Sample records for tafel extrapolation method

  1. Extrapolation methods theory and practice

    Brezinski, C


    This volume is a self-contained, exhaustive exposition of the extrapolation methods theory, and of the various algorithms and procedures for accelerating the convergence of scalar and vector sequences. Many subroutines (written in FORTRAN 77) with instructions for their use are provided on a floppy disk in order to demonstrate to those working with sequences the advantages of the use of extrapolation methods. Many numerical examples showing the effectiveness of the procedures and a consequent chapter on applications are also provided - including some never before published results and applicat

  2. The optimizied expansion method for wavefield extrapolation

    Wu, Zedong


    Spectral methods are fast becoming an indispensable tool for wave-field extrapolation, especially in anisotropic media, because of its dispersion and artifact free, as well as highly accurate, solutions of the wave equation. However, for inhomogeneous media, we face difficulties in dealing with the mixed space-wavenumber domain operator.In this abstract, we propose an optimized expansion method that can approximate this operator with its low rank representation. The rank defines the number of inverse FFT required per time extrapolation step, and thus, a lower rank admits faster extrapolations. The method uses optimization instead of matrix decomposition to find the optimal wavenumbers and velocities needed to approximate the full operator with its low rank representation.Thus,we obtain more accurate wave-fields using lower rank representation, and thus cheaper extrapolations. The optimization operation to define the low rank representation depends only on the velocity model, and this is done only once, and valid for a full reverse time migration (many shots) or one iteration of full waveform inversion. Applications on the BP model yielded superior results than those obtained using the decomposition approach. For transversely isotopic media, the solutions were free of the shear wave artifacts, and does not require that eta>0.

  3. Effects of scan rate on the corrosion behavior SS 304 stainless steel in the nanofluid measured by Tafel polarization methods

    Prajitno, Djoko Hadi [PSTNT-BATAN Jl. Tamansari 71 Bandung 40132, Indonesia, (Indonesia)


    The Effects of scan rate on the Tafel polarization curve that is obtained to determine corrosion rate are conducted. The tafel polarization curves are obtained at different scan rates for Stainless Steel 304 in nanofluids contain 0.01 gpl nano particle ZrO{sub 2}. The corrosion stainless steel in nanofluid contains adm+0.01 gpl ZrO{sub 2} nanoparticles at different scan rate was performed by Tafel polarization. The results show that according corrosion potential examination of the stainless steel in nanofluid media 0.01gpl ZrO{sub 2} nanoparticle was actively corroded. The value of cathodic Tafel slope stainless steel in nanofluid at different scan rate relatively unchanged after polarization testing. Mean while the value of anodic Tafel slope stainless steel in nanofluid increase at different scan rate. The results of Tafel polarization technique show that corrosion rate of stainless steel in nanofluid increase with increasing scan rate. X ray diffraction examination of stainless steel after Tafel polarization depict that γ Fe phase is major phase in the surface of alloy.

  4. Extrapolation methods for dynamic partial differential equations

    Turkel, E.


    Several extrapolation procedures are presented for increasing the order of accuracy in time for evolutionary partial differential equations. These formulas are based on finite difference schemes in both the spatial and temporal directions. On practical grounds the methods are restricted to schemes that are fourth order in time and either second, fourth or sixth order in space. For hyperbolic problems the second order in space methods are not useful while the fourth order methods offer no advantage over the Kreiss-Oliger method unless very fine meshes are used. Advantages are first achieved using sixth order methods in space coupled with fourth order accuracy in time. Computational results are presented confirming the analytic discussions.

  5. Extrapolation Method for System Reliability Assessment

    Qin, Jianjun; Nishijima, Kazuyoshi; Faber, Michael Havbro


    The present paper presents a new scheme for probability integral solution for system reliability analysis, which takes basis in the approaches by Naess et al. (2009) and Bucher (2009). The idea is to evaluate the probability integral by extrapolation, based on a sequence of MC approximations....... The scheme is extended so that it can be applied to cases where the asymptotic property may not be valid and/or the random variables are not normally distributed. The performance of the scheme is investigated by four principal series and parallel systems and some practical examples. The results indicate...... of integrals with scaled domains. The performance of this class of approximation depends on the approach applied for the scaling and the functional form utilized for the extrapolation. A scheme for this task is derived here taking basis in the theory of asymptotic solutions to multinormal probability integrals...

  6. Analysis of extrapolation cascadic multigrid method(EXCMG)


    Based on an asymptotic expansion of finite element,a new extrapolation formula and extrapolation cascadic multigrid method(EXCMG)are proposed,in which the new extrapolation and quadratic interpolation are used to provide a better initial value on refined grid.In the case of triple grids,the error of the new initial value is analyzed in detail.A larger scale computation is completed in PC.

  7. Implicit extrapolation methods for multilevel finite element computations

    Jung, M.; Ruede, U. [Technische Universitaet Chemnitz-Zwickau (Germany)


    The finite element package FEMGP has been developed to solve elliptic and parabolic problems arising in the computation of magnetic and thermomechanical fields. FEMGP implements various methods for the construction of hierarchical finite element meshes, a variety of efficient multilevel solvers, including multigrid and preconditioned conjugate gradient iterations, as well as pre- and post-processing software. Within FEMGP, multigrid {tau}-extrapolation can be employed to improve the finite element solution iteratively to higher order. This algorithm is based on an implicit extrapolation, so that the algorithm differs from a regular multigrid algorithm only by a slightly modified computation of the residuals on the finest mesh. Another advantage of this technique is, that in contrast to explicit extrapolation methods, it does not rely on the existence of global error expansions, and therefore neither requires uniform meshes nor global regularity assumptions. In the paper the authors will analyse the {tau}-extrapolation algorithm and present experimental results in the context of the FEMGP package. Furthermore, the {tau}-extrapolation results will be compared to higher order finite element solutions.

  8. Submarine Magnetic Field Extrapolation Based on Boundary Element Method

    GAO Jun-ji; LIU Da-ming; YAO Qiong-hui; ZHOU Guo-hua; YAN Hui


    In order to master the magnetic field distribution of submarines in the air completely and exactly and study the magnetic stealthy performance of submarine, a mathematic model of submarine magnetic field extrapolation is built based on the boundary element method (BEM). An experiment is designed to measure three components of magnetic field on the envelope surface surrounding a model submarine. The data in differentheights above the model submarine are obtained by use of tri-axial magnetometers. The results show that this extrapolation model has good stabilities and high accuracies compared the measured data with the extrapolated data. Moreover, the model can reflect the submarine magnetic field distribution in the air exactly, and is valuable in practical engineering.

  9. Assessment of Load Extrapolation Methods for Wind Turbines

    Toft, Henrik Stensgaard; Sørensen, John Dalsgaard


    In the present paper methods for statistical load extrapolation of wind turbine response are studied using a stationary Gaussian process model which has approximately the same spectral properties as the response for the flap bending moment of a wind turbine blade. For a Gaussian process an approx...

  10. Assessment of Load Extrapolation Methods for Wind Turbines

    Toft, Henrik Stensgaard; Sørensen, John Dalsgaard; Veldkamp, Dick


    In the present paper, methods for statistical load extrapolation of wind-turbine response are studied using a stationary Gaussian process model, which has approximately the same spectral properties as the response for the out-of-plane bending moment of a wind-turbine blade. For a Gaussian process......, an approximate analytical solution for the distribution of the peaks is given by Rice. In the present paper, three different methods for statistical load extrapolation are compared with the analytical solution for one mean wind speed. The methods considered are global maxima, block maxima, and the peak over....... By considering Gaussian processes for 12 mean wind speeds, the "fitting before aggregation" and "aggregation before fitting" approaches are studied. The results show that the fitting before aggregation approach gives the best results. [DOI: 10.1115/1.4003416]...

  11. A regularization method for extrapolation of solar potential magnetic fields

    Gary, G. A.; Musielak, Z. E.


    The mathematical basis of a Tikhonov regularization method for extrapolating the chromospheric-coronal magnetic field using photospheric vector magnetograms is discussed. The basic techniques show that the Cauchy initial value problem can be formulated for potential magnetic fields. The potential field analysis considers a set of linear, elliptic partial differential equations. It is found that, by introducing an appropriate smoothing of the initial data of the Cauchy potential problem, an approximate Fourier integral solution is found, and an upper bound to the error in the solution is derived. This specific regularization technique, which is a function of magnetograph measurement sensitivities, provides a method to extrapolate the potential magnetic field above an active region into the chromosphere and low corona.

  12. Novel Extrapolation Method in the Monte Carlo Shell Model

    Shimizu, Noritaka; Mizusaki, Takahiro; Otsuka, Takaharu; Abe, Takashi; Honma, Michio


    We propose an extrapolation method utilizing energy variance in the Monte Carlo shell model in order to estimate the energy eigenvalue and observables accurately. We derive a formula for the energy variance with deformed Slater determinants, which enables us to calculate the energy variance efficiently. The feasibility of the method is demonstrated for the full $pf$-shell calculation of $^{56}$Ni, and the applicability of the method to a system beyond current limit of exact diagonalization is shown for the $pf$+$g_{9/2}$-shell calculation of $^{64}$Ge.

  13. The solution of coupled Schroedinger equations using an extrapolation method

    Goorvitch, D.; Galant, D. C.


    In this paper, extrapolation to the limit in a finite-difference method is applied to solve a system of coupled Schroedinger equations. This combination results in a method that only requires knowledge of the potential energy functions for the system. This numerical procedure has several distinct advantages over the more conventional methods. Namely, initial guesses for the term values are not needed; assumptions need be made about the behavior of the wavefunctions, such as the slope or magnitude in the nonclassical region; and the algorithm is easy to implement, has a firm mathematical foundation, and provides error estimates. Moreover, the method is less sensitive to round-off error than other methods since a small number of mesh points is used and it can be implemented on small computers. A comparison of the method with another numerical method shows results agreeing within 1 part in 10 exp 4.

  14. The extrapolated successive overrelaxation (ESOR method for consistently ordered matrices

    N. M. Missirlis


    Full Text Available This paper develops the theory of the Extrapolated Successive Overrelaxation (ESOR method as introduced by Sisler in [1], [2], [3] for the numerical solution of large sparse linear systems of the form Au=b, when A is a consistently ordered 2-cyclic matrix with non-vanishing diagonal elements and the Jacobi iteration matrix B possesses only real eigenvalues. The region of convergence for the ESOR method is described and the optimum values of the involved parameters are also determined. It is shown that if the minimum of the moduli of the eigenvalues of B, μ¯ does not vanish, then ESOR attains faster rate of convergence than SOR when 1−μ¯2<(1−μ¯212, where μ¯ denotes the spectral radius of B.

  15. An efficient wave extrapolation method for anisotropic media with tilt

    Waheed, Umair bin


    Wavefield extrapolation operators for elliptically anisotropic media offer significant cost reduction compared with that for the transversely isotropic case, particularly when the axis of symmetry exhibits tilt (from the vertical). However, elliptical anisotropy does not provide accurate wavefield representation or imaging for transversely isotropic media. Therefore, we propose effective elliptically anisotropic models that correctly capture the kinematic behaviour of wavefields for transversely isotropic media. Specifically, we compute source-dependent effective velocities for the elliptic medium using kinematic high-frequency representation of the transversely isotropic wavefield. The effective model allows us to use cheaper elliptic wave extrapolation operators. Despite the fact that the effective models are obtained by matching kinematics using high-frequency asymptotic, the resulting wavefield contains most of the critical wavefield components, including frequency dependency and caustics, if present, with reasonable accuracy. The methodology developed here offers a much better cost versus accuracy trade-off for wavefield computations in transversely isotropic media, particularly for media of low to moderate complexity. In addition, the wavefield solution is free from shear-wave artefacts as opposed to the conventional finite-difference-based transversely isotropic wave extrapolation scheme. We demonstrate these assertions through numerical tests on synthetic tilted transversely isotropic models.


    Qiumei Huang; Yidu Yang


    In this paper,we introduce a new extrapolation formula by combining Richardson extrapolation and Sloan iteration algorithms.Using this extrapolation formula,we obtain some asymptotic expansions of the Galerkin finite element method for semi-simple eigenvalue problems of Fredholm integral equations of the second kind and improve the accuracy of the numerical approximations of the corresponding eigenvalues.Some numerical experiments are carried out to demonstrate the effectiveness of OUr new method and to confirm our theoretical results.

  17. extrap: Software to assist the selection of extrapolation methods for moving-boat ADCP streamflow measurements

    Mueller, David S.


    Selection of the appropriate extrapolation methods for computing the discharge in the unmeasured top and bottom parts of a moving-boat acoustic Doppler current profiler (ADCP) streamflow measurement is critical to the total discharge computation. The software tool, extrap, combines normalized velocity profiles from the entire cross section and multiple transects to determine a mean profile for the measurement. The use of an exponent derived from normalized data from the entire cross section is shown to be valid for application of the power velocity distribution law in the computation of the unmeasured discharge in a cross section. Selected statistics are combined with empirically derived criteria to automatically select the appropriate extrapolation methods. A graphical user interface (GUI) provides the user tools to visually evaluate the automatically selected extrapolation methods and manually change them, as necessary. The sensitivity of the total discharge to available extrapolation methods is presented in the GUI. Use of extrap by field hydrographers has demonstrated that extrap is a more accurate and efficient method of determining the appropriate extrapolation methods compared with tools currently (2012) provided in the ADCP manufacturers' software.

  18. Dynamic tafel factor adaption for the evaluation of instantaneous corrosion rates on zinc by using gel-type electrolytes

    Babutzka, M.; Heyn, A.


    Electrochemical corrosion measurements allow calculation of the instantaneous zinc corrosion rate via polarization resistances by using tafel factors. However, the determination of the actual tafel factor is problematic since it depends on the state of the formed zinc layers and the corrosion reactions taking place. Therefore, valid tafel factors are either determined in additional experiments via dynamic polarization or estimated by calculation. In most cases a constant value for tafel factors is assumed for simplification, without regard to the real conditions of the corroding system. Since naturally formed zinc layers are unstable using conventional test electrolyte solutions determination of tafel factors is hindered additionally and inaccurate interpretations can result. For some time now, the use of gel-type electrolytes in corrosion research has enabled minimally invasive investigation of zinc surface layers and thus offers new approaches to a scientifically proven determination of tafel factors. The paper presents a new method for the determination and evaluation of tafel factors using gel-type electrolytes and electrochemical frequency modulation technique (EFM). This relatively new electrochemical method offers the possibility to determine both polarization resistances and tafel factors within one measurement and in short measuring intervals. Starting from a comprehensive parameter study it is shown that a direct relationship between the two values exists that can be described mathematically. This contribution presents the determined tafel factors for the system gel-type electrolyte/zinc and discusses their applicability and their limits.

  19. Choice of order and extrapolation method in Aarseth-type N-body algorithms

    Press, William H.; Spergel, David N.


    The force-versus-time history of a typical particle in a 50-body King model is taken as input data, and its 'extrapolatability' is measured. Extrapolatability means how far the force can be extrapolated, measured in units of a locally defined rate-of-change time scale, and still be within a specified fractional accuracy of the true values. Greater extrapolatability means larger step size, hence greater efficiency, in an Aarseth-type N-body code. Extrapolatability is found to depend systematically on the order of the extrapolation method, but it goes to a finite limit in the limit of large order. A formula for choosing the optimal (most efficient) order for any desired accuracy is given; higher orders than are presently in use are indicated. Neither rational function extrapolation nor a somewhat vector-regularized polynomial method is found to be systematically better than component-wise polynomial extrapolation, indicating that extrapolatability can be viewed as an intrinsic property of the underlying N-body forces, independent of the extrapolation method.

  20. The optimized expansion based low-rank method for wavefield extrapolation

    Wu, Zedong


    Spectral methods are fast becoming an indispensable tool for wavefield extrapolation, especially in anisotropic media because it tends to be dispersion and artifact free as well as highly accurate when solving the wave equation. However, for inhomogeneous media, we face difficulties in dealing with the mixed space-wavenumber domain extrapolation operator efficiently. To solve this problem, we evaluated an optimized expansion method that can approximate this operator with a low-rank variable separation representation. The rank defines the number of inverse Fourier transforms for each time extrapolation step, and thus, the lower the rank, the faster the extrapolation. The method uses optimization instead of matrix decomposition to find the optimal wavenumbers and velocities needed to approximate the full operator with its explicit low-rank representation. As a result, we obtain lower rank representations compared with the standard low-rank method within reasonable accuracy and thus cheaper extrapolations. Additional bounds set on the range of propagated wavenumbers to adhere to the physical wave limits yield unconditionally stable extrapolations regardless of the time step. An application on the BP model provided superior results compared to those obtained using the decomposition approach. For transversely isotopic media, because we used the pure P-wave dispersion relation, we obtained solutions that were free of the shear wave artifacts, and the algorithm does not require that n > 0. In addition, the required rank for the optimization approach to obtain high accuracy in anisotropic media was lower than that obtained by the decomposition approach, and thus, it was more efficient. A reverse time migration result for the BP tilted transverse isotropy model using this method as a wave propagator demonstrated the ability of the algorithm.

  1. A least square extrapolation method for improving solution accuracy of PDE computations

    Garbey, M


    Richardson extrapolation (RE) is based on a very simple and elegant mathematical idea that has been successful in several areas of numerical analysis such as quadrature or time integration of ODEs. In theory, RE can be used also on PDE approximations when the convergence order of a discrete solution is clearly known. But in practice, the order of a numerical method often depends on space location and is not accurately satisfied on different levels of grids used in the extrapolation formula. We propose in this paper a more robust and numerically efficient method based on the idea of finding automatically the order of a method as the solution of a least square minimization problem on the residual. We introduce a two-level and three-level least square extrapolation method that works on nonmatching embedded grid solutions via spline interpolation. Our least square extrapolation method is a post-processing of data produced by existing PDE codes, that is easy to implement and can be a better tool than RE for code v...

  2. Comparison of Extrapolation and Interpolation Methods for Estimating Daily Photosynthetically Active Radiation (PAR)

    Wu, G.; Skidmore, A.K.; Leeuw, de J.; Liu, X.; Prins, H.H.T.


    Measurements of photosynthetically active radiation (PAR), which are indispensable for simulating plant growth and productivity, are generally very scarce. This study aimed to compare two extrapolation and one interpolation methods for estimating daily PAR reaching the earth surface within the Poyan

  3. Uncertainty in vertical extrapolation of wind statistics: shear-exponent and WAsP/EWA methods

    Kelly, Mark C.

    for uncertainties inherent in determination of (wind) shear exponents, and subsequent vertical extrapolation of wind speeds. The report further outlines application of the theory and results of Kelly & Troen (2014-6) for gauging the uncertainty inherent in use of the European Wind Atlas (EWA) / WAsP method...

  4. Precise Numerical Results of IR-vertex and box integration with Extrapolation Method

    Yuasa, F; Fujimoro, J; Hamaguchi, N; Ishikawa, T; Shimizu, Y


    We present a new approach for obtaining very precise integration results for infrared vertex and box diagrams, where the integration is carried out directly without performing any analytic integration of Feynman parameters. Using an appropriate numerical integration routine with an extrapolation method, together with a multi-precision library, we have obtained integration results which agree with the analytic results to 10 digits even for such a very small photon mass as $10^{-150}$ GeV in the infrared vertex diagram.

  5. Usage of Empirical-Statical-Dynamical (ESD method for data extrapolation in Tunnel Construction

    Zafirovski Zlatko


    Full Text Available This article describes a methodology that shows how it is possible to integrate all these approaches in a problem for extrapolation of the parameters for hydrotechical tunnels. During the design process for tunnels in hydrotechics, one of the main problems is how to extrapolate the deformability and shear strentgh rock mass parameters from the zone of testing to the whole area (volume of interes for interaction analyses between structure abd natural environments. Computers development in recent decades has contributed to the development of numerical calculation method in rock mechanics which enabled new and wider possibilities of stress and deformation calculation. This had significantly stimulated the development of rock mechanics and tunneling as scientific and technical discipline as well as the wider application of research results into practice.

  6. The Impacts of Atmospheric Stability on the Accuracy of Wind Speed Extrapolation Methods

    Jennifer F. Newman


    Full Text Available The building of utility-scale wind farms requires knowledge of the wind speed climatology at hub height (typically 80–100 m. As most wind speed measurements are taken at 10 m above ground level, efforts are being made to relate 10-m measurements to approximate hub-height wind speeds. One common extrapolation method is the power law, which uses a shear parameter to estimate the wind shear between a reference height and hub height. The shear parameter is dependent on atmospheric stability and should ideally be determined independently for different atmospheric stability regimes. In this paper, data from the Oklahoma Mesonet are used to classify atmospheric stability and to develop stability-dependent power law fits for a nearby tall tower. Shear exponents developed from one month of data are applied to data from different seasons to determine the robustness of the power law method. In addition, similarity theory-based methods are investigated as possible alternatives to the power law. Results indicate that the power law method performs better than similarity theory methods, particularly under stable conditions, and can easily be applied to wind speed data from different seasons. In addition, the importance of using co-located near-surface and hub-height wind speed measurements to develop extrapolation fits is highlighted.

  7. An Efficient Method of Reweighting and Reconstructing Monte Carlo Molecular Simulation Data for Extrapolation to Different Temperature and Density Conditions

    Sun, Shuyu


    This paper introduces an efficient technique to generate new molecular simulation Markov chains for different temperature and density conditions, which allow for rapid extrapolation of canonical ensemble averages at a range of temperatures and densities different from the original conditions where a single simulation is conducted. Obtained information from the original simulation are reweighted and even reconstructed in order to extrapolate our knowledge to the new conditions. Our technique allows not only the extrapolation to a new temperature or density, but also the double extrapolation to both new temperature and density. The method was implemented for Lennard-Jones fluid with structureless particles in single-gas phase region. Extrapolation behaviors as functions of extrapolation ranges were studied. Limits of extrapolation ranges showed a remarkable capability especially along isochors where only reweighting is required. Various factors that could affect the limits of extrapolation ranges were investigated and compared. In particular, these limits were shown to be sensitive to the number of particles used and starting point where the simulation was originally conducted.

  8. Counter-extrapolation method for conjugate interfaces in computational heat and mass transfer

    Le, Guigao; Oulaid, Othmane; Zhang, Junfeng


    In this paper a conjugate interface method is developed by performing extrapolations along the normal direction. Compared to other existing conjugate models, our method has several technical advantages, including the simple and straightforward algorithm, accurate representation of the interface geometry, applicability to any interface-lattice relative orientation, and availability of the normal gradient. The model is validated by simulating the steady and unsteady convection-diffusion system with a flat interface and the steady diffusion system with a circular interface, and good agreement is observed when comparing the lattice Boltzmann results with respective analytical solutions. A more general system with unsteady convection-diffusion process and a curved interface, i.e., the cooling process of a hot cylinder in a cold flow, is also simulated as an example to illustrate the practical usefulness of our model, and the effects of the cylinder heat capacity and thermal diffusivity on the cooling process are examined. Results show that the cylinder with a larger heat capacity can release more heat energy into the fluid and the cylinder temperature cools down slower, while the enhanced heat conduction inside the cylinder can facilitate the cooling process of the system. Although these findings appear obvious from physical principles, the confirming results demonstrates the application potential of our method in more complex systems. In addition, the basic idea and algorithm of the counter-extrapolation procedure presented here can be readily extended to other lattice Boltzmann models and even other computational technologies for heat and mass transfer systems.

  9. Low-cost extrapolation method for maximal LTE radio base station exposure estimation: test and validation.

    Verloock, Leen; Joseph, Wout; Gati, Azeddine; Varsier, Nadège; Flach, Björn; Wiart, Joe; Martens, Luc


    An experimental validation of a low-cost method for extrapolation and estimation of the maximal electromagnetic-field exposure from long-term evolution (LTE) radio base station installations are presented. No knowledge on downlink band occupation or service characteristics is required for the low-cost method. The method is applicable in situ. It only requires a basic spectrum analyser with appropriate field probes without the need of expensive dedicated LTE decoders. The method is validated both in laboratory and in situ, for a single-input single-output antenna LTE system and a 2×2 multiple-input multiple-output system, with low deviations in comparison with signals measured using dedicated LTE decoders.

  10. Propagation of internal errors in explicit Runge–Kutta methods and internal stability of SSP and extrapolation methods

    Ketcheson, David I.


    In practical computation with Runge--Kutta methods, the stage equations are not satisfied exactly, due to roundoff errors, algebraic solver errors, and so forth. We show by example that propagation of such errors within a single step can have catastrophic effects for otherwise practical and well-known methods. We perform a general analysis of internal error propagation, emphasizing that it depends significantly on how the method is implemented. We show that for a fixed method, essentially any set of internal stability polynomials can be obtained by modifying the implementation details. We provide bounds on the internal error amplification constants for some classes of methods with many stages, including strong stability preserving methods and extrapolation methods. These results are used to prove error bounds in the presence of roundoff or other internal errors.

  11. An Extrapolation Method of Vector Magnetic Field via Surface Integral Technique

    YAN Hui; XIAO Chang-han; ZHOU Guo-hua


    According to the integral relationship between the vector magnetic flux density on a spatial point and that over a closed surface around magnetic sources, a technique for the extrapolation of vector magnetic field of a ferromagnetic object is given without computing scalar potential and its gradient. The vector magnetic flux density on a remote spatial point can be extrapolated by surface integral from the vector values over a closed measureed surface around the ferromagnetic object. The correctness of the technique testified by a special example and simulation. The experimented result shows that its accuracy is satisfying and the execution time is less than 1 second.

  12. extrap: Software to assist the selection of extrapolation methods for moving-boat ADCP streamflow measurements

    Mueller, David S.


    Selection of the appropriate extrapolation methods for computing the discharge in the unmeasured top and bottom parts of a moving-boat acoustic Doppler current profiler (ADCP) streamflow measurement is critical to the total discharge computation. The software tool, extrap, combines normalized velocity

  13. A comparison of high-order explicit Runge–Kutta, extrapolation, and deferred correction methods in serial and parallel

    Ketcheson, David I.


    We compare the three main types of high-order one-step initial value solvers: extrapolation, spectral deferred correction, and embedded Runge–Kutta pairs. We consider orders four through twelve, including both serial and parallel implementations. We cast extrapolation and deferred correction methods as fixed-order Runge–Kutta methods, providing a natural framework for the comparison. The stability and accuracy properties of the methods are analyzed by theoretical measures, and these are compared with the results of numerical tests. In serial, the eighth-order pair of Prince and Dormand (DOP8) is most efficient. But other high-order methods can be more efficient than DOP8 when implemented in parallel. This is demonstrated by comparing a parallelized version of the wellknown ODEX code with the (serial) DOP853 code. For an N-body problem with N = 400, the experimental extrapolation code is as fast as the tuned Runge–Kutta pair at loose tolerances, and is up to two times as fast at tight tolerances.

  14. An efficient wave extrapolation method for tilted orthorhombic media using effective ellipsoidal models

    Waheed, Umair bin


    The wavefield extrapolation operator for ellipsoidally anisotropic (EA) media offers significant cost reduction compared to that for the orthorhombic case, especially when the symmetry planes are tilted and/or rotated. However, ellipsoidal anisotropy does not provide accurate focusing for media of orthorhombic anisotropy. Therefore, we develop effective EA models that correctly capture the kinematic behavior of the wavefield for tilted orthorhombic (TOR) media. Specifically, we compute effective source-dependent velocities for the EA model using kinematic high-frequency representation of the TOR wavefield. The effective model allows us to use the cheaper EA wavefield extrapolation operator to obtain approximate wavefield solutions for a TOR model. Despite the fact that the effective EA models are obtained by kinematic matching using high-frequency asymptotic, the resulting wavefield contains most of the critical wavefield components, including the frequency dependency and caustics, if present, with reasonable accuracy. The methodology developed here offers a much better cost versus accuracy tradeoff for wavefield computations in TOR media, particularly for media of low to moderate complexity. We demonstrate applicability of the proposed approach on a layered TOR model.

  15. Comparison of Coronal Extrapolation Methods for Cycle 24 Using HMI Data

    Arden, William M; Sun, Xudong; Zhao, Xuepu


    Two extrapolation models of the solar coronal magnetic field are compared using magnetogram data from the SDO/HMI instrument. The two models, a horizontal current-current sheet-source surface (HCCSSS) model and a potential field-source surface (PFSS) model differ in their treatment of coronal currents. Each model has its own critical variable, respectively the radius of a cusp surface and a source surface, and it is found that adjusting these heights over the period studied allows better fit between the models and the solar open flux at 1 AU as calculated from the Interplanetary Magnetic Field (IMF). The HCCSSS model provides the better fit for the overall period from 2010 November to 2015 May as well as for two subsets of the period - the minimum/rising part of the solar cycle, and the recently-identified peak in the IMF from mid-2014 to mid-2015 just after solar maximum. It is found that a HCCSSS cusp surface height of 1.7 Rsun provides the best fit to the IMF for the overall period, while 1.7 & 1.9 Rsu...

  16. An ADI extrapolated Crank-Nicolson orthogonal spline collocation method for nonlinear reaction-diffusion systems: a computational study

    Fernandes, Ryan I


    An alternating direction implicit (ADI) orthogonal spline collocation (OSC) method is described for the approximate solution of a class of nonlinear reaction-diffusion systems. Its efficacy is demonstrated on the solution of well-known examples of such systems, specifically the Brusselator, Gray-Scott, Gierer-Meinhardt and Schnakenberg models, and comparisons are made with other numerical techniques considered in the literature. The new ADI method is based on an extrapolated Crank-Nicolson OSC method and is algebraically linear. It is efficient, requiring at each time level only $O({\\cal N})$ operations where ${\\cal N}$ is the number of unknowns. Moreover,it is shown to produce approximations which are of optimal global accuracy in various norms, and to possess superconvergence properties.

  17. Creep behavior of bone cement: a method for time extrapolation using time-temperature equivalence.

    Morgan, R L; Farrar, D F; Rose, J; Forster, H; Morgan, I


    The clinical lifetime of poly(methyl methacrylate) (PMMA) bone cement is considerably longer than the time over which it is convenient to perform creep testing. Consequently, it is desirable to be able to predict the long term creep behavior of bone cement from the results of short term testing. A simple method is described for prediction of long term creep using the principle of time-temperature equivalence in polymers. The use of the method is illustrated using a commercial acrylic bone cement. A creep strain of approximately 0.6% is predicted after 400 days under a constant flexural stress of 2 MPa. The temperature range and stress levels over which it is appropriate to perform testing are described. Finally, the effects of physical aging on the accuracy of the method are discussed and creep data from aged cement are reported.

  18. Comparison of Extrapolation and Interpolation Methods for Estimating Daily Photosynthetically Active Radiation (PAR)——A Case Study of the Poyang Lake National Nature Reserve, China

    WU Guofeng; Jan de Leeuw; Andrew K. Skidmore; LIU Yaolin; Herbert H. T. Prins


    Measurements of photosynthetically active radiation (PAR), which are indispensable for simulating plant growth and productivity, are generally very scarce. This study aimed to compare two extrapolation and one interpolation methods for estimating daily PAR reaching the earth surface within the Poyang Lake national nature reserve, China. The daily global solar radiation records at Nanchang meteorological station and daily sunshine duration measurements at nine meteorological stations around Poyang Lake were obtained to achieve the objective. Two extrapolation methods of PARs using recorded and estimated global solar radiation at Nanchang station and three stations (Yongxiu, Xingzi and Duchang) near the nature reserve were carried out, respectively, and a spatial interpolation method combining triangulated irregular network (TIN) and inverse distance weighting (IDW) was implemented to estimate daily PAR. The performance evaluation of the three methods using the PARs measured at Dahuchi Conservation Station (day number of measurement = 105 days) revealed that: (1) the spatial interpolation method achieved the best PAR estimation (R2 = 0.89, s.e. = 0.99, F = 830.02, P < 0.001=; (2) the extrapolation method from Nanchang station obtained an unbiased result (R2 = 0.88, s.e. = 0.99, F = 745.29, P < 0.001=; however, (3) the extrapolation methods from Yongxiu, Xingzi and Duchang stations were not suitable for this specific site for their biased estimations. Considering the assumptions and principles supporting the extrapolation and interpolation methods, the authors conclude that the spatial interpolation method produces more reliable results than the extrapolation methods and holds the greatest potential in all tested methods, and more PAR measurements should be recorded to evaluate the seasonal, yearly and spatial stabilities of these models for their application to the whole nature reserve of Poyang Lake.

  19. Application of the EXtrapolated Efficiency Method (EXEM) to infer the gamma-cascade detection efficiency in the actinide region

    Ducasse, Q; Mathieu, L; Marini, P; Morillon, B; Aiche, M; Tsekhanovich, I


    The study of transfer-induced gamma-decay probabilities is very useful for understanding the surrogate-reaction method and, more generally, for constraining statistical-model calculations. One of the main difficulties in the measurement of gamma-decay probabilities is the determination of the gamma-cascade detection efficiency. In [Nucl. Instrum. Meth. A 700, 59 (2013)] we developed the Extrapolated Efficiency Method (EXEM), a new method to measure this quantity. In this work, we have applied, for the first time, the EXEM to infer the gamma-cascade detection efficiency in the actinide region. In particular, we have considered the 238U(d,p)239U and 238U(3He,d)239Np reactions. We have performed Hauser-Feshbach calculations to interpret our results and to verify the hypothesis on which the EXEM is based. The determination of fission and gamma-decay probabilities of 239Np below the neutron separation energy allowed us to validate the EXEM.

  20. Radar prediction of absolute rain fade distributions for earth-satellite paths and general methods for extrapolation of fade statistics to other locations

    Goldhirsh, J.


    The first absolute rain fade distribution method described establishes absolute fade statistics at a given site by means of a sampled radar data base. The second method extrapolates absolute fade statistics from one location to another, given simultaneously measured fade and rain rate statistics at the former. Both methods employ similar conditional fade statistic concepts and long term rain rate distributions. Probability deviations in the 2-19% range, with an 11% average, were obtained upon comparison of measured and predicted levels at given attenuations. The extrapolation of fade distributions to other locations at 28 GHz showed very good agreement with measured data at three sites located in the continental temperate region.

  1. Bias analysis and the simulation-extrapolation method for survival data with covariate measurement error under parametric proportional odds models.

    Yi, Grace Y; He, Wenqing


    It has been well known that ignoring measurement error may result in substantially biased estimates in many contexts including linear and nonlinear regressions. For survival data with measurement error in covariates, there has been extensive discussion in the literature with the focus on proportional hazards (PH) models. Recently, research interest has extended to accelerated failure time (AFT) and additive hazards (AH) models. However, the impact of measurement error on other models, such as the proportional odds model, has received relatively little attention, although these models are important alternatives when PH, AFT, or AH models are not appropriate to fit data. In this paper, we investigate this important problem and study the bias induced by the naive approach of ignoring covariate measurement error. To adjust for the induced bias, we describe the simulation-extrapolation method. The proposed method enjoys a number of appealing features. Its implementation is straightforward and can be accomplished with minor modifications of existing software. More importantly, the proposed method does not require modeling the covariate process, which is quite attractive in practice. As the precise values of error-prone covariates are often not observable, any modeling assumption on such covariates has the risk of model misspecification, hence yielding invalid inferences if this happens. The proposed method is carefully assessed both theoretically and empirically. Theoretically, we establish the asymptotic normality for resulting estimators. Numerically, simulation studies are carried out to evaluate the performance of the estimators as well as the impact of ignoring measurement error, along with an application to a data set arising from the Busselton Health Study. Sensitivity of the proposed method to misspecification of the error model is studied as well.

  2. Intrinsic kinetic equation for oxygen reduction reaction in acidic media: the double Tafel slope and fuel cell applications.

    Wang, Jia X; Uribe, Francisco A; Springer, Thomas E; Zhang, Junliang; Adzic, Radoslav R


    According to Sergio Trasatti, "A true theory of electrocatalysis will not be available until activity can be calculated a priori from some known properties of the materials." Toward this goal, we developed intrinsic kinetic equations for the hydrogen oxidation reaction (HOR) and the oxygen reduction reaction (ORR) using as the kinetic parameters the free energies of adsorption and activation for elementary reactions. Rigorous derivation retained the intrinsic connection between the intermediates' adsorption isotherms and the kinetic equations, affording us an integrated approach for establishing the reaction mechanisms based upon various experimental and theoretical results. Using experimentally deduced free energy diagrams and activity-and-barriers plot for the ORR on Pt(111), we explained why the Tafel slope in the large overpotential region is double that in the small overpotential region. For carbon-supported Pt nanoparticles (Pt/C), the polarization curves measured with thin-film rotating disk electrodes also exhibit the double Tafel slope, albeit Pt(111) is several times more active than the Pt nanoparticles when the current is normalized by real surface area. An analytic method was presented for the polarization curves measured with H2 in proton exchange membrane fuel cells (PEMFCs). The fit to a typical iR-free polarization curve at 80 degrees C revealed that the change of the Tafel slope occurs at about 0.77 V that is the reversible potential for the transition between adsorbed O and OH on Pt/C. This is significant because it predicts that the Butler-Volmer equation can only fit the data above this potential, regardless the current density. We also predicted a decrease of the Tafel slope from 70 to 65 mV dec(-1) at 80 degrees C with increasing oxygen partial pressure, which is consistent with the observation reported in literature.


    Shu-hua Zhang; Tao Lin; Yan-ping Lin; Ming Rao


    In this paper we will show that the Richardson extrapolation can be used to enhance the numerical solution generated by a Petrov-Galerkin finite element method for the initialvalue problem for a nonlinear Volterra integro-differential equation. As by-products, we will also show that these enhanced approximations can be used to form a class of aposteriori estimators for this Petrov-Galerkin finite element method. Numerical examples are supplied to illustrate the theoretical results.


    SergioAmat; SoniaBusquier; VicenteF.Candela


    An alternative to the classical extrapolations is proposed. The stability and the accuracy are studied. The new extrapolation behaves better than the classical ones when there are problems of stability. This technique will be useful in those problems where the region of stability is very small and it forces to work with too fine scales.

  5. Infrared extrapolations for atomic nuclei

    Furnstahl, R J; Papenbrock, T; Wendt, K A


    Harmonic oscillator model-space truncations introduce systematic errors to the calculation of binding energies and other observables. We identify the relevant infrared scaling variable and give values for this nucleus-dependent quantity. We consider isotopes of oxygen computed with the coupled-cluster method from chiral nucleon-nucleon interactions at next-to-next-to-leading order and show that the infrared component of the error is sufficiently understood to permit controlled extrapolations. By employing oscillator spaces with relatively large frequencies, well above the energy minimum, the ultraviolet corrections can be suppressed while infrared extrapolations over tens of MeVs are accurate for ground-state energies. However, robust uncertainty quantification for extrapolated quantities that fully accounts for systematic errors is not yet developed.

  6. Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion

    Shinagawa, Tatsuya


    Microkinetic analyses of aqueous electrochemistry involving gaseous H2 or O2, i.e., hydrogen evolution reaction (HER), hydrogen oxidation reaction (HOR), oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), are revisited. The Tafel slopes used to evaluate the rate determining steps generally assume extreme coverage of the adsorbed species (θ ≈ 0 or ≈1), although, in practice, the slopes are coverage-dependent. We conducted detailed kinetic analyses describing the coverage-dependent Tafel slopes for the aforementioned reactions. Our careful analyses provide a general benchmark for experimentally observed Tafel slopes that can be assigned to specific rate determining steps. The Tafel analysis is a powerful tool for discussing the rate determining steps involved in electrocatalysis, but our study also demonstrated that overly simplified assumptions led to an inaccurate description of the surface electrocatalysis. Additionally, in many studies, Tafel analyses have been performed in conjunction with the Butler-Volmer equation, where its applicability regarding only electron transfer kinetics is often overlooked. Based on the derived kinetic description of the HER/HOR as an example, the limitation of Butler-Volmer expression in electrocatalysis is also discussed in this report.

  7. Conservative Non-equlibrium Extrapolation Boundary Condition in Lattice Boltzmann Method%格子Boltzmann守恒型非平衡态的外推边界

    翟旭军; 赵凯


    针对非平衡态外推边界处理方法在某些条件下发生质量泄漏的问题,结合质量守恒定律对其进行修正,建立一种新的质量守恒型的边界处理格式.其基本思想是在边界处定义一个虚拟密度来修正平衡态分布函数,使得系统质量守恒.以重力作用下的密度场及磁流体模拟问题为例,利用该格式进行分析,讨论质量泄露问题的本质及各种因素的影响.通过对三种典型的流动:二维Poiseuille流、Couette流、Womersley流的模拟,验证该边界格式的计算精度和稳定性.%Removing mass leakage in non-equilibrium extrapolation method, a mass conservative boundary condition is proposed with improving non-equilibrium extrapolation method based on conservation of mass. Mass conservation of a system is ensured by defining an artificial density at solid boundary. Precision and stability of the new boundary condition are validated by simulating three classical flows (Poiseuille, Couette and Womersley).

  8. Efficient Wavefield Extrapolation In Anisotropic Media

    Alkhalifah, Tariq


    Various examples are provided for wavefield extrapolation in anisotropic media. In one example, among others, a method includes determining an effective isotropic velocity model and extrapolating an equivalent propagation of an anisotropic, poroelastic or viscoelastic wavefield. The effective isotropic velocity model can be based upon a kinematic geometrical representation of an anisotropic, poroelastic or viscoelastic wavefield. Extrapolating the equivalent propagation can use isotopic, acoustic or elastic operators based upon the determined effective isotropic velocity model. In another example, non-transitory computer readable medium stores an application that, when executed by processing circuitry, causes the processing circuitry to determine the effective isotropic velocity model and extrapolate the equivalent propagation of an anisotropic, poroelastic or viscoelastic wavefield. In another example, a system includes processing circuitry and an application configured to cause the system to determine the effective isotropic velocity model and extrapolate the equivalent propagation of an anisotropic, poroelastic or viscoelastic wavefield.

  9. Builtin vs. auxiliary detection of extrapolation risk.

    Munson, Miles Arthur; Kegelmeyer, W. Philip,


    A key assumption in supervised machine learning is that future data will be similar to historical data. This assumption is often false in real world applications, and as a result, prediction models often return predictions that are extrapolations. We compare four approaches to estimating extrapolation risk for machine learning predictions. Two builtin methods use information available from the classification model to decide if the model would be extrapolating for an input data point. The other two build auxiliary models to supplement the classification model and explicitly model extrapolation risk. Experiments with synthetic and real data sets show that the auxiliary models are more reliable risk detectors. To best safeguard against extrapolating predictions, however, we recommend combining builtin and auxiliary diagnostics.

  10. Ecotoxicological effects extrapolation models

    Suter, G.W. II


    One of the central problems of ecological risk assessment is modeling the relationship between test endpoints (numerical summaries of the results of toxicity tests) and assessment endpoints (formal expressions of the properties of the environment that are to be protected). For example, one may wish to estimate the reduction in species richness of fishes in a stream reach exposed to an effluent and have only a fathead minnow 96 hr LC50 as an effects metric. The problem is to extrapolate from what is known (the fathead minnow LC50) to what matters to the decision maker, the loss of fish species. Models used for this purpose may be termed Effects Extrapolation Models (EEMs) or Activity-Activity Relationships (AARs), by analogy to Structure-Activity Relationships (SARs). These models have been previously reviewed in Ch. 7 and 9 of and by an OECD workshop. This paper updates those reviews and attempts to further clarify the issues involved in the development and use of EEMs. Although there is some overlap, this paper does not repeat those reviews and the reader is referred to the previous reviews for a more complete historical perspective, and for treatment of additional extrapolation issues.

  11. One-step lowrank wave extrapolation

    Sindi, Ghada Atif


    Wavefield extrapolation is at the heart of modeling, imaging, and Full waveform inversion. Spectral methods gained well deserved attention due to their dispersion free solutions and their natural handling of anisotropic media. We propose a scheme a modified one-step lowrank wave extrapolation using Shanks transform in isotropic, and anisotropic media. Specifically, we utilize a velocity gradient term to add to the accuracy of the phase approximation function in the spectral implementation. With the higher accuracy, we can utilize larger time steps and make the extrapolation more efficient. Applications to models with strong inhomogeneity and considerable anisotropy demonstrates the utility of the approach.

  12. Far Field Extrapolation from Near Field Interactions and Shielding Influence Investigations Based on a FE-PEEC Coupling Method

    Gérard Meunier


    Full Text Available Regarding standards, it is well established that common mode currents are the main source of far field emitted by variable frequency drive (VFD-cable-motor associations. These currents are generated by the combination of floating potentials with stray capacitances between these floating potential tracks and the mechanical parts connected to the earth (the heatsink or cables are usual examples. Nowadays, due to frequency and power increases, the systematic compliance to EMC (ElectroMagnetic Compatibility becomes increasingly difficult and costly for industrials. As a consequence, there is a well-identified need to investigate practical and low cost solutions to reduce the radiated fields of VFD-cable-motor associations. A well-adapted solution is the shielding of wound components well known as the major source of near magnetic field. However, this solution is not convenient, it is expensive and may not be efficient regarding far field reduction. Optimizing the components placement could be a better and cheaper solution. As a consequence, dedicated tools have to be developed to efficiently investigate not easy comprehendible phenomena and finally to control EMC disturbances using component placement, layout geometry, shielding design if needed. However, none of the modeling methods usually used in industry complies with large frequency range and far field models including magnetic materials, multilayer PCBs, and shielding. The contribution of this paper is to show that alternatives regarding modeling solutions exist and can be used to get in-deep analysis of such complex structures. It is shown in this paper that near field investigations can give information on far field behavior. It is illustrated by an investigation of near field interactions and shielding influence using a FE-PEEC hybrid method. The test case combining a common mode filter with the floating potentials tracks of an inverter is based on an industrial and commercialized VFD. The

  13. Cosmological extrapolation of MOND

    Kiselev, V V


    Regime of MOND, which is used in astronomy to describe the gravitating systems of island type without the need to postulate the existence of a hypothetical dark matter, is generalized to the case of homogeneous distribution of usual matter by introducing a linear dependence of the critical acceleration on the size of region under consideration. We show that such the extrapolation of MOND in cosmology is consistent with both the observed dependence of brightness on the redshift for type Ia supernovae and the parameters of large-scale structure of Universe in the evolution, that is determined by the presence of a cosmological constant, the ordinary matter of baryons and electrons as well as the photon and neutrino radiation without any dark matter.

  14. Efficient numerical methods for the random-field Ising model: Finite-size scaling, reweighting extrapolation, and computation of response functions.

    Fytas, Nikolaos G; Martín-Mayor, Víctor


    It was recently shown [Phys. Rev. Lett. 110, 227201 (2013)PRLTAO0031-900710.1103/PhysRevLett.110.227201] that the critical behavior of the random-field Ising model in three dimensions is ruled by a single universality class. This conclusion was reached only after a proper taming of the large scaling corrections of the model by applying a combined approach of various techniques, coming from the zero- and positive-temperature toolboxes of statistical physics. In the present contribution we provide a detailed description of this combined scheme, explaining in detail the zero-temperature numerical scheme and developing the generalized fluctuation-dissipation formula that allowed us to compute connected and disconnected correlation functions of the model. We discuss the error evolution of our method and we illustrate the infinite limit-size extrapolation of several observables within phenomenological renormalization. We present an extension of the quotients method that allows us to obtain estimates of the critical exponent α of the specific heat of the model via the scaling of the bond energy and we discuss the self-averaging properties of the system and the algorithmic aspects of the maximum-flow algorithm used.

  15. Extrapolating future Arctic ozone losses

    B. M. Knudsen


    Full Text Available Future increases in the concentration of greenhouse gases and water vapour are likely to cool the stratosphere further and to increase the amount of polar stratospheric clouds (PSCs. Future Arctic PSC areas have been extrapolated using the highly significant trends in the temperature record from 1958–2001. Using a tight correlation between PSC area and the total vortex ozone depletion and taking the decreasing amounts of ozone depleting substances into account we make empirical estimates of future ozone. The result is that Arctic ozone losses increase until 2010–2020 and only decrease slightly up to 2030. This approach is an alternative method of prediction to that based on the complex coupled chemistry-climate models (CCMs.

  16. Wavefield extrapolation in pseudodepth domain

    Ma, Xuxin


    Wavefields are commonly computed in the Cartesian coordinate frame. Its efficiency is inherently limited due to spatial oversampling in deep layers, where the velocity is high and wavelengths are long. To alleviate this computational waste due to uneven wavelength sampling, we convert the vertical axis of the conventional domain from depth to vertical time or pseudodepth. This creates a nonorthognal Riemannian coordinate system. Isotropic and anisotropic wavefields can be extrapolated in the new coordinate frame with improved efficiency and good consistency with Cartesian domain extrapolation results. Prestack depth migrations are also evaluated based on the wavefield extrapolation in the pseudodepth domain.© 2013 Society of Exploration Geophysicists. All rights reserved.

  17. The nanostructure and microstructure of steels: Electrochemical Tafel behaviour and atomic force microscopy

    Alves, Valeria A. [Departamento de Farmacia-Bioquimica, Faculdades Federais Integradas de Diamantina, FAFEID, Rua da Gloria, 187 Centro 39100-000 Diamantina, Minas Gerais (Brazil); Paquim, Ana M. Chiorcea [Departamento de Quimica, Universidade de Coimbra, 3004-535 Coimbra (Portugal); Cavaleiro, Albano [Departamento de Engenharia Mecanica, Universidade de Coimbra, 3030 Coimbra (Portugal); Brett, Christopher M.A. [Departamento de Quimica, Universidade de Coimbra, 3004-535 Coimbra (Portugal)]. E-mail:


    The influence of chemical composition and heat treatment on a low-carbon steel, chromium steel and high speed steel has been examined by polarisation curves and electrochemical parameters deduced from the Tafel plots. The electrochemical corrosion resistance, which is small between the as-received steels become greater after heat treatment, following the order: carbon steel < chromium steel {approx} high speed steel. To explain these differences, the nano- and microstructure of the steels has been characterized by the ex situ techniques of atomic force microscopy and optical microscopy, before and after surface etching with Nital (a solution of 5% HNO{sub 3} in ethanol). This causes preferential attack of the ferrite phases showing the carbide phases more clearly. From these nanostructural studies it was possible to better understand why the passive films formed on chromium steel and high speed steel have superior protective properties to those formed on carbon steel.

  18. Uncertainties of Euclidean Time Extrapolation in Lattice Effective Field Theory

    Lähde, Timo A; Krebs, Hermann; Lee, Dean; Meißner, Ulf-G; Rupak, Gautam


    Extrapolations in Euclidean time form a central part of Nuclear Lattice Effective Field Theory (NLEFT) calculations using the Projection Monte Carlo method, as the sign problem in many cases prevents simulations at large Euclidean time. We review the next-to-next-to-leading order NLEFT results for the alpha nuclei up to $^{28}$Si, with emphasis on the Euclidean time extrapolations, their expected accuracy and potential pitfalls. We also discuss possible avenues for improving the reliability of Euclidean time extrapolations in NLEFT.

  19. Efficient and stable extrapolation of prestack wavefields

    Wu, Zedong


    The double-square-root (DSR) relation offers a platform to perform prestack imaging using an extended single wavefield that honors the geometrical configuration between sources, receivers and the image point, or in other words, prestack wavefields. Extrapolating such wavefields in time, nevertheless, is a big challenge because the radicand can be negative, thus reduce to a complex phase velocity, which will make the rank of the mixed domain matrix very high. Using the vertical offset between the sources and receivers, we introduce a method for deriving the DSR formulation, which gives us the opportunity to derive approximations for the mixed domain operator. The method extrapolates prestack wavefields by combining all data into one wave extrapolation procedure, allowing both upgoing and downgoing wavefields since the extrapolation is done in time, and doesn’t have the v(z) assumption in the offset axis of the media. Thus, the imaging condition is imposed by taking the zero-time and zero-offset slice from the multi-dimensional prestack wavefield. Unlike reverse time migration (RTM), no crosscorrelation is needed and we also have access to the subsurface offset information, which is important for migration velocity analysis. Numerical examples show the capability of this approach in dealing with complex velocity models and can provide a better quality image compared to RTM more efficiently.

  20. Quantitation from Tafel analysis in solid-state voltammetry. Application to the study of cobalt and copper pigments in severely damaged frescoes.

    Doménech, Antonio; Doménech-Carbó, María Teresa; Edwards, Howell G M


    A novel method, using Tafel plots, for quantifying electroactive species in solid materials when their voltammetric signals are strongly overlapped is described. This is applied to the analysis of submicrosamples from the highly damaged frescoes painted by Palomino (1707) in the ceiling vault of the Sant Joan del Mercat church in Valencia, Spain. These paintings, which were fired in 1936, contained cobalt smalt plus azurite mixtures, this last being altered to tenorite (CuO). The reported method provides a quantitation of the cobalt smalt/azurite, tenorite/(azurite + smalt) relationships in samples, thus providing direct information on pigment dosage (smalt/azurite ratio) in pristine paintings, extent of alteration, and temperature experienced by the frescoes during the gunfire episode. Distinction between Palomino paintings and other painters was clearly obtained due to the presence of malachite in these last.

  1. A single-phase model for liquid-feed DMFCs with non-Tafel kinetics

    Vera, Marcos [Area de Mecanica de Fluidos, Universidad Carlos III de Madrid, Avda. de la Universidad 30, 28911 Leganes (Spain)


    An isothermal single-phase 3D/1D model for liquid-feed direct methanol fuel cells (DMFC) is presented. Three-dimensional (3D) mass, momentum and species transport in the anode channels and gas diffusion layer is modeled using a commercial, finite-volume based, computational fluid dynamics (CFD) software complemented with user supplied subroutines. The 3D model is locally coupled to a one-dimensional (1D) model accounting for the electrochemical reactions in both the anode and the cathode, which provides a physically sound boundary condition for the velocity and methanol concentration fields at the anode gas diffusion layer/catalyst interface. The 1D model - comprising the membrane-electrode assembly, cathode gas diffusion layer, and cathode channel - assumes non-Tafel kinetics to describe the complex kinetics of the multi-step methanol oxidation reaction at the anode, and accounts for the mixed potential associated with methanol crossover, induced both by diffusion and electro-osmotic drag. Polarization curves computed for various methanol feed concentrations, temperatures, and methanol feed velocities show good agreement with recent experimental results. The spatial distribution of methanol in the anode channels, together with the distributions of current density, methanol crossover and fuel utilization at the anode catalyst layer, are also presented for different opperating conditions. (author)

  2. Universality of Mixed Action Extrapolation Formulae

    Chen, Jiunn-Wei; Walker-Loud, Andre


    Mixed action theories with chirally symmetric valence fermions exhibit very desirable features both at the level of the lattice calculations as well as in the construction and implementation of the low energy mixed action effective field theory. In this work we show that when the mixed action effective field theory is projected onto the valence sector, both the Lagrangian and the extrapolation formulae become universal in form through next to leading order, for all variants of discretization methods used for the sea fermions. This implies that for all sea quark methods which are in the same universality class as QCD, the numerical values of the physical coefficients in the various mixed action chiral Lagrangians will be the same up to perturbative lattice spacing dependent corrections. This allows us to construct a prescription to determine the mixed action extrapolation formulae for a large class of hadronic correlation functions computed in partially quenched chiral perturbation theory at the one-loop level...

  3. Solving the 1-, 2-, and 3-Dimensional Schröodinger Equation for Multiminima Potentials Using the Numerov-Cooley Method. An Extrapolation Formula for Energy Eigenvalues

    Eckert, Michael


    As demonstrated with examples the Numerov-Cooley algorithm can be applied to more complicated potentials (especially multiminima potentials). There are no stability problems in the classically forbidden regions. An extrapolation formula for energy eigenvalues is deduced, which gets an additional accuracy of 2 ⋯ 4 digits for energy eigenvalues. This formula is checked as follows: For one state of a double minimum potential (which is used to approximate hydrogen bond potentials) an analytical solution is given. This solution is compared with numerical results. Also the accuracy of the eigenfunctions is checked. Computer-dependent rounding errors (CDC Cyber 995) are estimated. The eigenfunctions corresponding to 1-dimensional potentials Vx( x) and Vy( y) are used as basis functions for a perturbed 2-dimensional multiminima potential Vx( x)+ Vy( y)+ δV( x, y). For a 63-minima potential as an example, the accuracy of the eigenvalues is 4 ⋯ 6 digits depending on the perturbation ΔV( x, y). The computer time, depending on the accuracy, is tabulated for different potentials.

  4. Seismic wave extrapolation using lowrank symbol approximation

    Fomel, Sergey


    We consider the problem of constructing a wave extrapolation operator in a variable and possibly anisotropic medium. Our construction involves Fourier transforms in space combined with the help of a lowrank approximation of the space-wavenumber wave-propagator matrix. A lowrank approximation implies selecting a small set of representative spatial locations and a small set of representative wavenumbers. We present a mathematical derivation of this method, a description of the lowrank approximation algorithm and numerical examples that confirm the validity of the proposed approach. Wave extrapolation using lowrank approximation can be applied to seismic imaging by reverse-time migration in 3D heterogeneous isotropic or anisotropic media. © 2012 European Association of Geoscientists & Engineers.

  5. 不同作物类型下蒸散发时间尺度扩展方法对比%Comparison of temporal extrapolation methods for evapotranspiration over variant underlying croplands

    陈鹤; 杨大文; 吕华芳


    Quantitative estimation of evapotranspiration (ET) plays a significant role in the mechanism study of water cycling and agriculture management. Remotely sensed satellites provide spatial continuous surface parameters, which make estimation of regional surface ET possible. However, surface parameters retrieved by remote sensing data is discontinuous temporally, which can only provide 1-2 instantaneous values at satellite over-passing time. Thus, time scale extrapolation process is of crucial necessity for daily ET estimation. Recently, many ET time scale extrapolation methods have been proposed, such as sine function method, constant evaporative fraction (EF) method, and crop coefficient method. It has been proved that different models have different applicability and accuracy over variant climate conditions and underlying surfaces. Many studies assemble these extrapolation methods into remote sensing models to estimate regional daily ET in China, however, little researches focus on the accuracy assessment of these methods. The purpose of this study is to compare and assess the accuracy of four commonly used ET extrapolation methods over variant climate conditions and vegetation types. The study was conducted at Gaoying flux site located in North China Plain and Tongyu flux long-term land surface processes observational station located in North-east China Plain to represent semi-humid and semi-arid climate respectively. The predominant crops of Gaoying site are winter wheat and summer maize planted in rotation. Tongyu long-term land surface processes observational station has two flux sites located on the sorghum and degraded grassland, respectively. Each site of Tongyu station as well as Gaoying site has an EC system to record half-hour latent heat flux and sensible heat flux. Four commonly used ET extrapolation methods selected from literatures were tested in this study. The selection was carried out considering their applicability to the Remote sensing data used

  6. Residual extrapolation operators for efficient wavefield construction

    Alkhalifah, Tariq Ali


    Solving the wave equation using finite-difference approximations allows for fast extrapolation of the wavefield for modelling, imaging and inversion in complex media. It, however, suffers from dispersion and stability-related limitations that might hamper its efficient or proper application to high frequencies. Spectral-based time extrapolation methods tend to mitigate these problems, but at an additional cost to the extrapolation. I investigate the prospective of using a residual formulation of the spectral approach, along with utilizing Shanks transform-based expansions, that adheres to the residual requirements, to improve accuracy and reduce the cost. Utilizing the fact that spectral methods excel (time steps are allowed to be large) in homogeneous and smooth media, the residual implementation based on velocity perturbation optimizes the use of this feature. Most of the other implementations based on the spectral approach are focussed on reducing cost by reducing the number of inverse Fourier transforms required in every step of the spectral-based implementation. The approach here fixes that by improving the accuracy of each, potentially longer, time step.

  7. Electrocatalysts based on Ru nanoparticles : effect of methanol on the ORR Tafel slope

    Duron-Torres, S.M.; Leyva-Noyola, F.; Galvan-Valencia, M. [Univ. Autonoma de Zacatecas, Guadalupe, Zacatecas (Mexico). U.A. de Ciencias Quimicas; Solorza-Feria, O. [Centro de Investigacion y Estudios Avanzados del I.P.N., Col. San Pedro Zacatenco (Mexico). Depto. de Quimica


    Proton Exchange Membrane Fuel Cells (PEMFCs) are promising candidates in systems that require small-sized power sources such as non-stationary electronic equipment and transportation. However, the scientific and technical challenges of PEMFC which include diminution of catalytic charges, catalyst substitution, membrane development, optimization of bipolar plates and a global cost decrease require further study. A strategic approach that will help with the diffusion and assimilation of the PEMFC technology involves the use of fuel other than hydrogen in cells such as methanol. However, the use of methanol in direct methanol fuel cells (DMFC) presents further challenges including slow kinetics in both anodic and cathodic reactions, and fuel crossover due to exchange membrane alcohol permeability, meaning a lower global efficiency of DMFC as compared with the hydrogen fuel cell. This article provided a contribution to the synthesis and characterization of novel catalytic materials research for DMFC. A series of materials based on ruthenium (Ru) nanoparticles were produced and catalytically studied in a multielectron charge transfer process. These materials are electroactive for the oxygen reduction reaction (ORR) in acid medium and methanol tolerant as well. The Ru nanoparticles and some binary and ternary mixtures with platinum (Pt) and cobalt (Co) were obtained by a pyrolysis procedure of solid precursors at 190 degrees Celsius. Physiochemical characterization was conducted by using a scanning electronic microscopy and energy dispersion spectroscopy mapping. Kinetic parameters of the cathodic reaction in a 0.5M sulfuric acid solution at different methanol concentrations were compared using electrochemical characterization with cyclic voltammetry and rotating disc electrodes. It was concluded that methanol has a major effect on the ORR electrocatalytic activity on binary Ru-Pt materials with a higher Pt proportion. In addition, the methanol effect on the Tafel slope

  8. Renyi extrapolation of Shannon entropy

    Zyczkowski, K


    Relations between Shannon entropy and Renyi entropies of integer order are discussed. For any N-point discrete probability distribution for which the Renyi entropies of order two and three are known, we provide an lower and an upper bound for the Shannon entropy. The average of both bounds provide an explicit extrapolation for this quantity. These results imply relations between the von Neumann entropy of a mixed quantum state, its linear entropy and traces.

  9. UFOs: Observations, Studies and Extrapolations

    Baer, T; Barnes, M J; Bartmann, W; Bracco, C; Carlier, E; Cerutti, F; Dehning, B; Ducimetière, L; Ferrari, A; Ferro-Luzzi, M; Garrel, N; Gerardin, A; Goddard, B; Holzer, E B; Jackson, S; Jimenez, J M; Kain, V; Zimmermann, F; Lechner, A; Mertens, V; Misiowiec, M; Nebot Del Busto, E; Morón Ballester, R; Norderhaug Drosdal, L; Nordt, A; Papotti, G; Redaelli, S; Uythoven, J; Velghe, B; Vlachoudis, V; Wenninger, J; Zamantzas, C; Zerlauth, M; Fuster Martinez, N


    UFOs (“ Unidentified Falling Objects”) could be one of the major performance limitations for nominal LHC operation. Therefore, in 2011, the diagnostics for UFO events were significantly improved, dedicated experiments and measurements in the LHC and in the laboratory were made and complemented by FLUKA simulations and theoretical studies. The state of knowledge is summarized and extrapolations for LHC operation in 2012 and beyond are presented. Mitigation strategies are proposed and related tests and measures for 2012 are specified.

  10. A Simple Exponent Extrapolation Method of Sub-idle Characteristics on Aero-engine%一种简便的叶轮部件低状态特性的指数扩展方法

    徐鲁兵; 潘尚能; 陈竞炜


    A simple exponent extrapolation method of sub-idle characteristics on aero-engine was presented.Based on the basic theory of similarity of pump at low speed and taking the influence of air/gas compressibility into account,a correctional exponent extrapolation mathematic model was developed and was applied to supplement the sub-idle rotating component characteristics through selected two lowest speed line.The comparison between calculated results and original datas for a certain compressor and turbine characteristics indicated that this exponent extrapolation method is simple,general and has acceptable precision,and the supplemented sub-idle component characteristics can be applied to estimate the starting characteristics of aero-engine.%介绍了一种简便的航空发动机叶轮部件低状态特性的扩展方法.基于低转速泵相似理论,并考虑了空气/燃气的可压缩性影响,给出了修正的指数关系方程;针对已知的两条较低转速特性线外插得到更低转速状态的部件特性.结合已有叶轮部件特性进行有效性验证.结果表明方法具有较强的实用性、通用性和一定的精度,扩展得到的低状态部件特性可以满足发动机起动性能模拟的工程应用.

  11. Effective orthorhombic anisotropic models for wavefield extrapolation

    Ibanez-Jacome, W.


    Wavefield extrapolation in orthorhombic anisotropic media incorporates complicated but realistic models to reproduce wave propagation phenomena in the Earth\\'s subsurface. Compared with the representations used for simpler symmetries, such as transversely isotropic or isotropic, orthorhombic models require an extended and more elaborated formulation that also involves more expensive computational processes. The acoustic assumption yields more efficient description of the orthorhombic wave equation that also provides a simplified representation for the orthorhombic dispersion relation. However, such representation is hampered by the sixth-order nature of the acoustic wave equation, as it also encompasses the contribution of shear waves. To reduce the computational cost of wavefield extrapolation in such media, we generate effective isotropic inhomogeneous models that are capable of reproducing the firstarrival kinematic aspects of the orthorhombic wavefield. First, in order to compute traveltimes in vertical orthorhombic media, we develop a stable, efficient and accurate algorithm based on the fast marching method. The derived orthorhombic acoustic dispersion relation, unlike the isotropic or transversely isotropic ones, is represented by a sixth order polynomial equation with the fastest solution corresponding to outgoing P waves in acoustic media. The effective velocity models are then computed by evaluating the traveltime gradients of the orthorhombic traveltime solution, and using them to explicitly evaluate the corresponding inhomogeneous isotropic velocity field. The inverted effective velocity fields are source dependent and produce equivalent first-arrival kinematic descriptions of wave propagation in orthorhombic media. We extrapolate wavefields in these isotropic effective velocity models using the more efficient isotropic operator, and the results compare well, especially kinematically, with those obtained from the more expensive anisotropic extrapolator.

  12. 3D Hail Size Distribution Interpolation/Extrapolation Algorithm

    Lane, John


    Radar data can usually detect hail; however, it is difficult for present day radar to accurately discriminate between hail and rain. Local ground-based hail sensors are much better at detecting hail against a rain background, and when incorporated with radar data, provide a much better local picture of a severe rain or hail event. The previous disdrometer interpolation/ extrapolation algorithm described a method to interpolate horizontally between multiple ground sensors (a minimum of three) and extrapolate vertically. This work is a modification to that approach that generates a purely extrapolated 3D spatial distribution when using a single sensor.

  13. Lowrank seismic-wave extrapolation on a staggered grid

    Fang, Gang


    © 2014 Society of Exploration Geophysicists. We evaluated a new spectral method and a new finite-difference (FD) method for seismic-wave extrapolation in time. Using staggered temporal and spatial grids, we derived a wave-extrapolation operator using a lowrank decomposition for a first-order system of wave equations and designed the corresponding FD scheme. The proposed methods extend previously proposed lowrank and lowrank FD wave extrapolation methods from the cases of constant density to those of variable density. Dispersion analysis demonstrated that the proposed methods have high accuracy for a wide wavenumber range and significantly reduce the numerical dispersion. The method of manufactured solutions coupled with mesh refinement was used to verify each method and to compare numerical errors. Tests on 2D synthetic examples demonstrated that the proposed method is highly accurate and stable. The proposed methods can be used for seismic modeling or reverse-time migration.

  14. Schroedinger's radial equation - Solution by extrapolation

    Goorvitch, D.; Galant, D. C.


    A high-accuracy numerical method for the solution of a 1D Schroedinger equation that is suitable for a diatomic molecule, obtained by combining a finite-difference method with iterative extrapolation to the limit, is presently shown to have several advantages over more conventional methods. Initial guesses for the term values are obviated, and implementation of the algorithm is straightforward. The method is both less sensitive to round-off error, and faster than conventional methods for equivalent accuracy. These advantages are illustrated through the solution of Schroedinger's equation for a Morse potential function suited for HCl and a numerically derived Rydberg-Klein-Rees potential function for the X 1Sigma(+) state of CO.

  15. Effects of Tafel slope, exchange current density and electrode potential on the corrosion of steel in concrete

    Ge, J.; Isgor, O.B. [Carleton University, Department of Civil and Environmental Engineering, Mackenzie Engineering Building, Ottawa, K1S 5B6 ON (Canada)


    A parametric study is carried out to investigate the effect of variations in anodic and cathodic Tafel slopes, exchange current densities and electrode potentials on the rate of steel corrosion in concrete. The main goal of this investigation is to identify the parameters that have significant influence on steel corrosion rate. Since there is a degree of uncertainty associated with the selection of these parameters, particularly during modelling exercises, it is intended that the results of this study will provide valuable information to engineers and researchers who simulate steel corrosion in concrete. To achieve this goal, the effect of a parameter on the corrosion rate of steel is studied while all other parameters are kept constant at a predefined base case. For each parameter, two extreme cases of anode-to-cathode ratio are studied. The investigation revealed that the variations in the anodic electrode potential have the greatest impact on the corrosion rate, followed by the variations in the cathodic Tafel slope. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  16. Evaluation of Tafel-Volmer kinetic parameters for the hydrogen oxidation reaction on Pt(1 1 0) electrodes

    Mann, R. F.; Thurgood, C. P.


    Modelling of PEM fuel cells has long been an active research area to improve understanding of cell and stack operation, facilitate design improvements and support simulation studies. The prediction of activation polarization in most PEM models has concentrated on the cathode losses since anode losses are commonly much smaller and tend to be ignored. Further development of the anode activation polarization term is being undertaken to broaden the application and usefulness of PEM models in general. Published work on the kinetics of the hydrogen oxidation reaction (HOR) using Pt(h k l) electrodes in dilute H2SO4 has been recently reassessed and published. Correlations for diffusion-free exchange current densities were developed and empirical predictive equations for the anode activation polarization were proposed for the experimental conditions of the previously published work: Pt(1 0 0), Pt(1 1 0) and Pt(1 1 1) electrodes, pH2 of 1 atm, and temperatures of 1, 30 and 60 °C. It was concluded that the HOR on Pt(1 1 0) electrodes followed a Tafel-Volmer reaction sequence. The aim of the present paper is to generalize these Tafel-Volmer correlations, apply them to published data for Pt(1 1 0) electrodes and further develop the modelling of anode activation polarization over the range of operating conditions found in PEMFC operation.

  17. 投影角度受限制的超声波CT温度测量%Ultrasonic CT for Temperature Measurements with Limited Projection Data based on Extrapolated FBP Method

    朱宁; 蒋勇; 加藤征三


    This study uses ultrasound in combination with tomography to obtain three-dimensional temperature measurements based on projection data obtained from limited projection angle. The main feature of the new CT reconstruction algorithm is to employ extrapolation to make up for the incomplete projection data on the basis of FBP method while the correlation between the projection data and Fourier Transform-based extrapolation are taken into consideration. Computer simulation is conducted to verify the above algorithm. An experiment on 3D temperature distribution measurement is carried out to validate the proposed algorithm. According to the simulation and experimental results, the suggested CT algorithm is of utility in dealing with projection data from limited projection angle.%本研究在投影角度受限制的情况下利用超声波CT完成三维温度测量.新CT再构成算法的主要特征如下:在考虑到投影数据之间的相关性的同时、在傅里叶变换基础之上利用外插手法来补全不完整的投影数据.我们运用计算机模拟计算以及建立实验系统对上述算法的可靠性进行检验.根据计算机模拟计算和实验的结果,我们认为本研究所提出的CT算法可以有效地处理受投影角度限制的投影数据.

  18. A Method for Extrapolation of Atmospheric Soundings


    Extrap . WRF New Extrap . Old Surface 1470 1570 1670 1770...1870 1970 2 3 4 5 6 7 8 9 H e ig h t (m M SL ) Wind Speed (knot) Radiosonde WRF Old Extrap . WRF New Extrap . Old Surface 18 cases WRF Old Extrap . WRF 3-km New Extrap . Old Surface 820 870 920 970 1020 1070 1120 1170 3 3.5 4 4.5 5 5.5 6 H e ig h t (m M SL )

  19. Smart Level Evaluation and Time-Spatial Extrapolation Method for Regional Grids%区域电网智能化水平评估及其时空外推方法

    刘艳丽; 赵启明; 黄瀚; 刘林; 贾宏杰


    An evaluation index system,method and time-spatial extrapolation for smart level of regional grid are presented in this pa-per. The system employs an index named critical technology adaptability to evaluate the supporting role of key technology to the devel-opment of regional grid,and the critical technology adaptability is calculated based on technology readiness level (TRL). Evaluation results are obtained by the combined ordering relation and variation coefficient method. The obtained results are fast predicted in time dimension based on Logistic model,and extrapolated in spatial dimension based on partial least squares analysis for some regions with-out enough bottom data. The effectiveness of the proposed method and feasibility of the time-spatial exploration are verifid by applica-tion instanses of two provincial power grids.%提出了区域电网智能化水平评估的指标体系、评估方法和时空外推方法。指标体系引入关键技术适用度以评估关键技术对区域电网发展的支撑作用,并基于技术成熟度等级评估模型计算关键技术适用度。采用序关系-变异系数法获取评估结果。采用Logistic模型实现评估结果在时间维度上的快速预测,针对部分地区底层数据不足的问题,借助典型区域的评估数据,基于偏最小二乘法实现评估结果的空间外推。两个省级电网的应用实例表明了评估方法的有效性和时空外推方法的可行性。

  20. Chiral extrapolation beyond the power-counting regime

    Hall, J M M; Leinweber, D B; Liu, K F; Mathur, N; Young, R D; Zhang, J B


    Chiral effective field theory can provide valuable insight into the chiral physics of hadrons when used in conjunction with non-perturbative schemes such as lattice QCD. In this discourse, the attention is focused on extrapolating the mass of the rho meson to the physical pion mass in quenched QCD (QQCD). With the absence of a known experimental value, this serves to demonstrate the ability of the extrapolation scheme to make predictions without prior bias. By using extended effective field theory developed previously, an extrapolation is performed using quenched lattice QCD data that extends outside the chiral power-counting regime (PCR). The method involves an analysis of the renormalization flow curves of the low energy coefficients in a finite-range regularized effective field theory. The analysis identifies an optimal regulator, which is embedded in the lattice QCD data themselves. This optimal regulator is the regulator value at which the renormalization of the low energy coefficients is approximately i...

  1. Splitting extrapolation based on domain decomposition for finite element approximations

    吕涛; 冯勇


    Splitting extrapolation based on domain decomposition for finite element approximations is a new technique for solving large scale scientific and engineering problems in parallel. By means of domain decomposition, a large scale multidimensional problem is turned to many discrete problems involving several grid parameters The multi-variate asymptotic expansions of finite element errors on independent grid parameters are proved for linear and nonlin ear second order elliptic equations as well as eigenvalue problems. Therefore after solving smaller problems with similar sizes in parallel, a global fine grid approximation with higher accuracy is computed by the splitting extrapolation method.

  2. Signal extrapolation based on wavelet representation

    Xia, Xiang-Gen; Kuo, C.-C. Jay; Zhang, Zhen


    The Papoulis-Gerchberg (PG) algorithm is well known for band-limited signal extrapolation. We consider the generalization of the PG algorithm to signals in the wavelet subspaces in this research. The uniqueness of the extrapolation for continuous-time signals is examined, and sufficient conditions on signals and wavelet bases for the generalized PG (GPG) algorithm to converge are given. We also propose a discrete GPG algorithm for discrete-time signal extrapolation, and investigate its convergence. Numerical examples are given to illustrate the performance of the discrete GPG algorithm.

  3. Research and application of a dynamic modeling highaccuracy extrapolation inversion method%动态建模高精度外推反演方法研究与应用

    杜斌山; 贺振华; 雍学善; 曹正林; 张平; 倪祥龙


    Aiming at the problems such as the conventional well log constrained seismic inversion have multiple solutions, low resolution, the optimal solution of up-scaling model is very difficult to predict, the prediction of thin interbeded layers has more difficulties and so on. The dynamic modeling high-accuracy extrapolation inversion method is proposed in this paper. The prediction idea has been changed from the traditional overall static modeling to spatial dynamic modeling. The high-accuracy extrapolation inversion method trace by trace is beneficial to reestablish seismic wave field spatial. More model traces(virtual wells) are recorded around and outside the wells. In this way the higher requirements of horizon are weakened on conventional seismic inversion by the characteristic of seismic waveform and sequence field, and the distance-weighted impact of overall modeling is overcome. It is benefit for complex faults and reservoirs to solve the lateral prediction problem. The effective prediction is achieved for low and high frequency information of logging and seismic data. The resolution and accuracy of seismic prediction have been improved for thin interbeded layers. Theoretic simulations and field data applications propose that the resolution is up to 2~4 m in the vertical. This method is to make full use of the priori knowledge. The accuracy and resolutionare higher than the conventional inversion method for reservoir prediction,so the method has a good application andpopularization.%针对常规测井约束地震反演结果多解性强、分辨率低,很难从粗化的模型预测出精确的最优解,且对薄互层预测难度大等问题.本文提出了一种动态建模高精度外推反演的方法,它采用体空间动态建模的方法,不同于传统整体静态建模方法,即在井及外围体空间上优选多模型道逐道外推,反演结果可当作虚拟井实现空间外推.这样在地震波形和层序场约束下有利

  4. Loomemajandus - Eesti loojad on valmis, Eesti tööstus veel mitte / Erik Terk, Külliki Tafel-Viia, Silja Lassur ; intervjueerinud Mikk Salu

    Terk, Erik, 1952-


    Eestis korraldatud uuringu "Eesti loomemajanduse potentsiaal ja arenguks vajalikud riikud toetusmeetmed" tulemustest lähtudes püütakse leida optimaalseid suhteid loovinimeste toetusmeetmete ja iseorganiseerumise vahel. Vestlusringis Eesti Tuleviku-uuringute Instituudi direktor Erik Terk ja teadurid Silja Lassur ja Külliki Tafel-Viia

  5. Extrapolations of nuclear binding energies from new linear mass relations

    Hove, D.; Jensen, A. S.; Riisager, K.


    We present a method to extrapolate nuclear binding energies from known values for neighboring nuclei. We select four specific mass relations constructed to eliminate smooth variation of the binding energy as function nucleon numbers. The fast odd-even variations are avoided by comparing nuclei...

  6. Extrapolation procedures in Mott electron polarimetry

    Gay, T. J.; Khakoo, M. A.; Brand, J. A.; Furst, J. E.; Wijayaratna, W. M. K. P.; Meyer, W. V.; Dunning, F. B.


    In standard Mott electron polarimetry using thin gold film targets, extrapolation procedures must be used to reduce the experimentally measured asymmetries A to the values they would have for scattering from single atoms. These extrapolations involve the dependent of A on either the gold film thickness or the maximum detected electron energy loss in the target. A concentric cylindrical-electrode Mott polarimeter, has been used to study and compare these two types of extrapolations over the electron energy range 20-100 keV. The potential systematic errors which can result from such procedures are analyzed in detail, particularly with regard to the use of various fitting functions in thickness extrapolations, and the failure of perfect energy-loss discrimination to yield accurate polarizations when thick foils are used.

  7. Frequency extrapolation by nonconvex compressive sensing

    Chartrand, Rick [Los Alamos National Laboratory; Sidky, Emil Y [UNIV OF CHICAGO; Pan, Xiaochaun [UNIV OF CHICAGO


    Tomographic imaging modalities sample subjects with a discrete, finite set of measurements, while the underlying object function is continuous. Because of this, inversion of the imaging model, even under ideal conditions, necessarily entails approximation. The error incurred by this approximation can be important when there is rapid variation in the object function or when the objects of interest are small. In this work, we investigate this issue with the Fourier transform (FT), which can be taken as the imaging model for magnetic resonance imaging (MRl) or some forms of wave imaging. Compressive sensing has been successful for inverting this data model when only a sparse set of samples are available. We apply the compressive sensing principle to a somewhat related problem of frequency extrapolation, where the object function is represented by a super-resolution grid with many more pixels than FT measurements. The image on the super-resolution grid is obtained through nonconvex minimization. The method fully utilizes the available FT samples, while controlling aliasing and ringing. The algorithm is demonstrated with continuous FT samples of the Shepp-Logan phantom with additional small, high-contrast objects.

  8. How accurate are infrared luminosities from monochromatic photometric extrapolation?

    Lin, Zesen; Kong, Xu


    Template-based extrapolations from only one photometric band can be a cost-effective method to estimate the total infrared (IR) luminosities ($L_{\\mathrm{IR}}$) of galaxies. By utilizing multi-wavelength data that covers across 0.35--500\\,$\\mathrm{\\mu m}$ in GOODS-North and GOODS-South fields, we investigate the accuracy of this monochromatic extrapolated $L_{\\mathrm{IR}}$ based on three IR spectral energy distribution (SED) templates (\\citealt[CE01]{Chary2001}; \\citealt[DH02]{Dale2002}; \\citealt[W08]{Wuyts2008a}) out to $z\\sim 3.5$. We find that the CE01 template provides the best estimate of $L_{\\mathrm{IR}}$ in {\\it Herschel}/PACS bands, while the DH02 template performs best in {\\it Herschel}/SPIRE bands. To estimate $L_{\\mathrm{IR}}$, we suggest that extrapolations from the available longest wavelength PACS band based on the CE01 template can be a good estimator. Moreover, if PACS measurement is unavailable, extrapolations from SPIRE observations but based on the \\cite{Dale2002} template can also provide ...

  9. Effective wavefield extrapolation in anisotropic media: Accounting for resolvable anisotropy

    Alkhalifah, Tariq Ali


    Spectral methods provide artefact-free and generally dispersion-free wavefield extrapolation in anisotropic media. Their apparent weakness is in accessing the medium-inhomogeneity information in an efficient manner. This is usually handled through a velocity-weighted summation (interpolation) of representative constant-velocity extrapolated wavefields, with the number of these extrapolations controlled by the effective rank of the original mixed-domain operator or, more specifically, by the complexity of the velocity model. Conversely, with pseudo-spectral methods, because only the space derivatives are handled in the wavenumber domain, we obtain relatively efficient access to the inhomogeneity in isotropic media, but we often resort to weak approximations to handle the anisotropy efficiently. Utilizing perturbation theory, I isolate the contribution of anisotropy to the wavefield extrapolation process. This allows us to factorize as much of the inhomogeneity in the anisotropic parameters as possible out of the spectral implementation, yielding effectively a pseudo-spectral formulation. This is particularly true if the inhomogeneity of the dimensionless anisotropic parameters are mild compared with the velocity (i.e., factorized anisotropic media). I improve on the accuracy by using the Shanks transformation to incorporate a denominator in the expansion that predicts the higher-order omitted terms; thus, we deal with fewer terms for a high level of accuracy. In fact, when we use this new separation-based implementation, the anisotropy correction to the extrapolation can be applied separately as a residual operation, which provides a tool for anisotropic parameter sensitivity analysis. The accuracy of the approximation is high, as demonstrated in a complex tilted transversely isotropic model. © 2014 European Association of Geoscientists & Engineers.

  10. Typical object velocity influences motion extrapolation.

    Makin, Alexis D J; Stewart, Andrew J; Poliakoff, Ellen


    Previous work indicates that extrapolation of object motion during occlusion is affected by the velocity of the immediately preceding trial. Here we ask whether longer-term velocity representations can also influence motion extrapolation. Red, blue or green targets disappeared behind an occluder. Participants pressed a button when they thought the target had reached the other side. Red targets were slower (10-20 deg/s), blue targets moved at medium velocities (14-26 deg/s) and green targets were faster (20-30 deg/s). We compared responses on a subset of red and green trials which always travelled at 20 deg/s. Although trial velocities were identical, participants responded as if the green targets moved faster (M = 22.64 deg/s) then the red targets (M = 19.72 deg/s). This indicates that motion extrapolation is affected by longer-term information about the typical velocity of different categories of stimuli.

  11. Wavefield extrapolation in pseudo-depth domain

    Ma, Xuxin


    Extrapolating seismic waves in Cartesian coordinate is prone to uneven spatial sampling, because the seismic wavelength tends to grow with depth, as velocity increase. We transform the vertical depth axis to a pseudo one using a velocity weighted mapping, which can effectively mitigate this wavelength variation. We derive acoustic wave equations in this new domain based on the direct transformation of the Laplacian derivatives, which admits solutions that are more accurate and stable than those derived from the kinematic transformation. The anisotropic versions of these equations allow us to isolate the vertical velocity influence and reduce its impact on modeling and imaging. The major benefit of extrapolating wavefields in pseudo-depth space is its near uniform wavelength as opposed to the normally dramatic change of wavelength with the conventional approach. Time wavefield extrapolation on a complex velocity shows some of the features of this approach.

  12. Load extrapolations based on measurements from an offshore wind turbine at alpha ventus

    Lott, Sarah; Cheng, Po Wen


    Statistical extrapolations of loads can be used to estimate the extreme loads that are supposed to occur on average once in a given return period. Load extrapolations of extreme loads recorded for a period of three years at different measurement positions of an offshore wind turbine at the alpha ventus offshore test field have been performed. The difficulties that arise when using measured instead of simulated extreme loads in order to determine 50-year return loads will be discussed in detail. The main challenge are outliers in the databases that have a significant influence on the extrapolated extreme loads. Results of the short- and longterm extreme load extrapolations, comprising different methods for the extreme load extraction, the choice of the statistical distribution function as well as the fitting method are presented. Generally, load extrapolation with measurement data is possible, but care should be taken in terms of the selection of the database and the choice of the distribution function and fitting method.

  13. Investigating the role of atomic hydrogen on chloroethene reactions with iron using tafel analysis and electrochemical impedance spectroscopy.

    Wang, Jiankang; Farrell, James


    Metallic iron filings are commonly employed as reducing agents in permeable barriers used for remediating groundwater contaminated by chlorinated solvents. Reactions of trichloroethylene (TCE) and tetrachloroethylene (PCE) with zerovalent iron were investigated to determine the role of atomic hydrogen in their reductive dechlorination. Experiments simultaneously measuring dechlorination and iron corrosion rates were performed to determine the fractions of the total current going toward dechlorination and hydrogen evolution. Corrosion rates were determined using Tafel analysis, and dechlorination rates were determined from rates of byproduct generation. Electrochemical impedance spectroscopy (EIS) was used to determine the number of reactions that controlled the observed rates of chlorocarbon disappearance, as well as the role of atomic hydrogen in TCE and PCE reduction. Comparison of iron corrosion rates with those for TCE reaction showed that TCE reduction occurred almost exclusively via atomic hydrogen at low pH values and via atomic hydrogen and direct electron transfer at neutral pH values. In contrast, reduction of PCE occurred primarily via direct electron transfer at both low and neutral pH values. At low pH values and micromolar concentrations, TCE reaction rates were faster than those for PCE due to more rapid reduction of TCE by atomic hydrogen. At neutral pH values and millimolar concentrations, PCE reaction rates were faster than those for TCE. This shift in relative reaction rates was attributed to a decreasing contribution of the atomic hydrogen reaction mechanism with increasing halocarbon concentrations and pH values. The EIS data showed that all the rate limitations for TCE and PCE dechlorination occurred during the transfer of the first two electrons. Results from this study show that differences in relative reaction rates of TCE and PCE with iron are dependent on the significance of the reduction pathway involving atomic hydrogen.

  14. Outlier robustness for wind turbine extrapolated extreme loads

    Natarajan, Anand; Verelst, David Robert


    Methods for extrapolating extreme loads to a 50 year probability of exceedance, which display robustness to the presence of outliers in simulated loads data set, are described. Case studies of isolated high extreme out-of-plane loads are discussed to emphasize their underlying physical reasons...... simulation is demonstrated and compared with published results. Further effects of varying wind inflow angles and shear exponent is brought out. Parametric fitting techniques that consider all extreme loads including ‘outliers’ are proposed, and the physical reasons that result in isolated high extreme loads....... Stochastic identification of numerical artifacts in simulated loads is demonstrated using the method of principal component analysis. The extrapolation methodology is made robust to outliers through a weighted loads approach, whereby the eigenvalues of the correlation matrix obtained using the loads with its...

  15. Array aperture extrapolation using sparse reconstruction

    Anitori, L.; Rossum, W.L. van; Huizing, A.G.


    In this paper we present some preliminary results on antenna array extrapolation for Direction Of Arrival (DOA) estimation using Sparse Reconstruction (SR). The objective of this study is to establish wether it is possible to achieve with an array of a given physical length the performance (in terms

  16. Response Load Extrapolation for Wind Turbines during Operation Based on Average Conditional Exceedance Rates

    Toft, Henrik Stensgaard; Naess, Arvid; Saha, Nilanjan;


    The paper explores a recently developed method for statistical response load (load effect) extrapolation for application to extreme response of wind turbines during operation. The extrapolation method is based on average conditional exceedance rates and is in the present implementation restricted......-of-plane bending moment and the tower mudline bending moment of a pitch-controlled wind turbine. In general, the results show that the method based on average conditional exceedance rates predicts the extrapolated characteristic response loads at the individual mean wind speeds well and results in more consistent...

  17. Interpolation and Extrapolation of Precipitation Quantities in Serbia

    Rastislav Stojsavljević


    Full Text Available The aim of this paper is to indicate the problems with filling the missing data in precipitation database using interpolation and extrapolation methods. Investigated periods were from 1981 to 2010 for Northern (Autonomous Province of Vojvodina and Proper Serbia and from 1971 to 2000 for Southern Serbia (Autonomous Province of Kosovo and Metohia. Database included time series from 78 meteorological stations that had less than 20% of missing data. Interpolation was performed if station had missing data for five consecutive months or less. If station had missing data for six consecutive months or more, extrapolation was performed. For every station with mising data correlation with at least three surrounding stations was performed. The lowest acceptable value of correlation coefficient for precipitation was set at 0,300

  18. Phase unwrapping using an extrapolation-projection algorithm

    Marendic, Boris; Yang, Yongyi; Stark, Henry


    We explore an approach to the unwrapping of two-dimensional phase functions using a robust extrapolation-projection algorithm. Phase unwrapping is essential for imaging systems that construct the image from phase information. Unlike some existing methods where unwrapping is performed locally on a pixel-by-pixel basis, this work approaches the unwrapping problem from a global point of view. The unwrapping is done iteratively by a modification of the Gerchberg-Papoulis extrapolation algorithm, and the solution is refined by projecting onto the available global data at each iteration. Robustness of the algorithm is demonstrated through its performance in a noisy environment, and in comparison with a least-squares algorithm well-known in the literature.

  19. Extrapolating spatial layout in scene representations.

    Castelhano, Monica S; Pollatsek, Alexander


    Can the visual system extrapolate spatial layout of a scene to new viewpoints after a single view? In the present study, we examined this question by investigating the priming of spatial layout across depth rotations of the same scene (Sanocki & Epstein, 1997). Participants had to indicate which of two dots superimposed on objects in the target scene appeared closer to them in space. There was as much priming from a prime with a viewpoint that was 10° different from the test image as from a prime that was identical to the target; however, there was no reliable priming from larger differences in viewpoint. These results suggest that a scene's spatial layout can be extrapolated, but only to a limited extent.

  20. Effective Orthorhombic Anisotropic Models for Wave field Extrapolation

    Ibanez Jacome, Wilson


    Wavefield extrapolation in orthorhombic anisotropic media incorporates complicated but realistic models, to reproduce wave propagation phenomena in the Earth\\'s subsurface. Compared with the representations used for simpler symmetries, such as transversely isotropic or isotropic, orthorhombic models require an extended and more elaborated formulation that also involves more expensive computational processes. The acoustic assumption yields more efficient description of the orthorhombic wave equation that also provides a simplified representation for the orthorhombic dispersion relation. However, such representation is hampered by the sixth-order nature of the acoustic wave equation, as it also encompasses the contribution of shear waves. To reduce the computational cost of wavefield extrapolation in such media, I generate effective isotropic inhomogeneous models that are capable of reproducing the first-arrival kinematic aspects of the orthorhombic wavefield. First, in order to compute traveltimes in vertical orthorhombic media, I develop a stable, efficient and accurate algorithm based on the fast marching method. The derived orthorhombic acoustic dispersion relation, unlike the isotropic or transversely isotropic one, is represented by a sixth order polynomial equation that includes the fastest solution corresponding to outgoing P-waves in acoustic media. The effective velocity models are then computed by evaluating the traveltime gradients of the orthorhombic traveltime solution, which is done by explicitly solving the isotropic eikonal equation for the corresponding inhomogeneous isotropic velocity field. The inverted effective velocity fields are source dependent and produce equivalent first-arrival kinematic descriptions of wave propagation in orthorhombic media. I extrapolate wavefields in these isotropic effective velocity models using the more efficient isotropic operator, and the results compare well, especially kinematically, with those obtained from the

  1. Line-of-Sight Extrapolation Noise in Dust Polarization

    Poh, Jason [Chicago U., KICP; Dodelson, Scott [Fermilab


    The B-modes of polarization at frequencies ranging from 50-1000 GHz are produced by Galactic dust, lensing of primordial E-modes in the cosmic microwave background (CMB) by intervening large scale structure, and possibly by primordial B-modes in the CMB imprinted by gravitational waves produced during inflation. The conventional method used to separate the dust component of the signal is to assume that the signal at high frequencies (e.g., 350 GHz) is due solely to dust and then extrapolate the signal down to lower frequency (e.g., 150 GHz) using the measured scaling of the polarized dust signal amplitude with frequency. For typical Galactic thermal dust temperatures of about 20K, these frequencies are not fully in the Rayleigh-Jeans limit. Therefore, deviations in the dust cloud temperatures from cloud to cloud will lead to different scaling factors for clouds of different temperatures. Hence, when multiple clouds of different temperatures and polarization angles contribute to the integrated line-of-sight polarization signal, the relative contribution of individual clouds to the integrated signal can change between frequencies. This can cause the integrated signal to be decorrelated in both amplitude and direction when extrapolating in frequency. Here we carry out a Monte Carlo analysis on the impact of this line-of-sight extrapolation noise, enabling us to quantify its effect. Using results from the Planck experiment, we find that this effect is small, more than an order of magnitude smaller than the current uncertainties. However, line-of-sight extrapolation noise may be a significant source of uncertainty in future low-noise primordial B-mode experiments. Scaling from Planck results, we find that accounting for this uncertainty becomes potentially important when experiments are sensitive to primordial B-mode signals with amplitude r < 0.0015 .

  2. Convergence of the discrete dipole approximation. II. An extrapolation technique to increase the accuracy

    Yurkin, Maxim A; Hoekstra, Alfons G


    We propose an extrapolation technique that allows accuracy improvement of the discrete dipole approximation computations. The performance of this technique was studied empirically based on extensive simulations for 5 test cases using many different discretizations. The quality of the extrapolation improves with refining discretization reaching extraordinary performance especially for cubically shaped particles. A two order of magnitude decrease of error was demonstrated. We also propose estimates of the extrapolation error, which were proven to be reliable. Finally we propose a simple method to directly separate shape and discretization errors and illustrated this for one test case.

  3. Frequency Extrapolation by Floating Genetic Algorithm Based on GTD Model for Radar Cross Section

    YANG Zhenglong; FANG Dagang; SHENG Weixing; LIU Tiejun; ZHUANG Jing


    A frequency extrapolation scheme isdeveloped to effectively predict radar cross section us-ing floating genetic algorithm based on the GTD (ge-ometry theory of diffraction) model. The parameter-ized model to extrapolate the frequency response tohigher (or lower) frequency band is used and somepractical targets are calculated to test the effective-ness of the method. The influence of extrapolationon the range profile is studied. Furthermore, the re-lationship between the fitting precision and extrap-olation ability is considered. Different extrapolationprocedures are discussed.

  4. On extrapolation blowups in the scale

    Fiorenza Alberto


    Full Text Available Yano's extrapolation theorem dated back to 1951 establishes boundedness properties of a subadditive operator acting continuously in for close to and/or taking into as and/or with norms blowing up at speed and/or , . Here we give answers in terms of Zygmund, Lorentz-Zygmund and small Lebesgue spaces to what happens if as . The study has been motivated by current investigations of convolution maximal functions in stochastic analysis, where the problem occurs for . We also touch the problem of comparison of results in various scales of spaces.

  5. NLT and extrapolated DLT:3-D cinematography alternatives for enlarging the volume of calibration.

    Hinrichs, R N; McLean, S P


    This study investigated the accuracy of the direct linear transformation (DLT) and non-linear transformation (NLT) methods of 3-D cinematography/videography. A comparison of standard DLT, extrapolated DLT, and NLT calibrations showed the standard (non-extrapolated) DLT to be the most accurate, especially when a large number of control points (40-60) were used. The NLT was more accurate than the extrapolated DLT when the level of extrapolation exceeded 100%. The results indicated that when possible one should use the DLT with a control object, sufficiently large as to encompass the entire activity being studied. However, in situations where the activity volume exceeds the size of one's DLT control object, the NLT method should be considered.

  6. Singularity-preserving image interpolation using wavelet transform extrema extrapolation

    Zhai, Guangtao; Zhang, Yang; Zheng, Xiaoshi


    One common task of image interpolation is to enhance the resolution of the image, which means to magnify the image without loss in its clarity. Traditional methods often assume that the original images are smooth enough so as to possess continues derivatives, which tend to blur the edges of the interpolated image. A novel fast image interpolation algorithm based on wavelet transform and multi-resolution analysis is proposed in this paper. It uses interpolation and extrapolation polynomial to estimate the higher resolution informatoin of the image and generate a new sub-band of wavelet transform coefficients to get processed image with shaper edges and preserved singularities.

  7. In situ LTE exposure of the general public: Characterization and extrapolation.

    Joseph, Wout; Verloock, Leen; Goeminne, Francis; Vermeeren, Günter; Martens, Luc


    In situ radiofrequency (RF) exposure of the different RF sources is characterized in Reading, United Kingdom, and an extrapolation method to estimate worst-case long-term evolution (LTE) exposure is proposed. All electric field levels satisfy the International Commission on Non-Ionizing Radiation Protection (ICNIRP) reference levels with a maximal total electric field value of 4.5 V/m. The total values are dominated by frequency modulation (FM). Exposure levels for LTE of 0.2 V/m on average and 0.5 V/m maximally are obtained. Contributions of LTE to the total exposure are limited to 0.4% on average. Exposure ratios from 0.8% (LTE) to 12.5% (FM) are obtained. An extrapolation method is proposed and validated to assess the worst-case LTE exposure. For this method, the reference signal (RS) and secondary synchronization signal (S-SYNC) are measured and extrapolated to the worst-case value using an extrapolation factor. The influence of the traffic load and output power of the base station on in situ RS and S-SYNC signals are lower than 1 dB for all power and traffic load settings, showing that these signals can be used for the extrapolation method. The maximal extrapolated field value for LTE exposure equals 1.9 V/m, which is 32 times below the ICNIRP reference levels for electric fields.

  8. Extrapolation Method on Measurement of Direct Over-writingMagneto-optical Films%直接重写磁光记录薄膜磁特性测量的外推方法

    李震; 蔡长波


    If the coercivity of magnetic material and the applied field for saturation magnetizing is so high that they are out of the range or near to the limit of measurement of VSM, basic magnetic parameters and hysteresis curves in saturation can not be measured directly. This paper presents extrapolation techniques for indirect measurement of basic magnetic parameters and hysteresis curves.%当测量直接重写磁光记录薄膜的矫顽力,饱和磁化强度所需的外磁场和磁化强度超出了所用VSM的测量范围时,若不采用增加膜厚的方法,则无法直接测量薄膜的基本参数.本文提出一种简单、有效、可靠、精密的外推方法间接地测量出它的磁性参数,并得到它的完整的温度特性,为每层膜居里温度的估计提供可靠的依据.

  9. [Effects of spatial heterogeneity on spatial extrapolation of sampling plot data].

    Liang, Yu; He, Hong-Shi; Hu, Yuan-Man; Bu, Ren-Cang


    By using model combination method, this paper simulated the changes of response variable (tree species distribution area at landscape level under climate change) under three scenarios of environmental spatial heterogeneous level, analyzed the differentiation of simulated results under different scenarios, and discussed the effects of environmental spatial heterogeneity on the larger spatial extrapolation of the tree species responses to climate change observed in sampling plots. For most tree species, spatial heterogeneity had little effects on the extrapolation from plot scale to class scale; for the tree species insensitive to climate warming and the azonal species, spatial heterogeneity also had little effects on the extrapolation from plot-scale to zonal scale. By contrast, for the tree species sensitive to climate warming, spatial heterogeneity had effects on the extrapolation from plot scale to zonal scale, and the effects could be varied under different scenarios.

  10. Utility of intersystem extrapolation factors in early reaction phenotyping and the quantitative extrapolation of human liver microsomal intrinsic clearance using recombinant cytochromes P450.

    Chen, Yuan; Liu, Liling; Nguyen, Khanh; Fretland, Adrian J


    Reaction phenotyping using recombinant human cytochromes P450 (P450) has great utility in early discovery. However, to fully realize the advantages of using recombinant expressed P450s, the extrapolation of data from recombinant systems to human liver microsomes (HLM) is required. In this study, intersystem extrapolation factors (ISEFs) were established for CYP1A2, CYP2C8, CYP2C9, CYP2C19, CYP2D6, and CYP3A4 using 11 probe substrates, based on substrate depletion and/or metabolite formation kinetics. The ISEF values for CYP2C9, CYP2D6, and CYP3A4 determined using multiple substrates were similar across substrates. When enzyme kinetics of metabolite formation for CYP1A2, 2C9, 2D6, and 3A4 were used, the ISEFs determined were generally within 2-fold of that determined on the basis of substrate depletion. Validation of ISEFs was conducted using 10 marketed drugs by comparing the extrapolated data with published data. The major isoforms responsible for the metabolism were identified, and the contribution of the predominant P450s was similar to that of previously reported data. In addition, phenotyping data from internal compounds, extrapolated using the rhP450-ISEF method, were comparable to those obtained using an HLM-based inhibition assay approach. Moreover, the intrinsic clearance (CL(int)) calculated from extrapolated rhP450 data correlated well with measured HLM CL(int). The ISEF method established in our laboratory provides a convenient tool in early reaction phenotyping for situations in which the HLM-based inhibition approach is limited by low turnover and/or unavailable metabolite formation. Furthermore, this method allows for quantitative extrapolation of HLM intrinsic clearance from rhP450 phenotyping data simultaneously to obtaining the participating metabolizing enzymes.

  11. Evidence for risk extrapolation in decision making by tadpoles

    Crane, Adam L.; Ferrari, Maud C. O.


    Through time, the activity patterns, morphology, and development of both predators and prey change, which in turn alter the relative vulnerability of prey to their coexisting predators. Recognizing these changes can thus allow prey to make optimal decisions by projecting risk trends into the future. We used tadpoles (Lithobates sylvaticus) to test the hypothesis that tadpoles can extrapolate information about predation risk from past information. We exposed tadpoles to an odour that represented either a temporally consistent risk or an increasing risk. When tested for their response to the odour, the initial antipredator behaviour of tadpoles did not differ, appearing to approach the limit of their maximum response, but exposure to increasing risk induced longer retention of these responses. When repeating the experiment using lower risk levels, heightened responses occurred for tadpoles exposed to increasing risk, and the strongest responses were exhibited by those that received an abrupt increase compared to a steady increase. Our results indicate that tadpoles can assess risk trends through time and adjust their antipredator responses in a way consistent with an extrapolated trend. This is a sophisticated method for prey to avoid threats that are becoming more (or less) dangerous over part of their lifespan. PMID:28230097

  12. Calculating excitation energies by extrapolation along adiabatic connections

    Rebolini, Elisa; Teale, Andrew M; Helgaker, Trygve; Savin, Andreas


    In this paper, an alternative method to range-separated linear-response time-dependent density-functional theory and perturbation theory is proposed to improve the estimation of the energies of a physical system from the energies of a partially interacting system. Starting from the analysis of the Taylor expansion of the energies of the partially interacting system around the physical system, we use an extrapolation scheme to improve the estimation of the energies of the physical system at an intermediate point of the range-separated or linear adiabatic connection where either the electron--electron interaction is scaled or only the long-range part of the Coulomb interaction is included. The extrapolation scheme is first applied to the range-separated energies of the helium and beryllium atoms and of the hydrogen molecule at its equilibrium and stretched geometries. It improves significantly the convergence rate of the energies toward their exact limit with respect to the range-separation parameter. The range...

  13. Bandlimited image extrapolation with faster convergence

    Cahana, D.; Stark, H.


    Techniques for increasing the convergence rate of the extrapolation algorithm proposed by Gerchberg (1974) and Papoulis (1975) for image restoration applications are presented. The techniques involve the modification of the Gerchberg-Papoulis algorithm to include additional a priori data such as the low-pass projection of the image either by the inclusion of the data at the start of the recursion to reduce the starting-point error, or by use of the low-pass image in each iteration to correct twice in the frequency domain. The performance of the GP algorithm and the two modifications presented in the restorations of a signal consisting of widely separated spectral components of equal magnitude and a signal with spectral components grouped in passbands is compared, and it is found that while both modifications reduced the starting point error, the convergence rate of the second technique was not substantially greater than that of the first despite the additional iterative frequency-plane correction. A significant improvement in the starting-point errors and convergence rates of both modified algorithms is obtained, however, when they are combined with adaptive thresholding in the presence of low noise levels and a signal with relatively well spaced impulse-type spectral components.

  14. Nuclear lattice simulations using symmetry-sign extrapolation

    Laehde, Timo A.; Luu, Thomas [Forschungszentrum Juelich, Institute for Advanced Simulation, Institut fuer Kernphysik, and Juelich Center for Hadron Physics, Juelich (Germany); Lee, Dean [North Carolina State University, Department of Physics, Raleigh, NC (United States); Meissner, Ulf G. [Universitaet Bonn, Helmholtz-Institut fuer Strahlen- und Kernphysik and Bethe Center for Theoretical Physics, Bonn (Germany); Forschungszentrum Juelich, Institute for Advanced Simulation, Institut fuer Kernphysik, and Juelich Center for Hadron Physics, Juelich (Germany); Forschungszentrum Juelich, JARA - High Performance Computing, Juelich (Germany); Epelbaum, Evgeny; Krebs, Hermann [Ruhr-Universitaet Bochum, Institut fuer Theoretische Physik II, Bochum (Germany); Rupak, Gautam [Mississippi State University, Department of Physics and Astronomy, Mississippi State, MS (United States)


    Projection Monte Carlo calculations of lattice Chiral Effective Field Theory suffer from sign oscillations to a varying degree dependent on the number of protons and neutrons. Hence, such studies have hitherto been concentrated on nuclei with equal numbers of protons and neutrons, and especially on the alpha nuclei where the sign oscillations are smallest. Here, we introduce the ''symmetry-sign extrapolation'' method, which allows us to use the approximate Wigner SU(4) symmetry of the nuclear interaction to systematically extend the Projection Monte Carlo calculations to nuclear systems where the sign problem is severe. We benchmark this method by calculating the ground-state energies of the {sup 12}C, {sup 6}He and {sup 6}Be nuclei, and discuss its potential for studies of neutron-rich halo nuclei and asymmetric nuclear matter. (orig.)

  15. Extrapolation of Extreme Response for Wind Turbines based on FieldMeasurements

    Toft, Henrik Stensgaard; Sørensen, John Dalsgaard


    The characteristic loads on wind turbines during operation are among others dependent on the mean wind speed, the turbulence intensity and the type and settings of the control system. These parameters must be taken into account in the assessment of the characteristic load. The characteristic load...... extrapolation are presented. The first method is based on the same assumptions as the existing method but the statistical extrapolation is only performed for a limited number of mean wind speeds where the extreme load is likely to occur. For the second method the mean wind speeds are divided into storms which...

  16. Extrapolation of extreme response for different mooring line systems of floating wave energy converters

    Ambühl, Simon; Sterndorff, Martin; Sørensen, John Dalsgaard


    Mooring systems for floating wave energy converters (WECs) are a major cost driver. Failure of mooring systems often occurs due to extreme loads. This paper introduces an extrapolation method for extreme response which accounts for the control system of a WEC that controls the loads onto the stru......Mooring systems for floating wave energy converters (WECs) are a major cost driver. Failure of mooring systems often occurs due to extreme loads. This paper introduces an extrapolation method for extreme response which accounts for the control system of a WEC that controls the loads onto...... the structure and the harvested power of the device as well as the fact that extreme loads may occur during operation and not at extreme wave states when the device is in storm protection mode. The extrapolation method is based on shortterm load time series and applied to a case study where up-scaled surge load...

  17. Nuclear Lattice Simulations using Symmetry-Sign Extrapolation

    Lähde, Timo A; Lee, Dean; Meißner, Ulf-G; Epelbaum, Evgeny; Krebs, Hermann; Rupak, Gautam


    Projection Monte Carlo calculations of lattice Chiral Effective Field Theory suffer from sign oscillations to a varying degree dependent on the number of protons and neutrons. Hence, such studies have hitherto been concentrated on nuclei with equal numbers of protons and neutrons, and especially on the alpha nuclei where the sign oscillations are smallest. We now introduce the technique of "symmetry-sign extrapolation" which allows us to use the approximate Wigner SU(4) symmetry of the nuclear interaction to control the sign oscillations without introducing unknown systematic errors. We benchmark this method by calculating the ground-state energies of the $^{12}$C, $^6$He and $^6$Be nuclei, and discuss its potential for studies of neutron-rich halo nuclei and asymmetric nuclear matter.

  18. Extrapolation of Calibration Curve of Hot-wire Spirometer Using a Novel Neural Network Based Approach.

    Ardekani, Mohammad Ali; Nafisi, Vahid Reza; Farhani, Foad


    Hot-wire spirometer is a kind of constant temperature anemometer (CTA). The working principle of CTA, used for the measurement of fluid velocity and flow turbulence, is based on convective heat transfer from a hot-wire sensor to a fluid being measured. The calibration curve of a CTA is nonlinear and cannot be easily extrapolated beyond its calibration range. Therefore, a method for extrapolation of CTA calibration curve will be of great practical application. In this paper, a novel approach based on the conventional neural network and self-organizing map (SOM) method has been proposed to extrapolate CTA calibration curve for measurement of velocity in the range 0.7-30 m/seconds. Results show that, using this approach for the extrapolation of the CTA calibration curve beyond its upper limit, the standard deviation is about -0.5%, which is acceptable in most cases. Moreover, this approach for the extrapolation of the CTA calibration curve below its lower limit produces standard deviation of about 4.5%, which is acceptable in spirometry applications. Finally, the standard deviation on the whole measurement range (0.7-30 m/s) is about 1.5%.

  19. Molecular Target Homology as a Basis for Species Extrapolation to Assess the Ecological Risk of Veterinary Drugs

    Increased identification of veterinary pharmaceutical contaminants in aquatic environments has raised concerns regarding potential adverse effects of these chemicals on non-target organisms. The purpose of this work was to develop a method for predictive species extrapolation ut...

  20. Extra- and intracellular volume monitoring by impedance during haemodialysis using Cole-Cole extrapolation.

    Jaffrin, M Y; Maasrani, M; Le Gourrier, A; Boudailliez, B


    A method is presented for monitoring the relative variation of extracellular and intracellular fluid volumes using a multifrequency impedance meter and the Cole-Cole extrapolation technique. It is found that this extrapolation is necessary to obtain reliable data for the resistance of the intracellular fluid. The extracellular and intracellular resistances can be approached using frequencies of, respectively, 5 kHz and 1000 kHz, but the use of 100 kHz leads to unacceptable errors. In the conventional treatment the overall relative variation of intracellular resistance is found to be relatively small.

  1. Enhanced radar imaging of object with extrapolation of Fourier transform of space-limited reflectivity function

    Zhao, Yi-Gong; Corsini, G.; Dalle Mese, E.

    The method of extrapolation of frequency data based on the finite size property of the Gerchberg-Papoulis algorithm is used to address the problem of radar image enhancement. The rate of convergence of the algorithm and the behavior of noise-affected data are discussed. Simulation results show that the convergence rate can be very slow, depending on the ratio of the amount of extrapolated data to that of observed data. This behavior is due to the eigenvalues of the system matrix close to 1.

  2. Application of Two-Parameter Extrapolation for Solution of Boundary-Value Problem on Semi-Axis

    Zhidkov, E P


    A method for refining approximate eigenvalues and eigenfunctions for a boundary-value problem on a half-axis is suggested. To solve the problem numerically, one has to solve a problem on a finite segment [0,R] instead of the original problem on the interval [0,\\infty). This replacement leads to eigenvalues' and eigenfunctions' errors. To choose R beforehand for obtaining their required accuracy is often impossible. Thus, one has to resolve the problem on [0,R] with larger R. If there are two eigenvalues or two eigenfunctions that correspond to different segments, the suggested method allows one to improve the accuracy of the eigenvalue and the eigenfunction for the original problem by means of extrapolation along the segment. This approach is similar to Richardson's method. Moreover, a two-parameter extrapolation is described. It is combination of the extrapolation along the segment and Richardson's extrapolation along a discretization step.

  3. Resolution enhancement by extrapolation of coherent diffraction images: a quantitative study about the limits and a numerical study of non-binary and phase objects

    Latychevskaia, Tatiana


    In coherent diffractive imaging (CDI) the resolution with which the reconstructed object can be obtained is limited by the numerical aperture of the experimental setup. We present here a theoretical and numerical study for achieving super-resolution by post-extrapolation of coherent diffraction images, such as diffraction patterns or holograms. We proof that a diffraction pattern can unambiguously be extrapolated from just a fraction of the entire pattern and that the ratio of the extrapolated signal to the originally available signal, is linearly proportional to the oversampling ratio. While there could be in principle other methods to achieve extrapolation, we devote our discussion to employing phase retrieval methods and demonstrate their limits. We present two numerical studies; namely the extrapolation of diffraction patterns of non-binary and that of phase objects together with a discussion of the optimal extrapolation procedure.

  4. Biosimilar monoclonal antibodies : The scientific basis for extrapolation

    Schellekens, Huub; Lietzan, Erika; Faccin, Freddy; Venema, Jaap


    Introduction: Biosimilars are biologic products that receive authorization based on an abbreviated regulatory application containing comparative quality and nonclinical and clinical data that demonstrate similarity to a licensed biologic product. Extrapolation of safety and efficacy has emerged as a

  5. On the extrapolation of band-limited signals

    Chamzas, C. C.


    The determination of the Fourier Transform of a band-limited signal in terms of a finite segment is examined. The Papoulis' Extrapolation Algorithm is extended in a broader class of signals and its convergence is considerably improved by a multiplication with an adaptive constant, chosen to minimize the mean square error in the extrapolation interval. The discrete version of the iteration is examined and then modified in order to converge to the best linear mean square estimator of the unknown signal when noise is added to the given data. The problem of determining the frequencies, amplitudes and phases of a sinusoidal signal from incomplete noisy data, is considered and the extrapolation algorithm is properly modified to estimate these quantities. The obtained iteration is nonlinear and adaptively reduces the spectral components due to noise. The adaptive extrapolation technique is applied to the problem of image restoration for objects consisting of point or line sources, and to an ultrasonic problem.

  6. Multidimensional signal restoration and band-limited extrapolation, 2

    Sanz, J. L. C.; Huang, T. S.


    This technical report consists of three parts. The central problem is the extrapolation of band-limited signals. In part 1, several existing algorithms for band-limited extrapolation are compared: Two-step procedures appeared to give better reconstructions and require less computing time than iterative algorithms. In part 2, five basic procedures for iterative restoration are unified using a Hilbert Space approach. In particular, all known interative algorithms for extrapolation of band-limited signals are shown to be special cases of Bialy's iteration. The authors also obtained faster algorithms than that of Papoulis-Gerchberg. In part 3, the extrapolation problem is presented in a more general setting: Continuation of certain analytic functions. Presented are two steps procedures for finding the continuation of these functions. Some new procedures for band-limited continuation are also discussed as well as the case in which the signal is contaminated with noise.

  7. The chemistry side of AOP: implications for toxicity extrapolation

    An adverse outcome pathway (AOP) is a structured representation of the biological events that lead to adverse impacts following a molecular initiating event caused by chemical interaction with a macromolecule. AOPs have been proposed to facilitate toxicity extrapolation across s...

  8. Source-receiver two-way wave extrapolation for prestack exploding-reflector modelling and migration

    Alkhalifah, Tariq Ali


    Most modern seismic imaging methods separate input data into parts (shot gathers). We develop a formulation that is able to incorporate all available data at once while numerically propagating the recorded multidimensional wavefield forward or backward in time. This approach has the potential for generating accurate images free of artiefacts associated with conventional approaches. We derive novel high-order partial differential equations in the source-receiver time domain. The fourth-order nature of the extrapolation in time leads to four solutions, two of which correspond to the incoming and outgoing P-waves and reduce to the zero-offset exploding-reflector solutions when the source coincides with the receiver. A challenge for implementing two-way time extrapolation is an essential singularity for horizontally travelling waves. This singularity can be avoided by limiting the range of wavenumbers treated in a spectral-based extrapolation. Using spectral methods based on the low-rank approximation of the propagation symbol, we extrapolate only the desired solutions in an accurate and efficient manner with reduced dispersion artiefacts. Applications to synthetic data demonstrate the accuracy of the new prestack modelling and migration approach.

  9. Extrapolating Satellite Winds to Turbine Operating Heights

    Badger, Merete; Pena Diaz, Alfredo; Hahmann, Andrea N.;


    Ocean wind retrievals from satellite sensors are typically performed for the standard level of 10 m. This restricts their full exploitation for wind energy planning, which requires wind information at much higher levels where wind turbines operate. A new method is presented for the vertical extra...

  10. Delayed inhibition of an anticipatory action during motion extrapolation

    Riek Stephan


    Full Text Available Abstract Background Continuous visual information is important for movement initiation in a variety of motor tasks. However, even in the absence of visual information people are able to initiate their responses by using motion extrapolation processes. Initiation of actions based on these cognitive processes, however, can demand more attentional resources than that required in situations in which visual information is uninterrupted. In the experiment reported we sought to determine whether the absence of visual information would affect the latency to inhibit an anticipatory action. Methods The participants performed an anticipatory timing task where they were instructed to move in synchrony with the arrival of a moving object at a determined contact point. On 50% of the trials, a stop sign appeared on the screen and it served as a signal for the participants to halt their movements. They performed the anticipatory task under two different viewing conditions: Full-View (uninterrupted and Occluded-View (occlusion of the last 500 ms prior to the arrival at the contact point. Results The results indicated that the absence of visual information prolonged the latency to suppress the anticipatory movement. Conclusion We suggest that the absence of visual information requires additional cortical processing that creates competing demand for neural resources. Reduced neural resources potentially causes increased reaction time to the inhibitory input or increased time estimation variability, which in combination would account for prolonged latency.

  11. Full waveform inversion with extrapolated low frequency data

    Li, Yunyue Elita


    The availability of low frequency data is an important factor in the success of full waveform inversion (FWI) in the acoustic regime. The low frequencies help determine the kinematically relevant, low-wavenumber components of the velocity model, which are in turn needed to avoid convergence of FWI to spurious local minima. However, acquiring data below 2 or 3 Hz from the field is a challenging and expensive task. In this paper we explore the possibility of synthesizing the low frequencies computationally from high-frequency data, and use the resulting prediction of the missing data to seed the frequency sweep of FWI. As a signal processing problem, bandwidth extension is a very nonlinear and delicate operation. It requires a high-level interpretation of bandlimited seismic records into individual events, each of which is extrapolable to a lower (or higher) frequency band from the non-dispersive nature of the wave propagation model. We propose to use the phase tracking method for the event separation task. The...

  12. Do common systems control eye movements and motion extrapolation?

    Makin, Alexis D J; Poliakoff, Ellen


    People are able to judge the current position of occluded moving objects. This operation is known as motion extrapolation. It has previously been suggested that motion extrapolation is independent of the oculomotor system. Here we revisited this question by measuring eye position while participants completed two types of motion extrapolation task. In one task, a moving visual target travelled rightwards, disappeared, then reappeared further along its trajectory. Participants discriminated correct reappearance times from incorrect (too early or too late) with a two-alternative forced-choice button press. In the second task, the target travelled rightwards behind a visible, rectangular occluder, and participants pressed a button at the time when they judged it should reappear. In both tasks, performance was significantly different under fixation as compared to free eye movement conditions. When eye movements were permitted, eye movements during occlusion were related to participants' judgements. Finally, even when participants were required to fixate, small changes in eye position around fixation (<2°) were influenced by occluded target motion. These results all indicate that overlapping systems control eye movements and judgements on motion extrapolation tasks. This has implications for understanding the mechanism underlying motion extrapolation.

  13. Accelerating Monte Carlo Molecular Simulations Using Novel Extrapolation Schemes Combined with Fast Database Generation on Massively Parallel Machines

    Amir, Sahar Z.


    We introduce an efficient thermodynamically consistent technique to extrapolate and interpolate normalized Canonical NVT ensemble averages like pressure and energy for Lennard-Jones (L-J) fluids. Preliminary results show promising applicability in oil and gas modeling, where accurate determination of thermodynamic properties in reservoirs is challenging. The thermodynamic interpolation and thermodynamic extrapolation schemes predict ensemble averages at different thermodynamic conditions from expensively simulated data points. The methods reweight and reconstruct previously generated database values of Markov chains at neighboring temperature and density conditions. To investigate the efficiency of these methods, two databases corresponding to different combinations of normalized density and temperature are generated. One contains 175 Markov chains with 10,000,000 MC cycles each and the other contains 3000 Markov chains with 61,000,000 MC cycles each. For such massive database creation, two algorithms to parallelize the computations have been investigated. The accuracy of the thermodynamic extrapolation scheme is investigated with respect to classical interpolation and extrapolation. Finally, thermodynamic interpolation benefiting from four neighboring Markov chains points is implemented and compared with previous schemes. The thermodynamic interpolation scheme using knowledge from the four neighboring points proves to be more accurate than the thermodynamic extrapolation from the closest point only, while both thermodynamic extrapolation and thermodynamic interpolation are more accurate than the classical interpolation and extrapolation. The investigated extrapolation scheme has great potential in oil and gas reservoir modeling.That is, such a scheme has the potential to speed up the MCMC thermodynamic computation to be comparable with conventional Equation of State approaches in efficiency. In particular, this makes it applicable to large-scale optimization of L

  14. Extrapolating from animal studies to the efficacy in humans of a pretreatment combination against organophosphate poisoning.

    Levy, Aharon; Cohen, Giora; Gilat, Eran; Kapon, Joseph; Dachir, Shlomit; Abraham, Shlomo; Herskovitz, Miriam; Teitelbaum, Zvi; Raveh, Lily


    The extrapolation from animal data to therapeutic effects in humans, a basic pharmacological issue, is especially critical in studies aimed to estimate the protective efficacy of drugs against nerve agent poisoning. Such efficacy can only be predicted by extrapolation of data from animal studies to humans. In pretreatment therapy against nerve agents, careful dose determination is even more crucial than in antidotal therapy, since excessive doses may lead to adverse effects or performance decrements. The common method of comparing dose per body weight, still used in some studies, may lead to erroneous extrapolation. A different approach is based on the comparison of plasma concentrations at steady state required to obtain a given pharmacodynamic endpoint. In the present study, this approach was applied to predict the prophylactic efficacy of the anticholinergic drug caramiphen in combination with pyridostigmine in man based on animal data. In two species of large animals, dogs and monkeys, similar plasma concentrations of caramiphen (in the range of 60-100 ng/ml) conferred adequate protection against exposure to a lethal-dose of sarin (1.6-1.8 LD(50)). Pharmacokinetic studies at steady state were required to achieve the correlation between caramiphen plasma concentrations and therapeutic effects. Evaluation of total plasma clearance values was instrumental in establishing desirable plasma concentrations and minimizing the number of animals used in the study. Previous data in the literature for plasma levels of caramiphen that do not lead to overt side effects in humans (70-100 ng/ml) enabled extrapolation to expected human protection. The method can be applied to other drugs and other clinical situations, in which human studies are impossible due to ethical considerations. When similar dose response curves are obtained in at least two animal models, the extrapolation to expected therapeutic effects in humans might be considered more reliable.

  15. Extrapolation of scattering data to the negative-energy region

    Blokhintsev, L D; Mukhamedzhanov, A M; Savin, D A


    Explicit analytic expressions are derived for the effective-range function for the case when the interaction is represented by a sum of the short-range square-well and long-range Coulomb potentials. These expressions are then transformed into forms convenient for extrapolating to the negative-energy region and obtaining the information about bound-state properties. Alternative ways of extrapolation are discussed. Analytic properties of separate terms entering these expressions for the effective-range function and the partial-wave scattering amplitude are investigated.

  16. Functional differential equations with unbounded delay in extrapolation spaces

    Mostafa Adimy


    Full Text Available We study the existence, regularity and stability of solutions for nonlinear partial neutral functional differential equations with unbounded delay and a Hille-Yosida operator on a Banach space X. We consider two nonlinear perturbations: the first one is a function taking its values in X and the second one is a function belonging to a space larger than X, an extrapolated space. We use the extrapolation techniques to prove the existence and regularity of solutions and we establish a linearization principle for the stability of the equilibria of our equation.

  17. Rubio de Francia's extrapolation theory: estimates for the distribution function

    Carro, María J; Torres, Rodolfo H


    Let $T$ be an arbitrary operator bounded from $L^{p_0}(w)$ into $L^{p_0, \\infty}(w)$ for every weight $w$ in the Muckenhoupt class $A_{p_0}$. It is proved in this article that the distribution function of $Tf$ with respect to any weight $u$ can be essentially majorized by the distribution function of $Mf$ with respect to $u$ (plus an integral term easy to control). As a consequence, well-known extrapolation results, including results in a multilinear setting, can be obtained with very simple proofs. New applications in extrapolation for two-weight problems and estimates on rearrangement invariant spaces are established too.

  18. Weights, Extrapolation and the Theory of Rubio de Francia

    Cruz-Uribe, David; Perez, Carlos


    This book provides a systematic development of the Rubio de Francia theory of extrapolation, its many generalizations and its applications to one and two-weight norm inequalities. The book is based upon a new and elementary proof of the classical extrapolation theorem that fully develops the power of the Rubio de Francia iteration algorithm. This technique allows us to give a unified presentation of the theory and to give important generalizations to Banach function spaces and to two-weight inequalities. We provide many applications to the classical operators of harmonic analysis to illustrate

  19. Nowcasting of deep convective clouds and heavy precipitation: Comparison study between NWP model simulation and extrapolation

    Bližňák, Vojtěch; Sokol, Zbyněk; Zacharov, Petr


    An evaluation of convective cloud forecasts performed with the numerical weather prediction (NWP) model COSMO and extrapolation of cloud fields is presented using observed data derived from the geostationary satellite Meteosat Second Generation (MSG). The present study focuses on the nowcasting range (1-5 h) for five severe convective storms in their developing stage that occurred during the warm season in the years 2012-2013. Radar reflectivity and extrapolated radar reflectivity data were assimilated for at least 6 h depending on the time of occurrence of convection. Synthetic satellite imageries were calculated using radiative transfer model RTTOV v10.2, which was implemented into the COSMO model. NWP model simulations of IR10.8 μm and WV06.2 μm brightness temperatures (BTs) with a horizontal resolution of 2.8 km were interpolated into the satellite projection and objectively verified against observations using Root Mean Square Error (RMSE), correlation coefficient (CORR) and Fractions Skill Score (FSS) values. Naturally, the extrapolation of cloud fields yielded an approximately 25% lower RMSE, 20% higher CORR and 15% higher FSS at the beginning of the second forecasted hour compared to the NWP model forecasts. On the other hand, comparable scores were observed for the third hour, whereas the NWP forecasts outperformed the extrapolation by 10% for RMSE, 15% for CORR and up to 15% for FSS during the fourth forecasted hour and 15% for RMSE, 27% for CORR and up to 15% for FSS during the fifth forecasted hour. The analysis was completed by a verification of the precipitation forecasts yielding approximately 8% higher RMSE, 15% higher CORR and up to 45% higher FSS when the NWP model simulation is used compared to the extrapolation for the first hour. Both the methods yielded unsatisfactory level of precipitation forecast accuracy from the fourth forecasted hour onward.

  20. Estimating the CCSD basis-set limit energy from small basis sets: basis-set extrapolations vs additivity schemes

    Spackman, Peter R.; Karton, Amir, E-mail: [School of Chemistry and Biochemistry, The University of Western Australia, Perth, WA 6009 (Australia)


    Coupled cluster calculations with all single and double excitations (CCSD) converge exceedingly slowly with the size of the one-particle basis set. We assess the performance of a number of approaches for obtaining CCSD correlation energies close to the complete basis-set limit in conjunction with relatively small DZ and TZ basis sets. These include global and system-dependent extrapolations based on the A + B/L{sup α} two-point extrapolation formula, and the well-known additivity approach that uses an MP2-based basis-set-correction term. We show that the basis set convergence rate can change dramatically between different systems( is slower for molecules with polar bonds and/or second-row elements). The system-dependent basis-set extrapolation scheme, in which unique basis-set extrapolation exponents for each system are obtained from lower-cost MP2 calculations, significantly accelerates the basis-set convergence relative to the global extrapolations. Nevertheless, we find that the simple MP2-based basis-set additivity scheme outperforms the extrapolation approaches. For example, the following root-mean-squared deviations are obtained for the 140 basis-set limit CCSD atomization energies in the W4-11 database: 9.1 (global extrapolation), 3.7 (system-dependent extrapolation), and 2.4 (additivity scheme) kJ mol{sup –1}. The CCSD energy in these approximations is obtained from basis sets of up to TZ quality and the latter two approaches require additional MP2 calculations with basis sets of up to QZ quality. We also assess the performance of the basis-set extrapolations and additivity schemes for a set of 20 basis-set limit CCSD atomization energies of larger molecules including amino acids, DNA/RNA bases, aromatic compounds, and platonic hydrocarbon cages. We obtain the following RMSDs for the above methods: 10.2 (global extrapolation), 5.7 (system-dependent extrapolation), and 2.9 (additivity scheme) kJ mol{sup –1}.

  1. Variational procedure for nuclear shell-model calculations and energy-variance extrapolation

    Shimizu, Noritaka; Mizusaki, Takahiro; Honma, Michio; Tsunoda, Yusuke; Otsuka, Takaharu


    We discuss a variational calculation for nuclear shell-model calculations and propose a new procedure for the energy-variance extrapolation (EVE) method using a sequence of the approximated wave functions obtained by the variational calculation. The wave functions are described as linear combinations of the parity, angular-momentum projected Slater determinants, the energy of which is minimized by the conjugate gradient method obeying the variational principle. The EVE generally works well using the wave functions, but we found some difficult cases where the EVE gives a poor estimation. We discuss the origin of the poor estimation concerning shape coexistence. We found that the appropriate reordering of the Slater determinants allows us to overcome this difficulty and to reduce the uncertainty of the extrapolation.

  2. Panel discussion on Chiral extrapolation of physical observables

    Bernard, C; Leinweber, D B; Lepage, P; Pallante, E; Sharpe, S R; Wittig, H; Bernard, Claude; Hashimoto, Shoji; Leinweber, Derek B.; Lepage, Peter; Pallante, Elisabetta; Sharpe, Stephen R.; Wittig, Hartmut


    This is an approximate reconstruction of the panel discussion on chiral extrapolation of physical observables. The session consisted of brief presentations from panelists, followed by responses from the panel, and concluded with questions and comments from the floor with answers from panelists. In the following, the panelists have summarized their statements, and the ensuing discussion has been approximately reconstructed from notes.

  3. Biosimilars and the extrapolation of indications for inflammatory conditions

    Tesser, John RP; Furst, Daniel E; Jacobs, Ira


    Extrapolation is the approval of a biosimilar for use in an indication held by the originator biologic not directly studied in a comparative clinical trial with the biosimilar. Extrapolation is a scientific rationale that bridges all the data collected (ie, totality of the evidence) from one indication for the biosimilar product to all the indications originally approved for the originator. Regulatory approval and marketing authorization of biosimilars in inflammatory indications are made on a case-by-case and agency-by-agency basis after evaluating the totality of evidence from the entire development program. This totality of the evidence comprises extensive comparative analytical, functional, nonclinical, and clinical pharmacokinetic/pharmacodynamic, efficacy, safety, and immunogenicity studies used by regulators when evaluating whether a product can be considered a biosimilar. Extrapolation reduces or eliminates the need for duplicative clinical studies of the biosimilar but must be justified scientifically with appropriate data. Understanding the concept, application, and regulatory decisions based on the extrapolation of data is important since biosimilars have the potential to significantly impact patient care in inflammatory diseases. PMID:28255229

  4. Panel discussion on chiral extrapolation of physical observables

    Bernard, Claude; Hashimoto, Shoji; Leinweber, Derek B.; Lepage, Peter; Pallante, Elisabetta; Sharpe, Stephen R.; Wittig, Hartmut


    This is an approximate reconstruction of the panel discussion on chiral extrapolation of physical observables. The session consisted of brief presentations from panelists, followed by responses from the panel, and concluded with questions and comments from the floor with answers from panelists. In t

  5. Genetic effects of radiation. [Extrapolation of mouse data to man

    Selby, P.B.


    Data are reviewed from studies on the genetic effects of x radiation in mice and the extrapolation of the findings for estimating genetic hazards in man is discussed. Data are included on the frequency of mutation induction following acute or chronic irradiation of male or female mice at various doses and dose rates.

  6. Source‐receiver two‐way wave extrapolation for prestack exploding‐reflector modeling and migration

    Alkhalifah, Tariq Ali


    While most of the modern seismic imaging methods perform imaging by separating input data into parts (shot gathers), we develop a formulation that is able to incorporate all available data at once while numerically propagating the recorded multidimensional wavefield backward in time. While computationally extensive, this approach has the potential of generating accurate images, free of artifacts associated with conventional approaches. We derive novel high‐order partial differential equations in source‐receiver‐time domain. The fourth order nature of the extrapolation in time has four solutions two of which correspond to the ingoing and outgoing P‐waves and reduces to the zero‐offset exploding‐reflector solutions when the source coincides with the receiver. Using asymptotic approximations, we develop an approach to extrapolating the full prestack wavefield forward or backward in time.

  7. Atomically resolved structural determination of graphene and its point defects via extrapolation assisted phase retrieval

    Latychevskaia, Tatiana; Fink, Hans-Werner [Physics Department, University of Zurich, Winterthurerstrasse 190, 8057 Zurich (Switzerland)


    Previously reported crystalline structures obtained by an iterative phase retrieval reconstruction of their diffraction patterns seem to be free from displaying any irregularities or defects in the lattice, which appears to be unrealistic. We demonstrate here that the structure of a nanocrystal including its atomic defects can unambiguously be recovered from its diffraction pattern alone by applying a direct phase retrieval procedure not relying on prior information of the object shape. Individual point defects in the atomic lattice are clearly apparent. Conventional phase retrieval routines assume isotropic scattering. We show that when dealing with electrons, the quantitatively correct transmission function of the sample cannot be retrieved due to anisotropic, strong forward scattering specific to electrons. We summarize the conditions for this phase retrieval method and show that the diffraction pattern can be extrapolated beyond the original record to even reveal formerly not visible Bragg peaks. Such extrapolated wave field pattern leads to enhanced spatial resolution in the reconstruction.

  8. An efficient extrapolation to the (T)/CBS limit

    Ranasinghe, Duminda S.; Barnes, Ericka C.


    We extrapolate to the perturbative triples (T)/complete basis set (CBS) limit using double ζ basis sets without polarization functions (Wesleyan-1-Triples-2ζ or "Wes1T-2Z") and triple ζ basis sets with a single level of polarization functions (Wesleyan-1-Triples-3ζ or "Wes1T-3Z"). These basis sets were optimized for 102 species representing the first two rows of the Periodic Table. The species include the entire set of neutral atoms, positive and negative atomic ions, as well as several homonuclear diatomic molecules, hydrides, rare gas dimers, polar molecules, such as oxides and fluorides, and a few transition states. The extrapolated Wes1T-(2,3)Z triples energies agree with (T)/CBS benchmarks to within ±0.65 mEh, while the rms deviations of comparable model chemistries W1, CBS-APNO, and CBS-QB3 for the same test set are ±0.23 mEh, ±2.37 mEh, and ±5.80 mEh, respectively. The Wes1T-(2,3)Z triples calculation time for the largest hydrocarbon in the G2/97 test set, C6H5Me+, is reduced by a factor of 25 when compared to W1. The cost-effectiveness of the Wes1T-(2,3)Z extrapolation validates the usefulness of the Wes1T-2Z and Wes1T-3Z basis sets which are now available for a more efficient extrapolation of the (T) component of any composite model chemistry.

  9. Revisiting Chiral Extrapolation by Studying a Lattice Quark Propagator

    ZHANG Yan-Bin; SUN Wei-Min; L(U) Xiao-Fu; ZONG Hong-Shi


    The quark propagator in the Landau gauge is studied on the lattice,including the quenched and the unquenched results.No obvious unquenched effects are found by comparing the quenched quark propagator with the dynamical one.For the quenched and unquenched configurations,the results with different quark masses have been computed.For the quark mass function,a nonlinear chiral extrapolating behavior is found in the in/tared region for both the quenched and dynamical results.

  10. Biosimilars in Inflammatory Bowel Disease: Facts and Fears of Extrapolation.

    Ben-Horin, Shomron; Vande Casteele, Niels; Schreiber, Stefan; Lakatos, Peter Laszlo


    Biologic drugs such as infliximab and other anti-tumor necrosis factor monoclonal antibodies have transformed the treatment of immune-mediated inflammatory conditions such as Crohn's disease and ulcerative colitis (collectively known as inflammatory bowel disease [IBD]). However, the complex manufacturing processes involved in producing these drugs mean their use in clinical practice is expensive. Recent or impending expiration of patents for several biologics has led to development of biosimilar versions of these drugs, with the aim of providing substantial cost savings and increased accessibility to treatment. Biosimilars undergo an expedited regulatory process. This involves proving structural, functional, and biological biosimilarity to the reference product (RP). It is also expected that clinical equivalency/comparability will be demonstrated in a clinical trial in one (or more) sensitive population. Once these requirements are fulfilled, extrapolation of biosimilar approval to other indications for which the RP is approved is permitted without the need for further clinical trials, as long as this is scientifically justifiable. However, such justification requires that the mechanism(s) of action of the RP in question should be similar across indications and also comparable between the RP and the biosimilar in the clinically tested population(s). Likewise, the pharmacokinetics, immunogenicity, and safety of the RP should be similar across indications and comparable between the RP and biosimilar in the clinically tested population(s). To date, most anti-tumor necrosis factor biosimilars have been tested in trials recruiting patients with rheumatoid arthritis. Concerns have been raised regarding extrapolation of clinical data obtained in rheumatologic populations to IBD indications. In this review, we discuss the issues surrounding indication extrapolation, with a focus on extrapolation to IBD.

  11. Sur l'Extrapolation des Signoux d'Energie Finie a Band Limitee

    Charbonniaud, A. L.; Crouzet, J-F.; Gay, R.


    We show that both Papoulis' method and Aizenberg's method for extrapolating finite energy and band limited signals are related to each other, provided that the same setting is used to describe both methods. We study such a setting and give some examples we comment. On montre que les méthodes d'Exploration de signaux d'énergie finie et à bande limitée de Papoulis et d'Aizenberg peuvent être reliées dans un cadre d'étude commun. On étudie ce cadre de travail et on donne quelques exemples com...

  12. Effective ellipsoidal models for wavefield extrapolation in tilted orthorhombic media

    Waheed, Umair Bin


    Wavefield computations using the ellipsoidally anisotropic extrapolation operator offer significant cost reduction compared to that for the orthorhombic case, especially when the symmetry planes are tilted and/or rotated. However, ellipsoidal anisotropy does not provide accurate wavefield representation or imaging for media of orthorhombic symmetry. Therefore, we propose the use of ‘effective ellipsoidally anisotropic’ models that correctly capture the kinematic behaviour of wavefields for tilted orthorhombic (TOR) media. We compute effective velocities for the ellipsoidally anisotropic medium using kinematic high-frequency representation of the TOR wavefield, obtained by solving the TOR eikonal equation. The effective model allows us to use the cheaper ellipsoidally anisotropic wave extrapolation operators. Although the effective models are obtained by kinematic matching using high-frequency asymptotic, the resulting wavefield contains most of the critical wavefield components, including frequency dependency and caustics, if present, with reasonable accuracy. The proposed methodology offers a much better cost versus accuracy trade-off for wavefield computations in TOR media, particularly for media of low to moderate anisotropic strength. Furthermore, the computed wavefield solution is free from shear-wave artefacts as opposed to the conventional finite-difference based TOR wave extrapolation scheme. We demonstrate applicability and usefulness of our formulation through numerical tests on synthetic TOR models. © 2016 Institute of Geophysics of the ASCR, v.v.i

  13. Efficient anisotropic wavefield extrapolation using effective isotropic models

    Alkhalifah, Tariq Ali


    Isotropic wavefield extrapolation is more efficient than anisotropic extrapolation, and this is especially true when the anisotropy of the medium is tilted (from the vertical). We use the kinematics of the wavefield, appropriately represented in the high-frequency asymptotic approximation by the eikonal equation, to develop effective isotropic models, which are used to efficiently and approximately extrapolate anisotropic wavefields using the isotropic, relatively cheaper, operators. These effective velocity models are source dependent and tend to embed the anisotropy in the inhomogeneity. Though this isotropically generated wavefield theoretically shares the same kinematic behavior as that of the first arrival anisotropic wavefield, it also has the ability to include all the arrivals resulting from a complex wavefield propagation. In fact, the effective models reduce to the original isotropic model in the limit of isotropy, and thus, the difference between the effective model and, for example, the vertical velocity depends on the strength of anisotropy. For reverse time migration (RTM), effective models are developed for the source and receiver fields by computing the traveltime for a plane wave source stretching along our source and receiver lines in a delayed shot migration implementation. Applications to the BP TTI model demonstrates the effectiveness of the approach.

  14. The 3D structure of an active region filament as extrapolated from photospheric and chromospheric observations

    Chaouche, L Yelles; Pillet, V Martínez; Moreno-Insertis, F


    The 3D structure of an active region (AR) filament is studied using nonlinear force-free field (NLFFF) extrapolations based on simultaneous observations at a photospheric and a chromospheric height. To that end, we used the Si I 10827 \\AA\\ line and the He I 10830 \\AA\\ triplet obtained with the Tenerife Infrared Polarimeter (TIP) at the VTT (Tenerife). The two extrapolations have been carried out independently from each other and their respective spatial domains overlap in a considerable height range. This opens up new possibilities for diagnostics in addition to the usual ones obtained through a single extrapolation from, typically, a photospheric layer. Among those possibilities, this method allows the determination of an average formation height of the He I 10830 \\AA\\ signal of \\approx 2 Mm above the surface of the sun. It allows, as well, to cross-check the obtained 3D magnetic structures in view of verifying a possible deviation from the force- free condition especially at the photosphere. The extrapolati...

  15. Establishing a new marketplace for biologic therapy with biosimilar agents: importance of extrapolation of data

    Bressler B


    Full Text Available Brian Bressler,1 Theo Dingermann2 1St Paul’s Hospital, University of British Columbia, Vancouver, BC, Canada; 2Institute of Pharmaceutical Biology, Frankfurt, Germany Abstract: Despite their enormous value for our health care system, biopharmaceuticals have become a serious threat to the system itself due to their high cost. Costs may be warranted if the medicine is new and innovative; however, it is no longer an innovation when its patent protection expires. As patents and exclusivities expire on biological drugs, biosimilar products defined as highly similar to reference biologics are being marketed. The goal of biosimilar development is to establish a high degree of biosimilarity, not to reestablish clinical efficacy and safety. Current sophisticated analytical methods allow the detection of even small changes in quality attributes and can therefore enable sensitive monitoring of the batch-to-batch consistency and variability of the manufacturing process. The European Medicines Agency (EMA, US Food and Drug Administration (FDA, and Health Canada have determined that a reduced number of nonclinical and clinical comparative studies can be sufficient for approval with clinical data from the most sensitive indication extrapolated to other indications. Extrapolation of data is a scientifically based principle, guided by specific criteria, and if approved by the EMA, FDA, and/or Health Canada is appropriate. Enablement of extrapolation of data is a core principle of biosimilar development, based on principles of comparability and necessary to fully realize cost savings for these drugs. Keywords: biosimilars, Inflectra, infliximab, pharmacoeconomics, Canada, Europe 

  16. Further improvement of temporal resolution of seismic data by autoregressive (AR) spectral extrapolation

    Karslı, Hakan


    Seismic data have still no enough temporal resolution because of band-limited nature of available data even if it is deconvolved. However, lower and higher frequency information belonging to seismic data is missing and it is not directly recovered from seismic data. In this paper, a method originally applied by Honarvar et al. [Honarvar, F., Sheikhzadeh, H., Moles, M., Sinclair, A.N., 2004. Improving the time-resolution and signal-noise ratio of ultrasonic NDE signals. Ultrasonics 41, 755-763.] which is the combination of the most widely used Wiener deconvolution and AR spectral extrapolation in frequency domain is briefly reviewed and is applied to seismic data to improve temporal resolution further. The missing frequency information is optimally recovered by forward and backward extrapolation based on the selection of a high signal-noise ratio (SNR) of signal spectrum deconvolved in signal processing technique. The combination of the two methods is firstly tested on a variety of synthetic examples and then applied to a stacked real trace. The selection of necessary parameters in Wiener filtering and in extrapolation are discussed in detail. It is used an optimum frequency windows between 3 and 10 dB drops by comparing results from these drops, while frequency windows are used as standard between 2.8 and 3.2 dB drops in study of Honarvar et al. [Honarvar, F., Sheikhzadeh, H., Moles, M., Sinclair, A.N., 2004. Improving the time-resolution and signal-noise ratio of ultrasonic NDE signals. Ultrasonics 41, 755-763.]. The results obtained show that the application of the purposed signal processing technique considerably improves temporal resolution of seismic data when compared with the original seismic data. Furthermore, AR based spectral extrapolated data can be almost considered as reflectivity sequence of layered medium. Consequently, the combination of Wiener deconvolution and AR spectral extrapolation can reveal some details of seismic data that cannot be

  17. Extrapolating Acceleration Algorithms for Finding B—Spline Intersections Using Recursive Subdivision Techniques

    秦开怀; 范刚; 等


    The new algorithms for finding B-Spline or Bezier curves and surfaces intersections using recursive subdivision techniques are presented,which use extrapolating acceleration technique,and have convergent precision of order 2.Matrix method is used to subdivide the curves or surfaces which makes the subdivision more concise and intuitive.Dividing depths of Bezier curves and surfaces are used to subdivide the curves or surfaces adaptively.Therefore the convergent precision and the computing efficiency of finding the intersections of curves and surfaces have been improved by the methods proposed in the paper.

  18. Linear extrapolation for prediction of tensile creep compliance of polyvinyl chloride

    XIE Gang


    The universal creep equation is successful in relating the creep (ε) to the aging time (te), coefficient of retardation time (β), and intrinsic time (to ). This relation was used to treat the creep experimental data for polyvinyl chloride (PVC) specimens at a given stress and different aging times. The βgs found by the "polynomial fitting" method in this work instead of the "middle -point" method reported in the literature. The unified master line was constructed with the treated data and curves according to the universal equation. The master line can be used to predict the long -term creep behavior and lifetime by extrapolating.

  19. Mass extrapolation of quarks and leptons to higher generations

    Barik, N. (Utkal Univ., Bhubaneswar (India). Dept. of Physics)


    An empirical mass formula is tested for the basic fermion sequences of charged quarks and leptons. This relation is a generalization of Barut's mass formula for the lepton sequence (e,, tau ....). It is found that successful mass extrapolation to the third and possibly to other higher generations (N > 2) can be obtained with the first and second generation masses as inputs, which predicts the top quark mass msub(t) to be around 20 GeV. This also leads to the mass ratios between members of two different sequences (i) and (i') corresponding to the same higher generations (N > 2).

  20. Effective Elliptic Models for Efficient Wavefield Extrapolation in Anisotropic Media

    Waheed, Umair bin


    Wavefield extrapolation operator for elliptically anisotropic media offers significant cost reduction compared to that of transversely isotropic media (TI), especially when the medium exhibits tilt in the symmetry axis (TTI). However, elliptical anisotropy does not provide accurate focusing for TI media. Therefore, we develop effective elliptically anisotropic models that correctly capture the kinematic behavior of the TTI wavefield. Specifically, we use an iterative elliptically anisotropic eikonal solver that provides the accurate traveltimes for a TI model. The resultant coefficients of the elliptical eikonal provide the effective models. These effective models allow us to use the cheaper wavefield extrapolation operator for elliptic media to obtain approximate wavefield solutions for TTI media. Despite the fact that the effective elliptic models are obtained by kinematic matching using high-frequency asymptotic, the resulting wavefield contains most of the critical wavefield components, including the frequency dependency and caustics, if present, with reasonable accuracy. The methodology developed here offers a much better cost versus accuracy tradeoff for wavefield computations in TTI media, considering the cost prohibitive nature of the problem. We demonstrate the applicability of the proposed approach on the BP TTI model.

  1. FDEXTR, a program for the finite-difference solution of the coupled-channel Schrödinger equation using Richardson extrapolation

    Abrashkevich, A. G.; Abrashkevich, D. G.


    A FORTRAN-77 program is presented which solves the Sturm-Liouville problem for a system of coupled second-order differential equations by the finite difference method of the second order using the iterative Richardson extrapolation of the difference eigensolutions on a sequence of doubly condensed meshes. The same extrapolational procedure and error estimations are applied to the eigenvalues and eigenfunctions. Zero-value (Dirichlet) or zero-gradient (Neumann) boundary conditions are considered.

  2. Testing the suitability of geologic frameworks for extrapolating hydraulic properties across regional scales

    Mirus, Benjamin B.; Halford, Keith J.; Sweetkind, Donald; Fenelon, Joseph M.


    The suitability of geologic frameworks for extrapolating hydraulic conductivity (K) to length scales commensurate with hydraulic data is difficult to assess. A novel method is presented for evaluating assumed relations between K and geologic interpretations for regional-scale groundwater modeling. The approach relies on simultaneous interpretation of multiple aquifer tests using alternative geologic frameworks of variable complexity, where each framework is incorporated as prior information that assumes homogeneous K within each model unit. This approach is tested at Pahute Mesa within the Nevada National Security Site (USA), where observed drawdowns from eight aquifer tests in complex, highly faulted volcanic rocks provide the necessary hydraulic constraints. The investigated volume encompasses 40 mi3 (167 km3) where drawdowns traversed major fault structures and were detected more than 2 mi (3.2 km) from pumping wells. Complexity of the five frameworks assessed ranges from an undifferentiated mass of rock with a single unit to 14 distinct geologic units. Results show that only four geologic units can be justified as hydraulically unique for this location. The approach qualitatively evaluates the consistency of hydraulic property estimates within extents of investigation and effects of geologic frameworks on extrapolation. Distributions of transmissivity are similar within the investigated extents irrespective of the geologic framework. In contrast, the extrapolation of hydraulic properties beyond the volume investigated with interfering aquifer tests is strongly affected by the complexity of a given framework. Testing at Pahute Mesa illustrates how this method can be employed to determine the appropriate level of geologic complexity for large-scale groundwater modeling.

  3. Testing the suitability of geologic frameworks for extrapolating hydraulic properties across regional scales

    Mirus, Benjamin B.; Halford, Keith; Sweetkind, Don; Fenelon, Joe


    The suitability of geologic frameworks for extrapolating hydraulic conductivity ( K) to length scales commensurate with hydraulic data is difficult to assess. A novel method is presented for evaluating assumed relations between K and geologic interpretations for regional-scale groundwater modeling. The approach relies on simultaneous interpretation of multiple aquifer tests using alternative geologic frameworks of variable complexity, where each framework is incorporated as prior information that assumes homogeneous K within each model unit. This approach is tested at Pahute Mesa within the Nevada National Security Site (USA), where observed drawdowns from eight aquifer tests in complex, highly faulted volcanic rocks provide the necessary hydraulic constraints. The investigated volume encompasses 40 mi3 (167 km3) where drawdowns traversed major fault structures and were detected more than 2 mi (3.2 km) from pumping wells. Complexity of the five frameworks assessed ranges from an undifferentiated mass of rock with a single unit to 14 distinct geologic units. Results show that only four geologic units can be justified as hydraulically unique for this location. The approach qualitatively evaluates the consistency of hydraulic property estimates within extents of investigation and effects of geologic frameworks on extrapolation. Distributions of transmissivity are similar within the investigated extents irrespective of the geologic framework. In contrast, the extrapolation of hydraulic properties beyond the volume investigated with interfering aquifer tests is strongly affected by the complexity of a given framework. Testing at Pahute Mesa illustrates how this method can be employed to determine the appropriate level of geologic complexity for large-scale groundwater modeling.

  4. Visualization and Nowcasting for Aviation using online verified ensemble weather radar extrapolation.

    Kaltenboeck, Rudolf; Kerschbaum, Markus; Hennermann, Karin; Mayer, Stefan


    Nowcasting of precipitation events, especially thunderstorm events or winter storms, has high impact on flight safety and efficiency for air traffic management. Future strategic planning by air traffic control will result in circumnavigation of potential hazardous areas, reduction of load around efficiency hot spots by offering alternatives, increase of handling capacity, anticipation of avoidance manoeuvres and increase of awareness before dangerous areas are entered by aircraft. To facilitate this rapid update forecasts of location, intensity, size, movement and development of local storms are necessary. Weather radar data deliver precipitation analysis of high temporal and spatial resolution close to real time by using clever scanning strategies. These data are the basis to generate rapid update forecasts in a time frame up to 2 hours and more for applications in aviation meteorological service provision, such as optimizing safety and economic impact in the context of sub-scale phenomena. On the basis of tracking radar echoes by correlation the movement vectors of successive weather radar images are calculated. For every new successive radar image a set of ensemble precipitation fields is collected by using different parameter sets like pattern match size, different time steps, filter methods and an implementation of history of tracking vectors and plausibility checks. This method considers the uncertainty in rain field displacement and different scales in time and space. By validating manually a set of case studies, the best verification method and skill score is defined and implemented into an online-verification scheme which calculates the optimized forecasts for different time steps and different areas by using different extrapolation ensemble members. To get information about the quality and reliability of the extrapolation process additional information of data quality (e.g. shielding in Alpine areas) is extrapolated and combined with an extrapolation

  5. Semigroup based neural network architecture for extrapolation of mass unbalance for rotating machines in power plants

    Kim, B.H.; Velas, J.P.; Lee, K.Y [Pennsylvania State Univ., University Park, PA (United States). Dept. of Electrical Engineering


    This paper presented a mathematical method that power plant operators can use to estimate rotational mass unbalance, which is the most common source of vibration in turbine generators. An unbalanced rotor or driveshaft causes vibration and stress in the rotating part and in its supporting structure. As such, balancing the rotating part is important to minimize structural stress, minimize operator annoyance and fatigue, increase bearing life, or minimize power loss. The newly proposed method for estimating vibration on a turbine generator uses mass unbalance extrapolation based on a modified system-type neural network architecture, notably the semigroup theory used to study differential equations, partial differential equations and their combinations. Rather than relying on inaccurate vibration measurements, this method extrapolates a set of reliable mass unbalance readings from a common source of vibration. Given a set of empirical data with no analytic expression, the authors first developed an analytic description and then extended that model along a single axis. The algebraic decomposition which was used to obtain the analytic description of empirical data in the semigroup form involved the product of a coefficient vector and a basis set of vectors. The proposed approach was simulated on empirical data. The concept can also be tested in many other engineering and non-engineering problems. 23 refs., 11 figs.

  6. Determination of the true null electrode spacing of an extrapolation chamber for X-ray dosimetry

    Figueiredo, M.T.T.; Bastos, F.M.; Silva, T.A. da, E-mail:, E-mail:, E-mail: [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil). Pos-Graduacao em Ciencia e Tecnologia da Radiacao, Minerais e Materiais


    An accurate determination of the actual null distance is critical for the establishment of primary measurement method for absorbed dose in tissue, since the concept of the true null electrode spacing is used to define the sensitive volume of an extrapolation chamber. In this paper, a critical analysis of two methodologies for determining the true null electrode spacing of an extrapolation chamber was done. Firstly, the ionization current as a function of electrode spacing was measured in ISO 4037 low energy X-ray beams. In the second procedure, a LC Bridge was used to measure the capacitance between the electrodes of a 23392 Böhm model PTW ionization chamber and a reliable relationship between capacitance and relative distance was established. Results showed that the true null spacing values varied from 0.0015 to 0.38 mm. Since capacitance meters with high resolution are not always available in calibration laboratories, the second method showed values with large uncertainties. The first method proved to be highly sensitive to the quality of the X-ray beams used. (author)

  7. 3D Drop Size Distribution Extrapolation Algorithm Using a Single Disdrometer

    Lane, John


    Determining the Z-R relationship (where Z is the radar reflectivity factor and R is rainfall rate) from disdrometer data has been and is a common goal of cloud physicists and radar meteorology researchers. The usefulness of this quantity has traditionally been limited since radar represents a volume measurement, while a disdrometer corresponds to a point measurement. To solve that problem, a 3D-DSD (drop-size distribution) method of determining an equivalent 3D Z-R was developed at the University of Central Florida and tested at the Kennedy Space Center, FL. Unfortunately, that method required a minimum of three disdrometers clustered together within a microscale network (.1-km separation). Since most commercial disdrometers used by the radar meteorology/cloud physics community are high-cost instruments, three disdrometers located within a microscale area is generally not a practical strategy due to the limitations of these kinds of research budgets. A relatively simple modification to the 3D-DSD algorithm provides an estimate of the 3D-DSD and therefore, a 3D Z-R measurement using a single disdrometer. The basis of the horizontal extrapolation is mass conservation of a drop size increment, employing the mass conservation equation. For vertical extrapolation, convolution of a drop size increment using raindrop terminal velocity is used. Together, these two independent extrapolation techniques provide a complete 3DDSD estimate in a volume around and above a single disdrometer. The estimation error is lowest along a vertical plane intersecting the disdrometer position in the direction of wind advection. This work demonstrates that multiple sensors are not required for successful implementation of the 3D interpolation/extrapolation algorithm. This is a great benefit since it is seldom that multiple sensors in the required spatial arrangement are available for this type of analysis. The original software (developed at the University of Central Florida, 1998.- 2000) has

  8. National pattern for the realization of the unit of the dose speed absorbed in air for beta radiation. (Method: Ionometer, cavity of Bragg-Gray implemented in an extrapolation chamber with electrodes of variable separation, exposed to a field of beta radiation of {sup 90}Sr/{sup 90}Y); Patron Nacional para la realizacion de la unidad de la rapidez de dosis absorbida en aire para radiacion beta. (Metodo: Ionometrico, cavidad de Bragg-Gray implementada en una camara de extrapolacion con electrodos de separacion variable, expuesta a un campo de radiacion beta de {sup 90}Sr/{sup 90}Y)

    Alvarez R, M. T.; Morales P, J. R. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)


    From the year of 1987 the Department of Metrology of the ININ, in their Secondary Laboratory of Calibration Dosimetric, has a patron group of sources of radiation beta and an extrapolation chamber of electrodes of variable separation.Their objective is to carry out of the unit of the dose speed absorbed in air for radiation beta. It uses the ionometric method, cavity Bragg-Gray in the extrapolation chamber with which it counts. The services that offers are: i) it Calibration : Radioactive Fuentes of radiation beta, isotopes: {sup 90}Sr/{sup 90}Y; Ophthalmic applicators {sup 9}0{sup S}r/{sup 90}Y; Instruments for detection of beta radiation with to the radiological protection: Ionization chambers, Geiger-Muller, etc.; Personal Dosemeters. ii) Irradiation with beta radiation of materials to the investigation. (Author)

  9. UFOs in the LHC: Observations, studies and extrapolations

    Baer, T; Cerutti, F; Ferrari, A; Garrel, N; Goddard, B; Holzer, EB; Jackson, S; Lechner, A; Mertens, V; Misiowiec, M; Nebot del Busto, E; Nordt, A; Uythoven, J; Vlachoudis, V; Wenninger, J; Zamantzas, C; Zimmermann, F; Fuster, N


    Unidentified falling objects (UFOs) are potentially a major luminosity limitation for nominal LHC operation. They are presumably micrometer sized dust particles which lead to fast beam losses when they interact with the beam. With large-scale increases and optimizations of the beam loss monitor (BLM) thresholds, their impact on LHC availability was mitigated from mid 2011 onwards. For higher beam energy and lower magnet quench limits, the problem is expected to be considerably worse, though. In 2011/12, the diagnostics for UFO events were significantly improved: dedicated experiments and measurements in the LHC and in the laboratory were made and complemented by FLUKA simulations and theoretical studies. The state of knowledge, extrapolations for nominal LHC operation and mitigation strategies are presented

  10. Spatial extrapolation of lysimeter results using thermal infrared imaging

    Voortman, B. R.; Bosveld, F. C.; Bartholomeus, R. P.; Witte, J. P. M.


    Measuring evaporation (E) with lysimeters is costly and prone to numerous errors. By comparing the energy balance and the remotely sensed surface temperature of lysimeters with those of the undisturbed surroundings, we were able to assess the representativeness of lysimeter measurements and to quantify differences in evaporation caused by spatial variations in soil moisture content. We used an algorithm (the so called 3T model) to spatially extrapolate the measured E of a reference lysimeter based on differences in surface temperature, net radiation and soil heat flux. We tested the performance of the 3T model on measurements with multiple lysimeters (47.5 cm inner diameter) and micro lysimeters (19.2 cm inner diameter) installed in bare sand, moss and natural dry grass. We developed different scaling procedures using in situ measurements and remotely sensed surface temperatures to derive spatially distributed estimates of Rn and G and explored the physical soundness of the 3T model. Scaling of Rn and G considerably improved the performance of the 3T model for the bare sand and moss experiments (Nash-Sutcliffe efficiency (NSE) increasing from 0.45 to 0.89 and from 0.81 to 0.94, respectively). For the grass surface, the scaling procedures resulted in a poorer performance of the 3T model (NSE decreasing from 0.74 to 0.70), which was attributed to effects of shading and the difficulty to correct for differences in emissivity between dead and living biomass. The 3T model is physically unsound if the field scale average air temperature, measured at an arbitrarily chosen reference height, is used as input to the model. The proposed measurement system is relatively cheap, since it uses a zero tension (freely draining) lysimeter which results are extrapolated by the 3T model to the unaffected surroundings. The system is promising for bridging the gap between ground observations and satellite based estimates of E.

  11. Image reconstruction: a unifying model for resolution enhancement and data extrapolation. Tutorial

    Shieh, Hsin M.; Byrne, Charles L.; Fiddy, Michael A.


    In reconstructing an object function F(r) from finitely many noisy linear-functional values ∫F(r)Gn(r)dr we face the problem that finite data, noisy or not, are insufficient to specify F(r) uniquely. Estimates based on the finite data may succeed in recovering broad features of F(r), but may fail to resolve important detail. Linear and nonlinear, model-based data extrapolation procedures can be used to improve resolution, but at the cost of sensitivity to noise. To estimate linear-functional values of F(r) that have not been measured from those that have been, we need to employ prior information about the object F(r), such as support information or, more generally, estimates of the overall profile of F(r). One way to do this is through minimum-weighted-norm (MWN) estimation, with the prior information used to determine the weights. The MWN approach extends the Gerchberg-Papoulis band-limited extrapolation method and is closely related to matched-filter linear detection, the approximation of the Wiener filter, and to iterative Shannon-entropy-maximization algorithms. Nonlinear versions of the MWN method extend the noniterative, Burg, maximum-entropy spectral-estimation procedure.

  12. Making the most of what we have: application of extrapolation approaches in wildlife transfer models

    Beresford, Nicholas A.; Barnett, Catherine L.; Wells, Claire [NERC Centre for Ecology and Hydrology, Lancaster Environment Center, Library Av., Bailrigg, Lancaster, LA1 4AP (United Kingdom); School of Environment and Life Sciences, University of Salford, Manchester, M4 4WT (United Kingdom); Wood, Michael D. [School of Environment and Life Sciences, University of Salford, Manchester, M4 4WT (United Kingdom); Vives i Batlle, Jordi [Belgian Nuclear Research Centre, Boeretang 200, 2400 Mol (Belgium); Brown, Justin E.; Hosseini, Ali [Norwegian Radiation Protection Authority, P.O. Box 55, N-1332 Oesteraas (Norway); Yankovich, Tamara L. [International Atomic Energy Agency, Vienna International Centre, 1400, Vienna (Austria); Bradshaw, Clare [Department of Ecology, Environment and Plant Sciences, Stockholm University, SE-10691 (Sweden); Willey, Neil [Centre for Research in Biosciences, University of the West of England, Coldharbour Lane, Frenchay, Bristol BS16 1QY (United Kingdom)


    Radiological environmental protection models need to predict the transfer of many radionuclides to a large number of organisms. There has been considerable development of transfer (predominantly concentration ratio) databases over the last decade. However, in reality it is unlikely we will ever have empirical data for all the species-radionuclide combinations which may need to be included in assessments. To provide default values for a number of existing models/frameworks various extrapolation approaches have been suggested (e.g. using data for a similar organism or element). This paper presents recent developments in two such extrapolation approaches, namely phylogeny and allometry. An evaluation of how extrapolation approaches have performed and the potential application of Bayesian statistics to make best use of available data will also be given. Using a Residual Maximum Likelihood (REML) mixed-model regression we initially analysed a dataset comprising 597 entries for 53 freshwater fish species from 67 sites to investigate if phylogenetic variation in transfer could be identified. The REML analysis generated an estimated mean value for each species on a common scale after taking account of the effect of the inter-site variation. Using an independent dataset, we tested the hypothesis that the REML model outputs could be used to predict radionuclide activity concentrations in other species from the results of a species which had been sampled at a specific site. The outputs of the REML analysis accurately predicted {sup 137}Cs activity concentrations in different species of fish from 27 lakes. Although initially investigated as an extrapolation approach the output of this work is a potential alternative to the highly site dependent concentration ratio model. We are currently applying this approach to a wider range of organism types and different ecosystems. An initial analysis of these results will be presented. The application of allometric, or mass

  13. Monte Carlo based approach to the LS–NaI 4πβ–γ anticoincidence extrapolation and uncertainty.

    Fitzgerald, R


    The 4πβ–γ anticoincidence method is used for the primary standardization of β−, β+, electron capture (EC), α, and mixed-mode radionuclides. Efficiency extrapolation using one or more γ ray coincidence gates is typically carried out by a low-order polynomial fit. The approach presented here is to use a Geant4-based Monte Carlo simulation of the detector system to analyze the efficiency extrapolation. New code was developed to account for detector resolution, direct γ ray interaction with the PMT, and implementation of experimental β-decay shape factors. The simulation was tuned to 57Co and 60Co data, then tested with 99mTc data, and used in measurements of 18F, 129I, and 124I. The analysis method described here offers a more realistic activity value and uncertainty than those indicated from a least-squares fit alone.

  14. Suppression of MRI Truncation Artifacts Using Total Variation Constrained Data Extrapolation

    Kai Tobias Block


    Full Text Available The finite sampling of k-space in MRI causes spurious image artifacts, known as Gibbs ringing, which result from signal truncation at the border of k-space. The effect is especially visible for acquisitions at low resolution and commonly reduced by filtering at the expense of image blurring. The present work demonstrates that the simple assumption of a piecewise-constant object can be exploited to extrapolate the data in k-space beyond the measured part. The method allows for a significant reduction of truncation artifacts without compromising resolution. The assumption translates into a total variation minimization problem, which can be solved with a nonlinear optimization algorithm. In the presence of substantial noise, a modified approach offers edge-preserving denoising by allowing for slight deviations from the measured data in addition to supplementing data. The effectiveness of these methods is demonstrated with simulations as well as experimental data for a phantom and human brain in vivo.

  15. Removal of lipid artifacts in 1H spectroscopic imaging by data extrapolation.

    Haupt, C I; Schuff, N; Weiner, M W; Maudsley, A A


    Proton MR spectroscopic imaging (MRSI) of human cerebral cortex is complicated by the presence of an intense signal from subcutaneous lipids, which, if not suppressed before Fourier reconstruction, causes ringing and signal contamination throughout the metabolite images as a result of limited k-space sampling. In this article, an improved reconstruction of the lipid region is obtained using the Papoulis-Gerchberg algorithm. This procedure makes use of the narrow-band-limited nature of the subcutaneous lipid signal to extrapolate to higher k-space values without alteration of the metabolite signal region. Using computer simulations and in vivo experimental studies, the implementation and performance of this algorithm were examined. This method was found to permit MRSI brain spectra to be obtained without applying any lipid suppression during data acquisition, at echo times of 50 ms and longer. When applied together with optimized acquisition methods, this provides an effective procedure for imaging metabolite distributions in cerebral cortical surface regions.

  16. A Visual Basic Program to Generate Sediment Grain-Size Statistics and Extrapolate Particle Distributions

    Poppe, L. J.; Eliason, A. E.; Hastings, M. E.


    Methods that describe and summarize grain-size distributions are important to geologists because of the large amount of information contained in textural data sets. Therefore, to facilitate reduction of sedimentologic data, we have written a computer program (GSSTAT) to generate grain-size statistics and extrapolate particle distributions. Our program is written in Microsoft Visual Basic 6.0, runs on Windows 95/98/ME/NT/2000/XP computers, provides a window to facilitate execution, and allows users to select options with mouse-click events or through interactive dialogue boxes. The program permits users to select output in either inclusive graphics or moment statistics, to extrapolate distributions to the colloidal-clay boundary by three methods, and to convert between frequency and cumulative frequency percentages. Detailed documentation is available within the program. Input files to the program must be comma-delimited ASCII text and have 20 fields that include: sample identifier, latitude, longitude, and the frequency or cumulative frequency percentages of the whole-phi fractions from 11 phi through -5 phi. Individual fields may be left blank, but the sum of the phi fractions must total 100% (+/- 0.2%). The program expects the first line of the input file to be a header showing attribute names; no embedded commas are allowed in any of the fields. Error messages warn the user of potential problems. The program generates an output file in the requested destination directory and allows the user to view results in a display window to determine the occurrence of errors. The output file has a header for its first line, but now has 34 fields; the original descriptor fields plus percentages of gravel, sand, silt and clay, statistics, classification, verbal descriptions, frequency or cumulative frequency percentages of the whole- phi fractions from 13 phi through -5 phi, and a field for error messages. If the user has selected extrapolation, the two additional phi

  17. Classification of stop place in consonant-vowel contexts using feature extrapolation of acoustic-phonetic features in telephone speech.

    Lee, Jung-Won; Choi, Jeung-Yoon; Kang, Hong-Goo


    Knowledge-based speech recognition systems extract acoustic cues from the signal to identify speech characteristics. For channel-deteriorated telephone speech, acoustic cues, especially those for stop consonant place, are expected to be degraded or absent. To investigate the use of knowledge-based methods in degraded environments, feature extrapolation of acoustic-phonetic features based on Gaussian mixture models is examined. This process is applied to a stop place detection module that uses burst release and vowel onset cues for consonant-vowel tokens of English. Results show that classification performance is enhanced in telephone channel-degraded speech, with extrapolated acoustic-phonetic features reaching or exceeding performance using estimated Mel-frequency cepstral coefficients (MFCCs). Results also show acoustic-phonetic features may be combined with MFCCs for best performance, suggesting these features provide information complementary to MFCCs.

  18. Prediction of long-term creep behaviour and lifetime of polystyrene by linear extrapolation

    胡立江; 赵树山


    The universal creep function derived from the kinetic equations is successful in relating the creep (ε) to the aging time (ta), coefficient of retardation time (β), and intrinsic time (t0). The relation was used to treat the creep experimental data for polystyrene (PS) specimens which were aged at a given temperature and different times (short-term) and tested at a certain temperature and different stress levels. Then unified master lines were constructed with the treated data and curves according to the universal equation. The master lines can be used to predict the long-term creep behaviour and lifetime by extrapolating to a required ultimate strain. The verifications of results obtained with this method were shown as well.

  19. Extrapolated intermediate Hamiltonian coupled-cluster approach: theory and pilot application to electron affinities of alkali atoms.

    Eliav, Ephraim; Vilkas, Marius J; Ishikawa, Yasuyuki; Kaldor, Uzi


    The intermediate Hamiltonian (IH) coupled-cluster method makes possible the use of very large model spaces in coupled-cluster calculations without running into intruder states. This is achieved at the cost of approximating some of the IH matrix elements, which are not taken at their rigorous effective Hamiltonian (EH) value. The extrapolated intermediate Hamiltonian (XIH) approach proposed here uses a parametrized IH and extrapolates it to the full EH, with model spaces larger by several orders of magnitude than those possible in EH coupled-cluster methods. The flexibility and resistance to intruders of the IH approach are thus combined with the accuracy of full EH. Various extrapolation schemes are described. A pilot application to the electron affinities (EAs) of alkali atoms is presented, where converged EH results are obtained by XIH for model spaces of approximately 20,000 determinants; direct EH calculations converge only for a one-dimensional model space. Including quantum electrodynamic effects, the average XIH error for the EAs is 0.6 meV and the largest error is 1.6 meV. A new reference estimate for the EA of Fr is proposed at 486+/-2 meV.

  20. Patient-bounded extrapolation using low-dose priors for volume-of-interest imaging in C-arm CT

    Xia, Y.; Maier, A.; Berger, M.; Hornegger, J. [Pattern Recognition Lab, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen 91058 (Germany); Bauer, S. [Siemens AG, Healthcare Sector, Forchheim 91301 (Germany)


    Purpose: Three-dimensional (3D) volume-of-interest (VOI) imaging with C-arm systems provides anatomical information in a predefined 3D target region at a considerably low x-ray dose. However, VOI imaging involves laterally truncated projections from which conventional reconstruction algorithms generally yield images with severe truncation artifacts. Heuristic based extrapolation methods, e.g., water cylinder extrapolation, typically rely on techniques that complete the truncated data by means of a continuity assumption and thus appear to be ad-hoc. It is our goal to improve the image quality of VOI imaging by exploiting existing patient-specific prior information in the workflow. Methods: A necessary initial step prior to a 3D acquisition is to isocenter the patient with respect to the target to be scanned. To this end, low-dose fluoroscopic x-ray acquisitions are usually applied from anterior–posterior (AP) and medio-lateral (ML) views. Based on this, the patient is isocentered by repositioning the table. In this work, we present a patient-bounded extrapolation method that makes use of these noncollimated fluoroscopic images to improve image quality in 3D VOI reconstruction. The algorithm first extracts the 2D patient contours from the noncollimated AP and ML fluoroscopic images. These 2D contours are then combined to estimate a volumetric model of the patient. Forward-projecting the shape of the model at the eventually acquired C-arm rotation views gives the patient boundary information in the projection domain. In this manner, we are in the position to substantially improve image quality by enforcing the extrapolated line profiles to end at the known patient boundaries, derived from the 3D shape model estimate. Results: The proposed method was evaluated on eight clinical datasets with different degrees of truncation. The proposed algorithm achieved a relative root mean square error (rRMSE) of about 1.0% with respect to the reference reconstruction on

  1. Extrapolating human judgments from skip-gram vector representations of word meaning.

    Hollis, Geoff; Westbury, Chris; Lefsrud, Lianne


    There is a growing body of research in psychology that attempts to extrapolate human lexical judgments from computational models of semantics. This research can be used to help develop comprehensive norm sets for experimental research, it has applications to large-scale statistical modelling of lexical access and has broad value within natural language processing and sentiment analysis. However, the value of extrapolated human judgments has recently been questioned within psychological research. Of primary concern is the fact that extrapolated judgments may not share the same pattern of statistical relationship with lexical and semantic variables as do actual human judgments; often the error component in extrapolated judgments is not psychologically inert, making such judgments problematic to use for psychological research. We present a new methodology for extrapolating human judgments that partially addresses prior concerns of validity. We use this methodology to extrapolate human judgments of valence, arousal, dominance, and concreteness for 78,286 words. We also provide resources for users to extrapolate these human judgments for three million English words and short phrases. Applications for large sets of extrapolated human judgments are demonstrated and discussed.

  2. Improvement of the Earthquake Early Warning System with Wavefield Extrapolation with Apparent Velocity and Direction

    Sato, A.; Yomogida, K.


    The early warning system operated by Japan Meteorological Agency (JMA) has been available in public since October 2007.The present system is still not effective in cases, that we cannot assume a nearly circular wavefront expansion from a source. We propose a new approach based on the extrapolation of the early observed wavefield alone without estimating its epicenter. The idea is similar to the migration method in exploration seismology, but we use not only the information of wave field at an early stage (i.e., at time T2 in Figure, but also its normal derivatives the difference between T1 and T2), that is, we utilize the apparent velocity and direction of early-stage wave propagation to predict the wavefield later (at T3 in Fig.). For the extrapolation of wavefield, we need a reliable Green's function from the observed point to a target point at which the wave arrives later. Since the complete 3-D wave propagation is extremely complex, particularly in and around Japan of highly heterogeneous structures, we shall consider a phenomenological 2-D Green's function, that is, a wavefront propagates on the surface with a certain apparent velocity and direction of P wave. This apparent velocity and direction may vary significantly depending on, for example, event depth and an area of propagation, so we examined those of P wave propagating in Japan in various situations. For example, the velocity of shallow events in Hokkaido is 7.1km/s while that in Nagano prefecture is about 5.5km/s. In addition, the apparent velocity depends on event depth, 7.1km/s for the depth of 10km and 8.9km/s for 100km in Hokkaido. We also conducted f-k array analyses of adjacent five or six stations where we can accurately estimate the apparent velocity and direction of P wave. For deep events with relatively simple waveforms, they are easily obtained, but we may need site corrections to enhance correlations of waveforms among stations for shallow ones. In the above extrapolation scheme, we can

  3. The value of remote sensing techniques in supporting effective extrapolation across multiple marine spatial scales.

    Strong, James Asa; Elliott, Michael


    The reporting of ecological phenomena and environmental status routinely required point observations, collected with traditional sampling approaches to be extrapolated to larger reporting scales. This process encompasses difficulties that can quickly entrain significant errors. Remote sensing techniques offer insights and exceptional spatial coverage for observing the marine environment. This review provides guidance on (i) the structures and discontinuities inherent within the extrapolative process, (ii) how to extrapolate effectively across multiple spatial scales, and (iii) remote sensing techniques and data sets that can facilitate this process. This evaluation illustrates that remote sensing techniques are a critical component in extrapolation and likely to underpin the production of high-quality assessments of ecological phenomena and the regional reporting of environmental status. Ultimately, is it hoped that this guidance will aid the production of robust and consistent extrapolations that also make full use of the techniques and data sets that expedite this process.

  4. Can Pearlite form Outside of the Hultgren Extrapolation of the Ae3 and Acm Phase Boundaries?

    Aranda, M. M.; Rementeria, R.; Capdevila, C.; Hackenberg, R. E.


    It is usually assumed that ferrous pearlite can form only when the average austenite carbon concentration C 0 lies between the extrapolated Ae3 ( γ/ α) and Acm ( γ/ θ) phase boundaries (the "Hultgren extrapolation"). This "mutual supersaturation" criterion for cooperative lamellar nucleation and growth is critically examined from a historical perspective and in light of recent experiments on coarse-grained hypoeutectoid steels which show pearlite formation outside the Hultgren extrapolation. This criterion, at least as interpreted in terms of the average austenite composition, is shown to be unnecessarily restrictive. The carbon fluxes evaluated from Brandt's solution are sufficient to allow pearlite growth both inside and outside the Hultgren Extrapolation. As for the feasibility of the nucleation events leading to pearlite, the only criterion is that there are some local regions of austenite inside the Hultgren Extrapolation, even if the average austenite composition is outside.

  5. On the existence of the optimal order for wavefunction extrapolation in Born-Oppenheimer molecular dynamics

    Fang, Jun; Song, Haifeng; Wang, Han


    Wavefunction extrapolation greatly reduces the number of self-consistent field (SCF) iterations and thus the overall computational cost of Born-Oppenheimer molecular dynamics (BOMD) that is based on the Kohn-Sham density functional theory. Going against the intuition that the higher order of extrapolation possesses a better accuracy, we demonstrate, from both theoretical and numerical perspectives, that the extrapolation accuracy firstly increases and then decreases with respect to the order, and an optimal extrapolation order in terms of minimal number of SCF iterations always exists. We also prove that the optimal order tends to be larger when using larger MD time steps or more strict SCF convergence criteria. By example BOMD simulations of a solid copper system, we show that the optimal extrapolation order covers a broad range when varying the MD time step or the SCF convergence criterion. Therefore, we suggest the necessity for BOMD simulation packages to open the user interface and to provide more choice...

  6. Direct extrapolation of radial profile data to a self-ignited fusion reactor based on the gyro-Bohm model

    Miyazawa, J., E-mail: [National Institute for Fusion Science, 322-6 Oroshi, Toki, Gifu 509-5292 (Japan); Goto, T.; Morisaki, T.; Goto, M.; Sakamoto, R.; Motojima, G.; Peterson, B.J.; Suzuki, C.; Ida, K.; Yamada, H.; Sagara, A. [National Institute for Fusion Science, 322-6 Oroshi, Toki, Gifu 509-5292 (Japan)


    Highlights: Black-Right-Pointing-Pointer The DPE method predicts temperature and density profiles in a fusion reactor. Black-Right-Pointing-Pointer This method is based on the gyro-Bohm type parameter dependence. Black-Right-Pointing-Pointer The size of fusion reactor is determined to fulfill the power balance. Black-Right-Pointing-Pointer The reactor size is proportional to a factor and -4/3 power of the magnetic field. Black-Right-Pointing-Pointer This factor can be a measure of plasma performance like the fusion triple product. - Abstract: A new method named direct profile extrapolation (DPE) has been developed to estimate the radial profiles of temperature and density in a fusion reactor. This method directly extrapolates the radial profiles observed in present experiments to the fusion reactor condition assuming gyro-Bohm type parameter dependence. The magnetohydrodynamic equilibrium that fits the experimental profile data is used to determine the plasma volume. Four enhancement factors for the magnetic field strength, the density, the plasma beta, and the energy confinement are assumed. Then, the plasma size is determined so as to fulfill the power balance in the reactor plasma. The plasma performance can be measured by an index, C{sub exp}, introduced in the DPE method. The minimum magnetic stored energy of the fusion reactor to achieve self-ignition is shown to be proportional to the cube of C{sub exp} and inversely proportional to the square of magnetic field strength. Using this method, the design window of a self-ignited fusion reactor that can be extrapolated from recent experimental results in the Large Helical Device (LHD) is considered. Also discussed is how large an enhancement is needed for the LHD experiment to ensure the helical reactor design of FFHR2m2.

  7. CARDIOVASCULAR RISK ASSESSMENT AND SUPPORT TECHNIQUES Whole blood viscosity assessment issues I: Extrapolation chart and reference values

    Ezekiel Uba Nwose


    Full Text Available Background: There are many different methods for the assessment of whole blood viscosity, but not every pathology unit has equipment for any of the methods. However, a validated arithmetic method exists whereby whole blood viscosity can be extrapolated from haematocrit and total serum proteins. Aims: The objective of this work is to develop an algorithm in the form of a chart by which clinicians can easily extrapolate whole blood viscosity values in their consulting rooms or on the ward. Another objective is to suggest normal, subnormal and critical reference ranges applicable to this method. Materials and Methods: Whole blood viscosity at high shear stress was determined, from various possible pairs of haematocrit and total proteins. A chart was formulated so that whole blood viscosity can be extrapolated. After determination of two standard deviations from the mean and ascertainment of symmetric distribution, normal and abnormal reference ranges were defined. Results: The clinicians’ user-friendly chart is presented. Considering presumptive lower and upper limits, the continuum of ≤14.28, 14.29 – 15.00, 15.01 – 19.01, 19.02 – 19.39 and ≥19.40 (208 Sec-1 is obtained as reference ranges for critically low, subnormal low, normal, subnormal high and critically high whole blood viscosity levels respectively. Conclusion: This article advances a validated method to provide a user-friendly chart that would enable clinicians to assess whole blood viscosity for any patients who has results for full blood count and total proteins. It would make the assessment of whole blood viscosity costless and the neglect of a known cardiovascular risk factor less excusable.

  8. Chiral extrapolation of nucleon axial charge gA in effective field theory

    Li, Hong-na; Wang, P.


    The extrapolation of nucleon axial charge gA is investigated within the framework of heavy baryon chiral effective field theory. The intermediate octet and decuplet baryons are included in the one loop calculation. Finite range regularization is applied to improve the convergence in the quark-mass expansion. The lattice data from three different groups are used for the extrapolation. At physical pion mass, the extrapolated gA are all smaller than the experimental value. Supported by National Natural Science Foundation of China (11475186) and Sino-German CRC 110 (NSFC 11621131001)

  9. Extrapolation from , vector-valued inequalities and applications in the Schrödinger settings

    Tang, Lin


    In this paper, we generalize the A ∞ extrapolation theorem ( Cruz-Uribe-Martell-Pérez, Extrapolation from A ∞ weights and applications, J. Funct. Anal. 213 (2004), 412-439) and the A p extrapolation theorem of Rubio de Francia to Schrödinger settings. In addition, we also establish weighted vector-valued inequalities for Schrödinger-type maximal operators by using weights belonging to which includes A p . As applications, we establish weighted vector-valued inequalities for some Schrödinger-type operators.

  10. Associação de cetamina S(+ e midazolam pelo método convencional de cálculo e pela extrapolação alométrica em bugios-ruivo (Alouatta guariba clamitans: resposta clínica e cardiorrespiratória S(+ ketamine and midazolam association by the conventional method of calculation and allometric extrapolation in red howler monkeys (Alouatta guariba clamitans: clinical and cardiopulmonary response

    Joana Aurora Braun Chagas


    Full Text Available O objetivo deste estudo foi avaliar o protocolo de contenção química com cetamina S(+ e midazolam em bugios-ruivos, comparando o cálculo de doses pelo método convencional e o método de extrapolação alométrica. Foram utilizados 12 macacos bugios (Alouatta guariba clamitans hígidos, com peso médio de 4,84±0,97kg, de ambos os sexos. Após jejum alimentar de 12 horas e hídrico de seis horas, realizou-se contenção física manual e aferiram-se os seguintes parâmetros: frequência cardíaca (FC, frequência respiratória (f, tempo de preenchimento capilar (TPC, temperatura retal (TR, pressão arterial sistólica não invasiva (PANI e valores de hemogasometria arterial. Posteriormente, os animais foram alocados em dois grupos: GC (Grupo Convencional, n=06, os quais receberam cetamina S(+ (5mg kg-1 e midazolam (0,5mg kg-1, pela via intramuscular, com doses calculadas pelo método convencional; e GA (Grupo Alometria, n=06, os quais receberam o mesmo protocolo, pela mesma via, utilizando-se as doses calculadas pelo método de extrapolação alométrica. Os parâmetros descritos foram mensurados novamente nos seguintes momentos: M5, M10, M20 e M30 (cinco, 10, 20 e 30 minutos após a administração dos fármacos, respectivamente. Também foram avaliados: qualidade de miorrelaxamento, reflexo podal e caudal, pinçamento interdigital, tempo para indução de decúbito, tempo hábil de sedação, qualidade de sedação, e tempo e qualidade de recuperação. O GA apresentou menor tempo para indução ao decúbito, maior grau e tempo de sedação, bem como redução significativa da FC e PANI de M5 até M30, quando comparado ao GC. Conclui-se que o grupo no qual o cálculo de dose foi realizado por meio da alometria (GA apresentou melhor grau de relaxamento muscular e sedação, sem produzir depressão cardiorrespiratória significativa.The aim of this study was to evaluate a protocol of chemical restraint comparing the conventional method of

  11. Interpolation and extrapolation problems of multivariate regression in analytical chemistry: benchmarking the robustness on near-infrared (NIR) spectroscopy data.

    Balabin, Roman M; Smirnov, Sergey V


    Modern analytical chemistry of industrial products is in need of rapid, robust, and cheap analytical methods to continuously monitor product quality parameters. For this reason, spectroscopic methods are often used to control the quality of industrial products in an on-line/in-line regime. Vibrational spectroscopy, including mid-infrared (MIR), Raman, and near-infrared (NIR), is one of the best ways to obtain information about the chemical structures and the quality coefficients of multicomponent mixtures. Together with chemometric algorithms and multivariate data analysis (MDA) methods, which were especially created for the analysis of complicated, noisy, and overlapping signals, NIR spectroscopy shows great results in terms of its accuracy, including classical prediction error, RMSEP. However, it is unclear whether the combined NIR + MDA methods are capable of dealing with much more complex interpolation or extrapolation problems that are inevitably present in real-world applications. In the current study, we try to make a rather general comparison of linear, such as partial least squares or projection to latent structures (PLS); "quasi-nonlinear", such as the polynomial version of PLS (Poly-PLS); and intrinsically non-linear, such as artificial neural networks (ANNs), support vector regression (SVR), and least-squares support vector machines (LS-SVM/LSSVM), regression methods in terms of their robustness. As a measure of robustness, we will try to estimate their accuracy when solving interpolation and extrapolation problems. Petroleum and biofuel (biodiesel) systems were chosen as representative examples of real-world samples. Six very different chemical systems that differed in complexity, composition, structure, and properties were studied; these systems were gasoline, ethanol-gasoline biofuel, diesel fuel, aromatic solutions of petroleum macromolecules, petroleum resins in benzene, and biodiesel. Eighteen different sample sets were used in total. General

  12. Nonparametric reconstruction of the cosmic expansion with local regression smoothing and simulation extrapolation

    Montiel, Ariadna; Sendra, Irene; Escamilla-Rivera, Celia; Salzano, Vincenzo


    In this work we present a nonparametric approach, which works on minimal assumptions, to reconstruct the cosmic expansion of the Universe. We propose to combine a locally weighted scatterplot smoothing method and a simulation-extrapolation method. The first one (Loess) is a nonparametric approach that allows to obtain smoothed curves with no prior knowledge of the functional relationship between variables nor of the cosmological quantities. The second one (Simex) takes into account the effect of measurement errors on a variable via a simulation process. For the reconstructions we use as raw data the Union2.1 Type Ia Supernovae compilation, as well as recent Hubble parameter measurements. This work aims to illustrate the approach, which turns out to be a self-sufficient technique in the sense we do not have to choose anything by hand. We examine the details of the method, among them the amount of observational data needed to perform the locally weighted fit which will define the robustness of our reconstructio...

  13. Application of a framework for extrapolating chemical effects across species in pathways controlled by estrogen receptor-á

    Cross-species extrapolation of toxicity data from limited surrogate test organisms to all wildlife with potential of chemical exposure remains a key challenge in ecological risk assessment. A number of factors affect extrapolation, including the chemical exposure, pharmacokinetic...

  14. Establishing macroecological trait datasets: digitalization, extrapolation, and validation of diet preferences in terrestrial mammals worldwide

    Kissling, W. Daniel; Dalby, Lars; Fløjgaard, Camilla


    and cladewide data sources and errors of data entry by multiple data recorders were assessed. We then developed a hierarchical extrapolation procedure to fill-in diet information for species with missing information. Missing data were extrapolated with information from other taxonomic levels (genus, other...... species within the same genus, or family) and this extrapolation was subsequently validated both internally (with a jack-knife approach applied to the compiled species-level diet data) and externally (using independent species-level diet information from a comprehensive continentwide data source). Finally...... information (48% of all terrestrial mammal species), and only rarely from other species within the same genus (6%) or from family level (8%). Internal and external validation showed that: (1) extrapolations were most reliable for primary food items; (2) several diet categories (“Animal”, “Mammal...

  15. Melting of "non-magic" argon clusters and extrapolation to the bulk limit

    Senn, Florian; Wiebke, Jonas; Schumann, Ole; Gohr, Sebastian; Schwerdtfeger, Peter; Pahl, Elke


    The melting of argon clusters ArN is investigated by applying a parallel-tempering Monte Carlo algorithm for all cluster sizes in the range from 55 to 309 atoms. Extrapolation to the bulk gives a melting temperature of 85.9 K in good agreement with the previous value of 88.9 K using only Mackay icosahedral clusters for the extrapolation [E. Pahl, F. Calvo, L. Koči, and P. Schwerdtfeger, "Accurate melting temperatures for neon and argon from ab initio Monte Carlo simulations," Angew. Chem., Int. Ed. 47, 8207 (2008)]. Our results for argon demonstrate that for the extrapolation to the bulk one does not have to restrict to magic number cluster sizes in order to obtain good estimates for the bulk melting temperature. However, the extrapolation to the bulk remains a problem, especially for the systematic selection of suitable cluster sizes.

  16. Energy confinement scaling and the extrapolation to ITER



    The fusion performance of ITER is predicted using three different techniques; statistical analysis of the global energy confinement data, a dimensionless physics parameter similarity method and the full 1-D modeling of the plasma profiles. Although the three methods give overlapping predictions for the performance of ITER, the confidence interval of all of the techniques is still quite wide.

  17. Optimal channels of the Garvey-Kelson mass relations in extrapolation

    Bao, Man; He, Zeng; Cheng, YiYuan; Zhao, YuMin; Arima, Akito


    Garvey-Kelson mass relations connect nuclear masses of neighboring nuclei within high accuracy, and provide us with convenient tools in predicting unknown masses by extrapolations from existent experimental data. In this paper we investigate optimal "channels" of the Garvey-Kelson relations in extrapolation to the unknown regions, and tabulate our predicted masses by using these optimized channels of the Garvey-Kelson relations.

  18. Clinical Drug Development in Epilepsy Revisited: A Proposal for a New Paradigm Streamlined Using Extrapolation

    Wadsworth, Ian; Jaki, Thomas; Sills, Graeme J; Appleton, Richard; Cross, J Helen; Marson, Anthony G; Martland, Tim; McLellan, Ailsa; Smith, Philip E. M.; Pellock, John M; Hampson, Lisa V.


    Data from clinical trials in adults, extrapolated to predict benefits in paediatric patients, could result in fewer or smaller trials being required to obtain a new drug licence for paediatrics. This article outlines the place of such extrapolation in the development of drugs for use in paediatric epilepsies. Based on consensus expert opinion, a proposal is presented for a new paradigm for the clinical development of drugs for focal epilepsies. Phase I data should continue to be collected in ...

  19. Verification of absorbed dose rates in reference beta radiation fields: Measurements with an extrapolation chamber and radiochromic film.

    Reynaldo, S R; Benavente, J A; Da Silva, T A


    Beta Secondary Standard 2 (BSS 2) provides beta radiation fields with certified values of absorbed dose to tissue and the derived operational radiation protection quantities. As part of the quality assurance, the reliability of the CDTN BSS2 system was verified through measurements in the (90)Sr/(90)Y and (85)Kr beta radiation fields. Absorbed dose rates and their angular variation were measured with a 23392 model PTW extrapolation chamber and with Gafchromic radiochromic films on a PMMA slab phantom. The feasibility of using both methods was analyzed.

  20. Terahertz in-line digital holography of dragonfly hindwing: amplitude and phase reconstruction at enhanced resolution by extrapolation.

    Rong, Lu; Latychevskaia, Tatiana; Wang, Dayong; Zhou, Xun; Huang, Haochong; Li, Zeyu; Wang, Yunxin


    We report here on terahertz (THz) digital holography on a biological specimen. A continuous-wave (CW) THz in-line holographic setup was built based on a 2.52 THz CO(2) pumped THz laser and a pyroelectric array detector. We introduced novel statistical method of obtaining true intensity values for the pyroelectric array detector's pixels. Absorption and phase-shifting images of a dragonfly's hindwing were reconstructed simultaneously from single in-line hologram. Furthermore, we applied phase retrieval routines to eliminate twin image and enhanced the resolution of the reconstructions by hologram extrapolation beyond the detector area. The finest observed features are 35 μm width cross veins.

  1. FDEXTR 2.1: A new version of a program for the finite-difference solution of the coupled-channel Schrödinger equation using the Richardson extrapolation

    Abrashkevich, A. G.; Abrashkevich, D. G.


    A FORTRAN program is presented which solves the Sturm-Liouville problem for a system of coupled second-order differential equations by the finite difference method of the second order using the iterative Richardson extrapolation of the difference eigensolutions on a sequence of doubly condensed meshes. The same extrapolational procedure and error estimations are applied to the eigenvalues and eigenfunctions. Zero-value (Dirichlet) or zero-gradient (Neumann) boundary conditions are considered.

  2. Poisson’s Ratio Extrapolation from Digital Image Correlation Experiments


    base propellant was composed of nitroglycerin and nitrocellulose . The composite propellant was a hydroxyl-terminated polybutadiene (HTPB) propellant ...uses speckle patterns to determine surface strains, has been used recently to investigate values for Poisson’s ratio in solid propellant specimens...Work was performed on both a double-base and a composite propellant , and results indicate that the method is useful for determination of Poisson’s

  3. Octet baryon masses and sigma terms from an SU(3) chiral extrapolation

    Young, Ross; Thomas, Anthony


    We analyze the consequences of the remarkable new results for octet baryon masses calculated in 2+1- avour lattice QCD using a low-order expansion about the SU(3) chiral limit. We demonstrate that, even though the simulation results are clearly beyond the power-counting regime, the description of the lattice results by a low-order expansion can be significantly improved by allowing the regularisation scale of the effective field theory to be determined by the lattice data itself. The model dependence of our analysis is demonstrated to be small compared with the present statistical precision. In addition to the extrapolation of the absolute values of the baryon masses, this analysis provides a method to solve the difficult problem of fine-tuning the strange-quark mass. We also report a determination of the sigma terms for all of the octet baryons, including an accurate value of the pion-nucleon sigma term and the first determination of the strangeness sigma term based on 2+1-flavour l

  4. Developing and utilizing the wavefield kinematics for efficient wavefield extrapolation

    Waheed, Umair bin


    Natural gas and oil from characteristically complex unconventional reservoirs, such as organic shale, tight gas and oil, coal-bed methane; are transforming the global energy market. These conventional reserves exist in complex geologic formations where conventional seismic techniques have been challenged to successfully image the subsurface. To acquire maximum benefits from these unconventional reserves, seismic anisotropy must be at the center of our modeling and inversion workflows. I present algorithms for fast traveltime computations in anisotropic media. Both ray-based and finite-difference solvers of the anisotropic eikonal equation are developed. The proposed algorithms present novel techniques to obtain accurate traveltime solutions for anisotropic media in a cost-efficient manner. The traveltime computation algorithms are then used to invert for anisotropy parameters. Specifically, I develop inversion techniques by using diffractions and diving waves in the seismic data. The diffraction-based inversion algorithm can be combined with an isotropic full-waveform inversion (FWI) method to obtain a high-resolution model for the anellipticity anisotropy parameter. The inversion algorithm based on diving waves is useful for building initial anisotropic models for depth-migration and FWI. I also develop the idea of \\'effective elliptic models\\' for obtaining solutions of the anisotropic two-way wave equation. The proposed technique offers a viable alternative for wavefield computations in anisotropic media using a computationally cheaper wave propagation operator. The methods developed in the thesis lead to a direct cost savings for imaging and inversion projects, in addition to a reduction in turn-around time. With an eye on the next generation inversion methods, these techniques allow us to incorporate more accurate physics into our modeling and inversion framework.

  5. Enhancement of low quality reconstructed digital hologram images based on frequency extrapolation of large objects under the diffraction limit

    Liu, Ning; Chen, Xiaohong; Yang, Chao


    During the reconstruction of a digital hologram, the reconstructed image is usually degraded by speckle noise, which makes it hard to observe the original object pattern. In this paper, a new reconstructed image enhancement method is proposed, which first reduces the speckle noise using an adaptive Gaussian filter, then calculates the high frequencies that belong to the object pattern based on a frequency extrapolation strategy. The proposed frequency extrapolation first calculates the frequency spectrum of the Fourier-filtered image, which is originally reconstructed from the +1 order of the hologram, and then gives the initial parameters for an iterative solution. The analytic iteration is implemented by continuous gradient threshold convergence to estimate the image level and vertical gradient information. The predicted spectrum is acquired through the analytical iteration of the original spectrum and gradient spectrum analysis. Finally, the reconstructed spectrum of the restoration image is acquired from the synthetic correction of the original spectrum using the predicted gradient spectrum. We conducted our experiment very close to the diffraction limit and used low quality equipment to prove the feasibility of our method. Detailed analysis and figure demonstrations are presented in the paper.

  6. Enhancement of low-quality reconstructed digital hologram images based on frequency extrapolation of large objects under the diffraction limit

    Liu, Ning; Li, Weiliang; Zhao, Dongxue


    During the reconstruction of a digital hologram, the reconstructed image is usually degraded by speckle noise, which makes it hard to observe the original object pattern. In this paper, a new reconstructed image enhancement method is proposed, which first reduces the speckle noise using an adaptive Gaussian filter, then calculates the high frequencies that belong to the object pattern based on a frequency extrapolation strategy. The proposed frequency extrapolation first calculates the frequency spectrum of the Fourier-filtered image, which is originally reconstructed from the +1 order of the hologram, and then gives the initial parameters for an iterative solution. The analytic iteration is implemented by continuous gradient threshold convergence to estimate the image level and vertical gradient information. The predicted spectrum is acquired through the analytical iteration of the original spectrum and gradient spectrum analysis. Finally, the reconstructed spectrum of the restoration image is acquired from the synthetic correction of the original spectrum using the predicted gradient spectrum. We conducted our experiment very close to the diffraction limit and used low-quality equipment to prove the feasibility of our method. Detailed analysis and figure demonstrations are presented in the paper.

  7. An extrapolation approach for aeroengine’s transient control law design

    Kong Xiangxing; Wang Xi; Tan Daoliang; He Ai; Liu Yue


    Transient control law ensures that the aeroengine transits to the command operating state rapidly and reliably. Most of the existing approaches for transient control law design have complicated principle and arithmetic. As a result, those approaches are not convenient for applica-tion. This paper proposes an extrapolation approach based on the set-point parameters to construct the transient control law, which has a good practicability. In this approach, the transient main fuel control law for acceleration and deceleration process is designed based on the main fuel flow on steady operating state. In order to analyze the designing feature of the extrapolation approach, the simulation results of several different transient control laws designed by the same approach are compared together. The analysis indicates that the aeroengine has a good performance in the transient process and the designing feature of the extrapolation approach conforms to the elements of the turbofan aeroengine.

  8. The influence of an extrapolation chamber over the low energy X-ray beam radiation field

    Tanuri de F, M. T.; Da Silva, T. A., E-mail: [Centro de Desenvolvimento da Tecnologia Nuclear / CNEN, Av. Pte. Antonio Carlos 6627, 31270-901 Pampulha, Belo Horizonte, Minas Gerais (Brazil)


    The extrapolation chambers are detectors whose sensitive volume can be modified by changing the distance between the electrodes and has been widely used for beta particles primary measurement system. In this work, was performed a PTW 23392 extrapolation chamber Monte Carlo simulation, by mean the MCNPX code. Although the sensitive volume of an extrapolation chamber can be reduced to very small size, their packaging is large enough to modify the radiation field and change the absorbed dose measurements values. Experiments were performed to calculate correction factors for this purpose. The validation of the Monte Carlo model was done by comparing the spectra obtained with a CdTe detector according to the ISO 4037 criteria. Agreements smaller than 5% for half value layers, 10% for spectral resolution and 1% for mean energy, were found. It was verified that the correction factors are dependent of the X-ray beam quality. (Author)

  9. The riskiness of extrapolating short term nutrient retention observations to long term trends in tidal marshes

    Birgand, F.; Etheridge, J. R.; Burchell, M. R.


    Tidal marshes are among the most dynamic aquatic systems in the world. While astronomical and wind driven tides are the major driver to displace water volumes, rainfall events and evapotranspiration move the overall balance towards water export or import, respectively. Until now, only glimpses of the associated biogeochemical functioning could be obtained, usually at one or several tidal cycles scale, because there was no obvious method to obtain long term water quality data at a high temporal frequency. We have successfully managed, using UV-Vis spectrophotometers in the field, to obtain water quality and flow data on a 15-min frequency for over 20 months in a restored brackish marsh in North Carolina. This marsh was designed to intercept water generated by subsurface drainage of adjacent agricultural land before discharge to the nearby estuary. It is particularly tempting in tidal systems where tides may look very similar from one to the next, to extrapolate results obtained possibly over several days or weeks to a ';seasonal biogeochemical functioning'. The lessons learned from high frequency data at the tidal scale are fascinating, but in the longer term, we have learned that a few and inherently rare rainfall events drove the overall nutrient balance in the marsh. Continuous water quality monitoring is thus essential for two reasons: 1) to observe the short term dynamics, as they are the key to unveil possibly misunderstood biogeochemical processes, and 2) to capture the rare yet essential events which drive the system's response. However, continuous water quality monitoring on a long term basis in harsh coastal environments is not without challenges.

  10. Understanding the Larson-Miller parameter. [for extrapolating stress rupture and creep properties of steels and superalloys

    Furillo, F. T.; Purushothaman, S.; Tien, J. K.


    The Larson-Miller (L-M) method of extrapolating stress rupture and creep results is based on the contention that the absolute temperature-compensated time function should have a unique value for a given material. This value should depend only on the applied stress level. The L-M method has been found satisfactory in the case of many steels and superalloys. The derivation of the L-M relation is discussed, taking into account a power law creep relationship considered by Dorn (1965) and Barrett et al. (1964), a correlation expression reported by Garofalo et al. (1961), and relations concerning the constant C. Attention is given to a verification of the validity of the considered derivation with the aid of suitable materials.

  11. Extrapolation for exposure duration in oral toxicity: A quantitative analysis of historical toxicity data

    Groeneveld, C.N.; Hakkert, B.C.; Bos, P.M.J.; Heer,


    For human risk assessment, experimental data often have to be extrapolated for exposure duration, which is generally done by means of default values. The purpose of the present study was twofold. First, to derive a statistical distribution for differences in exposure duration that can be used in a p

  12. Photon neutrino-production in a chiral EFT for nuclei and extrapolation to $E_{\

    Zhang, Xilin


    We carry out a series of studies on pion and photon productions in neutrino/electron/photon--nucleus scatterings. The low energy region is investigated by using a chiral effective field theory for nuclei. The results for the neutral current induced photon production ($\\gamma$-NCP) are then extrapolated to neutrino energy $E_{\

  13. Monte Carlo analysis: error of extrapolated thermal conductivity from molecular dynamics simulations

    Liu, Xiang-Yang [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Andersson, Anders David [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)


    In this short report, we give an analysis of the extrapolated thermal conductivity of UO2 from earlier molecular dynamics (MD) simulations [1]. Because almost all material properties are functions of temperature, e.g. fission gas release, the fuel thermal conductivity is the most important parameter from a model sensitivity perspective [2]. Thus, it is useful to perform such analysis.

  14. Establishing macroecological trait datasets: digitalization, extrapolation, and validation of diet preferences in terrestrial mammals worldwide.

    Kissling, Wilm Daniel; Dalby, Lars; Fløjgaard, Camilla; Lenoir, Jonathan; Sandel, Brody; Sandom, Christopher; Trøjelsgaard, Kristian; Svenning, Jens-Christian


    Ecological trait data are essential for understanding the broad-scale distribution of biodiversity and its response to global change. For animals, diet represents a fundamental aspect of species' evolutionary adaptations, ecological and functional roles, and trophic interactions. However, the importance of diet for macroevolutionary and macroecological dynamics remains little explored, partly because of the lack of comprehensive trait datasets. We compiled and evaluated a comprehensive global dataset of diet preferences of mammals ("MammalDIET"). Diet information was digitized from two global and cladewide data sources and errors of data entry by multiple data recorders were assessed. We then developed a hierarchical extrapolation procedure to fill-in diet information for species with missing information. Missing data were extrapolated with information from other taxonomic levels (genus, other species within the same genus, or family) and this extrapolation was subsequently validated both internally (with a jack-knife approach applied to the compiled species-level diet data) and externally (using independent species-level diet information from a comprehensive continentwide data source). Finally, we grouped mammal species into trophic levels and dietary guilds, and their species richness as well as their proportion of total richness were mapped at a global scale for those diet categories with good validation results. The success rate of correctly digitizing data was 94%, indicating that the consistency in data entry among multiple recorders was high. Data sources provided species-level diet information for a total of 2033 species (38% of all 5364 terrestrial mammal species, based on the IUCN taxonomy). For the remaining 3331 species, diet information was mostly extrapolated from genus-level diet information (48% of all terrestrial mammal species), and only rarely from other species within the same genus (6%) or from family level (8%). Internal and external

  15. A new technique for extracting the red edge position from hyperspectral data : the linear extrapolation method

    Cho, M.A.; Skidmore, A.K.


    There is increasing interest in using hyperspectral data for quantitative characterization of vegetation in spatial and temporal scopes. Many spectral indices are being developed to improve vegetation sensitivity by minimizing the background influence. The chlorophyll absorption continuum index (CAC

  16. Extrapolate well logs based on the constrained interpolation algorithm%基于约束插值算法的井资料外推

    刘红伟; 刘洪; 秦月霜; 首皓


    Based on a detailed analysis of differences between seismic data and well logs, we discuss the problem of matching seismic traces and well logs and present a new matching method based on event search in instantaneous phase which greatly improves seismic resolution. The method is based on flattening events in instantaneous phase to compare the seismic traces to the well log traces with the same phase. We calculate the coefficients using the singular value decomposition method to extrapolate the well logs. As a result, the events in the seismic profile are continuous and match well with well logs. We apply this method to the Mao-2 well in Daqing Oilfield with good results.

  17. High order eigenvalues for the Helmholtz equation in complicated non-tensor domains through Richardson Extrapolation of second order finite differences

    Amore, Paolo; Fernandez, Francisco M; Rösler, Boris


    We apply second order finite difference to calculate the lowest eigenvalues of the Helmholtz equation, for complicated non-tensor domains in the plane, using different grids which sample exactly the border of the domain. We show that the results obtained applying Richardson and Pad\\'e-Richardson extrapolation to a set of finite difference eigenvalues corresponding to different grids allows to obtain extremely precise values. When possible we have assessed the precision of our extrapolations comparing them with the highly precise results obtained using the method of particular solutions. Our empirical findings suggest an asymptotic nature of the FD series. In all the cases studied, we are able to report numerical results which are more precise than those available in the literature.

  18. Terahertz in-line digital holography of dragonfly hindwing: amplitude and phase reconstruction at enhanced resolution by extrapolation

    Rong, Lu; Wang, Dayong; Zhou, Xun; Huang, Haochong; Li, Zeyu; Wang, Yunxin


    We report here on terahertz (THz) digital holography on a biological specimen. A continuous-wave (CW) THz in-line holographic setup was built based on a 2.52 THz CO2 pumped THz laser and a pyroelectric array detector. We introduced novel statistical method of obtaining true intensity values for the pyroelectric array detector's pixels. Absorption and phase-shifting images of a dragonfly's hind wing were reconstructed simultaneously from single in-line hologram. Furthermore, we applied phase retrieval routines to eliminate twin image and enhanced the resolution of the reconstructions by hologram extrapolation beyond the detector area. The finest observed features are 35 {\\mu}m width cross veins.

  19. New allometric scaling relationships and applications for dose and toxicity extrapolation.

    Cao, Qiming; Yu, Jimmy; Connell, Des


    Allometric scaling between metabolic rate, size, body temperature, and other biological traits has found broad applications in ecology, physiology, and particularly in toxicology and pharmacology. Basal metabolic rate (BMR) was observed to scale with body size and temperature. However, the mass scaling exponent was increasingly debated whether it should be 2/3, 3/4, or neither, and scaling with body temperature also attracted recent attention. Based on thermodynamic principles, this work reports 2 new scaling relationships between BMR, size, temperature, and biological time. Good correlations were found with the new scaling relationships, and no universal scaling exponent can be obtained. The new scaling relationships were successfully validated with external toxicological and pharmacological studies. Results also demonstrated that individual extrapolation models can be built to obtain scaling exponent specific to the interested group, which can be practically applied for dose and toxicity extrapolations.

  20. Improving Predictions with Reliable Extrapolation Schemes and Better Understanding of Factorization

    More, Sushant N


    We investigate two distinct sources of uncertainty in low-energy nuclear physics calculations and develop ways to account for them. Harmonic oscillator basis expansions are widely used in ab-initio nuclear structure calculations. Finite computational resources usually require that the basis be truncated before observables are fully converged, necessitating reliable extrapolation schemes. We show that a finite oscillator basis effectively imposes a hard-wall boundary condition. We accurately determine the position of the hard-wall as a function of oscillator space parameters, derive extrapolation formulas for the energy and other observables, and discuss the extension of this approach to higher angular momentum. Nucleon knockout reactions have been widely used to study and understand nuclear properties. Such an analysis implicitly assumes that the effects of the probe can be separated from the physics of the target nucleus. This factorization between nuclear structure and reaction components depends on the ren...

  1. Extrapolation modeling of aerosol deposition in human and laboratory rat lungs

    Martonen, T.B.; Zhang, Z.; Yang, Y.


    Laboratory test animals are often used as surrogates in exposure studies to assess the potential threat to human health following inhalation of airborne contaminants. To aid in the interpretation and extrapolation of data to man, dosimetric considerations need to be addressed. Therefore, a mathematical model describing the behavior and fate of inhaled particulate matter within the respiratory tracts of man and rats has been developed. In the computer simulations, the CO2 concentrations of inhalation exposure chamber atmospheres are controlled to produce desired breathing patterns in the rat which mimic human breathing patterns as functions of physical activity levels. Herein, deposition patterns in human and rat lung airways are specifically examined as functions of respiratory intensities and particle parameters. The model provides a basis for the re-evaluation of data from past experiments, and, perhaps most importantly, permits new inhalation exposure tests to be designed and conducted in a sound scientific manner regarding this endpoint: the extrapolation of results to human conditions.

  2. {sup 131}I-SPGP internal dosimetry: animal model and human extrapolation

    Andrade, Henrique Martins de; Ferreira, Andrea Vidal; Soprani, Juliana; Santos, Raquel Gouvea dos [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN-CNEN-MG), Belo Horizonte, MG (Brazil)], e-mail:; Figueiredo, Suely Gomes de [Universidade Federal do Espirito Santo, (UFES), Vitoria, ES (Brazil). Dept. de Ciencias Fisiologicas. Lab. de Quimica de Proteinas


    Scorpaena plumieri is commonly called moreia-ati or manganga and is the most venomous and one of the most abundant fish species of the Brazilian coast. Soprani 2006, demonstrated that SPGP - an isolated protein from S. plumieri fish- possess high antitumoral activity against malignant tumours and can be a source of template molecules for the development (design) of antitumoral drugs. In the present work, Soprani's {sup 125}ISPGP biokinetic data were treated by MIRD formalism to perform Internal Dosimetry studies. Absorbed doses due to the {sup 131}I-SPGP uptake were determinate in several organs of mice, as well as in the implanted tumor. Doses obtained for animal model were extrapolated to humans assuming a similar ratio for various mouse and human tissues. For the extrapolation, it was used human organ masses from Cristy/Eckerman phantom. Both penetrating and non-penetrating radiation from {sup 131}I were considered. (author)

  3. The immunogenicity of biosimilar infliximab: can we extrapolate the data across indications?

    Ben-Horin, Shomron; Heap, Graham A; Ahmad, Tariq; Kim, HoUng; Kwon, TaekSang; Chowers, Yehuda


    Biopharmaceuticals or 'biologics' have revolutionized the treatment of many diseases. However, some patients generate an immune response to such drugs, potentially limiting clinical efficacy and safety. Infliximab (Remicade(®)) is a monoclonal antibody used to treat several immune-mediated inflammatory disorders. A biosimilar of infliximab, CT-P13 (Remsima(®), Inflectra(®)), has recently been approved in Europe for all indications in which infliximab is approved. Approval of CT-P13 was based in part on extrapolation of clinical trial data from two indications (rheumatoid arthritis and ankylosing spondylitis) to all other indications, including inflammatory bowel disease. This review discusses the validity of extrapolating immunogenicity data across indications - a process adopted by the EMA as part of their biosimilar approval process - with a focus on CT-P13.

  4. Infrared length scale and extrapolations for the no-core shell model

    Wendt, K A; Papenbrock, T; Sääf, D


    We precisely determine the infrared (IR) length scale of the no-core shell model (NCSM). In the NCSM, the $A$-body Hilbert space is truncated by the total energy, and the IR length can be determined by equating the intrinsic kinetic energy of $A$ nucleons in the NCSM space to that of $A$ nucleons in a $3(A-1)$-dimensional hyper-radial well with a Dirichlet boundary condition for the hyper radius. We demonstrate that this procedure indeed yields a very precise IR length by performing large-scale NCSM calculations for $^{6}$Li. We apply our result and perform accurate IR extrapolations for bound states of $^{4}$He, $^{6}$He, $^{6}$Li, $^{7}$Li. We also attempt to extrapolate NCSM results for $^{10}$B and $^{16}$O with bare interactions from chiral effective field theory over tens of MeV.

  5. Understanding the biosimilar approval and extrapolation process-A case study of an epoetin biosimilar.

    Agarwal, Amit B; McBride, Ali


    The World Health Organization defines a biosimilar as "a biotherapeutic product which is similar in terms of quality, safety and efficacy to an already licensed reference biotherapeutic product." Biosimilars are biologic medical products that are very distinct from small-molecule generics, as their active substance is a biological agent derived from a living organism. Approval processes are highly regulated, with guidance issued by the European Medicines Agency and US Food and Drug Administration. Approval requires a comparability exercise consisting of extensive analytical and preclinical in vitro and in vivo studies, and confirmatory clinical studies. Extrapolation of biosimilars from their original indication to another is a feasible but highly stringent process reliant on rigorous scientific justification. This review focuses on the processes involved in gaining biosimilar approval and extrapolation and details the comparability exercise undertaken in the European Union between originator erythropoietin-stimulating agent, Eprex(®), and biosimilar, Retacrit™.

  6. {sup 131}I-CRTX internal dosimetry: animal model and human extrapolation

    Andrade, Henrique Martins de; Ferreira, Andrea Vidal; Soares, Marcella Araugio; Silveira, Marina Bicalho; Santos, Raquel Gouvea dos [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN-CNEN-MG), Belo Horizonte, MG (Brazil)], e-mail:


    Snake venoms molecules have been shown to play a role not only in the survival and proliferation of tumor cells but also in the processes of tumor cell adhesion, migration and angiogenesis. {sup 125}I-Crtx, a radiolabeled version of a peptide derived from Crotalus durissus terrificus snake venom, specifically binds to tumor and triggers apoptotic signalling. At the present work, {sup 125}I-Crtx biokinetic data (evaluated in mice bearing Erlich tumor) were treated by MIRD formalism to perform Internal Dosimetry studies. Doses in several organs of mice were determinate, as well as in implanted tumor, for {sup 131}I-Crtx. Doses results obtained for animal model were extrapolated to humans assuming a similar concentration ratio among various tissues between mouse and human. In the extrapolation, it was used human organ masses from Cristy/Eckerman phantom. Both penetrating and non-penetrating radiation from {sup 131}I in the tissue were considered in dose calculations. (author)

  7. A Spatial Extrapolation Approach to Assess the Impact of Climate Change on Water Resource Systems

    Pina, J.; Tilmant, A.; Anctil, F.


    The typical approach to assess climate change impacts on water resources systems is based on a vertical integration/coupling of models: GCM models are run to project future precipitations and temperatures, which are then downscaled and used as inputs to hydrologic models whose outputs are processed by water systems models. From a decision-making point of view, this top-down vertical approach presents some challenges. For example, since the range of uncertainty that can be explored with GCM is limited, researchers are relying on ensembles to enlarge the spread, making the modeling approach even more demanding in terms of computation time and resource. When a particular water system must be analyzed, the question is to know whether this computationally intensive vertical approach is necessary in the first place or if we could extrapolate projections available in neighboring systems to feed the water system model? This would be equivalent to a horizontal approach. The proposed study addresses this question by comparing the performance of a water resource system under future climate conditions using the vertical and horizontal approaches. The methodology is illustrated with the hydropower system of the Gatineau River Basin in Quebec, Canada. Vertically obtained hydrologic projections available in those river basins are extrapolated and used as inputs to a stochastic multireservoir optimization model. Two different extrapolation techniques are tested. The first one simply relies on the ratios between the drainage areas. The second exploits the covariance structure found in historical flow data throughout the region. The analysis of the simulation results reveals that the annual and weekly energy productions of the system derived from the horizontal approach are statistically equivalent to those obtained with the vertical one, regardless of the extrapolation technique used.

  8. On the problem of discrete extrapolation of a band-limited signal

    Vincenti, Graziano; Volpi, Aldo


    Si considera il sistema lineare equivalente al problema della estrapolazione discreta di un segnale a banda limitata. Si dimostra che la matrice di iterazione del metodo di Gerchberg-Papoulis, metodo iterativo applicato a questo sistema, è una matrice convergente. Si verifica inoltre che la convergenza di tale metodo è cosi lenta da rendere tale metodo praticamente inutilizzabile. We consider the linear system equivalent to the problem of discrete extrapolation of a band-limited signal. We...

  9. The application of metal artifact reduction (MAR) in CT scans for radiation oncology by monoenergetic extrapolation with a DECT scanner

    Schwahofer, Andrea [German Cancer Research Center, Heidelberg (Germany). Dept. of Medical Physics in Radiation Oncology; Clinical Center Vivantes, Neukoelln (Germany). Dept. of Radiotherapy and Oncology; Baer, Esther [German Cancer Research Center, Heidelberg (Germany). Dept. of Medical Physics in Radiation Oncology; Kuchenbecker, Stefan; Kachelriess, Marc [German Cancer Research Center, Heidelberg (Germany). Dept. of Medical Physics in Radiology; Grossmann, J. Guenter [German Cancer Research Center, Heidelberg (Germany). Dept. of Medical Physics in Radiation Oncology; Ortenau Klinikum Offenburg-Gengenbach (Germany). Dept. of Radiooncology; Sterzing, Florian [Heidelberg Univ. (Germany). Dept. of Radiation Oncology; German Cancer Research Center, Heidelberg (Germany). Dept. of Radiotherapy


    V. However, the dose uncertainty remains of the order of 10% to 20%. Thus, the improvement is not significant for radiotherapy planning. For amalgam with a density between steel and tungsten, monoenergetic data sets of a patient do not show substantial artifact reduction. The local dose uncertainties around the metal artifact determined for a static field are of the order of 5%. Although dental fillings are smaller than the phantom inserts, metal artifacts could not be reduced effectively. In conclusion, the image based monoenergetic extrapolation method does not provide efficient reduction of the consequences of CT-generated metal artifacts for radiation therapy planning, but the suitability of other MAR methods will be subsequently studied.

  10. The application of metal artifact reduction (MAR) in CT scans for radiation oncology by monoenergetic extrapolation with a DECT scanner.

    Schwahofer, Andrea; Bär, Esther; Kuchenbecker, Stefan; Grossmann, J Günter; Kachelrieß, Marc; Sterzing, Florian


    % to 20%. Thus, the improvement is not significant for radiotherapy planning. For amalgam with a density between steel and tungsten, monoenergetic data sets of a patient do not show substantial artifact reduction. The local dose uncertainties around the metal artifact determined for a static field are of the order of 5%. Although dental fillings are smaller than the phantom inserts, metal artifacts could not be reduced effectively. In conclusion, the image based monoenergetic extrapolation method does not provide efficient reduction of the consequences of CT-generated metal artifacts for radiation therapy planning, but the suitability of other MAR methods will be subsequently studied.

  11. Parallel difference schemes with interface extrapolation terms for quasi-linear parabolic systems

    Guang-wei YUAN; Xu-deng HANG; Zhi-qiang SHENG


    In this paper some new parallel difference schemes with interface extrapolation terms for a quasi-linear parabolic system of equations are constructed. Two types of time extrapolations are proposed to give the interface values on the interface of sub-domains or the values adjacent to the interface points, so that the unconditional stable parallel schemes with the second accuracy are formed.Without assuming heuristically that the original boundary value problem has the unique smooth vector solution, the existence and uniqueness of the discrete vector solutions of the parallel difference schemes constructed are proved. Moreover the unconditional stability of the parallel difference schemes is justified in the sense of the continuous dependence of the discrete vector solution of the schemes on the discrete known data of the original problems in the discrete W2(2,1) (Q△) norms. Finally the convergence of the discrete vector solutions of the parallel difference schemes with interface extrapolation terms to the unique generalized solution of the original quasi-linear parabolic problem is proved. Numerical results are presented to show the good performance of the parallel schemes, including the unconditional stability, the second accuracy and the high parallelism.

  12. Entropy Rate Estimates for Natural Language—A New Extrapolation of Compressed Large-Scale Corpora

    Ryosuke Takahira


    Full Text Available One of the fundamental questions about human language is whether its entropy rate is positive. The entropy rate measures the average amount of information communicated per unit time. The question about the entropy of language dates back to experiments by Shannon in 1951, but in 1990 Hilberg raised doubt regarding a correct interpretation of these experiments. This article provides an in-depth empirical analysis, using 20 corpora of up to 7.8 gigabytes across six languages (English, French, Russian, Korean, Chinese, and Japanese, to conclude that the entropy rate is positive. To obtain the estimates for data length tending to infinity, we use an extrapolation function given by an ansatz. Whereas some ansatzes were proposed previously, here we use a new stretched exponential extrapolation function that has a smaller error of fit. Thus, we conclude that the entropy rates of human languages are positive but approximately 20% smaller than without extrapolation. Although the entropy rate estimates depend on the script kind, the exponent of the ansatz function turns out to be constant across different languages and governs the complexity of natural language in general. In other words, in spite of typological differences, all languages seem equally hard to learn, which partly confirms Hilberg’s hypothesis.

  13. A model for the data extrapolation of greenhouse gas emissions in the Brazilian hydroelectric system

    Pinguelli Rosa, Luiz; Aurélio dos Santos, Marco; Gesteira, Claudio; Elias Xavier, Adilson


    Hydropower reservoirs are artificial water systems and comprise a small proportion of the Earth’s continental territory. However, they play an important role in the aquatic biogeochemistry and may affect the environment negatively. Since the 90s, as a result of research on organic matter decay in manmade flooded areas, some reports have associated greenhouse gas emissions with dam construction. Pioneering work carried out in the early period challenged the view that hydroelectric plants generate completely clean energy. Those estimates suggested that GHG emissions into the atmosphere from some hydroelectric dams may be significant when measured per unit of energy generated and should be compared to GHG emissions from fossil fuels used for power generation. The contribution to global warming of greenhouse gases emitted by hydropower reservoirs is currently the subject of various international discussions and debates. One of the most controversial issues is the extrapolation of data from different sites. In this study, the extrapolation from a site sample where measurements were made to the complete set of 251 reservoirs in Brazil, comprising a total flooded area of 32 485 square kilometers, was derived from the theory of self-organized criticality. We employed a power law for its statistical representation. The present article reviews the data generated at that time in order to demonstrate how, with the help of mathematical tools, we can extrapolate values from one reservoir to another without compromising the reliability of the results.

  14. Uncertainty of the potential curve minimum for diatomic molecules extrapolated from Dunham type coefficients

    Ilieva, T.; Iliev, I.; Pashov, A.


    In the traditional description of electronic states of diatomic molecules by means of molecular constants or Dunham coefficients, one of the important fitting parameters is the value of the zero point energy - the minimum of the potential curve or the energy of the lowest vibrational-rotational level - E00 . Their values are almost always the result of an extrapolation and it may be difficult to estimate their uncertainties, because they are connected not only with the uncertainty of the experimental data, but also with the distribution of experimentally observed energy levels and the particular realization of set of Dunham coefficients. This paper presents a comprehensive analysis based on Monte Carlo simulations, which aims to demonstrate the influence of all these factors on the uncertainty of the extrapolated minimum of the potential energy curve U (Re) and the value of E00 . The very good extrapolation properties of the Dunham coefficients are quantitatively confirmed and it is shown that for a proper estimate of the uncertainties, the ambiguity in the composition of the Dunham coefficients should be taken into account.

  15. Limitations of force-free magnetic field extrapolations: revisiting basic assumptions

    Peter, H; Chitta, L P; Cameron, R H


    Force-free extrapolations are widely used to study the magnetic field in the solar corona based on surface measurements. The extrapolations assume that the ratio of internal energy of the plasma to magnetic energy, the plasma-beta is negligible. Despite the widespread use of this assumption observations, models, and theoretical considerations show that beta is of the order of a few percent to more than 10%, and thus not small. We investigate what consequences this has for the reliability of extrapolation results. We use basic concepts starting with the force and the energy balance to infer relations between plasma-beta and free magnetic energy, to study the direction of currents in the corona with respect to the magnetic field, and to estimate the errors in the free magnetic energy by neglecting effects of the plasma (beta<<1). A comparison with a 3D MHD model supports our basic considerations. If plasma-beta is of the order of the relative free energy (the ratio of the free magnetic energy to the total...

  16. Measured and modeled toxicokinetics in cultured fish cells and application to in vitro-in vivo toxicity extrapolation.

    Stadnicka-Michalak, Julita; Tanneberger, Katrin; Schirmer, Kristin; Ashauer, Roman


    Effect concentrations in the toxicity assessment of chemicals with fish and fish cells are generally based on external exposure concentrations. External concentrations as dose metrics, may, however, hamper interpretation and extrapolation of toxicological effects because it is the internal concentration that gives rise to the biological effective dose. Thus, we need to understand the relationship between the external and internal concentrations of chemicals. The objectives of this study were to: (i) elucidate the time-course of the concentration of chemicals with a wide range of physicochemical properties in the compartments of an in vitro test system, (ii) derive a predictive model for toxicokinetics in the in vitro test system, (iii) test the hypothesis that internal effect concentrations in fish (in vivo) and fish cell lines (in vitro) correlate, and (iv) develop a quantitative in vitro to in vivo toxicity extrapolation method for fish acute toxicity. To achieve these goals, time-dependent amounts of organic chemicals were measured in medium, cells (RTgill-W1) and the plastic of exposure wells. Then, the relation between uptake, elimination rate constants, and log KOW was investigated for cells in order to develop a toxicokinetic model. This model was used to predict internal effect concentrations in cells, which were compared with internal effect concentrations in fish gills predicted by a Physiologically Based Toxicokinetic model. Our model could predict concentrations of non-volatile organic chemicals with log KOW between 0.5 and 7 in cells. The correlation of the log ratio of internal effect concentrations in fish gills and the fish gill cell line with the log KOW was significant (r>0.85, p = 0.0008, F-test). This ratio can be predicted from the log KOW of the chemical (77% of variance explained), comprising a promising model to predict lethal effects on fish based on in vitro data.

  17. Key to Opening Kidney for In Vitro-In Vivo Extrapolation Entrance in Health and Disease: Part II: Mechanistic Models and In Vitro-In Vivo Extrapolation.

    Scotcher, Daniel; Jones, Christopher; Posada, Maria; Galetin, Aleksandra; Rostami-Hodjegan, Amin


    It is envisaged that application of mechanistic models will improve prediction of changes in renal disposition due to drug-drug interactions, genetic polymorphism in enzymes and transporters and/or renal impairment. However, developing and validating mechanistic kidney models is challenging due to the number of processes that may occur (filtration, secretion, reabsorption and metabolism) in this complex organ. Prediction of human renal drug disposition from preclinical species may be hampered by species differences in the expression and activity of drug metabolising enzymes and transporters. A proposed solution is bottom-up prediction of pharmacokinetic parameters based on in vitro-in vivo extrapolation (IVIVE), mediated by recent advances in in vitro experimental techniques and application of relevant scaling factors. This review is a follow-up to the Part I of the report from the 2015 AAPS Annual Meeting and Exhibition (Orlando, FL; 25th-29th October 2015) which focuses on IVIVE and mechanistic prediction of renal drug disposition. It describes the various mechanistic kidney models that may be used to investigate renal drug disposition. Particular attention is given to efforts that have attempted to incorporate elements of IVIVE. In addition, the use of mechanistic models in prediction of renal drug-drug interactions and potential for application in determining suitable adjustment of dose in kidney disease are discussed. The need for suitable clinical pharmacokinetics data for the purposes of delineating mechanistic aspects of kidney models in various scenarios is highlighted.

  18. Model of a realistic InP surface quantum dot extrapolated from atomic force microscopy results.

    Barettin, Daniele; De Angelis, Roberta; Prosposito, Paolo; Auf der Maur, Matthias; Casalboni, Mauro; Pecchia, Alessandro


    We report on numerical simulations of a zincblende InP surface quantum dot (QD) on In₀.₄₈Ga₀.₅₂ buffer. Our model is strictly based on experimental structures, since we extrapolated a three-dimensional dot directly by atomic force microscopy results. Continuum electromechanical, [Formula: see text] bandstructure and optical calculations are presented for this realistic structure, together with benchmark calculations for a lens-shape QD with the same radius and height of the extrapolated dot. Interesting similarities and differences are shown by comparing the results obtained with the two different structures, leading to the conclusion that the use of a more realistic structure can provide significant improvements in the modeling of QDs fact, the remarkable splitting for the electron p-like levels of the extrapolated dot seems to prove that a realistic experimental structure can reproduce the right symmetry and a correct splitting usually given by atomistic calculations even within the multiband [Formula: see text] approach. Moreover, the energy levels and the symmetry of the holes are strongly dependent on the shape of the dot. In particular, as far as we know, their wave function symmetries do not seem to resemble to any results previously obtained with simulations of zincblende ideal structures, such as lenses or truncated pyramids. The magnitude of the oscillator strengths is also strongly dependent on the shape of the dot, showing a lower intensity for the extrapolated dot, especially for the transition between the electrons and holes ground state, as a result of a relevant reduction of the wave functions overlap. We also compare an experimental photoluminescence spectrum measured on an homogeneous sample containing about 60 dots with a numerical ensemble average derived from single dot calculations. The broader energy range of the numerical spectrum motivated us to perform further verifications, which have clarified some aspects of the experimental

  19. Extrapolation of model tests measurements of whipping to identify the dimensioning sea states for container ships

    Storhaug, Gaute; Andersen, Ingrid Marie Vincent


    Whipping can contribute to increased fatigue and extreme loading of container ships, and guidelines have been made available by the leading class societies. Reports concerning the hogging collapse of MSC Napoli and MOL Comfort suggest that whipping contributed. The accidents happened in moderate...... to small storms. Model tests of three container ships have been carried out in different sea states under realistic assumptions. Preliminary extrapolation of the measured data suggested that moderate storms are dimensioning when whipping is included due to higher maximum speed in moderate storms...

  20. High-accuracy extrapolated ab initio thermochemistry. II. Minor improvements to the protocol and a vital simplification

    Bomble, Yannick J.; Vázquez, Juana; Kállay, Mihály; Michauk, Christine; Szalay, Péter G.; Császár, Attila G.; Gauss, Jürgen; Stanton, John F.


    The recently developed high-accuracy extrapolated ab initio thermochemistry method for theoretical thermochemistry, which is intimately related to other high-precision protocols such as the Weizmann-3 and focal-point approaches, is revisited. Some minor improvements in theoretical rigor are introduced which do not lead to any significant additional computational overhead, but are shown to have a negligible overall effect on the accuracy. In addition, the method is extended to completely treat electron correlation effects up to pentuple excitations. The use of an approximate treatment of quadruple and pentuple excitations is suggested; the former as a pragmatic approximation for standard cases and the latter when extremely high accuracy is required. For a test suite of molecules that have rather precisely known enthalpies of formation {as taken from the active thermochemical tables of Ruscic and co-workers [Lecture Notes in Computer Science, edited by M. Parashar (Springer, Berlin, 2002), Vol. 2536, pp. 25-38; J. Phys. Chem. A 108, 9979 (2004)]}, the largest deviations between theory and experiment are 0.52, -0.70, and 0.51kJmol-1 for the latter three methods, respectively. Some perspective is provided on this level of accuracy, and sources of remaining systematic deficiencies in the approaches are discussed.

  1. J-85 jet engine noise measured in the ONERA S1 wind tunnel and extrapolated to far field

    Soderman, Paul T.; Julienne, Alain; Atencio, Adolph, Jr.


    Noise from a J-85 turbojet with a conical, convergent nozzle was measured in simulated flight in the ONERA S1 Wind Tunnel. Data are presented for several flight speeds up to 130 m/sec and for radiation angles of 40 to 160 degrees relative to the upstream direction. The jet was operated with subsonic and sonic exhaust speeds. A moving microphone on a 2 m sideline was used to survey the radiated sound field in the acoustically treated, closed test section. The data were extrapolated to a 122 m sideline by means of a multiple-sideline source-location method, which was used to identify the acoustic source regions, directivity patterns, and near field effects. The source-location method is described along with its advantages and disadvantages. Results indicate that the effects of simulated flight on J-85 noise are significant. At the maximum forward speed of 130 m/sec, the peak overall sound levels in the aft quadrant were attentuated approximately 10 dB relative to sound levels of the engine operated statically. As expected, the simulated flight and static data tended to merge in the forward quadrant as the radiation angle approached 40 degrees. There is evidence that internal engine or shock noise was important in the forward quadrant. The data are compared with published predictions for flight effects on pure jet noise and internal engine noise. A new empirical prediction is presented that relates the variation of internally generated engine noise or broadband shock noise to forward speed. Measured near field noise extrapolated to far field agrees reasonably well with data from similar engines tested statically outdoors, in flyover, in a wind tunnel, and on the Bertin Aerotrain. Anomalies in the results for the forward quadrant and for angles above 140 degrees are discussed. The multiple-sideline method proved to be cumbersome in this application, and it did not resolve all of the uncertainties associated with measurements of jet noise close to the jet. The

  2. Basic antenna transmitting characteristics using an extrapolation range measurement technique at a millimeter-wave band at NMIJ/AIST.

    Yamamoto, Tetsuya


    A novel test fixture operating at a millimeter-wave band using an extrapolation range measurement technique was developed at the National Metrology Institute of Japan (NMIJ). Here I describe the measurement system using a Q-band test fixture. I measured the relative insertion loss as a function of antenna separation distance and observed the effects of multiple reflections between the antennas. I also evaluated the antenna gain at 33 GHz using the extrapolation technique.

  3. Testing magnetofrictional extrapolation with the Titov-D\\'emoulin model of solar active regions

    Valori, G; Török, T; Titov, V S


    We examine the nonlinear magnetofrictional extrapolation scheme using the solar active region model by Titov and D\\'emoulin as test field. This model consists of an arched, line-tied current channel held in force-free equilibrium by the potential field of a bipolar flux distribution in the bottom boundary. A modified version, having a parabolic current density profile, is employed here. We find that the equilibrium is reconstructed with very high accuracy in a representative range of parameter space, using only the vector field in the bottom boundary as input. Structural features formed in the interface between the flux rope and the surrounding arcade-"hyperbolic flux tube" and "bald patch separatrix surface"-are reliably reproduced, as are the flux rope twist and the energy and helicity of the configuration. This demonstrates that force-free fields containing these basic structural elements of solar active regions can be obtained by extrapolation. The influence of the chosen initial condition on the accuracy...

  4. On Extrapolating Past the Range of Observed Data When Making Statistical Predictions in Ecology.

    Paul B Conn

    Full Text Available Ecologists are increasingly using statistical models to predict animal abundance and occurrence in unsampled locations. The reliability of such predictions depends on a number of factors, including sample size, how far prediction locations are from the observed data, and similarity of predictive covariates in locations where data are gathered to locations where predictions are desired. In this paper, we propose extending Cook's notion of an independent variable hull (IVH, developed originally for application with linear regression models, to generalized regression models as a way to help assess the potential reliability of predictions in unsampled areas. Predictions occurring inside the generalized independent variable hull (gIVH can be regarded as interpolations, while predictions occurring outside the gIVH can be regarded as extrapolations worthy of additional investigation or skepticism. We conduct a simulation study to demonstrate the usefulness of this metric for limiting the scope of spatial inference when conducting model-based abundance estimation from survey counts. In this case, limiting inference to the gIVH substantially reduces bias, especially when survey designs are spatially imbalanced. We also demonstrate the utility of the gIVH in diagnosing problematic extrapolations when estimating the relative abundance of ribbon seals in the Bering Sea as a function of predictive covariates. We suggest that ecologists routinely use diagnostics such as the gIVH to help gauge the reliability of predictions from statistical models (such as generalized linear, generalized additive, and spatio-temporal regression models.

  5. $$ Uncertainty from Extrapolation of Cosmic Ray Air Shower Parameters

    Abbasi, R U


    Recent measurements at the LHC of the p-p total cross section have reduced the uncertainty in simulations of cosmic ray air showers. In particular of the depth of shower maximum, called $X_{max}$. However, uncertainties of other important parameters, in particular the multiplicity and elasticity of high energy interactions, have not improved, and there is a remaining uncertainty due to the total cross section. Uncertainties due to extrapolations from accelerator data, at a maximum energy of $\\sim$ one TeV in the p-p center of mass, to 250 TeV ($3\\times10^{19}$ eV in a cosmic ray proton's lab frame) introduce significant uncertainties in predictions of $$. In this paper we estimate a lower limit on these uncertainties. The result is that the uncertainty in $$ is larger than the difference among the modern models being used in the field. At the full energy of the LHC, which is equivalent to $\\sim 1\\times10^{17}$ eV in the cosmic ray lab frame, the extrapolation is not as extreme, and the uncertainty is approxim...

  6. Electric form factors of the octet baryons from lattice QCD and chiral extrapolation

    Shanahan, P.E.; Thomas, A.W.; Young, R.D.; Zanotti, J.M. [Adelaide Univ., SA (Australia). ARC Centre of Excellence in Particle Physics at the Terascale and CSSM; Horsley, R. [Edinburgh Univ. (United Kingdom). School of Physics and Astronomy; Nakamura, Y. [RIKEN Advanced Institute for Computational Science, Kobe, Hyogo (Japan); Pleiter, D. [Forschungszentrum Juelich (Germany). JSC; Regensburg Univ. (Germany). Inst. fuer Theoretische Physik; Rakow, P.E.L. [Liverpool Univ. (United Kingdom). Theoretical Physics Div.; Schierholz, G. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Stueben, H. [Hamburg Univ. (Germany). Regionales Rechenzentrum; Collaboration: CSSM and QCDSF/UKQCD Collaborations


    We apply a formalism inspired by heavy baryon chiral perturbation theory with finite-range regularization to dynamical 2+1-flavor CSSM/QCDSF/UKQCD Collaboration lattice QCD simulation results for the electric form factors of the octet baryons. The electric form factor of each octet baryon is extrapolated to the physical pseudoscalar masses, after finite-volume corrections have been applied, at six fixed values of Q{sup 2} in the range 0.2-1.3 GeV{sup 2}. The extrapolated lattice results accurately reproduce the experimental form factors of the nucleon at the physical point, indicating that omitted disconnected quark loop contributions are small. Furthermore, using the results of a recent lattice study of the magnetic form factors, we determine the ratio μ{sub p}G{sub E}{sup p}/G{sub M}{sup p}. This quantity decreases with Q{sup 2} in a way qualitatively consistent with recent experimental results.

  7. The role of strange sea quarks in chiral extrapolations on the lattice

    Descotes-Genon, S


    Since the strange quark has a light mass of order Lambda_QCD, fluctuations of sea s-s bar pairs may play a special role in the low-energy dynamics of QCD by inducing significantly different patterns of chiral symmetry breaking in the chiral limits N_f=2 (m_u=m_d=0, m_s physical) and N_f=3 (m_u=m_d=m_s=0). This effect of vacuum fluctuations of s-s bar pairs is related to the violation of the Zweig rule in the scalar sector, described through the two O(p^4) low-energy constants L_4 and L_6 of the three-flavour strong chiral lagrangian. In the case of significant vacuum fluctuations, three-flavour chiral expansions might exhibit a numerical competition between leading- and next-to-leading-order terms according to the chiral counting, and chiral extrapolations should be handled with a special care. We investigate the impact of the fluctuations of s-s bar pairs on chiral extrapolations in the case of lattice simulations with three dynamical flavours in the isospin limit. Information on the size of the vacuum fluct...


    郭茂林; 孟庆元; 王彪


    A new extrapolation approach was proposed to calculate the strain energy release rates of complex cracks. The point-by-point closed method was used to calculate the closed energy, thus the disadvantage of self inconsistency in some published papers can be avoided. The disadvantage is that the closed energy is repeatedly calculated: when closed nodal number along radial direction is more than two, the displacement of nodes behind the crack tip that is multiplied by nodal forces, the closed energy has been calculated and the crack surfaces have been closed, and that closed energy of middle point is calculated repeatedly. A DCB ( double cantilever beam) specimen was calculated and compared with other theoretical results, it is shown that a better coincidence is obtained. In addition the same results are also obtained for compact tension specimen, three point bend specimen and single edge cracked specinen. In comparison with theoretical results, the error can be limited within 1 per cent. This method can be extended to analyze the fracture of composite laminates with various delamination cracks.

  9. Extrapolation of lattice QCD results beyond the power-counting regime

    Leinweber, D B; Young, R D


    Resummation of the chiral expansion is necessary to make accurate contact with current lattice simulation results of full QCD. Resummation techniques including relativistic formulations of chiral effective field theory and finite-range regularization (FRR) techniques are reviewed, with an emphasis on using lattice simulation results to constrain the parameters of the chiral expansion. We illustrate how the chiral extrapolation problem has been solved and use FRR techniques to identify the power-counting regime (PCR) of chiral perturbation theory. To fourth-order in the expansion at the 1% tolerance level, we find $0 \\le m_\\pi \\le 0.18$ GeV for the PCR, extending only a small distance beyond the physical pion mass.

  10. The polar profile of ancient proteins: a computational extrapolation from prebiotics to paleobiochemistry.

    Polanco, Carlos; Buhse, Thomas; Vizcaíno, Gloria; Picciotto, Jacobo Levy


    This paper addresses the polar profile of ancient proteins using a comparative study of amino acids found in 25 000 000-year-old shells described in Abelson's work. We simulated the polar profile with a computer platform that represented an evolutionary computational toy model that mimicked the generation of small proteins starting from a pool of monomeric amino acids and that included several dynamic properties, such as self-replication and fragmentation-recombination of the proteins. The simulations were taken up to 15 generations and produced a considerable number of proteins of 25 amino acids in length. The computational model included the amino acids found in the ancient shells, the thermal degradation factor, and the relative abundance of the amino acids observed in the Miller-Urey experimental simulation of the prebiotic amino acid formation. We found that the amino acid polar profiles of the ancient shells and those simulated and extrapolated from the Miller-Urey abundances are coincident.

  11. Prediction of long-term creep behavior and lifetime of PPC pipe materials by linear extrapolation


    The universal creep equation relates creep behavior(ε/εo)to aging time(ta),coefficient of retardation time(β),and intrinsic time(to).The relation was used to treat the creep experimental data for pipe specimens of polypropylene block copelymer(PPC),which were aged for different days(short-term)and tested under different stress levels at a certain temperature.Then unified master lines were constructed with the treated data and curves according to the universal equation.The master straight lines can be used for extrapolation to predict the long-term creep behavior and lifetime of the pipe materials of PPC in the same way as plate materials.

  12. Top Background Extrapolation for $H \\to WW$ Searches at the LHC

    Kauer, N


    A leading order (LO) analysis is presented that demonstrates that key top backgrounds to H -> W^+W^- -> l^\\pm l^\\mp \\sla{p}_T decays in weak boson fusion (WBF) and gluon fusion (GF) at the CERN Large Hadron Collider can be extrapolated from experimental data with an accuracy of order 5% to 10%. If LO scale variation is accepted as proxy for the theoretical error, parton level results indicate that the tt~j background to the H -> WW search in WBF can be determined with a theoretical error of about 5%, while the tt~ background to the H -> WW search in GF can be determined with a theoretical error of better than 1%. Uncertainties in the parton distribution functions contribute an estimated 3% to 10% to the total error.

  13. Continuum extrapolation of finite temperature meson correlation functions in quenched lattice QCD

    Francis, Anthony


    We explore the continuum limit $a\\rightarrow 0$ of meson correlation functions at finite temperature. In detail we analyze finite volume and lattice cut-off effects in view of possible consequences for continuum physics. We perform calculations on quenched gauge configurations using the clover improved Wilson fermion action. We present and discuss simulations on isotropic $N_\\sigma^3\\times 16$ lattices with $N_\\sigma=32,48,64,128$ and $128^3 \\times N_\\tau$ lattices with $N_\\tau=16,24,32,48$ corresponding to lattice spacings in the range of $0.01 fm \\lsim a \\lsim\\ 0.031 fm$ at $T\\simeq1.45T_c$. Continuum limit extrapolations of vector meson and pseudo scalar correlators are performed and their large distance expansion in terms of thermal moments is introduced. We discuss consequences of this analysis for the calculation of the electrical conductivity of the QGP at this temperature.

  14. Flow Forecasting in Drainage Systems with Extrapolated Radar Rainfall Data and Auto Calibration on Flow Observations

    Thorndahl, Søren Liedtke; Grum, M.; Rasmussen, Michael R.;


    in a small urban catchment has been developed. The forecast is based on application of radar rainfall data, which by a correlation based technique, is extrapolated with a lead time up to two hours. The runoff forecast in the drainage system is based on a fully distributed MOUSE model which is auto......Forecasting of flows, overflow volumes, water levels, etc. in drainage systems can be applied in real time control of drainage systems in the future climate in order to fully utilize system capacity and thus save possible construction costs. An online system for forecasting flows and water levels......-calibrated on flow measurements in order to produce the best possible forecast for the drainage system at all times. The system shows great potential for the implementation of real time control in drainage systems and forecasting flows and water levels....

  15. Statistical validation of engineering and scientific models : bounds, calibration, and extrapolation.

    Dowding, Kevin J.; Hills, Richard Guy (New Mexico State University, Las Cruces, NM)


    Numerical models of complex phenomena often contain approximations due to our inability to fully model the underlying physics, the excessive computational resources required to fully resolve the physics, the need to calibrate constitutive models, or in some cases, our ability to only bound behavior. Here we illustrate the relationship between approximation, calibration, extrapolation, and model validation through a series of examples that use the linear transient convective/dispersion equation to represent the nonlinear behavior of Burgers equation. While the use of these models represents a simplification relative to the types of systems we normally address in engineering and science, the present examples do support the tutorial nature of this document without obscuring the basic issues presented with unnecessarily complex models.

  16. Extrapolated experimental critical parameters of unreflected and steel-reflected massive enriched uranium metal spherical and hemispherical assemblies

    Rothe, R.E.


    Sixty-nine critical configurations of up to 186 kg of uranium are reported from very early experiments (1960s) performed at the Rocky Flats Critical Mass Laboratory near Denver, Colorado. Enriched (93%) uranium metal spherical and hemispherical configurations were studied. All were thick-walled shells except for two solid hemispheres. Experiments were essentially unreflected; or they included central and/or external regions of mild steel. No liquids were involved. Critical parameters are derived from extrapolations beyond subcritical data. Extrapolations, rather than more precise interpolations between slightly supercritical and slightly subcritical configurations, were necessary because experiments involved manually assembled configurations. Many extrapolations were quite long; but the general lack of curvature in the subcritical region lends credibility to their validity. In addition to delayed critical parameters, a procedure is offered which might permit the determination of prompt critical parameters as well for the same cases. This conjectured procedure is not based on any strong physical arguments.

  17. Extrapolation from $A_\\fz^{\\rho,\\fz}$, vector-valued inequalities and applications in the Schr\\"odinger settings

    Tang, Lin


    In this paper, we generalize the $A_\\fz$ extrapolation theorem in \\cite{cmp} and the $A_p$ extrapolation theorem of Rubio de Francia to Schr\\"odinger settings. In addition, we also establish the weighted vector-valued inequalities for Schr\\"odinger type maximal operators by using weights belonging to $ A_p^{\\rho,\\tz}$ which includes $A_p$. As their applications, we establish the weighted vector-valued inequalities for some Sch\\"odinger type operators and pseudo-differential operators.

  18. Accelerating Monte Carlo molecular simulations by reweighting and reconstructing Markov chains: Extrapolation of canonical ensemble averages and second derivatives to different temperature and density conditions

    Kadoura, Ahmad; Sun, Shuyu, E-mail:; Salama, Amgad


    Accurate determination of thermodynamic properties of petroleum reservoir fluids is of great interest to many applications, especially in petroleum engineering and chemical engineering. Molecular simulation has many appealing features, especially its requirement of fewer tuned parameters but yet better predicting capability; however it is well known that molecular simulation is very CPU expensive, as compared to equation of state approaches. We have recently introduced an efficient thermodynamically consistent technique to regenerate rapidly Monte Carlo Markov Chains (MCMCs) at different thermodynamic conditions from the existing data points that have been pre-computed with expensive classical simulation. This technique can speed up the simulation more than a million times, making the regenerated molecular simulation almost as fast as equation of state approaches. In this paper, this technique is first briefly reviewed and then numerically investigated in its capability of predicting ensemble averages of primary quantities at different neighboring thermodynamic conditions to the original simulated MCMCs. Moreover, this extrapolation technique is extended to predict second derivative properties (e.g. heat capacity and fluid compressibility). The method works by reweighting and reconstructing generated MCMCs in canonical ensemble for Lennard-Jones particles. In this paper, system's potential energy, pressure, isochoric heat capacity and isothermal compressibility along isochors, isotherms and paths of changing temperature and density from the original simulated points were extrapolated. Finally, an optimized set of Lennard-Jones parameters (ε, σ) for single site models were proposed for methane, nitrogen and carbon monoxide.

  19. Accelerating Monte Carlo molecular simulations by reweighting and reconstructing Markov chains: Extrapolation of canonical ensemble averages and second derivatives to different temperature and density conditions

    Kadoura, Ahmad Salim


    Accurate determination of thermodynamic properties of petroleum reservoir fluids is of great interest to many applications, especially in petroleum engineering and chemical engineering. Molecular simulation has many appealing features, especially its requirement of fewer tuned parameters but yet better predicting capability; however it is well known that molecular simulation is very CPU expensive, as compared to equation of state approaches. We have recently introduced an efficient thermodynamically consistent technique to regenerate rapidly Monte Carlo Markov Chains (MCMCs) at different thermodynamic conditions from the existing data points that have been pre-computed with expensive classical simulation. This technique can speed up the simulation more than a million times, making the regenerated molecular simulation almost as fast as equation of state approaches. In this paper, this technique is first briefly reviewed and then numerically investigated in its capability of predicting ensemble averages of primary quantities at different neighboring thermodynamic conditions to the original simulated MCMCs. Moreover, this extrapolation technique is extended to predict second derivative properties (e.g. heat capacity and fluid compressibility). The method works by reweighting and reconstructing generated MCMCs in canonical ensemble for Lennard-Jones particles. In this paper, system\\'s potential energy, pressure, isochoric heat capacity and isothermal compressibility along isochors, isotherms and paths of changing temperature and density from the original simulated points were extrapolated. Finally, an optimized set of Lennard-Jones parameters (ε, σ) for single site models were proposed for methane, nitrogen and carbon monoxide. © 2014 Elsevier Inc.

  20. The risk of extrapolation in neuroanatomy: the case of the mammalian vomeronasal system

    Ignacio Salazar


    Full Text Available The sense of smell plays a crucial role in mammalian social and sexual behaviour, identification of food, and detection of predators. Nevertheless, mammals vary in their olfactory ability. One reason for this concerns the degree of development of their pars basalis rhinencephali, an anatomical feature that has has been considered in classifying this group of animals as macrosmatic, microsmatic or anosmatic. In mammals, different structures are involved in detecting odours: the main olfactory system, the vomeronasal system (VNS, and two subsystems, namely the ganglion of Grüneberg and the septal organ. Here, we review and summarise some aspects of the comparative anatomy of the VNS and its putative relationship to other olfactory structures. Even in the macrosmatic group, morphological diversity is an important characteristic of the VNS, specifically of the vomeronasal organ and the accessory olfactory bulb. We conclude that it is a big mistake to extrapolate anatomical data of the VNS from species to species, even in the case of relatively close evolutionary proximity between them. We propose to study other mammalian VNS than those of rodents in depth as a way to clarify its exact role in olfaction. Our experience in this field leads us to hypothesise that the VNS, considered for all mammalian species, could be a system undergoing involution or regression, and could serve as one more integrated olfactory subsystem.

  1. Extrapolation of Galactic Dust Emission at 100 Microns to CMBR Frequencies Using FIRAS

    Finkbeiner, D; Schlegel, D J; Finkbeiner, Douglas P.; Davis, Marc; Schlegel, David J.


    We present predicted full-sky maps of submillimeter and microwave emission from the diffuse interstellar dust in the Galaxy. These maps are extrapolated from the 100 micron emission and 100/240 micron flux ratio maps that Schlegel, Finkbeiner, & Davis (1998; SFD98) generated from IRAS and COBE/DIRBE data. Results are presented for a number of physically plausible emissivity models. We find that no power law emissivity function fits the FIRAS data from 200 - 2100 GHz. In this paper we provide a formalism for a multi-component model for the dust emission. A two-component model with a mixture of silicate and carbon-dominated grains (motivated by Pollack et al., 1994}) provides a fit to an accuracy of about 15% to all the FIRAS data over the entire high-latitude sky. Small systematic differences are found between the atomic and molecular phases of the ISM. Our predictions for the thermal (vibrational) emission from Galactic dust at made at the DIRBE resolution of 40' or at the higher resolution of 6.1 arcmin ...

  2. Evidence for Solar Tether-cutting Magnetic Reconnection from Coronal Field Extrapolations

    Liu, Chang; Lee, Jeongwoo; Wiegelmann, Thomas; Moore, Ronald L; Wang, Haimin


    Magnetic reconnection is one of the primary mechanisms for triggering solar eruptive events, but direct observation of its rapid process has been of challenge. In this Letter we present, using a nonlinear force-free field (NLFFF) extrapolation technique, a visualization of field line connectivity changes resulting from tether-cutting reconnection over about 30 minutes during the 2011 February 13 M6.6 flare in NOAA AR 11158. Evidence for the tether-cutting reconnection was first collected through multiwavelength observations and then by the analysis of the field lines traced from positions of four conspicuous flare 1700 A footpoints observed at the event onset. Right before the flare, the four footpoints are located very close to the regions of local maxima of magnetic twist index. Especially, the field lines from the inner two footpoints form two strongly twisted flux bundles (up to ~1.2 turns), which shear past each other and reach out close to the outer two footpoints, respectively. Immediately after the fl...

  3. A physiologically based pharmacokinetic model for quinoxaline-2-carboxylic acid in rats, extrapolation to pigs.

    Yang, X; Zhou, Y-F; Yu, Y; Zhao, D-H; Shi, W; Fang, B-H; Liu, Y-H


    A multi-compartment physiologically based pharmacokinetic (PBPK) model to describe the disposition of cyadox (CYX) and its metabolite quinoxaline-2-carboxylic acid (QCA) after a single oral administration was developed in rats (200 mg/kg b.w. of CYX). Considering interspecies differences in physiology and physiochemistry, the model efficiency was validated by pharmacokinetic data set in swine. The model included six compartments that were blood, muscle, liver, kidney, adipose, and a combined compartment for the rest of tissues. The model was parameterized using rat plasma and tissue concentration data that were generated from this study. Model simulations were achieved using a commercially available software program (ACSLXL ibero version Results supported the validity of the model with simulated tissue concentrations within the range of the observations. The correlation coefficients of the predicted and experimentally determined values for plasma, liver, kidney, adipose, and muscles in rats were 0.98, 0.98, 0.98, 0.99, and 0.95, respectively. The rat model parameters were then extrapolated to pigs to estimate QCA disposition in tissues and validated by tissue concentration of QCA in swine. The correlation coefficients between the predicted and observed values were over 0.90. This model could provide a foundation for developing more reliable pig models once more data are available.

  4. Employing Measures of Heterogeneity and an Object-Based Approach to Extrapolate Tree Species Distribution Data

    Trevor G. Jones


    Full Text Available Information derived from high spatial resolution remotely sensed data is critical for the effective management of forested ecosystems. However, high spatial resolution data-sets are typically costly to acquire and process and usually provide limited geographic coverage. In contrast, moderate spatial resolution remotely sensed data, while not able to provide the spectral or spatial detail required for certain types of products and applications, offer inexpensive, comprehensive landscape-level coverage. This study assessed using an object-based approach to extrapolate detailed tree species heterogeneity beyond the extent of hyperspectral/LiDAR flightlines to the broader area covered by a Landsat scene. Using image segments, regression trees established ecologically decipherable relationships between tree species heterogeneity and the spectral properties of Landsat segments. The spectral properties of Landsat bands 4 (i.e., NIR: 0.76–0.90 µm, 5 (i.e., SWIR: 1.55–1.75 µm and 7 (SWIR: 2.08–2.35 µm were consistently selected as predictor variables, explaining approximately 50% of variance in richness and diversity. Results have important ramifications for ongoing management initiatives in the study area and are applicable to wide range of applications.

  5. Spatial extrapolation of light use efficiency model parameters to predict gross primary production

    Karsten Schulz


    Full Text Available To capture the spatial and temporal variability of the gross primary production as a key component of the global carbon cycle, the light use efficiency modeling approach in combination with remote sensing data has shown to be well suited. Typically, the model parameters, such as the maximum light use efficiency, are either set to a universal constant or to land class dependent values stored in look-up tables. In this study, we employ the machine learning technique support vector regression to explicitly relate the model parameters of a light use efficiency model calibrated at several FLUXNET sites to site-specific characteristics obtained by meteorological measurements, ecological estimations and remote sensing data. A feature selection algorithm extracts the relevant site characteristics in a cross-validation, and leads to an individual set of characteristic attributes for each parameter. With this set of attributes, the model parameters can be estimated at sites where a parameter calibration is not possible due to the absence of eddy covariance flux measurement data. This will finally allow a spatially continuous model application. The performance of the spatial extrapolation scheme is evaluated with a cross-validation approach, which shows the methodology to be well suited to recapture the variability of gross primary production across the study sites.

  6. Gaussian process model for extrapolation of scattering observables for complex molecules: From benzene to benzonitrile.

    Cui, Jie; Li, Zhiying; Krems, Roman V


    We consider a problem of extrapolating the collision properties of a large polyatomic molecule A-H to make predictions of the dynamical properties for another molecule related to A-H by the substitution of the H atom with a small molecular group X, without explicitly computing the potential energy surface for A-X. We assume that the effect of the -H →-X substitution is embodied in a multidimensional function with unknown parameters characterizing the change of the potential energy surface. We propose to apply the Gaussian Process model to determine the dependence of the dynamical observables on the unknown parameters. This can be used to produce an interval of the observable values which corresponds to physical variations of the potential parameters. We show that the Gaussian Process model combined with classical trajectory calculations can be used to obtain the dependence of the cross sections for collisions of C6H5CN with He on the unknown parameters describing the interaction of the He atom with the CN fragment of the molecule. The unknown parameters are then varied within physically reasonable ranges to produce a prediction uncertainty of the cross sections. The results are normalized to the cross sections for He - C6H6 collisions obtained from quantum scattering calculations in order to provide a prediction interval of the thermally averaged cross sections for collisions of C6H5CN with He.

  7. Root crack sizing using phased array inspections and autoregressive spectral extrapolation signal processing

    Caldwell, J.; Shakibi, B.; Moles, M.; Sinclair, A. N.


    Phased array inspection was conducted on a V-butt welded steel sample with multiple shallow flaws of varying depths. The inspection measurements were processed using Wiener filtering and Autoregressive Spectral Extrapolation (AS) to enhance the signals. Phased array inspections were conducted using multiple phased array probes of varying nominal central frequencies (2.25, 4, 5 and 10 MHz). This paper describes the measured results, which show high accuracy, typically in the range of 0.1-0.2 mm. The results concluded that: 1. There was no statistical difference between the calculated flaw depths from phased array inspections at different flaw tip angles. 2. There was no statistical difference in flaw depths calculated using phased array data collected from either side of the weld. 3. Flaws with depths less than the estimated probe signal shear wavelength could not be sized. 4. Finally, there was no statistical difference in the calculated flaw depths using phased array probes with different sampling frequencies and destructive measurements of the flaws.

  8. Monitoring corrosion and corrosion control of iron in HCl by non-ionic surfactants of the TRITON-X series - Part II. Temperature effect, activation energies and thermodynamics of adsorption

    Amin, Mohammed A., E-mail: [Materials and Corrosion Lab (MCL), Department of Chemistry, Faculty of Science, Taif University, 888 Hawiya (Saudi Arabia); Department of Chemistry, Faculty of Science, Ain shams University, 11566 Abbassia, Cairo (Egypt); Ahmed, M.A. [Physics Department, Faculty of Science, Taif University, 888 Hawiya (Saudi Arabia); Arida, H.A. [Materials and Corrosion Lab (MCL), Department of Chemistry, Faculty of Science, Taif University, 888 Hawiya (Saudi Arabia); Arslan, Taner [Department of Chemistry, Eskisehir Osmangazi University, 26480 Eskisehir (Turkey); Saracoglu, Murat [Faculty of Education, Erciyes University, 38039 Kayseri (Turkey); Kandemirli, Fatma [Department of Chemistry, Nigde University, 41000 Nigde (Turkey)


    Research highlights: TX-305 exhibits inhibiting properties for iron corrosion more than TX-165 and TX 100. Inhibition efficiency increases with temperature, suggesting chemical adsorption. The three tested surfactants act as mixed-type inhibitors with cathodic predominance. Validation of corrosion rates measured by Tafel extrapolation method is confirmed. - Abstract: The inhibition characteristics of non-ionic surfactants of the TRITON-X series, namely TRITON-X-100 (TX-100), TRITON-X-165 (TX-165) and TRITON-X-305 (TX-305), on the corrosion of iron was studied in 1.0 M HCl solutions as a function of inhibitor concentration (0.005-0.075 g L{sup -1}) and solution temperature (278-338 K). Measurements were conducted based on Tafel extrapolation method. Electrochemical frequency modulation (EFM), a non-destructive corrosion measurement technique that can directly give values of corrosion current without prior knowledge of Tafel constants, is also presented. Experimental corrosion rates determined by the Tafel extrapolation method were compared with corrosion rates obtained by the EFM technique and an independent method of chemical analysis. The chemical method of confirmation of the corrosion rates involved determination of the dissolved cation, using ICP-AES (inductively coupled plasma atomic emission spectrometry). The aim was to confirm validation of corrosion rates measured by the Tafel extrapolation method. Results obtained showed that, in all cases, the inhibition efficiency increased with increase in temperature, suggesting that chemical adsorption occurs. The adsorptive behaviour of the three surfactants followed Temkin-type isotherm. The standard free energies of adsorption decreased with temperature, reflecting better inhibition performance. These findings confirm chemisorption of the tested inhibitors. Thermodynamic activation functions of the dissolution process were also calculated as a function of each inhibitor concentration. All the results obtained from

  9. Multiple time step molecular dynamics in the optimized isokinetic ensemble steered with the molecular theory of solvation: Accelerating with advanced extrapolation of effective solvation forces

    Omelyan, Igor, E-mail:, E-mail: [National Institute for Nanotechnology, 11421 Saskatchewan Drive, Edmonton, Alberta T6G 2M9 (Canada); Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta T6G 2G8 (Canada); Institute for Condensed Matter Physics, National Academy of Sciences of Ukraine, 1 Svientsitskii Street, Lviv 79011 (Ukraine); Kovalenko, Andriy, E-mail: [National Institute for Nanotechnology, 11421 Saskatchewan Drive, Edmonton, Alberta T6G 2M9 (Canada); Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta T6G 2G8 (Canada)


    We develop efficient handling of solvation forces in the multiscale method of multiple time step molecular dynamics (MTS-MD) of a biomolecule steered by the solvation free energy (effective solvation forces) obtained from the 3D-RISM-KH molecular theory of solvation (three-dimensional reference interaction site model complemented with the Kovalenko-Hirata closure approximation). To reduce the computational expenses, we calculate the effective solvation forces acting on the biomolecule by using advanced solvation force extrapolation (ASFE) at inner time steps while converging the 3D-RISM-KH integral equations only at large outer time steps. The idea of ASFE consists in developing a discrete non-Eckart rotational transformation of atomic coordinates that minimizes the distances between the atomic positions of the biomolecule at different time moments. The effective solvation forces for the biomolecule in a current conformation at an inner time step are then extrapolated in the transformed subspace of those at outer time steps by using a modified least square fit approach applied to a relatively small number of the best force-coordinate pairs. The latter are selected from an extended set collecting the effective solvation forces obtained from 3D-RISM-KH at outer time steps over a broad time interval. The MTS-MD integration with effective solvation forces obtained by converging 3D-RISM-KH at outer time steps and applying ASFE at inner time steps is stabilized by employing the optimized isokinetic Nosé-Hoover chain (OIN) ensemble. Compared to the previous extrapolation schemes used in combination with the Langevin thermostat, the ASFE approach substantially improves the accuracy of evaluation of effective solvation forces and in combination with the OIN thermostat enables a dramatic increase of outer time steps. We demonstrate on a fully flexible model of alanine dipeptide in aqueous solution that the MTS-MD/OIN/ASFE/3D-RISM-KH multiscale method of molecular dynamics

  10. Measurement of absorbed dose with a bone-equivalent extrapolation chamber.

    DeBlois, François; Abdel-Rahman, Wamied; Seuntjens, Jan P; Podgorsak, Ervin B


    A hybrid phantom-embedded extrapolation chamber (PEEC) made of Solid Water and bone-equivalent material was used for determining absorbed dose in a bone-equivalent phantom irradiated with clinical radiation beams (cobalt-60 gamma rays; 6 and 18 MV x rays; and 9 and 15 MeV electrons). The dose was determined with the Spencer-Attix cavity theory, using ionization gradient measurements and an indirect determination of the chamber air-mass through measurements of chamber capacitance. The collected charge was corrected for ionic recombination and diffusion in the chamber air volume following the standard two-voltage technique. Due to the hybrid chamber design, correction factors accounting for scatter deficit and electrode composition were determined and applied in the dose equation to obtain absorbed dose in bone for the equivalent homogeneous bone phantom. Correction factors for graphite electrodes were calculated with Monte Carlo techniques and the calculated results were verified through relative air cavity dose measurements for three different polarizing electrode materials: graphite, steel, and brass in conjunction with a graphite collecting electrode. Scatter deficit, due mainly to loss of lateral scatter in the hybrid chamber, reduces the dose to the air cavity in the hybrid PEEC in comparison with full bone PEEC by 0.7% to approximately 2% depending on beam quality and energy. In megavoltage photon and electron beams, graphite electrodes do not affect the dose measurement in the Solid Water PEEC but decrease the cavity dose by up to 5% in the bone-equivalent PEEC even for very thin graphite electrodes (<0.0025 cm). In conjunction with appropriate correction factors determined with Monte Carlo techniques, the uncalibrated hybrid PEEC can be used for measuring absorbed dose in bone material to within 2% for high-energy photon and electron beams.

  11. Mangrove litter fall: Extrapolation from traps to a large tropical macrotidal harbour

    Metcalfe, Kristin N.; Franklin, Donald C.; McGuinness, Keith A.


    Mangrove litter is a major source of organic matter for detrital food chains in many tropical coastal ecosystems, but scant attention has been paid to the substantial challenges in sampling and extrapolation of rates of litter fall. The challenges arise due to within-stand heterogeneity including incomplete canopy cover, and canopy that is below the high tide mark. We sampled litter monthly for three years at 35 sites across eight mapped communities in the macrotidal Darwin Harbour, northern Australia. Totals were adjusted for mean community canopy cover and the occurrence of canopy below the high tide mark. The mangroves of Darwin Harbour generate an estimated average of 5.0 t ha -1 yr -1 of litter. This amount would have been overestimated by 32% had we not corrected for limited canopy cover and underestimated by 11% had we not corrected for foliage that is below the high tide mark. Had we made neither correction, we would have overestimated litter fall by 17%. Among communities, rates varied 2.6-fold per unit area of canopy, and 3.9-fold among unit area of community. Seaward fringe mangroves were the most productive per unit of canopy area but the canopy was relatively open; Tidal creek forest was the most productive per unit area of community. Litter fall varied 1.1-fold among years and 2.0-fold among months though communities exhibited a range of seasonalities. Our study may be the most extensively stratified and sampled evaluation of mangrove litter fall in a tropical estuary. We believe our study is also the first such assessment to explicitly deal with canopy discontinuities and demonstrates that failure to do so can result in considerable overestimation of mangrove productivity.

  12. The cerebellum and visual perceptual learning: evidence from a motion extrapolation task.

    Deluca, Cristina; Golzar, Ashkan; Santandrea, Elisa; Lo Gerfo, Emanuele; Eštočinová, Jana; Moretto, Giuseppe; Fiaschi, Antonio; Panzeri, Marta; Mariotti, Caterina; Tinazzi, Michele; Chelazzi, Leonardo


    Visual perceptual learning is widely assumed to reflect plastic changes occurring along the cerebro-cortical visual pathways, including at the earliest stages of processing, though increasing evidence indicates that higher-level brain areas are also involved. Here we addressed the possibility that the cerebellum plays an important role in visual perceptual learning. Within the realm of motor control, the cerebellum supports learning of new skills and recalibration of motor commands when movement execution is consistently perturbed (adaptation). Growing evidence indicates that the cerebellum is also involved in cognition and mediates forms of cognitive learning. Therefore, the obvious question arises whether the cerebellum might play a similar role in learning and adaptation within the perceptual domain. We explored a possible deficit in visual perceptual learning (and adaptation) in patients with cerebellar damage using variants of a novel motion extrapolation, psychophysical paradigm. Compared to their age- and gender-matched controls, patients with focal damage to the posterior (but not the anterior) cerebellum showed strongly diminished learning, in terms of both rate and amount of improvement over time. Consistent with a double-dissociation pattern, patients with focal damage to the anterior cerebellum instead showed more severe clinical motor deficits, indicative of a distinct role of the anterior cerebellum in the motor domain. The collected evidence demonstrates that a pure form of slow-incremental visual perceptual learning is crucially dependent on the intact cerebellum, bearing the notion that the human cerebellum acts as a learning device for motor, cognitive and perceptual functions. We interpret the deficit in terms of an inability to fine-tune predictive models of the incoming flow of visual perceptual input over time. Moreover, our results suggest a strong dissociation between the role of different portions of the cerebellum in motor versus

  13. Characterization of a extrapolation chamber in standard X-ray beam, radiodiagnosis level; Caracterizacao de uma camara de extrapolacao em feixes padroes de raios X, nivel radiodiagnostico

    Silva, Eric A.B. da; Caldas, Linda V.E., E-mail: ebrito@usp.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)


    The extrapolation chamber is a ionization chamber used for detection low energy radiation and can be used as an standard instrument for beta radiation beams. This type of ionization chamber have as main characteristic the variation of sensible volume. This paper performs a study of characterization of a PTW commercial extrapolation chamber, in the energy interval of the qualities of conventional radiodiagnostic

  14. Short-Term Forecasting of Urban Storm Water Runoff in Real-Time using Extrapolated Radar Rainfall Data

    Thorndahl, Søren Liedtke; Rasmussen, Michael R.


    Model based short-term forecasting of urban storm water runoff can be applied in realtime control of drainage systems in order to optimize system capacity during rain and minimize combined sewer overflows, improve wastewater treatment or activate alarms if local flooding is impending. A novel...... online system, which forecasts flows and water levels in real-time with inputs from extrapolated radar rainfall data, has been developed. The fully distributed urban drainage model includes auto-calibration using online in-sewer measurements which is seen to improve forecast skills significantly....... The radar rainfall extrapolation (nowcast) limits the lead time of the system to two hours. In this paper, the model set-up is tested on a small urban catchment for a period of 1.5 years. The 50 largest events are presented....

  15. Comparison of Temperate and Topical Saltwater Species' acute sensitivities distributions to chemicals: implication for deriving safe extrapolation factor

    Wang, Z.; Kwok, KWH; Lui, GCS; Zhou, G; Lee, JS; Lam, MHW; Leung, KMY


    Due to a lack of saltwater toxicity data in tropical regions, toxicity data generated from temperate or cold water species endemic to North America and Europe are often adopted to derive water quality guidelines (WQG) for protecting tropical marine ecosystems. Given the differences in species composition and environmental attributes between tropical and temperate saltwater ecosystems, there are conceivable uncertainties in such ‘temperate-to-tropic’ extrapolations. This ...

  16. Ground state energy of the δ-Bose and Fermi gas at weak coupling from double extrapolation

    Prolhac, Sylvain


    We consider the ground state energy of the Lieb–Liniger gas with δ interaction in the weak coupling regime γ \\to 0 . For bosons with repulsive interaction, previous studies gave the expansion {{e}\\text{B}}≤ft(γ \\right)≃ γ -4{γ3/2}/3π +≤ft(1/6-1/{π2}\\right){γ2} . Using a numerical solution of the Lieb–Liniger integral equation discretized with M points and finite strength γ of the interaction, we obtain very accurate numerics for the next orders after extrapolation on M and γ. The coefficient of {γ5/2} in the expansion is found to be approximately equal to -0.001 587 699 865 505 944 989 29 , accurate within all digits shown. This value is supported by a numerical solution of the Bethe equations with N particles, followed by extrapolation on N and γ. It was identified as ≤ft(3\\zeta (3)/8-1/2\\right)/{π3} by G Lang. The next two coefficients are also guessed from the numerics. For balanced spin 1/2 fermions with attractive interaction, the best result so far for the ground state energy has been {{e}\\text{F}}≤ft(γ \\right)≃ {π2}/12-γ /2+{γ2}/6 . An analogue double extrapolation scheme leads to the value -\\zeta (3)/{π4} for the coefficient of {γ3} .

  17. Testing a Solar Coronal Magnetic Field Extrapolation Code with the Titov-Demoulin Magnetic Flux Rope Model

    Jiang, Chaowei


    In the solar corona, magnetic flux rope is believed to be a fundamental structure accounts for magnetic free energy storage and solar eruptions. Up to the present, the extrapolation of magnetic field from boundary data is the primary way to obtain fully three-dimensional magnetic information of the corona. As a result, the ability of reliable recovering coronal magnetic flux rope is important for coronal field extrapolation. In this paper, our coronal field extrapolation code (CESE-MHD-NLFFF, Jiang & Feng 2012) is examined with an analytical magnetic flux rope model proposed by Titov & Demoulin (1999), which consists of a bipolar magnetic configuration holding an semi-circular line-tied flux rope in force-free equilibrium. By using only the vector field in the bottom boundary as input, we test our code with the model in a representative range of parameter space and find that the model field is reconstructed with high accuracy. Especially, the magnetic topological interfaces formed between the flux rop...

  18. Adsorption of pharmaceuticals onto activated carbon fiber cloths - Modeling and extrapolation of adsorption isotherms at very low concentrations.

    Fallou, Hélène; Cimetière, Nicolas; Giraudet, Sylvain; Wolbert, Dominique; Le Cloirec, Pierre


    Activated carbon fiber cloths (ACFC) have shown promising results when applied to water treatment, especially for removing organic micropollutants such as pharmaceutical compounds. Nevertheless, further investigations are required, especially considering trace concentrations, which are found in current water treatment. Until now, most studies have been carried out at relatively high concentrations (mg L(-1)), since the experimental and analytical methodologies are more difficult and more expensive when dealing with lower concentrations (ng L(-1)). Therefore, the objective of this study was to validate an extrapolation procedure from high to low concentrations, for four compounds (Carbamazepine, Diclofenac, Caffeine and Acetaminophen). For this purpose, the reliability of the usual adsorption isotherm models, when extrapolated from high (mg L(-1)) to low concentrations (ng L(-1)), was assessed as well as the influence of numerous error functions. Some isotherm models (Freundlich, Toth) and error functions (RSS, ARE) show weaknesses to be used as an adsorption isotherms at low concentrations. However, from these results, the pairing of the Langmuir-Freundlich isotherm model with Marquardt's percent standard of deviation was evidenced as the best combination model, enabling the extrapolation of adsorption capacities by orders of magnitude.

  19. Verification of absorbed dose rates in reference beta radiation fields: measurements with an extrapolation chamber and radiochromic film

    Reynaldo, S. R. [Development Centre of Nuclear Technology, Posgraduate Course in Science and Technology of Radiations, Minerals and Materials / CNEN, Av. Pte. Antonio Carlos 6627, 31270-901 Belo Horizonte, Minas Gerais (Brazil); Benavente C, J. A.; Da Silva, T. A., E-mail: [Development Centre of Nuclear Technology / CNEN, Av. Pte. Antonio Carlos 6627, 31270-901 Belo Horizonte, Minas Gerais (Brazil)


    Beta Secondary Standard 2 (Bss 2) provides beta radiation fields with certified values of absorbed dose to tissue and the derived operational radiation protection quantities. As part of the quality assurance, metrology laboratories are required to verify the reliability of the Bss-2 system by performing additional verification measurements. In the CDTN Calibration Laboratory, the absorbed dose rates and their angular variation in the {sup 90}Sr/{sup 90}Y and {sup 85}Kr beta radiation fields were studied. Measurements were done with a 23392 model PTW extrapolation chamber and with Gafchromic radiochromic films on a PMMA slab phantom. In comparison to the certificate values provided by the Bss-2, absorbed dose rates measured with the extrapolation chamber differed from -1.4 to 2.9% for the {sup 90}Sr/{sup 90}Y and -0.3% for the {sup 85}Kr fields; their angular variation showed differences lower than 2% for incidence angles up to 40-degrees and it reached 11% for higher angles, when compared to ISO values. Measurements with the radiochromic film showed an asymmetry of the radiation field that is caused by a misalignment. Differences between the angular variations of absorbed dose rates determined by both dosimetry systems suggested that some correction factors for the extrapolation chamber that were not considered should be determined. (Author)

  20. Biosimilar monoclonal antibodies: A Canadian regulatory perspective on the assessment of clinically relevant differences and indication extrapolation.

    Scott, Bradley J; Klein, Agnes V; Wang, Jian


    Monoclonal antibodies have become mainstays of treatment for many diseases. After more than a decade on the Canadian market, a number of authorized monoclonal antibody products are facing patent expiry. Given their success, most notably in the areas of oncology and autoimmune disease, pharmaceutical and biotechnology companies are eager to produce their own biosimilar versions and have begun manufacturing and testing for a variety of monoclonal antibody products. In October of 2013, the first biosimilar monoclonal antibody products were approved by the European Medicines Agency (Remsima™ and Inflectra™). These products were authorized by Health Canada shortly after; however, while the EMA allowed for extrapolation to all of the indications held by the reference product, Health Canada limited extrapolation to a subset of the indications held by the reference product, Remicade®. The purpose of this review is to discuss the Canadian regulatory framework for the authorization of biosimilar mAbs with specific discussion around the clinical requirements for establishing (bio)-similarity and to present the principles that are used in the clinical assessment of New Drug Submissions for intended biosimilar monoclonal antibodies. Health Canada's current views regarding indication extrapolation, product interchangeability, and post-market surveillance are discussed as well.

  1. Extrapolation Ionization Chamber Dosimetry of Fluorescent X-Ray Energies from 4.5 to 19.6 keV.

    Rakowski, Joseph T; Tucker, Mark A; Snyder, Michael G; Makar, Simon P; Yudele, Mark; Burmeister, Jay; Joiner, Michael C


    Characteristic X rays of energies less than approximately 20 keV are of interest in radiobiology and radiation oncology. There is evidence that these low-energy photons produce higher relative biological effectiveness (RBE) and lower oxygen enhancement ratio (OER) relative to higher energies. Lower energy X rays also offer the advantage of healthy tissue sparing beyond the target treatment depth. Electronic brachytherapy systems that can deliver characteristic and bremsstrahlung X rays of varying energy are in clinical use as well as under development. We performed low-energy extrapolation ionization chamber dosimetry using two methods: 1. the exposure-to-dose method; and 2. the Burlin theory method combined with the extrapolation chamber method of Klevenhagen. We investigated fluorescent X rays emitted from seven metals: titanium (Ti, Z = 22); chromium (Cr, Z = 24); iron (Fe, Z = 26); cobalt (Co, Z = 27); copper (Cu, Z = 29); zinc (Zn, Z = 30); and molybdenum (Mo, Z = 42). X rays were produced by irradiation of the metals with a 55 kVp, 45 mA silver anode spectrum. The data obtained were air kerma rate (cGy/min), and radiation dose rate (cGy/min) in phosphate-buffered saline (PBS) solution and water. Air kerma rates ranged from 3.55 ± 0.10 to 14.36 ± 0.39 cGy/min. Dose rates ranged from 3.85 ± 0.10 to 16.96 ± 0.46 cGy/min in PBS and 3.59 ± 0.10 to 16.06 ± 0.43 cGy/min in water. Dose-rate energy dependence of both models was examined by taking a ratio of measured to Monte Carlo calculated dose rates. Dosimetry method 1 exhibited a linear relationship across all energies with a slope of 0.0127 keV(-1) and R(2) of 0.9276. Method 2 exhibited a linear relationship across all energies with a slope of 0.0467 keV(-1) and R(2) of 0.9933. Method 1 or 2 may be used as a relative dosimetry system to derive dose rates to water by using a second reference ion chamber with a NIST-traceable calibration for the molybdenum spectrum.

  2. Improving in vitro to in vivo extrapolation by incorporating toxicokinetic measurements: A case study of lindane-induced neurotoxicity

    Croom, Edward L.; Shafer, Timothy J.; Evans, Marina V.; Mundy, William R.; Eklund, Chris R.; Johnstone, Andrew F.M.; Mack, Cina M.; Pegram, Rex A., E-mail:


    Approaches for extrapolating in vitro toxicity testing results for prediction of human in vivo outcomes are needed. The purpose of this case study was to employ in vitro toxicokinetics and PBPK modeling to perform in vitro to in vivo extrapolation (IVIVE) of lindane neurotoxicity. Lindane cell and media concentrations in vitro, together with in vitro concentration-response data for lindane effects on neuronal network firing rates, were compared to in vivo data and model simulations as an exercise in extrapolation for chemical-induced neurotoxicity in rodents and humans. Time- and concentration-dependent lindane dosimetry was determined in primary cultures of rat cortical neurons in vitro using “faux” (without electrodes) microelectrode arrays (MEAs). In vivo data were derived from literature values, and physiologically based pharmacokinetic (PBPK) modeling was used to extrapolate from rat to human. The previously determined EC{sub 50} for increased firing rates in primary cultures of cortical neurons was 0.6 μg/ml. Media and cell lindane concentrations at the EC{sub 50} were 0.4 μg/ml and 7.1 μg/ml, respectively, and cellular lindane accumulation was time- and concentration-dependent. Rat blood and brain lindane levels during seizures were 1.7–1.9 μg/ml and 5–11 μg/ml, respectively. Brain lindane levels associated with seizures in rats and those predicted for humans (average = 7 μg/ml) by PBPK modeling were very similar to in vitro concentrations detected in cortical cells at the EC{sub 50} dose. PBPK model predictions matched literature data and timing. These findings indicate that in vitro MEA results are predictive of in vivo responses to lindane and demonstrate a successful modeling approach for IVIVE of rat and human neurotoxicity. - Highlights: • In vitro to in vivo extrapolation for lindane neurotoxicity was performed. • Dosimetry of lindane in a micro-electrode array (MEA) test system was assessed. • Cell concentrations at the MEA EC

  3. Parameter extrapolation to ungauged basins with a hydrological distributed model in a regional framework

    J. J. Vélez


    Full Text Available A Regional Water Resources study was performed at basins within and draining to the Basque Country Region (N of Spain, with a total area of approximately 8500 km2. The objective was to obtain daily and monthly long-term discharges in 567 points, most of them ungauged, with basin areas ranging from 0.25 to 1850 km2. In order to extrapolate the calibrations at gauged points to the ungauged ones, a distributed and conceptually based model called TETIS was used. In TETIS the runoff production is modelled using five linked tanks at the each cell with different outflow relationships at each tank, which represents the main hydrological processes as snowmelt, evapotranspiration, overland flow, interflow and base flow. The routing along the channels' network couples its geomorphologic characteristics with the kinematic wave approach. The parameter estimation methodology tries to distinguish between the effective parameter used in the model at the cell scale, and the watershed characteristic estimated from the available information, being the best estimation without losing its physical meaning. The relationship between them can be considered as a correction function or, in its simple form, a correction factor. The correction factor can take into account the model input errors, the temporal and spatial scale effects and the watershed characteristics. Therefore, it is reasonable to assume the correction factor is the same for each parameter to all cells within the watershed. This approach reduces drastically the number of parameter to be calibrated, because only the common correction factors are calibrated instead of parameter maps (number of parameters times the number of cells. In this way, the calibration can be performed using automatic methodologies. In this work, the Shuffled Complex Evolution – University of Arizona, SCE-UA algorithm was used. The available recent year's data was used to calibrate the model in 20 of

  4. Is the climate right for pleistocene rewilding? Using species distribution models to extrapolate climatic suitability for mammals across continents.

    Richmond, Orien M W; McEntee, Jay P; Hijmans, Robert J; Brashares, Justin S


    Species distribution models (SDMs) are increasingly used for extrapolation, or predicting suitable regions for species under new geographic or temporal scenarios. However, SDM predictions may be prone to errors if species are not at equilibrium with climatic conditions in the current range and if training samples are not representative. Here the controversial "Pleistocene rewilding" proposal was used as a novel example to address some of the challenges of extrapolating modeled species-climate relationships outside of current ranges. Climatic suitability for three proposed proxy species (Asian elephant, African cheetah and African lion) was extrapolated to the American southwest and Great Plains using Maxent, a machine-learning species distribution model. Similar models were fit for Oryx gazella, a species native to Africa that has naturalized in North America, to test model predictions. To overcome biases introduced by contracted modern ranges and limited occurrence data, random pseudo-presence points generated from modern and historical ranges were used for model training. For all species except the oryx, models of climatic suitability fit to training data from historical ranges produced larger areas of predicted suitability in North America than models fit to training data from modern ranges. Four naturalized oryx populations in the American southwest were correctly predicted with a generous model threshold, but none of these locations were predicted with a more stringent threshold. In general, the northern Great Plains had low climatic suitability for all focal species and scenarios considered, while portions of the southern Great Plains and American southwest had low to intermediate suitability for some species in some scenarios. The results suggest that the use of historical, in addition to modern, range information and randomly sampled pseudo-presence points may improve model accuracy. This has implications for modeling range shifts of organisms in response

  5. Extrapolation chamber mounted on perspex for calibration of high energy photon and electron beams from a clinical linear accelerator

    Ravichandran R


    Full Text Available The objective of the present study is to establish radiation standards for absorbed doses, for clinical high energy linear accelerator beams. In the nonavailability of a cobalt-60 beam for arriving at Nd, water values for thimble chambers, we investigated the efficacy of perspex mounted extrapolation chamber (EC used earlier for low energy x-rays and beta dosimetry. Extrapolation chamber with facility for achieving variable electrode separations 10.5mm to 0.5mm using micrometer screw was used for calibrations. Photon beams 6 MV and 15 MV and electron beams 6 MeV and 15 MeV from Varian Clinac linacs were calibrated. Absorbed Dose estimates to Perspex were converted into dose to solid water for comparison with FC 65 ionisation chamber measurements in water. Measurements made during the period December 2006 to June 2008 are considered for evaluation. Uncorrected ionization readings of EC for all the radiation beams over the entire period were within 2% showing the consistency of measurements. Absorbed doses estimated by EC were in good agreement with in-water calibrations within 2% for photons and electron beams. The present results suggest that extrapolation chambers can be considered as an independent measuring system for absorbed dose in addition to Farmer type ion chambers. In the absence of standard beam quality (Co-60 radiations as reference Quality for Nd,water the possibility of keeping EC as Primary Standards for absorbed dose calibrations in high energy radiation beams from linacs should be explored. As there are neither Standard Laboratories nor SSDL available in our country, we look forward to keep EC as Local Standard for hospital chamber calibrations. We are also participating in the IAEA mailed TLD intercomparison programme for quality audit of existing status of radiation dosimetry in high energy linac beams. The performance of EC has to be confirmed with cobalt-60 beams by a separate study, as linacs are susceptible for minor

  6. Is the climate right for pleistocene rewilding? Using species distribution models to extrapolate climatic suitability for mammals across continents.

    Orien M W Richmond

    Full Text Available Species distribution models (SDMs are increasingly used for extrapolation, or predicting suitable regions for species under new geographic or temporal scenarios. However, SDM predictions may be prone to errors if species are not at equilibrium with climatic conditions in the current range and if training samples are not representative. Here the controversial "Pleistocene rewilding" proposal was used as a novel example to address some of the challenges of extrapolating modeled species-climate relationships outside of current ranges. Climatic suitability for three proposed proxy species (Asian elephant, African cheetah and African lion was extrapolated to the American southwest and Great Plains using Maxent, a machine-learning species distribution model. Similar models were fit for Oryx gazella, a species native to Africa that has naturalized in North America, to test model predictions. To overcome biases introduced by contracted modern ranges and limited occurrence data, random pseudo-presence points generated from modern and historical ranges were used for model training. For all species except the oryx, models of climatic suitability fit to training data from historical ranges produced larger areas of predicted suitability in North America than models fit to training data from modern ranges. Four naturalized oryx populations in the American southwest were correctly predicted with a generous model threshold, but none of these locations were predicted with a more stringent threshold. In general, the northern Great Plains had low climatic suitability for all focal species and scenarios considered, while portions of the southern Great Plains and American southwest had low to intermediate suitability for some species in some scenarios. The results suggest that the use of historical, in addition to modern, range information and randomly sampled pseudo-presence points may improve model accuracy. This has implications for modeling range shifts of

  7. Choroid plexus papilloma-A case highlighting the challenges of extrapolating pediatric chemotherapy regimens to adult populations.

    Barman, Stephen L; Jean, Gary W; Dinsfriend, William M; Gerber, David E


    The treatment of adults who present with rare pediatric tumors is not characterized well in the literature. We report an instance of a 40-year-old African American woman with a diagnosis of choroid plexus carcinoma admitted to the intensive care unit for severe sepsis seven days after receiving chemotherapy consisting of carboplatin (350 mg/m(2) on Days 1 and 2 plus etoposide 100 mg/m(2) on Days 1-5). Her laboratory results were significant for an absolute neutrophil count of 0/µL and blood cultures positive for Capnocytophagia species. She was supported with broad spectrum antibiotics and myeloid growth factors. She eventually recovered and was discharged in stable condition. The management of adults with malignancies most commonly seen in pediatric populations presents substantial challenges. There are multiple age-specific differences in renal and hepatic function that explain the need for higher dosing in pediatric patients without increasing the risk of toxicity. Furthermore, differences in pharmacokinetic parameters such as absorption, distribution, and clearance are present but are less likely to affect patients. It is expected that the pediatric population will have more bone marrow reserve and, therefore, less susceptible to myelosuppression. The extrapolation of pediatric dosing to an adult presents a problematic situation in treating adults with malignancies that primarily effect pediatric patients. We recommend extrapolating from adult treatment regimens with similar agents rather than extrapolating from pediatric treatment regimens to reduce the risk of toxicity. We also recommend the consideration of adding myeloid growth factors. If the treatment is tolerated without significant toxicity, dose escalation can be considered.

  8. Generalized Poincaré inequalities: Sharp self-improving propertiesTwo weight extrapolation via the maximal operator

    Cruz Uribe, David; Pérez Moreno, Carlos


    We give several extrapolation theorems for pairs of weights of the form (w, Mkw) and (w, (Mw/w)r w), where w is any non-negative function, r>1, and Mk is the kth iterate of the Hardy–Littlewood maximal operator. As an application we show that our results can be used to extend and sharpen results for square functions and singular integral operators by Chang et al. (1985, Comment. Math. Helv.60, 217–246), Chanillo and Wheeden (1987, Indiana Univ. Math. J.36, 277–294), Wilson (1987, Duke Math. J...

  9. Extrapolation of contrail investigations by LIDAR to larger scale measurements. Analysis and calibration of CCD camera and satellite images

    Sussmann, R.; Homburg, F.; Freudenthaler, V.; Jaeger, H. [Frauenhofer Inst. fuer Atmosphaerische Umweltforschung, Garmisch-Partenkirchen (Germany)


    The CCD image of a persistent contrail and the coincident LIDAR measurement are presented. To extrapolate the LIDAR derived optical thickness to the video field of view an anisotropy correction and calibration has to be performed. Observed bright halo components result from highly regular oriented hexagonal crystals with sizes of 200 {mu}m-2 mm. This explained by measured ambient humidities below the formation threshold of natural cirrus. Optical thickness from LIDAR shows significant discrepancies to the result from coincident NOAA-14 data. Errors result from anisotropy correction and parameterized relations between AVHRR channels and optical properties. (author) 28 refs.

  10. Robust extrapolation scheme for fast estimation of 3D ising field partition functions: application to within-subject fMRI data analysis.

    Risser, Laurent; Vincent, Thomas; Ciuciu, Philippe; Idier, Jérôme


    In this paper, we present a fast numerical scheme to estimate Partition Functions (PF) of 3D Ising fields. Our strategy is applied to the context of the joint detection-estimation of brain activity from functional Magnetic Resonance Imaging (fMRI) data, where the goal is to automatically recover activated regions and estimate region-dependent hemodynamic filters. For any region, a specific binary Markov random field may embody spatial correlation over the hidden states of the voxels by modeling whether they are activated or not. To make this spatial regularization fully adaptive, our approach is first based upon a classical path-sampling method to approximate a small subset of reference PFs corresponding to prespecified regions. Then, the proposed extrapolation method allows us to approximate the PFs associated with the Ising fields defined over the remaining brain regions. In comparison with preexisting approaches, our method is robust to topological inhomogeneities in the definition of the reference regions. As a result, it strongly alleviates the computational burden and makes spatially adaptive regularization of whole brain fMRI datasets feasible.

  11. Robust extrapolation scheme for fast estimation of 3D Ising field partition functions: application to within subject fMRI data

    Risser, L.; Vincent, T.; Ciuciu, Ph. [NeuroSpin CEA, F-91191 Gif sur Yvette (France); Risser, L.; Vincent, T. [Laboratoire de Neuroimagerie Assistee par Ordinateur (LNAO) CEA - DSV/I2BM/NEUROSPIN (France); Risser, L. [Institut de mecanique des fluides de Toulouse (IMFT), CNRS: UMR5502 - Universite Paul Sabatier - Toulouse III - Institut National Polytechnique de Toulouse - INPT (France); Idier, J. [Institut de Recherche en Communications et en Cybernetique de Nantes (IRCCyN) CNRS - UMR6597 - Universite de Nantes - ecole Centrale de Nantes - Ecole des Mines de Nantes - Ecole Polytechnique de l' Universite de Nantes (France)


    In this paper, we present a first numerical scheme to estimate Partition Functions (PF) of 3D Ising fields. Our strategy is applied to the context of the joint detection-estimation of brain activity from functional Magnetic Resonance Imaging (fMRI) data, where the goal is to automatically recover activated regions and estimate region-dependent, hemodynamic filters. For any region, a specific binary Markov random field may embody spatial correlation over the hidden states of the voxels by modeling whether they are activated or not. To make this spatial regularization fully adaptive, our approach is first based upon it, classical path-sampling method to approximate a small subset of reference PFs corresponding to pre-specified regions. Then, file proposed extrapolation method allows its to approximate the PFs associated with the Ising fields defined over the remaining brain regions. In comparison with preexisting approaches, our method is robust; to topological inhomogeneities in the definition of the reference regions. As a result, it strongly alleviates the computational burden and makes spatially adaptive regularization of whole brain fMRI datasets feasible. (authors)

  12. Unified Scaling Law for flux pinning in practical superconductors: III. Minimum datasets, core parameters, and application of the Extrapolative Scaling Expression

    Ekin, Jack W.; Cheggour, Najib; Goodrich, Loren; Splett, Jolene


    In Part 2 of these articles, an extensive analysis of pinning-force curves and raw scaling data was used to derive the Extrapolative Scaling Expression (ESE). This is a parameterization of the Unified Scaling Law (USL) that has the extrapolation capability of fundamental unified scaling, coupled with the application ease of a simple fitting equation. Here in Part 3, the accuracy of the ESE relation to interpolate and extrapolate limited critical-current data to obtain complete I c(B,T,ε) datasets is evaluated and compared with present fitting equations. Accuracy is analyzed in terms of root mean square (RMS) error and fractional deviation statistics. Highlights from 92 test cases are condensed and summarized, covering most fitting protocols and proposed parameterizations of the USL. The results show that ESE reliably extrapolates critical currents at fields B, temperatures T, and strains ε that are remarkably different from the fitted minimum dataset. Depending on whether the conductor is moderate-J c or high-J c, effective RMS extrapolation errors for ESE are in the range 2–5 A at 12 T, which approaches the I c measurement error (1–2%). The minimum dataset for extrapolating full I c(B,T,ε) characteristics is also determined from raw scaling data. It consists of one set of I c(B,ε) data at a fixed temperature (e.g., liquid helium temperature), and one set of I c(B,T) data at a fixed strain (e.g., zero applied strain). Error analysis of extrapolations from the minimum dataset with different fitting equations shows that ESE reduces the percentage extrapolation errors at individual data points at high fields, temperatures, and compressive strains down to 1/10th to 1/40th the size of those for extrapolations with present fitting equations. Depending on the conductor, percentage fitting errors for interpolations are also reduced to as little as 1/15th the size. The extrapolation accuracy of the ESE relation offers the prospect of straightforward implementation

  13. Neural Network Model for Survival and Growth of Salmonella enterica Serotype 8,20:-:z6 in Ground Chicken Thigh Meat during Cold Storage: Extrapolation to Other Serotypes.

    Oscar, T P


    Mathematical models that predict the behavior of human bacterial pathogens in food are valuable tools for assessing and managing this risk to public health. A study was undertaken to develop a model for predicting the behavior of Salmonella enterica serotype 8,20:-:z6 in chicken meat during cold storage and to determine how well the model would predict the behavior of other serotypes of Salmonella stored under the same conditions. To develop the model, ground chicken thigh meat (0.75 cm(3)) was inoculated with 1.7 log Salmonella 8,20:-:z6 and then stored for 0 to 8 -8 to 16°C. An automated miniaturized most-probable-number (MPN) method was developed and used for the enumeration of Salmonella. Commercial software (Excel and the add-in program NeuralTools) was used to develop a multilayer feedforward neural network model with one hidden layer of two nodes. The performance of the model was evaluated using the acceptable prediction zone (APZ) method. The number of Salmonella in ground chicken thigh meat stayed the same (P > 0.05) during 8 days of storage at -8 to 8°C but increased (P < 0.05) during storage at 9°C (+0.6 log) to 16°C (+5.1 log). The proportion of residual values (observed minus predicted values) in an APZ (pAPZ) from -1 log (fail-safe) to 0.5 log (fail-dangerous) was 0.939 for the data (n = 426 log MPN values) used in the development of the model. The model had a pAPZ of 0.944 or 0.954 when it was extrapolated to test data (n = 108 log MPN per serotype) for other serotypes (S. enterica serotype Typhimurium var 5-, Kentucky, Typhimurium, and Thompson) of Salmonella in ground chicken thigh meat stored for 0 to 8 days at -4, 4, 12, or 16°C under the same experimental conditions. A pAPZ of ≥0.7 indicates that a model provides predictions with acceptable bias and accuracy. Thus, the results indicated that the model provided valid predictions of the survival and growth of Salmonella 8,20:-:z6 in ground chicken thigh meat stored for 0 to 8 days at -8 to

  14. Human plasma concentrations of cytochrome P450 probes extrapolated from pharmacokinetics in cynomolgus monkeys using physiologically based pharmacokinetic modeling.

    Shida, Satomi; Utoh, Masahiro; Murayama, Norie; Shimizu, Makiko; Uno, Yasuhiro; Yamazaki, Hiroshi


    1. Cynomolgus monkeys are widely used in preclinical studies as non-human primate species. Pharmacokinetics of human cytochrome P450 probes determined in cynomolgus monkeys after single oral or intravenous administrations were extrapolated to give human plasma concentrations. 2. Plasma concentrations of slowly eliminated caffeine and R-/S-warfarin and rapidly eliminated omeprazole and midazolam previously observed in cynomolgus monkeys were scaled to human oral biomonitoring equivalents using known species allometric scaling factors and in vitro metabolic clearance data with a simple physiologically based pharmacokinetic (PBPK) model. Results of the simplified human PBPK models were consistent with reported experimental PK data in humans or with values simulated by a fully constructed population-based simulator (Simcyp). 3. Oral administrations of metoprolol and dextromethorphan (human P450 2D probes) in monkeys reportedly yielded plasma concentrations similar to their quantitative detection limits. Consequently, ratios of in vitro hepatic intrinsic clearances of metoprolol and dextromethorphan determined in monkeys and humans were used with simplified PBPK models to extrapolate intravenous PK in monkeys to oral PK in humans. 4. These results suggest that cynomolgus monkeys, despite their rapid clearance of some human P450 substrates, could be a suitable model for humans, especially when used in conjunction with simple PBPK models.

  15. Simulation-Extrapolation for Estimating Means and Causal Effects with Mismeasured Covariates

    Lockwood, J. R.; McCaffrey, Daniel F.


    Regression, weighting and related approaches to estimating a population mean from a sample with nonrandom missing data often rely on the assumption that conditional on covariates, observed samples can be treated as random. Standard methods using this assumption generally will fail to yield consistent estimators when covariates are measured with…

  16. Extrapolating soil redistribution rates estimated from 137Cs to catchment scale in a complex agroforestry landscape using GIS

    Gaspar, Leticia; López-Vicente, Manuel; Palazón, Leticia; Quijano, Laura; Navas, Ana


    The use of fallout radionuclides, particularly 137Cs, in soil erosion investigations has been successfully used over a range of different landscapes. This technique provides mean annual values of spatially distributed soil erosion and deposition rates for the last 40-50 years. However, upscaling the data provided by fallout radionuclides to catchment level is required to understand soil redistribution processes, to support catchment management strategies, and to assess the main soil erosion factors like vegetation cover or topography. In recent years, extrapolating field scale soil erosion rates estimated from 137Cs data to catchment scale has been addressed using geostatistical interpolation and Geographical Information Systems (GIS). This study aims to assess soil redistribution in an agroforestry catchment characterized by abrupt topography and an intricate mosaic of land uses using 137Cs data and GIS. A new methodological approach using GIS is presented as an alternative of interpolation tools to extrapolating soil redistribution rates in complex landscapes. This approach divides the catchment into Homogeneous Physiographic Units (HPUs) based on unique land use, hydrological network and slope value. A total of 54 HPUs presenting specific land use, strahler order and slope combinations, were identified within the study area (2.5 km2) located in the north of Spain. Using 58 soil erosion and deposition rates estimated from 137Cs data, we were able to characterize the predominant redistribution processes in 16 HPUs, which represent the 78% of the study area surface. Erosion processes predominated in 6 HPUs (23%) which correspond with cultivated units in which slope and strahler order is moderate or high, and with scrubland units with high slope. Deposition was predominant in 3 HPUs (6%), mainly in riparian areas, and to a lesser extent in forest and scrubland units with low slope and low and moderate strahler order. Redistribution processes, both erosion and

  17. Turbulent flux modelling with a simple 2-layer soil model and extrapolated surface temperature applied at Nam Co Lake basin on the Tibetan Plateau

    T. Gerken


    Full Text Available This paper introduces a surface model with two soil-layers for use in a high-resolution circulation model that has been modified with an extrapolated surface temperature, to be used for the calculation of turbulent fluxes. A quadratic temperature profile based on the layer mean and base temperature is assumed in each layer and extended to the surface. The model is tested at two sites on the Tibetan Plateau near Nam Co Lake during four days during the 2009 Monsoon season. In comparison to a two-layer model without explicit surface temperature estimate, there is a greatly reduced delay in diurnal flux cycles and the modelled surface temperature is much closer to observations. Comparison with a SVAT model and eddy covariance measurements shows an overall reasonable model performance based on RMSD and cross correlation comparisons between the modified and original model. A potential limitation of the model is the need for careful initialisation of the initial soil temperature profile, that requires field measurements. We show that the modified model is capable of reproducing fluxes of similar magnitudes and dynamics when compared to more complex methods chosen as a reference.

  18. Attenuated Total Reflectance Fourier transform infrared spectroscopy for determination of Long Chain Free Fatty Acid concentration in oily wastewater using the double wavenumber extrapolation technique.

    Hao, Zisu; Malyala, Divya; Dean, Lisa; Ducoste, Joel


    Long Chain Free Fatty Acids (LCFFAs) from the hydrolysis of fat, oil and grease (FOG) are major components in the formation of insoluble saponified solids known as FOG deposits that accumulate in sewer pipes and lead to sanitary sewer overflows (SSOs). A Double Wavenumber Extrapolative Technique (DWET) was developed to simultaneously measure LCFFAs and FOG concentrations in oily wastewater suspensions. This method is based on the analysis of the Attenuated Total Reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) spectrum, in which the absorbance of carboxyl bond (1710cm(-1)) and triglyceride bond (1745cm(-1)) were selected as the characteristic wavenumbers for total LCFFAs and FOG, respectively. A series of experiments using pure organic samples (Oleic acid/Palmitic acid in Canola oil) were performed that showed a linear relationship between the absorption at these two wavenumbers and the total LCFFA. In addition, the DWET method was validated using GC analyses, which displayed a high degree of agreement between the two methods for simulated oily wastewater suspensions (1-35% Oleic acid in Canola oil/Peanut oil). The average determination error of the DWET approach was ~5% when the LCFFA fraction was above 10wt%, indicating that the DWET could be applied as an experimental method for the determination of both LCFFAs and FOG concentrations in oily wastewater suspensions. Potential applications of this DWET approach includes: (1) monitoring the LCFFAs and FOG concentrations in grease interceptor (GI) effluents for regulatory compliance; (2) evaluating alternative LCFFAs/FOG removal technologies; and (3) quantifying potential FOG deposit high accumulation zones in the sewer collection system.

  19. Hematological responses after inhaling {sup 238}PuO{sub 2}: An extrapolation from beagle dogs to humans

    Scott, B.R.; Muggenburg, B.A.; Welsh, C.A.; Angerstein, D.A.


    The alpha emitter plutonium-238 ({sup 238}Pu), which is produced in uranium-fueled, light-water reactors, is used as a thermoelectric power source for space applications. Inhalation of a mixed oxide form of Pu is the most likely mode of exposure of workers and the general public. Occupational exposures to {sup 238}PuO{sub 2} have occurred in association with the fabrication of radioisotope thermoelectric generators. Organs and tissue at risk for deterministic and stochastic effects of {sup 238}Pu-alpha irradiation include the lung, liver, skeleton, and lymphatic tissue. Little has been reported about the effects of inhaled {sup 238}PuO{sub 2} on peripheral blood cell counts in humans. The purpose of this study was to investigate hematological responses after a single inhalation exposure of Beagle dogs to alpha-emitting {sup 238}PuO{sub 2} particles and to extrapolate results to humans.

  20. How to optimize nonlinear force-free coronal magnetic field extrapolations from SDO/HMI vector magnetograms?

    Wiegelmann, T; Inhester, B; Tadesse, T; Sun, X; Hoeksema, J T


    The SDO/HMI instruments provide photospheric vector magnetograms with a high spatial and temporal resolution. Our intention is to model the coronal magnetic field above active regions with the help of a nonlinear force-free extrapolation code. Our code is based on an optimization principle and has been tested extensively with semi-analytic and numeric equilibria and been applied before to vector magnetograms from Hinode and ground based observations. Recently we implemented a new version which takes measurement errors in photospheric vector magnetograms into account. Photospheric field measurements are often due to measurement errors and finite nonmagnetic forces inconsistent as a boundary for a force-free field in the corona. In order to deal with these uncertainties, we developed two improvements: 1.) Preprocessing of the surface measurements in order to make them compatible with a force-free field 2.) The new code keeps a balance between the force-free constraint and deviation from the photospheric field m...

  1. Effects of unionised ammonia on tropical freshwater organisms: Implications on temperate-to-tropic extrapolation and water quality guidelines.

    Wang, Zhen; Leung, Kenneth M Y


    Unionised ammonia (NH3) is highly toxic to freshwater organisms. Yet, most of the available toxicity data on NH3 were predominantly generated from temperate regions, while toxicity data on NH3 derived from tropical species were limited. To address this issue, we first conducted standard acute toxicity tests on NH3 using ten tropical freshwater species. Subsequently, we constructed a tropical species sensitivity distribution (SSD) using these newly generated toxicity data and available tropical toxicity data of NH3, which was then compared with the corresponding temperate SSD constructed from documented temperate acute toxicity data. Our results showed that tropical species were generally more sensitive to NH3 than their temperate counterparts. Based on the ratio between temperate and tropical hazardous concentration 10% values, we recommend an extrapolation factor of four to be applied when surrogate temperate toxicity data or temperate water quality guidelines of NH3 are used for protecting tropical freshwater ecosystems.

  2. Extrapolation of Urn Models via Poissonization: Accurate Measurements of the Microbial Unknown

    Lladser, Manuel; Reeder, Jens; 10.1371/journal.pone.0021105


    The availability of high-throughput parallel methods for sequencing microbial communities is increasing our knowledge of the microbial world at an unprecedented rate. Though most attention has focused on determining lower-bounds on the alpha-diversity i.e. the total number of different species present in the environment, tight bounds on this quantity may be highly uncertain because a small fraction of the environment could be composed of a vast number of different species. To better assess what remains unknown, we propose instead to predict the fraction of the environment that belongs to unsampled classes. Modeling samples as draws with replacement of colored balls from an urn with an unknown composition, and under the sole assumption that there are still undiscovered species, we show that conditionally unbiased predictors and exact prediction intervals (of constant length in logarithmic scale) are possible for the fraction of the environment that belongs to unsampled classes. Our predictions are based on a P...

  3. Accuracy and efficiency considerations for wide-angle wavefield extrapolators and scattering operators

    Thomson, C. J.


    Several observations are made concerning the numerical implementation of wide-angle one-way wave equations, using for illustration scalar waves obeying the Helmholtz equation in two space dimensions. This simple case permits clear identification of a sequence of physically motivated approximations of use when the mathematically exact pseudo-differential operator (PSDO) one-way method is applied. As intuition suggests, these approximations largely depend on the medium gradients in the direction transverse to the main propagation direction. A key point is that narrow-angle approximations are to be avoided in the interests of accuracy. Another key consideration stems from the fact that the so-called `standard-ordering' PSDO indicates how lateral interpolation of the velocity structure can significantly reduce computational costs associated with the Fourier or plane-wave synthesis lying at the heart of the calculations. A third important point is that the PSDO theory shows what approximations are necessary in order to generate an exponential one-way propagator for the laterally varying case, representing the intuitive extension of classical integral-transform solutions for a laterally homogeneous medium. This exponential propagator permits larger forward stepsizes. Numerical comparisons with Helmholtz (i.e. full) wave-equation finite-difference solutions are presented for various canonical problems. These include propagation along an interfacial gradient, the effects of a compact inclusion and the formation of extended transmitted and backscattered wave trains by model roughness. The ideas extend to the 3-D, generally anisotropic case and to multiple scattering by invariant embedding. It is concluded that the method is very competitive, striking a new balance between simplifying approximations and computational labour. Complicated wave-scattering effects are retained without the need for expensive global solutions, providing a robust and flexible modelling tool.

  4. Inflammatory findings on species extrapolations: humans are definitely no 70-kg mice.

    Leist, Marcel; Hartung, Thomas


    Modern toxicology has embraced in vitro methods, and major hopes are based on the Omics technologies and systems biology approaches they bring along (Hartung and McBride in ALTEX 28(2):83-93, 2011; Hartung et al. in ALTEX 29(2):119-28, 2012). A culture of stringent validation has been developed for such approaches (Leist et al. in ALTEX 27(4):309-317, 2010; ALTEX 29(4):373-88, 2012a; Toxicol Res 1:8-22, 2012b), while the quality and usefulness of animal experiments have been little scrutinized. A new study (Seok et al. 2013) now shows the low predictivity of animal responses in the field of inflammation. These findings corroborate earlier findings from comparisons in the fields of neurodegeneration, stroke and sepsis. The low predictivity of animal experiments in research areas allowing direct comparisons of mouse versus human data puts strong doubt on the usefulness of animal data as key technology to predict human safety.

  5. Extrapolating psychological insights from Facebook profiles: a study of religion and relationship status.

    Young, Sean; Dutta, Debo; Dommety, Gopal


    Online social network users may leave creative, subtle cues on their public profiles to communicate their motivations and interests to other network participants. This paper explores whether psychological predictions can be made about the motivations of social network users by identifying and analyzing these cues. Focusing on the domain of relationship seeking, we predicted that people using social networks for dating would reveal that they have a single relationship status as a method of eliciting contact from potential romantic others. Based on results from a pilot study (n = 20) supporting this hypothesis, we predicted that people attempting to attract users of the same religious background would report a religious affiliation along with a single relationship status. Using observational data from 150 Facebook profiles, results from a multivariate logistic regression suggest that people providing a religious affiliation were more likely to list themselves as single (a proxy for their interest in using the network to find romantic partners) than people who do not provide religious information. We discuss the implications for extracting psychological information from Facebook profiles. To our knowledge, this is the first study to suggest that information from publicly available online social networking profiles can be used to predict people's motivations for using social networks.

  6. Effects of spatial heterogeneity on spatial extrapolation of sampling plot data%空间异质性对样地数据空间外推的影响

    梁宇; 贺红士; 胡远满; 布仁仓


    By using model combination method, this paper simulated the changes of response variable (tree species distribution area at landscape level under climate change) under three scenarios of environmental spatial heterogeneous level, analyzed the differentiation of simulated results under different scenarios, and discussed the effects of environmental spatial heterogeneity on the larger spatial extrapolation of the tree species responses to climate change observed in sampling plots. For most tree species, spatial heterogeneity had little effects on the extrapolation from plot scale to class scale; for the tree species insensitive to climate warming and the azonal species, spatial heterogeneity also had little effects on the extrapolation from plot-scale to zonal scale. By contrast, for the tree species sensitive to climate warming, spatial heterogeneity had effects on the extrapolation from plot scale to zonal scale, and the effects could be varied under different scenarios.%应用模型结合的方法模拟了3个空间异质性等级预案下反应变量(气候变化下景观水平的树种分布面积)的变化情况,并分析模拟结果在预案之间的差异性,探讨了环境空间异质性对样地观测到的树种对气候变化响应向更大空间尺度外推的影响.结果表明:空间异质性在一般情况下对样地数据向土地类型尺度外推没有影响,而对样地尺度外推到海拔带尺度的影响则有较复杂的情况.对于对气候变化不敏感的树种以及非地带性树种,空间异质性对样地数据向海拔带尺度外推没有影响;对于大多数对气候变化敏感的地带性树种而言,空间异质性对样地数据向海拔带尺度外推则有影响.

  7. Unified Scaling Law for flux pinning in practical superconductors: II. Parameter testing, scaling constants, and the Extrapolative Scaling Expression

    Ekin, Jack W.; Cheggour, Najib; Goodrich, Loren; Splett, Jolene; Bordini, Bernardo; Richter, David


    A scaling study of several thousand Nb3Sn critical-current (I c) measurements is used to derive the Extrapolative Scaling Expression (ESE), a relation that can quickly and accurately extrapolate limited datasets to obtain full three-dimensional dependences of I c on magnetic field (B), temperature (T), and mechanical strain (ɛ). The relation has the advantage of being easy to implement, and offers significant savings in sample characterization time and a useful tool for magnet design. Thorough data-based analysis of the general parameterization of the Unified Scaling Law (USL) shows the existence of three universal scaling constants for practical Nb3Sn conductors. The study also identifies the scaling parameters that are conductor specific and need to be fitted to each conductor. This investigation includes two new, rare, and very large I c(B,T,ɛ) datasets (each with nearly a thousand I c measurements spanning magnetic fields from 1 to 16 T, temperatures from ˜2.26 to 14 K, and intrinsic strains from -1.1% to +0.3%). The results are summarized in terms of the general USL parameters given in table 3 of Part 1 (Ekin J W 2010 Supercond. Sci. Technol. 23 083001) of this series of articles. The scaling constants determined for practical Nb3Sn conductors are: the upper-critical-field temperature parameter v = 1.50 ± 0.04 the cross-link parameter w = 3.0 ± 0.3 and the strain curvature parameter u = 1.7 ± 0.1 (from equation (29) for b c2(ɛ) in Part 1). These constants and required fitting parameters result in the ESE relation, given by I c ( B , T , ɛ ) B = C [ b c 2 ( ɛ ) ] s ( 1 - t 1.5 ) η - μ ( 1 - t 2 ) μ b p ( 1 - b ) q with reduced magnetic field b ≡ B/B c2*(T,ɛ) and reduced temperature t ≡ T/T c*(ɛ), where: B c 2 * ( T , ɛ ) = B c 2 * ( 0 , 0 ) ( 1 - t 1.5 ) b c 2 ( ɛ ) T c * ( ɛ ) = T c * ( 0 ) [ b c 2 ( ɛ ) ] 1/3 and fitting parameters: C, B c2*(0,0), T c*(0), s, either η or μ (but not both), plus the parameters in the strain function b c2

  8. 线性神经网络在舰船磁场推算模型中的应用%Application of Linear Neural Network to Ship's Magnetic Field Extrapolation



    Aimed at the problem of magnetic field extrapolation for ships, from the point of view of intelligent optimization, a linear neural network predictable model inside and outside magnetic field is settled. The method can avoid many problems from linear model and realize extrapolation. Its high accuracy and good generalization ability have been tested by a mockup experiment.%针对舰艇内外磁场推算问题,从智能优化的角度出发,建立了内外磁场之间的线性神经网络预报模型。该方法避免了利用数值建模存在的诸多困难,可实现舰艇内外磁场有效推算。并利用船模实验验证了网络预测的准确性,其换算精度相较于数值建模有所提高,满足工程实际需求。

  9. Extrapolation of systemic bioavailability assessing skin absorption and epidermal and hepatic metabolism of aromatic amine hair dyes in vitro

    Manwaring, John, E-mail: [Procter & Gamble Inc., Mason Business Center, Mason, OH 45040 (United States); Rothe, Helga [Procter & Gamble Service GmbH, Sulzbacher Str. 40, 65823 Schwalbach am Taunus (Germany); Obringer, Cindy; Foltz, David J.; Baker, Timothy R.; Troutman, John A. [Procter & Gamble Inc., Mason Business Center, Mason, OH 45040 (United States); Hewitt, Nicola J. [SWS, Erzhausen (Germany); Goebel, Carsten [Procter & Gamble Service GmbH, Sulzbacher Str. 40, 65823 Schwalbach am Taunus (Germany)


    Approaches to assess the role of absorption, metabolism and excretion of cosmetic ingredients that are based on the integration of different in vitro data are important for their safety assessment, specifically as it offers an opportunity to refine that safety assessment. In order to estimate systemic exposure (AUC) to aromatic amine hair dyes following typical product application conditions, skin penetration and epidermal and systemic metabolic conversion of the parent compound was assessed in human skin explants and human keratinocyte (HaCaT) and hepatocyte cultures. To estimate the amount of the aromatic amine that can reach the general circulation unchanged after passage through the skin the following toxicokinetically relevant parameters were applied: a) Michaelis–Menten kinetics to quantify the epidermal metabolism; b) the estimated keratinocyte cell abundance in the viable epidermis; c) the skin penetration rate; d) the calculated Mean Residence Time in the viable epidermis; e) the viable epidermis thickness and f) the skin permeability coefficient. In a next step, in vitro hepatocyte K{sub m} and V{sub max} values and whole liver mass and cell abundance were used to calculate the scaled intrinsic clearance, which was combined with liver blood flow and fraction of compound unbound in the blood to give hepatic clearance. The systemic exposure in the general circulation (AUC) was extrapolated using internal dose and hepatic clearance, and C{sub max} was extrapolated (conservative overestimation) using internal dose and volume of distribution, indicating that appropriate toxicokinetic information can be generated based solely on in vitro data. For the hair dye, p-phenylenediamine, these data were found to be in the same order of magnitude as those published for human volunteers. - Highlights: • An entirely in silico/in vitro approach to predict in vivo exposure to dermally applied hair dyes • Skin penetration and epidermal conversion assessed in human

  10. Quantitative cross-species extrapolation between humans and fish: the case of the anti-depressant fluoxetine.

    Luigi Margiotta-Casaluci

    Full Text Available Fish are an important model for the pharmacological and toxicological characterization of human pharmaceuticals in drug discovery, drug safety assessment and environmental toxicology. However, do fish respond to pharmaceuticals as humans do? To address this question, we provide a novel quantitative cross-species extrapolation approach (qCSE based on the hypothesis that similar plasma concentrations of pharmaceuticals cause comparable target-mediated effects in both humans and fish at similar level of biological organization (Read-Across Hypothesis. To validate this hypothesis, the behavioural effects of the anti-depressant drug fluoxetine on the fish model fathead minnow (Pimephales promelas were used as test case. Fish were exposed for 28 days to a range of measured water concentrations of fluoxetine (0.1, 1.0, 8.0, 16, 32, 64 µg/L to produce plasma concentrations below, equal and above the range of Human Therapeutic Plasma Concentrations (H(TPCs. Fluoxetine and its metabolite, norfluoxetine, were quantified in the plasma of individual fish and linked to behavioural anxiety-related endpoints. The minimum drug plasma concentrations that elicited anxiolytic responses in fish were above the upper value of the H(TPC range, whereas no effects were observed at plasma concentrations below the H(TPCs. In vivo metabolism of fluoxetine in humans and fish was similar, and displayed bi-phasic concentration-dependent kinetics driven by the auto-inhibitory dynamics and saturation of the enzymes that convert fluoxetine into norfluoxetine. The sensitivity of fish to fluoxetine was not so dissimilar from that of patients affected by general anxiety disorders. These results represent the first direct evidence of measured internal dose response effect of a pharmaceutical in fish, hence validating the Read-Across hypothesis applied to fluoxetine. Overall, this study demonstrates that the qCSE approach, anchored to internal drug concentrations, is a powerful tool

  11. Extrapolating an Euler class

    Van der Kallen, Wilberd


    Let R be a noetherian ring of dimension d and let n be an integer so that n≤d≤2n-3. Let (a1,..., an+1) be a unimodular row so that the ideal J=(a1,..., an) has height n. Jean Fasel has associated to this row an element [(J, ωJ)] in the Euler cla

  12. Enhanced Confinement Scenarios Without Large Edge Localized Modes in Tokamaks: Control, Performance, and Extrapolability Issues for ITER

    Maingi, R [PPPL


    Large edge localized modes (ELMs) typically accompany good H-mode confinement in fusion devices, but can present problems for plasma facing components because of high transient heat loads. Here the range of techniques for ELM control deployed in fusion devices is reviewed. The two baseline strategies in the ITER baseline design are emphasized: rapid ELM triggering and peak heat flux control via pellet injection, and the use of magnetic perturbations to suppress or mitigate ELMs. While both of these techniques are moderately well developed, with reasonable physical bases for projecting to ITER, differing observations between multiple devices are also discussed to highlight the needed community R & D. In addition, recent progress in ELM-free regimes, namely Quiescent H-mode, I-mode, and Enhanced Pedestal H-mode is reviewed, and open questions for extrapolability are discussed. Finally progress and outstanding issues in alternate ELM control techniques are reviewed: supersonic molecular beam injection, edge electron cyclotron heating, lower hybrid heating and/or current drive, controlled periodic jogs of the vertical centroid position, ELM pace-making via periodic magnetic perturbations, ELM elimination with lithium wall conditioning, and naturally occurring small ELM regimes.

  13. Enhanced confinement scenarios without large edge localized modes in tokamaks: control, performance, and extrapolability issues for ITER

    Maingi, R.


    Large edge localized modes (ELMs) typically accompany good H-mode confinement in fusion devices, but can present problems for plasma facing components because of high transient heat loads. Here the range of techniques for ELM control deployed in fusion devices is reviewed. Two strategies in the ITER baseline design are emphasized: rapid ELM triggering and peak heat flux control via pellet injection, and the use of magnetic perturbations to suppress or mitigate ELMs. While both of these techniques are moderately well developed, with reasonable physical bases for projecting to ITER, differing observations between multiple devices are also discussed to highlight the needed community R&D. In addition, recent progress in ELM-free regimes, namely quiescent H-mode, I-mode, and enhanced pedestal H-mode is reviewed, and open questions for extrapolability are discussed. Finally progress and outstanding issues in alternate ELM control techniques are reviewed: supersonic molecular beam injection, edge electron cyclotron heating, lower hybrid heating and/or current drive, controlled periodic jogs of the vertical centroid position, ELM pace-making via periodic magnetic perturbations, ELM elimination with lithium wall conditioning, and naturally occurring small ELM regimes.

  14. A covariant extrapolation of the noncovariant two particle Wheeler-Feynman Hamiltonian from the Todorov equation and Dirac's constraint mechanics

    Crater, Horace; Yang, Dujiu


    A semirelativistic expansion in powers of 1/c2 is canonically matched through order (1/c4) of the two-particle total Hamiltonian of Wheeler-Feynman vector and scalar electrodynamics to a similar expansion of the center of momentum (c.m.) total energy of two interacting particles obtained from covariant generalized mass shell constraints derived with the use of the classical Todorov equation and Dirac's Hamiltonian constraint mechanics. This determines through order 1/c4 the direct interaction used in the covariant Todorov constraint equation. We show that these interactions are momentum independent in spite of the extensive and complicated momentum dependence of the potential energy terms in the Wheeler-Feynman Hamiltonian. The invariant expressions for the relativistic reduced mass and energy of the fictitious particle of relative motion used in the Todorov equation are also dynamically determined through this order by this same procedure. The resultant covariant Todorov equation then not only reproduces the noncovariant Wheeler-Feynman dynamics through order 1/c4 but also implicitly provides a rather simple covariant extrapolation of it to all orders of 1/c2.

  15. Searching for Inflationary B-modes: Can dust emission properties be extrapolated from 350 GHz to 150 GHz?

    Tassis, Konstantinos


    Recent Planck results have shown that the path to isolating an inflationary B-mode signal in microwave polarization passes through understanding and modeling the interstellar dust polarized emission foreground, even in regions of the sky with the lowest level of dust emission. One of the most commonly used ways to remove the dust foreground is to extrapolate the polarized dust emission signal from frequencies where it dominates (e.g., 350 GHz) to frequencies commonly targeted by cosmic microwave background experiments (e.g., 150 GHz). We show, using a simple 2-cloud model, that if more than one cloud is present along the line-of-sight, with even mildly different temperature and dust column density, but severely misaligned magnetic field, then the 350 GHz polarized sky map is not predictive of that at 150 GHz. This problem is intrinsic to all microwave experiments and is due to information loss due to line-of-sight integration. However, it can be alleviated through interstellar medium tomography: a reconstruct...

  16. Geographic bias of field observations of soil carbon stocks with tropical land-use changes precludes spatial extrapolation.

    Powers, Jennifer S; Corre, Marife D; Twine, Tracy E; Veldkamp, Edzo


    Accurately quantifying changes in soil carbon (C) stocks with land-use change is important for estimating the anthropogenic fluxes of greenhouse gases to the atmosphere and for implementing policies such as REDD (Reducing Emissions from Deforestation and Degradation) that provide financial incentives to reduce carbon dioxide fluxes from deforestation and land degradation. Despite hundreds of field studies and at least a dozen literature reviews, there is still considerable disagreement on the direction and magnitude of changes in soil C stocks with land-use change. We conducted a meta-analysis of studies that quantified changes in soil C stocks with land use in the tropics. Conversion from one land use to another caused significant increases or decreases in soil C stocks for 8 of the 14 transitions examined. For the three land-use transitions with sufficient observations, both the direction and magnitude of the change in soil C pools depended strongly on biophysical factors of mean annual precipitation and dominant soil clay mineralogy. When we compared the distribution of biophysical conditions of the field observations to the area-weighted distribution of those factors in the tropics as a whole or the tropical lands that have undergone conversion, we found that field observations are highly unrepresentative of most tropical landscapes. Because of this geographic bias we strongly caution against extrapolating average values of land-cover change effects on soil C stocks, such as those generated through meta-analysis and literature reviews, to regions that differ in biophysical conditions.

  17. Precision measurements of ionization and dissociation energies by extrapolation of Rydberg series: from H2 to larger molecules.

    Sprecher, D; Beyer, M; Merkt, F


    Recent experiments are reviewed which have led to the determination of the ionization and dissociation energies of molecular hydrogen with a precision of 0.0007 cm(-)1 (8 mJ/mol or 20 MHz) using a procedure based on high-resolution spectroscopic measurements of high Rydberg states and the extrapolation of the Rydberg series to the ionization thresholds. Molecular hydrogen, with only two protons and two electrons, is the simplest molecule with which all aspects of a chemical bond, including electron correlation effects, can be studied. Highly precise values of its ionization and dissociation energies provide stringent tests of the precision of molecular quantum mechanics and of quantum-electrodynamics calculations in molecules. The comparison of experimental and theoretical values for these quantities enable one to quantify the contributions to a chemical bond that are neglected when making the Born-Oppenheimer approximation, i.e. adiabatic, nonadiabatic, relativistic, and radiative corrections. Ionization energies of a broad range of molecules can now be determined experimentally with high accuracy (i.e. about 0.01 cm(-1)). Calculations at similar accuracies are extremely challenging for systems containing more than two electrons. The combination of precision measurements of molecular ionization energies with highly accurateab initio calculations has the potential to provide, in future, fully reliable sets of thermochemical quantities for gas-phase reactions.

  18. Comparison of tropical and temperate freshwater animal species' acute sensitivities to chemicals: implications for deriving safe extrapolation factors.

    Kwok, Kevin W H; Leung, Kenneth M Y; Lui, Gilbert S G; Chu, S Vincent K H; Lam, Paul K S; Morritt, David; Maltby, Lorraine; Brock, Theo C M; Van den Brink, Paul J; Warne, Michael St J; Crane, Mark


    Toxicity data for tropical species are often lacking for ecological risk assessment. Consequently, tropical and subtropical countries use water quality criteria (WQC) derived from temperate species (e.g., United States, Canada, or Europe) to assess ecological risks in their aquatic systems, leaving an unknown margin of uncertainty. To address this issue, we use species sensitivity distributions of freshwater animal species to determine whether temperate datasets are adequately protective of tropical species assemblages for 18 chemical substances. The results indicate that the relative sensitivities of tropical and temperate species are noticeably different for some of these chemicals. For most metals, temperate species tend to be more sensitive than their tropical counterparts. However, for un-ionized ammonia, phenol, and some pesticides (e.g., chlorpyrifos), tropical species are probably more sensitive. On the basis of the results from objective comparisons of the ratio between temperate and tropical hazardous concentration values for 10% of species, or the 90% protection level, we recommend that an extrapolation factor of 10 should be applied when such surrogate temperate WQCs are used for tropical or subtropical regions and a priori knowledge on the sensitivity of tropical species is very limited or not available.

  19. Calibration of {sup 90}Sr+{sup 90}Y chemical applicators using a mini extrapolation chamber as reference system;Calibracao de aplicadores clinicos de {sup 90}Sr+{sup 90}Y utilizando uma mini-camera de extrapolacao como sistema de referencia

    Antonio, Patricia L.; Caldas, Linda V.E. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Oliveira, Mercia L. [Centro Regional de Ciencias Nucleares do Nordeste (CRCN-NE/CNEN-PE), Recife, PE (Brazil)


    {sup 90}Sr + {sup 90}Y clinical applicators are beta radiation sources utilized in several radiotherapy Brazilian clinics, although don't be more manufactured. These sources are employed in brachytherapy procedures for the treatment of superficial lesions of skin and eyes. International recommendations and previous works determine that dermatological and ophthalmic applicators shall be calibrated periodically, and one of the methods for their calibration consists of the use of an extrapolation chamber. In this work, a method of calibration of {sup 90}Sr + {sup 90}Y clinical applicators was applied using a mini-extrapolation chamber of plane window, developed at the Calibration Laboratory at IPEN, as a reference system. The results obtained were considered satisfactory, when compared with the results given in the calibration certificates of the sources. (author)

  20. Methods for measuring arctic and alpine shrub growth

    Myers-Smith, Isla; Hallinger, Martin; Blok, Daan


    dynamics in relation to environmental variables. Recent advances in sampling methods, analysis and applications have improved our ability to investigate growth and recruitment dynamics of shrubs. However, to extrapolate findings to the biome scale, future dendroecologicalwork will require improved...


    cDNA Cloning of Fathead minnow (Pimephales promelas) Estrogen and Androgen Receptors for Use in Steroid Receptor Extrapolation Studies for Endocrine Disrupting Chemicals. Wilson, V.S.1,, Korte, J.2, Hartig P. 1, Ankley, G.T.2, Gray, L.E., Jr 1, , and Welch, J.E.1. 1U.S...

  2. method

    L. M. Kimball


    Full Text Available This paper presents an interior point algorithm to solve the multiperiod hydrothermal economic dispatch (HTED. The multiperiod HTED is a large scale nonlinear programming problem. Various optimization methods have been applied to the multiperiod HTED, but most neglect important network characteristics or require decomposition into thermal and hydro subproblems. The algorithm described here exploits the special bordered block diagonal structure and sparsity of the Newton system for the first order necessary conditions to result in a fast efficient algorithm that can account for all network aspects. Applying this new algorithm challenges a conventional method for the use of available hydro resources known as the peak shaving heuristic.

  3. Denitrification in sediments as a major nitrogen sink in the Baltic Sea: an extrapolation using sediment characteristics

    B. Deutsch


    Full Text Available Rates of denitrification in sediments were measured with the isotope pairing technique at different sites in the southern and central Baltic Sea. They varied between 0.5 μmol m−2 h−1 in sands and 28.7 μmol m−2 h−1 in muddy sediments and showed a good correlation to the organic carbon contents of the surface sediments. N-removal rates via sedimentary denitrification were estimated for the entire Baltic Sea calculating sediment specific denitrification rates and interpolating them to the whole Baltic Sea area. Another approach was carried out by using the relationship between the organic carbon content and the rate of denitrification. For the entire Baltic Sea the N-removal by denitrification in sediments varied between 426–652 kt N a−1, which is around 48–73% of the external N inputs delivered via rivers, coastal point sources and atmospheric deposition. Moreover, an expansion of the anoxic bottom areas was considered under the assumption of a rising oxycline from 100 to 80 m water depth. This leads to an increase of the area with anoxic conditions and an overall decrease in sedimentary denitrification by 14%. Overall we can show here that this type of data extrapolation is a powerful tool to estimate the nitrogen losses for a whole coastal sea and may be applicable to other coastal regions and enclosed seas, too.

  4. Computational modeling of serum-binding proteins and clearance in extrapolations across life stages and species for endocrine active compounds.

    Teeguarden, Justin G; Barton, Hugh A


    One measure of the potency of compounds that lead to the effects through ligand-dependent gene transcription is the relative affinity for the critical receptor. Endocrine active compounds that are presumed to act principally through binding to the estrogen receptor (e.g., estradiol, genistein, bisphenol A, and octylphenol) comprise one class of such compounds. For making simple comparisons, receptor-binding affinity has been equated to in vivo potency, which consequently defines the dose-response characteristics for the compound. Direct extrapolation of in vitro estimated affinities to the corresponding in vivo system and to specific species or life stages (e.g., neonatal, pregnancy) can be misleading. Accurate comparison of the potency of endocrine active compounds requires characterization of biochemical and pharmacokinetic factors that affect their free concentration. Quantitative in vitro and in vivo models were developed for integrating pharmacokinetics factors (e.g., serum protein and receptor-binding affinities, clearance) that affect potency. Data for parameterizing these models for several estrogenic compounds were evaluated and the models exercised. While simulations of adult human or rat sera were generally successful, difficulties in describing early life stages were identified. Exogenous compounds were predicted to be largely ineffective at competing estradiol off serum-binding proteins, suggesting this was unlikely to be physiologically significant. Discrepancies were identified between relative potencies based upon modeling in vitro receptor-binding activity versus in vivo activity in the presence of clearance and serum-binding proteins. The examples illustrate the utility of this approach for integrating available experimental data from in vitro and in vivo studies to estimate the relative potency of these compounds.

  5. Method

    Xixin Wang


    Full Text Available ZrO2 nanotube arrays were prepared by anodization method in aqueous electrolyte containing (NH42SO4 and NH4F. The morphology and structure of nanotube arrays were characterized through scanning electron microscope, X-ray diffraction, and infrared spectra analysis. The zirconia nanotube arrays were used as catalyst in esterification reaction. The effects of calcination temperature and electrolyte concentration on catalytic esterification activity have been investigated in detail. Experiments indicate that nanotube arrays have highest catalytic activity when the concentration of (NH42SO4 is 1 mol/L, the concentration of NH4F is 1 wt%, and the calcination temperature is 400°C. Esterification reaction yield of as much as 97% could be obtained under optimal conditions.

  6. Method

    Andrey Gnatov


    Full Text Available Recently repair and recovery vehicle body operations become more and more popular. A special place here is taken by equipment that provides performance of given repair operations. The most interesting things are methods for recovery of car body panels that allow the straightening without disassembling of car body panels and damaging of existing protective coating. Now, there are several technologies for repair and recovery of car body panels without their disassembly and dismantling. The most perspective is magnetic-pulse technology of external noncontact straightening. Basics of magnetic-pulse attraction, both ferromagnetic and nonferromagnetic thin-walled sheet metal, are explored. Inductor system calculation models of magnetic-pulse straightening tools are presented. Final analytical expressions for excited efforts calculation in the tools under consideration are introduced. According to the obtained analytical expressions, numerical evaluations of excited forces were executed. The volumetric epures of the attractive force radial distributions for different types of inductors were built. The practical testing of magnetic-pulse straightening with research tools is given. Using the results of the calculations we can create effective tools for an external magnetic-pulse straightening of car body panels.

  7. Methodological Analysis of Extrapolating Input-Output Tables of China%中国投入产出序列表外推方法研究

    马向前; 任若恩


    This paper compared the estimating precision and applicability for extrapolating China's Input-Output tables series based on Kuroda and RAS approach, respectively. The statistic results showed that Kuroda approach was slightly prior to RAS methlod and both estimates had large errorsin the case that time periods were longer than five years,which ascrbed to significant continued changes in China's industry structure. However, the modified Kuroela approach will be applicable for updating Input-Output tables of China.

  8. On extrapolation blowups in the scale


    Yano's extrapolation theorem dated back to 1951 establishes boundedness properties of a subadditive operator acting continuously in for close to and/or taking into as and/or with norms blowing up at speed and/or , . Here we give answers in terms of Zygmund, Lorentz-Zygmund and small Lebesgue spaces to what happens if as . The study has been motivated by current investigations of convolution maximal functions in stochastic analysis, where the problem occurs for . We also touch the ...

  9. Identification of the viscoelastic properties of soft materials at low frequency: performance, ill-conditioning and extrapolation capabilities of fractional and exponential models.

    Ciambella, J; Paolone, A; Vidoli, S


    We report about the experimental identification of viscoelastic constitutive models for frequencies ranging within 0-10Hz. Dynamic moduli data are fitted forseveral materials of interest to medical applications: liver tissue (Chatelin et al., 2011), bioadhesive gel (Andrews et al., 2005), spleen tissue (Nicolle et al., 2012) and synthetic elastomer (Osanaiye, 1996). These materials actually represent a rather wide class of soft viscoelastic materials which are usually subjected to low frequencies deformations. We also provide prescriptions for the correct extrapolation of the material behavior at higher frequencies. Indeed, while experimental tests are more easily carried out at low frequency, the identified viscoelastic models are often used outside the frequency range of the actual test. We consider two different classes of models according to their relaxation function: Debye models, whose kernel decays exponentially fast, and fractional models, including Cole-Cole, Davidson-Cole, Nutting and Havriliak-Negami, characterized by a slower decay rate of the material memory. Candidate constitutive models are hence rated according to the accurateness of the identification and to their robustness to extrapolation. It is shown that all kernels whose decay rate is too fast lead to a poor fitting and high errors when the material behavior is extrapolated to broader frequency ranges.


    Mossetti, Stefano; de Bartolo, Daniela; Veronese, Ivan; Cantone, Marie Claire; Cosenza, Cristina; Nava, Elisa


    International and national organizations have formulated guidelines establishing limits for occupational and residential electromagnetic field (EMF) exposure at high-frequency fields. Italian legislation fixed 20 V/m as a limit for public protection from exposure to EMFs in the frequency range 0.1 MHz-3 GHz and 6 V/m as a reference level. Recently, the law was changed and the reference level must now be evaluated as the 24-hour average value, instead of the previous highest 6 minutes in a day. The law refers to a technical guide (CEI 211-7/E published in 2013) for the extrapolation techniques that public authorities have to use when assessing exposure for compliance with limits. In this work, we present measurements carried out with a vectorial spectrum analyzer to identify technical critical aspects in these extrapolation techniques, when applied to UMTS and LTE signals. We focused also on finding a good balance between statistically significant values and logistic managements in control activity, as the signal trend in situ is not known. Measurements were repeated several times over several months and for different mobile companies. The outcome presented in this article allowed us to evaluate the reliability of the extrapolation results obtained and to have a starting point for defining operating procedures.

  11. Are there differences in the catalytic activity per unit enzyme of recombinantly expressed and human liver microsomal cytochrome P450 2C9? A systematic investigation into inter-system extrapolation factors.

    Crewe, H K; Barter, Z E; Yeo, K Rowland; Rostami-Hodjegan, A


    The 'relative activity factor' (RAF) compares the activity per unit of microsomal protein in recombinantly expressed cytochrome P450 enzymes (rhCYP) and human liver without separating the potential sources of variation (i.e. abundance of enzyme per mg of protein or variation of activity per unit enzyme). The dimensionless 'inter-system extrapolation factor' (ISEF) dissects differences in activity from those in CYP abundance. Detailed protocols for the determination of this scalar, which is used in population in vitro-in vivo extrapolation (IVIVE), are currently lacking. The present study determined an ISEF for CYP2C9 and, for the first time, systematically evaluated the effects of probe substrate, cytochrome b5 and methods for assessing the intrinsic clearance (CL(int) ). Values of ISEF for S-warfarin, tolbutamide and diclofenac were 0.75 ± 0.18, 0.57 ± 0.07 and 0.37 ± 0.07, respectively, using CL(int) values derived from the kinetic values V(max) and K(m) of metabolite formation in rhCYP2C9 + reductase + b5 BD Supersomes™. The ISEF values obtained using rhCYP2C9 + reductase BD Supersomes™ were more variable, with values of 7.16 ± 1.25, 0.89 ± 0.52 and 0.50 ± 0.05 for S-warfarin, tolbutamide and diclofenac, respectively. Although the ISEF values obtained from rhCYP2C9 + reductase + b5 for the three probe substrates were statistically different (p ISEF. Furthermore, as ISEFs have been found to be sensitive to differences in accessory proteins, rhCYP system specific ISEFs are recommended.

  12. A review of vector convergence acceleration methods, with applications to linear algebra problems

    Brezinski, C.; Redivo-Zaglia, M.

    In this article, in a few pages, we will try to give an idea of convergence acceleration methods and extrapolation procedures for vector sequences, and to present some applications to linear algebra problems and to the treatment of the Gibbs phenomenon for Fourier series in order to show their effectiveness. The interested reader is referred to the literature for more details. In the bibliography, due to space limitation, we will only give the more recent items, and, for older ones, we refer to Brezinski and Redivo-Zaglia, Extrapolation methods. (Extrapolation Methods. Theory and Practice, North-Holland, 1991). This book also contains, on a magnetic support, a library (in Fortran 77 language) for convergence acceleration algorithms and extrapolation methods.

  13. Characterization of Copper Corrosion Products in Drinking Water by Combining Electrochemical and Surface Analyses

    This study focuses on the application of electrochemical approaches to drinking water copper corrosion problems. Applying electrochemical approaches combined with copper solubility measurements, and solid surface analysis approaches were discussed. Tafel extrapolation and Electro...

  14. Characterization of Copper Corrosion Products Formed in Drinking Water by Combining Electrochemical and Surface Analyses

    This study focuses on the application of electrochemical approaches to drinking water copper corrosion problems. Applying electrochemical approaches combined with copper solubility measurements, and solid surface analysis approaches were discussed. Tafel extrapolation and Electro...


    赵希武; 林民



  16. In vitro to in vivo extrapolation of hepatic metabolism in fish: An inter-laboratory comparison of in vitro methods - presentation

    Chemical biotransformation represents the largest source of uncertainty in chemical bioaccumulation assessments. Model-based estimates of chemical bioconcentration in fish may be greatly improved by including biotransformation rates, as measured in vitro. Substrate depletion assa...

  17. Measured Copper Toxicity to Cnesterodon decemmaculatus (Pisces: Poeciliidae and Predicted by Biotic Ligand Model in Pilcomayo River Water: A Step for a Cross-Fish-Species Extrapolation

    María Victoria Casares


    Full Text Available In order to determine copper toxicity (LC50 to a local species (Cnesterodon decemmaculatus in the South American Pilcomayo River water and evaluate a cross-fish-species extrapolation of Biotic Ligand Model, a 96 h acute copper toxicity test was performed. The dissolved copper concentrations tested were 0.05, 0.19, 0.39, 0.61, 0.73, 1.01, and 1.42 mg Cu L-1. The 96 h Cu LC50 calculated was 0.655 mg L-1 (0.823-0.488. 96-h Cu LC50 predicted by BLM for Pimephales promelas was 0.722 mg L-1. Analysis of the inter-seasonal variation of the main water quality parameters indicates that a higher protective effect of calcium, magnesium, sodium, sulphate, and chloride is expected during the dry season. The very high load of total suspended solids in this river might be a key factor in determining copper distribution between solid and solution phases. A cross-fish-species extrapolation of copper BLM is valid within the water quality parameters and experimental conditions of this toxicity test.

  18. Calculation of extrapolation curves in the 4π(LS)β-γ coincidence technique with the Monte Carlo code Geant4.

    Bobin, C; Thiam, C; Bouchard, J


    At LNE-LNHB, a liquid scintillation (LS) detection setup designed for Triple to Double Coincidence Ratio (TDCR) measurements is also used in the β-channel of a 4π(LS)β-γ coincidence system. This LS counter based on 3 photomultipliers was first modeled using the Monte Carlo code Geant4 to enable the simulation of optical photons produced by scintillation and Cerenkov effects. This stochastic modeling was especially designed for the calculation of double and triple coincidences between photomultipliers in TDCR measurements. In the present paper, this TDCR-Geant4 model is extended to 4π(LS)β-γ coincidence counting to enable the simulation of the efficiency-extrapolation technique by the addition of a γ-channel. This simulation tool aims at the prediction of systematic biases in activity determination due to eventual non-linearity of efficiency-extrapolation curves. First results are described in the case of the standardization (59)Fe. The variation of the γ-efficiency in the β-channel due to the Cerenkov emission is investigated in the case of the activity measurements of (54)Mn. The problem of the non-linearity between β-efficiencies is featured in the case of the efficiency tracing technique for the activity measurements of (14)C using (60)Co as a tracer.

  19. Evolution of the N=50 gap from Z=30 to Z=38 and extrapolation towards 78Ni

    Porquet, M -G


    The evolution of the N=50 gap is analyzed as a function of the occupation of the proton f5/2 and p3/2 orbits. It is based on experimental atomic masses, using three different methods of one or two-neutron separation energies of ground or isomeric states. We show that the effect of correlations, which is maximized at Z=32 could be misleading with respect to the determination of the size of the shell gap, especially when using the method with two-neutron separation energies. From the methods that are the least perturbed by correlations, we estimate the N=50 spherical shell gap in 78Ni. Whether 78Ni would be a rigid spherical or deformed nucleus is discussed in comparison with other nuclei in which similar nucleon-nucleon forces are at play.

  20. Propanoyl(1Z-N-(2,6-dimethylphenyl-2-oxopropanehydrazonoate as inhibitor for corrosion of 6061 Al alloy15 % (v SiC(p composite in hydrochloric acid media

    Achutha Kini U


    Full Text Available ABSTRACT: The corrosion inhibition effect of Propanoyl(1Z-N-(2,6-dimethylphenyl-2-oxopropanehydrazonoate (PDOH in the corrosion of 6061 Aluminium alloy-15%(v SiC(p composite in 0.5 and 1M hydrochloric acid medium at four different temperatures (30, 40, 50 and 60 ⁰C was investigated using potentio-static polarization (Tafel extrapolation and Linear polarization and weight loss methods. The results obtained reveal that PDOH is an efficient corrosion inhibitor with around 96% inhibition efficiency within the range of temperature studied. Leftward and downward shifts in Tafel plots were observed with the addition of the inhibitor, indicating that PDOH inhibits the corrosion process effectively, and that it is a cathodic inhibitor. Corrosion rate increases and inhibition efficiency decreases with increase in temperature. Results obtained by Tafel extrapolation, linear polarization, and weight loss methods are in agreement. The adsorption of the inhibitor onto the surface of the 6061 Al alloy 15 % (v SiC(p composite is found to obey Temkins' adsorption isotherm that verifies the assumption of mono-layer adsorption on a uniform homogeneous composite surface with an interaction in the adsorption layer. The inhibition is therefore governed by the physisorption mechanism.ABSTRAK: Kesan perencatan kakisan Propanoyl(1Z-N-(2,6-dimethylphenyl-2-oxopropanehydrazonoate (PDOH ke atas kakisan komposit aloi Al 6061-15%(v SiC(p dalam media asid hidroklorik 0.5 dan 1M pada suhu-suhu yang berbeza (30, 40, 50 dan 60⁰C telah dikaji menggunakan polarisasi statik-upaya (extrapolarisasi Tafel dan polarisasi Linear dan kaedah kehilangan berat. Keputusan diperolehi menunjukkan PDOH adalah perencat yang efisien dengan 96 % keupayaan perencatan bagi julat suhu yag dikaji. Anjakan ke kiri dan ke bawah plot Tafel dapat dilihat dengan penambahan perencat, menunjukkan PDOH merencatkan proses kakisan dengan berkesan, dan ia adalah perencat katodik. Dengan peningkatan suhu

  1. Mathematical methods for physical and analytical chemistry

    Goodson, David Z


    Mathematical Methods for Physical and Analytical Chemistry presents mathematical and statistical methods to students of chemistry at the intermediate, post-calculus level. The content includes a review of general calculus; a review of numerical techniques often omitted from calculus courses, such as cubic splines and Newton's method; a detailed treatment of statistical methods for experimental data analysis; complex numbers; extrapolation; linear algebra; and differential equations. With numerous example problems and helpful anecdotes, this text gives chemistry students the mathematical

  2. Grafting of HEMA onto dopamine coated stainless steel by 60Co-γ irradiation method

    Jin, Wanqin; Yang, Liming; Yang, Wei; Chen, Bin; Chen, Jie


    A novel method for grafting of 2-hydroxyethyl methacrylate (HEMA) onto the surface of stainless steel (SS) was explored by using 60Co-γ irradiation. The surface of SS was modified by coating of dopamine before radiation grafting. The grafting reaction was performed in a simultaneous irradiation condition. The chemical structures change of the surface before and after grafting was demonstrated by Fourier transform infrared (FTIR) spectrometer. The hydrophilicity of the samples was determined by water contact angle measurement in the comparison of the stainless steel in the conditions of pristine, dopamine coated and HEMA grafted. Surface morphology of the samples was characterized by atomic force microscope (AFM) and scanning electron microscope (SEM). The corrosion resistance properties of the samples were evaluated by Tafel polarization curve. The hemocompatibility of the samples were tested by platelet adhesion assay.

  3. Novel electrochemical method for the characterization of the degree of chirality in chiral polyaniline.

    Feng, Zhang; Li, Ma; Yan, Yang; Jihai, Tang; Xiao, Li; Wanglin, Li


    A novel method to indicate the degree of chirality in polyaniline (PANI) was developed. The (D-camphorsulfonic acid)- and (HCl)-PANI-based electrodes exhibited significantly different electrochemical performances in D- and L-Alanine (Ala) aqueous solution, respectively, which can be used for the characterization the optical activity of chiral PANI. Cyclic voltammogram, tafel, and open circuit potential of PANI-based electrodes were measured within D- and L-Ala electrolyte solution, respectively. The open circuit potentials under different reacting conditions were analyzed by Doblhofer model formula, in which [C(+)](poly1)/[C(+)](poly2) was used as a parameter to characterize the degree of chirality in chiral PANI. The results showed that [C(+)](poly1)/[C(+)](poly2) can be increased with increasing concentrations of (1S)-(+)- and (1R)-(-)-10-camphorsulfonic acid. In addition, we detected that appropriate response time and lower temperature are necessary to improve the degree of chirality.

  4. Physiologically based pharmacokinetics joined with in vitro-in vivo extrapolation of ADME: a marriage under the arch of systems pharmacology.

    Rostami-Hodjegan, A


    Classic pharmacokinetics (PK) rarely takes into account the full knowledge of physiology and biology of the human body. However, physiologically based PK (PBPK) is built mainly from drug-independent "system" information. PBPK is not a new concept, but it has shown a very rapid rise in recent years. This has been attributed to a greater connectivity to in vitro-in vivo extrapolation (IVIVE) techniques for predicting drug absorption, distribution, metabolism, and excretion (ADME) and their variability in humans. The marriage between PBPK and IVIVE under the overarching umbrella of "systems biology" has removed many constraints related to cutoff approaches on prediction of ADME. PBPK-IVIVE linked models have repeatedly shown their value in guiding decisions when predicting the effects of intrinsic and extrinsic factors on PK of drugs. A review of the achievements and shortcomings of the models might suggest better strategies in extending the success of PBPK-IVIVE to pharmacodynamics (PD) and drug safety.

  5. Static $\\bar{Q}Q$ pair free energy and screening masses from correlators of Polyakov loops: continuum extrapolated lattice results at the QCD physical point

    Borsányi, Szabolcs; Katz, Sándor D; Pásztor, Attila; Szabó, Kálmán K; Török, Csaba


    We study the correlators of Polyakov loops, and the corresponding gauge invariant free energy of a static quark-antiquark pair in 2+1 flavor QCD at finite temperature. Our simulations were carried out on $N_t$ = 6, 8, 10, 12, 16 lattices using Symanzik improved gauge action and a stout improved staggered action with physical quark masses. The free energies calculated from the Polyakov loop correlators are extrapolated to the continuum limit. For the free energies we use a two step renormalization procedure that only uses data at finite temperature. We also measure correlators with definite Euclidean time reversal and charge conjugation symmetry to extract two different screening masses, one in the magnetic, and one in the electric sector, to distinguish two different correlation lengths in the full Polyakov loop correlator.

  6. Modeling the systemic retention of beryllium in rat. Extrapolation to human; Modelizacion de la retencion sistemica del berilio en la rata. Extrapolacion al Hombre

    Montero Prieto, M.; Vidania Munoz, R. de


    In this work, we analyzed different approaches, assayed in order to numerically describe the systemic behaviour of Beryllium. The experimental results used in this work, were previously obtained by Furchner et al. (1973), using Sprague-Dawley rats, and others animal species. Furchner's work includes the obtained model for whole body retention in rats, but not for each target organ. In this work we present the results obtained by modeling the kinetic behaviour of Beryllium in several target organs. The results of this kind of models were used in order to establish correlations among the estimated kinetic constants. The parameters of the model were extrapolated to humans and, finally, compared with others previously published. (Author) 12 refs.

  7. Calculation of muscle maximal shortening velocity by extrapolation of the force-velocity relationship: afterloaded versus isotonic release contractions.

    Bullimore, Sharon R; Saunders, Travis J; Herzog, Walter; MacIntosh, Brian R


    The maximal shortening velocity of a muscle (V(max)) provides a link between its macroscopic properties and the underlying biochemical reactions and is altered in some diseases. Two methods that are widely used for determining V(max) are afterloaded and isotonic release contractions. To determine whether these two methods give equivalent results, we calculated V(max) in 9 intact single fibres from the lumbrical muscles of the frog Xenopus laevis (9.5-15.5 °C, stimulation frequency 35-70 Hz). The data were modelled using a 3-state cross-bridge model in which the states were inactive, detached, and attached. Afterloaded contractions gave lower predictions of Vmax than did isotonic release contractions in all 9 fibres (3.20 ± 0.84 versus 4.11 ± 1.08 lengths per second, respectively; means ± SD, p = 0.001) and underestimated unloaded shortening velocity measured with the slack test by an average of 29% (p = 0.001, n = 6). Excellent model predictions could be obtained by assuming that activation is inhibited by shortening. We conclude that under the experimental conditions used in this study, afterloaded and isotonic release contractions do not give equivalent results. When a change in the V(max) measured with afterloaded contractions is observed in diseased muscle, it is important to consider that this may reflect differences in either activation kinetics or cross-bridge cycling rates.

  8. The efficiency variation method for 4pibeta-gamma coincidence counting by ink-jet printing.

    Sato, Y; Yamada, T; Hata, T; Moriyama, K; Yunoki, A; Hino, Y


    In order to vary the counting efficiencies in the 4pibeta-gamma coincidence extrapolation technique, a radioactive source was coated directly with varying amounts of an electrical conducting pigment using an ink-jet printer. This method can be used to efficiently prepare the multiple sources needed to generate efficiency extrapolation curves, and was successfully applied to the standardization of a (54)Mn source.

  9. Extrapolating Zernike Moments to Predict Future Optical Wave-fronts in Adaptive Optics Using Real Time Data Mining

    Vyas, Akondi; Prasad, B Raghavendra


    We present the details of predicting atmospheric turbulence by mining Zernike moment data obtained from simulations as well as experiments. Temporally correlated optical wave-fronts were simulated such that they followed Kolmogorov phase statistics. The wave-fronts reconstructed either by modal or zonal methods can be represented in terms of Zernike moments. The servo lag error in adaptive optics is minimized by predicting Zernike moments in the near future by using the data from the immediate past. It is shown statistically that the prediction accuracy depends on the number of past phase screens used for prediction and servo lag time scales. The algorithm is optimized in terms of these parameters for real time and efficient operation of the adaptive optics system. On an average, we report more than 3% improvement in the wave-front compensation after prediction. This analysis helps in optimizing the design parameters for sensing and correction in closed loop adaptive optics systems.

  10. Introduction to Numerical Methods

    Schoonover, Joseph A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)


    These are slides for a lecture for the Parallel Computing Summer Research Internship at the National Security Education Center. This gives an introduction to numerical methods. Repetitive algorithms are used to obtain approximate solutions to mathematical problems, using sorting, searching, root finding, optimization, interpolation, extrapolation, least squares regresion, Eigenvalue problems, ordinary differential equations, and partial differential equations. Many equations are shown. Discretizations allow us to approximate solutions to mathematical models of physical systems using a repetitive algorithm and introduce errors that can lead to numerical instabilities if we are not careful.

  11. Designing fuzzy inference system based on improved gradient descent method

    Zhang Liquan; Shao Cheng


    The distribution of sampling data influences completeness of rule base so that extrapolating missing rules is very difficult. Based on data mining, a self-learning method is developed for identifying fuzzy model and extrapolating missing rules, by means of confidence measure and the improved gradient descent method. The proposed approach can not only identify fuzzy model, update its parameters and determine optimal output fuzzy sets simultaneously, but also resolve the uncontrollable problem led by the regions that data do not cover. The simulation results show the effectiveness and accuracy of the proposed approach with the classical truck backer-upper control problem verifying.

  12. Local initiative extrapolated to nation

    Wittchen, Kim Bjarne; Kragh, Jesper; Brøgger, Morten

    supported the project. Additionally, one of the driving forces has been the creation of something unique among the local residents and feeling to be able to create local unity. This cannot easily be made nationally. Never the less, playing with the idea about a nationwide dissemination will demonstrate...... the possibilities for energy savings and creation of local jobs if a community strives for a common goal. It is the aim of the Danish government that Danish buildings should be free of fossil fuels by 2035. To be able to reach that goal, it is estimated that the energy consumption in the existing building stock...

  13. EU - which kind of future? / Erik Terk, Külliki Tafel

    Terk, Erik


    Autorid analüüsivad Euroopa Liidu võimalikke arengusuundi kolmest institutsionaalsest tulevikuvisioonist lähtuvalt - riigistuv Euroopa, isamaade Euroopa/minimaalne Euroopa ja kodanike Euroopa. Skeem

  14. Eco-label - simple environmental choice / Andres Viia, Külliki Tafel

    Viia, Andres


    Autorid selgitavad ökomärgistuse olemust ja vajalikkust tarbijate teavitamisel vähem keskkonda kahjustavatest toodetest ning teenustest. Lisatud näiteid regionaalsetest ja rahvuslikest ökomärkidest EL-is, tuntumatest ökomärkidest väljaspool Euroopat, hoiatavatest ja informatiivsetest keskkonnamärkidest ning libaökomärkidest. Vt. samas: North-East Estonia - a seat of an environment-friendly batteries' recycling

  15. Juht ja omanik - kas meie või nende strateegia? / Erik Terk, Külliki Tafel

    Terk, Erik


    Äriühingute valitsemise alase mitmeaastase uurimisprogrammi raames korraldatud juhi-omaniku teemalisest uurimusest, mille viisid läbi Estonian Business School ja Eesti Tulevikuuuringute Instituut. Ettevõtmine oli projekti esimene etapp, selle käigus küsitleti 25 omanikku ja tippjuhti

  16. Loomemajandus - loovus pluss äri / Erik Terk, Külliki Tafel

    Terk, Erik


    Kui kultuuripoliitika käsitleb kultuuri valdavalt toetuse vajaja ja saajana, siis loomemajanduslik mõte näeb kultuuri ja loovust kui väärtuslikku sisendit majandusele ning selles mõttes kui võrdväärset partnerit, kirjutavad autorid

  17. Mis tekitab paksu verd juhi ja omaniku vahel / Külliki Tafel

    Tafel, Külliki


    EBSi ja Tulevikuuringute Instituudi uuring näitab, et Eestis ei ole juhtide ja omanike vahel teravaid erimeelsusi. Soovitused tippjuhtidele ja omanikele konfliktide ärahoidmiseks. Lisa: EBSi ja ETI ühine uurimisprogramm

  18. De vier rationaliteiten in Bestuurskundige Argumentatie: De Praxeologische tafel als integratieve methodologie

    A.R. Edwards (Arthur)


    textabstractAls toepassingsgericht en multidisciplinaire wetenschap behoeft de bestuurskunde een eigen methodologie, naast de algemene sociaalwetenschappelijke methodologie voor het doen van empirisch onderzoek. Deze eigen bestuurskundige methodologie zou kunnen uitgaan van een argumentatieve benade

  19. New methods for the numerical integration of ordinary differential equations and their application to the equations of motion of spacecraft

    Banyukevich, A.; Ziolkovski, K.


    A number of hybrid methods for solving Cauchy problems are described on the basis of an evaluation of advantages of single and multiple-point numerical integration methods. The selection criterion is the principle of minimizing computer time. The methods discussed include the Nordsieck method, the Bulirsch-Stoer extrapolation method, and the method of recursive Taylor-Steffensen power series.

  20. Out-of-Sample Extrapolation utilizing Semi-Supervised Manifold Learning (OSE-SSL): Content Based Image Retrieval for Histopathology Images.

    Sparks, Rachel; Madabhushi, Anant


    Content-based image retrieval (CBIR) retrieves database images most similar to the query image by (1) extracting quantitative image descriptors and (2) calculating similarity between database and query image descriptors. Recently, manifold learning (ML) has been used to perform CBIR in a low dimensional representation of the high dimensional image descriptor space to avoid the curse of dimensionality. ML schemes are computationally expensive, requiring an eigenvalue decomposition (EVD) for every new query image to learn its low dimensional representation. We present out-of-sample extrapolation utilizing semi-supervised ML (OSE-SSL) to learn the low dimensional representation without recomputing the EVD for each query image. OSE-SSL incorporates semantic information, partial class label, into a ML scheme such that the low dimensional representation co-localizes semantically similar images. In the context of prostate histopathology, gland morphology is an integral component of the Gleason score which enables discrimination between prostate cancer aggressiveness. Images are represented by shape features extracted from the prostate gland. CBIR with OSE-SSL for prostate histology obtained from 58 patient studies, yielded an area under the precision recall curve (AUPRC) of 0.53 ± 0.03 comparatively a CBIR with Principal Component Analysis (PCA) to learn a low dimensional space yielded an AUPRC of 0.44 ± 0.01.

  1. The inverse dose-rate effect and the extrapolation of radon risk estimates from exposures of miners to low-level exposures in homes

    Pushkin, J.S. (Environmental Protection Agency, Washington, DC (United States))


    This letter is written in response to a paper in which the author discusses the inverse dose-rate dependence of oncogenic transformation by high-LET radiation. The author asserts that, as a consequence, the extrapolation of results from miners exposed to high levels of radon daughters could overestimate the risk due to environmental exposures. By using a model increased cell sensitivity in one part of the cell cycle, the author assumes an inverse dose-rate effect should occur only at high doses, but the author of this letter points out that this does not imply a lower risk per unit dose at low doses. According to this letter, the existence of an inverse dose-rate effect for high-LET radiation provides no grounds for projecting lower lung cancer risks per unit exposure at environmental radon levels than at the higher radon level in mines. Failure to adjust for any inverse dose-rate effect in the studies of miners can only lead to an underestimation of the environmental risk.

  2. Human plasma concentrations of five cytochrome P450 probes extrapolated from pharmacokinetics in dogs and minipigs using physiologically based pharmacokinetic modeling.

    Shida, Satomi; Yamazaki, Hiroshi


    The pharmacokinetics of cytochrome P450 probes in humans can be extrapolated from corresponding data in cynomolgus monkeys using simplified physiologically based pharmacokinetic (PBPK) modeling. In the current study, despite some species difference in drug clearances, this modeling methodology was adapted to estimate human plasma concentrations of P450 probes based on data from commonly used medium-sized experimental animals, namely dogs and minipigs. Using known species allometric scaling factors and in vitro metabolic clearance data, the observed plasma concentrations of slowly eliminated caffeine and warfarin and rapidly eliminated omeprazole, metoprolol and midazolam in two young dogs were scaled to human oral monitoring equivalents. Using the same approach, the previously reported pharmacokinetics of the five P450 probes in minipigs was also scaled to human monitoring equivalents. The human plasma concentration profiles of the five P450 probes estimated by the simplified human PBPK models based on observed/reported pharmacokinetics in dogs/minipigs were consistent with previously published pharmacokinetic data in humans. These results suggest that dogs and minipigs, in addition to monkeys, could be suitable models for humans during research into new drugs, especially when used in combination with simple PBPK models.

  3. 基于Richardson外推的定步长Adams-Cowell改进积分方法%An Improved Fixed-Stepsize Adams-Cowell Numerical Integration Algorithm Based on Richardson Extrapolation

    徐慨; 何爱林; 杨敏


    Aimming at the numerical solution of ordinary differential equations of the satellite, a fixed⁃stepsize Adams⁃Cowell numerical integration algorithm based on Richardson extrapolation is presented, Adams algorithm and Cowell algorithm is improved respectively. A detailed theoretical derivation is also proposed, and the general laws of the integration equations� coefficients with different orders are given in tabular form, which facilitates the engineering practice. Finally, spe⁃cific single differential equation and satellite orbit two⁃body equations are taken as examples to test this improved method, ac⁃cording to the simulation result, when compared with the un⁃improved method, the improved method presented here can reach to a higher precise, nearly one order of magnitude with some specific steps, the effectiveness of the improved method can be proved, this improved method can be used in engineering practice.%针对卫星轨道微分方程组的数值解法,提出了一种基于Richardson外推思想的定步长Adams⁃Cowell积分方法,分别对Adams方法和Cowell方法的PECE格式进行外推改进。结合外推改进的详细理论推导,总结出了不同阶积分公式的系数的数学规律,并以表格的形式给出,方便了工程实践。最后,利用卫星轨道二体运动方程对8阶改进的方法进行了仿真分析,由仿真结果可知,和未改进的算法相比,改进后的算法计算精度有了明显改进,在某些特定积分步长下的计算精度能提高一个数量级,证明了改进算法的有效性,此8阶改进的方法可用于工程实践。

  4. Regression models in the determination of the absorbed dose with extrapolation chamber for ophthalmological applicators; Modelos de regresion en la determinacion de la dosis absorbida con camara de extrapolacion para aplicadores oftalmologicos

    Alvarez R, J.T.; Morales P, R


    The absorbed dose for equivalent soft tissue is determined,it is imparted by ophthalmologic applicators, ({sup 90} Sr/{sup 90} Y, 1850 MBq) using an extrapolation chamber of variable electrodes; when estimating the slope of the extrapolation curve using a simple lineal regression model is observed that the dose values are underestimated from 17.7 percent up to a 20.4 percent in relation to the estimate of this dose by means of a regression model polynomial two grade, at the same time are observed an improvement in the standard error for the quadratic model until in 50%. Finally the global uncertainty of the dose is presented, taking into account the reproducibility of the experimental arrangement. As conclusion it can infers that in experimental arrangements where the source is to contact with the extrapolation chamber, it was recommended to substitute the lineal regression model by the quadratic regression model, in the determination of the slope of the extrapolation curve, for more exact and accurate measurements of the absorbed dose. (Author)

  5. Efficient Method to Approximately Solve Retrial Systems with Impatience

    Jose Manuel Gimenez-Guzman


    Full Text Available We present a novel technique to solve multiserver retrial systems with impatience. Unfortunately these systems do not present an exact analytic solution, so it is mandatory to resort to approximate techniques. This novel technique does not rely on the numerical solution of the steady-state Kolmogorov equations of the Continuous Time Markov Chain as it is common for this kind of systems but it considers the system in its Markov Decision Process setting. This technique, known as value extrapolation, truncates the infinite state space using a polynomial extrapolation method to approach the states outside the truncated state space. A numerical evaluation is carried out to evaluate this technique and to compare its performance with previous techniques. The obtained results show that value extrapolation greatly outperforms the previous approaches appeared in the literature not only in terms of accuracy but also in terms of computational cost.

  6. Research on the test method of using injection as an equivalent substitute for electromagnetic radiation

    Pan, X. D.; Wei, G. H.; Lu, X. F.; Li, K.


    This paper presents a method to carry out high intensity radiated field (HIRF) effect experiments by using injection as an equivalent substitute for electromagnetic radiation. In allusion to typical interconnected system, the equal response voltage on the equipment cable port is regarded as an equivalent basis of injection and radiation methods. The equivalent relation formula between injected voltage and radiated field is derived theoretically. The conditions needed for extrapolating injected voltage in HIRF are confirmed, and the extrapolation method is proposed. On the basis of the above research, the electromagnetic environment effect test new method combined injection with radiation for interconnected system is summarized. The typical nonlinear interconnected system is selected as equipment under test, and the single frequency continuous wave radiation and injection effect experiments are carried out separately. The test results indicate that the relation between radiated field and injected voltage is linear, and the equivalent injected voltage used to substitute HIRF can be obtained by linear extrapolation.

  7. Corrosion inhibition of carbon steel pipelines by some novel Schiff base compounds during acidizing treatment of oil wells studied by electrochemical and quantum chemical methods

    Abd El-Lateef, Hany M.; Abu-Dief, Ahmed M.; Mohamed, Mounir A. A.


    Three novel Schiff bases compounds were prepared and their structures were characterized by X-ray, 13C-NMR, 1H-NMR, mass, UV-Vis, FT-IR, spectral data and elemental analyses. The corrosion inhibition of the investigated inhibitors towards carbon steel in 15% HCl was investigated by using electrochemical measurements (EIS, LPR corrosion rate and Tafel plots), SEM, EDX and quantum chemical methods. The results showed that, the inhibitors are efficient mixed type corrosion inhibitors, and their inhibition performance increased with the rise of inhibitor concentration and temperature. The adsorption of the inhibitors on steel surface was found to obey Langmuir's adsorption isotherm and chemisorption. Quantum chemical calculations provide good support to empirical results.

  8. Interpolation Method Needed for Numerical Uncertainty Analysis of Computational Fluid Dynamics

    Groves, Curtis; Ilie, Marcel; Schallhorn, Paul


    Using Computational Fluid Dynamics (CFD) to predict a flow field is an approximation to the exact problem and uncertainties exist. There is a method to approximate the errors in CFD via Richardson's Extrapolation. This method is based off of progressive grid refinement. To estimate the errors in an unstructured grid, the analyst must interpolate between at least three grids. This paper describes a study to find an appropriate interpolation scheme that can be used in Richardson's extrapolation or other uncertainty method to approximate errors. Nomenclature

  9. 用NRTL方程推算高压汽液平衡并同时描述过量焓%Extrapolation of High Pressure VLE Data and Simultaneous Representation of Excess Enthalpies by Using NRTL Equation

    计伟荣; E.Stiebing


    The non-random two liquids (NRTL) equation together with the Pitzer/Curl Virial equation of state are used to investigate the simultaneous representation of excess enthalpies (hE) and vapour-liquid equilibria (VLE) and the VLE prediction from hE data. The calculation strategy for properly determining NRTL parameters and the effect of their temperature dependence on the simultaneous correlation of hE and VLE data and the VLE extrapolation are analysed in detail.

  10. 反应堆启堆用智能化外推临界装置堆上考验试验%Test on the Reactor with the Intelligent Extrapolation Criticality Device for Physical Startup Experiment



    The Intelligent Extrapolation Criticality Device is used for automatic counting and automatic extrapolation during the criticality experiment on the reactor. Test must be performed on the zero - power reactor or other reactor before the Device is used. The paper describes the test situation and test results of the Device on the zero - power reactor. The test results show that the Device has the function of automatic counting and automatic extrapolation, the deviation of the extrapolation data is small, and it can satisfy the requirements of physical startup on the reactor.%反应堆启堆用智能化外推临界装置用于反应堆临界试验过程中进行自动计数和自动外推临界.该装置在用于外推临界试验之前必须在零功率反应堆或其它反应堆上进行考验试验.论文叙述了研制的反应堆启堆用智能化外推临界装置在零功率堆上考验试验的情况及试验结果.试验结果表明:智能化外推临界装置具有自动计数和自动外推临界的功能,且外推结果偏差小,满足反应堆物理启动试验的要求.


    Thomas Y. Hou; Brian R. Wetton


    Fourth-order stream-function methods are proposed for the time dependent, incom-pressible Navier-Stokes and Bonssinesq equations. Wide difference stencils are used instead of compact ones and the boundary terms are handled by extrapolating the stream-function values inside the computational domain to grid points outside, up to fourth-order in the no-slip condition. Formal error analysis is done for a simple model problem, showing that this extrapolation introduces numerical boundary layers at fifth-order in the stream-function. The fourth-order convergence in velocity of the proposed method for the full problem is shown numerically.


    D. O. Bannikov


    Full Text Available The usage of the Hot Spot Stress (HSS method by means of linear surface extrapolation (LSE approach was analyzed for the correction of results of the Finite-Element Method (FEM in case of singularity of stresses. The given examples of structures and testing examples were computed on the base of design-and-computation software SCAD for Windows (version 11.3.

  13. Characterization of an extrapolation chamber and radiochromic films for verifying the metrological coherence among beta radiation fields; Caracterizacao de uma camara de extrapolacao e filmes radiocromicos para verificacao da coerencia metrologica entre campos padroes de radiacao beta

    Castillo, Jhonny Antonio Benavente


    The metrological coherence among standard systems is a requirement for assuring the reliability of dosimetric quantities measurements in ionizing radiation field. Scientific and technologic improvements happened in beta radiation metrology with the installment of the new beta secondary standard BSS2 in Brazil and with the adoption of the internationally recommended beta reference radiations. The Dosimeter Calibration Laboratory of the Development Center for Nuclear Technology (LCD/CDTN), in Belo Horizonte, implemented the BSS2 and methodologies are investigated for characterizing the beta radiation fields by determining the field homogeneity, the accuracy and uncertainties in the absorbed dose in air measurements. In this work, a methodology to be used for verifying the metrological coherence among beta radiation fields in standard systems was investigated; an extrapolation chamber and radiochromic films were used and measurements were done in terms of absorbed dose in air. The reliability of both the extrapolation chamber and the radiochromic film was confirmed and their calibrations were done in the LCD/CDTN in {sup 90}Sr/{sup 90}Y, {sup 85}Kr and {sup 147}Pm beta radiation fields. The angular coefficients of the extrapolation curves were determined with the chamber; the field mapping and homogeneity were obtained from dose profiles and isodose with the radiochromic films. A preliminary comparison between the LCD/CDTN and the Instrument Calibration Laboratory of the Nuclear and Energy Research Institute / Sao Paulo (LCI/IPEN) was carried out. Results with the extrapolation chamber measurements showed in terms of absorbed dose in air rates showed differences between both laboratories up to de -I % e 3%, for {sup 90}Sr/{sup 90}Y, {sup 85}Kr and {sup 147}Pm beta radiation fields, respectively. Results with the EBT radiochromic films for 0.1, 0.3 and 0.15 Gy absorbed dose in air, for the same beta radiation fields, showed differences up to 3%, -9% and -53%. The beta

  14. Spectral method and its high performance implementation

    Wu, Zedong


    We have presented a new method that can be dispersion free and unconditionally stable. Thus the computational cost and memory requirement will be reduced a lot. Based on this feature, we have implemented this algorithm on GPU based CUDA for the anisotropic Reverse time migration. There is almost no communication between CPU and GPU. For the prestack wavefield extrapolation, it can combine all the shots together to migration. However, it requires to solve a bigger dimensional problem and more meory which can\\'t fit into one GPU cards. In this situation, we implement it based on domain decomposition method and MPI for distributed memory system.

  15. A new method to estimate input-output tables by means of structural lags, tested on Spanish regions

    Oosterhaven, J.; Escobedo, F.


    The RAS method extrapolates a single matrix to conform to new row and column totals. This paper proposes a cell-correction of RAS (CRAS) that uses the deviations of multiple RAS projections, to improve the projection of the input-output table (IOT) of a specific country or region. The new method is

  16. A new method to reduce truncation errors in partial spherical near-field measurements

    Cano-Facila, F J; Pivnenko, Sergey


    angular sector as well as a truncation error is present in the calculated far-field pattern within this sector. The method is based on the Gerchberg-Papoulis algorithm used to extrapolate functions and it is able to extend the valid region of the calculated far-field pattern up to the whole forward...

  17. The Trojan Horse Method as a tool for investigating astrophysically relevant fusion reactions

    Lamia, L.; Spitaleri, C.; Tognelli, E.; Degl'Innocenti, S.; Pizzone, R. G.; Prada Moroni, P. G.


    The Trojan Horse Method (THM) has been largely adopted for investigating astrophysically relevant charged-particle induced reactions at Gamow energies. Indeed, THM allows one to by pass extrapolation procedures, thus overcoming this source of uncertainty. Here, the recent THM results and their impact in astrophysics are going to be discussed.

  18. Development of methods for measuring microbiological and corrosive activity of sulfate-reducing bacteria: Final report. Mise au point de methodes de mesure de l'activite microbiologique et corrosive des bacteries sulfato-reductrices: Final rapport


    Two groups of methods for studying microbiological and corrosive events have been followed in this study. They are based on the fact that metal corrosion, in particular of iron, is an electrochemical phenomena even if biological processes can intervene. The first group of methods consisted of classical measurements of the following parameters: (1) corrosion potential; (2) polarization resistance; (3) slope of the anodic and cathodic TAFEL lines; (4) velocity of the general corrosion; and (5) pitting index. The second group of methods is more original, and concerns the potential measurements in ''biological electrical batteries.'' Such a battery consists of two half elements (electrodes immerged in an electrolyte) that are identical at the onset of the experiment except for the presence of sulfate-reducing bacteria in one cell whereas the other one is sterile. The influence of temperature and bacteric population on the corrosion activity has been studied. The temperatures varied between 25 and 45/sup 0/C and the bacteric concentration between 0 and 20,000 bacteria/ml. Bacterial corrosion can already be detected a few days after the start of an experiment. This fast response indicates the potential of this method relative to classical microbiological methods. 29 figs.

  19. Automatic numerical integration methods for Feynman integrals through 3-loop

    de Doncker, E.; Yuasa, F.; Kato, K.; Ishikawa, T.; Olagbemi, O.


    We give numerical integration results for Feynman loop diagrams through 3-loop such as those covered by Laporta [1]. The methods are based on automatic adaptive integration, using iterated integration and extrapolation with programs from the QUADPACK package, or multivariate techniques from the ParInt package. The Dqags algorithm from QuadPack accommodates boundary singularities of fairly general types. PARINT is a package for multivariate integration layered over MPI (Message Passing Interface), which runs on clusters and incorporates advanced parallel/distributed techniques such as load balancing among processes that may be distributed over a network of nodes. Results are included for 3-loop self-energy diagrams without IR (infra-red) or UV (ultra-violet) singularities. A procedure based on iterated integration and extrapolation yields a novel method of numerical regularization for integrals with UV terms, and is applied to a set of 2-loop self-energy diagrams with UV singularities.

  20. In vivo doses of butadiene epoxides as estimated from in vitro enzyme kinetics by using cob(I)alamin and measured hemoglobin adducts: An inter-species extrapolation approach

    Motwani, Hitesh V., E-mail:; Törnqvist, Margareta


    1,3-Butadiene (BD) is a rodent and human carcinogen. In the cancer tests, mice have been much more susceptible than rats with regard to BD-induced carcinogenicity. The species-differences are dependent on metabolic formation/disappearance of the genotoxic BD epoxy-metabolites that lead to variations in the respective in vivo doses, i.e. “area under the concentration-time curve” (AUC). Differences in AUC of the most gentoxic BD epoxy-metabolite, diepoxybutane (DEB), are considered important with regard to cancer susceptibility. The present work describes: the application of cob(I)alamin for accurate measurements of in vitro enzyme kinetic parameters associated with BD epoxy-metabolites in human, mouse and rat; the use of published data on hemoglobin (Hb) adduct levels of BD epoxides from BD exposure studies on the three species to calculate the corresponding AUCs in blood; and a parallelogram approach for extrapolation of AUC of DEB based on the in vitro metabolism studies and adduct data from in vivo measurements. The predicted value of AUC of DEB for humans from the parallelogram approach was 0.078 nM · h for 1 ppm · h of BD exposure compared to 0.023 nM · h/ppm · h as calculated from Hb adduct levels observed in occupational exposure. The corresponding values in nM · h/ppm · h were for mice 41 vs. 38 and for rats 1.26 vs. 1.37 from the parallelogram approach vs. experimental exposures, respectively, showing a good agreement. This quantitative inter-species extrapolation approach will be further explored for the clarification of metabolic rates/pharmacokinetics and the AUC of other genotoxic electrophilic compounds/metabolites, and has a potential to reduce and refine animal experiments. - Highlights: • In vitro metabolism to in vivo dose extrapolation of butadiene metabolites was proposed. • A parallelogram approach was introduced to estimate dose (AUC) in humans and rodents. • AUC of diepoxybutane predicted in humans was 0.078 nM h/ppm h

  1. Development of a multi-electrode extrapolation chamber as a prototype of a primary standard for the realization of the unit of the absorbed dose to water for beta brachytherapy sources

    Bambynek, M


    The prototype of a primary standard has been developed, built and tested, which enables the realization of the unit of the absorbed dose to water for beta brachytherapy sources. In the course of the development of the prototype, the recommendations of the American Association of Physicists in Medicine (AAPM) Task Group 60 (TG60) and the Deutsche Gesellschaft fuer Medizinische Physik (DGMP) Arbeitskreis 18 (AK18) were taken into account. The prototype is based on a new multi-electrode extrapolation chamber (MEC) which meets, in particular, the requirements on high spatial resolution and small uncertainty. The central part of the MEC is a segmented collecting electrode which was manufactured in the clean room center of PTB by means of electron beam lithography on a wafer. A precise displacement device consisting of three piezoelectric macrotranslators has been incorporated to move the wafer collecting electrode against the entrance window. For adjustment of the wafer collecting electrode parallel to the entranc...

  2. The slope, curvature, and higher parameters in $pp$ and $\\bar{p}p$ scattering, and the extrapolation of measurements of $d\\sigma(s,t)/dt$ to $t=0$

    Block, Martin M; Ha, Phuoc; Halzen, Francis


    We study the effects of curvature in the expansion of the logarithm of the differential elastic scattering cross section near $t=0$ as $d\\sigma(s,t)/dt=d\\sigma(s,0)/dt\\,\\times\\exp(Bt+Ct^2+Dt^3\\cdots)$ in an eikonal model for $pp$ and $\\bar{p}p$ scattering, and use the results to discuss the extrapolation of measured differential cross sections and the slope parameters $B$ to $t=-q^2=0$. We find that the curvature effects represented by the parameters $C$ and $D$, while small, lead to significant changes in the forward slope parameter relative to that determined in a purely exponential fit, and to smaller but still significant changes in the forward elastic scattering and total cross sections. Curvature effects should therefore be considered in future analyses or reanalyses of the elastic scattering data.

  3. Slope, curvature, and higher parameters in p p and p ¯p scattering, and the extrapolation of measurements of d σ (s ,t )/d t to t =0

    Block, Martin M.; Durand, Loyal; Ha, Phuoc; Halzen, Francis


    We study the effects of curvature in the expansion of the logarithm of the differential elastic scattering cross section near t =0 as d σ (s ,t )/d t =d σ (s ,0 )/d t ×exp (B t +C t2+D t3⋯) in an eikonal model for p p and p ¯p scattering, and use the results to discuss the extrapolation of measured differential cross sections and the slope parameters B to t =-q2=0 . We find that the curvature effects represented by the parameters C and D , while small, lead to significant changes in the forward slope parameter relative to that determined in a purely exponential fit, and to smaller but still significant changes in the forward elastic scattering and total cross sections. Curvature effects should therefore be considered in future analyses or reanalyses of the elastic scattering data.

  4. Polarization Studies on Inhibitory Effect of Chromates and Dichromates on Corrosion of Tin Coated Steel in 0.5M Monochloroacetic Acid

    Sangita Sharma


    Full Text Available Chromates and Dichromates have been tested for its inhibitory effects towards tin coated steel in 0.5M monochloroacetic acid. The corrosion behaviour of potassium chromate, sodium chromate, potassium dichromate, sodium dichromate and ammonium dichromate was studied by polarization curves, Tafel parameters like Tafel slopes, extrapolation of cathodic Tafel line and intersection of cathodic and anodic line at open circuit potential in presence of inhibitors have been tabulated along with other electrochemical parameters and corrosion current have been calculated from Tafel lines. The efficiencies are calculated and compared reasonably well with those obtained from loss in weight data. All the inhibitors induce a significant increase of potential positive and direction accounts for cathodic polarization. The Icorr has also been calculated and that accounts well for cathodic reactions in presence of chromates and dichromates as inhibitors.

  5. Quantifying soil evaporation and transpiration at the scale of a remote sensing pixel by extrapolating mini-lysimeter results with the aid of remote sensed surface temperatures

    Voortman, B.; Bartholomeus, R.; Witte, J. M.


    developed a method to overcome the drawbacks of lysimeters by combining mini-lysimeters with ground-based remote sensing techniques. By comparison of the surface energy balance of the environment under study with the energy balance of mini-lysimeters we are able to derive the latent heat flux of the area outside the mini-lysimeters. The advantages of this method are that (1) measurements of evapotranspiration can be derived for much larger areas than most conventional lysimeters, (2) the measurements are not affected by the lysimeter design and (3) Et can be split into soil evaporation and transpiration, which allows us to study the effects of the vegetation structure on the water balance.

  6. Copper corrosion inhibition in O{sub 2}-saturated H{sub 2}SO{sub 4} solutions

    Amin, Mohammed A. [Materials and Corrosion Lab (MCL), Department of Chemistry, Faculty of Science, Taif University, 888 Hawiya, KSA (Egypt); Chemistry Department, Faculty of Science, Ain Shams University, Abbassia, Cairo (Egypt)], E-mail:; Khaled, K.F. [Materials and Corrosion Lab (MCL), Department of Chemistry, Faculty of Science, Taif University, 888 Hawiya, KSA (Egypt); Electrochemistry Research Laboratory, Faculty of Education, Ain Shams University, Roxy, Cairo (Egypt)


    Corrosion inhibition of copper in O{sub 2}-saturated 0.50 M H{sub 2}SO{sub 4} solutions by four selected amino acids, namely glycine (Gly), alanine (Ala), valine (Val), or tyrosine (Tyr), was studied using Tafel polarization, linear polarization, impedance, and electrochemical frequency modulation (EFM) at 30 deg. C. Protection efficiencies of almost 98% and 91% were obtained with 50 mM Tyr and Gly, respectively. On the other hand, Ala and Val reached only about 75%. Corrosion rates determined by the Tafel extrapolation method were in good agreement with those obtained by EFM and an independent chemical (i.e., non-electrochemical) method. The chemical method of confirmation of the corrosion rates involved determination of the dissolved Cu{sup 2+}, using ICP-AES (inductively coupled plasma atomic emission spectrometry) method of chemical analysis. Nyquist plots exhibited a high frequency depressed semicircle followed by a straight line portion (Warburg diffusion tail) in the low-frequency region. The impedance data were interpreted according to two suitable equivalent circuits. The kinetics of dissolved O{sub 2} reduction and hydrogen evolution reactions on copper surface were also studied in O{sub 2}-saturated 0.50 M H{sub 2}SO{sub 4} solutions using polarization measurements combined with the rotating disc electrode (RDE). The Koutecky-Levich plot indicated that the dissolved O{sub 2} reduction at the copper electrode was an apparent 4-electron process.

  7. Loomemajandus vajab õitsenguks soosivat keskkonda / Külliki Tafel-Viia, Silja Lassur, Andres Viia ; intervjueerinud Tiina Saar

    Tafel-Viia, Külliki


    TLÜ Eesti Tuleviku-uuringute Instituudi teadurid vastavad küsimustele, mis puudutavad tavalise ja loovmajanduse erinevusi, Eesti loomemajanduse positsiooni võrreldes teiste riikidega, loomemajandusega seotud valdkondi, loomeettevõtlust ja loomeettevõtteid, loomemajanduses edukas olemiseks vajalikke ressursse ning loomeettevõtete erinevusi võrreldes teiste ettevõtetega

  8. Sotsiaalne vastutus Eesti moodi : firma maksab, omanik võtab aupaiste? / Külliki Tafel, Ruth Alas

    Tafel, Külliki


    Väljavõtteid intervjuudest, mis viidi läbi Estonian Business Schooli ja Tuleviku-uuringute Instituudi poolt korraldatud sotsiaalse vastutuse uuringu raames. Lisa: EBSi ja Tuleviku-uuringute Instituudi uuring

  9. Corporate Governance in Post-Socialist Countries - Theoretical Dilemmas, Peculiarities, Research Opportunities / Külliki Tafel, Erik Terk, Alari Purju

    Tafel, Külliki


    Äriühingute valitsemine postsotsialistlikes riikides - teoreetilised dilemmad, eripärad, uurimisvõimalused. Skeemid: Internal and external relations of corporate governanace; The changing context of corporate governance

  10. Comparative study of extrapolative factors linked with oxidative injury and anti-inflammatory status in chronic kidney disease patients experiencing cardiovascular distress

    Rasool, Mahmood; Ashraf, Muhammad Abdul Basit; Malik, Arif; Waquar, Sulayman; Khan, Shahida Aziz; Qazi, Mahmood Husain; Ahmad, Waseem; Asif, Muhammad; Khan, Sami Ullah; Zaheer, Ahmad; Qaisrani, Muther Mansoor; Khan, Abdul Rehman; Iqbal, Aamir; Raza, Amir; Iram, Saima; Kamran, Kashif; Iqbal, Asim; Mustafa, Mohammad Zahid; Choudhry, Hani; Zamzami, Mazin A.; Abdulaal, Wesam H.; Jamal, Mohammad Sarwar


    Background Chronic kidney disease (CKD) is a group of heterogeneous abnormalities affecting the function and structure of the kidney and mostly further proceeds to cardiovascular damage prior to end stage renal disease (ESRD). The oxidative insult and inflammatory mediators have some undefined role in CKD and cardiovascular complications. It is therefore, aimed at to pin point the predictive factors in the development of cardiovascular disorder in patients with chronic kidney disease. Methods Fifty patients of CKD experiencing cardiovascular distress and twenty normal individuals having same age and sex acted as control during these observations. Blood samples (Each 5 ml) were drawn and subjected to centrifugation for 10–15 minutes to separate the serum at 4000-5000rpm. The levels of MDA, GSH, SOD, CAT, VIT C, VIT E, IL-1, TNF-alpha, nitric oxide (NO) and advanced oxidation protein products (AOPPs) were estimated and analyzed. Results The nitric oxide levels in the CKD patients decreased significantly (13.26±1.25 ng/ml) compared to controls (42.15±5.26 ng/ml). The serum vitamin E and C levels in these patients recorded 2.15±0.25 μg/ml and 0.97±0.09 μg/ml respectively as against their assigned controls which read 6.35±1.22 μg/ml and 3.29±0.25 μg/ml. Furthermore, a significantly higher level of Malondialdehyde (MDA) as1.25±0.07 nmol/ml was observed in CKD patients viz-a-viz relevant control. However, the serum SOD, catalase (CAT) and GSH levels in the same patients registered a significant decline as evident from respective figures 0.07±0.002 μg/dl, 1.22±0.012 μmol/mol, and 3.25±1.05 μg/dl. The control for these was observed as0.99±0.06 μg/dl, 3.19±0.05 μmol/mol, and 8.64±0.03 μg/dL. On the other hand, the IL-1 levels in the CKD patients found quite higher (402.5±18.26 pg/ml). This clearly points to substantial increase in oxidative insult and reduced NO levels leading to the renal and cardiovascular damage. Conclusion Observations support

  11. A Promising New Method to Estimate Drug-Polymer Solubility at Room Temperature

    Knopp, Matthias Manne; Gannon, Natasha; Porsch, Ilona


    The established methods to predict drug-polymer solubility at room temperature either rely on extrapolation over a long temperature range or are limited by the availability of a liquid analogue of the polymer. To overcome these issues, this work investigated a new methodology where the drug......-polymer solubility is estimated from the solubility of the drug in a solution of the polymer at room temperature using the shake-flask method. Thus, the new polymer in solution method does not rely on temperature extrapolations and only requires the polymer and a solvent, in which the polymer is soluble, that does...... not affect the molecular structure of the drug and polymer relative to that in the solid state. Consequently, as this method has the potential to provide fast and precise estimates of drug-polymer solubility at room temperature, we encourage the scientific community to further investigate this principle both...

  12. The use of objects and methods of colloid chemistry in nanochemistry

    Summ, Boris D.; Ivanova, Nina I.


    Experimental methods and theoretical concepts of colloid chemistry regarding their possible use in nanochemistry and nanotechnology are considered. The main types of disperse systems which can be regarded as nanosystems are distinguished. Some methods for the preparation of colloidal nanosystems are described. Conditions for extrapolation of phenomenological laws of colloid chemistry to nanosize objects are considered. Examples of self-organised colloidal structures are given. The bibliography includes 205 references.

  13. Wavefield Extrapolation in Pseudo-depth Domain

    Ma, Xuxin


    Wave-equation based seismic migration and inversion tools are widely used by the energy industry to explore hydrocarbon and mineral resources. By design, most of these techniques simulate wave propagation in a space domain with the vertical axis being depth measured from the surface. Vertical depth is popular because it is a straightforward mapping of the subsurface space. It is, however, not computationally cost-effective because the wavelength changes with local elastic wave velocity, which in general increases with depth in the Earth. As a result, the sampling per wavelength also increases with depth. To avoid spatial aliasing in deep fast media, the seismic wave is oversampled in shallow slow media and therefore increase the total computation cost. This issue is effectively tackled by using the vertical time axis instead of vertical depth. This is because in a vertical time representation, the "wavelength" is essentially time period for vertical rays. This thesis extends the vertical time axis to the pseudo-depth axis, which features distance unit while preserving the properties of the vertical time representation. To explore the potentials of doing wave-equation based imaging in the pseudo-depth domain, a Partial Differential Equation (PDE) is derived to describe acoustic wave in this new domain. This new PDE is inherently anisotropic because the use of a constant vertical velocity to convert between depth and vertical time. Such anisotropy results in lower reflection coefficients compared with conventional space domain modeling results. This feature is helpful to suppress the low wavenumber artifacts in reverse-time migration images, which are caused by the widely used cross-correlation imaging condition. This thesis illustrates modeling acoustic waves in both conventional space domain and pseudo-depth domain. The numerical tool used to model acoustic waves is built based on the lowrank approximation of Fourier integral operators. To investigate the potential of seismic imaging in the pseudo-depth domain, examples of zero-offset migration are implemented in pseudo-depth domain and compared with conventional space domain imaging results.

  14. Large Deviations and Asymptotic Methods in Finance

    Gatheral, Jim; Gulisashvili, Archil; Jacquier, Antoine; Teichmann, Josef


    Topics covered in this volume (large deviations, differential geometry, asymptotic expansions, central limit theorems) give a full picture of the current advances in the application of asymptotic methods in mathematical finance, and thereby provide rigorous solutions to important mathematical and financial issues, such as implied volatility asymptotics, local volatility extrapolation, systemic risk and volatility estimation. This volume gathers together ground-breaking results in this field by some of its leading experts. Over the past decade, asymptotic methods have played an increasingly important role in the study of the behaviour of (financial) models. These methods provide a useful alternative to numerical methods in settings where the latter may lose accuracy (in extremes such as small and large strikes, and small maturities), and lead to a clearer understanding of the behaviour of models, and of the influence of parameters on this behaviour. Graduate students, researchers and practitioners will find th...

  15. Research of maneuvering target extrapolation based on Kalman filtering%基于卡尔曼滤波的机动目标外推预测的研究

    毕进; 雷璐; 郭敏


    卡尔曼滤波在各个领域都有广泛的应用,如航天器的轨道计算、雷达目标跟踪、生产过程的自动控制等.卡尔曼滤波器在机动目标跟踪中具有良好的性能,是一种最佳估计并能够进行递推计算.为了研究卡尔曼滤波对机动目标的预测,首先用Matlab仿真验证自适应卡尔曼滤波的跟踪滤波能力,根据结果判定目标运动模型,进而在此运动模型下用卡尔曼预测对目标进行外推验证.%Kalman filtering is widely used in many field,such as orbit calculation of space-crafts, radar target tracking, automatic control in production process. Kalman filter has a good performance in maneuvering target tracking due to its optimal estimation and further recursive calculation. In order to research of the maneuvering target prediction of Kalman filtering, the tracking filtering ability of the adaptive Kerman filtering was simulated and validated with Matlab, the model of the maneuvering target was confirmed according to the result, and then the target extrapolation was validated by Kalman prediction with this moving model.

  16. Elements of a pragmatic approach for dealing with bias and uncertainty in experiments through predictions : experiment design and data conditioning; %22real space%22 model validation and conditioning; hierarchical modeling and extrapolative prediction.

    Romero, Vicente Jose


    This report explores some important considerations in devising a practical and consistent framework and methodology for utilizing experiments and experimental data to support modeling and prediction. A pragmatic and versatile 'Real Space' approach is outlined for confronting experimental and modeling bias and uncertainty to mitigate risk in modeling and prediction. The elements of experiment design and data analysis, data conditioning, model conditioning, model validation, hierarchical modeling, and extrapolative prediction under uncertainty are examined. An appreciation can be gained for the constraints and difficulties at play in devising a viable end-to-end methodology. Rationale is given for the various choices underlying the Real Space end-to-end approach. The approach adopts and refines some elements and constructs from the literature and adds pivotal new elements and constructs. Crucially, the approach reflects a pragmatism and versatility derived from working many industrial-scale problems involving complex physics and constitutive models, steady-state and time-varying nonlinear behavior and boundary conditions, and various types of uncertainty in experiments and models. The framework benefits from a broad exposure to integrated experimental and modeling activities in the areas of heat transfer, solid and structural mechanics, irradiated electronics, and combustion in fluids and solids.

  17. Human biofluid concentrations of mono(2-ethylhexyl)phthalate extrapolated from pharmacokinetics in chimeric mice with humanized liver administered with di(2-ethylhexyl)phthalate and physiologically based pharmacokinetic modeling.

    Adachi, Koichiro; Suemizu, Hiroshi; Murayama, Norie; Shimizu, Makiko; Yamazaki, Hiroshi


    Di(2-ethylhexyl)phthalate (DEHP) is a reproductive toxicant in male rodents. The aim of the current study was to extrapolate the pharmacokinetics and toxicokinetics of mono(2-ethylhexyl)phthalate (MEHP, a primary metabolite of DEHP) in humans by using data from oral administration of DEHP to chimeric mice transplanted with human hepatocytes. MEHP and its glucuronide were detected in plasma from control mice and chimeric mice after single oral doses of 250mg DEHP/kg body weight. Biphasic plasma concentration-time curves of MEHP and its glucuronide were seen only in control mice. MEHP and its glucuronide were extensively excreted in urine within 24h in mice with humanized liver. In contrast, fecal excretion levels of MEHP glucuronide were high in control mice compared with those with humanized liver. Adjusted animal biomonitoring equivalents from chimeric mice studies were scaled to human biomonitoring equivalents using known species allometric scaling factors and in vitro metabolic clearance data with a simple physiologically based pharmacokinetic (PBPK) model. Estimated urine MEHP concentrations in humans were consistent with reported concentrations. This research illustrates how chimeric mice transplanted with human hepatocytes in combination with a simple PBPK model can assist evaluations of pharmacokinetics or toxicokinetics of the primary or secondary metabolites of DEHP.

  18. Depth dose distribution in the water for clinical applicators of {sup 90}Sr + {sup 90}Y, with a extrapolation mini chamber; Distribuicao de dose em profundidade na agua para aplicadores clinicos de {sup 90}Sr + {sup 90}Y, com uma mini-camara de extrapolacao

    Antonio, Patricia de Lara; Caldas, Linda V.E., E-mail: patrilan@ipen.b, E-mail: lcaldas@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Oliveira, Mercia L., E-mail: [Centro Regional de Ciencias Nucleares do Nordeste (CRCN-NE/CNEN-PE), Recife, PE (Brazil)


    This work determines the depth dose in the water for clinical applicators of {sup 90}Sr + {sup 90}Y, using a extrapolation mini chamber developed at the IPEN, Sao Paulo, Brazil, and different thickness acrylic plates. The obtained results were compared with the international recommendations and were considered satisfactory

  19. Vanadium oxides (V{sub 2}O{sub 5}) prepared with different methods for application as counter electrodes in dye-sensitized solar cells (DSCs)

    Wu, Kezhong; Sun, Xiaolong; Duan, Chongyuan; Gao, Jing; Wu, Mingxing [Hebei Normal University, College of Chemistry and Material Science, Key Laboratory of Inorganic Nano-materials of Hebei Province, Shijiazhuang City, Hebei Province (China)


    V{sub 2}O{sub 5} was synthesized by four different procedures employing thermal decomposition, sol-gel, and hydrothermal methods which were subsequently introduced into dye-sensitized solar cells (DSCs) as counter electrode (CE) catalysts for the regeneration of traditional iodide/triiodide (I{sup -}/I{sub 3} {sup -}) redox couple. The catalytic activities of as-prepared V{sub 2}O{sub 5} were significantly affected by the synthetic routes as evidenced by cyclic voltammetry, electrochemical impedance spectroscopy, and Tafel polarization curve. Power conversion efficiency (PCE) of the DSCs employing V{sub 2}O{sub 5} CE, fabricated by thermal decomposition method, was observed to be 3.80 % by using citric acid as an additive, while the PCE of the DSCs using V{sub 2}O{sub 5} CE prepared by hydrothermal and thermal decomposition methods without additive, as well as by a sol-gel procedure, was determined to be 2.13, 2.08, and 2.04 %, respectively. (orig.)

  20. Heuristic method of fabricating counter electrodes in dye-sensitized solar cells based on a PEDOT:PSS layer as a catalytic material

    Edalati, Sh; Houshangi far, A.; Torabi, N.; Baneshi, Z.; Behjat, A.


    Poly(3,4-ethylendioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) was deposited on a fluoride-doped tin oxide glass substrate using a heuristic method to fabricate platinum-free counter electrodes for dye-sensitized solar cells (DSSCs). In this heuristic method a thin layer of PEDOT:PPS is obtained by spin coating the PEDOT:PSS on a Cu substrate and then removing the substrate with FeCl3. The characteristics of the deposited PEDOT:PSS were studied by energy dispersive x-ray analysis and scanning electron microscopy, which revealed the micro-electronic specifications of the cathode. The aforementioned DSSCs exhibited a solar conversion efficiency of 3.90%, which is far higher than that of DSSCs with pure PEDOT:PSS (1.89%). This enhancement is attributed not only to the micro-electronic specifications but also to the HNO3 treatment through our heuristic method. The results of cyclic voltammetry, electrochemical impedance spectroscopy (EIS) and Tafel polarization plots show the modified cathode has a dual function, including excellent conductivity and electrocatalytic activity for iodine reduction.

  1. Mechanical Properties and Corrosion Behavior of Low Carbon Steel Weldments

    Mohamed Mahdy


    Full Text Available This research involves studying the mechanical properties and corrosion behavior of “low carbon steel” (0.077wt% C before and after welding using Arc, MIG and TIG welding. The mechanical properties include testing of microhardness, tensile strength, the results indicate that microhardness of TIG, MIG welding is more than arc welding, while tensile strength in arc welding more than TIG and MIG.The corrosion behavior of low carbon weldments was performed by potentiostat at scan rate 3mV.sec-1 in 3.5% NaCl to show the polarization resistance and calculate the corrosion rate from data of linear polarization by “Tafel extrapolation method”. The results indicate that the TIG welding increase the corrosion current density and anodic Tafel slop, while decrease the polarization resistance compared with unwelded low carbon steel. Cyclic polarization were measured to show resistance of specimens to pitting corrosion and to calculate the forward and reveres potentials. The results show shifting the forward, reverse and pitting potentials toward active direction for weldments samples compared with unwelded sample.

  2. Lattice quantum chromodynamics equation of state: A better differential method

    Rajiv V Gavai; Sourendu Gupta; Swagato Mukherjee


    We propose a better differential method for the computation of the equation of state of QCD from lattice simulations. In contrast to the earlier differential method, our technique yields positive pressure for all temperatures including the temperatures in the transition region. Employing it on temporal lattices of 8, 10 and 12 sites and by extrapolating to zero lattice spacing we obtained the pressure, energy density, entropy density, specific heat and speed of sound in quenched QCD for 0.9 ≤ /c ≤ 3. At high temperatures comparisons of our results are made with those from the dimensional reduction approach and also with those from a conformal symmetric theory.

  3. Methods for wave equation prestack depth migration and numerical experiments

    ZHANG; Guanquan; ZHANG; Wensheng


    In this paper the methods of wave theory based prestack depth migration and their implementation are studied. Using the splitting of wave operator, the wavefield extrapolation equations are deduced and the numerical schemes are presented. The numerical tests for SEG/EAEG model with MPI are performed on the PC-cluster. The numerical results show that the methods of single-shot (common-shot) migration and synthesized-shot migration are of practical values and can be applied to field data processing of 3D prestack depth migration.

  4. Developing a Theory of Digitally-Enabled Trial-Based Problem Solving through Simulation Methods: The Case of Direct-Response Marketing

    Clark, Joseph Warren


    In turbulent business environments, change is rapid, continuous, and unpredictable. Turbulence undermines those adaptive problem solving methods that generate solutions by extrapolating from what worked (or did not work) in the past. To cope with this challenge, organizations utilize trial-based problem solving (TBPS) approaches in which they…

  5. Overview of differences between microbial feed additives and probiotics for food regarding regulation, growth promotion effects and health properties and consequences for extrapolation of farm animal results to humans.

    Bernardeau, M; Vernoux, J-P


    could also be observed in humans, or not, according to species and strains. Determining the significance of farm animal results for extrapolation to humans, especially regarding body weight improvement, was not easy because they do not use the same microbial strains nor always the same species. Furthermore, the framework for the management of microbials added to feed or to food differ, especially with regard to goal, timescale and lifestyle. So no one can exclude the possibility that beneficial microorganisms having probiotic effects may have long-term effects in humans that cannot be seen to date in animals, where short-term use is the rule. A possible link to obesity cannot be excluded in relation to timescale, species and strain specificity. To conclude, beneficial microorganisms added in feed are key factors stringently regulated for short-term improvement of zootechnical performances in animals and their use does not entirely parallel that of human probiotics. So extrapolation of farm animal results to humans is biased and not sufficient to be conclusive regarding the existence or not of a link between probiotics and obesity. From a toxicological and nutritional point of view and considering recent findings on a link between antibiotic use in early life and excessive risk of becoming overweight, one suggestion is to study the at-risk population in Europe, pregnant women and their babies before and after birth and during early childhood, in an epidemiological long-term cohort survey.

  6. Electrochemical Corrosion Behavior of TiN-Coated Biomedical Ti-Cu Alloy Foam in Fluoride Containing Artificial Saliva

    Mutlu, Ilven


    Highly porous Ti-Cu alloy foams were produced by powder metallurgy method for implant applications. Ti-Cu alloys were prepared with 3, 5, 7, and 10 wt pct Cu contents in order to determine optimum Cu addition. Cu addition enhances sinterability, and the Ti-Cu compacts were sintered at lower temperatures and times than pure Ti. Specimens were coated with a TiN film to enhance wear and corrosion resistance. Sintered specimens were precipitation hardened (aged) in order to increase mechanical properties. Corrosion properties of foams were examined by electrochemical techniques, such as potentiodynamic polarization, cyclic polarization, Tafel extrapolation, linear polarization resistance, and open-circuit potential measurement. Effect of Cu content, TiN coating, pH, and fluoride content of artificial saliva on electrochemical corrosion behavior of specimens was investigated.

  7. Effect of chromium on the corrosion behaviour of powder-processed Fe–0·45 wt% P alloys

    Yashwant Mehta; Shefali Trivedi; K Chandra; P S Mishra


    The corrosion behaviour of Fe–0·45P with/without addition of chromium, prepared by powder forging route was studied in different environments. The corrosion studies in acidic (0·25 M H2SO4 solution of pH 0·6) and neutral/marine (3·5% NaCl solution of pH 6·8) solutions were conducted using Tafel Extrapolation method. The rate of corrosion in alkaline medium (0·5 M Na2CO3 + 1·0 M NaHCO3 solution of pH 9·4) was measured using linear polarization technique. The studies compare electrolytic Armco iron with Fe–P alloys. It was observed that, chromium improved the resistance to corrosion in acidic and marine environments. The corrosion rates were minimal in alkaline medium and low in neutral solution.

  8. Effect of replacement of V by Nb and Fe on the electrochemical and corrosion behavior of Ti-6Al-4V in simulated physiological environment

    Choubey, A.; Balasubramaniam, R.; Basu, B


    The electrochemical and corrosion behavior of Ti-6Al-4V, Ti-6Al-4Nb, Ti-6Al-4Fe and Ti-5Al-2.5Fe alloys has been evaluated in Hank's solution at 37 deg. C. The effect of substituting vanadium in Ti-6Al-4V alloy has been specifically addressed. The corrosion rates were estimated by the Tafel extrapolation method. All the alloys were found to be passivated immediately on immersion. The passivation properties were comparable for the alloys. The estimated corrosion rates of the alloys were also comparable. The microstructures of the alloy have been discussed. The electrochemical and corrosion behavior of Ti-6Al-4V is not affected significantly on substituting vanadium with niobium and iron.

  9. Lits fluidisés pour l'industrie chimique. Extrapolation et amélioration des catalyseurs. Première partie : Etudes et modèles. Enseignements issus des pilotes Fluidized Beds in Chemical Industry. Scale Up and Catalysts Improvement. First Part: Studies, Models, Learning from Pilot Plants

    Botton R.


    Full Text Available Les unités de production en lits fluidisés catalytiques sont apparues vers 1942 dans l'industrie pétrolière et vers 1960 dans l'industrie chimique. On se limitera ici au problème de l'extrapolation des lits fluidisés catalytiques pour l'industrie chimique, qui exigent de très hautes performances (> 99 % de conversion. Leur mise au point a, dans le passé, nécessité l'exploitation sur des sites industriels de coûteux pilotes de 0,5 m de diamètre et de plus de 10 m de hauteur. Nous montrerons que ces pilotes peuvent être évités et que le passage direct du laboratoire à l'échelle industrielle est réalisable. Cette possibilité offre en plus une méthode simple pour améliorer les catalyseurs des unités industrielles. Elle ouvre aussi cette technique, très appréciée en production, aux produits de petits tonnages. La présentation de cet article sera faite en trois parties : - La première, présentée ci-après, expose les problèmes majeurs posés par l'extrapolation, puis résume les études effectuées. Les travaux d'extrapolation relatifs à deux procédés effectués avec des pilotes sont ensuite présentés, à titre d'exemples. De ces travaux sont déduites les performances que l'on peut espérer obtenir avec un réacteur catalytique à lit fluidisé, ainsi que les règles de tendances à suivre pour y parvenir. - La deuxième partie, intitulée Stratégie n'utilisant que des expériences de laboratoire , propose une stratégie expérimentale permettant d'obtenir en laboratoire les informations nécessaires pour passer directement à l'échelle industrielle avec des expériences suggérées en partie par les résultats exposés dans le premier article. Les relations expérimentales établies lors de ces études montrent que les propriétés d'un lit fluidisé ne dépendent (mis à part quelquefois le diamètre du réacteur que d'un paramètre appelé vitesse minimum de fluidisation de comportement . - La troisième partie

  10. A comparison of finite difference methods for solving Laplace's equation on curvilinear coordinate systems. M.S. Thesis

    Mccoy, M. J.


    Various finite difference techniques used to solve Laplace's equation are compared. Curvilinear coordinate systems are used on two dimensional regions with irregular boundaries, specifically, regions around circles and airfoils. Truncation errors are analyzed for three different finite difference methods. The false boundary method and two point and three point extrapolation schemes, used when having the Neumann boundary condition are considered and the effects of spacing and nonorthogonality in the coordinate systems are studied.

  11. Internal Error Propagation in Explicit Runge--Kutta Methods

    Ketcheson, David I.


    In practical computation with Runge--Kutta methods, the stage equations are not satisfied exactly, due to roundoff errors, algebraic solver errors, and so forth. We show by example that propagation of such errors within a single step can have catastrophic effects for otherwise practical and well-known methods. We perform a general analysis of internal error propagation, emphasizing that it depends significantly on how the method is implemented. We show that for a fixed method, essentially any set of internal stability polynomials can be obtained by modifying the implementation details. We provide bounds on the internal error amplification constants for some classes of methods with many stages, including strong stability preserving methods and extrapolation methods. These results are used to prove error bounds in the presence of roundoff or other internal errors.


    MEI Shu-li; LU Qi-shao; ZHANG Sen-wen; JIN Li


    The quasi-Shannon interval wavelet is constructed based on the interpolation wavelet theory, and an adaptive precise integration method, which is based on extrapolation method is presented for nonlinear ordinary differential equations (ODEs). And then, an adaptive interval wavelet precise integration method (AIWPIM) for nonlinear partial differential equations(PDEs) is proposed. The numerical results show that the computational precision of AIWPIM is higher than that of the method constructed by combining the wavelet and the 4th Runge-Kutta method, and the computational amounts of these two methods are almost equal. For convenience, the Burgers equation is taken as an example in introducing this method, which is also valid for more general cases.

  13. The Role of Extracellular Binding Proteins in the Cellular Uptake of Drugs: Impact on Quantitative In Vitro-to-In Vivo Extrapolations of Toxicity and Efficacy in Physiologically Based Pharmacokinetic-Pharmacodynamic Research.

    Poulin, Patrick; Burczynski, Frank J; Haddad, Sami


    A critical component in the development of physiologically based pharmacokinetic-pharmacodynamic (PBPK/PD) models for estimating target organ dosimetry in pharmacology and toxicology studies is the understanding of the uptake kinetics and accumulation of drugs and chemicals at the cellular level. Therefore, predicting free drug concentrations in intracellular fluid will contribute to our understanding of concentrations at the site of action in cells in PBPK/PD research. Some investigators believe that uptake of drugs in cells is solely driven by the unbound fraction; conversely, others argue that the protein-bound fraction contributes a significant portion of the total amount delivered to cells. Accordingly, the current literature suggests the existence of a so-called albumin-mediated uptake mechanism(s) for the protein-bound fraction (i.e., extracellular protein-facilitated uptake mechanisms) at least in hepatocytes and cardiac myocytes; however, such mechanism(s) and cells from other organs deserve further exploration. Therefore, the main objective of this present study was to discuss further the implication of potential protein-facilitated uptake mechanism(s) on drug distribution in cells under in vivo conditions. The interplay between the protein-facilitated uptake mechanism(s) and the effects of a pH gradient, metabolism, transport, and permeation limitation potentially occurring in cells was also discussed, as this should violate the basic assumption on similar free drug concentration in cells and plasma. This was made because the published equations used to calculate drug concentrations in cells in a PBPK/PD model did not consider potential protein-facilitated uptake mechanism(s). Consequently, we corrected some published equations for calculating the free drug concentrations in cells compared with plasma in PBPK/PD modeling studies, and we proposed a refined strategy for potentially performing more accurate quantitative in vitro-to-in vivo extrapolations

  14. Comparative study among calibration methods of clinical applicators of beta radiation; Estudo comparativo entre metodos de calibracao de aplicadores clinicos de radiacao beta

    Antonio, Patricia de Lara


    {sup 90}Sr+{sup 90}Y clinical applicators are instruments used in brachytherapy procedures and they have to be periodically calibrated, according to international standards and recommendations. In this work, four calibration methods of dermatological and ophthalmic applicators were studied, comparing the results with those given by the calibration certificates of the manufacturers. The methods included the use of the standard applicator of the Calibration Laboratory (LCI), calibrated by the National Institute of Standards and Technology; an Amersham applicator (LCI) as reference; a mini-extrapolation chamber developed at LCI as an absolute standard; and thermoluminescent dosimetry. The mini-extrapolation chamber and a PTW commercial extrapolation chamber were studied in relation to their performance through quality control tests of their response, as leakage current, repeatability and reproducibility. The distribution of the depth dose in water, that presents high importance in dosimetry of clinical applicators, was determined using the mini extrapolation chamber and the thermoluminescent dosimeters. The results obtained were considered satisfactory for the both cases, and comparable to the data of the IAEA (2002) standard. Furthermore, a dosimetry postal kit was developed for the calibration of clinical applicators using the thermoluminescent technique, to be sent to clinics and hospitals, without the need of the transport of the sources to IPEN for calibration. (author)

  15. Alternating Anderson-Richardson method: An efficient alternative to preconditioned Krylov methods for large, sparse linear systems

    Suryanarayana, Phanish; Pask, John E


    We generalize the recently proposed Alternating Anderson-Jacobi (AAJ) method (Pratapa et al., J. Comput. Phys. (2016), 306, 43--54) to include preconditioning, and demonstrate its efficiency and scaling in the solution of large, sparse linear systems on parallel computers. The resulting preconditioned Alternating Anderson-Richardson (AAR) method reduces to the AAJ method for a particular choice of preconditioner. The AAR method employs Anderson extrapolation at periodic intervals within a preconditioned Richardson iteration to accelerate convergence. In this work, we develop a version of the method that is particularly well suited for scalable high-performance computing. In applications to Helmholtz and Poisson equations, we show that the strong and weak parallel scaling of AAR is superior to both Generalized Minimal Residual (GMRES) and Conjugate Gradient (CG) methods, using the same preconditioning, in large-scale parallel calculations employing up to 110,592 computational cores. Moreover, we find that the ...

  16. Possibilities and limitations of the kinetic plot method in supercritical fluid chromatography.

    De Pauw, Ruben; Desmet, Gert; Broeckhoven, Ken


    Although supercritical fluid chromatography (SFC) is becoming a technique of increasing importance in the field of analytical chromatography, methods to compare the performance of SFC-columns and separations in an unbiased way are not fully developed. The present study uses mathematical models to investigate the possibilities and limitations of the kinetic plot method in SFC as this easily allows to investigate a wide range of operating pressures, retention and mobile phase conditions. The variable column length (L) kinetic plot method was further investigated in this work. Since the pressure history is identical for each measurement, this method gives the true kinetic performance limit in SFC. The deviations of the traditional way of measuring the performance as a function of flow rate (fixed back pressure and column length) and the isopycnic method with respect to this variable column length method were investigated under a wide range of operational conditions. It is found that using the variable L method, extrapolations towards other pressure drops are not valid in SFC (deviation of ∼15% for extrapolation from 50 to 200bar pressure drop). The isopycnic method provides the best prediction but its use is limited when operating closer towards critical point conditions. When an organic modifier is used, the predictions are improved for both methods with respect to the variable L method (e.g. deviations decreases from 20% to 2% when 20mol% of methanol is added).

  17. A method for using the purely leptonic channels for W physics measurements at LEP

    Chierici, R


    A new method for the analysis of W pair production at LEP2 in fully leptonic final states is presented. The method is based on the reconstruction of the W boost probability density function under simple kinematic assumptions and allows a straightforward inclusion of the detector resolution. The reliability and performance of the method are tested at generator level with a simplified detector response in the case of the determination of the W mass. The results are discussed and extrapolated to LEP2 final statistics. (7 refs).

  18. Numerical quadrature methods for integrals of singular periodic functions and their application to singular and weakly singular integral equations

    Sidi, A.; Israeli, M.


    High accuracy numerical quadrature methods for integrals of singular periodic functions are proposed. These methods are based on the appropriate Euler-Maclaurin expansions of trapezoidal rule approximations and their extrapolations. They are used to obtain accurate quadrature methods for the solution of singular and weakly singular Fredholm integral equations. Such periodic equations are used in the solution of planar elliptic boundary value problems, elasticity, potential theory, conformal mapping, boundary element methods, free surface flows, etc. The use of the quadrature methods is demonstrated with numerical examples.

  19. Determination of surface dose rate of indigenous (32)P patch brachytherapy source by experimental and Monte Carlo methods.

    Kumar, Sudhir; Srinivasan, P; Sharma, S D; Saxena, Sanjay Kumar; Bakshi, A K; Dash, Ashutosh; Babu, D A R; Sharma, D N


    Isotope production and Application Division of Bhabha Atomic Research Center developed (32)P patch sources for treatment of superficial tumors. Surface dose rate of a newly developed (32)P patch source of nominal diameter 25 mm was measured experimentally using standard extrapolation ionization chamber and Gafchromic EBT film. Monte Carlo model of the (32)P patch source along with the extrapolation chamber was also developed to estimate the surface dose rates from these sources. The surface dose rates to tissue (cGy/min) measured using extrapolation chamber and radiochromic films are 82.03±4.18 (k=2) and 79.13±2.53 (k=2) respectively. The two values of the surface dose rates measured using the two independent experimental methods are in good agreement to each other within a variation of 3.5%. The surface dose rate to tissue (cGy/min) estimated using the MCNP Monte Carlo code works out to be 77.78±1.16 (k=2). The maximum deviation between the surface dose rates to tissue obtained by Monte Carlo and the extrapolation chamber method is 5.2% whereas the difference between the surface dose rates obtained by radiochromic film measurement and the Monte Carlo simulation is 1.7%. The three values of the surface dose rates of the (32)P patch source obtained by three independent methods are in good agreement to one another within the uncertainties associated with their measurements and calculation. This work has demonstrated that MCNP based electron transport simulations are accurate enough for determining the dosimetry parameters of the indigenously developed (32)P patch sources for contact brachytherapy applications.

  20. Measurement of extrapolation curves for the secondary pattern of beta radiation Nr. 86 calibrated in rapidity of absorbed dose for tissue equivalent by the Physikalisch Technische Bundesanstalt; Medicion de curvas de extrapolacion para el patron secundario de radiacion beta Nr. 86 calibrado en rapidez de dosis absorbida para tejido equivalente por el Physikalisch Technische Bundesanstalt

    Alvarez R, J.T


    The following report has as objective to present the obtained results of measuring - with a camera of extrapolation of variable electrodes (CE) - the dose speed absorbed in equivalent fabric given by the group of sources of the secondary pattern of radiation Beta Nr. 86, (PSB), and to compare this results with those presented by the calibration certificates that accompany the PSB extended by the primary laboratory Physikalisch Technische Bundesanstalt, (PTB), of the R.F.A. as well as the uncertainties associated to the measure process. (Author)

  1. Application of higher-order numerical methods to the boundary-layer equations

    Wornom, S. F.


    A fourth-order method is presented for calculating numerical solutions to parabolic, partial differential equations in two variables or ordinary differential equations. The method is the natural extension of the second-order Keller Box Scheme to fourth order and is demonstrated with application to the incompressible, laminar and turbulent boundary-layer equations for both attached and separated flows. The efficiency of the present method is compared with other higher-order methods; namely, the Keller Box Scheme with Richardson extrapolation, the method of deferred corrections, the three-point spline methods, and a modified finite-element method. For equivalent accuracy, numerical results show the present method to be more efficient than the other higher-order methods for both laminar and turbulent flows.

  2. Deve-se extrapolar o tratamento de bronquiectasias em pacientes com fibrose cística para aqueles com bronquiectasias de outras etiologias? Should the bronchiectasis treatment given to cystic fibrosis patients be extrapolated to those with bronchiectasis from other causes?

    Rodrigo Abensur Athanazio


    Full Text Available OBJETIVO: Conhecer o perfil de pacientes adultos com bronquiectasias, comparando portadores de fibrose cística (FC com aqueles com bronquiectasias de outra etiologia, a fim de determinar se é racional extrapolar terapêuticas instituídas em fibrocísticos para aqueles com bronquiectasias de outras etiologias. MÉTODOS: Análise retrospectiva dos prontuários de 87 pacientes adultos com diagnóstico de bronquiectasia em acompanhamento em nosso serviço. Pacientes com doença secundária a infecção por tuberculose corrente ou no passado foram excluídos. Foram avaliados dados clínicos, funcionais e terapêuticos dos pacientes. RESULTADOS: Dos 87 pacientes com bronquiectasias, 38 (43,7% tinham diagnóstico confirmado de FC através de dosagem de sódio e cloro no suor ou análise genética, enquanto 49 (56,3% apresentavam a doença por outra etiologia, 34 (39,0% desses com bronquiectasia idiopática. Os pacientes com FC apresentavam média de idade ao diagnóstico mais baixa (14,2 vs. 24,2 anos; p OBJECTIVE: To profile the characteristics of adult patients with bronchiectasis, drawing comparisons between cystic fibrosis (CF patients and those with bronchiectasis from other causes in order to determine whether it is rational to extrapolate the bronchiectasis treatment given to CF patients to those with bronchiectasis from other causes. METHODS: A retrospective analysis of the medical charts of 87 patients diagnosed with bronchiectasis and under follow-up treatment at our outpatient clinic. Patients who had tuberculosis (current or previous were excluded. We evaluated the clinical, functional, and treatment data of the patients. RESULTS: Of the 87 patients with bronchiectasis, 38 (43.7% had been diagnosed with CF, through determination of sweat sodium and chloride concentrations or through genetic analysis, whereas the disease was due to another etiology in 49 (56.3%, of whom 34 (39.0% had been diagnosed with idiopathic bronchiectasis. The mean

  3. Creep-rupture-test on the stainless steel X6crni1811 (Din 1.494.8) in the frame of the Extrapolation-Program. (Part III); Ensayos de fluencia lenta en el acero inoxidable X6 Cr Ni 1811 (1.4948) en el marco del Programa Extrapolacion

    Solano, R.; Schirra, M.; Rivas, M. de la; Barroso, S.; Seith, B.


    The austenitic stainless steel X6crni1811 (Din 1.4948) used as a structure material for the German Fast Breeder Reactor SNR 300 was creep tested in a temperature range of 550-650 degree centigree material condition as well as welded material condition. The main point of this program (Extrapolation-Program) lies in the knowledge of the creep-rupture-strength and creep-behaviour up to 3 x 10{sup 4} hours higher temperatures in order to extrapolated up to {>=}10{sup 5} hours for operating temperatures. In order to study the stress dependency of the minimum creep rate additional tests were carried out of 550 degree centigree - 750 degree centigree. The present report describes the state in the running program with test-times of 23.000 hours and results from tests up to 55.000 hours belonging to other parallel programs are taken into account. Besides the creep-rupture behaviour it is also made a study of ductility between 550 and 750 degree centigree. Extensive metallographic examinations have been made to study the fracture behaviour and changes in structure. (Author)

  4. Some observations on the Houbolt-Rainey and peak-hold methods of flutter onset prediction

    Doggett, Robert V., Jr.


    A subcritical response method for flutter onset prediction developed by Houbolt and Rainey in 1958 is compared with the Peak-Hold Method which was apparently first applied to flutter onset prediction by Sandford, Abel, and Gray in the early 1970's. The rational argument presented shows that the two methods are not different, but are actually the same. So, because there is an analytical foundation for the Houbolt-Rainey Method, then there is the same analytical foundation for the Peak-Hold Method. Further, it is suggested that, in applying Peak-Hold Method in cases where turbulence is used as the excitation force, the variation of the reciprocal of the response amplitude with the reciprocal of the dynamic pressure to be used to extrapolate to flutter onset rather than the variation with dynamic pressure which is the current practice because the linear trend which is predicted to occur for the former is easier to extrapolate to the flutter condition than the nonlinear trend predicted to occur for the latter.

  5. Direct optical band gap measurement in polycrystalline semiconductors: A critical look at the Tauc method

    Dolgonos, Alex; Mason, Thomas O.; Poeppelmeier, Kenneth R.


    The direct optical band gap of semiconductors is traditionally measured by extrapolating the linear region of the square of the absorption curve to the x-axis, and a variation of this method, developed by Tauc, has also been widely used. The application of the Tauc method to crystalline materials is rooted in misconception-and traditional linear extrapolation methods are inappropriate for use on degenerate semiconductors, where the occupation of conduction band energy states cannot be ignored. A new method is proposed for extracting a direct optical band gap from absorption spectra of degenerately-doped bulk semiconductors. This method was applied to pseudo-absorption spectra of Sn-doped In2O3 (ITO)-converted from diffuse-reflectance measurements on bulk specimens. The results of this analysis were corroborated by room-temperature photoluminescence excitation measurements, which yielded values of optical band gap and Burstein-Moss shift that are consistent with previous studies on In2O3 single crystals and thin films.

  6. Études d'un réacteur micro-ondes monomode de type cuve agitée pour la synthèse chimique et proposition d'une méthodologie d'extrapolation

    Ballestas Castro, Dairo


    Microwave (MW) assisted organic synthesis has been employed in many laboratories since more than 20 years. There is a controversy concerning the effects of MW on the kinetics of reactions since some enhancement of reaction rates have been observed. While MW heating advantages could be of interest for processes intensification, this technique has rarely been employed for large-scale productions. Scaling-up methods are rare and the existed techniques are generally empirical. The aim of our proj...

  7. B-physics from the ratio method with Wilson twisted mass fermions

    Carrasco, N; Frezzotti, R; Gimenez, V; Lubicz, G Herdoiza V; Martinelli, G; Michael, C; Palao, D; Rossi, G C; Sanfilippo, F; Shindler, A; Simula, S; Tarantino, C


    We present a precise lattice QCD determination of the b-quark mass, of the B and Bs decay constants and first preliminary results for the B-mesons bag parameter. Simulations are performed with Nf = 2 Wilson twisted mass fermions at four values of the lattice spacing and the results are extrapolated to the continuum limit. Our calculation benefits from the use of improved interpolating operators for the B-mesons and employs the so-called ratio method. The latter allows a controlled interpolation at the b-quark mass between the relativistic data around and above the charm quark mass and the exactly known static limit.

  8. Solving the Poisson partial differential equation using vector space projection methods

    Marendic, Boris

    This research presents a new approach at solving the Poisson partial differential equation using Vector Space Projection (VSP) methods. The work attacks the Poisson equation as encountered in two-dimensional phase unwrapping problems, and in two-dimensional electrostatic problems. Algorithms are developed by first considering simple one-dimensional cases, and then extending them to two-dimensional problems. In the context of phase unwrapping of two-dimensional phase functions, we explore an approach to the unwrapping using a robust extrapolation-projection algorithm. The unwrapping is done iteratively by modification of the Gerchberg-Papoulis (GP) extrapolation algorithm, and the solution is refined by projecting onto the available global data. An important contribution to the extrapolation algorithm is the formulation of the algorithm with the relaxed bandwidth constraint, and the proof that such modified GP extrapolation algorithm still converges. It is also shown that the unwrapping problem is ill-posed in the VSP setting, and that the modified GP algorithm is the missing link to pushing the iterative algorithm out of the trap solution under certain conditions. Robustness of the algorithm is demonstrated through its performance in a noisy environment. Performance is demonstrated by applying it to phantom phase functions, as well as to the real phase functions. Results are compared to well known algorithms in literature. Unlike many existing unwrapping methods which perform unwrapping locally, this work approaches the unwrapping problem from a globally, and eliminates the need for guiding instruments, like quality maps. VSP algorithm also very effectively battles problems of shadowing and holes, where data is not available or is heavily corrupted. In solving the classical Poisson problems in electrostatics, we demonstrate the effectiveness and ease of implementation of the VSP methodology to solving the equation, as well as imposing of the boundary conditions

  9. A Systematic Method For Tracer Test Analysis: An Example Using Beowawe Tracer Data

    G. Michael Shook


    Quantitative analysis of tracer data using moment analysis requires a strict adherence to a set of rules which include data normalization, correction for thermal decay, deconvolution, extrapolation, and integration. If done correctly, the method yields specific information on swept pore volume, flow geometry and fluid velocity, and an understanding of the nature of reservoir boundaries. All calculations required for the interpretation can be done in a spreadsheet. The steps required for moment analysis are reviewed in this paper. Data taken from the literature is used in an example calculation.

  10. Kolm linna ja kolm lähenemist loovusele ja kultuuri arendamisele : Tartu, Turu ja Bergen : loomemajandus / Külliki Tafel, Erik Terk

    Tafel, Külliki, 1979-


    Tartu, Turu ja Bergen koostasid Põhjamaade Innovatsioonikeskuse projekti "Nordic Model for Creative Industries Development Center" raames oma linnade loomemajanduse arendamise dokumendi. Võrreldakse valminud dokumente

  11. Between "Internal" and "External" Worlds - The Influence of the Owner on Intra-Organizational Relations and on Managerial Activities in Particular / Külliki Tafel, Ruth Alas

    Tafel, Külliki


    Tippjuhtide mõju organisatsioonisistele suhetele ning juhimistegevusele. Skeemid: The content and overlap of the terms of corporate governance and management; The theoretical framework for the study; The degree of involvement of the board of directors in the strategic management process; Framework for treatment of the owner-CEO-employee chain of relations

  12. Oxygen evolution reaction of Ti/IrO$_2$–SnO$_2$ electrode: a study by cyclic voltammetry, Tafel lines, EIS and SEM



    The electrochemical characteristics towards oxygen evolution reaction of thermally prepared Ti/IrO$_2$–SnO$_2$ electrodes were examined. Two electrodes prepared with two different IrO$_2$ compositions were analysed in Na$_2$SO$_4$ electrolyte. Cyclic voltammetry, steady state polarization curves, impedance spectroscopy and open circuit potential were performed to investigate the performance and stability of these electrocatalysts. It has foundthat the surface electrochemistry of Ti/IrO$_2$–SnO$_2$ anodes are governed by the Ir(III)/Ir(IV) couple. The impedance spectroscopy investigation permitted to propose an equivalent circuit to describe the modifications occurred in differentpotentials during oxygen evolution reaction. The same equivalent circuit was found to describe both electrodes. Moreover, the double layer capacitance and microstructure analysis reflected that the inner surface makes a largecontribution to the electrochemically active surface area of Ti/IrO$_2$–SnO$_2$ anodes. It was found that the stability and the electrocatalytic activity mainly depend on changes in the IrO$_2$ composition of the electrode and its morphology during oxygen evolution reaction.

  13. Methods and procedures to determine the outer limits of the continental shelf beyond 200 nautical miles

    WU Ziyin; LI Jiabiao; JIN Xianglong; FANG Yinxia; SHANG Jihong; LI Shoujun


    This paper establishes techniques and methods to determine a variety of boundaries associated with 200 nautical miles beyond the continental shelf. The methods, based on topography, slope and second-deriv-ative profile integrated analysis, are now able to identify automatically the foot of the continental slope (FOS). By analyzing the sedimentary profile, the points of 1%sediment thickness are recognized. Through the intersection, cut, deletion and mergence calculation of the extrapolated data set of fixed-point series, the method succeeds in generating automatically the extrapolated boundaries, including the FOS+60 M line, the 350 M line, and the 2500 m+100 M line. In addition, based on the automatic analysis of the topographic profile, it can be applied to determine rapidly the points of maximum water depth. Taking the northern Okinawa Trough (OT) as an example, these methods are used to calculate and examine the boundaries in-cluded in the Submission by the People's Republic of China Concerning the Outer Limits of the Continental Shelf beyond 200 Nautical miles in Part of the East China Sea (ECS);the boundaries thus derived have a solid scientific and rational basis.

  14. Predicting low-temperature free energy landscapes with flat-histogram Monte Carlo methods

    Mahynski, Nathan A.; Blanco, Marco A.; Errington, Jeffrey R.; Shen, Vincent K.


    We present a method for predicting the free energy landscape of fluids at low temperatures from flat-histogram grand canonical Monte Carlo simulations performed at higher ones. We illustrate our approach for both pure and multicomponent systems using two different sampling methods as a demonstration. This allows us to predict the thermodynamic behavior of systems which undergo both first order and continuous phase transitions upon cooling using simulations performed only at higher temperatures. After surveying a variety of different systems, we identify a range of temperature differences over which the extrapolation of high temperature simulations tends to quantitatively predict the thermodynamic properties of fluids at lower ones. Beyond this range, extrapolation still provides a reasonably well-informed estimate of the free energy landscape; this prediction then requires less computational effort to refine with an additional simulation at the desired temperature than reconstruction of the surface without any initial estimate. In either case, this method significantly increases the computational efficiency of these flat-histogram methods when investigating thermodynamic properties of fluids over a wide range of temperatures. For example, we demonstrate how a binary fluid phase diagram may be quantitatively predicted for many temperatures using only information obtained from a single supercritical state.

  15. Influence Analysis of Neutron Spectrum Change in Fast-Thermal Boundary on Experiment Results of Venus 1# Critical Extrapolation%启明星1#快热交界面能谱变化对外推临界实验结果影响分析

    于涛; 谢金森; 钱金栋


    The neutron count rate of detector in fast-thermal boundary showed quite different performance in critical extrapolation experiment on Venus 1 # , which was listed as a benchmark of accelerator driven sub-critical system (ADS). In order to explain the abnormal phenomenon in experiment, numerical simulations of experiment and calculations of neutron spectrum in fast-thermal boundary were performed, analyses to the abnormal neutron count rate were also represented through calculations. The results indicate that neutron spectrum change during critical extrapolation is the main contributor to the abnormal performance of detector in experiment. This research work will supply theoretical basis for neutronics study on fast-thermal coupling sub-critical systems of the future.%加速器驱动的次临界系统(ADS)基准装置启明星1#在外推临界实验过程中,快热交界面探测器计数率与其他位置探测器计数率存在较大异常.本工作对该实验装置外推临界实验开展数值模拟,并对快热交界面的中子能谱进行详细计算,根据计算结果对探测器在外推临界实验中的计数率异常现象进行分析.结果表明,快热交界面能谱随燃料装载量的变化是引起探测器计数率异常的主要因素,这为今后快热耦合次临界实验装置开展中子学实验研究提供了理论依据.

  16. Nonequilibrium relaxation method – An alternative simulation strategy

    Nobuyasu Ito


    One well-established simulation strategy to study the thermal phases and transitions of a given microscopic model system is the so-called equilibrium method, in which one first realizes the equilibrium ensemble of a finite system and then extrapolates the results to infinite system. This equilibrium method traces over the standard theory of the thermal statistical mechanics, and over the idea of the thermodynamic limit. Recently, an alternative simulation strategy has been developed, which analyzes the nonequilibrium relaxation (NER) process. It is called the NER method. NER method has some advantages over the equilibrium method. The NER method provides a simpler analyzing procedure. This implies less systematic error which is inevitable in the simulation and provides efficient resource usage. The NER method easily treats not only the thermodynamic limit but also other limits, for example, non-Gibbsian nonequilibrium steady states. So the NER method is also relevant for new fields of the statistical physics. Application of the NER method have been expanding to various problems: from basic first- and second-order transitions to advanced and exotic phases like chiral, KT spin-glass and quantum phases. These studies have provided, not only better estimations of transition point and exponents, but also qualitative developments. For example, the universality class of a random system, the nature of the two-dimensional melting and the scaling behavior of spin-glass aging phenomena have been clarified.

  17. A New Method to Estimate Intrinsic Parameters in the Ping-pong Bisustrate Kinetic: Application to the Oxipolymerization of Phenol

    José L. Gómez


    Full Text Available A new method for determining the intrinsic parameters of reaction in processes involving a high initial rate has been developed. The usefulness of this alternative, which consists of determining several sets of apparent parameters at different times and then extrapolating these to time zero, is demonstrated proved by the linear dependence obtained between the apparent parameters and the reaction time. The method permitted the values of the intrinsic parameters (enzyme specific activity and Michaelis-Menten constants of both substrates to be obtained for the system under study and was checked with experimental reaction rate data for the soybean peroxidase/phenol/hydrogen peroxide system.

  18. A Universal Reduced Rupture Creep Approach for Prediction of Long Term Failure Behavior of Aged Glass Polymers from the Short Term Test of Rupture Creep Compliance by the Unified Master Curved Extrapolation

    Guang-jun Song; Da-ming Wu; Wei-yue Song; Ming-shi Song; Gui-xian Hu


    The prediction of long term failure behaviors and lifetime of aged glass polymers from the short term tests of reduced rupture creep compliance (or strain) is one of difficult problems in polymer science and engineering.A new "universal reduced rupture creep approach" with exact theoretical analysis and computations is proposed in this work.Failure by creep for polymeric material is an important problem to be addressed in the engineering.A universal equation on reduced extensional failure creep compliance for PMMA has been derived.It is successful in relating the reduced extensional failure creep compliance with aging time,temperature,levels of stress,the average growth dimensional number and the parameter in K-W-W function.Based on the universal equation,a method for the prediction of failure behavior,failure strain criterion,failure time of PMMA has been developed which is named as a universal "reduced rupture creep approach".The results show that the predicted failure strain and failure time of PMMA at different aging times for different levels of stress are all in agreement with those obtained directly from experiments,and the proposed method is reliable and practical.The dependences of reduced extensional failure creep compliance on the conditions of aging time,failure creep stress,the structure of fluidized-domain constituent chains are discussed.The shifting factor,exponent for time-stress superposition at different levels of stress and the shifting factor,exponent for time-time aging superposition at different aging time are theoretically defined respectively.

  19. Vortex methods

    Chorin, A.J. [California Univ., Berkeley, CA (United States). Dept. of Mathematics]|[Lawrence Berkeley Lab., CA (United States)


    Vortex methods originated from the observation that in incompressible inviscid flow vorticity (or, more accurately, circulation) is a conserved quantity, as can be readily deduced from the absence of tangential stresses. Thus, if the vorticity is known at time t=0, one can find the flow at a later time by simply following the vorticity. In this narrow context, a vortex method is a numerical method that follows vorticity. The author restricts himself in these lectures to a special class of numerical vortex methods, those that are based on a Lagrangian transport of vorticity in hydrodynamics by smoothed particles (blobs) and those whose analysis contributes to the understanding of blob methods. Blob methods started in the 1930`s.

  20. Mining Method

    Kim, Young Shik; Lee, Kyung Woon; Kim, Oak Hwan; Kim, Dae Kyung [Korea Institute of Geology Mining and Materials, Taejon (Korea, Republic of)


    The reducing coal market has been enforcing the coal industry to make exceptional rationalization and restructuring efforts since the end of the eighties. To the competition from crude oil and natural gas has been added the growing pressure from rising wages and rising production cost as the workings get deeper. To improve the competitive position of the coal mines against oil and gas through cost reduction, studies to improve mining system have been carried out. To find fields requiring improvements most, the technologies using in Tae Bak Colliery which was selected one of long running mines were investigated and analyzed. The mining method appeared the field needing improvements most to reduce the production cost. The present method, so-called inseam roadway caving method presently is using to extract the steep and thick seam. However, this method has several drawbacks. To solve the problems, two mining methods are suggested for a long term and short term method respectively. Inseam roadway caving method with long-hole blasting method is a variety of the present inseam roadway caving method modified by replacing timber sets with steel arch sets and the shovel loaders with chain conveyors. And long hole blasting is introduced to promote caving. And pillar caving method with chock supports method uses chock supports setting in the cross-cut from the hanging wall to the footwall. Two single chain conveyors are needed. One is installed in front of chock supports to clear coal from the cutting face. The other is installed behind the supports to transport caved coal from behind. This method is superior to the previous one in terms of safety from water-inrushes, production rate and productivity. The only drawback is that it needs more investment. (author). 14 tabs., 34 figs.

  1. Projection Methods

    Wagner, Falko Jens; Poulsen, Mikael Zebbelin


    When trying to solve a DAE problem of high index with more traditional methods, it often causes instability in some of the variables, and finally leads to breakdown of convergence and integration of the solution. This is nicely shown in [ESF98, p. 152 ff.].This chapter will introduce projection...... methods as a way of handling these special problems. It is assumed that we have methods for solving normal ODE systems and index-1 systems....

  2. Computing methods

    Berezin, I S


    Computing Methods, Volume 2 is a five-chapter text that presents the numerical methods of solving sets of several mathematical equations. This volume includes computation sets of linear algebraic equations, high degree equations and transcendental equations, numerical methods of finding eigenvalues, and approximate methods of solving ordinary differential equations, partial differential equations and integral equations.The book is intended as a text-book for students in mechanical mathematical and physics-mathematical faculties specializing in computer mathematics and persons interested in the

  3. Method 59

    Kjellsson, G.


    OCDE/GD(94)41. Er supplerende rapport til rapport: The OECD Workshop on Methods for Monitoring Organisms in the Environment, Ottawa 14-17 September 1992. Environment Monograph 90.......OCDE/GD(94)41. Er supplerende rapport til rapport: The OECD Workshop on Methods for Monitoring Organisms in the Environment, Ottawa 14-17 September 1992. Environment Monograph 90....

  4. An automatic multigrid method for the solution of sparse linear systems

    Shapira, Yair; Israeli, Moshe; Sidi, Avram


    An automatic version of the multigrid method for the solution of linear systems arising from the discretization of elliptic PDE's is presented. This version is based on the structure of the algebraic system solely, and does not use the original partial differential operator. Numerical experiments show that for the Poisson equation the rate of convergence of our method is equal to that of classical multigrid methods. Moreover, the method is robust in the sense that its high rate of convergence is conserved for other classes of problems: non-symmetric, hyperbolic (even with closed characteristics) and problems on non-uniform grids. No double discretization or special treatment of sub-domains (e.g. boundaries) is needed. When supplemented with a vector extrapolation method, high rates of convergence are achieved also for anisotropic and discontinuous problems and also for indefinite Helmholtz equations. A new double discretization strategy is proposed for finite and spectral element schemes and is found better than known strategies.

  5. Computationally efficient finite-difference modal method for the solution of Maxwell's equations.

    Semenikhin, Igor; Zanuccoli, Mauro


    In this work, a new implementation of the finite-difference (FD) modal method (FDMM) based on an iterative approach to calculate the eigenvalues and corresponding eigenfunctions of the Helmholtz equation is presented. Two relevant enhancements that significantly increase the speed and accuracy of the method are introduced. First of all, the solution of the complete eigenvalue problem is avoided in favor of finding only the meaningful part of eigenmodes by using iterative methods. Second, a multigrid algorithm and Richardson extrapolation are implemented. Simultaneous use of these techniques leads to an enhancement in terms of accuracy, which allows a simple method such as the FDMM with a typical three-point difference scheme to be significantly competitive with an analytical modal method.

  6. The Model of Ship's Magnetic Field Extrapolation Based on Neural Network Improved by Particle Swarm Optimization%基于粒子群改进神经网络的舰艇磁场推算模型

    连丽婷; 肖昌汉; 杨明明; 周国华


    针对目前线性建模解决舰艇内外磁场推算问题时存在的困难,从非线性优化的角度出发,建立了内外磁场之间的误差反向传播神经网络预报模型.为了改善网络的固有缺陷,利用粒子群算法优化网络的初始权值与阈值,使其能够逃离局部最优点,增强了网络的鲁棒性.该方法避免了利用线性化方法存在的诸多困难,可实现舰艇内外磁场推算.利用船模实验对网络预测的准确性进行了验证,结果表明其换算精度较线性方法有所提高,满足工程实际需求.%The magnetic anomaly created by ferromagnetic submarines may endanger their invisibility. Nowadays, a new technique called closed-loop degaussing system can reduce the magnetic anomaly especially permanent one in real-time. To achieve it, a model which is able to predict off-board magnetic field from on board measurements was required. Many researchers settle the problem by a linear model. A back propagation neural network model was proposed to solve it. The model can escape local optimum thanks to optimizing the initial weight values and threshold values by particle swarm optimization algorithm. The method can avoid many problems from linear model and its high accuracy and good robustness was tested by a mockup experiment.

  7. Comparison between amperometric and true potentiometric end-point detection in the determination of water by the Karl Fischer method.

    Cedergren, A


    A rapid and sensitive method using true potentiometric end-point detection has been developed and compared with the conventional amperometric method for Karl Fischer determination of water. The effect of the sulphur dioxide concentration on the shape of the titration curve is shown. By using kinetic data it was possible to calculate the course of titrations and make comparisons with those found experimentally. The results prove that the main reaction is the slow step, both in the amperometric and the potentiometric method. Results obtained in the standardization of the Karl Fischer reagent showed that the potentiometric method, including titration to a preselected potential, gave a standard deviation of 0.001(1) mg of water per ml, the amperometric method using extrapolation 0.002(4) mg of water per ml and the amperometric titration to a pre-selected diffusion current 0.004(7) mg of water per ml. Theories and results dealing with dilution effects are presented. The time of analysis was 1-1.5 min for the potentiometric and 4-5 min for the amperometric method using extrapolation.

  8. Method Mixins

    Ernst, Erik


    , where traditional invocation is optimized for as-is reuse of existing behavior. Tight coupling reduces flexibility, and traditional invocation tightly couples transfer of information and transfer of control. Method mixins decouple these two kinds of transfer, thereby opening the doors for new kinds......The world of programming has been conquered by the procedure call mechanism, including object-oriented method invocation which is a procedure call in context of an object. This paper presents an alternative, method mixin invocations, that is optimized for flexible creation of composite behavior...

  9. Method Mixins

    Ernst, Erik


    invocation is optimized for as-is reuse of existing behavior. Tight coupling reduces flexibility, and traditional invocation tightly couples transfer of information and transfer of control. Method mixins decouple these two kinds of transfer, thereby opening the doors for new kinds of abstraction and reuse......The procedure call mechanism has conquered the world of programming, with object-oriented method invocation being a procedure call in context of an object. This paper presents an alternative, method mixin invocations, that is optimized for flexible creation of composite behavior, where traditional...

  10. Full CI Benchmark Potentials for the 6e^- System Li_2 with a CBS Extrapolation from aug-cc-pCV5Z and aug-cc-pCV6Z Basis Sets Using Fciqmc and Dmrg

    Dattani, Nikesh S.; Sharma, Sandeep; Alavi, Ali


    Being the simplest uncharged homonuclear dimer after H_2 that has a stable ground state, Li_2 is one of the most important benchmark systems for theory and experiment. In 1930, Delbruck used Li_2 to test his theory of homopolar binding, and it was used again and again as a prototype to test what have now become some of the most ubiquitous concepts in molecular physics (LCAO, SCF, MO, just to name a few). Experimentally, Roscoe and Schuster studied alkali dimers back in 1874. At the dawn of quantum mechanics, the emerging types of spectroscopic analyses we now use today, were tested on Li_2 in the labs of Wurm (1928), Harvey (1929), Lewis (1931), and many others, independently. Li_2 was at the centre of the development of PFOODR in the 80s, and PAS in the 90s; and Lithium Bose-Einstein condensates were announced only 1 month after the Nobel Prize winning BEC announcement in 1995. Even now in the 2010s, numerous experimental and theoretical studies on Li have tested QED up to the 7th power of the fine structure constant. Li_2 has also been of interest to sub-atomic physicists, as it was spectroscopic measurements on ^7Li_2 that determined the spin of ^7Li to be 3/2 in 1931; and Li_2 has been proposed in 2014 as a candidate for the first ``halo nucleonic molecule". The lowest triplet state a(1^3Σ_u^+) is an excellent benchmark system for all newly emerging ab initio techniques because it has only 6e^-, its potential is only 334 cm-1 deep, it avoids harsh complications from spin-orbit coupling, and it is the deepest potential for which all predicted vibrational energy levels have been observed with 0.0001 cm-1 precision. However the current best ab initio potentials do not even yield all vibrational energy spacings correct to within 1 cm-1. This could be because the calculation was only done on a cc-pV5Z basis set, or because the QCISD(T,full) method that the authors used, only considered triple excitations while a full CI calculation should include up to hexuple

  11. Dosimetry methods

    McLaughlin, W.L.; Miller, A.; Kovacs, A.;


    Chemical and physical radiation dosimetry methods, used for the measurement of absorbed dose mainly during the practical use of ionizing radiation, are discussed with respect to their characteristics and fields of application.......Chemical and physical radiation dosimetry methods, used for the measurement of absorbed dose mainly during the practical use of ionizing radiation, are discussed with respect to their characteristics and fields of application....

  12. Statistical Method of Estimating Nigerian Hydrocarbon Reserves

    Jeffrey O. Oseh


    Full Text Available Hydrocarbon reserves are basic to planning and investment decisions in Petroleum Industry. Therefore its proper estimation is of considerable importance in oil and gas production. The estimation of hydrocarbon reserves in the Niger Delta Region of Nigeria has been very popular, and very successful, in the Nigerian oil and gas industry for the past 50 years. In order to fully estimate the hydrocarbon potentials in Nigerian Niger Delta Region, a clear understanding of the reserve geology and production history should be acknowledged. Reserves estimation of most fields is often performed through Material Balance and Volumetric methods. Alternatively a simple Estimation Model and Least Squares Regression may be useful or appropriate. This model is based on extrapolation of additional reserve due to exploratory drilling trend and the additional reserve factor which is due to revision of the existing fields. This Estimation model used alongside with Linear Regression Analysis in this study gives improved estimates of the fields considered, hence can be used in other Nigerian Fields with recent production history

  13. Functional renormalization group methods in quantum chromodynamics

    Braun, J.


    We apply functional Renormalization Group methods to Quantum Chromodynamics (QCD). First we calculate the mass shift for the pion in a finite volume in the framework of the quark-meson model. In particular, we investigate the importance of quark effects. As in lattice gauge theory, we find that the choice of quark boundary conditions has a noticeable effect on the pion mass shift in small volumes. A comparison of our results to chiral perturbation theory and lattice QCD suggests that lattice QCD has not yet reached volume sizes for which chiral perturbation theory can be applied to extrapolate lattice results for low-energy observables. Phase transitions in QCD at finite temperature and density are currently very actively researched. We study the chiral phase transition at finite temperature with two approaches. First, we compute the phase transition temperature in infinite and in finite volume with the quark-meson model. Though qualitatively correct, our results suggest that the model does not describe the dynamics of QCD near the finite-temperature phase boundary accurately. Second, we study the approach to chiral symmetry breaking in terms of quarks and gluons. We compute the running QCD coupling for all temperatures and scales. We use this result to determine quantitatively the phase boundary in the plane of temperature and number of quark flavors and find good agreement with lattice results. (orig.)

  14. Ensemble Methods

    Re, Matteo; Valentini, Giorgio


    Ensemble methods are statistical and computational learning procedures reminiscent of the human social learning behavior of seeking several opinions before making any crucial decision. The idea of combining the opinions of different "experts" to obtain an overall “ensemble” decision is rooted in our culture at least from the classical age of ancient Greece, and it has been formalized during the Enlightenment with the Condorcet Jury Theorem[45]), which proved that the judgment of a committee is superior to those of individuals, provided the individuals have reasonable competence. Ensembles are sets of learning machines that combine in some way their decisions, or their learning algorithms, or different views of data, or other specific characteristics to obtain more reliable and more accurate predictions in supervised and unsupervised learning problems [48,116]. A simple example is represented by the majority vote ensemble, by which the decisions of different learning machines are combined, and the class that receives the majority of “votes” (i.e., the class predicted by the majority of the learning machines) is the class predicted by the overall ensemble [158]. In the literature, a plethora of terms other than ensembles has been used, such as fusion, combination, aggregation, and committee, to indicate sets of learning machines that work together to solve a machine learning problem [19,40,56,66,99,108,123], but in this chapter we maintain the term ensemble in its widest meaning, in order to include the whole range of combination methods. Nowadays, ensemble methods represent one of the main current research lines in machine learning [48,116], and the interest of the research community on ensemble methods is witnessed by conferences and workshops specifically devoted to ensembles, first of all the multiple classifier systems (MCS) conference organized by Roli, Kittler, Windeatt, and other researchers of this area [14,62,85,149,173]. Several theories have been


    Wu Shixiong; Wang Wen; Chen Zichen


    Current measurement method for unknown free-form surface has low efficiency. To acquire given precision, a lot of null points are measured. Based on change surface curvature, a new measurement planning is put forward. Sample step is evaluated from the change curvature and the locally-bounded character of extrapolating curve. Two coefficients, maximum error coefficient and local camber coefficient, are used to optimize sampling step. The first coefficient is computed to avoid sampling-point exceeding the measurement range and the second control sampling precision. Compared with the other methods, the proposed planning method can reduce the number of the measuring-point efficiently for the given precision. Measuring point distributes adaptively by the change surface curvature. The method can be applied to improve measurement efficiency and accuracy.

  16. New Methods of Determining the Mixed Mode Stress Intensity Factors for V-Shaped Notch

    Lin Zhong-qin; Yu Haiyan; Chen Guanlong; Li Shu-hui


    In this paper, on the basis of the stress field given by D.H.Chen, three new photoelastic methods are developed for determining the stress intensity factors K1 and K2 of V-shaped notch. Some photoelastic experiments are performed on a skew -symmetric 45° notch. Measurements of the coordinates components of r,θand fringe order N are made for progressively smaller fringes and used in the proposed methods to solve K1 and K2.Plots of apparent K vs. r/l are made and extrapolated to the notch tip to yield the true values of K1 and K2.The results obtained by the three methods are very close to each other. When the notch problem is simplified as a crack problem, the corresponding equation is identical to the one proposed by D.G. Smith, which shows that the proposed methods are applicable for both notch and crack problems.

  17. SU-E-T-96: Demonstration of a Consistent Method for Correcting Surface Dose Measurements Using Both Solid State and Ionization Chamber Detectors

    Reynolds, T; Gerbi, B; Higgins, P [UniversityMinnesota, Minneapolis, MN (United States)


    Purpose: To compare the surface dose (SD) measured using a PTW 30-360 extrapolation chamber with different commonly used dosimeters (Ds): parallel plate ion chambers (ICs): RMI-449 (Attix), Capintec PS-033, PTW 30-329 (Markus) and Memorial; TLD chips (cTLD), TLD powder (pTLD), optically stimulated (OSLs), radiochromic (EXR2) and radiographic (EDR2) films, and to provide an intercomparison correction to Ds for each of them. Methods: Investigations were performed for a 6 MV x-ray beam (Varian Clinac 2300, 10x10 cm{sup 2} open field, SSD = 100 cm). The Ds were placed at the surface of the solid water phantom and at the reference depth dref=1.7cm. The measurements for cTLD, OSLs, EDR2 and EXR2 were corrected to SD using an extrapolation method (EM) indexed to the baseline PTW 30-360 measurements. A consistent use of the EM involved: 1) irradiation of three Ds stacked on top of each other on the surface of the phantom; 2) measurement of the relative dose value for each layer; and, 3) extrapolation of these values to zero thickness. An additional measurement was performed with externally exposed OSLs (eOSLs), that were rotated out of their protective housing. Results: All single Ds measurements overestimated the SD compared with the extrapolation chamber, except for Attix IC. The closest match to the true SD was measured with the Attix IC (− 0.1%), followed by pTLD (0.5%), Capintec (4.5%), Memorial (7.3%), Markus (10%), cTLD (11.8%), eOSL (12.8%), EXR2 (14%), EDR2 (14.8%) and OSL (26%). The EM method of correction for SD worked well for all Ds, except the unexposed OSLs. Conclusion: This EM cross calibration of solid state detectors with an extrapolation or Attix chamber can provide thickness corrections for cTLD, eOSLs, EXR2, and EDR2. Standard packaged OSLs were not found to be simply corrected.

  18. Discretization error estimation and exact solution generation using the method of nearby problems.

    Sinclair, Andrew J. (Auburn University Auburn, AL); Raju, Anil (Auburn University Auburn, AL); Kurzen, Matthew J. (Virginia Tech Blacksburg, VA); Roy, Christopher John (Virginia Tech Blacksburg, VA); Phillips, Tyrone S. (Virginia Tech Blacksburg, VA)


    The Method of Nearby Problems (MNP), a form of defect correction, is examined as a method for generating exact solutions to partial differential equations and as a discretization error estimator. For generating exact solutions, four-dimensional spline fitting procedures were developed and implemented into a MATLAB code for generating spline fits on structured domains with arbitrary levels of continuity between spline zones. For discretization error estimation, MNP/defect correction only requires a single additional numerical solution on the same grid (as compared to Richardson extrapolation which requires additional numerical solutions on systematically-refined grids). When used for error estimation, it was found that continuity between spline zones was not required. A number of cases were examined including 1D and 2D Burgers equation, the 2D compressible Euler equations, and the 2D incompressible Navier-Stokes equations. The discretization error estimation results compared favorably to Richardson extrapolation and had the advantage of only requiring a single grid to be generated.

  19. Statistical methods

    Szulc, Stefan


    Statistical Methods provides a discussion of the principles of the organization and technique of research, with emphasis on its application to the problems in social statistics. This book discusses branch statistics, which aims to develop practical ways of collecting and processing numerical data and to adapt general statistical methods to the objectives in a given field.Organized into five parts encompassing 22 chapters, this book begins with an overview of how to organize the collection of such information on individual units, primarily as accomplished by government agencies. This text then

  20. Spectral Methods

    Shen, Jie; Wang, Li-Lian


    Along with finite differences and finite elements, spectral methods are one of the three main methodologies for solving partial differential equations on computers. This book provides a detailed presentation of basic spectral algorithms, as well as a systematical presentation of basic convergence theory and error analysis for spectral methods. Readers of this book will be exposed to a unified framework for designing and analyzing spectral algorithms for a variety of problems, including in particular high-order differential equations and problems in unbounded domains. The book contains a large

  1. Statistical methods

    Freund, Rudolf J; Wilson, William J


    Statistical Methods, 3e provides students with a working introduction to statistical methods offering a wide range of applications that emphasize the quantitative skills useful across many academic disciplines. This text takes a classic approach emphasizing concepts and techniques for working out problems and intepreting results. The book includes research projects, real-world case studies, numerous examples and data exercises organized by level of difficulty. This text requires that a student be familiar with algebra. New to this edition: NEW expansion of exercises a

  2. Methods for determining atypical gate valve thrust requirements

    Steele, R. Jr.; Watkins, J.C.; DeWall, K.G. [Idaho National Engineering Lab., Idaho Falls, ID (United States)] [and others


    Evaluating the performance of rising stem, wedge type, gate valves used in nuclear power plant is not a problem when the valves can be design-basis tested and their operability margins determined diagnostically. The problem occurs when they cannot be tested because of plant system limitations or when they can be tested only at some less-than-design-basis condition. To evaluate the performance of these valves requires various analytical and/or extrapolation methods by which the design-basis stem thrust requirement can be determined. This has been typically accomplished with valve stem thrust models used to calculate the requirements or by extrapolating the results from a less-than-design-basis test. The stem thrust models used by the nuclear industry to determine the opening or closing stem thrust requirements for these gate valves have generally assumed that the highest load the valve experiences during closure (but before seating) is at flow isolation and during unwedging or before flow initiation in the opening direction. However, during full-scale valve testing conducted for the USNRC, several of the valves produced stem thrust histories that showed peak closing stem forces occurring before flow isolation in the closing direction and after flow initiation in the opening direction. All of the valves that exhibited this behavior in the closing direction also showed signs of internal damage. Initially, we dismissed the early peak in the closing stem thrust requirement as damage-induced and labeled it nonpredictable behavior. Opening responses were not a priority in our early research, so that phenomenon was set aside for later evaluation.

  3. Characterization methods

    Glass, J.T. [North Carolina State Univ., Raleigh (United States)


    Methods discussed in this compilation of notes and diagrams are Raman spectroscopy, scanning electron microscopy, transmission electron microscopy, and other surface analysis techniques (auger electron spectroscopy, x-ray photoelectron spectroscopy, electron energy loss spectroscopy, and scanning tunnelling microscopy). A comparative evaluation of different techniques is performed. In-vacuo and in-situ analyses are described.

  4. Radiofluorination method


    A method of conducting radiofluorination of a substrate, comprising the steps of: (a) contacting an aqueous solution of [18F] fluoride with a polymer supported phosphazene base for sufficient time for trapping of [18F] fluoride on the polymer supported phosphazene base; and (b) contacting...

  5. Digital Methods

    Rogers, R.


    In Digital Methods, Richard Rogers proposes a methodological outlook for social and cultural scholarly research on the Web that seeks to move Internet research beyond the study of online culture. It is not a toolkit for Internet research, or operating instructions for a software package; it deals wi

  6. Wavefield extrapolation in caustic-free normal ray coordinates

    Ma, Xuxin


    Normal ray coordinates are conventionally constructed from ray tracing, which inherently requires smooth velocity profiles. To use rays as coordinates, the velocities have to be smoothed further to avoid caustics, which is detrimental to the mapping process. Solving the eikonal equation numerically for a line source at the surface provides a platform to map normal rays in complex unsmoothed velocity models and avoid caustics. We implement reverse-time migration (RTM) and downward continuation in the new ray coordinate system, which allows us to obtain efficient images and avoid some of the dip limitations of downward continuation.

  7. Analog versus digital: extrapolating from electronics to neurobiology.

    Sarpeshkar, R


    We review the pros and cons of analog and digital computation. We propose that computation that is most efficient in its use of resources is neither analog computation nor digital computation but, rather, a mixture of the two forms. For maximum efficiency, the information and information-processing resources of the hybrid form must be distributed over many wires, with an optimal signal-to-noise ratio per wire. Our results suggest that it is likely that the brain computes in a hybrid fashion and that an underappreciated and important reason for the efficiency of the human brain, which consumes only 12 W, is the hybrid and distributed nature of its architecture.

  8. Power Counting Regime of Chiral Extrapolation and Beyond

    Leinweber, D B; Young, R D; Leinweber, Derek B; Thomas, Anthony W; Young, Ross D


    Finite-range regularised (FRR) chiral effective field theory is presented in the context of approximation schemes ubiquitous in modern lattice QCD calculations. Using FRR techniques, the power-counting regime (PCR) of chiral perturbation theory can be estimated. To fourth-order in the expansion at the 1% tolerance level, we find m_\\pi < 180 MeV for the PCR, extending only a small distance beyond the physical pion mass.

  9. QCD thermodynamics with continuum extrapolated Wilson fermions II

    Borsanyi, Szabolcs; Fodor, Zoltan; Holbling, Christian; Katz, Sandor D; Krieg, Stefan; Nogradi, Daniel; Szabo, Kalman K; Toth, Balint C; Trombitas, Norbert


    We continue our investigation of 2+1 flavor QCD thermodynamics using dynamical Wilson fermions in the fixed scale approach. Two additional pion masses, approximately 440 MeV and 285 MeV, are added to our previous work at 545 MeV. The simulations were performed at 3 or 4 lattice spacings at each pion mass. The renormalized chiral condensate, strange quark number susceptibility and Polyakov loop is obtained as a function of the temperature and we observe a decrease in the light chiral pseudo-critical temperature as the pion mass is lowered while the pseudo-critical temperature associated with the strange quark number susceptibility or the Polyakov loop is only mildly sensitive to the pion mass. These findings are in agreement with previous continuum results obtained in the staggered formulation.

  10. Chiral extrapolations and strangeness in the baryon ground states

    Lutz, Matthias F M


    We review the quark-mass dependence of the baryon octet and decuplet masses as obtained from recent lattice simulations of the BMW, PACS-CS, LHPC, HSC and QCDSF-UKQCD groups. Our discussion relies on the relativistic chiral Lagrangian and large-$N_c$ sum rule estimates of the counter terms relevant for the baryon masses at N$^3$LO. A partial summation is implied by the use of physical baryon and meson masses in the one-loop contributions to the baryon self energies. In our analysis the physical masses are reproduced exactly by means of a suitable set of linear constraints. A quantitative and simultaneous description of all lattice results is achieved in terms of a six parameter fit, where the symmetry conserving counter term that are relevant at N$^3$LO are not yet being used. For pion masses larger than 300 MeV there appears to be an approximate linear pion-mass dependence of all octet and decuplet baryon masses. We discuss the pion- and strangeness sigma terms of the baryon octet states.

  11. Reacting Flows Simulation with Applications to Ground to Flight Extrapolation


    P.zza Leonardo da Vinci 32, 20133 Milano, Italy Abstract The development of next generation reusable space vehicles requires a...Politecnico di Milano, Dept. of Mathematics P.zza Leonardo da Vinci 32, 20133 Milano, Italy 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING

  12. Biokinetic modeling and in vitro-in vivo extrapolations.

    Blaauboer, B.J.


    The introduction of in vitro methodologies in the toxicological risk assessment process requires a number of prerequisites regarding both the toxicodynamics and the biokinetics of the compounds under study. In vitro systems will need to be relevant for measuring those structural and physiological ch

  13. Chiral and continuum extrapolation of partially quenched lattice results

    C.R. Allton; W. Armour; D.B. Leinweber; A.W. Thomas; R.D. Young


    The vector meson mass is extracted from a large sample of partially quenched, two-flavor lattice QCD simulations. For the first time, discretization, finite-volume and partial quenching artifacts are treated in a unified chiral effective field theory analysis of the lattice simulation results.

  14. Multidimensional Signal Restoration and Band-Limited Extrapolation. I.


    Nacional de Investigaciones Cientificas y Tecnicas of Argentina. Thomas S. Huang was supported by the Joint Services Electronic’s Program "- under...CLASSIFICATION OF THIS5 PAGE (M~en Date Entered)_________________ READ INSTRUCTIONSREPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM 1. REPORT NUMBER...for his help in proving theorem 5. The work of J. San: was~ supported by Consejo Nacional de Investigaciones Cientificas y Tecuicas (CONICET). T

  15. Please don't! The automatic extrapolation of dangerous intentions.

    Alessia Tessari

    Full Text Available Facial emotions and emotional body postures can easily grab attention in social communication. In the context of faces, gaze has been shown as an important cue for orienting attention, but less is known for other important body parts such as hands. In the present study we investigated whether hands may orient attention due to the emotional features they convey. By implying motion in static photographs of hands, we aimed at furnishing observers with information about the intention to act and at testing if this interacted with the hand automatic coding. In this study, we compared neutral and frontal hands to emotionally threatening hands, rotated along their radial-ulnar axes in a Sidedness task (a Simon-like task based on automatic access to body representation. Results showed a Sidedness effect for both the palm and the back views with either neutral and emotional hands. More important, no difference was found between the two views for neutral hands, but it emerged in the case of the emotional hands: faster reaction times were found for the palm than the back view. The difference was ascribed to palm views' "offensive" pose: a source of threat that might have raised participants' arousal. This hypothesis was also supported by conscious evaluations of the dimensions of valence (pleasant-unpleasant and arousal. Results are discussed in light of emotional feature coding.

  16. Infrared Extrapolations of Electromagnetic Multipole Moments and Transitions

    Odell, Daniel; Papenbrock, Thomas; Platter, Lucas


    Basis truncations introduce systematic errors in observables calculated by representing the nuclear Hamiltonian in finite Hilbert spaces. Recent studies of the infrared convergence of finite basis calculations of energies and radii have led to accurate descriptions of numerical data. I will discuss how these concepts can be applied to the study of bound-state quadrupole moments and transitions as well as multipole transitions between bound-states and the continuum. I will show that good agreement is obtained between analytically derived and numerically computed convergence behavior in finite harmonic oscillator spaces for the nucleon-nucleon system. This opens the way to a more precise understanding of structure and reactions involving heavier nuclei. U.S. Dept of Energy, Office of Science under Nos. DEFG02-96ER40963, DE-AC05-00OR22725, DE-SC0008499; US-Israel Binational Science Foundation under Grant No. 2012212; National Science Foundation under Grant No. PHY-1516077 and No. PHY-1555030.

  17. Extrapolation Techniques and Systematic Uncertainties in the NO$\

    Suter, Louise


    The NOvA long-baseline neutrino experiment consists of two highly active, finely segmented, liquid scintillator detectors located 14.6 mrad off Fermilab's NuMI beam axis, with a Near Detector located at Fermilab, and a Far Detector located 810 km from the target at Ash River, MI. NO$\

  18. Value investing in emerging markets : local macroeconomic risk and extrapolation

    Kouwenberg, R.; Salomons, R.M.


    Our results confirm the profitability of value investing at the country level in emerging markets. A portfolio of countries with low price-to-book ratios significantly outperforms a portfolio of high price-to-book countries. Global risk factors cannot explain this outperformance. Next we measure a n

  19. Mental Layout Extrapolations Prime Spatial Processing of Scenes

    Gottesman, Carmela V.


    Four experiments examined whether scene processing is facilitated by layout representation, including layout that was not perceived but could be predicted based on a previous partial view (boundary extension). In a priming paradigm (after Sanocki, 2003), participants judged objects' distances in photographs. In Experiment 1, full scenes (target),…

  20. A new method for improved hub height mean wind speed estimates using short-term hub height data

    Lackner, Matthew A.; Rogers, Anthony L.; Manwell, James F.; McGowan, Jon G. [Wind Energy Center, Department of Mechanical and Industrial Engineering, University of Massachusetts Amherst, 160 Governors Dr., Amherst, MA 01003 (United States)


    The estimation of the wind resource at the hub height of a wind turbine is one of the primary goals of site assessment. Because the measurement heights of meteorological towers (met towers) are typically significantly lower than turbine hub heights, a shear model is generally needed to extrapolate the measured wind resource at the lower measurement height to the hub height of the turbine. This paper presents methods for improving the estimate of the hub height wind resource from met tower data through the use of ground-based remote sensing devices. The methods leverage the two major advantages of these devices: their portability and their ability to measure at the wind turbine hub height. Specifically, the methods rely on augmenting the one year of met tower measurements with short-term measurements from a ground-based remote sensing device. The results indicate that the methods presented are capable of producing substantial improvements in the accuracy and uncertainty of shear extrapolation predictions. The results suggest that the typical site assessment process can be reevaluated, and alternative strategies that utilize ground-based remote sensing devices can be incorporated to significantly improve the process. (author)

  1. Numerical methods

    Dahlquist, Germund


    ""Substantial, detailed and rigorous . . . readers for whom the book is intended are admirably served."" - MathSciNet (Mathematical Reviews on the Web), American Mathematical Society.Practical text strikes fine balance between students' requirements for theoretical treatment and needs of practitioners, with best methods for large- and small-scale computing. Prerequisites are minimal (calculus, linear algebra, and preferably some acquaintance with computer programming). Text includes many worked examples, problems, and an extensive bibliography.


    Patrick Gonzalez; Antonio Lara; Jorge Gayoso; Eduardo Neira; Patricio Romero; Leonardo Sotomayor


    Deforestation of temperate rainforests in Chile has decreased the provision of ecosystem services, including watershed protection, biodiversity conservation, and carbon sequestration. Forest conservation can restore those ecosystem services. Greenhouse gas policies that offer financing for the carbon emissions avoided by preventing deforestation require a projection of future baseline carbon emissions for an area if no forest conservation occurs. For a proposed 570 km{sup 2} conservation area in temperate rainforest around the rural community of Curinanco, Chile, we compared three methods to project future baseline carbon emissions: extrapolation from Landsat observations, Geomod, and Forest Restoration Carbon Analysis (FRCA). Analyses of forest inventory and Landsat remote sensing data show 1986-1999 net deforestation of 1900 ha in the analysis area, proceeding at a rate of 0.0003 y{sup -1}. The gross rate of loss of closed natural forest was 0.042 y{sup -1}. In the period 1986-1999, closed natural forest decreased from 20,000 ha to 11,000 ha, with timber companies clearing natural forest to establish plantations of non-native species. Analyses of previous field measurements of species-specific forest biomass, tree allometry, and the carbon content of vegetation show that the dominant native forest type, broadleaf evergreen (bosque siempreverde), contains 370 {+-} 170 t ha{sup -1} carbon, compared to the carbon density of non-native Pinus radiata plantations of 240 {+-} 60 t ha{sup -1}. The 1986-1999 conversion of closed broadleaf evergreen forest to open broadleaf evergreen forest, Pinus radiata plantations, shrublands, grasslands, urban areas, and bare ground decreased the carbon density from 370 {+-} 170 t ha{sup -1} carbon to an average of 100 t ha{sup -1} (maximum 160 t ha{sup -1}, minimum 50 t ha{sup -1}). Consequently, the conversion released 1.1 million t carbon. These analyses of forest inventory and Landsat remote sensing data provided the data to

  3. Radiative lifetimes of spin forbidden a1Δ → X3Σ- and spin allowed A3Π → X3Σ- transitions and complete basis set extrapolated ab initio potential energy curves for the ground and excited states of CH-.

    Srivastava, Saurabh; Sathyamurthy, N


    The spin forbidden transition a(1)Δ → X(3)Σ(-) in CH(-) has been studied using the Breit-Pauli Hamiltonian for a large number of geometries. This transition acquires intensity through spin-orbit coupling with singlet and triplet Π states. The transition moment matrix including more than one singlet and triplet Π states was calculated at the multi-reference configuration interaction/aug-cc-pV6Z level of theory. The computed radiative lifetime of 5.63 s is in good agreement with the experimental (5.9 s) and other theoretical (6.14 s) results. Transition moment values of the spin allowed A(3)Π → X(3)Σ(-) transition have also been calculated at the same level of theory. Calculations show that the corresponding radiative lifetime is considerably low, 2.4 × 10(-7) s. Complete basis set extrapolated potential energy curves for the ground state of CH and the ground state and six low lying excited states (a(1)Δ, b(1)Σ(+), two (3)Π, and two (1)Π) of CH(-) are reported. These curves are then used to calculate the vibrational bound states for CH and CH(-). The computed electron affinity of CH supports the electron affinity bounds reported by Okumura et al. [J. Chem. Phys. 85, 1971 (1986)].

  4. An implicit non-staggered Cartesian grid method for incompressible viscous flows in complex geometries

    A K De


    A discrete forcing based Cartesian grid method is presented. The nonstaggered arrangement of velocity and pressure is considered. The pressure gradient in localized discrete form is added separately with the velocity making them explicitly coupled. The governing equation is time-integrated implicitly with both linearized and non-linear forms are investigated. Both linear and bi-linear reconstruction techniques are tested for extrapolation of velocity near a complex boundary. The present method is tested for vortical flow in an inclined cavity, flow past circular and inclined square cylinder. Both homogeneous and non-homogeneous Dirichlet forcing problems are tested. The parallelized version of the method is applied to 2D-to-3D transitional flow behind a single and multiple circular cylinders. The present numerical results compare well with the previously documented results.

  5. The numerical solution of differential-algebraic systems by Runge-Kutta methods

    Hairer, Ernst; Lubich, Christian


    The term differential-algebraic equation was coined to comprise differential equations with constraints (differential equations on manifolds) and singular implicit differential equations. Such problems arise in a variety of applications, e.g. constrained mechanical systems, fluid dynamics, chemical reaction kinetics, simulation of electrical networks, and control engineering. From a more theoretical viewpoint, the study of differential-algebraic problems gives insight into the behaviour of numerical methods for stiff ordinary differential equations. These lecture notes provide a self-contained and comprehensive treatment of the numerical solution of differential-algebraic systems using Runge-Kutta methods, and also extrapolation methods. Readers are expected to have a background in the numerical treatment of ordinary differential equations. The subject is treated in its various aspects ranging from the theory through the analysis to implementation and applications.

  6. A comparison between the fission matrix method, the diffusion model and the transport model

    Dehaye, B.; Hugot, F. X.; Diop, C. M. [Commissariat a l' Energie Atomique et aux Energies Alternatives, Direction de l' Energie Nucleaire, Departement de Modelisation des Systemes et Structures, CEA DEN/DM2S, PC 57, F-91191 Gif-sur-Yvette cedex (France)


    The fission matrix method may be used to solve the critical eigenvalue problem in a Monte Carlo simulation. This method gives us access to the different eigenvalues and eigenvectors of the transport or fission operator. We propose to compare the results obtained via the fission matrix method with those of the diffusion model, and an approximated transport model. To do so, we choose to analyse the mono-kinetic and continuous energy cases for a Godiva-inspired critical sphere. The first five eigenvalues are computed with TRIPOLI-4{sup R} and compared to the theoretical ones. An extension of the notion of the extrapolation distance is proposed for the modes other than the fundamental one. (authors)

  7. Efficient high-order immersed interface methods for heat equations with interfaces

    刘建康; 郑洲顺


    An efficient high-order immersed interface method (IIM) is proposed to solve two-dimensional (2D) heat problems with fixed interfaces on Cartesian grids, which has the fourth-order accuracy in the maximum norm in both time and space directions. The space variable is discretized by a high-order compact (HOC) difference scheme with correction terms added at the irregular points. The time derivative is integrated by a Crank-Nicolson and alternative direction implicit (ADI) scheme. In this case, the time accuracy is just second-order. The Richardson extrapolation method is used to improve the time accuracy to fourth-order. The numerical results confirm the convergence order and the efficiency of the method.

  8. Standardization of 64Cu and 68Ga by the 4π(PC)β-γ coincidence method and calibration of the ionization chamber.

    Sahagia, M; Luca, A; Antohe, A; Ivan, C


    The paper treats the application of the 4π(PC)β-γ coincidence method for the standardization of the radionuclides (64)Cu and (68)Ga. The general coincidence equations are written. Two types of extrapolation were described and used in measurement: the positron-annihilation coincidence, and the counting of all emitted radiations; both methods are compared with respect to results, advantages and drawbacks. The impurities' content correction was applied. The standardized solutions were used to calibrate the ionization chamber CENTRONIC IG12/20A and to determine the gamma-rays emission intensities.

  9. Application of the differential transformation method and variational iteration method to large deformation of cantilever beams under point load

    Salehi, Pouya [Semnan Univ., Semnan (Iran, Islamic Republic of); Yaghoobi, Hessamed Din; Torabi, Mohsen [City Univ. of Hong Kong, Hong Kong (China)


    Large deflection of a cantilever beam subjected to a tip concentrated load is governed by a non-linear differential equation. Since it is hard to find exact or closed form solutions for this non-linear problem, this paper investigates the aforementioned problem via the differential transformation method (DTM) and the variational iteration method (VIM), which are well known approximate analytical solutions. The mathematical formulation is yielded to a non-linear two-point boundary value problem. In this study, we compare the DTM and VIM results, with those of Adomian decomposition method (ADM) and the established numerical solution obtained by the Richardson extrapolation in order to verify the accuracy of the proposed methods. As an important result, it is depicted from tabulated data that the DTM results are more accurate in comparison with those obtained by the VIM and ADM, which is one of the objectives of this article. Moreover, the effects of dimensionless end point load, {alpha} , on the slope of any point along the arc length and the dimensionless vertical and horizontal displacements are illustrated and explained. The results reveal that these methods are very effective and convenient in predicting the solution of such problems, and it is predicted that the DTM and VIM can find a wide application in new engineering problems.

  10. Development of MCAERO wing design panel method with interactive graphics module

    Hawk, J. D.; Bristow, D. R.


    A reliable and efficient iterative method has been developed for designing wing section contours corresponding to a prescribed subcritical pressure distribution. The design process is initialized by using MCAERO (MCAIR 3-D Subsonic Potential Flow Analysis Code) to analyze a baseline configuration. A second program DMCAERO is then used to calculate a matrix containing the partial derivative of potential at each control point with respect to each unknown geometry parameter by applying a first-order expansion to the baseline equations in MCAERO. This matrix is calculated only once but is used in each iteration cycle to calculate the geometry perturbation and to analyze the perturbed geometry. The potential on the new geometry is calculated by linear extrapolation from the baseline solution. This extrapolated potential is converted to velocity by numerical differentiation, and velocity is converted to pressure by using Bernoulli's equation. There is an interactive graphics option which allows the user to graphically display the results of the design process and to interactively change either the geometry or the prescribed pressure distribution.

  11. Alternative Method to Simulate a Sub-idle Engine Operation in Order to Synthesize Its Control System

    Sukhovii, Sergii I.; Sirenko, Feliks F.; Yepifanov, Sergiy V.; Loboda, Igor


    The steady-state and transient engine performances in control systems are usually evaluated by applying thermodynamic engine models. Most models operate between the idle and maximum power points, only recently, they sometimes address a sub-idle operating range. The lack of information about the component maps at the sub-idle modes presents a challenging problem. A common method to cope with the problem is to extrapolate the component performances to the sub-idle range. Precise extrapolation is also a challenge. As a rule, many scientists concern only particular aspects of the problem such as the lighting combustion chamber or the turbine operation under the turned-off conditions of the combustion chamber. However, there are no reports about a model that considers all of these aspects and simulates the engine starting. The proposed paper addresses a new method to simulate the starting. The method substitutes the non-linear thermodynamic model with a linear dynamic model, which is supplemented with a simplified static model. The latter model is the set of direct relations between parameters that are used in the control algorithms instead of commonly used component performances. Specifically, this model consists of simplified relations between the gas path parameters and the corrected rotational speed.

  12. Fourth-Order Splitting Methods for Time-Dependant Differential Equations

    Jürgen Geiser


    This study was suggested by previous work on the simulation of evolution equations with scale-dependent processes, e.g., wave-propagation or heat-transfer, that are modeled by wave equations or heat equations. Here, we study both parabolic and hyperbolic equations. We focus on ADI (alternating direction implicit) methods and LOD (locally one-dimensional) methods, which are standard splitting methods of lower order, e.g. second-order. Our aim is to develop higher-order ADI methods, which are performed by Richardson extrapolation, Crank-Nicolson methods and higher-order LOD methods, based on locally higher-order methods. We discuss the new theoretical results of the stability and consistency of the ADI methods. The main idea is to apply a higherorder time discretization and combine it with the ADI methods. We also discuss the discretization and splitting methods for first-order and second-order evolution equations. The stability analysis is given for the ADI method for first-order time derivatives and for the LOD (locally one-dimensional) methods for second-order time derivatives. The higher-order methods are unconditionally stable. Some numerical experiments verify our results.

  13. An enhanced FIVER method for multi-material flow problems with second-order convergence rate

    Main, Alex; Zeng, Xianyi; Avery, Philip; Farhat, Charbel


    The finite volume (FV) method with exact two-material Riemann problems (FIVER) is an Eulerian computational method for the solution of multi-material flow problems. It is robust in the presence of large density jumps at the fluid-fluid interfaces, and the presence of large structural motions, deformations, and even topological changes at the fluid-structure interfaces. To achieve simplicity in implementation, it approximates each material interface by a surrogate surface which conforms to the control volume boundaries. Unfortunately, this approximation introduces a first-order error of the geometric type in the solution process. In this paper, it is first shown that this error causes the original version of FIVER to be inconsistent in the neighborhood of material interfaces and degrades its global order of spatial accuracy. Then, an enhanced version of FIVER is presented to rectify this issue, restore consistency, and achieve for smooth problems the desired global convergence rate. To this effect, the original definition of a surrogate material interface is retained because of its attractive simplicity. However, the solution at this interface of a two-material Riemann problem is enhanced with a simple reconstruction procedure based on interpolation and extrapolation. Next, the extrapolation component of this procedure is equipped with a limiter in order to achieve nonlinear stability for non-smooth problems. In the one-dimensional inviscid setting, the resulting FIVER method is also shown to be total variation bounded. Focusing on the context of a second-order FV semi-discretization, the nonlinear stability and second-order global convergence rate of this enhanced FIVER method are illustrated for several model multi-fluid and fluid-structure interaction problems. The potential of this computational method for complex multi-material flow problems is also demonstrated with the simulation of the collapse of an air bubble submerged in water and the comparison of the

  14. A comparison of small-field tissue phantom ratio data generation methods for an Elekta Agility 6 MV photon beam.

    Richmond, Neil; Brackenridge, Robert


    Tissue-phantom ratios (TPRs) are a common dosimetric quantity used to describe the change in dose with depth in tissue. These can be challenging and time consuming to measure. The conversion of percentage depth dose (PDD) data using standard formulae is widely employed as an alternative method in generating TPR. However, the applicability of these formulae for small fields has been questioned in the literature. Functional representation has also been proposed for small-field TPR production. This article compares measured TPR data for small 6 MV photon fields against that generated by conversion of PDD using standard formulae to assess the efficacy of the conversion data. By functionally fitting the measured TPR data for square fields greater than 4cm in length, the TPR curves for smaller fields are generated and compared with measurements. TPRs and PDDs were measured in a water tank for a range of square field sizes. The PDDs were converted to TPRs using standard formulae. TPRs for fields of 4 × 4cm(2) and larger were used to create functional fits. The parameterization coefficients were used to construct extrapolated TPR curves for 1 × 1 cm(2), 2 × 2-cm(2), and 3 × 3-cm(2) fields. The TPR data generated using standard formulae were in excellent agreement with direct TPR measurements. The TPR data for 1 × 1-cm(2), 2 × 2-cm(2), and 3 × 3-cm(2) fields created by extrapolation of the larger field functional fits gave inaccurate initial results. The corresponding mean differences for the 3 fields were 4.0%, 2.0%, and 0.9%. Generation of TPR data using a standard PDD-conversion methodology has been shown to give good agreement with our directly measured data for small fields. However, extrapolation of TPR data using the functional fit to fields of 4 × 4cm(2) or larger resulted in generation of TPR curves that did not compare well with the measured data.

  15. Scale Effects in Laboratory and Pilot-Plant Reactors for Trickle-Flow Processes Les conséquences de l'extrapolation appliquée aux procédés à écoulement ruisselant réalisés en laboratoire et dans les réacteurs des unités-pilotes

    Sie S. T.


    carry out meaningful process research on hydrotreating processes on the scale of micro-reactors. Les études et mises au point effectuées en laboratoire sont nécessairement effectuées à plus petite échelle que les réalisations commerciales. Dans le cas de la mise au point et de la commercialisation de la technologie d'un procédé nouveau, il faudra traduire les résultats obtenus en laboratoire pour la technologie envisagée à l'échelle commerciale; le problème est donc l'extrapolation vers le haut. Cependant, bien souvent, la technologie commerciale, pour ce qui touche au type de réacteur, est plus ou moins bien définie et les études de laboratoire s'attachent à produire des données permettant de prévoir le comportement qu'auront dans ce réacteur des catalyseurs nouveaux, de matières premières de substitution, etc. Dans bien des cas, étant donné la complexité de la composition de la matière première et la cinétique de réaction, il est impossible de mener la prévision en s'appuyant sur les données cinétiques et les modèles informatiques, de sorte qu'il n'y a pas d'autre solution que la simulation du réacteur commercial à l'échelle du laboratoire; le problème est donc l'extrapolation vers le bas. Du point de vue de l'efficacité des études de recherche et développement, pour les expériences en laboratoire, l'échelle devra être aussi petite que possible sans nuire à la signification des résultats. Le présent article examine certains problèmes liés à l'extrapolation vers le bas d'un réacteur à écoulement ruisselant telle qu'elle est appliquée dans les procédés d'hydrotraitement à des réacteurs de laboratoire de tailles différentes cinétiquement équivalents. Deux aspects principaux relatifs à des inégalités de dynamique des fluides résultant de différences d'échelle sont décrits plus en détail, i. e. les écarts par rapport à un écoulement idéal donnant lieu à un effet bouchon et au mouillage ou à l

  16. An Embedded Ghost-Fluid Method for Compressible Flow in Complex Geometry

    Al-Marouf, M.


    We present an embedded ghost-fluid method for numerical solutions of the compressible Navier Stokes (CNS) equations in arbitrary complex domains. The PDE multidimensional extrapolation approach of Aslam [1] is used to reconstruct the solution in the ghost-fluid regions and impose boundary conditions at the fluid-solid interface. The CNS equations are numerically solved by the second order multidimensional upwind method of Colella [2] and Saltzman [3]. Block-structured adaptive mesh refinement implemented under the Chombo framework is utilized to reduce the computational cost while keeping high-resolution mesh around the embedded boundary and regions of high gradient solutions. Numerical examples with different Reynolds numbers for low and high Mach number flow will be presented. We compare our simulation results with other reported experimental and computational results. The significance and advantages of our implementation, which revolve around balancing between the solution accuracy and implementation difficulties, are briefly discussed as well. © 2016 Trans Tech Publications.

  17. Scaled first-order methods for a class of large-scale constrained least square problems

    Coli, Vanna Lisa; Ruggiero, Valeria; Zanni, Luca


    Typical applications in signal and image processing often require the numerical solution of large-scale linear least squares problems with simple constraints, related to an m × n nonnegative matrix A, m « n. When the size of A is such that the matrix is not available in memory and only the operators of the matrix-vector products involving A and AT can be computed, forward-backward methods combined with suitable accelerating techniques are very effective; in particular, the gradient projection methods can be improved by suitable step-length rules or by an extrapolation/inertial step. In this work, we propose a further acceleration technique for both schemes, based on the use of variable metrics tailored for the considered problems. The numerical effectiveness of the proposed approach is evaluated on randomly generated test problems and real data arising from a problem of fibre orientation estimation in diffusion MRI.

  18. Highly efficient H 1-Galerkin mixed finite element method (MFEM) for parabolic integro-differential equation

    石东洋; 廖歆; 唐启立


    A highly effcient H 1-Galerkin mixed finite element method (MFEM) is presented with linear triangular element for the parabolic integro-differential equation. Firstly, some new results about the integral estimation and asymptotic expansions are studied. Then, the superconvergence of order O(h2) for both the original variable u in H1(Ω) norm and the flux p=∇u in H(div,Ω) norm is derived through the interpolation post processing technique. Furthermore, with the help of the asymptotic expansions and a suitable auxiliary problem, the extrapolation solutions with accuracy O(h3) are obtained for the above two variables. Finally, some numerical results are provided to confirm validity of the theoretical analysis and excellent performance of the proposed method.

  19. Ochratoxin A kinetics: a review of analytical methods and studies in rat model.

    Vettorazzi, A; González-Peñas, E; de Cerain, A López


    Ochratoxin A (OTA) is a thermostable mycotoxin that contaminates a great variety of foodstuffs. It is nephrotoxic in all of the mammalian species tested, the pig being the most sensitive one; among rodents, rats are the most susceptible to OTA carcinogenicity. Kinetics, by studying the absorption, distribution, metabolism and excretion of xenobiotics, is an important tool in the extrapolation of animal toxicity data for human risk assessment. The most important kinetic studies performed with OTA in rats are reviewed, together with the different methods used for OTA quantification in biological matrices. Twelve studies in Wistar, Sprague-Dawley or F344 rats, using radiolabeled OTA or TLC, HPLC-FLD or LC/MS have been summarized. Very often methods validated for food have been directly applied to tissues. Strain, sex and age differences have been detected but the interpretation is difficult due to the different experimental conditions, and the connection of the several factors that may account for these differences.

  20. Discovery of pyridine-based agrochemicals by using Intermediate Derivatization Methods.

    Guan, Ai-Ying; Liu, Chang-Ling; Sun, Xu-Feng; Xie, Yong; Wang, Ming-An


    Pyridine-based compounds have been playing a crucial role as agrochemicals or pesticides including fungicides, insecticides/acaricides and herbicides, etc. Since most of the agrochemicals listed in the Pesticide Manual were discovered through screening programs that relied on trial-and-error testing and new agrochemical discovery is not benefiting as much from the in silico new chemical compound identification/discovery techniques used in pharmaceutical research, it has become more important to find new methods to enhance the efficiency of discovering novel lead compounds in the agrochemical field to shorten the time of research phases in order to meet changing market requirements. In this review, we selected 18 representative known agrochemicals containing a pyridine moiety and extrapolate their discovery from the perspective of Intermediate Derivatization Methods in the hope that this approach will have greater appeal to researchers engaged in the discovery of agrochemicals and/or pharmaceuticals.