shell as an example. The extrapolation method is shown to work well even in the case that the MCSM shows slow convergence, such as 72 Ge with f5pg9-shell. The structure of 72 Se is also studied including the discussion of the shape-coexistence phenomenon.

  3. extrap: Software to assist the selection of extrapolation methods for moving-boat ADCP streamflow measurements

    Science.gov (United States)

    Mueller, David S.

    2013-04-01

    Selection of the appropriate extrapolation methods for computing the discharge in the unmeasured top and bottom parts of a moving-boat acoustic Doppler current profiler (ADCP) streamflow measurement is critical to the total discharge computation. The software tool, extrap, combines normalized velocity profiles from the entire cross section and multiple transects to determine a mean profile for the measurement. The use of an exponent derived from normalized data from the entire cross section is shown to be valid for application of the power velocity distribution law in the computation of the unmeasured discharge in a cross section. Selected statistics are combined with empirically derived criteria to automatically select the appropriate extrapolation methods. A graphical user interface (GUI) provides the user tools to visually evaluate the automatically selected extrapolation methods and manually change them, as necessary. The sensitivity of the total discharge to available extrapolation methods is presented in the GUI. Use of extrap by field hydrographers has demonstrated that extrap is a more accurate and efficient method of determining the appropriate extrapolation methods compared with tools currently (2012) provided in the ADCP manufacturers' software.

  4. Technique of Critical Current Density Measurement of Bulk Superconductor with Linear Extrapolation Method

    International Nuclear Information System (INIS)

    Adi, Wisnu Ari; Sukirman, Engkir; Winatapura, Didin S.

    2000-01-01

    Technique of critical current density measurement (Jc) of HTc bulk ceramic superconductor has been performed by using linear extrapolation with four-point probes method. The measurement of critical current density HTc bulk ceramic superconductor usually causes damage in contact resistance. In order to decrease this damage factor, we introduce extrapolation method. The extrapolating data show that the critical current density Jc for YBCO (123) and BSCCO (2212) at 77 K are 10,85(6) Amp.cm - 2 and 14,46(6) Amp.cm - 2, respectively. This technique is easier, simpler, and the use of the current flow is low, so it will not damage the contact resistance of the sample. We expect that the method can give a better solution for bulk superconductor application. Key words. : superconductor, critical temperature, and critical current density

  5. The optimized expansion based low-rank method for wavefield extrapolation

    KAUST Repository

    Wu, Zedong

    2014-03-01

    Spectral methods are fast becoming an indispensable tool for wavefield extrapolation, especially in anisotropic media because it tends to be dispersion and artifact free as well as highly accurate when solving the wave equation. However, for inhomogeneous media, we face difficulties in dealing with the mixed space-wavenumber domain extrapolation operator efficiently. To solve this problem, we evaluated an optimized expansion method that can approximate this operator with a low-rank variable separation representation. The rank defines the number of inverse Fourier transforms for each time extrapolation step, and thus, the lower the rank, the faster the extrapolation. The method uses optimization instead of matrix decomposition to find the optimal wavenumbers and velocities needed to approximate the full operator with its explicit low-rank representation. As a result, we obtain lower rank representations compared with the standard low-rank method within reasonable accuracy and thus cheaper extrapolations. Additional bounds set on the range of propagated wavenumbers to adhere to the physical wave limits yield unconditionally stable extrapolations regardless of the time step. An application on the BP model provided superior results compared to those obtained using the decomposition approach. For transversely isotopic media, because we used the pure P-wave dispersion relation, we obtained solutions that were free of the shear wave artifacts, and the algorithm does not require that n > 0. In addition, the required rank for the optimization approach to obtain high accuracy in anisotropic media was lower than that obtained by the decomposition approach, and thus, it was more efficient. A reverse time migration result for the BP tilted transverse isotropy model using this method as a wave propagator demonstrated the ability of the algorithm.

  6. Evaluation of extrapolation methods for actual state expenditures on health care in Russian Federation

    Directory of Open Access Journals (Sweden)

    S. A. Banin

    2016-01-01

    Full Text Available Forecasting methods, extrapolation ones in particular, are used in health care for medical, biological and clinical research. The author, using accessible internet space, has not met a single publication devoted to extrapolation of financial parameters of health care activities. This determined the relevance of the material presented in the article: based on health care financing dynamics in Russia in 2000–2010 the author examined possibility of application of basic perspective extrapolation methods - moving average, exponential smoothing and least squares. It is hypothesized that all three methods can equally forecast actual public expenditures on health care in medium term in Russia’s current financial and economic conditions. The study result was evaluated in two time periods: within the studied interval and a five-year period. It was found that within the study period all methods have an average relative extrapolation error of 3–5%, which means high precision of the forecast. The study shown a specific feature of the least squares method which were gradually accumulating results so their economic interpretation became possible only in the end of the studied period. That is why the extrapolating results obtained by least squares method are not applicable in an entire study period and rather have a theoretical value. Beyond the study period, however, this feature was found to be the most corresponding to the real situation. It was the least squares method that proved to be the most appropriate for economic interpretation of the forecast results of actual public expenditures on health care. The hypothesis was not confirmed, the author received three differently directed results, while each method had independent significance and its application depended on evaluation study objectives and real social, economic and financial situation in Russian health care system.

  7. Parametric methods of describing and extrapolating the characteristics of long-term strength of refractory materials

    International Nuclear Information System (INIS)

    Tsvilyuk, I.S.; Avramenko, D.S.

    1986-01-01

    This paper carries out the comparative analysis of the suitability of parametric methods for describing and extrapolating the results of longterm tests on refractory materials. Diagrams are presented of the longterm strength of niobium based alloys tested in a vacuum of 1.3 X 10 -3 Pa. The predicted values and variance of the estimate of endurance of refractory alloys are presented by parametric dependences. The longterm strength characteristics can be described most adequately by the Manson-Sakkop and Sherby-Dorn methods. Several methods must be used to ensure the reliable extrapolation of the longterm strength characteristics to the time period an order of magnitude longer than the experimental data. The most suitable method cannot always be selected on the basis of the correlation ratio

  8. Standardization of electron-capture and complex beta-gamma radionuclides by the efficiency extrapolation method

    International Nuclear Information System (INIS)

    Grigorescu, L.

    1976-07-01

    The efficiency extrapolation method was improved by establishing ''linearity conditions'' for the discrimination on the gamma channel of the coincidence equipment. These conditions were proved to eliminate the systematic error of the method. A control procedure for the fulfilment of linearity conditions and estimation of residual systematic error was given. For law-energy gamma transitions an ''equivalent scheme principle'' was established, which allow for a correct application of the method. Solutions of Cs-134, Co-57, Ba-133 and Zn-65 were standardized with an ''effective standard deviation'' of 0.3-0.7 per cent. For Zn-65 ''special linearity conditions'' were applied. (author)

  9. Evaluation of functioning of an extrapolation chamber using Monte Carlo method

    International Nuclear Information System (INIS)

    Oramas Polo, I.; Alfonso Laguardia, R.

    2015-01-01

    The extrapolation chamber is a parallel plate chamber and variable volume based on the Braff-Gray theory. It determines in absolute mode, with high accuracy the dose absorbed by the extrapolation of the ionization current measured for a null distance between the electrodes. This camera is used for dosimetry of external beta rays for radiation protection. This paper presents a simulation for evaluating the functioning of an extrapolation chamber type 23392 of PTW, using the MCNPX Monte Carlo method. In the simulation, the fluence in the air collector cavity of the chamber was obtained. The influence of the materials that compose the camera on its response against beta radiation beam was also analysed. A comparison of the contribution of primary and secondary radiation was performed. The energy deposition in the air collector cavity for different depths was calculated. The component with the higher energy deposition is the Polymethyl methacrylate block. The energy deposition in the air collector cavity for chamber depth 2500 μm is greater with a value of 9.708E-07 MeV. The fluence in the air collector cavity decreases with depth. It's value is 1.758E-04 1/cm 2 for chamber depth 500 μm. The values reported are for individual electron and photon histories. The graphics of simulated parameters are presented in the paper. (Author)

  10. A comparison between progressive extension method (PEM) and iterative method (IM) for magnetic field extrapolations in the solar atmosphere

    Science.gov (United States)

    Wu, S. T.; Sun, M. T.; Sakurai, Takashi

    1990-01-01

    This paper presents a comparison between two numerical methods for the extrapolation of nonlinear force-free magnetic fields, viz the Iterative Method (IM) and the Progressive Extension Method (PEM). The advantages and disadvantages of these two methods are summarized, and the accuracy and numerical instability are discussed. On the basis of this investigation, it is claimed that the two methods do resemble each other qualitatively.

  11. A method of creep rupture data extrapolation based on physical processes

    International Nuclear Information System (INIS)

    Leinster, M.G.

    2008-01-01

    There is a need for a reliable method to extrapolate generic creep rupture data to failure times in excess of the currently published times. A method based on well-understood and mathematically described physical processes is likely to be stable and reliable. Creep process descriptions have been developed based on accepted theory, to the extent that good fits with published data have been obtained. Methods have been developed to apply these descriptions to extrapolate creep rupture data to stresses below the published values. The relationship creep life parameter=f(ln(sinh(stress))) has been shown to be justifiable over the stress ranges of most interest, and gives realistic results at high temperatures and long times to failure. In the interests of continuity with past and present practice, the suggested method is intended to extend existing polynomial descriptions of life parameters at low stress. Where no polynomials exist, the method can be used to describe the behaviour of life parameters throughout the full range of a particular failure mode in the published data

  12. Correction method for critical extrapolation of control-rods-rising during physical start-up of reactor

    International Nuclear Information System (INIS)

    Zhang Fan; Chen Wenzhen; Yu Lei

    2008-01-01

    During physical start-up of nuclear reactor, the curve got by lifting the con- trol rods to extrapolate to the critical state is often in protruding shape, by which the supercritical phenomena is led. In the paper, the reason why the curve was in protruding was analyzed. A correction method was introduced, and the calculations were carried out by the practical data used in a nuclear power plant. The results show that the correction method reverses the protruding shape of the extrapolating curve, and the risk of reactor supercritical phenomena can be reduced using the extrapolated curve got by the correction method during physical start-up of the reactor. (authors)

  13. EXTRAPOLATION METHOD FOR MAXIMAL AND 24-H AVERAGE LTE TDD EXPOSURE ESTIMATION.

    Science.gov (United States)

    Franci, D; Grillo, E; Pavoncello, S; Coltellacci, S; Buccella, C; Aureli, T

    2018-01-01

    The Long-Term Evolution (LTE) system represents the evolution of the Universal Mobile Telecommunication System technology. This technology introduces two duplex modes: Frequency Division Duplex and Time Division Duplex (TDD). Despite having experienced a limited expansion in the European countries since the debut of the LTE technology, a renewed commercial interest for LTE TDD technology has recently been shown. Therefore, the development of extrapolation procedures optimised for TDD systems becomes crucial, especially for the regulatory authorities. This article presents an extrapolation method aimed to assess the exposure to LTE TDD sources, based on the detection of the Cell-Specific Reference Signal power level. The method introduces a βTDD parameter intended to quantify the fraction of the LTE TDD frame duration reserved for downlink transmission. The method has been validated by experimental measurements performed on signals generated by both a vector signal generator and a test Base Transceiver Station installed at Linkem S.p.A facility in Rome. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. An Efficient Method of Reweighting and Reconstructing Monte Carlo Molecular Simulation Data for Extrapolation to Different Temperature and Density Conditions

    KAUST Repository

    Sun, Shuyu

    2013-06-01

    This paper introduces an efficient technique to generate new molecular simulation Markov chains for different temperature and density conditions, which allow for rapid extrapolation of canonical ensemble averages at a range of temperatures and densities different from the original conditions where a single simulation is conducted. Obtained information from the original simulation are reweighted and even reconstructed in order to extrapolate our knowledge to the new conditions. Our technique allows not only the extrapolation to a new temperature or density, but also the double extrapolation to both new temperature and density. The method was implemented for Lennard-Jones fluid with structureless particles in single-gas phase region. Extrapolation behaviors as functions of extrapolation ranges were studied. Limits of extrapolation ranges showed a remarkable capability especially along isochors where only reweighting is required. Various factors that could affect the limits of extrapolation ranges were investigated and compared. In particular, these limits were shown to be sensitive to the number of particles used and starting point where the simulation was originally conducted.

  15. An Efficient Method of Reweighting and Reconstructing Monte Carlo Molecular Simulation Data for Extrapolation to Different Temperature and Density Conditions

    KAUST Repository

    Sun, Shuyu; Kadoura, Ahmad Salim; Salama, Amgad

    2013-01-01

    This paper introduces an efficient technique to generate new molecular simulation Markov chains for different temperature and density conditions, which allow for rapid extrapolation of canonical ensemble averages at a range of temperatures and densities different from the original conditions where a single simulation is conducted. Obtained information from the original simulation are reweighted and even reconstructed in order to extrapolate our knowledge to the new conditions. Our technique allows not only the extrapolation to a new temperature or density, but also the double extrapolation to both new temperature and density. The method was implemented for Lennard-Jones fluid with structureless particles in single-gas phase region. Extrapolation behaviors as functions of extrapolation ranges were studied. Limits of extrapolation ranges showed a remarkable capability especially along isochors where only reweighting is required. Various factors that could affect the limits of extrapolation ranges were investigated and compared. In particular, these limits were shown to be sensitive to the number of particles used and starting point where the simulation was originally conducted.

  16. Low-cost extrapolation method for maximal LTE radio base station exposure estimation: test and validation.

    Science.gov (United States)

    Verloock, Leen; Joseph, Wout; Gati, Azeddine; Varsier, Nadège; Flach, Björn; Wiart, Joe; Martens, Luc

    2013-06-01

    An experimental validation of a low-cost method for extrapolation and estimation of the maximal electromagnetic-field exposure from long-term evolution (LTE) radio base station installations are presented. No knowledge on downlink band occupation or service characteristics is required for the low-cost method. The method is applicable in situ. It only requires a basic spectrum analyser with appropriate field probes without the need of expensive dedicated LTE decoders. The method is validated both in laboratory and in situ, for a single-input single-output antenna LTE system and a 2×2 multiple-input multiple-output system, with low deviations in comparison with signals measured using dedicated LTE decoders.

  17. Low-cost extrapolation method for maximal lte radio base station exposure estimation: Test and validation

    International Nuclear Information System (INIS)

    Verloock, L.; Joseph, W.; Gati, A.; Varsier, N.; Flach, B.; Wiart, J.; Martens, L.

    2013-01-01

    An experimental validation of a low-cost method for extrapolation and estimation of the maximal electromagnetic-field exposure from long-term evolution (LTE) radio base station installations are presented. No knowledge on down-link band occupation or service characteristics is required for the low-cost method. The method is applicable in situ. It only requires a basic spectrum analyser with appropriate field probes without the need of expensive dedicated LTE decoders. The method is validated both in laboratory and in situ, for a single-input single-output antenna LTE system and a 2x2 multiple-input multiple-output system, with low deviations in comparison with signals measured using dedicated LTE decoders. (authors)

  18. A thermal extrapolation method for the effective temperatures and internal energies of activated ions

    Science.gov (United States)

    Meot-Ner (Mautner), Michael; Somogyi, Árpád

    2007-11-01

    The internal energies of dissociating ions, activated chemically or collisionally, can be estimated using the kinetics of thermal dissociation. The thermal Arrhenius parameters can be combined with the observed dissociation rate of the activated ions using kdiss = Athermalexp(-Ea,thermal/RTeff). This Arrhenius-type relation yields the effective temperature, Teff, at which the ions would dissociate thermally at the same rate, or yield the same product distributions, as the activated ions. In turn, Teff is used to calculate the internal energy of the ions and the energy deposited by the activation process. The method yields an energy deposition efficiency of 10% for a chemical ionization proton transfer reaction and 8-26% for the surface collisions of various peptide ions. Internal energies of ions activated by chemical ionization or by gas phase collisions, and of ions produced by desorption methods such as fast atom bombardment, can be also evaluated. Thermal extrapolation is especially useful for ion-molecule reaction products and for biological ions, where other methods to evaluate internal energies are laborious or unavailable.

  19. Propagation of internal errors in explicit Runge–Kutta methods and internal stability of SSP and extrapolation methods

    KAUST Repository

    Ketcheson, David I.

    2014-04-11

    In practical computation with Runge--Kutta methods, the stage equations are not satisfied exactly, due to roundoff errors, algebraic solver errors, and so forth. We show by example that propagation of such errors within a single step can have catastrophic effects for otherwise practical and well-known methods. We perform a general analysis of internal error propagation, emphasizing that it depends significantly on how the method is implemented. We show that for a fixed method, essentially any set of internal stability polynomials can be obtained by modifying the implementation details. We provide bounds on the internal error amplification constants for some classes of methods with many stages, including strong stability preserving methods and extrapolation methods. These results are used to prove error bounds in the presence of roundoff or other internal errors.

  20. Ultrasonic computerized tomography (CT) for temperature measurements with limited projection data based on extrapolated filtered back projection (FBP) method

    International Nuclear Information System (INIS)

    Zhu Ning; Jiang Yong; Kato, Seizo

    2005-01-01

    This study uses ultrasound in combination with tomography to obtain three-dimensional temperature measurements using projection data obtained from limited projection angle. The main feature of the new computerized tomography (CT) reconstruction algorithm is to employ extrapolation scheme to make up for the incomplete projection data, it is based on the conventional filtered back projection (FBP) method while on top of that taking into account the correlation between the projection data and Fourier transform-based extrapolation. Computer simulation is conducted to verify the above algorithm. An experimental 3D temperature distribution measurement is also carried out to validate the proposed algorithm. The simulation and experimental results demonstrate that the extrapolated FBP CT algorithm is highly effective in dealing with projection data from limited projection angle

  1. extrap: Software to assist the selection of extrapolation methods for moving-boat ADCP streamflow measurements

    Science.gov (United States)

    Mueller, David S.

    2013-01-01

    Selection of the appropriate extrapolation methods for computing the discharge in the unmeasured top and bottom parts of a moving-boat acoustic Doppler current profiler (ADCP) streamflow measurement is critical to the total discharge computation. The software tool, extrap, combines normalized velocity

  2. Direct activity determination of Mn-54 and Zn-65 by a non-extrapolation liquid scintillation method

    CSIR Research Space (South Africa)

    Simpson, BRS

    2004-02-01

    Full Text Available . The simple decay scheme exhibited by these radionuclides, with the emission of an energetic gamma ray, allows the absolute activity to be determined from 4pie-gamma data by direct calculation without the need for efficiency extrapolation. The method, which...

  3. Acceleration of nodal diffusion code by Chebychev polynomial extrapolation method; Ubrzanje spoljasnjih iteracija difuzionog nodalnog proracuna Chebisevijevom ekstrapolacionom metodom

    Energy Technology Data Exchange (ETDEWEB)

    Zmijarevic, I; Tomashevic, Dj [Institut za Nuklearne Nauke Boris Kidric, Belgrade (Yugoslavia)

    1988-07-01

    This paper presents Chebychev acceleration of outer iterations of a nodal diffusion code of high accuracy. Extrapolation parameters, unique for all moments are calculated using the node integrated distribution of fission source. Sample calculations are presented indicating the efficiency of method. (author)

  4. Comparison of precipitation nowcasting by extrapolation and statistical-advection methods

    Czech Academy of Sciences Publication Activity Database

    Sokol, Zbyněk; Kitzmiller, D.; Pešice, Petr; Mejsnar, Jan

    2013-01-01

    Roč. 123, 1 April (2013), s. 17-30 ISSN 0169-8095 R&D Projects: GA MŠk ME09033 Institutional support: RVO:68378289 Keywords : Precipitation forecast * Statistical models * Regression * Quantitative precipitation forecast * Extrapolation forecast Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 2.421, year: 2013 http://www.sciencedirect.com/science/article/pii/S0169809512003390

  5. Linear extrapolation distance for a black cylindrical control rod with the pulsed neutron method

    International Nuclear Information System (INIS)

    Loewenhielm, G.

    1978-03-01

    The objective of this experiment was to measure the linear extrapolation distance for a central black cylindrical control rod in a cylindrical water moderator. The radius for both the control rod and the moderator was varied. The pulsed neutron technique was used and the decay constant was measured for both a homogeneous and a heterogeneous system. From the difference in the decay constants the extrapolation distance could be calculated. The conclusion is that within experimental error it is safe to use the approximate formula given by Pellaud or the more exact one given by Kavenoky. We can also conclude that linear anisotropic scattering is accounted for in a correct way in the approximate formula given by Pellaud and Prinja and Williams

  6. Measurement of the surface field on open magnetic samples by the extrapolation method

    Czech Academy of Sciences Publication Activity Database

    Perevertov, Oleksiy

    2005-01-01

    Roč. 76, - (2005), 104701/1-104701/7 ISSN 0034-6748 R&D Projects: GA ČR(CZ) GP202/04/P010; GA AV ČR(CZ) 1QS100100508 Institutional research plan: CEZ:AV0Z10100520 Keywords : magnetic field measurement * extrapolation * air gaps * magnetic permeability Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.235, year: 2005

  7. Comparison of extrapolation methods for creep rupture stresses of 12Cr and 18Cr10NiTi steels

    International Nuclear Information System (INIS)

    Ivarsson, B.

    1979-01-01

    As a part of a Soviet-Swedish research programme the creep rupture properties of two heat resisting steels namely a 12% Cr steel and an 18% Cr12% Ni titanium stabilized steel have been studied. One heat from each country of both steels were creep tested. The strength of the 12% Cr steels was similar to earlier reported strength values, the Soviet steel being some-what stronger due to a higher tungsten content. The strength of the Swedish 18/12 Ti steel agreed with earlier results, while the properties of the Soviet steel were inferior to those reported from earlier Soviet creep testings. Three extrapolation methods were compared on creep rupture data collected in both countries. Isothermal extrapolation and an algebraic method of Soviet origin gave in many cases rather similar results, while the parameter method recommended by ISO resulted in higher rupture strength values at longer times. (author)

  8. A comparison of high-order explicit Runge–Kutta, extrapolation, and deferred correction methods in serial and parallel

    KAUST Repository

    Ketcheson, David I.

    2014-06-13

    We compare the three main types of high-order one-step initial value solvers: extrapolation, spectral deferred correction, and embedded Runge–Kutta pairs. We consider orders four through twelve, including both serial and parallel implementations. We cast extrapolation and deferred correction methods as fixed-order Runge–Kutta methods, providing a natural framework for the comparison. The stability and accuracy properties of the methods are analyzed by theoretical measures, and these are compared with the results of numerical tests. In serial, the eighth-order pair of Prince and Dormand (DOP8) is most efficient. But other high-order methods can be more efficient than DOP8 when implemented in parallel. This is demonstrated by comparing a parallelized version of the wellknown ODEX code with the (serial) DOP853 code. For an N-body problem with N = 400, the experimental extrapolation code is as fast as the tuned Runge–Kutta pair at loose tolerances, and is up to two times as fast at tight tolerances.

  9. Standardization of I-125 solution by extrapolation of an efficiency wave obtained by coincidence X-(X-γ) counting method

    International Nuclear Information System (INIS)

    Iwahara, A.

    1989-01-01

    The activity concentration of 125 I was determined by X-(X-α) coincidence counting method and efficiency extrapolation curve. The measurement system consists of 2 thin NaI(T1) scintillation detectors which are horizontally movable on a track. The efficiency curve is obtained by symmetricaly changing the distance between the source and the detectors and the activity is determined by applying a linear efficiency extrapolation curve. All sum-coincidence events are included between 10 and 100 KeV window counting and the main source of uncertainty is coming from poor counting statistic around zero efficiency. The consistence of results with other methods shows that this technique can be applied to photon cascade emitters and are not discriminating by the detectors. It has been also determined the 35,5 KeV gamma-ray emission probability of 125 I by using a Gamma-X type high purity germanium detector. (author) [pt

  10. An efficient wave extrapolation method for tilted orthorhombic media using effective ellipsoidal models

    KAUST Repository

    Waheed, Umair bin; Alkhalifah, Tariq Ali

    2014-01-01

    The wavefield extrapolation operator for ellipsoidally anisotropic (EA) media offers significant cost reduction compared to that for the orthorhombic case, especially when the symmetry planes are tilted and/or rotated. However, ellipsoidal anisotropy does not provide accurate focusing for media of orthorhombic anisotropy. Therefore, we develop effective EA models that correctly capture the kinematic behavior of the wavefield for tilted orthorhombic (TOR) media. Specifically, we compute effective source-dependent velocities for the EA model using kinematic high-frequency representation of the TOR wavefield. The effective model allows us to use the cheaper EA wavefield extrapolation operator to obtain approximate wavefield solutions for a TOR model. Despite the fact that the effective EA models are obtained by kinematic matching using high-frequency asymptotic, the resulting wavefield contains most of the critical wavefield components, including the frequency dependency and caustics, if present, with reasonable accuracy. The methodology developed here offers a much better cost versus accuracy tradeoff for wavefield computations in TOR media, particularly for media of low to moderate complexity. We demonstrate applicability of the proposed approach on a layered TOR model.

  11. An efficient wave extrapolation method for tilted orthorhombic media using effective ellipsoidal models

    KAUST Repository

    Waheed, Umair bin

    2014-08-01

    The wavefield extrapolation operator for ellipsoidally anisotropic (EA) media offers significant cost reduction compared to that for the orthorhombic case, especially when the symmetry planes are tilted and/or rotated. However, ellipsoidal anisotropy does not provide accurate focusing for media of orthorhombic anisotropy. Therefore, we develop effective EA models that correctly capture the kinematic behavior of the wavefield for tilted orthorhombic (TOR) media. Specifically, we compute effective source-dependent velocities for the EA model using kinematic high-frequency representation of the TOR wavefield. The effective model allows us to use the cheaper EA wavefield extrapolation operator to obtain approximate wavefield solutions for a TOR model. Despite the fact that the effective EA models are obtained by kinematic matching using high-frequency asymptotic, the resulting wavefield contains most of the critical wavefield components, including the frequency dependency and caustics, if present, with reasonable accuracy. The methodology developed here offers a much better cost versus accuracy tradeoff for wavefield computations in TOR media, particularly for media of low to moderate complexity. We demonstrate applicability of the proposed approach on a layered TOR model.

  12. Comparison among creep rupture strength extrapolation methods with application to data for AISI 316 SS from Italy, France, U.K. and F.R.G

    International Nuclear Information System (INIS)

    Brunori, G.; Cappellato, S.; Vacchiano, S.; Guglielmi, F.

    1982-01-01

    Inside Activity 3 ''Materials'' of WGCS, the member states UK and FRG have developed a work regarding extrapolation methods for creep data. This work has been done by comparising extrapolation methods in use in their countries by applying them to creep rupture strength data on AISI 316 SS obtained in UK and FRG. This work has been issued on April 1978 and the Community has dealed it to all Activity 3 Members. Italy, in the figure of NIRA S.p.A., has received, from the European Community a contract to extend the work to Italian and French data, using extrapolation methods currently in use in Italy. The work should deal with the following points: - Collect of Italian experimental data; - Chemical analysis on Italian Specimen; - Comparison among Italian experimental data with French, FRG and UK data; - Description of extrapolation methods in use in Italy; - Application of these extrapolation methods to Italian, French, British and Germany data; - Extensions of a Final Report

  13. COMPARISON OF CORONAL EXTRAPOLATION METHODS FOR CYCLE 24 USING HMI DATA

    Energy Technology Data Exchange (ETDEWEB)

    Arden, William M. [University of Southern Queensland, Toowoomba, Queensland (Australia); Norton, Aimee A.; Sun, Xudong; Zhao, Xuepu [Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305 (United States)

    2016-05-20

    Two extrapolation models of the solar coronal magnetic field are compared using magnetogram data from the Solar Dynamics Observatory /Helioseismic and Magnetic Imager instrument. The two models, a horizontal current–current sheet–source surface (HCCSSS) model and a potential field–source surface (PFSS) model, differ in their treatment of coronal currents. Each model has its own critical variable, respectively, the radius of a cusp surface and a source surface, and it is found that adjusting these heights over the period studied allows for a better fit between the models and the solar open flux at 1 au as calculated from the Interplanetary Magnetic Field (IMF). The HCCSSS model provides the better fit for the overall period from 2010 November to 2015 May as well as for two subsets of the period: the minimum/rising part of the solar cycle and the recently identified peak in the IMF from mid-2014 to mid-2015 just after solar maximum. It is found that an HCCSSS cusp surface height of 1.7 R {sub ⊙} provides the best fit to the IMF for the overall period, while 1.7 and 1.9 R {sub ⊙} give the best fits for the two subsets. The corresponding values for the PFSS source surface height are 2.1, 2.2, and 2.0 R {sub ⊙} respectively. This means that the HCCSSS cusp surface rises as the solar cycle progresses while the PFSS source surface falls.

  14. Statistical Analysis of a Class: Monte Carlo and Multiple Imputation Spreadsheet Methods for Estimation and Extrapolation

    Science.gov (United States)

    Fish, Laurel J.; Halcoussis, Dennis; Phillips, G. Michael

    2017-01-01

    The Monte Carlo method and related multiple imputation methods are traditionally used in math, physics and science to estimate and analyze data and are now becoming standard tools in analyzing business and financial problems. However, few sources explain the application of the Monte Carlo method for individuals and business professionals who are…

  15. Novel method of interpolation and extrapolation of functions by a linear initial value problem

    CSIR Research Space (South Africa)

    Shatalov, M

    2008-09-01

    Full Text Available A novel method of function approximation using an initial value, linear, ordinary differential equation (ODE) is presented. The main advantage of this method is to obtain the approximation expressions in a closed form. This technique can be taught...

  16. Creep behavior of bone cement: a method for time extrapolation using time-temperature equivalence.

    Science.gov (United States)

    Morgan, R L; Farrar, D F; Rose, J; Forster, H; Morgan, I

    2003-04-01

    The clinical lifetime of poly(methyl methacrylate) (PMMA) bone cement is considerably longer than the time over which it is convenient to perform creep testing. Consequently, it is desirable to be able to predict the long term creep behavior of bone cement from the results of short term testing. A simple method is described for prediction of long term creep using the principle of time-temperature equivalence in polymers. The use of the method is illustrated using a commercial acrylic bone cement. A creep strain of approximately 0.6% is predicted after 400 days under a constant flexural stress of 2 MPa. The temperature range and stress levels over which it is appropriate to perform testing are described. Finally, the effects of physical aging on the accuracy of the method are discussed and creep data from aged cement are reported.

  17. Standardization of low energy beta and beta-gamma complex emitters by the tracer and the efficiency extrapolation methods

    International Nuclear Information System (INIS)

    Sahagia, M.

    1978-01-01

    The absolute standardization of radioactive solutions of low energy beta emitters and beta-gamma emitters with a high probability of disintegration to the ground state is described; the tracer and the efficiency extrapolation methods were used. Both types of radionuclides were mathematically and physically treated in an unified manner. The theoretical relations between different beta spectra were calculated according to Williams' model and experimentally verified for: 35 S + 60 Co, 35 S + 95 Nb, 147 Pm + 60 Co, 14 C + 95 Nb and two beta branches of 99 Mo. The optimum range of beta efficiency variation was indicated. The basic supposition that all beta efficieny tend to unity in the same time was experimentally verified, using two 192 Ir beta branches. Four computer programs, written in the FORTRAN IV language, were elaborated, for the adequate processing of the experimental data. Good precision coefficients according to international standards were obtained in the absolute standardization of 35 S, 147 Pm, 99 Mo solutions. (author)

  18. Determination of the most appropriate method for extrapolating overall survival data from a placebo-controlled clinical trial of lenvatinib for progressive, radioiodine-refractory differentiated thyroid cancer.

    Science.gov (United States)

    Tremblay, Gabriel; Livings, Christopher; Crowe, Lydia; Kapetanakis, Venediktos; Briggs, Andrew

    2016-01-01

    Cost-effectiveness models for the treatment of long-term conditions often require information on survival beyond the period of available data. This paper aims to identify a robust and reliable method for the extrapolation of overall survival (OS) in patients with radioiodine-refractory differentiated thyroid cancer receiving lenvatinib or placebo. Data from 392 patients (lenvatinib: 261, placebo: 131) from the SELECT trial are used over a 34-month period of follow-up. A previously published criterion-based approach is employed to ascertain credible estimates of OS beyond the trial data. Parametric models with and without a treatment covariate and piecewise models are used to extrapolate OS, and a holistic approach, where a series of statistical and visual tests are considered collectively, is taken in determining the most appropriate extrapolation model. A piecewise model, in which the Kaplan-Meier survivor function is used over the trial period and an extrapolated tail is based on the Exponential distribution, is identified as the optimal model. In the absence of long-term survival estimates from clinical trials, survival estimates often need to be extrapolated from the available data. The use of a systematic method based on a priori determined selection criteria provides a transparent approach and reduces the risk of bias. The extrapolated OS estimates will be used to investigate the potential long-term benefits of lenvatinib in the treatment of radioiodine-refractory differentiated thyroid cancer patients and populate future cost-effectiveness analyses.

  19. Application of the EXtrapolated Efficiency Method (EXEM) to infer the gamma-cascade detection efficiency in the actinide region

    International Nuclear Information System (INIS)

    Ducasse, Q.; Jurado, B.; Mathieu, L.; Marini, P.; Morillon, B.; Aiche, M.; Tsekhanovich, I.

    2016-01-01

    The study of transfer-induced gamma-decay probabilities is very useful for understanding the surrogate-reaction method and, more generally, for constraining statistical-model calculations. One of the main difficulties in the measurement of gamma-decay probabilities is the determination of the gamma-cascade detection efficiency. In Boutoux et al. (2013) [10] we developed the EXtrapolated Efficiency Method (EXEM), a new method to measure this quantity. In this work, we have applied, for the first time, the EXEM to infer the gamma-cascade detection efficiency in the actinide region. In particular, we have considered the "2"3"8U(d,p)"2"3"9U and "2"3"8U("3He,d)"2"3"9Np reactions. We have performed Hauser–Feshbach calculations to interpret our results and to verify the hypothesis on which the EXEM is based. The determination of fission and gamma-decay probabilities of "2"3"9Np below the neutron separation energy allowed us to validate the EXEM.

  20. Application of the EXtrapolated Efficiency Method (EXEM) to infer the gamma-cascade detection efficiency in the actinide region

    Energy Technology Data Exchange (ETDEWEB)

    Ducasse, Q. [CENBG, CNRS/IN2P3-Université de Bordeaux, Chemin du Solarium B.P. 120, 33175 Gradignan (France); CEA-Cadarache, DEN/DER/SPRC/LEPh, 13108 Saint Paul lez Durance (France); Jurado, B., E-mail: jurado@cenbg.in2p3.fr [CENBG, CNRS/IN2P3-Université de Bordeaux, Chemin du Solarium B.P. 120, 33175 Gradignan (France); Mathieu, L.; Marini, P. [CENBG, CNRS/IN2P3-Université de Bordeaux, Chemin du Solarium B.P. 120, 33175 Gradignan (France); Morillon, B. [CEA DAM DIF, 91297 Arpajon (France); Aiche, M.; Tsekhanovich, I. [CENBG, CNRS/IN2P3-Université de Bordeaux, Chemin du Solarium B.P. 120, 33175 Gradignan (France)

    2016-08-01

    The study of transfer-induced gamma-decay probabilities is very useful for understanding the surrogate-reaction method and, more generally, for constraining statistical-model calculations. One of the main difficulties in the measurement of gamma-decay probabilities is the determination of the gamma-cascade detection efficiency. In Boutoux et al. (2013) [10] we developed the EXtrapolated Efficiency Method (EXEM), a new method to measure this quantity. In this work, we have applied, for the first time, the EXEM to infer the gamma-cascade detection efficiency in the actinide region. In particular, we have considered the {sup 238}U(d,p){sup 239}U and {sup 238}U({sup 3}He,d){sup 239}Np reactions. We have performed Hauser–Feshbach calculations to interpret our results and to verify the hypothesis on which the EXEM is based. The determination of fission and gamma-decay probabilities of {sup 239}Np below the neutron separation energy allowed us to validate the EXEM.

  1. Determination of the most appropriate method for extrapolating overall survival data from a placebo-controlled clinical trial of lenvatinib for progressive, radioiodine-refractory differentiated thyroid cancer

    Directory of Open Access Journals (Sweden)

    Tremblay G

    2016-06-01

    Full Text Available Gabriel Tremblay,1 Christopher Livings,2 Lydia Crowe,2 Venediktos Kapetanakis,2 Andrew Briggs3 1Global Health Economics and Health Technology Assessment, Eisai Inc., Woodcliff Lake, NJ, USA; 2Health Economics, Decision Resources Group, Bicester, Oxfordshire, 3Health Economics and Health Technology Assessment, Institute of Health and Wellbeing, University of Glasgow, Glasgow, UK Background: Cost-effectiveness models for the treatment of long-term conditions often require information on survival beyond the period of available data. Objectives: This paper aims to identify a robust and reliable method for the extrapolation of overall survival (OS in patients with radioiodine-refractory differentiated thyroid cancer receiving lenvatinib or placebo. Methods: Data from 392 patients (lenvatinib: 261, placebo: 131 from the SELECT trial are used over a 34-month period of follow-up. A previously published criterion-based approach is employed to ascertain credible estimates of OS beyond the trial data. Parametric models with and without a treatment covariate and piecewise models are used to extrapolate OS, and a holistic approach, where a series of statistical and visual tests are considered collectively, is taken in determining the most appropriate extrapolation model. Results: A piecewise model, in which the Kaplan–Meier survivor function is used over the trial period and an extrapolated tail is based on the Exponential distribution, is identified as the optimal model. Conclusion: In the absence of long-term survival estimates from clinical trials, survival estimates often need to be extrapolated from the available data. The use of a systematic method based on a priori determined selection criteria provides a transparent approach and reduces the risk of bias. The extrapolated OS estimates will be used to investigate the potential long-term benefits of lenvatinib in the treatment of radioiodine-refractory differentiated thyroid cancer patients and

  2. Propagation of internal errors in explicit Runge–Kutta methods and internal stability of SSP and extrapolation methods

    KAUST Repository

    Ketcheson, David I.; Loczi, Lajos; Parsani, Matteo

    2014-01-01

    of internal stability polynomials can be obtained by modifying the implementation details. We provide bounds on the internal error amplification constants for some classes of methods with many stages, including strong stability preserving methods

  3. Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion

    KAUST Repository

    Shinagawa, Tatsuya; Garcia Esparza, Angel T.; Takanabe, Kazuhiro

    2015-01-01

    Microkinetic analyses of aqueous electrochemistry involving gaseous H2 or O2, i.e., hydrogen evolution reaction (HER), hydrogen oxidation reaction (HOR), oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), are revisited. The Tafel slopes used to evaluate the rate determining steps generally assume extreme coverage of the adsorbed species (θ ≈ 0 or ≈1), although, in practice, the slopes are coverage-dependent. We conducted detailed kinetic analyses describing the coverage-dependent Tafel slopes for the aforementioned reactions. Our careful analyses provide a general benchmark for experimentally observed Tafel slopes that can be assigned to specific rate determining steps. The Tafel analysis is a powerful tool for discussing the rate determining steps involved in electrocatalysis, but our study also demonstrated that overly simplified assumptions led to an inaccurate description of the surface electrocatalysis. Additionally, in many studies, Tafel analyses have been performed in conjunction with the Butler-Volmer equation, where its applicability regarding only electron transfer kinetics is often overlooked. Based on the derived kinetic description of the HER/HOR as an example, the limitation of Butler-Volmer expression in electrocatalysis is also discussed in this report.

  4. Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion

    KAUST Repository

    Shinagawa, Tatsuya

    2015-09-08

    Microkinetic analyses of aqueous electrochemistry involving gaseous H2 or O2, i.e., hydrogen evolution reaction (HER), hydrogen oxidation reaction (HOR), oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), are revisited. The Tafel slopes used to evaluate the rate determining steps generally assume extreme coverage of the adsorbed species (θ ≈ 0 or ≈1), although, in practice, the slopes are coverage-dependent. We conducted detailed kinetic analyses describing the coverage-dependent Tafel slopes for the aforementioned reactions. Our careful analyses provide a general benchmark for experimentally observed Tafel slopes that can be assigned to specific rate determining steps. The Tafel analysis is a powerful tool for discussing the rate determining steps involved in electrocatalysis, but our study also demonstrated that overly simplified assumptions led to an inaccurate description of the surface electrocatalysis. Additionally, in many studies, Tafel analyses have been performed in conjunction with the Butler-Volmer equation, where its applicability regarding only electron transfer kinetics is often overlooked. Based on the derived kinetic description of the HER/HOR as an example, the limitation of Butler-Volmer expression in electrocatalysis is also discussed in this report.

  5. Synthesis of Dipeptide Benzoylalanylglycine Methyl Ester and Corrosion Inhibitor Evaluation by Tafel Equation

    International Nuclear Information System (INIS)

    Abdurrahman, J.; Wahyuningrum, D.; Achmad, S.; Bundjali, B.

    2011-01-01

    Corrosion is one of the major problems in petroleum mining and processing industry. The pipelines used to transport crude oil from reservoir to the processing installation were made from carbon steel that is susceptible towards corrosion. One of the best methods to prevent corrosion that occurred at the inner parts of carbon steel pipelines is to use organic corrosion inhibitor. One of the potent organic corrosion inhibitors is amino acids derivatives. In this study, dipeptide compound namely benzoylalanylglycine methyl ester and benzoylalanylglycine have been synthesized. The structure elucidation of the products was performed by IR, MS and NMR spectroscopy. The determination of corrosion inhibition activity utilized the Tafel method. The corrosion inhibition efficiency of glycine methyl ester, benzoyl alanine, dipeptide benzoylalanylglycine methyl ester and dipeptide benzoylalanylglycine were 63.34 %, 35.86 %, 68.40 % and 27.72 %, respectively. These results showed that the formation of dipeptide benzoylalanylglycine methyl ester, derived from carboxylic protected glycine and amine protected alanine, increased the corrosion inhibition activity due to the loss of acidity center in the structure of glycine and L-alanine that would induce the corrosive environment towards carbon steel. (author)

  6. Principles of animal extrapolation

    Energy Technology Data Exchange (ETDEWEB)

    Calabrese, E.J.

    1991-01-01

    Animal Extrapolation presents a comprehensive examination of the scientific issues involved in extrapolating results of animal experiments to human response. This text attempts to present a comprehensive synthesis and analysis of the host of biomedical and toxicological studies of interspecies extrapolation. Calabrese's work presents not only the conceptual basis of interspecies extrapolation, but also illustrates how these principles may be better used in selection of animal experimentation models and in the interpretation of animal experimental results. The book's theme centers around four types of extrapolation: (1) from average animal model to the average human; (2) from small animals to large ones; (3) from high-risk animal to the high risk human; and (4) from high doses of exposure to lower, more realistic, doses. Calabrese attacks the issues of interspecies extrapolation by dealing individually with the factors which contribute to interspecies variability: differences in absorption, intestinal flora, tissue distribution, metabolism, repair mechanisms, and excretion. From this foundation, Calabrese then discusses the heterogeneticity of these same factors in the human population in an attempt to evaluate the representativeness of various animal models in light of interindividual variations. In addition to discussing the question of suitable animal models for specific high-risk groups and specific toxicological endpoints, the author also examines extrapolation questions related to the use of short-term tests to predict long-term human carcinogenicity and birth defects. The book is comprehensive in scope and specific in detail; for those environmental health professions seeking to understand the toxicological models which underlay health risk assessments, Animal Extrapolation is a valuable information source.

  7. Finite lattice extrapolation algorithms

    International Nuclear Information System (INIS)

    Henkel, M.; Schuetz, G.

    1987-08-01

    Two algorithms for sequence extrapolation, due to von den Broeck and Schwartz and Bulirsch and Stoer are reviewed and critically compared. Applications to three states and six states quantum chains and to the (2+1)D Ising model show that the algorithm of Bulirsch and Stoer is superior, in particular if only very few finite lattice data are available. (orig.)

  8. Efficient Wavefield Extrapolation In Anisotropic Media

    KAUST Repository

    Alkhalifah, Tariq; Ma, Xuxin; Waheed, Umair bin; Zuberi, Mohammad Akbar Hosain

    2014-01-01

    Various examples are provided for wavefield extrapolation in anisotropic media. In one example, among others, a method includes determining an effective isotropic velocity model and extrapolating an equivalent propagation of an anisotropic, poroelastic or viscoelastic wavefield. The effective isotropic velocity model can be based upon a kinematic geometrical representation of an anisotropic, poroelastic or viscoelastic wavefield. Extrapolating the equivalent propagation can use isotopic, acoustic or elastic operators based upon the determined effective isotropic velocity model. In another example, non-transitory computer readable medium stores an application that, when executed by processing circuitry, causes the processing circuitry to determine the effective isotropic velocity model and extrapolate the equivalent propagation of an anisotropic, poroelastic or viscoelastic wavefield. In another example, a system includes processing circuitry and an application configured to cause the system to determine the effective isotropic velocity model and extrapolate the equivalent propagation of an anisotropic, poroelastic or viscoelastic wavefield.

  9. Efficient Wavefield Extrapolation In Anisotropic Media

    KAUST Repository

    Alkhalifah, Tariq

    2014-07-03

    Various examples are provided for wavefield extrapolation in anisotropic media. In one example, among others, a method includes determining an effective isotropic velocity model and extrapolating an equivalent propagation of an anisotropic, poroelastic or viscoelastic wavefield. The effective isotropic velocity model can be based upon a kinematic geometrical representation of an anisotropic, poroelastic or viscoelastic wavefield. Extrapolating the equivalent propagation can use isotopic, acoustic or elastic operators based upon the determined effective isotropic velocity model. In another example, non-transitory computer readable medium stores an application that, when executed by processing circuitry, causes the processing circuitry to determine the effective isotropic velocity model and extrapolate the equivalent propagation of an anisotropic, poroelastic or viscoelastic wavefield. In another example, a system includes processing circuitry and an application configured to cause the system to determine the effective isotropic velocity model and extrapolate the equivalent propagation of an anisotropic, poroelastic or viscoelastic wavefield.

  10. Builtin vs. auxiliary detection of extrapolation risk.

    Energy Technology Data Exchange (ETDEWEB)

    Munson, Miles Arthur; Kegelmeyer, W. Philip,

    2013-02-01

    A key assumption in supervised machine learning is that future data will be similar to historical data. This assumption is often false in real world applications, and as a result, prediction models often return predictions that are extrapolations. We compare four approaches to estimating extrapolation risk for machine learning predictions. Two builtin methods use information available from the classification model to decide if the model would be extrapolating for an input data point. The other two build auxiliary models to supplement the classification model and explicitly model extrapolation risk. Experiments with synthetic and real data sets show that the auxiliary models are more reliable risk detectors. To best safeguard against extrapolating predictions, however, we recommend combining builtin and auxiliary diagnostics.

  11. Beam Based Measurements of Field Multipoles in the RHIC Low Beta Insertions and Extrapolation of the Method to the LHC

    CERN Document Server

    Koutchouk, Jean-Pierre; Ptitsyn, V I

    2001-01-01

    The multipolar content of the dipoles and quadrupoles is known to limit the stability of the beam dynamics in super-conducting machines like RHIC and even more in LHC. The low-beta quadrupoles are thus equipped with correcting coils up to the dodecapole order. The correction is planned to rely on magnetic measurements. We show that a relatively simple method allows an accurate measurement of the multipolar field aberrations using the beam. The principle is to displace the beam in the non-linear fields by local closed orbit bumps and to measure the variation of sensitive beam observable. The resolution and robustness of the method are found appropriate. Experimentation at RHIC showed clearly the presence of normal and skew sextupolar field components in addition to a skew quadrupolar component in the interaction regions. Higher-order components up to decapole order appear as well.

  12. Ecotoxicological effects extrapolation models

    Energy Technology Data Exchange (ETDEWEB)

    Suter, G.W. II

    1996-09-01

    One of the central problems of ecological risk assessment is modeling the relationship between test endpoints (numerical summaries of the results of toxicity tests) and assessment endpoints (formal expressions of the properties of the environment that are to be protected). For example, one may wish to estimate the reduction in species richness of fishes in a stream reach exposed to an effluent and have only a fathead minnow 96 hr LC50 as an effects metric. The problem is to extrapolate from what is known (the fathead minnow LC50) to what matters to the decision maker, the loss of fish species. Models used for this purpose may be termed Effects Extrapolation Models (EEMs) or Activity-Activity Relationships (AARs), by analogy to Structure-Activity Relationships (SARs). These models have been previously reviewed in Ch. 7 and 9 of and by an OECD workshop. This paper updates those reviews and attempts to further clarify the issues involved in the development and use of EEMs. Although there is some overlap, this paper does not repeat those reviews and the reader is referred to the previous reviews for a more complete historical perspective, and for treatment of additional extrapolation issues.

  13. One-step lowrank wave extrapolation

    KAUST Repository

    Sindi, Ghada Atif; Alkhalifah, Tariq Ali

    2014-01-01

    Wavefield extrapolation is at the heart of modeling, imaging, and Full waveform inversion. Spectral methods gained well deserved attention due to their dispersion free solutions and their natural handling of anisotropic media. We propose a scheme a

  14. One-step lowrank wave extrapolation

    KAUST Repository

    Sindi, Ghada Atif

    2014-01-01

    Wavefield extrapolation is at the heart of modeling, imaging, and Full waveform inversion. Spectral methods gained well deserved attention due to their dispersion free solutions and their natural handling of anisotropic media. We propose a scheme a modified one-step lowrank wave extrapolation using Shanks transform in isotropic, and anisotropic media. Specifically, we utilize a velocity gradient term to add to the accuracy of the phase approximation function in the spectral implementation. With the higher accuracy, we can utilize larger time steps and make the extrapolation more efficient. Applications to models with strong inhomogeneity and considerable anisotropy demonstrates the utility of the approach.

  15. Simulation-extrapolation method to address errors in atomic bomb survivor dosimetry on solid cancer and leukaemia mortality risk estimates, 1950-2003

    Energy Technology Data Exchange (ETDEWEB)

    Allodji, Rodrigue S.; Schwartz, Boris; Diallo, Ibrahima; Vathaire, Florent de [Gustave Roussy B2M, Radiation Epidemiology Group/CESP - Unit 1018 INSERM, Villejuif Cedex (France); Univ. Paris-Sud, Villejuif (France); Agbovon, Cesaire [Pierre and Vacances - Center Parcs Group, L' artois - Espace Pont de Flandre, Paris Cedex 19 (France); Laurier, Dominique [Institut de Radioprotection et de Surete Nucleaire (IRSN), DRPH, SRBE, Laboratoire d' epidemiologie, BP17, Fontenay-aux-Roses Cedex (France)

    2015-08-15

    Analyses of the Life Span Study (LSS) of Japanese atomic bombing survivors have routinely incorporated corrections for additive classical measurement errors using regression calibration. Recently, several studies reported that the efficiency of the simulation-extrapolation method (SIMEX) is slightly more accurate than the simple regression calibration method (RCAL). In the present paper, the SIMEX and RCAL methods have been used to address errors in atomic bomb survivor dosimetry on solid cancer and leukaemia mortality risk estimates. For instance, it is shown that using the SIMEX method, the ERR/Gy is increased by an amount of about 29 % for all solid cancer deaths using a linear model compared to the RCAL method, and the corrected EAR 10{sup -4} person-years at 1 Gy (the linear terms) is decreased by about 8 %, while the corrected quadratic term (EAR 10{sup -4} person-years/Gy{sup 2}) is increased by about 65 % for leukaemia deaths based on a linear-quadratic model. The results with SIMEX method are slightly higher than published values. The observed differences were probably due to the fact that with the RCAL method the dosimetric data were partially corrected, while all doses were considered with the SIMEX method. Therefore, one should be careful when comparing the estimated risks and it may be useful to use several correction techniques in order to obtain a range of corrected estimates, rather than to rely on a single technique. This work will enable to improve the risk estimates derived from LSS data, and help to make more reliable the development of radiation protection standards. (orig.)

  16. Ground-state inversion method applied to calculation of molecular photoionization cross-sections by atomic extrapolation: Interference effects at low energies

    International Nuclear Information System (INIS)

    Hilton, P.R.; Nordholm, S.; Hush, N.S.

    1980-01-01

    The ground-state inversion method, which we have previously developed for the calculation of atomic cross-sections, is applied to the calculation of molecular photoionization cross-sections. These are obtained as a weighted sum of atomic subshell cross-sections plus multi-centre interference terms. The atomic cross-sections are calculated directly for the atomic functions which when summed over centre and symmetry yield the molecular orbital wave function. The use of the ground-state inversion method for this allows the effect of the molecular environment on the atomic cross-sections to be calculated. Multi-centre terms are estimated on the basis of an effective plane-wave expression for this contribution to the total cross-section. Finally the method is applied to the range of photon energies from 0 to 44 eV where atomic extrapolation procedures have not previously been tested. Results obtained for H 2 , N 2 and CO show good agreement with experiment, particularly when interference effects and effects of the molecular environment on the atomic cross-sections are included. The accuracy is very much better than that of previous plane-wave and orthogonalized plane-wave methods, and can stand comparison with that of recent more sophisticated approaches. It is a feature of the method that calculation of cross-sections either of atoms or of large molecules requires very little computer time, provided that good quality wave functions are available, and it is then of considerable potential practical interest for photoelectorn spectroscopy. (orig.)

  17. The impact of surface composition on Tafel kinetics leading to enhanced electrochemical insertion of hydrogen in palladium

    Science.gov (United States)

    Dmitriyeva, Olga; Hamm, Steven C.; Knies, David L.; Cantwell, Richard; McConnell, Matt

    2018-05-01

    Our previous work experimentally demonstrated the enhancement of electrochemical hydrogen insertion into palladium by modifying the chemical composition of the cathode surface with Pb, Pt and Bi, referred to as surface promoters. The experiment demonstrated that an optimal combination of the surface promoters led to an increase in hydrogen fugacity of more than three orders of magnitude, while maintaining the same current density. This manuscript discusses the application of Density Functional Theory (DFT) to elucidate the thermodynamics and kinetics of observed enhancement of electrochemical hydrogen insertion into palladium. We present theoretical simulations that: (1) establish the elevation of hydrogen's chemical potential on Pb and Bi surfaces to enhance hydrogen insertion, (2) confirm the increase of a Tafel activation barrier that results in a decrease of the reaction rate at the given hydrogen overpotential, and (3) explain why the surface promoter's coverage needs to be non-uniform, namely to allow hydrogen insertion into palladium bulk while simultaneously locking hydrogen below the surface (the corking effect). The discussed DFT-based method can be used for efficient scanning of different material configurations to design a highly effective hydrogen storage system.

  18. Load Extrapolation During Operation for Wind Turbines

    DEFF Research Database (Denmark)

    Toft, Henrik Stensgaard; Sørensen, John Dalsgaard

    2008-01-01

    In the recent years load extrapolation for wind turbines has been widely considered in the wind turbine industry. Loads on wind turbines during operations are normally dependent on the mean wind speed, the turbulence intensity and the type and settings of the control system. All these parameters...... must be taken into account when characteristic load effects during operation are determined. In the wind turbine standard IEC 61400-1 a method for load extrapolation using the peak over threshold method is recommended. In this paper this method is considered and some of the assumptions are examined...

  19. A single-phase model for liquid-feed DMFCs with non-Tafel kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Vera, Marcos [Area de Mecanica de Fluidos, Universidad Carlos III de Madrid, Avda. de la Universidad 30, 28911 Leganes (Spain)

    2007-09-27

    An isothermal single-phase 3D/1D model for liquid-feed direct methanol fuel cells (DMFC) is presented. Three-dimensional (3D) mass, momentum and species transport in the anode channels and gas diffusion layer is modeled using a commercial, finite-volume based, computational fluid dynamics (CFD) software complemented with user supplied subroutines. The 3D model is locally coupled to a one-dimensional (1D) model accounting for the electrochemical reactions in both the anode and the cathode, which provides a physically sound boundary condition for the velocity and methanol concentration fields at the anode gas diffusion layer/catalyst interface. The 1D model - comprising the membrane-electrode assembly, cathode gas diffusion layer, and cathode channel - assumes non-Tafel kinetics to describe the complex kinetics of the multi-step methanol oxidation reaction at the anode, and accounts for the mixed potential associated with methanol crossover, induced both by diffusion and electro-osmotic drag. Polarization curves computed for various methanol feed concentrations, temperatures, and methanol feed velocities show good agreement with recent experimental results. The spatial distribution of methanol in the anode channels, together with the distributions of current density, methanol crossover and fuel utilization at the anode catalyst layer, are also presented for different opperating conditions. (author)

  20. Estimation of low-level neutron dose-equivalent rate by using extrapolation method for a curie level Am–Be neutron source

    International Nuclear Information System (INIS)

    Li, Gang; Xu, Jiayun; Zhang, Jie

    2015-01-01

    Neutron radiation protection is an important research area because of the strong radiation biological effect of neutron field. The radiation dose of neutron is closely related to the neutron energy, and the connected relationship is a complex function of energy. For the low-level neutron radiation field (e.g. the Am–Be source), the commonly used commercial neutron dosimeter cannot always reflect the low-level dose rate, which is restricted by its own sensitivity limit and measuring range. In this paper, the intensity distribution of neutron field caused by a curie level Am–Be neutron source was investigated by measuring the count rates obtained through a 3 He proportional counter at different locations around the source. The results indicate that the count rates outside of the source room are negligible compared with the count rates measured in the source room. In the source room, 3 He proportional counter and neutron dosimeter were used to measure the count rates and dose rates respectively at different distances to the source. The results indicate that both the count rates and dose rates decrease exponentially with the increasing distance, and the dose rates measured by a commercial dosimeter are in good agreement with the results calculated by the Geant4 simulation within the inherent errors recommended by ICRP and IEC. Further studies presented in this paper indicate that the low-level neutron dose equivalent rates in the source room increase exponentially with the increasing low-energy neutron count rates when the source is lifted from the shield with different radiation intensities. Based on this relationship as well as the count rates measured at larger distance to the source, the dose rates can be calculated approximately by the extrapolation method. This principle can be used to estimate the low level neutron dose values in the source room which cannot be measured directly by a commercial dosimeter. - Highlights: • The scope of the affected area for

  1. Wavefield extrapolation in pseudodepth domain

    KAUST Repository

    Ma, Xuxin

    2013-02-01

    Wavefields are commonly computed in the Cartesian coordinate frame. Its efficiency is inherently limited due to spatial oversampling in deep layers, where the velocity is high and wavelengths are long. To alleviate this computational waste due to uneven wavelength sampling, we convert the vertical axis of the conventional domain from depth to vertical time or pseudodepth. This creates a nonorthognal Riemannian coordinate system. Isotropic and anisotropic wavefields can be extrapolated in the new coordinate frame with improved efficiency and good consistency with Cartesian domain extrapolation results. Prestack depth migrations are also evaluated based on the wavefield extrapolation in the pseudodepth domain.© 2013 Society of Exploration Geophysicists. All rights reserved.

  2. Efficient and stable extrapolation of prestack wavefields

    KAUST Repository

    Wu, Zedong

    2013-09-22

    The double-square-root (DSR) relation offers a platform to perform prestack imaging using an extended single wavefield that honors the geometrical configuration between sources, receivers and the image point, or in other words, prestack wavefields. Extrapolating such wavefields in time, nevertheless, is a big challenge because the radicand can be negative, thus reduce to a complex phase velocity, which will make the rank of the mixed domain matrix very high. Using the vertical offset between the sources and receivers, we introduce a method for deriving the DSR formulation, which gives us the opportunity to derive approximations for the mixed domain operator. The method extrapolates prestack wavefields by combining all data into one wave extrapolation procedure, allowing both upgoing and downgoing wavefields since the extrapolation is done in time, and doesn’t have the v(z) assumption in the offset axis of the media. Thus, the imaging condition is imposed by taking the zero-time and zero-offset slice from the multi-dimensional prestack wavefield. Unlike reverse time migration (RTM), no crosscorrelation is needed and we also have access to the subsurface offset information, which is important for migration velocity analysis. Numerical examples show the capability of this approach in dealing with complex velocity models and can provide a better quality image compared to RTM more efficiently.

  3. Efficient and stable extrapolation of prestack wavefields

    KAUST Repository

    Wu, Zedong; Alkhalifah, Tariq Ali

    2013-01-01

    The double-square-root (DSR) relation offers a platform to perform prestack imaging using an extended single wavefield that honors the geometrical configuration between sources, receivers and the image point, or in other words, prestack wavefields. Extrapolating such wavefields in time, nevertheless, is a big challenge because the radicand can be negative, thus reduce to a complex phase velocity, which will make the rank of the mixed domain matrix very high. Using the vertical offset between the sources and receivers, we introduce a method for deriving the DSR formulation, which gives us the opportunity to derive approximations for the mixed domain operator. The method extrapolates prestack wavefields by combining all data into one wave extrapolation procedure, allowing both upgoing and downgoing wavefields since the extrapolation is done in time, and doesn’t have the v(z) assumption in the offset axis of the media. Thus, the imaging condition is imposed by taking the zero-time and zero-offset slice from the multi-dimensional prestack wavefield. Unlike reverse time migration (RTM), no crosscorrelation is needed and we also have access to the subsurface offset information, which is important for migration velocity analysis. Numerical examples show the capability of this approach in dealing with complex velocity models and can provide a better quality image compared to RTM more efficiently.

  4. Statistical modeling and extrapolation of carcinogenesis data

    International Nuclear Information System (INIS)

    Krewski, D.; Murdoch, D.; Dewanji, A.

    1986-01-01

    Mathematical models of carcinogenesis are reviewed, including pharmacokinetic models for metabolic activation of carcinogenic substances. Maximum likelihood procedures for fitting these models to epidemiological data are discussed, including situations where the time to tumor occurrence is unobservable. The plausibility of different possible shapes of the dose response curve at low doses is examined, and a robust method for linear extrapolation to low doses is proposed and applied to epidemiological data on radiation carcinogenesis

  5. Seismic wave extrapolation using lowrank symbol approximation

    KAUST Repository

    Fomel, Sergey

    2012-04-30

    We consider the problem of constructing a wave extrapolation operator in a variable and possibly anisotropic medium. Our construction involves Fourier transforms in space combined with the help of a lowrank approximation of the space-wavenumber wave-propagator matrix. A lowrank approximation implies selecting a small set of representative spatial locations and a small set of representative wavenumbers. We present a mathematical derivation of this method, a description of the lowrank approximation algorithm and numerical examples that confirm the validity of the proposed approach. Wave extrapolation using lowrank approximation can be applied to seismic imaging by reverse-time migration in 3D heterogeneous isotropic or anisotropic media. © 2012 European Association of Geoscientists & Engineers.

  6. Residual extrapolation operators for efficient wavefield construction

    KAUST Repository

    Alkhalifah, Tariq Ali

    2013-02-27

    Solving the wave equation using finite-difference approximations allows for fast extrapolation of the wavefield for modelling, imaging and inversion in complex media. It, however, suffers from dispersion and stability-related limitations that might hamper its efficient or proper application to high frequencies. Spectral-based time extrapolation methods tend to mitigate these problems, but at an additional cost to the extrapolation. I investigate the prospective of using a residual formulation of the spectral approach, along with utilizing Shanks transform-based expansions, that adheres to the residual requirements, to improve accuracy and reduce the cost. Utilizing the fact that spectral methods excel (time steps are allowed to be large) in homogeneous and smooth media, the residual implementation based on velocity perturbation optimizes the use of this feature. Most of the other implementations based on the spectral approach are focussed on reducing cost by reducing the number of inverse Fourier transforms required in every step of the spectral-based implementation. The approach here fixes that by improving the accuracy of each, potentially longer, time step.

  7. The ATLAS Track Extrapolation Package

    CERN Document Server

    Salzburger, A

    2007-01-01

    The extrapolation of track parameters and their associated covariances to destination surfaces of different types is a very frequent process in the event reconstruction of high energy physics experiments. This is amongst other reasons due to the fact that most track and vertex fitting techniques are based on the first and second momentum of the underlying probability density distribution. The correct stochastic or deterministic treatment of interactions with the traversed detector material is hereby crucial for high quality track reconstruction throughout the entire momentum range of final state particles that are produced in high energy physics collision experiments. This document presents the main concepts, the algorithms and the implementation of the newly developed, powerful ATLAS track extrapolation engine. It also emphasises on validation procedures, timing measurements and the integration into the ATLAS offline reconstruction software.

  8. UFOs: Observations, Studies and Extrapolations

    CERN Document Server

    Baer, T; Barnes, M J; Bartmann, W; Bracco, C; Carlier, E; Cerutti, F; Dehning, B; Ducimetière, L; Ferrari, A; Ferro-Luzzi, M; Garrel, N; Gerardin, A; Goddard, B; Holzer, E B; Jackson, S; Jimenez, J M; Kain, V; Zimmermann, F; Lechner, A; Mertens, V; Misiowiec, M; Nebot Del Busto, E; Morón Ballester, R; Norderhaug Drosdal, L; Nordt, A; Papotti, G; Redaelli, S; Uythoven, J; Velghe, B; Vlachoudis, V; Wenninger, J; Zamantzas, C; Zerlauth, M; Fuster Martinez, N

    2012-01-01

    UFOs (“ Unidentified Falling Objects”) could be one of the major performance limitations for nominal LHC operation. Therefore, in 2011, the diagnostics for UFO events were significantly improved, dedicated experiments and measurements in the LHC and in the laboratory were made and complemented by FLUKA simulations and theoretical studies. The state of knowledge is summarized and extrapolations for LHC operation in 2012 and beyond are presented. Mitigation strategies are proposed and related tests and measures for 2012 are specified.

  9. Effective orthorhombic anisotropic models for wavefield extrapolation

    KAUST Repository

    Ibanez-Jacome, W.

    2014-07-18

    Wavefield extrapolation in orthorhombic anisotropic media incorporates complicated but realistic models to reproduce wave propagation phenomena in the Earth\\'s subsurface. Compared with the representations used for simpler symmetries, such as transversely isotropic or isotropic, orthorhombic models require an extended and more elaborated formulation that also involves more expensive computational processes. The acoustic assumption yields more efficient description of the orthorhombic wave equation that also provides a simplified representation for the orthorhombic dispersion relation. However, such representation is hampered by the sixth-order nature of the acoustic wave equation, as it also encompasses the contribution of shear waves. To reduce the computational cost of wavefield extrapolation in such media, we generate effective isotropic inhomogeneous models that are capable of reproducing the firstarrival kinematic aspects of the orthorhombic wavefield. First, in order to compute traveltimes in vertical orthorhombic media, we develop a stable, efficient and accurate algorithm based on the fast marching method. The derived orthorhombic acoustic dispersion relation, unlike the isotropic or transversely isotropic ones, is represented by a sixth order polynomial equation with the fastest solution corresponding to outgoing P waves in acoustic media. The effective velocity models are then computed by evaluating the traveltime gradients of the orthorhombic traveltime solution, and using them to explicitly evaluate the corresponding inhomogeneous isotropic velocity field. The inverted effective velocity fields are source dependent and produce equivalent first-arrival kinematic descriptions of wave propagation in orthorhombic media. We extrapolate wavefields in these isotropic effective velocity models using the more efficient isotropic operator, and the results compare well, especially kinematically, with those obtained from the more expensive anisotropic extrapolator.

  10. Effective orthorhombic anisotropic models for wavefield extrapolation

    KAUST Repository

    Ibanez-Jacome, W.; Alkhalifah, Tariq Ali; Waheed, Umair bin

    2014-01-01

    Wavefield extrapolation in orthorhombic anisotropic media incorporates complicated but realistic models to reproduce wave propagation phenomena in the Earth's subsurface. Compared with the representations used for simpler symmetries, such as transversely isotropic or isotropic, orthorhombic models require an extended and more elaborated formulation that also involves more expensive computational processes. The acoustic assumption yields more efficient description of the orthorhombic wave equation that also provides a simplified representation for the orthorhombic dispersion relation. However, such representation is hampered by the sixth-order nature of the acoustic wave equation, as it also encompasses the contribution of shear waves. To reduce the computational cost of wavefield extrapolation in such media, we generate effective isotropic inhomogeneous models that are capable of reproducing the firstarrival kinematic aspects of the orthorhombic wavefield. First, in order to compute traveltimes in vertical orthorhombic media, we develop a stable, efficient and accurate algorithm based on the fast marching method. The derived orthorhombic acoustic dispersion relation, unlike the isotropic or transversely isotropic ones, is represented by a sixth order polynomial equation with the fastest solution corresponding to outgoing P waves in acoustic media. The effective velocity models are then computed by evaluating the traveltime gradients of the orthorhombic traveltime solution, and using them to explicitly evaluate the corresponding inhomogeneous isotropic velocity field. The inverted effective velocity fields are source dependent and produce equivalent first-arrival kinematic descriptions of wave propagation in orthorhombic media. We extrapolate wavefields in these isotropic effective velocity models using the more efficient isotropic operator, and the results compare well, especially kinematically, with those obtained from the more expensive anisotropic extrapolator.

  11. Extrapolating Satellite Winds to Turbine Operating Heights

    DEFF Research Database (Denmark)

    Badger, Merete; Pena Diaz, Alfredo; Hahmann, Andrea N.

    2016-01-01

    Ocean wind retrievals from satellite sensors are typically performed for the standard level of 10 m. This restricts their full exploitation for wind energy planning, which requires wind information at much higher levels where wind turbines operate. A new method is presented for the vertical...... extrapolation of satellitebased wind maps. Winds near the sea surface are obtained from satellite data and used together with an adaptation of the Monin–Obukhov similarity theory to estimate the wind speed at higher levels. The thermal stratification of the atmosphere is taken into account through a long...

  12. Lowrank seismic-wave extrapolation on a staggered grid

    KAUST Repository

    Fang, Gang; Fomel, Sergey; Du, Qizhen; Hu, Jingwei

    2014-01-01

    © 2014 Society of Exploration Geophysicists. We evaluated a new spectral method and a new finite-difference (FD) method for seismic-wave extrapolation in time. Using staggered temporal and spatial grids, we derived a wave-extrapolation operator using a lowrank decomposition for a first-order system of wave equations and designed the corresponding FD scheme. The proposed methods extend previously proposed lowrank and lowrank FD wave extrapolation methods from the cases of constant density to those of variable density. Dispersion analysis demonstrated that the proposed methods have high accuracy for a wide wavenumber range and significantly reduce the numerical dispersion. The method of manufactured solutions coupled with mesh refinement was used to verify each method and to compare numerical errors. Tests on 2D synthetic examples demonstrated that the proposed method is highly accurate and stable. The proposed methods can be used for seismic modeling or reverse-time migration.

  13. Lowrank seismic-wave extrapolation on a staggered grid

    KAUST Repository

    Fang, Gang

    2014-05-01

    © 2014 Society of Exploration Geophysicists. We evaluated a new spectral method and a new finite-difference (FD) method for seismic-wave extrapolation in time. Using staggered temporal and spatial grids, we derived a wave-extrapolation operator using a lowrank decomposition for a first-order system of wave equations and designed the corresponding FD scheme. The proposed methods extend previously proposed lowrank and lowrank FD wave extrapolation methods from the cases of constant density to those of variable density. Dispersion analysis demonstrated that the proposed methods have high accuracy for a wide wavenumber range and significantly reduce the numerical dispersion. The method of manufactured solutions coupled with mesh refinement was used to verify each method and to compare numerical errors. Tests on 2D synthetic examples demonstrated that the proposed method is highly accurate and stable. The proposed methods can be used for seismic modeling or reverse-time migration.

  14. A novel evaluation method for extrapolated retention factor in determination of n-octanol/water partition coefficient of halogenated organic pollutants by reversed-phase high performance liquid chromatography.

    Science.gov (United States)

    Han, Shu-ying; Liang, Chao; Qiao, Jun-qin; Lian, Hong-zhen; Ge, Xin; Chen, Hong-yuan

    2012-02-03

    The retention factor corresponding to pure water in reversed-phase high performance liquid chromatography (RP-HPLC), k(w), was commonly obtained by extrapolation of retention factor (k) in a mixture of organic modifier and water as mobile phase in tedious experiments. In this paper, a relationship between logk(w) and logk for directly determining k(w) has been proposed for the first time. With a satisfactory validation, the approach was confirmed to enable easy and accurate evaluation of k(w) for compounds in question with similar structure to model compounds. Eight PCB congeners with different degree of chlorination were selected as a training set for modeling the logk(w)-logk correlation on both silica-based C(8) and C(18) stationary phases to evaluate logk(w) of sample compounds including seven PCB, six PBB and eight PBDE congeners. These eight model PCBs were subsequently combined with seven structure-similar benzene derivatives possessing reliable experimental K(ow) values as a whole training set for logK(ow)-logk(w) regressions on the two stationary phases. Consequently, the evaluated logk(w) values of sample compounds were used to determine their logK(ow) by the derived logK(ow)-logk(w) models. The logK(ow) values obtained by these evaluated logk(w) were well comparable with those obtained by experimental-extrapolated logk(w), demonstrating that the proposed method for logk(w) evaluation in this present study could be an effective means in lipophilicity study of environmental contaminants with numerous congeners. As a result, logK(ow) data of many PCBs, PBBs and PBDEs could be offered. These contaminants are considered to widely exist in the environment, but there have been no reliable experimental K(ow) data available yet. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. The magnetic field of active region 11158 during the 2011 February 12-17 flares: Differences between photospheric extrapolation and coronal forward-fitting methods

    International Nuclear Information System (INIS)

    Aschwanden, Markus J.; Sun, Xudong; Liu, Yang

    2014-01-01

    We developed a coronal nonlinear force-free field (COR-NLFFF) forward-fitting code that fits an approximate nonlinear force-free field (NLFFF) solution to the observed geometry of automatically traced coronal loops. In contrast to photospheric NLFFF codes, which calculate a magnetic field solution from the constraints of the transverse photospheric field, this new code uses coronal constraints instead, and this way provides important information on systematic errors of each magnetic field calculation method, as well as on the non-force-freeness in the lower chromosphere. In this study we applied the COR-NLFFF code to NOAA Active Region 11158, during the time interval of 2011 February 12-17, which includes an X2.2 GOES-class flare plus 35 M- and C-class flares. We calculated the free magnetic energy with a 6 minute cadence over 5 days. We find good agreement between the two types of codes for the total nonpotential E N and potential energy E P but find up to a factor of 4 discrepancy in the free energy E free = E N – E P and up to a factor of 10 discrepancy in the decrease of the free energy ΔE free during flares. The coronal NLFFF code exhibits a larger time variability and yields a decrease of free energy during the flare that is sufficient to satisfy the flare energy budget, while the photospheric NLFFF code shows much less time variability and an order of magnitude less free-energy decrease during flares. The discrepancy may partly be due to the preprocessing of photospheric vector data but more likely is due to the non-force-freeness in the lower chromosphere. We conclude that the coronal field cannot be correctly calculated on the basis of photospheric data alone and requires additional information on coronal loop geometries.

  16. Flavor extrapolation in lattice QCD

    International Nuclear Information System (INIS)

    Duffy, W.C.

    1984-01-01

    Explicit calculation of the effect of virtual quark-antiquark pairs in lattice QCD has eluded researchers. To include their effect explicitly one must calculate the determinant of the fermion-fermion coupling matrix. Owing to the large number of sites in a continuum limit size lattice, direct evaluation of this term requires an unrealistic amount of computer time. The effect of the virtual pairs can be approximated by ignoring this term and adjusting lattice couplings to reproduce experimental results. This procedure is called the valence approximation since it ignores all but the minimal number of quarks needed to describe hadrons. In this work the effect of the quark-antiquark pairs has been incorporated in a theory with an effective negative number of quark flavors contributing to the closed loops. Various particle masses and decay constants have been calculated for this theory and for one with no virtual pairs. The author attempts to extrapolate results towards positive numbers of quark flavors. The results show approximate agreement with experimental measurements and demonstrate the smoothness of lattice expectations in the number of quark flavors

  17. Entfremdung als Strukturmoment von Unterricht? Eine Fallstudie zur Arbeit eines Schülers an der Tafel aus der Sicht der pädagogischen Unterrichtsforschung

    OpenAIRE

    Twardella, Johannes

    2010-01-01

    "In den 70er Jahren des 20. Jahrhunderts beobachtete Jules Henry im Rahmen seiner ethnographischen Schulforschungen die Arbeit eines Schülers an der Tafel und interpretierte sie aus einer sozialpsychologischen Perspektive heraus als einen Prozess, in dem ein Schüler lernt, was "Entfremdung" ist. Ausgehend von dieser Deutung wird in dem vorliegenden Aufsatz der Frage nachgegangen, ob der Begriff der Entfremdung auch heute noch für die Erforschung von Unterricht fruchtbar gemacht werden kann. D...

  18. Outlier robustness for wind turbine extrapolated extreme loads

    DEFF Research Database (Denmark)

    Natarajan, Anand; Verelst, David Robert

    2012-01-01

    . Stochastic identification of numerical artifacts in simulated loads is demonstrated using the method of principal component analysis. The extrapolation methodology is made robust to outliers through a weighted loads approach, whereby the eigenvalues of the correlation matrix obtained using the loads with its...

  19. Extrapolations of nuclear binding energies from new linear mass relations

    DEFF Research Database (Denmark)

    Hove, D.; Jensen, A. S.; Riisager, K.

    2013-01-01

    We present a method to extrapolate nuclear binding energies from known values for neighboring nuclei. We select four specific mass relations constructed to eliminate smooth variation of the binding energy as function nucleon numbers. The fast odd-even variations are avoided by comparing nuclei...

  20. Endangered species toxicity extrapolation using ICE models

    Science.gov (United States)

    The National Research Council’s (NRC) report on assessing pesticide risks to threatened and endangered species (T&E) included the recommendation of using interspecies correlation models (ICE) as an alternative to general safety factors for extrapolating across species. ...

  1. Motion extrapolation in the central fovea.

    Directory of Open Access Journals (Sweden)

    Zhuanghua Shi

    Full Text Available Neural transmission latency would introduce a spatial lag when an object moves across the visual field, if the latency was not compensated. A visual predictive mechanism has been proposed, which overcomes such spatial lag by extrapolating the position of the moving object forward. However, a forward position shift is often absent if the object abruptly stops moving (motion-termination. A recent "correction-for-extrapolation" hypothesis suggests that the absence of forward shifts is caused by sensory signals representing 'failed' predictions. Thus far, this hypothesis has been tested only for extra-foveal retinal locations. We tested this hypothesis using two foveal scotomas: scotoma to dim light and scotoma to blue light. We found that the perceived position of a dim dot is extrapolated into the fovea during motion-termination. Next, we compared the perceived position shifts of a blue versus a green moving dot. As predicted the extrapolation at motion-termination was only found with the blue moving dot. The results provide new evidence for the correction-for-extrapolation hypothesis for the region with highest spatial acuity, the fovea.

  2. Effective wavefield extrapolation in anisotropic media: Accounting for resolvable anisotropy

    KAUST Repository

    Alkhalifah, Tariq Ali

    2014-01-01

    Spectral methods provide artefact-free and generally dispersion-free wavefield extrapolation in anisotropic media. Their apparent weakness is in accessing the medium-inhomogeneity information in an efficient manner. This is usually handled through a velocity-weighted summation (interpolation) of representative constant-velocity extrapolated wavefields, with the number of these extrapolations controlled by the effective rank of the original mixed-domain operator or, more specifically, by the complexity of the velocity model. Conversely, with pseudo-spectral methods, because only the space derivatives are handled in the wavenumber domain, we obtain relatively efficient access to the inhomogeneity in isotropic media, but we often resort to weak approximations to handle the anisotropy efficiently. Utilizing perturbation theory, I isolate the contribution of anisotropy to the wavefield extrapolation process. This allows us to factorize as much of the inhomogeneity in the anisotropic parameters as possible out of the spectral implementation, yielding effectively a pseudo-spectral formulation. This is particularly true if the inhomogeneity of the dimensionless anisotropic parameters are mild compared with the velocity (i.e., factorized anisotropic media). I improve on the accuracy by using the Shanks transformation to incorporate a denominator in the expansion that predicts the higher-order omitted terms; thus, we deal with fewer terms for a high level of accuracy. In fact, when we use this new separation-based implementation, the anisotropy correction to the extrapolation can be applied separately as a residual operation, which provides a tool for anisotropic parameter sensitivity analysis. The accuracy of the approximation is high, as demonstrated in a complex tilted transversely isotropic model. © 2014 European Association of Geoscientists & Engineers.

  3. Effective wavefield extrapolation in anisotropic media: Accounting for resolvable anisotropy

    KAUST Repository

    Alkhalifah, Tariq Ali

    2014-04-30

    Spectral methods provide artefact-free and generally dispersion-free wavefield extrapolation in anisotropic media. Their apparent weakness is in accessing the medium-inhomogeneity information in an efficient manner. This is usually handled through a velocity-weighted summation (interpolation) of representative constant-velocity extrapolated wavefields, with the number of these extrapolations controlled by the effective rank of the original mixed-domain operator or, more specifically, by the complexity of the velocity model. Conversely, with pseudo-spectral methods, because only the space derivatives are handled in the wavenumber domain, we obtain relatively efficient access to the inhomogeneity in isotropic media, but we often resort to weak approximations to handle the anisotropy efficiently. Utilizing perturbation theory, I isolate the contribution of anisotropy to the wavefield extrapolation process. This allows us to factorize as much of the inhomogeneity in the anisotropic parameters as possible out of the spectral implementation, yielding effectively a pseudo-spectral formulation. This is particularly true if the inhomogeneity of the dimensionless anisotropic parameters are mild compared with the velocity (i.e., factorized anisotropic media). I improve on the accuracy by using the Shanks transformation to incorporate a denominator in the expansion that predicts the higher-order omitted terms; thus, we deal with fewer terms for a high level of accuracy. In fact, when we use this new separation-based implementation, the anisotropy correction to the extrapolation can be applied separately as a residual operation, which provides a tool for anisotropic parameter sensitivity analysis. The accuracy of the approximation is high, as demonstrated in a complex tilted transversely isotropic model. © 2014 European Association of Geoscientists & Engineers.

  4. Wavefield extrapolation in pseudo-depth domain

    KAUST Repository

    Ma, Xuxin; Alkhalifah, Tariq Ali

    2012-01-01

    Extrapolating seismic waves in Cartesian coordinate is prone to uneven spatial sampling, because the seismic wavelength tends to grow with depth, as velocity increase. We transform the vertical depth axis to a pseudo one using a velocity weighted mapping, which can effectively mitigate this wavelength variation. We derive acoustic wave equations in this new domain based on the direct transformation of the Laplacian derivatives, which admits solutions that are more accurate and stable than those derived from the kinematic transformation. The anisotropic versions of these equations allow us to isolate the vertical velocity influence and reduce its impact on modeling and imaging. The major benefit of extrapolating wavefields in pseudo-depth space is its near uniform wavelength as opposed to the normally dramatic change of wavelength with the conventional approach. Time wavefield extrapolation on a complex velocity shows some of the features of this approach.

  5. Proposition of Improved Methodology in Creep Life Extrapolation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Woo Gon; Park, Jae Young; Jang, Jin Sung [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    To design SFRs for a 60-year operation, it is desirable to have the experimental creep-rupture data for Gr. 91 steel close to 20 y, or at least rupture lives significantly higher than 10{sup 5} h. This requirement arises from the fact that, for the creep design, a factor of 3 times for extrapolation is considered to be appropriate. However, obtaining experimental data close to 20 y would be expensive and also take considerable time. Therefore, reliable creep life extrapolation techniques become necessary for a safe design life of 60 y. In addition, it is appropriate to obtain experimental longterm creep-rupture data in the range 10{sup 5} ∼ 2x10{sup 5} h to improve the reliability of extrapolation. In the present investigation, a new function of a hyperbolic sine ('sinh') form for a master curve in time-temperature parameter (TTP) methods, was proposed to accurately extrapolate the long-term creep rupture stress of Gr. 91 steel. Constant values used for each parametric equation were optimized on the basis of the creep rupture data. Average stress values predicted for up to 60 y were evaluated and compared with those of French Nuclear Design Code, RCC-MRx. The results showed that the master curve of the 'sinh' function was a wider acceptance with good flexibility in the low stress ranges beyond the experimental data. It was clarified clarified that the 'sinh' function was reasonable in creep life extrapolation compared with polynomial forms, which have been used conventionally until now.

  6. Proposition of Improved Methodology in Creep Life Extrapolation

    International Nuclear Information System (INIS)

    Kim, Woo Gon; Park, Jae Young; Jang, Jin Sung

    2016-01-01

    To design SFRs for a 60-year operation, it is desirable to have the experimental creep-rupture data for Gr. 91 steel close to 20 y, or at least rupture lives significantly higher than 10"5 h. This requirement arises from the fact that, for the creep design, a factor of 3 times for extrapolation is considered to be appropriate. However, obtaining experimental data close to 20 y would be expensive and also take considerable time. Therefore, reliable creep life extrapolation techniques become necessary for a safe design life of 60 y. In addition, it is appropriate to obtain experimental longterm creep-rupture data in the range 10"5 ∼ 2x10"5 h to improve the reliability of extrapolation. In the present investigation, a new function of a hyperbolic sine ('sinh') form for a master curve in time-temperature parameter (TTP) methods, was proposed to accurately extrapolate the long-term creep rupture stress of Gr. 91 steel. Constant values used for each parametric equation were optimized on the basis of the creep rupture data. Average stress values predicted for up to 60 y were evaluated and compared with those of French Nuclear Design Code, RCC-MRx. The results showed that the master curve of the 'sinh' function was a wider acceptance with good flexibility in the low stress ranges beyond the experimental data. It was clarified clarified that the 'sinh' function was reasonable in creep life extrapolation compared with polynomial forms, which have been used conventionally until now.

  7. Cosmogony as an extrapolation of magnetospheric research

    International Nuclear Information System (INIS)

    Alfven, H.

    1984-03-01

    A theory of the origin and evolution of the Solar System (Alfven and Arrhenius, 1975: 1976) which considered electromagnetic forces and plasma effects is revised in the light of new information supplied by space research. In situ measurements in the magnetospheres and solar wind have changed our views of basic properties of cosmic plasmas. These results can be extrapolated both outwards in space, to interstellar clouds, backwards in time, to the formation of the solar system. The first extrapolation leads to a revision of some cloud properties which are essential for the early phases in the formation of stars and solar nebule. The latter extrapolation makes possible to approach the cosmogonic processes by extrapolation of (rather) well-known magnetospheric phenomena. Pioneer-Voyager observations of the Saturnian rings indicate that essential parts of their structure are fossils from cosmogonic times. By using detailed information from these space missions, it seems possible to reconstruct certain events 4-5 billion years ago with an accuracy of a few percent. This will cause a change in our views of the evolution of the solar system.(author)

  8. Extrapolated HPGe efficiency estimates based on a single calibration measurement

    International Nuclear Information System (INIS)

    Winn, W.G.

    1994-01-01

    Gamma spectroscopists often must analyze samples with geometries for which their detectors are not calibrated. The effort to experimentally recalibrate a detector for a new geometry can be quite time consuming, causing delay in reporting useful results. Such concerns have motivated development of a method for extrapolating HPGe efficiency estimates from an existing single measured efficiency. Overall, the method provides useful preliminary results for analyses that do not require exceptional accuracy, while reliably bracketing the credible range. The estimated efficiency element-of for a uniform sample in a geometry with volume V is extrapolated from the measured element-of 0 of the base sample of volume V 0 . Assuming all samples are centered atop the detector for maximum efficiency, element-of decreases monotonically as V increases about V 0 , and vice versa. Extrapolation of high and low efficiency estimates element-of h and element-of L provides an average estimate of element-of = 1/2 [element-of h + element-of L ] ± 1/2 [element-of h - element-of L ] (general) where an uncertainty D element-of = 1/2 (element-of h - element-of L ] brackets limits for a maximum possible error. The element-of h and element-of L both diverge from element-of 0 as V deviates from V 0 , causing D element-of to increase accordingly. The above concepts guided development of both conservative and refined estimates for element-of

  9. National pattern for the realization of the unit of the dose speed absorbed in air for beta radiation. (Method: Ionometer, cavity of Bragg-Gray implemented in an extrapolation chamber with electrodes of variable separation, exposed to a field of beta radiation of 90Sr/90Y)

    International Nuclear Information System (INIS)

    Alvarez R, M. T.; Morales P, J. R.

    2001-01-01

    From the year of 1987 the Department of Metrology of the ININ, in their Secondary Laboratory of Calibration Dosimetric, has a patron group of sources of radiation beta and an extrapolation chamber of electrodes of variable separation.Their objective is to carry out of the unit of the dose speed absorbed in air for radiation beta. It uses the ionometric method, cavity Bragg-Gray in the extrapolation chamber with which it counts. The services that offers are: i) it Calibration : Radioactive Fuentes of radiation beta, isotopes: 90 Sr/ 90 Y; Ophthalmic applicators 9 0 S r/ 90 Y; Instruments for detection of beta radiation with to the radiological protection: Ionization chambers, Geiger-Muller, etc.; Personal Dosemeters. ii) Irradiation with beta radiation of materials to the investigation. (Author)

  10. Radiographic film: surface dose extrapolation techniques

    International Nuclear Information System (INIS)

    Cheung, T.; Yu, P.K.N.; Butson, M.J.; Cancer Services, Wollongong, NSW; Currie, M.

    2004-01-01

    Full text: Assessment of surface dose delivered from radiotherapy x-ray beams for optimal results should be performed both inside and outside the prescribed treatment fields An extrapolation technique can be used with radiographic film to perform surface dose assessment for open field high energy x-ray beams. This can produce an accurate 2 dimensional map of surface dose if required. Results have shown that surface % dose can be estimated within ±3% of parallel plate ionisation chamber results with radiographic film using a series of film layers to produce an extrapolated result. Extrapolated percentage dose assessment for 10cm, 20cmand 30cm square fields was estimated to be 15% ± 2%, 29% ± 3% and 38% ± 3% at the central axis and relatively uniform across the treatment field. Corresponding parallel plate ionisation chamber measurement are 16%, 27% and 37% respectively. Surface doses are also measured outside the treatment field which are mainly due to scattered electron contamination. To achieve this result, film calibration curves must be irradiated to similar x-ray field sizes as the experimental film to minimize quantitative variations in film optical density caused by varying x-ray spectrum with field size. Copyright (2004) Australasian College of Physical Scientists and Engineers in Medicine

  11. Surface dose extrapolation measurements with radiographic film

    International Nuclear Information System (INIS)

    Butson, Martin J; Cheung Tsang; Yu, Peter K N; Currie, Michael

    2004-01-01

    Assessment of surface dose delivered from radiotherapy x-ray beams for optimal results should be performed both inside and outside the prescribed treatment fields. An extrapolation technique can be used with radiographic film to perform surface dose assessment for open field high energy x-ray beams. This can produce an accurate two-dimensional map of surface dose if required. Results have shown that the surface percentage dose can be estimated within ±3% of parallel plate ionization chamber results with radiographic film using a series of film layers to produce an extrapolated result. Extrapolated percentage dose assessment for 10 cm, 20 cm and 30 cm square fields was estimated to be 15% ± 2%, 29% ± 3% and 38% ± 3% at the central axis and relatively uniform across the treatment field. The corresponding parallel plate ionization chamber measurements are 16%, 27% and 37%, respectively. Surface doses are also measured outside the treatment field which are mainly due to scattered electron contamination. To achieve this result, film calibration curves must be irradiated to similar x-ray field sizes as the experimental film to minimize quantitative variations in film optical density caused by varying x-ray spectrum with field size. (note)

  12. Response Load Extrapolation for Wind Turbines during Operation Based on Average Conditional Exceedance Rates

    DEFF Research Database (Denmark)

    Toft, Henrik Stensgaard; Naess, Arvid; Saha, Nilanjan

    2011-01-01

    to cases where the Gumbel distribution is the appropriate asymptotic extreme value distribution. However, two extra parameters are introduced by which a more general and flexible class of extreme value distributions is obtained with the Gumbel distribution as a subclass. The general method is implemented...... within a hierarchical model where the variables that influence the loading are divided into ergodic variables and time-invariant non-ergodic variables. The presented method for statistical response load extrapolation was compared with the existing methods based on peak extrapolation for the blade out......The paper explores a recently developed method for statistical response load (load effect) extrapolation for application to extreme response of wind turbines during operation. The extrapolation method is based on average conditional exceedance rates and is in the present implementation restricted...

  13. A simple extrapolation of thermodynamic perturbation theory to infinite order

    International Nuclear Information System (INIS)

    Ghobadi, Ahmadreza F.; Elliott, J. Richard

    2015-01-01

    Recent analyses of the third and fourth order perturbation contributions to the equations of state for square well spheres and Lennard-Jones chains show trends that persist across orders and molecular models. In particular, the ratio between orders (e.g., A 3 /A 2 , where A i is the ith order perturbation contribution) exhibits a peak when plotted with respect to density. The trend resembles a Gaussian curve with the peak near the critical density. This observation can form the basis for a simple recursion and extrapolation from the highest available order to infinite order. The resulting extrapolation is analytic and therefore cannot fully characterize the critical region, but it remarkably improves accuracy, especially for the binodal curve. Whereas a second order theory is typically accurate for the binodal at temperatures within 90% of the critical temperature, the extrapolated result is accurate to within 99% of the critical temperature. In addition to square well spheres and Lennard-Jones chains, we demonstrate how the method can be applied semi-empirically to the Perturbed Chain - Statistical Associating Fluid Theory (PC-SAFT)

  14. Predicting structural properties of fluids by thermodynamic extrapolation

    Science.gov (United States)

    Mahynski, Nathan A.; Jiao, Sally; Hatch, Harold W.; Blanco, Marco A.; Shen, Vincent K.

    2018-05-01

    We describe a methodology for extrapolating the structural properties of multicomponent fluids from one thermodynamic state to another. These properties generally include features of a system that may be computed from an individual configuration such as radial distribution functions, cluster size distributions, or a polymer's radius of gyration. This approach is based on the principle of using fluctuations in a system's extensive thermodynamic variables, such as energy, to construct an appropriate Taylor series expansion for these structural properties in terms of intensive conjugate variables, such as temperature. Thus, one may extrapolate these properties from one state to another when the series is truncated to some finite order. We demonstrate this extrapolation for simple and coarse-grained fluids in both the canonical and grand canonical ensembles, in terms of both temperatures and the chemical potentials of different components. The results show that this method is able to reasonably approximate structural properties of such fluids over a broad range of conditions. Consequently, this methodology may be employed to increase the computational efficiency of molecular simulations used to measure the structural properties of certain fluid systems, especially those used in high-throughput or data-driven investigations.

  15. Line-of-sight extrapolation noise in dust polarization

    Energy Technology Data Exchange (ETDEWEB)

    Poh, Jason; Dodelson, Scott

    2017-05-19

    The B-modes of polarization at frequencies ranging from 50-1000 GHz are produced by Galactic dust, lensing of primordial E-modes in the cosmic microwave background (CMB) by intervening large scale structure, and possibly by primordial B-modes in the CMB imprinted by gravitational waves produced during inflation. The conventional method used to separate the dust component of the signal is to assume that the signal at high frequencies (e.g., 350 GHz) is due solely to dust and then extrapolate the signal down to lower frequency (e.g., 150 GHz) using the measured scaling of the polarized dust signal amplitude with frequency. For typical Galactic thermal dust temperatures of about 20K, these frequencies are not fully in the Rayleigh-Jeans limit. Therefore, deviations in the dust cloud temperatures from cloud to cloud will lead to different scaling factors for clouds of different temperatures. Hence, when multiple clouds of different temperatures and polarization angles contribute to the integrated line-of-sight polarization signal, the relative contribution of individual clouds to the integrated signal can change between frequencies. This can cause the integrated signal to be decorrelated in both amplitude and direction when extrapolating in frequency. Here we carry out a Monte Carlo analysis on the impact of this line-of-sight extrapolation noise, enabling us to quantify its effect. Using results from the Planck experiment, we find that this effect is small, more than an order of magnitude smaller than the current uncertainties. However, line-of-sight extrapolation noise may be a significant source of uncertainty in future low-noise primordial B-mode experiments. Scaling from Planck results, we find that accounting for this uncertainty becomes potentially important when experiments are sensitive to primordial B-mode signals with amplitude r < 0.0015 .

  16. Effective Orthorhombic Anisotropic Models for Wave field Extrapolation

    KAUST Repository

    Ibanez Jacome, Wilson

    2013-05-01

    Wavefield extrapolation in orthorhombic anisotropic media incorporates complicated but realistic models, to reproduce wave propagation phenomena in the Earth\\'s subsurface. Compared with the representations used for simpler symmetries, such as transversely isotropic or isotropic, orthorhombic models require an extended and more elaborated formulation that also involves more expensive computational processes. The acoustic assumption yields more efficient description of the orthorhombic wave equation that also provides a simplified representation for the orthorhombic dispersion relation. However, such representation is hampered by the sixth-order nature of the acoustic wave equation, as it also encompasses the contribution of shear waves. To reduce the computational cost of wavefield extrapolation in such media, I generate effective isotropic inhomogeneous models that are capable of reproducing the first-arrival kinematic aspects of the orthorhombic wavefield. First, in order to compute traveltimes in vertical orthorhombic media, I develop a stable, efficient and accurate algorithm based on the fast marching method. The derived orthorhombic acoustic dispersion relation, unlike the isotropic or transversely isotropic one, is represented by a sixth order polynomial equation that includes the fastest solution corresponding to outgoing P-waves in acoustic media. The effective velocity models are then computed by evaluating the traveltime gradients of the orthorhombic traveltime solution, which is done by explicitly solving the isotropic eikonal equation for the corresponding inhomogeneous isotropic velocity field. The inverted effective velocity fields are source dependent and produce equivalent first-arrival kinematic descriptions of wave propagation in orthorhombic media. I extrapolate wavefields in these isotropic effective velocity models using the more efficient isotropic operator, and the results compare well, especially kinematically, with those obtained from the

  17. Biosimilars: From Extrapolation into Off Label Use.

    Science.gov (United States)

    Zhao, Sizheng; Nair, Jagdish R; Moots, Robert J

    2017-01-01

    Biologic drugs have revolutionised the management of many inflammatory conditions. Patent expirations have stimulated development of highly similar but non-identical molecules, the biosimilars. Extrapolation of indications is a key concept in the development of biosimilars. However, this has been met with concerns around mechanisms of action, equivalence in efficacy and immunogenicity, which are reviewed in this article. Narrative overview composed from literature search and the authors' experience. Literature search included Pubmed, Web of Science, and online document archives of the Food and Drug Administration and European Medicines Agency. The concepts of biosimilarity and extrapolation of indications are revisited. Concerns around extrapolation are exemplified using the biosimilar infliximab, CT-P13, focusing on mechanisms of action, immunogenicity and trial design. The opportunities and cautions for using biologics and biosimilars in unlicensed inflammatory conditions are reviewed. Biosimilars offer many potential opportunities in improving treatment access and increasing treatment options. The high cost associated with marketing approval means that many bio-originators may never become licenced for rarer inflammatory conditions, despite clinical efficacy. Biosimilars, with lower acquisition cost, may improve access for off-label use of biologics in the management of these patients. They may also provide opportunities to explore off-label treatment of conditions where biologic therapy is less established. However, this potential advantage must be balanced with the awareness that off-label prescribing can potentially expose patients to risky and ineffective treatments. Post-marketing surveillance is critical to developing long-term evidence to provide assurances on efficacy as well as safety. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  18. Efficient anisotropic wavefield extrapolation using effective isotropic models

    KAUST Repository

    Alkhalifah, Tariq Ali; Ma, X.; Waheed, Umair bin; Zuberi, Mohammad

    2013-01-01

    Isotropic wavefield extrapolation is more efficient than anisotropic extrapolation, and this is especially true when the anisotropy of the medium is tilted (from the vertical). We use the kinematics of the wavefield, appropriately represented

  19. Experiences and extrapolations from Hiroshima and Nagasaki

    International Nuclear Information System (INIS)

    Harwell, C.C.

    1985-01-01

    This paper examines the events following the atomic bombings of Hiroshima and Nagasaki in 1945 and extrapolates from these experiences to further understand the possible consequences of detonations on a local area from weapons in the current world nuclear arsenal. The first section deals with a report of the events that occurred in Hiroshima and Nagasaki just after the 1945 bombings with respect to the physical conditions of the affected areas, the immediate effects on humans, the psychological response of the victims, and the nature of outside assistance. Because there can be no experimental data to validate the effects on cities and their populations of detonations from current weapons, the data from the actual explosions on Hiroshima and Nagasaki provide a point of departure. The second section examines possible extrapolations from and comparisons with the Hiroshima and Nagasaki experiences. The limitations of drawing upon the Hiroshima and Nagasaki experiences are discussed. A comparison is made of the scale of effects from other major disasters for urban systems, such as damages from the conventional bombings of cities during World War II, the consequences of major earthquakes, the historical effects of the Black Plague and widespread famines, and other extreme natural events. The potential effects of detonating a modern 1 MT warhead on the city of Hiroshima as it exists today are simulated. This is extended to the local effects on a targeted city from a global nuclear war, and attention is directed to problems of estimating the societal effects from such a war

  20. Chiral and continuum extrapolation of partially-quenched hadron masses

    International Nuclear Information System (INIS)

    Chris Allton; Wes Armour; Derek Leinweber; Anthony Thomas; Ross Young

    2005-01-01

    Using the finite-range regularization (FRR) of chiral effective field theory, the chiral extrapolation formula for the vector meson mass is derived for the case of partially-quenched QCD. We re-analyze the dynamical fermion QCD data for the vector meson mass from the CP-PACS collaboration. A global fit, including finite lattice spacing effects, of all 16 of their ensembles is performed. We study the FRR method together with a naive polynomial approach and find excellent agreement (∼1%) with the experimental value of M ρ from the former approach. These results are extended to the case of the nucleon mass

  1. Chiral and continuum extrapolation of partially-quenched hadron masses

    Energy Technology Data Exchange (ETDEWEB)

    Chris Allton; Wes Armour; Derek Leinweber; Anthony Thomas; Ross Young

    2005-09-29

    Using the finite-range regularization (FRR) of chiral effective field theory, the chiral extrapolation formula for the vector meson mass is derived for the case of partially-quenched QCD. We re-analyze the dynamical fermion QCD data for the vector meson mass from the CP-PACS collaboration. A global fit, including finite lattice spacing effects, of all 16 of their ensembles is performed. We study the FRR method together with a naive polynomial approach and find excellent agreement ({approx}1%) with the experimental value of M{sub {rho}} from the former approach. These results are extended to the case of the nucleon mass.

  2. NLT and extrapolated DLT:3-D cinematography alternatives for enlarging the volume of calibration.

    Science.gov (United States)

    Hinrichs, R N; McLean, S P

    1995-10-01

    This study investigated the accuracy of the direct linear transformation (DLT) and non-linear transformation (NLT) methods of 3-D cinematography/videography. A comparison of standard DLT, extrapolated DLT, and NLT calibrations showed the standard (non-extrapolated) DLT to be the most accurate, especially when a large number of control points (40-60) were used. The NLT was more accurate than the extrapolated DLT when the level of extrapolation exceeded 100%. The results indicated that when possible one should use the DLT with a control object, sufficiently large as to encompass the entire activity being studied. However, in situations where the activity volume exceeds the size of one's DLT control object, the NLT method should be considered.

  3. In situ LTE exposure of the general public: Characterization and extrapolation.

    Science.gov (United States)

    Joseph, Wout; Verloock, Leen; Goeminne, Francis; Vermeeren, Günter; Martens, Luc

    2012-09-01

    In situ radiofrequency (RF) exposure of the different RF sources is characterized in Reading, United Kingdom, and an extrapolation method to estimate worst-case long-term evolution (LTE) exposure is proposed. All electric field levels satisfy the International Commission on Non-Ionizing Radiation Protection (ICNIRP) reference levels with a maximal total electric field value of 4.5 V/m. The total values are dominated by frequency modulation (FM). Exposure levels for LTE of 0.2 V/m on average and 0.5 V/m maximally are obtained. Contributions of LTE to the total exposure are limited to 0.4% on average. Exposure ratios from 0.8% (LTE) to 12.5% (FM) are obtained. An extrapolation method is proposed and validated to assess the worst-case LTE exposure. For this method, the reference signal (RS) and secondary synchronization signal (S-SYNC) are measured and extrapolated to the worst-case value using an extrapolation factor. The influence of the traffic load and output power of the base station on in situ RS and S-SYNC signals are lower than 1 dB for all power and traffic load settings, showing that these signals can be used for the extrapolation method. The maximal extrapolated field value for LTE exposure equals 1.9 V/m, which is 32 times below the ICNIRP reference levels for electric fields. Copyright © 2012 Wiley Periodicals, Inc.

  4. Edge database analysis for extrapolation to ITER

    International Nuclear Information System (INIS)

    Shimada, M.; Janeschitz, G.; Stambaugh, R.D.

    1999-01-01

    An edge database has been archived to facilitate cross-machine comparisons of SOL and edge pedestal characteristics, and to enable comparison with theoretical models with an aim to extrapolate to ITER. The SOL decay lengths of power, density and temperature become broader for increasing density and q 95 . The power decay length is predicted to be 1.4-3.5 cm (L-mode) and 1.4-2.7 cm (H-mode) at the midplane in ITER. Analysis of Type I ELMs suggests that each giant ELM on ITER would exceed the ablation threshold of the divertor plates. Theoretical models are proposed for the H-mode transition, for Type I and Type III ELMs and are compared with the edge pedestal database. (author)

  5. Scintillation counting: an extrapolation into the future

    International Nuclear Information System (INIS)

    Ross, H.H.

    1983-01-01

    Progress in scintillation counting is intimately related to advances in a variety of other disciplines such as photochemistry, photophysics, and instrumentation. And while there is steady progress in the understanding of luminescent phenomena, there is a virtual explosion in the application of semiconductor technology to detectors, counting systems, and data processing. The exponential growth of this technology has had, and will continue to have, a profound effect on the art of scintillation spectroscopy. This paper will review key events in technology that have had an impact on the development of scintillation science (solid and liquid) and will attempt to extrapolate future directions based on existing and projected capability in associated fields. Along the way there have been occasional pitfalls and several false starts; these too will be discussed as a reminder that if you want the future to be different than the past, study the past

  6. Irradiated food: validity of extrapolating wholesomeness data

    International Nuclear Information System (INIS)

    Taub, I.A.; Angelini, P.; Merritt, C. Jr.

    1976-01-01

    Criteria are considered for validly extrapolating the conclusions reached on the wholesomeness of an irradiated food receiving high doses to the same food receiving a lower dose. A consideration first is made of the possible chemical mechanisms that could give rise to different functional dependences of radiolytic products on dose. It is shown that such products should increase linearly with dose and the ratio of products should be constant throughout the dose range considered. The assumption, generally accepted in pharmacology, then is made that if any adverse effects related to the food are discerned in the test animals, then the intensity of these effects would increase with the concentration of radiolytic products in the food. Lastly, the need to compare data from animal studies with foods irradiated to several doses against chemical evidence obtained over a comparable dose range is considered. It is concluded that if the products depend linearly on dose and if feeding studies indicate no adverse effects, then an extrapolation to lower doses is clearly valid. This approach is illustrated for irradiated codfish. The formation of selected volatile products in samples receiving between 0.1 and 3 Mrads was examined, and their concentrations were found to increase linearly at least up to 1 Mrad. These data were compared with results from animal feeding studies establishing the wholesomeness of codfish and haddock irradiated to 0.2, 0.6 and 2.8 Mrads. It is stated, therefore, that if ocean fish, currently under consideration for onboard processing, were irradiated to 0.1 Mrad, it would be correspondingly wholesome

  7. Smooth extrapolation of unknown anatomy via statistical shape models

    Science.gov (United States)

    Grupp, R. B.; Chiang, H.; Otake, Y.; Murphy, R. J.; Gordon, C. R.; Armand, M.; Taylor, R. H.

    2015-03-01

    Several methods to perform extrapolation of unknown anatomy were evaluated. The primary application is to enhance surgical procedures that may use partial medical images or medical images of incomplete anatomy. Le Fort-based, face-jaw-teeth transplant is one such procedure. From CT data of 36 skulls and 21 mandibles separate Statistical Shape Models of the anatomical surfaces were created. Using the Statistical Shape Models, incomplete surfaces were projected to obtain complete surface estimates. The surface estimates exhibit non-zero error in regions where the true surface is known; it is desirable to keep the true surface and seamlessly merge the estimated unknown surface. Existing extrapolation techniques produce non-smooth transitions from the true surface to the estimated surface, resulting in additional error and a less aesthetically pleasing result. The three extrapolation techniques evaluated were: copying and pasting of the surface estimate (non-smooth baseline), a feathering between the patient surface and surface estimate, and an estimate generated via a Thin Plate Spline trained from displacements between the surface estimate and corresponding vertices of the known patient surface. Feathering and Thin Plate Spline approaches both yielded smooth transitions. However, feathering corrupted known vertex values. Leave-one-out analyses were conducted, with 5% to 50% of known anatomy removed from the left-out patient and estimated via the proposed approaches. The Thin Plate Spline approach yielded smaller errors than the other two approaches, with an average vertex error improvement of 1.46 mm and 1.38 mm for the skull and mandible respectively, over the baseline approach.

  8. Calibration of the 90Sr+90Y ophthalmic and dermatological applicators with an extrapolation ionization minichamber

    International Nuclear Information System (INIS)

    Antonio, Patrícia L.; Oliveira, Mércia L.; Caldas, Linda V.E.

    2014-01-01

    90 Sr+ 90 Y clinical applicators are used for brachytherapy in Brazilian clinics even though they are not manufactured anymore. Such sources must be calibrated periodically, and one of the calibration methods in use is ionometry with extrapolation ionization chambers. 90 Sr+ 90 Y clinical applicators were calibrated using an extrapolation minichamber developed at the Calibration Laboratory at IPEN. The obtained results agree satisfactorily with the data provided in calibration certificates of the sources. - Highlights: • 90 Sr+ 90 Y clinical applicators were calibrated using a mini-extrapolation chamber. • An extrapolation curve was obtained for each applicator during its calibration. • The results were compared with those provided by the calibration certificates. • All results of the dermatological applicators presented lower differences than 5%

  9. The extrapolation of creep rupture data by PD6605 - An independent case study

    Energy Technology Data Exchange (ETDEWEB)

    Bolton, J., E-mail: john.bolton@uwclub.net [65 Fisher Avenue, Rugby, Warks CV22 5HW (United Kingdom)

    2011-04-15

    The worked example presented in BSI document PD6605-1:1998, to illustrate the selection, validation and extrapolation of a creep rupture model using statistical analysis, was independently examined. Alternative rupture models were formulated and analysed by the same statistical methods, and were shown to represent the test data more accurately than the original model. Median rupture lives extrapolated from the original and alternative models were found to diverge widely under some conditions of practical interest. The tests prescribed in PD6605 and employed to validate the original model were applied to the better of the alternative models. But the tests were unable to discriminate between the two, demonstrating that these tests fail to ensure reliability in extrapolation. The difficulties of determining when a model is sufficiently reliable for use in extrapolation are discussed and some proposals are made.

  10. Scaling and extrapolation of hydrogen distribution experiments

    International Nuclear Information System (INIS)

    Karwat, H.

    1986-01-01

    The containment plays an important role in predicting the residual risk to the environment under severe accident conditions. Risk analyses show that massive fission product release from the reactor fuel can occur only if during a loss of coolant the core is severely damaged and a containment failure is anticipated. Large amounts of hydrogen inevitably, are formed during the core degradation and will be released into the containment. More combustible gases are produced later when the coremelt will contact the containment concrete. Thus a potential for an early containment failure exists if a massive hydrogen deflagration cannot be excluded. A more remote cause for early containment failure may be an energetic steam explosion which requires a number of independent conditions when the molten core material contacts residual coolant water. The prediction of the containment loads caused by a hydrogen combustion is dependent on the prediction of the combustion mode. In the paper an attempt is made to identify on basis of a dimensional analysis such areas for which particular care must be exercised when scale experimental evidence is interpreted and extrapolated with the aid of a computer code or a system of computer codes. The study is restricted to fluid dynamic phenomena of the gas distribution process within the containment atmosphere. The gas sources and the mechanical response of containment structures are considered as given boundary conditions under which the containment is to be analyzed

  11. Nuclear lattice simulations using symmetry-sign extrapolation

    Energy Technology Data Exchange (ETDEWEB)

    Laehde, Timo A.; Luu, Thomas [Forschungszentrum Juelich, Institute for Advanced Simulation, Institut fuer Kernphysik, and Juelich Center for Hadron Physics, Juelich (Germany); Lee, Dean [North Carolina State University, Department of Physics, Raleigh, NC (United States); Meissner, Ulf G. [Universitaet Bonn, Helmholtz-Institut fuer Strahlen- und Kernphysik and Bethe Center for Theoretical Physics, Bonn (Germany); Forschungszentrum Juelich, Institute for Advanced Simulation, Institut fuer Kernphysik, and Juelich Center for Hadron Physics, Juelich (Germany); Forschungszentrum Juelich, JARA - High Performance Computing, Juelich (Germany); Epelbaum, Evgeny; Krebs, Hermann [Ruhr-Universitaet Bochum, Institut fuer Theoretische Physik II, Bochum (Germany); Rupak, Gautam [Mississippi State University, Department of Physics and Astronomy, Mississippi State, MS (United States)

    2015-07-15

    Projection Monte Carlo calculations of lattice Chiral Effective Field Theory suffer from sign oscillations to a varying degree dependent on the number of protons and neutrons. Hence, such studies have hitherto been concentrated on nuclei with equal numbers of protons and neutrons, and especially on the alpha nuclei where the sign oscillations are smallest. Here, we introduce the ''symmetry-sign extrapolation'' method, which allows us to use the approximate Wigner SU(4) symmetry of the nuclear interaction to systematically extend the Projection Monte Carlo calculations to nuclear systems where the sign problem is severe. We benchmark this method by calculating the ground-state energies of the {sup 12}C, {sup 6}He and {sup 6}Be nuclei, and discuss its potential for studies of neutron-rich halo nuclei and asymmetric nuclear matter. (orig.)

  12. Study of the reaction {pi}{sup -}p {yields} {pi}{sup -}{pi}{sup 0} p at 2.77 GeV/c for low momentum transfer of the proton. Application to the Chew-Low extrapolation method for the {pi}{sup -}{pi}{sup 0} elastic scattering; Etude de la reaction {pi}{sup -}p {yields} {pi}{sup -}{pi}{sup 0} p a 2.77 GeV/c pour de faibles impulsions du proton diffuse. Application de la methode d'extrapolation de Chew et Low a la diffusion elastiques {pi}{sup -}{pi}{sup 0}

    Energy Technology Data Exchange (ETDEWEB)

    Baton, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1968-05-01

    Study of the reaction {pi}{sup -}p {yields} {pi}{sup -}{pi}{sup 0} p at 2.77 GeV/c carried out in the CERN 2 meter large liquid hydrogen bubble chamber at the proton synchrotron, shows that 70 per cent of this reaction goes through {pi}{sup -}p {yields} {rho}{sup -}p channel. The high statistics allow us to specify the mass and the width of the {rho}{sup -} resonance. In other hand, if the {rho}{sup -} production parameters are independent of the {rho}{sup -} width, it is not the same case for the decay parameters. In the second part, the Chew-Low extrapolation method allows us to determine the {pi}{sup -}{pi}{sup 0} elastic cross section to the pole, and the phase shifts of the P waves in the isospin 1 state and S waves in the isospin 2 state. (author) [French] L'etude de la reaction {pi}{sup -}p {yields} {pi}{sup -}{pi}{sup 0} p a 2.77 GeV/c, effectuee a l'aide de la chambre a bulles a hydrogene liquide de 2 metres du CERN, exposee aupres du synchrotron a protons, montre que 70 pour cent de cette reaction passe par la voie {pi}{sup -}p {yields} {rho}{sup -}p. L'abondance de la statistique a permis de preciser la masse et la largeur de la resonance {rho}{sup -}. D'autre part, si les parametres de la production du {rho}{sup -} sont independants de la largeur de la resonance, il n'en est pas de meme des parametres de la desintegration. Dans la deuxieme partie, la methode d'extrapolation de Chew et Low permet de determiner la section efficace de diffusion elastique {pi}{sup -}{pi}{sup 0} au pole, ainsi que les dephasages des ondes P dans l'etat d'isospin 1 et S dans l'etat d'isospin 2. (auteur)

  13. Study of the reaction π-p → π-π0 p at 2.77 GeV/c for low momentum transfer of the proton. Application to the Chew-Low extrapolation method for the π-π0 elastic scattering

    International Nuclear Information System (INIS)

    Baton, J.

    1969-01-01

    Study of the reaction π - p → π - π 0 p at 2.77 GeV/c carried out in the CERN 2 meter large liquid hydrogen bubble chamber at the proton synchrotron, shows that 70 per cent of this reaction goes through π - p → ρ - p channel. The high statistics allow us to specify the mass and the width of the ρ - resonance. In other hand, if the ρ - production parameters are independent of the ρ - width, it is not the same case for the decay parameters. In the second part, the Chew-Low extrapolation method allows us to determine the π - π 0 elastic cross section to the pole, and the phase shifts of the P waves in the isospin 1 state and S waves in the isospin 2 state. (author) [fr

  14. 40 CFR 86.435-78 - Extrapolated emission values.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Extrapolated emission values. 86.435-78 Section 86.435-78 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Regulations for 1978 and Later New Motorcycles, General Provisions § 86.435-78 Extrapolated emission values...

  15. Dose rates from a C-14 source using extrapolation chamber and MC calculations

    International Nuclear Information System (INIS)

    Borg, J.

    1996-05-01

    The extrapolation chamber technique and the Monte Carlo (MC) calculation technique based on the EGS4 system have been studied for application for determination of dose rates in a low-energy β radiation field e.g., that from a 14 C source. The extrapolation chamber measurement method is the basic method for determination of dose rates in β radiation fields. Applying a number of correction factors and the stopping power ratio, tissue to air, the measured dose rate in an air volume surrounded by tissue equivalent material is converted into dose to tissue. Various details of the extrapolation chamber measurement method and evaluation procedure have been studied and further developed, and a complete procedure for the experimental determination of dose rates from a 14 C source is presented. A number of correction factors and other parameters used in the evaluation procedure for the measured data have been obtained by MC calculations. The whole extrapolation chamber measurement procedure was simulated using the MC method. The measured dose rates showed an increasing deviation from the MC calculated dose rates as the absorber thickness increased. This indicates that the EGS4 code may have some limitations for transport of very low-energy electrons. i.e., electrons with estimated energies less than 10 - 20 keV. MC calculations of dose to tissue were performed using two models: a cylindrical tissue phantom and a computer model of the extrapolation chamber. The dose to tissue in the extrapolation chamber model showed an additional buildup dose compared to the dose in the tissue model. (au) 10 tabs., 11 ills., 18 refs

  16. Molecular Target Homology as a Basis for Species Extrapolation to Assess the Ecological Risk of Veterinary Drugs

    Science.gov (United States)

    Increased identification of veterinary pharmaceutical contaminants in aquatic environments has raised concerns regarding potential adverse effects of these chemicals on non-target organisms. The purpose of this work was to develop a method for predictive species extrapolation ut...

  17. A special mini-extrapolation chamber for calibration of 90Sr+90Y sources

    International Nuclear Information System (INIS)

    Oliveira, Mercia L; Caldas, Linda V E

    2005-01-01

    90 Sr+ 90 Y applicators are commonly utilized in brachytherapy, including ophthalmic procedures. The recommended instruments for the calibration of these applicators are extrapolation chambers, which are ionization chambers that allow the variation of their sensitive volume. Using the extrapolation method, the absorbed dose rate at the applicator surface can be determined. The aim of the present work was to develop a mini-extrapolation chamber for the calibration of 90 Sr+ 90 Y beta ray applicators. The developed mini-chamber has a 3.0 cm outer diameter and is 11.3 cm in length. An aluminized polyester foil is used as the entrance window while the collecting electrode is made of graphited polymethylmethacrylate. This mini-chamber was tested in 90 Sr+ 90 Y radiation beams from a beta particle check source and with a plane ophthalmic applicator, showing adequate results

  18. Analysis of π-p → π-p, π-p → π-π0p et π-p → π+π-n reactions at 2,77 GeV/c and study of the ππ elastic scattering by the Chew-Low extrapolation method applied to π-p → π-π0p and π-p → π+π-n reactions

    International Nuclear Information System (INIS)

    Laurens, Georges

    1971-01-01

    180000 pictures taken in the 2 m CERN hydrogen bubble chamber with an incident beam of 2.77 GeV/e were examined. High statistics obtained in the whole angular production range allowed to study the dσ/dt differential cross section behaviour, the mass and width of the ρ meson, and the multipole parameters of this resonance. Nevertheless, the aim of this experiment was the application of the CHEW - LOW extrapolation method. Different types of extrapolation procedures were compared. Phase shift analysis of the elastic ππ scattering between 500 and 1100 MeV, performed with conformal mappings, allowed to determine the values of the S 0 , S 2 , P 1 , D 0 , D 2 waves. Forward dispersion relations were used to obtain scattering length values of the S 2 and P 1 phase shifts. (author) [fr

  19. On Richardson extrapolation for low-dissipation low-dispersion diagonally implicit Runge-Kutta schemes

    Science.gov (United States)

    Havasi, Ágnes; Kazemi, Ehsan

    2018-04-01

    In the modeling of wave propagation phenomena it is necessary to use time integration methods which are not only sufficiently accurate, but also properly describe the amplitude and phase of the propagating waves. It is not clear if amending the developed schemes by extrapolation methods to obtain a high order of accuracy preserves the qualitative properties of these schemes in the perspective of dissipation, dispersion and stability analysis. It is illustrated that the combination of various optimized schemes with Richardson extrapolation is not optimal for minimal dissipation and dispersion errors. Optimized third-order and fourth-order methods are obtained, and it is shown that the proposed methods combined with Richardson extrapolation result in fourth and fifth orders of accuracy correspondingly, while preserving optimality and stability. The numerical applications include the linear wave equation, a stiff system of reaction-diffusion equations and the nonlinear Euler equations with oscillatory initial conditions. It is demonstrated that the extrapolated third-order scheme outperforms the recently developed fourth-order diagonally implicit Runge-Kutta scheme in terms of accuracy and stability.

  20. Problems in the extrapolation of laboratory rheological data

    Science.gov (United States)

    Paterson, M. S.

    1987-02-01

    The many types of variables and deformation regimes that need to be taken into account in extrapolating rheological behaviour from the laboratory to the earth are reviewed. The problems of extrapolation are then illustrated with two particular cases. In the case of divine-rich rocks, recent experimental work indicates that, within present uncertainties of extrapolation, the flow in the upper mantle could be either grain size dependent and near-Newtonian or grain size independent and distinctly non-Newtonian. Both types of behaviour would be influenced by the present of trace amounts of water. In the case of quartz-rich rocks, the uncertainties are even greater and it is still premature to attempt any extrapolation to geological conditions except as an upper bound; the fugacity and the scale of dispersion of the water are probably two important variables but the quantitative laws governing their influence are not yet clear.

  1. -Error Estimates of the Extrapolated Crank-Nicolson Discontinuous Galerkin Approximations for Nonlinear Sobolev Equations

    Directory of Open Access Journals (Sweden)

    Lee HyunYoung

    2010-01-01

    Full Text Available We analyze discontinuous Galerkin methods with penalty terms, namely, symmetric interior penalty Galerkin methods, to solve nonlinear Sobolev equations. We construct finite element spaces on which we develop fully discrete approximations using extrapolated Crank-Nicolson method. We adopt an appropriate elliptic-type projection, which leads to optimal error estimates of discontinuous Galerkin approximations in both spatial direction and temporal direction.

  2. Source-receiver two-way wave extrapolation for prestack exploding-reflector modelling and migration

    KAUST Repository

    Alkhalifah, Tariq Ali

    2014-10-08

    Most modern seismic imaging methods separate input data into parts (shot gathers). We develop a formulation that is able to incorporate all available data at once while numerically propagating the recorded multidimensional wavefield forward or backward in time. This approach has the potential for generating accurate images free of artiefacts associated with conventional approaches. We derive novel high-order partial differential equations in the source-receiver time domain. The fourth-order nature of the extrapolation in time leads to four solutions, two of which correspond to the incoming and outgoing P-waves and reduce to the zero-offset exploding-reflector solutions when the source coincides with the receiver. A challenge for implementing two-way time extrapolation is an essential singularity for horizontally travelling waves. This singularity can be avoided by limiting the range of wavenumbers treated in a spectral-based extrapolation. Using spectral methods based on the low-rank approximation of the propagation symbol, we extrapolate only the desired solutions in an accurate and efficient manner with reduced dispersion artiefacts. Applications to synthetic data demonstrate the accuracy of the new prestack modelling and migration approach.

  3. Extrapolation of lattice gauge theories to the continuum limit

    International Nuclear Information System (INIS)

    Duncan, A.; Vaidya, H.

    1978-01-01

    The problem of extrapolating lattice gauge theories from the strong-coupling phase to the continuum critical point is studied for the Abelian (U(1)) and non-Abelian (SU(2)) theories in three (space--time) dimensions. A method is described for obtaining the asymptotic behavior, for large β, of such thermodynamic quantities and correlation functions as the free energy and Wilson loop function. Certain general analyticity and positivity properties (in the complex β-plane) are shown to lead, after appropriate analytic remappings, to a Stieltjes property of these functions. Rigorous theorems then guarantee uniform and monotone convergence of the Pade approximants, with exact pointwise upper and lower bounds. The first three Pade's are computed for both the free energy and the Wilson function. For the free energy, satisfactory agreement is with the asymptotic behavior computed by an explicit lattice calculation. The strong-coupling series for the Wilson function is found to be considerably more unstable in the lower order terms - correspondingly, convergence of the Pade's is found to be slower than in the free-energy case. It is suggested that higher-order calculations may allow a reasonably accurate determination of the string constant for the SU(2) theory. 14 references

  4. Multivariable extrapolation of grand canonical free energy landscapes

    Science.gov (United States)

    Mahynski, Nathan A.; Errington, Jeffrey R.; Shen, Vincent K.

    2017-12-01

    We derive an approach for extrapolating the free energy landscape of multicomponent systems in the grand canonical ensemble, obtained from flat-histogram Monte Carlo simulations, from one set of temperature and chemical potentials to another. This is accomplished by expanding the landscape in a Taylor series at each value of the order parameter which defines its macrostate phase space. The coefficients in each Taylor polynomial are known exactly from fluctuation formulas, which may be computed by measuring the appropriate moments of extensive variables that fluctuate in this ensemble. Here we derive the expressions necessary to define these coefficients up to arbitrary order. In principle, this enables a single flat-histogram simulation to provide complete thermodynamic information over a broad range of temperatures and chemical potentials. Using this, we also show how to combine a small number of simulations, each performed at different conditions, in a thermodynamically consistent fashion to accurately compute properties at arbitrary temperatures and chemical potentials. This method may significantly increase the computational efficiency of biased grand canonical Monte Carlo simulations, especially for multicomponent mixtures. Although approximate, this approach is amenable to high-throughput and data-intensive investigations where it is preferable to have a large quantity of reasonably accurate simulation data, rather than a smaller amount with a higher accuracy.

  5. Evaluating In Vitro-In Vivo Extrapolation of Toxicokinetics.

    Science.gov (United States)

    Wambaugh, John F; Hughes, Michael F; Ring, Caroline L; MacMillan, Denise K; Ford, Jermaine; Fennell, Timothy R; Black, Sherry R; Snyder, Rodney W; Sipes, Nisha S; Wetmore, Barbara A; Westerhout, Joost; Setzer, R Woodrow; Pearce, Robert G; Simmons, Jane Ellen; Thomas, Russell S

    2018-05-01

    Prioritizing the risk posed by thousands of chemicals potentially present in the environment requires exposure, toxicity, and toxicokinetic (TK) data, which are often unavailable. Relatively high throughput, in vitro TK (HTTK) assays and in vitro-to-in vivo extrapolation (IVIVE) methods have been developed to predict TK, but most of the in vivo TK data available to benchmark these methods are from pharmaceuticals. Here we report on new, in vivo rat TK experiments for 26 non-pharmaceutical chemicals with environmental relevance. Both intravenous and oral dosing were used to calculate bioavailability. These chemicals, and an additional 19 chemicals (including some pharmaceuticals) from previously published in vivo rat studies, were systematically analyzed to estimate in vivo TK parameters (e.g., volume of distribution [Vd], elimination rate). For each of the chemicals, rat-specific HTTK data were available and key TK predictions were examined: oral bioavailability, clearance, Vd, and uncertainty. For the non-pharmaceutical chemicals, predictions for bioavailability were not effective. While no pharmaceutical was absorbed at less than 10%, the fraction bioavailable for non-pharmaceutical chemicals was as low as 0.3%. Total clearance was generally more under-estimated for nonpharmaceuticals and Vd methods calibrated to pharmaceuticals may not be appropriate for other chemicals. However, the steady-state, peak, and time-integrated plasma concentrations of nonpharmaceuticals were predicted with reasonable accuracy. The plasma concentration predictions improved when experimental measurements of bioavailability were incorporated. In summary, HTTK and IVIVE methods are adequately robust to be applied to high throughput in vitro toxicity screening data of environmentally relevant chemicals for prioritizing based on human health risks.

  6. A NEW CODE FOR NONLINEAR FORCE-FREE FIELD EXTRAPOLATION OF THE GLOBAL CORONA

    International Nuclear Information System (INIS)

    Jiang Chaowei; Feng Xueshang; Xiang Changqing

    2012-01-01

    Reliable measurements of the solar magnetic field are still restricted to the photosphere, and our present knowledge of the three-dimensional coronal magnetic field is largely based on extrapolations from photospheric magnetograms using physical models, e.g., the nonlinear force-free field (NLFFF) model that is usually adopted. Most of the currently available NLFFF codes have been developed with computational volume such as a Cartesian box or a spherical wedge, while a global full-sphere extrapolation is still under development. A high-performance global extrapolation code is in particular urgently needed considering that the Solar Dynamics Observatory can provide a full-disk magnetogram with resolution up to 4096 × 4096. In this work, we present a new parallelized code for global NLFFF extrapolation with the photosphere magnetogram as input. The method is based on the magnetohydrodynamics relaxation approach, the CESE-MHD numerical scheme, and a Yin-Yang spherical grid that is used to overcome the polar problems of the standard spherical grid. The code is validated by two full-sphere force-free solutions from Low and Lou's semi-analytic force-free field model. The code shows high accuracy and fast convergence, and can be ready for future practical application if combined with an adaptive mesh refinement technique.

  7. Accelerating Monte Carlo Molecular Simulations Using Novel Extrapolation Schemes Combined with Fast Database Generation on Massively Parallel Machines

    KAUST Repository

    Amir, Sahar Z.

    2013-05-01

    We introduce an efficient thermodynamically consistent technique to extrapolate and interpolate normalized Canonical NVT ensemble averages like pressure and energy for Lennard-Jones (L-J) fluids. Preliminary results show promising applicability in oil and gas modeling, where accurate determination of thermodynamic properties in reservoirs is challenging. The thermodynamic interpolation and thermodynamic extrapolation schemes predict ensemble averages at different thermodynamic conditions from expensively simulated data points. The methods reweight and reconstruct previously generated database values of Markov chains at neighboring temperature and density conditions. To investigate the efficiency of these methods, two databases corresponding to different combinations of normalized density and temperature are generated. One contains 175 Markov chains with 10,000,000 MC cycles each and the other contains 3000 Markov chains with 61,000,000 MC cycles each. For such massive database creation, two algorithms to parallelize the computations have been investigated. The accuracy of the thermodynamic extrapolation scheme is investigated with respect to classical interpolation and extrapolation. Finally, thermodynamic interpolation benefiting from four neighboring Markov chains points is implemented and compared with previous schemes. The thermodynamic interpolation scheme using knowledge from the four neighboring points proves to be more accurate than the thermodynamic extrapolation from the closest point only, while both thermodynamic extrapolation and thermodynamic interpolation are more accurate than the classical interpolation and extrapolation. The investigated extrapolation scheme has great potential in oil and gas reservoir modeling.That is, such a scheme has the potential to speed up the MCMC thermodynamic computation to be comparable with conventional Equation of State approaches in efficiency. In particular, this makes it applicable to large-scale optimization of L

  8. Properties of an extrapolation chamber for beta radiation dosimetry

    International Nuclear Information System (INIS)

    Caldas, L.V.E.

    The properties of a commercial extrapolation chamber were studied, and the possibility is shown of its use in beta radiation dosimetry. The chamber calibration factors were determined for several sources ( 90 Sr, 90 Y- 204 Tl and 147 Pm) making known the dependence of its response on the energy of the incident radiation. Extrapolation curves allow to obtain independence on energy for each source. One of such curves, shown for the 90 Sr- 90 Y source at 50 cm from the detector, is obtained through the variation of the chamber window thickness and the extrapolation to the null distance (determined graphically). Different curves shown also: 1) the dependence of the calibration factor on the average energy of beta radiation; 2) the variation of ionization current with the distance between the chamber and the sources; 3) the effect of the collecting electrode area on the value of calibration factors for the different sources. (I.C.R.) [pt

  9. Extrapolation of Extreme Response for Wind Turbines based on FieldMeasurements

    DEFF Research Database (Denmark)

    Toft, Henrik Stensgaard; Sørensen, John Dalsgaard

    2009-01-01

    extrapolation are presented. The first method is based on the same assumptions as the existing method but the statistical extrapolation is only performed for a limited number of mean wind speeds where the extreme load is likely to occur. For the second method the mean wind speeds are divided into storms which......The characteristic loads on wind turbines during operation are among others dependent on the mean wind speed, the turbulence intensity and the type and settings of the control system. These parameters must be taken into account in the assessment of the characteristic load. The characteristic load...... are assumed independent and the characteristic loads are determined from the extreme load in each storm....

  10. Functional differential equations with unbounded delay in extrapolation spaces

    Directory of Open Access Journals (Sweden)

    Mostafa Adimy

    2014-08-01

    Full Text Available We study the existence, regularity and stability of solutions for nonlinear partial neutral functional differential equations with unbounded delay and a Hille-Yosida operator on a Banach space X. We consider two nonlinear perturbations: the first one is a function taking its values in X and the second one is a function belonging to a space larger than X, an extrapolated space. We use the extrapolation techniques to prove the existence and regularity of solutions and we establish a linearization principle for the stability of the equilibria of our equation.

  11. SU-D-204-02: BED Consistent Extrapolation of Mean Dose Tolerances

    Energy Technology Data Exchange (ETDEWEB)

    Perko, Z; Bortfeld, T; Hong, T; Wolfgang, J; Unkelbach, J [Massachusetts General Hospital, Boston, MA (United States)

    2016-06-15

    Purpose: The safe use of radiotherapy requires the knowledge of tolerable organ doses. For experimental fractionation schemes (e.g. hypofractionation) these are typically extrapolated from traditional fractionation schedules using the Biologically Effective Dose (BED) model. This work demonstrates that using the mean dose in the standard BED equation may overestimate tolerances, potentially leading to unsafe treatments. Instead, extrapolation of mean dose tolerances should take the spatial dose distribution into account. Methods: A formula has been derived to extrapolate mean physical dose constraints such that they are mean BED equivalent. This formula constitutes a modified BED equation where the influence of the spatial dose distribution is summarized in a single parameter, the dose shape factor. To quantify effects we analyzed 14 liver cancer patients previously treated with proton therapy in 5 or 15 fractions, for whom also photon IMRT plans were available. Results: Our work has two main implications. First, in typical clinical plans the dose distribution can have significant effects. When mean dose tolerances are extrapolated from standard fractionation towards hypofractionation they can be overestimated by 10–15%. Second, the shape difference between photon and proton dose distributions can cause 30–40% differences in mean physical dose for plans having the same mean BED. The combined effect when extrapolating proton doses to mean BED equivalent photon doses in traditional 35 fraction regimens resulted in up to 7–8 Gy higher doses than when applying the standard BED formula. This can potentially lead to unsafe treatments (in 1 of the 14 analyzed plans the liver mean dose was above its 32 Gy tolerance). Conclusion: The shape effect should be accounted for to avoid unsafe overestimation of mean dose tolerances, particularly when estimating constraints for hypofractionated regimens. In addition, tolerances established for a given treatment modality cannot

  12. SU-F-T-579: Extrapolation Techniques for Small Field Dosimetry Using Gafchromic EBT3 Film

    Energy Technology Data Exchange (ETDEWEB)

    Morales, J [Chris OBrien Lifehouse, Camperdown, NSW (Australia)

    2016-06-15

    Purpose: The purpose of this project is to test an experimental approach using an extrapolation technique for Gafchromic EBT3 film for small field x-ray dosimetry. Methods: Small fields from a Novalis Tx linear accelerator with HD Multileaf Collimators with 6 MV was used. The field sizes ranged from 5 × 5 to 50 × 50 mm2 MLC fields and a range of circular cones of 4 to 30 mm2 diameters. All measurements were performed in water at an SSD of 100 cm and at a depth of 10 cm. The relative output factors (ROFs) were determined from an extrapolation technique developed to eliminate the effects of partial volume averaging in film scan by scanning films with high resolution (1200 DPI). The size of the regions of interest (ROI) was varied to produce a plot of ROFs versus ROI which was then extrapolated to zero ROI to determine the relative output factor. The results were compared with other solid state detectors with proper correction, namely, IBA SFD diode, PTW 60008 and PTW 60012 diode. Results: For the 4 mm cone, the extrapolated ROF had a value of 0.658 ± 0.014 as compared to 0.642 and 0.636 for 0.5 mm and 1 mm2 ROI analysis, respectively. This showed a change in output factor of 2.4% and 3.3% at this comparative ROI sizes. In comparison, the 25 mm cone had a difference in measured output factor of 0.3% and 0.5% between 0.5 and 1.0 mm, respectively compared to zero volume. For the fields defined by MLCs a difference of up to 2% for 5×5 mm2 was observed. Conclusion: A measureable difference can be seen in ROF based on the ROI when radiochromic film is used. Using extrapolation technique from high resolution scanning a good agreement can be achieved.

  13. Estimating the CCSD basis-set limit energy from small basis sets: basis-set extrapolations vs additivity schemes

    Energy Technology Data Exchange (ETDEWEB)

    Spackman, Peter R.; Karton, Amir, E-mail: amir.karton@uwa.edu.au [School of Chemistry and Biochemistry, The University of Western Australia, Perth, WA 6009 (Australia)

    2015-05-15

    Coupled cluster calculations with all single and double excitations (CCSD) converge exceedingly slowly with the size of the one-particle basis set. We assess the performance of a number of approaches for obtaining CCSD correlation energies close to the complete basis-set limit in conjunction with relatively small DZ and TZ basis sets. These include global and system-dependent extrapolations based on the A + B/L{sup α} two-point extrapolation formula, and the well-known additivity approach that uses an MP2-based basis-set-correction term. We show that the basis set convergence rate can change dramatically between different systems(e.g.it is slower for molecules with polar bonds and/or second-row elements). The system-dependent basis-set extrapolation scheme, in which unique basis-set extrapolation exponents for each system are obtained from lower-cost MP2 calculations, significantly accelerates the basis-set convergence relative to the global extrapolations. Nevertheless, we find that the simple MP2-based basis-set additivity scheme outperforms the extrapolation approaches. For example, the following root-mean-squared deviations are obtained for the 140 basis-set limit CCSD atomization energies in the W4-11 database: 9.1 (global extrapolation), 3.7 (system-dependent extrapolation), and 2.4 (additivity scheme) kJ mol{sup –1}. The CCSD energy in these approximations is obtained from basis sets of up to TZ quality and the latter two approaches require additional MP2 calculations with basis sets of up to QZ quality. We also assess the performance of the basis-set extrapolations and additivity schemes for a set of 20 basis-set limit CCSD atomization energies of larger molecules including amino acids, DNA/RNA bases, aromatic compounds, and platonic hydrocarbon cages. We obtain the following RMSDs for the above methods: 10.2 (global extrapolation), 5.7 (system-dependent extrapolation), and 2.9 (additivity scheme) kJ mol{sup –1}.

  14. Estimating the CCSD basis-set limit energy from small basis sets: basis-set extrapolations vs additivity schemes

    International Nuclear Information System (INIS)

    Spackman, Peter R.; Karton, Amir

    2015-01-01

    Coupled cluster calculations with all single and double excitations (CCSD) converge exceedingly slowly with the size of the one-particle basis set. We assess the performance of a number of approaches for obtaining CCSD correlation energies close to the complete basis-set limit in conjunction with relatively small DZ and TZ basis sets. These include global and system-dependent extrapolations based on the A + B/L α two-point extrapolation formula, and the well-known additivity approach that uses an MP2-based basis-set-correction term. We show that the basis set convergence rate can change dramatically between different systems(e.g.it is slower for molecules with polar bonds and/or second-row elements). The system-dependent basis-set extrapolation scheme, in which unique basis-set extrapolation exponents for each system are obtained from lower-cost MP2 calculations, significantly accelerates the basis-set convergence relative to the global extrapolations. Nevertheless, we find that the simple MP2-based basis-set additivity scheme outperforms the extrapolation approaches. For example, the following root-mean-squared deviations are obtained for the 140 basis-set limit CCSD atomization energies in the W4-11 database: 9.1 (global extrapolation), 3.7 (system-dependent extrapolation), and 2.4 (additivity scheme) kJ mol –1 . The CCSD energy in these approximations is obtained from basis sets of up to TZ quality and the latter two approaches require additional MP2 calculations with basis sets of up to QZ quality. We also assess the performance of the basis-set extrapolations and additivity schemes for a set of 20 basis-set limit CCSD atomization energies of larger molecules including amino acids, DNA/RNA bases, aromatic compounds, and platonic hydrocarbon cages. We obtain the following RMSDs for the above methods: 10.2 (global extrapolation), 5.7 (system-dependent extrapolation), and 2.9 (additivity scheme) kJ mol –1

  15. Communication: Predicting virial coefficients and alchemical transformations by extrapolating Mayer-sampling Monte Carlo simulations

    Science.gov (United States)

    Hatch, Harold W.; Jiao, Sally; Mahynski, Nathan A.; Blanco, Marco A.; Shen, Vincent K.

    2017-12-01

    Virial coefficients are predicted over a large range of both temperatures and model parameter values (i.e., alchemical transformation) from an individual Mayer-sampling Monte Carlo simulation by statistical mechanical extrapolation with minimal increase in computational cost. With this extrapolation method, a Mayer-sampling Monte Carlo simulation of the SPC/E (extended simple point charge) water model quantitatively predicted the second virial coefficient as a continuous function spanning over four orders of magnitude in value and over three orders of magnitude in temperature with less than a 2% deviation. In addition, the same simulation predicted the second virial coefficient if the site charges were scaled by a constant factor, from an increase of 40% down to zero charge. This method is also shown to perform well for the third virial coefficient and the exponential parameter for a Lennard-Jones fluid.

  16. On extrapolation blowups in the $L_p$ scale

    Czech Academy of Sciences Publication Activity Database

    Capone, C.; Fiorenza, A.; Krbec, Miroslav

    2006-01-01

    Roč. 9, č. 4 (2006), s. 1-15 ISSN 1025-5834 R&D Projects: GA ČR(CZ) GA201/01/1201 Institutional research plan: CEZ:AV0Z10190503 Keywords : extrapolation * Lebesgue spaces * small Lebesgue spaces Subject RIV: BA - General Mathematics Impact factor: 0.349, year: 2004

  17. Extrapolation of ZPR sodium void measurements to the power reactor

    International Nuclear Information System (INIS)

    Beck, C.L.; Collins, P.J.; Lineberry, M.J.; Grasseschi, G.L.

    1976-01-01

    Sodium-voiding measurements of ZPPR assemblies 2 and 5 are analyzed with ENDF/B Version IV data. Computations include directional diffusion coefficients to account for streaming effects resulting from the plate structure of the critical assembly. Bias factors for extrapolating critical assembly data to the CRBR design are derived from the results of this analysis

  18. Free magnetic energy and relative magnetic helicity diagnostics for the quality of NLFF field extrapolations

    Science.gov (United States)

    Moraitis, Kostas; Archontis, Vasilis; Tziotziou, Konstantinos; Georgoulis, Manolis K.

    We calculate the instantaneous free magnetic energy and relative magnetic helicity of solar active regions using two independent approaches: a) a non-linear force-free (NLFF) method that requires only a single photospheric vector magnetogram, and b) well known semi-analytical formulas that require the full three-dimensional (3D) magnetic field structure. The 3D field is obtained either from MHD simulations, or from observed magnetograms via respective NLFF field extrapolations. We find qualitative agreement between the two methods and, quantitatively, a discrepancy not exceeding a factor of 4. The comparison of the two methods reveals, as a byproduct, two independent tests for the quality of a given force-free field extrapolation. We find that not all extrapolations manage to achieve the force-free condition in a valid, divergence-free, magnetic configuration. This research has been co-financed by the European Union (European Social Fund - ESF) and Greek national funds through the Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF) - Research Funding Program: Thales. Investing in knowledge society through the European Social Fund.

  19. Community assessment techniques and the implications for rarefaction and extrapolation with Hill numbers.

    Science.gov (United States)

    Cox, Kieran D; Black, Morgan J; Filip, Natalia; Miller, Matthew R; Mohns, Kayla; Mortimor, James; Freitas, Thaise R; Greiter Loerzer, Raquel; Gerwing, Travis G; Juanes, Francis; Dudas, Sarah E

    2017-12-01

    Diversity estimates play a key role in ecological assessments. Species richness and abundance are commonly used to generate complex diversity indices that are dependent on the quality of these estimates. As such, there is a long-standing interest in the development of monitoring techniques, their ability to adequately assess species diversity, and the implications for generated indices. To determine the ability of substratum community assessment methods to capture species diversity, we evaluated four methods: photo quadrat, point intercept, random subsampling, and full quadrat assessments. Species density, abundance, richness, Shannon diversity, and Simpson diversity were then calculated for each method. We then conducted a method validation at a subset of locations to serve as an indication for how well each method captured the totality of the diversity present. Density, richness, Shannon diversity, and Simpson diversity estimates varied between methods, despite assessments occurring at the same locations, with photo quadrats detecting the lowest estimates and full quadrat assessments the highest. Abundance estimates were consistent among methods. Sample-based rarefaction and extrapolation curves indicated that differences between Hill numbers (richness, Shannon diversity, and Simpson diversity) were significant in the majority of cases, and coverage-based rarefaction and extrapolation curves confirmed that these dissimilarities were due to differences between the methods, not the sample completeness. Method validation highlighted the inability of the tested methods to capture the totality of the diversity present, while further supporting the notion of extrapolating abundances. Our results highlight the need for consistency across research methods, the advantages of utilizing multiple diversity indices, and potential concerns and considerations when comparing data from multiple sources.

  20. Source‐receiver two‐way wave extrapolation for prestack exploding‐reflector modeling and migration

    KAUST Repository

    Alkhalifah, Tariq Ali; Fomel, Sergey

    2010-01-01

    While most of the modern seismic imaging methods perform imaging by separating input data into parts (shot gathers), we develop a formulation that is able to incorporate all available data at once while numerically propagating the recorded multidimensional wavefield backward in time. While computationally extensive, this approach has the potential of generating accurate images, free of artifacts associated with conventional approaches. We derive novel high‐order partial differential equations in source‐receiver‐time domain. The fourth order nature of the extrapolation in time has four solutions two of which correspond to the ingoing and outgoing P‐waves and reduces to the zero‐offset exploding‐reflector solutions when the source coincides with the receiver. Using asymptotic approximations, we develop an approach to extrapolating the full prestack wavefield forward or backward in time.

  1. Source‐receiver two‐way wave extrapolation for prestack exploding‐reflector modeling and migration

    KAUST Repository

    Alkhalifah, Tariq Ali

    2010-10-17

    While most of the modern seismic imaging methods perform imaging by separating input data into parts (shot gathers), we develop a formulation that is able to incorporate all available data at once while numerically propagating the recorded multidimensional wavefield backward in time. While computationally extensive, this approach has the potential of generating accurate images, free of artifacts associated with conventional approaches. We derive novel high‐order partial differential equations in source‐receiver‐time domain. The fourth order nature of the extrapolation in time has four solutions two of which correspond to the ingoing and outgoing P‐waves and reduces to the zero‐offset exploding‐reflector solutions when the source coincides with the receiver. Using asymptotic approximations, we develop an approach to extrapolating the full prestack wavefield forward or backward in time.

  2. Making the most of what we have: application of extrapolation approaches in radioecological wildlife transfer models

    International Nuclear Information System (INIS)

    Beresford, Nicholas A.; Wood, Michael D.; Vives i Batlle, Jordi; Yankovich, Tamara L.; Bradshaw, Clare; Willey, Neil

    2016-01-01

    We will never have data to populate all of the potential radioecological modelling parameters required for wildlife assessments. Therefore, we need robust extrapolation approaches which allow us to make best use of our available knowledge. This paper reviews and, in some cases, develops, tests and validates some of the suggested extrapolation approaches. The concentration ratio (CR_p_r_o_d_u_c_t_-_d_i_e_t or CR_w_o_-_d_i_e_t) is shown to be a generic (trans-species) parameter which should enable the more abundant data for farm animals to be applied to wild species. An allometric model for predicting the biological half-life of radionuclides in vertebrates is further tested and generally shown to perform acceptably. However, to fully exploit allometry we need to understand why some elements do not scale to expected values. For aquatic ecosystems, the relationship between log_1_0(a) (a parameter from the allometric relationship for the organism-water concentration ratio) and log(K_d) presents a potential opportunity to estimate concentration ratios using K_d values. An alternative approach to the CR_w_o_-_m_e_d_i_a model proposed for estimating the transfer of radionuclides to freshwater fish is used to satisfactorily predict activity concentrations in fish of different species from three lakes. We recommend that this approach (REML modelling) be further investigated and developed for other radionuclides and across a wider range of organisms and ecosystems. Ecological stoichiometry shows potential as an extrapolation method in radioecology, either from one element to another or from one species to another. Although some of the approaches considered require further development and testing, we demonstrate the potential to significantly improve predictions of radionuclide transfer to wildlife by making better use of available data. - Highlights: • Robust extrapolation approaches allowing best use of available knowledge are needed. • Extrapolation approaches are

  3. Medical extrapolation chamber dosimeter model XW6012A

    International Nuclear Information System (INIS)

    Jin Tao; Wang Mi; Wu Jinzheng; Guo Qi

    1992-01-01

    An extrapolation chamber dosimeter has been developed for clinical dosimetry of electron beams and X-rays from medical linear accelerators. It consists of a new type extrapolation chamber, a water phantom and an intelligent portable instrument. With a thin entrance window and a φ20 mm collecting electrode made of polystyrene, the electrode spacing can be varied from 0.2 to 6 mm. The dosimeter can accomplish dose measurement automatically, and has functions of error self-diagnosis and dose self-recording. The energy range applicable is 0.5-20 MeV, and the dose-rate range 0.02-40 Gy/min. The total uncertainty is 2.7%

  4. SNSEDextend: SuperNova Spectral Energy Distributions extrapolation toolkit

    Science.gov (United States)

    Pierel, Justin D. R.; Rodney, Steven A.; Avelino, Arturo; Bianco, Federica; Foley, Ryan J.; Friedman, Andrew; Hicken, Malcolm; Hounsell, Rebekah; Jha, Saurabh W.; Kessler, Richard; Kirshner, Robert; Mandel, Kaisey; Narayan, Gautham; Filippenko, Alexei V.; Scolnic, Daniel; Strolger, Louis-Gregory

    2018-05-01

    SNSEDextend extrapolates core-collapse and Type Ia Spectral Energy Distributions (SEDs) into the UV and IR for use in simulations and photometric classifications. The user provides a library of existing SED templates (such as those in the authors' SN SED Repository) along with new photometric constraints in the UV and/or NIR wavelength ranges. The software then extends the existing template SEDs so their colors match the input data at all phases. SNSEDextend can also extend the SALT2 spectral time-series model for Type Ia SN for a "first-order" extrapolation of the SALT2 model components, suitable for use in survey simulations and photometric classification tools; as the code does not do a rigorous re-training of the SALT2 model, the results should not be relied on for precision applications such as light curve fitting for cosmology.

  5. Biosimilars in Inflammatory Bowel Disease: Facts and Fears of Extrapolation.

    Science.gov (United States)

    Ben-Horin, Shomron; Vande Casteele, Niels; Schreiber, Stefan; Lakatos, Peter Laszlo

    2016-12-01

    Biologic drugs such as infliximab and other anti-tumor necrosis factor monoclonal antibodies have transformed the treatment of immune-mediated inflammatory conditions such as Crohn's disease and ulcerative colitis (collectively known as inflammatory bowel disease [IBD]). However, the complex manufacturing processes involved in producing these drugs mean their use in clinical practice is expensive. Recent or impending expiration of patents for several biologics has led to development of biosimilar versions of these drugs, with the aim of providing substantial cost savings and increased accessibility to treatment. Biosimilars undergo an expedited regulatory process. This involves proving structural, functional, and biological biosimilarity to the reference product (RP). It is also expected that clinical equivalency/comparability will be demonstrated in a clinical trial in one (or more) sensitive population. Once these requirements are fulfilled, extrapolation of biosimilar approval to other indications for which the RP is approved is permitted without the need for further clinical trials, as long as this is scientifically justifiable. However, such justification requires that the mechanism(s) of action of the RP in question should be similar across indications and also comparable between the RP and the biosimilar in the clinically tested population(s). Likewise, the pharmacokinetics, immunogenicity, and safety of the RP should be similar across indications and comparable between the RP and biosimilar in the clinically tested population(s). To date, most anti-tumor necrosis factor biosimilars have been tested in trials recruiting patients with rheumatoid arthritis. Concerns have been raised regarding extrapolation of clinical data obtained in rheumatologic populations to IBD indications. In this review, we discuss the issues surrounding indication extrapolation, with a focus on extrapolation to IBD. Copyright © 2016 AGA Institute. Published by Elsevier Inc. All

  6. Statistically extrapolated nowcasting of summertime precipitation over the Eastern Alps

    Science.gov (United States)

    Chen, Min; Bica, Benedikt; Tüchler, Lukas; Kann, Alexander; Wang, Yong

    2017-07-01

    This paper presents a new multiple linear regression (MLR) approach to updating the hourly, extrapolated precipitation forecasts generated by the INCA (Integrated Nowcasting through Comprehensive Analysis) system for the Eastern Alps. The generalized form of the model approximates the updated precipitation forecast as a linear response to combinations of predictors selected through a backward elimination algorithm from a pool of predictors. The predictors comprise the raw output of the extrapolated precipitation forecast, the latest radar observations, the convective analysis, and the precipitation analysis. For every MLR model, bias and distribution correction procedures are designed to further correct the systematic regression errors. Applications of the MLR models to a verification dataset containing two months of qualified samples, and to one-month gridded data, are performed and evaluated. Generally, MLR yields slight, but definite, improvements in the intensity accuracy of forecasts during the late evening to morning period, and significantly improves the forecasts for large thresholds. The structure-amplitude-location scores, used to evaluate the performance of the MLR approach, based on its simulation of morphological features, indicate that MLR typically reduces the overestimation of amplitudes and generates similar horizontal structures in precipitation patterns and slightly degraded location forecasts, when compared with the extrapolated nowcasting.

  7. Effective ellipsoidal models for wavefield extrapolation in tilted orthorhombic media

    KAUST Repository

    Waheed, Umair Bin

    2016-04-22

    Wavefield computations using the ellipsoidally anisotropic extrapolation operator offer significant cost reduction compared to that for the orthorhombic case, especially when the symmetry planes are tilted and/or rotated. However, ellipsoidal anisotropy does not provide accurate wavefield representation or imaging for media of orthorhombic symmetry. Therefore, we propose the use of ‘effective ellipsoidally anisotropic’ models that correctly capture the kinematic behaviour of wavefields for tilted orthorhombic (TOR) media. We compute effective velocities for the ellipsoidally anisotropic medium using kinematic high-frequency representation of the TOR wavefield, obtained by solving the TOR eikonal equation. The effective model allows us to use the cheaper ellipsoidally anisotropic wave extrapolation operators. Although the effective models are obtained by kinematic matching using high-frequency asymptotic, the resulting wavefield contains most of the critical wavefield components, including frequency dependency and caustics, if present, with reasonable accuracy. The proposed methodology offers a much better cost versus accuracy trade-off for wavefield computations in TOR media, particularly for media of low to moderate anisotropic strength. Furthermore, the computed wavefield solution is free from shear-wave artefacts as opposed to the conventional finite-difference based TOR wave extrapolation scheme. We demonstrate applicability and usefulness of our formulation through numerical tests on synthetic TOR models. © 2016 Institute of Geophysics of the ASCR, v.v.i

  8. Extrapolation of zircon fission-track annealing models

    International Nuclear Information System (INIS)

    Palissari, R.; Guedes, S.; Curvo, E.A.C.; Moreira, P.A.F.P.; Tello, C.A.; Hadler, J.C.

    2013-01-01

    One of the purposes of this study is to give further constraints on the temperature range of the zircon partial annealing zone over a geological time scale using data from borehole zircon samples, which have experienced stable temperatures for ∼1 Ma. In this way, the extrapolation problem is explicitly addressed by fitting the zircon annealing models with geological timescale data. Several empirical model formulations have been proposed to perform these calibrations and have been compared in this work. The basic form proposed for annealing models is the Arrhenius-type model. There are other annealing models, that are based on the same general formulation. These empirical model equations have been preferred due to the great number of phenomena from track formation to chemical etching that are not well understood. However, there are two other models, which try to establish a direct correlation between their parameters and the related phenomena. To compare the response of the different annealing models, thermal indexes, such as closure temperature, total annealing temperature and the partial annealing zone, have been calculated and compared with field evidence. After comparing the different models, it was concluded that the fanning curvilinear models yield the best agreement between predicted index temperatures and field evidence. - Highlights: ► Geological data were used along with lab data for improving model extrapolation. ► Index temperatures were simulated for testing model extrapolation. ► Curvilinear Arrhenius models produced better geological temperature predictions

  9. SU-E-J-145: Geometric Uncertainty in CBCT Extrapolation for Head and Neck Adaptive Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Liu, C; Kumarasiri, A; Chetvertkov, M; Gordon, J; Chetty, I; Siddiqui, F; Kim, J [Henry Ford Health System, Detroit, MI (United States)

    2014-06-01

    Purpose: One primary limitation of using CBCT images for H'N adaptive radiotherapy (ART) is the limited field of view (FOV) range. We propose a method to extrapolate the CBCT by using a deformed planning CT for the dose of the day calculations. The aim was to estimate the geometric uncertainty of our extrapolation method. Methods: Ten H'N patients, each with a planning CT (CT1) and a subsequent CT (CT2) taken, were selected. Furthermore, a small FOV CBCT (CT2short) was synthetically created by cropping CT2 to the size of a CBCT image. Then, an extrapolated CBCT (CBCTextrp) was generated by deformably registering CT1 to CT2short and resampling with a wider FOV (42mm more from the CT2short borders), where CT1 is deformed through translation, rigid, affine, and b-spline transformations in order. The geometric error is measured as the distance map ||DVF|| produced by a deformable registration between CBCTextrp and CT2. Mean errors were calculated as a function of the distance away from the CBCT borders. The quality of all the registrations was visually verified. Results: Results were collected based on the average numbers from 10 patients. The extrapolation error increased linearly as a function of the distance (at a rate of 0.7mm per 1 cm) away from the CBCT borders in the S/I direction. The errors (μ±σ) at the superior and inferior boarders were 0.8 ± 0.5mm and 3.0 ± 1.5mm respectively, and increased to 2.7 ± 2.2mm and 5.9 ± 1.9mm at 4.2cm away. The mean error within CBCT borders was 1.16 ± 0.54mm . The overall errors within 4.2cm error expansion were 2.0 ± 1.2mm (sup) and 4.5 ± 1.6mm (inf). Conclusion: The overall error in inf direction is larger due to more large unpredictable deformations in the chest. The error introduced by extrapolation is plan dependent. The mean error in the expanded region can be large, and must be considered during implementation. This work is supported in part by Varian Medical Systems, Palo Alto, CA.

  10. Extrapolation of vertical target motion through a brief visual occlusion.

    Science.gov (United States)

    Zago, Myrka; Iosa, Marco; Maffei, Vincenzo; Lacquaniti, Francesco

    2010-03-01

    It is known that arbitrary target accelerations along the horizontal generally are extrapolated much less accurately than target speed through a visual occlusion. The extent to which vertical accelerations can be extrapolated through an occlusion is much less understood. Here, we presented a virtual target rapidly descending on a blank screen with different motion laws. The target accelerated under gravity (1g), decelerated under reversed gravity (-1g), or moved at constant speed (0g). Probability of each type of acceleration differed across experiments: one acceleration at a time, or two to three different accelerations randomly intermingled could be presented. After a given viewing period, the target disappeared for a brief, variable period until arrival (occluded trials) or it remained visible throughout (visible trials). Subjects were asked to press a button when the target arrived at destination. We found that, in visible trials, the average performance with 1g targets could be better or worse than that with 0g targets depending on the acceleration probability, and both were always superior to the performance with -1g targets. By contrast, the average performance with 1g targets was always superior to that with 0g and -1g targets in occluded trials. Moreover, the response times of 1g trials tended to approach the ideal value with practice in occluded protocols. To gain insight into the mechanisms of extrapolation, we modeled the response timing based on different types of threshold models. We found that occlusion was accompanied by an adaptation of model parameters (threshold time and central processing time) in a direction that suggests a strategy oriented to the interception of 1g targets at the expense of the interception of the other types of tested targets. We argue that the prediction of occluded vertical motion may incorporate an expectation of gravity effects.

  11. Mass extrapolation of quarks and leptons to higher generations

    Energy Technology Data Exchange (ETDEWEB)

    Barik, N [Utkal Univ., Bhubaneswar (India). Dept. of Physics

    1981-05-01

    An empirical mass formula is tested for the basic fermion sequences of charged quarks and leptons. This relation is a generalization of Barut's mass formula for the lepton sequence (e, ..mu.., tau ....). It is found that successful mass extrapolation to the third and possibly to other higher generations (N > 2) can be obtained with the first and second generation masses as inputs, which predicts the top quark mass msub(t) to be around 20 GeV. This also leads to the mass ratios between members of two different sequences (i) and (i') corresponding to the same higher generations (N > 2).

  12. Mass extrapolation of quarks and leptons to higher generations

    International Nuclear Information System (INIS)

    Barik, N.

    1981-01-01

    An empirical mass formula is tested for the basic fermion sequences of charged quarks and leptons. This relation is a generalization of Barut's mass formula for the lepton sequence (e, μ, tau ....). It is found that successful mass extrapolation to the third and possibly to other higher generations (N > 2) can be obtained with the first and second generation masses as inputs, which predicts the top quark mass msub(t) to be around 20 GeV. This also leads to the mass ratios between members of two different sequences (i) and (i') corresponding to the same higher generations (N > 2). (author)

  13. Testing an extrapolation chamber in computed tomography standard beams

    Science.gov (United States)

    Castro, M. C.; Silva, N. F.; Caldas, L. V. E.

    2018-03-01

    The computed tomography (CT) is responsible for the highest dose values to the patients. Therefore, the radiation doses in this procedure must be accurate. However, there is no primary standard system for this kind of radiation beam yet. In order to search for a CT primary standard, an extrapolation ionization chamber built at the Calibration Laboratory (LCI) of the Instituto de Pesquisas Energéticas e Nucleares (IPEN), was tested in this work. The results showed to be within the international recommended limits.

  14. Effective Elliptic Models for Efficient Wavefield Extrapolation in Anisotropic Media

    KAUST Repository

    Waheed, Umair bin

    2014-05-01

    Wavefield extrapolation operator for elliptically anisotropic media offers significant cost reduction compared to that of transversely isotropic media (TI), especially when the medium exhibits tilt in the symmetry axis (TTI). However, elliptical anisotropy does not provide accurate focusing for TI media. Therefore, we develop effective elliptically anisotropic models that correctly capture the kinematic behavior of the TTI wavefield. Specifically, we use an iterative elliptically anisotropic eikonal solver that provides the accurate traveltimes for a TI model. The resultant coefficients of the elliptical eikonal provide the effective models. These effective models allow us to use the cheaper wavefield extrapolation operator for elliptic media to obtain approximate wavefield solutions for TTI media. Despite the fact that the effective elliptic models are obtained by kinematic matching using high-frequency asymptotic, the resulting wavefield contains most of the critical wavefield components, including the frequency dependency and caustics, if present, with reasonable accuracy. The methodology developed here offers a much better cost versus accuracy tradeoff for wavefield computations in TTI media, considering the cost prohibitive nature of the problem. We demonstrate the applicability of the proposed approach on the BP TTI model.

  15. Assessing ecological effects of radionuclides: data gaps and extrapolation issues

    International Nuclear Information System (INIS)

    Garnier-Laplace, Jacqueline; Gilek, Michael; Sundell-Bergman, Synnoeve; Larsson, Carl-Magnus

    2004-01-01

    By inspection of the FASSET database on radiation effects on non-human biota, one of the major difficulties in the implementation of ecological risk assessments for radioactive pollutants is found to be the lack of data for chronic low-level exposure. A critical review is provided of a number of extrapolation issues that arise in undertaking an ecological risk assessment: acute versus chronic exposure regime; radiation quality including relative biological effectiveness and radiation weighting factors; biological effects from an individual to a population level, including radiosensitivity and lifestyle variations throughout the life cycle; single radionuclide versus multi-contaminants. The specificities of the environmental situations of interest (mainly chronic low-level exposure regimes) emphasise the importance of reproductive parameters governing the demography of the population within a given ecosystem and, as a consequence, the structure and functioning of that ecosystem. As an operational conclusion to keep in mind for any site-specific risk assessment, the present state-of-the-art on extrapolation issues allows us to grade the magnitude of the uncertainties as follows: one species to another > acute to chronic = external to internal = mixture of stressors> individual to population> ecosystem structure to function

  16. Guided wave tomography in anisotropic media using recursive extrapolation operators

    Science.gov (United States)

    Volker, Arno

    2018-04-01

    Guided wave tomography is an advanced technology for quantitative wall thickness mapping to image wall loss due to corrosion or erosion. An inversion approach is used to match the measured phase (time) at a specific frequency to a model. The accuracy of the model determines the sizing accuracy. Particularly for seam welded pipes there is a measurable amount of anisotropy. Moreover, for small defects a ray-tracing based modelling approach is no longer accurate. Both issues are solved by applying a recursive wave field extrapolation operator assuming vertical transverse anisotropy. The inversion scheme is extended by not only estimating the wall loss profile but also the anisotropy, local material changes and transducer ring alignment errors. This makes the approach more robust. The approach will be demonstrated experimentally on different defect sizes, and a comparison will be made between this new approach and an isotropic ray-tracing approach. An example is given in Fig. 1 for a 75 mm wide, 5 mm deep defect. The wave field extrapolation based tomography clearly provides superior results.

  17. Effective Elliptic Models for Efficient Wavefield Extrapolation in Anisotropic Media

    KAUST Repository

    Waheed, Umair bin; Alkhalifah, Tariq Ali

    2014-01-01

    Wavefield extrapolation operator for elliptically anisotropic media offers significant cost reduction compared to that of transversely isotropic media (TI), especially when the medium exhibits tilt in the symmetry axis (TTI). However, elliptical anisotropy does not provide accurate focusing for TI media. Therefore, we develop effective elliptically anisotropic models that correctly capture the kinematic behavior of the TTI wavefield. Specifically, we use an iterative elliptically anisotropic eikonal solver that provides the accurate traveltimes for a TI model. The resultant coefficients of the elliptical eikonal provide the effective models. These effective models allow us to use the cheaper wavefield extrapolation operator for elliptic media to obtain approximate wavefield solutions for TTI media. Despite the fact that the effective elliptic models are obtained by kinematic matching using high-frequency asymptotic, the resulting wavefield contains most of the critical wavefield components, including the frequency dependency and caustics, if present, with reasonable accuracy. The methodology developed here offers a much better cost versus accuracy tradeoff for wavefield computations in TTI media, considering the cost prohibitive nature of the problem. We demonstrate the applicability of the proposed approach on the BP TTI model.

  18. Higher Order Aitken Extrapolation with Application to Converging and Diverging Gauss-Seidel Iterations

    OpenAIRE

    Tiruneh, Ababu Teklemariam

    2013-01-01

    Aitken extrapolation normally applied to convergent fixed point iteration is extended to extrapolate the solution of a divergent iteration. In addition, higher order Aitken extrapolation is introduced that enables successive decomposition of high Eigen values of the iteration matrix to enable convergence. While extrapolation of a convergent fixed point iteration using a geometric series sum is a known form of Aitken acceleration, it is shown in this paper that the same formula can be used to ...

  19. Resolution enhancement in digital holography by self-extrapolation of holograms.

    Science.gov (United States)

    Latychevskaia, Tatiana; Fink, Hans-Werner

    2013-03-25

    It is generally believed that the resolution in digital holography is limited by the size of the captured holographic record. Here, we present a method to circumvent this limit by self-extrapolating experimental holograms beyond the area that is actually captured. This is done by first padding the surroundings of the hologram and then conducting an iterative reconstruction procedure. The wavefront beyond the experimentally detected area is thus retrieved and the hologram reconstruction shows enhanced resolution. To demonstrate the power of this concept, we apply it to simulated as well as experimental holograms.

  20. Why does the Aitken extrapolation often help to attain convergence in self-consistent field calculations?

    International Nuclear Information System (INIS)

    Cioslowski, J.

    1988-01-01

    The Aitken (three-point) extrapolation is one of the most popular convergence accelerators in the SCF calculations. The conditions that guarantee the Aitken extrapolation to bring about an unconditional convergence in the SCF process are examined. Classification of the SCF divergences is presented and it is shown that the extrapolation can be expected to work properly only in the case of oscillatory divergence

  1. L2-Error Estimates of the Extrapolated Crank-Nicolson Discontinuous Galerkin Approximations for Nonlinear Sobolev Equations

    Directory of Open Access Journals (Sweden)

    Hyun Young Lee

    2010-01-01

    Full Text Available We analyze discontinuous Galerkin methods with penalty terms, namely, symmetric interior penalty Galerkin methods, to solve nonlinear Sobolev equations. We construct finite element spaces on which we develop fully discrete approximations using extrapolated Crank-Nicolson method. We adopt an appropriate elliptic-type projection, which leads to optimal ℓ∞(L2 error estimates of discontinuous Galerkin approximations in both spatial direction and temporal direction.

  2. Video error concealment using block matching and frequency selective extrapolation algorithms

    Science.gov (United States)

    P. K., Rajani; Khaparde, Arti

    2017-06-01

    Error Concealment (EC) is a technique at the decoder side to hide the transmission errors. It is done by analyzing the spatial or temporal information from available video frames. It is very important to recover distorted video because they are used for various applications such as video-telephone, video-conference, TV, DVD, internet video streaming, video games etc .Retransmission-based and resilient-based methods, are also used for error removal. But these methods add delay and redundant data. So error concealment is the best option for error hiding. In this paper, the error concealment methods such as Block Matching error concealment algorithm is compared with Frequency Selective Extrapolation algorithm. Both the works are based on concealment of manually error video frames as input. The parameter used for objective quality measurement was PSNR (Peak Signal to Noise Ratio) and SSIM(Structural Similarity Index). The original video frames along with error video frames are compared with both the Error concealment algorithms. According to simulation results, Frequency Selective Extrapolation is showing better quality measures such as 48% improved PSNR and 94% increased SSIM than Block Matching Algorithm.

  3. National pattern for the realization of the unit of the dose speed absorbed in air for beta radiation. (Method: Ionometer, cavity of Bragg-Gray implemented in an extrapolation chamber with electrodes of variable separation, exposed to a field of beta radiation of {sup 90}Sr/{sup 90}Y); Patron Nacional para la realizacion de la unidad de la rapidez de dosis absorbida en aire para radiacion beta. (Metodo: Ionometrico, cavidad de Bragg-Gray implementada en una camara de extrapolacion con electrodos de separacion variable, expuesta a un campo de radiacion beta de {sup 90}Sr/{sup 90}Y)

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez R, M T; Morales P, J R [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    2001-01-15

    From the year of 1987 the Department of Metrology of the ININ, in their Secondary Laboratory of Calibration Dosimetric, has a patron group of sources of radiation beta and an extrapolation chamber of electrodes of variable separation.Their objective is to carry out of the unit of the dose speed absorbed in air for radiation beta. It uses the ionometric method, cavity Bragg-Gray in the extrapolation chamber with which it counts. The services that offers are: i) it Calibration : Radioactive Fuentes of radiation beta, isotopes: {sup 90}Sr/{sup 90}Y; Ophthalmic applicators {sup 9}0{sup S}r/{sup 90}Y; Instruments for detection of beta radiation with to the radiological protection: Ionization chambers, Geiger-Muller, etc.; Personal Dosemeters. ii) Irradiation with beta radiation of materials to the investigation. (Author)

  4. Performance of an extrapolation chamber in computed tomography standard beams

    International Nuclear Information System (INIS)

    Castro, Maysa C.; Silva, Natália F.; Caldas, Linda V.E.

    2017-01-01

    Among the medical uses of ionizing radiations, the computed tomography (CT) diagnostic exams are responsible for the highest dose values to the patients. The dosimetry procedure in CT scanner beams makes use of pencil ionization chambers with sensitive volume lengths of 10 cm. The aim of its calibration is to compare the values that are obtained with the instrument to be calibrated and a standard reference system. However, there is no primary standard system for this kind of radiation beam. Therefore, an extrapolation ionization chamber built at the Calibration Laboratory (LCI), was used to establish a CT primary standard. The objective of this work was to perform some characterization tests (short- and medium-term stabilities, saturation curve, polarity effect and ion collection efficiency) in the standard X-rays beams established for computed tomography at the LCI. (author)

  5. UFOs in the LHC: Observations, studies and extrapolations

    CERN Document Server

    Baer, T; Cerutti, F; Ferrari, A; Garrel, N; Goddard, B; Holzer, EB; Jackson, S; Lechner, A; Mertens, V; Misiowiec, M; Nebot del Busto, E; Nordt, A; Uythoven, J; Vlachoudis, V; Wenninger, J; Zamantzas, C; Zimmermann, F; Fuster, N

    2012-01-01

    Unidentified falling objects (UFOs) are potentially a major luminosity limitation for nominal LHC operation. They are presumably micrometer sized dust particles which lead to fast beam losses when they interact with the beam. With large-scale increases and optimizations of the beam loss monitor (BLM) thresholds, their impact on LHC availability was mitigated from mid 2011 onwards. For higher beam energy and lower magnet quench limits, the problem is expected to be considerably worse, though. In 2011/12, the diagnostics for UFO events were significantly improved: dedicated experiments and measurements in the LHC and in the laboratory were made and complemented by FLUKA simulations and theoretical studies. The state of knowledge, extrapolations for nominal LHC operation and mitigation strategies are presented

  6. Performance of an extrapolation chamber in computed tomography standard beams

    Energy Technology Data Exchange (ETDEWEB)

    Castro, Maysa C.; Silva, Natália F.; Caldas, Linda V.E., E-mail: mcastro@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2017-07-01

    Among the medical uses of ionizing radiations, the computed tomography (CT) diagnostic exams are responsible for the highest dose values to the patients. The dosimetry procedure in CT scanner beams makes use of pencil ionization chambers with sensitive volume lengths of 10 cm. The aim of its calibration is to compare the values that are obtained with the instrument to be calibrated and a standard reference system. However, there is no primary standard system for this kind of radiation beam. Therefore, an extrapolation ionization chamber built at the Calibration Laboratory (LCI), was used to establish a CT primary standard. The objective of this work was to perform some characterization tests (short- and medium-term stabilities, saturation curve, polarity effect and ion collection efficiency) in the standard X-rays beams established for computed tomography at the LCI. (author)

  7. Determination of dose rates in beta radiation fields using extrapolation chamber and GM counter

    International Nuclear Information System (INIS)

    Borg, J.; Christensen, P.

    1995-01-01

    The extrapolation chamber measurement method is the basic method for the determination of dose rates in beta radiation fields and the method has been used for the establishment of beta calibration fields. The paper describes important details of the method and presents results from the measurements of depth-dose profiles from different beta radiation fields with E max values down to 156 keV. Results are also presented from studies of GM counters for use as survey instruments for monitoring beta dose rates at the workplace. Advantages of GM counters are a simple measurement technique and high sensitivity. GM responses were measured from exposures in different beta radiation fields using different filters in front of the GM detector and the paper discusses the possibility of using the results from GM measurements with two different filters in an unknown beta radiation field to obtain a value of the dose rate. (Author)

  8. An Extrapolation of a Radical Equation More Accurately Predicts Shelf Life of Frozen Biological Matrices.

    Science.gov (United States)

    De Vore, Karl W; Fatahi, Nadia M; Sass, John E

    2016-08-01

    Arrhenius modeling of analyte recovery at increased temperatures to predict long-term colder storage stability of biological raw materials, reagents, calibrators, and controls is standard practice in the diagnostics industry. Predicting subzero temperature stability using the same practice is frequently criticized but nevertheless heavily relied upon. We compared the ability to predict analyte recovery during frozen storage using 3 separate strategies: traditional accelerated studies with Arrhenius modeling, and extrapolation of recovery at 20% of shelf life using either ordinary least squares or a radical equation y = B1x(0.5) + B0. Computer simulations were performed to establish equivalence of statistical power to discern the expected changes during frozen storage or accelerated stress. This was followed by actual predictive and follow-up confirmatory testing of 12 chemistry and immunoassay analytes. Linear extrapolations tended to be the most conservative in the predicted percent recovery, reducing customer and patient risk. However, the majority of analytes followed a rate of change that slowed over time, which was fit best to a radical equation of the form y = B1x(0.5) + B0. Other evidence strongly suggested that the slowing of the rate was not due to higher-order kinetics, but to changes in the matrix during storage. Predicting shelf life of frozen products through extrapolation of early initial real-time storage analyte recovery should be considered the most accurate method. Although in this study the time required for a prediction was longer than a typical accelerated testing protocol, there are less potential sources of error, reduced costs, and a lower expenditure of resources. © 2016 American Association for Clinical Chemistry.

  9. Efficient anisotropic quasi-P wavefield extrapolation using an isotropic low-rank approximation

    KAUST Repository

    Zhang, Zhendong

    2017-12-17

    The computational cost of quasi-P wave extrapolation depends on the complexity of the medium, and specifically the anisotropy. Our effective-model method splits the anisotropic dispersion relation into an isotropic background and a correction factor to handle this dependency. The correction term depends on the slope (measured using the gradient) of current wavefields and the anisotropy. As a result, the computational cost is independent of the nature of anisotropy, which makes the extrapolation efficient. A dynamic implementation of this approach decomposes the original pseudo-differential operator into a Laplacian, handled using the low-rank approximation of the spectral operator, plus an angular dependent correction factor applied in the space domain to correct for anisotropy. We analyze the role played by the correction factor and propose a new spherical decomposition of the dispersion relation. The proposed method provides accurate wavefields in phase and more balanced amplitudes than a previous spherical decomposition. Also, it is free of SV-wave artifacts. Applications to a simple homogeneous transverse isotropic medium with a vertical symmetry axis (VTI) and a modified Hess VTI model demonstrate the effectiveness of the approach. The Reverse Time Migration (RTM) applied to a modified BP VTI model reveals that the anisotropic migration using the proposed modeling engine performs better than an isotropic migration.

  10. Combining extrapolation with ghost interaction correction in range-separated ensemble density functional theory for excited states

    Science.gov (United States)

    Alam, Md. Mehboob; Deur, Killian; Knecht, Stefan; Fromager, Emmanuel

    2017-11-01

    The extrapolation technique of Savin [J. Chem. Phys. 140, 18A509 (2014)], which was initially applied to range-separated ground-state-density-functional Hamiltonians, is adapted in this work to ghost-interaction-corrected (GIC) range-separated ensemble density-functional theory (eDFT) for excited states. While standard extrapolations rely on energies that decay as μ-2 in the large range-separation-parameter μ limit, we show analytically that (approximate) range-separated GIC ensemble energies converge more rapidly (as μ-3) towards their pure wavefunction theory values (μ → +∞ limit), thus requiring a different extrapolation correction. The purpose of such a correction is to further improve on the convergence and, consequently, to obtain more accurate excitation energies for a finite (and, in practice, relatively small) μ value. As a proof of concept, we apply the extrapolation method to He and small molecular systems (viz., H2, HeH+, and LiH), thus considering different types of excitations such as Rydberg, charge transfer, and double excitations. Potential energy profiles of the first three and four singlet Σ+ excitation energies in HeH+ and H2, respectively, are studied with a particular focus on avoided crossings for the latter. Finally, the extraction of individual state energies from the ensemble energy is discussed in the context of range-separated eDFT, as a perspective.

  11. Making the most of what we have: application of extrapolation approaches in wildlife transfer models

    Energy Technology Data Exchange (ETDEWEB)

    Beresford, Nicholas A.; Barnett, Catherine L.; Wells, Claire [NERC Centre for Ecology and Hydrology, Lancaster Environment Center, Library Av., Bailrigg, Lancaster, LA1 4AP (United Kingdom); School of Environment and Life Sciences, University of Salford, Manchester, M4 4WT (United Kingdom); Wood, Michael D. [School of Environment and Life Sciences, University of Salford, Manchester, M4 4WT (United Kingdom); Vives i Batlle, Jordi [Belgian Nuclear Research Centre, Boeretang 200, 2400 Mol (Belgium); Brown, Justin E.; Hosseini, Ali [Norwegian Radiation Protection Authority, P.O. Box 55, N-1332 Oesteraas (Norway); Yankovich, Tamara L. [International Atomic Energy Agency, Vienna International Centre, 1400, Vienna (Austria); Bradshaw, Clare [Department of Ecology, Environment and Plant Sciences, Stockholm University, SE-10691 (Sweden); Willey, Neil [Centre for Research in Biosciences, University of the West of England, Coldharbour Lane, Frenchay, Bristol BS16 1QY (United Kingdom)

    2014-07-01

    Radiological environmental protection models need to predict the transfer of many radionuclides to a large number of organisms. There has been considerable development of transfer (predominantly concentration ratio) databases over the last decade. However, in reality it is unlikely we will ever have empirical data for all the species-radionuclide combinations which may need to be included in assessments. To provide default values for a number of existing models/frameworks various extrapolation approaches have been suggested (e.g. using data for a similar organism or element). This paper presents recent developments in two such extrapolation approaches, namely phylogeny and allometry. An evaluation of how extrapolation approaches have performed and the potential application of Bayesian statistics to make best use of available data will also be given. Using a Residual Maximum Likelihood (REML) mixed-model regression we initially analysed a dataset comprising 597 entries for 53 freshwater fish species from 67 sites to investigate if phylogenetic variation in transfer could be identified. The REML analysis generated an estimated mean value for each species on a common scale after taking account of the effect of the inter-site variation. Using an independent dataset, we tested the hypothesis that the REML model outputs could be used to predict radionuclide activity concentrations in other species from the results of a species which had been sampled at a specific site. The outputs of the REML analysis accurately predicted {sup 137}Cs activity concentrations in different species of fish from 27 lakes. Although initially investigated as an extrapolation approach the output of this work is a potential alternative to the highly site dependent concentration ratio model. We are currently applying this approach to a wider range of organism types and different ecosystems. An initial analysis of these results will be presented. The application of allometric, or mass

  12. Determination of the bulk melting temperature of nickel using Monte Carlo simulations: Inaccuracy of extrapolation from cluster melting temperatures

    Science.gov (United States)

    Los, J. H.; Pellenq, R. J. M.

    2010-02-01

    We have determined the bulk melting temperature Tm of nickel according to a recent interatomic interaction model via Monte Carlo simulation by two methods: extrapolation from cluster melting temperatures based on the Pavlov model (a variant of the Gibbs-Thompson model) and by calculation of the liquid and solid Gibbs free energies via thermodynamic integration. The result of the latter, which is the most reliable method, gives Tm=2010±35K , to be compared to the experimental value of 1726 K. The cluster extrapolation method, however, gives a 325° higher value of Tm=2335K . This remarkable result is shown to be due to a barrier for melting, which is associated with a nonwetting behavior.

  13. General extrapolation model for an important chemical dose-rate effect

    International Nuclear Information System (INIS)

    Gillen, K.T.; Clough, R.L.

    1984-12-01

    In order to extrapolate material accelerated aging data, methodologies must be developed based on sufficient understanding of the processes leading to material degradation. One of the most important mechanisms leading to chemical dose-rate effects in polymers involves the breakdown of intermediate hydroperoxide species. A general model for this mechanism is derived based on the underlying chemical steps. The results lead to a general formalism for understanding dose rate and sequential aging effects when hydroperoxide breakdown is important. We apply the model to combined radiation/temperature aging data for a PVC material and show that this data is consistent with the model and that model extrapolations are in excellent agreement with 12-year real-time aging results from an actual nuclear plant. This model and other techniques discussed in this report can aid in the selection of appropriate accelerated aging methods and can also be used to compare and select materials for use in safety-related components. This will result in increased assurance that equipment qualification procedures are adequate

  14. Dynamic Aperture Extrapolation in Presence of Tune Modulation

    CERN Document Server

    Giovannozzi, Massimo; Todesco, Ezio

    1998-01-01

    In hadron colliders, such as the Large Hadron Collider (LHC) to be built at CERN, the long-term stability of the single-particle motion is mostly determined by the field-shape quality of the superconducting magnets. The mechanism of particle loss may be largely enhanced by modulation of betatron tunes, induced either by synchro-betatron coupling (via the residual uncorrected chromaticity), or by unavoidable power supply ripple. This harmful effect is investigated in a simple dynamical system model, the Henon map with modulated linear frequencies. Then, a realistic accelerator model describing the injection optics of the LHC lattice is analyzed. Orbital data obtained with long-term tracking simulations ($10^5$-$10^7$ turns) are post-processed to obtain the dynamic aperture. It turns out that the dynamic aperture can be interpolated using a simple mpirical formula, and it decays proportionally to a power of the inverse logarithm of the number of turns. Furthermore, the extrapolation of tracking data at $10^5$ t...

  15. A visual basic program to generate sediment grain-size statistics and to extrapolate particle distributions

    Science.gov (United States)

    Poppe, L.J.; Eliason, A.H.; Hastings, M.E.

    2004-01-01

    Measures that describe and summarize sediment grain-size distributions are important to geologists because of the large amount of information contained in textural data sets. Statistical methods are usually employed to simplify the necessary comparisons among samples and quantify the observed differences. The two statistical methods most commonly used by sedimentologists to describe particle distributions are mathematical moments (Krumbein and Pettijohn, 1938) and inclusive graphics (Folk, 1974). The choice of which of these statistical measures to use is typically governed by the amount of data available (Royse, 1970). If the entire distribution is known, the method of moments may be used; if the next to last accumulated percent is greater than 95, inclusive graphics statistics can be generated. Unfortunately, earlier programs designed to describe sediment grain-size distributions statistically do not run in a Windows environment, do not allow extrapolation of the distribution's tails, or do not generate both moment and graphic statistics (Kane and Hubert, 1963; Collias et al., 1963; Schlee and Webster, 1967; Poppe et al., 2000)1.Owing to analytical limitations, electro-resistance multichannel particle-size analyzers, such as Coulter Counters, commonly truncate the tails of the fine-fraction part of grain-size distributions. These devices do not detect fine clay in the 0.6–0.1 μm range (part of the 11-phi and all of the 12-phi and 13-phi fractions). Although size analyses performed down to 0.6 μm microns are adequate for most freshwater and near shore marine sediments, samples from many deeper water marine environments (e.g. rise and abyssal plain) may contain significant material in the fine clay fraction, and these analyses benefit from extrapolation.The program (GSSTAT) described herein generates statistics to characterize sediment grain-size distributions and can extrapolate the fine-grained end of the particle distribution. It is written in Microsoft

  16. Extrapolation procedures for calculating high-temperature gibbs free energies of aqueous electrolytes

    International Nuclear Information System (INIS)

    Tremaine, P.R.

    1979-01-01

    Methods for calculating high-temprature Gibbs free energies of mononuclear cations and anions from room-temperature data are reviewed. Emphasis is given to species required for oxide solubility calculations relevant to mass transport situations in the nuclear industry. Free energies predicted by each method are compared to selected values calculated from recently reported solubility studies and other literature data. Values for monatomic ions estimated using the assumption anti C 0 p(T) = anti C 0 p(298) agree best with experiment to 423 K. From 423 K to 523 K, free energies from an electrostatic model for ion hydration are more accurate. Extrapolations for hydrolyzed species are limited by a lack of room-temperature entropy data and expressions for estimating these entropies are discussed. (orig.) [de

  17. Extrapolation of extreme response for different mooring line systems of floating wave energy converters

    DEFF Research Database (Denmark)

    Ambühl, Simon; Sterndorff, Martin; Sørensen, John Dalsgaard

    2014-01-01

    Mooring systems for floating wave energy converters (WECs) are a major cost driver. Failure of mooring systems often occurs due to extreme loads. This paper introduces an extrapolation method for extreme response which accounts for the control system of a WEC that controls the loads onto...... measurements from lab-scaled WEPTOS WEC are taken. Different catenary anchor leg mooring (CALM) systems as well as single anchor legmooring (SALM)mooring systemsare implemented for a dynamic simulation with different number of mooring lines. Extreme tension loads with a return period of 50 years are assessed...... for the hawser as well as at the different mooring lines. Furthermore, the extreme load impact given failure of one mooring line is assessed and compared with extreme loads given no system failure....

  18. Bulk rock elastic moduli at high pressures, derived from the mineral textures and from extrapolated laboratory data

    International Nuclear Information System (INIS)

    Ullemeyer, K; Keppler, R; Lokajíček, T; Vasin, R N; Behrmann, J H

    2015-01-01

    The elastic anisotropy of bulk rock depends on the mineral textures, the crack fabric and external parameters like, e.g., confining pressure. The texture-related contribution to elastic anisotropy can be predicted from the mineral textures, the largely sample-dependent contribution of the other parameters must be determined experimentally. Laboratory measurements of the elastic wave velocities are mostly limited to pressures of the intermediate crust. We describe a method, how the elastic wave velocity trends and, by this means, the elastic constants can be extrapolated to the pressure conditions of the lower crust. The extrapolated elastic constants are compared to the texture-derived ones. Pronounced elastic anisotropy is evident for phyllosilicate minerals, hence, the approach is demonstrated for two phyllosilicate-rich gneisses with approximately identical volume fractions of the phyllosilicates but different texture types. (paper)

  19. Straightening the Hierarchical Staircase for Basis Set Extrapolations: A Low-Cost Approach to High-Accuracy Computational Chemistry

    Science.gov (United States)

    Varandas, António J. C.

    2018-04-01

    Because the one-electron basis set limit is difficult to reach in correlated post-Hartree-Fock ab initio calculations, the low-cost route of using methods that extrapolate to the estimated basis set limit attracts immediate interest. The situation is somewhat more satisfactory at the Hartree-Fock level because numerical calculation of the energy is often affordable at nearly converged basis set levels. Still, extrapolation schemes for the Hartree-Fock energy are addressed here, although the focus is on the more slowly convergent and computationally demanding correlation energy. Because they are frequently based on the gold-standard coupled-cluster theory with single, double, and perturbative triple excitations [CCSD(T)], correlated calculations are often affordable only with the smallest basis sets, and hence single-level extrapolations from one raw energy could attain maximum usefulness. This possibility is examined. Whenever possible, this review uses raw data from second-order Møller-Plesset perturbation theory, as well as CCSD, CCSD(T), and multireference configuration interaction methods. Inescapably, the emphasis is on work done by the author's research group. Certain issues in need of further research or review are pinpointed.

  20. Fuel cycle design for ITER and its extrapolation to DEMO

    Energy Technology Data Exchange (ETDEWEB)

    Konishi, Satoshi [Institute of Advanced Energy, Kyoto University, Kyoto 611-0011 (Japan)], E-mail: s-konishi@iae.kyoto-u.ac.jp; Glugla, Manfred [Forschungszentrum Karlsruhe, P.O. Box 3640, D 76021 Karlsruhe (Germany); Hayashi, Takumi [Apan Atomic Energy AgencyTokai, Ibaraki 319-0015 Japan (Japan)

    2008-12-15

    future energy source. Some of the subjects cannot be expected to be within the extrapolation of ITER technology and require long term efforts paralleling ITER.

  1. Fuel cycle design for ITER and its extrapolation to DEMO

    International Nuclear Information System (INIS)

    Konishi, Satoshi; Glugla, Manfred; Hayashi, Takumi

    2008-01-01

    future energy source. Some of the subjects cannot be expected to be within the extrapolation of ITER technology and require long term efforts paralleling ITER

  2. CT image construction of a totally deflated lung using deformable model extrapolation

    International Nuclear Information System (INIS)

    Sadeghi Naini, Ali; Pierce, Greg; Lee, Ting-Yim

    2011-01-01

    Purpose: A novel technique is proposed to construct CT image of a totally deflated lung from a free-breathing 4D-CT image sequence acquired preoperatively. Such a constructed CT image is very useful in performing tumor ablative procedures such as lung brachytherapy. Tumor ablative procedures are frequently performed while the lung is totally deflated. Deflating the lung during such procedures renders preoperative images ineffective for targeting the tumor. Furthermore, the problem cannot be solved using intraoperative ultrasound (U.S.) images because U.S. images are very sensitive to small residual amount of air remaining in the deflated lung. One possible solution to address these issues is to register high quality preoperative CT images of the deflated lung with their corresponding low quality intraoperative U.S. images. However, given that such preoperative images correspond to an inflated lung, such CT images need to be processed to construct CT images pertaining to the lung's deflated state. Methods: To obtain the CT images of deflated lung, we present a novel image construction technique using extrapolated deformable registration to predict the deformation the lung undergoes during full deflation. The proposed construction technique involves estimating the lung's air volume in each preoperative image automatically in order to track the respiration phase of each 4D-CT image throughout a respiratory cycle; i.e., the technique does not need any external marker to form a respiratory signal in the process of curve fitting and extrapolation. The extrapolated deformation field is then applied on a preoperative reference image in order to construct the totally deflated lung's CT image. The technique was evaluated experimentally using ex vivo porcine lung. Results: The ex vivo lung experiments led to very encouraging results. In comparison with the CT image of the deflated lung we acquired for the purpose of validation, the constructed CT image was very similar. The

  3. Oral-to-inhalation route extrapolation in occupational health risk assessment: A critical assessment

    NARCIS (Netherlands)

    Rennen, M.A.J.; Bouwman, T.; Wilschut, A.; Bessems, J.G.M.; Heer, C.de

    2004-01-01

    Due to a lack of route-specific toxicity data, the health risks resulting from occupational exposure are frequently assessed by route-to-route (RtR) extrapolation based on oral toxicity data. Insight into the conditions for and the uncertainties connected with the application of RtR extrapolation

  4. Hydrologic nonstationarity and extrapolating models to predict the future: overview of session and proceeding

    Directory of Open Access Journals (Sweden)

    F. H. S. Chiew

    2015-06-01

    Full Text Available This paper provides an overview of this IAHS symposium and PIAHS proceeding on "hydrologic nonstationarity and extrapolating models to predict the future". The paper provides a brief review of research on this topic, presents approaches used to account for nonstationarity when extrapolating models to predict the future, and summarises the papers in this session and proceeding.

  5. On the existence of the optimal order for wavefunction extrapolation in Born-Oppenheimer molecular dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Jun; Wang, Han, E-mail: wang-han@iapcm.ac.cn [Institute of Applied Physics and Computational Mathematics, Beijing (China); CAEP Software Center for High Performance Numerical Simulation, Beijing (China); Gao, Xingyu; Song, Haifeng [Institute of Applied Physics and Computational Mathematics, Beijing (China); CAEP Software Center for High Performance Numerical Simulation, Beijing (China); Laboratory of Computational Physics, Beijing (China)

    2016-06-28

    Wavefunction extrapolation greatly reduces the number of self-consistent field (SCF) iterations and thus the overall computational cost of Born-Oppenheimer molecular dynamics (BOMD) that is based on the Kohn–Sham density functional theory. Going against the intuition that the higher order of extrapolation possesses a better accuracy, we demonstrate, from both theoretical and numerical perspectives, that the extrapolation accuracy firstly increases and then decreases with respect to the order, and an optimal extrapolation order in terms of minimal number of SCF iterations always exists. We also prove that the optimal order tends to be larger when using larger MD time steps or more strict SCF convergence criteria. By example BOMD simulations of a solid copper system, we show that the optimal extrapolation order covers a broad range when varying the MD time step or the SCF convergence criterion. Therefore, we suggest the necessity for BOMD simulation packages to open the user interface and to provide more choices on the extrapolation order. Another factor that may influence the extrapolation accuracy is the alignment scheme that eliminates the discontinuity in the wavefunctions with respect to the atomic or cell variables. We prove the equivalence between the two existing schemes, thus the implementation of either of them does not lead to essential difference in the extrapolation accuracy.

  6. Extrapolation bias and the predictability of stock returns by price-scaled variables

    NARCIS (Netherlands)

    Cassella, Stefano; Gulen, H.

    Using survey data on expectations of future stock returns, we recursively estimate the degree of extrapolative weighting in investors' beliefs (DOX). In an extrapolation framework, DOX determines the relative weight investors place on recent-versus-distant past returns. DOX varies considerably over

  7. WE-DE-201-05: Evaluation of a Windowless Extrapolation Chamber Design and Monte Carlo Based Corrections for the Calibration of Ophthalmic Applicators

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, J; Culberson, W; DeWerd, L [University of Wisconsin Medical Radiation Research Center, Madison, WI (United States); Soares, C [NIST (retired), Gaithersburg, MD (United States)

    2016-06-15

    Purpose: To test the validity of a windowless extrapolation chamber used to measure surface dose rate from planar ophthalmic applicators and to compare different Monte Carlo based codes for deriving correction factors. Methods: Dose rate measurements were performed using a windowless, planar extrapolation chamber with a {sup 90}Sr/{sup 90}Y Tracerlab RA-1 ophthalmic applicator previously calibrated at the National Institute of Standards and Technology (NIST). Capacitance measurements were performed to estimate the initial air gap width between the source face and collecting electrode. Current was measured as a function of air gap, and Bragg-Gray cavity theory was used to calculate the absorbed dose rate to water. To determine correction factors for backscatter, divergence, and attenuation from the Mylar entrance window found in the NIST extrapolation chamber, both EGSnrc Monte Carlo user code and Monte Carlo N-Particle Transport Code (MCNP) were utilized. Simulation results were compared with experimental current readings from the windowless extrapolation chamber as a function of air gap. Additionally, measured dose rate values were compared with the expected result from the NIST source calibration to test the validity of the windowless chamber design. Results: Better agreement was seen between EGSnrc simulated dose results and experimental current readings at very small air gaps (<100 µm) for the windowless extrapolation chamber, while MCNP results demonstrated divergence at these small gap widths. Three separate dose rate measurements were performed with the RA-1 applicator. The average observed difference from the expected result based on the NIST calibration was −1.88% with a statistical standard deviation of 0.39% (k=1). Conclusion: EGSnrc user code will be used during future work to derive correction factors for extrapolation chamber measurements. Additionally, experiment results suggest that an entrance window is not needed in order for an extrapolation

  8. Can Pearlite form Outside of the Hultgren Extrapolation of the Ae3 and Acm Phase Boundaries?

    Science.gov (United States)

    Aranda, M. M.; Rementeria, R.; Capdevila, C.; Hackenberg, R. E.

    2016-02-01

    It is usually assumed that ferrous pearlite can form only when the average austenite carbon concentration C 0 lies between the extrapolated Ae3 ( γ/ α) and Acm ( γ/ θ) phase boundaries (the "Hultgren extrapolation"). This "mutual supersaturation" criterion for cooperative lamellar nucleation and growth is critically examined from a historical perspective and in light of recent experiments on coarse-grained hypoeutectoid steels which show pearlite formation outside the Hultgren extrapolation. This criterion, at least as interpreted in terms of the average austenite composition, is shown to be unnecessarily restrictive. The carbon fluxes evaluated from Brandt's solution are sufficient to allow pearlite growth both inside and outside the Hultgren Extrapolation. As for the feasibility of the nucleation events leading to pearlite, the only criterion is that there are some local regions of austenite inside the Hultgren Extrapolation, even if the average austenite composition is outside.

  9. Characterization of an extrapolation chamber in a 90Sr/90Y beta radiation field

    International Nuclear Information System (INIS)

    Oramas Polo, I.; Tamayo Garcia, J. A.

    2015-01-01

    The extrapolation chamber is a parallel plate chamber and variable volume based on the Bragg-Gray theory. It determines in absolute mode, with high accuracy the dose absorbed by the extrapolation of the ionization current measured for a null distance between the electrodes. This camera is used for dosimetry of external beta rays for radiation protection. This paper presents the characterization of an extrapolation chamber in a 90 Sr/ 90 Y beta radiation field. The absorbed dose rate to tissue at a depth of 0.07 mm was calculated and is (0.13206±0.0028) μGy. The extrapolation chamber null depth was determined and its value is 60 μm. The influence of temperature, pressure and humidity on the value of the corrected current was also evaluated. Temperature is the parameter that has more influence on this value and the influence of pressure and the humidity is not very significant. Extrapolation curves were obtained. (Author)

  10. A new mini-extrapolation chamber for beta source uniformity measurements

    International Nuclear Information System (INIS)

    Oliveira, M.L.; Caldas, L.V.E.

    2006-01-01

    According to recent international recommendations, beta particle sources should be specified in terms of absorbed dose rates to water at the reference point. However, because of the clinical use of these sources, additional information should be supplied in the calibration reports. This additional information include the source uniformity. A new small volume extrapolation chamber was designed and constructed at the Calibration Laboratory at Instituto de Pesquisas Energeticas e Nucleares, IPEN, Brazil, for the calibration of 90 Sr+ 90 Y ophthalmic plaques. This chamber can be used as a primary standard for the calibration of this type of source. Recent additional studies showed the feasibility of the utilization of this chamber to perform source uniformity measurements. Because of the small effective electrode area, it is possible to perform independent measurements by varying the chamber position by small steps. The aim of the present work was to study the uniformity of a 90 Sr+ 90 Y plane ophthalmic plaque utilizing the mini extrapolation chamber developed at IPEN. The uniformity measurements were performed by varying the chamber position by steps of 2 mm in the source central axis (x-and y-directions) and by varying the chamber position off-axis by 3 mm steps. The results obtained showed that this small volume chamber can be used for this purpose with a great advantage: it is a direct method, being unnecessary a previously calibration of the measurement device in relation to a reference instrument, and it provides real -time results, reducing the time necessary for the study and the determination of the uncertainties related to the measurements. (authors)

  11. Direct observations of the viscosity of Earth's outer core and extrapolation of measurements of the viscosity of liquid iron

    International Nuclear Information System (INIS)

    Smylie, D E; Brazhkin, Vadim V; Palmer, Andrew

    2009-01-01

    Estimates vary widely as to the viscosity of Earth's outer fluid core. Directly observed viscosity is usually orders of magnitude higher than the values extrapolated from high-pressure high-temperature laboratory experiments, which are close to those for liquid iron at atmospheric pressure. It turned out that this discrepancy can be removed by extrapolating via the widely known Arrhenius activation model modified by lifting the commonly used assumption of pressure-independent activation volume (which is possible due to the discovery that at high pressures the activation volume increases strongly with pressure, resulting in 10 2 Pa s at the top of the fluid core, and in 10 11 Pa s at its bottom). There are of course many uncertainties affecting this extrapolation process. This paper reviews two viscosity determination methods, one for the top and the other for the bottom of the outer core, the former of which relies on the decay of free core nutations and yields 2371 ± 1530 Pa s, while the other relies on the reduction in the rotational splitting of the two equatorial translational modes of the solid inner core oscillations and yields an average of 1.247 ± 0.035 Pa s. Encouraged by the good performance of the Arrhenius extrapolation, a differential form of the Arrhenius activation model is used to interpolate along the melting temperature curve and to find the viscosity profile across the entire outer core. The viscosity variation is found to be nearly log-linear between the measured boundary values. (methodological notes)

  12. Design and construction of an interface system for the extrapolation chamber from the beta secondary standard

    International Nuclear Information System (INIS)

    Jimenez C, L.F.

    1995-01-01

    The Interface System for the Extrapolation Chamber (SICE) contains several devices handled by a personal computer (PC), it is able to get the required data to calculate the absorbed dose due to Beta radiation. The main functions of the system are: a) Measures the ionization current or charge stored in the extrapolation chamber. b) Adjusts the distance between the plates of the extrapolation chamber automatically. c) Adjust the bias voltage of the extrapolation chamber automatically. d) Acquires the data of the temperature, atmospheric pressure, relative humidity of the environment and the voltage applied between the plates of the extrapolation chamber. e) Calculates the effective area of the plates of the extrapolation chamber and the real distance between them. f) Stores all the obtained information in hard disk or diskette. A comparison between the desired distance and the distance in the dial of the extrapolation chamber, show us that the resolution of the system is of 20 μm. The voltage can be changed between -399.9 V and +399.9 V with an error of less the 3 % with a resolution of 0.1 V. These uncertainties are between the accepted limits to be used in the determination of the absolute absorbed dose due to beta radiation. (Author)

  13. Associação de cetamina S(+ e midazolam pelo método convencional de cálculo e pela extrapolação alométrica em bugios-ruivo (Alouatta guariba clamitans: resposta clínica e cardiorrespiratória S(+ ketamine and midazolam association by the conventional method of calculation and allometric extrapolation in red howler monkeys (Alouatta guariba clamitans: clinical and cardiopulmonary response

    Directory of Open Access Journals (Sweden)

    Joana Aurora Braun Chagas

    2010-02-01

    Full Text Available O objetivo deste estudo foi avaliar o protocolo de contenção química com cetamina S(+ e midazolam em bugios-ruivos, comparando o cálculo de doses pelo método convencional e o método de extrapolação alométrica. Foram utilizados 12 macacos bugios (Alouatta guariba clamitans hígidos, com peso médio de 4,84±0,97kg, de ambos os sexos. Após jejum alimentar de 12 horas e hídrico de seis horas, realizou-se contenção física manual e aferiram-se os seguintes parâmetros: frequência cardíaca (FC, frequência respiratória (f, tempo de preenchimento capilar (TPC, temperatura retal (TR, pressão arterial sistólica não invasiva (PANI e valores de hemogasometria arterial. Posteriormente, os animais foram alocados em dois grupos: GC (Grupo Convencional, n=06, os quais receberam cetamina S(+ (5mg kg-1 e midazolam (0,5mg kg-1, pela via intramuscular, com doses calculadas pelo método convencional; e GA (Grupo Alometria, n=06, os quais receberam o mesmo protocolo, pela mesma via, utilizando-se as doses calculadas pelo método de extrapolação alométrica. Os parâmetros descritos foram mensurados novamente nos seguintes momentos: M5, M10, M20 e M30 (cinco, 10, 20 e 30 minutos após a administração dos fármacos, respectivamente. Também foram avaliados: qualidade de miorrelaxamento, reflexo podal e caudal, pinçamento interdigital, tempo para indução de decúbito, tempo hábil de sedação, qualidade de sedação, e tempo e qualidade de recuperação. O GA apresentou menor tempo para indução ao decúbito, maior grau e tempo de sedação, bem como redução significativa da FC e PANI de M5 até M30, quando comparado ao GC. Conclui-se que o grupo no qual o cálculo de dose foi realizado por meio da alometria (GA apresentou melhor grau de relaxamento muscular e sedação, sem produzir depressão cardiorrespiratória significativa.The aim of this study was to evaluate a protocol of chemical restraint comparing the conventional method of

  14. Empirical models of the Solar Wind : Extrapolations from the Helios & Ulysses observations back to the corona

    Science.gov (United States)

    Maksimovic, M.; Zaslavsky, A.

    2017-12-01

    We will present extrapolation of the HELIOS & Ulysses proton density, temperature & bulk velocities back to the corona. Using simple mass flux conservations we show a very good agreement between these extrapolations and the current state knowledge of these parameters in the corona, based on SOHO mesurements. These simple extrapolations could potentially be very useful for the science planning of both the Parker Solar Probe and Solar Orbiter missions. Finally will also present some modelling considerations, based on simple energy balance equations which arise from these empirical observationnal models.

  15. Effect of extrapolation length on the phase transformation of epitaxial ferroelectric thin films

    International Nuclear Information System (INIS)

    Hu, Z.S.; Tang, M.H.; Wang, J.B.; Zheng, X.J.; Zhou, Y.C.

    2008-01-01

    Effects of extrapolation length on the phase transformation of epitaxial ferroelectric thin films on dissimilar cubic substrates have been studied on the basis of the mean-field Landau-Ginzburg-Devonshire (LGD) thermodynamic theory by taking an uneven distribution of the interior stress with thickness into account. It was found that the polarization of epitaxial ferroelectric thin films is strongly dependent on the extrapolation length of films. The physical origin of the extrapolation length during the phase transformation from paraelectric to ferroelectric was revealed in the case of ferroelectric thin films

  16. Aitken extrapolation and epsilon algorithm for an accelerated solution of weakly singular nonlinear Volterra integral equations

    International Nuclear Information System (INIS)

    Mesgarani, H; Parmour, P; Aghazadeh, N

    2010-01-01

    In this paper, we apply Aitken extrapolation and epsilon algorithm as acceleration technique for the solution of a weakly singular nonlinear Volterra integral equation of the second kind. In this paper, based on Tao and Yong (2006 J. Math. Anal. Appl. 324 225-37.) the integral equation is solved by Navot's quadrature formula. Also, Tao and Yong (2006) for the first time applied Richardson extrapolation to accelerating convergence for the weakly singular nonlinear Volterra integral equations of the second kind. To our knowledge, this paper may be the first attempt to apply Aitken extrapolation and epsilon algorithm for the weakly singular nonlinear Volterra integral equations of the second kind.

  17. An extrapolation scheme for solid-state NMR chemical shift calculations

    Science.gov (United States)

    Nakajima, Takahito

    2017-06-01

    Conventional quantum chemical and solid-state physical approaches include several problems to accurately calculate solid-state nuclear magnetic resonance (NMR) properties. We propose a reliable computational scheme for solid-state NMR chemical shifts using an extrapolation scheme that retains the advantages of these approaches but reduces their disadvantages. Our scheme can satisfactorily yield solid-state NMR magnetic shielding constants. The estimated values have only a small dependence on the low-level density functional theory calculation with the extrapolation scheme. Thus, our approach is efficient because the rough calculation can be performed in the extrapolation scheme.

  18. Design for low dose extrapolation of carcinogenicity data. Technical report No. 24

    International Nuclear Information System (INIS)

    Wong, S.C.

    1979-06-01

    Parameters for modelling dose-response relationships in carcinogenesis models were found to be very complicated, especially for distinguishing low dose effects. The author concluded that extrapolation always bears the danger of providing misleading information

  19. Melting of “non-magic” argon clusters and extrapolation to the bulk limit

    International Nuclear Information System (INIS)

    Senn, Florian; Wiebke, Jonas; Schumann, Ole; Gohr, Sebastian; Schwerdtfeger, Peter; Pahl, Elke

    2014-01-01

    The melting of argon clusters Ar N is investigated by applying a parallel-tempering Monte Carlo algorithm for all cluster sizes in the range from 55 to 309 atoms. Extrapolation to the bulk gives a melting temperature of 85.9 K in good agreement with the previous value of 88.9 K using only Mackay icosahedral clusters for the extrapolation [E. Pahl, F. Calvo, L. Koči, and P. Schwerdtfeger, “Accurate melting temperatures for neon and argon from ab initio Monte Carlo simulations,” Angew. Chem., Int. Ed. 47, 8207 (2008)]. Our results for argon demonstrate that for the extrapolation to the bulk one does not have to restrict to magic number cluster sizes in order to obtain good estimates for the bulk melting temperature. However, the extrapolation to the bulk remains a problem, especially for the systematic selection of suitable cluster sizes

  20. Extrapolation of π-meson form factor, zeros in the analyticity domain

    International Nuclear Information System (INIS)

    Morozov, P.T.

    1978-01-01

    The problem of a stable extrapolation from the cut to an arbitrary interior of the analyticity domain for the pion form factor is formulated and solved. As it is shown a stable solution can be derived if module representations with the Karleman weight function are used as the analyticity conditions. The case when the form factor has zeros is discussed. If there are zeros in the complex plane they must be taken into account when determining the extrapolation function

  1. Loop integration results using numerical extrapolation for a non-scalar integral

    International Nuclear Information System (INIS)

    Doncker, E. de; Shimizu, Y.; Fujimoto, J.; Yuasa, F.; Kaugars, K.; Cucos, L.; Van Voorst, J.

    2004-01-01

    Loop integration results have been obtained using numerical integration and extrapolation. An extrapolation to the limit is performed with respect to a parameter in the integrand which tends to zero. Results are given for a non-scalar four-point diagram. Extensions to accommodate loop integration by existing integration packages are also discussed. These include: using previously generated partitions of the domain and roundoff error guards

  2. Quantitative in vitro-to-in vivo extrapolation in a high-throughput environment

    International Nuclear Information System (INIS)

    Wetmore, Barbara A.

    2015-01-01

    High-throughput in vitro toxicity screening provides an efficient way to identify potential biological targets for environmental and industrial chemicals while conserving limited testing resources. However, reliance on the nominal chemical concentrations in these in vitro assays as an indicator of bioactivity may misrepresent potential in vivo effects of these chemicals due to differences in clearance, protein binding, bioavailability, and other pharmacokinetic factors. Development of high-throughput in vitro hepatic clearance and protein binding assays and refinement of quantitative in vitro-to-in vivo extrapolation (QIVIVE) methods have provided key tools to predict xenobiotic steady state pharmacokinetics. Using a process known as reverse dosimetry, knowledge of the chemical steady state behavior can be incorporated with HTS data to determine the external in vivo oral exposure needed to achieve internal blood concentrations equivalent to those eliciting bioactivity in the assays. These daily oral doses, known as oral equivalents, can be compared to chronic human exposure estimates to assess whether in vitro bioactivity would be expected at the dose-equivalent level of human exposure. This review will describe the use of QIVIVE methods in a high-throughput environment and the promise they hold in shaping chemical testing priorities and, potentially, high-throughput risk assessment strategies

  3. Study of energy dependence of a extrapolation chamber in low energy X-rays beams

    International Nuclear Information System (INIS)

    Bastos, Fernanda M.; Silva, Teogenes A. da

    2014-01-01

    This work was with the main objective to study the energy dependence of extrapolation chamber in low energy X-rays to determine the value of the uncertainty associated with the variation of the incident radiation energy in the measures in which it is used. For studying the dependence of energy, were conducted comparative ionization current measurements between the extrapolation chamber and two ionization chambers: a chamber mammography, RC6M model, Radcal with energy dependence less than 5% and a 2575 model radioprotection chamber NE Technology; both chambers have very thin windows, allowing its application in low power beams. Measurements were made at four different depths of 1.0 to 4.0 mm extrapolation chamber, 1.0 mm interval, for each reference radiation. The study showed that there is a variable energy dependence on the volume of the extrapolation chamber. In other analysis, it is concluded that the energy dependence of extrapolation chamber becomes smaller when using the slope of the ionization current versus depth for the different radiation reference; this shows that the extrapolation technique, used for the absorbed dose calculation, reduces the uncertainty associated with the influence of the response variation with energy radiation

  4. Poisson’s Ratio Extrapolation from Digital Image Correlation Experiments

    Science.gov (United States)

    2013-03-01

    prior to dewetting ). Also, it is often impractical to measure compressibility. Current rocket laboratory methods measure strains in propellants...distribution unlimited. Public Affairs Clearance Number XXXXX. Damage Characterization of Propellants 16 Dewetting Results 0 2 4 6 8 10 0 5 10 15 20

  5. Developing and utilizing the wavefield kinematics for efficient wavefield extrapolation

    KAUST Repository

    Waheed, Umair bin

    2015-08-01

    Natural gas and oil from characteristically complex unconventional reservoirs, such as organic shale, tight gas and oil, coal-bed methane; are transforming the global energy market. These conventional reserves exist in complex geologic formations where conventional seismic techniques have been challenged to successfully image the subsurface. To acquire maximum benefits from these unconventional reserves, seismic anisotropy must be at the center of our modeling and inversion workflows. I present algorithms for fast traveltime computations in anisotropic media. Both ray-based and finite-difference solvers of the anisotropic eikonal equation are developed. The proposed algorithms present novel techniques to obtain accurate traveltime solutions for anisotropic media in a cost-efficient manner. The traveltime computation algorithms are then used to invert for anisotropy parameters. Specifically, I develop inversion techniques by using diffractions and diving waves in the seismic data. The diffraction-based inversion algorithm can be combined with an isotropic full-waveform inversion (FWI) method to obtain a high-resolution model for the anellipticity anisotropy parameter. The inversion algorithm based on diving waves is useful for building initial anisotropic models for depth-migration and FWI. I also develop the idea of \\'effective elliptic models\\' for obtaining solutions of the anisotropic two-way wave equation. The proposed technique offers a viable alternative for wavefield computations in anisotropic media using a computationally cheaper wave propagation operator. The methods developed in the thesis lead to a direct cost savings for imaging and inversion projects, in addition to a reduction in turn-around time. With an eye on the next generation inversion methods, these techniques allow us to incorporate more accurate physics into our modeling and inversion framework.

  6. Skeletal 212Pb retention following 224Ra injection: extrapolation of animal data to adult humans

    International Nuclear Information System (INIS)

    Schlenker, R.A.

    1988-01-01

    Two methods of interspecies extrapolation, one based on a correlation of skeletal 212 Pb/ 224 Ra with body weight, the other based on the mechanistic relationship between skeletal 212 Pb/ 224 Ra and reciprocal bone surface-to-volume ratio, lead to the conclusion that the retention of 212 Pb in the adult human skeleton is approximately complete a few days after injection. The correlation-based method gives most probable values for 212 Pb/ 224 Ra of 1.0 and 1.1 at 2 d and 7 d after injection, compared with values of 1.05 and 1.27 expected at these same times if the retention of 212 Pb were complete from the time of injection and if no 212 Pb were in the injection solution. The range of values corresponding to one geometric standard error on either side of the most probable value is 0.87 to 1.21 at 2 d post-injection. With the method based on the reciprocal bone surface-to-volume ratio, the best estimate of 212 Pb/ 224 Ra at 2 d after injection is 0.88, equal to the value observed in young adult beagles. An alternative interpretation of the results of this latter method leads to the conclusion that retention is complete, with 212 Pb/ 224 Ra equal to 1.0 for a 212 Pb-free injection solution and 1.1 for a solution containing 212 Pb in secular equilibrium with 224 Ra. This work, which uses 224 Ra daughter product retention data from mice, rats and dogs following 224Ra injection, provides a scientific foundation for retention assumptions made in the calculation of mean skeletal dose for adult humans. There now appear to be few uncertainties in these latter dose values, stemming from inaccurate retention assumptions; but substantial uncertainties remain in the mean skeletal dose values for juveniles and in the endosteal tissue doses regardless of age

  7. Extrapolation of Nitrogen Fertiliser Recommendation Zones for Maize in Kisii District Using Geographical Information Systems

    International Nuclear Information System (INIS)

    Okoth, P.F.; Wamae, D.K.

    1999-01-01

    A GIS database was established for fertiliser recommendation domains in Kisii District by using FURP fertiliser trial results, KSS soils data and MDBP climatic data. These are manipulated in ESRI's (Personal Computer Environmental Systems Research Institute) ARCINFO and ARCVIEW softwares. The extrapolations were only done for the long rains season (March- August) with three to four years data. GIS technology was used to cluster fertiliser recommendation domains as a geographical area expressed in terms of variation over space and not limited to the site of experiment where a certain agronomic or economic fertiliser recommendation was made. The extrapolation over space was found to be more representative for any recommendation, the result being digital maps describing each area in the geographical space. From the results of the extrapolations, approximately 38,255 ha of the district require zero Nitrogen (N) fertilisation while 94,330 ha requires 75 kg ha -1 Nitrogen fertilisation during the (March-August) long rains. The extrapolation was made difficult since no direct relationships could be established to occur between the available-N, % Carbon (C) or any of the other soil properties with the obtained yields. Decision rules were however developed based on % C which was the soil variable with values closest to the obtained yields. 3% organic carbon was found to be the boundary between 0 application and 75 kg-N application. GIS techniques made it possible to model and extrapolates the results using the available data. The extrapolations still need to be verified with more ground data from fertiliser trials. Data gaps in the soil map left some soil mapping units with no recommendations. Elevation was observed to influence yields and it should be included in future extrapolation by clustering digital elevation models with rainfall data in a spatial model at the district scale

  8. SU-F-T-64: An Alternative Approach to Determining the Reference Air-Kerma Rate from Extrapolation Chamber Measurements

    International Nuclear Information System (INIS)

    Schneider, T

    2016-01-01

    Purpose: Since 2008 the Physikalisch-Technische Bundesanstalt (PTB) has been offering the calibration of "1"2"5I-brachytherapy sources in terms of the reference air-kerma rate (RAKR). The primary standard is a large air-filled parallel-plate extrapolation chamber. The measurement principle is based on the fact that the air-kerma rate is proportional to the increment of ionization per increment of chamber volume at chamber depths greater than the range of secondary electrons originating from the electrode x_0. Methods: Two methods for deriving the RAKR from the measured ionization charges are: (1) to determine the RAKR from the slope of the linear fit to the so-called ’extrapolation curve’, the measured ionization charges Q vs. plate separations x or (2) to differentiate Q(x) and to derive the RAKR by a linear extrapolation towards zero plate separation. For both methods, correcting the measured data for all known influencing effects before the evaluation method is applied is a precondition. However, the discrepancy of their results is larger than the uncertainty given for the determination of the RAKR with both methods. Results: A new approach to derive the RAKR from the measurements is investigated as an alternative. The method was developed from the ground up, based on radiation transport theory. A conversion factor C(x_1, x_2) is applied to the difference of charges measured at the two plate separations x_1 and x_2. This factor is composed of quotients of three air-kerma values calculated for different plate separations in the chamber: the air kerma Ka(0) for plate separation zero, and the mean air kermas at the plate separations x_1 and x_2, respectively. The RAKR determined with method (1) yields 4.877 µGy/h, and with method (2) 4.596 µGy/h. The application of the alternative approach results in 4.810 µGy/h. Conclusion: The alternative method shall be established in the future.

  9. Application of the largest Lyapunov exponent and non-linear fractal extrapolation algorithm to short-term load forecasting

    International Nuclear Information System (INIS)

    Wang Jianzhou; Jia Ruiling; Zhao Weigang; Wu Jie; Dong Yao

    2012-01-01

    Highlights: ► The maximal predictive step size is determined by the largest Lyapunov exponent. ► A proper forecasting step size is applied to load demand forecasting. ► The improved approach is validated by the actual load demand data. ► Non-linear fractal extrapolation method is compared with three forecasting models. ► Performance of the models is evaluated by three different error measures. - Abstract: Precise short-term load forecasting (STLF) plays a key role in unit commitment, maintenance and economic dispatch problems. Employing a subjective and arbitrary predictive step size is one of the most important factors causing the low forecasting accuracy. To solve this problem, the largest Lyapunov exponent is adopted to estimate the maximal predictive step size so that the step size in the forecasting is no more than this maximal one. In addition, in this paper a seldom used forecasting model, which is based on the non-linear fractal extrapolation (NLFE) algorithm, is considered to develop the accuracy of predictions. The suitability and superiority of the two solutions are illustrated through an application to real load forecasting using New South Wales electricity load data from the Australian National Electricity Market. Meanwhile, three forecasting models: the gray model, the seasonal autoregressive integrated moving average approach and the support vector machine method, which received high approval in STLF, are selected to compare with the NLFE algorithm. Comparison results also show that the NLFE model is outstanding, effective, practical and feasible.

  10. Human risk assessment of dermal and inhalation exposures to chemicals assessed by route-to-route extrapolation: the necessity of kinetic data.

    Science.gov (United States)

    Geraets, Liesbeth; Bessems, Jos G M; Zeilmaker, Marco J; Bos, Peter M J

    2014-10-01

    In toxicity testing the oral route is in general the first choice. Often, appropriate inhalation and dermal toxicity data are absent. Risk assessment for these latter routes usually has to rely on route-to-route extrapolation starting from oral toxicity data. Although it is generally recognized that the uncertainties involved are (too) large, route-to-route extrapolation is applied in many cases because of a strong need of an assessment of risks linked to a given exposure scenario. For an adequate route-to-route extrapolation the availability of at least some basic toxicokinetic data is a pre-requisite. These toxicokinetic data include all phases of kinetics, from absorption (both absorbed fraction and absorption rate for both the starting route and route of interest) via distribution and biotransformation to excretion. However, in practice only differences in absorption between the different routes are accounted for. The present paper demonstrates the necessity of route-specific absorption data by showing the impact of its absence on the uncertainty of the human health risk assessment using route-to-route extrapolation. Quantification of the absorption (by in vivo, in vitro or in silico methods), particularly for the starting route, is considered essential. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Generalized empirical equation for the extrapolated range of electrons in elemental and compound materials

    International Nuclear Information System (INIS)

    Lima, W. de; Poli CR, D. de

    1999-01-01

    The extrapolated range R ex of electrons is useful for various purposes in research and in the application of electrons, for example, in polymer modification, electron energy determination and estimation of effects associated with deep penetration of electrons. A number of works have used empirical equations to express the extrapolated range for some elements. In this work a generalized empirical equation, very simple and accurate, in the energy region 0.3 keV - 50 MeV is proposed. The extrapolated range for elements, in organic or inorganic molecules and compound materials, can be well expressed as a function of the atomic number Z or two empirical parameters Zm for molecules and Zc for compound materials instead of Z. (author)

  12. The influence of an extrapolation chamber over the low energy X-ray beam radiation field

    Energy Technology Data Exchange (ETDEWEB)

    Tanuri de F, M. T.; Da Silva, T. A., E-mail: mttf@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear / CNEN, Av. Pte. Antonio Carlos 6627, 31270-901 Pampulha, Belo Horizonte, Minas Gerais (Brazil)

    2016-10-15

    The extrapolation chambers are detectors whose sensitive volume can be modified by changing the distance between the electrodes and has been widely used for beta particles primary measurement system. In this work, was performed a PTW 23392 extrapolation chamber Monte Carlo simulation, by mean the MCNPX code. Although the sensitive volume of an extrapolation chamber can be reduced to very small size, their packaging is large enough to modify the radiation field and change the absorbed dose measurements values. Experiments were performed to calculate correction factors for this purpose. The validation of the Monte Carlo model was done by comparing the spectra obtained with a CdTe detector according to the ISO 4037 criteria. Agreements smaller than 5% for half value layers, 10% for spectral resolution and 1% for mean energy, were found. It was verified that the correction factors are dependent of the X-ray beam quality. (Author)

  13. The influence of an extrapolation chamber over the low energy X-ray beam radiation field

    International Nuclear Information System (INIS)

    Tanuri de F, M. T.; Da Silva, T. A.

    2016-10-01

    The extrapolation chambers are detectors whose sensitive volume can be modified by changing the distance between the electrodes and has been widely used for beta particles primary measurement system. In this work, was performed a PTW 23392 extrapolation chamber Monte Carlo simulation, by mean the MCNPX code. Although the sensitive volume of an extrapolation chamber can be reduced to very small size, their packaging is large enough to modify the radiation field and change the absorbed dose measurements values. Experiments were performed to calculate correction factors for this purpose. The validation of the Monte Carlo model was done by comparing the spectra obtained with a CdTe detector according to the ISO 4037 criteria. Agreements smaller than 5% for half value layers, 10% for spectral resolution and 1% for mean energy, were found. It was verified that the correction factors are dependent of the X-ray beam quality. (Author)

  14. Extrapolation of animal radionuclide retention data to man: Use of similarity ratios

    International Nuclear Information System (INIS)

    Thomas, J.M.; Eberhardt, L.L.

    1976-01-01

    A major problem in toxicology is the need for testing a myriad possible substances on several animal species as an aid in establishing standards for man. Particular interest in the problem of extrapolation to man is linked to a need for a method of obtaining transfer coefficients in food-chain models of ecosystems. Such a method could circumvent the necessity to test many species and compounds. Because of their particular interest in radioecology, the authors' studies were initiated using radionuclide retention data available in the literature. Since radionuclide retention should be a function of metabolism it follows that direct or indirect measures could be described by a ''power law'' based on body weight of the organism(s). However, when such power laws have been extended to interspecies comparisons the resulting power coefficients are usually substantially less than the value anticipated and seem to be different for each radionuclide. This paper proposes that interspecies comparisons ought to be based on the proportionality coefficient rather than the power parameter of the power function model and have called pairwise comparisons amongst species ''similarity ratios''. Retention data were examined from five non-ruminant species (including man) where several radionuclides with different physical properties were fed. Subsequently an expression was devised whereby an estimate of biological equilibrium level in man could be calculated using similar estimates from experiments using mice, rats or dogs. There are some statistical questions to resolve which have to do with the assumed frequency distribution for estimates of the proportionality coefficient. In addition, repeated use was made of the same data sets. (author)

  15. Characterization of low energy X-rays beams with an extrapolation chamber

    International Nuclear Information System (INIS)

    Bastos, Fernanda Martins

    2015-01-01

    In laboratories involving Radiological Protection practices, it is usual to use reference radiations for calibrating dosimeters and to study their response in terms of energy dependence. The International Organization for Standardization (ISO) established four series of reference X-rays beams in the ISO- 4037 standard: the L and H series, as low and high air Kerma rates, respectively, the N series of narrow spectrum and W series of wide spectrum. The X-rays beams with tube potential below 30 kV, called 'low energy beams' are, in most cases, critical as far as the determination of their parameters for characterization purpose, such as half-value layer. Extrapolation chambers are parallel plate ionization chambers that have one mobile electrode that allows variation of the air volume in its interior. These detectors are commonly used to measure the quantity Absorbed Dose, mostly in the medium surface, based on the extrapolation of the linear ionization current as a function of the distance between the electrodes. In this work, a characterization of a model 23392 PTW extrapolation chamber was done in low energy X-rays beams of the ISO- 4037 standard, by determining the polarization voltage range through the saturation curves and the value of the true null electrode spacing. In addition, the metrological reliability of the extrapolation chamber was studied with measurements of the value of leakage current and repeatability tests; limit values were established for the proper use of the chamber. The PTW23392 extrapolation chamber was calibrated in terms of air Kerma in some of the ISO radiation series of low energy; the traceability of the chamber to the National Standard Dosimeter was established. The study of energy dependency of the extrapolation chamber and the assessment of the uncertainties related to the calibration coefficient were also done; it was shown that the energy dependence was reduced to 4% when the extrapolation technique was used. Finally, the first

  16. Windtunnel Rebuilding And Extrapolation To Flight At Transsonic Speed For ExoMars

    Science.gov (United States)

    Fertig, Markus; Neeb, Dominik; Gulhan, Ali

    2011-05-01

    The static as well as the dynamic behaviour of the EXOMARS vehicle in the transonic velocity regime has been investigated experimentally by the Supersonic and Hypersonic Technology Department of DLR in order to investigate the behaviour prior to parachute opening. Since the experimental work was performed in air, a numerical extrapolation to flight by means of CFD is necessary. At low supersonic speed this extrapolation to flight was performed by the Spacecraft Department of the Institute of Flow Technology of DLR employing the CFD code TAU. Numerical as well as experimental results for the wind tunnel test at Mach 1.2 will be compared and discussed for three different angles of attack.

  17. A new technique for extracting the red edge position from hyperspectral data : the linear extrapolation method

    NARCIS (Netherlands)

    Cho, M.A.; Skidmore, A.K.

    2006-01-01

    There is increasing interest in using hyperspectral data for quantitative characterization of vegetation in spatial and temporal scopes. Many spectral indices are being developed to improve vegetation sensitivity by minimizing the background influence. The chlorophyll absorption continuum index

  18. Investigation of applicability of extrapolation method for sample field determination in single-yoke measuring setup

    Czech Academy of Sciences Publication Activity Database

    Stupakov, Oleksandr

    2006-01-01

    Roč. 307, - (2006), s. 279-287 ISSN 0304-8853 R&D Projects: GA AV ČR(CZ) 1QS100100508 Institutional research plan: CEZ:AV0Z10100520 Keywords : magnetic measurement * open magnetic sample * surface field determination * single-yoke setup * magnetic non-destructive testing Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.212, year: 2006

  19. The effects of different expansions of the exit distribution on the extrapolation length for linearly anisotropic scattering

    International Nuclear Information System (INIS)

    Bulut, S.; Guelecyuez, M.C.; Kaskas, A.; Tezcan, C.

    2007-01-01

    H N and singular eigenfunction methods are used to determine the neutron distribution everywhere in a source-free half space with zero incident flux for a linearly anisotropic scattering kernel. The singular eigenfunction expansion of the method of elementary solutions is used. The orthogonality relations of the discrete and continuous eigenfunctions for linearly anisotropic scattering provides the determination of the expansion coefficients. Different expansions of the exit distribution are used: the expansion in powers of μ, the expansion in terms of Legendre polynomials and the expansion in powers of 1/(1+μ). The results are compared to each other. In the second part of our work, the transport equation and the infinite medium Green function are used. The numerical results of the extrapolation length obtained for the different expansions is discussed. (orig.)

  20. Accurate Conformational Energy Differences of Carbohydrates: A Complete Basis Set Extrapolation

    Czech Academy of Sciences Publication Activity Database

    Csonka, G. I.; Kaminský, Jakub

    2011-01-01

    Roč. 7, č. 4 (2011), s. 988-997 ISSN 1549-9618 Institutional research plan: CEZ:AV0Z40550506 Keywords : MP2 * basis set extrapolation * saccharides Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 5.215, year: 2011

  1. Corrosion allowances for sodium heated steam generators: evaluation of effects and extrapolation to component life time

    Energy Technology Data Exchange (ETDEWEB)

    Grosser, E E; Menken, G

    1975-07-01

    Steam generator tubes are subjected to two categories of corrosion; metal/sodium reactions and metal/water-steam interactions. Referring to these environmental conditions the relevant parameters are discussed. The influences of these parameters on the sodium corrosion and water/steam-reactions are evaluated. Extrapolations of corrosion values to steam generator design conditions are performed and discussed in detail. (author)

  2. Extrapolation of model tests measurements of whipping to identify the dimensioning sea states for container ships

    DEFF Research Database (Denmark)

    Storhaug, Gaute; Andersen, Ingrid Marie Vincent

    2015-01-01

    to small storms. Model tests of three container ships have been carried out in different sea states under realistic assumptions. Preliminary extrapolation of the measured data suggested that moderate storms are dimensioning when whipping is included due to higher maximum speed in moderate storms...

  3. Regression models in the determination of the absorbed dose with extrapolation chamber for ophthalmological applicators

    International Nuclear Information System (INIS)

    Alvarez R, J.T.; Morales P, R.

    1992-06-01

    The absorbed dose for equivalent soft tissue is determined,it is imparted by ophthalmologic applicators, ( 90 Sr/ 90 Y, 1850 MBq) using an extrapolation chamber of variable electrodes; when estimating the slope of the extrapolation curve using a simple lineal regression model is observed that the dose values are underestimated from 17.7 percent up to a 20.4 percent in relation to the estimate of this dose by means of a regression model polynomial two grade, at the same time are observed an improvement in the standard error for the quadratic model until in 50%. Finally the global uncertainty of the dose is presented, taking into account the reproducibility of the experimental arrangement. As conclusion it can infers that in experimental arrangements where the source is to contact with the extrapolation chamber, it was recommended to substitute the lineal regression model by the quadratic regression model, in the determination of the slope of the extrapolation curve, for more exact and accurate measurements of the absorbed dose. (Author)

  4. Nowcasting of precipitation by an NWP model using assimilation of extrapolated radar reflectivity

    Czech Academy of Sciences Publication Activity Database

    Sokol, Zbyněk; Zacharov, Petr, jr.

    2012-01-01

    Roč. 138, č. 665 (2012), s. 1072-1082 ISSN 0035-9009 Institutional support: RVO:68378289 Keywords : precipitation forecast * radar extrapolation Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 3.327, year: 2012 http://onlinelibrary.wiley.com/doi/10.1002/qj.970/abstract

  5. Potential Hydraulic Modelling Errors Associated with Rheological Data Extrapolation in Laminar Flow

    International Nuclear Information System (INIS)

    Shadday, Martin A. Jr.

    1997-01-01

    The potential errors associated with the modelling of flows of non-Newtonian slurries through pipes, due to inadequate rheological models and extrapolation outside of the ranges of data bases, are demonstrated. The behaviors of both dilatant and pseudoplastic fluids with yield stresses, and the errors associated with treating them as Bingham plastics, are investigated

  6. Extrapolation for exposure duration in oral toxicity: A quantitative analysis of historical toxicity data

    NARCIS (Netherlands)

    Groeneveld, C.N.; Hakkert, B.C.; Bos, P.M.J.; Heer, C.de

    2004-01-01

    For human risk assessment, experimental data often have to be extrapolated for exposure duration, which is generally done by means of default values. The purpose of the present study was twofold. First, to derive a statistical distribution for differences in exposure duration that can be used in a

  7. Hazard characterisation of chemicals in food and diet : dose response, mechanisms and extrapolation issues

    NARCIS (Netherlands)

    Dybing, E.; Doe, J.; Groten, J.; Kleiner, J.; O'Brien, J.; Renwick, A.G.; Schlatter, J.; Steinberg, P.; Tritscher, A.; Walker, R.; Younes, M.

    2002-01-01

    Hazard characterisation of low molecular weight chemicals in food and diet generally use a no-observed-adverse-effect level (NOAEL) or a benchmark dose as the starting point. For hazards that are considered not to have thresholds for their mode of action, low-dose extrapolation and other modelling

  8. Corrosion allowances for sodium heated steam generators: evaluation of effects and extrapolation to component life time

    International Nuclear Information System (INIS)

    Grosser, E.E.; Menken, G.

    1975-01-01

    Steam generator tubes are subjected to two categories of corrosion; metal/sodium reactions and metal/water-steam interactions. Referring to these environmental conditions the relevant parameters are discussed. The influences of these parameters on the sodium corrosion and water/steam-reactions are evaluated. Extrapolations of corrosion values to steam generator design conditions are performed and discussed in detail. (author)

  9. Establishing macroecological trait datasets: digitalization, extrapolation, and validation of diet preferences in terrestrial mammals worldwide.

    Science.gov (United States)

    Kissling, Wilm Daniel; Dalby, Lars; Fløjgaard, Camilla; Lenoir, Jonathan; Sandel, Brody; Sandom, Christopher; Trøjelsgaard, Kristian; Svenning, Jens-Christian

    2014-07-01

    Ecological trait data are essential for understanding the broad-scale distribution of biodiversity and its response to global change. For animals, diet represents a fundamental aspect of species' evolutionary adaptations, ecological and functional roles, and trophic interactions. However, the importance of diet for macroevolutionary and macroecological dynamics remains little explored, partly because of the lack of comprehensive trait datasets. We compiled and evaluated a comprehensive global dataset of diet preferences of mammals ("MammalDIET"). Diet information was digitized from two global and cladewide data sources and errors of data entry by multiple data recorders were assessed. We then developed a hierarchical extrapolation procedure to fill-in diet information for species with missing information. Missing data were extrapolated with information from other taxonomic levels (genus, other species within the same genus, or family) and this extrapolation was subsequently validated both internally (with a jack-knife approach applied to the compiled species-level diet data) and externally (using independent species-level diet information from a comprehensive continentwide data source). Finally, we grouped mammal species into trophic levels and dietary guilds, and their species richness as well as their proportion of total richness were mapped at a global scale for those diet categories with good validation results. The success rate of correctly digitizing data was 94%, indicating that the consistency in data entry among multiple recorders was high. Data sources provided species-level diet information for a total of 2033 species (38% of all 5364 terrestrial mammal species, based on the IUCN taxonomy). For the remaining 3331 species, diet information was mostly extrapolated from genus-level diet information (48% of all terrestrial mammal species), and only rarely from other species within the same genus (6%) or from family level (8%). Internal and external

  10. Projecting species' vulnerability to climate change: Which uncertainty sources matter most and extrapolate best?

    Science.gov (United States)

    Steen, Valerie; Sofaer, Helen R; Skagen, Susan K; Ray, Andrea J; Noon, Barry R

    2017-11-01

    Species distribution models (SDMs) are commonly used to assess potential climate change impacts on biodiversity, but several critical methodological decisions are often made arbitrarily. We compare variability arising from these decisions to the uncertainty in future climate change itself. We also test whether certain choices offer improved skill for extrapolating to a changed climate and whether internal cross-validation skill indicates extrapolative skill. We compared projected vulnerability for 29 wetland-dependent bird species breeding in the climatically dynamic Prairie Pothole Region, USA. For each species we built 1,080 SDMs to represent a unique combination of: future climate, class of climate covariates, collinearity level, and thresholding procedure. We examined the variation in projected vulnerability attributed to each uncertainty source. To assess extrapolation skill under a changed climate, we compared model predictions with observations from historic drought years. Uncertainty in projected vulnerability was substantial, and the largest source was that of future climate change. Large uncertainty was also attributed to climate covariate class with hydrological covariates projecting half the range loss of bioclimatic covariates or other summaries of temperature and precipitation. We found that choices based on performance in cross-validation improved skill in extrapolation. Qualitative rankings were also highly uncertain. Given uncertainty in projected vulnerability and resulting uncertainty in rankings used for conservation prioritization, a number of considerations appear critical for using bioclimatic SDMs to inform climate change mitigation strategies. Our results emphasize explicitly selecting climate summaries that most closely represent processes likely to underlie ecological response to climate change. For example, hydrological covariates projected substantially reduced vulnerability, highlighting the importance of considering whether water

  11. Extrapolation of rate constants of reactions producing H2 and O2 in radiolysis of water at high temperatures

    International Nuclear Information System (INIS)

    Leblanc, R.; Ghandi, K.; Hackman, B.; Liu, G.

    2014-01-01

    One target of our research is to extrapolate known data on the rate constants of reactions and add corrections to estimate the rate constants at the higher temperatures reached by the SCWR reactors. The focus of this work was to extrapolate known data on the rate constants of reactions that produce Hydrogen or Oxygen with a rate constant below 10 10 mol -1 s -1 at room temperature. The extrapolation is done taking into account the change in the diffusion rate of the interacting species and the cage effect with thermodynamic conditions. The extrapolations are done over a wide temperature range and under isobaric conditions. (author)

  12. An experimental extrapolation technique using the Gafchromic EBT3 film for relative output factor measurements in small x-ray fields

    Energy Technology Data Exchange (ETDEWEB)

    Morales, Johnny E., E-mail: johnny.morales@lh.org.au [Department of Radiation Oncology, Chris O’Brien Lifehouse, 119-143 Missenden Road, Camperdown, NSW 2050, Australia and School of Chemistry, Physics, and Mechanical Engineering, Queensland University of Technology, Level 4 O Block, Garden’s Point, QLD 4001 (Australia); Butson, Martin; Hill, Robin [Department of Radiation Oncology, Chris O’Brien Lifehouse, 119-143 Missenden Road, Camperdown, NSW 2050, Australia and Institute of Medical Physics, University of Sydney, NSW 2006 (Australia); Crowe, Scott B. [School of Chemistry, Physics, and Mechanical Engineering, Queensland University of Technology, Level 4 O Block, Garden’s Point, QLD 4001, Australia and Cancer Care Services, Royal Brisbane and Women’s Hospital, Butterfield Street, Herston, QLD 4029 (Australia); Trapp, J. V. [School of Chemistry, Physics, and Mechanical Engineering, Queensland University of Technology, Level 4 O Block, Garden’s Point, QLD 4001 (Australia)

    2016-08-15

    Purpose: An experimental extrapolation technique is presented, which can be used to determine the relative output factors for very small x-ray fields using the Gafchromic EBT3 film. Methods: Relative output factors were measured for the Brainlab SRS cones ranging in diameters from 4 to 30 mm{sup 2} on a Novalis Trilogy linear accelerator with 6 MV SRS x-rays. The relative output factor was determined from an experimental reducing circular region of interest (ROI) extrapolation technique developed to remove the effects of volume averaging. This was achieved by scanning the EBT3 film measurements with a high scanning resolution of 1200 dpi. From the high resolution scans, the size of the circular regions of interest was varied to produce a plot of relative output factors versus area of analysis. The plot was then extrapolated to zero to determine the relative output factor corresponding to zero volume. Results: Results have shown that for a 4 mm field size, the extrapolated relative output factor was measured as a value of 0.651 ± 0.018 as compared to 0.639 ± 0.019 and 0.633 ± 0.021 for 0.5 and 1.0 mm diameter of analysis values, respectively. This showed a change in the relative output factors of 1.8% and 2.8% at these comparative regions of interest sizes. In comparison, the 25 mm cone had negligible differences in the measured output factor between zero extrapolation, 0.5 and 1.0 mm diameter ROIs, respectively. Conclusions: This work shows that for very small fields such as 4.0 mm cone sizes, a measureable difference can be seen in the relative output factor based on the circular ROI and the size of the area of analysis using radiochromic film dosimetry. The authors recommend to scan the Gafchromic EBT3 film at a resolution of 1200 dpi for cone sizes less than 7.5 mm and to utilize an extrapolation technique for the output factor measurements of very small field dosimetry.

  13. Performance of a prototype of an extrapolation minichamber in various radiation beams

    International Nuclear Information System (INIS)

    Oliveira, M.L.; Caldas, L.V.E.

    2007-01-01

    An extrapolation minichamber was developed for measuring doses from weakly penetrating types of radiation. The chamber was tested at the radiotherapeutic dose level in a beam from a 90 Sr+ 90 Y check source, in a beam from a plane 90 Sr+ 90 Y ophthalmic applicator, and in several reference beams from an X-ray tube. Saturation, ion collection efficiency, stabilization time, extrapolation curves, linearity of chamber response vs. air kerma rate, and dependences of the response on the energy and irradiation angle were characterized. The results are satisfactory; they show that the chamber can be used in the dosimetry of 90 Sr+ 90 Y beta particles and low-energy X-ray beams

  14. Establishing macroecological trait datasets: digitalization, extrapolation, and validation of diet preferences in terrestrial mammals worldwide

    DEFF Research Database (Denmark)

    Kissling, W. Daniel; Dalby, Lars; Fløjgaard, Camilla

    2014-01-01

    , the importance of diet for macroevolutionary and macroecological dynamics remains little explored, partly because of the lack of comprehensive trait datasets. We compiled and evaluated a comprehensive global dataset of diet preferences of mammals (“MammalDIET”). Diet information was digitized from two global...... species within the same genus, or family) and this extrapolation was subsequently validated both internally (with a jack-knife approach applied to the compiled species-level diet data) and externally (using independent species-level diet information from a comprehensive continentwide data source). Finally...... information (48% of all terrestrial mammal species), and only rarely from other species within the same genus (6%) or from family level (8%). Internal and external validation showed that: (1) extrapolations were most reliable for primary food items; (2) several diet categories (“Animal”, “Mammal...

  15. 131I-SPGP internal dosimetry: animal model and human extrapolation

    International Nuclear Information System (INIS)

    Andrade, Henrique Martins de; Ferreira, Andrea Vidal; Soprani, Juliana; Santos, Raquel Gouvea dos; Figueiredo, Suely Gomes de

    2009-01-01

    Scorpaena plumieri is commonly called moreia-ati or manganga and is the most venomous and one of the most abundant fish species of the Brazilian coast. Soprani 2006, demonstrated that SPGP - an isolated protein from S. plumieri fish- possess high antitumoral activity against malignant tumours and can be a source of template molecules for the development (design) of antitumoral drugs. In the present work, Soprani's 125 ISPGP biokinetic data were treated by MIRD formalism to perform Internal Dosimetry studies. Absorbed doses due to the 131 I-SPGP uptake were determinate in several organs of mice, as well as in the implanted tumor. Doses obtained for animal model were extrapolated to humans assuming a similar ratio for various mouse and human tissues. For the extrapolation, it was used human organ masses from Cristy/Eckerman phantom. Both penetrating and non-penetrating radiation from 131 I were considered. (author)

  16. {sup 131}I-CRTX internal dosimetry: animal model and human extrapolation

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, Henrique Martins de; Ferreira, Andrea Vidal; Soares, Marcella Araugio; Silveira, Marina Bicalho; Santos, Raquel Gouvea dos [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN-CNEN-MG), Belo Horizonte, MG (Brazil)], e-mail: hma@cdtn.br

    2009-07-01

    Snake venoms molecules have been shown to play a role not only in the survival and proliferation of tumor cells but also in the processes of tumor cell adhesion, migration and angiogenesis. {sup 125}I-Crtx, a radiolabeled version of a peptide derived from Crotalus durissus terrificus snake venom, specifically binds to tumor and triggers apoptotic signalling. At the present work, {sup 125}I-Crtx biokinetic data (evaluated in mice bearing Erlich tumor) were treated by MIRD formalism to perform Internal Dosimetry studies. Doses in several organs of mice were determinate, as well as in implanted tumor, for {sup 131}I-Crtx. Doses results obtained for animal model were extrapolated to humans assuming a similar concentration ratio among various tissues between mouse and human. In the extrapolation, it was used human organ masses from Cristy/Eckerman phantom. Both penetrating and non-penetrating radiation from {sup 131}I in the tissue were considered in dose calculations. (author)

  17. {sup 131}I-SPGP internal dosimetry: animal model and human extrapolation

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, Henrique Martins de; Ferreira, Andrea Vidal; Soprani, Juliana; Santos, Raquel Gouvea dos [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN-CNEN-MG), Belo Horizonte, MG (Brazil)], e-mail: hma@cdtn.br; Figueiredo, Suely Gomes de [Universidade Federal do Espirito Santo, (UFES), Vitoria, ES (Brazil). Dept. de Ciencias Fisiologicas. Lab. de Quimica de Proteinas

    2009-07-01

    Scorpaena plumieri is commonly called moreia-ati or manganga and is the most venomous and one of the most abundant fish species of the Brazilian coast. Soprani 2006, demonstrated that SPGP - an isolated protein from S. plumieri fish- possess high antitumoral activity against malignant tumours and can be a source of template molecules for the development (design) of antitumoral drugs. In the present work, Soprani's {sup 125}ISPGP biokinetic data were treated by MIRD formalism to perform Internal Dosimetry studies. Absorbed doses due to the {sup 131}I-SPGP uptake were determinate in several organs of mice, as well as in the implanted tumor. Doses obtained for animal model were extrapolated to humans assuming a similar ratio for various mouse and human tissues. For the extrapolation, it was used human organ masses from Cristy/Eckerman phantom. Both penetrating and non-penetrating radiation from {sup 131}I were considered. (author)

  18. Electric form factors of the octet baryons from lattice QCD and chiral extrapolation

    International Nuclear Information System (INIS)

    Shanahan, P.E.; Thomas, A.W.; Young, R.D.; Zanotti, J.M.; Pleiter, D.; Stueben, H.

    2014-03-01

    We apply a formalism inspired by heavy baryon chiral perturbation theory with finite-range regularization to dynamical 2+1-flavor CSSM/QCDSF/UKQCD Collaboration lattice QCD simulation results for the electric form factors of the octet baryons. The electric form factor of each octet baryon is extrapolated to the physical pseudoscalar masses, after finite-volume corrections have been applied, at six fixed values of Q 2 in the range 0.2-1.3 GeV 2 . The extrapolated lattice results accurately reproduce the experimental form factors of the nucleon at the physical point, indicating that omitted disconnected quark loop contributions are small. Furthermore, using the results of a recent lattice study of the magnetic form factors, we determine the ratio μ p G E p /G M p . This quantity decreases with Q 2 in a way qualitatively consistent with recent experimental results.

  19. 131I-CRTX internal dosimetry: animal model and human extrapolation

    International Nuclear Information System (INIS)

    Andrade, Henrique Martins de; Ferreira, Andrea Vidal; Soares, Marcella Araugio; Silveira, Marina Bicalho; Santos, Raquel Gouvea dos

    2009-01-01

    Snake venoms molecules have been shown to play a role not only in the survival and proliferation of tumor cells but also in the processes of tumor cell adhesion, migration and angiogenesis. 125 I-Crtx, a radiolabeled version of a peptide derived from Crotalus durissus terrificus snake venom, specifically binds to tumor and triggers apoptotic signalling. At the present work, 125 I-Crtx biokinetic data (evaluated in mice bearing Erlich tumor) were treated by MIRD formalism to perform Internal Dosimetry studies. Doses in several organs of mice were determinate, as well as in implanted tumor, for 131 I-Crtx. Doses results obtained for animal model were extrapolated to humans assuming a similar concentration ratio among various tissues between mouse and human. In the extrapolation, it was used human organ masses from Cristy/Eckerman phantom. Both penetrating and non-penetrating radiation from 131 I in the tissue were considered in dose calculations. (author)

  20. Forests and methane - at the intersection of science and politics, experimentation and extrapolation, objectivity and subjectivity

    International Nuclear Information System (INIS)

    Peyron, Jean-Luc

    2005-01-01

    According to recent information, vegetation is thought to be a major source of methane. This phenomenon had not been contemplated until now and still remains to be explained. According to the authors and on the basis of rough extrapolations, it may cast light on some missing pieces in the global methane balance. The initial reaction by commentators following this discovery was to discuss its consequences on the strategy to fight the greenhouse effect considering methane's considerable impact on global warming. However, a preliminary analysis based on opinions from a range of experts underscores three aspects - the experimental discovery needs to be confirmed and explained before drawing any hasty conclusions; extrapolations performed so far on a global scale are highly inadequate and probably overestimated; implications for fighting the greenhouse effect are limited because the phenomenon in question is a natural one and not extensive enough to offset the benefits of forests as a sink for carbon dioxide. (authors)

  1. Calibration of a scintillation dosemeter for beta rays using an extrapolation ionization chamber

    International Nuclear Information System (INIS)

    Hakanen, A.T.; Sipilae, P.M.; Kosunen, A.

    2004-01-01

    A scintillation dosemeter is calibrated for 90 Sr/ 90 Y beta rays from an ophthalmic applicator, using an extrapolation ionization chamber as a reference instrument. The calibration factor for the scintillation dosemeter agrees with that given by the manufacturer of the dosemeter within ca. 2%. The estimated overall uncertainty of the present calibration is ca. 6% (2 sd). A calibrated beta-ray ophthalmic applicator can be used as a reference source for further calibrations performed in the laboratory or in the hospital

  2. Emotional experience is subject to social and technological change: extrapolating to the future

    OpenAIRE

    Scherer, Klaus R.

    2001-01-01

    While the emotion mechanism is generally considered to be evolutionarily continuous, suggesting a certain degree of universality of emotional responding, there is evidence that emotional experience may differ across cultures and historical periods. This article extrapolates potential changes in future emotional experiences that can be expected to be caused by rapid social and technological change. Specifically, four issues are discussed: (1) the effect of social change on emotions that are st...

  3. The application of metal artifact reduction (MAR) in CT scans for radiation oncology by monoenergetic extrapolation with a DECT scanner

    Energy Technology Data Exchange (ETDEWEB)

    Schwahofer, Andrea [German Cancer Research Center, Heidelberg (Germany). Dept. of Medical Physics in Radiation Oncology; Clinical Center Vivantes, Neukoelln (Germany). Dept. of Radiotherapy and Oncology; Baer, Esther [German Cancer Research Center, Heidelberg (Germany). Dept. of Medical Physics in Radiation Oncology; Kuchenbecker, Stefan; Kachelriess, Marc [German Cancer Research Center, Heidelberg (Germany). Dept. of Medical Physics in Radiology; Grossmann, J. Guenter [German Cancer Research Center, Heidelberg (Germany). Dept. of Medical Physics in Radiation Oncology; Ortenau Klinikum Offenburg-Gengenbach (Germany). Dept. of Radiooncology; Sterzing, Florian [Heidelberg Univ. (Germany). Dept. of Radiation Oncology; German Cancer Research Center, Heidelberg (Germany). Dept. of Radiotherapy

    2015-07-01

    V. However, the dose uncertainty remains of the order of 10% to 20%. Thus, the improvement is not significant for radiotherapy planning. For amalgam with a density between steel and tungsten, monoenergetic data sets of a patient do not show substantial artifact reduction. The local dose uncertainties around the metal artifact determined for a static field are of the order of 5%. Although dental fillings are smaller than the phantom inserts, metal artifacts could not be reduced effectively. In conclusion, the image based monoenergetic extrapolation method does not provide efficient reduction of the consequences of CT-generated metal artifacts for radiation therapy planning, but the suitability of other MAR methods will be subsequently studied.

  4. The application of metal artifact reduction (MAR) in CT scans for radiation oncology by monoenergetic extrapolation with a DECT scanner

    International Nuclear Information System (INIS)

    Schwahofer, Andrea; Clinical Center Vivantes, Neukoelln; Baer, Esther; Kuchenbecker, Stefan; Kachelriess, Marc; Grossmann, J. Guenter; Ortenau Klinikum Offenburg-Gengenbach; Sterzing, Florian; German Cancer Research Center, Heidelberg

    2015-01-01

    order of 10% to 20%. Thus, the improvement is not significant for radiotherapy planning. For amalgam with a density between steel and tungsten, monoenergetic data sets of a patient do not show substantial artifact reduction. The local dose uncertainties around the metal artifact determined for a static field are of the order of 5%. Although dental fillings are smaller than the phantom inserts, metal artifacts could not be reduced effectively. In conclusion, the image based monoenergetic extrapolation method does not provide efficient reduction of the consequences of CT-generated metal artifacts for radiation therapy planning, but the suitability of other MAR methods will be subsequently studied.

  5. Entropy Rate Estimates for Natural Language—A New Extrapolation of Compressed Large-Scale Corpora

    Directory of Open Access Journals (Sweden)

    Ryosuke Takahira

    2016-10-01

    Full Text Available One of the fundamental questions about human language is whether its entropy rate is positive. The entropy rate measures the average amount of information communicated per unit time. The question about the entropy of language dates back to experiments by Shannon in 1951, but in 1990 Hilberg raised doubt regarding a correct interpretation of these experiments. This article provides an in-depth empirical analysis, using 20 corpora of up to 7.8 gigabytes across six languages (English, French, Russian, Korean, Chinese, and Japanese, to conclude that the entropy rate is positive. To obtain the estimates for data length tending to infinity, we use an extrapolation function given by an ansatz. Whereas some ansatzes were proposed previously, here we use a new stretched exponential extrapolation function that has a smaller error of fit. Thus, we conclude that the entropy rates of human languages are positive but approximately 20% smaller than without extrapolation. Although the entropy rate estimates depend on the script kind, the exponent of the ansatz function turns out to be constant across different languages and governs the complexity of natural language in general. In other words, in spite of typological differences, all languages seem equally hard to learn, which partly confirms Hilberg’s hypothesis.

  6. Failure of the straight-line DCS boundary when extrapolated to the hypobaric realm.

    Science.gov (United States)

    Conkin, J; Van Liew, H D

    1992-11-01

    The lowest pressure (P2) to which a diver can ascend without developing decompression sickness (DCS) after becoming equilibrated at some higher pressure (P1) is described by a straight line with a negative y-intercept. We tested whether extrapolation of such a line also predicts safe decompression to altitude. We substituted tissue nitrogen pressure (P1N2) calculated for a compartment with a 360-min half-time for P1 values; this allows data from hypobaric exposures to be plotted on a P2 vs. P1N2 graph, even if the subject breathes oxygen before ascent. In literature sources, we found 40 reports of human exposures in hypobaric chambers that fell in the region of a P2 vs. P1N2 plot where the extrapolation from hyperbaric data predicted that the decompression should be free of DCS. Of 4,576 exposures, 785 persons suffered decompression sickness (17%), indicating that extrapolation of the diver line to altitude is not valid. Over the pressure range spanned by human hypobaric exposures and hyperbaric air exposures, the best separation between no DCS and DCS on a P2 vs. P1N2 plot seems to be a curve which approximates a straight line in the hyperbaric region but bends toward the origin in the hypobaric region.

  7. Estimation and Extrapolation of Tree Parameters Using Spectral Correlation between UAV and Pléiades Data

    Directory of Open Access Journals (Sweden)

    Azadeh Abdollahnejad

    2018-02-01

    Full Text Available The latest technological advances in space-borne imagery have significantly enhanced the acquisition of high-quality data. With the availability of very high-resolution satellites, such as Pléiades, it is now possible to estimate tree parameters at the individual level with high fidelity. Despite innovative advantages on high-precision satellites, data acquisition is not yet available to the public at a reasonable cost. Unmanned aerial vehicles (UAVs have the practical advantage of data acquisition at a higher spatial resolution than that of satellites. This study is divided into two main parts: (1 we describe the estimation of basic tree attributes, such as tree height, crown diameter, diameter at breast height (DBH, and stem volume derived from UAV data based on structure from motion (SfM algorithms; and (2 we consider the extrapolation of the UAV data to a larger area, using correlation between satellite and UAV observations as an economically viable approach. Results have shown that UAVs can be used to predict tree characteristics with high accuracy (i.e., crown projection, stem volume, cross-sectional area (CSA, and height. We observed a significant relation between extracted data from UAV and ground data with R2 = 0.71 for stem volume, R2 = 0.87 for height, and R2 = 0.60 for CSA. In addition, our results showed a high linear relation between spectral data from the UAV and the satellite (R2 = 0.94. Overall, the accuracy of the results between UAV and Pléiades was reasonable and showed that the used methods are feasible for extrapolation of extracted data from UAV to larger areas.

  8. Neural extrapolation of motion for a ball rolling down an inclined plane.

    Science.gov (United States)

    La Scaleia, Barbara; Lacquaniti, Francesco; Zago, Myrka

    2014-01-01

    It is known that humans tend to misjudge the kinematics of a target rolling down an inclined plane. Because visuomotor responses are often more accurate and less prone to perceptual illusions than cognitive judgments, we asked the question of how rolling motion is extrapolated for manual interception or drawing tasks. In three experiments a ball rolled down an incline with kinematics that differed as a function of the starting position (4 different positions) and slope (30°, 45° or 60°). In Experiment 1, participants had to punch the ball as it fell off the incline. In Experiment 2, the ball rolled down the incline but was stopped at the end; participants were asked to imagine that the ball kept moving and to punch it. In Experiment 3, the ball rolled down the incline and was stopped at the end; participants were asked to draw with the hand in air the trajectory that would be described by the ball if it kept moving. We found that performance was most accurate when motion of the ball was visible until interception and haptic feedback of hand-ball contact was available (Experiment 1). However, even when participants punched an imaginary moving ball (Experiment 2) or drew in air the imaginary trajectory (Experiment 3), they were able to extrapolate to some extent global aspects of the target motion, including its path, speed and arrival time. We argue that the path and kinematics of a ball rolling down an incline can be extrapolated surprisingly well by the brain using both visual information and internal models of target motion.

  9. Neural extrapolation of motion for a ball rolling down an inclined plane.

    Directory of Open Access Journals (Sweden)

    Barbara La Scaleia

    Full Text Available It is known that humans tend to misjudge the kinematics of a target rolling down an inclined plane. Because visuomotor responses are often more accurate and less prone to perceptual illusions than cognitive judgments, we asked the question of how rolling motion is extrapolated for manual interception or drawing tasks. In three experiments a ball rolled down an incline with kinematics that differed as a function of the starting position (4 different positions and slope (30°, 45° or 60°. In Experiment 1, participants had to punch the ball as it fell off the incline. In Experiment 2, the ball rolled down the incline but was stopped at the end; participants were asked to imagine that the ball kept moving and to punch it. In Experiment 3, the ball rolled down the incline and was stopped at the end; participants were asked to draw with the hand in air the trajectory that would be described by the ball if it kept moving. We found that performance was most accurate when motion of the ball was visible until interception and haptic feedback of hand-ball contact was available (Experiment 1. However, even when participants punched an imaginary moving ball (Experiment 2 or drew in air the imaginary trajectory (Experiment 3, they were able to extrapolate to some extent global aspects of the target motion, including its path, speed and arrival time. We argue that the path and kinematics of a ball rolling down an incline can be extrapolated surprisingly well by the brain using both visual information and internal models of target motion.

  10. Study of the collecting electrode material of an extrapolation chamber by Monte Carlo simulation

    International Nuclear Information System (INIS)

    Vedovato, Uly Pita; Santos, William S.; Perini, Ana Paula; Belinato, Walmir

    2017-01-01

    In this work, the influence of different materials of the collecting electrode on the response of an extrapolation ionization chamber, was evaluated. This ionization chamber was simulated with the MCNP-4C Monte Carlo code and the spectrum of a standard diagnostic radiology beam (RQR5) was utilized. The different results are due to interactions of photons with different materials of the collecting electrode contributing with different values of energy deposited in the sensitive volume of the ionization chamber, which depends on the atomic number of the evaluated materials. The material that presented the least influence was graphite, the original constituent of the ionization chamber. (author)

  11. Study of an extrapolation chamber in a standard diagnostic radiology beam by Monte Carlo simulation

    International Nuclear Information System (INIS)

    Vedovato, Uly Pita; Silva, Rayre Janaina Vieira; Neves, Lucio Pereira; Santos, William S.; Perini, Ana Paula; Belinato, Walmir

    2016-01-01

    In this work, we studied the influence of the components of an extrapolation ionization chamber in its response. This study was undertaken using the MCNP-5 Monte Carlo code, and the standard diagnostic radiology quality for direct beams (RQR5). Using tally F6 and 2.1 x 10"9 simulated histories, the results showed that the chamber design and material not alter significantly the energy deposited in its sensitive volume. The collecting electrode and support board were the components with more influence on the chamber response. (author)

  12. Extrapolation of the Dutch 1 MW tunable free electron maser to a 5 MW ECRH source

    International Nuclear Information System (INIS)

    Caplan, M.; Nelson, S.; Kamin, G.; Antonsen, T. Levush, B.; Urbanus, W.; Tulupov, A.

    1995-01-01

    A Free Electron Maser (FEM) is now under construction at the FOM Institute (Rijnhuizen) Netherlands with the goal of producing 1 MW long pulse to CW microwave output in the range 130 GHz to 250 GHz with wall plug efficiencies of 50% (Verhoeven, et al EC-9 Conference). An extrapolated version of this device is proposed which by scaling up the beam current, would produce microwave power levels of up to 5 MW CW in order to reduce the cost per watt and increase the power per module, thus providing the fusion community with a practical ECRH source

  13. Combined effect of external irradiation and radiostrontium administration (extrapolation of experimental data)

    International Nuclear Information System (INIS)

    Kiradzhiev, G.

    1987-01-01

    Assessment was made of the activities of strontium-89 and strontium-90, which may aggravate the effect of external irradiation, causing changes in peripheral blood leucocytes. Extrapolation of the results was carried out on the basis of the so called radiosensitivity coefficients (laboratory rat/man). Inference is drawn that summing of the effects of the radiation factors may be expected in cases of external irradiation with 100 Gy and oral administration of 150-200 MBq strontium-89 or 60-90 MBq strontium-90 and through the air passages of 110-150 MBq strontium-89 or 40-60 MBq strontium-90

  14. Extrapolation of dynamic load behaviour on hydroelectric turbine blades with cyclostationary modelling

    Science.gov (United States)

    Poirier, Marc; Gagnon, Martin; Tahan, Antoine; Coutu, André; Chamberland-lauzon, Joël

    2017-01-01

    In this paper, we present the application of cyclostationary modelling for the extrapolation of short stationary load strain samples measured in situ on hydraulic turbine blades. Long periods of measurements allow for a wide range of fluctuations representative of long-term reality to be considered. However, sampling over short periods limits the dynamic strain fluctuations available for analysis. The purpose of the technique presented here is therefore to generate a representative signal containing proper long term characteristics and expected spectrum starting with a much shorter signal period. The final objective is to obtain a strain history that can be used to estimate long-term fatigue behaviour of hydroelectric turbine runners.

  15. J-85 jet engine noise measured in the ONERA S1 wind tunnel and extrapolated to far field

    Science.gov (United States)

    Soderman, Paul T.; Julienne, Alain; Atencio, Adolph, Jr.

    1991-01-01

    Noise from a J-85 turbojet with a conical, convergent nozzle was measured in simulated flight in the ONERA S1 Wind Tunnel. Data are presented for several flight speeds up to 130 m/sec and for radiation angles of 40 to 160 degrees relative to the upstream direction. The jet was operated with subsonic and sonic exhaust speeds. A moving microphone on a 2 m sideline was used to survey the radiated sound field in the acoustically treated, closed test section. The data were extrapolated to a 122 m sideline by means of a multiple-sideline source-location method, which was used to identify the acoustic source regions, directivity patterns, and near field effects. The source-location method is described along with its advantages and disadvantages. Results indicate that the effects of simulated flight on J-85 noise are significant. At the maximum forward speed of 130 m/sec, the peak overall sound levels in the aft quadrant were attentuated approximately 10 dB relative to sound levels of the engine operated statically. As expected, the simulated flight and static data tended to merge in the forward quadrant as the radiation angle approached 40 degrees. There is evidence that internal engine or shock noise was important in the forward quadrant. The data are compared with published predictions for flight effects on pure jet noise and internal engine noise. A new empirical prediction is presented that relates the variation of internally generated engine noise or broadband shock noise to forward speed. Measured near field noise extrapolated to far field agrees reasonably well with data from similar engines tested statically outdoors, in flyover, in a wind tunnel, and on the Bertin Aerotrain. Anomalies in the results for the forward quadrant and for angles above 140 degrees are discussed. The multiple-sideline method proved to be cumbersome in this application, and it did not resolve all of the uncertainties associated with measurements of jet noise close to the jet. The

  16. Electric form factors of the octet baryons from lattice QCD and chiral extrapolation

    Energy Technology Data Exchange (ETDEWEB)

    Shanahan, P.E.; Thomas, A.W.; Young, R.D.; Zanotti, J.M. [Adelaide Univ., SA (Australia). ARC Centre of Excellence in Particle Physics at the Terascale and CSSM; Horsley, R. [Edinburgh Univ. (United Kingdom). School of Physics and Astronomy; Nakamura, Y. [RIKEN Advanced Institute for Computational Science, Kobe, Hyogo (Japan); Pleiter, D. [Forschungszentrum Juelich (Germany). JSC; Regensburg Univ. (Germany). Inst. fuer Theoretische Physik; Rakow, P.E.L. [Liverpool Univ. (United Kingdom). Theoretical Physics Div.; Schierholz, G. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Stueben, H. [Hamburg Univ. (Germany). Regionales Rechenzentrum; Collaboration: CSSM and QCDSF/UKQCD Collaborations

    2014-03-15

    We apply a formalism inspired by heavy baryon chiral perturbation theory with finite-range regularization to dynamical 2+1-flavor CSSM/QCDSF/UKQCD Collaboration lattice QCD simulation results for the electric form factors of the octet baryons. The electric form factor of each octet baryon is extrapolated to the physical pseudoscalar masses, after finite-volume corrections have been applied, at six fixed values of Q{sup 2} in the range 0.2-1.3 GeV{sup 2}. The extrapolated lattice results accurately reproduce the experimental form factors of the nucleon at the physical point, indicating that omitted disconnected quark loop contributions are small. Furthermore, using the results of a recent lattice study of the magnetic form factors, we determine the ratio μ{sub p}G{sub E}{sup p}/G{sub M}{sup p}. This quantity decreases with Q{sup 2} in a way qualitatively consistent with recent experimental results.

  17. On Extrapolating Past the Range of Observed Data When Making Statistical Predictions in Ecology.

    Directory of Open Access Journals (Sweden)

    Paul B Conn

    Full Text Available Ecologists are increasingly using statistical models to predict animal abundance and occurrence in unsampled locations. The reliability of such predictions depends on a number of factors, including sample size, how far prediction locations are from the observed data, and similarity of predictive covariates in locations where data are gathered to locations where predictions are desired. In this paper, we propose extending Cook's notion of an independent variable hull (IVH, developed originally for application with linear regression models, to generalized regression models as a way to help assess the potential reliability of predictions in unsampled areas. Predictions occurring inside the generalized independent variable hull (gIVH can be regarded as interpolations, while predictions occurring outside the gIVH can be regarded as extrapolations worthy of additional investigation or skepticism. We conduct a simulation study to demonstrate the usefulness of this metric for limiting the scope of spatial inference when conducting model-based abundance estimation from survey counts. In this case, limiting inference to the gIVH substantially reduces bias, especially when survey designs are spatially imbalanced. We also demonstrate the utility of the gIVH in diagnosing problematic extrapolations when estimating the relative abundance of ribbon seals in the Bering Sea as a function of predictive covariates. We suggest that ecologists routinely use diagnostics such as the gIVH to help gauge the reliability of predictions from statistical models (such as generalized linear, generalized additive, and spatio-temporal regression models.

  18. The use of natural analogues in the long-term extrapolation of glass corrosion processes

    International Nuclear Information System (INIS)

    Lutze, W.; Grambow, B.; Ewing, R.C.; Jercinovic, M.J.

    1987-01-01

    One of the most critical aspects of nuclear waste management is the extrapolation of materials and systems behavior from short term experiments, typically on the order of one year, over comparatively very long periods of time. Safety and risk analyses have to rely on extrapolations and the respective findings have to be evaluated in the frame of licensing procedures. In this unique situation, any source of information that can lend support to the credibility of predicted behavior, should be exploited and investigated with great care. There are natural systems, e.g. the Oklo reactor, which can provide evidence of radionuclide migration over very long periods of time and thus help to answer specific questions of interest. Natural glasses and minerals can serve as analogues for both glass and crystalline nuclear waste forms, and the alteration of the natural materials can be studied to infer information on the behavior of the man-made products in geologic environments. This paper reviews most of the work performed by the authors and their colleagues in this field together with information available from literature and discusses the extent to which natural glasses can be used to validate or verify predictions. (author)

  19. WE-A-17A-01: Absorbed Dose Rate-To-Water at the Surface of a Beta-Emitting Planar Ophthalmic Applicator with a Planar, Windowless Extrapolation Chamber

    Energy Technology Data Exchange (ETDEWEB)

    Riley, A [of Wisconsin Medical Radiation Research Center, Madison, WI (United States); Soares, C [NIST (Retired), Gaithersburg, MD (United States); Micka, J; Culberson, W [University of Wisconsin Medical Radiation Research Center, Madison, WI (United States); DeWerd, L [University of WIMadison/ ADCL, Madison, WI (United States)

    2014-06-15

    Purpose: Currently there is no primary calibration standard for determining the absorbed dose rate-to-water at the surface of β-emitting concave ophthalmic applicators and plaques. Machining tolerances involved in the design of concave window extrapolation chambers are a limiting factor for development of such a standard. Use of a windowless extrapolation chamber avoids these window-machining tolerance issues. As a windowless extrapolation chamber has never been attempted, this work focuses on proof of principle measurements with a planar, windowless extrapolation chamber to verify the accuracy in comparison to initial calibration, which could be extended to the design of a hemispherical, windowless extrapolation chamber. Methods: The window of an extrapolation chamber defines the electrical field, aids in aligning the source parallel to the collector-guard assembly, and decreases the backscatter due to attenuation of lower electron energy. To create a uniform and parallel electric field in this research, the source was made common to the collector-guard assembly. A precise positioning protocol was designed to enhance the parallelism of the source and collector-guard assembly. Additionally, MCNP5 was used to determine a backscatter correction factor to apply to the calibration. With these issues addressed, the absorbed dose rate-to-water of a Tracerlab 90Sr planar ophthalmic applicator was determined using National Institute of Standards and Technology's (NIST) calibration formalism, and the results of five trials with this source were compared to measurements at NIST with a traditional extrapolation chamber. Results: The absorbed dose rate-to-water of the planar applicator was determined to be 0.473 Gy/s ±0.6%. Comparing these results to NIST's determination of 0.474 Gy/s yields a −0.6% difference. Conclusion: The feasibility of a planar, windowless extrapolation chamber has been demonstrated. A similar principle will be applied to developing a

  20. A six-hour extrapolated sampling strategy for monitoring mycophenolic acid in renal transplant patients in the Indian subcontinent

    Directory of Open Access Journals (Sweden)

    Fleming D

    2006-01-01

    Full Text Available Background : Therapeutic drug monitoring for mycophenolic acid (MPA is increasingly being advocated. Thepresent therapeutic range relates to the 12-hour area under the serum concentration time profile (AUC.However, this is a cumbersome, tedious, cost restricting procedure. Is it possible to reduce this samplingperiod? Aim : To compare the AUC from a reduced sampling strategy with the full 12-hour profile for MPA. Settings and Design : Clinical Pharmacology Unit of a tertiary care hospital in South India. Retrospective, paireddata. Materials and Methods : Thirty-four 12-hour profiles from post-renal transplant patients on Cellcept ® wereevaluated. Profiles were grouped according to steroid and immunosuppressant co-medication and the timeafter transplant. MPA was estimated by high performance liquid chromatography with UV detection. From the12-hour profiles the AUC up to only six hours was calculated by the trapezoidal rule and a correction factorapplied. These two AUCs were then compared. Statistical Analysis : Linear regression, intra-class correlations (ICC and a two-tailed paired t-test were appliedto the data. Results : Comparing the 12-hour AUC with the paired 6-hour extrapolated AUC, the ICC and linear regression(r2 were very good for all three groups. No statistical difference was found by a two-tailed paired t-test. Nobias was seen with a Bland Altman plot or by calculation. Conclusion : For patients on Cellcept ® with prednisolone ± cyclosporine the 6-hour corrected is an accuratemeasure of the full 12-hour AUC.

  1. Processing radioactive effluents with ion-exchanging resins: study of result extrapolation; Traitement des effluents radioactifs par resines echangeuses d'ions: etude de l'extrapolation des resultats

    Energy Technology Data Exchange (ETDEWEB)

    Wormser, G.

    1960-05-03

    As a previous study showed the ion-exchanging resins could be used in Saclay for the treatment of radioactive effluents, the author reports a study which aimed at investigating to which extent thus obtained results could be extrapolated to the case of higher industrial columns. The author reports experiments which aimed at determining extrapolation modes which could be used for columns of organic resin used for radioactive effluent decontamination. He notably studied whether the Hiester and Vermeulen extrapolation law could be applied. Experiments are performed at constant percolation flow rate, at varying flow rate, and at constant flow rate [French] Plusieurs etudes ont ete faites dans le but d'examiner les possibilites d'emploi des resines echangeuses d'ions pour le traitement des effluents radioactifs. Dans un rapport preliminaire, nous avons montre dans quelles limites un tel procede pouvait etre utilise au Centre d'Etudes Nucleaires de Saclay. Les essais ont ete effectues sur des petites colonnes de resine au laboratoire; il est apparu ensuite necessaire de prevoir dans quelle mesure les resultats ainsi obtenus peuvent etre extrapoles a des colonnes industrielles, de plus grande hauteur. Les experiences dont les resultats sont exposes dans ce rapport, ont pour but de determiner les modes d'extrapolation qui pourraient etre employes pour des colonnes de resine organique utilisees pour la decontamination d'effluents radioactifs. Nous avons en particulier recherche si la loi d'extrapolation de Hiester et Vermeulen qui donne de bons resultats dans le cas de fixation d'ions radioactifs en presence d'un ion macrocomposant sur des terres, pouvait etre appliquee. Les experiences, en nombre limite, ont montre que la loi d'extrapolation de Hiester et Vermeulen pouvait s'appliquer dans le cas de l'effluent considere quand les debits de percolation sont tres faibles; quand ils sont plus forts, les volumes de liquide percoles, a fixation egale, sont proportionnels aux

  2. Transient heat loads in current fusion experiments, extrapolation to ITER and consequences for its operation

    International Nuclear Information System (INIS)

    Loarte, A; Saibene, G; Sartori, R; Riccardo, V; Andrew, P; Paley, J; Fundamenski, W; Eich, T; Herrmann, A; Pautasso, G; Kirk, A; Counsell, G; Federici, G; Strohmayer, G; Whyte, D; Leonard, A; Pitts, R A; Landman, I; Bazylev, B; Pestchanyi, S

    2007-01-01

    New experimental results on transient loads during ELMs and disruptions in present divertor tokamaks are described and used to carry out a extrapolation to ITER reference conditions and to draw consequences for its operation. In particular, the achievement of low energy/convective type I edge localized modes (ELMs) in ITER-like plasma conditions seems the only way to obtain transient loads which may be compatible with an acceptable erosion lifetime of plasma facing components (PFCs) in ITER. Power loads during disruptions, on the contrary, seem to lead in most cases to an acceptable divertor lifetime because of the relatively small plasma thermal energy remaining at the thermal quench and the large broadening of the power flux footprint during this phase. These conclusions are reinforced by calculations of the expected erosion lifetime, under these load conditions, which take into account a realistic temporal dependence of the power fluxes on PFCs during ELMs and disruptions

  3. Methodology Of PACS Effectiveness Evaluation As Part Of A Technology Assessment. The Dutch PACS Project Extrapolated.

    Science.gov (United States)

    Andriessen, J. H. T. H.; van der Horst-Bruinsma, I. E.; ter Haar Romeny, B. M.

    1989-05-01

    The present phase of the clinical evaluation within the Dutch PACS project mainly focuses on the development and evaluation of a PACSystem for a few departments in the Utrecht University hospital (UUH). A report on the first clinical experiences and a detailed cost/savings analysis of the PACSystem in the UUH are presented elsewhere. However, an assessment of the wider fmancial and organizational implications for hospitals and for the health sector is also needed. To this end a model for (financial) cost assessment of PACSystems is being developed by BAZIS. Learning from the actual pilot implementation in UUH we realized that general Technology Assessment (TA) also calls for an extra-polation of the medical and organizational effects. After a short excursion into the various approaches towards TA, this paper discusses the (inter) organizational dimensions relevant to the development of the necessary exttapolationmodels.

  4. Statistical validation of engineering and scientific models : bounds, calibration, and extrapolation.

    Energy Technology Data Exchange (ETDEWEB)

    Dowding, Kevin J.; Hills, Richard Guy (New Mexico State University, Las Cruces, NM)

    2005-04-01

    Numerical models of complex phenomena often contain approximations due to our inability to fully model the underlying physics, the excessive computational resources required to fully resolve the physics, the need to calibrate constitutive models, or in some cases, our ability to only bound behavior. Here we illustrate the relationship between approximation, calibration, extrapolation, and model validation through a series of examples that use the linear transient convective/dispersion equation to represent the nonlinear behavior of Burgers equation. While the use of these models represents a simplification relative to the types of systems we normally address in engineering and science, the present examples do support the tutorial nature of this document without obscuring the basic issues presented with unnecessarily complex models.

  5. Modeling the systemic retention of beryllium in rat. Extrapolation to human

    International Nuclear Information System (INIS)

    Montero Prieto, M.; Vidania Munoz, R. de

    1994-01-01

    In this work, we analyzed different approaches, assayed in order to numerically describe the systemic behaviour of Beryllium. The experimental results used in this work, were previously obtained by Furchner et al. (1973), using Sprague-Dawley rats, and others animal species. Furchner's work includes the obtained model for whole body retention in rats, but not for each target organ. In this work we present the results obtained by modeling the kinetic behaviour of Beryllium in several target organs. The results of this kind of models were used in order to establish correlations among the estimated kinetic constants. The parameters of the model were extrapolated to humans and, finally, compared with others previously published. (Author) 12 refs

  6. Modeling of systematic retention of beryllium in rats. Extrapolation to humans

    International Nuclear Information System (INIS)

    Montero Prieto, M.; Vidania Munoz, R. de.

    1994-01-01

    In this work, we analyzed different approaches, assayed in order to numerically describe the systemic behaviour of Beryllium. The experimental results used in this work, were previously obtained by Furchner et al. (1973), using Sprague-Dawley rats, and other animal species. Furchner's work includes the obtained model for whole body retention in rats but not for each target organ. In this work we present the results obtained by modeling the kinetic behaviour of Beryllium in several target organs. The results of this kind of models were used in order to establish correlations among the estimated kinetic constants. The parameters of the model were extrapolated to humans and, finally, compared with other previously published

  7. Quantifying regional changes in terrestrial carbon storage by extrapolation from local ecosystem models

    Energy Technology Data Exchange (ETDEWEB)

    King, A W

    1991-12-31

    A general procedure for quantifying regional carbon dynamics by spatial extrapolation of local ecosystem models is presented Monte Carlo simulation to calculate the expected value of one or more local models, explicitly integrating the spatial heterogeneity of variables that influence ecosystem carbon flux and storage. These variables are described by empirically derived probability distributions that are input to the Monte Carlo process. The procedure provides large-scale regional estimates based explicitly on information and understanding acquired at smaller and more accessible scales.Results are presented from an earlier application to seasonal atmosphere-biosphere CO{sub 2} exchange for circumpolar ``subarctic`` latitudes (64{degree}N-90{degree}N). Results suggest that, under certain climatic conditions, these high northern ecosystems could collectively release 0.2 Gt of carbon per year to the atmosphere. I interpret these results with respect to questions about global biospheric sinks for atmospheric CO{sub 2} .

  8. Hematological responses after inhaling 238PuO2: An extrapolation from beagle dogs to humans

    International Nuclear Information System (INIS)

    Scott, B.R.; Muggenburg, B.A.; Welsh, C.A.; Angerstein, D.A.

    1994-01-01

    The alpha emitter plutonium-238 ( 238 Pu), which is produced in uranium-fueled, light-water reactors, is used as a thermoelectric power source for space applications. Inhalation of a mixed oxide form of Pu is the most likely mode of exposure of workers and the general public. Occupational exposures to 238 PuO 2 have occurred in association with the fabrication of radioisotope thermoelectric generators. Organs and tissue at risk for deterministic and stochastic effects of 238 Pu-alpha irradiation include the lung, liver, skeleton, and lymphatic tissue. Little has been reported about the effects of inhaled 238 PuO 2 on peripheral blood cell counts in humans. The purpose of this study was to investigate hematological responses after a single inhalation exposure of Beagle dogs to alpha-emitting 238 PuO 2 particles and to extrapolate results to humans

  9. Extrapolating cetacean densities to quantitatively assess human impacts on populations in the high seas.

    Science.gov (United States)

    Mannocci, Laura; Roberts, Jason J; Miller, David L; Halpin, Patrick N

    2017-06-01

    As human activities expand beyond national jurisdictions to the high seas, there is an increasing need to consider anthropogenic impacts to species inhabiting these waters. The current scarcity of scientific observations of cetaceans in the high seas impedes the assessment of population-level impacts of these activities. We developed plausible density estimates to facilitate a quantitative assessment of anthropogenic impacts on cetacean populations in these waters. Our study region extended from a well-surveyed region within the U.S. Exclusive Economic Zone into a large region of the western North Atlantic sparsely surveyed for cetaceans. We modeled densities of 15 cetacean taxa with available line transect survey data and habitat covariates and extrapolated predictions to sparsely surveyed regions. We formulated models to reduce the extent of extrapolation beyond covariate ranges, and constrained them to model simple and generalizable relationships. To evaluate confidence in the predictions, we mapped where predictions were made outside sampled covariate ranges, examined alternate models, and compared predicted densities with maps of sightings from sources that could not be integrated into our models. Confidence levels in model results depended on the taxon and geographic area and highlighted the need for additional surveying in environmentally distinct areas. With application of necessary caution, our density estimates can inform management needs in the high seas, such as the quantification of potential cetacean interactions with military training exercises, shipping, fisheries, and deep-sea mining and be used to delineate areas of special biological significance in international waters. Our approach is generally applicable to other marine taxa and geographic regions for which management will be implemented but data are sparse. © 2016 The Authors. Conservation Biology published by Wiley Periodicals, Inc. on behalf of Society for Conservation Biology.

  10. Standard electrode potential, Tafel equation, and the solvation thermodynamics.

    Science.gov (United States)

    Matyushov, Dmitry V

    2009-06-21

    Equilibrium in the electronic subsystem across the solution-metal interface is considered to connect the standard electrode potential to the statistics of localized electronic states in solution. We argue that a correct derivation of the Nernst equation for the electrode potential requires a careful separation of the relevant time scales. An equation for the standard metal potential is derived linking it to the thermodynamics of solvation. The Anderson-Newns model for electronic delocalization between the solution and the electrode is combined with a bilinear model of solute-solvent coupling introducing nonlinear solvation into the theory of heterogeneous electron transfer. We therefore are capable of addressing the question of how nonlinear solvation affects electrochemical observables. The transfer coefficient of electrode kinetics is shown to be equal to the derivative of the free energy, or generalized force, required to shift the unoccupied electronic level in the bulk. The transfer coefficient thus directly quantifies the extent of nonlinear solvation of the redox couple. The current model allows the transfer coefficient to deviate from the value of 0.5 of the linear solvation models at zero electrode overpotential. The electrode current curves become asymmetric in respect to the change in the sign of the electrode overpotential.

  11. Extrapolated experimental critical parameters of unreflected and steel-reflected massive enriched uranium metal spherical and hemispherical assemblies

    International Nuclear Information System (INIS)

    Rothe, R.E.

    1997-12-01

    Sixty-nine critical configurations of up to 186 kg of uranium are reported from very early experiments (1960s) performed at the Rocky Flats Critical Mass Laboratory near Denver, Colorado. Enriched (93%) uranium metal spherical and hemispherical configurations were studied. All were thick-walled shells except for two solid hemispheres. Experiments were essentially unreflected; or they included central and/or external regions of mild steel. No liquids were involved. Critical parameters are derived from extrapolations beyond subcritical data. Extrapolations, rather than more precise interpolations between slightly supercritical and slightly subcritical configurations, were necessary because experiments involved manually assembled configurations. Many extrapolations were quite long; but the general lack of curvature in the subcritical region lends credibility to their validity. In addition to delayed critical parameters, a procedure is offered which might permit the determination of prompt critical parameters as well for the same cases. This conjectured procedure is not based on any strong physical arguments

  12. Comparison of various state equations for approximation and extrapolation of experimental hydrogen molar volumes in wide temperature and pressure intervals

    International Nuclear Information System (INIS)

    Didyk, A.Yu.; Altynov, V.A.; Wisniewski, R.

    2009-01-01

    The numerical analysis of practically all existing formulae such as expansion series, Tait, logarithm, Van der Waals and virial equations for interpolation of experimental molar volumes versus high pressure was carried out. One can conclude that extrapolating dependences of molar volumes versus pressure and temperature can be valid. It was shown that virial equations can be used for fitting experimental data at relatively low pressures P<3 kbar too in distinction to other equations. Direct solving of a linear equation of the third order relatively to volume using extrapolated virial coefficients allows us to obtain good agreement between existing experimental data for high pressure and calculated values

  13. Hybrid superconducting a.c. current limiter extrapolation 63 kV-1 250 A

    Science.gov (United States)

    Tixador, P.; Levêque, J.; Brunet, Y.; Pham, V. D.

    1994-04-01

    Following the developement of a.c. superconducting wires a.c. current superconducting limiters have emerged. These limiters limit the fault currents nearly instantaneously, without detection nor order giver and may be suitable for high voltages. They are based on the natural transition from the superconducting state to the normal resistive state by overstepping the critical current of a superconducting coil which limits or triggers the limitation. Our limiter device consists essentially of two copper windings coupled through a saturable magnetic circuit and of a non inductively wound superconducting coil with a reduced current compared to the line current. This design allows a simple superconducting cable and reduced cryogenic losses but the dielectric stresses are high during faults. A small model (150 V/50 A) has experimentally validated our design. An industrial scale current limiter is designed and the comparisons between this design and other superconducting current limiters are given. Les courants de court-circuit sur les grands réseaux électriques ne cessent d'augmenter. Dans ce contexte sont apparus les limiteurs supraconducteurs de courant suite au développement des brins supraconducteurs alternatifs. Ces limiteurs peuvent limiter les courants de défaut presque instantanément, sans détection de défaut ni donneur d'ordre et ils sont extrapolables aux hautes tensions. Ils sont fondés sur la transition naturelle de l'état supraconducteur à l'état normal très résistif par dépassement du courant critique d'un enroulement supraconducteur qui limite ou déclenche la limitation. Notre limiteur est composé de deux enroulements en cuivre couplés par un circuit magnétique saturable et d'une bobine supraconductrice à courant réduit par rapport au courant de la ligne. Cette conception permet un câble supraconducteur simple et des pertes cryogéniques réduites mais les contraintes diélectriques en régime de défaut sont importantes. Une maquette

  14. Improving Predictions with Reliable Extrapolation Schemes and Better Understanding of Factorization

    Science.gov (United States)

    More, Sushant N.

    New insights into the inter-nucleon interactions, developments in many-body technology, and the surge in computational capabilities has led to phenomenal progress in low-energy nuclear physics in the past few years. Nonetheless, many calculations still lack a robust uncertainty quantification which is essential for making reliable predictions. In this work we investigate two distinct sources of uncertainty and develop ways to account for them. Harmonic oscillator basis expansions are widely used in ab-initio nuclear structure calculations. Finite computational resources usually require that the basis be truncated before observables are fully converged, necessitating reliable extrapolation schemes. It has been demonstrated recently that errors introduced from basis truncation can be taken into account by focusing on the infrared and ultraviolet cutoffs induced by a truncated basis. We show that a finite oscillator basis effectively imposes a hard-wall boundary condition in coordinate space. We accurately determine the position of the hard-wall as a function of oscillator space parameters, derive infrared extrapolation formulas for the energy and other observables, and discuss the extension of this approach to higher angular momentum and to other localized bases. We exploit the duality of the harmonic oscillator to account for the errors introduced by a finite ultraviolet cutoff. Nucleon knockout reactions have been widely used to study and understand nuclear properties. Such an analysis implicitly assumes that the effects of the probe can be separated from the physics of the target nucleus. This factorization between nuclear structure and reaction components depends on the renormalization scale and scheme, and has not been well understood. But it is potentially critical for interpreting experiments and for extracting process-independent nuclear properties. We use a class of unitary transformations called the similarity renormalization group (SRG) transformations to

  15. Top-down workforce demand extrapolation based on an EC energy road-map scenario

    International Nuclear Information System (INIS)

    Roelofs, F.; Von Estorff, U.

    2014-01-01

    The EHRO-N team of JRC-IET provides the EC with essential data related to supply and demand for nuclear experts based on bottom-up information from the nuclear industry. The current paper deals with an alternative approach to derive figures for the demand side information of the nuclear workforce. Complementary to the bottom-up approach, a top-down modelling approach extrapolation of an EC Energy road-map nuclear energy demand scenario is followed here in addition to the survey information. In this top-down modelling approach, the number of nuclear power plants that are in operation and under construction is derived as a function of time from 2010 up to 2050 assuming that the current reactor park will be replaced by generic third generation reactors of 1400 MWe or 1000 MWe. Depending on the size of new build reactors, the analysis shows the number of new reactors required to fulfil the demand for nuclear energy. Based on workforce models for operation and construction of nuclear power plants, the model allows an extrapolation of these respective work-forces. Using the nuclear skills pyramid, the total workforce employed at a plant is broken down in a nuclear (experts), nuclearized, and nuclear aware workforce. With retirement profiles for nuclear power plants derived from the bottom-up EHRO-N survey, the replacement of the current workforce is taken into account. The peak of the new workforce (partly replacing the retiring workforce and additionally keeping up with the growing total workforce demand) for nuclear experts and nuclearized employees is to be expected at the end of the considered period (2050). However, the peak workforce for nuclear aware employees is to be expected around 2020. When comparing to historical data for the nuclear capacity being installed at the same time in Europe, it is clear that the expected future capacity to be installed at the same time in Europe is significantly lower (factor of 2) than in the early 1980's. However, it should

  16. Beagle: an appropriate experimental animal for extrapolating the organ distribution pattern of Th in humans

    International Nuclear Information System (INIS)

    Singh, N.P.; Zimmerman, C.J.; Taylor, G.N.; Wrenn, M.E.

    1988-01-01

    The concentrations and the organ distribution patterns of 228Th, 230Th and 232Th in two 9-y-old dogs of our beagle colony were determined. The dogs were exposed only to background environmental levels of Th isotopes through ingestion (food and water) and inhalation as are humans. The organ distribution patterns of the isotopes in the beagles were compared to the organ distribution patterns in humans to determine if it is appropriate to extrapolate the beagle organ burden data to humans. Among soft tissues, only the lungs, lymph nodes, kidney and liver, and skeleton contained measurable amounts of Th isotopes. The organ distribution pattern of Th isotopes in humans and dog are similar, the majority of Th being in the skeleton of both species. The average skeletal concentrations of 228Th in dogs were 30 to 40 times higher than the average skeletal concentrations of the parent 232Th, whereas the concentration of 228Th in human skeleton was only four to five times higher than 232Th. This suggests that dogs have a higher intake of 228Ra through food than humans. There is a similar trend in the accumulations of 232Th, 230Th and 228Th in the lungs of dog and humans. The percentages of 232Th, 230Th and 228Th in human lungs are 26, 9.7 and 4.8, respectively, compared to 4.2, 2.6 and 0.48, respectively, in dog lungs. The larger percentages of Th isotopes in human lungs may be due simply to the longer life span of humans. If the burdens of Th isotopes in human lungs are normalized to an exposure time of 9.2 y (mean age of dogs at the time of sacrifice), the percent burden of 232Th, 230Th and 228Th in human lungs are estimated to be 3.6, 1.3 and 0.66, respectively. These results suggest that the beagle may be an appropriate experimental animal for extrapolating the organ distribution pattern of Th in humans

  17. Quantification of the biocontrol agent Trichoderma harzianum with real-time TaqMan PCR and its potential extrapolation to the hyphal biomass.

    Science.gov (United States)

    López-Mondéjar, Rubén; Antón, Anabel; Raidl, Stefan; Ros, Margarita; Pascual, José Antonio

    2010-04-01

    The species of the genus Trichoderma are used successfully as biocontrol agents against a wide range of phytopathogenic fungi. Among them, Trichoderma harzianum is especially effective. However, to develop more effective fungal biocontrol strategies in organic substrates and soil, tools for monitoring the control agents are required. Real-time PCR is potentially an effective tool for the quantification of fungi in environmental samples. The aim of this study consisted of the development and application of a real-time PCR-based method to the quantification of T. harzianum, and the extrapolation of these data to fungal biomass values. A set of primers and a TaqMan probe for the ITS region of the fungal genome were designed and tested, and amplification was correlated to biomass measurements obtained with optical microscopy and image analysis, of the hyphal length of the mycelium of the colony. A correlation of 0.76 between ITS copies and biomass was obtained. The extrapolation of the quantity of ITS copies, calculated based on real-time PCR data, into quantities of fungal biomass provides potentially a more accurate value of the quantity of soil fungi. Copyright 2009 Elsevier Ltd. All rights reserved.

  18. Accelerating Monte Carlo molecular simulations by reweighting and reconstructing Markov chains: Extrapolation of canonical ensemble averages and second derivatives to different temperature and density conditions

    Energy Technology Data Exchange (ETDEWEB)

    Kadoura, Ahmad; Sun, Shuyu, E-mail: shuyu.sun@kaust.edu.sa; Salama, Amgad

    2014-08-01

    Accurate determination of thermodynamic properties of petroleum reservoir fluids is of great interest to many applications, especially in petroleum engineering and chemical engineering. Molecular simulation has many appealing features, especially its requirement of fewer tuned parameters but yet better predicting capability; however it is well known that molecular simulation is very CPU expensive, as compared to equation of state approaches. We have recently introduced an efficient thermodynamically consistent technique to regenerate rapidly Monte Carlo Markov Chains (MCMCs) at different thermodynamic conditions from the existing data points that have been pre-computed with expensive classical simulation. This technique can speed up the simulation more than a million times, making the regenerated molecular simulation almost as fast as equation of state approaches. In this paper, this technique is first briefly reviewed and then numerically investigated in its capability of predicting ensemble averages of primary quantities at different neighboring thermodynamic conditions to the original simulated MCMCs. Moreover, this extrapolation technique is extended to predict second derivative properties (e.g. heat capacity and fluid compressibility). The method works by reweighting and reconstructing generated MCMCs in canonical ensemble for Lennard-Jones particles. In this paper, system's potential energy, pressure, isochoric heat capacity and isothermal compressibility along isochors, isotherms and paths of changing temperature and density from the original simulated points were extrapolated. Finally, an optimized set of Lennard-Jones parameters (ε, σ) for single site models were proposed for methane, nitrogen and carbon monoxide.

  19. Accelerating Monte Carlo molecular simulations by reweighting and reconstructing Markov chains: Extrapolation of canonical ensemble averages and second derivatives to different temperature and density conditions

    KAUST Repository

    Kadoura, Ahmad Salim

    2014-08-01

    Accurate determination of thermodynamic properties of petroleum reservoir fluids is of great interest to many applications, especially in petroleum engineering and chemical engineering. Molecular simulation has many appealing features, especially its requirement of fewer tuned parameters but yet better predicting capability; however it is well known that molecular simulation is very CPU expensive, as compared to equation of state approaches. We have recently introduced an efficient thermodynamically consistent technique to regenerate rapidly Monte Carlo Markov Chains (MCMCs) at different thermodynamic conditions from the existing data points that have been pre-computed with expensive classical simulation. This technique can speed up the simulation more than a million times, making the regenerated molecular simulation almost as fast as equation of state approaches. In this paper, this technique is first briefly reviewed and then numerically investigated in its capability of predicting ensemble averages of primary quantities at different neighboring thermodynamic conditions to the original simulated MCMCs. Moreover, this extrapolation technique is extended to predict second derivative properties (e.g. heat capacity and fluid compressibility). The method works by reweighting and reconstructing generated MCMCs in canonical ensemble for Lennard-Jones particles. In this paper, system\\'s potential energy, pressure, isochoric heat capacity and isothermal compressibility along isochors, isotherms and paths of changing temperature and density from the original simulated points were extrapolated. Finally, an optimized set of Lennard-Jones parameters (ε, σ) for single site models were proposed for methane, nitrogen and carbon monoxide. © 2014 Elsevier Inc.

  20. Addressing Early Life Sensitivity Using Physiologically Based Pharmacokinetic Modeling and In Vitro to In Vivo Extrapolation.

    Science.gov (United States)

    Yoon, Miyoung; Clewell, Harvey J

    2016-01-01

    Physiologically based pharmacokinetic (PBPK) modeling can provide an effective way to utilize in vitro and in silico based information in modern risk assessment for children and other potentially sensitive populations. In this review, we describe the process of in vitro to in vivo extrapolation (IVIVE) to develop PBPK models for a chemical in different ages in order to predict the target tissue exposure at the age of concern in humans. We present our on-going studies on pyrethroids as a proof of concept to guide the readers through the IVIVE steps using the metabolism data collected either from age-specific liver donors or expressed enzymes in conjunction with enzyme ontogeny information to provide age-appropriate metabolism parameters in the PBPK model in the rat and human, respectively. The approach we present here is readily applicable to not just to other pyrethroids, but also to other environmental chemicals and drugs. Establishment of an in vitro and in silico-based evaluation strategy in conjunction with relevant exposure information in humans is of great importance in risk assessment for potentially vulnerable populations like early ages where the necessary information for decision making is limited.

  1. Extrapolation of experimental data on late effects of low-dose radionuclides in man

    International Nuclear Information System (INIS)

    Kalistratova, V.S.; Nisimov, P.G.

    1997-01-01

    The situation of living of population on radionuclide contamination areas was simulated in the experimental study using white strainless rats of different ages. The significance of age for late stochastic effects of internal radionuclide contamination with low doses of 131 I, 137 Cs, 144 Ce and 106 Ru was studied. Some common regularities and differences in late effects formation depending on age were found. Results of the study showed that the number of tumors developed increased in groups of animals exposed at the youngest age. The younger animal at the moment of internal radionuclide contamination, the higher percentage of malignant tumors appeared. It was especially so for tumors of endocrine glands (pituitary, suprarenal,- and thyroid). Differences in late effects formation related to different type of radionuclide distribution within the body were estimated. On the base of extrapolation the conclusion was made that human organism being exposed at early postnatal or pubertal period could be the most radiosensitive (1.5-2.0 or sometimes even 3-5 times higher than adults). Data confirmed the opinion that children are the most critical part of population even in case of low dose radiation exposure. (author)

  2. Extrapolation of plasma clearance to understand species differences in toxicokinetics of bisphenol A.

    Science.gov (United States)

    Poet, Torka; Hays, Sean

    2017-10-13

    1. Understanding species differences in the toxicokinetics of bisphenol A (BPA) is central to setting acceptable exposure limits for human exposures to BPA. BPA toxicokinetics have been well studied, with controlled oral dosing studies in several species and across a wide dose range. 2. We analyzed the available toxicokinetic data for BPA following oral dosing to assess potential species differences and dose dependencies. BPA is rapidly conjugated and detoxified in all species. The toxicokinetics of BPA can be well described using non-compartmental analyses. 3. Several studies measured free (unconjugated) BPA in blood and reported area under the curve (AUC) of free BPA in blood of mice, rats, monkeys, chimpanzees and humans following controlled oral doses. Extrinsic clearance was calculated and analyzed across species and dose using allometric scaling. 4. The results indicate free BPA clearance is well described using allometric scaling with high correlation coefficients across all species and doses up to 10 mg/kg. The results indicate a human equivalent dose factor (HEDf) of 0.9 is appropriate for extrapolating a point of departure from mice and rats to a human equivalent dose (HED), thereby replacing default uncertainty factors for animal to human toxicokinetics.

  3. Use of a probabilistic PBPK/PD model to calculate Data Derived Extrapolation Factors for chlorpyrifos.

    Science.gov (United States)

    Poet, Torka S; Timchalk, Charles; Bartels, Michael J; Smith, Jordan N; McDougal, Robin; Juberg, Daland R; Price, Paul S

    2017-06-01

    A physiologically based pharmacokinetic and pharmacodynamic (PBPK/PD) model combined with Monte Carlo analysis of inter-individual variation was used to assess the effects of the insecticide, chlorpyrifos and its active metabolite, chlorpyrifos oxon in humans. The PBPK/PD model has previously been validated and used to describe physiological changes in typical individuals as they grow from birth to adulthood. This model was updated to include physiological and metabolic changes that occur with pregnancy. The model was then used to assess the impact of inter-individual variability in physiology and biochemistry on predictions of internal dose metrics and quantitatively assess the impact of major sources of parameter uncertainty and biological diversity on the pharmacodynamics of red blood cell acetylcholinesterase inhibition. These metrics were determined in potentially sensitive populations of infants, adult women, pregnant women, and a combined population of adult men and women. The parameters primarily responsible for inter-individual variation in RBC acetylcholinesterase inhibition were related to metabolic clearance of CPF and CPF-oxon. Data Derived Extrapolation Factors that address intra-species physiology and biochemistry to replace uncertainty factors with quantitative differences in metrics were developed in these same populations. The DDEFs were less than 4 for all populations. These data and modeling approach will be useful in ongoing and future human health risk assessments for CPF and could be used for other chemicals with potential human exposure. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Cross-Species Extrapolation of Models for Predicting Lead Transfer from Soil to Wheat Grain.

    Directory of Open Access Journals (Sweden)

    Ke Liu

    Full Text Available The transfer of Pb from the soil to crops is a serious food hygiene security problem in China because of industrial, agricultural, and historical contamination. In this study, the characteristics of exogenous Pb transfer from 17 Chinese soils to a popular wheat variety (Xiaoyan 22 were investigated. In addition, bioaccumulation prediction models of Pb in grain were obtained based on soil properties. The results of the analysis showed that pH and OC were the most important factors contributing to Pb uptake by wheat grain. Using a cross-species extrapolation approach, the Pb uptake prediction models for cultivar Xiaoyan 22 in different soil Pb levels were satisfactorily applied to six additional non-modeled wheat varieties to develop a prediction model for each variety. Normalization of the bioaccumulation factor (BAF to specific soil physico-chemistry is essential, because doing so could significantly reduce the intra-species variation of different wheat cultivars in predicted Pb transfer and eliminate the influence of soil properties on ecotoxicity parameters for organisms of interest. Finally, the prediction models were successfully verified against published data (including other wheat varieties and crops and used to evaluate the ecological risk of Pb for wheat in contaminated agricultural soils.

  5. Flow Forecasting in Drainage Systems with Extrapolated Radar Rainfall Data and Auto Calibration on Flow Observations

    DEFF Research Database (Denmark)

    Thorndahl, Søren Liedtke; Grum, M.; Rasmussen, Michael R.

    2011-01-01

    Forecasting of flows, overflow volumes, water levels, etc. in drainage systems can be applied in real time control of drainage systems in the future climate in order to fully utilize system capacity and thus save possible construction costs. An online system for forecasting flows and water levels......-calibrated on flow measurements in order to produce the best possible forecast for the drainage system at all times. The system shows great potential for the implementation of real time control in drainage systems and forecasting flows and water levels.......Forecasting of flows, overflow volumes, water levels, etc. in drainage systems can be applied in real time control of drainage systems in the future climate in order to fully utilize system capacity and thus save possible construction costs. An online system for forecasting flows and water levels...... in a small urban catchment has been developed. The forecast is based on application of radar rainfall data, which by a correlation based technique, is extrapolated with a lead time up to two hours. The runoff forecast in the drainage system is based on a fully distributed MOUSE model which is auto...

  6. Spatial extrapolation of light use efficiency model parameters to predict gross primary production

    Directory of Open Access Journals (Sweden)

    Karsten Schulz

    2011-12-01

    Full Text Available To capture the spatial and temporal variability of the gross primary production as a key component of the global carbon cycle, the light use efficiency modeling approach in combination with remote sensing data has shown to be well suited. Typically, the model parameters, such as the maximum light use efficiency, are either set to a universal constant or to land class dependent values stored in look-up tables. In this study, we employ the machine learning technique support vector regression to explicitly relate the model parameters of a light use efficiency model calibrated at several FLUXNET sites to site-specific characteristics obtained by meteorological measurements, ecological estimations and remote sensing data. A feature selection algorithm extracts the relevant site characteristics in a cross-validation, and leads to an individual set of characteristic attributes for each parameter. With this set of attributes, the model parameters can be estimated at sites where a parameter calibration is not possible due to the absence of eddy covariance flux measurement data. This will finally allow a spatially continuous model application. The performance of the spatial extrapolation scheme is evaluated with a cross-validation approach, which shows the methodology to be well suited to recapture the variability of gross primary production across the study sites.

  7. Employing Measures of Heterogeneity and an Object-Based Approach to Extrapolate Tree Species Distribution Data

    Directory of Open Access Journals (Sweden)

    Trevor G. Jones

    2014-07-01

    Full Text Available Information derived from high spatial resolution remotely sensed data is critical for the effective management of forested ecosystems. However, high spatial resolution data-sets are typically costly to acquire and process and usually provide limited geographic coverage. In contrast, moderate spatial resolution remotely sensed data, while not able to provide the spectral or spatial detail required for certain types of products and applications, offer inexpensive, comprehensive landscape-level coverage. This study assessed using an object-based approach to extrapolate detailed tree species heterogeneity beyond the extent of hyperspectral/LiDAR flightlines to the broader area covered by a Landsat scene. Using image segments, regression trees established ecologically decipherable relationships between tree species heterogeneity and the spectral properties of Landsat segments. The spectral properties of Landsat bands 4 (i.e., NIR: 0.76–0.90 µm, 5 (i.e., SWIR: 1.55–1.75 µm and 7 (SWIR: 2.08–2.35 µm were consistently selected as predictor variables, explaining approximately 50% of variance in richness and diversity. Results have important ramifications for ongoing management initiatives in the study area and are applicable to wide range of applications.

  8. Standardization of reference radiation field of beta for 85Kr using extrapolation chamber

    International Nuclear Information System (INIS)

    Nazaroh; Fendinugroho

    2013-01-01

    Standardization of reference radiation field of beta for 85 Kr in PTKMR-BATAN Laboratory has been performed at the SDD's 30 cm by using extrapolation chamber detector, coupled with Uni dose electrometer. The result was : (8.98±3 %) mGy/h, at 95 % confidence level. The aim of standardization of reference radiation field is to support radiation protection and safety program, provided by the International Atomic Energy Agency to its Member States, included BATAN-Indonesia, especially, PTKMR. The aim of radiation protection program and safety program is to promote an internationally harmonized approach for radiation measurement in protection level, besides for calibration of radiation measuring instrument, which users spread across Indonesia, with the number of about 795 firms in the year of 2012. These benefits can be felt by workers, communities and the environment, because by calibration, measurement survey meter, pocket dosimeter and TLD to be more accurate so that the radiation dose received by radiation workers is accurate and can be ascertained in a specified period, not to exceed a predetermined NBD by BAPETEN. The aim of this calibration is appropriate with the primary objective of calibration on IAEA/TRS16:2000. (author)

  9. Beyond the plot: technology extrapolation domains for scaling out agronomic science

    Science.gov (United States)

    Rattalino Edreira, Juan I.; Cassman, Kenneth G.; Hochman, Zvi; van Ittersum, Martin K.; van Bussel, Lenny; Claessens, Lieven; Grassini, Patricio

    2018-05-01

    Ensuring an adequate food supply in systems that protect environmental quality and conserve natural resources requires productive and resource-efficient cropping systems on existing farmland. Meeting this challenge will be difficult without a robust spatial framework that facilitates rapid evaluation and scaling-out of currently available and emerging technologies. Here we develop a global spatial framework to delineate ‘technology extrapolation domains’ based on key climate and soil factors that govern crop yields and yield stability in rainfed crop production. The proposed framework adequately represents the spatial pattern of crop yields and stability when evaluated over the data-rich US Corn Belt. It also facilitates evaluation of cropping system performance across continents, which can improve efficiency of agricultural research that seeks to intensify production on existing farmland. Populating this biophysical spatial framework with appropriate socio-economic attributes provides the potential to amplify the return on investments in agricultural research and development by improving the effectiveness of research prioritization and impact assessment.

  10. Monitoring corrosion and corrosion control of iron in HCl by non-ionic surfactants of the TRITON-X series - Part II. Temperature effect, activation energies and thermodynamics of adsorption

    International Nuclear Information System (INIS)

    Amin, Mohammed A.; Ahmed, M.A.; Arida, H.A.; Arslan, Taner; Saracoglu, Murat; Kandemirli, Fatma

    2011-01-01

    Research highlights: → TX-305 exhibits inhibiting properties for iron corrosion more than TX-165 and TX 100. → Inhibition efficiency increases with temperature, suggesting chemical adsorption. → The three tested surfactants act as mixed-type inhibitors with cathodic predominance. → Validation of corrosion rates measured by Tafel extrapolation method is confirmed. - Abstract: The inhibition characteristics of non-ionic surfactants of the TRITON-X series, namely TRITON-X-100 (TX-100), TRITON-X-165 (TX-165) and TRITON-X-305 (TX-305), on the corrosion of iron was studied in 1.0 M HCl solutions as a function of inhibitor concentration (0.005-0.075 g L -1 ) and solution temperature (278-338 K). Measurements were conducted based on Tafel extrapolation method. Electrochemical frequency modulation (EFM), a non-destructive corrosion measurement technique that can directly give values of corrosion current without prior knowledge of Tafel constants, is also presented. Experimental corrosion rates determined by the Tafel extrapolation method were compared with corrosion rates obtained by the EFM technique and an independent method of chemical analysis. The chemical method of confirmation of the corrosion rates involved determination of the dissolved cation, using ICP-AES (inductively coupled plasma atomic emission spectrometry). The aim was to confirm validation of corrosion rates measured by the Tafel extrapolation method. Results obtained showed that, in all cases, the inhibition efficiency increased with increase in temperature, suggesting that chemical adsorption occurs. The adsorptive behaviour of the three surfactants followed Temkin-type isotherm. The standard free energies of adsorption decreased with temperature, reflecting better inhibition performance. These findings confirm chemisorption of the tested inhibitors. Thermodynamic activation functions of the dissolution process were also calculated as a function of each inhibitor concentration. All the results

  11. In vitro to in vivo extrapolation of effective dosimetry in developmental toxicity testing : Application of a generic PBK modelling approach

    NARCIS (Netherlands)

    Fragki, Styliani; Piersma, Aldert H; Rorije, Emiel; Zeilmaker, Marco J

    2017-01-01

    Incorporation of kinetics to quantitative in vitro to in vivo extrapolations (QIVIVE) is a key step for the realization of a non-animal testing paradigm, in the sphere of regulatory toxicology. The use of Physiologically-Based Kinetic (PBK) modelling for determining systemic doses of chemicals at

  12. In vitro to in vivo extrapolation of effective dosimetry in developmental toxicity testing: Application of a generic PBK modelling approach.

    NARCIS (Netherlands)

    Fragki, Styliani; Piersma, Aldert H; Rorije, Emiel; Zeilmaker, Marco J

    2017-01-01

    Incorporation of kinetics to quantitative in vitro to in vivo extrapolations (QIVIVE) is a key step for the realization of a non-animal testing paradigm, in the sphere of regulatory toxicology. The use of Physiologically-Based Kinetic (PBK) modelling for determining systemic doses of chemicals at

  13. The importance of inclusion of kinetic information in the extrapolation of high-to-low concentrations for human limit setting.

    NARCIS (Netherlands)

    Geraets, Liesbeth; Zeilmaker, Marco J; Bos, Peter M J

    2018-01-01

    Human health risk assessment of inhalation exposures generally includes a high-to-low concentration extrapolation. Although this is a common step in human risk assessment, it introduces various uncertainties. One of these uncertainties is related to the toxicokinetics. Many kinetic processes such as

  14. Kinetic Monte Carlo simulations of water ice porosity: extrapolations of deposition parameters from the laboratory to interstellar space

    Science.gov (United States)

    Clements, Aspen R.; Berk, Brandon; Cooke, Ilsa R.; Garrod, Robin T.

    2018-02-01

    Using an off-lattice kinetic Monte Carlo model we reproduce experimental laboratory trends in the density of amorphous solid water (ASW) for varied deposition angle, rate and surface temperature. Extrapolation of the model to conditions appropriate to protoplanetary disks and interstellar dark clouds indicate that these ices may be less porous than laboratory ices.

  15. Extrapolation of the FOM 1 MW free-electron maser to a multi-megawatt millimeter microwave source

    NARCIS (Netherlands)

    Caplan, M.; Valentini, M.; Verhoeven, A.; Urbanus, W.; Tulupov, A.

    1997-01-01

    A Free-Electron Maser is now under test at the FOM Institute (Rijnhuizen, Netherlands) with the goal of producing 1 MW long pulse to CW microwave output in the range 130-250 GHz with wall plug efficiencies of 60%. An extrapolated version of this device is proposed, which by scaling up beam current

  16. Extrapolated surface dose measurements using a NdFeB magnetic deflector for 6 MV x-ray beams.

    Science.gov (United States)

    Damrongkijudom, N; Butson, M; Rosenfeld, A

    2007-03-01

    Extrapolated surface dose measurements have been performed using radiographic film to measure 2-Dimensional maps of skin and surface dose with and without a magnetic deflector device aimed at reducing surface dose. Experiments are also performed using an Attix parallel plate ionisation chamber for comparison to radiographic film extrapolation surface dose analysis. Extrapolated percentage surface dose assessments from radiographic film at the central axis of a 6 MV x-ray beam with magnetic deflector for field size 10 x 10 cm2, 15 x 15 cm2 and 20 x 20 cm2 are 9 +/- 3%, 13 +/- 3% and 16 +/- 3%, these compared to 14 +/- 3%, 19 +/- 3%, and 27 +/- 3% for open fields, respectively. Results from Attix chamber for the same field size are 12 +/- 1%, 15 +/- 1% and 18 +/- 1%, these compared to 16 +/- 1%, 21 +/- 1% and 27 +/- 1% for open fields, respectively. Results are also shown for profiles measured in-plane and cross-plane to the magnetic deflector and compared to open field data. Results have shown that the surface dose is reduced at all sites within the treatment field with larger reductions seen on one side of the field due to the sweeping nature of the designed magnetic field. Radiographic film extrapolation provides an advanced surface dose assessment and has matched well with Attix chamber results. Film measurement allows for easy 2 dimensional dose assessments.

  17. Depth dose distribution in the water for clinical applicators of 90Sr + 90Y, with a extrapolation mini chamber

    International Nuclear Information System (INIS)

    Antonio, Patricia de Lara; Caldas, Linda V.E.; Oliveira, Mercia L.

    2009-01-01

    This work determines the depth dose in the water for clinical applicators of 90 Sr + 90 Y, using a extrapolation mini chamber developed at the IPEN, Sao Paulo, Brazil, and different thickness acrylic plates. The obtained results were compared with the international recommendations and were considered satisfactory

  18. Multiple time step molecular dynamics in the optimized isokinetic ensemble steered with the molecular theory of solvation: Accelerating with advanced extrapolation of effective solvation forces

    International Nuclear Information System (INIS)

    Omelyan, Igor; Kovalenko, Andriy

    2013-01-01

    We develop efficient handling of solvation forces in the multiscale method of multiple time step molecular dynamics (MTS-MD) of a biomolecule steered by the solvation free energy (effective solvation forces) obtained from the 3D-RISM-KH molecular theory of solvation (three-dimensional reference interaction site model complemented with the Kovalenko-Hirata closure approximation). To reduce the computational expenses, we calculate the effective solvation forces acting on the biomolecule by using advanced solvation force extrapolation (ASFE) at inner time steps while converging the 3D-RISM-KH integral equations only at large outer time steps. The idea of ASFE consists in developing a discrete non-Eckart rotational transformation of atomic coordinates that minimizes the distances between the atomic positions of the biomolecule at different time moments. The effective solvation forces for the biomolecule in a current conformation at an inner time step are then extrapolated in the transformed subspace of those at outer time steps by using a modified least square fit approach applied to a relatively small number of the best force-coordinate pairs. The latter are selected from an extended set collecting the effective solvation forces obtained from 3D-RISM-KH at outer time steps over a broad time interval. The MTS-MD integration with effective solvation forces obtained by converging 3D-RISM-KH at outer time steps and applying ASFE at inner time steps is stabilized by employing the optimized isokinetic Nosé-Hoover chain (OIN) ensemble. Compared to the previous extrapolation schemes used in combination with the Langevin thermostat, the ASFE approach substantially improves the accuracy of evaluation of effective solvation forces and in combination with the OIN thermostat enables a dramatic increase of outer time steps. We demonstrate on a fully flexible model of alanine dipeptide in aqueous solution that the MTS-MD/OIN/ASFE/3D-RISM-KH multiscale method of molecular dynamics

  19. Extrapolation of rate constants of reactions producing H{sub 2} and O{sub 2} in radiolysis of water at high temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Leblanc, R.; Ghandi, K.; Hackman, B.; Liu, G. [Mount Allison Univ., Sackville, NB (Canada)

    2014-07-01

    One target of our research is to extrapolate known data on the rate constants of reactions and add corrections to estimate the rate constants at the higher temperatures reached by the SCWR reactors. The focus of this work was to extrapolate known data on the rate constants of reactions that produce Hydrogen or Oxygen with a rate constant below 10{sup 10} mol{sup -1} s{sup -1} at room temperature. The extrapolation is done taking into account the change in the diffusion rate of the interacting species and the cage effect with thermodynamic conditions. The extrapolations are done over a wide temperature range and under isobaric conditions. (author)

  20. Accelerated aging embrittlement of cast duplex stainless steel: Activation energy for extrapolation

    International Nuclear Information System (INIS)

    Chung, H.M.; Chopra, O.K.

    1989-05-01

    Cast duplex stainless steels, used extensively in LWR systems for primary pressure boundary components such as primary coolant pipes, valves, and pumps, are susceptible to thermal aging embrittlement at reactor operating or higher temperatures. Since a realistic aging embrittlement for end-of-life or life-extension conditions (i.e., 32--50 yr of aging at 280--320 degree C) cannot be produced, it is customary to simulate the metallurgical structure by accelerated aging at ∼400 degree C. Over the past several years, extensive data on accelerated aging have been reported from a number of laboratories. The most important information from these studies is the activation energy, namely, the temperature dependence of the aging kinetics between 280 and 400 degree C, which is used to extrapolate the aging characteristics to reactor operating conditions. The activation energies (in the range of 18--50 kcal/mole) are, in general, sensitive to material grade, chemical composition, and fabrication process, and a few empirical correlations, obtained as a function of bulk chemical composition, have been reported. In this paper, a mechanistic understanding of the activation energy is described on the basis of the results of microstructural characterization of various heats of CF-3, -8, and -8M grades that were used in aging studies at different laboratories. The primary mechanism of aging embrittlement at temperatures between 280 and 400 degree C is the spinodal decomposition of the ferrite phase, and M 23 C 6 carbide precipitation on the ferrite/austenite boundaries is the secondary mechanism for high-carbon CF-8 grade. 20 refs., 10 figs., 3 tabs

  1. Deposition of inhaled radionuclides in bronchial airways: Implications for extrapolation modeling

    International Nuclear Information System (INIS)

    Balashazy, I.; Hofmann, W.; Heistracher, T.

    1996-01-01

    The laboratory rat has frequently been used as a human surrogate to estimate potential health effects following the inhalation of radioactive aerosol particles. Interspecies differences in biological response are commonly related to interspecies differences in particle deposition efficiencies. In addition, the documented site selectivity of bronchial carcinomas suggests that localized particle deposition patterns within bronchial airway bifurcations may have important implications for inhalation risk assessments. Interspecies differences in particle deposition patterns may be related primarily to differences in airway morphometries. Thus the validity of extrapolating rat deposition data to human inhalation conditions depends on their morphometric similarities and differences. It is well known that there are significant structural differences between the human - rather symmetric - and the rat - monopodial - airway systems. In the present approach, we focus on localized deposition patterns and deposition efficiencies in selected asymmetric bronchial airway bifurcations, whose diameters, lengths and branching angles were derived from the stochastic airway models of human and rat lungs (Koblinger and Hofmann, 1985;1988), which are based on the morphometric data of Raabe et al. (1976). The effects of interspecies differences in particle deposition patterns are explored in this study for two asymmetric bifurcation geometries in segmental bronchi and terminal bronchioles of both the human and rat lungs at different particle sizes. In order to examine the effect of flow rate on particle deposition in the human lung, we selected two different minute volumes, i.e., 10 and 60 1 min -1 , which are representative of low and heavy physical activity breathing conditions. In the case of the rat we used a minute volume of 0.234 1 min -1 (Hofmann et al., 1993)

  2. Measurement of absorbed dose with a bone-equivalent extrapolation chamber

    International Nuclear Information System (INIS)

    DeBlois, Francois; Abdel-Rahman, Wamied; Seuntjens, Jan P.; Podgorsak, Ervin B.

    2002-01-01

    A hybrid phantom-embedded extrapolation chamber (PEEC) made of Solid Water trade mark sign and bone-equivalent material was used for determining absorbed dose in a bone-equivalent phantom irradiated with clinical radiation beams (cobalt-60 gamma rays; 6 and 18 MV x rays; and 9 and 15 MeV electrons). The dose was determined with the Spencer-Attix cavity theory, using ionization gradient measurements and an indirect determination of the chamber air-mass through measurements of chamber capacitance. The collected charge was corrected for ionic recombination and diffusion in the chamber air volume following the standard two-voltage technique. Due to the hybrid chamber design, correction factors accounting for scatter deficit and electrode composition were determined and applied in the dose equation to obtain absorbed dose in bone for the equivalent homogeneous bone phantom. Correction factors for graphite electrodes were calculated with Monte Carlo techniques and the calculated results were verified through relative air cavity dose measurements for three different polarizing electrode materials: graphite, steel, and brass in conjunction with a graphite collecting electrode. Scatter deficit, due mainly to loss of lateral scatter in the hybrid chamber, reduces the dose to the air cavity in the hybrid PEEC in comparison with full bone PEEC by 0.7% to ∼2% depending on beam quality and energy. In megavoltage photon and electron beams, graphite electrodes do not affect the dose measurement in the Solid Water trade mark sign PEEC but decrease the cavity dose by up to 5% in the bone-equivalent PEEC even for very thin graphite electrodes (<0.0025 cm). In conjunction with appropriate correction factors determined with Monte Carlo techniques, the uncalibrated hybrid PEEC can be used for measuring absorbed dose in bone material to within 2% for high-energy photon and electron beams

  3. Efficacy and Safety Extrapolation Analyses for Atomoxetine in Young Children with Attention-Deficit/Hyperactivity Disorder.

    Science.gov (United States)

    Upadhyaya, Himanshu; Kratochvil, Christopher; Ghuman, Jaswinder; Camporeale, Angelo; Lipsius, Sarah; D'Souza, Deborah; Tanaka, Yoko

    2015-12-01

    This extrapolation analysis qualitatively compared the efficacy and safety profile of atomoxetine from Lilly clinical trial data in 6-7-year-old patients with attention-deficit/hyperactivity disorder (ADHD) with that of published literature in 4-5-year-old patients with ADHD (two open-label [4-5-year-old patients] and one placebo-controlled study [5-year-old patients]). The main efficacy analyses included placebo-controlled Lilly data and the placebo-controlled external study (5-year-old patients) data. The primary efficacy variables used in these studies were the ADHD Rating Scale-IV Parent Version, Investigator Administered (ADHD-RS-IV-Parent:Inv) total score, or the Swanson, Nolan and Pelham (SNAP-IV) scale score. Safety analyses included treatment-emergent adverse events (TEAEs) and vital signs. Descriptive statistics (means, percentages) are presented. Acute atomoxetine treatment improved core ADHD symptoms in both 6-7-year-old patients (n=565) and 5-year-old patients (n=37) (treatment effect: -10.16 and -7.42). In an analysis of placebo-controlled groups, the mean duration of exposure to atomoxetine was ∼ 7 weeks for 6-7-year-old patients and 9 weeks for 5-year-old patients. Decreased appetite was the most common TEAE in atomoxetine-treated patients. The TEAEs observed at a higher rate in 5-year-old versus 6-7-year-old patients were irritability (36.8% vs. 3.6%) and other mood-related events (6.9% each vs. atomoxetine may improve ADHD symptoms, but possibly to a lesser extent than in older children, with some adverse events occurring at a higher rate in 5-year-old patients.

  4. The cerebellum and visual perceptual learning: evidence from a motion extrapolation task.

    Science.gov (United States)

    Deluca, Cristina; Golzar, Ashkan; Santandrea, Elisa; Lo Gerfo, Emanuele; Eštočinová, Jana; Moretto, Giuseppe; Fiaschi, Antonio; Panzeri, Marta; Mariotti, Caterina; Tinazzi, Michele; Chelazzi, Leonardo

    2014-09-01

    Visual perceptual learning is widely assumed to reflect plastic changes occurring along the cerebro-cortical visual pathways, including at the earliest stages of processing, though increasing evidence indicates that higher-level brain areas are also involved. Here we addressed the possibility that the cerebellum plays an important role in visual perceptual learning. Within the realm of motor control, the cerebellum supports learning of new skills and recalibration of motor commands when movement execution is consistently perturbed (adaptation). Growing evidence indicates that the cerebellum is also involved in cognition and mediates forms of cognitive learning. Therefore, the obvious question arises whether the cerebellum might play a similar role in learning and adaptation within the perceptual domain. We explored a possible deficit in visual perceptual learning (and adaptation) in patients with cerebellar damage using variants of a novel motion extrapolation, psychophysical paradigm. Compared to their age- and gender-matched controls, patients with focal damage to the posterior (but not the anterior) cerebellum showed strongly diminished learning, in terms of both rate and amount of improvement over time. Consistent with a double-dissociation pattern, patients with focal damage to the anterior cerebellum instead showed more severe clinical motor deficits, indicative of a distinct role of the anterior cerebellum in the motor domain. The collected evidence demonstrates that a pure form of slow-incremental visual perceptual learning is crucially dependent on the intact cerebellum, bearing the notion that the human cerebellum acts as a learning device for motor, cognitive and perceptual functions. We interpret the deficit in terms of an inability to fine-tune predictive models of the incoming flow of visual perceptual input over time. Moreover, our results suggest a strong dissociation between the role of different portions of the cerebellum in motor versus

  5. Extrapolation of short term observations to time periods relevant to the isolation of long lived radioactive waste. Results of a co-ordinated research project 1995-2000

    International Nuclear Information System (INIS)

    2000-09-01

    This report addresses safety analysis of the whole repository life-cycle that may require long term performance assessment of its components and evaluation of potential impacts of the facility on the environment. Generic consideration of procedures for the development of predictive tools are completed by detailed characterization of selected principles and methods that were applied and presented within the co-ordinated research project (CRP). The project focused on different approaches to extrapolation, considering radionuclide migration/sorption, physical, geochemical and geotechnical characteristics of engineered barriers, irradiated rock and backfill performance, and on corrosion of metallic and vitreous materials. This document contains a comprehensive discussion of the overall problem and the practical results of the individual projects preformed within the CRP. Each of the papers on the individual projects has been indexed separately

  6. Predicting treatment effect from surrogate endpoints and historical trials: an extrapolation involving probabilities of a binary outcome or survival to a specific time.

    Science.gov (United States)

    Baker, Stuart G; Sargent, Daniel J; Buyse, Marc; Burzykowski, Tomasz

    2012-03-01

    Using multiple historical trials with surrogate and true endpoints, we consider various models to predict the effect of treatment on a true endpoint in a target trial in which only a surrogate endpoint is observed. This predicted result is computed using (1) a prediction model (mixture, linear, or principal stratification) estimated from historical trials and the surrogate endpoint of the target trial and (2) a random extrapolation error estimated from successively leaving out each trial among the historical trials. The method applies to either binary outcomes or survival to a particular time that is computed from censored survival data. We compute a 95% confidence interval for the predicted result and validate its coverage using simulation. To summarize the additional uncertainty from using a predicted instead of true result for the estimated treatment effect, we compute its multiplier of standard error. Software is available for download. © 2011, The International Biometric Society No claim to original US government works.

  7. Does the Brain Extrapolate the Position of a Transient Moving Target?

    Science.gov (United States)

    Quinet, Julie; Goffart, Laurent

    2015-08-26

    , we provide results that are critical for investigating and understanding the neural basis of motion extrapolation and prediction. Copyright © 2015 the authors 0270-6474/15/3511780-11$15.00/0.

  8. Diagnostic extrapolation of gross primary production from flux tower sites to the globe

    Science.gov (United States)

    Beer, Christian; Reichstein, Markus; Tomelleri, Enrico; Ciais, Philippe; Jung, Martin; Carvalhais, Nuno; Rödenbeck, Christian; Baldocchi, Dennis; Luyssaert, Sebastiaan; Papale, Dario

    2010-05-01

    The uptake of atmospheric CO2 by plant photosynthesis is the largest global carbon flux and is thought of driving most terrestrial carbon cycle processes. While the photosynthesis processes at the leaf and canopy levels are quite well understood, so far only very crude estimates of its global integral, the Gross Primary Production (GPP) can be found in the literature. Existing estimates have been lacking sound empirical basis. Reasons for such limitations lie in the absence of direct estimates of ecosystem-level GPP and methodological difficulties in scaling local carbon flux measurements to global scale across heterogeneous vegetation. Here, we present global estimates of GPP based on different diagnostic approaches. These up-scaling schemes integrated high-resolution remote sensing products, such as land cover, the fraction of photosynthetically active radiation (fAPAR) and leaf-area index, with carbon flux measurements from the global network of eddy covariance stations (FLUXNET). In addition, meteorological datasets from diverse sources and river runoff observations were used. All the above-mentioned approaches were also capable of estimating uncertainties. With six novel or newly parameterized and highly diverse up-scaling schemes we consistently estimated a global GPP of 122 Pg C y-1. In the quantification of the total uncertainties, we considered uncertainties arising from the measurement technique and data processing (i.e. partitioning into GPP and respiration). Furthermore, we accounted for the uncertainties of drivers and the structural uncertainties of the extrapolation approach. The total propagation led to a global uncertainty of 15 % of the mean value. Although our mean GPP estimate of 122 Pg C y-1 is similar to the previous postulate by Intergovernmental Panel on Climate Change in 2001, we estimated a different variability among ecoregions. The tropics accounted for 32 % of GPP showing a greater importance of tropical ecosystems for the global carbon

  9. Characterization of a extrapolation chamber in standard X-ray beam, radiodiagnosis level; Caracterizacao de uma camara de extrapolacao em feixes padroes de raios X, nivel radiodiagnostico

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Eric A.B. da; Caldas, Linda V.E., E-mail: ebrito@usp.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-10-26

    The extrapolation chamber is a ionization chamber used for detection low energy radiation and can be used as an standard instrument for beta radiation beams. This type of ionization chamber have as main characteristic the variation of sensible volume. This paper performs a study of characterization of a PTW commercial extrapolation chamber, in the energy interval of the qualities of conventional radiodiagnostic

  10. Short-Term Forecasting of Urban Storm Water Runoff in Real-Time using Extrapolated Radar Rainfall Data

    DEFF Research Database (Denmark)

    Thorndahl, Søren Liedtke; Rasmussen, Michael R.

    2013-01-01

    Model based short-term forecasting of urban storm water runoff can be applied in realtime control of drainage systems in order to optimize system capacity during rain and minimize combined sewer overflows, improve wastewater treatment or activate alarms if local flooding is impending. A novel onl....... The radar rainfall extrapolation (nowcast) limits the lead time of the system to two hours. In this paper, the model set-up is tested on a small urban catchment for a period of 1.5 years. The 50 largest events are presented....... online system, which forecasts flows and water levels in real-time with inputs from extrapolated radar rainfall data, has been developed. The fully distributed urban drainage model includes auto-calibration using online in-sewer measurements which is seen to improve forecast skills significantly...

  11. Characterization of an extrapolation chamber and radiochromic films for verifying the metrological coherence among beta radiation fields

    International Nuclear Information System (INIS)

    Castillo, Jhonny Antonio Benavente

    2011-01-01

    The metrological coherence among standard systems is a requirement for assuring the reliability of dosimetric quantities measurements in ionizing radiation field. Scientific and technologic improvements happened in beta radiation metrology with the installment of the new beta secondary standard BSS2 in Brazil and with the adoption of the internationally recommended beta reference radiations. The Dosimeter Calibration Laboratory of the Development Center for Nuclear Technology (LCD/CDTN), in Belo Horizonte, implemented the BSS2 and methodologies are investigated for characterizing the beta radiation fields by determining the field homogeneity, the accuracy and uncertainties in the absorbed dose in air measurements. In this work, a methodology to be used for verifying the metrological coherence among beta radiation fields in standard systems was investigated; an extrapolation chamber and radiochromic films were used and measurements were done in terms of absorbed dose in air. The reliability of both the extrapolation chamber and the radiochromic film was confirmed and their calibrations were done in the LCD/CDTN in 90 Sr/ 90 Y, 85 Kr and 147 Pm beta radiation fields. The angular coefficients of the extrapolation curves were determined with the chamber; the field mapping and homogeneity were obtained from dose profiles and isodose with the radiochromic films. A preliminary comparison between the LCD/CDTN and the Instrument Calibration Laboratory of the Nuclear and Energy Research Institute / Sao Paulo (LCI/IPEN) was carried out. Results with the extrapolation chamber measurements showed in terms of absorbed dose in air rates showed differences between both laboratories up to de -I % e 3%, for 90 Sr/ 90 Y, 85 Kr and 147 Pm beta radiation fields, respectively. Results with the EBT radiochromic films for 0.1, 0.3 and 0.15 Gy absorbed dose in air, for the same beta radiation fields, showed differences up to 3%, -9% and -53%. The beta radiation field mappings with

  12. A stabilized MFE reduced-order extrapolation model based on POD for the 2D unsteady conduction-convection problem

    Directory of Open Access Journals (Sweden)

    Hong Xia

    2017-05-01

    Full Text Available Abstract In this study, we devote ourselves to establishing a stabilized mixed finite element (MFE reduced-order extrapolation (SMFEROE model holding seldom unknowns for the two-dimensional (2D unsteady conduction-convection problem via the proper orthogonal decomposition (POD technique, analyzing the existence and uniqueness and the stability as well as the convergence of the SMFEROE solutions and validating the correctness and dependability of the SMFEROE model by means of numerical simulations.

  13. A stabilized MFE reduced-order extrapolation model based on POD for the 2D unsteady conduction-convection problem.

    Science.gov (United States)

    Xia, Hong; Luo, Zhendong

    2017-01-01

    In this study, we devote ourselves to establishing a stabilized mixed finite element (MFE) reduced-order extrapolation (SMFEROE) model holding seldom unknowns for the two-dimensional (2D) unsteady conduction-convection problem via the proper orthogonal decomposition (POD) technique, analyzing the existence and uniqueness and the stability as well as the convergence of the SMFEROE solutions and validating the correctness and dependability of the SMFEROE model by means of numerical simulations.

  14. Verification of absorbed dose rates in reference beta radiation fields: measurements with an extrapolation chamber and radiochromic film

    Energy Technology Data Exchange (ETDEWEB)

    Reynaldo, S. R. [Development Centre of Nuclear Technology, Posgraduate Course in Science and Technology of Radiations, Minerals and Materials / CNEN, Av. Pte. Antonio Carlos 6627, 31270-901 Belo Horizonte, Minas Gerais (Brazil); Benavente C, J. A.; Da Silva, T. A., E-mail: sirr@cdtn.br [Development Centre of Nuclear Technology / CNEN, Av. Pte. Antonio Carlos 6627, 31270-901 Belo Horizonte, Minas Gerais (Brazil)

    2015-10-15

    Beta Secondary Standard 2 (Bss 2) provides beta radiation fields with certified values of absorbed dose to tissue and the derived operational radiation protection quantities. As part of the quality assurance, metrology laboratories are required to verify the reliability of the Bss-2 system by performing additional verification measurements. In the CDTN Calibration Laboratory, the absorbed dose rates and their angular variation in the {sup 90}Sr/{sup 90}Y and {sup 85}Kr beta radiation fields were studied. Measurements were done with a 23392 model PTW extrapolation chamber and with Gafchromic radiochromic films on a PMMA slab phantom. In comparison to the certificate values provided by the Bss-2, absorbed dose rates measured with the extrapolation chamber differed from -1.4 to 2.9% for the {sup 90}Sr/{sup 90}Y and -0.3% for the {sup 85}Kr fields; their angular variation showed differences lower than 2% for incidence angles up to 40-degrees and it reached 11% for higher angles, when compared to ISO values. Measurements with the radiochromic film showed an asymmetry of the radiation field that is caused by a misalignment. Differences between the angular variations of absorbed dose rates determined by both dosimetry systems suggested that some correction factors for the extrapolation chamber that were not considered should be determined. (Author)

  15. Testing a solar coronal magnetic field extrapolation code with the Titov–Démoulin magnetic flux rope model

    International Nuclear Information System (INIS)

    Jiang, Chao-Wei; Feng, Xue-Shang

    2016-01-01

    In the solar corona, the magnetic flux rope is believed to be a fundamental structure that accounts for magnetic free energy storage and solar eruptions. Up to the present, the extrapolation of the magnetic field from boundary data has been the primary way to obtain fully three-dimensional magnetic information about the corona. As a result, the ability to reliably recover the coronal magnetic flux rope is important for coronal field extrapolation. In this paper, our coronal field extrapolation code is examined with an analytical magnetic flux rope model proposed by Titov and Démoulin, which consists of a bipolar magnetic configuration holding a semi-circular line-tied flux rope in force-free equilibrium. By only using the vector field at the bottom boundary as input, we test our code with the model in a representative range of parameter space and find that the model field can be reconstructed with high accuracy. In particular, the magnetic topological interfaces formed between the flux rope and the surrounding arcade, i.e., the “hyperbolic flux tube” and “bald patch separatrix surface,” are also reliably reproduced. By this test, we demonstrate that our CESE–MHD–NLFFF code can be applied to recovering the magnetic flux rope in the solar corona as long as the vector magnetogram satisfies the force-free constraints. (paper)

  16. Characterization of an extrapolation chamber for low-energy X-rays: Experimental and Monte Carlo preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Neves, Lucio P., E-mail: lpneves@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN), Comissao Nacional de Energia Nuclear, Av. Prof. Lineu Prestes 2242, 05508-000 Sao Paulo, SP (Brazil); Silva, Eric A.B., E-mail: ebrito@usp.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN), Comissao Nacional de Energia Nuclear, Av. Prof. Lineu Prestes 2242, 05508-000 Sao Paulo, SP (Brazil); Perini, Ana P., E-mail: aperini@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN), Comissao Nacional de Energia Nuclear, Av. Prof. Lineu Prestes 2242, 05508-000 Sao Paulo, SP (Brazil); Maidana, Nora L., E-mail: nmaidana@if.usp.br [Universidade de Sao Paulo, Instituto de Fisica, Travessa R 187, 05508-900 Sao Paulo, SP (Brazil); Caldas, Linda V.E., E-mail: lcaldas@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN), Comissao Nacional de Energia Nuclear, Av. Prof. Lineu Prestes 2242, 05508-000 Sao Paulo, SP (Brazil)

    2012-07-15

    The extrapolation chamber is a parallel-plate ionization chamber that allows variation of its air-cavity volume. In this work, an experimental study and MCNP-4C Monte Carlo code simulations of an ionization chamber designed and constructed at the Calibration Laboratory at IPEN to be used as a secondary dosimetry standard for low-energy X-rays are reported. The results obtained were within the international recommendations, and the simulations showed that the components of the extrapolation chamber may influence its response up to 11.0%. - Highlights: Black-Right-Pointing-Pointer A homemade extrapolation chamber was studied experimentally and with Monte Carlo. Black-Right-Pointing-Pointer It was characterized as a secondary dosimetry standard, for low energy X-rays. Black-Right-Pointing-Pointer Several characterization tests were performed and the results were satisfactory. Black-Right-Pointing-Pointer Simulation showed that its components may influence the response up to 11.0%. Black-Right-Pointing-Pointer This chamber may be used as a secondary standard at our laboratory.

  17. Verification of absorbed dose rates in reference beta radiation fields: measurements with an extrapolation chamber and radiochromic film

    International Nuclear Information System (INIS)

    Reynaldo, S. R.; Benavente C, J. A.; Da Silva, T. A.

    2015-10-01

    Beta Secondary Standard 2 (Bss 2) provides beta radiation fields with certified values of absorbed dose to tissue and the derived operational radiation protection quantities. As part of the quality assurance, metrology laboratories are required to verify the reliability of the Bss-2 system by performing additional verification measurements. In the CDTN Calibration Laboratory, the absorbed dose rates and their angular variation in the 90 Sr/ 90 Y and 85 Kr beta radiation fields were studied. Measurements were done with a 23392 model PTW extrapolation chamber and with Gafchromic radiochromic films on a PMMA slab phantom. In comparison to the certificate values provided by the Bss-2, absorbed dose rates measured with the extrapolation chamber differed from -1.4 to 2.9% for the 90 Sr/ 90 Y and -0.3% for the 85 Kr fields; their angular variation showed differences lower than 2% for incidence angles up to 40-degrees and it reached 11% for higher angles, when compared to ISO values. Measurements with the radiochromic film showed an asymmetry of the radiation field that is caused by a misalignment. Differences between the angular variations of absorbed dose rates determined by both dosimetry systems suggested that some correction factors for the extrapolation chamber that were not considered should be determined. (Author)

  18. Improving in vitro to in vivo extrapolation by incorporating toxicokinetic measurements: A case study of lindane-induced neurotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Croom, Edward L.; Shafer, Timothy J.; Evans, Marina V.; Mundy, William R.; Eklund, Chris R.; Johnstone, Andrew F.M.; Mack, Cina M.; Pegram, Rex A., E-mail: pegram.rex@epa.gov

    2015-02-15

    Approaches for extrapolating in vitro toxicity testing results for prediction of human in vivo outcomes are needed. The purpose of this case study was to employ in vitro toxicokinetics and PBPK modeling to perform in vitro to in vivo extrapolation (IVIVE) of lindane neurotoxicity. Lindane cell and media concentrations in vitro, together with in vitro concentration-response data for lindane effects on neuronal network firing rates, were compared to in vivo data and model simulations as an exercise in extrapolation for chemical-induced neurotoxicity in rodents and humans. Time- and concentration-dependent lindane dosimetry was determined in primary cultures of rat cortical neurons in vitro using “faux” (without electrodes) microelectrode arrays (MEAs). In vivo data were derived from literature values, and physiologically based pharmacokinetic (PBPK) modeling was used to extrapolate from rat to human. The previously determined EC{sub 50} for increased firing rates in primary cultures of cortical neurons was 0.6 μg/ml. Media and cell lindane concentrations at the EC{sub 50} were 0.4 μg/ml and 7.1 μg/ml, respectively, and cellular lindane accumulation was time- and concentration-dependent. Rat blood and brain lindane levels during seizures were 1.7–1.9 μg/ml and 5–11 μg/ml, respectively. Brain lindane levels associated with seizures in rats and those predicted for humans (average = 7 μg/ml) by PBPK modeling were very similar to in vitro concentrations detected in cortical cells at the EC{sub 50} dose. PBPK model predictions matched literature data and timing. These findings indicate that in vitro MEA results are predictive of in vivo responses to lindane and demonstrate a successful modeling approach for IVIVE of rat and human neurotoxicity. - Highlights: • In vitro to in vivo extrapolation for lindane neurotoxicity was performed. • Dosimetry of lindane in a micro-electrode array (MEA) test system was assessed. • Cell concentrations at the MEA EC

  19. Robust extrapolation scheme for fast estimation of 3D Ising field partition functions: application to within subject fMRI data

    Energy Technology Data Exchange (ETDEWEB)

    Risser, L.; Vincent, T.; Ciuciu, Ph. [NeuroSpin CEA, F-91191 Gif sur Yvette (France); Risser, L.; Vincent, T. [Laboratoire de Neuroimagerie Assistee par Ordinateur (LNAO) CEA - DSV/I2BM/NEUROSPIN (France); Risser, L. [Institut de mecanique des fluides de Toulouse (IMFT), CNRS: UMR5502 - Universite Paul Sabatier - Toulouse III - Institut National Polytechnique de Toulouse - INPT (France); Idier, J. [Institut de Recherche en Communications et en Cybernetique de Nantes (IRCCyN) CNRS - UMR6597 - Universite de Nantes - ecole Centrale de Nantes - Ecole des Mines de Nantes - Ecole Polytechnique de l' Universite de Nantes (France)

    2009-07-01

    In this paper, we present a first numerical scheme to estimate Partition Functions (PF) of 3D Ising fields. Our strategy is applied to the context of the joint detection-estimation of brain activity from functional Magnetic Resonance Imaging (fMRI) data, where the goal is to automatically recover activated regions and estimate region-dependent, hemodynamic filters. For any region, a specific binary Markov random field may embody spatial correlation over the hidden states of the voxels by modeling whether they are activated or not. To make this spatial regularization fully adaptive, our approach is first based upon it, classical path-sampling method to approximate a small subset of reference PFs corresponding to pre-specified regions. Then, file proposed extrapolation method allows its to approximate the PFs associated with the Ising fields defined over the remaining brain regions. In comparison with preexisting approaches, our method is robust; to topological inhomogeneities in the definition of the reference regions. As a result, it strongly alleviates the computational burden and makes spatially adaptive regularization of whole brain fMRI datasets feasible. (authors)

  20. Is the climate right for pleistocene rewilding? Using species distribution models to extrapolate climatic suitability for mammals across continents.

    Directory of Open Access Journals (Sweden)

    Orien M W Richmond

    Full Text Available Species distribution models (SDMs are increasingly used for extrapolation, or predicting suitable regions for species under new geographic or temporal scenarios. However, SDM predictions may be prone to errors if species are not at equilibrium with climatic conditions in the current range and if training samples are not representative. Here the controversial "Pleistocene rewilding" proposal was used as a novel example to address some of the challenges of extrapolating modeled species-climate relationships outside of current ranges. Climatic suitability for three proposed proxy species (Asian elephant, African cheetah and African lion was extrapolated to the American southwest and Great Plains using Maxent, a machine-learning species distribution model. Similar models were fit for Oryx gazella, a species native to Africa that has naturalized in North America, to test model predictions. To overcome biases introduced by contracted modern ranges and limited occurrence data, random pseudo-presence points generated from modern and historical ranges were used for model training. For all species except the oryx, models of climatic suitability fit to training data from historical ranges produced larger areas of predicted suitability in North America than models fit to training data from modern ranges. Four naturalized oryx populations in the American southwest were correctly predicted with a generous model threshold, but none of these locations were predicted with a more stringent threshold. In general, the northern Great Plains had low climatic suitability for all focal species and scenarios considered, while portions of the southern Great Plains and American southwest had low to intermediate suitability for some species in some scenarios. The results suggest that the use of historical, in addition to modern, range information and randomly sampled pseudo-presence points may improve model accuracy. This has implications for modeling range shifts of

  1. Extrapolation of contrail investigations by LIDAR to larger scale measurements. Analysis and calibration of CCD camera and satellite images

    Energy Technology Data Exchange (ETDEWEB)

    Sussmann, R.; Homburg, F.; Freudenthaler, V.; Jaeger, H. [Frauenhofer Inst. fuer Atmosphaerische Umweltforschung, Garmisch-Partenkirchen (Germany)

    1997-12-31

    The CCD image of a persistent contrail and the coincident LIDAR measurement are presented. To extrapolate the LIDAR derived optical thickness to the video field of view an anisotropy correction and calibration has to be performed. Observed bright halo components result from highly regular oriented hexagonal crystals with sizes of 200 {mu}m-2 mm. This explained by measured ambient humidities below the formation threshold of natural cirrus. Optical thickness from LIDAR shows significant discrepancies to the result from coincident NOAA-14 data. Errors result from anisotropy correction and parameterized relations between AVHRR channels and optical properties. (author) 28 refs.

  2. Estimated UV clutter levels at 10-100 meter sensor pixel resolution extrapolated from recent Polar Bear measurements

    International Nuclear Information System (INIS)

    Wohlers, M.; Huguenin, R.; Weinberg, M.; Huffman, R.; Eastes, R.

    1989-01-01

    This paper describes the methodology and the results obtained at 1304 A wavelength from an analysis of the AFGL Polar Bear experiment. The basic measurement equipment provided data of a spatial resolution of 20 km over a large portion of the earth. The instrumentation also provided sampled outputs as the footprint scanned along the measurement track. The combination of the fine scanning and large area coverage provided opportunity for a spatial power spectral analysis that in turn provided a means for extrapolation to finer spatial scale

  3. Effect of heterogeneity of human population in cell radiosensitivity on the extrapolation of dose-response relationships to low doses

    International Nuclear Information System (INIS)

    Filyushkin, I.V.; Bragin, Yu.N.; Khandogina, E.K.

    1989-01-01

    Presented are the results of an investigation of the dose-response relationship for the yield of chromosome aberrations in peripheral blood lymphocytes of persons with some hereditary diseases which represent the high risk group with respect to the increased incidence of malignant tumors and decreased life span. Despite substantially different absolute radiosensitivities of chromosomes, the variations of the alpha/beta ratio determining the extrapolation of experimental dose-response relationships to low doses did not prove to be too high, the mean deviation from the control being 15%. This points to the possible practical use of the dose-response relationships averaged over the human population as a whole

  4. Unified Scaling Law for flux pinning in practical superconductors: III. Minimum datasets, core parameters, and application of the Extrapolative Scaling Expression

    Science.gov (United States)

    Ekin, Jack W.; Cheggour, Najib; Goodrich, Loren; Splett, Jolene

    2017-03-01

    In Part 2 of these articles, an extensive analysis of pinning-force curves and raw scaling data was used to derive the Extrapolative Scaling Expression (ESE). This is a parameterization of the Unified Scaling Law (USL) that has the extrapolation capability of fundamental unified scaling, coupled with the application ease of a simple fitting equation. Here in Part 3, the accuracy of the ESE relation to interpolate and extrapolate limited critical-current data to obtain complete I c(B,T,ɛ) datasets is evaluated and compared with present fitting equations. Accuracy is analyzed in terms of root mean square (RMS) error and fractional deviation statistics. Highlights from 92 test cases are condensed and summarized, covering most fitting protocols and proposed parameterizations of the USL. The results show that ESE reliably extrapolates critical currents at fields B, temperatures T, and strains ɛ that are remarkably different from the fitted minimum dataset. Depending on whether the conductor is moderate-J c or high-J c, effective RMS extrapolation errors for ESE are in the range 2-5 A at 12 T, which approaches the I c measurement error (1-2%). The minimum dataset for extrapolating full I c(B,T,ɛ) characteristics is also determined from raw scaling data. It consists of one set of I c(B,ɛ) data at a fixed temperature (e.g., liquid helium temperature), and one set of I c(B,T) data at a fixed strain (e.g., zero applied strain). Error analysis of extrapolations from the minimum dataset with different fitting equations shows that ESE reduces the percentage extrapolation errors at individual data points at high fields, temperatures, and compressive strains down to 1/10th to 1/40th the size of those for extrapolations with present fitting equations. Depending on the conductor, percentage fitting errors for interpolations are also reduced to as little as 1/15th the size. The extrapolation accuracy of the ESE relation offers the prospect of straightforward implementation of

  5. submitter Unified Scaling Law for flux pinning in practical superconductors: II. Parameter testing, scaling constants, and the Extrapolative Scaling Expression

    CERN Document Server

    Ekin, Jack W; Goodrich, Loren; Splett, Jolene; Bordini, Bernardo; Richter, David

    2016-01-01

    A scaling study of several thousand Nb$_{3}$Sn critical-current $(I_c)$ measurements is used to derive the Extrapolative Scaling Expression (ESE), a relation that can quickly and accurately extrapolate limited datasets to obtain full three-dimensional dependences of I c on magnetic field (B), temperature (T), and mechanical strain (ε). The relation has the advantage of being easy to implement, and offers significant savings in sample characterization time and a useful tool for magnet design. Thorough data-based analysis of the general parameterization of the Unified Scaling Law (USL) shows the existence of three universal scaling constants for practical Nb$_{3}$Sn conductors. The study also identifies the scaling parameters that are conductor specific and need to be fitted to each conductor. This investigation includes two new, rare, and very large I c(B,T,ε) datasets (each with nearly a thousand I c measurements spanning magnetic fields from 1 to 16 T, temperatures from ~2.26 to 14 K, and intrinsic strain...

  6. Extrapolation in the development of paediatric medicines: examples from approvals for biological treatments for paediatric chronic immune-mediated inflammatory diseases.

    Science.gov (United States)

    Stefanska, Anna M; Distlerová, Dorota; Musaus, Joachim; Olski, Thorsten M; Dunder, Kristina; Salmonson, Tomas; Mentzer, Dirk; Müller-Berghaus, Jan; Hemmings, Robert; Veselý, Richard

    2017-10-01

    The European Union (EU) Paediatric Regulation requires that all new medicinal products applying for a marketing authorisation (MA) in the EU provide a paediatric investigation plan (PIP) covering a clinical and non-clinical trial programme relating to the use in the paediatric population, unless a waiver applies. Conducting trials in children is challenging on many levels, including ethical and practical issues, which may affect the availability of the clinical evidence. In scientifically justified cases, extrapolation of data from other populations can be an option to gather evidence supporting the benefit-risk assessment of the medicinal product for paediatric use. The European Medicines Agency (EMA) is working on providing a framework for extrapolation that is scientifically valid, reliable and adequate to support MA of medicines for children. It is expected that the extrapolation framework together with therapeutic area guidelines and individual case studies will support future PIPs. Extrapolation has already been employed in several paediatric development programmes including biological treatment for immune-mediated diseases. This article reviews extrapolation strategies from MA applications for products for the treatment of juvenile idiopathic arthritis, paediatric psoriasis and paediatric inflammatory bowel disease. It also provides a summary of extrapolation advice expressed in relevant EMA guidelines and initiatives supporting the use of alternative approaches in paediatric medicine development. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  7. Transcript markers of herbicide stress in Arabidopsis and their cross-species extrapolation to Brassica

    Science.gov (United States)

    Low concentrations and short environmental persistence times of some herbicides make it difficult to develop analytical methods to detect herbicide residues in plants or soils. In contrast, genomics may provide tools to identify herbicide exposure to plants in field settings. Usi...

  8. Model independent spectroscopic information from an analysis of peripheral direct radiative capture reaction and its application for an extrapolation of an astrophysical S-factor to stellar energies

    International Nuclear Information System (INIS)

    Igamov, S.B.; Tursunmuratov, T.M.; Yarmukhamedov, R.

    2003-01-01

    In this work, within the framework of the cluster potential approach we develop a method which can be used an independent source of getting information on the value of the nuclear vertex constant (NVC) (or respective asymptotical normalization coefficient (ANC)) from the analysis of the direct radiative capture cross section σ(E)(or the astrophysical S-factor S(E)) at extremely low energies by a model independent way as possible. The main idea of the proposed method is that at stellar energies peripheral direct radiative capture reaction of astrophysical interest proceeds mainly through the tail of the overlap integral, which is completely determined by the binding energy and the respective ANC (or NVC). The main advantage of the proposed method is that it allows us to determine both the absolute value of NVC (or ANC) and the astrophysical S-factor S(E) at solar energies (0-50 keV) by means of the analysis of the same experimental astrophysical S-factor S exp (E) in a correct self consistent way using the same potential both for the bound state and for scattering state. The method has been applied for an investigation of the direct radiative capture t(α, γ) 7 Li and 3 He(α, γ) 7 Be reactions at extremely low energies. At first, this method was used for analysis of the S exp (E) to determine values of the modulus squared of the NVC's (or the respective ANC's). The values of NVC's are presented. Then, the obtained NVC's are used by us for extrapolation of the S(E) of the reactions considered to stellar energies (E=0-50 keV) for the 3 He(α, γ) 7 Be reaction and for the t(α, γ) 7 Li reaction. The obtained results are compared with those other authors

  9. Extrapolating cosmic ray variations and impacts on life: Morlet wavelet analysis

    Science.gov (United States)

    Zarrouk, N.; Bennaceur, R.

    2009-07-01

    Exposure to cosmic rays may have both a direct and indirect effect on Earth's organisms. The radiation may lead to higher rates of genetic mutations in organisms, or interfere with their ability to repair DNA damage, potentially leading to diseases such as cancer. Increased cloud cover, which may cool the planet by blocking out more of the Sun's rays, is also associated with cosmic rays. They also interact with molecules in the atmosphere to create nitrogen oxide, a gas that eats away at our planet's ozone layer, which protects us from the Sun's harmful ultraviolet rays. On the ground, humans are protected from cosmic particles by the planet's atmosphere. In this paper we give estimated results of wavelet analysis from solar modulation and cosmic ray data incorporated in time-dependent cosmic ray variation. Since solar activity can be described as a non-linear chaotic dynamic system, methods such as neural networks and wavelet methods should be very suitable analytical tools. Thus we have computed our results using Morlet wavelets. Many have used wavelet techniques for studying solar activity. Here we have analysed and reconstructed cosmic ray variation, and we have better depicted periods or harmonics other than the 11-year solar modulation cycles.

  10. Extrapolating ecological risks of ionizing radiation from individuals to populations to ecosystems

    International Nuclear Information System (INIS)

    Barnthouse, L.W.

    1997-01-01

    Approaches for protecting ecosystems from ionizing radiation are quite different from those used for protecting ecosystems from adverse effects of toxic chemicals. The methods used for chemicals are conceptually similar to those used to assess risks of chemicals to human health in that they focus on the protection of the most sensitive or most highly exposed individuals. The assumption is that if sensitive or maximally exposed species and life stages are protected, then ecosystems will be protected. Radiological protection standards, on the other hand, are explicitly premised on the assumption that organisms, populations and ecosystems all possess compensatory capabilities to allow them to survive in the face of unpredictable natural variation in their environments. These capabilities are assumed to persist in the face of at least some exposure to ionizing radiation. The prevailing approach to radiological protection was developed more than 30 years ago, at a time when the terms risk assessment and risk management were rarely used. The expert review approach used to derive radiological protection standards is widely perceived to be inconsistent with the open, participatory approach that prevails today for the regulation of toxic chemicals. The available data for environmental radionuclides vastly exceeds that available for any chemical. Therefore, given an understanding of dose-response relationships for radiation effects and exposures for individual organisms, it should be possible to develop methods for quantifying effects of radiation on populations. A tiered assessment scheme as well as available population models that could be used for the ecological risk assessment of radionuclides is presented. (author)

  11. Turbulent flux modelling with a simple 2-layer soil model and extrapolated surface temperature applied at Nam Co Lake basin on the Tibetan Plateau

    Directory of Open Access Journals (Sweden)

    T. Gerken

    2012-04-01

    Full Text Available This paper introduces a surface model with two soil-layers for use in a high-resolution circulation model that has been modified with an extrapolated surface temperature, to be used for the calculation of turbulent fluxes. A quadratic temperature profile based on the layer mean and base temperature is assumed in each layer and extended to the surface. The model is tested at two sites on the Tibetan Plateau near Nam Co Lake during four days during the 2009 Monsoon season. In comparison to a two-layer model without explicit surface temperature estimate, there is a greatly reduced delay in diurnal flux cycles and the modelled surface temperature is much closer to observations. Comparison with a SVAT model and eddy covariance measurements shows an overall reasonable model performance based on RMSD and cross correlation comparisons between the modified and original model. A potential limitation of the model is the need for careful initialisation of the initial soil temperature profile, that requires field measurements. We show that the modified model is capable of reproducing fluxes of similar magnitudes and dynamics when compared to more complex methods chosen as a reference.

  12. Solubility of crystalline organic compounds in high and low molecular weight amorphous matrices above and below the glass transition by zero enthalpy extrapolation.

    Science.gov (United States)

    Amharar, Youness; Curtin, Vincent; Gallagher, Kieran H; Healy, Anne Marie

    2014-09-10

    Pharmaceutical applications which require knowledge of the solubility of a crystalline compound in an amorphous matrix are abundant in the literature. Several methods that allow the determination of such data have been reported, but so far have only been applicable to amorphous polymers above the glass transition of the resulting composites. The current work presents, for the first time, a reliable method for the determination of the solubility of crystalline pharmaceutical compounds in high and low molecular weight amorphous matrices at the glass transition and at room temperature (i.e. below the glass transition temperature), respectively. The solubilities of mannitol and indomethacin in polyvinyl pyrrolidone (PVP) K15 and PVP K25, respectively were measured at different temperatures. Mixtures of undissolved crystalline solute and saturated amorphous phase were obtained by annealing at a given temperature. The solubility at this temperature was then obtained by measuring the melting enthalpy of the crystalline phase, plotting it as a function of composition and extrapolating to zero enthalpy. This new method yielded results in accordance with the predictions reported in the literature. The method was also adapted for the measurement of the solubility of crystalline low molecular weight excipients in amorphous active pharmaceutical ingredients (APIs). The solubility of mannitol, glutaric acid and adipic acid in both indomethacin and sulfadimidine was experimentally determined and successfully compared with the difference between their respective calculated Hildebrand solubility parameters. As expected from the calculations, the dicarboxylic acids exhibited a high solubility in both amorphous indomethacin and sulfadimidine, whereas mannitol was almost insoluble in the same amorphous phases at room temperature. This work constitutes the first report of the methodology for determining an experimentally measured solubility for a low molecular weight crystalline solute

  13. Accuracy and efficiency considerations for wide-angle wavefield extrapolators and scattering operators

    Science.gov (United States)

    Thomson, C. J.

    2005-10-01

    Several observations are made concerning the numerical implementation of wide-angle one-way wave equations, using for illustration scalar waves obeying the Helmholtz equation in two space dimensions. This simple case permits clear identification of a sequence of physically motivated approximations of use when the mathematically exact pseudo-differential operator (PSDO) one-way method is applied. As intuition suggests, these approximations largely depend on the medium gradients in the direction transverse to the main propagation direction. A key point is that narrow-angle approximations are to be avoided in the interests of accuracy. Another key consideration stems from the fact that the so-called `standard-ordering' PSDO indicates how lateral interpolation of the velocity structure can significantly reduce computational costs associated with the Fourier or plane-wave synthesis lying at the heart of the calculations. A third important point is that the PSDO theory shows what approximations are necessary in order to generate an exponential one-way propagator for the laterally varying case, representing the intuitive extension of classical integral-transform solutions for a laterally homogeneous medium. This exponential propagator permits larger forward stepsizes. Numerical comparisons with Helmholtz (i.e. full) wave-equation finite-difference solutions are presented for various canonical problems. These include propagation along an interfacial gradient, the effects of a compact inclusion and the formation of extended transmitted and backscattered wave trains by model roughness. The ideas extend to the 3-D, generally anisotropic case and to multiple scattering by invariant embedding. It is concluded that the method is very competitive, striking a new balance between simplifying approximations and computational labour. Complicated wave-scattering effects are retained without the need for expensive global solutions, providing a robust and flexible modelling tool.

  14. A comparison between highly resolved S-component observations and model calculations using force-free magnetic field extrapolations

    International Nuclear Information System (INIS)

    Seehafer, N.; Hildebrandt, J.; Krueger, A.; Akhmedov, Sh.; Gel'frejkh, G.B.

    1983-01-01

    Extensive model calculations of solar radio emission features were presented for the complex of solar active regions Hale No 16862, 16863, and 16864 on May 27, 1980 using force-free extrapolated magnetic fields with constant α and a treatment of radiative transfer of S-component emission. The photospheric magnetic field data were taken from magnetographic measurements whereas the required height distribution of temperature and electron density have been adopted from semi-empirical sunspot models based on recent X-, EUV-, optical, and radio observations. In contrast to the simpler magnetic field structure used in other studies, the complex source structure of the S-component emission is clearly represented by other characteristics. The results of the calculations are compared with the observations of the WRST (6 cm) and RATAN-600 (3.2 cm). (author)

  15. Chiral Extrapolations of the $\\boldsymbol{ρ(770)}$ Meson in $\\mathbf{N_f=2+1}$ Lattice QCD Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Molina, Raquel [Univ. of Sao Paulo (Brazil); Hu, Bitao [George Washington Univ., Washington, DC (United States); Doering, Michael [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); George Washington Univ., Washington, DC (United States); Mai, Maxim [George Washington Univ., Washington, DC (United States); Alexandru, Andrei [George Washington Univ., Washington, DC (United States)

    2018-04-01

    Several lattice QCD simulations of meson-meson scattering in p-wave and Isospin = 1 in Nf = 2 + 1 flavours have been carried out recently. Unitarized Chiral Perturbation Theory is used to perform extrapolations to the physical point. In contrast to previous findings on the analyses of Nf = 2 lattice data, where most of the data seems to be in agreement, some discrepancies are detected in the Nf = 2 + 1 lattice data analyses, which could be due to different masses of the strange quark, meson decay constants, initial constraints in the simulation, or other lattice artifacts. In addition, the low-energy constants are compared to the ones from a recent analysis of Nf = 2 lattice data.

  16. Hematological responses after inhaling {sup 238}PuO{sub 2}: An extrapolation from beagle dogs to humans

    Energy Technology Data Exchange (ETDEWEB)

    Scott, B.R.; Muggenburg, B.A.; Welsh, C.A.; Angerstein, D.A.

    1994-11-01

    The alpha emitter plutonium-238 ({sup 238}Pu), which is produced in uranium-fueled, light-water reactors, is used as a thermoelectric power source for space applications. Inhalation of a mixed oxide form of Pu is the most likely mode of exposure of workers and the general public. Occupational exposures to {sup 238}PuO{sub 2} have occurred in association with the fabrication of radioisotope thermoelectric generators. Organs and tissue at risk for deterministic and stochastic effects of {sup 238}Pu-alpha irradiation include the lung, liver, skeleton, and lymphatic tissue. Little has been reported about the effects of inhaled {sup 238}PuO{sub 2} on peripheral blood cell counts in humans. The purpose of this study was to investigate hematological responses after a single inhalation exposure of Beagle dogs to alpha-emitting {sup 238}PuO{sub 2} particles and to extrapolate results to humans.

  17. Quantitative Cross-Species Extrapolation between Humans and Fish: The Case of the Anti-Depressant Fluoxetine

    Science.gov (United States)

    Margiotta-Casaluci, Luigi; Owen, Stewart F.; Cumming, Rob I.; de Polo, Anna; Winter, Matthew J.; Panter, Grace H.; Rand-Weaver, Mariann; Sumpter, John P.

    2014-01-01

    Fish are an important model for the pharmacological and toxicological characterization of human pharmaceuticals in drug discovery, drug safety assessment and environmental toxicology. However, do fish respond to pharmaceuticals as humans do? To address this question, we provide a novel quantitative cross-species extrapolation approach (qCSE) based on the hypothesis that similar plasma concentrations of pharmaceuticals cause comparable target-mediated effects in both humans and fish at similar level of biological organization (Read-Across Hypothesis). To validate this hypothesis, the behavioural effects of the anti-depressant drug fluoxetine on the fish model fathead minnow (Pimephales promelas) were used as test case. Fish were exposed for 28 days to a range of measured water concentrations of fluoxetine (0.1, 1.0, 8.0, 16, 32, 64 µg/L) to produce plasma concentrations below, equal and above the range of Human Therapeutic Plasma Concentrations (HTPCs). Fluoxetine and its metabolite, norfluoxetine, were quantified in the plasma of individual fish and linked to behavioural anxiety-related endpoints. The minimum drug plasma concentrations that elicited anxiolytic responses in fish were above the upper value of the HTPC range, whereas no effects were observed at plasma concentrations below the HTPCs. In vivo metabolism of fluoxetine in humans and fish was similar, and displayed bi-phasic concentration-dependent kinetics driven by the auto-inhibitory dynamics and saturation of the enzymes that convert fluoxetine into norfluoxetine. The sensitivity of fish to fluoxetine was not so dissimilar from that of patients affected by general anxiety disorders. These results represent the first direct evidence of measured internal dose response effect of a pharmaceutical in fish, hence validating the Read-Across hypothesis applied to fluoxetine. Overall, this study demonstrates that the qCSE approach, anchored to internal drug concentrations, is a powerful tool to guide the

  18. In vitro to in vivo extrapolation of biotransformation rates for assessing bioaccumulation of hydrophobic organic chemicals in mammals.

    Science.gov (United States)

    Lee, Yung-Shan; Lo, Justin C; Otton, S Victoria; Moore, Margo M; Kennedy, Chris J; Gobas, Frank A P C

    2017-07-01

    Incorporating biotransformation in bioaccumulation assessments of hydrophobic chemicals in both aquatic and terrestrial organisms in a simple, rapid, and cost-effective manner is urgently needed to improve bioaccumulation assessments of potentially bioaccumulative substances. One approach to estimate whole-animal biotransformation rate constants is to combine in vitro measurements of hepatic biotransformation kinetics with in vitro to in vivo extrapolation (IVIVE) and bioaccumulation modeling. An established IVIVE modeling approach exists for pharmaceuticals (referred to in the present study as IVIVE-Ph) and has recently been adapted for chemical bioaccumulation assessments in fish. The present study proposes and tests an alternative IVIVE-B technique to support bioaccumulation assessment of hydrophobic chemicals with a log octanol-water partition coefficient (K OW ) ≥ 4 in mammals. The IVIVE-B approach requires fewer physiological and physiochemical parameters than the IVIVE-Ph approach and does not involve interconversions between clearance and rate constants in the extrapolation. Using in vitro depletion rates, the results show that the IVIVE-B and IVIVE-Ph models yield similar estimates of rat whole-organism biotransformation rate constants for hypothetical chemicals with log K OW  ≥ 4. The IVIVE-B approach generated in vivo biotransformation rate constants and biomagnification factors (BMFs) for benzo[a]pyrene that are within the range of empirical observations. The proposed IVIVE-B technique may be a useful tool for assessing BMFs of hydrophobic organic chemicals in mammals. Environ Toxicol Chem 2017;36:1934-1946. © 2016 SETAC. © 2016 SETAC.

  19. Extrapolation of systemic bioavailability assessing skin absorption and epidermal and hepatic metabolism of aromatic amine hair dyes in vitro.

    Science.gov (United States)

    Manwaring, John; Rothe, Helga; Obringer, Cindy; Foltz, David J; Baker, Timothy R; Troutman, John A; Hewitt, Nicola J; Goebel, Carsten

    2015-09-01

    Approaches to assess the role of absorption, metabolism and excretion of cosmetic ingredients that are based on the integration of different in vitro data are important for their safety assessment, specifically as it offers an opportunity to refine that safety assessment. In order to estimate systemic exposure (AUC) to aromatic amine hair dyes following typical product application conditions, skin penetration and epidermal and systemic metabolic conversion of the parent compound was assessed in human skin explants and human keratinocyte (HaCaT) and hepatocyte cultures. To estimate the amount of the aromatic amine that can reach the general circulation unchanged after passage through the skin the following toxicokinetically relevant parameters were applied: a) Michaelis-Menten kinetics to quantify the epidermal metabolism; b) the estimated keratinocyte cell abundance in the viable epidermis; c) the skin penetration rate; d) the calculated Mean Residence Time in the viable epidermis; e) the viable epidermis thickness and f) the skin permeability coefficient. In a next step, in vitro hepatocyte Km and Vmax values and whole liver mass and cell abundance were used to calculate the scaled intrinsic clearance, which was combined with liver blood flow and fraction of compound unbound in the blood to give hepatic clearance. The systemic exposure in the general circulation (AUC) was extrapolated using internal dose and hepatic clearance, and Cmax was extrapolated (conservative overestimation) using internal dose and volume of distribution, indicating that appropriate toxicokinetic information can be generated based solely on in vitro data. For the hair dye, p-phenylenediamine, these data were found to be in the same order of magnitude as those published for human volunteers. Copyright © 2015. Published by Elsevier Inc.

  20. The importance of inclusion of kinetic information in the extrapolation of high-to-low concentrations for human limit setting.

    Science.gov (United States)

    Geraets, Liesbeth; Zeilmaker, Marco J; Bos, Peter M J

    2018-01-05

    Human health risk assessment of inhalation exposures generally includes a high-to-low concentration extrapolation. Although this is a common step in human risk assessment, it introduces various uncertainties. One of these uncertainties is related to the toxicokinetics. Many kinetic processes such as absorption, metabolism or excretion can be subject to saturation at high concentration levels. In the presence of saturable kinetic processes of the parent compound or metabolites, disproportionate increases in internal blood or tissue concentration relative to the external concentration administered may occur resulting in nonlinear kinetics. The present paper critically reviews human health risk assessment of inhalation exposure. More specific, it emphasizes the importance of kinetic information for the determination of a safe exposure in human risk assessment of inhalation exposures assessed by conversion from a high animal exposure to a low exposure in humans. For two selected chemicals, i.e. methyl tert-butyl ether and 1,2-dichloroethane, PBTK-modelling was used, for illustrative purposes, to follow the extrapolation and conversion steps as performed in existing risk assessments for these chemicals. Human health-based limit values based on an external dose metric without sufficient knowledge on kinetics might be too high to be sufficiently protective. Insight in the actual internal exposure, the toxic agent, the appropriate dose metric, and whether an effect is related to internal concentration or dose is important. Without this, application of assessment factors on an external dose metric and the conversion to continuous exposure results in an uncertain human health risk assessment of inhalation exposures. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Antimicrobial properties of Cocos nucifera (coconut) husk: An extrapolation to oral health.

    Science.gov (United States)

    Jose, Maji; Cyriac, Maria B; Pai, Vidya; Varghese, Ipe; Shantaram, Manjula

    2014-07-01

    Brushing the teeth with fibrous husk of Cocos nucifera (coconut) is a common oral hygiene practice among people of rural areas of South India. However, the probable antimicrobial properties of this plant material against common oral pathogens have not been proved scientifically. Therefore, the present study was designed. Alcoholic extract of the husk of Cocos nucifera was prepared and the antimicrobial properties against common oral pathogens like cariogenic bacteria, periodontal pathogens, and candidal organisms were performed by the Agar Well Diffusion Method. The results obtained were then subjected to statistical analysis using One-Way Analysis of Variance (ANOVA) and the Tukey's Honestly Significant Difference (HSD). The alcoholic extract of Cocos nucifera showed a significant concentration-dependent antimicrobial activity, expressed as a zone of inhibition with respect to all tested organisms except Actinomyces species. The inhibitory effect was more significant, with a majority of cariogenic organisms and Candida, with a zone of inhibition ranging from 4.6 mm to 16.3 mm. However, the effect was lesser with Cocos nucifera compared to chlorhexidine. Minimum inhibitory concentration (MIC) ranged from 50 mg/ml to 75 mg/ml. Cocos nucifera has a significant inhibitory action against common oral pathogens, indicating the presence of highly effective antimicrobial compounds. Therefore, it is proved that its use can contribute to oral health to a great extent. Identification of these active compounds provides the scope for incorporating it into a modern oral care system, so as to control oral diseases.

  2. Method

    Directory of Open Access Journals (Sweden)

    Ling Fiona W.M.

    2017-01-01

    Full Text Available Rapid prototyping of microchannel gain lots of attention from researchers along with the rapid development of microfluidic technology. The conventional methods carried few disadvantages such as high cost, time consuming, required high operating pressure and temperature and involve expertise in operating the equipment. In this work, new method adapting xurography method is introduced to replace the conventional method of fabrication of microchannels. The novelty in this study is replacing the adhesion film with clear plastic film which was used to cut the design of the microchannel as the material is more suitable for fabricating more complex microchannel design. The microchannel was then mold using polymethyldisiloxane (PDMS and bonded with a clean glass to produce a close microchannel. The microchannel produced had a clean edge indicating good master mold was produced using the cutting plotter and the bonding between the PDMS and glass was good where no leakage was observed. The materials used in this method is cheap and the total time consumed is less than 5 hours where this method is suitable for rapid prototyping of microchannel.

  3. method

    Directory of Open Access Journals (Sweden)

    L. M. Kimball

    2002-01-01

    Full Text Available This paper presents an interior point algorithm to solve the multiperiod hydrothermal economic dispatch (HTED. The multiperiod HTED is a large scale nonlinear programming problem. Various optimization methods have been applied to the multiperiod HTED, but most neglect important network characteristics or require decomposition into thermal and hydro subproblems. The algorithm described here exploits the special bordered block diagonal structure and sparsity of the Newton system for the first order necessary conditions to result in a fast efficient algorithm that can account for all network aspects. Applying this new algorithm challenges a conventional method for the use of available hydro resources known as the peak shaving heuristic.

  4. Extrapolation of bulk rock elastic moduli of different rock types to high pressure conditions and comparison with texture-derived elastic moduli

    Science.gov (United States)

    Ullemeyer, Klaus; Lokajíček, Tomás; Vasin, Roman N.; Keppler, Ruth; Behrmann, Jan H.

    2018-02-01

    In this study elastic moduli of three different rock types of simple (calcite marble) and more complex (amphibolite, micaschist) mineralogical compositions were determined by modeling of elastic moduli using texture (crystallographic preferred orientation; CPO) data, experimental investigation and extrapolation. 3D models were calculated using single crystal elastic moduli, and CPO measured using time-of-flight neutron diffraction at the SKAT diffractometer in Dubna (Russia) and subsequently analyzed using Rietveld Texture Analysis. To define extrinsic factors influencing elastic behaviour, P-wave and S-wave velocity anisotropies were experimentally determined at 200, 400 and 600 MPa confining pressure. Functions describing variations of the elastic moduli with confining pressure were then used to predict elastic properties at 1000 MPa, revealing anisotropies in a supposedly crack-free medium. In the calcite marble elastic anisotropy is dominated by the CPO. Velocities continuously increase, while anisotropies decrease from measured, over extrapolated to CPO derived data. Differences in velocity patterns with sample orientation suggest that the foliation forms an important mechanical anisotropy. The amphibolite sample shows similar magnitudes of extrapolated and CPO derived velocities, however the pattern of CPO derived velocity is closer to that measured at 200 MPa. Anisotropy decreases from the extrapolated to the CPO derived data. In the micaschist, velocities are higher and anisotropies are lower in the extrapolated data, in comparison to the data from measurements at lower pressures. Generally our results show that predictions for the elastic behavior of rocks at great depths are possible based on experimental data and those computed from CPO. The elastic properties of the lower crust can, thus, be characterized with an improved degree of confidence using extrapolations. Anisotropically distributed spherical micro-pores are likely to be preserved, affecting

  5. Time extrapolation aspects in the performance assessment of high and medium level radioactive waste disposal in the Boom Clay at Mol (Belgium)

    International Nuclear Information System (INIS)

    Volckaert, G.

    2000-01-01

    SCK-CEN is studying the disposal of high and long-lived medium level waste in the Boom Clay at Mol, Belgium. In the performance assessment for such a repository time extrapolation is an inherent problem due to the extremely long half-life of some important radionuclides. To increase the confidence in these time extrapolations SCK-CEN applies a combination of different experimental and modelling approaches including laboratory and in situ experiments, natural analogue studies, deterministic (or mechanistic) models and stochastical models. An overview is given of these approaches and some examples of applications to the different repository system components are given. (author)

  6. Quantitative cross-species extrapolation between humans and fish: the case of the anti-depressant fluoxetine.

    Directory of Open Access Journals (Sweden)

    Luigi Margiotta-Casaluci

    Full Text Available Fish are an important model for the pharmacological and toxicological characterization of human pharmaceuticals in drug discovery, drug safety assessment and environmental toxicology. However, do fish respond to pharmaceuticals as humans do? To address this question, we provide a novel quantitative cross-species extrapolation approach (qCSE based on the hypothesis that similar plasma concentrations of pharmaceuticals cause comparable target-mediated effects in both humans and fish at similar level of biological organization (Read-Across Hypothesis. To validate this hypothesis, the behavioural effects of the anti-depressant drug fluoxetine on the fish model fathead minnow (Pimephales promelas were used as test case. Fish were exposed for 28 days to a range of measured water concentrations of fluoxetine (0.1, 1.0, 8.0, 16, 32, 64 µg/L to produce plasma concentrations below, equal and above the range of Human Therapeutic Plasma Concentrations (H(TPCs. Fluoxetine and its metabolite, norfluoxetine, were quantified in the plasma of individual fish and linked to behavioural anxiety-related endpoints. The minimum drug plasma concentrations that elicited anxiolytic responses in fish were above the upper value of the H(TPC range, whereas no effects were observed at plasma concentrations below the H(TPCs. In vivo metabolism of fluoxetine in humans and fish was similar, and displayed bi-phasic concentration-dependent kinetics driven by the auto-inhibitory dynamics and saturation of the enzymes that convert fluoxetine into norfluoxetine. The sensitivity of fish to fluoxetine was not so dissimilar from that of patients affected by general anxiety disorders. These results represent the first direct evidence of measured internal dose response effect of a pharmaceutical in fish, hence validating the Read-Across hypothesis applied to fluoxetine. Overall, this study demonstrates that the qCSE approach, anchored to internal drug concentrations, is a powerful tool

  7. Extrapolation of systemic bioavailability assessing skin absorption and epidermal and hepatic metabolism of aromatic amine hair dyes in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Manwaring, John, E-mail: manwaring.jd@pg.com [Procter & Gamble Inc., Mason Business Center, Mason, OH 45040 (United States); Rothe, Helga [Procter & Gamble Service GmbH, Sulzbacher Str. 40, 65823 Schwalbach am Taunus (Germany); Obringer, Cindy; Foltz, David J.; Baker, Timothy R.; Troutman, John A. [Procter & Gamble Inc., Mason Business Center, Mason, OH 45040 (United States); Hewitt, Nicola J. [SWS, Erzhausen (Germany); Goebel, Carsten [Procter & Gamble Service GmbH, Sulzbacher Str. 40, 65823 Schwalbach am Taunus (Germany)

    2015-09-01

    Approaches to assess the role of absorption, metabolism and excretion of cosmetic ingredients that are based on the integration of different in vitro data are important for their safety assessment, specifically as it offers an opportunity to refine that safety assessment. In order to estimate systemic exposure (AUC) to aromatic amine hair dyes following typical product application conditions, skin penetration and epidermal and systemic metabolic conversion of the parent compound was assessed in human skin explants and human keratinocyte (HaCaT) and hepatocyte cultures. To estimate the amount of the aromatic amine that can reach the general circulation unchanged after passage through the skin the following toxicokinetically relevant parameters were applied: a) Michaelis–Menten kinetics to quantify the epidermal metabolism; b) the estimated keratinocyte cell abundance in the viable epidermis; c) the skin penetration rate; d) the calculated Mean Residence Time in the viable epidermis; e) the viable epidermis thickness and f) the skin permeability coefficient. In a next step, in vitro hepatocyte K{sub m} and V{sub max} values and whole liver mass and cell abundance were used to calculate the scaled intrinsic clearance, which was combined with liver blood flow and fraction of compound unbound in the blood to give hepatic clearance. The systemic exposure in the general circulation (AUC) was extrapolated using internal dose and hepatic clearance, and C{sub max} was extrapolated (conservative overestimation) using internal dose and volume of distribution, indicating that appropriate toxicokinetic information can be generated based solely on in vitro data. For the hair dye, p-phenylenediamine, these data were found to be in the same order of magnitude as those published for human volunteers. - Highlights: • An entirely in silico/in vitro approach to predict in vivo exposure to dermally applied hair dyes • Skin penetration and epidermal conversion assessed in human

  8. Extrapolation of systemic bioavailability assessing skin absorption and epidermal and hepatic metabolism of aromatic amine hair dyes in vitro

    International Nuclear Information System (INIS)

    Manwaring, John; Rothe, Helga; Obringer, Cindy; Foltz, David J.; Baker, Timothy R.; Troutman, John A.; Hewitt, Nicola J.; Goebel, Carsten

    2015-01-01

    Approaches to assess the role of absorption, metabolism and excretion of cosmetic ingredients that are based on the integration of different in vitro data are important for their safety assessment, specifically as it offers an opportunity to refine that safety assessment. In order to estimate systemic exposure (AUC) to aromatic amine hair dyes following typical product application conditions, skin penetration and epidermal and systemic metabolic conversion of the parent compound was assessed in human skin explants and human keratinocyte (HaCaT) and hepatocyte cultures. To estimate the amount of the aromatic amine that can reach the general circulation unchanged after passage through the skin the following toxicokinetically relevant parameters were applied: a) Michaelis–Menten kinetics to quantify the epidermal metabolism; b) the estimated keratinocyte cell abundance in the viable epidermis; c) the skin penetration rate; d) the calculated Mean Residence Time in the viable epidermis; e) the viable epidermis thickness and f) the skin permeability coefficient. In a next step, in vitro hepatocyte K m and V max values and whole liver mass and cell abundance were used to calculate the scaled intrinsic clearance, which was combined with liver blood flow and fraction of compound unbound in the blood to give hepatic clearance. The systemic exposure in the general circulation (AUC) was extrapolated using internal dose and hepatic clearance, and C max was extrapolated (conservative overestimation) using internal dose and volume of distribution, indicating that appropriate toxicokinetic information can be generated based solely on in vitro data. For the hair dye, p-phenylenediamine, these data were found to be in the same order of magnitude as those published for human volunteers. - Highlights: • An entirely in silico/in vitro approach to predict in vivo exposure to dermally applied hair dyes • Skin penetration and epidermal conversion assessed in human skin explants and

  9. Extrapolating an Euler class

    NARCIS (Netherlands)

    Van der Kallen, Wilberd|info:eu-repo/dai/nl/117156108

    2015-01-01

    Let R be a noetherian ring of dimension d and let n be an integer so that n≤d≤2n-3. Let (a1,..., an+1) be a unimodular row so that the ideal J=(a1,..., an) has height n. Jean Fasel has associated to this row an element [(J, ωJ)] in the Euler

  10. Excessive extrapolations in cosmology

    Czech Academy of Sciences Publication Activity Database

    Křížek, Michal; Somer, L.

    2016-01-01

    Roč. 22, č. 3 (2016), s. 270-280 ISSN 0202-2893 Institutional support: RVO:67985840 Keywords : cosmology * friedmann equation Subject RIV: BA - General Mathematics Impact factor: 0.734, year: 2016 http://link.springer.com/article/10.1134%2FS0202289316030105

  11. Enhanced Confinement Scenarios Without Large Edge Localized Modes in Tokamaks: Control, Performance, and Extrapolability Issues for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Maingi, R [PPPL

    2014-07-01

    Large edge localized modes (ELMs) typically accompany good H-mode confinement in fusion devices, but can present problems for plasma facing components because of high transient heat loads. Here the range of techniques for ELM control deployed in fusion devices is reviewed. The two baseline strategies in the ITER baseline design are emphasized: rapid ELM triggering and peak heat flux control via pellet injection, and the use of magnetic perturbations to suppress or mitigate ELMs. While both of these techniques are moderately well developed, with reasonable physical bases for projecting to ITER, differing observations between multiple devices are also discussed to highlight the needed community R & D. In addition, recent progress in ELM-free regimes, namely Quiescent H-mode, I-mode, and Enhanced Pedestal H-mode is reviewed, and open questions for extrapolability are discussed. Finally progress and outstanding issues in alternate ELM control techniques are reviewed: supersonic molecular beam injection, edge electron cyclotron heating, lower hybrid heating and/or current drive, controlled periodic jogs of the vertical centroid position, ELM pace-making via periodic magnetic perturbations, ELM elimination with lithium wall conditioning, and naturally occurring small ELM regimes.

  12. Emissions of sulfur gases from marine and freshwater wetlands of the Florida Everglades: Rates and extrapolation using remote sensing

    Science.gov (United States)

    Hines, Mark E.; Pelletier, Ramona E.; Crill, Patrick M.

    1992-01-01

    Rates of emissions of the biogenic sulfur (S) gases carbonyl sulfide (COS), methyl mercaptan (MSH), dimethyl sulfide (DMS), and carbon disulfide (CS2) were measured in a variety of marine and freshwater wetland habitats in the Florida Everglades during a short duration period in October using dynamic chambers, cryotrapping techniques, and gas chromatography. The most rapid emissions of greater than 500 nmol/m(sup -2)h(sup -1) occurred in red mangrove-dominated sites that were adjacent to open seawater and contained numerous crab burrows. Poorly drained red mangrove sites exhibited lower fluxes of approximately 60 nmol/m(sup -2)h(sup -1) which were similar to fluxes from the black mangrove areas which dominated the marine-influenced wetland sites in the Everglades. DMS was the dominant organo-S gas emitted especially in the freshwater areas. Spectral data from a scene from the Landsat thematic mapper were used to map habitats in the Everglades. Six vegetation categories were delineated using geographical information system software and S gas emission were extrapolated for the entire Everglades National Park. The black mangrove-dominated areas accounted for the largest portion of S gas emissions to the area. The large area extent of the saw grass communities (42 percent) accounted for approximately 24 percent of the total S emissions.

  13. Correlation and extrapolation scheme for the compostition and temperature dependence of viscosity of binary gaseous mixtures: Carbon dioxide + ethane

    International Nuclear Information System (INIS)

    Hendl, S.; Vogel, E.

    1995-01-01

    Experimental viscosity data of ethane, carbon dioxide, and three mole fractions of the binary system carbon dioxide + ethane in the temperature range 293.15≤T≤633.15 K and in the density range 0.01≤p≤0.05 mol · L -1 reported earlier were evaluated simultaneously to find out a useful correlation and extrapolation scheme for the viscosity of binary systems in the range of moderate densities. A procedure based on the ideas of the modified Enskog theory has been found to give the best results. Dependent on temperature, the collision diameters related to the equilibrium radial distribution function at contact are fitted to viscosity values of the pure substances and of at least one mixture. The results are compared with experimental data from the literature. A recommendation is given concerning the density range in which the first density contribution to the viscosity coefficient of the system carbon dioxide + ethane is sufficient to be included

  14. Méthodologie de l'extrapolation des réacteurs chimiques Methodology for Scaling Up Chemical Reactors

    Directory of Open Access Journals (Sweden)

    Trambouze P.

    2006-11-01

    Full Text Available Après un exposé général relatif à la méthodologie du développement des procédés, applicable à l'extrapolation des réacteurs, est présenté un rapide examen critique des deux principales techniques mises en oeuvre, à savoir : - la théorie de la similitude ; - l'élaboration de modèles mathématiques. Deux exemples pratiques, relatifs aux réacteurs homogènes et aux réacteurs catalytiques à lit fixe et deux phases fluides, sont ensuite examinés à la lumière des considérations générales précédentes. After giving a general description of process-development methodology applicable to scaling up reactors, this article makes a quick critical examination of the two main techniques involved, i. e. : (a the theory of similarity, and (b the compiling of mathematical models. Two practical examples relating to homogeneous reactors and trickle-bed catalytic reactors are then examined in the light of the preceding general considerations.

  15. Extrapolation of radiation thermometry scales for determining the transition temperature of metal-carbon points. Experiments with the Co-C

    Science.gov (United States)

    Battuello, M.; Girard, F.; Florio, M.

    2009-02-01

    Four independent radiation temperature scales approximating the ITS-90 at 900 nm, 950 nm and 1.6 µm have been realized from the indium point (429.7485 K) to the copper point (1357.77 K) which were used to derive by extrapolation the transition temperature T90(Co-C) of the cobalt-carbon eutectic fixed point. An INRIM cell was investigated and an average value T90(Co-C) = 1597.20 K was found with the four values lying within 0.25 K. Alternatively, thermodynamic approximated scales were realized by assigning to the fixed points the best presently available thermodynamic values and deriving T(Co-C). An average value of 1597.27 K was found (four values lying within 0.25 K). The standard uncertainties associated with T90(Co-C) and T(Co-C) were 0.16 K and 0.17 K, respectively. INRIM determinations are compatible with recent thermodynamic determinations on three different cells (values lying between 1597.11 K and 1597.25 K) and with the result of a comparison on the same cell by an absolute radiation thermometer and an irradiance measurement with filter radiometers which give values of 1597.11 K and 1597.43 K, respectively (Anhalt et al 2006 Metrologia 43 S78-83). The INRIM approach allows the determination of both ITS-90 and thermodynamic temperature of a fixed point in a simple way and can provide valuable support to absolute radiometric methods in defining the transition temperature of new high-temperature fixed points.

  16. CDNA CLONING OF FATHEAD MINNOW (PIMEPHALES PROMELAS) ESTROGEN AND ANDROGEN RECEPTORS FOR USE IN STEROID RECEPTOR EXTRAPOLATION STUDIES FOR ENDOCRINE DISRUPTING CHEMICALS

    Science.gov (United States)

    cDNA Cloning of Fathead minnow (Pimephales promelas) Estrogen and Androgen Receptors for Use in Steroid Receptor Extrapolation Studies for Endocrine Disrupting Chemicals. Wilson, V.S.1,, Korte, J.2, Hartig P. 1, Ankley, G.T.2, Gray, L.E., Jr 1, , and Welch, J.E.1. 1U.S...

  17. NONLINEAR FORCE-FREE FIELD EXTRAPOLATION OF A CORONAL MAGNETIC FLUX ROPE SUPPORTING A LARGE-SCALE SOLAR FILAMENT FROM A PHOTOSPHERIC VECTOR MAGNETOGRAM

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Chaowei; Wu, S. T.; Hu, Qiang [Center for Space Plasma and Aeronomic Research, The University of Alabama in Huntsville, Huntsville, AL 35899 (United States); Feng, Xueshang, E-mail: cwjiang@spaceweather.ac.cn, E-mail: wus@uah.edu, E-mail: qh0001@uah.edu, E-mail: fengx@spaceweather.ac.cn [SIGMA Weather Group, State Key Laboratory for Space Weather, Center for Space Science and Applied Research, Chinese Academy of Sciences, Beijing 100190 (China)

    2014-05-10

    Solar filaments are commonly thought to be supported in magnetic dips, in particular, in those of magnetic flux ropes (FRs). In this Letter, based on the observed photospheric vector magnetogram, we implement a nonlinear force-free field (NLFFF) extrapolation of a coronal magnetic FR that supports a large-scale intermediate filament between an active region and a weak polarity region. This result is a first, in the sense that current NLFFF extrapolations including the presence of FRs are limited to relatively small-scale filaments that are close to sunspots and along main polarity inversion lines (PILs) with strong transverse field and magnetic shear, and the existence of an FR is usually predictable. In contrast, the present filament lies along the weak-field region (photospheric field strength ≲ 100 G), where the PIL is very fragmented due to small parasitic polarities on both sides of the PIL and the transverse field has a low signal-to-noise ratio. Thus, extrapolating a large-scale FR in such a case represents a far more difficult challenge. We demonstrate that our CESE-MHD-NLFFF code is sufficient for the challenge. The numerically reproduced magnetic dips of the extrapolated FR match observations of the filament and its barbs very well, which strongly supports the FR-dip model for filaments. The filament is stably sustained because the FR is weakly twisted and strongly confined by the overlying closed arcades.

  18. Attenuated Total Reflectance Fourier transform infrared spectroscopy for determination of long chain free fatty acid concentration in oily wastewater using the double wavenumber extrapolation technique

    Science.gov (United States)

    Long Chain Free Fatty Acids (LCFFAs) from the hydrolysis of fat, oil and grease (FOG) are major components in the formation of insoluble saponified solids known as FOG deposits that accumulate in sewer pipes and lead to sanitary sewer overflows (SSOs). A Double Wavenumber Extrapolative Technique (DW...

  19. Transport equation solving methods

    International Nuclear Information System (INIS)

    Granjean, P.M.

    1984-06-01

    This work is mainly devoted to Csub(N) and Fsub(N) methods. CN method: starting from a lemma stated by Placzek, an equivalence is established between two problems: the first one is defined in a finite medium bounded by a surface S, the second one is defined in the whole space. In the first problem the angular flux on the surface S is shown to be the solution of an integral equation. This equation is solved by Galerkin's method. The Csub(N) method is applied here to one-velocity problems: in plane geometry, slab albedo and transmission with Rayleigh scattering, calculation of the extrapolation length; in cylindrical geometry, albedo and extrapolation length calculation with linear scattering. Fsub(N) method: the basic integral transport equation of the Csub(N) method is integrated on Case's elementary distributions; another integral transport equation is obtained: this equation is solved by a collocation method. The plane problems solved by the Csub(N) method are also solved by the Fsub(N) method. The Fsub(N) method is extended to any polynomial scattering law. Some simple spherical problems are also studied. Chandrasekhar's method, collision probability method, Case's method are presented for comparison with Csub(N) and Fsub(N) methods. This comparison shows the respective advantages of the two methods: a) fast convergence and possible extension to various geometries for Csub(N) method; b) easy calculations and easy extension to polynomial scattering for Fsub(N) method [fr

  20. Extrapolation of creep behavior of high-density polyethylene liner in the Catch Basin of grout vaults

    International Nuclear Information System (INIS)

    Whyatt, G.A.

    1995-07-01

    Testing was performed to determine if gravel particles will creep into and puncture the high-density polyethylene (HDPE) liner in the catch basin of a grout vault over a nominal 30-year period. Testing was performed to support a design without a protective geotextile cover after the geotextile was removed from the design. Recently, a protective geotextile cover over the liner was put back into the design. The data indicate that the geotextile has an insignificant effect on the creep of gravel into the liner. However, the geotextile may help to protect the liner during construction. Two types of tests were performed to evaluate the potential for creep-related puncture. In the first type of test, a very sensitive instrument measured the rate at which a probe crept into HDPE over a 20-minute period at temperatures of 176 degrees F to 212 degrees F (80 degrees C to 100 degrees C). The second type of test consisted of placing the liner between gravel and mortar at 194 degrees F (90 degrees C) and 45.1 psi overburden pressure for periods up to 1 year. By combining data from the two tests, the long-term behavior of the creep was extrapolated to 30 years of service. After 30 years of service, the liner will be in a nearly steady condition and further creep will be extremely small. The results indicate that the creep of gravel into the liner will not create a puncture during service at 194 degrees F (90 degrees C). The estimated creep over 30 years is expected to be less than 25 mils out of the total initial thickness of 60 mils. The test temperature of 194 degrees F (90 degrees C) corresponds to the design basis temperature of the vault. Lower temperatures are expected at the liner, which makes the test conservative. Only the potential for failure of the liner resulting from creep of gravel is addressed in this report

  1. In vitro-in vivo extrapolation: estimation of human serum concentrations of chemicals equivalent to cytotoxic concentrations in vitro

    International Nuclear Information System (INIS)

    Guelden, Michael; Seibert, Hasso

    2003-01-01

    In the present study an extrapolation model for estimating serum concentrations of chemicals equivalent to in vitro effective concentrations is developed and applied to median cytotoxic concentrations (EC 50 ) determined in vitro. Nominal concentrations of a chemical in serum and in vitro are regarded as equivalent, if they result in the same aqueous concentration of the unbound form. The algorithm used is based on equilibrium distribution and requires albumin binding data, the octanol-water partition coefficient (K ow ), and the albumin concentrations and lipid volume fractions in vitro and in serum. The chemicals studied cover wide ranges of cytotoxic potency (EC 50 : 2.5-530000 μM) and lipophilicity (log K ow : -5 to 7). Their albumin binding characteristics have been determined by means of an in vitro cytotoxicity test as described previously. The equivalent serum concentrations of 19 of the 33 compounds investigated, having high protein binding and/or lipophilicity, were substantially higher than the EC 50 -values, by factors of 2.5-58. Prominent deviations between the equivalent nominal concentrations in serum and in vitro were largely restricted to chemicals with higher cytotoxic potency (EC 50 ≤1000 μM). The results suggest that estimates of equivalent serum concentrations based on in vitro data are robust for chemicals with low lipophilicity (log K ow ≤2) and low potency (EC 50 >1000 μM). With more potent chemicals or those with higher lipophilicity partitioning into lipids and/or binding to serum proteins have to be taken into account when estimating in vivo serum concentrations equivalent to in vitro effective concentrations

  2. Méthodes d’estimation et d’extrapolation des pompages des eaux souterraines par l’intégration des pratiques locales: cas de la plaine du Saïss au Maroc

    Directory of Open Access Journals (Sweden)

    F. AMEUR

    2017-03-01

    Full Text Available In the Saïss plain, the access to groundwater enabled the rapid transformation of farming systems (extension of arboriculture and horticulture and the production of wealth. However, these changes affect only a minority of farmers who are able to access and use groundwater. This rapid agricultural development has contributed to the creation of social and economic inequalities, but also to a decline of groundwater tables. The actual groundwater abstractions for agriculture are not monitored and it is difficult to determine the share of different types of farming systems and farmers responsible for the groundwater withdrawals and identify the levers to control groundwater overexploitation. The aim of the paper is to develop and compare four methods to estimate and extrapolate agricultural groundwater withdrawals, distinguishing between uses and users. Our observations show that in the study area (4200 ha in Saïss, located in the province of El Hajeb, the groundwater inequalities are primarily a function of unequal access to land, because 0.5% of the farmers (who are large investors contribute to 27% of the groundwater use, on 33% of the total surface area. Conversely, the beneficiaries of the agrarian reform (26% of the area account for only 14% of the overexploitation. But the land inequality is not always the cause of inequality of groundwater use, since lessees, practicing intensive horticulture, are responsible for 33% of the groundwater use on only 11% of the surface area. We evaluated the appropriateness of different methods of extrapolation of agricultural groundwater use, based on the objectives and the effort required to obtain the necessary data. It is important to make visible inequalities in groundwater use, to analyze the overexploitation issue and enhance the effectiveness of the control of the groundwater use.

  3. Extrapolated long-term stability of titanium dioxide nanoparticles and multi-walled carbon nanotubes in artificial freshwater

    Energy Technology Data Exchange (ETDEWEB)

    Brunelli, Andrea; Zabeo, Alex; Semenzin, Elena; Hristozov, Danail; Marcomini, Antonio, E-mail: marcom@unive.it [University Ca’ Foscari of Venice, Department of Environmental Sciences, Informatics and Statistics (Italy)

    2016-05-15

    Long-term stability of two engineered nanomaterials (ENMs), i.e., the inorganic n-TiO{sub 2} and the organic Multi-Walled Carbon Nanotubes (MWCNTs), dispersed in artificial freshwater (5–100 mg l{sup −1}), was investigated from short-term settling velocity, particle size distribution, and surface charge. Hydrodynamic diameter and ζ-pot, calculated by means of dynamic and electrophoretic light scattering, respectively, qualitatively indicated a general ENMs dispersion instability over 1 h time. Sedimentation results, obtained by centrifugal separation analysis using the LUMiSizer over approx. 30 min analysis time, allowed to estimate the quantitative long-term (over 30 days) stability of ENMs. Settling data fitted satisfactorily with a first-order kinetic equation (R{sup 2} in the range of 0.918–0.989). The settling rate constant k values extrapolated at gravity spanned one order of magnitude, i.e., from 7.21 × 10{sup −5} to 4.12 × 10{sup −4} s{sup −1}, and with the increasing of initial ENMs concentration. Sedimentation velocities were in good agreement with short- to long-term literature data (7.8 × 10{sup −2}–1.7 × 10{sup −}1 m day{sup −1} vs. 5 × 10{sup −4}–3 × 10{sup −1} m day{sup −1} for n-TiO{sub 2} and 5.9 × 10{sup −2}–3.4 × 10{sup −1} m day{sup −1} vs. 2 × 10{sup −1}–1.2 m day{sup −1} for MWCNTs). n-TiO{sub 2} showed a higher long-term stability with respect to MWCNTs (average: 1 × 10{sup −1} ± 3.4 × 10{sup −2} m day{sup −1} instead of 1.7 × 10{sup −1} ± 1.1 × 10{sup −1} m day{sup −1}, respectively).

  4. Nonlinear Force-free Field Extrapolation of a Coronal Magnetic Flux Rope Supporting a Large-scale Solar Filament from a Photospheric Vector Magnetogram

    Science.gov (United States)

    Jiang, Chaowei; Wu, S. T.; Feng, Xueshang; Hu, Qiang

    2014-05-01

    Solar filaments are commonly thought to be supported in magnetic dips, in particular, in those of magnetic flux ropes (FRs). In this Letter, based on the observed photospheric vector magnetogram, we implement a nonlinear force-free field (NLFFF) extrapolation of a coronal magnetic FR that supports a large-scale intermediate filament between an active region and a weak polarity region. This result is a first, in the sense that current NLFFF extrapolations including the presence of FRs are limited to relatively small-scale filaments that are close to sunspots and along main polarity inversion lines (PILs) with strong transverse field and magnetic shear, and the existence of an FR is usually predictable. In contrast, the present filament lies along the weak-field region (photospheric field strength barbs very well, which strongly supports the FR-dip model for filaments. The filament is stably sustained because the FR is weakly twisted and strongly confined by the overlying closed arcades.

  5. Combining empirical approaches and error modelling to enhance predictive uncertainty estimation in extrapolation for operational flood forecasting. Tests on flood events on the Loire basin, France.

    Science.gov (United States)

    Berthet, Lionel; Marty, Renaud; Bourgin, François; Viatgé, Julie; Piotte, Olivier; Perrin, Charles

    2017-04-01

    An increasing number of operational flood forecasting centres assess the predictive uncertainty associated with their forecasts and communicate it to the end users. This information can match the end-users needs (i.e. prove to be useful for an efficient crisis management) only if it is reliable: reliability is therefore a key quality for operational flood forecasts. In 2015, the French flood forecasting national and regional services (Vigicrues network; www.vigicrues.gouv.fr) implemented a framework to compute quantitative discharge and water level forecasts and to assess the predictive uncertainty. Among the possible technical options to achieve this goal, a statistical analysis of past forecasting errors of deterministic models has been selected (QUOIQUE method, Bourgin, 2014). It is a data-based and non-parametric approach based on as few assumptions as possible about the forecasting error mathematical structure. In particular, a very simple assumption is made regarding the predictive uncertainty distributions for large events outside the range of the calibration data: the multiplicative error distribution is assumed to be constant, whatever the magnitude of the flood. Indeed, the predictive distributions may not be reliable in extrapolation. However, estimating the predictive uncertainty for these rare events is crucial when major floods are of concern. In order to improve the forecasts reliability for major floods, an attempt at combining the operational strength of the empirical statistical analysis and a simple error modelling is done. Since the heteroscedasticity of forecast errors can considerably weaken the predictive reliability for large floods, this error modelling is based on the log-sinh transformation which proved to reduce significantly the heteroscedasticity of the transformed error in a simulation context, even for flood peaks (Wang et al., 2012). Exploratory tests on some operational forecasts issued during the recent floods experienced in

  6. EXTRAPOLATION TECHNIQUES EVALUATING 24 HOURS OF AVERAGE ELECTROMAGNETIC FIELD EMITTED BY RADIO BASE STATION INSTALLATIONS: SPECTRUM ANALYZER MEASUREMENTS OF LTE AND UMTS SIGNALS.

    Science.gov (United States)

    Mossetti, Stefano; de Bartolo, Daniela; Veronese, Ivan; Cantone, Marie Claire; Cosenza, Cristina; Nava, Elisa

    2017-04-01

    International and national organizations have formulated guidelines establishing limits for occupational and residential electromagnetic field (EMF) exposure at high-frequency fields. Italian legislation fixed 20 V/m as a limit for public protection from exposure to EMFs in the frequency range 0.1 MHz-3 GHz and 6 V/m as a reference level. Recently, the law was changed and the reference level must now be evaluated as the 24-hour average value, instead of the previous highest 6 minutes in a day. The law refers to a technical guide (CEI 211-7/E published in 2013) for the extrapolation techniques that public authorities have to use when assessing exposure for compliance with limits. In this work, we present measurements carried out with a vectorial spectrum analyzer to identify technical critical aspects in these extrapolation techniques, when applied to UMTS and LTE signals. We focused also on finding a good balance between statistically significant values and logistic managements in control activity, as the signal trend in situ is not known. Measurements were repeated several times over several months and for different mobile companies. The outcome presented in this article allowed us to evaluate the reliability of the extrapolation results obtained and to have a starting point for defining operating procedures. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Extrapolation techniques evaluating 24 hours of average electromagnetic field emitted by radio base station installations: spectrum analyzer measurements of LTE and UMTS signals

    International Nuclear Information System (INIS)

    Mossetti, Stefano; Bartolo, Daniela de; Nava, Elisa; Veronese, Ivan; Cantone, Marie Claire; Cosenza, Cristina

    2017-01-01

    International and national organizations have formulated guidelines establishing limits for occupational and residential electromagnetic field (EMF) exposure at high-frequency fields. Italian legislation fixed 20 V/m as a limit for public protection from exposure to EMFs in the frequency range 0.1 MHz-3 GHz and 6 V/m as a reference level. Recently, the law was changed and the reference level must now be evaluated as the 24-hour average value, instead of the previous highest 6 minutes in a day. The law refers to a technical guide (CEI 211-7/E published in 2013) for the extrapolation techniques that public authorities have to use when assessing exposure for compliance with limits. In this work, we present measurements carried out with a vectorial spectrum analyzer to identify technical critical aspects in these extrapolation techniques, when applied to UMTS and LTE signals. We focused also on finding a good balance between statistically significant values and logistic managements in control activity, as the signal trend in situ is not known. Measurements were repeated several times over several months and for different mobile companies. The outcome presented in this article allowed us to evaluate the reliability of the extrapolation results obtained and to have a starting point for defining operating procedures. (authors)

  8. A study of the inhibition of iron corrosion in HCl solutions by some amino acids

    International Nuclear Information System (INIS)

    Amin, Mohammed A.; Khaled, K.F.; Mohsen, Q.; Arida, H.A.

    2010-01-01

    The performance of three selected amino acids, namely alanine (Ala), cysteine (Cys) and S-methyl cysteine (S-MCys) as safe corrosion inhibitors for iron in aerated stagnant 1.0 M HCl solutions was evaluated by Tafel polarization and impedance measurements. Results indicate that Ala acts mainly as a cathodic inhibitor, while Cys and S-MCys function as mixed-type inhibitors. Cys, which contains a mercapto group in its molecular structure, was the most effective among the inhibitors tested, while Ala was less effective than S-MCys. The low inhibition efficiency recorded for S-MCys compared with that of Cys was attributed to steric effects caused by the substituent methyl on the mercapto group. Electrochemical frequency modulation (EFM) technique and inductively coupled plasma atomic emission spectrometry (ICP-AES), were also applied to make accurate determination of corrosion rates. Validation of the Tafel extrapolation method for measuring corrosion rates was tested. Rates of corrosion rates (in μm y -1 ) obtained from Tafel extrapolation method are in good agreement with those measured using EFM and ICP methods. Some theoretical studies, including molecular dynamics (MD) and density functional theory (DFT), were also employed to establish the correlation between the structure (molecular and electronic) of the three tested inhibitors and the inhibition efficiency. Adsorption via hydrogen bonding was discussed here based on some theoretical studies. Experimental and theoretical results were in good agreement.

  9. Accelerating Monte Carlo Molecular Simulations Using Novel Extrapolation Schemes Combined with Fast Database Generation on Massively Parallel Machines

    KAUST Repository

    Amir, Sahar Z.

    2013-01-01

    expensively simulated data points. The methods reweight and reconstruct previously generated database values of Markov chains at neighboring temperature and density conditions. To investigate the efficiency of these methods, two databases corresponding

  10. Design and construction of an interface system for the extrapolation chamber from the beta secondary standard.; Diseno y construccion del sistema de interfaz para la camara de extrapolacion del patron secundario beta.

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez C, L F

    1995-10-01

    The Interface System for the Extrapolation Chamber (SICE) contains several devices handled by a personal computer (PC), it is able to get the required data to calculate the absorbed dose due to Beta radiation. The main functions of the system are: (a) Measures the ionization current or charge stored in the extrapolation chamber. (b) Adjusts the distance between the plates of the extrapolation chamber automatically. (c) Adjust the bias voltage of the extrapolation chamber automatically. (d) Acquires the data of the temperature, atmospheric pressure, relative humidity of the environment and the voltage applied between the plates of the extrapolation chamber. (e) Calculates the effective area of the plates of the extrapolation chamber and the real distance between them. (f) Stores all the obtained information in hard disk or diskette. A comparison between the desired distance and the distance in the dial of the extrapolation chamber, show us that the resolution of the system is of 20 {mu}m. The voltage can be changed between -399.9 V and +399.9 V with an error of less the 3% with a resolution of 0.1 V. These uncertainties are between the accepted limits to be used in the determination of the absolute absorbed dose due to beta radiation. (Author).

  11. Min-max Extrapolation Scheme for Fast Estimation of 3D Potts Field Partition Functions. Application to the Joint Detection-Estimation of Brain Activity in fMRI

    International Nuclear Information System (INIS)

    Risser, L.; Vincent, T.; Ciuciu, P.; Risser, L.; Idier, J.; Risser, L.; Forbes, F.

    2011-01-01

    In this paper, we propose a fast numerical scheme to estimate Partition Functions (PF) of symmetric Potts fields. Our strategy is first validated on 2D two-color Potts fields and then on 3D two- and three-color Potts fields. It is then applied to the joint detection-estimation of brain activity from functional Magnetic Resonance Imaging (fMRI) data, where the goal is to automatically recover activated, deactivated and inactivated brain regions and to estimate region dependent hemodynamic filters. For any brain region, a specific 3D Potts field indeed embodies the spatial correlation over the hidden states of the voxels by modeling whether they are activated, deactivated or inactive. To make spatial regularization adaptive, the PFs of the Potts fields over all brain regions are computed prior to the brain activity estimation. Our approach is first based upon a classical path-sampling method to approximate a small subset of reference PFs corresponding to pre-specified regions. Then, we propose an extrapolation method that allows us to approximate the PFs associated to the Potts fields defined over the remaining brain regions. In comparison with preexisting methods either based on a path sampling strategy or mean-field approximations, our contribution strongly alleviates the computational cost and makes spatially adaptive regularization of whole brain fMRI datasets feasible. It is also robust against grid inhomogeneities and efficient irrespective of the topological configurations of the brain regions. (authors)

  12. Measurement of extrapolation curves for the secondary pattern of beta radiation Nr. 86 calibrated in rapidity of absorbed dose for tissue equivalent by the Physikalisch Technische Bundesanstalt

    International Nuclear Information System (INIS)

    Alvarez R, J.T.

    1988-10-01

    The following report has as objective to present the obtained results of measuring - with a camera of extrapolation of variable electrodes (CE) - the dose speed absorbed in equivalent fabric given by the group of sources of the secondary pattern of radiation Beta Nr. 86, (PSB), and to compare this results with those presented by the calibration certificates that accompany the PSB extended by the primary laboratory Physikalisch Technische Bundesanstalt, (PTB), of the R.F.A. as well as the uncertainties associated to the measure process. (Author)

  13. Solar-wind predictions for the Parker Solar Probe orbit. Near-Sun extrapolations derived from an empirical solar-wind model based on Helios and OMNI observations

    Science.gov (United States)

    Venzmer, M. S.; Bothmer, V.

    2018-03-01

    Context. The Parker Solar Probe (PSP; formerly Solar Probe Plus) mission will be humanitys first in situ exploration of the solar corona with closest perihelia at 9.86 solar radii (R⊙) distance to the Sun. It will help answer hitherto unresolved questions on the heating of the solar corona and the source and acceleration of the solar wind and solar energetic particles. The scope of this study is to model the solar-wind environment for PSPs unprecedented distances in its prime mission phase during the years 2018 to 2025. The study is performed within the Coronagraphic German And US SolarProbePlus Survey (CGAUSS) which is the German contribution to the PSP mission as part of the Wide-field Imager for Solar PRobe. Aim. We present an empirical solar-wind model for the inner heliosphere which is derived from OMNI and Helios data. The German-US space probes Helios 1 and Helios 2 flew in the 1970s and observed solar wind in the ecliptic within heliocentric distances of 0.29 au to 0.98 au. The OMNI database consists of multi-spacecraft intercalibrated in situ data obtained near 1 au over more than five solar cycles. The international sunspot number (SSN) and its predictions are used to derive dependencies of the major solar-wind parameters on solar activity and to forecast their properties for the PSP mission. Methods: The frequency distributions for the solar-wind key parameters, magnetic field strength, proton velocity, density, and temperature, are represented by lognormal functions. In addition, we consider the velocity distributions bi-componental shape, consisting of a slower and a faster part. Functional relations to solar activity are compiled with use of the OMNI data by correlating and fitting the frequency distributions with the SSN. Further, based on the combined data set from both Helios probes, the parameters frequency distributions are fitted with respect to solar distance to obtain power law dependencies. Thus an empirical solar-wind model for the inner

  14. Extrapolating the Trends of Test Drop Data with Opening Shock Factor Calculations: the Case of the Orion Main and Drogue Parachutes Inflating to 1st Reefed Stage

    Science.gov (United States)

    Potvin, Jean; Ray, Eric

    2017-01-01

    We describe a new calculation of the opening shock factor C (sub k) characterizing the inflation performance of NASA's Orion spacecraft main and drogue parachutes opening under a reefing constraint (1st stage reefing), as currently tested in the Capsule Parachute Assembly System (CPAS) program. This calculation is based on an application of the Momentum-Impulse Theorem at low mass ratio (R (sub m) is less than 10 (sup -1)) and on an earlier analysis of the opening performance of drogues decelerating point masses and inflating along horizontal trajectories. Herein we extend the reach of the Theorem to include the effects of payload drag and gravitational impulse during near-vertical motion - both important pre-requisites for CPAS parachute analysis. The result is a family of C (sub k) versus R (sub m) curves which can be used for extrapolating beyond the drop-tested envelope. The paper proves this claim in the case of the CPAS Mains and Drogues opening while trailing either a Parachute Compartment Drop Test Vehicle or a Parachute Test Vehicle (an Orion capsule boiler plate). It is seen that in all cases the values of the opening shock factor can be extrapolated over a range in mass ratio that is at least twice that of the test drop data.

  15. Geological predictions for the long-term isolation of radioactive waste based on extrapolating uniform mode and rate of crustal movements

    International Nuclear Information System (INIS)

    Umeda, Koji; Tanikawa, Shin-ichi; Yasue, Ken-ichi

    2013-01-01

    Long-term predictions of geological and tectonic disturbances are key issues for the safety assessment of radioactive waste disposal, especially on the Japanese Islands. Geological predictions of disturbances should be performed by extrapolating uniform mode and rate of crustal movements under the current framework. Multiple lines of geological evidence in Japan strongly suggest that the present mode of tectonics began during the late Pliocene to early Quaternary, and was fully developed by the middle Pleistocene. The uplift rates of mountains in Japan are determined to have been approximately constant until the middle Pleistocene based on simulations of temporal changes in mean altitude developed under concurrent tectonics and denudation processes. The onset of the neotectonic mode of deformation was probably triggered by the initiation of the eastward movement of the Amur Plate and the collision of the Izu block with central Honshu. The uncertainty of predictions beyond steady-state crustal deformation would, in general, increase for long-term predictions using the extrapolation procedure. Consequently, future geological and tectonic disturbances in Japan can be estimated with relatively high reliability for the next 100,000 years. (author)

  16. Creep-rupture-test on the stainless steel X6CRNI1811 (DIN 1.4948) in the frame of the ''Extrapolation-Program''. (Part III)

    International Nuclear Information System (INIS)

    Solano, R.; Las Rivas, M. de; Barroso, S.

    1982-01-01

    The austenitic stainless steel X6CrNi1811 (DIN 1.4948) used as a structure material for the German Fast Breeder Reactor SNR 300 was creep tested in a temperature range of 550-650 deg under base material condition as well as welded material condition. The main point of this program (''Extrapolation-Program'') lies in the knowledge of the creep-rupture-strength and creepbehaviour up to 3 x 10 4 hours at higher temperatures in order to extrapolate up to >=10 5 hours for operating temperatures. In order to study the stress dependency of the minimum creep rate additional tests were carried out of 550 deg - 750 deg C. The present report describes the state in the running program with test-times of 23.000 hours and results from tests up to 55.000 hours belonging to other parallel programs are taken into account. Besides the creep-rupture behaviour it is also made a study of ductility between 550 and 750 deg C. Extensive metallographic examinations have been made to study the fracture behaviour and changes in structure. (author)

  17. Creep-rupture-test on the stainless steel X6crni1811 (Din 1.494.8) in the frame of the Extrapolation-Program. (Part III)

    International Nuclear Information System (INIS)

    Solano, R.; Schirra, M.; Rivas, M. de la; Barroso, S.; Seith, B.

    1982-01-01

    The austenitic stainless steel X6crni1811 (Din 1.4948) used as a structure material for the German Fast Breeder Reactor SNR 300 was creep tested in a temperature range of 550-650 degree centigree material condition as well as welded material condition. The main point of this program (Extrapolation-Program) lies in the knowledge of the creep-rupture-strength and creep-behaviour up to 3 x 10 4 hours higher temperatures in order to extrapolated up to ≥10 5 hours for operating temperatures. In order to study the stress dependency of the minimum creep rate additional tests were carried out of 550 degree centigree - 750 degree centigree. The present report describes the state in the running program with test-times of 23.000 hours and results from tests up to 55.000 hours belonging to other parallel programs are taken into account. Besides the creep-rupture behaviour it is also made a study of ductility between 550 and 750 degree centigree. Extensive metallographic examinations have been made to study the fracture behaviour and changes in structure. (Author)

  18. Creep-rupture-tests on thestainless steel X6 CrNi1811 (DIN 1.4948) in the frame of the ''Extrapolation-Program'' Pt. 2

    International Nuclear Information System (INIS)

    Solano, R.R.; Barroso, S.; Rivas, M. de las; Schirra, M.; Seith, B.

    1979-01-01

    The austenitic stainless steel X6 CrNi 1811 (DIN 1.4948) that is used as a structure material for the German Fast Breeder Reactor SNR 300 was creep tested in a temperature range of 550-650 deg under base material condition as well as welded material condition. The main point of this program (''Extrapolation-Program'') lies in the knowledge of the cree-rupture-strength and creep-behaviour up to 3X10 - 4 hours at higher temperatures in order to extrapolate up to (>=)10 5 hours for operating temperatures. In order to study the stress dependency of the minimum creep rate additional tests were carried out over temperature range 550 deg - 750 deg C. The present report describes the state in the running program with test-time up to 35.000 hours. Besides the cree-rupture behaviour it is possible to make a distinct quantitative statement for the creep-behaviour and ductility. Extensive metallographic examinations show the fracture behaviour and changes in structure. (author)

  19. Measured Copper Toxicity to Cnesterodon decemmaculatus (Pisces: Poeciliidae and Predicted by Biotic Ligand Model in Pilcomayo River Water: A Step for a Cross-Fish-Species Extrapolation

    Directory of Open Access Journals (Sweden)

    María Victoria Casares

    2012-01-01

    Full Text Available In order to determine copper toxicity (LC50 to a local species (Cnesterodon decemmaculatus in the South American Pilcomayo River water and evaluate a cross-fish-species extrapolation of Biotic Ligand Model, a 96 h acute copper toxicity test was performed. The dissolved copper concentrations tested were 0.05, 0.19, 0.39, 0.61, 0.73, 1.01, and 1.42 mg Cu L-1. The 96 h Cu LC50 calculated was 0.655 mg L-1 (0.823-0.488. 96-h Cu LC50 predicted by BLM for Pimephales promelas was 0.722 mg L-1. Analysis of the inter-seasonal variation of the main water quality parameters indicates that a higher protective effect of calcium, magnesium, sodium, sulphate, and chloride is expected during the dry season. The very high load of total suspended solids in this river might be a key factor in determining copper distribution between solid and solution phases. A cross-fish-species extrapolation of copper BLM is valid within the water quality parameters and experimental conditions of this toxicity test.

  20. EU - which kind of future? / Erik Terk, Külliki Tafel

    Index Scriptorium Estoniae

    Terk, Erik

    2003-01-01

    Autorid analüüsivad Euroopa Liidu võimalikke arengusuundi kolmest institutsionaalsest tulevikuvisioonist lähtuvalt - riigistuv Euroopa, isamaade Euroopa/minimaalne Euroopa ja kodanike Euroopa. Skeem

  1. Eco-label - simple environmental choice / Andres Viia, Külliki Tafel

    Index Scriptorium Estoniae

    Viia, Andres

    2003-01-01

    Autorid selgitavad ökomärgistuse olemust ja vajalikkust tarbijate teavitamisel vähem keskkonda kahjustavatest toodetest ning teenustest. Lisatud näiteid regionaalsetest ja rahvuslikest ökomärkidest EL-is, tuntumatest ökomärkidest väljaspool Euroopat, hoiatavatest ja informatiivsetest keskkonnamärkidest ning libaökomärkidest. Vt. samas: North-East Estonia - a seat of an environment-friendly batteries' recycling

  2. Dirc van Delfts Tafel van den Kersten Ghelove en de stervensliteratuur

    DEFF Research Database (Denmark)

    Robbe, Joost Roger

    2015-01-01

    treatise, Dirc van Delft presents a veritable ars moriendi which provides practical guidance for the dying and those attending them. The treatise culminates in a vivid drama in which the soul, being subject to three temptations of the devil, can benefit from the protection of its guardian angel as well...

  3. An ESDIRK Method with Sensitivity Analysis Capabilities

    DEFF Research Database (Denmark)

    Kristensen, Morten Rode; Jørgensen, John Bagterp; Thomsen, Per Grove

    2004-01-01

    of the sensitivity equations. A key feature is the reuse of information already computed for the state integration, hereby minimizing the extra effort required for sensitivity integration. Through case studies the new algorithm is compared to an extrapolation method and to the more established BDF based approaches...

  4. Mathematical methods for physical and analytical chemistry

    CERN Document Server

    Goodson, David Z

    2011-01-01

    Mathematical Methods for Physical and Analytical Chemistry presents mathematical and statistical methods to students of chemistry at the intermediate, post-calculus level. The content includes a review of general calculus; a review of numerical techniques often omitted from calculus courses, such as cubic splines and Newton's method; a detailed treatment of statistical methods for experimental data analysis; complex numbers; extrapolation; linear algebra; and differential equations. With numerous example problems and helpful anecdotes, this text gives chemistry students the mathematical

  5. Dose metric considerations in in vitro assays to improve quantitative in vitro–in vivo dose extrapolations

    NARCIS (Netherlands)

    Groothuis, Floris|info:eu-repo/dai/nl/37343586X; Heringa, M.B.; Nicol, B; Hermens, Joop|info:eu-repo/dai/nl/069681384; Blaauboer, B|info:eu-repo/dai/nl/068359802; Kramer, Nynke|info:eu-repo/dai/nl/304836125

    2015-01-01

    Challenges to improve toxicological risk assessment to meet the demands of the EU chemical’s legisla- tion, REACH, and the EU 7th Amendment of the Cosmetics Directive have accelerated the development of non-animal based methods. Unfortunately, uncertainties remain surrounding the power of alterna-

  6. Dose and dose rate extrapolation factors for malignant and non-malignant health endpoints after exposure to gamma and neutron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Tran, Van; Little, Mark P. [National Cancer Institute, Radiation Epidemiology Branch, Rockville, MD (United States)

    2017-11-15

    Murine experiments were conducted at the JANUS reactor in Argonne National Laboratory from 1970 to 1992 to study the effect of acute and protracted radiation dose from gamma rays and fission neutron whole body exposure. The present study reports the reanalysis of the JANUS data on 36,718 mice, of which 16,973 mice were irradiated with neutrons, 13,638 were irradiated with gamma rays, and 6107 were controls. Mice were mostly Mus musculus, but one experiment used Peromyscus leucopus. For both types of radiation exposure, a Cox proportional hazards model was used, using age as timescale, and stratifying on sex and experiment. The optimal model was one with linear and quadratic terms in cumulative lagged dose, with adjustments to both linear and quadratic dose terms for low-dose rate irradiation (<5 mGy/h) and with adjustments to the dose for age at exposure and sex. After gamma ray exposure there is significant non-linearity (generally with upward curvature) for all tumours, lymphoreticular, respiratory, connective tissue and gastrointestinal tumours, also for all non-tumour, other non-tumour, non-malignant pulmonary and non-malignant renal diseases (p < 0.001). Associated with this the low-dose extrapolation factor, measuring the overestimation in low-dose risk resulting from linear extrapolation is significantly elevated for lymphoreticular tumours 1.16 (95% CI 1.06, 1.31), elevated also for a number of non-malignant endpoints, specifically all non-tumour diseases, 1.63 (95% CI 1.43, 2.00), non-malignant pulmonary disease, 1.70 (95% CI 1.17, 2.76) and other non-tumour diseases, 1.47 (95% CI 1.29, 1.82). However, for a rather larger group of malignant endpoints the low-dose extrapolation factor is significantly less than 1 (implying downward curvature), with central estimates generally ranging from 0.2 to 0.8, in particular for tumours of the respiratory system, vasculature, ovary, kidney/urinary bladder and testis. For neutron exposure most endpoints, malignant and

  7. Are there differences in the catalytic activity per unit enzyme of recombinantly expressed and human liver microsomal cytochrome P450 2C9? A systematic investigation into inter-system extrapolation factors.

    Science.gov (United States)

    Crewe, H K; Barter, Z E; Yeo, K Rowland; Rostami-Hodjegan, A

    2011-09-01

    The 'relative activity factor' (RAF) compares the activity per unit of microsomal protein in recombinantly expressed cytochrome P450 enzymes (rhCYP) and human liver without separating the potential sources of variation (i.e. abundance of enzyme per mg of protein or variation of activity per unit enzyme). The dimensionless 'inter-system extrapolation factor' (ISEF) dissects differences in activity from those in CYP abundance. Detailed protocols for the determination of this scalar, which is used in population in vitro-in vivo extrapolation (IVIVE), are currently lacking. The present study determined an ISEF for CYP2C9 and, for the first time, systematically evaluated the effects of probe substrate, cytochrome b5 and methods for assessing the intrinsic clearance (CL(int) ). Values of ISEF for S-warfarin, tolbutamide and diclofenac were 0.75 ± 0.18, 0.57 ± 0.07 and 0.37 ± 0.07, respectively, using CL(int) values derived from the kinetic values V(max) and K(m) of metabolite formation in rhCYP2C9 + reductase + b5 BD Supersomes™. The ISEF values obtained using rhCYP2C9 + reductase BD Supersomes™ were more variable, with values of 7.16 ± 1.25, 0.89 ± 0.52 and 0.50 ± 0.05 for S-warfarin, tolbutamide and diclofenac, respectively. Although the ISEF values obtained from rhCYP2C9 + reductase + b5 for the three probe substrates were statistically different (p system, with the intrinsic clearance calculated from full kinetic data is recommended for generation of the CYP2C9 ISEF. Furthermore, as ISEFs have been found to be sensitive to differences in accessory proteins, rhCYP system specific ISEFs are recommended. Copyright © 2011 John Wiley & Sons, Ltd.

  8. Extrapolating active layer thickness measurements across Arctic polygonal terrain using LiDAR and NDVI data sets.

    Science.gov (United States)

    Gangodagamage, Chandana; Rowland, Joel C; Hubbard, Susan S; Brumby, Steven P; Liljedahl, Anna K; Wainwright, Haruko; Wilson, Cathy J; Altmann, Garrett L; Dafflon, Baptiste; Peterson, John; Ulrich, Craig; Tweedie, Craig E; Wullschleger, Stan D

    2014-08-01

    Landscape attributes that vary with microtopography, such as active layer thickness ( ALT ), are labor intensive and difficult to document effectively through in situ methods at kilometer spatial extents, thus rendering remotely sensed methods desirable. Spatially explicit estimates of ALT can provide critically needed data for parameterization, initialization, and evaluation of Arctic terrestrial models. In this work, we demonstrate a new approach using high-resolution remotely sensed data for estimating centimeter-scale ALT in a 5 km 2 area of ice-wedge polygon terrain in Barrow, Alaska. We use a simple regression-based, machine learning data-fusion algorithm that uses topographic and spectral metrics derived from multisensor data (LiDAR and WorldView-2) to estimate ALT (2 m spatial resolution) across the study area. Comparison of the ALT estimates with ground-based measurements, indicates the accuracy (r 2  = 0.76, RMSE ±4.4 cm) of the approach. While it is generally accepted that broad climatic variability associated with increasing air temperature will govern the regional averages of ALT , consistent with prior studies, our findings using high-resolution LiDAR and WorldView-2 data, show that smaller-scale variability in ALT is controlled by local eco-hydro-geomorphic factors. This work demonstrates a path forward for mapping ALT at high spatial resolution and across sufficiently large regions for improved understanding and predictions of coupled dynamics among permafrost, hydrology, and land-surface processes from readily available remote sensing data.

  9. Modeling the systemic retention of beryllium in rat. Extrapolation to human; Modelizacion de la retencion sistemica del berilio en la rata. Extrapolacion al Hombre

    Energy Technology Data Exchange (ETDEWEB)

    Montero Prieto, M; Vidania Munoz, R de

    1994-07-01

    In this work, we analyzed different approaches, assayed in order to numerically describe the systemic behaviour of Beryllium. The experimental results used in this work, were previously obtained by Furchner et al. (1973), using Sprague-Dawley rats, and others animal species. Furchner's work includes the obtained model for whole body retention in rats, but not for each target organ. In this work we present the results obtained by modeling the kinetic behaviour of Beryllium in several target organs. The results of this kind of models were used in order to establish correlations among the estimated kinetic constants. The parameters of the model were extrapolated to humans and, finally, compared with others previously published. (Author) 12 refs.

  10. Modeling the systemic retention of beryllium in rat. Extrapolation to human; Modelizacion de la retencion sistemica del berilio en la rata. Extrapolacion al Hombre

    Energy Technology Data Exchange (ETDEWEB)

    Montero Prieto, M.; Vidania Munoz, R. de

    1994-07-01

    In this work, we analyzed different approaches, assayed in order to numerically describe the systemic behaviour of Beryllium. The experimental results used in this work, were previously obtained by Furchner et al. (1973), using Sprague-Dawley rats, and others animal species. Furchner's work includes the obtained model for whole body retention in rats, but not for each target organ. In this work we present the results obtained by modeling the kinetic behaviour of Beryllium in several target organs. The results of this kind of models were used in order to establish correlations among the estimated kinetic constants. The parameters of the model were extrapolated to humans and, finally, compared with others previously published. (Author) 12 refs.

  11. Comparative studies of parameters based on the most probable versus an approximate linear extrapolation distance estimates for circular cylindrical absorbing rod

    International Nuclear Information System (INIS)

    Wassef, W.A.

    1982-01-01

    Estimates and techniques that are valid to calculate the linear extrapolation distance for an infinitely long circular cylindrical absorbing region are reviewed. Two estimates, in particular, are put into consideration, that is the most probable and the value resulting from an approximate technique based on matching the integral transport equation inside the absorber with the diffusion approximation in the surrounding infinite scattering medium. Consequently, the effective diffusion parameters and the blackness of the cylinder are derived and subjected to comparative studies. A computer code is set up to calculate and compare the different parameters, which is useful in reactor analysis and serves to establish a beneficial estimates that are amenable to direct application to reactor design codes

  12. Is the beagle dog an appropriate experimental animal for extrapolating data to humans on organ distribution patterns of U, Th, and Pu

    International Nuclear Information System (INIS)

    Singh, N.P.; Wrenn, M.E.

    1989-01-01

    Concentrations and organ distribution patterns of alpha-emitting isotopes of U (238U and 234U), Th (232Th, 230Th, and 228Th), and Pu (239,240Pu) were determined for beagle dogs of our colony. The dogs were exposed to environmental levels of U and Th isotopes through ingestion (food and water) and inhalation to stimulate environmental exposures of the general human population. The organ distribution patterns of these radionuclides in beagles are compared to patterns in humans to determine if it is appropriate to extrapolate organ content data from beagles to humans. The results indicated that approximately 80% of the U and Th accumulated in bone in both species. The organ content percentages of these radionuclides in soft tissues such as liver, kidney, etc. of both species were comparable. The human lung contained higher percentages of U and Th than the beagle lung, perhaps because the longer life span of humans resulted in a longer exposure time. If the U and Th content of dog lung is normalized to an exposure time of 58 y and 63 y, median ages of the U and Th study populations, respectively, the lung content for both species is comparable. The organ content of 239,240Pu in humans and beagles differed slightly. In the beagle, the liver contained more than 60%, and the skeleton contained less than 40% of the Pu body content. In humans, the liver contained approximately 37%, and the skeleton contained approximately 58% of the body content. This difference may have been due to differences in the mode of intake of Pu in each species or to differences in the chemical form of Pu. In general, the results suggest that the beagle may be an appropriate experimental animal from which to extrapolate data to humans with reference to the percentage of U, Th, and Pu found in the organs

  13. Some remarks on non-monotonic effects at low radiation intensities, on the problem of extrapolating doses between high and low intensities and on the problem of thresholds

    International Nuclear Information System (INIS)

    Delattre, P.

    1983-01-01

    On the basis of a general descriptive framework which takes into account the intensity factor and the time distribution of radiation, a detailed justification for which is to be found in earlier publications, the three fundamental problems mentioned in the title of this paper can be approached in a new way. If the biological effect e for a given dose D delivered at different radiation intensities phi is studied, we find that the curve e=f(phi) can exhibit non-monotonic shapes. This type of phenomenon is known in pharmacology and toxicology and may well exist also for low- or medium-intensity radiation effects. Extrapolation of the effects of a given dose between high and low radiation intensities phi is usually carried out by means of an empirical linear or linear-quadratic formulation. This procedure is insufficiently justified from a theoretical point of view. It is shown here that the effects can be written in the form e=k(phi)D and that the factor of proportionality k(phi) is a generally very complicated function of phi. Hence, the usual extrapolation procedures cannot deal with certain ranges of values of phi within which the effects observed at a given dose may be greater than when the dose is delivered at higher intensity. The problem of thresholds is actually far more difficult than the current literature on the subject would suggest. It is shown here, on the basis of considerations of qualitative dynamics, that several types of threshold must be defined, starting with a threshold for the radiation intensity phi. All these thresholds are interrelated hierarchically in fairly complex ways which must be studied case by case. These results show that it is illusory to attempt to define a universal notion of threshold in terms of dose. The conceptual framework used in the proposed approach proves also to be very illuminating for other studies in progress, particularly in the investigation of phenomena associated with ageing and carcinogenesis. (author)

  14. The Trojan horse method in nuclear astrophysics

    International Nuclear Information System (INIS)

    Aliotta, M.; Rolfs, C.; Lattuada, M.; Pellegriti, M.G.; Pizzone, R.G.; Spitaleri, C.; Miljanic, Dj.; Typel, S.; Wolter, H.H.

    2001-01-01

    Because of the Coulomb barrier, reaction cross sections in astrophysics cannot be accessed directly at the relevant Gamow energies, unless very favourable conditions are met (e.g. LUNA--underground experiments). Theoretical extrapolations of available data are then needed to derive the astrophysical S(0)-factor. Various indirect processes have been used in order to obtain additional information on the parameters entering these extrapolations. The Trojan Horse Method is an indirect method which might help to bypass some of the problems typically encountered in direct measurements, namely the presence of the Coulomb barrier and the effect of the electron screening. However, a comparison with direct data in an appropriate energy region (e.g. around the Coulomb barrier) is crucial before extending the method to the relevant Gamow energy. Additionally, experimental and theoretical tests are needed to validate the assumptions underlying the method. The application of the Trojan Horse Method to some cases of interest is discussed

  15. Vasectomy as a proxy: extrapolating health system lessons to male circumcision as an HIV prevention strategy in Papua New Guinea

    Directory of Open Access Journals (Sweden)

    Tynan Anna

    2012-09-01

    Full Text Available Abstract Background Male circumcision (MC has been shown to reduce the risk of HIV acquisition among heterosexual men, with WHO recommending MC as an essential component of comprehensive HIV prevention programs in high prevalence settings since 2007. While Papua New Guinea (PNG has a current prevalence of only 1%, the high rates of sexually transmissible diseases and the extensive, but unregulated, practice of penile cutting in PNG have led the National Department of Health (NDoH to consider introducing a MC program. Given public interest in circumcision even without active promotion by the NDoH, examining the potential health systems implications for MC without raising unrealistic expectations presents a number of methodological issues. In this study we examined health systems lessons learned from a national no-scalpel vasectomy (NSV program, and their implications for a future MC program in PNG. Methods Fourteen in-depth interviews were conducted with frontline health workers and key government officials involved in NSV programs in PNG over a 3-week period in February and March 2011. Documentary, organizational and policy analysis of HIV and vasectomy services was conducted and triangulated with the interviews. All interviews were digitally recorded and later transcribed. Application of the WHO six building blocks of a health system was applied and further thematic analysis was conducted on the data with assistance from the analysis software MAXQDA. Results Obstacles in funding pathways, inconsistent support by government departments, difficulties with staff retention and erratic delivery of training programs have resulted in mixed success of the national NSV program. Conclusions In an already vulnerable health system significant investment in training, resources and negotiation of clinical space will be required for an effective MC program. Focused leadership and open communication between provincial and national government, NGOs and

  16. Phase shift analysis of ππ system at energies between 500 and 1370 MeV with Chew-Low extrapolation results from reactions π-p→pπ-π0 and π-p→nπ+π- at 3.92 GeV/c

    International Nuclear Information System (INIS)

    Mallet, Jacques.

    1980-03-01

    Experimental data (12 evts/μN→ππN reactions) were derived from the analysis of 450000 pictures obtained with the 2 meter hydrogen bubble chamber at CERN. The Chew-Low extrapolation method was used to obtain total and differential cross-sections of π +0 π - →π +0 π - reactions. Pseudo-peripherism hypothesis, in agreement with data at energy less 1 GeV, was modified to take into account the non-vanishing reactions amplitude at t=0, observed above 1 GeV. Several phase shift analyses were done, either with energy parametrisation of phase shifts, or at fixed energy. Main results concern the parameters of S* (Jsup(P)=0 + ) resonance which come out from a meromorphic parametrisation of the S 0 wave amplitude in the region of the KantiK channel threshold (987 MeV) and the dynamical wave structures in the f 0 (Jsup(P)=2 + ) resonance region. The agreement observed between these results and those of main previous experiments is a proof of the usefulness of the extrapolation method above 1 GeV [fr

  17. Nonequilibrium relaxation method – An alternative simulation strategy

    Indian Academy of Sciences (India)

    One well-established simulation strategy to study the thermal phases and transitions of a given microscopic model system is the so-called equilibrium method, in which one first realizes the equilibrium ensemble of a finite system and then extrapolates the results to infinite system. This equilibrium method traces over the ...

  18. New methods for the numerical integration of ordinary differential equations and their application to the equations of motion of spacecraft

    Science.gov (United States)

    Banyukevich, A.; Ziolkovski, K.

    1975-01-01

    A number of hybrid methods for solving Cauchy problems are described on the basis of an evaluation of advantages of single and multiple-point numerical integration methods. The selection criterion is the principle of minimizing computer time. The methods discussed include the Nordsieck method, the Bulirsch-Stoer extrapolation method, and the method of recursive Taylor-Steffensen power series.

  19. Corrosion inhibition of brass by aliphatic amines

    International Nuclear Information System (INIS)

    Taha, K. K.; Sheshadri, B. S; Ahmed, M. F.

    2005-01-01

    Aliphatic amines hexylamine (HCA), octylamine (OCA) and decylamine (DCA) have been used as corrosion inhibitors for (70/30) brass in 0.I M HCIO 4 . The inhibitor efficiency (%P) calculated using weight loss, Tafel extrapolation, linear polarization and impedance methods was found to be in the order DCA> OCA> HCA. These adsorb on brass surface following bockris-swinkels' isotherm. DCA, OCA and HCA displaced 4, 3 and 2 molecules of water from interface respectively. Displacement of water molecules brought a great reorganization of double layer at the interface. These amines during corrosion form complexes with dissolved zinc and copper ions.(Author)

  20. Development of a PBPK model of thiocyanate in rats with an extrapolation to humans: A computational study to quantify the mechanism of action of thiocyanate kinetics in thyroid

    International Nuclear Information System (INIS)

    Willemin, Marie-Emilie; Lumen, Annie

    2016-01-01

    Thyroid homeostasis can be disturbed due to thiocyanate exposure from the diet or tobacco smoke. Thiocyanate inhibits both thyroidal uptake of iodide, via the sodium-iodide symporter (NIS), and thyroid hormone (TH) synthesis in the thyroid, via thyroid peroxidase (TPO), but the mode of action of thiocyanate is poorly quantified in the literature. The characterization of the link between intra-thyroidal thiocyanate concentrations and dose of exposure is crucial for assessing the risk of thyroid perturbations due to thiocyanate exposure. We developed a PBPK model for thiocyanate that describes its kinetics in the whole-body up to daily doses of 0.15 mmol/kg, with a mechanistic description of the thyroidal kinetics including NIS, passive diffusion, and TPO. The model was calibrated in a Bayesian framework using published studies in rats. Goodness-of-fit was satisfactory, especially for intra-thyroidal thiocyanate concentrations. Thiocyanate kinetic processes were quantified in vivo, including the metabolic clearance by TPO. The passive diffusion rate was found to be greater than NIS-mediated uptake rate. The model captured the dose-dependent kinetics of thiocyanate after acute and chronic exposures. Model behavior was evaluated using a Morris screening test. The distribution of thiocyanate into the thyroid was found to be determined primarily by the partition coefficient, followed by NIS and passive diffusion; the impact of the latter two mechanisms appears to increase at very low doses. Extrapolation to humans resulted in good predictions of thiocyanate kinetics during chronic exposure. The developed PBPK model can be used in risk assessment to quantify dose-response effects of thiocyanate on TH. - Highlights: • A PBPK model of thiocyanate (SCN − ) was calibrated in rats in a Bayesian framework. • The intra-thyroidal kinetics of thiocyanate including NIS and TPO was modeled. • Passive diffusion rate for SCN − seemed to be greater than the NIS

  1. Development of a PBPK model of thiocyanate in rats with an extrapolation to humans: A computational study to quantify the mechanism of action of thiocyanate kinetics in thyroid

    Energy Technology Data Exchange (ETDEWEB)

    Willemin, Marie-Emilie; Lumen, Annie, E-mail: Annie.Lumen@fda.hhs.gov

    2016-09-15

    Thyroid homeostasis can be disturbed due to thiocyanate exposure from the diet or tobacco smoke. Thiocyanate inhibits both thyroidal uptake of iodide, via the sodium-iodide symporter (NIS), and thyroid hormone (TH) synthesis in the thyroid, via thyroid peroxidase (TPO), but the mode of action of thiocyanate is poorly quantified in the literature. The characterization of the link between intra-thyroidal thiocyanate concentrations and dose of exposure is crucial for assessing the risk of thyroid perturbations due to thiocyanate exposure. We developed a PBPK model for thiocyanate that describes its kinetics in the whole-body up to daily doses of 0.15 mmol/kg, with a mechanistic description of the thyroidal kinetics including NIS, passive diffusion, and TPO. The model was calibrated in a Bayesian framework using published studies in rats. Goodness-of-fit was satisfactory, especially for intra-thyroidal thiocyanate concentrations. Thiocyanate kinetic processes were quantified in vivo, including the metabolic clearance by TPO. The passive diffusion rate was found to be greater than NIS-mediated uptake rate. The model captured the dose-dependent kinetics of thiocyanate after acute and chronic exposures. Model behavior was evaluated using a Morris screening test. The distribution of thiocyanate into the thyroid was found to be determined primarily by the partition coefficient, followed by NIS and passive diffusion; the impact of the latter two mechanisms appears to increase at very low doses. Extrapolation to humans resulted in good predictions of thiocyanate kinetics during chronic exposure. The developed PBPK model can be used in risk assessment to quantify dose-response effects of thiocyanate on TH. - Highlights: • A PBPK model of thiocyanate (SCN{sup −}) was calibrated in rats in a Bayesian framework. • The intra-thyroidal kinetics of thiocyanate including NIS and TPO was modeled. • Passive diffusion rate for SCN{sup −} seemed to be greater than the NIS

  2. Producing Distribution Maps for a Spatially-Explicit Ecosystem Model Using Large Monitoring and Environmental Databases and a Combination of Interpolation and Extrapolation

    Directory of Open Access Journals (Sweden)

    Arnaud Grüss

    2018-01-01

    Full Text Available To be able to simulate spatial patterns of predator-prey interactions, many spatially-explicit ecosystem modeling platforms, including Atlantis, need to be provided with distribution maps defining the annual or seasonal spatial distributions of functional groups and life stages. We developed a methodology combining extrapolation and interpolation of the predictions made by statistical habitat models to produce distribution maps for the fish and invertebrates represented in the Atlantis model of the Gulf of Mexico (GOM Large Marine Ecosystem (LME (“Atlantis-GOM”. This methodology consists of: (1 compiling a large monitoring database, gathering all the fisheries-independent and fisheries-dependent data collected in the northern (U.S. GOM since 2000; (2 compiling a large environmental database, storing all the environmental parameters known to influence the spatial distribution patterns of fish and invertebrates of the GOM; (3 fitting binomial generalized additive models (GAMs to the large monitoring and environmental databases, and geostatistical binomial generalized linear mixed models (GLMMs to the large monitoring database; and (4 employing GAM predictions to infer spatial distributions in the southern GOM, and GLMM predictions to infer spatial distributions in the U.S. GOM. Thus, our methodology allows for reasonable extrapolation in the southern GOM based on a large amount of monitoring and environmental data, and for interpolation in the U.S. GOM accurately reflecting the probability of encountering fish and invertebrates in that region. We used an iterative cross-validation procedure to validate GAMs. When a GAM did not pass the validation test, we employed a GAM for a related functional group/life stage to generate distribution maps for the southern GOM. In addition, no geostatistical GLMMs were fit for the functional groups and life stages whose depth, longitudinal and latitudinal ranges within the U.S. GOM are not entirely covered by

  3. MTS-MD of Biomolecules Steered with 3D-RISM-KH Mean Solvation Forces Accelerated with Generalized Solvation Force Extrapolation.

    Science.gov (United States)

    Omelyan, Igor; Kovalenko, Andriy

    2015-04-14

    We developed a generalized solvation force extrapolation (GSFE) approach to speed up multiple time step molecular dynamics (MTS-MD) of biomolecules steered with mean solvation forces obtained from the 3D-RISM-KH molecular theory of solvation (three-dimensional reference interaction site model with the Kovalenko-Hirata closure). GSFE is based on a set of techniques including the non-Eckart-like transformation of coordinate space separately for each solute atom, extension of the force-coordinate pair basis set followed by selection of the best subset, balancing the normal equations by modified least-squares minimization of deviations, and incremental increase of outer time step in motion integration. Mean solvation forces acting on the biomolecule atoms in conformations at successive inner time steps are extrapolated using a relatively small number of best (closest) solute atomic coordinates and corresponding mean solvation forces obtained at previous outer time steps by converging the 3D-RISM-KH integral equations. The MTS-MD evolution steered with GSFE of 3D-RISM-KH mean solvation forces is efficiently stabilized with our optimized isokinetic Nosé-Hoover chain (OIN) thermostat. We validated the hybrid MTS-MD/OIN/GSFE/3D-RISM-KH integrator on solvated organic and biomolecules of different stiffness and complexity: asphaltene dimer in toluene solvent, hydrated alanine dipeptide, miniprotein 1L2Y, and protein G. The GSFE accuracy and the OIN efficiency allowed us to enlarge outer time steps up to huge values of 1-4 ps while accurately reproducing conformational properties. Quasidynamics steered with 3D-RISM-KH mean solvation forces achieves time scale compression of conformational changes coupled with solvent exchange, resulting in further significant acceleration of protein conformational sampling with respect to real time dynamics. Overall, this provided a 50- to 1000-fold effective speedup of conformational sampling for these systems, compared to conventional MD

  4. Wavefield extrapolation in pseudodepth domain

    KAUST Repository

    Ma, Xuxin; Alkhalifah, Tariq Ali

    2013-01-01

    Wavefields are commonly computed in the Cartesian coordinate frame. Its efficiency is inherently limited due to spatial oversampling in deep layers, where the velocity is high and wavelengths are long. To alleviate this computational waste due

  5. Local initiative extrapolated to nation

    DEFF Research Database (Denmark)

    Wittchen, Kim Bjarne; Kragh, Jesper; Brøgger, Morten

    In the municipality of Sønderborg, in the southern part of Jutland, there is a shining example initiated in 2007, ProjectZero, of a local initiative that have resulted in extensive energy savings in residential buildings and at the same time created local workplaces. The intension with the pilot...

  6. Comparison of soil sampling and analytical methods for asbestos at the Sumas Mountain Asbestos Site—Working towards a toolbox for better assessment

    Science.gov (United States)

    Established soil sampling methods for asbestos are inadequate to support risk assessment and risk-based decision making at Superfund sites due to difficulties in detecting asbestos at low concentrations and difficulty in extrapolating soil concentrations to air concentrations. En...

  7. [Financial impact of smoking on health systems in Latin America: A study of seven countries and extrapolation to the regional level].

    Science.gov (United States)

    Pichon-Riviere, Andrés; Bardach, Ariel; Augustovski, Federico; Alcaraz, Andrea; Reynales-Shigematsu, Luz Myriam; Pinto, Márcia Teixeira; Castillo-Riquelme, Marianela; Torres, Esperanza Peña; Osorio, Diana Isabel; Huayanay, Leandro; Munarriz, César Loza; de Miera-Juárez, Belén Sáenz; Gallegos-Rivero, Verónica; Puente, Catherine De La; Navia-Bueno, María Del Pilar; Caporale, Joaquín

    2016-10-01

    Estimate smoking-attributable direct medical costs in Latin American health systems. A microsimulation model was used to quantify financial impact of cardiovascular and cerebrovascular disease, chronic obstructive pulmonary disease (COPD), pneumonia, lung cancer, and nine other neoplasms. A systematic search for epidemiological data and event costs was carried out. The model was calibrated and validated for Argentina, Bolivia, Brazil, Chile, Colombia, Mexico, and Peru, countries that account for 78% of Latin America's population; the results were then extrapolated to the regional level. Every year, smoking is responsible for 33 576 billion dollars in direct costs to health systems. This amounts to 0.7% of the region's gross domestic product (GDP) and 8.3% of its health budget. Cardiovascular disease, COPD, and cancer were responsible for 30.3%, 26.9%, and 23.7% of these expenditures, respectively. Smoking-attributable costs ranged from 0.4% (Mexico and Peru) to 0.9% (Chile) of GDP and from 5.2% (Brazil) to 12.7% (Bolivia) of health expenditures. In the region, tax revenues from cigarette sales barely cover 37% of smoking-attributable health expenditures (8.1% in Bolivia and 67.3% in Argentina). Smoking is responsible for a significant proportion of health spending in Latin America, and tax revenues from cigarette sales are far from covering it. The region's countries should seriously consider stronger measures, such as an increase in tobacco taxes.

  8. Combining monoenergetic extrapolations from dual-energy CT with iterative reconstructions. Reduction of coil and clip artifacts from intracranial aneurysm therapy

    Energy Technology Data Exchange (ETDEWEB)

    Winklhofer, Sebastian; Baltsavias, Gerasimos; Michels, Lars; Valavanis, Antonios [University of Zurich, Department of Neuroradiology, University Hospital Zurich, Zurich (Switzerland); Hinzpeter, Ricarda; Stocker, Daniel; Alkadhi, Hatem [University of Zurich, Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Zurich (Switzerland); Burkhardt, Jan-Karl; Regli, Luca [University of Zurich, Department of Neurosurgery, University Hospital Zurich, Zurich (Switzerland)

    2018-03-15

    To compare and to combine iterative metal artifact reduction (MAR) and virtual monoenergetic extrapolations (VMEs) from dual-energy computed tomography (DECT) for reducing metal artifacts from intracranial clips and coils. Fourteen clips and six coils were scanned in a phantom model with DECT at 100 and 150SnkVp. Four datasets were reconstructed: non-corrected images (filtered-back projection), iterative MAR, VME from DECT at 120 keV, and combined iterative MAR + VME images. Artifact severity scores and visibility of simulated, contrast-filled, adjacent vessels were assessed qualitatively and quantitatively by two independent, blinded readers. Iterative MAR, VME, and combined iterative MAR + VME resulted in a significant reduction of qualitative (p < 0.001) and quantitative clip artifacts (p < 0.005) and improved the visibility of adjacent vessels (p < 0.05) compared to non-corrected images, with lowest artifact scores found in combined iterative MAR + VME images. Titanium clips demonstrated less artifacts than Phynox clips (p < 0.05), and artifact scores increased with clip size. Coil artifacts increased with coil size but were reducible when applying iterative MAR + VME compared to non-corrected images. However, no technique improved the severe artifacts from large, densely packed coils. Combining iterative MAR with VME allows for an improved metal artifact reduction from clips and smaller, loosely packed coils. Limited value was found for large and densely packed coils. (orig.)

  9. Efficient Method to Approximately Solve Retrial Systems with Impatience

    Directory of Open Access Journals (Sweden)

    Jose Manuel Gimenez-Guzman

    2012-01-01

    Full Text Available We present a novel technique to solve multiserver retrial systems with impatience. Unfortunately these systems do not present an exact analytic solution, so it is mandatory to resort to approximate techniques. This novel technique does not rely on the numerical solution of the steady-state Kolmogorov equations of the Continuous Time Markov Chain as it is common for this kind of systems but it considers the system in its Markov Decision Process setting. This technique, known as value extrapolation, truncates the infinite state space using a polynomial extrapolation method to approach the states outside the truncated state space. A numerical evaluation is carried out to evaluate this technique and to compare its performance with previous techniques. The obtained results show that value extrapolation greatly outperforms the previous approaches appeared in the literature not only in terms of accuracy but also in terms of computational cost.

  10. Regression models in the determination of the absorbed dose with extrapolation chamber for ophthalmological applicators; Modelos de regresion en la determinacion de la dosis absorbida con camara de extrapolacion para aplicadores oftalmologicos

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez R, J T; Morales P, R

    1992-06-15

    The absorbed dose for equivalent soft tissue is determined,it is imparted by ophthalmologic applicators, ({sup 90} Sr/{sup 90} Y, 1850 MBq) using an extrapolation chamber of variable electrodes; when estimating the slope of the extrapolation curve using a simple lineal regression model is observed that the dose values are underestimated from 17.7 percent up to a 20.4 percent in relation to the estimate of this dose by means of a regression model polynomial two grade, at the same time are observed an improvement in the standard error for the quadratic model until in 50%. Finally the global uncertainty of the dose is presented, taking into account the reproducibility of the experimental arrangement. As conclusion it can infers that in experimental arrangements where the source is to contact with the extrapolation chamber, it was recommended to substitute the lineal regression model by the quadratic regression model, in the determination of the slope of the extrapolation curve, for more exact and accurate measurements of the absorbed dose. (Author)

  11. A study of health effect estimates using competing methods to model personal exposures to ambient PM2.5.

    Science.gov (United States)

    Strand, Matthew; Hopke, Philip K; Zhao, Weixiang; Vedal, Sverre; Gelfand, Erwin; Rabinovitch, Nathan

    2007-09-01

    Various methods have been developed recently to estimate personal exposures to ambient particulate matter less than 2.5 microm in diameter (PM2.5) using fixed outdoor monitors as well as personal exposure monitors. One class of estimators involves extrapolating values using ambient-source components of PM2.5, such as sulfate and iron. A key step in extrapolating these values is to correct for differences in infiltration characteristics of the component used in extrapolation (such as sulfate within PM2.5) and PM2.5. When this is not done, resulting health effect estimates will be biased. Another class of approaches involves factor analysis methods such as positive matrix factorization (PMF). Using either an extrapolation or a factor analysis method in conjunction with regression calibration allows one to estimate the direct effects of ambient PM2.5 on health, eliminating bias caused by using fixed outdoor monitors and estimated personal ambient PM2.5 concentrations. Several forms of the extrapolation method are defined, including some new ones. Health effect estimates that result from the use of these methods are compared with those from an expanded PMF analysis using data collected from a health study of asthmatic children conducted in Denver, Colorado. Examining differences in health effect estimates among the various methods using a measure of lung function (forced expiratory volume in 1 s) as the health indicator demonstrated the importance of the correction factor(s) in the extrapolation methods and that PMF yielded results comparable with the extrapolation methods that incorporated correction factors.

  12. A novel cost-effectiveness model of prescription eicosapentaenoic acid extrapolated to secondary prevention of cardiovascular diseases in the United States.

    Science.gov (United States)

    Philip, Sephy; Chowdhury, Sumita; Nelson, John R; Benjamin Everett, P; Hulme-Lowe, Carolyn K; Schmier, Jordana K

    2016-10-01

    Given the substantial economic and health burden of cardiovascular disease and the residual cardiovascular risk that remains despite statin therapy, adjunctive therapies are needed. The purpose of this model was to estimate the cost-effectiveness of high-purity prescription eicosapentaenoic acid (EPA) omega-3 fatty acid intervention in secondary prevention of cardiovascular diseases in statin-treated patient populations extrapolated to the US. The deterministic model utilized inputs for cardiovascular events, costs, and utilities from published sources. Expert opinion was used when assumptions were required. The model takes the perspective of a US commercial, third-party payer with costs presented in 2014 US dollars. The model extends to 5 years and applies a 3% discount rate to costs and benefits. Sensitivity analyses were conducted to explore the influence of various input parameters on costs and outcomes. Using base case parameters, EPA-plus-statin therapy compared with statin monotherapy resulted in cost savings (total 5-year costs $29,393 vs $30,587 per person, respectively) and improved utilities (average 3.627 vs 3.575, respectively). The results were not sensitive to multiple variations in model inputs and consistently identified EPA-plus-statin therapy to be the economically dominant strategy, with both lower costs and better patient utilities over the modeled 5-year period. The model is only an approximation of reality and does not capture all complexities of a real-world scenario without further inputs from ongoing trials. The model may under-estimate the cost-effectiveness of EPA-plus-statin therapy because it allows only a single event per patient. This novel model suggests that combining EPA with statin therapy for secondary prevention of cardiovascular disease in the US may be a cost-saving and more compelling intervention than statin monotherapy.

  13. Detectors for LEP: methods and techniques

    International Nuclear Information System (INIS)

    Fabjan, C.

    1979-01-01

    This note surveys detection methods and techniques of relevance for the LEP physics programme. The basic principles of the detector physics are sketched, as recent improvement in understanding points towards improvements and also limitations in performance. Development and present status of large detector systems is presented and permits some conservative extrapolations. State-of-the-art techniques and technologies are presented and their potential use in the LEP physics programme assessed. (Auth.)

  14. Electrochemical maps and movies of the hydrogen evolution reaction on natural crystals of molybdenite (MoS2): basal vs. edge plane activity† †Electronic supplementary information (ESI) available: Movies S1 to S4: spatially resolved LSV-SECCM movies obtained from the electrocatalytic HER on the surface of bulk MoS2. Fig. S1 to S14: XRD, XPS, Raman, SEM and OM characterization of MoS2; SEM images of the nanopipets; WCA measurements; LSVs and Tafel plots obtained from the HER on MoS2. See DOI: 10.1039/c7sc02545a Click here for additional data file. Click here for additional data file. Click here for additional data file. Click here for additional data file. Click here for additional data file.

    Science.gov (United States)

    Kang, Minkyung; Maddar, Faduma M.; Li, Fengwang; Walker, Marc; Zhang, Jie

    2017-01-01

    Two dimensional (2D) semiconductor materials, such as molybdenum disulfide (MoS2) have attracted considerable interest in a range of chemical and electrochemical applications, for example, as an abundant and low-cost alternative electrocatalyst to platinum for the hydrogen evolution reaction (HER). While it has been proposed that the edge plane of MoS2 possesses high catalytic activity for the HER relative to the “catalytically inert” basal plane, this conclusion has been drawn mainly from macroscale electrochemical (voltammetric) measurements, which reflect the “average” electrocatalytic behavior of complex electrode ensembles. In this work, we report the first spatially-resolved measurements of HER activity on natural crystals of molybdenite, achieved using voltammetric scanning electrochemical cell microscopy (SECCM), whereby pixel-resolved linear-sweep voltammogram (LSV) measurements have allowed the HER to be visualized at multiple different potentials to construct electrochemical flux movies with nanoscale resolution. Key features of the SECCM technique are that characteristic surface sites can be targeted and analyzed in detail and, further, that the electrocatalyst area is known with good precision (in contrast to many macroscale measurements on supported catalysts). Through correlation of the local voltammetric response with information from scanning electron microscopy (SEM) and atomic force microscopy (AFM) in a multi-microscopy approach, it is demonstrated unequivocally that while the basal plane of bulk MoS2 (2H crystal phase) possesses significant activity, the HER is greatly facilitated at the edge plane (e.g., surface defects such as steps, edges or crevices). Semi-quantitative treatment of the voltammetric data reveals that the HER at the basal plane of MoS2 has a Tafel slope and exchange current density (J 0) of ∼120 mV per decade and 2.5 × 10–6 A cm–2 (comparable to polycrystalline Co, Ni, Cu and Au), respectively, while the edge

  15. A mechanistic framework for in vitro-in vivo extrapolation of liver membrane transporters: prediction of drug-drug interaction between rosuvastatin and cyclosporine.

    Science.gov (United States)

    Jamei, M; Bajot, F; Neuhoff, S; Barter, Z; Yang, J; Rostami-Hodjegan, A; Rowland-Yeo, K

    2014-01-01

    The interplay between liver metabolising enzymes and transporters is a complex process involving system-related parameters such as liver blood perfusion as well as drug attributes including protein and lipid binding, ionisation, relative magnitude of passive and active permeation. Metabolism- and/or transporter-mediated drug-drug interactions (mDDIs and tDDIs) add to the complexity of this interplay. Thus, gaining meaningful insight into the impact of each element on the disposition of a drug and accurately predicting drug-drug interactions becomes very challenging. To address this, an in vitro-in vivo extrapolation (IVIVE)-linked mechanistic physiologically based pharmacokinetic (PBPK) framework for modelling liver transporters and their interplay with liver metabolising enzymes has been developed and implemented within the Simcyp Simulator(®). In this article an IVIVE technique for liver transporters is described and a full-body PBPK model is developed. Passive and active (saturable) transport at both liver sinusoidal and canalicular membranes are accounted for and the impact of binding and ionisation processes is considered. The model also accommodates tDDIs involving inhibition of multiple transporters. Integrating prior in vitro information on the metabolism and transporter kinetics of rosuvastatin (organic-anion transporting polypeptides OATP1B1, OAT1B3 and OATP2B1, sodium-dependent taurocholate co-transporting polypeptide [NTCP] and breast cancer resistance protein [BCRP]) with one clinical dataset, the PBPK model was used to simulate the drug disposition of rosuvastatin for 11 reported studies that had not been used for development of the rosuvastatin model. The simulated area under the plasma concentration-time curve (AUC), maximum concentration (C max) and the time to reach C max (t max) values of rosuvastatin over the dose range of 10-80 mg, were within 2-fold of the observed data. Subsequently, the validated model was used to investigate the impact of

  16. High-Resolution Spectroscopy of He{_2}^+ Using Rydberg-Series Extrapolation and Zeeman-Decelerated Supersonic Beams of Metastable He_2

    Science.gov (United States)

    Jansen, Paul; Semeria, Luca; Merkt, Frederic

    2016-06-01

    Having only three electrons, He{_2}^+ represents a system for which highly accurate ab initio calculations are possible. The latest calculations of rovibrational energies in He{_2}^+ do not include relativistic or QED corrections but claim an accuracy of 120 MHz We have performed high-resolution Rydberg spectroscopy of metastable He_2 molecules and employed multichannel-quantum-defect-theory extrapolation techniques to determine the rotational energy-level structure in the He{_2}^+ ion. To this end, we have produced samples of metastable helium molecules in supersonic beams with velocities tunable down to 100 m/s by combining a cryogenic supersonic-beam source with a multistage Zeeman decelerator. The metastable He_2 molecules are excited to np Rydberg states using the frequency-doubled output of a pulse-amplified ring dye laser. Although the bandwidth of the laser system is too large to observe the reduction of the Doppler width resulting from deceleration, the deceleration greatly simplifies the spectral assignments because of its spin-rotational state selectivity. Our approach enabled us to determine the rotational structure of He_2 with an unprecedented accuracy of 18 MHz, to quantify the size of the relativistic and QED corrections by comparison with the results of Tung et al. and to precisely measure the rotational structure of the metastable state for comparison with the results of Focsa et al. Here, we present an extension of these measurements in which we have measured higher rotational intervals of He{_2}^+. In addition, we have replaced the pulsed UV laser by a cw UV laser and improved the resolution of the spectra by a factor of more than five. W.-C. Tung, M. Pavanello and L. Adamowicz, J. Chem. Phys. 136, 104309 (2012). P. Jansen, L. Semeria, L. Esteban Hofer, S. Scheidegger, J.A. Agner, H. Schmutz, and F. Merkt, Phys. Rev. Lett. 115, 133202 (2015). D. Sprecher, J. Liu, T. Krähenmann, M. Schäfer, and F. Merkt, J. Chem. Phys. 140, 064304 (2014). M

  17. A New GMRES(m Method for Markov Chains

    Directory of Open Access Journals (Sweden)

    Bing-Yuan Pu

    2013-01-01

    Full Text Available This paper presents a class of new accelerated restarted GMRES method for calculating the stationary probability vector of an irreducible Markov chain. We focus on the mechanism of this new hybrid method by showing how to periodically combine the GMRES and vector extrapolation method into a much efficient one for improving the convergence rate in Markov chain problems. Numerical experiments are carried out to demonstrate the efficiency of our new algorithm on several typical Markov chain problems.

  18. [Births and children after assisted reproductive technologies. A retrospective analysis with special regard to multiple pregnancies at the Department of Obstetrics and Gynecology, Paracelsus Medical University Salzburg (2000-2009) with an extrapolation for Austria].

    Science.gov (United States)

    Maier, B; Reitsamer-Tontsch, S; Weisser, C; Schreiner, B

    2011-10-01

    Austria still lacks a baby-take-home rate after assisted reproductive technologies (ART) and therefore an adequate quality management of ART. This paper extrapolates data about births/infants after ART at the University Clinic of Obstetrics and Gynaecology (PMU/SALK) in Salzburg for Austria, especially in regard to multiple births/infants collected between 2000 and 2009. On average 2 271 infants were born per year during the last 10 years. Among them, 76 infants (3.34% of all children) were born after ART. Of all children conceived by ART and born (759) at the University Clinic of Obstetrics and Gynaecology 368 are multiples. This is 48.5% of all children born after ART. 31.6% of all multiples born were conceived through ART. The extrapolation of data concerning multiples results in 1 255 multiples/year after ART for Austria. Without a baby-take-home rate, serious quality management of reproductive medicine is impossible. Online registration of deliveries and infants is the only adequate approach. The data of this statistical extrapolation from a single perinatal center not only provide a survey about the situation in Austria, but also support the claim of a quantitative (numbers) as well as qualitative (condition of infants) baby-take-home rate after ART. © Georg Thieme Verlag KG Stuttgart · New York.

  19. Analysis of methods to determine the latency of online movement adjustments

    NARCIS (Netherlands)

    Oostwoud Wijdenes, L.; Brenner, E.; Smeets, J.B.J.

    2014-01-01

    When studying online movement adjustments, one of the interesting parameters is their latency. We set out to compare three different methods of determining the latency: the threshold, confidence interval, and extrapolation methods. We simulated sets of movements with different movement times and

  20. Characterization of an extrapolation chamber and radiochromic films for verifying the metrological coherence among beta radiation fields; Caracterizacao de uma camara de extrapolacao e filmes radiocromicos para verificacao da coerencia metrologica entre campos padroes de radiacao beta

    Energy Technology Data Exchange (ETDEWEB)

    Castillo, Jhonny Antonio Benavente

    2011-07-01

    The metrological coherence among standard systems is a requirement for assuring the reliability of dosimetric quantities measurements in ionizing radiation field. Scientific and technologic improvements happened in beta radiation metrology with the installment of the new beta secondary standard BSS2 in Brazil and with the adoption of the internationally recommended beta reference radiations. The Dosimeter Calibration Laboratory of the Development Center for Nuclear Technology (LCD/CDTN), in Belo Horizonte, implemented the BSS2 and methodologies are investigated for characterizing the beta radiation fields by determining the field homogeneity, the accuracy and uncertainties in the absorbed dose in air measurements. In this work, a methodology to be used for verifying the metrological coherence among beta radiation fields in standard systems was investigated; an extrapolation chamber and radiochromic films were used and measurements were done in terms of absorbed dose in air. The reliability of both the extrapolation chamber and the radiochromic film was confirmed and their calibrations were done in the LCD/CDTN in {sup 90}Sr/{sup 90}Y, {sup 85}Kr and {sup 147}Pm beta radiation fields. The angular coefficients of the extrapolation curves were determined with the chamber; the field mapping and homogeneity were obtained from dose profiles and isodose with the radiochromic films. A preliminary comparison between the LCD/CDTN and the Instrument Calibration Laboratory of the Nuclear and Energy Research Institute / Sao Paulo (LCI/IPEN) was carried out. Results with the extrapolation chamber measurements showed in terms of absorbed dose in air rates showed differences between both laboratories up to de -I % e 3%, for {sup 90}Sr/{sup 90}Y, {sup 85}Kr and {sup 147}Pm beta radiation fields, respectively. Results with the EBT radiochromic films for 0.1, 0.3 and 0.15 Gy absorbed dose in air, for the same beta radiation fields, showed differences up to 3%, -9% and -53%. The beta

  1. Spectral method and its high performance implementation

    KAUST Repository

    Wu, Zedong

    2014-01-01

    We have presented a new method that can be dispersion free and unconditionally stable. Thus the computational cost and memory requirement will be reduced a lot. Based on this feature, we have implemented this algorithm on GPU based CUDA for the anisotropic Reverse time migration. There is almost no communication between CPU and GPU. For the prestack wavefield extrapolation, it can combine all the shots together to migration. However, it requires to solve a bigger dimensional problem and more meory which can\\'t fit into one GPU cards. In this situation, we implement it based on domain decomposition method and MPI for distributed memory system.

  2. Corporate Governance in Post-Socialist Countries - Theoretical Dilemmas, Peculiarities, Research Opportunities / Külliki Tafel, Erik Terk, Alari Purju

    Index Scriptorium Estoniae

    Tafel, Külliki

    2006-01-01

    Äriühingute valitsemine postsotsialistlikes riikides - teoreetilised dilemmad, eripärad, uurimisvõimalused. Skeemid: Internal and external relations of corporate governanace; The changing context of corporate governance

  3. Sotsiaalne vastutus Eesti moodi : firma maksab, omanik võtab aupaiste? / Külliki Tafel, Ruth Alas

    Index Scriptorium Estoniae

    Tafel, Külliki

    2006-01-01

    Väljavõtteid intervjuudest, mis viidi läbi Estonian Business Schooli ja Tuleviku-uuringute Instituudi poolt korraldatud sotsiaalse vastutuse uuringu raames. Lisa: EBSi ja Tuleviku-uuringute Instituudi uuring

  4. Measurement of gas adsorption with Jäntti's method using continuously increasing pressure

    NARCIS (Netherlands)

    Poulis, J.A.; Massen, C.H.; Robens, E.

    2002-01-01

    Jäntti et al. published a method to reduce the time necessary for adsorption measurements. They proposed to extrapolate the equilibrium in the stepwise isobaric measurement of adsorption isotherms by measuring at each step three points of the kinetic curve. For that purpose they approximated the

  5. Extending the charge-flipping method towards structure solution from incomplete data sets

    Czech Academy of Sciences Publication Activity Database

    Palatinus, Lukáš; Steurer, W.; Chapuis, G.

    2007-01-01

    Roč. 40, - (2007), s. 456-462 ISSN 0021-8898 Institutional research plan: CEZ:AV0Z10100521 Keywords : ab initio structure solution * density modification * maximum entropy method * intensity extrapolation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.629, year: 2007

  6. Human plasma concentrations of tolbutamide and acetaminophen extrapolated from in vivo animal pharmacokinetics using in vitro human hepatic clearances and simple physiologically based pharmacokinetic modeling for radio-labeled microdose clinical studies

    International Nuclear Information System (INIS)

    Yamazaki, Hiroshi; Kunikane, Eriko; Nishiyama, Sayako; Murayama, Norie; Shimizu, Makiko; Sugiyama, Yuichi; Chiba, Koji; Ikeda, Toshihiko

    2015-01-01

    The aim of the current study was to extrapolate the pharmacokinetics of drug substances orally administered in humans from rat pharmacokinetic data using tolbutamide and acetaminophen as model compounds. Adjusted animal biomonitoring equivalents from rat studies based on reported plasma concentrations were scaled to human biomonitoring equivalents using known species allometric scaling factors. In this extrapolation, in vitro metabolic clearance data were obtained using liver preparations. Rates of tolbutamide elimination were roughly similar in rat and human liver microsome experiments, but acetaminophen elimination by rat liver microsomes and cytosolic preparations showed a tendency to be faster than those in humans. Using a simple physiologically based pharmacokinetic (PBPK) model, estimated human plasma concentrations of tolbutamide and acetaminophen were consistent with reported concentrations. Tolbutamide cleared in a roughly similar manner in humans and rats, but medical-dose levels of acetaminophen cleared (dependent on liver metabolism) more slowly from plasma in humans than it did in rats. The data presented here illustrate how pharmacokinetic data in combination with a simple PBPK model can be used to assist evaluations of the pharmacological/toxicological potential of new drug substances and for estimating human radiation exposures from radio-labeled drugs when planning human studies. (author)

  7. Copper complex N(4)-ortho-toluyl-2-acetylpyridine thiosemicarbazone - ({sup 64}Cu)(H2Ac4oT)Cl - internal dosimetry: animal model and human extrapolation

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, Josianne L.; Silva, Paulo R.O.; Santos, Raquel G.; Ferreira, Andrea V., E-mail: jlr@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2011-07-01

    Thiosemicarbazones have attracted great pharmacological interest because of their biological properties, such as cytotoxic activity against multiple strains of human tumors. Due to the excellent properties of {sup 64}Cu, the copper complex N(4)-ortho-toluyl-2-acetylpyridine thiosemicarbazone (({sup 64}Cu)(H2Ac4oT)Cl) was developed for tumor detection by positron emission tomography. The radiopharmaceuticals were produced in the nuclear reactor TRIGA-IPR-R1 from CDTN. At the present work, ({sup 64}Cu)(H2Ac4oT)Cl biokinetic data (evaluated in mice bearing Ehrlich tumor) were treated by MIRD formalism to perform Internal Dosimetry studies. Doses in several organs of mice were determinate, as well as in implanted tumor, for ({sup 64}Cu)(H2Ac4oT)Cl. Doses results obtained for animal model were extrapolated to humans assuming a similar concentration ratio among various tissues between mouse and human. In the extrapolation, it was used human organ masses from Cristy/Eckerman phantom. Both penetrating and non-penetrating radiation from {sup 64}Cu in the tissue were considered in dose calculations. (author)

  8. Automatic numerical integration methods for Feynman integrals through 3-loop

    International Nuclear Information System (INIS)

    De Doncker, E; Olagbemi, O; Yuasa, F; Ishikawa, T; Kato, K

    2015-01-01

    We give numerical integration results for Feynman loop diagrams through 3-loop such as those covered by Laporta [1]. The methods are based on automatic adaptive integration, using iterated integration and extrapolation with programs from the QUADPACK package, or multivariate techniques from the ParInt package. The Dqags algorithm from QuadPack accommodates boundary singularities of fairly general types. PARINT is a package for multivariate integration layered over MPI (Message Passing Interface), which runs on clusters and incorporates advanced parallel/distributed techniques such as load balancing among processes that may be distributed over a network of nodes. Results are included for 3-loop self-energy diagrams without IR (infra-red) or UV (ultra-violet) singularities. A procedure based on iterated integration and extrapolation yields a novel method of numerical regularization for integrals with UV terms, and is applied to a set of 2-loop self-energy diagrams with UV singularities. (paper)

  9. Report on the uncertainty methods study

    International Nuclear Information System (INIS)

    1998-06-01

    The Uncertainty Methods Study (UMS) Group, following a mandate from CSNI, has compared five methods for calculating the uncertainty in the predictions of advanced 'best estimate' thermal-hydraulic codes: the Pisa method (based on extrapolation from integral experiments) and four methods identifying and combining input uncertainties. Three of these, the GRS, IPSN and ENUSA methods, use subjective probability distributions, and one, the AEAT method, performs a bounding analysis. Each method has been used to calculate the uncertainty in specified parameters for the LSTF SB-CL-18 5% cold leg small break LOCA experiment in the ROSA-IV Large Scale Test Facility (LSTF). The uncertainty analysis was conducted essentially blind and the participants did not use experimental measurements from the test as input apart from initial and boundary conditions. Participants calculated uncertainty ranges for experimental parameters including pressurizer pressure, primary circuit inventory and clad temperature (at a specified position) as functions of time

  10. NOLB: Nonlinear Rigid Block Normal Mode Analysis Method

    OpenAIRE

    Hoffmann , Alexandre; Grudinin , Sergei

    2017-01-01

    International audience; We present a new conceptually simple and computationally efficient method for nonlinear normal mode analysis called NOLB. It relies on the rotations-translations of blocks (RTB) theoretical basis developed by Y.-H. Sanejouand and colleagues. We demonstrate how to physically interpret the eigenvalues computed in the RTB basis in terms of angular and linear velocities applied to the rigid blocks and how to construct a nonlinear extrapolation of motion out of these veloci...

  11. Capacity for work researching method in animal experiment

    International Nuclear Information System (INIS)

    Pul'nov, V.N.; Mashneva, N.I.

    1978-01-01

    The existing methods of examining the work capacity of animals are discussed with reference to extrapolation of animal data to man. A modified procedure for measuring maximal physical strength is proposed, whereby static endurance of animals at a given exercise rate can be measured. For an integrated evaluation of work capacity, a formula of absolute work capacity is suggested. The proposed procedure may be used to study the working capacity of animals exposed to unfavorable factors of radiation or nonradiation nature

  12. A method for measuring light ion reaction cross sections

    International Nuclear Information System (INIS)

    Carlson, R.F.; Ingemarsson, A.; Lantz, M.

    2005-03-01

    An experimental procedure for measuring reaction cross sections of light ions in the energy range 20-50 MeV/nucleon, using a modified attenuation technique, is described. The detection method incorporates a forward detector that simultaneously measures the reaction cross sections for five different sizes of the solid angles in steps from 99.1 to 99.8% of the total solid angle. The final reaction cross section values are obtained by extrapolation to the full solid angle

  13. Composition between mecd and runge-Kutta algorithm method for large system of second order differential equations

    International Nuclear Information System (INIS)

    Supriyono; Miyoshi, T.

    1997-01-01

    NECD Method and runge-Kutta method for large system of second order ordinary differential equations in comparing algorithm. The paper introduce a extrapolation method used for solving the large system of second order ordinary differential equation. We call this method the modified extrapolated central difference (MECD) method. for the accuracy and efficiency MECD method. we compare the method with 4-th order runge-Kutta method. The comparison results show that, this method has almost the same accuracy as the 4-th order runge-Kutta method, but the computation time is about half of runge-Kutta. The MECD was declare by the author and Tetsuhiko Miyoshi of the Dept. Applied Science Yamaguchi University Japan

  14. Novel electrochemical method for the characterization of the degree of chirality in chiral polyaniline.

    Science.gov (United States)

    Feng, Zhang; Li, Ma; Yan, Yang; Jihai, Tang; Xiao, Li; Wanglin, Li

    2013-01-01

    A novel method to indicate the degree of chirality in polyaniline (PANI) was developed. The (D-camphorsulfonic acid)- and (HCl)-PANI-based electrodes exhibited significantly different electrochemical performances in D- and L-Alanine (Ala) aqueous solution, respectively, which can be used for the characterization the optical activity of chiral PANI. Cyclic voltammogram, tafel, and open circuit potential of PANI-based electrodes were measured within D- and L-Ala electrolyte solution, respectively. The open circuit potentials under different reacting conditions were analyzed by Doblhofer model formula, in which [C(+)](poly1)/[C(+)](poly2) was used as a parameter to characterize the degree of chirality in chiral PANI. The results showed that [C(+)](poly1)/[C(+)](poly2) can be increased with increasing concentrations of (1S)-(+)- and (1R)-(-)-10-camphorsulfonic acid. In addition, we detected that appropriate response time and lower temperature are necessary to improve the degree of chirality. Copyright © 2012 Wiley Periodicals, Inc.

  15. Grafting of HEMA onto dopamine coated stainless steel by 60Co-γ irradiation method

    International Nuclear Information System (INIS)

    Jin, Wanqin; Yang, Liming; Yang, Wei; Chen, Bin; Chen, Jie

    2014-01-01

    A novel method for grafting of 2-hydroxyethyl methacrylate (HEMA) onto the surface of stainless steel (SS) was explored by using 60 Co-γ irradiation. The surface of SS was modified by coating of dopamine before radiation grafting. The grafting reaction was performed in a simultaneous irradiation condition. The chemical structures change of the surface before and after grafting was demonstrated by Fourier transform infrared (FTIR) spectrometer. The hydrophilicity of the samples was determined by water contact angle measurement in the comparison of the stainless steel in the conditions of pristine, dopamine coated and HEMA grafted. Surface morphology of the samples was characterized by atomic force microscope (AFM) and scanning electron microscope (SEM). The corrosion resistance properties of the samples were evaluated by Tafel polarization curve. The hemocompatibility of the samples were tested by platelet adhesion assay. - Highlights: • Poly-HEMA was grafted onto the surface of SS by 60 Co-γ-ray irradiation. • Pristine SS was coated by dopamine to form a dense poly-dopamine film before radiation grafting. • The biocompatibility and hydrophility of SS were improved after the grafting of HEMA

  16. Production and characterization of TI/PbO2 electrodes by a thermal-electrochemical method

    Directory of Open Access Journals (Sweden)

    Laurindo Edison A.

    2000-01-01

    Full Text Available Looking for electrodes with a high overpotential for the oxygen evolution reaction (OER, useful for the oxidation of organic pollutants, Ti/PbO2 electrodes were prepared by a thermal-electrochemical method and their performance was compared with that of electrodeposited electrodes. The open-circuit potential for these electrodes in 0.5 mol L-1 H2SO4 presented quite stable similar values. X-ray diffraction analyses showed the thermal-electrochemical oxide to be a mixture of ort-PbO, tetr-PbO and ort-PbO2. On the other hand, the electrodes obtained by electrodeposition were in the tetr-PbO2 form. Analyses by scanning electron microscopy showed that the basic morphology of the thermal-electrochemical PbO2 is determined in the thermal step, being quite distinct from that of the electrodeposited electrodes. Polarization curves in 0.5 mol L-1 H2SO4 showed that in the case of the thermal-electrochemical PbO2 electrodes the OER was shifted to more positive potentials. However, the values of the Tafel slopes, quite high, indicate that passivating films were possibly formed on the Ti substrates, which could eventually explain the somewhat low current values for OER.

  17. In vivo doses of butadiene epoxides as estimated from in vitro enzyme kinetics by using cob(I)alamin and measured hemoglobin adducts: An inter-species extrapolation approach

    International Nuclear Information System (INIS)

    Motwani, Hitesh V.; Törnqvist, Margareta

    2014-01-01

    1,3-Butadiene (BD) is a rodent and human carcinogen. In the cancer tests, mice have been much more susceptible than rats with regard to BD-induced carcinogenicity. The species-differences are dependent on metabolic formation/disappearance of the genotoxic BD epoxy-metabolites that lead to variations in the respective in vivo doses, i.e. “area under the concentration-time curve” (AUC). Differences in AUC of the most gentoxic BD epoxy-metabolite, diepoxybutane (DEB), are considered important with regard to cancer susceptibility. The present work describes: the application of cob(I)alamin for accurate measurements of in vitro enzyme kinetic parameters associated with BD epoxy-metabolites in human, mouse and rat; the use of published data on hemoglobin (Hb) adduct levels of BD epoxides from BD exposure studies on the three species to calculate the corresponding AUCs in blood; and a parallelogram approach for extrapolation of AUC of DEB based on the in vitro metabolism studies and adduct data from in vivo measurements. The predicted value of AUC of DEB for humans from the parallelogram approach was 0.078 nM · h for 1 ppm · h of BD exposure compared to 0.023 nM · h/ppm · h as calculated from Hb adduct levels observed in occupational exposure. The corresponding values in nM · h/ppm · h were for mice 41 vs. 38 and for rats 1.26 vs. 1.37 from the parallelogram approach vs. experimental exposures, respectively, showing a good agreement. This quantitative inter-species extrapolation approach will be further explored for the clarification of metabolic rates/pharmacokinetics and the AUC of other genotoxic electrophilic compounds/metabolites, and has a potential to reduce and refine animal experiments. - Highlights: • In vitro metabolism to in vivo dose extrapolation of butadiene metabolites was proposed. • A parallelogram approach was introduced to estimate dose (AUC) in humans and rodents. • AUC of diepoxybutane predicted in humans was 0.078 nM h/ppm h

  18. In vivo doses of butadiene epoxides as estimated from in vitro enzyme kinetics by using cob(I)alamin and measured hemoglobin adducts: An inter-species extrapolation approach

    Energy Technology Data Exchange (ETDEWEB)

    Motwani, Hitesh V., E-mail: hitesh.motwani@mmk.su.se; Törnqvist, Margareta

    2014-12-15

    1,3-Butadiene (BD) is a rodent and human carcinogen. In the cancer tests, mice have been much more susceptible than rats with regard to BD-induced carcinogenicity. The species-differences are dependent on metabolic formation/disappearance of the genotoxic BD epoxy-metabolites that lead to variations in the respective in vivo doses, i.e. “area under the concentration-time curve” (AUC). Differences in AUC of the most gentoxic BD epoxy-metabolite, diepoxybutane (DEB), are considered important with regard to cancer susceptibility. The present work describes: the application of cob(I)alamin for accurate measurements of in vitro enzyme kinetic parameters associated with BD epoxy-metabolites in human, mouse and rat; the use of published data on hemoglobin (Hb) adduct levels of BD epoxides from BD exposure studies on the three species to calculate the corresponding AUCs in blood; and a parallelogram approach for extrapolation of AUC of DEB based on the in vitro metabolism studies and adduct data from in vivo measurements. The predicted value of AUC of DEB for humans from the parallelogram approach was 0.078 nM · h for 1 ppm · h of BD exposure compared to 0.023 nM · h/ppm · h as calculated from Hb adduct levels observed in occupational exposure. The corresponding values in nM · h/ppm · h were for mice 41 vs. 38 and for rats 1.26 vs. 1.37 from the parallelogram approach vs. experimental exposures, respectively, showing a good agreement. This quantitative inter-species extrapolation approach will be further explored for the clarification of metabolic rates/pharmacokinetics and the AUC of other genotoxic electrophilic compounds/metabolites, and has a potential to reduce and refine animal experiments. - Highlights: • In vitro metabolism to in vivo dose extrapolation of butadiene metabolites was proposed. • A parallelogram approach was introduced to estimate dose (AUC) in humans and rodents. • AUC of diepoxybutane predicted in humans was 0.078 nM h/ppm h

  19. A comparison of methods of determining the 100 percent survival of preserved red cells

    International Nuclear Information System (INIS)

    Valeri, C.R.; Pivacek, L.E.; Ouellet, R.; Gray, A.

    1984-01-01

    Studies were done to compare three methods to determine the 100 percent survival value from which to estimate the 24-hour posttransfusion survival of preserved red cells. The following methods using small aliquots of 51 Cr-labeled autologous preserved red cells were evaluated: First, the 125 I-albumin method, which is an indirect measurement of the recipient's red cell volume derived from the plasma volume measured using 125 I-labeled albumin and the total body hematocrit. Second, the body surface area method (BSA) in which the recipient's red cell volume is derived from a body surface area nomogram. Third, an extrapolation method, which extrapolates to zero time the radioactivity associated with the red cells in the recipient's circulation from 10 to 20 or 15 to 30 minutes after transfusion. The three methods gave similar results in all studies in which less than 20 percent of the transfused red cells were nonviable (24-hour posttransfusion survival values of between 80-100%), but not when more than 20 percent of the red cells were nonviable. When 21 to 35 percent of the transfused red cells were nonviable (24-hour posttransfusion survivals of 65 to 79%), values with the 125 I-albumin method and the body surface area method were about 5 percent lower (p less than 0.001) than values with the extrapolation method. When greater than 35 percent of the red cells were nonviable (24-hour posttransfusion survival values of less than 65%), values with the 125 I-albumin method and the body surface area method were about 10 percent lower (p less than 0.001) than those obtained by the extrapolation method

  20. Application of a PEG precipitation method for solubility screening: A tool for developing high protein concentration formulations

    OpenAIRE

    Li, Li; Kantor, Angela; Warne, Nicholas

    2013-01-01

    Previous publications demonstrated that the extrapolated solubility by polyethylene glycol (PEG) precipitation method (Middaugh et al., J Biol Chem 1979; 254:367–370; Juckes, Biochim Biophys Acta 1971; 229:535–546; Foster et al., Biochim Biophys Acta 1973; 317:505; Mahadevan and Hall, AIChE J 1990; 36:1517–1528; Stevenson and Hageman, Pharm Res 1995; 12:1671–1676) has a strong correlation to experimentally measured solubility of proteins. Here, we explored the utility of extrapolated solubili...

  1. Molecular polarizability of organic molecules and their complexes. Communication LIV. Molar volumes of polyaryl organoelement compounds in solutions, extrapolated to infinite dilution, and steric structure of the molecules

    International Nuclear Information System (INIS)

    Bulgarevich, S.B.; Burdastykh, T.V.

    2008-01-01

    Molar volumes in various solvents were determined for organic derivatives of silicon, phosphorus, arsenic, sulfur, and tellurium, containing aryl nuclei capable to internal rotation about single bonds between them and bridging groups. Additive analysis of the molar volumes of these compounds showed that the aryl nuclei are acoplanar with respect to the bridging groups. Most probable is a conrotatory mutual orientation of the aromatic rings. Molar volumes were also determined for a series of compounds with two bridging groups, which can serve as models of an extreme case of mutual proximity of aryl ring planes in diaryl systems with one bridging group. A possibility for considerably simplifying the methods for determination of dipole moments and Kerr constants for compounds whose molar volumes can be calculated by our developed additive scheme is demonstrated [ru

  2. Development of a multi-electrode extrapolation chamber as a prototype of a primary standard for the realization of the unit of the absorbed dose to water for beta brachytherapy sources

    CERN Document Server

    Bambynek, M

    2002-01-01

    The prototype of a primary standard has been developed, built and tested, which enables the realization of the unit of the absorbed dose to water for beta brachytherapy sources. In the course of the development of the prototype, the recommendations of the American Association of Physicists in Medicine (AAPM) Task Group 60 (TG60) and the Deutsche Gesellschaft fuer Medizinische Physik (DGMP) Arbeitskreis 18 (AK18) were taken into account. The prototype is based on a new multi-electrode extrapolation chamber (MEC) which meets, in particular, the requirements on high spatial resolution and small uncertainty. The central part of the MEC is a segmented collecting electrode which was manufactured in the clean room center of PTB by means of electron beam lithography on a wafer. A precise displacement device consisting of three piezoelectric macrotranslators has been incorporated to move the wafer collecting electrode against the entrance window. For adjustment of the wafer collecting electrode parallel to the entranc...

  3. Methods for measurement of electron emission yield under low energy electron-irradiation by collector method and Kelvin probe method

    Energy Technology Data Exchange (ETDEWEB)

    Tondu, Thomas; Belhaj, Mohamed; Inguimbert, Virginie [Onera, DESP, 2 Avenue Edouard Belin, 31400 Toulouse (France); Onera, DESP, 2 Avenue Edouard Belin, 31400 Toulouse, France and Fondation STAE, 4 allee Emile Monso, BP 84234-31432, Toulouse Cedex 4 (France); Onera, DESP, 2 Avenue Edouard Belin, 31400 Toulouse (France)

    2010-09-15

    Secondary electron emission yield of gold under electron impact at normal incidence below 50 eV was investigated by the classical collector method and by the Kelvin probe method. The authors show that biasing a collector to ensure secondary electron collection while keeping the target grounded can lead to primary electron beam perturbations. Thus reliable secondary electron emission yield at low primary electron energy cannot be obtained with a biased collector. The authors present two collector-free methods based on current measurement and on electron pulse surface potential buildup (Kelvin probe method). These methods are consistent, but at very low energy, measurements become sensitive to the earth magnetic field (below 10 eV). For gold, the authors can extrapolate total emission yield at 0 eV to 0.5, while a total electron emission yield of 1 is obtained at 40{+-}1 eV.

  4. Methods for measurement of electron emission yield under low energy electron-irradiation by collector method and Kelvin probe method

    International Nuclear Information System (INIS)

    Tondu, Thomas; Belhaj, Mohamed; Inguimbert, Virginie

    2010-01-01

    Secondary electron emission yield of gold under electron impact at normal incidence below 50 eV was investigated by the classical collector method and by the Kelvin probe method. The authors show that biasing a collector to ensure secondary electron collection while keeping the target grounded can lead to primary electron beam perturbations. Thus reliable secondary electron emission yield at low primary electron energy cannot be obtained with a biased collector. The authors present two collector-free methods based on current measurement and on electron pulse surface potential buildup (Kelvin probe method). These methods are consistent, but at very low energy, measurements become sensitive to the earth magnetic field (below 10 eV). For gold, the authors can extrapolate total emission yield at 0 eV to 0.5, while a total electron emission yield of 1 is obtained at 40±1 eV.

  5. Comparative study among calibration methods of clinical applicators of beta radiation

    International Nuclear Information System (INIS)

    Antonio, Patricia de Lara

    2009-01-01

    90 Sr+ 90 Y clinical applicators are instruments used in brachytherapy procedures and they have to be periodically calibrated, according to international standards and recommendations. In this work, four calibration methods of dermatological and ophthalmic applicators were studied, comparing the results with those given by the calibration certificates of the manufacturers. The methods included the use of the standard applicator of the Calibration Laboratory (LCI), calibrated by the National Institute of Standards and Technology; an Amersham applicator (LCI) as reference; a mini-extrapolation chamber developed at LCI as an absolute standard; and thermoluminescent dosimetry. The mini-extrapolation chamber and a PTW commercial extrapolation chamber were studied in relation to their performance through quality control tests of their response, as leakage current, repeatability and reproducibility. The distribution of the depth dose in water, that presents high importance in dosimetry of clinical applicators, was determined using the mini extrapolation chamber and the thermoluminescent dosimeters. The results obtained were considered satisfactory for the both cases, and comparable to the data of the IAEA (2002) standard. Furthermore, a dosimetry postal kit was developed for the calibration of clinical applicators using the thermoluminescent technique, to be sent to clinics and hospitals, without the need of the transport of the sources to IPEN for calibration. (author)

  6. Prospective drug safety monitoring using the UK primary-care General Practice Research Database: theoretical framework, feasibility analysis and extrapolation to future scenarios.

    Science.gov (United States)

    Johansson, Saga; Wallander, Mari-Ann; de Abajo, Francisco J; García Rodríguez, Luis Alberto

    2010-03-01

    Post-launch drug safety monitoring is essential for the detection of adverse drug signals that may be missed during preclinical trials. Traditional methods of postmarketing surveillance such as spontaneous reporting have intrinsic limitations, many of which can be overcome by the additional application of structured pharmacoepidemiological approaches. However, further improvement in drug safety monitoring requires a shift towards more proactive pharmacoepidemiological methods that can detect adverse drug signals as they occur in the population. To assess the feasibility of using proactive monitoring of an electronic medical record system, in combination with an independent endpoint adjudication committee, to detect adverse events among users of selected drugs. UK General Practice Research Database (GPRD) information was used to detect acute liver disorder associated with the use of amoxicillin/clavulanic acid (hepatotoxic) or low-dose aspirin (acetylsalicylic acid [non-hepatotoxic]). Individuals newly prescribed these drugs between 1 October 2005 and 31 March 2006 were identified. Acute liver disorder cases were assessed using GPRD computer records in combination with case validation by an independent endpoint adjudication committee. Signal generation thresholds were based on the background rate of acute liver disorder in the general population. Over a 6-month period, 8148 patients newly prescribed amoxicillin/clavulanic acid and 5577 patients newly prescribed low-dose aspirin were identified. Within this cohort, searches identified 11 potential liver disorder cases from computerized records: six for amoxicillin/clavulanic acid and five for low-dose aspirin. The independent endpoint adjudication committee refined this to four potential acute liver disorder cases for whom paper-based information was requested for final case assessment. Final case assessments confirmed no cases of acute liver disorder. The time taken for this study was 18 months (6 months for

  7. Economic evaluation of nivolumab for the treatment of second-line advanced squamous NSCLC in Canada: a comparison of modeling approaches to estimate and extrapolate survival outcomes.

    Science.gov (United States)

    Goeree, Ron; Villeneuve, Julie; Goeree, Jeff; Penrod, John R; Orsini, Lucinda; Tahami Monfared, Amir Abbas

    2016-06-01

    Background Lung cancer is the most common type of cancer in the world and is associated with significant mortality. Nivolumab demonstrated statistically significant improvements in progression-free survival (PFS) and overall survival (OS) for patients with advanced squamous non-small cell lung cancer (NSCLC) who were previously treated. The cost-effectiveness of nivolumab has not been assessed in Canada. A contentious component of projecting long-term cost and outcomes in cancer relates to the modeling approach adopted, with the two most common approaches being partitioned survival (PS) and Markov models. The objectives of this analysis were to estimate the cost-utility of nivolumab and to compare the results using these alternative modeling approaches. Methods Both PS and Markov models were developed using docetaxel and erlotinib as comparators. A three-health state model was used consisting of progression-free, progressed disease, and death. Disease progression and time to progression were estimated by identifying best-fitting survival curves from the clinical trial data for PFS and OS. Expected costs and health outcomes were calculated by combining health-state occupancy with medical resource use and quality-of-life assigned to each of the three health states. The health outcomes included in the model were survival and quality-adjusted-life-years (QALYs). Results Nivolumab was found to have the highest expected per-patient cost, but also improved per-patient life years (LYs) and QALYs. Nivolumab cost an additional $151,560 and $140,601 per QALY gained compared to docetaxel and erlotinib, respectively, using a PS model approach. The cost-utility estimates using a Markov model were very similar ($152,229 and $141,838, respectively, per QALY gained). Conclusions Nivolumab was found to involve a trade-off between improved patient survival and QALYs, and increased cost. It was found that the use of a PS or Markov model produced very similar estimates of expected cost

  8. Summary of existing uncertainty methods

    International Nuclear Information System (INIS)

    Glaeser, Horst

    2013-01-01

    A summary of existing and most used uncertainty methods is presented, and the main features are compared. One of these methods is the order statistics method based on Wilks' formula. It is applied in safety research as well as in licensing. This method has been first proposed by GRS for use in deterministic safety analysis, and is now used by many organisations world-wide. Its advantage is that the number of potential uncertain input and output parameters is not limited to a small number. Such a limitation was necessary for the first demonstration of the Code Scaling Applicability Uncertainty Method (CSAU) by the United States Regulatory Commission (USNRC). They did not apply Wilks' formula in their statistical method propagating input uncertainties to obtain the uncertainty of a single output variable, like peak cladding temperature. A Phenomena Identification and Ranking Table (PIRT) was set up in order to limit the number of uncertain input parameters, and consequently, the number of calculations to be performed. Another purpose of such a PIRT process is to identify the most important physical phenomena which a computer code should be suitable to calculate. The validation of the code should be focused on the identified phenomena. Response surfaces are used in some applications replacing the computer code for performing a high number of calculations. The second well known uncertainty method is the Uncertainty Methodology Based on Accuracy Extrapolation (UMAE) and the follow-up method 'Code with the Capability of Internal Assessment of Uncertainty (CIAU)' developed by the University Pisa. Unlike the statistical approaches, the CIAU does compare experimental data with calculation results. It does not consider uncertain input parameters. Therefore, the CIAU is highly dependent on the experimental database. The accuracy gained from the comparison between experimental data and calculated results are extrapolated to obtain the uncertainty of the system code predictions

  9. Curcuminoid Compounds Isolated from Curcuma domestica Val. as Corrosion Inhibitor Towards Carbon Steel in 1 % NaCl Solution

    International Nuclear Information System (INIS)

    Kandias, D.; Bundjali, B.; Wahyuningrum, D.

    2011-01-01

    The corrosion inhibitor of carbon steel in 1 % NaCl solution by curcuminoids has been studied at 27 degree Celsius using weight loss and electrochemical method. The determination of corrosion inhibition efficiency (% eff) utilising weight loss method at the concentration of 80 ppm showed the best result of 78.70 % for third isolated fraction. Further determination utilising Tafel method showed the following results: raw pure extract of curcuminoid gave 89.88 % at 50 ppm; the first isolated fraction gave 46.50 % at 80 ppm; the second isolated fraction gave 44.83 % at 30 ppm; and the third isolated fraction gave 92.44 % at 70 ppm. Based on the analysis of Tafel extrapolation curve, the raw pure extract and the third fraction of curcuminoid acted as anodic inhibitor, whereas the first and the second fraction performed as cathodic inhibitors. The evaluations of synergism parameter (S θ ) indicate that the enhancement in inhibition efficiency towards raw pure extract was caused by the presence of second and third fractions as cathodic and anodic inhibitors. The contribution of steric hindrance of methoxy groups in curcuminoid structure causes the decrease in curcuminoid activity to be adsorbed on the electrode (carbon steel) surface. (author)

  10. A Promising New Method to Estimate Drug-Polymer Solubility at Room Temperature

    DEFF Research Database (Denmark)

    Knopp, Matthias Manne; Gannon, Natasha; Porsch, Ilona

    2016-01-01

    The established methods to predict drug-polymer solubility at room temperature either rely on extrapolation over a long temperature range or are limited by the availability of a liquid analogue of the polymer. To overcome these issues, this work investigated a new methodology where the drug-polymer...... solubility is estimated from the solubility of the drug in a solution of the polymer at room temperature using the shake-flask method. Thus, the new polymer in solution method does not rely on temperature extrapolations and only requires the polymer and a solvent, in which the polymer is soluble, that does...... not affect the molecular structure of the drug and polymer relative to that in the solid state. Consequently, as this method has the potential to provide fast and precise estimates of drug-polymer solubility at room temperature, we encourage the scientific community to further investigate this principle both...

  11. Large Deviations and Asymptotic Methods in Finance

    CERN Document Server

    Gatheral, Jim; Gulisashvili, Archil; Jacquier, Antoine; Teichmann, Josef

    2015-01-01

    Topics covered in this volume (large deviations, differential geometry, asymptotic expansions, central limit theorems) give a full picture of the current advances in the application of asymptotic methods in mathematical finance, and thereby provide rigorous solutions to important mathematical and financial issues, such as implied volatility asymptotics, local volatility extrapolation, systemic risk and volatility estimation. This volume gathers together ground-breaking results in this field by some of its leading experts. Over the past decade, asymptotic methods have played an increasingly important role in the study of the behaviour of (financial) models. These methods provide a useful alternative to numerical methods in settings where the latter may lose accuracy (in extremes such as small and large strikes, and small maturities), and lead to a clearer understanding of the behaviour of models, and of the influence of parameters on this behaviour. Graduate students, researchers and practitioners will find th...

  12. Interpolation in Time Series: An Introductive Overview of Existing Methods, Their Performance Criteria and Uncertainty Assessment

    Directory of Open Access Journals (Sweden)

    Mathieu Lepot

    2017-10-01

    Full Text Available A thorough review has been performed on interpolation methods to fill gaps in time-series, efficiency criteria, and uncertainty quantifications. On one hand, there are numerous available methods: interpolation, regression, autoregressive, machine learning methods, etc. On the other hand, there are many methods and criteria to estimate efficiencies of these methods, but uncertainties on the interpolated values are rarely calculated. Furthermore, while they are estimated according to standard methods, the prediction uncertainty is not taken into account: a discussion is thus presented on the uncertainty estimation of interpolated/extrapolated data. Finally, some suggestions for further research and a new method are proposed.

  13. Vanadium oxides (V{sub 2}O{sub 5}) prepared with different methods for application as counter electrodes in dye-sensitized solar cells (DSCs)

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Kezhong; Sun, Xiaolong; Duan, Chongyuan; Gao, Jing; Wu, Mingxing [Hebei Normal University, College of Chemistry and Material Science, Key Laboratory of Inorganic Nano-materials of Hebei Province, Shijiazhuang City, Hebei Province (China)

    2016-09-15

    V{sub 2}O{sub 5} was synthesized by four different procedures employing thermal decomposition, sol-gel, and hydrothermal methods which were subsequently introduced into dye-sensitized solar cells (DSCs) as counter electrode (CE) catalysts for the regeneration of traditional iodide/triiodide (I{sup -}/I{sub 3} {sup -}) redox couple. The catalytic activities of as-prepared V{sub 2}O{sub 5} were significantly affected by the synthetic routes as evidenced by cyclic voltammetry, electrochemical impedance spectroscopy, and Tafel polarization curve. Power conversion efficiency (PCE) of the DSCs employing V{sub 2}O{sub 5} CE, fabricated by thermal decomposition method, was observed to be 3.80 % by using citric acid as an additive, while the PCE of the DSCs using V{sub 2}O{sub 5} CE prepared by hydrothermal and thermal decomposition methods without additive, as well as by a sol-gel procedure, was determined to be 2.13, 2.08, and 2.04 %, respectively. (orig.)

  14. Heuristic method of fabricating counter electrodes in dye-sensitized solar cells based on a PEDOT:PSS layer as a catalytic material

    International Nuclear Information System (INIS)

    Edalati, Sh; Houshangi far, A; Torabi, N; Baneshi, Z; Behjat, A

    2017-01-01

    Poly(3,4-ethylendioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) was deposited on a fluoride-doped tin oxide glass substrate using a heuristic method to fabricate platinum-free counter electrodes for dye-sensitized solar cells (DSSCs). In this heuristic method a thin layer of PEDOT:PPS is obtained by spin coating the PEDOT:PSS on a Cu substrate and then removing the substrate with FeCl 3 . The characteristics of the deposited PEDOT:PSS were studied by energy dispersive x-ray analysis and scanning electron microscopy, which revealed the micro-electronic specifications of the cathode. The aforementioned DSSCs exhibited a solar conversion efficiency of 3.90%, which is far higher than that of DSSCs with pure PEDOT:PSS (1.89%). This enhancement is attributed not only to the micro-electronic specifications but also to the HNO 3 treatment through our heuristic method. The results of cyclic voltammetry, electrochemical impedance spectroscopy (EIS) and Tafel polarization plots show the modified cathode has a dual function, including excellent conductivity and electrocatalytic activity for iodine reduction. (paper)

  15. An Extrapolative Model of House Price Dynamics

    OpenAIRE

    Edward L. Glaeser; Charles G. Nathanson

    2015-01-01

    A modest approximation by homebuyers leads house prices to display three features that are present in the data but usually missing from perfectly rational models: momentum at one-year horizons, mean reversion at five-year horizons, and excess longer-term volatility relative to fundamentals. Valuing a house involves forecasting the current and future demand to live in the surrounding area. Buyers forecast using past transaction prices. Approximating buyers do not adjust for the expectations of...

  16. Wavefield Extrapolation in Pseudo-depth Domain

    KAUST Repository

    Ma, Xuxin

    2011-12-11

    Wave-equation based seismic migration and inversion tools are widely used by the energy industry to explore hydrocarbon and mineral resources. By design, most of these techniques simulate wave propagation in a space domain with the vertical axis being depth measured from the surface. Vertical depth is popular because it is a straightforward mapping of the subsurface space. It is, however, not computationally cost-effective because the wavelength changes with local elastic wave velocity, which in general increases with depth in the Earth. As a result, the sampling per wavelength also increases with depth. To avoid spatial aliasing in deep fast media, the seismic wave is oversampled in shallow slow media and therefore increase the total computation cost. This issue is effectively tackled by using the vertical time axis instead of vertical depth. This is because in a vertical time representation, the "wavelength" is essentially time period for vertical rays. This thesis extends the vertical time axis to the pseudo-depth axis, which features distance unit while preserving the properties of the vertical time representation. To explore the potentials of doing wave-equation based imaging in the pseudo-depth domain, a Partial Differential Equation (PDE) is derived to describe acoustic wave in this new domain. This new PDE is inherently anisotropic because the use of a constant vertical velocity to convert between depth and vertical time. Such anisotropy results in lower reflection coefficients compared with conventional space domain modeling results. This feature is helpful to suppress the low wavenumber artifacts in reverse-time migration images, which are caused by the widely used cross-correlation imaging condition. This thesis illustrates modeling acoustic waves in both conventional space domain and pseudo-depth domain. The numerical tool used to model acoustic waves is built based on the lowrank approximation of Fourier integral operators. To investigate the potential of seismic imaging in the pseudo-depth domain, examples of zero-offset migration are implemented in pseudo-depth domain and compared with conventional space domain imaging results.

  17. Richardson extrapolation practical aspects and applications

    CERN Document Server

    Zlatev, Zahari; Faragó, István; Havasi, Ágnes

    2017-01-01

    The series is devoted to the publication of high-level monographs and specialized graduate texts which cover the whole spectrum of applied mathematics, including its numerical aspects. The focus of the series is on the interplay between mathematical and numerical analysis, and also on its applications to mathematical models in the physical and life sciences.

  18. Extrapolating Weak Selection in Evolutionary Games

    Science.gov (United States)

    Wu, Bin; García, Julián; Hauert, Christoph; Traulsen, Arne

    2013-01-01

    In evolutionary games, reproductive success is determined by payoffs. Weak selection means that even large differences in game outcomes translate into small fitness differences. Many results have been derived using weak selection approximations, in which perturbation analysis facilitates the derivation of analytical results. Here, we ask whether results derived under weak selection are also qualitatively valid for intermediate and strong selection. By “qualitatively valid” we mean that the ranking of strategies induced by an evolutionary process does not change when the intensity of selection increases. For two-strategy games, we show that the ranking obtained under weak selection cannot be carried over to higher selection intensity if the number of players exceeds two. For games with three (or more) strategies, previous examples for multiplayer games have shown that the ranking of strategies can change with the intensity of selection. In particular, rank changes imply that the most abundant strategy at one intensity of selection can become the least abundant for another. We show that this applies already to pairwise interactions for a broad class of evolutionary processes. Even when both weak and strong selection limits lead to consistent predictions, rank changes can occur for intermediate intensities of selection. To analyze how common such games are, we show numerically that for randomly drawn two-player games with three or more strategies, rank changes frequently occur and their likelihood increases rapidly with the number of strategies . In particular, rank changes are almost certain for , which jeopardizes the predictive power of results derived for weak selection. PMID:24339769

  19. Residual extrapolation operators for efficient wavefield construction

    KAUST Repository

    Alkhalifah, Tariq Ali

    2013-01-01

    and smooth media, the residual implementation based on velocity perturbation optimizes the use of this feature. Most of the other implementations based on the spectral approach are focussed on reducing cost by reducing the number of inverse Fourier transforms

  20. An effective method for terrestrial arthropod euthanasia.

    Science.gov (United States)

    Bennie, Neil A C; Loaring, Christopher D; Bennie, Mikaella M G; Trim, Steven A

    2012-12-15

    As scientific understanding of invertebrate life increases, so does the concern for how to end that life in an effective way that minimises (potential) suffering and is also safe for those carrying out the procedure. There is increasing debate on the most appropriate euthanasia methods for invertebrates as their use in experimental research and zoological institutions grows. Their popularity as pet species has also led to an increase in the need for greater veterinary understanding. Through the use of a local injection of potassium chloride (KCl) initially developed for use in American lobsters, this paper describes a safe and effective method for euthanasia in terrestrial invertebrates. Initial work focused on empirically determining the dose for cockroaches, which was then extrapolated to other arthropod species. For this method of euthanasia, we propose the term 'targeted hyperkalosis' to describe death through terminal depolarisation of the thoracic ganglia as a result of high potassium concentration.

  1. Elements of a pragmatic approach for dealing with bias and uncertainty in experiments through predictions : experiment design and data conditioning; %22real space%22 model validation and conditioning; hierarchical modeling and extrapolative prediction.

    Energy Technology Data Exchange (ETDEWEB)

    Romero, Vicente Jose

    2011-11-01

    This report explores some important considerations in devising a practical and consistent framework and methodology for utilizing experiments and experimental data to support modeling and prediction. A pragmatic and versatile 'Real Space' approach is outlined for confronting experimental and modeling bias and uncertainty to mitigate risk in modeling and prediction. The elements of experiment design and data analysis, data conditioning, model conditioning, model validation, hierarchical modeling, and extrapolative prediction under uncertainty are examined. An appreciation can be gained for the constraints and difficulties at play in devising a viable end-to-end methodology. Rationale is given for the various choices underlying the Real Space end-to-end approach. The approach adopts and refines some elements and constructs from the literature and adds pivotal new elements and constructs. Crucially, the approach reflects a pragmatism and versatility derived from working many industrial-scale problems involving complex physics and constitutive models, steady-state and time-varying nonlinear behavior and boundary conditions, and various types of uncertainty in experiments and models. The framework benefits from a broad exposure to integrated experimental and modeling activities in the areas of heat transfer, solid and structural mechanics, irradiated electronics, and combustion in fluids and solids.

  2. Scattering of targets over layered half space using a semi-analytic method in conjunction with FDTD algorithm.

    Science.gov (United States)

    Cao, Le; Wei, Bing

    2014-08-25

    Finite-difference time-domain (FDTD) algorithm with a new method of plane wave excitation is used to investigate the RCS (Radar Cross Section) characteristics of targets over layered half space. Compare with the traditional excitation plane wave method, the calculation memory and time requirement is greatly decreased. The FDTD calculation is performed with a plane wave incidence, and the RCS of far field is obtained by extrapolating the currently calculated data on the output boundary. However, methods available for extrapolating have to evaluate the half space Green function. In this paper, a new method which avoids using the complex and time-consuming half space Green function is proposed. Numerical results show that this method is in good agreement with classic algorithm and it can be used in the fast calculation of scattering and radiation of targets over layered half space.

  3. Developing a Theory of Digitally-Enabled Trial-Based Problem Solving through Simulation Methods: The Case of Direct-Response Marketing

    Science.gov (United States)

    Clark, Joseph Warren

    2012-01-01

    In turbulent business environments, change is rapid, continuous, and unpredictable. Turbulence undermines those adaptive problem solving methods that generate solutions by extrapolating from what worked (or did not work) in the past. To cope with this challenge, organizations utilize trial-based problem solving (TBPS) approaches in which they…

  4. A new method suitable for calculating accurately wetting temperature over a wide range of conditions: Based on the adaptation of continuation algorithm to classical DFT

    Science.gov (United States)

    Zhou, Shiqi

    2017-11-01

    A new scheme is put forward to determine the wetting temperature (Tw) by utilizing the adaptation of arc-length continuation algorithm to classical density functional theory (DFT) used originally by Frink and Salinger, and its advantages are summarized into four points: (i) the new scheme is applicable whether the wetting occurs near a planar or a non-planar surface, whereas a zero contact angle method is considered only applicable to a perfectly flat solid surface, as demonstrated previously and in this work, and essentially not fit for non-planar surface. (ii) The new scheme is devoid of an uncertainty, which plagues a pre-wetting extrapolation method and originates from an unattainability of the infinitely thick film in the theoretical calculation. (iii) The new scheme can be similarly and easily applied to extreme instances characterized by lower temperatures and/or higher surface attraction force field, which, however, can not be dealt with by the pre-wetting extrapolation method because of the pre-wetting transition being mixed with many layering transitions and the difficulty in differentiating varieties of the surface phase transitions. (iv) The new scheme still works in instance wherein the wetting transition occurs close to the bulk critical temperature; however, this case completely can not be managed by the pre-wetting extrapolation method because near the bulk critical temperature the pre-wetting region is extremely narrow, and no enough pre-wetting data are available for use of the extrapolation procedure.

  5. Perturbation method for experimental determination of neutron spatial distribution in the reactor cell

    International Nuclear Information System (INIS)

    Takac, S.M.

    1972-01-01

    The method is based on perturbation of the reactor cell from a few up to few tens of percent. Measurements were performed for square lattice calls of zero power reactors Anna, NORA and RB, with metal uranium and uranium oxide fuel elements, water, heavy water and graphite moderators. Character and functional dependence of perturbations were obtained from the experimental results. Zero perturbation was determined by extrapolation thus obtaining the real physical neutron flux distribution in the reactor cell. Simple diffusion theory for partial plate cell perturbation was developed for verification of the perturbation method. The results of these calculation proved that introducing the perturbation sample in the fuel results in flattening the thermal neutron density dependent on the amplitude of the applied perturbation. Extrapolation applied for perturbed distributions was found to be justified

  6. Effect of small addition of aluminum on electrochemical corrosion behavior of magnesium-calcium sacrificial anode in underground environment

    International Nuclear Information System (INIS)

    Rizam, S.S.; Sasirehka, G.; Firdaus, A.M.H.; Mahdi, C.I.; Nazree, D.M.; Abdul Razak Daud; Azrem, A.A.

    2009-01-01

    The effect of small addition of Al on the electrochemical performances was investigated by open circuit potential and Tafel Extrapolation method. The results show that open circuit potential reveals as-cast Mg containing Ca alloys with minor content of Al maintained highly negative potential with the range of -1.68 to -1.63 V SCE in comparison to both pure Mg (-1.60V SCE ) and commercial high potential Mg content. Corrosion rate for the as-cast samples remains higher (30-17 mpy) than pure Mg (3 mpy) and commercial high potential Mg anode (14 mpy). The increasing small content of Al results in the reduction of corrosion rate significantly. Therefore, it proves that the performance of Mg containing Ca alloy is strongly influenced by the concentration of Al. (author)

  7. Impact of anode substrates on electrodeposited zinc over cycling in zinc-anode rechargeable alkaline batteries

    International Nuclear Information System (INIS)

    Wei, Xia; Desai, Divyaraj; Yadav, Gautam G.; Turney, Damon E.; Couzis, Alexander; Banerjee, Sanjoy

    2016-01-01

    Electrochemical behavior of Ag, Bi, Cu, Fe, Ni and Sn substrates on zinc deposition was evaluated over battery cycling by cyclic voltammetry and electrochemical impedance spectroscopy. The effect of Bi, Cu, Ni, and Sn substrates on zinc electrodeposition during battery cycling was investigated using scanning electron microscopy and X-ray diffraction. The corrosion behavior of each metal in 9 M KOH and the corrosion rates of zinc plated on each substrate were analyzed by Tafel extrapolation method from the potentiodynamic polarization curves and electrochemical impedance spectroscopy. Although the charge-transfer resistance (R_c_t) of zinc electrodeposition is lowest on Sn, Sn eventually corrodes on cycling in alkaline media. Use of Ni as a substrate causes zinc to deteriorate on account of rapid hydrogen evolution. Bi and Cu substrates are more suitable for use as current collectors in zinc-anode alkaline rechargeable batteries because of their low corrosion rate and compact zinc deposition over battery cycling.

  8. Life assessment of PVD based hard coatings by linear sweep voltammetry for high performance industrial application

    International Nuclear Information System (INIS)

    Malik, M.; Alam, S.; Irfan, M.; Hassan, Z.

    2006-01-01

    PVD based hard coatings have remarkable achievements in order to improve Tribological and surface properties of coating tools and dies. As PVD based hard coatings have a wide range of industrial applications especially in aerospace and automobile parts where they met different chemical attacks and in order to improve industrial performance these coatings must provide an excellent resistance against corrosion, high temperature oxidation and chemical reaction. This paper focuses on study of behaviour of PVD based hard coatings under different corrosive environments like as H/sub 2/SO/sub 4/, HCl, NaCl, KCl, NaOH etc. Corrosion rate was calculate under linear sweep voltammetry method where the Tafel extrapolation curves used for continuously monitoring the corrosion rate. The results show that these coatings have an excellent resistance against chemical attack. (author)

  9. Reliability of Estimation Pile Load Capacity Methods

    Directory of Open Access Journals (Sweden)

    Yudhi Lastiasih

    2014-04-01

    Full Text Available None of numerous previous methods for predicting pile capacity is known how accurate any of them are when compared with the actual ultimate capacity of piles tested to failure. The author’s of the present paper have conducted such an analysis, based on 130 data sets of field loading tests. Out of these 130 data sets, only 44 could be analysed, of which 15 were conducted until the piles actually reached failure. The pile prediction methods used were: Brinch Hansen’s method (1963, Chin’s method (1970, Decourt’s Extrapolation Method (1999, Mazurkiewicz’s method (1972, Van der Veen’s method (1953, and the Quadratic Hyperbolic Method proposed by Lastiasih et al. (2012. It was obtained that all the above methods were sufficiently reliable when applied to data from pile loading tests that loaded to reach failure. However, when applied to data from pile loading tests that loaded without reaching failure, the methods that yielded lower values for correction factor N are more recommended. Finally, the empirical method of Reese and O’Neill (1988 was found to be reliable enough to be used to estimate the Qult of a pile foundation based on soil data only.

  10. A necessary and sufficient condition for the convergence of an AOR iterative method

    International Nuclear Information System (INIS)

    Hu Jiagan

    1992-01-01

    In this paper, a necessary and sufficient condition for the convergence of an AOR iterative method is given under the condition that the coefficient matrix A is consistently ordered and the eigenvalues of the Jacobi matrix of A are all real. With the same method the condition for the convergence of t he extrapolation Gauss-Seidel (EGS) method is also obtained. As an example, the conditions for the model problem are given. The rate of convergence of the EGS method is about twice that of the GS method

  11. Internal Error Propagation in Explicit Runge--Kutta Methods

    KAUST Repository

    Ketcheson, David I.

    2014-09-11

    In practical computation with Runge--Kutta methods, the stage equations are not satisfied exactly, due to roundoff errors, algebraic solver errors, and so forth. We show by example that propagation of such errors within a single step can have catastrophic effects for otherwise practical and well-known methods. We perform a general analysis of internal error propagation, emphasizing that it depends significantly on how the method is implemented. We show that for a fixed method, essentially any set of internal stability polynomials can be obtained by modifying the implementation details. We provide bounds on the internal error amplification constants for some classes of methods with many stages, including strong stability preserving methods and extrapolation methods. These results are used to prove error bounds in the presence of roundoff or other internal errors.

  12. Methods for enhancing numerical integration

    International Nuclear Information System (INIS)

    Doncker, Elise de

    2003-01-01

    We give a survey of common strategies for numerical integration (adaptive, Monte-Carlo, Quasi-Monte Carlo), and attempt to delineate their realm of applicability. The inherent accuracy and error bounds for basic integration methods are given via such measures as the degree of precision of cubature rules, the index of a family of lattice rules, and the discrepancy of uniformly distributed point sets. Strategies incorporating these basic methods often use paradigms to reduce the error by, e.g., increasing the number of points in the domain or decreasing the mesh size, locally or uniformly. For these processes the order of convergence of the strategy is determined by the asymptotic behavior of the error, and may be too slow in practice for the type of problem at hand. For certain problem classes we may be able to improve the effectiveness of the method or strategy by such techniques as transformations, absorbing a difficult part of the integrand into a weight function, suitable partitioning of the domain, transformations and extrapolation or convergence acceleration. Situations warranting the use of these techniques (possibly in an 'automated' way) are described and illustrated by sample applications

  13. Organ biodistribution of Germanium-68 in rat in the presence and absence of [68Ga]Ga-DOTA-TOC for the extrapolation to the human organ and whole-body radiation dosimetry

    Science.gov (United States)

    Velikyan, Irina; Antoni, Gunnar; Sörensen, Jens; Estrada, Sergio

    2013-01-01

    Positron Emission Tomography (PET) and in particular gallium-68 (68Ga) applications are growing exponentially worldwide contributing to the expansion of nuclear medicine and personalized management of patients. The significance of 68Ga utility is reflected in the implementation of European Pharmacopoeia monographs. However, there is one crucial point in the monographs that might limit the use of the generators and consequently expansion of 68Ga applications and that is the limit of 0.001% of Germanium-68 (68Ge(IV)) radioactivity content in a radiopharmaceutical. We have investigated the organ distribution of 68Ge(IV) in rat and estimated human dosimetry parameters in order to provide experimental evidence for the determination and justification of the 68Ge(IV) limit. Male and female rats were injected in the tail vein with formulated [68Ge]GeCl4 in the absence or presence of [68Ga]Ga-DOTA-TOC. The tissue radioactivity distribution data was extrapolated for the estimation of human organ equivalent doses and total effective dose using Organ Level Internal Dose Assessment Code software (OLINDA/EXM). 68Ge(IV) was evenly distributed among the rat organs and fast renal excretion prevailed. Human organ equivalent dose and total effective dose estimates indicated that the kidneys were the dose-limiting organs (185±54 μSv/MBq for female and 171±38 μSv/MBq for male) and the total effective dose was 15.5±0.1 and 10.7±1.2 μSv/MBq, respectively for female and male. The results of this dosimetry study conclude that the 68Ge(IV) limit currently recommended by monographs could be increased considerably (>100 times) without exposing the patient to harm given the small absorbed doses to normal organs and fast excretion. PMID:23526484

  14. Lits fluidisés pour l'industrie chimique. Extrapolation et amélioration des catalyseurs. Première partie : Etudes et modèles. Enseignements issus des pilotes Fluidized Beds in Chemical Industry. Scale Up and Catalysts Improvement. First Part: Studies, Models, Learning from Pilot Plants

    Directory of Open Access Journals (Sweden)

    Botton R.

    2006-12-01

    Full Text Available Les unités de production en lits fluidisés catalytiques sont apparues vers 1942 dans l'industrie pétrolière et vers 1960 dans l'industrie chimique. On se limitera ici au problème de l'extrapolation des lits fluidisés catalytiques pour l'industrie chimique, qui exigent de très hautes performances (> 99 % de conversion. Leur mise au point a, dans le passé, nécessité l'exploitation sur des sites industriels de coûteux pilotes de 0,5 m de diamètre et de plus de 10 m de hauteur. Nous montrerons que ces pilotes peuvent être évités et que le passage direct du laboratoire à l'échelle industrielle est réalisable. Cette possibilité offre en plus une méthode simple pour améliorer les catalyseurs des unités industrielles. Elle ouvre aussi cette technique, très appréciée en production, aux produits de petits tonnages. La présentation de cet article sera faite en trois parties : - La première, présentée ci-après, expose les problèmes majeurs posés par l'extrapolation, puis résume les études effectuées. Les travaux d'extrapolation relatifs à deux procédés effectués avec des pilotes sont ensuite présentés, à titre d'exemples. De ces travaux sont déduites les performances que l'on peut espérer obtenir avec un réacteur catalytique à lit fluidisé, ainsi que les règles de tendances à suivre pour y parvenir. - La deuxième partie, intitulée Stratégie n'utilisant que des expériences de laboratoire , propose une stratégie expérimentale permettant d'obtenir en laboratoire les informations nécessaires pour passer directement à l'échelle industrielle avec des expériences suggérées en partie par les résultats exposés dans le premier article. Les relations expérimentales établies lors de ces études montrent que les propriétés d'un lit fluidisé ne dépendent (mis à part quelquefois le diamètre du réacteur que d'un paramètre appelé vitesse minimum de fluidisation de comportement . - La troisième partie

  15. A Block Coordinate Descent Method for Multi-Convex Optimization with Applications to Nonnegative Tensor Factorization and Completion

    Science.gov (United States)

    2012-08-01

    Sciandrone, On the convergence of the block nonlinear Gauss - Seidel method under convex constraints , Oper. Res. Lett., 26 (2000), pp. 127–136. [23] S.P...include nonsmooth functions. Our main interest is the block coordinate descent (BCD) method of the Gauss - Seidel type, which mini- mizes F cyclically over...original objective around the current iterate . They do not use extrapolation either and only have subsequence convergence . There are examples of ri

  16. One-step liquid phase chemical method to prepare carbon-based amorphous molybdenum sulfides: As the effective hydrogen evolution reaction catalysts

    International Nuclear Information System (INIS)

    Guo, Mengmeng; Wu, Qikang; Yu, Miaomiao; Wang, Yinling; Li, Maoguo

    2017-01-01

    Two different kinds of carbon-based amorphous molybdenum sulfide composite catalysts (activated carbon supported amorphous molybdenum sulfide and acetylene black supported amorphous molybdenum sulfide) had been prepared in a facile and scalable one-step liquid phase chemical method. The morphological and structural information of catalysts was characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), X-Ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) and it’s electro-catalytic HER activity were evaluated by linear sweep voltammetry(LSV), amperometric i-t technology and AC impedance technology. The as-prepared carbon-based amorphous molybdenum sulfides showed greatly enhanced electro-catalytic activity for HER compared with pure amorphous molybdenum sulfides. Especially, the nano-sized acetylene black supported molybdenum sulfide exhibited excellent electro-catalytic HER performances with a low onset potential of −116 mV versus reverse hydrogen electrode (RHE) and a small Tafel slope of 51 mV per decade.

  17. A method for measuring light ion reaction cross-sections

    International Nuclear Information System (INIS)

    Carlson, R.F.; Ingemarsson, A.; Lantz, M.; Arendse, G.J.; Auce, A.; Cox, A.J.; Foertsch, S.V.; Jacobs, N.M.; Johansson, R.; Nyberg, J.; Peavy, J.; Renberg, P.-U.; Sundberg, O.; Stander, J.A.; Steyn, G.F.; Tibell, G.; Zorro, R.

    2005-01-01

    An experimental procedure for measuring reaction cross-sections of light ions in the energy range 20-50 MeV/nucleon, using a modified attenuation technique, is described. The detection method incorporates a forward detector that simultaneously measures the reaction cross-sections for five different sizes of the solid angle in steps from 99.1% to 99.8% of the total solid angle. The final reaction cross-section values are obtained by extrapolation to the full solid angle

  18. Methods for converging correlation energies within the dielectric matrix formalism

    Science.gov (United States)

    Dixit, Anant; Claudot, Julien; Gould, Tim; Lebègue, Sébastien; Rocca, Dario

    2018-03-01

    Within the dielectric matrix formalism, the random-phase approximation (RPA) and analogous methods that include exchange effects are promising approaches to overcome some of the limitations of traditional density functional theory approximations. The RPA-type methods however have a significantly higher computational cost, and, similarly to correlated quantum-chemical methods, are characterized by a slow basis set convergence. In this work we analyzed two different schemes to converge the correlation energy, one based on a more traditional complete basis set extrapolation and one that converges energy differences by accounting for the size-consistency property. These two approaches have been systematically tested on the A24 test set, for six points on the potential-energy surface of the methane-formaldehyde complex, and for reaction energies involving the breaking and formation of covalent bonds. While both methods converge to similar results at similar rates, the computation of size-consistent energy differences has the advantage of not relying on the choice of a specific extrapolation model.

  19. A Galerkin Finite Element Method for Numerical Solutions of the Modified Regularized Long Wave Equation

    Directory of Open Access Journals (Sweden)

    Liquan Mei

    2014-01-01

    Full Text Available A Galerkin method for a modified regularized long wave equation is studied using finite elements in space, the Crank-Nicolson scheme, and the Runge-Kutta scheme in time. In addition, an extrapolation technique is used to transform a nonlinear system into a linear system in order to improve the time accuracy of this method. A Fourier stability analysis for the method is shown to be marginally stable. Three invariants of motion are investigated. Numerical experiments are presented to check the theoretical study of this method.

  20. The present state of research into plasma heating and injection methods

    International Nuclear Information System (INIS)

    1974-12-01

    The advantages and disadvantages recognized by the Advisory Group on Heating and injection for twelve plasma heating and injection methods currently under investigation in Europe are related. The heating and injection requirements of four reference reactor designs are previously defined. The problems which arise when one attempts to extrapolate existing work towards the reactor goal are emphasized. Two refuelling methods not directly linked with the heating problem are discussed. The experiments in operation or under construction in Europe in which each method is investigated are listed. Sixteen working papers which served as a basis for the Advisory Group discussion and which cover all the heating and injection methods examined are included