WorldWideScience

Sample records for tactile information detroit

  1. Footwear discrimination using dynamic tactile information

    DEFF Research Database (Denmark)

    Drimus, Alin; Mikov, Vedran

    2017-01-01

    Abstract: This paper shows that it is possible to differentiate among various type of footwear solely by using highly dimensional pressure information provided by a sensorised insole. In order to achieve this, a person equipped with two sensorised insoles streaming real-time tactile data to a com......Abstract: This paper shows that it is possible to differentiate among various type of footwear solely by using highly dimensional pressure information provided by a sensorised insole. In order to achieve this, a person equipped with two sensorised insoles streaming real-time tactile data...... to a computer performs normal walking patterns. The sampled data is further transformed and reduced to sets of time series which are used for the classification of footwear. The pressure sensor is formed as a footwear inlay and is based on piezoresistive rubber having 1024 tactile cells providing normal...... pressure information in the form of a tactile image. The data is transmitted in realtime wirelessly at 30 fps from two such sensors. The online classification is using the dynamic time warping distances for different extracted features to assess the most similar type of footwear based on time series...

  2. Acoustic Tactile Representation of Visual Information

    Science.gov (United States)

    Silva, Pubudu Madhawa

    Our goal is to explore the use of hearing and touch to convey graphical and pictorial information to visually impaired people. Our focus is on dynamic, interactive display of visual information using existing, widely available devices, such as smart phones and tablets with touch sensitive screens. We propose a new approach for acoustic-tactile representation of visual signals that can be implemented on a touch screen and allows the user to actively explore a two-dimensional layout consisting of one or more objects with a finger or a stylus while listening to auditory feedback via stereo headphones. The proposed approach is acoustic-tactile because sound is used as the primary source of information for object localization and identification, while touch is used for pointing and kinesthetic feedback. A static overlay of raised-dot tactile patterns can also be added. A key distinguishing feature of the proposed approach is the use of spatial sound (directional and distance cues) to facilitate the active exploration of the layout. We consider a variety of configurations for acoustic-tactile rendering of object size, shape, identity, and location, as well as for the overall perception of simple layouts and scenes. While our primary goal is to explore the fundamental capabilities and limitations of representing visual information in acoustic-tactile form, we also consider a number of relatively simple configurations that can be tied to specific applications. In particular, we consider a simple scene layout consisting of objects in a linear arrangement, each with a distinct tapping sound, which we compare to a ''virtual cane.'' We will also present a configuration that can convey a ''Venn diagram.'' We present systematic subjective experiments to evaluate the effectiveness of the proposed display for shape perception, object identification and localization, and 2-D layout perception, as well as the applications. Our experiments were conducted with visually blocked

  3. Kinesthetic information facilitates saccades towards proprioceptive-tactile targets.

    Science.gov (United States)

    Voudouris, Dimitris; Goettker, Alexander; Mueller, Stefanie; Fiehler, Katja

    2016-05-01

    Saccades to somatosensory targets have longer latencies and are less accurate and precise than saccades to visual targets. Here we examined how different somatosensory information influences the planning and control of saccadic eye movements. Participants fixated a central cross and initiated a saccade as fast as possible in response to a tactile stimulus that was presented to either the index or the middle fingertip of their unseen left hand. In a static condition, the hand remained at a target location for the entire block of trials and the stimulus was presented at a fixed time after an auditory tone. Therefore, the target location was derived only from proprioceptive and tactile information. In a moving condition, the hand was first actively moved to the same target location and the stimulus was then presented immediately. Thus, in the moving condition additional kinesthetic information about the target location was available. We found shorter saccade latencies in the moving compared to the static condition, but no differences in accuracy or precision of saccadic endpoints. In a second experiment, we introduced variable delays after the auditory tone (static condition) or after the end of the hand movement (moving condition) in order to reduce the predictability of the moment of the stimulation and to allow more time to process the kinesthetic information. Again, we found shorter latencies in the moving compared to the static condition but no improvement in saccade accuracy or precision. In a third experiment, we showed that the shorter saccade latencies in the moving condition cannot be explained by the temporal proximity between the relevant event (auditory tone or end of hand movement) and the moment of the stimulation. Our findings suggest that kinesthetic information facilitates planning, but not control, of saccadic eye movements to proprioceptive-tactile targets. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Effects of visual information regarding tactile stimulation on the somatosensory cortical activation: a functional MRI study.

    Science.gov (United States)

    Kwon, Hyeok Gyu; Jang, Sung Ho; Lee, Mi Young

    2017-07-01

    Many studies have investigated the evidence for tactile and visual interactive responses to activation of various brain regions. However, few studies have reported on the effects of visuo-tactile multisensory integration on the amount of brain activation on the somatosensory cortical regions. The aim of this study was to examine whether coincidental information obtained by tactile stimulation can affect the somatosensory cortical activation using functional MRI. Ten right-handed healthy subjects were recruited for this study. Two tasks (tactile stimulation and visuotactile stimulation) were performed using a block paradigm during fMRI scanning. In the tactile stimulation task, in subjects with eyes closed, tactile stimulation was applied on the dorsum of the right hand, corresponding to the proximal to distal directions, using a rubber brush. In the visuotactile stimulation task, tactile stimulation was applied to observe the attached mirror in the MRI chamber reflecting their hands being touched with the brush. In the result of SPM group analysis, we found brain activation on the somatosensory cortical area. Tactile stimulation task induced brain activations in the left primary sensory-motor cortex (SM1) and secondary somatosensory cortex (S2). In the visuo-tactile stimulation task, brain activations were observed in the both SM1, both S2, and right posterior parietal cortex. In all tasks, the peak activation was detected in the contralateral SM1. We examined the effects of visuo-tactile multisensory integration on the SM1 and found that visual information during tactile stimulation could enhance activations on SM1 compared to the tactile unisensory stimulation.

  5. Effects of visual information regarding tactile stimulation on the somatosensory cortical activation: a functional MRI study

    Directory of Open Access Journals (Sweden)

    Hyeok Gyu Kwon

    2017-01-01

    Full Text Available Many studies have investigated the evidence for tactile and visual interactive responses to activation of various brain regions. However, few studies have reported on the effects of visuo-tactile multisensory integration on the amount of brain activation on the somatosensory cortical regions. The aim of this study was to examine whether coincidental information obtained by tactile stimulation can affect the somatosensory cortical activation using functional MRI. Ten right-handed healthy subjects were recruited for this study. Two tasks (tactile stimulation and visuotactile stimulation were performed using a block paradigm during fMRI scanning. In the tactile stimulation task, in subjects with eyes closed, tactile stimulation was applied on the dorsum of the right hand, corresponding to the proximal to distal directions, using a rubber brush. In the visuotactile stimulation task, tactile stimulation was applied to observe the attached mirror in the MRI chamber reflecting their hands being touched with the brush. In the result of SPM group analysis, we found brain activation on the somatosensory cortical area. Tactile stimulation task induced brain activations in the left primary sensory-motor cortex (SM1 and secondary somatosensory cortex (S2. In the visuo-tactile stimulation task, brain activations were observed in the both SM1, both S2, and right posterior parietal cortex. In all tasks, the peak activation was detected in the contralateral SM1. We examined the effects of visuo-tactile multisensory integration on the SM1 and found that visual information during tactile stimulation could enhance activations on SM1 compared to the tactile unisensory stimulation.

  6. Spatiotemporal integration of tactile information in human somatosensory cortex

    Directory of Open Access Journals (Sweden)

    Zumer Johanna M

    2007-03-01

    Full Text Available Abstract Background Our goal was to examine the spatiotemporal integration of tactile information in the hand representation of human primary somatosensory cortex (anterior parietal somatosensory areas 3b and 1, secondary somatosensory cortex (S2, and the parietal ventral area (PV, using high-resolution whole-head magnetoencephalography (MEG. To examine representational overlap and adaptation in bilateral somatosensory cortices, we used an oddball paradigm to characterize the representation of the index finger (D2; deviant stimulus as a function of the location of the standard stimulus in both right- and left-handed subjects. Results We found that responses to deviant stimuli presented in the context of standard stimuli with an interstimulus interval (ISI of 0.33s were significantly and bilaterally attenuated compared to deviant stimulation alone in S2/PV, but not in anterior parietal cortex. This attenuation was dependent upon the distance between the deviant and standard stimuli: greater attenuation was found when the standard was immediately adjacent to the deviant (D3 and D2 respectively, with attenuation decreasing for non-adjacent fingers (D4 and opposite D2. We also found that cutaneous mechanical stimulation consistently elicited not only a strong early contralateral cortical response but also a weak ipsilateral response in anterior parietal cortex. This ipsilateral response appeared an average of 10.7 ± 6.1 ms later than the early contralateral response. In addition, no hemispheric differences either in response amplitude, response latencies or oddball responses were found, independent of handedness. Conclusion Our findings are consistent with the large receptive fields and long neuronal recovery cycles that have been described in S2/PV, and suggest that this expression of spatiotemporal integration underlies the complex functions associated with this region. The early ipsilateral response suggests that anterior parietal fields also

  7. Tactile graphic: the possible form of information and inclusion of the visually impaired

    Directory of Open Access Journals (Sweden)

    Leia de Andrade

    2011-07-01

    Full Text Available Although the graphics are present in the textbooks, these are not so accessible to the blind. In this case you need to generate them in high relief to be allowed to read through the tactile sense. For research in the development of tactile graphics with students in 5th grade the urban perimeter of Maringá (PR, drew on the Piaget’s theory, who directed the evaluation of the cognitive development of students in the tasks, and also semiology graphics proposed by Bertin, who helped design treatment information for this production. In order to show the importance of tactile graphics for visually impaired students, which are inserted into the regular classroom, it was evaluated the techniques of construction and production of tactile graphic, and the steps of reading material. The results show that the graphs constructed instigate exploration, as much as it was a favor to tactile perception. It is necessary to respect the "living space" of the chart, in the case indicated by the distance between the hands. Regarding reading, the difficulties encountered were the identification of form, the notion of scale and coordinate system.

  8. Evaluation of Circle Diameter by Distributed Tactile Information in Active Tracing

    Directory of Open Access Journals (Sweden)

    Hiroyuki Nakamoto

    2013-01-01

    Full Text Available Active touch with voluntary movement on the surface of an object is important for human to obtain the local and detailed features on it. In addition, the active touch is considered to enhance the human spatial resolution. In order to improve dexterity performance of multifinger robotic hands, it is necessary to study an active touch method for robotic hands. In this paper, first, we define four requirements of a tactile sensor for active touch and design a distributed tactile sensor model, which can measure a distribution of compressive deformation. Second, we suggest a measurement process with the sensor model, a synthesis method of distributed deformations. In the experiments, a five-finger robotic hand with tactile sensors traces on the surface of cylindrical objects and evaluates the diameters. We confirm that the hand can obtain more information of the diameters by tracing the finger.

  9. The Advantage of Encoding Tactile Information for a Woman with Congenital Deaf-Blindness

    NARCIS (Netherlands)

    Janssen, M.J.; Nota, S.J.; Eling, P.A.T.M.; Ruijssenaars, A.J.J.M.

    2007-01-01

    Parents, caregivers and teachers feel a strong need to learn more about tactile information processing of deaf-blind persons, primarily in order to be able to offer adequate intervention strategies in their daily interactions and activities. The present study investigates perception and memory of

  10. A Review of Smart Materials in Tactile Actuators for Information Delivery

    Directory of Open Access Journals (Sweden)

    Xin Xie

    2017-12-01

    Full Text Available As the largest organ in the human body, the skin provides the important sensory channel for humans to receive external stimulations based on touch. By the information perceived through touch, people can feel and guess the properties of objects, like weight, temperature, textures, and motion, etc. In fact, those properties are nerve stimuli to our brain received by different kinds of receptors in the skin. Mechanical, electrical, and thermal stimuli can stimulate these receptors and cause different information to be conveyed through the nerves. Technologies for actuators to provide mechanical, electrical or thermal stimuli have been developed. These include static or vibrational actuation, electrostatic stimulation, focused ultrasound, and more. Smart materials, such as piezoelectric materials, carbon nanotubes, and shape memory alloys, play important roles in providing actuation for tactile sensation. This paper aims to review the background biological knowledge of human tactile sensing, to give an understanding of how we sense and interact with the world through the sense of touch, as well as the conventional and state-of-the-art technologies of tactile actuators for tactile feedback delivery.

  11. Gestalt grouping effects on tactile information processing: when touching hands override spatial proximity.

    Science.gov (United States)

    Frings, Christian; Spence, Charles

    2013-04-01

    Using a tactile variant of the negative-priming paradigm, we analyzed the influence of Gestalt grouping on the ability of participants to ignore distracting tactile information. The distance between participants' hands, to which the target and distractor stimuli were simultaneously delivered, was varied (near/touching hands vs. hands far apart). In addition, the influence of touching hands was controlled, as participants wore gloves and their hands were blocked from vision by a cover. The magnitude of the tactile negative-priming effect was modulated by the interaction between hand separation and whether or not gloves were worn. When the hands were touching, negative priming emerged only while wearing gloves that prevented direct skin-to-skin contact. In contrast, when the separation between the participants' hands was larger, negative priming emerged only when gloves were not worn. This pattern of results is interpreted in terms of the competing influences of two interacting Gestalt principles--namely, connectedness and proximity--on the processing of tactile distractors.

  12. Sustained maintenance of somatotopic information in brain regions recruited by tactile working memory.

    Science.gov (United States)

    Katus, Tobias; Müller, Matthias M; Eimer, Martin

    2015-01-28

    To adaptively guide ongoing behavior, representations in working memory (WM) often have to be modified in line with changing task demands. We used event-related potentials (ERPs) to demonstrate that tactile WM representations are stored in modality-specific cortical regions, that the goal-directed modulation of these representations is mediated through hemispheric-specific activation of somatosensory areas, and that the rehearsal of somatotopic coordinates in memory is accomplished by modality-specific spatial attention mechanisms. Participants encoded two tactile sample stimuli presented simultaneously to the left and right hands, before visual retro-cues indicated which of these stimuli had to be retained to be matched with a subsequent test stimulus on the same hand. Retro-cues triggered a sustained tactile contralateral delay activity component with a scalp topography over somatosensory cortex contralateral to the cued hand. Early somatosensory ERP components to task-irrelevant probe stimuli (that were presented after the retro-cues) and to subsequent test stimuli were enhanced when these stimuli appeared at the currently memorized location relative to other locations on the cued hand, demonstrating that a precise focus of spatial attention was established during the selective maintenance of tactile events in WM. These effects were observed regardless of whether participants performed the matching task with uncrossed or crossed hands, indicating that WM representations in this task were based on somatotopic rather than allocentric spatial coordinates. In conclusion, spatial rehearsal in tactile WM operates within somatotopically organized sensory brain areas that have been recruited for information storage. Copyright © 2015 Katus et al.

  13. Effect of Redundant Haptic Information on Task Performance During Visuo-Tactile Task Interruption and Recovery

    Directory of Open Access Journals (Sweden)

    Hee-Seung Moon

    2016-12-01

    Full Text Available Previous studies have revealed that interruption induces disruptive influences on the performance of cognitive tasks. While much research has focused on the use of multimodal channels to reduce the cost of interruption, few studies have utilized haptic information as more than an associative cue. In the present study, we utilized a multimodal task interruption scenario involving the simultaneous presentation of visual information and haptic stimuli in order to investigate how the combined stimuli affect performance on the primary task (cost of interruption. Participants were asked to perform a two-back visuo-tactile task, in which visual and haptic stimuli were presented simultaneously, which was interrupted by a secondary task that also utilized visual and haptic stimuli. Four experimental conditions were evaluated: (1 paired information (visual stimulus + paired haptic stimulus with interruption; (2 paired information without interruption; (3 non-paired information (visual stimulus + non-paired haptic stimulus with interruption; and (4 non-paired information without interruption. Our findings indicate that, within a visuo-tactile task environment, redundant haptic information may not only increase accuracy on the primary task but also reduce the cost of interruption in terms of accuracy. These results suggest a new way of understanding the task recovery process within a multimodal environment.

  14. A MEMS-based tactile sensor to study human digital touch: mechanical transduction of the tactile information and role of fingerprints

    Directory of Open Access Journals (Sweden)

    Scheibert J.

    2010-06-01

    Full Text Available We present recent results showing that human epidermal ridges (fingerprints could play a central role in fine texture discrimination tasks by spatially modulating the contact stress field between the fingertip and the substrate. Using an original biomimetic finger whose surface is patterned with parallel ridges, we demonstrate that the subsurface stress signals elicited by continuous rubbing of randomly textured substrates is dominated by fluctuations at a frequency defined by the inter-ridge distance divided by the rubbing velocity. In natural exploratory conditions, this frequency matches the best frequency of one type of mechanoreceptors, namely the Pacinian corpuscles, which are specifically involved in the tactile coding of fine textures. The use of white-noise patterned stimuli has alloowed us to extract, using a reverse-correlation analysis, the stimulus-signal response function associated with roughness modality. Its shape could provides spectral, spatial and directional selectivity to the digital tactile system. It offers a physiological basis for the recently proposed hypothesis of a dual-coding (spatio-temporal and vibratory of tactile information.

  15. Coding of information about tactile stimuli by neurones of the cuneate nucleus.

    Science.gov (United States)

    Douglas, P R; Ferrington, D G; Rowe, M

    1978-12-01

    1. The responses of cuneate neurones to controlled tactile stimulation of the foot pads were examined in unanaesthetized, decerebrate cats. The neurones were divided into three functional classes; one sensitive to steady tactile stimuli, and two dynamically sensitive classes which could be readily differentiated by their responsiveness to cutaneous vibration. Each class appeared to receive an exclusive input from only one of the three known groups of tactile receptors associated with the foot pads, namely the Pacinian corpuscles, the Merkel endings and the intradermal, encapsulated endings known as Krause or Meissner corpuscles. 2. Cuneate neurones responsive to steady indentation of the skin displayed approximately linear or sigmoidal stimulus-response relations over indentation ranges up to approximately 1.5--2 mm. Response variability at a fixed stimulus intensity was relatively low and showed little systematic change over the full range of the stimulus-response curves. 3. One class of dynamically sensitive cuneate neurones responded to cutaneous vibration over a range of approximately 5-80 Hz with maximal responsiveness around 30 Hz. The other class, the Pacinian neurones, responded over a range of approximately 80- greater than 600 Hz with maximal responsiveness at 200-400 Hz. The thresholds and combined band width of vibratory sensitivity of these populations were comparable with known subjective thresholds and range of cutaneous vibratory sensibility. 4. Responses of cuneate neurones were phase-locked to the vibratory stimulus suggesting that information about vibration frequency could be coded by the patterns of impulse activity. Quantitative measures indicated that maximal phase-locking occurred in responses to vibration frequencies of 10-50 Hz with a progressive decline at higher frequencies. Above 400 Hz, impulse activity occurred almost randomly throughout the vibratory stimulus cycle and therefore carried little further signal of vibratory frequency

  16. Fixing Detroit's Broken School System

    Science.gov (United States)

    Lake, Robin; Jochim, Ashley; DeArmond, Michael

    2015-01-01

    In January 2014, as part of a multicity study, researchers from the Center on Reinventing Public Education (CRPE) met with a dozen parents in Detroit to learn about their experiences with education in the city. Parents struggle to navigate the city's complex education marketplace. A lack of information, confusing paperwork, and transportation gaps…

  17. Multisensory teamwork: using a tactile or an auditory display to exchange gaze information improves performance in joint visual search.

    Science.gov (United States)

    Wahn, Basil; Schwandt, Jessika; Krüger, Matti; Crafa, Daina; Nunnendorf, Vanessa; König, Peter

    2016-06-01

    In joint tasks, adjusting to the actions of others is critical for success. For joint visual search tasks, research has shown that when search partners visually receive information about each other's gaze, they use this information to adjust to each other's actions, resulting in faster search performance. The present study used a visual, a tactile and an auditory display, respectively, to provide search partners with information about each other's gaze. Results showed that search partners performed faster when the gaze information was received via a tactile or auditory display in comparison to receiving it via a visual display or receiving no gaze information. Findings demonstrate the effectiveness of tactile and auditory displays for receiving task-relevant information in joint tasks and are applicable to circumstances in which little or no visual information is available or the visual modality is already taxed with a demanding task such as air-traffic control. Practitioner Summary: The present study demonstrates that tactile and auditory displays are effective for receiving information about actions of others in joint tasks. Findings are either applicable to circumstances in which little or no visual information is available or when the visual modality is already taxed with a demanding task.

  18. The development of system components to provide proprioceptive and tactile information to the human for future telepresence systems

    Science.gov (United States)

    Wright, Ammon K.

    1992-01-01

    System components are presented that are being implemented to augment teleoperated systems by providing both force and tactile information to the human operator. The concept proposed is the control of a manipulator to perform tasks; i.e., flight line maintenance and repair of combat aircraft or satellites while under the control of a human operator at a remote location to maintain mission effectiveness in a hostile environment. The human would control the motion of the manipulator via a master system with information from the remote site being fed back by direct stimulation of the humans sensory mechanisms or by graphic interpretation of displays. We are interested in providing the operator feedback of position, force, auditory, vision, and tactile information to aide in the human's cognitive ability to control the manipulator. This sensory information from the remote site would then be presented to the operator in such a manner as to enhance his performance while providing him a sense of being present at the remote location, this is known as telepresence. Also discussed is the research done by the Human Sensory Feedback (HSF) facility at the Armstrong Laboratory to provide tactile and proprioceptive feedback to the operator. The system components of this system includes tactile sensor and stimulators, dexterous robotic hands, and the control of positioning and operating industrial robots with exoskeletal mechanisms.

  19. How Do Batters Use Visual, Auditory, and Tactile Information about the Success of a Baseball Swing?

    Science.gov (United States)

    Gray, Rob

    2009-01-01

    Bat/ball contact produces visual (the ball leaving the bat), auditory (the "crack" of the bat), and tactile (bat vibration) feedback about the success of the swing. We used a batting simulation to investigate how college baseball players use visual, tactile, and auditory feedback. In Experiment 1, swing accuracy (i.e., the lateral separation…

  20. Modeling Metropolitan Detroit transit.

    Science.gov (United States)

    2010-10-01

    "The seven-county Southeast Michigan region, that encompasses the Detroit Metropolitan Area, : ranks fifth in population among top 25 regions in the nation. It also ranks among bottom five in : the transit service provided, measured in miles or hours...

  1. The integration of audio-tactile information is modulated by multimodal social interaction with physical contact in infancy.

    Science.gov (United States)

    Tanaka, Yukari; Kanakogi, Yasuhiro; Kawasaki, Masahiro; Myowa, Masako

    2017-12-09

    Interaction between caregivers and infants is multimodal in nature. To react interactively and smoothly to such multimodal signals, infants must integrate all these signals. However, few empirical infant studies have investigated how multimodal social interaction with physical contact facilitates multimodal integration, especially regarding audio - tactile (A-T) information. By using electroencephalogram (EEG) and event-related potentials (ERPs), the present study investigated how neural processing involved in A-T integration is modulated by tactile interaction. Seven- to 8-months-old infants heard one pseudoword both whilst being tickled (multimodal 'A-T' condition), and not being tickled (unimodal 'A' condition). Thereafter, their EEG was measured during the perception of the same words. Compared to the A condition, the A-T condition resulted in enhanced ERPs and higher beta-band activity within the left temporal regions, indicating neural processing of A-T integration. Additionally, theta-band activity within the middle frontal region was enhanced, which may reflect enhanced attention to social information. Furthermore, differential ERPs correlated with the degree of engagement in the tickling interaction. We provide neural evidence that the integration of A-T information in infants' brains is facilitated through tactile interaction with others. Such plastic changes in neural processing may promote harmonious social interaction and effective learning in infancy. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Between Denmark and Detroit

    DEFF Research Database (Denmark)

    Christensen, Lars K.

    2014-01-01

    In 1919, Ford Motor Company established its first assembly plant on the European mainland in Copenhagen, Denmark. Based on a Fordist productive model, including technology and materials from Detroit, cars were manufactured and exported to most of Northern Europe. It has been claimed that Ford also...

  3. Slip Prediction through Tactile Sensing

    Directory of Open Access Journals (Sweden)

    Somrak PETCHARTEE

    2008-04-01

    Full Text Available This paper introduces a new way to predict contact slip using a resistive tactile sensor. The prototype sensor can be used to provide intrinsic information relating to geometrical features situated on the surface of grasped objects. Information along the gripper finger surface is obtained with a measurement resolution dependant on the number of discrete tactile elements. The tactile sensor predicts the partial slip of a tactile surface by sensing micro vibrations in tangential forces which are caused by an expansion of the slip regions within the contact area. The location of the local slip is not specified but its occurrence can be predicted immediately following micro vibration detection. Predictive models have been used to develop a set of rules which predict the slip based on fluctuations in tactile signal data.

  4. Bodily illusions disrupt tactile sensations.

    Science.gov (United States)

    D'Amour, Sarah; Pritchett, Lisa M; Harris, Laurence R

    2015-02-01

    To accurately interpret tactile information, the brain needs to have an accurate representation of the body to which to refer the sensations. Despite this, body representation has only recently been incorporated into the study of tactile perception. Here, we investigate whether distortions of body representation affect tactile sensations. We perceptually altered the length of the arm and the width of the waist using a tendon vibration illusion and measured spatial acuity and sensitivity. Surprisingly, we found reduction in both tactile acuity and sensitivity thresholds when the arm or waist was perceptually altered, which indicates a general disruption of low-level tactile processing. We postulate that the disruptive changes correspond to the preliminary stage as the body representation starts to change and may give new insights into sensory processing in people with long-term or sudden abnormal body representation such as are found in eating disorders or following amputation.

  5. Tactile Modulation of Emotional Speech Samples

    Directory of Open Access Journals (Sweden)

    Katri Salminen

    2012-01-01

    Full Text Available Traditionally only speech communicates emotions via mobile phone. However, in daily communication the sense of touch mediates emotional information during conversation. The present aim was to study if tactile stimulation affects emotional ratings of speech when measured with scales of pleasantness, arousal, approachability, and dominance. In the Experiment 1 participants rated speech-only and speech-tactile stimuli. The tactile signal mimicked the amplitude changes of the speech. In the Experiment 2 the aim was to study whether the way the tactile signal was produced affected the ratings. The tactile signal either mimicked the amplitude changes of the speech sample in question, or the amplitude changes of another speech sample. Also, concurrent static vibration was included. The results showed that the speech-tactile stimuli were rated as more arousing and dominant than the speech-only stimuli. The speech-only stimuli were rated as more approachable than the speech-tactile stimuli, but only in the Experiment 1. Variations in tactile stimulation also affected the ratings. When the tactile stimulation was static vibration the speech-tactile stimuli were rated as more arousing than when the concurrent tactile stimulation was mimicking speech samples. The results suggest that tactile stimulation offers new ways of modulating and enriching the interpretation of speech.

  6. 75 FR 21191 - Special Local Regulation; Detroit APBA Gold Cup, Detroit River, Detroit, MI

    Science.gov (United States)

    2010-04-23

    ... Snowden, Prevention Department, Sector Detroit, Coast Guard; telephone (313) 568-9580, e-mail Joseph.H.Snowden@uscg.mil . If you have questions on viewing or submitting material to the docket, call Renee V... Joseph Snowden, Prevention Department, Sector Detroit, Coast Guard; telephone (313) 568-9580, e- mail...

  7. Tactile Aids

    Directory of Open Access Journals (Sweden)

    Mohtaramossadat Homayuni

    1996-04-01

    Full Text Available Tactile aids, which translate sound waves into vibrations that can be felt by the skin, have been used for decades by people with severe/profound hearing loss to enhance speech/language development and improve speechreading.The development of tactile aids dates from the efforts of Goults and his co-workers in the 1920s; Although The power supply was too voluminous and it was difficult to carry specially by children, it was too huge and heavy to be carried outside the laboratories and its application was restricted to the experimental usage. Nowadays great advances have been performed in producing this instrument and its numerous models is available in markets around the world.

  8. 75 FR 39448 - Special Local Regulation; Detroit APBA Gold Cup, Detroit River, Detroit, MI

    Science.gov (United States)

    2010-07-09

    ...-mail CDR Joseph Snowden, Prevention Department, Sector Detroit, Coast Guard; telephone (313) 568-9508, e- mail Joseph.H.Snowden@uscg.mil . If you have questions on viewing the docket, call Renee V...

  9. Implicit body representations and tactile spatial remapping.

    Science.gov (United States)

    Longo, Matthew R; Mancini, Flavia; Haggard, Patrick

    2015-09-01

    To perceive the location of a tactile stimulus in external space (external tactile localisation), information about the location of the stimulus on the skin surface (tactile localisation on the skin) must be combined with proprioceptive information about the spatial location of body parts (position sense)--a process often referred to as 'tactile spatial remapping'. Recent research has revealed that both of these component processes rely on highly distorted implicit body representations. For example, on the dorsal hand surface position sense relies on a squat, wide hand representation. In contrast, tactile localisation on the same skin surface shows large biases towards the knuckles. These distortions can be seen as behavioural 'signatures' of these respective perceptual processes. Here, we investigated the role of implicit body representation in tactile spatial remapping by investigating whether the distortions of each of the two component processes (tactile localisation and position sense) also appear when participants localise the external spatial location of touch. Our study reveals strong distortions characteristic of position sense (i.e., overestimation of distances across vs along the hand) in tactile spatial remapping. In contrast, distortions characteristic of tactile localisation on the skin (i.e., biases towards the knuckles) were not apparent in tactile spatial remapping. These results demonstrate that a common implicit hand representation underlies position sense and external tactile localisation. Furthermore, the present findings imply that tactile spatial remapping does not require mapping the same signals in a frame of reference centred on a specific body part. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Vibrobelt: Tactile Navigation Support for Cyclists

    NARCIS (Netherlands)

    Steltenpohl, H.; Bouwer, A.

    2013-01-01

    Tactile displays can be used without demanding the attention from the human visual system, which makes them attractive for use in wayfinding contexts, where visual attention should be directed at traffic and other information in the environment. To investigate the potential of tactile navigation for

  11. Representation of Simple Graphs in Virtual Tactile Space.

    Science.gov (United States)

    Wyatt, Harry J.; Hall, Elaine C.; Engber, Kimberly

    2000-01-01

    A project developed and evaluated an intermediate form of presentation that provides a virtual dynamic tactile display for use with computers that could complement static tactile displays of graphical material. The device is a two-dimensional extension of the tactile mouse and provides contour and slope information to the user. (Contains nine…

  12. The Next Generative Infrastructure for Detroit

    Directory of Open Access Journals (Sweden)

    Constance Bodurow

    2013-03-01

    Full Text Available Detroit has a wealth of empty space, though little intelligence or understanding of it. There is a global, morbid fascination with Detroit’s emptiness. The media and design disciplines have mythologized it in imagery, and obsessively mapped and quantified it. Vacancy perpetuates entrenched social, economic and environmental disparities and inequities. Yet, in the midst of formal ‘right sizing’ and informal urban agricultural initiatives, a constructive civic dialogue about the role of vacancy in the future of the city has yet to begin. Our transdisciplinary design research lab wishes to prompt the dialogue. A new urban geography and ecosystem are required. Vacancy is a new infrastructure for the city. Vacancy, as it manifests, in land, buildings and infrastructure, is generative. We recommend productive, temporal uses for vacancy, to generate the next urban form of the city. In the same manner that grid and infrastructure become generators of urban form and use, vacancy can guide future urban form in Detroit.We define infrastructure networks as the systemic and complex overlay required to support a city and its associated urbanized region. Connections occur largely through blue|green|gray+white infrastructure networks that span geographic, ecological and political boundaries. Vacancy emerges as the ubiquitous infrastructure in each of these typologies.This paper describes aspects of our current project to create sustainable community and the central role which vacancy plays in achieving that goal. In one neighborhood of Detroit, we propose interventions for energy, density, and nature, envisioning an alternative, equitable, and sustainable ecosystem for the city.

  13. Novel Tactile Sensor Technology and Smart Tactile Sensing Systems: A Review.

    Science.gov (United States)

    Zou, Liang; Ge, Chang; Wang, Z Jane; Cretu, Edmond; Li, Xiaoou

    2017-11-17

    During the last decades, smart tactile sensing systems based on different sensing techniques have been developed due to their high potential in industry and biomedical engineering. However, smart tactile sensing technologies and systems are still in their infancy, as many technological and system issues remain unresolved and require strong interdisciplinary efforts to address them. This paper provides an overview of smart tactile sensing systems, with a focus on signal processing technologies used to interpret the measured information from tactile sensors and/or sensors for other sensory modalities. The tactile sensing transduction and principles, fabrication and structures are also discussed with their merits and demerits. Finally, the challenges that tactile sensing technology needs to overcome are highlighted.

  14. Novel Tactile Sensor Technology and Smart Tactile Sensing Systems: A Review

    Directory of Open Access Journals (Sweden)

    Liang Zou

    2017-11-01

    Full Text Available During the last decades, smart tactile sensing systems based on different sensing techniques have been developed due to their high potential in industry and biomedical engineering. However, smart tactile sensing technologies and systems are still in their infancy, as many technological and system issues remain unresolved and require strong interdisciplinary efforts to address them. This paper provides an overview of smart tactile sensing systems, with a focus on signal processing technologies used to interpret the measured information from tactile sensors and/or sensors for other sensory modalities. The tactile sensing transduction and principles, fabrication and structures are also discussed with their merits and demerits. Finally, the challenges that tactile sensing technology needs to overcome are highlighted.

  15. TACTILE SENSING FOR OBJECT IDENTIFICATION

    DEFF Research Database (Denmark)

    Drimus, Alin; Marian, Nicolae; Bilberg, Arne

    2009-01-01

    in unstructured environments, tactile sensing can provide more than valuable to complementary vision information about mechanical properties such as recognition and characterization, force, pressure, torque, compliance, friction, and mass as well as object shape, texture, position and pose. In this paper, we...... described the working principles of a few types of tactile sensing cells, focusing on the piezoresistive materials. Starting from a set of requirements for developing a high resolution flexible array sensor we have investigated if CSA pressure sensitive conductive rubber could be a proper candidate and can...

  16. 75 FR 27641 - Safety Zone; Marathon Oil Refinery Construction, Rouge River, Detroit, MI

    Science.gov (United States)

    2010-05-18

    ... INFORMATION CONTACT: If you have questions on this temporary rule, call or e-mail CDR Joseph Snowden, Prevention Department, Sector Detroit, Coast Guard; telephone (313) 568-9508, e- mail Joseph.H.Snowden@uscg...

  17. Detroit Exposure and Aerosol Research Study

    Data.gov (United States)

    U.S. Environmental Protection Agency — The DEARS represents a multipollutant spatial characterization of six neighborhoods and their residents in and around Detroit, Michigan. Personal, residential...

  18. Whisking Kinematics Enables Object Localization in Head-Centered Coordinates Based on Tactile Information from a Single Vibrissa.

    Science.gov (United States)

    Yang, Anne E T; Hartmann, Mitra J Z

    2016-01-01

    During active tactile exploration with their whiskers (vibrissae), rodents can rapidly orient to an object even though there are very few proprioceptors in the whisker muscles. Thus a long-standing question in the study of the vibrissal system is how the rat can localize an object in head-centered coordinates without muscle-based proprioception. We used a three-dimensional model of whisker bending to simulate whisking motions against a peg to investigate the possibility that the 3D mechanics of contact from a single whisker are sufficient for localization in head-centered coordinates. Results show that for nearly all whiskers in the array, purely tactile signals at the whisker base - as would be measured by mechanoreceptors, in whisker-centered coordinates - could be used to determine the location of a vertical peg in head-centered coordinates. Both the "roll" and the "elevation" components of whisking kinematics contribute to the uniqueness and resolution of the localization. These results offer an explanation for a behavioral study showing that rats can more accurately determine the horizontal angle of an object if one column, rather than one row, of whiskers is spared.

  19. Whisking kinematics enables object localization in head-centered coordinates based on tactile information from a single vibrissa

    Directory of Open Access Journals (Sweden)

    Anne En-Tzu Yang

    2016-07-01

    Full Text Available During active tactile exploration with their whiskers (vibrissae, rodents can rapidly orient to an object even though there are very few proprioceptors in the whisker muscles. Thus a long-standing question in the study of the vibrissal system is how the rat can localize an object in head-centered coordinates without muscle-based proprioception. We used a three-dimensional model of whisker bending to simulate whisking motions against a peg to investigate the possibility that the 3D mechanics of contact from a single whisker are sufficient for localization in head-centered coordinates. Results show that, for nearly all whiskers in the array, purely tactile signals at the whisker base – as would be measured by mechanoreceptors, in whisker-centered coordinates – could be used to determine the location of a vertical peg in head-centered coordinates. Both the roll and the elevation components of whisking kinematics contribute to the uniqueness and resolution of the localization. These results offer an explanation for a behavioral study showing that rats can more accurately determine the horizontal angle of an object if one column, rather than one row, of whiskers is spared.

  20. Development of flexible array tactile sensors

    DEFF Research Database (Denmark)

    Drimus, Alin; Marian, Nicolae; Bilberg, Arne

    2010-01-01

    In this paper we describe the development of an array tactile sensor for use in robotic grippers based on a flexible piezoresistive material. We start by comparing different cell structures in terms of output characteristics and we construct an array of cells in a row and columns layout. A real...... time data acquisition system scans all the cells and converts electrical resistance to tactile pressure maps. We validate that this information can be used to improve grasping and perform object recognition. Key words: piezoresistivity, tactile, sensor, pressure, robotics...

  1. Micro-needle electro-tactile display.

    Science.gov (United States)

    Tezuka, Mayuko; Kitamura, Norihide; Miki, Norihisa

    2015-08-01

    Haptic feedback is strongly demanded for high-precision robot-assisted surgery and teleoperation. The haptic feedback consists of force and tactile feedback, however tactile feedback has been little studied and the size and weight of the system poses challenges for practical applications. In this paper we propose a sheet-type wearable electro-tactile display which provides tactile sensations to the user as the feedback at a low voltage and power consumption. The display possesses needle-shaped electrodes, which can penetrate through the high-impedance stratum corneum. We developed the fabrication process and, as the first step, we investigated the tactile sensation that can be created to the fingertip by the display. Rough and smooth surfaces were successfully presented to the user. Then, we characterized the tactile display when used on the forearm, in particular, with respect to the spatial resolution. These tactile displays can be used to inform the user of the surface property of the parts of interest, such as tumor tissues, and to guide him in the manipulation of surgery robots.

  2. Restoring Detroit's Street Lighting System

    Energy Technology Data Exchange (ETDEWEB)

    Kinzey, Bruce [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-09-30

    The City of Detroit is in the midst of a comprehensive restoration of its street lighting system that includes transitioning the existing HPS sources to LED. This report provides an objective review of the circumstances surrounding the system restoration, the processes undertaken and decisions made, and the results so far — and contains useful information about issues that arise during large-scale LED street lighting projects.

  3. An overview of tactile sensing

    Science.gov (United States)

    Agrawal, Rajeev; Jain, Ramesh

    1986-01-01

    Existing or proposed tactile sensors are reviewed. General considerations involved in tactile sensing and various performance criteria are discussed. Typical specifications to be expected from the sensors are also described. A representative set of present day tactile sensors is studied. Finally, some of the proposed recognition systems using tactile sensing are described.

  4. Vaginal film for prevention of HIV: using visual and tactile evaluations among potential users to inform product design.

    Science.gov (United States)

    Guthrie, K M; Rohan, L; Rosen, R K; Vargas, S E; Shaw, J G; Katz, D; Kojic, E M; Ham, A S; Friend, D; Buckheit, K W; Buckheit, R W

    2018-03-01

    Topical prevention of HIV and other STIs is a global health priority. To provide options for users, developers have worked to design safe, effective and acceptable vaginal dissolving film formulations. We aimed to characterize user experiences of vaginal film size, texture and color, and their role in product-elicited sensory perceptions (i.e. perceptibility), acceptability and willingness to use. In the context of a user-centered product evaluation study, we elicited users' 'first impressions' of various vaginal film formulation designs via visual and tactile prototype inspection during a qualitative user evaluation interview. Twenty-four women evaluated prototypes. Participants considered size and texture to be important for easy insertion. Color was more important following dissolution than prior to insertion. When asked to combine and balance all properties to arrive at an ideal film, previously stated priorities for individual characteristics sometimes shifted, with the salience of some individual characteristics lessening when multiple characteristics were weighted in combination. While first impressions alone may not drive product uptake, users' willingness to initially try a product is likely impacted by such impressions. Developers should consider potential users' experiences and preferences in vaginal film design. This user-focused approach is useful for characterizing user sensory perceptions and experiences relevant to early design of prevention technologies.

  5. Touch sensitive electrorheological fluid based tactile display

    Science.gov (United States)

    Liu, Yanju; Davidson, Rob; Taylor, Paul

    2005-12-01

    A tactile display is programmable device whose controlled surface is intended to be investigated by human touch. It has a great number of potential applications in the field of virtual reality and elsewhere. In this research, a 5 × 5 tactile display array including electrorheological (ER) fluid has been developed and investigated. Force responses of the tactile display array have been measured while a probe was moved across the upper surface. The purpose of this was to simulate the action of touch performed by human finger. Experimental results show that the sensed surface information could be controlled effectively by adjusting the voltage activation pattern imposed on the tactels. The performance of the tactile display is durable and repeatable. The touch sensitivity of this ER fluid based tactile display array has also been investigated in this research. The results show that it is possible to sense the touching force normal to the display's surface by monitoring the change of current passing through the ER fluid. These encouraging results are helpful for constructing a new type of tactile display based on ER fluid which can act as both sensor and actuator at the same time.

  6. 75 FR 17106 - Safety Zone; Red Bull Air Race, Detroit River, Detroit, MI

    Science.gov (United States)

    2010-04-05

    ... Snowden, Prevention Department, Sector Detroit, Coast Guard; telephone (313) 568-9580, e-mail Joseph.H.Snowden@uscg.mil . If you have questions on viewing or submitting material to the docket, call Renee V... compliance, please contact CDR Joseph Snowden, Prevention Department, Sector Detroit, Coast Guard; telephone...

  7. Robotic Tactile Sensing Technologies and System

    CERN Document Server

    Dahiya, Ravinder S

    2013-01-01

    Future robots are expected to work closely and interact safely with real-world objects and humans alike. Sense of touch is important in this context, as it helps estimate properties such as shape, texture, hardness, material type and many more; provides action related information, such as slip detection; and helps carrying out actions such as rolling an object between fingers without dropping it. This book presents an in-depth description of the solutions available for gathering tactile data, obtaining aforementioned tactile information from the data and effectively using the same in various robotic tasks. Better integration of tactile sensors on a robot’s body is prerequisite for the effective utilization of tactile data. For this reason, the hardware, software and application related issues (and resulting trade-offs) that must be considered to make tactile sensing an effective component of robotic platforms are discussed in-depth.To this end, human touch sensing has also been explored. The design hints co...

  8. Cooperative processing in primary somatosensory cortex and posterior parietal cortex during tactile working memory.

    Science.gov (United States)

    Ku, Yixuan; Zhao, Di; Bodner, Mark; Zhou, Yong-Di

    2015-08-01

    In the present study, causal roles of both the primary somatosensory cortex (SI) and the posterior parietal cortex (PPC) were investigated in a tactile unimodal working memory (WM) task. Individual magnetic resonance imaging-based single-pulse transcranial magnetic stimulation (spTMS) was applied, respectively, to the left SI (ipsilateral to tactile stimuli), right SI (contralateral to tactile stimuli) and right PPC (contralateral to tactile stimuli), while human participants were performing a tactile-tactile unimodal delayed matching-to-sample task. The time points of spTMS were 300, 600 and 900 ms after the onset of the tactile sample stimulus (duration: 200 ms). Compared with ipsilateral SI, application of spTMS over either contralateral SI or contralateral PPC at those time points significantly impaired the accuracy of task performance. Meanwhile, the deterioration in accuracy did not vary with the stimulating time points. Together, these results indicate that the tactile information is processed cooperatively by SI and PPC in the same hemisphere, starting from the early delay of the tactile unimodal WM task. This pattern of processing of tactile information is different from the pattern in tactile-visual cross-modal WM. In a tactile-visual cross-modal WM task, SI and PPC contribute to the processing sequentially, suggesting a process of sensory information transfer during the early delay between modalities. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  9. Modality-specific spectral dynamics in response to visual and tactile sequential shape information processing tasks: An MEG study using multivariate pattern classification analysis.

    Science.gov (United States)

    Gohel, Bakul; Lee, Peter; Jeong, Yong

    2016-08-01

    Brain regions that respond to more than one sensory modality are characterized as multisensory regions. Studies on the processing of shape or object information have revealed recruitment of the lateral occipital cortex, posterior parietal cortex, and other regions regardless of input sensory modalities. However, it remains unknown whether such regions show similar (modality-invariant) or different (modality-specific) neural oscillatory dynamics, as recorded using magnetoencephalography (MEG), in response to identical shape information processing tasks delivered to different sensory modalities. Modality-invariant or modality-specific neural oscillatory dynamics indirectly suggest modality-independent or modality-dependent participation of particular brain regions, respectively. Therefore, this study investigated the modality-specificity of neural oscillatory dynamics in the form of spectral power modulation patterns in response to visual and tactile sequential shape-processing tasks that are well-matched in terms of speed and content between the sensory modalities. Task-related changes in spectral power modulation and differences in spectral power modulation between sensory modalities were investigated at source-space (voxel) level, using a multivariate pattern classification (MVPC) approach. Additionally, whole analyses were extended from the voxel level to the independent-component level to take account of signal leakage effects caused by inverse solution. The modality-specific spectral dynamics in multisensory and higher-order brain regions, such as the lateral occipital cortex, posterior parietal cortex, inferior temporal cortex, and other brain regions, showed task-related modulation in response to both sensory modalities. This suggests modality-dependency of such brain regions on the input sensory modality for sequential shape-information processing. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Towards the Tactile Internet

    DEFF Research Database (Denmark)

    Szabó, Dávid; Gulyás, András; Fitzek, Frank

    2015-01-01

    5G communication networks enable the steering and control of Internet of Things and therefore require extreme low latency communication referred to as the tactile Internet. In this paper we show that the massive use of network coding throughout the network significantly improves latency and reduce...... the frequency of packet re-transmission, so an architecture built around network coding may be a feasible road towards realizing the tactile internet vision. Our contribution is threefold: (i) we show how network coding improves latency and reduces packet re-transmission with respect to other coding schemes...

  11. 76 FR 1065 - Security Zone; 23rd Annual North American International Auto Show, Detroit River, Detroit, MI

    Science.gov (United States)

    2011-01-07

    ...-AA87 Security Zone; 23rd Annual North American International Auto Show, Detroit River, Detroit, MI... officials at the 23rd Annual North American International Auto Show (NAIAS) being held at Cobo Hall in... 23rd Annual North American International Auto Show (NAIAS) being held at Cobo Hall in downtown Detroit...

  12. 75 FR 32661 - Special Local Regulation; Hydroplane Exhibition, Detroit River, Detroit, MI

    Science.gov (United States)

    2010-06-09

    ... questions on this temporary rule, call or e-mail CDR Joseph Snowden, Prevention Department, Sector Detroit, Coast Guard; telephone (313) 568-9508, e- mail Joseph.H.Snowden@uscg.mil . If you have questions on...

  13. 75 FR 30708 - Safety Zone; Red Bull Air Race, Detroit River, Detroit, MI

    Science.gov (United States)

    2010-06-02

    ... rule, call or e-mail CDR Joseph Snowden, Prevention Department, Sector Detroit, Coast Guard; telephone (313) 568-9508, e-mail Joseph.H.Snowden@uscg.mil . If you have questions on viewing the docket, call...

  14. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT VII, ENGINE TUNE-UP--DETROIT DIESEL ENGINE.

    Science.gov (United States)

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF TUNE-UP PROCEDURES FOR DIESEL ENGINES. TOPICS ARE SCHEDULING TUNE-UPS, AND TUNE-UP PROCEDURES. THE MODULE CONSISTS OF A SELF-INSTRUCTIONAL BRANCH PROGRAMED TRAINING FILM "ENGINE TUNE-UP--DETROIT DIESEL ENGINE" AND OTHER MATERIALS. SEE VT 005 655 FOR FURTHER INFORMATION.…

  15. The Development of Tactile Perception.

    Science.gov (United States)

    Bremner, A J; Spence, C

    2017-01-01

    Touch is the first of our senses to develop, providing us with the sensory scaffold on which we come to perceive our own bodies and our sense of self. Touch also provides us with direct access to the external world of physical objects, via haptic exploration. Furthermore, a recent area of interest in tactile research across studies of developing children and adults is its social function, mediating interpersonal bonding. Although there are a range of demonstrations of early competence with touch, particularly in the domain of haptics, the review presented here indicates that many of the tactile perceptual skills that we take for granted as adults (e.g., perceiving touches in the external world as well as on the body) take some time to develop in the first months of postnatal life, likely as a result of an extended process of connection with other sense modalities which provide new kinds of information from birth (e.g., vision and audition). Here, we argue that because touch is of such fundamental importance across a wide range of social and cognitive domains, it should be placed much more centrally in the study of early perceptual development than it currently is. © 2017 Elsevier Inc. All rights reserved.

  16. Bayesian Alternation During Tactile Augmentation

    Directory of Open Access Journals (Sweden)

    Caspar Mathias Goeke

    2016-10-01

    Full Text Available A large number of studies suggest that the integration of multisensory signals by humans is well described by Bayesian principles. However, there are very few reports about cue combination between a native and an augmented sense. In particular, we asked the question whether adult participants are able to integrate an augmented sensory cue with existing native sensory information. Hence for the purpose of this study we build a tactile augmentation device. Consequently, we compared different hypotheses of how untrained adult participants combine information from a native and an augmented sense. In a two-interval forced choice (2 IFC task, while subjects were blindfolded and seated on a rotating platform, our sensory augmentation device translated information on whole body yaw rotation to tactile stimulation. Three conditions were realized: tactile stimulation only (augmented condition, rotation only (native condition, and both augmented and native information (bimodal condition. Participants had to choose one out of two consecutive rotations with higher angular rotation. For the analysis, we fitted the participants’ responses with a probit model and calculated the just notable difference (JND. Then we compared several models for predicting bimodal from unimodal responses. An objective Bayesian alternation model yielded a better prediction (χred2 = 1.67 than the Bayesian integration model (χred2= 4.34. Slightly higher accuracy showed a non-Bayesian winner takes all model (χred2= 1.64, which either used only native or only augmented values per subject for prediction. However the performance of the Bayesian alternation model could be substantially improved (χred2= 1.09 utilizing subjective weights obtained by a questionnaire. As a result, the subjective Bayesian alternation model predicted bimodal performance most accurately among all tested models. These results suggest that information from augmented and existing sensory modalities in

  17. Tactile Astronomy - a Portuguese case study

    Science.gov (United States)

    Canas, L.; Alves, F.; Correia, A.

    2012-09-01

    Although astronomy plays an important role in the most various outreach initiatives, as well as school science curricula, due to its strong visual component in knowledge acquisition, astronomy subjects are not entirely well addressed and accessed by visually impaired students and/or general public. This stresses the need of more tactile material production, still very scarce in an educational context whether formal or informal. This is a case study activity developed based on different schematic tactile images of several objects present in our solar system. These images in relief, highlight, through touch, several relevant features present in the different astronomical objects studied. The scientific knowledge is apprehended through the use of a tactile key, complemented with additional information. Through proper hands-on activities implementation and careful analysis of the outcome, the adapted images associated with an explanatory key prove to be a valuable resource in tactile astronomy domain. Here we describe the process of implementing such initiative near visually impaired students. The struggles and challenges perceived by all involved and the enrichment experience of engaging astronomy with visually impaired audiences, broadening horizons in an overall experience accessible to all.

  18. The topography of tactile learning in humans.

    Science.gov (United States)

    Harris, J A; Harris, I M; Diamond, M E

    2001-02-01

    The spatial distribution of learned information within a sensory system can shed light on the brain mechanisms of sensory-perceptual learning. It has been argued that tactile memories are stored within a somatotopic framework in monkeys and rats but within a widely distributed network in humans. We have performed experiments to reexamine the spread of tactile learning across the fingertips. In all experiments, subjects were trained to use one fingertip to discriminate between two stimuli. Experiment 1 required identification of vibration frequency, experiment 2 punctate pressure, and experiment 3 surface roughness. After learning to identify the stimuli reliably, subjects were tested with the trained fingertip, its first and second neighbors on the same hand, and the three corresponding fingertips on the opposite hand. As expected, for all stimulus types, subjects showed retention of learning with the trained fingertip. However, the transfer beyond the trained fingertip varied according to the stimulus type. For vibration, learning did not transfer to other fingertips. For both pressure and roughness stimuli, there was limited transfer, dictated by topographic distance; subjects performed well with the first neighbor of the trained finger and with the finger symmetrically opposite the trained one. These results indicate that tactile learning is organized within a somatotopic framework, reconciling the findings in humans with those in other species. The differential distribution of tactile memory according to stimulus type suggests that the information is stored in stimulus-specific somatosensory cortical fields, each characterized by a unique receptive field organization, feature selectivity, and callosal connectivity.

  19. High Resolution Flexible Tactile Sensors

    DEFF Research Database (Denmark)

    Drimus, Alin; Bilberg, Arne

    2011-01-01

    This paper describes the development of a tactile sensor for robotics inspired by the human sense of touch. It consists of two parts: a static tactile array sensor based on piezoresistive rubber and a dynamic sensor based on piezoelectric PVDF film. The combination of these two layers addresses...

  20. Detecting neighborhood vacancy level in Detroit city using remote sensing

    Science.gov (United States)

    Li, X.; Wang, R.; Yang, A.; Vojnovic, I.

    2015-12-01

    With the decline of manufacturing industries, many Rust Belt cities, which enjoyed prosperity in the past, are now suffering from financial stress, population decrease and urban poverty. As a consequence, urban neighborhoods deteriorate. Houses are abandoned and left to decay. Neighborhood vacancy brings on many problems. Governments and agencies try to survey the vacancy level by going through neighborhoods and record the condition of each structure, or by buying information of active mailing addresses to get approximate neighborhood vacancy rate. But these methods are expensive and time consuming. Remote sensing provides a quick and comparatively cost-efficient way to access spatial information on social and demographical attributes of urban area. In our study, we use remote sensing to detect a major aspect of neighborhood deterioration, the vacancy levels of neighborhoods in Detroit city. We compared different neighborhoods using Landsat 8 images in 2013. We calculated NDVI that indicates the greenness of neighborhoods with the image in July 2013. Then we used thermal infrared information from image in February to detect human activities. In winter, abandoned houses will not consume so much energy and therefore neighborhoods with more abandoned houses will have smaller urban heat island effect. Controlling for the differences in terms of the greenness obtained from summer time image, we used thermal infrared from winter image to determine the temperatures of urban surface. We find that hotter areas are better maintained and have lower house vacancy rates. We also compared the changes over time for neighborhoods using Landsat 7 images from 2003 to 2013. The results show that deteriorated neighborhoods have increased NDVI in summer and get colder in winter due to abandonment of houses. Our results show the potential application of remote sensing as an easily accessed and efficient way to obtain data about social conditions in cities. We used the neighborhood

  1. (PORTUGAL)THE DETROIT EXPOSURE AND AEROSOL RESEARCH STUDY

    Science.gov (United States)

    The Detroit Exposure and Aerosol Research Study (DEARS) represents an intensive examination of personal, residential and community-based particulate matter and related co-pollutant measurements in Detroit, Michigan. Data from the DEARS will be used as inputs into air quality, la...

  2. Analytical Approach for Detroit Urban Redevelopment and Rehabilitation

    Science.gov (United States)

    Korkmaz, Kasim A.

    2017-10-01

    Detroit had been the leader city in manufacturing in the 20th century in the US. The automobile industry created and continued the thriving economy in Detroit, MI in the early to mid-1900s. When outsourcing impacted the industry, people began to leave the city. That turned into a demographic catastrophe in Detroit. Economy had continuously felt and many of the properties were foreclosed. After the housing market crash in 2008, a big economic crisis effected all country. After such a strong economic crisis, Detroit has been desperately need of economic revival which has begun to turn around very slowly in last ten years. In this paper, while defining the nature of the problem, workable solutions for Detroit area are discussed with certain and framed techniques. The main purpose is to understand the current case for Detroit after a decade of the economic crisis and bring solutions for urban redevelopment and rehabilitation for Detroit area with real examples. A detailed evaluation is carried through comparison with other cities. Paper also details the problems in Detroit area, reasons behind the complications, components/parameters, constraints/limitations, solutions, people involved and expected results.

  3. 75 FR 76054 - Detroit Edison Company Fermi, Unit 2; Exemption

    Science.gov (United States)

    2010-12-07

    ... was published for the exemption which was granted in May 2010 for Enrico Fermi Atomic Power Plant Unit... COMMISSION Detroit Edison Company Fermi, Unit 2; Exemption 1.0 Background Detroit Edison Company (DECo) is the licensee and holder of Facility Operating License No. NFP-43 issued for Fermi, Unit 2 (Fermi- 2...

  4. To what extent do Gestalt grouping principles influence tactile perception?

    Science.gov (United States)

    Gallace, Alberto; Spence, Charles

    2011-07-01

    Since their formulation by the Gestalt movement more than a century ago, the principles of perceptual grouping have primarily been investigated in the visual modality and, to a lesser extent, in the auditory modality. The present review addresses the question of whether the same grouping principles also affect the perception of tactile stimuli. Although, to date, only a few studies have explicitly investigated the existence of Gestalt grouping principles in the tactile modality, we argue that many more studies have indirectly provided evidence relevant to this topic. Reviewing this body of research, we argue that similar principles to those reported previously in visual and auditory studies also govern the perceptual grouping of tactile stimuli. In particular, we highlight evidence showing that the principles of proximity, similarity, common fate, good continuation, and closure affect tactile perception in both unimodal and crossmodal settings. We also highlight that the grouping of tactile stimuli is often affected by visual and auditory information that happen to be presented simultaneously. Finally, we discuss the theoretical and applied benefits that might pertain to the further study of Gestalt principles operating in both unisensory and multisensory tactile perception.

  5. Audio-Tactile Integration and the Influence of Musical Training

    Science.gov (United States)

    Kuchenbuch, Anja; Paraskevopoulos, Evangelos; Herholz, Sibylle C.; Pantev, Christo

    2014-01-01

    Perception of our environment is a multisensory experience; information from different sensory systems like the auditory, visual and tactile is constantly integrated. Complex tasks that require high temporal and spatial precision of multisensory integration put strong demands on the underlying networks but it is largely unknown how task experience shapes multisensory processing. Long-term musical training is an excellent model for brain plasticity because it shapes the human brain at functional and structural levels, affecting a network of brain areas. In the present study we used magnetoencephalography (MEG) to investigate how audio-tactile perception is integrated in the human brain and if musicians show enhancement of the corresponding activation compared to non-musicians. Using a paradigm that allowed the investigation of combined and separate auditory and tactile processing, we found a multisensory incongruency response, generated in frontal, cingulate and cerebellar regions, an auditory mismatch response generated mainly in the auditory cortex and a tactile mismatch response generated in frontal and cerebellar regions. The influence of musical training was seen in the audio-tactile as well as in the auditory condition, indicating enhanced higher-order processing in musicians, while the sources of the tactile MMN were not influenced by long-term musical training. Consistent with the predictive coding model, more basic, bottom-up sensory processing was relatively stable and less affected by expertise, whereas areas for top-down models of multisensory expectancies were modulated by training. PMID:24465675

  6. Rapid temporal recalibration to visuo-tactile stimuli.

    Science.gov (United States)

    Lange, Joachim; Kapala, Katharina; Krause, Holger; Baumgarten, Thomas J; Schnitzler, Alfons

    2018-02-01

    For a comprehensive understanding of the environment, the brain must constantly decide whether the incoming information originates from the same source and needs to be integrated into a coherent percept. This integration process is believed to be mediated by temporal integration windows. If presented with temporally asynchronous stimuli for a few minutes, the brain adapts to this new temporal relation by recalibrating the temporal integration windows. Such recalibration can occur even more rapidly after exposure to just a single trial of asynchronous stimulation. While rapid recalibration has been demonstrated for audio-visual stimuli, evidence for rapid recalibration of visuo-tactile stimuli is lacking. Here, we investigated rapid recalibration in the visuo-tactile domain. Subjects received visual and tactile stimuli with different stimulus onset asynchronies (SOA) and were asked to report whether the visuo-tactile stimuli were presented simultaneously. Our results demonstrate visuo-tactile rapid recalibration by revealing that subjects' simultaneity reports were modulated by the temporal order of stimulation in the preceding trial. This rapid recalibration effect, however, was only significant if the SOA in the preceding trial was smaller than 100 ms, while rapid recalibration could not be demonstrated for SOAs larger than 100 ms. Since rapid recalibration in the audio-visual domain has been demonstrated for SOAs larger than 100 ms, we propose that visuo-tactile recalibration works at shorter SOAs, and thus faster time scales than audio-visual rapid recalibration.

  7. Audio-tactile integration and the influence of musical training.

    Directory of Open Access Journals (Sweden)

    Anja Kuchenbuch

    Full Text Available Perception of our environment is a multisensory experience; information from different sensory systems like the auditory, visual and tactile is constantly integrated. Complex tasks that require high temporal and spatial precision of multisensory integration put strong demands on the underlying networks but it is largely unknown how task experience shapes multisensory processing. Long-term musical training is an excellent model for brain plasticity because it shapes the human brain at functional and structural levels, affecting a network of brain areas. In the present study we used magnetoencephalography (MEG to investigate how audio-tactile perception is integrated in the human brain and if musicians show enhancement of the corresponding activation compared to non-musicians. Using a paradigm that allowed the investigation of combined and separate auditory and tactile processing, we found a multisensory incongruency response, generated in frontal, cingulate and cerebellar regions, an auditory mismatch response generated mainly in the auditory cortex and a tactile mismatch response generated in frontal and cerebellar regions. The influence of musical training was seen in the audio-tactile as well as in the auditory condition, indicating enhanced higher-order processing in musicians, while the sources of the tactile MMN were not influenced by long-term musical training. Consistent with the predictive coding model, more basic, bottom-up sensory processing was relatively stable and less affected by expertise, whereas areas for top-down models of multisensory expectancies were modulated by training.

  8. Tactile score a knowledge media for tactile sense

    CERN Document Server

    Suzuki, Yasuhiro

    2014-01-01

    This book deals with one of the most novel advances in natural computing, namely, in the field of tactile sense analysis. Massage, which provides relaxation and stimulation for human beings, is analyzed in this book for the first time by encoding the motions and tactile senses involved. The target audience is not limited to researchers who are interested in natural computing but also includes those working in ergonomic design, biomedical engineering, Kansei engineering, and cognitive science.

  9. Contralateral tactile masking between forearms.

    Science.gov (United States)

    D'Amour, Sarah; Harris, Laurence R

    2014-03-01

    Masking effects have been demonstrated in which tactile sensitivity is affected when one touch is close to another on the body surface. Such effects are likely a result of local lateral inhibitory circuits that sharpen the spatial tuning of a given tactile receptor. Mutually inhibitory pathways have also been demonstrated between cortical tactile maps of the two halves of the body. Occasional reports have indicated that touches on one hand or forearm can affect tactile sensitivity at contralateral locations. Here, we measure the spatial tuning and effect of posture on this contralateral masking effect. Tactile sensitivity was measured on one forearm, while vibrotactile masking stimulation was applied to the opposite arm. Results were compared to sensitivity while vibrotactile stimulation was applied to a control site on the right shoulder. Sensitivity on the forearm was reduced by over 3 dB when the arms were touching and by 0.52 dB when they were held parallel. The masking effect depended on the position of the masking stimulus. Its effectiveness fell off by 1 STD when the stimulus was 29 % of arm length from the corresponding contralateral point. This long-range inhibitory effect in the tactile system suggests a surprisingly intimate relationship between the two sides of the body.

  10. Visual detail about the body modulates tactile localisation biases.

    Science.gov (United States)

    Margolis, Aaron N; Longo, Matthew R

    2015-02-01

    The localisation of tactile stimuli requires the integration of visual and somatosensory inputs within an internal representation of the body surface and is prone to consistent bias. Joints may play a role in segmenting such internal body representations, and may therefore influence tactile localisation biases, although the nature of this influence remains unclear. Here, we investigate the relationship between conceptual knowledge of joint locations and tactile localisation biases on the hand. In one task, participants localised tactile stimuli applied to the dorsum of their hand. A distal localisation bias was observed in all participants, consistent with previous results. We also manipulated the availability of visual information during this task, to determine whether the absence of this information could account for the distal bias observed here and by Mancini et al. (Neuropsychologia 49:1194-1201, 2011). The observed distal bias increased in magnitude when visual information was restricted, without a corresponding decrease in precision. In a separate task, the same participants indicated, from memory, knuckle locations on a silhouette image of their hand. Analogous distal biases were also seen in the knuckle localisation task. The accuracy of conceptual joint knowledge was not correlated with tactile localisation bias magnitude, although a similarity in observed bias direction suggests that both tasks may rely on a common, higher-order body representation. These results also suggest that distortions of conceptual body representation may be more common in healthy individuals than previously thought.

  11. Vestibulo-tactile interactions regarding motion perception and eye movements in yaw

    NARCIS (Netherlands)

    Bos, J.E.; Erp, J.B.F. van; Groen, E.L.; Veen, H.J. van

    2005-01-01

    This paper shows that tactile stimulation can override vestibular information regarding spinning sensations and eye movements. However, we conclude that the current data do not support the hypothesis that tactile stimulation controls eye movements directly. To this end, twenty-four subjects were

  12. Virtual environment tactile system

    Science.gov (United States)

    Renzi, Ronald

    1996-01-01

    A method for providing a realistic sense of touch in virtual reality by means of programmable actuator assemblies is disclosed. Each tactile actuator assembly consists of a number of individual actuators whose movement is controlled by a computer and associated drive electronics. When an actuator is energized, the rare earth magnet and the associated contactor, incorporated within the actuator, are set in motion by the opposing electromagnetic field of a surrounding coil. The magnet pushes the contactor forward to contact the skin resulting in the sensation of touch. When the electromagnetic field is turned off, the rare earth magnet and the contactor return to their neutral positions due to the magnetic equilibrium caused by the interaction with the ferrous outer sleeve. The small size and flexible nature of the actuator assemblies permit incorporation into a glove, boot or body suit. The actuator has additional applications, such as, for example, as an accelerometer, an actuator for precisely controlled actuations or to simulate the sensation of braille letters.

  13. Hooked on an Affect: Detroit Techno and Dystopian Digital Culture

    Directory of Open Access Journals (Sweden)

    Richard Pope

    2011-03-01

    Full Text Available Detroit techno is typically historicized as having grown out of the late 1970s and early 1980s middle-class, consumerist, and aspirational high school social party scene, giving the impression that Detroit techno artists created forward-thinking music as a means to acquire subcultural capital and (reproduce their identities. In this essay, this position is nuanced for a more complex understanding of techno’s relation to the quotidian phenomenological encounter with the dystopian setting of Detroit. Concomitantly, predominant theorizations of affect within the humanities, which emphasize the utopian, hopeful dimensions of affect’s inherent productivity, are supplemented for an understanding of productive energy revolving around affects of dystopia and on a certain hopelessness which scholars, in the years ahead, will increasingly have to negotiate.Keywords: techno, Detroit, dystopia, affect, aesthetic, desire, subculture

  14. Tactile learning in rodents: Neurobiology and neuropharmacology.

    Science.gov (United States)

    Roohbakhsh, Ali; Shamsizadeh, Ali; Arababadi, Mohammad Kazemi; Ayoobi, Fateme; Fatemi, Iman; Allahtavakoli, Mohammad; Mohammad-Zadeh, Mohammad

    2016-02-15

    Animal models of learning and memory have been the subject of considerable research. Rodents such as mice and rats are nocturnal animals with poor vision, and their survival depends on their sense of touch. Recent reports have shown that whisker somatosensation is the main channel through which rodents collect and process environmental information. This review describes tactile learning in rodents from a neurobiological and neuropharmacological perspective, and how this is involved in memory-related processes. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. 77 FR 76411 - Security Zone; 25th Annual North American International Auto Show, Detroit River, Detroit, MI

    Science.gov (United States)

    2012-12-28

    ... downtown Detroit, MI. The NAIAS is the prime venue for introducing the world's most anticipated vehicles... thousand automotive dealerships around the country, and the likely presence of high profile visitors, it is...

  16. 77 FR 2453 - Security Zone; 24th Annual North American International Auto Show, Detroit River, Detroit, MI

    Science.gov (United States)

    2012-01-18

    ... Detroit, MI. The NAIAS is the prime venue for introducing the world's most anticipated vehicles. The... dealerships around the country, and the likely presence of high profile visitors, it is possible that protests...

  17. Synthetic and Bio-Artificial Tactile Sensing: A Review

    Directory of Open Access Journals (Sweden)

    Maria Chiara Carrozza

    2013-01-01

    Full Text Available This paper reviews the state of the art of artificial tactile sensing, with a particular focus on bio-hybrid and fully-biological approaches. To this aim, the study of physiology of the human sense of touch and of the coding mechanisms of tactile information is a significant starting point, which is briefly explored in this review. Then, the progress towards the development of an artificial sense of touch are investigated. Artificial tactile sensing is analysed with respect to the possible approaches to fabricate the outer interface layer: synthetic skin versus bio-artificial skin. With particular respect to the synthetic skin approach, a brief overview is provided on various technologies and transduction principles that can be integrated beneath the skin layer. Then, the main focus moves to approaches characterized by the use of bio-artificial skin as an outer layer of the artificial sensory system. Within this design solution for the skin, bio-hybrid and fully-biological tactile sensing systems are thoroughly presented: while significant results have been reported for the development of tissue engineered skins, the development of mechanotransduction units and their integration is a recent trend that is still lagging behind, therefore requiring research efforts and investments. In the last part of the paper, application domains and perspectives of the reviewed tactile sensing technologies are discussed.

  18. Investigating Tactile Stimulation in Symbiotic Systems

    DEFF Research Database (Denmark)

    Orso, Valeria; Mazza, Renato; Gamberini, Luciano

    2017-01-01

    the user’s perspective. Here we present the process of selecting the most adequate tactile stimulation delivered by a tactile vest while users were engaged in an absorbing activity, namely playing a video-game. A total of 20 participants (mean age 24.78; SD= 1.57) were involved. Among the eight tactile...

  19. Exploration of the Effectiveness of Tactile Methods

    Science.gov (United States)

    Aldajani, Neda F.

    2016-01-01

    This paper introduces the tactile method and aims to explore the effectiveness of using tactile methods with students who are blind and visually impaired. Although there was limited research about using this strategy, all of the research agrees that using tactile is one of the best ways for students who are blind and visually impaired to be…

  20. Tactile and proprioceptive temporal discrimination are impaired in functional tremor.

    Directory of Open Access Journals (Sweden)

    Michele Tinazzi

    Full Text Available In order to obtain further information on the pathophysiology of functional tremor, we assessed tactile discrimination threshold and proprioceptive temporal discrimination motor threshold values in 11 patients with functional tremor, 11 age- and sex-matched patients with essential tremor and 13 healthy controls.Tactile discrimination threshold in both the right and left side was significantly higher in patients with functional tremor than in the other groups. Proprioceptive temporal discrimination threshold for both right and left side was significantly higher in patients with functional and essential tremor than in healthy controls. No significant correlation between discrimination thresholds and duration or severity of tremor was found.Temporal processing of tactile and proprioceptive stimuli is impaired in patients with functional tremor. The mechanisms underlying this impaired somatosensory processing and possible ways to apply these findings clinically merit further research.

  1. The Effect of Tactile Cues on Auditory Stream Segregation Ability of Musicians and Nonmusicians

    DEFF Research Database (Denmark)

    Slater, Kyle D.; Marozeau, Jeremy

    2016-01-01

    , we test whether tactile cues can be used to segregate 2 interleaved melodies. Twelve musicians and 12 nonmusicians were asked to detect changes in a 4-note repeated melody interleaved with a random melody. In order to perform this task, the listener must be able to segregate the target melody from...... the random melody. Tactile cues were applied to the listener’s fingers on half of the blocks. Results showed that tactile cues can significantly improve the melodic segregation ability in both musician and nonmusician groups in challenging listening conditions. Overall, the musician group performance...... was always better; however, the magnitude of improvement with the introduction of tactile cues was similar in both groups. This study suggests that hearing-impaired listeners could potentially benefit from a system transmitting such information via a tactile modality...

  2. Presentation of Various Tactile Sensations Using Micro-Needle Electrotactile Display.

    Directory of Open Access Journals (Sweden)

    Mayuko Tezuka

    Full Text Available Tactile displays provoke tactile sensations by artificially stimulating tactile receptors. While many types of tactile displays have been developed, electrotactile displays that exploit electric stimulation can be designed to be thin, light, flexible and thus, wearable. However, the high voltages required to stimulate tactile receptors and limited varieties of possible sensations pose problems. In our previous work, we developed an electrotactile display using a micro-needle electrode array that can drastically reduce the required voltage by penetrating through the high-impedance stratum corneum painlessly, but displaying various tactile sensations was still a challenge. In this work, we demonstrate presentation of tactile sensation of different roughness to the subjects, which is enabled by the arrangement of the electrodes; the needle electrodes are on the fingertip and the ground electrode is on the fingernail. With this arrangement, the display can stimulate the tactile receptors that are located not only in the shallow regions of the finger but also those in the deep regions. It was experimentally revealed that the required voltage was further reduced compared to previous devices and that the roughness presented by the display was controlled by the pulse frequency and the switching time, or the stimulation flow rate. The proposed electrotactile display is readily applicable as a new wearable haptic device for advanced information communication technology.

  3. High Resolution Tactile Sensors for Curved Robotic Fingertips

    DEFF Research Database (Denmark)

    Drimus, Alin; Jankovics, Vince; Gorsic, Matija

    2014-01-01

    Tactile sensing is a key element for various animals that interact with the environment and surrounding objects. Touch provides information about contact forces, torques and pressure distribution and by the means of exploration it provides object properties such as geometry, stiffness and texture[5...

  4. A Prototype Tactile Sensor Array.

    Science.gov (United States)

    1982-09-15

    Active Touch Sensing. Technical Report, MIT Artificial Inteligence Laboratory, 1981. (9] Larcombe, M. Carbon Fibre Tactile Sensors. Technical Report...thesis, Carnegie-Mellon University, 1981. [13] Purbrick, John A. A Force Transducer Employing Conductive Silicone Rubber. Technical Report, MIT Artificial

  5. Magnetic Nanocomposite Cilia Tactile Sensor

    KAUST Repository

    Alfadhel, Ahmed

    2015-10-21

    A multifunctional biomimetic nanocomposite tactile sensor is developed that can detect shear and vertical forces, feel texture, and measure flow with extremely low power consumption. The sensor\\'s high performance is maintained within a wide operating range that can be easily adjusted. The concept works on rigid and flexible substrates and the sensors can be used in air or water without any modifications.

  6. Tactile thresholds in healthy subjects

    Directory of Open Access Journals (Sweden)

    Metka Moharić

    2014-10-01

    Full Text Available Background: The assessment of sensory thresholds provides a method of examining the function of peripheral nerve fibers and their central connections. Quantitative sensory testing is a variant of conventional sensory testing wherein the goal is the quantification of the level of stimulation needed to produce a particular sensation. While thermal and vibratory testing are established methods in assessment of sensory thresholds, assessment of tactile thresholds with monofilaments is not used routinely. The purpose of this study was to assess the tactile thresholds in normal healthy population.Methods: In 39 healthy volunteers (19 men aged 21 to 71 years, tactile thresholds were assessed with von Frey’s hair in 7 parts of the body bilaterally.Results: We found touch sensitivity not to be dependent on age or gender. The right side was significantly more sensitive in the lateral part of the leg (p=0.011 and the left side in the medial part of the arm (p=0.022. There were also significant differences between sites (p<0.001, whereby distal parts of the body were more sensitive.Conclusions: Von Frey filaments allow the estimation of tactile thresholds without the need for complicated instrumentation.

  7. Tactile friction of topical formulations.

    Science.gov (United States)

    Skedung, L; Buraczewska-Norin, I; Dawood, N; Rutland, M W; Ringstad, L

    2016-02-01

    The tactile perception is essential for all types of topical formulations (cosmetic, pharmaceutical, medical device) and the possibility to predict the sensorial response by using instrumental methods instead of sensory testing would save time and cost at an early stage product development. Here, we report on an instrumental evaluation method using tactile friction measurements to estimate perceptual attributes of topical formulations. Friction was measured between an index finger and an artificial skin substrate after application of formulations using a force sensor. Both model formulations of liquid crystalline phase structures with significantly different tactile properties, as well as commercial pharmaceutical moisturizing creams being more tactile-similar, were investigated. Friction coefficients were calculated as the ratio of the friction force to the applied load. The structures of the model formulations and phase transitions as a result of water evaporation were identified using optical microscopy. The friction device could distinguish friction coefficients between the phase structures, as well as the commercial creams after spreading and absorption into the substrate. In addition, phase transitions resulting in alterations in the feel of the formulations could be detected. A correlation was established between skin hydration and friction coefficient, where hydrated skin gave rise to higher friction. Also a link between skin smoothening and finger friction was established for the commercial moisturizing creams, although further investigations are needed to analyse this and correlations with other sensorial attributes in more detail. The present investigation shows that tactile friction measurements have potential as an alternative or complement in the evaluation of perception of topical formulations. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. 77 FR 48476 - Proposed Amendment to Class B Airspace; Detroit, MI

    Science.gov (United States)

    2012-08-14

    ... Wayne County Airport), Terminal Control Area (TCA) (39 FR 11085). The Detroit TCA airspace, renamed... after entry. In 1985, the Detroit TCA airspace was modified to accommodate SILS procedures as the... both directions. In 1987, the last modification to the Detroit TCA airspace was accomplished to contain...

  9. 77 FR 66547 - Approval and Promulgation of Implementation Plans; Michigan; Detroit-Ann Arbor Nonattainment Area...

    Science.gov (United States)

    2012-11-06

    ... AGENCY 40 CFR Part 52 Approval and Promulgation of Implementation Plans; Michigan; Detroit-Ann Arbor... the state's Detroit-Ann Arbor (Livingston, Macomb, Monroe, Oakland, St. Clair, Washtenaw, and Wayne... rulemaking to approve Michigan's PM 2.5 2005 base year emissions inventory for the Detroit-Ann Arbor area...

  10. Movement Induces the Use of External Spatial Coordinates for Tactile Localization in Congenitally Blind Humans.

    Science.gov (United States)

    Heed, Tobias; Möller, Johanna; Röder, Brigitte

    2015-01-01

    To localize touch, the brain integrates spatial information coded in anatomically based and external spatial reference frames. Sighted humans, by default, use both reference frames in tactile localization. In contrast, congenitally blind individuals have been reported to rely exclusively on anatomical coordinates, suggesting a crucial role of the visual system for tactile spatial processing. We tested whether the use of external spatial information in touch can, alternatively, be induced by a movement context. Sighted and congenitally blind humans performed a tactile temporal order judgment task that indexes the use of external coordinates for tactile localization, while they executed bimanual arm movements with uncrossed and crossed start and end postures. In the sighted, start posture and planned end posture of the arm movement modulated tactile localization for stimuli presented before and during movement, indicating automatic, external recoding of touch. Contrary to previous findings, tactile localization of congenitally blind participants, too, was affected by external coordinates, though only for stimuli presented before movement start. Furthermore, only the movement's start posture, but not the planned end posture affected blind individuals' tactile performance. Thus, integration of external coordinates in touch is established without vision, though more selectively than when vision has developed normally, and possibly restricted to movement contexts. The lack of modulation by the planned posture in congenitally blind participants suggests that external coordinates in this group are not mediated by motor efference copy. Instead the task-related frequent posture changes, that is, movement consequences rather than planning, appear to have induced their use of external coordinates.

  11. Task demands affect spatial reference frame weighting during tactile localization in sighted and congenitally blind adults

    OpenAIRE

    Heed, Tobias; Roeder, Brigitte; Badde, Stephanie; Schubert, Jonathan

    2017-01-01

    Task demands modulate tactile localization in sighted humans, presumably through weight adjustments in the spatial integration of anatomical, skin-based, and external, posture-based information. In contrast, previous studies have suggested that congenitally blind humans, by default, refrain from automatic spatial integration and localize touch using only skin-based information. Here, sighted and congenitally blind participants localized tactile targets on the palm or back of one hand, while i...

  12. Market study: Tactile paging system

    Science.gov (United States)

    1977-01-01

    A market survey was conducted regarding the commercialization potential and key market factors relevant to a tactile paging system for deaf-blind people. The purpose of the tactile paging system is to communicate to the deaf-blind people in an institutional environment. The system consists of a main console and individual satellite wrist units. The console emits three signals by telemetry to the wrist com (receiving unit) which will measure approximately 2 x 4 x 3/4 inches and will be fastened to the wrist by a strap. The three vibration signals are fire alarm, time period indication, and a third signal which will alert the wearer of the wrist com to the fact that the pin on the top of the wrist is emitting a morse coded message. The Morse code message can be felt and recognized with the finger.

  13. City Walks and Tactile Experience

    Directory of Open Access Journals (Sweden)

    Mădălina Diaconu

    2011-01-01

    Full Text Available This paper is an attempt to develop categories of the pedestrian’s tactile and kinaesthetic experience of the city. The beginning emphasizes the haptic qualities of surfaces and textures, which can be “palpated” visually or experienced by walking. Also the lived city is three-dimensional; its corporeal depth is discussed here in relation to the invisible sewers, protuberant profiles, and the formal diversity of roofscapes. A central role is ascribed in the present analysis to the formal similarities between the representation of the city by walking through it and the representation of the tactile form of objects. Additional aspects of the “tactile” experience of the city in a broad sense concern the feeling of their rhythms and the exposure to weather conditions. Finally, several aspects of contingency converge in the visible age of architectural works, which record traces of individual and collective histories.

  14. Bilateral tactile agnosia: a case report.

    Science.gov (United States)

    Nakamura, J; Endo, K; Sumida, T; Hasegawa, T

    1998-06-01

    This study reports a 64-year-old right-handed male who manifested bilateral tactile recognition deficits. They were diagnosed as bilateral tactile agnosia, since the patient showed difficulty in semantic association of objects despite preserved hylognosis and morphognosis. The patient had a bilateral lesion in the subcortical region of the angular gyrus. The case reported by Endo et al. (1992) had a right hand tactile agnosia due to a subcortical lesion in the left angular gyrus. Our findings support Endo's hypothesis that tactile agnosia occurs when the somatosensory association cortex is disconnected from the semantic memory store located in the inferior temporal lobe by a subcortical lesion of the angular gyrus. We suggest that the extent of the lesion in the tactual-semantic pathway is related to the severity of tactile agnosia and the types of the tactile naming errors.

  15. Ventrolateral prefrontal cortex and tactile memory disambiguation in the human brain.

    Science.gov (United States)

    Kostopoulos, Penelope; Albanese, Marie-Claire; Petrides, Michael

    2007-06-12

    Tactile sensory information is first channeled from the primary somatosensory cortex on the postcentral gyrus to the parietal opercular region (i.e., the secondary somatosensory cortex) and the rostral inferior parietal lobule and, from there, to the prefrontal cortex, with which bidirectional connections exist. Although we know that tactile memory signals can be found in the prefrontal cortex, the contribution of the different prefrontal areas to tactile memory remains unclear. The present functional MRI study shows that a specific part of the prefrontal cortex in the human brain, namely the midventrolateral prefrontal region (cytoarchitectonic areas 47/12 and 45), is involved in active controlled retrieval processing necessary for the disambiguation of vibrotactile information in short-term memory. Furthermore, we demonstrate that this particular part of the prefrontal cortex interacts functionally with the secondary somatosensory areas in the parietal operculum and the rostral inferior parietal lobule during controlled processing for the retrieval of specific tactile information.

  16. Design of a Large-scale Three-dimensional Flexible Arrayed Tactile Sensor

    Directory of Open Access Journals (Sweden)

    Junxiang Ding

    2011-01-01

    Full Text Available This paper proposes a new type of large-scale three-dimensional flexible arrayed tactile sensor based on conductive rubber. It can be used to detect three-dimensional force information on the continuous surface of the sensor, which realizes a true skin type tactile sensor. The widely used method of liquid rubber injection molding (LIMS method is used for "the overall injection molding" sample preparation. The structure details of staggered nodes and a new decoupling algorithm of force analysis are given. Simulation results show that the sensor based on this structure can achieve flexible measurement of large-scale 3-D tactile sensor arrays.

  17. The Perceived Urgency of Tactile Patterns

    Science.gov (United States)

    2011-06-01

    belt developed by Engineering Acoustics Inc. ( EAI ) was used to provide tactile stimuli. This adjustable belt, which consists of eight EAI C2 tactors...Acoustics Inc. ( EAI ) C2 tactile system was used, which consists of an adjustable tactile belt display (figure 1) worn around the waist and a receiver...unit. The adjustable belt display consists of eight EAI C2 tactors (acoustic transducers) that are approximately 1.2 inches in diameter. A belt

  18. Investigating Tactile Stimulation in Symbiotic Systems

    DEFF Research Database (Denmark)

    Orso, Valeria; Mazza, Renato; Gamberini, Luciano

    2017-01-01

    The core characteristics of tactile stimuli, i.e., recognition reliability and tolerance to ambient interference, make them an ideal candidate to be integrated into a symbiotic system. The selection of the appropriate stimulation is indeed important in order not to hinder the interaction from...... the user’s perspective. Here we present the process of selecting the most adequate tactile stimulation delivered by a tactile vest while users were engaged in an absorbing activity, namely playing a video-game. A total of 20 participants (mean age 24.78; SD= 1.57) were involved. Among the eight tactile...

  19. A flexible tactile sensitive sheet using a hetero-core fiber optic sensor

    Science.gov (United States)

    Fujino, S.; Yamazaki, H.; Hosoki, A.; Watanabe, K.

    2014-05-01

    In this report, we have designed a tactile sensitive sheet based on a hetero-core fiber-optic sensor, which realize an areal sensing by using single sensor potion in one optical fiber line. Recently, flexible and wide-area tactile sensing technology is expected to applied to acquired biological information in living space and robot achieve long-term care services such as welfare and nursing-care and humanoid technology. A hetero-core fiber-optic sensor has several advantages such as thin and flexible transmission line, immunity to EMI. Additionally this sensor is sensitive to moderate bending actions with optical loss changes and is independent of temperature fluctuation. Thus, the hetero-core fiber-optic sensor can be suitable for areal tactile sensing. We measure pressure characteristic of the proposed sensitive sheet by changing the pressure position and pinching characteristic on the surface. The proposed tactile sensitive sheet shows monotonic responses on the whole sensitive sheet surface although different sensitivity by the position is observed at the sensitive sheet surface. Moreover, the tactile sensitive sheet could sufficiently detect the pinching motion. In addition, in order to realize the discrimination between pressure and pinch, we fabricated a doubled-over sensor using a set of tactile sensitive sheets, which has different kinds of silicon robbers as a sensitive sheet surface. In conclusion, the flexible material could be given to the tactile sensation which is attached under proposed sensitive sheet.

  20. Effectiveness of auditory and tactile crossmodal cues in a dual-task visual and auditory scenario.

    Science.gov (United States)

    Hopkins, Kevin; Kass, Steven J; Blalock, Lisa Durrance; Brill, J Christopher

    2017-05-01

    In this study, we examined how spatially informative auditory and tactile cues affected participants' performance on a visual search task while they simultaneously performed a secondary auditory task. Visual search task performance was assessed via reaction time and accuracy. Tactile and auditory cues provided the approximate location of the visual target within the search display. The inclusion of tactile and auditory cues improved performance in comparison to the no-cue baseline conditions. In comparison to the no-cue conditions, both tactile and auditory cues resulted in faster response times in the visual search only (single task) and visual-auditory (dual-task) conditions. However, the effectiveness of auditory and tactile cueing for visual task accuracy was shown to be dependent on task-type condition. Crossmodal cueing remains a viable strategy for improving task performance without increasing attentional load within a singular sensory modality. Practitioner Summary: Crossmodal cueing with dual-task performance has not been widely explored, yet has practical applications. We examined the effects of auditory and tactile crossmodal cues on visual search performance, with and without a secondary auditory task. Tactile cues aided visual search accuracy when also engaged in a secondary auditory task, whereas auditory cues did not.

  1. The Perceived Urgency of Tactile Patterns During Dismounted Soldier Movements

    Science.gov (United States)

    2012-05-01

    tactile system including an adjustable belt developed by Engineering Acoustics, Inc. ( EAI ), provided the tactile stimuli. This adjustable belt...which consists of eight EAI C2 tactors positioned at 45° intervals, was worn around each participant’s waist. Participants received tactile patterns...Tactile System An Engineering Acoustics, Inc. ( EAI ) C2 tactile system was used, which consisted of an adjustable tactile belt display (figure 1) worn

  2. Historical Loss and Current Rehabilitation of Shoreline Habitat along an Urban-Industrial River—Detroit River, Michigan, USA

    OpenAIRE

    John H. Hartig; David Bennion

    2017-01-01

    The purpose of this study was to evaluate the historical loss and current shoreline habitat rehabilitation efforts along the urban-industrial Detroit River using geographical information system methods and a shoreline survey. This study found a 97% loss of historical coastal wetlands to human development. By 1985, 55% of the U.S. mainland shoreline had been hardened with steel sheet piling or concrete breakwater that provide limited habitat. Since 1995, 19 projects were implemented, improving...

  3. Tactile roughness discrimination threshold is unrelated to tactile spatial acuity.

    Science.gov (United States)

    Libouton, Xavier; Barbier, Olivier; Plaghki, Leon; Thonnard, Jean-Louis

    2010-04-02

    The present study examined the relationship between the tactile roughness discrimination threshold (TRDT) and the tactile spatial resolution threshold (TSRT) at the index fingertip in humans. A new device was built for measuring TRDT, allowing pair-wise presentations of two sets of six different sandpaper grits. The smoothest grits ranged from 18 to 40 microm and the roughest grits ranged from 50 to 195 microm particle size. The reference sandpaper had a 46 microm particle size. A two-alternative forced choice paradigm and a double interlaced adaptive staircase procedure yielding a 75% just noticeable difference (75%jnd) was used according to Zwislocki and Relkin. Contact force and scanning velocity were measured at the fingertip with a built-in sensor. The TSRT was assessed with an extended set of grating domes. Fifty-three male and female subjects, spanning a wide age range participated in this study. The JND75% or TRDT was lower for the smoothest sandpapers (15+/-8.5 microm) compared to the roughest sandpapers (44+/-32.5 microm). TRDT performance was unrelated to age or gender. Additionally, grit size had no effect on the mean forces (normal and tangential) exerted at the fingertip or the mean scan velocities. In contrast, there was a significant degradation of TSRT performance with age. Lastly, there was no significant correlation between TRDT and TRST performance. Results of this study support the theory that the neural mechanisms underlying the perception of tactile roughness discrimination for fine textures differ from those involved in spatial resolution acuity often associated with the SA1 afferents. Copyright 2009 Elsevier B.V. All rights reserved.

  4. Tactile search for change has less memory than visual search for change.

    Science.gov (United States)

    Yoshida, Takako; Yamaguchi, Ayumi; Tsutsui, Hideomi; Wake, Tenji

    2015-05-01

    Haptic perception of a 2D image is thought to make heavy demands on working memory. During active exploration, humans need to store the latest local sensory information and integrate it with kinesthetic information from hand and finger locations in order to generate a coherent perception. This tactile integration has not been studied as extensively as visual shape integration. In the current study, we compared working-memory capacity for tactile exploration to that of visual exploration as measured in change-detection tasks. We found smaller memory capacity during tactile exploration (approximately 1 item) compared with visual exploration (2-10 items). These differences generalized to position memory and could not be attributed to insufficient stimulus-exposure durations, acuity differences between modalities, or uncertainty over the position of items. This low capacity for tactile memory suggests that the haptic system is almost amnesic when outside the fingertips and that there is little or no cross-position integration.

  5. Moving, Writing, Failing: Spatialities of Ambivalence in Detroit's Ruinscapes

    Science.gov (United States)

    Anderson, Mary Elizabeth

    2012-01-01

    In Detroit, the creative impulse to work in and around sites of ruin presents both aesthetic and ethical dilemmas. Creative practices that make use of ruined sites in the city are controversial to the extent that they present aesthetically attractive representations of real, unresolved social and environmental problems. This article examines the…

  6. Developing small businesses and leveraging resources in Detroit

    OpenAIRE

    Robin G. Newberger; Maude Toussaint-Comeau

    2013-01-01

    On October 16–17, 2012, the Federal Reserve Bank of Chicago, the Michigan Bankers Association, and the New Economy Initiative for Southeast Michigan co-sponsored a symposium that brought together business experts, business owners, policymakers, funders, and bankers to address the issues of small business credit and financing in Detroit.

  7. Distributed neural networks of tactile working memory.

    Science.gov (United States)

    Wang, Liping; Bodner, Mark; Zhou, Yong-Di

    2013-12-01

    Microelectrode recordings of cortical activity in primates performing working memory tasks reveal some cortical neurons exhibiting sustained or graded persistent elevations in firing rate during the period in which sensory information is actively maintained in short-term memory. These neurons are called "memory cells". Imaging and transcranial magnetic stimulation studies indicate that memory cells may arise from distributed cortical networks. Depending on the sensory modality of the memorandum in working memory tasks, neurons exhibiting memory-correlated patterns of firing have been detected in different association cortices including prefrontal cortex, and primary sensory cortices as well. Here we elaborate on neurophysiological experiments that lead to our understanding of the neuromechanisms of working memory, and mainly discuss findings on widely distributed cortical networks involved in tactile working memory. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. The Design of a Novel Flexible Tactile Sensor Based on Pressure-conductive Rubber

    Directory of Open Access Journals (Sweden)

    Fei Xu

    2011-01-01

    Full Text Available A novel flexible tactile sensor using conductive rubber with electrical-wires knitted method is presented. The sensor’s design is based on rubber’s pressure-sensitive property. It is flexible and can be mounted on any object to measure tactile information. The mathematic piezoresistivity model of the rubber is described, and we also discuss the sensor’s structure and scanning method. The simulation results show that the sensor can detect pressure accurately.

  9. Characterization and identification of Detroit River mystery oil spill (2002)

    International Nuclear Information System (INIS)

    Wang, Z.; Fingas, M.; Lambert, P.

    2003-01-01

    The authors described the mysterious oil spill which occurred in the Detroit River in 2002. Advanced chemical fingerprinting and data interpretation techniques were conducted on spill samples collected by Environment Canada, Ontario Region, to determine the chemical composition of the oil and find out where it came from. The objective was to gather information concerning the nature, type, and components of the spill samples. The authors checked if the samples were identical to determine if they originated from the same source. They used a tiered analytical approach which facilitates the detailed compositional analysis by gas chromatograph-mass spectrometer (GC-MS) and GC-flame ionization detection (FID). A wide range of diagnostic ratios of source-specific marker compounds for interpreting chemical data was determined and analyzed. The results proved that: (1) the spill samples were largely composed of lube oil mixed with a smaller portion of diesel fuel, (2) sample number 3 collected from N. Boblo Island was more weathered than samples 1 and 2, (3) the oil in three samples was the same and originated from the same source, as shown by fingerprinting results, (4) most PAH compounds were from the diesel portion in the spill samples, and the biomarker compounds were mostly from the lube oil, (5) the diesel in the samples had been weathered and degraded, and the lube oil in the spill samples was waste lube oil, and (6) input of pyrogenic PAHs to the spill samples was clearly proven. The spill likely came from a place where both combustion and motor lubrication processes occur. 46 refs., 4 tabs., 6 figs

  10. Tactile sensibility on the fingernail.

    Science.gov (United States)

    Seah, Benjamin Zhi Qiang; Wu, Clement Chun Ho; Sebastin, Sandeep Jacob; Lahiri, Amitabha

    2013-11-01

    To measure tactile discrimination (static and moving 2-point discrimination) and threshold levels (Weinstein enhanced sensory test) over the nail plate in normal subjects and compare these values with those at the corresponding finger pulps. Tactile discrimination and threshold values over the nail plates and finger pulps were measured on 300 digits in 30 healthy subjects with a mean age of 23 years. Subjects with cosmetic nail modifications, injuries, neurological deficits, dermatological conditions, or history of upper limb surgery were excluded. Equivalence testing was conducted to look for clinical equivalence between values obtained at both sites. The mean static 2-point discrimination, moving 2-point discrimination, and threshold value over the human nail were 6.7 mm, 2.4 mm, and 0.06 g, respectively. The corresponding values for the finger pulp were 2.4 mm, 2.2 mm, and 0.01 g, respectively. The static 2-point discrimination and threshold values were superior for the finger pulp, whereas moving 2-point discrimination values at both sites were clinically equivalent. Our study suggests that tactile discrimination and threshold levels can be measured over the nail plate and that moving 2-point discrimination values are clinically equivalent to those obtained on the corresponding pulp. This highlights the importance of the nail plate in the sensory function of the fingertip. The normative data from this study may be useful in establishing the impact of nail injury and the contribution of the nail to the overall function of the hand. Diagnostic II. Copyright © 2013 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  11. The Design of Tactile Thematic Symbols

    Science.gov (United States)

    Lawrence, Megan M.; Lobben, Amy K.

    2011-01-01

    The study reported here investigated the design and legibility of tactile thematic maps, focusing on symbolization and the comprehension of spatial patterns on the maps. The results indicate that discriminable and effective tactile thematic maps can be produced using classed data with a microcapsule paper production method. The participants…

  12. Automatic Transcription of Tactile Maps. Practice Report

    Science.gov (United States)

    Papadopoulos, Konstantinos

    2005-01-01

    Tactile maps are an important means for the education and mobility of people who are visually impaired (that is, are blind or have low vision). Because of the importance of tactile maps, it is essential that they are accessible to people who are visually impaired and correctly interpreted. There has been considerable research on the design of…

  13. Autism: tactile perception and emotion.

    Science.gov (United States)

    Pernon, E; Pry, R; Baghdadli, A

    2007-08-01

    For many years, and especially since Waynbaum and Wallon, psychology and psychopathology have dealt with cognitive perception, but have had little to do with the affective qualities of perception. Our aim was to study the influence of the sensory environment on people with autism. Several experiments were carried out using different forms of tactile stimulation (passive and active subjects). Our data showed specific responses in children with autism and intellectual disability. These children displayed a strong (positive) valence to the stimulation provided. They were very attracted to the stimulation and were excited by it.

  14. A novel flexible tactile sensor based on Ce-doped BaTiO3 nanofibers

    Science.gov (United States)

    Zhuang, Yongyong; Xu, Zhuo; Fu, Xiaotian; Li, Fei; Li, Jinglei; Liao, Zhipeng; Liu, Weihua

    2017-07-01

    The performance of a robotic hand is severely limited by the tactile feedback information similar to a human hand. Hence, a novel and robust tactile sensor has been developed to cope with the challenge of robotic hand technology. Piezoelectric material is proposed as a suitable candidate for a new efficient tactile sensor due to its excellent piezoelectric properties. In this paper, a novel flexible tactile sensor based on Ce-doped BTO nanofibers was developed. The doping mechanism of cerium ions and the working process of the sensor were analysed. The results showed that sheer stress had no contribution to the sensor, this indicated that the sensor was easy to control according to the individual’s wish. The output voltage of the sensor could reach up to 0.078 V which showed great potential for the future of intelligent robot skin application.

  15. Design of a flexible tactile sensor for classification of rigid and deformable objects

    DEFF Research Database (Denmark)

    Drimus, Alin; Kootstra, Gert; Bilberg, Arne

    2014-01-01

    For both humans and robots, tactile sensing is important for interaction with the environment: it is the core sensing used for exploration and manipulation of objects. In this paper, we present a novel tactile-array sensor based on flexible piezoresistive rubber.We describe the design of the sensor...... of the sensor in an active object-classification system. A robotic gripper with two sensors mounted on its fingers performs a palpation procedure on a set of objects. By squeezing an object, the robot actively explores the material properties, and the system acquires tactile information corresponding...... to the resulting pressure. Based on a k-nearest neighbor classifier and using dynamic time warping to calculate the distance between different time series, the system is able to successfully classify objects. Our sensor demonstrates similar classification performance to the Weiss Robotics tactile sensor, while...

  16. Increasing top-down suppression from prefrontal cortex facilitates tactile working memory.

    Science.gov (United States)

    Hannula, Henri; Neuvonen, Tuomas; Savolainen, Petri; Hiltunen, Jaana; Ma, Yuan-Ye; Antila, Hanne; Salonen, Oili; Carlson, Synnöve; Pertovaara, Antti

    2010-01-01

    Navigated transcranial magnetic stimulation (TMS) combined with diffusion-weighted magnetic resonance imaging (DW-MRI) and tractography allows investigating functional anatomy of the human brain with high precision. Here we demonstrate that working memory (WM) processing of tactile temporal information is facilitated by delivering a single TMS pulse to the middle frontal gyrus (MFG) during memory maintenance. Facilitation was obtained only with a TMS pulse applied to a location of the MFG with anatomical connectivity to the primary somatosensory cortex (S1). TMS improved tactile WM also when distractive tactile stimuli interfered with memory maintenance. Moreover, TMS to the same MFG site attenuated somatosensory evoked responses (SEPs). The results suggest that the TMS-induced memory improvement is explained by increased top-down suppression of interfering sensory processing in S1 via the MFG-S1 link. These results demonstrate an anatomical and functional network that is involved in maintenance of tactile temporal WM.

  17. Flow of cortical activity underlying a tactile decision in mice

    OpenAIRE

    Guo, Zengcai V.; Li, Nuo; Huber, Daniel; Ophir, Eran; Gutnisky, Diego; Ting, Jonathan T.; Feng, Guoping; Svoboda, Karel

    2013-01-01

    Perceptual decisions involve distributed cortical activity. Does information flow sequentially from one cortical area to another, or do networks of interconnected areas contribute at the same time? Here we delineate when and how activity in specific areas drives a whisker-based decision in mice. A short-term memory component temporally separated tactile “sensation” and “action” (licking). Using optogenetic inhibition (spatial resolution, 2 mm; temporal resolution, 100 ms), we surveyed the neo...

  18. Audio-Tactile Integration and the Influence of Musical Training

    OpenAIRE

    Kuchenbuch, Anja; Paraskevopoulos, Evangelos; Herholz, Sibylle C.; Pantev, Christo

    2014-01-01

    Perception of our environment is a multisensory experience; information from different sensory systems like the auditory, visual and tactile is constantly integrated. Complex tasks that require high temporal and spatial precision of multisensory integration put strong demands on the underlying networks but it is largely unknown how task experience shapes multisensory processing. Long-term musical training is an excellent model for brain plasticity because it shapes the human brain at function...

  19. Vertically stacked nanocellulose tactile sensor.

    Science.gov (United States)

    Jung, Minhyun; Kim, Kyungkwan; Kim, Bumjin; Lee, Kwang-Jae; Kang, Jae-Wook; Jeon, Sanghun

    2017-11-16

    Paper-based electronic devices are attracting considerable attention, because the paper platform has unique attributes such as flexibility and eco-friendliness. Here we report on what is claimed to be the firstly fully integrated vertically-stacked nanocellulose-based tactile sensor, which is capable of simultaneously sensing temperature and pressure. The pressure and temperature sensors are operated using different principles and are stacked vertically, thereby minimizing the interference effect. For the pressure sensor, which utilizes the piezoresistance principle under pressure, the conducting electrode was inkjet printed on the TEMPO-oxidized-nanocellulose patterned with micro-sized pyramids, and the counter electrode was placed on the nanocellulose film. The pressure sensor has a high sensitivity over a wide range (500 Pa-3 kPa) and a high durability of 10 4 loading/unloading cycles. The temperature sensor combines various materials such as poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS), silver nanoparticles (AgNPs) and carbon nanotubes (CNTs) to form a thermocouple on the upper nanocellulose layer. The thermoelectric-based temperature sensors generate a thermoelectric voltage output of 1.7 mV for a temperature difference of 125 K. Our 5 × 5 tactile sensor arrays show a fast response, negligible interference, and durable sensing performance.

  20. Tactile-Foot Stimulation Can Assist the Navigation of People with Visual Impairment

    Directory of Open Access Journals (Sweden)

    Ramiro Velázquez

    2015-01-01

    Full Text Available Background. Tactile interfaces that stimulate the plantar surface with vibrations could represent a step forward toward the development of wearable, inconspicuous, unobtrusive, and inexpensive assistive devices for people with visual impairments. Objective. To study how people understand information through their feet and to maximize the capabilities of tactile-foot perception for assisting human navigation. Methods. Based on the physiology of the plantar surface, three prototypes of electronic tactile interfaces for the foot have been developed. With important technological improvements between them, all three prototypes essentially consist of a set of vibrating actuators embedded in a foam shoe-insole. Perceptual experiments involving direction recognition and real-time navigation in space were conducted with a total of 60 voluntary subjects. Results. The developed prototypes demonstrated that they are capable of transmitting tactile information that is easy and fast to understand. Average direction recognition rates were 76%, 88.3%, and 94.2% for subjects wearing the first, second, and third prototype, respectively. Exhibiting significant advances in tactile-foot stimulation, the third prototype was evaluated in navigation tasks. Results show that subjects were capable of following directional instructions useful for navigating spaces. Conclusion. Footwear providing tactile stimulation can be considered for assisting the navigation of people with visual impairments.

  1. Effects of fusion between tactile and proprioceptive inputs on tactile perception.

    Directory of Open Access Journals (Sweden)

    Jay P Warren

    2011-03-01

    Full Text Available Tactile perception is typically considered the result of cortical interpretation of afferent signals from a network of mechanical sensors underneath the skin. Yet, tactile illusion studies suggest that tactile perception can be elicited without afferent signals from mechanoceptors. Therefore, the extent that tactile perception arises from isomorphic mapping of tactile afferents onto the somatosensory cortex remains controversial. We tested whether isomorphic mapping of tactile afferent fibers onto the cortex leads directly to tactile perception by examining whether it is independent from proprioceptive input by evaluating the impact of different hand postures on the perception of a tactile illusion across fingertips. Using the Cutaneous Rabbit Effect, a well studied illusion evoking the perception that a stimulus occurs at a location where none has been delivered, we found that hand posture has a significant effect on the perception of the illusion across the fingertips. This finding emphasizes that tactile perception arises from integration of perceived mechanical and proprioceptive input and not purely from tactile interaction with the external environment.

  2. Tactile input and empathy ability modulate the perception of ambiguous biological motion

    Directory of Open Access Journals (Sweden)

    Hörmetjan eYiltiz

    2015-02-01

    Full Text Available Evidence has shown that task-irrelevant auditory cues can bias perceptual decisions regarding directional information associated with biological motion, as indicated in perceptual tasks using point-light walkers (PLWs (Brooks et al., 2007. In the current study, we extended the investigation of cross-modal influences to the tactile domain by asking how tactile input resolves perceptual ambiguity in visual apparent motion, and how empathy ability plays a role in this cross-modal interaction. In Experiment 1, we simulated the tactile feedback on the observers’ fingertips when the (upright or inverted PLWs (comprised of either all red or all green dots were walking (leftwards or rightwards. The temporal periods between tactile events and critical visual events (the PLW’s feet hitting the ground were manipulated so that the tap could lead, synchronize, or lag with the visual foot-hitting-ground event. We found that the temporal structures between tactile (feedback and visual (hitting events systematically modulate the directional perception for upright PLWs, making either leftwards or rightwards more dominant. However, this temporal modulation effect was absent for inverted PLWs. In Experiment 2, we examined how empathy ability modulates cross-modal capture. Instead of generating tactile feedback on participant’s fingertips, we gave taps on their ankles and presented the PLWs with motion directions of approaching (facing towards observer/receding (facing away from observer to resemble normal walking postures. With the same temporal structure, we found that individuals with higher empathic ability were more subject to perceptual bias in the presence of tactile feedback. Taken together, our findings showed that task-irrelevant tactile input can resolve the otherwise ambiguous perception of the directional information of biological motion, whereas cross-modal modulation was mediated by higher level social-cognitive factors, including empathic

  3. Tactile feedback improves auditory spatial localization.

    Science.gov (United States)

    Gori, Monica; Vercillo, Tiziana; Sandini, Giulio; Burr, David

    2014-01-01

    Our recent studies suggest that congenitally blind adults have severely impaired thresholds in an auditory spatial bisection task, pointing to the importance of vision in constructing complex auditory spatial maps (Gori et al., 2014). To explore strategies that may improve the auditory spatial sense in visually impaired people, we investigated the impact of tactile feedback on spatial auditory localization in 48 blindfolded sighted subjects. We measured auditory spatial bisection thresholds before and after training, either with tactile feedback, verbal feedback, or no feedback. Audio thresholds were first measured with a spatial bisection task: subjects judged whether the second sound of a three sound sequence was spatially closer to the first or the third sound. The tactile feedback group underwent two audio-tactile feedback sessions of 100 trials, where each auditory trial was followed by the same spatial sequence played on the subject's forearm; auditory spatial bisection thresholds were evaluated after each session. In the verbal feedback condition, the positions of the sounds were verbally reported to the subject after each feedback trial. The no feedback group did the same sequence of trials, with no feedback. Performance improved significantly only after audio-tactile feedback. The results suggest that direct tactile feedback interacts with the auditory spatial localization system, possibly by a process of cross-sensory recalibration. Control tests with the subject rotated suggested that this effect occurs only when the tactile and acoustic sequences are spatially congruent. Our results suggest that the tactile system can be used to recalibrate the auditory sense of space. These results encourage the possibility of designing rehabilitation programs to help blind persons establish a robust auditory sense of space, through training with the tactile modality.

  4. Tactile feedback improves auditory spatial localization

    Directory of Open Access Journals (Sweden)

    Monica eGori

    2014-10-01

    Full Text Available Our recent studies suggest that congenitally blind adults have severely impaired thresholds in an auditory spatial-bisection task, pointing to the importance of vision in constructing complex auditory spatial maps (Gori et al., 2014. To explore strategies that may improve the auditory spatial sense in visually impaired people, we investigated the impact of tactile feedback on spatial auditory localization in 48 blindfolded sighted subjects. We measured auditory spatial bisection thresholds before and after training, either with tactile feedback, verbal feedback or no feedback. Audio thresholds were first measured with a spatial bisection task: subjects judged whether the second sound of a three sound sequence was spatially closer to the first or the third sound. The tactile-feedback group underwent two audio-tactile feedback sessions of 100 trials, where each auditory trial was followed by the same spatial sequence played on the subject’s forearm; auditory spatial bisection thresholds were evaluated after each session. In the verbal-feedback condition, the positions of the sounds were verbally reported to the subject after each feedback trial. The no-feedback group did the same sequence of trials, with no feedback. Performance improved significantly only after audio-tactile feedback. The results suggest that direct tactile feedback interacts with the auditory spatial localization system, possibly by a process of cross-sensory recalibration. Control tests with the subject rotated suggested that this effect occurs only when the tactile and acoustic sequences are spatially coherent. Our results suggest that the tactile system can be used to recalibrate the auditory sense of space. These results encourage the possibility of designing rehabilitation programs to help blind persons establish a robust auditory sense of space, through training with the tactile modality.

  5. Vision merges with touch in a purely tactile discrimination.

    Science.gov (United States)

    Arabzadeh, Ehsan; Clifford, Colin W G; Harris, Justin A

    2008-07-01

    To construct a coherent percept of the world, the brain continuously combines information across multiple sensory modalities. Simple stimuli from different modalities are usually assumed to be processed in distinct brain areas. However, there is growing evidence that simultaneous stimulation of multiple modalities can influence the activity in unimodal sensory areas and improve or impair performance in unimodal tasks. Do these effects reflect a genuine cross-modal integration of sensory signals, or are they due to changes in the perceiver's ability to locate the stimulus in time and space? We used a behavioral measure to differentiate between these explanations. Our results demonstrate that, under certain circumstances, a noninformative flash of light can have facilitative or detrimental effects on a simple tactile discrimination. The effect of the visual flash mimics that produced by a constant tactile pedestal stimulus. These findings reveal that sensory signals from different modalities can be integrated, even for perceptual judgments within a single modality.

  6. Tactile object exploration using cursor navigation sensors

    DEFF Research Database (Denmark)

    Kraft, Dirk; Bierbaum, Alexander; Kjaergaard, Morten

    2009-01-01

    In robotic applications tactile sensor systems serve the purpose of localizing a contact point and measuring contact forces. We have investigated the applicability of a sensorial device commonly used in cursor navigation technology for tactile sensing in robotics. We show the potential...... aspect of this sensor is that beside a localization of contact points and measurement of the contact normal force also shear forces can be measured. This is relevant for many applications such as surface normal estimation and weight measurements. Scalable tactile sensor arrays have been developed...

  7. Development of a Tactile Sensor Array

    DEFF Research Database (Denmark)

    Marian, Nicolae; Drimus, Alin; Bilberg, Arne

    2010-01-01

    . The paper describes the related research work we have developed for sensor design, exploration and control for a robot gripping system, in order to analyze normal forces applied on the tactile pixels for gripping force control and generate tactile images for gripping positioning and object recognition....... Section 1 gives an introduction of principles and technologies in tactile sensing for robot grippers. Section 2 presents the sensor cell (taxel) and array design and characterization. Section 3 introduces object recognition and shape analysis ideas showing a few preliminary examples, where geometrical...

  8. Vision affects tactile target and distractor processing even when space is task-irrelevant

    Directory of Open Access Journals (Sweden)

    Ann-Katrin eWesslein

    2014-02-01

    Full Text Available The human brain is adapted to integrate the information from multiple sensory modalities into coherent, robust representations of the objects and events in the external world. A large body of empirical research has demonstrated the ubiquitous nature of the interactions that take place between vision and touch, with the former typically dominating over the latter. Many studies have investigated the influence of visual stimuli on the processing of tactile stimuli (and vice versa. Other studies, meanwhile, have investigated the effect of directing a participant’s gaze either toward or else away from the body-part receiving the target tactile stimulation. Other studies, by contrast, have compared performance in those conditions in which the participant’s eyes have been open versus closed. We start by reviewing the research that has been published to date demonstrating the influence of vision on the processing of tactile targets, that is, on those stimuli that have to be attended or responded to. We outline that many – but not all – of the visuotactile interactions that have been observed to date may be attributable to the direction of spatial attention. We then move on to focus on the crossmodal influence of vision, as well as of the direction of gaze, on the processing of tactile distractors. We highlight the results of those studies demonstrating the influence of vision, rather than gaze direction (i.e., the direction of overt spatial attention, on tactile distractor processing (e.g., tactile variants of the negative-priming or flanker task. The conclusion is that no matter how vision of a tactile distractor is engaged, the result would appear to be the same, namely that tactile distractors are processed more thoroughly.

  9. Tactile input and empathy modulate the perception of ambiguous biological motion.

    Science.gov (United States)

    Yiltiz, Hörmetjan; Chen, Lihan

    2015-01-01

    Evidence has shown that task-irrelevant auditory cues can bias perceptual decisions regarding directional information associated with biological motion, as indicated in perceptual tasks using point-light walkers (PLWs) (Brooks et al., 2007). In the current study, we extended the investigation of cross-modal influences to the tactile domain by asking how tactile input resolves perceptual ambiguity in visual apparent motion, and how empathy plays a role in this cross-modal interaction. In Experiment 1, we simulated the tactile feedback on the observers' fingertips when the (upright or inverted) PLWs (comprised of either all red or all green dots) were walking (leftwards or rightwards). The temporal periods between tactile events and critical visual events (the PLW's feet hitting the ground) were manipulated so that the tap could lead, synchronize, or lag the visual foot-hitting-ground event. We found that the temporal structures between tactile (feedback) and visual (hitting) events systematically biases the directional perception for upright PLWs, making either leftwards or rightwards more dominant. However, this effect was absent for inverted PLWs. In Experiment 2, we examined how empathy modulates cross-modal capture. Instead of giving tactile feedback on participants' fingertips, we gave taps on their ankles and presented the PLWs with motion directions of approaching (facing toward observer)/receding (facing away from observer) to resemble normal walking postures. With the same temporal structure, we found that individuals with higher empathy were more subject to perceptual bias in the presence of tactile feedback. Taken together, our findings showed that task-irrelevant tactile input can resolve the otherwise ambiguous perception of the direction of biological motion, and this cross-modal bias was mediated by higher level social-cognitive factors, including empathy.

  10. Design and experimental evaluation of a tactile display featuring magnetorheological fluids

    Science.gov (United States)

    Han, Young-Min; Oh, Jong-Seok; Kim, Jin-Kuy; Choi, Seung-Bok

    2014-07-01

    This paper proposes a novel type of tactile display utilizing magnetorheological (Mr) fluid which can be applied to a robotic system in minimally invasive surgery to provide a surgeon with tactile information on remote biological tissues or organs. As a first step, an actuation mechanism for tactile function is devised utilizing the Mr fluid with a pin array mechanism. Based on the force responses of a human body, the tactile display is appropriately designed and a magnetic analysis is carried out to determine the design parameters using the finite element method. After evaluating the field-dependent force characteristics of the manufactured tactile display, a feed-forward control algorithm based on fuzzy logic is formulated to obtain the desired palpation force. Control performance is demonstrated via palpation force evaluation and psychophysical evaluation. In the results, the actual repulsive forces agreed well with the desired forces and the averaged relative error was less than 1.3%. In addition, the volunteers successfully recognized tactility with a favorable rating value of 3.36 on a five-point scale.

  11. Tactile learning by a whip spider, Phrynus marginemaculatus C.L. Koch (Arachnida, Amblypygi).

    Science.gov (United States)

    Santer, Roger D; Hebets, Eileen A

    2009-04-01

    The ability of animals to learn and remember underpins many behavioural actions and can be crucial for survival in certain contexts, for example in finding and recognising a habitual refuge. The sensory cues that an animal learns in such situations are to an extent determined by its own sensory specialisations. Whip spiders (Arachnida, Amblypygi) are nocturnal and possess uniquely specialised sensory systems that include elongated 'antenniform' forelegs specialised for use as chemo- and mechanosensory feelers. We tested the tactile learning abilities of the whip spider Phrynus marginemaculatus in a maze learning task with two tactile cues of different texture--one associated with an accessible refuge, and the other with an inaccessible refuge. Over ten training trials, whip spiders got faster and more accurate at finding the accessible refuge. During a subsequent test trial where both refuges were inaccessible, whip spiders searched for significantly longer at the tactile cue previously associated with the accessible refuge. Using high-speed cinematography, we describe three distinct antenniform leg movements used by whip spiders during tactile examination. We discuss the potential importance of tactile learning in whip spider behaviour and a possible role for their unique giant sensory neurons in accessing tactile information.

  12. TACTILE SENSING FOR OBJECT IDENTIFICATION

    DEFF Research Database (Denmark)

    Drimus, Alin; Marian, Nicolae; Bilberg, Arne

    2009-01-01

    The artificial sense of touch is a research area that can be considered still in demand, compared with the human dexterity of grasping a wide variety of shapes and sizes, perform complex tasks, and switch between grasps in response to changing task requirements. For handling unknown objects...... described the working principles of a few types of tactile sensing cells, focusing on the piezoresistive materials. Starting from a set of requirements for developing a high resolution flexible array sensor we have investigated if CSA pressure sensitive conductive rubber could be a proper candidate and can...... be used for building an array sensor prototype. Comparing different sensing cell structures in terms of output characteristics, we propose a simple, cheap, yet robust prototype, and we validate that it can be used for object recognition and shape analysis showing a few preliminary examples, where...

  13. Can you see what you feel? Color and folding properties affect visual-tactile material discrimination of fabrics.

    Science.gov (United States)

    Xiao, Bei; Bi, Wenyan; Jia, Xiaodan; Wei, Hanhan; Adelson, Edward H

    2016-01-01

    Humans can often estimate tactile properties of objects from vision alone. For example, during online shopping, we can often infer material properties of clothing from images and judge how the material would feel against our skin. What visual information is important for tactile perception? Previous studies in material perception have focused on measuring surface appearance, such as gloss and roughness, and using verbal reports of material attributes and categories. However, in real life, predicting tactile properties of an object might not require accurate verbal descriptions of its surface attributes or categories. In this paper, we use tactile perception as ground truth to measure visual material perception. Using fabrics as our stimuli, we measure how observers match what they see (photographs of fabric samples) with what they feel (physical fabric samples). The data shows that color has a significant main effect in that removing color significantly reduces accuracy, especially when the images contain 3-D folds. We also find that images of draped fabrics, which revealed 3-D shape information, achieved better matching accuracy than images with flattened fabrics. The data shows a strong interaction between color and folding conditions on matching accuracy, suggesting that, in 3-D folding conditions, the visual system takes advantage of chromatic gradients to infer tactile properties but not in flattened conditions. Together, using a visual-tactile matching task, we show that humans use folding and color information in matching the visual and tactile properties of fabrics.

  14. Tactile Data Entry System, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Building on our successful Phase I Tactile Data Entry program, Barron Associates proposes development of a Glove-Enabled Computer Operations (GECO) system to permit...

  15. Piezoresistive Tactile Sensor Discriminating Multidirectional Forces

    Directory of Open Access Journals (Sweden)

    Youngdo Jung

    2015-10-01

    Full Text Available Flexible tactile sensors capable of detecting the magnitude and direction of the applied force together are of great interest for application in human-interactive robots, prosthetics, and bionic arms/feet. Human skin contains excellent tactile sensing elements, mechanoreceptors, which detect their assigned tactile stimuli and transduce them into electrical signals. The transduced signals are transmitted through separated nerve fibers to the central nerve system without complicated signal processing. Inspired by the function and organization of human skin, we present a piezoresistive type tactile sensor capable of discriminating the direction and magnitude of stimulations without further signal processing. Our tactile sensor is based on a flexible core and four sidewall structures of elastomer, where highly sensitive interlocking piezoresistive type sensing elements are embedded. We demonstrate the discriminating normal pressure and shear force simultaneously without interference between the applied forces. The developed sensor can detect down to 128 Pa in normal pressure and 0.08 N in shear force, respectively. The developed sensor can be applied in the prosthetic arms requiring the restoration of tactile sensation to discriminate the feeling of normal and shear force like human skin.

  16. Endoscopic vs. tactile evaluation of subgingival calculus.

    Science.gov (United States)

    Osborn, Joy B; Lenton, Patricia A; Lunos, Scott A; Blue, Christine M

    2014-08-01

    Endoscopic technology has been developed to facilitate imagery for use during diagnostic and therapeutic phases of periodontal care. The purpose of this study was to compare the level of subgingival calculus detection using a periodontal endoscope with that of conventional tactile explorer in periodontitis subjects. A convenience sample of 26 subjects with moderate periodontitis in at least 2 quadrants was recruited from the University of Minnesota School of Dentistry to undergo quadrant scaling and root planing. One quadrant from each subject was randomized for tactile calculus detection alone and the other quadrant for tactile detection plus the Perioscope ™ (Perioscopy Inc., Oakland, Cali). A calculus index on a 0 to 3 score was performed at baseline and at 2 post-scaling and root planing visits. Sites where calculus was detected at visit 1 were retreated. T-tests were used to determine within-subject differences between Perioscope™ and tactile measures, and changes in measures between visits. Significantly more calculus was detected using the Perioscope™ vs. tactile explorer for all 3 subject visits (pcalculus detection from baseline to visit 1 were statistically significant for both the Perioscope™ and tactile quadrants (pcalculus detection from visit 1 to visit 2 was only significant for the Perioscope™ quadrant (pcalculus at this visit. It was concluded that the addition of a visual component to calculus detection via the Perioscope™ was most helpful in the re-evaluation phase of periodontal therapy. Copyright © 2014 The American Dental Hygienists’ Association.

  17. Vibration-enhanced posture stabilization achieved by tactile supplementation: may blind individuals get extra benefits?

    Science.gov (United States)

    Magalhães, Fernando Henrique; Kohn, André Fabio

    2011-08-01

    Diminished balance ability poses a serious health risk due to the increased likelihood of falling, and impaired postural stability is significantly associated with blindness and poor vision. Noise stimulation (by improving the detection of sub-threshold somatosensory information) and tactile supplementation (i.e., additional haptic information provided by an external contact surface) have been shown to improve the performance of the postural control system. Moreover, vibratory noise added to the source of tactile supplementation (e.g., applied to a surface that the fingertip touches) has been shown to enhance balance stability more effectively than tactile supplementation alone. In view of the above findings, in addition to the well established consensus that blind subjects show superior abilities in the use of tactile information, we hypothesized that blind subjects may take extra benefits from the vibratory noise added to the tactile supplementation and hence show greater improvements in postural stability than those observed for sighted subjects. If confirmed, this hypothesis may lay the foundation for the development of noise-based assistive devices (e.g., canes, walking sticks) for improving somatosensation and hence prevent falls in blind individuals. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Detroit regional transit legal structures and governance.

    Science.gov (United States)

    2014-03-01

    Effective governance of transit systems is created through a qualified, representative, informed, diverse, and committed board of : directors that is ultimately accountable for the financial performance and quality of the service in the designated re...

  19. Observations on human tactile directional sensibility.

    Science.gov (United States)

    Olausson, H; Norrsell, U

    1993-01-01

    1. The ability to tell the direction of a motion across the skin deserve attention for being an easily observed function which provides a sensitive test for disturbances of the peripheral and central nervous systems. The mode of operation, on the other hand, of this tactile directional sensibility is still uncertain. 2. The dependence of directional sensibility on the contact load and distance of movement of a blunt metal tip, has now been determined for the skin of the forearm of normal subjects with the two-alternative forced-choice method. The testing was done under two conditions: elbow bent or straight. Straightening of the arm always reduced the accuracy of the directional sensibility. It also caused measurable changes of cutaneous mechanical properties, which presumably decreased the reliability of afferent information about lateral distension. 3. The average accuracy of the directional sensibility was found to be correlated linearly to the logarithm of the contact load, and straightening of the arm decreased the accuracy for each load by corresponding amounts. Similar relationships were found between the accuracy and the distance of movement. 4. Straightening of the arm did not cause any significant average reduction of the contact threshold for point stimulation of the same receptive field. A consistently lowered contact sensitivity, however, was observed for some of the subjects, which may have contributed to the reduction of the directional sensibility in these cases. 5. Correct directional estimations of the movement of the metal tip were obtained for a distance which was a fifth of the shortest distance for a corresponding estimation of the movement of a frictionless stimulus. The findings thus indicated that the friction between a moving object and the underlying skin, which can be mediated via stretch-sensitive cutaneous receptors, is critical for the determination of its direction of motion. 6. The present observations and previous observations by

  20. The Fiscal Crisis of the State: A Case Study of Education in Detroit.

    Science.gov (United States)

    Hill, Richard Child

    In this case study, the effect of the Detroit fiscal crisis on the city's public school system is analyzed in terms of the history of the fiscal crisis, the reasons for the crisis, and State, teacher, public and city reaction to the situation. The changing demography of Detroit and the events leading up to the financial crisis are described. Such…

  1. 78 FR 26293 - Safety Zones; Annual Events in the Captain of the Port Detroit Zone

    Science.gov (United States)

    2013-05-06

    ... launch site located at position 41[deg]34'18'' N, 082[deg]51'18'' W (NAD 83). This safety zone will be...-AA00 Safety Zones; Annual Events in the Captain of the Port Detroit Zone AGENCY: Coast Guard, DHS... zones for annual events in the Captain of the Port Detroit Zone. This proposed rule is intended to amend...

  2. 77 FR 30245 - Safety Zones; Annual Fireworks Events in the Captain of the Port Detroit Zone

    Science.gov (United States)

    2012-05-22

    ...'' N, 082-51'-18.70'' W (NAD 83). This proposed zone would be enforced one evening during the last week...-AA00 Safety Zones; Annual Fireworks Events in the Captain of the Port Detroit Zone AGENCY: Coast Guard... by adding three permanent safety zones within the Captain of the Port Detroit Zone. This action is...

  3. 76 FR 34867 - Safety Zones; Annual Fireworks Events in the Captain of the Port Detroit Zone

    Science.gov (United States)

    2011-06-15

    ....941(a)(51) Target Fireworks, Detroit, MI The first safety zone will be enforced from 7 a.m. on June 24... Zones; Annual Fireworks Events in the Captain of the Port Detroit Zone AGENCY: Coast Guard, DHS. ACTION: Notice of enforcement of regulation. SUMMARY: The Coast Guard will enforce various safety zones for...

  4. 75 FR 15679 - Foreign-Trade Zone 70-Detroit, MI: Application for Expansion Correction

    Science.gov (United States)

    2010-03-30

    ... DEPARTMENT OF COMMERCE Foreign-Trade Zones Board [Docket 14-2010] Foreign-Trade Zone 70--Detroit, MI: Application for Expansion Correction The Federal Register notice published on March 11, 2010 (75 FR 11514) describing the expansion of FTZ 70, Detroit, Michigan, is corrected as follows: In...

  5. 75 FR 11514 - Foreign-Trade Zone 70 - Detroit, Michigan, Application for Expansion

    Science.gov (United States)

    2010-03-11

    ... DEPARTMENT OF COMMERCE Foreign-Trade Zones Board [Docket 14-2010] Foreign-Trade Zone 70 - Detroit, Michigan, Application for Expansion An application has been submitted to the Foreign-Trade Zones Board (the Board) by the Greater Detroit Foreign Trade Zone, Inc., grantee of FTZ 70, requesting authority to...

  6. Driving Change in Detroit: Libraries Innovating in Step with the Community

    Science.gov (United States)

    Meyer, Jessica; Chang, Allister; Trujillo, Kat

    2017-01-01

    Often, the conversation about Detroit features the same words used over and over again: poor, broken, abandoned, blighted. But the authors' experiences in the Motor City have shown them something completely different--a community that, in the face of overwhelming challenges, maintains a profound commitment to making Detroit a better place. This…

  7. 78 FR 10129 - Reorganization of Foreign-Trade Zone 70 Under Alternative Site Framework, Detroit, MI

    Science.gov (United States)

    2013-02-13

    ... DEPARTMENT OF COMMERCE Foreign-Trade Zones Board [Order No. 1878] Reorganization of Foreign-Trade Zone 70 Under Alternative Site Framework, Detroit, MI Pursuant to its authority under the Foreign-Trade...(c)) as an option for the establishment or reorganization of zones; Whereas, the Greater Detroit...

  8. Addendum: Analysis of Market Research Findings Utilizing Race and Income Variables for the Metropolitan Detroit Area and for Columbus, Ohio.

    Science.gov (United States)

    Michigan-Ohio Regional Educational Lab., Inc., Detroit.

    This analysis, using race and income variables, presents market research findings for the metropolitan Detroit area and for Columbus, Ohio. The four sections are divided into: (I) summary statements for metropolitan Detroit; (II) description of findings for metropolitan Detroit area; (III) summary statements for Columbus data; and (IV) description…

  9. Ambiguity in Tactile Apparent Motion Perception.

    Directory of Open Access Journals (Sweden)

    Emanuela Liaci

    Full Text Available In von Schiller's Stroboscopic Alternative Motion (SAM stimulus two visually presented diagonal dot pairs, located on the corners of an imaginary rectangle, alternate with each other and induce either horizontal, vertical or, rarely, rotational motion percepts. SAM motion perception can be described by a psychometric function of the dot aspect ratio ("AR", i.e. the relation between vertical and horizontal dot distances. Further, with equal horizontal and vertical dot distances (AR = 1 perception is biased towards vertical motion. In a series of five experiments, we presented tactile SAM versions and studied the role of AR and of different reference frames for the perception of tactile apparent motion.We presented tactile SAM stimuli and varied the ARs, while participants reported the perceived motion directions. Pairs of vibration stimulators were attached to the participants' forearms and stimulator distances were varied within and between forearms. We compared straight and rotated forearm conditions with each other in order to disentangle the roles of exogenous and endogenous reference frames.Increasing the tactile SAM's AR biased perception towards vertical motion, but the effect was weak compared to the visual modality. We found no horizontal disambiguation, even for very small tactile ARs. A forearm rotation by 90° kept the vertical bias, even though it was now coupled with small ARs. A 45° rotation condition with crossed forearms, however, evoked a strong horizontal motion bias.Existing approaches to explain the visual SAM bias fail to explain the current tactile results. Particularly puzzling is the strong horizontal bias in the crossed-forearm conditions. In the case of tactile apparent motion, there seem to be no fixed priority rule for perceptual disambiguation. Rather the weighting of available evidence seems to depend on the degree of stimulus ambiguity, the current situation and on the perceptual strategy of the individual

  10. The attentional-relevance and temporal dynamics of visual-tactile crossmodal interactions differentially influence early stages of somatosensory processing.

    Science.gov (United States)

    Popovich, Christina; Staines, W Richard

    2014-03-01

    Crossmodal interactions between relevant visual and tactile inputs can enhance attentional modulation at early stages in somatosensory cortices to achieve goal-oriented behaviors. However, the specific contribution of each sensory system during attentional processing remains unclear. We used EEG to investigate the effects of visual priming and attentional relevance in modulating somatosensory cortical responses. Healthy adults performed a sensory integration task that required scaled motor responses dependent on the amplitudes of tactile and visual stimuli. Participants completed an attentional paradigm comprised of 5 conditions that presented sequential or concurrent pairs of discrete stimuli with random amplitude variations: 1) tactile-tactile (TT), 2) visual-visual (VV), 3) visual-tactile simultaneous (SIM), 4) tactile-visual delay (TVd), and 5) visual-tactile delay (VTd), each with a 100 ms temporal delay between stimulus onsets. Attention was directed to crossmodal conditions and graded motor responses representing the summation of the 2 stimulus amplitudes were made. Results of somatosensory ERPs showed that the modality-specific components (P50, P100) were sensitive to i) the temporal dynamics of crossmodal interactions, and ii) the relevance of these sensory signals for behaviour. Notably, the P50 amplitude was greatest in the VTd condition, suggesting that presentation of relevant visual information for upcoming movement modulates somatosensory processing in modality-specific cortical regions, as early as the primary somatosensory cortex (SI).

  11. Biologically inspired multi-layered synthetic skin for tactile feedback in prosthetic limbs.

    Science.gov (United States)

    Osborn, Luke; Nguyen, Harrison; Betthauser, Joseph; Kaliki, Rahul; Thakor, Nitish

    2016-08-01

    The human body offers a template for many state-of-the-art prosthetic devices and sensors. In this work, we present a novel, sensorized synthetic skin that mimics the natural multi-layered nature of mechanoreceptors found in healthy glabrous skin to provide tactile information. The multi-layered sensor is made up of flexible piezoresistive textiles that act as force sensitive resistors (FSRs) to convey tactile information, which are embedded within a silicone rubber to resemble the compliant nature of human skin. The top layer of the synthetic skin is capable of detecting small loads less than 5 N whereas the bottom sensing layer responds reliably to loads over 7 N. Finite element analysis (FEA) of a simplified human fingertip and the synthetic skin was performed. Results suggest similarities in behavior during loading. A natural tactile event is simulated by loading the synthetic skin on a prosthetic limb. Results show the sensors' ability to detect applied loads as well as the ability to simulate neural spiking activity based on the derivative and temporal differences of the sensor response. During the tactile loading, the top sensing layer responded 0.24 s faster than the bottom sensing layer. A synthetic biologically-inspired skin such as this will be useful for enhancing the functionality of prosthetic limbs through tactile feedback.

  12. Tactile force perception depends on the visual speed of the collision object.

    Science.gov (United States)

    Arai, Kan; Okajima, Katsunori

    2009-10-22

    Previous research on the interaction between vision and touch has employed static visual and continuous tactile stimuli, and has shown that two kinds of multimodal interaction effect exist: the averaging effect and the contrast effect. The averaging effect has been used to explain several kinds of stimuli interaction while the contrast effect is associated only with the size-weight illusion (A. Charpentier, 1891). Here, we describe a novel visuotactile interaction using visual motion information that can be explained with the contrast effect. We show that the magnitude of tactile force perception (MTFP) from an impact on the palm is significantly modified by the visual motion information of a virtual collision event. Our collision simulator generates visual stimuli independently from the corresponding tactile stimuli. The results show that visual speed modified MTFP even though the actual contact force remained constant: higher visual pre- and post-collision speeds induced lower tactile force perception. Finally, we propose a quantitative model of MTFP in which MTFP is expressed as a function of the visual velocity difference, suggesting that the gain of the tactile perception in the human brain is altered via MTFP modulation.

  13. Inert gas narcosis has no influence on thermo-tactile sensation.

    Science.gov (United States)

    Jakovljević, Miroljub; Vidmar, Gaj; Mekjavic, Igor B

    2012-05-01

    Contribution of skin thermal sensors under inert gas narcosis to the raising hypothermia is not known. Such information is vital for understanding the impact of narcosis on behavioural thermoregulation, diver safety and judgment of thermal (dis)comfort in the hyperbaric environment. So this study aimed at establishing the effects of normoxic concentration of 30% nitrous oxide (N(2)O) on thermo-tactile threshold sensation by studying 16 subjects [eight females and eight males; eight sensitive (S) and eight non-sensitive (NS) to N(2)O]. Their mean (SD) age was 22.1 (1.8) years, weight 72.8 (15.3) kg, height 1.75 (0.10) m and body mass index 23.8 (3.8) kg m(-2). Quantitative thermo-tactile sensory testing was performed on forearm, upper arm and thigh under two experimental conditions: breathing air (air trial) and breathing normoxic mixture of 30% N(2)O (N(2)O trial) in the mixed sequence. Difference in thermo-tactile sensitivity thresholds between two groups of subjects in two experimental conditions was analysed by 3-way mixed-model analysis of covariance. There were no statistically significant differences in thermo-tactile thresholds either between the Air and N(2)O trials, or between S and NS groups, or between females and males, or with respect to body mass index. Some clinically insignificant lowering of thermo-tactile thresholds occurred only for warm thermo-tactile thresholds on upper arm and thigh. The results indicated that normoxic mixture of 30% N(2)O had no influence on thermo-tactile sensation in normothermia.

  14. Restoring Detroit's Street Lighting System

    Energy Technology Data Exchange (ETDEWEB)

    Kinzey, Bruce R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-10-21

    The City of Detroit is undertaking a comprehensive restoration of its street lighting system that includes transitioning the existing high-pressure sodium (HPS) sources to light-emitting diode (LED). Detroit’s well-publicized financial troubles over the last several years have added many hurdles and constraints to this process. Strategies to overcome these issues have largely been successful, but have also brought some mixed results. This document provides an objective review of the circumstances surrounding the system restoration, the processes undertaken and decisions made, and the results so far.

  15. Freezing in Touch: Sound Enhances Tactile Perception

    Directory of Open Access Journals (Sweden)

    Ya-Yeh Tsai

    2011-10-01

    Full Text Available Perceptual segregation in rapidly changing visual displays can be facilitated by a synchronized salient sound that segregates itself from other sounds in the sequence (Vroomen & de Gelder, 2000. We examined whether this “freezing” phenomenon can also be found in tactile perception. Three vibrators were placed on the participant's palm to produce four different tactile patterns. Four sounds were presented separately and simultaneously with each of the four tactile patterns. Among the three same-pitch tones, an abrupt high-pitch tone was presented simultaneously with the designated temporal position of the target pattern in the sequence of tactual stimuli that was presented rapidly and repeatedly. The task was to identify the tactile pattern of the target. Results showed that participants responded faster and more accurately with the high-pitch tone, compared to the condition when all the tones were of the same pitch. However, the result reversed when an extra tactile cue was presented on the wrist. This suggests that a salient auditory signal can improve perceptual segregation not only in vision but also in touch. That is, it is a cross-modal facilitation, not an alerting or attentional cueing effect.

  16. Generation of tactile maps for artificial skin.

    Directory of Open Access Journals (Sweden)

    Simon McGregor

    Full Text Available Prior research has shown that representations of retinal surfaces can be learned from the intrinsic structure of visual sensory data in neural simulations, in robots, as well as by animals. Furthermore, representations of cochlear (frequency surfaces can be learned from auditory data in neural simulations. Advances in hardware technology have allowed the development of artificial skin for robots, realising a new sensory modality which differs in important respects from vision and audition in its sensorimotor characteristics. This provides an opportunity to further investigate ordered sensory map formation using computational tools. We show that it is possible to learn representations of non-trivial tactile surfaces, which require topologically and geometrically involved three-dimensional embeddings. Our method automatically constructs a somatotopic map corresponding to the configuration of tactile sensors on a rigid body, using only intrinsic properties of the tactile data. The additional complexities involved in processing the tactile modality require the development of a novel multi-dimensional scaling algorithm. This algorithm, ANISOMAP, extends previous methods and outperforms them, producing high-quality reconstructions of tactile surfaces in both simulation and hardware tests. In addition, the reconstruction turns out to be robust to unanticipated hardware failure.

  17. Tactile mental body parts representation in obesity.

    Science.gov (United States)

    Scarpina, Federica; Castelnuovo, Gianluca; Molinari, Enrico

    2014-12-30

    Obese people׳s distortions in visually-based mental body-parts representations have been reported in previous studies, but other sensory modalities have largely been neglected. In the present study, we investigated possible differences in tactilely-based body-parts representation between an obese and a healthy-weight group; additionally we explore the possible relationship between the tactile- and the visually-based body representation. Participants were asked to estimate the distance between two tactile stimuli that were simultaneously administered on the arm or on the abdomen, in the absence of visual input. The visually-based body-parts representation was investigated by a visual imagery method in which subjects were instructed to compare the horizontal extension of body part pairs. According to the results, the obese participants overestimated the size of the tactilely-perceived distances more than the healthy-weight group when the arm, and not the abdomen, was stimulated. Moreover, they reported a lower level of accuracy than did the healthy-weight group when estimating horizontal distances relative to their bodies, confirming an inappropriate visually-based mental body representation. Our results imply that body representation disturbance in obese people is not limited to the visual mental domain, but it spreads to the tactilely perceived distances. The inaccuracy was not a generalized tendency but was body-part related. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  18. Tactile Stimulation Reduces Fear in Fish

    Directory of Open Access Journals (Sweden)

    Annett eSchirmer

    2013-11-01

    Full Text Available Being groomed or touched can counter stress and negative affect in mammals. In two experiments we explored whether a similar phenomenon exists in non-mammals like zebrafish. In Experiment 1, we exposed zebrafish to a natural stressor, a chemical alarm signal released by injured conspecifics. Before moving them into an observation tank, one group of fish was washed and then subjected to a water current that served as the tactile stimulus. The other group was simply washed. Fish with tactile treatment demonstrated fewer fear behaviors (e.g., bottom dwelling and lower cortisol levels than fish without. In Experiment 2, we ascertained a role of somatosensation in these effects. Using a similar paradigm as in Experiment 1, we recorded fear behaviors of intact fish and fish with damaged lateral line hair cells. Relative to the former, the latter benefited less from the tactile stimulus during fear recovery. Together these findings show that tactile stimulation can calm fish and that tactile receptors, evolutionarily older than those present in mammals, contribute to this phenomenon.

  19. Tactile Perception for Stroke Induce Changes in Electroencephalography

    Directory of Open Access Journals (Sweden)

    Si-Nae Ahn

    2016-12-01

    Conclusion: The results of this study provided a neurophysiological evidence on tactile perception in individuals with chronic stroke. Occupational therapists should consider an active tactile exploration as a useful modality on occupational performance in rehabilitation training.

  20. Efficacy of Directional Cues from a Tactile System for Target Orientation in Helicopter Extractions over Moving Targets

    Science.gov (United States)

    2013-01-01

    position. The results of this study have the potential to validate the use of sensor technology for navigation and spatial orientation when vision is...sufficiently robust to provide tactile cueing in the noisy helicopter environment. Recent technology developments in piezoelectric materials allow for...standard electric toothbrush . Altitude, position, velocity, and vector information is transmitted from the UH-60 flight simulator to the tactile system

  1. Task demands affect spatial reference frame weighting during tactile localization in sighted and congenitally blind adults.

    Directory of Open Access Journals (Sweden)

    Jonathan T W Schubert

    Full Text Available Task demands modulate tactile localization in sighted humans, presumably through weight adjustments in the spatial integration of anatomical, skin-based, and external, posture-based information. In contrast, previous studies have suggested that congenitally blind humans, by default, refrain from automatic spatial integration and localize touch using only skin-based information. Here, sighted and congenitally blind participants localized tactile targets on the palm or back of one hand, while ignoring simultaneous tactile distractors at congruent or incongruent locations on the other hand. We probed the interplay of anatomical and external location codes for spatial congruency effects by varying hand posture: the palms either both faced down, or one faced down and one up. In the latter posture, externally congruent target and distractor locations were anatomically incongruent and vice versa. Target locations had to be reported either anatomically ("palm" or "back" of the hand, or externally ("up" or "down" in space. Under anatomical instructions, performance was more accurate for anatomically congruent than incongruent target-distractor pairs. In contrast, under external instructions, performance was more accurate for externally congruent than incongruent pairs. These modulations were evident in sighted and blind individuals. Notably, distractor effects were overall far smaller in blind than in sighted participants, despite comparable target-distractor identification performance. Thus, the absence of developmental vision seems to be associated with an increased ability to focus tactile attention towards a non-spatially defined target. Nevertheless, that blind individuals exhibited effects of hand posture and task instructions in their congruency effects suggests that, like the sighted, they automatically integrate anatomical and external information during tactile localization. Moreover, spatial integration in tactile processing is, thus, flexibly

  2. Task demands affect spatial reference frame weighting during tactile localization in sighted and congenitally blind adults.

    Science.gov (United States)

    Schubert, Jonathan T W; Badde, Stephanie; Röder, Brigitte; Heed, Tobias

    2017-01-01

    Task demands modulate tactile localization in sighted humans, presumably through weight adjustments in the spatial integration of anatomical, skin-based, and external, posture-based information. In contrast, previous studies have suggested that congenitally blind humans, by default, refrain from automatic spatial integration and localize touch using only skin-based information. Here, sighted and congenitally blind participants localized tactile targets on the palm or back of one hand, while ignoring simultaneous tactile distractors at congruent or incongruent locations on the other hand. We probed the interplay of anatomical and external location codes for spatial congruency effects by varying hand posture: the palms either both faced down, or one faced down and one up. In the latter posture, externally congruent target and distractor locations were anatomically incongruent and vice versa. Target locations had to be reported either anatomically ("palm" or "back" of the hand), or externally ("up" or "down" in space). Under anatomical instructions, performance was more accurate for anatomically congruent than incongruent target-distractor pairs. In contrast, under external instructions, performance was more accurate for externally congruent than incongruent pairs. These modulations were evident in sighted and blind individuals. Notably, distractor effects were overall far smaller in blind than in sighted participants, despite comparable target-distractor identification performance. Thus, the absence of developmental vision seems to be associated with an increased ability to focus tactile attention towards a non-spatially defined target. Nevertheless, that blind individuals exhibited effects of hand posture and task instructions in their congruency effects suggests that, like the sighted, they automatically integrate anatomical and external information during tactile localization. Moreover, spatial integration in tactile processing is, thus, flexibly adapted by top

  3. Whisker encoding of mechanical events during active tactile exploration

    Directory of Open Access Journals (Sweden)

    Yves eBoubenec

    2012-11-01

    Full Text Available Rats use their whiskers to extract a wealth of information about their immediate environment, such as the shape, position or texture of an object. The information is conveyed to mechanoreceptors located within the whisker follicle in the form of a sequence of whisker deflections induced by the whisker/object contact interaction. How the whiskers filter and shape the mechanical information and effectively participate in the coding of tactile features remains an open question to date. In the present article, a biomechanical model was developed that provides predictions of the whisker dynamics during active tactile exploration, amenable to quantitative experimental comparison. This model is based on a decomposition of the whisker profile into a slow, quasi-static sequence and rapid resonant small-scale vibrations. It was applied to the typical situation of a rat whisking across an object. Having derived the quasi-static sequence of whisker deformation, the resonant properties of the whisker were analyzed, taking into account the boundary conditions imposed by the whisker/surface contact. We then focused on two elementary mechanical events that are expected to trigger neural responses, namely (i the whisker/object first contact and (ii the whisker detachment from the object. Both events were found to trigger a deflection wave propagating upward to the mystacial pad at constant velocity of 3-5m/s. This yielded a characteristic mechanical signature at the whisker base, in the form of a large peak of negative curvature occurring 4ms after the event was triggered. The dependence in amplitude and lag of this mechanical signal with the main contextual parameters (such as radial or angular distance was investigated. The model was validated experimentally by comparing its predictions to high-speed video recordings of shock-induced whisker deflections performed on anesthetized rats. The consequences of these results on possible tactile encoding schemes are

  4. Magnetic Tactile Sensor for Braille Reading

    KAUST Repository

    Alfadhel, Ahmed

    2016-04-27

    We report a biomimetic magnetic tactile sensor for Braille characters reading. The sensor consists of magnetic nanocomposite artificial cilia implemented on magnetic micro sensors. The nanocomposite is produced from the highly elastic polydimethylsiloxane and iron nanowires that exhibit a permanent magnetic behavior. This design enables remote operation and does not require an additional magnetic field to magnetize the nanowires. The highly elastic nanocomposite is easy to pattern, corrosion resistant and thermally stable. The tactile sensors can detect vertical and shear forces, which allows recognizing small changes in surface texture, as in the case of Braille dots. The 6 dots of a braille cell are read from top to bottom with a tactile sensor array consisting of 4 elements and 1 mm long nanocomposite cilia.

  5. Tactile sensing means for prosthetic limbs

    Science.gov (United States)

    Scott, W. L. (Inventor)

    1973-01-01

    An improved prosthetic device characterized by a frame and a socket for mounting on the stump of a truncated human appendage is described. Flexible digits extend from the distal end and transducers located within the digits act as sensing devices for detecting tactile stimuli. The transducers are connected through a power circuit with a slave unit supported by a strap and fixed to the stump. The tactile stimuli detected at the sensing devices are reproduced and applied to the skin of the appendage in order to stimulate the sensory organs located therein.

  6. Cassini Scientist for a Day: a tactile experience

    Science.gov (United States)

    Canas, L.; Altobelli, N.

    2012-09-01

    In September 2011, the Cassini spacecraft took images of three targets and a challenge was launched to all students: to choose the one target they thought would provide the best science and to write an essay explaining their reasons (more information on the "Cassini Scientist for a Day" essay contest official webpage in: http://saturn.jpl.nasa.gov/education/scientistforaday10thedition/, run by NASA/JPL) The three targets presented were: Hyperion, Rhea and Titan, and Saturn. The idea behind "Cassini Scientist for a Day: a tactile experience" was to transform each of these images into schematic tactile images, highlighting relevant features apprehended through a tactile key, accompanied by a small text in Braille with some additional information. This initial approach would allow reach a broader community of students, more specifically those with visual impairment disabilities. Through proper implementation and careful study cases the adapted images associated with an explanatory key provide more resources in tactile astronomy. As the 2012 edition approaches a new set of targeted objet images will be once again transformed and adapted to visually impaired students and will aim to reach more students into participate in this international competition and to engage them in a quest to expand their knowledge in the amazing Cassini discoveries and the wonders of Saturn and its moons. As the winning essays will be published on the Cassini website and contest winners invited to participate in a dedicated teleconference with Cassini scientists from NASA's Jet Propulsion Laboratory, this initiative presents a great chance to all visually impaired students and teachers to participate in an exciting experience. These initiatives must be complemented with further information to strengthen the learning experience. However they stand as a good starting point to tackle further astronomical concepts in the classroom, especially this field that sometimes lacks the resources. Although

  7. Risk prediction and impaired tactile sensory perception among cancer patients during chemotherapy

    Directory of Open Access Journals (Sweden)

    Ana Carolina Lima Ramos Cardoso

    2018-01-01

    Full Text Available ABSTRACT Objectives: to estimate the prevalence of impaired tactile sensory perception, identify risk factors, and establish a risk prediction model among adult patients receiving antineoplastic chemotherapy. Method: historical cohort study based on information obtained from the medical files of 127 patients cared for in the cancer unit of a private hospital in a city in Minas Gerais, Brazil. Data were analyzed using descriptive and bivariate statistics, with survival and multivariate analysis by Cox regression. Results: 57% of the 127 patients included in the study developed impaired tactile sensory perception. The independent variables that caused significant impact, together with time elapsed from the beginning of treatment up to the onset of the condition, were: bone, hepatic and regional lymph node metastases; alcoholism; palliative chemotherapy; and discomfort in lower limbs. Conclusion: impaired tactile sensory perception was common among adult patients during chemotherapy, indicating the need to implement interventions designed for early identification and treatment of this condition.

  8. Investigation of the touch sensitivity of ER fluid based tactile display

    Science.gov (United States)

    Liu, Yanju; Davidson, Rob; Taylor, Paul

    2005-05-01

    A tactile display is programmable device whose controlled surface is intended to be investigated by human touch. It has a great number of potential applications in the field of virtual reality and elsewhere. In this research, a 5x5 touch sensitive tactile display array including electrorheological (ER) fluid has been developed and investigated. Experimental results show that the sensed surface information could be controlled effectively by adjusting the voltage activation pattern imposed on the tactels. In the meantime, it is possible to sense the touching force normal to the display"s surface by monitoring the change of current passing through the ER fluid. These encouraging results are helpful for constructing a new type of tactile display based on ER fluid which can act as both sensor and actuator at the same time.

  9. Diet and habitat use by age-0 deepwater sculpins in northern Lake Huron, Michigan and the Detroit River

    Science.gov (United States)

    Roseman, Edward F.

    2014-01-01

    Deepwater sculpins (Myoxocephalus thompsonii) are an important link in deepwater benthic foodwebs of the Great Lakes. Little information exists about deepwater sculpin spawning habits and early life history ecology due to difficulty in sampling deep offshore habitats. Larval and age-0 deepwater sculpins collected in northern Lake Huron and the Detroit River during 2007 were used to improve our understanding of their habitat use, diet, age, and growth. Peak larval density reached 8.4/1000 m3 in the Detroit River during April and was higher than that in Lake Huron. Offshore bottom trawls at DeTour and Hammond Bay first collected benthic age-0 deepwater sculpins in early September when fish were ≥ 25 mm TL. Otolith analysis revealed that hatch dates for pelagic larvae occurred during late March and larvae remained pelagic for 40 to 60 days. Diet of pelagic larvae (10–21 mm TL) was dominated by calanoid copepods at all sample locations. Diets of benthic age-0 fish varied by location and depth: Mysis and chironomids were prevalent in fish from Hammond Bay and the 91 m site at DeTour, but only chironomids were found in fish from the 37 m DeTour site. This work showed that nearshore epilimnetic sites were important for pelagic larvae and an ontogenetic shift from pelagic planktivore to benthivore occurred at about 25 mm TL in late summer. Age analysis showed that larvae remained pelagic long enough to be transported through the St. Clair–Detroit River system, Lake Erie, and the Niagara River, potentially contributing to populations in Lake Ontario.

  10. GelSight: High-Resolution Robot Tactile Sensors for Estimating Geometry and Force

    Directory of Open Access Journals (Sweden)

    Wenzhen Yuan

    2017-11-01

    Full Text Available Tactile sensing is an important perception mode for robots, but the existing tactile technologies have multiple limitations. What kind of tactile information robots need, and how to use the information, remain open questions. We believe a soft sensor surface and high-resolution sensing of geometry should be important components of a competent tactile sensor. In this paper, we discuss the development of a vision-based optical tactile sensor, GelSight. Unlike the traditional tactile sensors which measure contact force, GelSight basically measures geometry, with very high spatial resolution. The sensor has a contact surface of soft elastomer, and it directly measures its deformation, both vertical and lateral, which corresponds to the exact object shape and the tension on the contact surface. The contact force, and slip can be inferred from the sensor’s deformation as well. Particularly, we focus on the hardware and software that support GelSight’s application on robot hands. This paper reviews the development of GelSight, with the emphasis in the sensing principle and sensor design. We introduce the design of the sensor’s optical system, the algorithm for shape, force and slip measurement, and the hardware designs and fabrication of different sensor versions. We also show the experimental evaluation on the GelSight’s performance on geometry and force measurement. With the high-resolution measurement of shape and contact force, the sensor has successfully assisted multiple robotic tasks, including material perception or recognition and in-hand localization for robot manipulation.

  11. A New Dynamic Tactile Display for Reconfigurable Braille: Implementation and Tests

    Directory of Open Access Journals (Sweden)

    Paolo eMotto Ros

    2014-04-01

    Full Text Available Different tactile interfaces have been proposed to represent either text (braille or, in a few cases, tactile large-area screens as replacements for visual displays. None of the implementations so far can be customized to match users preferences, perceptual differences and skills. Optimal choices in these respects are still debated; we approach a solution by designing a flexible device allowing the user to choose key parameters of tactile transduction.We present here a new dynamic tactile display, a 8×8 matrix of plastic pins based on well-established and reliable piezoelectric technology to offer high resolution (pin gap 0.7 mm as well as tunable strength of the pins displacement, and refresh rate up to 50 s-1. It can reproduce arbitrary patterns, allowing it to serve the dual purpose of providing, depending on contingent user needs, tactile rendering of non-character information, and reconfigurable braille rendering. Given the relevance of the latter functionality for the expected average user, we considered testing braille encoding by volunteers a benchmark of primary importance. Tests were performed to assess the acceptance and usability with minimal training, and to check whether the offered flexibility was indeed perceived by the subject as an added value compared to conventional braille devices. Different mappings between braille dots and actual tactile pins were implemented to match user needs.Performances of eight experienced braille readers were defined as the fraction of correct identifications of rendered content. Different information contents were tested (median performance on random strings, words, sentences identification was about 75%, 85%, 98%, respectively, with a significant increase, p< 0.01, obtaining statistically significant improvements in performance during the tests (p< 0.05. Experimental results, together with qualitative ratings provided by the subjects, show a good acceptance and the effectiveness of the proposed

  12. The influence of tactile cognitive maps on auditory space perception in sighted persons.

    Directory of Open Access Journals (Sweden)

    Alessia Tonelli

    2016-11-01

    Full Text Available We have recently shown that vision is important to improve spatial auditory cognition. In this study we investigate whether touch is as effective as vision to create a cognitive map of a soundscape. In particular we tested whether the creation of a mental representation of a room, obtained through tactile exploration of a 3D model, can influence the perception of a complex auditory task in sighted people. We tested two groups of blindfolded sighted people – one experimental and one control group – in an auditory space bisection task. In the first group the bisection task was performed three times: specifically, the participants explored with their hands the 3D tactile model of the room and were led along the perimeter of the room between the first and the second execution of the space bisection. Then, they were allowed to remove the blindfold for a few minutes and look at the room between the second and third execution of the space bisection. Instead, the control group repeated for two consecutive times the space bisection task without performing any environmental exploration in between. Considering the first execution as a baseline, we found an improvement in the precision after the tactile exploration of the 3D model. Interestingly, no additional gain was obtained when room observation followed the tactile exploration, suggesting that no additional gain was obtained by vision cues after spatial tactile cues were internalized. No improvement was found between the first and the second execution of the space bisection without environmental exploration in the control group, suggesting that the improvement was not due to task learning. Our results show that tactile information modulates the precision of an ongoing space auditory task as well as visual information. This suggests that cognitive maps elicited by touch may participate in cross-modal calibration and supra-modal representations of space that increase implicit knowledge about sound

  13. Investigating Visual-Tactile Interactions over Time and Space in Adults with Autism

    Science.gov (United States)

    Poole, Daniel; Gowen, Emma; Warren, Paul A.; Poliakoff, Ellen

    2015-01-01

    It has been suggested that the sensory symptoms which affect many people with autism spectrum conditions (ASC) may be related to alterations in multisensory processing. Typically, the likelihood of interactions between the senses increases when information is temporally and spatially coincident. We explored visual-tactile interactions in adults…

  14. Tactile pavement for guiding walking direction: An assessment of heading direction and gait stability.

    NARCIS (Netherlands)

    Pluyter, N.; de Wit, L.P.; Bruijn, S.M.; Plaisier, M.A.

    2015-01-01

    For maintaining heading direction while walking we heavily rely on vision. Therefore, walking in the absence of vision or with visual attention directed elsewhere potentially leads to dangerous situations. Here we investigated whether tactile information from the feet can be used as a (partial)

  15. Short-term memory for spatial configurations in the tactile modality: a comparison with vision.

    Science.gov (United States)

    Picard, Delphine; Monnier, Catherine

    2009-11-01

    This study investigates the role of acquisition constraints on the short-term retention of spatial configurations in the tactile modality in comparison with vision. It tests whether the sequential processing of information inherent to the tactile modality could account for limitation in short-term memory span for tactual-spatial information. In addition, this study investigates developmental aspects of short-term memory for tactual- and visual-spatial configurations. A total of 144 child and adult participants were assessed for their memory span in three different conditions: tactual, visual, and visual with a limited field of view. The results showed lower tactual-spatial memory span than visual-spatial, regardless of age. However, differences in memory span observed between the tactile and visual modalities vanished when the visual processing of information occurred within a limited field. These results provide evidence for an impact of acquisition constraints on the retention of spatial information in the tactile modality in both childhood and adulthood.

  16. Testing Tactile Masking between the Forearms.

    Science.gov (United States)

    D'Amour, Sarah; Harris, Laurence R

    2016-02-10

    Masking, in which one stimulus affects the detection of another, is a classic technique that has been used in visual, auditory, and tactile research, usually using stimuli that are close together to reveal local interactions. Masking effects have also been demonstrated in which a tactile stimulus alters the perception of a touch at a distant location. Such effects can provide insight into how components of the body's representations in the brain may be linked. Occasional reports have indicated that touches on one hand or forearm can affect tactile sensitivity at corresponding contralateral locations. To explore the matching of corresponding points across the body, we can measure the spatial tuning and effect of posture on contralateral masking. Careful controls are required to rule out direct effects of the remote stimulus, for example by mechanical transmission, and also attention effects in which thresholds may be altered by the participant's attention being drawn away from the stimulus of interest. The use of this technique is beneficial as a behavioural measure for exploring which parts of the body are functionally connected and whether the two sides of the body interact in a somatotopic representation. This manuscript describes a behavioural protocol that can be used for studying contralateral tactile masking.

  17. Tactile Sensory Dysfunction in Children with ADHD

    Directory of Open Access Journals (Sweden)

    Ahmad Ghanizadeh

    2008-01-01

    Full Text Available Objectives: While a group of children with ADHD may have normal behavioral responses to sensory stimuli, another group may be hyperreactive. The aim of this survey was studying association of tactile sensory responsivity with co-morbidity of oppositional defiant disorder (ODD symptoms, subtypes of ADHD, and gender in children with ADHD.

  18. Novel high resolution tactile robotic fingertips

    DEFF Research Database (Denmark)

    Drimus, Alin; Jankovics, Vince; Gorsic, Matija

    2014-01-01

    This paper describes a novel robotic fingertip based on piezoresistive rubber that can sense pressure tactile stimuli with a high spatial resolution over curved surfaces. The working principle is based on a three-layer sandwich structure (conductive electrodes on top and bottom and piezoresistive...

  19. Tactile maze solving in congenitally blind individuals

    DEFF Research Database (Denmark)

    Gagnon, Léa; Kupers, Ron; Schneider, Fabien C

    2010-01-01

    and environmental cues such as temperature and echolocation. We hypothesize that by limiting these cues, blind individuals will lose their advantage compared with controls in spatial navigation tasks. We therefore evaluated the performance of blind and sighted individuals in small-scale, tactile multiple T mazes...

  20. Unmyelinated Tactile Cutaneous Nerves Signal Erotic Sensations

    NARCIS (Netherlands)

    Jönsson, Emma H; Backlund Wasling, Helena; Wagnbeck, Vicktoria; Dimitriadis, Menelaos; Georgiadis, Janniko R; Olausson, Håkan; Croy, Ilona

    IntroductionIntrapersonal touch is a powerful tool for communicating emotions and can among many things evoke feelings of eroticism and sexual arousal. The peripheral neural mechanisms of erotic touch signaling have been less studied. C tactile afferents (unmyelinated low-threshold

  1. The neural substrate for working memory of tactile surface texture.

    Science.gov (United States)

    Kaas, Amanda L; van Mier, Hanneke; Visser, Maya; Goebel, Rainer

    2013-05-01

    Fine surface texture is best discriminated by touch, in contrast to macro geometric features like shape. We used functional magnetic resonance imaging and a delayed match-to-sample task to investigate the neural substrate for working memory of tactile surface texture. Blindfolded right-handed males encoded the texture or location of up to four sandpaper stimuli using the dominant or non-dominant hand. They maintained the information for 10-12 s and then answered whether a probe stimulus matched the memory array. Analyses of variance with the factors Hand, Task, and Load were performed on the estimated percent signal change for the encoding and delay phase. During encoding, contralateral effects of Hand were found in sensorimotor regions, whereas Load effects were observed in bilateral postcentral sulcus (BA2), secondary somatosensory cortex (S2), pre-SMA, dorsolateral prefrontal cortex (dlPFC), and superior parietal lobule (SPL). During encoding and delay, Task effects (texture > location) were found in central sulcus, S2, pre-SMA, dlPFC, and SPL. The Task and Load effects found in hand- and modality-specific regions BA2 and S2 indicate involvement of these regions in the tactile encoding and maintenance of fine surface textures. Similar effects in hand- and modality-unspecific areas dlPFC, pre-SMA and SPL suggest that these regions contribute to the cognitive monitoring required to encode and maintain multiple items. Our findings stress both the particular importance of S2 for the encoding and maintenance of tactile surface texture, as well as the supramodal nature of parieto-frontal networks involved in cognitive control. Copyright © 2012 Wiley Periodicals, Inc.

  2. Tactile allodynia in patients with lumbar radicular pain (sciatica).

    Science.gov (United States)

    Defrin, Ruth; Devor, Marshall; Brill, Silviu

    2014-12-01

    We report a novel symptom in many patients with low back pain (LBP) that sheds new light on the underlying pain mechanism. By means of quantitative sensory testing, we compared patients with radicular LBP (sciatica), axial LBP (LBP without radiation into the leg), and healthy controls, searching for cutaneous allodynia in response to weak tactile and cooling stimuli on the leg and low back. Most patients with radicular pain (~60%) reported static and dynamic tactile allodynia, as well as cooling allodynia, on the leg, often extending into the foot. Some also reported allodynia on the low back. In axial LBP, allodynia was almost exclusively on the back. The degree of dynamic tactile allodynia correlated with the degree of background pain. The presence of allodynia suggests that the peripheral nerve generators of background leg and back pain have also induced central sensitization. The distal (foot) location of the allodynia in patients who have it indicates that the nociceptive drive that maintains the central sensitization arises paraspinally (ectopically) in injured ventral ramus afferents; this is not an instance of somatic referred pain. The presence of central sensitization also provides the first cogent account of shooting pain in sciatica as a wave of activity sweeping vectorially across the width of the sensitized dorsal horn. Finally, the results endorse leg allodynia as a pain biomarker in animal research on LBP, which is commonly used but has not been previously validated. In addition to informing the underlying mechanism of LBP, bedside mapping of allodynia might have practical implications for prognosis and treatment. How can you tell whether pain radiating into the leg in a patient with sciatica is neuropathic, ie, due to nerve injury? Copyright © 2014 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  3. Pure associative tactile agnosia for the left hand: clinical and anatomo-functional correlations.

    Science.gov (United States)

    Veronelli, Laura; Ginex, Valeria; Dinacci, Daria; Cappa, Stefano F; Corbo, Massimo

    2014-09-01

    Associative tactile agnosia (TA) is defined as the inability to associate information about object sensory properties derived through tactile modality with previously acquired knowledge about object identity. The impairment is often described after a lesion involving the parietal cortex (Caselli, 1997; Platz, 1996). We report the case of SA, a right-handed 61-year-old man affected by first ever right hemispheric hemorrhagic stroke. The neurological examination was normal, excluding major somaesthetic and motor impairment; a brain magnetic resonance imaging (MRI) confirmed the presence of a right subacute hemorrhagic lesion limited to the post-central and supra-marginal gyri. A comprehensive neuropsychological evaluation detected a selective inability to name objects when handled with the left hand in the absence of other cognitive deficits. A series of experiments were conducted in order to assess each stage of tactile recognition processing using the same stimulus sets: materials, 3D geometrical shapes, real objects and letters. SA and seven matched controls underwent the same experimental tasks during four sessions in consecutive days. Tactile discrimination, recognition, pantomime, drawing after haptic exploration out of vision and tactile-visual matching abilities were assessed. In addition, we looked for the presence of a supra-modal impairment of spatial perception and of specific difficulties in programming exploratory movements during recognition. Tactile discrimination was intact for all the stimuli tested. In contrast, SA was able neither to recognize nor to pantomime real objects manipulated with the left hand out of vision, while he identified them with the right hand without hesitations. Tactile-visual matching was intact. Furthermore, SA was able to grossly reproduce the global shape in drawings but failed to extract details of objects after left-hand manipulation, and he could not identify objects after looking at his own drawings. This case

  4. Homeless women with minor children in the Detroit metropolitan area.

    Science.gov (United States)

    Mills, C

    1989-11-01

    Eighty-seven homeless families served by the emergency shelter of the Coalition on Temporary Shelter in Detroit during the first quarter of 1987 were studies through a review of admission data. Most of the families were black and contained an adult female with one or two minor children. Most of the mothers were young, did not have a high school diploma, and had no income. Some had histories of psychiatric disorders or substance abuse. Many had been in a dependent living situation before becoming homeless. Children accounted for more than one-fourth of admissions during the study period. Policies should address prevention of homelessness through income support programs, provision of low-income housing, basic living skill training programs, and mental health service delivery. When available resources fail in prevention, programming should address the effects of homelessness on children, because these effects perpetuate a cycle that will increase the homeless population in future generations.

  5. Those are Your Legs: The Effect of Visuo-Spatial Viewpoint on Visuo-Tactile Integration and Body Ownership.

    Science.gov (United States)

    Pozeg, Polona; Galli, Giulia; Blanke, Olaf

    2015-01-01

    Experiencing a body part as one's own, i.e., body ownership, depends on the integration of multisensory bodily signals (including visual, tactile, and proprioceptive information) with the visual top-down signals from peripersonal space. Although it has been shown that the visuo-spatial viewpoint from where the body is seen is an important visual top-down factor for body ownership, different studies have reported diverging results. Furthermore, the role of visuo-spatial viewpoint (sometime also called first-person perspective) has only been studied for hands or the whole body, but not for the lower limbs. We thus investigated whether and how leg visuo-tactile integration and leg ownership depended on the visuo-spatial viewpoint from which the legs were seen and the anatomical similarity of the visual leg stimuli. Using a virtual leg illusion, we tested the strength of visuo-tactile integration of leg stimuli using the crossmodal congruency effect (CCE) as well as the subjective sense of leg ownership (assessed by a questionnaire). Fifteen participants viewed virtual legs or non-corporeal control objects, presented either from their habitual first-person viewpoint or from a viewpoint that was rotated by 90°(third-person viewpoint), while applying visuo-tactile stroking between the participants legs and the virtual legs shown on a head-mounted display. The data show that the first-person visuo-spatial viewpoint significantly boosts the visuo-tactile integration as well as the sense of leg ownership. Moreover, the viewpoint-dependent increment of the visuo-tactile integration was only found in the conditions when participants viewed the virtual legs (absent for control objects). These results confirm the importance of first person visuo-spatial viewpoint for the integration of visuo-tactile stimuli and extend findings from the upper extremity and the trunk to visuo-tactile integration and ownership for the legs.

  6. Brain Process for Perception of the “Out of the Body” Tactile Illusion for Virtual Object Interaction

    Directory of Open Access Journals (Sweden)

    Hye Jin Lee

    2015-04-01

    Full Text Available “Out of the body” tactile illusion refers to the phenomenon in which one can perceive tactility as if emanating from a location external to the body without any stimulator present there. Taking advantage of such a tactile illusion is one way to provide and realize richer interaction feedback without employing and placing actuators directly at all stimulation target points. However, to further explore its potential, it is important to better understand the underlying physiological and neural mechanism. As such, we measured the brain wave patterns during such tactile illusion and mapped out the corresponding brain activation areas. Participants were given stimulations at different levels with the intention to create veridical (i.e., non-illusory and phantom sensations at different locations along an external hand-held virtual ruler. The experimental data and analysis indicate that both veridical and illusory sensations involve, among others, the parietal lobe, one of the most important components in the tactile information pathway. In addition, we found that as for the illusory sensation, there is an additional processing resulting in the delay for the ERP (event-related potential and involvement by the limbic lobe. These point to regarding illusion as a memory and recognition task as a possible explanation. The present study demonstrated some basic understanding; how humans process “virtual” objects and the way associated tactile illusion is generated will be valuable for HCI (Human-Computer Interaction.

  7. 75 FR 32666 - Safety Zones; Annual Fireworks Events in the Captain of the Port Detroit Zone

    Science.gov (United States)

    2010-06-09

    ... Snowden, Prevention Department, Sector Detroit, Coast Guard; telephone (313) 568-9508, e-mail Joseph.H.Snowden@uscg.mil . If you have questions on viewing the docket, call Renee V. Wright, Program Manager...

  8. Congestion relief by travel time minimization in near real time : Detroit area I-75 corridor study.

    Science.gov (United States)

    2008-12-01

    "This document summarizes the activities concerning the project: Congestion Relief by : Travel Time Minimization in Near Real Time -- Detroit Area I-75 Corridor Study since : the inception of the project (Nov. 22, 2006 through September 30, 2008). : ...

  9. Creating World-Class Gathering Places for People and Wildlife along the Detroit Riverfront, Michigan, USA

    Directory of Open Access Journals (Sweden)

    John H. Hartig

    2015-11-01

    Full Text Available Metropolitan Detroit, Michigan, USA is the automobile capital of the world, part of the industrial heartland and Rust Belt, and a major urban area. For over two centuries, the Detroit River was perceived as a working river that supported commerce and industry. Like many other large North American cities, the Motor City made the Detroit River its back door, with businesses facing inland and away from the river. Compounding the problem, Detroit became indifferent to the water pollution that was perceived as a necessary by-product of industrial progress. By the 1960s, the Detroit River was one of the most polluted rivers in North America. Today, the cleanup and recovery of the Detroit River represent one of the most remarkable ecological recovery stories in North America with the return of bald eagles, peregrine falcons, osprey, lake sturgeon, lake whitefish, mayflies, and more. Out of this recovery has come two transformational projects—the Detroit River International Wildlife Refuge and the Detroit RiverWalk—that are helping change the perception of the region from that of a Rust Belt city to one of a leader of urban sustainability that reconnects people to nature, improves quality of life, promotes sustainable redevelopment, and enhances community pride. Key lessons learned include: recruit a well-respected champion; ensure broad support from key stakeholder groups; establish core delivery team, focused on outcomes; build trust; adopt a strategic approach to community engagement, creating a connected community; evoke a sense of place; and measure and celebrate successes to sustain momentum.

  10. Dopaminergic influences on changes in human tactile acuity induced by tactile coactivation.

    Science.gov (United States)

    Bliem, Barbara; Frombach, Elke; Ragert, Patrick; Knossalla, Frauke; Woitalla, Dirk; Tegenthoff, Martin; Dinse, Hubert R

    2007-07-01

    As shown in animal experiments, dopaminergic mechanisms participate in N-methyl-D-aspartate (NMDA) receptor-dependent neuroplasticity. Dopamine is thought to play a similar role in humans, where it influences learning and memory. Here, we tested the dopaminergic action on learning in the tactile domain. To induce tactile non-associative learning, we applied a tactile coactivation protocol, which is known to improve tactile two-point discrimination of the stimulated finger. We studied the influence of a single oral dose of levodopa (25, 50, 100, 250 or 350 mg) administered preceding the coactivation protocol on changes in tactile performance in different groups of subjects. In addition, 3 x 100 mg levodopa was administered over a time period of 3 h in another group. Under placebo conditions, tactile two-point discrimination was improved on the coactivated index finger. Similar improvement was found when 25, 50 and 250 mg levodopa was applied. On the contrary, tactile improvement was completely eliminated by 1 x 100 and 3 x 100 mg levodopa. No drug effects were found on the left index finger indicating that the drug had no effect on performance per se. In contrast to previous findings in the motor and speech domain, we found that the administration of levodopa exerts either no or even negative effects on non-associative learning in the human somatosensory system. Whenever levodopa is used in neurorehabilitative context, it has to be kept in mind that beneficial effects in the motor or speech domain cannot be easily generalized to other systems.

  11. Instrumental tactile diagnostics in robot-assisted surgery

    Directory of Open Access Journals (Sweden)

    Solodova RF

    2016-10-01

    Full Text Available Rozalia F Solodova,1,2 Vladimir V Galatenko,1,2 Eldar R Nakashidze,3 Igor L Andreytsev,3 Alexey V Galatenko,1 Dmitriy K Senchik,2 Vladimir M Staroverov,1 Vladimir E Podolskii,1,2 Mikhail E Sokolov,1,2 Victor A Sadovnichy1,2 1Faculty of Mechanics and Mathematics, 2Institute of Mathematical Studies of Complex Systems, Lomonosov Moscow State University, 31st Surgery Department, Clinical Hospital 31, Moscow, Russia Background: Robotic surgery has gained wide acceptance due to minimizing trauma in patients. However, the lack of tactile feedback is an essential limiting factor for the further expansion. In robotic surgery, feedback related to touch is currently kinesthetic, and it is mainly aimed at the minimization of force applied to tissues and organs. Design and implementation of diagnostic tactile feedback is still an open problem. We hypothesized that a sufficient tactile feedback in robot-assisted surgery can be provided by utilization of Medical Tactile Endosurgical Complex (MTEC, which is a novel specialized tool that is already commercially available in the Russian Federation. MTEC allows registration of tactile images by a mechanoreceptor, real-time visualization of these images, and reproduction of images via a tactile display. Materials and methods: Nine elective surgeries were performed with da Vinci™ robotic system. An assistant performed tactile examination through an additional port under the guidance of a surgeon during revision of tissues. The operating surgeon sensed registered tactile data using a tactile display, and the assistant inspected the visualization of tactile data. First, surgeries where lesion boundaries were visually detectable were performed. The goal was to promote cooperation between the surgeon and the assistant and to train them in perception of the tactile feedback. Then, instrumental tactile diagnostics was utilized in case of visually undetectable boundaries. Results: In robot-assisted surgeries where lesion

  12. Using tactile features to help functionally blind individuals denominate banknotes.

    Science.gov (United States)

    Lederman, Susan J; Hamilton, Cheryl

    2002-01-01

    This study, which was conducted for the Bank of Canada, assessed the feasibility of presenting a raised texture feature together with a tactile denomination code on the next Canadian banknote series ($5, $10, $20, $50, and $100). Adding information accessible by hand would permit functionally blind individuals to independently denominate banknotes. In Experiment 1, 20 blindfolded, sighted university students denominated a set of 8 alternate tactile feature designs. Across the 8 design series, the proportion of correct responses never fell below .97; the mean response time per banknote ranged from 11.4 to 13.1 s. In Experiment 2, 27 functionally blind participants denominated 4 of the previous 8 candidate sets of banknotes. The proportion of correct responses never fell below .92; the corresponding mean response time per banknote ranged from 11.7 to 13.0 s. The Bank of Canada selected one of the four raised-texture designs for inclusion on its new banknote series. Other potential applications include designing haptic displays for teleoperation and virtual environment systems.

  13. The Tactile Modality: A Review of Tactile Sensitivity and Human Tactile Interfaces

    National Research Council Canada - National Science Library

    Myles, Kimberly; Binseel, Mary S

    2007-01-01

    .... Because humans have a limited capacity to receive, hold in working memory, and cognitively process information taken from the environment, the use of one sensory modality to convey information within...

  14. Computational Intelligence Techniques for Tactile Sensing Systems

    Science.gov (United States)

    Gastaldo, Paolo; Pinna, Luigi; Seminara, Lucia; Valle, Maurizio; Zunino, Rodolfo

    2014-01-01

    Tactile sensing helps robots interact with humans and objects effectively in real environments. Piezoelectric polymer sensors provide the functional building blocks of the robotic electronic skin, mainly thanks to their flexibility and suitability for detecting dynamic contact events and for recognizing the touch modality. The paper focuses on the ability of tactile sensing systems to support the challenging recognition of certain qualities/modalities of touch. The research applies novel computational intelligence techniques and a tensor-based approach for the classification of touch modalities; its main results consist in providing a procedure to enhance system generalization ability and architecture for multi-class recognition applications. An experimental campaign involving 70 participants using three different modalities in touching the upper surface of the sensor array was conducted, and confirmed the validity of the approach. PMID:24949646

  15. AWARENESS: Tactility and Experience as Transformational Strategy

    DEFF Research Database (Denmark)

    Riisberg, Vibeke; Bang, Anne Louise; Locher, Laura

    2015-01-01

    with users. By employing participatory methods in the field of fashion and textiles, we seek to develop an alternative transformational strategy that may further the design of products and services for a more sustainable future. In the initial theoretical section, we define tactile sensibility, which...... discussion on two experiments conducted as part of the Awareness Project. The outcome of the study shows new ways of establishing dialogue between users and designers, as well as furthering reflection and verbalization of areas within the perception of textile and fashion products that are often considered......The Awareness Project investigates the following question: Can dialogue tools that challenge tactile competencies support the development of fashion and textile design in a sustainable direction? In this article, we pay special attention to user engagement and design education and discuss...

  16. Computational intelligence techniques for tactile sensing systems.

    Science.gov (United States)

    Gastaldo, Paolo; Pinna, Luigi; Seminara, Lucia; Valle, Maurizio; Zunino, Rodolfo

    2014-06-19

    Tactile sensing helps robots interact with humans and objects effectively in real environments. Piezoelectric polymer sensors provide the functional building blocks of the robotic electronic skin, mainly thanks to their flexibility and suitability for detecting dynamic contact events and for recognizing the touch modality. The paper focuses on the ability of tactile sensing systems to support the challenging recognition of certain qualities/modalities of touch. The research applies novel computational intelligence techniques and a tensor-based approach for the classification of touch modalities; its main results consist in providing a procedure to enhance system generalization ability and architecture for multi-class recognition applications. An experimental campaign involving 70 participants using three different modalities in touching the upper surface of the sensor array was conducted, and confirmed the validity of the approach.

  17. Computational Intelligence Techniques for Tactile Sensing Systems

    Directory of Open Access Journals (Sweden)

    Paolo Gastaldo

    2014-06-01

    Full Text Available Tactile sensing helps robots interact with humans and objects effectively in real environments. Piezoelectric polymer sensors provide the functional building blocks of the robotic electronic skin, mainly thanks to their flexibility and suitability for detecting dynamic contact events and for recognizing the touch modality. The paper focuses on the ability of tactile sensing systems to support the challenging recognition of certain qualities/modalities of touch. The research applies novel computational intelligence techniques and a tensor-based approach for the classification of touch modalities; its main results consist in providing a procedure to enhance system generalization ability and architecture for multi-class recognition applications. An experimental campaign involving 70 participants using three different modalities in touching the upper surface of the sensor array was conducted, and confirmed the validity of the approach.

  18. A Computational Model of a Descending Mechanosensory Pathway Involved in Active Tactile Sensing.

    Directory of Open Access Journals (Sweden)

    Jan M Ache

    2015-07-01

    Full Text Available Many animals, including humans, rely on active tactile sensing to explore the environment and negotiate obstacles, especially in the dark. Here, we model a descending neural pathway that mediates short-latency proprioceptive information from a tactile sensor on the head to thoracic neural networks. We studied the nocturnal stick insect Carausius morosus, a model organism for the study of adaptive locomotion, including tactually mediated reaching movements. Like mammals, insects need to move their tactile sensors for probing the environment. Cues about sensor position and motion are therefore crucial for the spatial localization of tactile contacts and the coordination of fast, adaptive motor responses. Our model explains how proprioceptive information about motion and position of the antennae, the main tactile sensors in insects, can be encoded by a single type of mechanosensory afferents. Moreover, it explains how this information is integrated and mediated to thoracic neural networks by a diverse population of descending interneurons (DINs. First, we quantified responses of a DIN population to changes in antennal position, motion and direction of movement. Using principal component (PC analysis, we find that only two PCs account for a large fraction of the variance in the DIN response properties. We call the two-dimensional space spanned by these PCs 'coding-space' because it captures essential features of the entire DIN population. Second, we model the mechanoreceptive input elements of this descending pathway, a population of proprioceptive mechanosensory hairs monitoring deflection of the antennal joints. Finally, we propose a computational framework that can model the response properties of all important DIN types, using the hair field model as its only input. This DIN model is validated by comparison of tuning characteristics, and by mapping the modelled neurons into the two-dimensional coding-space of the real DIN population. This

  19. Remote Tactile Displays for Future Soldiers

    Science.gov (United States)

    2007-05-01

    organization of the body that may be related to the amount of sensory cortex sub-serving the loci in question. 6 Later work by Craig (1985...side, Braille readers learn to rapidly perceive and process what they touch quite differently than most, showing unique activity in the visual cortex ...weapons ( M4 ). After a short training session with the tactile systems, each Soldier completed the static and dynamic tests three times, once with each

  20. Tactile perception and working memory in rats and humans.

    Science.gov (United States)

    Fassihi, Arash; Akrami, Athena; Esmaeili, Vahid; Diamond, Mathew E

    2014-02-11

    Primates can store sensory stimulus parameters in working memory for subsequent manipulation, but until now, there has been no demonstration of this capacity in rodents. Here we report tactile working memory in rats. Each stimulus is a vibration, generated as a series of velocity values sampled from a normal distribution. To perform the task, the rat positions its whiskers to receive two such stimuli, "base" and "comparison," separated by a variable delay. It then judges which stimulus had greater velocity SD. In analogous experiments, humans compare two vibratory stimuli on the fingertip. We demonstrate that the ability of rats to hold base stimulus information (for up to 8 s) and their acuity in assessing stimulus differences overlap the performance demonstrated by humans. This experiment highlights the ability of rats to perceive the statistical structure of vibrations and reveals their previously unknown capacity to store sensory information in working memory.

  1. Tactile Feedback Display with Spatial and Temporal Resolutions

    Science.gov (United States)

    Vishniakou, Siarhei; Lewis, Brian W.; Niu, Xiaofan; Kargar, Alireza; Sun, Ke; Kalajian, Michael; Park, Namseok; Yang, Muchuan; Jing, Yi; Brochu, Paul; Sun, Zhelin; Li, Chun; Nguyen, Truong; Pei, Qibing; Wang, Deli

    2013-08-01

    We report the electronic recording of the touch contact and pressure using an active matrix pressure sensor array made of transparent zinc oxide thin-film transistors and tactile feedback display using an array of diaphragm actuators made of an interpenetrating polymer elastomer network. Digital replay, editing and manipulation of the recorded touch events were demonstrated with both spatial and temporal resolutions. Analog reproduction of the force is also shown possible using the polymer actuators, despite of the high driving voltage. The ability to record, store, edit, and replay touch information adds an additional dimension to digital technologies and extends the capabilities of modern information exchange with the potential to revolutionize physical learning, social networking, e-commerce, robotics, gaming, medical and military applications.

  2. Enhanced tactile encoding and memory recognition in congenital blindness.

    Science.gov (United States)

    D'Angiulli, Amedeo; Waraich, Paul

    2002-06-01

    Several behavioural studies have shown that early-blind persons possess superior tactile skills. Since neurophysiological data show that early-blind persons recruit visual as well as somatosensory cortex to carry out tactile processing (cross-modal plasticity), blind persons' sharper tactile skills may be related to cortical re-organisation resulting from loss of vision early in their life. To examine the nature of blind individuals' tactile superiority and its implications for cross-modal plasticity, we compared the tactile performance of congenitally totally blind, low-vision and sighted children on raised-line picture identification test and re-test, assessing effects of task familiarity, exploratory strategy and memory recognition. What distinguished the blind from the other children was higher memory recognition and higher tactile encoding associated with efficient exploration. These results suggest that enhanced perceptual encoding and recognition memory may be two cognitive correlates of cross-modal plasticity in congenital blindness.

  3. Tactile display on the remaining hand for unilateral hand amputees

    Directory of Open Access Journals (Sweden)

    Li Tao

    2016-09-01

    Full Text Available Human rely profoundly on tactile feedback from fingertips to interact with the environment, whereas most hand prostheses used in clinics provide no tactile feedback. In this study we demonstrate the feasibility to use a tactile display glove that can be worn by a unilateral hand amputee on the remaining healthy hand to display tactile feedback from a hand prosthesis. The main benefit is that users could easily distinguish the feedback for each finger, even without training. The claimed advantage is supported by preliminary tests with healthy subjects. This approach may lead to the development of effective and affordable tactile display devices that provide tactile feedback for individual fingertip of hand prostheses.

  4. Simulating potential structural and operational changes for Detroit Dam on the North Santiam River, Oregon-Interim Results

    Science.gov (United States)

    Buccola, Norman L.; Rounds, Stewart A.

    2011-01-01

    Prior to operational changes in 2007, Detroit Dam on the North Santiam River in western Oregon had a well-documented effect on downstream water temperature that was problematic for endangered salmonid fish species. In this U.S. Geological Survey study, done in cooperation with the U.S. Army Corps of Engineers, an existing calibrated CE-QUAL-W2 model of Detroit Lake (the impounded waterbody behind Detroit Dam) was used to determine how changes in dam operation or changes to the structural release points of Detroit Dam might affect downstream water temperatures under a range of historical hydrologic and meteorological conditions.

  5. Research for improved flexible tactile sensor sensitivity

    International Nuclear Information System (INIS)

    Yun, Hae Yong; Kim, Ho Chan; Lee, In Hwan

    2015-01-01

    With the development of robotic technologies, in recent years these technologies have been applied to multidisciplinary fields of study. To operate similarly to a human being, many robot technologies require devices that can receive exterior stimulus, temperature, visual data, and the sense of smell, etc. The robot's hand needs sensor devices that can receive exterior stimuli in order to operate similarly to human skin. The flexible tactile sensor for the robot has to be manufactured to have a shape similar to the shape of human skin. The research studied the development of a system and materials that will enable exterior stimuli to be received effectively. This research used carbon nano tube as a material. Carbon nano tube is used because it has a high electrical conductivity and outstanding mechanical characteristics. In addition, the two composite Materials are used to improve the stimulation sensitivity at different rates, the flexible tactile sensor to measure the sensitivity. Using 3D printing technology, the fabrication of a flexible tactile sensor system is introduced.

  6. Research for improved flexible tactile sensor sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Hae Yong; Kim, Ho Chan [Andong National University, Andong (Korea, Republic of); Lee, In Hwan [Chungbuk National University, Chungju (Korea, Republic of)

    2015-11-15

    With the development of robotic technologies, in recent years these technologies have been applied to multidisciplinary fields of study. To operate similarly to a human being, many robot technologies require devices that can receive exterior stimulus, temperature, visual data, and the sense of smell, etc. The robot's hand needs sensor devices that can receive exterior stimuli in order to operate similarly to human skin. The flexible tactile sensor for the robot has to be manufactured to have a shape similar to the shape of human skin. The research studied the development of a system and materials that will enable exterior stimuli to be received effectively. This research used carbon nano tube as a material. Carbon nano tube is used because it has a high electrical conductivity and outstanding mechanical characteristics. In addition, the two composite Materials are used to improve the stimulation sensitivity at different rates, the flexible tactile sensor to measure the sensitivity. Using 3D printing technology, the fabrication of a flexible tactile sensor system is introduced.

  7. Tactile Studio, artigianato digitale al servizio dell’accessibilità

    OpenAIRE

    Riccardo Leone; Philippe Moreau

    2017-01-01

    Tactile Studio is a design agency for universal design in arts and culture. Tactile experiences are essential for people with visual impairm ents and gr eatly assist many people with cognitive disabilities. Tactile experiences should be included in every exhibition. Children, older adults, people with language diff iculties or fr om diff erent cultural backgr ounds..To name an audience who will not benefit fr om these designs is impossible. Pioneers in France, the nation's top museums have en...

  8. Tactile Roughness Perception in the Presence of Olfactory and Trigeminal Stimulants.

    NARCIS (Netherlands)

    Koijck, Lara A.; Toet, Alexander; van Erp, Johannes Bernardus Fransiscus

    2015-01-01

    Previous research has shown that odorants consistently evoke associations with textures and their tactile properties like smoothness and roughness. Also, it has been observed that olfaction can modulate tactile perception. We therefore hypothesized that tactile roughness perception may be biased

  9. Tactile roughness perception in the presence of olfactory and trigeminal stimulants

    NARCIS (Netherlands)

    Koijck, L.A.; Toet, A.; Erp, J.B.F. van

    2015-01-01

    Previous research has shown that odorants consistently evoke associations with textures and their tactile properties like smoothness and roughness. Also, it has been observed that olfaction can modulate tactile perception. We therefore hypothesized that tactile roughness perception may be biased

  10. Stereo camera based virtual cane system with identifiable distance tactile feedback for the blind.

    Science.gov (United States)

    Kim, Donghun; Kim, Kwangtaek; Lee, Sangyoun

    2014-06-13

    In this paper, we propose a new haptic-assisted virtual cane system operated by a simple finger pointing gesture. The system is developed by two stages: development of visual information delivery assistant (VIDA) with a stereo camera and adding a tactile feedback interface with dual actuators for guidance and distance feedbacks. In the first stage, user's pointing finger is automatically detected using color and disparity data from stereo images and then a 3D pointing direction of the finger is estimated with its geometric and textural features. Finally, any object within the estimated pointing trajectory in 3D space is detected and the distance is then estimated in real time. For the second stage, identifiable tactile signals are designed through a series of identification experiments, and an identifiable tactile feedback interface is developed and integrated into the VIDA system. Our approach differs in that navigation guidance is provided by a simple finger pointing gesture and tactile distance feedbacks are perfectly identifiable to the blind.

  11. Stereo Camera Based Virtual Cane System with Identifiable Distance Tactile Feedback for the Blind

    Directory of Open Access Journals (Sweden)

    Donghun Kim

    2014-06-01

    Full Text Available In this paper, we propose a new haptic-assisted virtual cane system operated by a simple finger pointing gesture. The system is developed by two stages: development of visual information delivery assistant (VIDA with a stereo camera and adding a tactile feedback interface with dual actuators for guidance and distance feedbacks. In the first stage, user’s pointing finger is automatically detected using color and disparity data from stereo images and then a 3D pointing direction of the finger is estimated with its geometric and textural features. Finally, any object within the estimated pointing trajectory in 3D space is detected and the distance is then estimated in real time. For the second stage, identifiable tactile signals are designed through a series of identification experiments, and an identifiable tactile feedback interface is developed and integrated into the VIDA system. Our approach differs in that navigation guidance is provided by a simple finger pointing gesture and tactile distance feedbacks are perfectly identifiable to the blind.

  12. Social facilitation of insect reproduction with motor-driven tactile stimuli.

    Science.gov (United States)

    Uzsák, Adrienn; Dieffenderfer, James; Bozkurt, Alper; Schal, Coby

    2014-05-22

    Tactile stimuli provide animals with important information about the environment, including physical features such as obstacles, and biologically relevant cues related to food, mates, hosts and predators. The antennae, the principal sensory organs of insects, house an array of sensory receptors for olfaction, gustation, audition, nociception, balance, stability, graviception, static electric fields, and thermo-, hygro- and mechanoreception. The antennae, being the anteriormost sensory appendages, play a prominent role in social interactions with conspecifics that involve primarily chemosensory and tactile stimuli. In the German cockroach (Blattella germanica) antennal contact during social interactions modulates brain-regulated juvenile hormone production, ultimately accelerating the reproductive rate in females. The primary sensory modality mediating this social facilitation of reproduction is antennal mechanoreception. We investigated the key elements, or stimulus features, of antennal contact that socially facilitate reproduction in B. germanica females. Using motor-driven antenna mimics, we assessed the physiological responses of females to artificial tactile stimulation. Our results indicate that tactile stimulation with artificial materials, some deviating significantly from the native antennal morphology, can facilitate female reproduction. However, none of the artificial stimuli matched the effects of social interactions with a conspecific female.

  13. [The effect of passive tactile stimulation in the brain activity of children with attention deficit].

    Science.gov (United States)

    Soria-Claros, M; Serrano-Marugan, I; Quintero, J; Ortiz, T

    2016-01-01

    The N200 and P300 evoked potentials have proved a useful tool in monitoring children with attention deficit disorder (ADD). To assess brain information processing by the N200 and P300 in touch modality in children with ADD. The P300 and N200 components to oddball tactile stimulation paradigm were recorded in an experimental group of 17 children with ADD at the beginning and the end of the daily training tactile stimulation, another 12 children with ADD and 21 control children without ADD who no received tactile stimulation. Three groups aged between 7 and 11 years. Results show a significant decrease in latency of N200 and P300 waves in the experimental group at the study end. N200 significant differences in the experimental group temporal parietal and occipital areas were found, while the differences in the P300 are located in postcentral and parietal areas. Systematic, orderly and organized tactile stimulation in children with ADD can be effective to improve N200-P300 latencies providing greater parietal brain plasticity, associated to perceptive attention.

  14. A Finger-Shaped Tactile Sensor for Fabric Surfaces Evaluation by 2-Dimensional Active Sliding Touch

    Directory of Open Access Journals (Sweden)

    Haihua Hu

    2014-03-01

    Full Text Available Sliding tactile perception is a basic function for human beings to determine the mechanical properties of object surfaces and recognize materials. Imitating this process, this paper proposes a novel finger-shaped tactile sensor based on a thin piezoelectric polyvinylidene fluoride (PVDF film for surface texture measurement. A parallelogram mechanism is designed to ensure that the sensor applies a constant contact force perpendicular to the object surface, and a 2-dimensional movable mechanical structure is utilized to generate the relative motion at a certain speed between the sensor and the object surface. By controlling the 2-dimensional motion of the finger-shaped sensor along the object surface, small height/depth variation of surface texture changes the output charge of PVDF film then surface texture can be measured. In this paper, the finger-shaped tactile sensor is used to evaluate and classify five different kinds of linen. Fast Fourier Transformation (FFT is utilized to get original attribute data of surface in the frequency domain, and principal component analysis (PCA is used to compress the attribute data and extract feature information. Finally, low dimensional features are classified by Support Vector Machine (SVM. The experimental results show that this finger-shaped tactile sensor is effective and high accurate for discriminating the five textures.

  15. A Modified Tactile Brush Algorithm for Complex Touch Gestures

    Energy Technology Data Exchange (ETDEWEB)

    Ragan, Eric [Texas A& M University

    2015-01-01

    Several researchers have investigated phantom tactile sensation (i.e., the perception of a nonexistent actuator between two real actuators) and apparent tactile motion (i.e., the perception of a moving actuator due to time delays between onsets of multiple actuations). Prior work has focused primarily on determining appropriate Durations of Stimulation (DOS) and Stimulus Onset Asynchronies (SOA) for simple touch gestures, such as a single finger stroke. To expand upon this knowledge, we investigated complex touch gestures involving multiple, simultaneous points of contact, such as a whole hand touching the arm. To implement complex touch gestures, we modified the Tactile Brush algorithm to support rectangular areas of tactile stimulation.

  16. Acquisition of a bodily-tactile language as first language

    DEFF Research Database (Denmark)

    Ask Larsen, Flemming

    2013-01-01

    Language acquisition in the bodily-tactile modality is difficult to understand, describe, and support. This chapter advocates a reinterpretation of the gestural and idiosyncratic bodily-tactile communication of people with congenital deafblindness (CDB) in terms of early language acquisition...... towards Tactile Sign Language (TSL). The access to participation in complex TSL culture is crucial for language acquisition. We already know how to transfer the patterns of social interaction into the bodily-tactile modality. This is the fundation on which to build actual linguistic participation. TSL...

  17. Autism spectrum disorder in the scope of tactile processing

    Directory of Open Access Journals (Sweden)

    Mark Mikkelsen

    2018-01-01

    Full Text Available Sensory processing abnormalities are among the most common behavioral phenotypes seen in autism spectrum disorder (ASD, typically characterized by either over- or under-responsiveness to stimulation. In this review, we focus on tactile processing dysfunction in ASD. We firstly review clinical studies wherein sensitivity to tactile stimuli has traditionally been assessed by self-, parent- and experimenter-reports. We also discuss recent investigations using psychophysical paradigms that gauge individual tactile thresholds. These more experimentally rigorous studies allow for more objective assessments of tactile abnormalities in ASD. However, little is understood about the neurobiological mechanisms underlying these abnormalities, or the link between tactile abnormalities and ASD symptoms. Neurobiological research that has been conducted has pointed toward dysfunction in the excitation/inhibition balance of the central nervous system of those with ASD. This review covers recent efforts that have investigated tactile dysfunction in ASD from clinical and behavioral perspectives, and some of the efforts to link these to neurobiology. On the whole, findings are inconsistent, which can be ascribed to the subjectivity of clinical assessments, the heterogeneity of ASD cohorts, and the diversity of tactile sensitivity measures. Future endeavors into understanding tactile processing differences in ASD will greatly benefit from controlled experiments driven by neurobiological hypotheses. Keywords: Autism spectrum disorder, Psychophysics, Review, Touch, Somatosensory, Tactile processing

  18. Mammography screening among Arab American women in metropolitan Detroit.

    Science.gov (United States)

    Schwartz, Kendra; Fakhouri, Monty; Bartoces, Monina; Monsur, Joseph; Younis, Amani

    2008-12-01

    Mammography screening behavior has not been well studied among Middle Eastern immigrant women. We conducted a telephone survey of 365 Arab American women residing in metropolitan Detroit, home to one of the largest populations of Middle Eastern immigrants in the US, to determine prevalence of factors associated with mammography, and attitudes and beliefs regarding mammography screening. Of 365 participants, only five were born in the US. Mean age was 53.2 years (SD 10.8). Two hundred twelve (58.1%) reported having mammogram every 1-2 years; 70% ever had mammogram. Age 50-64 years, having health insurance, married status, being in the US over 10 years, and being Lebanese were associated with mammography every 1-2 years. After adjusting for demographic factors, perceived seriousness of disease, general health motivation, and having fewer barriers were associated with more frequent screening. Appropriate mammography screening is decreased in this group. Targeted outreach regarding screening is appropriate for this population; however, lack of insurance may prevent adequate follow-up.

  19. Lead poisoning among Arab American and African American children in the Detroit metropolitan area, Michigan.

    Science.gov (United States)

    Nriagu, Jerome; Senthamarai-Kannan, Raghavendra; Jamil, Hikmet; Fakhori, Monty; Korponic, Summer

    2011-09-01

    This study explored the hypothesis that acculturation is a risk factor for childhood lead poisoning in the Detroit area of Michigan. Blood lead levels (BLLs) were determined in 429 Arab American and African American children, aged 6 months to 15 years, who were receiving well-child examination in three Women, Infant, and Children (WIC) clinics in the city. Mean BLL was 3.8 ± 2.3 μg/dL (range: 1-18 μg/dL) and 3.3% of the children tested had blood lead values above the 10 μg/dL level of concern. Neither the age of the dwelling units nor ethnicity of the child was significantly associated with the BLL. Multivariable analyses instead identified a number of acculturation-related factors that are associated with elevation in blood lead including paternal education, language spoken at home (English only, English and Arabic, or Arabic only), home ownership, smoking in the home, and exposure of child to home health remedies. The difference in blood lead between Arab American children from families where Arabic only versus Arabic and English is spoken at home was found to be statistically significant. This study provides information showing that immigrant children are at heightened risk of being poisoned by lead which can be useful in identifying groups at risk of atypical exposures.

  20. Urban community intervention to prevent Halloween arson--Detroit, Michigan, 1985-1996.

    Science.gov (United States)

    1997-04-11

    Arson, the second leading cause of residential fire-associated deaths in the United States, accounts for approximately 700 deaths annually, destroys homes, and destabilizes neighborhoods. In Detroit, Michigan (1990 population: 1,027,974), arson accounted for nearly half (46.3%) of all fire-related deaths since 1984. During the late 1970s, pre-Halloween pranks traditionally associated in some parts of the United States with the night of October 30 turned destructive in Detroit, with hundreds of fires set throughout the city. By 1984, October 30 became known as "Devil's Night" and had evolved to 3 consecutive nights of arson on October 29-31; in that year, a record 810 fires were reported. In 1985, Detroit began a citywide intervention campaign against arson and vandalism during the 3-day Halloween period using data from an ongoing fire surveillance system maintained by the Detroit Fire Department (DFD) to target areas at high risk for arson. This report describes the intervention implemented by the city of Detroit from 1985 through 1996 and the impact of the intervention in preventing Halloween arson; approximately 34,000 volunteers participated in 1996, and the number of fires during this 3-day period decreased to the average number of fires for any other 3-day period during the remainder of the year.

  1. Tactile-dependant corticomotor facilitation is influenced by discrimination performance in seniors

    Directory of Open Access Journals (Sweden)

    Tremblay François

    2010-03-01

    Full Text Available Abstract Background Active contraction leads to facilitation of motor responses evoked by transcranial magnetic stimulation (TMS. In small hand muscles, motor facilitation is known to be also influenced by the nature of the task. Recently, we showed that corticomotor facilitation was selectively enhanced when young participants actively discriminated tactile symbols with the tip of their index or little finger. This tactile-dependant motor facilitation reflected, for the large part, attentional influences associated with performing tactile discrimination, since execution of a concomitant distraction task abolished facilitation. In the present report, we extend these observations to examine the influence of age on the ability to produce extra motor facilitation when the hand is used for sensory exploration. Methods Corticomotor excitability was tested in 16 healthy seniors (58-83 years while they actively moved their right index finger over a surface under two task conditions. In the tactile discrimination (TD condition, participants attended to the spatial location of two tactile symbols on the explored surface, while in the non discrimination (ND condition, participants simply moved their finger over a blank surface. Changes in amplitude, in latency and in the silent period (SP duration were measured from recordings of motor evoked potentials (MEP in the right first dorsal interosseous muscle in response to TMS of the left motor cortex. Results Healthy seniors exhibited widely varying levels of performance with the TD task, older age being associated with lower accuracy and vice-versa. Large inter-individual variations were also observed in terms of tactile-specific corticomotor facilitation. Regrouping seniors into higher (n = 6 and lower performance groups (n = 10 revealed a significant task by performance interaction. This latter interaction reflected differences between higher and lower performance groups; tactile-related facilitation being

  2. Cognitive and tactile factors affecting human haptic performance in later life.

    Directory of Open Access Journals (Sweden)

    Tobias Kalisch

    Full Text Available BACKGROUND: Vision and haptics are the key modalities by which humans perceive objects and interact with their environment in a target-oriented manner. Both modalities share higher-order neural resources and the mechanisms required for object exploration. Compared to vision, the understanding of haptic information processing is still rudimentary. Although it is known that haptic performance, similar to many other skills, decreases in old age, the underlying mechanisms are not clear. It is yet to be determined to what extent this decrease is related to the age-related loss of tactile acuity or cognitive capacity. METHODOLOGY/PRINCIPAL FINDINGS: We investigated the haptic performance of 81 older adults by means of a cross-modal object recognition test. Additionally, we assessed the subjects' tactile acuity with an apparatus-based two-point discrimination paradigm, and their cognitive performance by means of the non-verbal Raven-Standard-Progressive matrices test. As expected, there was a significant age-related decline in performance on all 3 tests. With the exception of tactile acuity, this decline was found to be more distinct in female subjects. Correlation analyses revealed a strong relationship between haptic and cognitive performance for all subjects. Tactile performance, on the contrary, was only significantly correlated with male subjects' haptic performance. CONCLUSIONS: Haptic object recognition is a demanding task in old age, especially when it comes to the exploration of complex, unfamiliar objects. Our data support a disproportionately higher impact of cognition on haptic performance as compared to the impact of tactile acuity. Our findings are in agreement with studies reporting an increase in co-variation between individual sensory performance and general cognitive functioning in old age.

  3. Tactile multisensing on flexible aluminum nitride.

    Science.gov (United States)

    Petroni, Simona; Guido, Francesco; Torre, Bruno; Falqui, Andrea; Todaro, Maria Teresa; Cingolani, Roberto; De Vittorio, Massimo

    2012-11-21

    The integration of a polycrystalline material such as aluminum nitride (AlN) on a flexible substrate allows the realization of elastic tactile sensors showing both piezoelectricity and significant capacitive variation under normal stress. The application of a normal stress on AlN generates deformation of the flexible substrate on which AlN is grown, which results in strain gradient of the polycrystalline layer. The strain gradient is responsible for an additional polarization described in the literature as the flexoelectric effect, leading to an enhancement of the transduction properties of the material. The flexible AlN is synthesized by sputtering deposition on kapton HN (poly 4,4'-oxydiphenyl pyromellitimide) in a highly oriented crystal structure. High orientation is demonstrated by X-ray diffraction spectra (FWHM = 0.55° of AlN (0002)) and HRTEM. The piezoelectric coefficient d(33) and stress sensitive capacitance are 4.7 ± 0.5 pm V(-1) and 4 × 10(-3) pF kPa(-1), respectively. The parallel plate capacitors realized for tactile sensing present a typical dome shape, very elastic under applied stress and sensitive in the pressure range of interest for robotic applications (10 kPa to 1 MPa). The flexibility of the device finalized for tactile applications is assessed by measuring the sensor capacitance before and after shaping the sensing foil on curved surfaces for 1 hour. Bending does not affect sensor's operation, which exhibits an electrical Q factor as high as 210, regardless of the bending, and a maximum capacitance shift of 0.02%.

  4. Recruitment and Retention Strategies for Environmental Exposure Studies: Lessons from the Detroit Exposure and Aerosol Research Study

    Science.gov (United States)

    The Environmental Protection Agency’s Detroit Exposure and Aerosol Research Study (DEARS) was a complex 3-year personal exposure study. The six geographically defined areas in the Detroit (Wayne County), Michigan, area used as study locations are ethnically diverse; the majority ...

  5. 77 FR 40515 - Safety Zone; Detroit Symphony Orchestra at Ford House Fireworks, Lake St. Clair, Grosse Pointe...

    Science.gov (United States)

    2012-07-10

    ... SECURITY Coast Guard 33 CFR Part 165 RIN 1625-AA00 Safety Zone; Detroit Symphony Orchestra at Ford House... Detroit Symphony Orchestra at the Ford House Fireworks. This zone will be effective and enforced from 10... Orchestra at Ford House Fireworks, Lake St. Clair, Grosse Pointe Shores, MI (a) Location. The safety zone...

  6. 75 FR 52981 - Chrysler, LLC, Detroit Axle Plant, Including On-Site Leased Workers from Caravan Knight...

    Science.gov (United States)

    2010-08-30

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF LABOR Employment and Training Administration Chrysler, LLC, Detroit Axle Plant, Including On-Site Leased Workers from Caravan Knight Facilities Management LLC, and Syncreon, Detroit, MI; Amended Certification Regarding Eligibility To Apply for Worker Adjustment...

  7. 75 FR 11914 - Chrysler, LLC, Detroit Axle Plant, Including On-Site Leased Workers From Caravan Knight...

    Science.gov (United States)

    2010-03-12

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF LABOR Employment and Training Administration Chrysler, LLC, Detroit Axle Plant, Including On-Site Leased Workers From Caravan Knight Facilities Management LLC; Detroit, MI; Amended Certification Regarding Eligibility To Apply for Worker Adjustment Assistance and...

  8. How Does a Principal in Detroit Public Schools Produce a Productive Learning Environment within the Current System?

    Science.gov (United States)

    Davenport, Marcus G.

    2017-01-01

    In this dissertation, the researcher investigates the success of productive learning environments in Detroit Public Schools. Using interviews with three productive principals from the Detroit school system, the researcher explores three related issues in public schooling. The first issue is the definition of a productive learning environment. By…

  9. Tactile Perception in Adults with Autism: A Multidimensional Psychophysical Study

    Science.gov (United States)

    Cascio, Carissa; McGlone, Francis; Folger, Stephen; Tannan, Vinay; Baranek, Grace; Pelphrey, Kevin A.; Essick, Gregory

    2008-01-01

    Although sensory problems, including unusual tactile sensitivity, are heavily associated with autism, there is a dearth of rigorous psychophysical research. We compared tactile sensation in adults with autism to controls on the palm and forearm, the latter innervated by low-threshold unmyelinated afferents subserving a social/affiliative…

  10. A Case Study of Tactile Language and its Possible Structure

    DEFF Research Database (Denmark)

    Dammeyer, Jesper Herup; Nielsen, Anja; Strøm, Emilie

    2015-01-01

    of a five year old congenital deafblind child communicating with his mother about a slide experience tactile linguistic features of phonology, morphology, semantics and syntax were explored. The linguistic features of tactile language were found to involve a potential unique and complex structure based...

  11. CURRENT STATUS AND DEVELOPMENT PROSPECTS OF TACTILE CARTOGRAPHY

    Directory of Open Access Journals (Sweden)

    Y. G. Poshivailo

    2014-01-01

    Full Text Available The article gives a brief survey of the current state and prospects of tactile cartography development. Some types of adaptive cognitive aids for blind people are considered. The authors share their experience in developing innovative form of cartographic products – tactile audiovisual device.

  12. Beneficial Effects of Tactile Stimulation on Early Development.

    Science.gov (United States)

    Caulfield, Rick

    2000-01-01

    Reviews selected research on the beneficial effects of tactile stimulation on infants. Examines the results of studies with animals, preterm infants, cocaine- and HIV-exposed preterm infants, and normal full-term infants. Briefly discusses caregiving implications and offers suggestions on how caregivers can incorporate tactile stimulation in…

  13. Attending to and remembering tactile stimuli: a review of brain imaging data and single-neuron responses.

    Science.gov (United States)

    Burton, H; Sinclair, R J

    2000-11-01

    Clinical and neuroimaging observations of the cortical network implicated in tactile attention have identified foci in parietal somatosensory, posterior parietal, and superior frontal locations. Tasks involving intentional hand-arm movements activate similar or nearby parietal and frontal foci. Visual spatial attention tasks and deliberate visuomotor behavior also activate overlapping posterior parietal and frontal foci. Studies in the visual and somatosensory systems thus support a proposal that attention to the spatial location of an object engages cortical regions responsible for the same coordinate referents used for guiding purposeful motor behavior. Tactile attention also biases processing in the somatosensory cortex through amplification of responses to relevant features of selected stimuli. Psychophysical studies demonstrate retention gradients for tactile stimuli like those reported for visual and auditory stimuli, and suggest analogous neural mechanisms for working memory across modalities. Neuroimaging studies in humans using memory tasks, and anatomic studies in monkeys support the idea that tactile information relayed from the somatosensory cortex is directed ventrally through the insula to the frontal cortex for short-term retention and to structures of the medial temporal lobe for long-term encoding. At the level of single neurons, tactile (such as visual and auditory) short-term memory appears as a persistent response during delay intervals between sampled stimuli.

  14. Comparative Evaluation of Tactile Sensation by Electrical and Mechanical Stimulation.

    Science.gov (United States)

    Yem, Vibol; Kajimoto, Hiroyuki

    2017-01-01

    An electrotactile display is a tactile interface that provides tactile perception by passing electrical current through the surface of the skin. It is actively used instead of mechanical tactile displays for tactile feedback because of several advantages such as its small and thin size, light weight, and high responsiveness. However, the similarities and differences between these sensations is still not clear. This study directly compares the intensity sensation of electrotactile stimulation to that of mechanical stimulation, and investigates the characteristic sensation of anodic and cathodic stimulation. In the experiment, participants underwent a 30 pps electrotactile stimulus every one second to their middle finger, and were asked to match this intensity by adjusting the intensity of a mechanical tactile stimulus to an index finger. The results showed that anodic stimulation mainly produced vibration sensation, whereas cathodic sensation produced both vibration and pressure sensations. Relatively low pressure sensation was also observed for anodic stimulation but it remains low, regardless of the increasing of electrical intensity.

  15. A Case Study of Tactile Language and its Possible Structure

    DEFF Research Database (Denmark)

    Dammeyer, Jesper Herup; Nielsen, Anja; Strøm, Emilie

    2015-01-01

    Few published research papers concern the study of communication and language development among children with congenital deafblindness. The aim of this study is to explore and discuss linguistic features of what may be considered as tactile languages. By analysing one pilot video observation...... of a five year old congenital deafblind child communicating with his mother about a slide experience tactile linguistic features of phonology, morphology, semantics and syntax were explored. The linguistic features of tactile language were found to involve a potential unique and complex structure based...... on direction, speed and acceleration of movements, pressure, and body position. It is discussed how tactile languages, if they exist, can be studied from its unique bodily-tactile nature and not as a modification of visual sign languages....

  16. Cortical and thalamic contributions to response dynamics across layers of the primary somatosensory cortex during tactile discrimination.

    Science.gov (United States)

    Pais-Vieira, Miguel; Kunicki, Carolina; Tseng, Po-He; Martin, Joel; Lebedev, Mikhail; Nicolelis, Miguel A L

    2015-09-01

    Tactile information processing in the rodent primary somatosensory cortex (S1) is layer specific and involves modulations from both thalamocortical and cortico-cortical loops. However, the extent to which these loops influence the dynamics of the primary somatosensory cortex while animals execute tactile discrimination remains largely unknown. Here, we describe neural dynamics of S1 layers across the multiple epochs defining a tactile discrimination task. We observed that neuronal ensembles within different layers of the S1 cortex exhibited significantly distinct neurophysiological properties, which constantly changed across the behavioral states that defined a tactile discrimination. Neural dynamics present in supragranular and granular layers generally matched the patterns observed in the ventral posterior medial nucleus of the thalamus (VPM), whereas the neural dynamics recorded from infragranular layers generally matched the patterns from the posterior nucleus of the thalamus (POM). Selective inactivation of contralateral S1 specifically switched infragranular neural dynamics from POM-like to those resembling VPM neurons. Meanwhile, ipsilateral M1 inactivation profoundly modulated the firing suppression observed in infragranular layers. This latter effect was counterbalanced by contralateral S1 block. Tactile stimulus encoding was layer specific and selectively affected by M1 or contralateral S1 inactivation. Lastly, causal information transfer occurred between all neurons in all S1 layers but was maximal from infragranular to the granular layer. These results suggest that tactile information processing in the S1 of awake behaving rodents is layer specific and state dependent and that its dynamics depend on the asynchronous convergence of modulations originating from ipsilateral M1 and contralateral S1. Copyright © 2015 the American Physiological Society.

  17. Behavioral impact of unisensory and multisensory audio-tactile events: pros and cons for interlimb coordination in juggling.

    Directory of Open Access Journals (Sweden)

    Gregory Zelic

    Full Text Available Recent behavioral neuroscience research revealed that elementary reactive behavior can be improved in the case of cross-modal sensory interactions thanks to underlying multisensory integration mechanisms. Can this benefit be generalized to an ongoing coordination of movements under severe physical constraints? We choose a juggling task to examine this question. A central issue well-known in juggling lies in establishing and maintaining a specific temporal coordination among balls, hands, eyes and posture. Here, we tested whether providing additional timing information about the balls and hands motions by using external sound and tactile periodic stimulations, the later presented at the wrists, improved the behavior of jugglers. One specific combination of auditory and tactile metronome led to a decrease of the spatiotemporal variability of the juggler's performance: a simple sound associated to left and right tactile cues presented antiphase to each other, which corresponded to the temporal pattern of hands movement in the juggling task. A contrario, no improvements were obtained in the case of other auditory and tactile combinations. We even found a degraded performance when tactile events were presented alone. The nervous system thus appears able to integrate in efficient way environmental information brought by different sensory modalities, but only if the information specified matches specific features of the coordination pattern. We discuss the possible implications of these results for the understanding of the neuronal integration process implied in audio-tactile interaction in the context of complex voluntary movement, and considering the well-known gating effect of movement on vibrotactile perception.

  18. Geostatistical exploration of spatial variation of summertime temperatures in the Detroit metropolitan region

    Science.gov (United States)

    Zhang, Kai; Oswald, Evan M.; Brown, Daniel G.; Brines, Shannon J.; Gronlund, Carina J.; White-Newsome, Jalonne L.; Rood, Richard B.; O’Neill, Marie S.

    2015-01-01

    Background Because of the warming climate urban temperature patterns have been receiving increased attention. Temperature within urban areas can vary depending on land cover, meteorological and other factors. High resolution satellite data can be used to understand this intra-urban variability, although they have been primarily studied to characterize urban heat islands at a larger spatial scale. Objective This study examined whether satellite-derived impervious surface and meteorological conditions from multiple sites can improve characterization of spatial variability of temperature within an urban area. Methods Temperature was measured at 17 outdoor sites throughout the Detroit metropolitan area during the summer of 2008. Kriging and linear regression were applied to daily temperatures and secondary information, including impervious surface and distance-to-water. Performance of models in predicting measured temperatures was evaluated by cross-validation. Variograms derived from several scenarios were compared to determine whether high-resolution impervious surface information could capture fine-scale spatial structure of temperature in the study area. Results Temperatures measured at the sites were significantly different from each other, and all kriging techniques generally performed better than the two linear regression models. Impervious surface values and distance-to-water generally improved predictions slightly. Restricting models to days with lake breezes and with less cloud cover also somewhat improved the predictions. In addition, incorporating high-resolution impervious surface information into cokriging or universal kriging enhanced the ability to characterize fine-scale spatial structure of temperature. Conclusions Meteorological and satellite-derived data can better characterize spatial variability in temperature across a metropolitan region. The data sources and methods we used can be applied in epidemiological studies and public health

  19. Detroit Lakes energy systems study: Phase I feasibility. Final report, February 1, 1978--July 31, 1978

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-07-31

    The objective of the Detroit Lakes Energy Systems Study is to determine the economic feasibility of alternative renewable energy system configurations in the northern latitudes. A forecast through both 1990 and the year 2000 is made of the demand for electrical energy in the Detroit Lakes area. An assessment of renewable energy resources including biomass, wind, and insolation is provided. A detailed analysis is made of system costs including biomass, wind, solar thermal, solar photovoltaic, selected hybrids, and conventional fuel systems. Lessons learned and recommendations for prototype fabrication are highlighted. (MHR)

  20. Neural pathways in tactile object recognition.

    Science.gov (United States)

    Deibert, E; Kraut, M; Kremen, S; Hart, J

    1999-04-22

    To define further the brain regions involved in tactile object recognition using functional MRI (fMRI) techniques. The neural substrates involved in tactile object recognition (TOR) have not been elucidated. Studies of nonhuman primates and humans suggest that basic motor and somatosensory mechanisms are involved at a peripheral level; however, the mechanisms of higher order object recognition have not been determined. The authors investigated 11 normal volunteers utilizing fMRI techniques in an attempt to determine the neural pathways involved in TOR. Each individual performed a behavioral paradigm with the activated condition involving identification of objects by touch, with identification of rough/smooth as the control. Data suggest that in a majority of individuals, TOR involves the calcarine and extrastriatal cortex, inferior parietal lobule, inferior frontal gyrus, and superior frontal gyrus-polar region. TOR may utilize visual systems to access an internal object representation. The parietal cortices and inferior frontal regions may be involved in a concomitant lexical strategy of naming the object being examined. Frontal polar activation likely serves a role in visuospatial working memory or in recognizing unusual representations of objects. Overall, these findings suggest that TOR could involve a network of cortical regions subserving somatosensory, motor, visual, and, at times, lexical processing. The primary finding suggests that in this normal study population, the visual cortices may be involved in the topographic spatial processing of TOR.

  1. The topography of tactile working memory.

    Science.gov (United States)

    Harris, J A; Harris, I M; Diamond, M E

    2001-10-15

    To investigate the contribution of topographically organized brain areas to tactile working memory, we asked human subjects to compare the frequency of two vibrations presented to the same fingertip or to different fingertips. The vibrations ranged from 14 to 24 Hz and were separated by a retention interval of variable length. For intervals memory resides within a topographic framework. As a further test, we performed an experiment in which the two comparison vibrations were presented to the same fingertip but an interference vibration was presented during the retention interval. The interpolated vibration disrupted accuracy most when delivered to the same finger as the comparison vibrations and had progressively less effect when delivered to more distant fingers. We conclude that topographically organized regions of somatosensory cortex contribute to tactile working memory, possibly by holding the memory trace across the retention interval. One stimulus can be accurately compared with the memory of a previous stimulus if they engage overlapping representations, but activation of the common cortical territory by an interpolated stimulus can disrupt the memory trace.

  2. Remotely deployable aerial inspection using tactile sensors

    Science.gov (United States)

    MacLeod, C. N.; Cao, J.; Pierce, S. G.; Sullivan, J. C.; Pipe, A. G.; Dobie, G.; Summan, R.

    2014-02-01

    For structural monitoring applications, the use of remotely deployable Non-Destructive Evaluation (NDE) inspection platforms offer many advantages, including improved accessibility, greater safety and reduced cost, when compared to traditional manual inspection techniques. The use of such platforms, previously reported by researchers at the University Strathclyde facilitates the potential for rapid scanning of large areas and volumes in hazardous locations. A common problem for both manual and remote deployment approaches lies in the intrinsic stand-off and surface coupling issues of typical NDE probes. The associated complications of these requirements are obviously significantly exacerbated when considering aerial based remote inspection and deployment, resulting in simple visual techniques being the preferred sensor payload. Researchers at Bristol Robotics Laboratory have developed biomimetic tactile sensors modelled on the facial whiskers (vibrissae) of animals such as rats and mice, with the latest sensors actively sweeping their tips across the surface in a back and forth motion. The current work reports on the design and performance of an aerial inspection platform and the suitability of tactile whisking sensors to aerial based surface monitoring applications.

  3. Metacognition of attention during tactile discrimination.

    Science.gov (United States)

    Whitmarsh, Stephen; Oostenveld, Robert; Almeida, Rita; Lundqvist, Daniel

    2017-02-15

    The ability to monitor the success of cognitive processing is referred to as metacognition. Studies of metacognition typically probe post-decision judgments of confidence, showing that we can report on the success of wide range of cognitive processes. Much less is known about our ability to monitor and report on the degree of top-down attention, an ability of paramount importance in tasks requiring sustained attention. However, it has been repeatedly shown that the degree and locus of top-down attention modulates alpha (8-14Hz) power in sensory cortices. In this study we investigated whether self-reported ratings of attention are reflected by sensory alpha power, independent from confidence and task difficulty. Subjects performed a stair-cased tactile discrimination task requiring sustained somatosensory attention. Each discrimination response was followed by a rating of their attention at the moment of stimulation, or their confidence in the discrimination response. MEG was used to estimate trial-by-trial alpha power preceding stimulation. Staircasing of task-difficulty successfully equalized performance between conditions. Both attention and confidence ratings reflected subsequent discrimination performance. Task difficulty specifically influenced confidence ratings. As expected, specifically attention ratings, but not confidence ratings, correlated negatively with contralateral somatosensory alpha power preceding tactile stimuli. Taken together, these results demonstrate that the degree of attention can be subjectively experienced and reported accurately, independent from task difficulty and knowledge about task performance. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Tactile Displays for Orientation, Navigation and Communication in Air, Sea and Land Environments (Les systemes d’affichage tactiles pour l’orientation, la navigation et la communication dans les environments aerien, maritime et terrestre)

    Science.gov (United States)

    2008-08-01

    collision avoidance information. • Vehicle control: course control, turbulence, helicopter drift (especially imperceptible movement indications... movements , provided by neuromuscular electrical stimulation systems, during walking and grasping activities. Paraplegics can use this sensorimotor...forefinger. A kinesthetic and tactile aviation display consisting of an actuator mounted in the control stick that was capable of stimulating the hand

  5. Encoding of tactile stimuli by mechanoreceptors and interneurons of the medicinal leech

    Directory of Open Access Journals (Sweden)

    Jutta Kretzberg

    2016-10-01

    Full Text Available For many animals processing of tactile information is a crucial task in behavioral contexts like exploration, foraging and stimulus avoidance. The leech, having infrequent access to food, developed an energy efficient reaction to tactile stimuli, avoiding unnecessary muscle movements: The local bend behavior moves only a small part of the body wall away from an object touching the skin, while the rest of the animal remains stationary. Amazingly, the precision of this localized behavioral response is similar to the spatial discrimination threshold of the human fingertip, although the leech skin is innervated by an order of magnitude fewer mechanoreceptors and each midbody ganglion contains only 400 individually identified neurons in total. Prior studies suggested that this behavior is controlled by a three-layered feed-forward network, consisting of four mechanoreceptors (P cells, approximately 20 interneurons and 10 individually characterized motor neurons, all of which encode tactile stimulus location by overlapping, symmetrical tuning curves. Additionally, encoding of mechanical force was attributed to three types of mechanoreceptors reacting to distinct intensity ranges: T cells for touch, P cells for pressure and N cells for strong, noxious skin stimulation. In this study, we provide evidences that tactile stimulus encoding in the leech is more complex than previously thought. Combined electrophysiological, anatomical and voltage sensitive dye approaches indicate that P and T cells both play a major role in tactile information processing resulting in local bending. Our results indicate that tactile encoding neither relies on distinct force intensity ranges of different cell types, nor location encoding is restricted to spike count tuning. Instead, we propose that P and T cells form a mixed type population, which simultaneously employs temporal response features and spike counts for multiplexed encoding of touch location and force intensity

  6. Creating and Using Tactile Experience Books for Young Children with Visual Impairments.

    Science.gov (United States)

    Lewis, Sandra; Tolla, Joan

    2003-01-01

    This article explores how tactile experience books can be used to ensure that young children with visual impairments learn to read. It discusses making tactile experience books by collecting artifacts and gluing them to cardboard pages, and the benefits of tactile books. Descriptions of two tactile books are provided. (Contains references.) (CR)

  7. Higher Network Activity Induced by Tactile Compared to Electrical Stimulation of Leech Mechanoreceptors

    Directory of Open Access Journals (Sweden)

    Elham Fathiazar

    2018-03-01

    Full Text Available The tiny ensemble of neurons in the leech ganglion can discriminate the locations of touch stimuli on the skin as precisely as a human fingertip. The leech uses this ability to locally bend the body-wall away from the stimulus. It is assumed that a three-layered feedforward network of pressure mechanoreceptors, interneurons, and motor neurons controls this behavior. Most previous studies identified and characterized the local bend network based on electrical stimulation of a single pressure mechanoreceptor, which was sufficient to trigger the local bend response. Recent studies showed, however, that up to six mechanoreceptors of three types innervating the stimulated patch of skin carry information about both touch intensity and location simultaneously. Therefore, we hypothesized that interneurons involved in the local bend network might require the temporally concerted inputs from the population of mechanoreceptors representing tactile stimuli, to decode the tactile information and to provide appropriate synaptic inputs to the motor neurons. We examined the influence of current injection into a single mechanoreceptor on activity of postsynaptic interneurons in the network and compared it to responses of interneurons to skin stimulation with different pressure intensities. We used voltage-sensitive dye imaging to monitor the graded membrane potential changes of all visible cells on the ventral side of the ganglion. Our results showed that stimulation of a single mechanoreceptor activates several local bend interneurons, consistent with previous intracellular studies. Tactile skin stimulation, however, evoked a more pronounced, longer-lasting, stimulus intensity-dependent network dynamics involving more interneurons. We concluded that the underlying local bend network enables a non-linear processing of tactile information provided by population of mechanoreceptors. This task requires a more complex network structure than previously assumed

  8. Relative contributions of visual and auditory spatial representations to tactile localization.

    Science.gov (United States)

    Noel, Jean-Paul; Wallace, Mark

    2016-02-01

    Spatial localization of touch is critically dependent upon coordinate transformation between different reference frames, which must ultimately allow for alignment between somatotopic and external representations of space. Although prior work has shown an important role for cues such as body posture in influencing the spatial localization of touch, the relative contributions of the different sensory systems to this process are unknown. In the current study, we had participants perform a tactile temporal order judgment (TOJ) under different body postures and conditions of sensory deprivation. Specifically, participants performed non-speeded judgments about the order of two tactile stimuli presented in rapid succession on their ankles during conditions in which their legs were either uncrossed or crossed (and thus bringing somatotopic and external reference frames into conflict). These judgments were made in the absence of 1) visual, 2) auditory, or 3) combined audio-visual spatial information by blindfolding and/or placing participants in an anechoic chamber. As expected, results revealed that tactile temporal acuity was poorer under crossed than uncrossed leg postures. Intriguingly, results also revealed that auditory and audio-visual deprivation exacerbated the difference in tactile temporal acuity between uncrossed to crossed leg postures, an effect not seen for visual-only deprivation. Furthermore, the effects under combined audio-visual deprivation were greater than those seen for auditory deprivation. Collectively, these results indicate that mechanisms governing the alignment between somatotopic and external reference frames extend beyond those imposed by body posture to include spatial features conveyed by the auditory and visual modalities - with a heavier weighting of auditory than visual spatial information. Thus, sensory modalities conveying exteroceptive spatial information contribute to judgments regarding the localization of touch. Copyright © 2016

  9. Mechanisms of tactile sensory deterioration amongst the elderly.

    Science.gov (United States)

    Skedung, Lisa; El Rawadi, Charles; Arvidsson, Martin; Farcet, Céline; Luengo, Gustavo S; Breton, Lionel; Rutland, Mark W

    2018-04-19

    It is known that roughness-smoothness, hardness-softness, stickiness-slipperiness and warm-cold are predominant perceptual dimensions in macro-, micro- and nano- texture perception. However, it is not clear to what extent active tactile texture discrimination remains intact with age. The general decrease in tactile ability induces physical and emotional dysfunction in elderly, and has increasing significance for an aging population. We report a method to quantify tactile acuity based on blinded active exploration of systematically varying micro-textured surfaces and a same-different paradigm. It reveals that elderly participants show significantly reduced fine texture discrimination ability. The elderly group also displays statistically lower finger friction coefficient, moisture and elasticity, suggesting a link. However, a subpopulation of the elderly retains discrimination ability irrespective of cutaneous condition and this can be related to a higher density of somatosensory receptors on the finger pads. Skin tribology is thus not the primary reason for decline of tactile discrimination with age. The remediation of cutaneous properties through rehydration, however leads to a significantly improved tactile acuity. This indicates unambiguously that neurological tactile loss can be temporarily compensated by restoring the cutaneous contact mechanics. Such mechanical restoration of tactile ability has the potential to increase the quality of life in elderly.

  10. Tactile Experience Shapes Prey-Capture Behavior in Etruscan Shrews

    Directory of Open Access Journals (Sweden)

    Michael eBrecht

    2012-06-01

    Full Text Available A crucial role of tactile experience for the maturation of neural response properties in the somatosensory system is well established, but little is known about the role of tactile experience in the development of tactile behaviors. Here we study how tactile experience affects prey capture behavior in Etruscan shrews, Suncus etruscus. Prey capture in adult shrews is a high-speed behavior that relies on precise attacks guided by tactile Gestalt cues. We studied the role of tactile experience by three different approaches. First, we analyzed the hunting skills of young shrews right after weaning. We found that prey capture in young animals is most but not all aspects similar to that of adults. Second we performed whisker trimming for three to four weeks after birth. Such deprivation resulted in a lasting disruption of prey capture even after whisker re-growth: attacks lacked precise targeting and had a lower success rate. Third, we presented adult shrews with an entirely novel prey species, the giant cockroach. The shape of this roach is very different from the shrew’s normal (cricket prey and the thorax – the preferred point of attack in crickets – is protected a heavy cuticle. Initially shrews attacked giant roaches the same way they attack crickets and targeted the thoracic region. With progressive experience, however, shrews adopted a new attack strategy targeting legs and underside of the roaches while avoiding other body parts. Speed and efficiency of attacks improved. These data suggest that tactile experience shapes prey capture behavior.

  11. An Information Literacy Partnership.

    Science.gov (United States)

    Bielich, Paul; Page, Frederick

    2002-01-01

    Describes a pilot partnership formed by a science teacher and a science library media specialist between Detroit's Northwestern High School and the David Adamany Undergraduate Library at Wayne State University to develop student information literacy in high school. Discusses activities; teacher attitudes; introduction of the Big6 Skills; and…

  12. Salience of Tactile Cues: An Examination of Tactor Actuator and Tactile Cue Characteristics

    Science.gov (United States)

    2015-08-01

    frequency, intensity, force, location, and duration of the signal. However, these definitions and their associated thresholds, in isolation, are of little...tactile salience composed of 3 core constructs (individual differences, technology, and context) and their interactions. This definition provides an...attention to surrounding landmarks or threat (e.g., flora , fauna) and have hands free for other tasks (e.g., making one’s way, drinking water). When

  13. Perceptual learning with tactile stimuli in rodents: Shaping the somatosensory system.

    Science.gov (United States)

    Pacchiarini, Nicole; Fox, Kevin; Honey, R C

    2017-06-01

    The animal kingdom contains species with a wide variety of sensory systems that have been selected to function in different environmental niches, but that are also subject to modification by experience during an organism's lifetime. The modification of such systems by experience is often called perceptual learning. In rodents, the classic example of perceptual learning is the observation that simple preexposure to two visual stimuli facilitates a subsequent (reinforced) discrimination between them. However, until recently very little behavioral research had investigated perceptual learning with tactile stimuli in rodents, in marked contrast to the wealth of information about plasticity in the rodent somatosensory system. Here we present a selective review of behavioral analyses of perceptual learning with tactile stimuli, alongside evidence concerning the potential bases of such effects within the somatosensory system.

  14. Transient storage of a tactile memory trace in primary somatosensory cortex.

    Science.gov (United States)

    Harris, Justin A; Miniussi, Carlo; Harris, Irina M; Diamond, Mathew E

    2002-10-01

    Working memory is known to involve prefrontal cortex and posterior regions of association cortex (e.g., the inferior temporal lobes). Here, we investigate the potential role of primary somatosensory cortex (SI) in a working memory task with tactile stimuli. Subjects were required to compare the frequencies of two vibrations separated by a retention interval of 1500 msec. Their performance was significantly disrupted when we delivered a pulse of transcranial magnetic stimulation (TMS) to the contralateral SI early (300 or 600 msec) in the retention interval. TMS did not affect tactile working memory if delivered to contralateral SI late in the retention interval (at 900 or 1200 msec), nor did TMS affect performance if delivered to the ipsilateral SI at any time point. Primary sensory cortex thus seems to act not only as a center for on-line sensory processing but also as a transient storage site for information that contributes to working memory.

  15. Audio-Visual, Visuo-Tactile and Audio-Tactile Correspondences in Preschoolers.

    Science.gov (United States)

    Nava, Elena; Grassi, Massimo; Turati, Chiara

    2016-01-01

    Interest in crossmodal correspondences has recently seen a renaissance thanks to numerous studies in human adults. Yet, still very little is known about crossmodal correspondences in children, particularly in sensory pairings other than audition and vision. In the current study, we investigated whether 4-5-year-old children match auditory pitch to the spatial motion of visual objects (audio-visual condition). In addition, we investigated whether this correspondence extends to touch, i.e., whether children also match auditory pitch to the spatial motion of touch (audio-tactile condition) and the spatial motion of visual objects to touch (visuo-tactile condition). In two experiments, two different groups of children were asked to indicate which of two stimuli fitted best with a centrally located third stimulus (Experiment 1), or to report whether two presented stimuli fitted together well (Experiment 2). We found sensitivity to the congruency of all of the sensory pairings only in Experiment 2, suggesting that only under specific circumstances can these correspondences be observed. Our results suggest that pitch-height correspondences for audio-visual and audio-tactile combinations may still be weak in preschool children, and speculate that this could be due to immature linguistic and auditory cues that are still developing at age five.

  16. Purposeful Goal-Directed Movements Give Rise to Higher Tactile Discrimination Performance

    Directory of Open Access Journals (Sweden)

    Georgiana Juravle

    2011-10-01

    Full Text Available Tactile perception is inhibited during goal-directed reaching movements (sensory suppression. Here, participants performed simple reaching or exploratory movements (where contact with the table surface was maintained. We measured tactile discrimination thresholds for vibratory stimuli delivered to participants' wrists while executing the movement, and while at rest. Moreover, we measured discrimination performance (in a same vs. different task for the materials covering the table surface, during the execution of the different movements. The threshold and discrimination tasks could be performed either singly or together, both under active movement and passive conditions (ie, no movement required, but with tactile stimulation. Thresholds measured at rest were significantly lower than thresholds measured during both active movements and passive touches. This provides a clear indication of sensory suppression during movement execution. Moreover, the discrimination data revealed main effects of task (single vs. dual, movement execution type (passive vs. active, and movement type (reach vs. exploration: Discrimination performance was significantly higher under conditions of single-tasking, active movements, as well as exploratory movements. Therefore, active movement of the hand with the purpose of gaining tactual information about the surface of the table gives rise to enhanced performance, thus suggesting that we feel more when we need to; It would appear that tactual information is prioritized when relevant for the movement being executed.

  17. Design and Evaluation of a Thermal Tactile Display for Colour Rendering

    Directory of Open Access Journals (Sweden)

    Zhen Jia

    2015-11-01

    Full Text Available This paper proposes a novel method of manipulating both thermal change rate and thermal intensity to convey colour information by using a thermal tactile display. The colour-space transformation from {red, green, blue} to {hue, saturation, intensity} is introduced, and the mapping between colour and temperature is established based on warm and cold colours. Considering the lower resolution of the tactile channel, six limited stimulation levels are generated to represent colours. Based on the semi-infinite body model, the thermal response within the skin for each stimulation form is investigated. The Peltier element of the display is designed to convey different thermal stimuli to the human finger. Two experiments are performed to evaluate the performance of the display: colour identification and discrimination. Experimental results indicate that there is a response bias among the perceived colours for the traditional method of only employing thermal intensity, but there is no response bias for the proposed method; subjects’ mean recognition accuracy with the proposed method is significantly higher than that gained using the traditional method. Furthermore, colour information of the captured images can be reliably discriminated by using this devised thermal tactile display.

  18. Are Charter Schools Safer in Deindustrialized Cities with High Rates of Crime? Testing Hypotheses in Detroit

    Science.gov (United States)

    Hamlin, Daniel

    2017-01-01

    Families in deindustrialized cities with high crime rates report prioritizing school safety when opting for charter schools. Yet, very little research has investigated whether charter schools are safer than traditional public schools. This study compares charter and traditional public schools in Detroit, Michigan, on perceived school safety by…

  19. Funding structures and competing priorities for regional transit in metro Detroit.

    Science.gov (United States)

    2014-03-01

    The Detroit region provides less locally raised funding for transit than other urban areas of the U.S. and Canada, resulting in a : transit system that is less effective. : This is exacerbated by the fact that federal funds can be used for capital pr...

  20. Decentralizing High School Administration in Detroit: An Evaluation of Alternative Strategies of Political Control

    Science.gov (United States)

    Jenkins, Michael A.; Shepherd, John W.

    1972-01-01

    Basic cause of the differences in range of choice between white and black decentralization plans is the disparity between black registered electoral figures and the number of black students in the high school system. Geographic polarization of Detroit into a black inner city and surrounding white suburbs reinforces this effect. (RJ)

  1. Building an urban 'renaissance': fragmented services and the production of inequality in Greater Downtown Detroit.

    Science.gov (United States)

    Doucet, Brian; Smit, Edske

    2016-01-01

    Downtown Detroit has been undergoing a renaissance in recent years which is in stark contrast to the economic and social situation in much of the rest of the city. This renaissance has been taking place despite the city's ability to provide good municipal services such as streetlights, security, public space and transport. This article focuses on how four areas which constitute part of Greater Downtown Detroit have relied on different combinations of actors to create and provide the services and amenities deemed necessary for capital investment and middle-class consumption. Each area has its own initiatives and actors who implement them, further fragmenting the city between its core and periphery. Renewed public spaces, private police forces and resident initiatives in middle-class neighborhoods have been created to serve specific needs of the small areas they serve. Rather than being unique, Detroit is an extreme example of fragmented and polarized urbanism which is part and parcel of contemporary cities. We argue that rather than passively reflecting existing socio-spatial divides, these private initiatives in Greater Downtown Detroit actively contribute to the production of sociospatial inequalities across the city.

  2. One False Step: "Detroit," "Step" and Movies of Rising and Falling

    Science.gov (United States)

    Beck, Bernard

    2018-01-01

    "Detroit" and "Step" are two recent movies in the context of urban riots in protest of police brutality. They refer to time periods separated by half a century, but there are common themes in the two that seem appropriate to both times. The movies are not primarily concerned with the riot events, but the riot is a major…

  3. 75 FR 81316 - Detroit Edison Company; FERMI 2; Environmental Assessment and Finding of No Significant Impact

    Science.gov (United States)

    2010-12-27

    ... the Final Environmental Statement for the Enrico Fermi Atomic Power Plant, Unit 2, NUREG-0769, dated... COMMISSION Detroit Edison Company; FERMI 2; Environmental Assessment and Finding of No Significant Impact The... Edison Company (the licensee), for operation of Fermi 2, located in Monroe County, Michigan. Therefore...

  4. 75 FR 70707 - Detroit Edison Company; Environmental Assessment and Finding of No Significant Impact

    Science.gov (United States)

    2010-11-18

    ... previously considered in the Final Environmental Statement for the Enrico Fermi Atomic Power Plant, Unit 2..., issued to Detroit Edison Company (DECo, the licensee), for operation of Fermi, Unit 2 (Fermi-2) located... shipments from the Fermi-1 decommissioning project. Those rail shipments typically took more than 20 days to...

  5. 75 FR 68604 - Expansion of Foreign-Trade Zone 70; Detroit, Michigan

    Science.gov (United States)

    2010-11-08

    ... DEPARTMENT OF COMMERCE Foreign-Trade Zones Board [Order No. 1719] Expansion of Foreign-Trade Zone 70; Detroit, Michigan Pursuant to its authority under the Foreign-Trade Zones Act of June 18, 1934, as amended (19 U.S.C. 81a-81u), the Foreign-Trade Zones Board (the Board) adopts the following Order...

  6. Organizational Recruitment as a Two-Stage Process: A Comparative Analysis of Detroit and Yokohama.

    Science.gov (United States)

    Marx, Jonathan

    1988-01-01

    After examining recruitment as a dual process in Detroit and Yokohama (Japan), the author states that discrepant findings result in part from different temporal focus in the recruitment process. He advocates study of the entire recruitment process and the need to isolate contingencies that influence employee selection. (Author/CH)

  7. SPATIAL AND TEMPORAL VARIABILITY IN ACROLEIN AND SELECT VOLATILE ORGANIC COMPOUNDS IN DETROIT, MICHIGAN

    Science.gov (United States)

    The variability in outdoor concentrations of acrolein, benzene, toluene, ethylbenzene and xylenes (BTEX), and 1,3-butadiene was examined for data measured during summer 2004 of the Detroit Exposure and Aerosol Research Study (DEARS). Results for acrolein indicated no significant...

  8. Robust tactile sensory responses in finger area of primate motor cortex relevant to prosthetic control

    Science.gov (United States)

    Schroeder, Karen E.; Irwin, Zachary T.; Bullard, Autumn J.; Thompson, David E.; Bentley, J. Nicole; Stacey, William C.; Patil, Parag G.; Chestek, Cynthia A.

    2017-08-01

    Objective. Challenges in improving the performance of dexterous upper-limb brain-machine interfaces (BMIs) have prompted renewed interest in quantifying the amount and type of sensory information naturally encoded in the primary motor cortex (M1). Previous single unit studies in monkeys showed M1 is responsive to tactile stimulation, as well as passive and active movement of the limbs. However, recent work in this area has focused primarily on proprioception. Here we examined instead how tactile somatosensation of the hand and fingers is represented in M1. Approach. We recorded multi- and single units and thresholded neural activity from macaque M1 while gently brushing individual finger pads at 2 Hz. We also recorded broadband neural activity from electrocorticogram (ECoG) grids placed on human motor cortex, while applying the same tactile stimulus. Main results. Units displaying significant differences in firing rates between individual fingers (p  sensory information was present in M1 to correctly decode stimulus position from multiunit activity above chance levels in all monkeys, and also from ECoG gamma power in two human subjects. Significance. These results provide some explanation for difficulties experienced by motor decoders in clinical trials of cortically controlled prosthetic hands, as well as the general problem of disentangling motor and sensory signals in primate motor cortex during dextrous tasks. Additionally, examination of unit tuning during tactile and proprioceptive inputs indicates cells are often tuned differently in different contexts, reinforcing the need for continued refinement of BMI training and decoding approaches to closed-loop BMI systems for dexterous grasping.

  9. Cross-sensory facilitation reveals neural interactions between visual and tactile motion in humans

    Directory of Open Access Journals (Sweden)

    Monica eGori

    2011-04-01

    Full Text Available Many recent studies show that the human brain integrates information across the different senses and that stimuli of one sensory modality can enhance the perception of other modalities. Here we study the processes that mediate cross-modal facilitation and summation between visual and tactile motion. We find that while summation produced a generic, non-specific improvement of thresholds, probably reflecting higher-order interaction of decision signals, facilitation reveals a strong, direction-specific interaction, which we believe reflects sensory interactions. We measured visual and tactile velocity discrimination thresholds over a wide range of base velocities and conditions. Thresholds for both visual and tactile stimuli showed the characteristic dipper function, with the minimum thresholds occurring at a given pedestal speed. When visual and tactile coherent stimuli were combined (summation condition the thresholds for these multi-sensory stimuli also showed a dipper function with the minimum thresholds occurring in a similar range to that for unisensory signals. However, the improvement of multisensory thresholds was weak and not directionally specific, well predicted by the maximum likelihood estimation model (agreeing with previous research. A different technique (facilitation did, however, reveal direction-specific enhancement. Adding a non-informative pedestal motion stimulus in one sensory modality (vision or touch selectively lowered thresholds in the other, by the same amount as pedestals in the same modality. Facilitation did not occur for neutral stimuli like sounds (that would also have reduced temporal uncertainty, nor for motion in opposite direction, even in blocked trials where the subjects knew that the motion was in the opposite direction showing that the facilitation was not under subject control. Cross-sensory facilitation is strong evidence for functionally relevant cross-sensory integration at early levels of sensory

  10. In-reservoir behavior, dam passage, and downstream migration of juvenile Chinook salmon and juvenile steelhead from Detroit Reservoir and Dam to Portland, Oregon, February 2013-February 2014

    Science.gov (United States)

    Beeman, John W.; Adams, Noah S.

    2015-01-01

    In the second year of 2 years of study, the movements of juvenile spring Chinook salmon (Oncorhynchus tshawytscha) and juvenile summer steelhead (Oncorhynchus mykiss) through Detroit Reservoir, passing Detroit Dam, and migrating downstream to Portland, Oregon, were studied during a 1-year-long period beginning in February 2013. The primary purpose of the study was to provide empirical data to inform decisions about future alternatives for improving downstream passage of salmonids at Detroit Dam. A secondary purpose was to design and assess the performance of a system to detect juvenile salmonids implanted with acoustic transmitters migrating in the Willamette River. Inferences about fish migration were made from detections of juvenile fish of hatchery origin at least 95 millimeters in fork length surgically implanted with an acoustic transmitter and released during the spring (March–May) and fall (September–November) of 2013. Detection sites were placed throughout the reservoir, near the dam, and at two sites in the North Santiam River and at three sites in the Willamette River culminating at Portland, Oregon. We based most inferences on an analysis period up to the 90th percentile of tag life (68–78 days after release, depending on species and season), although a small number of fish passed after that period as late as April 8, 2014. Chinook salmon migrated from the tributaries of release to the reservoir in greater proportion than steelhead, particularly in the fall. The in-reservoir migration behaviors and dam passage of the two species were similar during the spring study, but during the fall study, few steelhead reached the reservoir and none passed the dam within the analysis period. Migrations in the reservoir were directed and non-random, except in the forebay. Depths of fish within 25 meters of the dam were deeper in the day than at night for Chinook salmon and similar in the day and night for steelhead; steelhead generally were at shallower depths

  11. Review of Recent Inkjet-Printed Capacitive Tactile Sensors

    Directory of Open Access Journals (Sweden)

    Ahmed Salim

    2017-11-01

    Full Text Available Inkjet printing is an advanced printing technology that has been used to develop conducting layers, interconnects and other features on a variety of substrates. It is an additive manufacturing process that offers cost-effective, lightweight designs and simplifies the fabrication process with little effort. There is hardly sufficient research on tactile sensors and inkjet printing. Advancements in materials science and inkjet printing greatly facilitate the realization of sophisticated tactile sensors. Starting from the concept of capacitive sensing, a brief comparison of printing techniques, the essential requirements of inkjet-printing and the attractive features of state-of-the art inkjet-printed tactile sensors developed on diverse substrates (paper, polymer, glass and textile are presented in this comprehensive review. Recent trends in inkjet-printed wearable/flexible and foldable tactile sensors are evaluated, paving the way for future research.

  12. Review of Recent Inkjet-Printed Capacitive Tactile Sensors.

    Science.gov (United States)

    Salim, Ahmed; Lim, Sungjoon

    2017-11-10

    Inkjet printing is an advanced printing technology that has been used to develop conducting layers, interconnects and other features on a variety of substrates. It is an additive manufacturing process that offers cost-effective, lightweight designs and simplifies the fabrication process with little effort. There is hardly sufficient research on tactile sensors and inkjet printing. Advancements in materials science and inkjet printing greatly facilitate the realization of sophisticated tactile sensors. Starting from the concept of capacitive sensing, a brief comparison of printing techniques, the essential requirements of inkjet-printing and the attractive features of state-of-the art inkjet-printed tactile sensors developed on diverse substrates (paper, polymer, glass and textile) are presented in this comprehensive review. Recent trends in inkjet-printed wearable/flexible and foldable tactile sensors are evaluated, paving the way for future research.

  13. Development of flexible tactile sensors for hexapod robots

    DEFF Research Database (Denmark)

    Drimus, Alin; Børlum-Petersen, Mikkel; Jouffroy, Jerome

    2013-01-01

    This paper describes the development of flexible based tactile array sensors based on piezoresistive rubber for use in the leg tips of hexapod robotics. The sensors are composed of a sandwich similar structure, with a piezoresistive rubber used as the middle layer and flexPCB electrodes on the up......This paper describes the development of flexible based tactile array sensors based on piezoresistive rubber for use in the leg tips of hexapod robotics. The sensors are composed of a sandwich similar structure, with a piezoresistive rubber used as the middle layer and flexPCB electrodes...... on the upper and lower part of the rubber. To address a wider range of tactile stimuli, namely the dynamic tactile stimuli, a piezoelectric thin film sensor based on polyvinylidene fluoride(PVDF) is embedded into the leg tip mould. Both piezoresistive array and piezoelectric types of sensors are investigated...

  14. The role of working memory in tactile selective attention.

    Science.gov (United States)

    Dalton, Polly; Lavie, Nilli; Spence, Charles

    2009-04-01

    Load theory suggests that working memory controls the extent to which irrelevant distractors are processed (e.g., Lavie, Hirst, De Fockert, & Viding, 2004). However, so far this proposal has only been tested in vision. Here, we examine the extent to which tactile selective attention also depends on working memory. In Experiment 1, participants focused their attention on continuous target vibrations while attempting to ignore pulsed distractor vibrations. In Experiment 2, targets were always presented to a particular hand, with distractors being presented to the other hand. In both experiments, a high (vs. low) load in a concurrent working memory task led to greater interference by the tactile distractors. These results establish the role of working memory in the control of tactile selective attention, demonstrating for the first time that the principles of load theory also apply to the tactile modality.

  15. RETENTION OF HIGH TACTILE ACUITY THROUGHOUT THE LIFESPAN IN BLINDNESS

    OpenAIRE

    Legge, Gordon E.; Madison, Cindee; Vaughn, Brenna N.; Cheong, Allen M.Y.; Miller, Joseph C.

    2008-01-01

    Previous studies of tactile acuity on the fingertip using passive touch have demonstrated an age-related decline in spatial resolution for both sighted and blind subjects. We have re-examined this age dependence with two newly designed tactile-acuity charts requiring active exploration of the test symbols. One chart used dot patterns similar to Braille and the other used embossed Landolt rings. Groups of blind Braille readers and sighted subjects, ranging in age from 12 to 85 years, were test...

  16. Osseoperception: active tactile sensibility of osseointegrated dental implants.

    Science.gov (United States)

    Enkling, Norbert; Utz, Karl Heinz; Bayer, Stefan; Stern, Regina Mericske

    2010-01-01

    The phenomenon of developing a certain tactile sensibility through osseointegrated dental implants is called osseoperception. Active tactile sensibility can be tested by having the subject bite on test bodies. The aim of the study was to describe the active tactile sensibility of single-tooth implants based on the 50% value and the slope of the sensibility curve at the 50% value. Sixty-two subjects with single-tooth implants with natural opposing teeth were included in the study. In a computer-assisted and randomized way, copper foils of varying thickness (0 to 200 Μm) were placed inter?occlusally between the single-tooth implant and the natural opposing tooth, and the active tactile perception was studied according to the psychophysical method of constant stimuli and statistically evaluated by logistic regression. Tactile perception of the implants at the 50% value estimated by logistic regression was 20.2 ± 10.9 Μm on average, and the slope was 29 ± 15. Regarding implant surface structure, significant differences were observed. The sandblasted and acid-etched surface was significantly more sensitive than the titanium plasma-sprayed surface, and the machined surface was similar to the titanium plasma-sprayed surface. Active tactile sensibility of implants with natural antagonistic teeth is very similar to that of teeth, but the slope of the tactile sensibility curve is flatter. Significant differences in tactile sensibility as a function of different implant surfaces may indicate that receptors near the implant form the basis of osseoperception.

  17. Long-range tactile masking occurs in the postural body schema.

    Science.gov (United States)

    D'Amour, Sarah; Harris, Laurence R

    2016-02-01

    Long-range tactile masking has been reported between mirror symmetric body locations. This suggests a general principle of contralateral inhibition between corresponding points on each side of the body that may serve to enhance distinguishing touches on the two halves of the body. Do such effects occur before or after posture is added to the body schema? Here, we address this question by exploring the effect of arm position on long-range tactile masking. The influence of arm position was investigated using different positions of both the test and masking arms. Tactile sensitivity was measured on one forearm, while vibrotactile-masking stimulation was applied to the opposite arm or to a control site on the shoulder. No difference was found in sensitivity when test arm position was varied. Physical contact between the arms significantly increased the effectiveness of a masking stimulus applied to the other arm. Long-range masking between the arms was strongest when the arms were held parallel to each other and was abolished if the position of either the test arm or the masking arm was moved from this position. Modulation of the effectiveness of masking by the position of both the test and masking arms suggests that these effects occur after posture information is added to the body's representation in the brain.

  18. Design and simulation of a tactile display based on a CMUT array

    Science.gov (United States)

    Chouvardas, Vasilios G.; Hatalis, Miltiadis K.; Miliou, Amalia N.

    2012-10-01

    In this article, we present the design of a tactile display based on a CMUT-phased array. The array implements a 'pixel' of the display and is used to focus airborne ultrasound energy on the skin surface. The pressure field, generated by the focused ultrasound waves, is used to excite the mechanoreceptors under the skin and transmit tactile information. The results of Finite Element Analysis (FEA) of the Capacitive Micromachined Ultrasonic Transducer (CMUT) and the CMUT-phased array for ultrasound emission are presented. The 3D models of the device and the array were developed using a commercial FEA package. Modelling and simulations were performed using the parameters from the POLYMUMPS surface micromachining technology from MEMSCAP. During the analysis of the phased array, several parameters were studied in order to determine their importance in the design of the tactile display. The output of the array is compared with the acoustic intensity thresholds in order to prove the feasibility of the design. Taking into account the density of the mechanoreceptors in the skin, we conclude that there should be at least one receptor under the excitation area formed on the skin.

  19. A segregated neural pathway for prefrontal top-down control of tactile discrimination.

    Science.gov (United States)

    Gogulski, Juha; Boldt, Robert; Savolainen, Petri; Guzmán-López, Jessica; Carlson, Synnöve; Pertovaara, Antti

    2015-01-01

    It has proven difficult to separate functional areas in the prefrontal cortex (PFC), an area implicated in attention, memory, and distraction handling. Here, we assessed in healthy human subjects whether PFC subareas have different roles in top-down regulation of sensory functions by determining how the neural links between the PFC and the primary somatosensory cortex (S1) modulate tactile perceptions. Anatomical connections between the S1 representation area of the cutaneous test site and the PFC were determined using probabilistic tractography. Single-pulse navigated transcranial magnetic stimulation of the middle frontal gyrus-S1 link, but not that of the superior frontal gyrus-S1 link, impaired the ability to discriminate between single and twin tactile pulses. The impairment occurred within a restricted time window and skin area. The spatially and temporally organized top-down control of tactile discrimination through a segregated PFC-S1 pathway suggests functional specialization of PFC subareas in fine-tuned regulation of information processing. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  20. Neural Substrate for Metacognitive Accuracy of Tactile Working Memory.

    Science.gov (United States)

    Gogulski, Juha; Zetter, Rasmus; Nyrhinen, Mikko; Pertovaara, Antti; Carlson, Synnöve

    2017-11-01

    The human prefrontal cortex (PFC) has been shown to be important for metacognition, the capacity to monitor and control one's own cognitive processes. Here we dissected the neural architecture of somatosensory metacognition using navigated single-pulse transcranial magnetic stimulation (TMS) to modulate tactile working memory (WM) processing. We asked subjects to perform tactile WM tasks and to give a confidence rating for their performance after each trial. We circumvented the challenge of interindividual variability in functional brain anatomy by applying TMS to two PFC areas that, according to tractography, were neurally connected with the primary somatosensory cortex (S1): one area in the superior frontal gyrus (SFG), another in the middle frontal gyrus (MFG). These two PFC locations and a control cortical area were stimulated during both spatial and temporal tactile WM tasks. We found that tractography-guided TMS of the SFG area selectively enhanced metacognitive accuracy of tactile temporal, but not spatial WM. Stimulation of the MFG area that was also neurally connected with the S1 had no such effect on metacognitive accuracy of either the temporal or spatial tactile WM. Our findings provide causal evidence that the PFC contains distinct neuroanatomical substrates for introspective accuracy of tactile WM. © The Author 2017. Published by Oxford University Press.

  1. Tactile device utilizing a single magnetorheological sponge: experimental investigation

    Science.gov (United States)

    Kim, Soomin; Kim, Pyunghwa; Choi, Seung-Hyun; Oh, Jong-Seok; Choi, Seung-Bok

    2015-04-01

    In the field of medicine, several new areas have been currently introduced such as robot-assisted surgery. However, the major drawback of these systems is that there is no tactile communication between doctors and surgical sites. When the tactile system is brought up, telemedicine including telerobotic surgery can be enhanced much more than now. In this study, a new tactile device is designed using a single magnetorhological (MR) sponge cell to realize the sensation of human organs. MR fluids and an open celled polyurethane foam are used to propose the MR sponge cell. The viscous and elastic sensational behaviors of human organs are realized by the MR sponge cell. Before developing the tactile device, tactile sensation according to touch of human fingers are quantified in advance. The finger is then treated as a reduced beam bundle model (BBM) in which the fingertip is comprised of an elastic beam virtually. Under the reduced BBM, when people want to sense an object, the fingertip is investigated by pushing and sliding. Accordingly, while several magnitudes of magnetic fields are applied to the tactile device, normal and tangential reaction forces and bending moment are measured by 6-axis force/torque sensor instead of the fingertip. These measured data are used to compare with soft tissues. It is demonstrated that the proposed MR sponge cell can realize any part of the organ based on the obtained data.

  2. The potential for developing a tactile communication system based on Blissymbolics.

    Science.gov (United States)

    Isaacson, Mick D; Lloyd, Lyle L

    2015-02-01

    To be useful for tactile communication, tactile stimuli need to be discriminable from each other. The objective of this study was to determine whether raised-line renderings of Blissymbols have the capacity for being developed into a tactile communication system as measured by their tactile discriminability. Tactile discrimination of Blissymbols was measured by performance on a task in which participants were asked to feel a target raised-line Blissymbol and then to find the target within an array containing the target and raised-line Blissymbol foils. The vast majority of tactile Blissymbols had tactile discrimination scores of 90% accuracy or better. Most raised-line Blissymbols can be tactilely discriminated from each other, indicating that they have the potential for being developed into a tactile communication system.

  3. 76 FR 2147 - UAW-Chrysler National Training Center Technology Training Joint Programs Staff, Detroit, MI; UAW...

    Science.gov (United States)

    2011-01-12

    ...-Chrysler National Training Center Technology Training Joint Programs Staff, Detroit, MI; UAW-Chrysler Technical Training Center Technology Training Joint Programs Staff, Warren, MI; Notice of Revised... investigation, the Department confirmed that the proportion of Technology Training Joint Programs Staff...

  4. Neuronal Assemblies Evidence Distributed Interactions within a Tactile Discrimination Task in Rats

    Directory of Open Access Journals (Sweden)

    Camila S. Deolindo

    2018-01-01

    Full Text Available Accumulating evidence suggests that neural interactions are distributed and relate to animal behavior, but many open questions remain. The neural assembly hypothesis, formulated by Hebb, states that synchronously active single neurons may transiently organize into functional neural circuits—neuronal assemblies (NAs—and that would constitute the fundamental unit of information processing in the brain. However, the formation, vanishing, and temporal evolution of NAs are not fully understood. In particular, characterizing NAs in multiple brain regions over the course of behavioral tasks is relevant to assess the highly distributed nature of brain processing. In the context of NA characterization, active tactile discrimination tasks with rats are elucidative because they engage several cortical areas in the processing of information that are otherwise masked in passive or anesthetized scenarios. In this work, we investigate the dynamic formation of NAs within and among four different cortical regions in long-range fronto-parieto-occipital networks (primary somatosensory, primary visual, prefrontal, and posterior parietal cortices, simultaneously recorded from seven rats engaged in an active tactile discrimination task. Our results first confirm that task-related neuronal firing rate dynamics in all four regions is significantly modulated. Notably, a support vector machine decoder reveals that neural populations contain more information about the tactile stimulus than the majority of single neurons alone. Then, over the course of the task, we identify the emergence and vanishing of NAs whose participating neurons are shown to contain more information about animal behavior than randomly chosen neurons. Taken together, our results further support the role of multiple and distributed neurons as the functional unit of information processing in the brain (NA hypothesis and their link to active animal behavior.

  5. Parametric investigation of scalable tactile sensors

    Science.gov (United States)

    Saadatzi, Mohammad Nasser; Yang, Zhong; Baptist, Joshua R.; Sahasrabuddhe, Ritvij R.; Wijayasinghe, Indika B.; Popa, Dan O.

    2017-05-01

    In the near future, robots and humans will share the same environment and perform tasks cooperatively. For intuitive, safe, and reliable physical human-robot interaction (pHRI), sensorized robot skins for tactile measurements of contact are necessary. In a previous study, we presented skins consisting of strain gauge arrays encased in silicone encapsulants. Although these structures could measure normal forces applied directly onto the sensing elements, they also exhibited blind spots and response asymmetry to certain loading patterns. This study presents a parametric investigation of piezoresistive polymeric strain gauge that exhibits a symmetric omniaxial response thanks to its novel star-shaped structure. This strain gauge relies on the use of gold micro-patterned star-shaped structures with a thin layer of PEDOT:PSS which is a flexible polymer with piezoresistive properties. In this paper, the sensor is first modeled and comprehensively analyzed in the finite-element simulation environment COMSOL. Simulations include stress-strain loading for a variety of structure parameters such as gauge lengths, widths, and spacing, as well as multiple load locations relative to the gauge. Subsequently, sensors with optimized configurations obtained through simulations were fabricated using cleanroom photolithographic and spin-coating processes, and then experimentally tested. Results show a trend-wise agreement between experiments and simulations.

  6. Braille in the Sighted: Teaching Tactile Reading to Sighted Adults.

    Science.gov (United States)

    Bola, Łukasz; Siuda-Krzywicka, Katarzyna; Paplińska, Małgorzata; Sumera, Ewa; Hańczur, Paweł; Szwed, Marcin

    2016-01-01

    Blind people are known to have superior perceptual abilities in their remaining senses. Several studies suggest that these enhancements are dependent on the specific experience of blind individuals, who use those remaining senses more than sighted subjects. In line with this view, sighted subjects, when trained, are able to significantly progress in relatively simple tactile tasks. However, the case of complex tactile tasks is less obvious, as some studies suggest that visual deprivation itself could confer large advantages in learning them. It remains unclear to what extent those complex skills, such as braille reading, can be learnt by sighted subjects. Here we enrolled twenty-nine sighted adults, mostly braille teachers and educators, in a 9-month braille reading course. At the beginning of the course, all subjects were naive in tactile braille reading. After the course, almost all were able to read whole braille words at a mean speed of 6 words-per-minute. Subjects with low tactile acuity did not differ significantly in braille reading speed from the rest of the group, indicating that low tactile acuity is not a limiting factor for learning braille, at least at this early stage of learning. Our study shows that most sighted adults can learn whole-word braille reading, given the right method and a considerable amount of motivation. The adult sensorimotor system can thus adapt, to some level, to very complex tactile tasks without visual deprivation. The pace of learning in our group was comparable to congenitally and early blind children learning braille in primary school, which suggests that the blind's mastery of complex tactile tasks can, to a large extent, be explained by experience-dependent mechanisms.

  7. Tactile Radar: experimenting a computer game with visually disabled.

    Science.gov (United States)

    Kastrup, Virgínia; Cassinelli, Alvaro; Quérette, Paulo; Bergstrom, Niklas; Sampaio, Eliana

    2017-09-18

    Visually disabled people increasingly use computers in everyday life, thanks to novel assistive technologies better tailored to their cognitive functioning. Like sighted people, many are interested in computer games - videogames and audio-games. Tactile-games are beginning to emerge. The Tactile Radar is a device through which a visually disabled person is able to detect distal obstacles. In this study, it is connected to a computer running a tactile-game. The game consists in finding and collecting randomly arranged coins in a virtual room. The study was conducted with nine congenital blind people including both sexes, aged 20-64 years old. Complementary methods of first and third person were used: the debriefing interview and the quasi-experimental design. The results indicate that the Tactile Radar is suitable for the creation of computer games specifically tailored for visually disabled people. Furthermore, the device seems capable of eliciting a powerful immersive experience. Methodologically speaking, this research contributes to the consolidation and development of first and third person complementary methods, particularly useful in disabled people research field, including the evaluation by users of the Tactile Radar effectiveness in a virtual reality context. Implications for rehabilitation Despite the growing interest in virtual games for visually disabled people, they still find barriers to access such games. Through the development of assistive technologies such as the Tactile Radar, applied in virtual games, we can create new opportunities for leisure, socialization and education for visually disabled people. The results of our study indicate that the Tactile Radar is adapted to the creation of video games for visually disabled people, providing a playful interaction with the players.

  8. Disease and Health Inequalities Attributable to Air Pollutant Exposure in Detroit, Michigan

    Directory of Open Access Journals (Sweden)

    Sheena E. Martenies

    2017-10-01

    Full Text Available The environmental burden of disease is the mortality and morbidity attributable to exposures of air pollution and other stressors. The inequality metrics used in cumulative impact and environmental justice studies can be incorporated into environmental burden studies to better understand the health disparities of ambient air pollutant exposures. This study examines the diseases and health disparities attributable to air pollutants for the Detroit urban area. We apportion this burden to various groups of emission sources and pollutants, and show how the burden is distributed among demographic and socioeconomic subgroups. The analysis uses spatially-resolved estimates of exposures, baseline health rates, age-stratified populations, and demographic characteristics that serve as proxies for increased vulnerability, e.g., race/ethnicity and income. Based on current levels, exposures to fine particulate matter (PM2.5, ozone (O3, sulfur dioxide (SO2, and nitrogen dioxide (NO2 are responsible for more than 10,000 disability-adjusted life years (DALYs per year, causing an annual monetized health impact of $6.5 billion. This burden is mainly driven by PM2.5 and O3 exposures, which cause 660 premature deaths each year among the 945,000 individuals in the study area. NO2 exposures, largely from traffic, are important for respiratory outcomes among older adults and children with asthma, e.g., 46% of air-pollution related asthma hospitalizations are due to NO2 exposures. Based on quantitative inequality metrics, the greatest inequality of health burdens results from industrial and traffic emissions. These metrics also show disproportionate burdens among Hispanic/Latino populations due to industrial emissions, and among low income populations due to traffic emissions. Attributable health burdens are a function of exposures, susceptibility and vulnerability (e.g., baseline incidence rates, and population density. Because of these dependencies, inequality

  9. 78 FR 40961 - Safety Zones; Annual Events in the Captain of the Port Detroit Zone

    Science.gov (United States)

    2013-07-09

    ... safety zone listed in 33 CFR 165.941(a)(51) will be enforced from 9:30 p.m. to 10:15 p.m. on June 24... Zones; Annual Events in the Captain of the Port Detroit Zone AGENCY: Coast Guard, DHS. ACTION: Notice of enforcement of regulation. SUMMARY: The Coast Guard will enforce various safety zones for annual marine events...

  10. 77 FR 38484 - Safety Zones; Annual Fireworks Events in the Captain of the Port Detroit Zone

    Science.gov (United States)

    2012-06-28

    ..., Detroit, MI. The first safety zone listed in 33 CFR 165.941(a)(51) will not be enforced. The second safety zone listed in 33 CFR 165.941(a)(51) will be enforced from 8:00 p.m. to 11:55 p.m. on June 25, 2012. In.... to 11:55 p.m. on June 26, 2012. The third safety zone listed in 33 CFR 165.941(a)(51) will be...

  11. 77 FR 42176 - Safety Zones; Annual Fireworks Events in the Captain of the Port Detroit Zone

    Science.gov (United States)

    2012-07-18

    ... fireworks launch site located at position 41-34'-18.10'' N, 082-51'-18.70'' W (NAD 83). This zone will be... at position 41-34'-18.10'' N, 082- 51'-18.70'' W (NAD 83). (ii) Expected date. This safety zone will...-AA00 Safety Zones; Annual Fireworks Events in the Captain of the Port Detroit Zone AGENCY: Coast Guard...

  12. Determining spatial variability in PM 2.5 source impacts across Detroit, MI

    Science.gov (United States)

    Duvall, Rachelle M.; Norris, Gary A.; Burke, Janet M.; Olson, David A.; Vedantham, Ram; Williams, Ron

    2012-02-01

    Intra-urban variability in air pollution source impacts was investigated using receptor modeling of daily speciated PM 2.5 measurements collected at residential outdoor locations across Detroit, MI (Wayne County) as part of the Detroit Exposure and Aerosol Research Study (DEARS) during summer and winter from 2004 to 2006. Six areas were selected for the residential monitoring in the DEARS to capture impacts from different sources including local industry, motor vehicles, and upwind regional sources. PM 2.5 measurements were also collected at the Allen Park, MI Chemical Speciation Network (CSN) site for comparison with the residential outdoor sites. Sources impacting PM 2.5 were quantified using the EPA Chemical Mass Balance Model (CMB 8.2). Published source profiles were used as input to CMB along with a mixed industrial profile and a steel manufacturing profile obtained by applying the EPA Positive Matrix Factorization Model (PMF 4.0) to CSN data from a Midwestern U.S. site with industrial sources similar to Detroit. Major PM 2.5 sources impacting the Allen Park and residential monitoring areas during DEARS included motor vehicles (24-36% by mass), secondary sulfate/coal combustion (17-35%), secondary nitrate (16-37%) and organic matter (17-21%). Road dust, steel manufacturing, and mixed industrial sources contributed less than 11% by mass. CMB source contribution estimates for Allen Park during the DEARS generally compared well to CMB estimates from the collocated year-long CSN measurements using the same source profiles. CMB source contributions during DEARS showed similar contributions across the residential monitoring areas for secondary sulfate/coal combustion and secondary nitrate consistent with regional impacts for these sources. Contributions from motor vehicles, steel manufacturing, and mixed industrial sources varied across the DEARS monitoring areas, indicating impacts from local sources within the Detroit airshed that may not be well characterized by

  13. Source-receptor relationships for atmospheric mercury in urban Detroit, Michigan

    Science.gov (United States)

    Lynam, Mary M.; Keeler, Gerald J.

    Speciated hourly mercury measurements were made in Detroit, Michigan during four sampling campaigns from 2000 to 2002. In addition, other chemical and meteorological parameters were measured concurrently. These data were analyzed using principal components analysis (PCA) in order to develop source receptor relationships for mercury species in urban Detroit. Reactive gaseous mercury (RGM) was found to cluster on two main factors; photochemistry and a coal combustion factor. Particulate phase mercury, Hg p, tended to cluster with RGM on the same factor. The photochemistry factor corroborates previous observations of the presence of RGM in highly oxidizing atmospheres and does not point to a specific source emission type. Instead, it likely represents local emissions and regional transport of photochemically processed air masses. The coal combustion factor is indicative of emissions from coal-fired power plants near the receptor site. Elemental mercury was found on a factor for combustion from automobiles and points to the influence these emissions have on the receptor site, which was located proximate to two major interstate highways and the largest border crossing in the United States. This analysis reveals that the receptor site which is located in an industrialized sector of the city of Detroit experienced impacts from both stationary and point sources of mercury that are both local and regional in nature.

  14. Tactile mouse generating velvet hand illusion on human palm

    Directory of Open Access Journals (Sweden)

    Nadar Rajaei

    2016-09-01

    Full Text Available To enhance virtual reality (VR generated by tactile displays, we have focused on a novel tactile illusion, called the Velvet Hand Illusion (VHI. In VHI, moving two parallel wires back and forth between the two hands leads humans to perceive a velvet-like surface between their hands. In earlier studies, we revealed that the intensity of VHI could be controlled by a ratio (r/D, where r and D are the wire stroke and wire distance, respectively. According to these findings, we investigate in this study whether a common tactile display is able to produce VHI, and whether the ratio can also control VHI intensity. We prepare a dot-matrix display as a tactile display in which moving one line of the display’s pins is considered as a wire pattern. We investigate the VHI intensity with regard to changing the stroke r and the line distance D using paired comparison. Experimental results show that the VHI intensity is increased or decreased by changing r and D. We conclude that VHI can be created by the tactile display, and the intensity of VHI is controlled by changing the ratio of r/D.

  15. Nitrogen narcosis and tactile shape memory in low visibility.

    Science.gov (United States)

    van Wijk, Charles H; Meintjes, W A J

    2014-01-01

    Commercial diving often occurs in low visibility, where divers are reliant on their tactile senses. This study examined the effect of nitrogen narcosis on tactile memory for shapes as well as the influence of psychological and biographical factors on this relationship. This crossover study tested 139 commercial divers in a dry hyperbaric chamber at 101.325 and 607.95 kPa (1 and 6 atmospheres absolute/atm abs). Divers memorized shapes while blindfolded, using their tactile senses only. Delayed recall was measured at the surface after each dive. Psychological and biographical data were also collected. A significant effect of hyperbaric pressure on tactile memory was demonstrated, and a further effect of sequence of testing found. Thus, divers' delayed shape recall deteriorated by 8% after learning material at depth, compared to learning on the surface. There were also significant but small effects of psychological and biographical markers on tactile memory performance, with lower trait anxiety associated with better recall, and lower education associated with poorer recall. The findings emphasize the importance of utilizing other forms of recording of events or objects at depth, particularly in conditions of low visibility during deeper diving, to aid memory encoding and subsequent recall at the surface.

  16. Tactile sensory system: encoding from the periphery to the cortex.

    Science.gov (United States)

    Jones, Lynette A; Smith, Allan M

    2014-01-01

    Specialized mechanoreceptors in the skin respond to mechanical deformation and provide the primary input to the tactile sensory system. Although the morphology of these receptors has been documented, there is still considerable uncertainty as to the relation between cutaneous receptor morphology and the associated physiological responses to stimulation. Labelled-line models of somatosensory processes in which specific mechanoreceptors are associated with particular sensory qualities fail to account for the evidence showing that all types of tactile afferent units respond to a varying extent to most types of natural stimuli. Neurophysiological and psychophysical experiments have provided the framework for determining the relation between peripheral afferent or cortical activity and tactile perception. Neural codes derived from these afferent signals are evaluated in terms of their capacity to predict human perceptual performance. One particular challenge in developing models of the tactile sensory system is the dual use of sensory signals from the skin. In addition to their perceptual function they serve as inputs to the sensorimotor control system involved in manipulation. Perceptions generated through active touch differ from those resulting from passive stimulation of the skin because they are the product of self-generated exploratory processes. Recent research in this area has highlighted the importance of shear forces in these exploratory movements and has shown that fingertip skin is particularly sensitive to shear generated during both object manipulation and tactile exploration. © 2014 Wiley Periodicals, Inc.

  17. EAP application to artificial tactile feel display of virtual reality

    Science.gov (United States)

    Konyo, Masashi; Tadokoro, Satoshi; Takamori, Toshi; Oguro, Keisuke

    2001-07-01

    A tactile feel display device for virtual reality was developed using Nafion-Platinum composite type EAP actuator (known as IPMC or ICPF). Conventional tactile displays can hardly express tactile human feeling of the fine touch of the surface of a cloth, because their mechanisms cannot excite minute distributed stimuli on human skin. We propose a new ciliary device using ICPF actuators. The ICPF has sufficient softness, utilizing the passive material property, that complex control is not required. The low drive voltage is safe enough for the touch of fingers. Its simple operation mechanism allows miniaturization for practical equipments. The developed device was designed with a number of cilia consisting of ICPF actuators, where a cilium is 2 mm wide and 5 mm long. An ICPF membrane is cut into pectination, and only the cilium part is plated and has a function of an actuator. An inclined configuration of the cilia produces variety of stimuli to human skin controlling frequencies. We tried to display both pressure and vibration at the same time using modulated low and high frequencies. The result clearly shows that over 80% of the subjects sensed some special tactile feeling. A comparison with real material samples shows that this display can present a subtle distinction of tactile feeling of cloth, especially like a towel and denim.

  18. Direct tactile manipulation of the flight plan in a modern aircraft cockpit

    DEFF Research Database (Denmark)

    Alapetite, Alexandre; Fogh, Rune; Zammit-Mangion, David

    2012-01-01

    An original experimental approach has been chosen, with an incremental progression from a traditional physical cockpit, to a tactile flight simulator reproducing traditional controls, to a prototype navigation display with direct tactile functionality, first located in the traditional low positio...

  19. Interactions of different body parts in peripersonal space: how vision of the foot influences tactile perception at the hand.

    Science.gov (United States)

    Schicke, Tobias; Bauer, Frank; Röder, Brigitte

    2009-02-01

    The body schema, a constantly updated representation of the body and its parts, has been suggested to emerge from body part-specific representations which integrate tactile, visual, and proprioceptive information about the identity and posture of the body. Studies using different approaches have provided evidence for a distinct representation of the visual space approximately 30 cm around the upper body, and predominantly the hands, termed the peripersonal space. In humans, peripersonal space representations have often been investigated with a visual-tactile crossmodal congruency task. We used this task to test if a representation of peripersonal space exists also around the feet, and to explore possible interactions of peripersonal space representations of different body parts. In Experiment 1, tactile stimuli to the hands and feet were judged according to their elevation while visual distractors presented near the same limbs had to be ignored. Crossmodal congruency effects did not differ between the two types of limbs, suggesting a representation of peripersonal space also around the feet. In Experiment 2, tactile stimuli were presented to the hands, and visual distractors were flashed either near the participant's foot, near a fake foot, or in distant space. Crossmodal congruency effects were larger in the real foot condition than in the two other conditions, indicating interactions between the peripersonal space representations of foot and hand. Furthermore, results of all three conditions showed that vision of the stimulated body part, compared to only proprioceptive input about its location, strongly influences crossmodal interactions for tactile perception, affirming the central role of vision in the construction of the body schema.

  20. Tactile Gap Detection Deteriorates during Bimanual Symmetrical Movements under Mirror Visual Feedback.

    Directory of Open Access Journals (Sweden)

    Janet H Bultitude

    Full Text Available It has been suggested that incongruence between signals for motor intention and sensory input can cause pain and other sensory abnormalities. This claim is supported by reports that moving in an environment of induced sensorimotor conflict leads to elevated pain and sensory symptoms in those with certain painful conditions. Similar procedures can lead to reports of anomalous sensations in healthy volunteers too. In the present study, we used mirror visual feedback to investigate the effects of sensorimotor incongruence on responses to stimuli that arise from sources external to the body, in particular, touch. Incongruence between the sensory and motor signals for the right arm was manipulated by having the participants make symmetrical or asymmetrical movements while watching a reflection of their left arm in a parasagittal mirror, or the left hand surface of a similarly positioned opaque board. In contrast to our prediction, sensitivity to the presence of gaps in tactile stimulation of the right forearm was not reduced when participants made asymmetrical movements during mirror visual feedback, as compared to when they made symmetrical or asymmetrical movements with no visual feedback. Instead, sensitivity was reduced when participants made symmetrical movements during mirror visual feedback relative to the other three conditions. We suggest that small discrepancies between sensory and motor information, as they occur during mirror visual feedback with symmetrical movements, can impair tactile processing. In contrast, asymmetrical movements with mirror visual feedback may not impact tactile processing because the larger discrepancies between sensory and motor information may prevent the integration of these sources of information. These results contrast with previous reports of anomalous sensations during exposure to both low and high sensorimotor conflict, but are nevertheless in agreement with a forward model interpretation of perceptual

  1. Inter-hemispheric integration of tactile-motor responses across body parts.

    Science.gov (United States)

    Tamè, Luigi; Longo, Matthew R

    2015-01-01

    In simple detection tasks, reaction times (RTs) are faster when stimuli are presented to the visual field or side of the body ipsilateral to the body part used to respond. This advantage, the crossed-uncrossed difference (CUD), is thought to reflect inter-hemispheric interactions needed for sensorimotor information to be integrated between the two cerebral hemispheres. However, it is unknown whether the tactile CUD is invariant when different body parts are stimulated. The most likely structure mediating such processing is thought to be the corpus callosum (CC). Neurophysiological studies have shown that there are denser callosal connections between regions that represent proximal parts of the body near the body midline and more sparse connections for regions representing distal extremities. Therefore, if the information transfer between the two hemispheres is affected by the density of callosal connections, stimuli presented on more distal regions of the body should produce a greater CUD compared to stimuli presented on more proximal regions. This is because interhemispheric transfer of information from regions with sparse callosal connections will be less efficient, and hence slower. Here, we investigated whether the CUD is modulated as a function of the different body parts stimulated by presenting tactile stimuli unpredictably on body parts at different distances from the body midline (i.e., Middle Finger, Forearm, or Forehead of each side of the body). Participants detected the stimulus and responded as fast as possible using either their left or right foot. Results showed that the magnitude of the CUD was larger on the finger (~2.6 ms) and forearm (~1.8 ms) than on the forehead (≃0.9 ms). This result suggests that the interhemispheric transfer of tactile stimuli varies as a function of the strength of callosal connections of the body parts.

  2. Tactile Sensing for Dexterous Robotic Hands

    Science.gov (United States)

    Martin, Toby B.

    2000-01-01

    Robotic systems will be used as precursors to human exploration to explore the solar system and expand our knowledge of planetary surfaces. Robotic systems will also be used to build habitats and infrastructure required for human presence in space and on other planetary surfaces . Such robots will require a high level of intelligence and automation. The ability to flexibly manipulate their physical environment is one characteristic that makes humans so effective at these building and exploring tasks . The development of a generic autonomous grasp ing capability will greatly enhance the efficiency and ability of robotics to build, maintain and explore. To tele-operate a robot over vast distances of space, with long communication delays, has proven to be troublesome. Having an autonomous grasping capability that can react in real-time to disturbances or adapt to generic objects, without operator intervention, will reduce the probability of mishandled tools and samples and reduce the number of re-grasp attempts due to dropping. One aspect that separates humans from machines is a rich sensor set. We have the ability to feel objects and respond to forces and textures. The development of touch or tactile sensors for use on a robot that emulates human skin and nerves is the basis for this discussion. We will discuss the use of new piezo-electric and resistive materials that have emerged on the market with the intention of developing a touch sensitive sensor. With viable tacti le sensors we will be one step closer to developing an autonomous grasping capability.

  3. Detroit Works Long-Term Planning Project: Engagement Strategies for Blending Community and Technical Expertise

    Directory of Open Access Journals (Sweden)

    Toni L. Griffin

    2014-10-01

    Full Text Available In January 2013, civic leaders, community stakeholders, and residents came together to release Detroit Future City: 2012 Detroit Strategic Framework Plan, a guiding blueprint for transforming Detroit from its current state of population loss and excessive vacancy into a model for the reinvention of post-industrial American cities. Three years prior, the U.S. Census had reported that the city had lost 24% of its population over the last decade and had experienced a 20% increase in vacant and abandoned property, bringing total vacancy to roughly the size of Manhattan. In addition to physical and economic challenges, Detroiters had also acknowledged significant barriers to effective civic engagement. Foremost among these barriers were a profound sense of immobilization, planning fatigue, and a general perception of cynicism about planning and engagement efforts. These challenges were compounded by historic racial dynamics and tension. This case study elaborates on the comprehensive and innovative civic engagement executed in a citywide planning process called the Detroit Works Project, which took place from late 2010 through late 2012. For the citywide planning process to be successful and sustainable, civic leaders and project funders committed to a planning initiative that would be different from previous efforts, in large part because the “owners” of the process would be diverse and inclusive across all community sectors. The case study, written by three of the key consultants from the project, describes four key civic engagement strategies deployed in the creation of the strategic framework: (1 addressing profound challenges of culture, race, and politics by deliberately building trust; (2 elevating community expertise by fostering a sense of ownership of the process; (3 blending technical and community expertise; and (4 viewing civic engagement as an ongoing two-way conversation rather than a series of large-scale episodic events. This

  4. Achieving Sustainable, Community-Based Health in Detroit Through Adaptation of the UNSDGs.

    Science.gov (United States)

    Plum, Alexander; Kaljee, Linda

    In 2012, the Rio+20 meeting initiated the concept of the Sustainable Development Goals (SDGs) as a continuation of the Millennium Development Goals. The resulting document "The Future We Want" is best conceived as a roadmap toward poverty eradication and sustainable development. Although the SDGs were developed for low- and middle-income countries, many of these same issues face low-resource cities and communities in higher-income countries. The aim of this study was to use the SDGs as a platform to develop health-related goals for the city of Detroit. A 1-day workshop was convened in October 2015 including 55 representatives from government, academia, and community- and faith-based organizations. Four health-related SDGs were discussed: food security (SDG2); ensuring healthy lives at all ages (SDG3); access to potable water (SDG6); and making cities inclusive, safe, resilient, and sustainable living environments (SDG11). Workshop attendees broke into 4 groups to determine how the SDG targets for these 4 goals could be adapted for Detroit. At the end of the day, each group presented its decisions to the larger group. Workshop participants expressed that the SDGs empower local communities to respond to their unique health challenges and to see themselves as part of a larger more global conversation about development and sustainability. Participants suggested that inclusive and participatory means of decision making were a significant component of the SDGs and that such a process is the direction needed to make community-focused changes in Detroit. Additionally, shortly after the workshop, a roundtable of participants representing 5 community partners began to meet monthly and has become an advocacy group for public health and addressing the city-order water shutoffs in neighborhoods throughout Detroit. For participants and organizers, the workshop reinforced the hypothesis that the SDGs are relevant to Detroit and other low-resource cities in the United States

  5. Object texture recognition by dynamic tactile sensing using active exploration

    DEFF Research Database (Denmark)

    Drimus, Alin; Børlum Petersen, Mikkel; Bilberg, Arne

    For both humans and robots, tactile sensing is important for interaction with the environment: it is the core sensing used for exploration and manipulation of objects. In this paper, we present a method for determining object texture by active exploration with a robotic fingertip equipped with a d......For both humans and robots, tactile sensing is important for interaction with the environment: it is the core sensing used for exploration and manipulation of objects. In this paper, we present a method for determining object texture by active exploration with a robotic fingertip equipped...... with a dynamic tactile transducer based on polyvinylidene fluoride (PVDF) piezoelectric film. Different test surfaces are actively explored and the signal from the sensor is used for feature extraction, which is subsequently used for classification. A comparison between the significance of different extracted...

  6. Tactile display for virtual 3D shape rendering

    CERN Document Server

    Mansutti, Alessandro; Bordegoni, Monica; Cugini, Umberto

    2017-01-01

    This book describes a novel system for the simultaneous visual and tactile rendering of product shapes which allows designers to simultaneously touch and see new product shapes during the conceptual phase of product development. This system offers important advantages, including potential cost and time savings, compared with the standard product design process in which digital 3D models and physical prototypes are often repeatedly modified until an optimal design is achieved. The system consists of a tactile display that is able to represent, within a real environment, the shape of a product. Designers can explore the rendered surface by touching curves lying on the product shape, selecting those curves that can be considered style features and evaluating their aesthetic quality. In order to physically represent these selected curves, a flexible surface is modeled by means of servo-actuated modules controlling a physical deforming strip. The tactile display is designed so as to be portable, low cost, modular,...

  7. Optical based tactile shear and normal load sensor

    Energy Technology Data Exchange (ETDEWEB)

    Salisbury, Curt Michael

    2015-06-09

    Various technologies described herein pertain to a tactile sensor that senses normal load and/or shear load. The tactile sensor includes a first layer and an optically transparent layer bonded together. At least a portion of the first layer is made of optically reflective material. The optically transparent layer is made of resilient material (e.g., clear silicone rubber). The tactile sensor includes light emitter/light detector pair(s), which respectively detect either normal load or shear load. Light emitter(s) emit light that traverses through the optically transparent layer and reflects off optically reflective material of the first layer, and light detector(s) detect and measure intensity of reflected light. When a normal load is applied, the optically transparent layer compresses, causing a change in reflected light intensity. When shear load is applied, a boundary between optically reflective material and optically absorptive material is laterally displaced, causing a change in reflected light intensity.

  8. Tactile Acuity Charts: A Reliable Measure of Spatial Acuity

    Science.gov (United States)

    Bruns, Patrick; Camargo, Carlos J.; Campanella, Humberto; Esteve, Jaume; Dinse, Hubert R.; Röder, Brigitte

    2014-01-01

    For assessing tactile spatial resolution it has recently been recommended to use tactile acuity charts which follow the design principles of the Snellen letter charts for visual acuity and involve active touch. However, it is currently unknown whether acuity thresholds obtained with this newly developed psychophysical procedure are in accordance with established measures of tactile acuity that involve passive contact with fixed duration and control of contact force. Here we directly compared tactile acuity thresholds obtained with the acuity charts to traditional two-point and grating orientation thresholds in a group of young healthy adults. For this purpose, two types of charts, using either Braille-like dot patterns or embossed Landolt rings with different orientations, were adapted from previous studies. Measurements with the two types of charts were equivalent, but generally more reliable with the dot pattern chart. A comparison with the two-point and grating orientation task data showed that the test-retest reliability of the acuity chart measurements after one week was superior to that of the passive methods. Individual thresholds obtained with the acuity charts agreed reasonably with the grating orientation threshold, but less so with the two-point threshold that yielded relatively distinct acuity estimates compared to the other methods. This potentially considerable amount of mismatch between different measures of tactile acuity suggests that tactile spatial resolution is a complex entity that should ideally be measured with different methods in parallel. The simple test procedure and high reliability of the acuity charts makes them a promising complement and alternative to the traditional two-point and grating orientation thresholds. PMID:24504346

  9. Tactile acuity charts: a reliable measure of spatial acuity.

    Directory of Open Access Journals (Sweden)

    Patrick Bruns

    Full Text Available For assessing tactile spatial resolution it has recently been recommended to use tactile acuity charts which follow the design principles of the Snellen letter charts for visual acuity and involve active touch. However, it is currently unknown whether acuity thresholds obtained with this newly developed psychophysical procedure are in accordance with established measures of tactile acuity that involve passive contact with fixed duration and control of contact force. Here we directly compared tactile acuity thresholds obtained with the acuity charts to traditional two-point and grating orientation thresholds in a group of young healthy adults. For this purpose, two types of charts, using either Braille-like dot patterns or embossed Landolt rings with different orientations, were adapted from previous studies. Measurements with the two types of charts were equivalent, but generally more reliable with the dot pattern chart. A comparison with the two-point and grating orientation task data showed that the test-retest reliability of the acuity chart measurements after one week was superior to that of the passive methods. Individual thresholds obtained with the acuity charts agreed reasonably with the grating orientation threshold, but less so with the two-point threshold that yielded relatively distinct acuity estimates compared to the other methods. This potentially considerable amount of mismatch between different measures of tactile acuity suggests that tactile spatial resolution is a complex entity that should ideally be measured with different methods in parallel. The simple test procedure and high reliability of the acuity charts makes them a promising complement and alternative to the traditional two-point and grating orientation thresholds.

  10. Tactile acuity charts: a reliable measure of spatial acuity.

    Science.gov (United States)

    Bruns, Patrick; Camargo, Carlos J; Campanella, Humberto; Esteve, Jaume; Dinse, Hubert R; Röder, Brigitte

    2014-01-01

    For assessing tactile spatial resolution it has recently been recommended to use tactile acuity charts which follow the design principles of the Snellen letter charts for visual acuity and involve active touch. However, it is currently unknown whether acuity thresholds obtained with this newly developed psychophysical procedure are in accordance with established measures of tactile acuity that involve passive contact with fixed duration and control of contact force. Here we directly compared tactile acuity thresholds obtained with the acuity charts to traditional two-point and grating orientation thresholds in a group of young healthy adults. For this purpose, two types of charts, using either Braille-like dot patterns or embossed Landolt rings with different orientations, were adapted from previous studies. Measurements with the two types of charts were equivalent, but generally more reliable with the dot pattern chart. A comparison with the two-point and grating orientation task data showed that the test-retest reliability of the acuity chart measurements after one week was superior to that of the passive methods. Individual thresholds obtained with the acuity charts agreed reasonably with the grating orientation threshold, but less so with the two-point threshold that yielded relatively distinct acuity estimates compared to the other methods. This potentially considerable amount of mismatch between different measures of tactile acuity suggests that tactile spatial resolution is a complex entity that should ideally be measured with different methods in parallel. The simple test procedure and high reliability of the acuity charts makes them a promising complement and alternative to the traditional two-point and grating orientation thresholds.

  11. Nanowire FET Based Neural Element for Robotic Tactile Sensing Skin

    Directory of Open Access Journals (Sweden)

    William Taube Navaraj

    2017-09-01

    Full Text Available This paper presents novel Neural Nanowire Field Effect Transistors (υ-NWFETs based hardware-implementable neural network (HNN approach for tactile data processing in electronic skin (e-skin. The viability of Si nanowires (NWs as the active material for υ-NWFETs in HNN is explored through modeling and demonstrated by fabricating the first device. Using υ-NWFETs to realize HNNs is an interesting approach as by printing NWs on large area flexible substrates it will be possible to develop a bendable tactile skin with distributed neural elements (for local data processing, as in biological skin in the backplane. The modeling and simulation of υ-NWFET based devices show that the overlapping areas between individual gates and the floating gate determines the initial synaptic weights of the neural network - thus validating the working of υ-NWFETs as the building block for HNN. The simulation has been further extended to υ-NWFET based circuits and neuronal computation system and this has been validated by interfacing it with a transparent tactile skin prototype (comprising of 6 × 6 ITO based capacitive tactile sensors array integrated on the palm of a 3D printed robotic hand. In this regard, a tactile data coding system is presented to detect touch gesture and the direction of touch. Following these simulation studies, a four-gated υ-NWFET is fabricated with Pt/Ti metal stack for gates, source and drain, Ni floating gate, and Al2O3 high-k dielectric layer. The current-voltage characteristics of fabricated υ-NWFET devices confirm the dependence of turn-off voltages on the (synaptic weight of each gate. The presented υ-NWFET approach is promising for a neuro-robotic tactile sensory system with distributed computing as well as numerous futuristic applications such as prosthetics, and electroceuticals.

  12. Nanowire FET Based Neural Element for Robotic Tactile Sensing Skin.

    Science.gov (United States)

    Taube Navaraj, William; García Núñez, Carlos; Shakthivel, Dhayalan; Vinciguerra, Vincenzo; Labeau, Fabrice; Gregory, Duncan H; Dahiya, Ravinder

    2017-01-01

    This paper presents novel Neural Nanowire Field Effect Transistors (υ-NWFETs) based hardware-implementable neural network (HNN) approach for tactile data processing in electronic skin (e-skin). The viability of Si nanowires (NWs) as the active material for υ-NWFETs in HNN is explored through modeling and demonstrated by fabricating the first device. Using υ-NWFETs to realize HNNs is an interesting approach as by printing NWs on large area flexible substrates it will be possible to develop a bendable tactile skin with distributed neural elements (for local data processing, as in biological skin) in the backplane. The modeling and simulation of υ-NWFET based devices show that the overlapping areas between individual gates and the floating gate determines the initial synaptic weights of the neural network - thus validating the working of υ-NWFETs as the building block for HNN. The simulation has been further extended to υ-NWFET based circuits and neuronal computation system and this has been validated by interfacing it with a transparent tactile skin prototype (comprising of 6 × 6 ITO based capacitive tactile sensors array) integrated on the palm of a 3D printed robotic hand. In this regard, a tactile data coding system is presented to detect touch gesture and the direction of touch. Following these simulation studies, a four-gated υ-NWFET is fabricated with Pt/Ti metal stack for gates, source and drain, Ni floating gate, and Al 2 O 3 high-k dielectric layer. The current-voltage characteristics of fabricated υ-NWFET devices confirm the dependence of turn-off voltages on the (synaptic) weight of each gate. The presented υ-NWFET approach is promising for a neuro-robotic tactile sensory system with distributed computing as well as numerous futuristic applications such as prosthetics, and electroceuticals.

  13. Establishing Auditory-Tactile-Visual Equivalence Classes in Children with Autism and Developmental Delays

    Science.gov (United States)

    Mullen, Stuart; Dixon, Mark R.; Belisle, Jordan; Stanley, Caleb

    2017-01-01

    The current study sought to evaluate the efficacy of a stimulus equivalence training procedure in establishing auditory-tactile-visual stimulus classes with 2 children with autism and developmental delays. Participants were exposed to vocal-tactile (A-B) and tactile-picture (B-C) conditional discrimination training and were tested for the…

  14. Tactile and non-tactile sensory paradigms for fMRI and neurophysiologic studies in rodents.

    Science.gov (United States)

    Sanganahalli, Basavaraju G; Bailey, Christopher J; Herman, Peter; Hyder, Fahmeed

    2009-01-01

    Functional magnetic resonance imaging (fMRI) has become a popular functional imaging tool for human studies. Future diagnostic use of fMRI depends, however, on a suitable neurophysiologic interpretation of the blood oxygenation level dependent (BOLD) signal change. This particular goal is best achieved in animal models primarily due to the invasive nature of other methods used and/or pharmacological agents applied to probe different nuances of neuronal (and glial) activity coupled to the BOLD signal change. In the last decade, we have directed our efforts towards the development of stimulation protocols for a variety of modalities in rodents with fMRI. Cortical perception of the natural world relies on the formation of multi-dimensional representation of stimuli impinging on the different sensory systems, leading to the hypothesis that a sensory stimulus may have very different neurophysiologic outcome(s) when paired with a near simultaneous event in another modality. Before approaching this level of complexity, reliable measures must be obtained of the relatively small changes in the BOLD signal and other neurophysiologic markers (electrical activity, blood flow) induced by different peripheral stimuli. Here we describe different tactile (i.e., forepaw, whisker) and non-tactile (i.e., olfactory, visual) sensory paradigms applied to the anesthetized rat. The main focus is on development and validation of methods for reproducible stimulation of each sensory modality applied independently or in conjunction with one another, both inside and outside the magnet. We discuss similarities and/or differences across the sensory systems as well as advantages they may have for studying essential neuroscientific questions. We envisage that the different sensory paradigms described here may be applied directly to studies of multi-sensory interactions in anesthetized rats, en route to a rudimentary understanding of the awake functioning brain where various sensory cues presumably

  15. Lead Emissions and Population Vulnerability in the Detroit (Michigan, USA Metropolitan Area, 2006–2013: A Spatial and Temporal Analysis

    Directory of Open Access Journals (Sweden)

    Heather Moody

    2017-11-01

    Full Text Available Objective: The purpose of this research is to geographically model airborne lead emission concentrations and total lead deposition in the Detroit Metropolitan Area (DMA from 2006 to 2013. Further, this study characterizes the racial and socioeconomic composition of recipient neighborhoods and estimates the potential for IQ (Intelligence Quotient loss of children residing there. Methods: Lead emissions were modeled from emitting facilities in the DMA using AERMOD (American Meteorological Society/Environmental Protection Agency Regulatory Model. Multilevel modeling was used to estimate local racial residential segregation, controlling for poverty. Global Moran’s I bivariate spatial autocorrelation statistics were used to assess modeled emissions with increasing segregation. Results: Lead emitting facilities were primarily located in, and moving to, highly black segregated neighborhoods regardless of poverty levels—a phenomenon known as environmental injustice. The findings from this research showed three years of elevated airborne emission concentrations in these neighborhoods to equate to a predicted 1.0 to 3.0 reduction in IQ points for children living there. Across the DMA there are many areas where annual lead deposition was substantially higher than recommended for aquatic (rivers, lakes, etc. and terrestrial (forests, dunes, etc. ecosystems. These lead levels result in decreased reproductive and growth rates in plants and animals, and neurological deficits in vertebrates. Conclusions: This lead-hazard and neighborhood context assessment will inform future childhood lead exposure studies and potential health consequences in the DMA.

  16. Change Detection of Phragmites Australis Distribution in the Detroit Wildlife Refuge Based on an Iterative Intersection Analysis Algorithm

    Directory of Open Access Journals (Sweden)

    Haixin Liu

    2016-03-01

    Full Text Available Satellite data have been widely used in the detection of vegetation area changes, however, the lack of historical training samples seriously limits detection accuracy. In this research, an iterative intersection analysis algorithm (IIAA is proposed to solve this problem, and employed to improve the change detection accuracy of Phragmites area in the Detroit River International Wildlife Refuge between 2001 and 2010. Training samples for 2001, 2005, and 2010 were constructed based on NAIP, DOQQ high-resolution imagery and ground-truth data; for 2002–2004 and 2006–2009, because of the shortage of training samples, the IIAA was employed to supply additional training samples. This method included three steps: first, the NDVI image for each year (2002–2004, 2006–2009 was calculated with Landsat TM images; secondly, rough patches of the land-cover were acquired by density slicing using suitable thresholds; thirdly, a GIS overlay analysis method was used to acquire the Phragmites information in common throughout the ten years and to obtain training patches. In the combination with training samples of other land cover types, supervised classifications were employed to detect the changes of Phragmites area. In the experiment, we analyzed the variation of Phragmites area from 2001 to 2010, and the result showed that its distribution areas increased from 5156 acres to 6817 acres during this period, which illustrated that the invasion of Phragmites remains a serious problem for the protection of biodiversity.

  17. The Detroit River: Effects of contaminants and human activities on aquatic plants and animals and their habitats

    Science.gov (United States)

    Manny, Bruce A.; Kenaga, David

    1991-01-01

    Despite the extensive urbanization of its watershed, the Detroit River still supports diverse fish and wildlife populations. Conflicting uses of the river for waste disposal, water withdrawals, shipping, recreation, and fishing require innovative management. Chemicals added by man to the Detroit River have adversely affected the health and habitats of the river's plants and animals. In 1985, as part of an Upper Great Lakes Connecting Channels Study sponsored by Environment Canada and the U.S. Environmental Protection Agency, researchers exposed healthy bacteria, plankton, benthic macroinvertebrates, fish, and birds to Detroit River sediments and sediment porewater. Negative impacts included genetic mutations in bacteria; death of macroinvertebrates; accumulation of contaminants in insects, clams, fish, and ducks; and tumor formation in fish. Field surveys showed areas of the river bottom that were otherwise suitable for habitation by a variety of plants and animals were contaminated with chlorinated hydrocarbons and heavy metals and occupied only by pollution-tolerant worms. Destruction of shoreline wetlands and disposal of sewage and toxic substances in the Detroit River have reduced habitat and conflict with basic biological processes, including the sustained production of fish and wildlife. Current regulations do not adequately control pollution loadings. However, remedial actions are being formulated by the U.S. and Canada to restore degraded benthic habitats and eliminate discharges of toxic contaminants into the Detroit River.

  18. Life history characteristics of a recovering lake whitefish Coregonus clupeaformis stock in the Detroit River, North America

    Science.gov (United States)

    Roseman, Edward F.; Kennedy, Gregory W.; Manny, Bruce A.; Boase, James; McFee, James; Tallman, Ross F.; Howland, Kimberly L.; Rennie, Michael D.; Mills, Kenneth; Tallman, Ross F.; Howland, Kimberly L.; Rennie, Michael D.; Mills, Kenneth

    2012-01-01

    The Detroit River is part of a channel connecting Lakes Huron and Erie and was once a prolific spawning area for lake whitefish, Coregonus clupeaformis. Large numbers of lake whitefish migrated into the river to spawn where they were harvested by commercial fisheries and for fish culture operations. Prior to our study, the last lake whitefish was landed from the Detroit River in 1925. Loss of spawning habitat during shipping channel construction and over-fishing, likely reduced lake whitefish spawning runs. Because lake whitefish are recovering in Lake Erie, and spawning in the western basin, we suspected they may also be spawning in the Detroit River. We sampled in the Detroit River for lake whitefish adults and eggs in October–December 2005–07 and for larvae during March–May 2006–08. A total of 15 spawning-ready lake whitefish from 4 to 18 years old, were collected. Viable eggs were collected during mid-November 2006–07; highest egg densities were found mid-river. Sac-fry whitefish larvae were collected in the river and near the river mouth. No whitefish larvae were retained in the river. Because high numbers of larvae were collected from mid- and downstream river sites, reproduction of lake whitefish in the Detroit River could contribute substantially to the Lake Erie lake whitefish metapopulation.

  19. Fluid-structure interaction-based biomechanical perception model for tactile sensing.

    Directory of Open Access Journals (Sweden)

    Zheng Wang

    Full Text Available The reproduced tactile sensation of haptic interfaces usually selectively reproduces a certain object attribute, such as the object's material reflected by vibration and its surface shape by a pneumatic nozzle array. Tactile biomechanics investigates the relation between responses to an external load stimulus and tactile perception and guides the design of haptic interface devices via a tactile mechanism. Focusing on the pneumatic haptic interface, we established a fluid-structure interaction-based biomechanical model of responses to static and dynamic loads and conducted numerical simulation and experiments. This model provides a theoretical basis for designing haptic interfaces and reproducing tactile textures.

  20. Performance of Brain-computer Interfacing based on tactile selective sensation and motor imagery

    DEFF Research Database (Denmark)

    Yao, Lin; Sheng, Xinjun; Mrachacz-Kersting, Natalie

    2018-01-01

    We proposed a multi-class tactile brain-computer interface that utilizes stimulus-induced oscillatory dynamics. It was hypothesized that somatosensory attention can modulate tactile induced oscillation changes, which can decode different sensation attention tasks. Subjects performed four tactile......-S). The classification accuracy between SS-L and SS-R (79.9±8.7%) was comparable with that of a previous tactile BCI system based on selective sensation. Moreover, the accuracy could be improved to an average of 90.3±4.9% by optimal class-pair and frequency-band selection. Three-class discrimination had accuracy of 75...

  1. Inducing circular vection with tactile stimulation encircling the waist

    NARCIS (Netherlands)

    Tinga, A.M.; Jansen, C.; Smagt, M.J. van der; Nijboer, T.C.W.; Erp, J.B.F. van

    2018-01-01

    In general, moving sensory stimuli (visual and auditory) can induce illusory sensations of self-motion (i.e. vection) in the direction opposite of the sensory stimulation. The aim of the current study was to examine whether tactile stimulation encircling the waist could induce circular vection

  2. Tribotronic Transistor Array as an Active Tactile Sensing System.

    Science.gov (United States)

    Yang, Zhi Wei; Pang, Yaokun; Zhang, Limin; Lu, Cunxin; Chen, Jian; Zhou, Tao; Zhang, Chi; Wang, Zhong Lin

    2016-12-27

    Large-scale tactile sensor arrays are of great importance in flexible electronics, human-robot interaction, and medical monitoring. In this paper, a flexible 10 × 10 tribotronic transistor array (TTA) is developed as an active tactile sensing system by incorporating field-effect transistor units and triboelectric nanogenerators into a polyimide substrate. The drain-source current of each tribotronic transistor can be individually modulated by the corresponding external contact, which has induced a local electrostatic potential to act as the conventional gate voltage. By scaling down the pixel size from 5 × 5 to 0.5 × 0.5 mm 2 , the sensitivities of single pixels are systematically investigated. The pixels of the TTA show excellent durability, independence, and synchronicity, which are suitable for applications in real-time tactile sensing, motion monitoring, and spatial mapping. The integrated tribotronics provides an unconventional route to realize an active tactile sensing system, with prospective applications in wearable electronics, human-machine interfaces, fingerprint identification, and so on.

  3. The TaSST: Tactile sleeve for social touch

    NARCIS (Netherlands)

    Huisman, Gijs; Darriba Frederiks, Aduén; van Dijk, Elisabeth M.A.G.; Heylen, Dirk K.J.; Krose, Ben

    In this paper we outline the design process of the TaSST (Tactile Sleeve for Social Touch), a touch-sensitive vibrotactile arm sleeve. The TaSST was designed to enable two people to communicate different types of touch over a distance. The touch-sensitive surface of the sleeve consists of a grid of

  4. Early vision impairs tactile perception in the blind.

    Science.gov (United States)

    Röder, Brigitte; Rösler, Frank; Spence, Charles

    2004-01-20

    Researchers have known for more than a century that crossing the hands can impair both tactile perception and the execution of appropriate finger movements. Sighted people find it more difficult to judge the temporal order when two tactile stimuli, one applied to either hand, are presented and their hands are crossed over the midline as compared to when they adopt a more typical uncrossed-hands posture. It has been argued that because of the dominant role of vision in motor planning and execution, tactile stimuli are remapped into externally defined coordinates (predominantly determined by visual inputs) that takes longer to achieve when external and body-centered codes (determined primarily by somatosensory/proprioceptive inputs) are in conflict and that involves both multisensory parietal and visual cortex. Here, we show that the performance of late, but not of congenitally, blind people was impaired by crossing the hands. Moreover, we provide the first empirical evidence for superior temporal order judgments (TOJs) for tactile stimuli in the congenitally blind. These findings suggest a critical role of childhood vision in modulating the perception of touch that may arise from the emergence of specific crossmodal links during development.

  5. Flexible PZT Thin Film Tactile Sensor for Biomedical Monitoring

    Directory of Open Access Journals (Sweden)

    Wen-Jong Wu

    2013-04-01

    Full Text Available This paper presents the development of tactile sensors using the sol-gel process to deposit a PZT thin-film from 250 nm to 1 μm on a flexible stainless steel substrate. The PZT thin-film tactile sensor can be used to measure human pulses from several areas, including carotid, brachial, finger, ankle, radial artery, and the apical region. Flexible PZT tactile sensors can overcome the diverse topology of various human regions and sense the corresponding signals from human bodies. The measured arterial pulse waveform can be used to diagnose hypertension and cardiac failure in patients. The proposed sensors have several advantages, such as flexibility, reliability, high strain, low cost, simple fabrication, and low temperature processing. The PZT thin-film deposition process includes a pyrolysis process at 150 °C/500 °C for 10/5 min, followed by an annealing process at 650 °C for 10 min. Finally, the consistent pulse wave velocity (PWV was demonstrated based on human pulse measurements from apical to radial, brachial to radial, and radial to ankle. It is characterized that the sensitivity of our PZT-based tactile sensor was approximately 0.798 mV/g.

  6. Tactile short-term memory in sensory-deprived individuals.

    Science.gov (United States)

    Papagno, Costanza; Minniti, Giovanna; Mattavelli, Giulia C; Mantovan, Lara; Cecchetto, Carlo

    2017-02-01

    To verify whether loosing a sense or two has consequences on a spared sensory modality, namely touch, and whether these consequences depend on practice or are biologically determined, we investigated 13 deafblind participants, 16 deaf participants, 15 blind participants, and 13 matched normally sighted and hearing controls on a tactile short-term memory task, using checkerboard matrices of increasing length in which half of the squares were made up of a rough texture and half of a smooth one. Time of execution of a fixed matrix, number of correctly reproduced matrices, largest matrix correctly reproduced and tactile span were recorded. The three groups of sensory-deprived individuals did not differ in any measure, while blind and deaf participants outscored controls in all parameters except time of execution; the difference approached significance for deafblind people compared to controls only in one measure, namely correctly reproduced matrices. In blind and deafblind participants, performance negatively correlated with age of Braille acquisition, the older being the subject when acquiring Braille, the lower the performance, suggesting that practice plays a role. However, the fact that deaf participants, who did not share tactile experience, performed similarly to blind participants and significantly better than controls highlights that practice cannot be the only contribution to better tactile memory.

  7. Bilateral Symmetry of Distortions of Tactile Size Perception.

    Science.gov (United States)

    Longo, Matthew R; Ghosh, Arko; Yahya, Tasneem

    2015-01-01

    The perceived distance between touches on the limbs is generally bigger for distances oriented across the width of the limb than for distances oriented along the length of the limb. The present study aimed to investigate the coherence of such distortions of tactile size perception across different skin surfaces. We investigated distortions of tactile size perception on the dorsal and palmar surfaces of both the left and right hands as well as the forehead. Participants judged which of two tactile distances felt larger. One distance was aligned with the proximodistal axis (along the body), the other with the mediolateral axis (across the body). Clear distortions were found on all five skin surfaces, with stimuli oriented across the width of the body being perceived as farther apart than those oriented along the length of the body. Consistent with previous results, distortions were smaller on the palmar than on the dorsal hand surface. Distortion on the forehead was intermediate between the dorsal and palmar surfaces. There were clear correlations between distortion on the left and right hands, for both the dorsal and palmar skin surfaces. In contrast, within each hand, there was no significant correlation between the two skin surfaces. Distortion on the forehead was not significantly correlated with that on any of the other skin surfaces. These results provide evidence for bilaterally symmetric representations underlying tactile size perception. © The Author(s) 2015.

  8. Tactile shoe inlays for high speed pressure monitoring

    DEFF Research Database (Denmark)

    Drimus, Alin; Mátéfi-Tempfli, Stefan

    2015-01-01

    This work describes the development of flexible tactile sensor shoe inlays for humanoid robots. Their design is based on a sandwich structure of flexible layers with a thin sheet of piezoresistive rubber as main transducer element. The layout and patterning of top and bottom electrodes give 1024...

  9. Hybrid-Actuated Finger Prosthesis with Tactile Sensing

    Directory of Open Access Journals (Sweden)

    Cheng Yee Low

    2013-10-01

    Full Text Available Finger prostheses are devices developed to emulate the functionality of natural human fingers. On top of their aesthetic appearance in terms of shape, size and colour, such biomimetic devices require a high level of dexterity. They must be capable of gripping an object, and even manipulating it in the hand. This paper presents a biomimetic robotic finger actuated by a hybrid mechanism and integrated with a tactile sensor. The hybrid actuation mechanism comprises a DC micromotor and a Shape Memory Alloy (SMA wire. A customized test rig has been developed to measure the force and stroke produced by the SMA wire. In parallel with the actuator development, experimental investigations have been conducted on Quantum Tunnelling Composite (QTC and Pressure Conductive Rubber (PCR towards the development of a tactile sensor for the finger. The viability of using these materials for tactile sensing has been determined. Such a hybrid actuation approach aided with tactile sensing capability enables a finger design as an integral part of a prosthetic hand for applications up to the transradial amputation level.

  10. Gender difference in premotor activity during active tactile discrimination.

    Science.gov (United States)

    Sadato, N; Ibañez, V; Deiber, M P; Hallett, M

    2000-05-01

    To investigate possible gender differences in tactile discrimination tasks, we measured cerebral blood flow of seven men and seven women using positron emission tomography and (15)O water during tactile tasks performed with the right index finger. A nondiscrimination, somatosensory control task activated the left primary sensorimotor cortex and the left parietal operculum extending to the posterior insula without any gender difference. Compared with the control task, discrimination tasks activated the superior and inferior parietal lobules bilaterally, right dorsal premotor cortex, and dorsolateral prefrontal cortex in both genders, consistent with the notion of right hemisphere involvement during exploratory attentional movements. In both genders, symmetric activation of the superior and inferior parietal lobules and asymmetric activation of the right dorsolateral prefrontal cortex were confirmed. The former is consistent with the spatial representation of the tactile input and the latter with the spatial working memory. However, activation of the dorsal premotor cortex was asymmetric in men, whereas it was symmetric in women, the gender difference being statistically significant. This may suggest gender differences in motor programs for exploration in manipulospatial tasks such as tactile discrimination with active touch, possibly by greater interhemispheric interaction through the dorsal premotor cortices in women than in men. Copyright 2000 Academic Press.

  11. Crossmodal Congruency Benefits for Tactile and Visual Signaling

    Science.gov (United States)

    2008-10-01

    above along with their controller box. The tactors are operated using a Tactor Control Unit ( TCU ) which is a computer-controlled driver/amplifier...system that switches each tactor on and off as required. This device is shown on the left side of the tactile displays belts in Figure 1. The TCU

  12. Remote tactile sensing system integrated with magnetic synapse.

    Science.gov (United States)

    Oh, Sunjong; Jung, Youngdo; Kim, Seonggi; Kim, SungJoon; Hu, Xinghao; Lim, Hyuneui; Kim, CheolGi

    2017-12-05

    Mechanoreceptors in a fingertip convert external tactile stimulations into electrical signals, which are transmitted by the nervous system through synaptic transmitters and then perceived by the brain with high accuracy and reliability. Inspired by the human synapse system, this paper reports a robust tactile sensing system consisting of a remote touch tip and a magnetic synapse. External pressure on the remote touch tip is transferred in the form of air pressure to the magnetic synapse, where its variation is converted into electrical signals. The developed system has high sensitivity and a wide dynamic range. The remote sensing system demonstrated tactile capabilities over wide pressure range with a minimum detectable pressure of 6 Pa. In addition, it could measure tactile stimulation up to 1,000 Hz without distortion and hysteresis, owing to the separation of the touching and sensing parts. The excellent performance of the system in terms of surface texture discrimination, heartbeat measurement from the human wrist, and satisfactory detection quality in water indicates that it has considerable potential for various mechanosensory applications in different environments.

  13. Force control in the absence of visual and tactile feedback

    NARCIS (Netherlands)

    Mugge, W.; Abbink, D.A.; Schouten, Alfred Christiaan; van der Helm, F.C.T.; Arendzen, J.H.; Meskers, C.G.M.

    2013-01-01

    Motor control tasks like stance or object handling require sensory feedback from proprioception, vision and touch. The distinction between tactile and proprioceptive sensors is not frequently made in dynamic motor control tasks, and if so, mostly based on signal latency. We previously found that

  14. Tactile Assessment in Children with Cerebral Palsy: A Clinimetric Review

    Science.gov (United States)

    Auld, Megan Louise; Boyd, Roslyn Nancy; Moseley, G. Lorimer; Johnston, Leanne Marie

    2011-01-01

    This review evaluates the clinimetric properties of tactile assessments for children with cerebral palsy. Assessment of registration was reported using Semmes Weinstein Monofilaments (SWMs) or exteroception. Assessment of two-point discrimination was reported using the Disk-Criminator[R] or paperclip methods; Single point localization and double…

  15. Reproducibility of Tactile Assessments for Children with Unilateral Cerebral Palsy

    Science.gov (United States)

    Auld, Megan Louise; Ware, Robert S.; Boyd, Roslyn Nancy; Moseley, G. Lorimer; Johnston, Leanne Marie

    2012-01-01

    A systematic review identified tactile assessments used in children with cerebral palsy (CP), but their reproducibility is unknown. Sixteen children with unilateral CP and 31 typically developing children (TDC) were assessed 2-4 weeks apart. Test-retest percent agreements within one point for children with unilateral CP (and TDC) were…

  16. To What Extent Do Gestalt Grouping Principles Influence Tactile Perception?

    Science.gov (United States)

    Gallace, Alberto; Spence, Charles

    2011-01-01

    Since their formulation by the Gestalt movement more than a century ago, the principles of perceptual grouping have primarily been investigated in the visual modality and, to a lesser extent, in the auditory modality. The present review addresses the question of whether the same grouping principles also affect the perception of tactile stimuli.…

  17. Small-scale tactile graphics for virtual reality systems

    Science.gov (United States)

    Roberts, John W.; Slattery, Oliver T.; Swope, Brett; Min, Volker; Comstock, Tracy

    2002-05-01

    As virtual reality technology moves forward, there is a need to provide the user with options for greater realism for closer engagement to the human senses. Haptic systems use force feedback to create a large-scale sensation of physical interaction in a virtual environment. Further refinement can be created by using tactile graphics to reproduce a detailed sense of touch. For example, a haptic system might create the sensation of the weight of a virtual orange that the user picks up, and the sensation of pressure on the fingers as the user squeezes the orange. A tactile graphic system could create the texture of the orange on the user's fingertips. IN the real wold, a detailed sense of touch plays a large part in picking up and manipulating small objects. Our team is working to develop technology that can drive a high density fingertip array of tactile simulators at a rapid refresh rate, sufficient to produce a realistic sense of touch. To meet the project criteria, the mechanism must be much lower cost than existing technologies, and must be sufficiently lightweight and compact to permit portable use and to enable installation of the stimulator array in the fingertip of a tactile glove. The primary intended applications for this technology are accessibility for the blind and visually impaired, teleoperation, and virtual reality systems.

  18. The TaSST: Tactile Sleeve for Social Touch

    NARCIS (Netherlands)

    Huisman, G.; Darriba Frederiks, A.; van Dijk, B.; Heylen, D.; Kröse, B.

    2013-01-01

    In this paper we outline the design process of the TaSST (Tactile Sleeve for Social Touch), a touch-sensitive vibrotactile arm sleeve. The TaSST was designed to enable two people to communicate different types of touch over a distance. The touch-sensitive surface of the sleeve consists of a grid of

  19. The TaSST - Tactile Sleeve for Social Touch

    NARCIS (Netherlands)

    Huisman, Gijs; Darriba Frederiks, Aduén; Van Dijk, Betsy; Heylen, Dirk

    2013-01-01

    In this paper we outline the design process of TaSST (Tactile Sleeve for Social Touch), a touch-sensitive vibrotactile arm sleeve. The TaSST was designed to enable two people to communicate different types of touches over a distance. The touch-sensitive surface of the sleeve consists of a grid of

  20. About Face: Evaluating and Managing Tactile Impairment at the Time of Autism Diagnosis

    Directory of Open Access Journals (Sweden)

    Louisa M. T. Silva

    2015-01-01

    Full Text Available Evaluation for sensory impairment is a routine part of autism diagnosis. Sensory impairment of hearing, vision, or touch results in developmental delay and must be addressed before delay can resolve. Recent studies confirm that tactile impairment is present in autism and can be effectively treated with a tactile stimulation protocol. The research suggests a change in management at the time of autism diagnosis to include evaluation and treatment of tactile impairment. Here we validate screening and management tool for tactile impairment, the Autism Touch and Self-Regulation Checklist, in 404 typical and autistic preschool children. The tool assesses tactile impairment by location and severity. Autistic children were distinguished by mixed pain and numbness on multiple areas including the face and mouth (F=412.1 (1,402;p<.000. Oral-facial tactile impairment interferes with the tactile stimulus to orienting. We hypothesized that oral-facial tactile impairment and difficulty orienting are predictive of ASD and that severity of tactile impairment is predictive of severity of ASD. Questions evaluating oral-facial and orienting responses correctly predicted 91% of the autism group. Severity of tactile impairment correctly predicted 81% of mild versus severe ASD. Results underscore the importance of evaluating and treating tactile impairment at the time of autism diagnosis.

  1. Driving Interface Based on Tactile Sensors for Electric Wheelchairs or Trolleys

    Directory of Open Access Journals (Sweden)

    Andrés Trujillo-León

    2014-02-01

    Full Text Available This paper introduces a novel device based on a tactile interface to replace the attendant joystick in electric wheelchairs. It can also be used in other vehicles such as shopping trolleys. Its use allows intuitive driving that requires little or no training, so its usability is high. This is achieved by a tactile sensor located on the handlebar of the chair or trolley and the processing of the information provided by it. When the user interacts with the handle of the chair or trolley, he or she exerts a pressure pattern that depends on the intention to accelerate, brake or turn to the left or right. The electronics within the device then perform the signal conditioning and processing of the information received, identifying the intention of the user on the basis of this pattern using an algorithm, and translating it into control signals for the control module of the wheelchair. These signals are equivalent to those provided by a joystick. This proposal aims to help disabled people and their attendees and prolong the personal autonomy in a context of aging populations.

  2. Hydroacoustic Evaluation of Juvenile Salmonid Passage and Distribution at Detroit Dam, 2011

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Fenton; Royer, Ida M.; Johnson, Gary E.; Ham, Kenneth D.

    2012-11-15

    Pacific Northwest National Laboratory evaluated juvenile salmonid passage and distribution at Detroit Dam (DET) on the North Santiam River, Oregon for the U.S. Army Corps of Engineers (USACE) to provide data to support decisions on long-term measures to enhance downstream passage at DET and others dams in USACE’s Willamette Valley Project. This study was conducted in response to regulatory requirements necessitated by the listing of Upper Willamette River Spring Chinook salmon (Oncorhynchus tshawytscha) and Upper Willamette River steelhead (O. mykiss) as threatened under the Endangered Species Act. The goal of the study was to provide information of juvenile salmonid passage and distribution at DET from February 2011 through February 2012. The results of the hydroacoustic study provide new and, in some cases, first-ever data on passage estimates, run timing, distributions, and relationships between fish passage and environmental variables at the dam. This information will inform management decisions on the design and development of surface passage and collection devices to help restore Chinook salmon populations in the North Santiam River watershed above DET. During the entire study period, an estimated total of 182,526 smolt-size fish (±4,660 fish, 95% CI) passed through turbine penstock intakes. Run timing peaked in winter and early spring months. Passage rates were highest during late fall, winter and early spring months and low during summer. Horizontal distribution for hours when both turbine units were operated simultaneously indicated Unit 2 passed almost twice as much fish as Unit 1. Diel distribution for smolt-size fish during the study period was fairly uniform, indicating fish were passing the turbines at all times of the day. A total of 5,083 smolt-size fish (± 312 fish, 95% CI) were estimated passed via the spillway when it was open between June 23 and September 27, 2011. Daily passage was low at the spillway during the June-August period, and

  3. Tactile sensibility of single-tooth implants and natural teeth.

    Science.gov (United States)

    Enkling, Norbert; Nicolay, Claudia; Utz, Karl-Heinz; Jöhren, Peter; Wahl, Gerhard; Mericske-Stern, Regina

    2007-04-01

    The purpose of this randomized split-mouth clinical trial was to determine the active tactile sensibility between single-tooth implants and opposing natural teeth and to compare it with the tactile sensibility of pairs of natural teeth on the contralateral side in the same mouth (intraindividual comparison). The hypothesis was that the active tactile sensibilities of the implant side and control side are equivalent. Sixty two subjects (n=36 from Bonn, n=26 from Bern) with single-tooth implants (22 anterior and 40 posterior dental implants) were asked to bite on narrow copper foil strips varying in thickness (5-200 microm) and to decide whether or not they were able to identify a foreign body between their teeth. Active tactile sensibility was defined as the 50% threshold of correct answers estimated by means of the Weibull distribution. The results obtained for the interocclusal perception sensibility differed between subjects far more than they differed between natural teeth and implants in the same individual [implant/natural tooth: 16.7+/-11.3 microm (0.6-53.1 microm); natural tooth/natural tooth: 14.3+/-10.6 microm (0.5-68.2 microm)]. The intraindividual differences only amounted to a mean value of 2.4+/-9.4 microm (-15.1 to 27.5 microm). The result of our statistical calculations showed that the active tactile sensibility of single-tooth implants, both in the anterior and posterior region of the mouth, in combination with a natural opposing tooth is similar to that of pairs of opposing natural teeth (double t-test, equivalence margin: +/-8 microm, P80%). Hence, the implants could be integrated in the stomatognathic control circuit.

  4. Bioinspired electronic white cane implementation based on a LIDAR, a tri-axial accelerometer and a tactile belt.

    Science.gov (United States)

    Pallejà, Tomàs; Tresanchez, Marcel; Teixidó, Mercè; Palacin, Jordi

    2010-01-01

    This work proposes the creation of a bioinspired electronic white cane for blind people using the whiskers principle for short-range navigation and exploration. Whiskers are coarse hairs of an animal's face that tells the animal that it has touched something using the nerves of the skin. In this work the raw data acquired from a low-size terrestrial LIDAR and a tri-axial accelerometer is converted into tactile information using several electromagnetic devices configured as a tactile belt. The LIDAR and the accelerometer are attached to the user's forearm and connected with a wire to the control unit placed on the belt. Early validation experiments carried out in the laboratory are promising in terms of usability and description of the environment.

  5. Bioinspired Electronic White Cane Implementation Based on a LIDAR, a Tri-Axial Accelerometer and a Tactile Belt

    Directory of Open Access Journals (Sweden)

    Jordi Palacin

    2010-12-01

    Full Text Available This work proposes the creation of a bioinspired electronic white cane for blind people using the whiskers principle for short-range navigation and exploration. Whiskers are coarse hairs of an animal's face that tells the animal that it has touched something using the nerves of the skin. In this work the raw data acquired from a low-size terrestrial LIDAR and a tri-axial accelerometer is converted into tactile information using several electromagnetic devices configured as a tactile belt. The LIDAR and the accelerometer are attached to the user’s forearm and connected with a wire to the control unit placed on the belt. Early validation experiments carried out in the laboratory are promising in terms of usability and description of the environment.

  6. Transnational Communication among Arab Americans in Detroit: Dimensions, Determinants, and Attitudinal Consequences

    Directory of Open Access Journals (Sweden)

    Mark Tessler

    2008-12-01

    Full Text Available The present report summarizes findings from the Detroit Arab American Study pertaining to transnational activities and experiences, particularly those involving communication with the Arab Middle East. In today’s increasingly globalized environment, it is easier than in the past to maintain transnational connections. Indeed, many immigrants of recent decades were undoubtedly participants in transnational networks involving ties to the United States before they came to this country. On the other hand, the intensity of participation in these networks may gradually diminish after years in the United States.

  7. Positron Emission Tomography-Scanner at Children`s Hospital of Michigan at Detroit, Michigan

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-31

    The Department of Energy has prepared an environmental assessment (EA), DOE/EA-0795, to support the DOE decision to provide a grant of $7,953,600 to be used in support of a proposed Positron Emission Tomography Scanner at Children`s Hospital of Michigan at Detroit, Michigan. Based upon the analysis in the EA, DOE has determined that the proposed action is not a major Federal action significantly affected the quality of the human environment within the meaning of the National Environmental Policy Act of 1969 (NEPA). Therefore, the preparation of an Environmental Impact Statement is not required and DOE is issuing this Finding of No Significant Impact (FONSI).

  8. The effects of September 11 on Arab American nurses in metropolitan Detroit.

    Science.gov (United States)

    Kulwicki, Anahid; Khalifa, Rose; Moore, Gary

    2008-04-01

    The purpose of this article is to determine the effects of 9/11 on Arab American nurses' workplace discrimination in the Detroit metropolitan area. Thirty-four Arab American nurses completed a survey about perceptions and experiences related to discrimination before and after the terror attacks on 9/11. Most participants did not experience demotion, but some experienced intimidation and patient rejection more often or with the same frequency following 9/11. September 11 continues to negatively affect Arab Americans in the work environment. Studies are needed to further examine the workplace discrimination relationship with specific health indicators for Arab Americans.

  9. Combined-sewer overflow data and methods of sample collection for selected sites, Detroit, Michigan

    Science.gov (United States)

    Sweat, M.J.; Wolf, J.R.

    1997-01-01

    The discharge of untreated sewage is illegal in Michigan unless permitted under Act 245 due to public health concerns. In October, 1992, the Michigan Department of Natural Resources (MDNR, now the Michigan Department of Environmental Quality) issued a discharge permit to Detroit authorizing discharge from the City's 78 combined-sewer overflows (CSOs), and requiring that a long-term control plan be developed to achieve mandated waterquality standards in receiving waters. The U.S. Environmental Protection Agency (USEPA) issued a national CSO policy in April, 1994, which requires (1) operational improvements of existing systems to minimize discharges and prevent their occurrence in dry weather; (2) publicly operated treatment works (POTW) to characterize the frequency and volume of discharges; and (3) construction of CSO discharge control projects where necessary.In 1993, the Southeast Michigan Council of Governments (SEMCOG) requested assistance from the U.S. Geological Survey (USGS), in cooperation with Detroit Water and Sewerage Department (DWSD) and MDNR, Surface Water Quality Division, to address part of the technical data requirements for requirement 2. The USGS scope of services for this interdisciplinary, multiagency investigation consisted of collection, compilation, and interpretation of the necessary hydrologic data, and documentation of results. In addition to USGS personnel, personnel from DWSD assisted with the field collection of samples and in alerting USGS personnel to CSO effluent discharges.From October 1, 1994 through December 31, 1995, four CSOs discharging to the Detroit River in Detroit, Michigan (figure 1) were monitored to characterize storm-related water quantity and quality. Water velocity, stage, and precipitation were measured continuously and recorded at 5-minute intervals. Water-quality samples were collected at discrete times during storms and analyzed for inorganic and organic pollutants. Discharges were sampled between 30 and 78 times

  10. Positron Emission Tomography-Scanner at Children's Hospital of Michigan at Detroit, Michigan

    International Nuclear Information System (INIS)

    1992-01-01

    The Department of Energy has prepared an environmental assessment (EA), DOE/EA-0795, to support the DOE decision to provide a grant of $7,953,600 to be used in support of a proposed Positron Emission Tomography Scanner at Children's Hospital of Michigan at Detroit, Michigan. Based upon the analysis in the EA, DOE has determined that the proposed action is not a major Federal action significantly affected the quality of the human environment within the meaning of the National Environmental Policy Act of 1969 (NEPA). Therefore, the preparation of an Environmental Impact Statement is not required and DOE is issuing this Finding of No Significant Impact (FONSI)

  11. Auditory adaptation improves tactile frequency perception

    NARCIS (Netherlands)

    Crommett, L.E.; Pérez Bellido, A.; Yau, J.M.

    2017-01-01

    Our ability to process temporal frequency information by touch underlies our capacity to perceive and discriminate surface textures. Auditory signals, which also provide extensive temporal frequency information, can systematically alter the perception of vibrations on the hand. How auditory signals

  12. Visual Sensory Signals Dominate Tactile Cues during Docked Feeding in Hummingbirds

    Directory of Open Access Journals (Sweden)

    Benjamin Goller

    2017-11-01

    Full Text Available Animals living in and interacting with natural environments must monitor and respond to changing conditions and unpredictable situations. Using information from multiple sensory systems allows them to modify their behavior in response to their dynamic environment but also creates the challenge of integrating different, and potentially contradictory, sources of information for behavior control. Understanding how multiple information streams are integrated to produce flexible and reliable behavior is key to understanding how behavior is controlled in natural settings. Natural settings are rarely still, which challenges animals that require precise body position control, like hummingbirds, which hover while feeding from flowers. Tactile feedback, available only once the hummingbird is docked at the flower, could provide additional information to help maintain its position at the flower. To investigate the role of tactile information for hovering control during feeding, we first asked whether hummingbirds physically interact with a feeder once docked. We quantified physical interactions between docked hummingbirds and a feeder placed in front of a stationary background pattern. Force sensors on the feeder measured a complex time course of loading that reflects the wingbeat frequency and bill movement of feeding hummingbirds, and suggests that they sometimes push against the feeder with their bill. Next, we asked whether the measured tactile interactions were used by feeding hummingbirds to maintain position relative to the feeder. We created two experimental scenarios—one in which the feeder was stationary and the visual background moved and the other where the feeder moved laterally in front of a white background. When the visual background pattern moved, docked hummingbirds pushed significantly harder in the direction of horizontal visual motion. When the feeder moved, and the background was stationary, hummingbirds generated aerodynamic force

  13. Visual Sensory Signals Dominate Tactile Cues during Docked Feeding in Hummingbirds.

    Science.gov (United States)

    Goller, Benjamin; Segre, Paolo S; Middleton, Kevin M; Dickinson, Michael H; Altshuler, Douglas L

    2017-01-01

    Animals living in and interacting with natural environments must monitor and respond to changing conditions and unpredictable situations. Using information from multiple sensory systems allows them to modify their behavior in response to their dynamic environment but also creates the challenge of integrating different, and potentially contradictory, sources of information for behavior control. Understanding how multiple information streams are integrated to produce flexible and reliable behavior is key to understanding how behavior is controlled in natural settings. Natural settings are rarely still, which challenges animals that require precise body position control, like hummingbirds, which hover while feeding from flowers. Tactile feedback, available only once the hummingbird is docked at the flower, could provide additional information to help maintain its position at the flower. To investigate the role of tactile information for hovering control during feeding, we first asked whether hummingbirds physically interact with a feeder once docked. We quantified physical interactions between docked hummingbirds and a feeder placed in front of a stationary background pattern. Force sensors on the feeder measured a complex time course of loading that reflects the wingbeat frequency and bill movement of feeding hummingbirds, and suggests that they sometimes push against the feeder with their bill. Next, we asked whether the measured tactile interactions were used by feeding hummingbirds to maintain position relative to the feeder. We created two experimental scenarios-one in which the feeder was stationary and the visual background moved and the other where the feeder moved laterally in front of a white background. When the visual background pattern moved, docked hummingbirds pushed significantly harder in the direction of horizontal visual motion. When the feeder moved, and the background was stationary, hummingbirds generated aerodynamic force in the opposite

  14. Differential effects of synchronous and asynchronous multifinger coactivation on human tactile performance

    Directory of Open Access Journals (Sweden)

    Dinse Hubert R

    2007-07-01

    Full Text Available Abstract Background Repeated execution of a tactile task enhances task performance. In the present study we sought to improve tactile performance with unattended activation-based learning processes (i.e., focused stimulation of dermal receptors evoking neural coactivation (CA. Previous studies show that the application of CA to a single finger reduced the stationary two-point discrimination threshold and significantly increased tactile acuity. These changes were accompanied by an expansion of the cortical finger representation in primary somatosensory cortex (SI. Here we investigated the effect of different types of multifinger CA on the tactile performance of each finger of the right hand. Results Synchronous and asynchronous CA was applied to all fingers of a subject's dominant hand. We evaluated changes in absolute touch thresholds, static two-point discrimination thresholds, and mislocalization of tactile stimuli to the fingertips. After synchronous CA, tactile acuity improved (i.e., discrimination thresholds decreased and the frequency of mislocalization of tactile stimuli changed from directly neighboring fingers to more distant fingers. On the other hand, asynchronous CA did not significant improve tactile acuity. In fact, there was evidence of impaired tactile acuity. Multifinger CA with synchronous or asynchronous stimulation did not significantly alter absolute touch thresholds. Conclusion Our results demonstrate that it is possible to extend tactile CA to all fingers of a hand. The observed changes in mislocalization of tactile stimuli after synchronous CA indicate changes in the topography of the cortical hand representation. Although single-finger CA has been shown to improve tactile acuity, asynchronous CA of all fingers of the hand had the opposite effect, suggesting the need for synchrony in multifinger CA for improving tactile acuity.

  15. [Short-term memory characteristics of vibration intensity tactile perception on human wrist].

    Science.gov (United States)

    Hao, Fei; Chen, Li-Juan; Lu, Wei; Song, Ai-Guo

    2014-12-25

    In this study, a recall experiment and a recognition experiment were designed to assess the human wrist's short-term memory characteristics of tactile perception on vibration intensity, by using a novel homemade vibrotactile display device based on the spatiotemporal combination vibration of multiple micro vibration motors as a test device. Based on the obtained experimental data, the short-term memory span, recognition accuracy and reaction time of vibration intensity were analyzed. From the experimental results, some important conclusions can be made: (1) The average short-term memory span of tactile perception on vibration intensity is 3 ± 1 items; (2) The greater difference between two adjacent discrete intensities of vibrotactile stimulation is defined, the better average short-term memory span human wrist gets; (3) There is an obvious difference of the average short-term memory span on vibration intensity between the male and female; (4) The mechanism of information extraction in short-term memory of vibrotactile display is to traverse the scanning process by comparison; (5) The recognition accuracy and reaction time performance of vibrotactile display compares unfavourably with that of visual and auditory. The results from this study are important for designing vibrotactile display coding scheme.

  16. Achieving a hybrid brain-computer interface with tactile selective attention and motor imagery

    Science.gov (United States)

    Ahn, Sangtae; Ahn, Minkyu; Cho, Hohyun; Jun, Sung Chan

    2014-12-01

    Objective. We propose a new hybrid brain-computer interface (BCI) system that integrates two different EEG tasks: tactile selective attention (TSA) using a vibro-tactile stimulator on the left/right finger and motor imagery (MI) of left/right hand movement. Event-related desynchronization (ERD) from the MI task and steady-state somatosensory evoked potential (SSSEP) from the TSA task are retrieved and combined into two hybrid senses. Approach. One hybrid approach is to measure two tasks simultaneously; the features of each task are combined for testing. Another hybrid approach is to measure two tasks consecutively (TSA first and MI next) using only MI features. For comparison with the hybrid approaches, the TSA and MI tasks are measured independently. Main results. Using a total of 16 subject datasets, we analyzed the BCI classification performance for MI, TSA and two hybrid approaches in a comparative manner; we found that the consecutive hybrid approach outperformed the others, yielding about a 10% improvement in classification accuracy relative to MI alone. It is understood that TSA may play a crucial role as a prestimulus in that it helps to generate earlier ERD prior to MI and thus sustains ERD longer and to a stronger degree; this ERD may give more discriminative information than ERD in MI alone. Significance. Overall, our proposed consecutive hybrid approach is very promising for the development of advanced BCI systems.

  17. Eating patterns and cardiovascular disease risk in a Detroit Mexican American population.

    Science.gov (United States)

    Artinian, Nancy T; Schim, Stephanie Myers; Vander Wal, Jillon S; Nies, Mary A

    2004-01-01

    The purpose of this study was to examine dietary patterns and cardiovascular risk factors in Hispanic adults living in Southwest Detroit. A descriptive design was used. Self-report baseline data were collected using The Rate Your Plate and Personal Health Risk Assessment questionnaires. A nonrandom sample of 32 Mexican American adults was recruited from a large Roman Catholic Church in Southwest Detroit. Participants were selected if they were enrolled in the larger parent research study to test the effects of a lay health educator intervention and planned to participate in the nutrition education portion of the intervention. Unhealthy eating patterns outnumbered heart healthy eating practices. The majority used higher fat salad dressings; ate fried foods, sweets, and high fat snacks; consumed greater than the desired amounts of regular cheese; drank whole milk; and ate few fruits and vegetables. Lack of physical activity, being overweight, and exposure to second-hand smoke were the most prevalent cardiovascular risk factors. The data suggest that effective community-based heart disease prevention programs that emphasize risk factor screening and cardiovascular risk reduction through heart healthy eating are needed.

  18. Reinventing Detroit: Reclaiming Grayfields—New Metrics in Evaluating Urban Environments

    Directory of Open Access Journals (Sweden)

    Shawn Partin

    2011-09-01

    Full Text Available Planners, designers, citizens, and governmental agencies are interested in creating environments that are sustainable and fulfill a wide range of economic, ecological, aesthetic, functional, and cultural expectations for stakeholders. There are numerous approaches and proposals to create such environments. One vision is the 1934 “Broadacre City” proposed by Frank Lloyd Wright for the Taliesin, Wisconsin area that was never implemented. Frank Lloyd Wright’s vision integrated transportation, housing, commercial, agricultural, and natural areas in a highly diverse pattern forming a vast urban savanna complex. He also applied his “Broadacre City” idea to the 1942 Cooperative Homesteads Community Project in Detroit, Michigan, another un-built project. This vision concerning the composition of the urban environment may be conceptually realized in the ongoing gray-field reclamation in suburban Detroit, Michigan. Recent science-based investigations, concerning the metrics to measure and evaluate the quality of designed spaces, suggest that this “Broadacre City” approach may have great merit and is highly preferred over past spatial treatments (p ≤ 0.05. These metrics explain 67 to 80% of the variance concerning stakeholder expectations and are highly definitive (p < 0.001.

  19. Early Childhood Lead Exposure and Academic Achievement: Evidence From Detroit Public Schools, 2008–2010

    Science.gov (United States)

    Baker, Harolyn W.; Tufts, Margaret; Raymond, Randall E.; Salihu, Hamisu; Elliott, Michael R.

    2013-01-01

    Objectives. We assessed the long-term effect of early childhood lead exposure on academic achievement in mathematics, science, and reading among elementary and junior high school children. Methods. We linked early childhood blood lead testing surveillance data from the Detroit Department of Health and Wellness Promotion to educational testing data from the Detroit, Michigan, public schools. We used the linked data to investigate the effect of early childhood lead exposure on academic achievement among school-aged children, both marginally and adjusted for grade level, gender, race, language, maternal education, and socioeconomic status. Results. High blood lead levels before age 6 years were strongly associated with poor academic achievement in grades 3, 5, and 8. The odds of scoring less than proficient for those whose blood lead levels were greater than 10 micrograms per deciliter were more than twice the odds for those whose blood lead levels were less than 1 micrograms per deciliter after adjustment for potential confounders. Conclusions. Early childhood lead exposure was negatively associated with academic achievement in elementary and junior high school, after adjusting for key potential confounders. The control of lead poisoning should focus on primary prevention of lead exposure in children and development of special education programs for students with lead poisoning. PMID:23327265

  20. A hell of a life: addiction and marginality in post-industrial Detroit.

    Science.gov (United States)

    Draus, Paul J; Roddy, Juliette K; Greenwald, Mark

    2010-11-01

    Drawing on concepts from Foucault and Agamben, we maintain that the lives of daily heroin users provide a prime illustration of bare life in the zone of indistinction that is contemporary Detroit. First, we consider the case of Detroit as a stigmatized and racially segregated city, with concrete consequences for its residents. We then present evidence from in-depth ethnographic and economic interviews to illustrate the various spaces of confinement-that of addiction, that of economic marginality, and that of gender-occupied by these men and women, as well as the indeterminacy of their daily lives, captured through their descriptions of daily routines and interactions. We examine their expressions of worth as expressed in economic, emotional and moral terms. Finally, we draw connections between the sustained marginality of these individuals, as a contemporary category of homo sacer, and the policies and powers that both despise and depend upon them. Heroin, we contend, helps to fill and numb this social void, making bare life bearable, but also cementing one's marginality into semi-permanence.

  1. Lake sturgeon response to a spawning reef constructed in the Detroit river

    Science.gov (United States)

    Roseman, Edward F.; Manny, B.; Boase, J.; Child, M.; Kennedy, G.; Craig, J.; Soper, K.; Drouin, R.

    2011-01-01

    Prior to the First World War, the bi-national Detroit River provided vast areas of functional fish spawning and nursery habitat. However, ongoing conflicting human uses of these waters for activities such as waste disposal, water withdrawals, shoreline development, shipping, recreation, and fishing have altered many of the chemical, physical, and biological processes of the Detroit River. Of particular interest and concern to resource managers and stakeholders is the significant loss and impairment of fish spawning and nursery habitat that led to the decline in abundance of most fish species using this ecosystem. Lake sturgeon (Acipenser fulvescens) populations for example, were nearly extirpated by the middle of the 20th century, leaving only a small fraction of their former population. Fisheries managers recognized that the loss of suitable fish spawning habitat is a limiting factor in lake sturgeon population rehabilitation in the Detroit River. In efforts to remediate this beneficial water use impairment, a reef consisting of a mixture of natural rock and limestone was constructed at the upstream end of Fighting Island in 2008. This paper focuses on the response by lake sturgeon to the different replicates of suitable natural materials used to construct the fish spawning habitat at Fighting Island in the Detroit River. Pre-construction fisheries assessment during 2006–2008 showed that along with the presence of adult lake sturgeon, spawning conditions were favorable. However, no eggs were found in assessments conducted prior to reef construction. The 3300 m2 Fighting Island reef was placed at the upstream end of the island in October of 2008. The construction design included 12 spawning beds of three replicates each consisting of either round rock, small or large (shot-rock) diameter limestone or a mixture thereof. An observed response by spawning lake sturgeon occurred the following year when spawning-ready adults (ripe), viable eggs, and larvae were

  2. Learning Touch Preferences with a Tactile Robot Using Dopamine Modulated STDP in a Model of Insular Cortex

    Directory of Open Access Journals (Sweden)

    Ting-Shuo eChou

    2015-07-01

    Full Text Available Neurorobots enable researchers to study how behaviors are produced by neural mechanisms in an uncertain, noisy, real-world environment. To investigate how the somatosensory system processes noisy, real-world touch inputs, we introduce a neurorobot called CARL-SJR, which has a full-body tactile sensory area. The design of CARL-SJR is such that it encourages people to communicate with it through gentle touch. CARL-SJR provides feedback to users by displaying bright colors on its surface. In the present study, we show that CARL-SJR is capable of learning associations between conditioned stimuli (CS; a color pattern on its surface and unconditioned stimuli (US; a preferred touch pattern by applying a spiking neural network (SNN with neurobiologically inspired plasticity. Specifically, we modeled the primary somatosensory cortex, prefrontal cortex, striatum, and the insular cortex, which is important for hedonic touch, to process noisy data generated directly from CARL-SJR’s tactile sensory area. To facilitate learning, we applied dopamine-modulated Spike Timing Dependent Plasticity (STDP to our simulated prefrontal cortex, striatum and insular cortex. To cope with noisy, varying inputs, the SNN was tuned to produce traveling waves of activity that carried spatiotemporal information. Despite the noisy tactile sensors, spike trains, and variations in subject hand swipes, the learning was quite robust. Further, the plasticity (i.e., STDP in primary somatosensory cortex and insular cortex in the incremental pathway of dopaminergic reward system allowed us to control CARL-SJR’s preference for touch direction without heavily pre-processed inputs. The emerged behaviors we found in this model match animal’s behaviors wherein they prefer touch in particular areas and directions. Thus, the results in this paper could serve as an explanation on the underlying neural mechanisms for developing tactile preferences and hedonic touch.

  3. Flexible Tactile Sensing Based on Piezoresistive Composites: A Review

    Directory of Open Access Journals (Sweden)

    Stefano Stassi

    2014-03-01

    Full Text Available The large expansion of the robotic field in the last decades has created a growing interest in the research and development of tactile sensing solutions for robot hand and body integration. Piezoresistive composites are one of the most widely employed materials for this purpose, combining simple and low cost preparation with high flexibility and conformability to surfaces, low power consumption, and the use of simple read-out electronics. This work provides a review on the different type of composite materials, classified according to the conduction mechanism and analyzing the physics behind it. In particular piezoresistors, strain gauges, percolative and quantum tunnelling devices are reviewed here, with a perspective overview on the most used filler types and polymeric matrices. A description of the state-of-the-art of the tactile sensor solutions from the point of view of the architecture, the design and the performance is also reviewed, with a perspective outlook on the main promising applications.

  4. A Magnetoresistive Tactile Sensor for Harsh Environment Applications

    Directory of Open Access Journals (Sweden)

    Ahmed Alfadhel

    2016-05-01

    Full Text Available A magnetoresistive tactile sensor is reported, which is capable of working in high temperatures up to 140 °C. Hair-like bioinspired structures, known as cilia, made out of permanent magnetic nanocomposite material on top of spin-valve giant magnetoresistive (GMR sensors are used for tactile sensing at high temperatures. The magnetic nanocomposite, consisting of iron nanowires incorporated into the polymer polydimethylsiloxane (PDMS, is very flexible, biocompatible, has high remanence, and is also resilient to antagonistic sensing ambient. When the cilia come in contact with a surface, they deflect in compliance with the surface topology. This yields a change of the GMR sensor signal, enabling the detection of extremely fine features. The spin-valve is covered with a passivation layer, which enables adequate performance in spite of harsh environmental conditions, as demonstrated in this paper for high temperature.

  5. A Magnetoresistive Tactile Sensor for Harsh Environment Applications

    KAUST Repository

    Alfadhel, Ahmed

    2016-05-07

    A magnetoresistive tactile sensor is reported, which is capable of working in high temperatures up to 140 °C. Hair-like bioinspired structures, known as cilia, made out of permanent magnetic nanocomposite material on top of spin-valve giant magnetoresistive (GMR) sensors are used for tactile sensing at high temperatures. The magnetic nanocomposite, consisting of iron nanowires incorporated into the polymer polydimethylsiloxane (PDMS), is very flexible, biocompatible, has high remanence, and is also resilient to antagonistic sensing ambient. When the cilia come in contact with a surface, they deflect in compliance with the surface topology. This yields a change of the GMR sensor signal, enabling the detection of extremely fine features. The spin-valve is covered with a passivation layer, which enables adequate performance in spite of harsh environmental conditions, as demonstrated in this paper for high temperature.

  6. Object texture recognition by dynamic tactile sensing using active exploration

    DEFF Research Database (Denmark)

    Drimus, Alin; Børlum Petersen, Mikkel; Bilberg, Arne

    For both humans and robots, tactile sensing is important for interaction with the environment: it is the core sensing used for exploration and manipulation of objects. In this paper, we present a method for determining object texture by active exploration with a robotic fingertip equipped...... with a dynamic tactile transducer based on polyvinylidene fluoride (PVDF) piezoelectric film. Different test surfaces are actively explored and the signal from the sensor is used for feature extraction, which is subsequently used for classification. A comparison between the significance of different extracted...... features and performance of learning algorithms is done and the best method is further used to classify objects by their surface textures with recognition results higher than 90 percent....

  7. Mid-Air Tactile Stimulation Using Indirect Laser Radiation.

    Science.gov (United States)

    Lee, Hojin; Kim, Ji-Sun; Kim, Jae-Young; Choi, Seungmoon; Jun, Jae-Hoon; Park, Jong-Rak; Kim, A-Hee; Oh, Han-Byeol; Baek, Jun-Hyeok; Yang, Seung-Jin; Kim, Hyung-Sik; Chung, Soon-Cheol

    2016-01-01

    In this paper, we demonstrate that a laser irradiated on a thin light-absorbing elastic medium attached on the skin can elicit a tactile sensation of mechanical tap. First, we present simulation results that show laser irradiation to the elastic medium creates inner elastic waves on the basis of thermoelastic effects and these elastic waves trigger the bending deformation of the medium, which then stimulates the skin. Second, we analyze the physical properties of the associated stimulus by measuring its force profile. Third, we identify the perceptual characteristics of the stimulus in comparison to those of mechanical and electrical stimuli by means of a perceptual experiment employing dissimilarity rating. All the evidence indicates that indirect laser radiation provides a sensation of short mechanical tap. Furthermore, little individual difference was observed in the results of the perceptual experiment. To the best of our knowledge, this study is the first in reporting the feasibility of indirect laser radiation for mid-air tactile rendering.

  8. 77 FR 25077 - Special Local Regulation; Wy-Hi Rowing Regatta, Trenton Channel; Detroit River, Wyandotte, MI

    Science.gov (United States)

    2012-04-27

    ...-AA08 Special Local Regulation; Wy-Hi Rowing Regatta, Trenton Channel; Detroit River, Wyandotte, MI..., during, and immediately after the Wy-Hi Rowing Regatta. This special local regulation will establish....35T09-0342 Special Local Regulation; Wy-Hi Rowing Regatta, Wyandotte, MI. (a) Regulated Area. A...

  9. 78 FR 25572 - Special Local Regulation; Wy-Hi Rowing Regatta, Trenton Channel; Detroit River, Wyandotte, MI

    Science.gov (United States)

    2013-05-02

    ...-AA08 Special Local Regulation; Wy-Hi Rowing Regatta, Trenton Channel; Detroit River, Wyandotte, MI..., during, and immediately after the Wy-Hi Rowing Regatta. This special local regulation will establish... to read as follows: Sec. 100.T09-0287 Special Local Regulation; Wy-Hi Rowing Regatta, Wyandotte, MI...

  10. Evidence of the St. Clair-Detroit River system as a dispersal corridor and nursery habitat for transient larval burbot

    Science.gov (United States)

    McCullough, Darrin E.; Roseman, Edward F.; Keeler, Kevin M.; DeBruyne, Robin L.; Pritt, Jeremy J.; Thompson, Patricia A.; Ireland, Stacey A.; Ross, Jason E.; Bowser, Dustin; Hunter, Robert D.; Castle, Dana Kristina; Fischer, Jason; Provo, Stacy A.

    2015-01-01

    Burbot Lota lota are distributed across the Laurentian Great Lakes where they occupy a top piscivore role. The St. Clair-Detroit River System is known to provide a migration corridor as well as spawning and nursery habitat for many indigenous fishes of economic and ecological significance. However, knowledge is scant of the early life history of burbot and the importance of this system in their dispersal, survival, and recruitment. In order to assess the role of the St. Clair-Detroit River System to burbot ecology, we collected larval burbot during ichthyoplankton surveys in this system from 2010 to 2013 as part of a habitat restoration monitoring program. More and larger burbot larvae were found in the St. Clair River than in the lower Detroit River, although this may be due to differences in sampling methods between the two rivers. Consistent with existing studies, larval burbot exhibited ontogenesis with a distinct transition from a pelagic zooplankton-based diet to a benthic macroinvertebrate-based diet. Our results demonstrate that the St. Clair-Detroit Rivers provide food resources, required habitat, and a migration conduit between the upper and lower Great Lakes, but the contribution of these fish to the lower lakes requires further examination.

  11. Associations between personal exposures to VOCs and alterations in cardiovascular physiology: Detroit Exposure and Aerosol Research Study (DEARS) - presentation

    Science.gov (United States)

    Introduction: An adult cohort consisting of 63 participants engaged in the US EPA’s recent Detroit Exposure and Aerosol Research Study (DEARS) and a University of Michigan cardiovascular sub-study conducted during summer and winter periods over 3 years between 2004 and 2007...

  12. Associations between Personal Exposures to VOCs and Alterations in Cardiovascular Physiology: Detroit Exposure and Aerosol Research Study (DEARS)

    Science.gov (United States)

    Background: An adult cohort consisting of 63 participants engaged in the US EPA’s recent Detroit Exposure and Aerosol Research Study (DEARS) and a University of Michigan cardiovascular sub-study conducted during summer and winter periods over 3 years between 2004 and 2007 (5 seas...

  13. 78 FR 10128 - Expansion/Reorganization of Foreign-Trade Subzone 70T; Marathon Petroleum Company LP; Detroit, MI

    Science.gov (United States)

    2013-02-13

    ... DEPARTMENT OF COMMERCE Foreign-Trade Zones Board [Order No. 1881] Expansion/Reorganization of Foreign-Trade Subzone 70T; Marathon Petroleum Company LP; Detroit, MI Pursuant to its authority under the Foreign-Trade Zones Act of June 18, 1934, as amended (19 U.S.C. 81a-81u), the Foreign-Trade Zones Board...

  14. Manual command component with tactile and/or kinesthetic feedback

    International Nuclear Information System (INIS)

    Foumier, R.

    1995-01-01

    The invention concerns a manual command component designed to be use by a human hand in order to control a slave system, with a tactile and/or kinesthetic feedback. It is composed by a handle and by piece(s) for the feedback. The handle contains a captor to signalize the move and the speed. The signals are transmitted to the slave system. The later send feedbacks which are transformed in a couple for the handle. (TEC)

  15. Muscle: The Tactile Texture Designed for the Blind

    OpenAIRE

    Chantana Insra

    2014-01-01

    The research objective focuses on creating a prototype media of the tactile texture of muscles for educational institutes to help visually impaired students learn massage extra learning materials further than the ordinary curriculum. This media is designed as an extra learning material. The population in this study was 30 blinded students between 4th - 6th grades who were able to read Braille language. The research was conducted during the second semester in 2012 at The B...

  16. Artificial Skin Ridges Enhance Local Tactile Shape Discrimination

    Directory of Open Access Journals (Sweden)

    Shuzhi Sam Ge

    2011-09-01

    Full Text Available One of the fundamental requirements for an artificial hand to successfully grasp and manipulate an object is to be able to distinguish different objects’ shapes and, more specifically, the objects’ surface curvatures. In this study, we investigate the possibility of enhancing the curvature detection of embedded tactile sensors by proposing a ridged fingertip structure, simulating human fingerprints. In addition, a curvature detection approach based on machine learning methods is proposed to provide the embedded sensors with the ability to discriminate the surface curvature of different objects. For this purpose, a set of experiments were carried out to collect tactile signals from a 2 × 2 tactile sensor array, then the signals were processed and used for learning algorithms. To achieve the best possible performance for our machine learning approach, three different learning algorithms of Naïve Bayes (NB, Artificial Neural Networks (ANN, and Support Vector Machines (SVM were implemented and compared for various parameters. Finally, the most accurate method was selected to evaluate the proposed skin structure in recognition of three different curvatures. The results showed an accuracy rate of 97.5% in surface curvature discrimination.

  17. Active tactile exploration using a brain-machine-brain interface.

    Science.gov (United States)

    O'Doherty, Joseph E; Lebedev, Mikhail A; Ifft, Peter J; Zhuang, Katie Z; Shokur, Solaiman; Bleuler, Hannes; Nicolelis, Miguel A L

    2011-10-05

    Brain-machine interfaces use neuronal activity recorded from the brain to establish direct communication with external actuators, such as prosthetic arms. It is hoped that brain-machine interfaces can be used to restore the normal sensorimotor functions of the limbs, but so far they have lacked tactile sensation. Here we report the operation of a brain-machine-brain interface (BMBI) that both controls the exploratory reaching movements of an actuator and allows signalling of artificial tactile feedback through intracortical microstimulation (ICMS) of the primary somatosensory cortex. Monkeys performed an active exploration task in which an actuator (a computer cursor or a virtual-reality arm) was moved using a BMBI that derived motor commands from neuronal ensemble activity recorded in the primary motor cortex. ICMS feedback occurred whenever the actuator touched virtual objects. Temporal patterns of ICMS encoded the artificial tactile properties of each object. Neuronal recordings and ICMS epochs were temporally multiplexed to avoid interference. Two monkeys operated this BMBI to search for and distinguish one of three visually identical objects, using the virtual-reality arm to identify the unique artificial texture associated with each. These results suggest that clinical motor neuroprostheses might benefit from the addition of ICMS feedback to generate artificial somatic perceptions associated with mechanical, robotic or even virtual prostheses.

  18. Flexible Capacitive Tactile Sensor Based on Micropatterned Dielectric Layer.

    Science.gov (United States)

    Li, Tie; Luo, Hui; Qin, Lin; Wang, Xuewen; Xiong, Zuoping; Ding, Haiyan; Gu, Yang; Liu, Zheng; Zhang, Ting

    2016-09-01

    Flexible tactile sensors are considered as an effective way to realize the sense of touch, which can perform the synchronized interactions with surrounding environment. Here, the utilization of bionic microstructures on natural lotus leaves is demonstrated to design and fabricate new-type of high-performance flexible capacitive tactile sensors. Taking advantage of unique surface micropattern of lotus leave as the template for electrodes and using polystyrene microspheres as the dielectric layer, the proposed devices present stable and high sensing performance, such as high sensitivity (0.815 kPa -1 ), wide dynamic response range (from 0 to 50 N), and fast response time (≈38 ms). In addition, the flexible capacitive sensor is not only applicable to pressure (touch of a single hair), but also to bending and stretching forces. The results indicate that the proposed capacitive tactile sensor is a promising candidate for the future applications in electronic skins, wearable robotics, and biomedical devices. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Tactile sensor of hardness recognition based on magnetic anomaly detection

    Science.gov (United States)

    Xue, Lingyun; Zhang, Dongfang; Chen, Qingguang; Rao, Huanle; Xu, Ping

    2018-03-01

    Hardness, as one kind of tactile sensing, plays an important role in the field of intelligent robot application such as gripping, agricultural harvesting, prosthetic hand and so on. Recently, with the rapid development of magnetic field sensing technology with high performance, a number of magnetic sensors have been developed for intelligent application. The tunnel Magnetoresistance(TMR) based on magnetoresistance principal works as the sensitive element to detect the magnetic field and it has proven its excellent ability of weak magnetic detection. In the paper, a new method based on magnetic anomaly detection was proposed to detect the hardness in the tactile way. The sensor is composed of elastic body, ferrous probe, TMR element, permanent magnet. When the elastic body embedded with ferrous probe touches the object under the certain size of force, deformation of elastic body will produce. Correspondingly, the ferrous probe will be forced to displace and the background magnetic field will be distorted. The distorted magnetic field was detected by TMR elements and the output signal at different time can be sampled. The slope of magnetic signal with the sampling time is different for object with different hardness. The result indicated that the magnetic anomaly sensor can recognize the hardness rapidly within 150ms after the tactile moment. The hardness sensor based on magnetic anomaly detection principal proposed in the paper has the advantages of simple structure, low cost, rapid response and it has shown great application potential in the field of intelligent robot.

  20. Illusory touch and tactile perception in somatoform dissociators.

    Science.gov (United States)

    Brown, Richard J; Brunt, Natalie; Poliakoff, Ellen; Lloyd, Donna M

    2010-09-01

    The psychological mechanisms of somatoform dissociation (i.e., pseudoneurological symptoms) are poorly understood. This study evaluated recent theoretical predictions regarding the role of tactile perception in the development of somatoform dissociative symptoms. Eighty nonclinical participants scoring either high or low on the Somatoform Dissociation Questionnaire (SDQ-20) completed the Somatic Signal Detection Task (SSDT), a novel perceptual paradigm designed to simulate the occurrence of somatoform symptoms in the laboratory. Prior to the SSDT, participants completed a memory task designed to produce either minimal or maximal activation of tactile representations in memory. The high SDQ-20 group exhibited a more liberal response criterion (c) on the SSDT than the low SDQ-20 group after controlling for negative affectivity, somatosensory amplification and depression. This effect was mainly attributable to an increased number of false alarms (i.e., illusory experiences of touch) in the high SDQ-20 group rather than an increased hit rate. General perceptual ability (i.e., tactile sensitivity) was comparable between the two groups. The memory manipulation had no effect on SSDT performance. Somatoform dissociators appear more likely to experience illusory perceptual events under conditions of sensory ambiguity than nondissociators, despite comparable perceptual abilities more generally. These findings support theories that identify distorted perceptual processing as a feature of somatoform dissociation. The SSDT has potential as a tool for further research in this area. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  1. Arborealities: The Tactile Ecology of Hardy’s Woodlanders

    Directory of Open Access Journals (Sweden)

    William A. Cohen

    2014-10-01

    Full Text Available This article asks what consequences two recent movements in scholarship - affect theory and environmental studies - might have for understanding the Victorian tactile imagination. Thomas Hardy's 1887 novel 'The Woodlanders' provides a means of addressing this question, for it shares with posthumanist critics a view that people are material things in a world of things, and that the world is itself a collection of vital agencies and networked actors. Hardy shows how a tactile modality provides a point of entry into discussions of both affect and ecology, situating the human in a proximate, contiguous relation to both bodily and environmental materialities. 'The Woodlanders' offers a world in which trees, in particular, work on - and are in turn worked on by - human objects; a world in which, one might say, the trees are people and the people are trees. This arboreality is far from a sentimental oneness with nature, nor is it an exercise in anthropomorphization. Instead, it provides a recognition of the inhuman, material, and sensate aspects of the human; or, perhaps better, of the human as rooted, budding, leafy, and abloom. Like some recent theoretical accounts, 'The Woodlanders' disperses agency among human and non-human elements alike, employing a tactile mode of representation to break down distinctions between them. Normal 0 false false false EN-US X-NONE X-NONE

  2. Spine Posture Influences Tactile Perceptual Sensitivity of the Trunk Dorsum.

    Science.gov (United States)

    Beaudette, Shawn M; Smith, Simone G V S; Bent, Leah R; Brown, Stephen H M

    2017-12-01

    The purpose of the current work was to quantify the influence of posture-mediated skin deformation on trunk dorsum tactile perceptual sensitivity. Twelve young and healthy individuals were assessed while adopting three different spine postures (extension, neutral and flexion). Tactile sensitivity threshold tests (T10 and L4 vertebral levels) included measures of touch sensitivity, spatial acuity and stretch sensitivity. The results demonstrate that tactile sensitivity can differ due to changes in body posture. The skin of the trunk dorsum had increased thresholds for touch sensitivity, longitudinal spatial acuity and transverse stretch sensitivity in spine flexion. Furthermore, spine flexion also resulted in a reduced sensory threshold to stretching stimuli in the longitudinal direction. The opposite trends occurred when participants adopted spine extension. It is suggested that posture-mediated skin deformation generates changes in the amount of strain experienced by individual skin mechanoreceptors, and the relative spacing between mechanoreceptors. Furthermore, it is suggested that "pre-stretch" of the skin brings mechanoreceptors closer to their stretch activation thresholds, thereby increasing an individual's sensitivity to skin stretch when in spine flexion.

  3. Improved tactile resonance sensor for robotic assisted surgery

    Science.gov (United States)

    Oliva Uribe, David; Schoukens, Johan; Stroop, Ralf

    2018-01-01

    This paper presents an improved tactile sensor using a piezoelectric bimorph able to differentiate soft materials with similar mechanical characteristics. The final aim is to develop intelligent surgical tools for brain tumour resection using integrated sensors in order to improve tissue tumour delineation and tissue differentiation. The bimorph sensor is driven using a random phase multisine and the properties of contact between the sensor's tip and a certain load are evaluated by means of the evaluation of the nonparametric FRF. An analysis of the nonlinear contributions is presented to show that the use of a linear model is feasible for the measurement conditions. A series of gelatine phantoms were tested. The tactile sensor is able to identify minimal differences in the consistency of the measured samples considering viscoelastic behaviour. A variance analysis was performed to evaluate the reliability of the sensors and to identify possible error sources due to inconsistencies in the preparation method of the phantoms. The results of the variance analysis are discussed showing that ability of the proposed tactile sensor to perform high quality measurements.

  4. Historical Loss and Current Rehabilitation of Shoreline Habitat along an Urban-Industrial River—Detroit River, Michigan, USA

    Directory of Open Access Journals (Sweden)

    John H. Hartig

    2017-05-01

    Full Text Available The purpose of this study was to evaluate the historical loss and current shoreline habitat rehabilitation efforts along the urban-industrial Detroit River using geographical information system methods and a shoreline survey. This study found a 97% loss of historical coastal wetlands to human development. By 1985, 55% of the U.S. mainland shoreline had been hardened with steel sheet piling or concrete breakwater that provide limited habitat. Since 1995, 19 projects were implemented, improving 4.93 km of shoreline habitat. A comparison of the 1985 and 2015 georeferenced aerial imagery showed that 2.32 km of soft shoreline was also converted to hard shoreline during this timeframe. Of the 19 projects surveyed, 11 representing 3.35 km made habitat improvements to shoreline that was already georeferenced as “soft“, three representing 360 m converted shoreline from “hard” to “soft”, and five representing 1.22 km added incidental habitat to hardened shoreline. Even with the addition of 1.58 km of new soft shoreline and incidental habitat, there was an overall net loss of 0.74 km of soft shoreline over the 30-year timeframe. To reach the “good” state of at least 70% soft shoreline, an additional 12.1 km of soft shoreline will have to be added. This confirms that shoreline hardening continues despite the best efforts of resource managers and conservation organizations. Resource managers must become opportunistic and get involved up front in urban waterfront redevelopment projects to advocate for habitat. Incremental progress will undoubtedly be slow following adaptive management.

  5. Intuitive tactile algorithms to guide blind runners by means of a belt with vibrators.

    Science.gov (United States)

    Durá-Gil, Juan V; Bazuelo-Ruiz, Bruno; Mollà, Fernando; Barberà-Guillem, Ricard; Jakab, Àgnes; Csielka, Tamás

    2015-01-01

    Visually impaired people do not have equal possibilities to practice sports. In the case of running they need a sighted guide. This paper compare different possibilities for indicating direction to blind people by means of a belt that transmits tactile messages, and defines design requirements based on anthropometric analysis. The results shows that intuitive tactile messages are achieved with tactile stimuli applied in the ventral section, from the iliac crests to the navel.

  6. Recruitment of the middle temporal area by tactile motion in congenital blindness

    DEFF Research Database (Denmark)

    Ptito, Maurice; Matteau, Isabelle; Gjedde, Albert

    2009-01-01

    We used positron emission tomography to investigate whether tactile motion discrimination activates the dorsal visual stream in congenitally blind (CB) participants compared with sighted controls. The tactile stimuli consisted of either static dots, dots moving coherently in one of two possible...... indicate that the dorsal visual pathway is activated by tactile motion stimuli in CB, therefore providing additional support for the cross-modal plasticity hypothesis....

  7. The effect of chronic low back pain on tactile suppression during back movements.

    Science.gov (United States)

    Van Damme, Stefaan; Van Hulle, Lore; Danneels, Lieven; Spence, Charles; Crombez, Geert

    2014-10-01

    The aim of the present study was to examine whether tactile suppression, the phenomenon whereby tactile perception is suppressed during movement, would occur in the context of back movements. Of particular interest, it was investigated if tactile suppression in the back would be attenuated in those suffering from chronic low back pain. Individuals with chronic low back pain (N = 30) and a matched control group (N = 24) detected tactile stimuli on three possible locations (back, arm, chest) while performing a back or arm movement, or no movement. We hypothesized that the movements would induce tactile suppression, and that this effect would be largest for low-intense stimuli on the moving body part. We further hypothesized that, during back movements, tactile suppression on the back would be less pronounced in the chronic low back pain group than in the control group. The results showed the expected general tactile suppression effects. The hypothesis of back-specific attenuation of tactile suppression in the chronic low back pain group was not supported. However, back-specific tactile suppression in the chronic low back pain group was less pronounced in those who performed the back movements more slowly. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. A critical experimental study of the classical tactile threshold theory

    Directory of Open Access Journals (Sweden)

    Medina Leonel E

    2010-06-01

    Full Text Available Abstract Background The tactile sense is being used in a variety of applications involving tactile human-machine interfaces. In a significant number of publications the classical threshold concept plays a central role in modelling and explaining psychophysical experimental results such as in stochastic resonance (SR phenomena. In SR, noise enhances detection of sub-threshold stimuli and the phenomenon is explained stating that the required amplitude to exceed the sensory threshold barrier can be reached by adding noise to a sub-threshold stimulus. We designed an experiment to test the validity of the classical vibrotactile threshold. Using a second choice experiment, we show that individuals can order sensorial events below the level known as the classical threshold. If the observer's sensorial system is not activated by stimuli below the threshold, then a second choice could not be above the chance level. Nevertheless, our experimental results are above that chance level contradicting the definition of the classical tactile threshold. Results We performed a three alternative forced choice detection experiment on 6 subjects asking them first and second choices. In each trial, only one of the intervals contained a stimulus and the others contained only noise. According to the classical threshold assumptions, a correct second choice response corresponds to a guess attempt with a statistical frequency of 50%. Results show an average of 67.35% (STD = 1.41% for the second choice response that is not explained by the classical threshold definition. Additionally, for low stimulus amplitudes, second choice correct detection is above chance level for any detectability level. Conclusions Using a second choice experiment, we show that individuals can order sensorial events below the level known as a classical threshold. If the observer's sensorial system is not activated by stimuli below the threshold, then a second choice could not be above the chance

  9. Simulating potential structural and operational changes for Detroit Dam on the North Santiam River, Oregon, for downstream temperature management

    Science.gov (United States)

    Buccola, Norman L.; Rounds, Stewart A.; Sullivan, Annett B.; Risley, John C.

    2012-01-01

    Detroit Dam was constructed in 1953 on the North Santiam River in western Oregon and resulted in the formation of Detroit Lake. With a full-pool storage volume of 455,100 acre-feet and a dam height of 463 feet, Detroit Lake is one of the largest and most important reservoirs in the Willamette River basin in terms of power generation, recreation, and water storage and releases. The U.S. Army Corps of Engineers operates Detroit Dam as part of a system of 13 reservoirs in the Willamette Project to meet multiple goals, which include flood-damage protection, power generation, downstream navigation, recreation, and irrigation. A distinct cycle in water temperature occurs in Detroit Lake as spring and summer heating through solar radiation creates a warm layer of water near the surface and isolates cold water below. Controlling the temperature of releases from Detroit Dam, therefore, is highly dependent on the location, characteristics, and usage of the dam's outlet structures. Prior to operational changes in 2007, Detroit Dam had a well-documented effect on downstream water temperature that was problematic for endangered salmonid fish species, releasing water that was too cold in midsummer and too warm in autumn. This unnatural seasonal temperature pattern caused problems in the timing of fish migration, spawning, and emergence. In this study, an existing calibrated 2-dimensional hydrodynamic water-quality model [CE-QUAL-W2] of Detroit Lake was used to determine how changes in dam operation or changes to the structural release points of Detroit Dam might affect downstream water temperatures under a range of historical hydrologic and meteorological conditions. The results from a subset of the Detroit Lake model scenarios then were used as forcing conditions for downstream CE-QUAL-W2 models of Big Cliff Reservoir (the small reregulating reservoir just downstream of Detroit Dam) and the North Santiam and Santiam Rivers. Many combinations of environmental, operational, and

  10. Maintaining "Synk" in Detroit: Two Case Studies in the Remix Aesthetic

    Directory of Open Access Journals (Sweden)

    Carleton S. Gholz

    2011-03-01

    Full Text Available Advances in audio-visual remixing technologies have produced a significant, largely unintended, consequence: audiences at EDM performances are dancing less—if at all. Instead, utilizing digital mobile devices, audiences have increasingly become interactive media producers within an environment encouraged by savvy, former DJs. Drawing from the fields of EDM studies, sound studies and film studies, I outline the historical arc of the remix aesthetic by comparing and contrasting recent work by two long-time EDM artists from the Detroit-Windsor region, Jeff Mills and Richie Hawtin. These two artists were central to the global proliferation of EDM culture during its mass-communication phase. However, in an era of heightened media convergence what scholars have traditionally understood as EDM has irreparably changed. Mills and Hawtin have much to contribute to this apparent impasse.Keywords: EDM, film studies, film sound, remix aesthetic, soundscape, media convergence, Jeff Mills, Richie Hawtin, Plastikman

  11. In Search of Spirituality in the Places of Urban Decay: Case Studies in Detroit

    Directory of Open Access Journals (Sweden)

    Joongsub Kim

    2016-09-01

    Full Text Available This paper explores spirituality in urban decay. This paper suggests that the spirituality of places in urban decay can be defined in four ways: places in urban decay can be spiritual because they inspire people to do good things for the community (catalytic; places in urban decay can be spiritual because they are consoling (therapeutic; places in urban decay can be spiritual because they help connect individuals to their inner selves (reflective; and places in urban decay can be spiritual because they connect people in different ways (engaging. The literature neglects the catalytic aspect, while supporting other aspects. The results of this paper suggest that the idea of spirituality in architecture needs to be expanded in post-industrial society. This paper suggests that the role that spiritual places in urban decay play in place-making, especially in shrinking cities such as Detroit, deserve further scholarly attention.

  12. Field Demonstration of a 24-kV Superconducting Cable at Detroit Edison

    International Nuclear Information System (INIS)

    Kelley, Nathan; Corsaro, Pietro

    2004-01-01

    Customer acceptance of high temperature superconducting (HTS) cable technology requires a substantial field demonstration illustrating both the system's technical capabilities and its suitability for installation and operation within the utility environment. In this project, the world's first underground installation of an HTS cable using existing ductwork, a 120 meter demonstration cable circuit was designed and installed between the 24 kV bus distribution bus and a 120 kV-24 kV transformer at Detroit Edison's Frisbie substation. The system incorporated cables, accessories, a refrigeration system, and control instrumentation. Although the system was never put in operation because of problems with leaks in the cryostat, the project significantly advanced the state-of-the-art in the design and implementation of Warm Dielectric cable systems in substation applications. Lessons learned in this project are already being incorporated in several ongoing demonstration projects

  13. Construction of shipping channels in the Detroit River—History and environmental consequences

    Science.gov (United States)

    Bennion, David H.; Manny, Bruce A.

    2011-01-01

    The Detroit River is one of the most biologically diverse areas in the Great Lakes basin. It has been an important international shipping route since the 1820s and is one of the busiest navigation centers in the United States. Historically, it supported one of the most profitable Lake Whitefish (Coregonus clupeaformis) commercial fisheries in the Great Lakes. Since 1874, the lower Detroit River has been systematically and extensively modified, by construction of deepwater channels, to facilitate commercial shipping. Large-scale dredging, disposal of dredge spoils, and construction of water-level compensating works has greatly altered channel morphology and flow dynamics of the river, disrupting ecological function and fishery productivity of the river and influencing Great Lakes water levels. From 1874 to 1968, major construction projects created 96.5 kilometers (60 miles) of shipping channels, removed over 46,200,000 m3 of material, covered 4,050 hectares (40.5 square kilometers) of river bottom with dredge spoils, and built 85 hectares of above-waterline compensating works at a total cost of US$283 million. Interest by industries and government agencies to develop the river further for shipping is high and increasing. Historically, as environmental protection agencies were created, construction impacts on natural resources were increasingly addressed during the planning process and, in some cases, assessments of these impacts greatly altered or halted proposed construction projects. Careful planning of future shipping-channel construction and maintenance projects, including a thorough analysis of the expected environmental impacts, could greatly reduce financial costs and ecological damages as compared to past shipping-channel construction projects.

  14. Schmidt. Sinfonie Nr. 1 E-Dur; Strauss. Vier sinfonische Zwischenspiele aus Intermezzo. Detroit Symphony Orchestra, Neeme Järvi / Helge Grünewald

    Index Scriptorium Estoniae

    Grünewald, Helge

    1996-01-01

    Uuest heliplaadist "Schmidt. Sinfonie Nr. 1 E-Dur; Strauss. Vier sinfonische Zwischenspiele aus Intermezzo. Detroit Symphony Orchestra, Neeme Järvi. Chandos/Koch CD 9357 (WD: 68'20") DDD (WD:114'36")

  15. Tactile roughness perception in the presence of olfactory and trigeminal stimulants

    Directory of Open Access Journals (Sweden)

    Lara A. Koijck

    2015-05-01

    Full Text Available Previous research has shown that odorants consistently evoke associations with textures and their tactile properties like smoothness and roughness. Also, it has been observed that olfaction can modulate tactile perception. We therefore hypothesized that tactile roughness perception may be biased towards the somatosensory connotation of an ambient odorant. We performed two experiments to test this hypothesis. In the first experiment, we investigated the influence of ambient chemosensory stimuli with different roughness connotations on tactile roughness perception. In addition to a pleasant odor with a connotation of softness (PEA, we also included a trigeminal stimulant with a rough, sharp or prickly connotation (Ethanol. We expected that—compared to a No-odorant control condition—tactile texture perception would be biased towards smoothness in the presence of PEA and towards roughness in the presence of Ethanol. However, our results show no significant interaction between chemosensory stimulation and perceived tactile surface roughness. It could be argued that ambient odors may be less effective in stimulating crossmodal associations, since they are by definition extraneous to the tactile stimuli. In an attempt to optimize the conditions for sensory integration, we therefore performed a second experiment in which the olfactory and tactile stimuli were presented in synchrony and in close spatial proximity. In addition, we included pleasant (Lemon and unpleasant (Indole odorants that are known to have the ability to affect tactile perception. We expected that tactile stimuli would be perceived as less rough when simultaneously presented with Lemon or PEA (both associated with softness than when presented with Ethanol or Indole (odors that can be associated with roughness. Again, we found no significant main effect of chemosensory condition on perceived tactile roughness. We discuss the limitations of this study and we present suggestions for

  16. A Rapid Tactile-Motor Reflex Automatically Guides Reaching toward Handheld Objects.

    Science.gov (United States)

    Pruszynski, J Andrew; Johansson, Roland S; Flanagan, J Randall

    2016-03-21

    The ability to respond quickly and effectively when objects in the world suddenly change position is essential for skilled action, and previous work has documented how unexpected changes in the location of a visually presented target during reaching can elicit rapid reflexive (i.e., automatic) corrections of the hand's trajectory [1-12]. In object manipulation and tool use, the sense of touch can also provide information about changes in the location of reach targets. Consider the many tasks where we reach with one hand to part of an object grasped by the other hand: reaching to a berry while holding a branch, reaching for a cap while grasping a bottle, and reaching toward a dog's collar while holding the dog's leash. In such cases, changes in the position of the reach target, due to wind, slip, or an active agent, can be detected, in principle, through touch. Here, we show that when people reach with their right hand to a target attached to the far end of a rod contacted, at the near end, by their left hand, an unexpected change in target location caused by rod rotation rapidly evokes an effective reach correction. That is, spatial information about a change in target location provided by tactile inputs to one hand elicits a rapid correction of the other hand's trajectory. In addition to uncovering a tactile-motor reflex that can support manipulatory actions, our results demonstrate that automatic reach corrections to moving targets are not unique to visually registered changes in target location. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. A Comparison of Exposure Metrics for Traffic-Related Air Pollutants: Application to Epidemiology Studies in Detroit, Michigan

    Directory of Open Access Journals (Sweden)

    Stuart Batterman

    2014-09-01

    Full Text Available Vehicles are major sources of air pollutant emissions, and individuals living near large roads endure high exposures and health risks associated with traffic-related air pollutants. Air pollution epidemiology, health risk, environmental justice, and transportation planning studies would all benefit from an improved understanding of the key information and metrics needed to assess exposures, as well as the strengths and limitations of alternate exposure metrics. This study develops and evaluates several metrics for characterizing exposure to traffic-related air pollutants for the 218 residential locations of participants in the NEXUS epidemiology study conducted in Detroit (MI, USA. Exposure metrics included proximity to major roads, traffic volume, vehicle mix, traffic density, vehicle exhaust emissions density, and pollutant concentrations predicted by dispersion models. Results presented for each metric include comparisons of exposure distributions, spatial variability, intraclass correlation, concordance and discordance rates, and overall strengths and limitations. While showing some agreement, the simple categorical and proximity classifications (e.g., high diesel/low diesel traffic roads and distance from major roads do not reflect the range and overlap of exposures seen in the other metrics. Information provided by the traffic density metric, defined as the number of kilometers traveled (VKT per day within a 300 m buffer around each home, was reasonably consistent with the more sophisticated metrics. Dispersion modeling provided spatially- and temporally-resolved concentrations, along with apportionments that separated concentrations due to traffic emissions and other sources. While several of the exposure metrics showed broad agreement, including traffic density, emissions density and modeled concentrations, these alternatives still produced exposure classifications that differed for a substantial fraction of study participants, e

  18. Characterization of contaminants in snapping turtles (Chelydra serpentina) from Canadian Lake Erie Areas of Concern: St. Clair River, Detroit River, and Wheatley Harbour

    International Nuclear Information System (INIS)

    Solla, Shane R. de; Fernie, Kimberly J.

    2004-01-01

    PCBs, organochlorine pesticides and dioxins/furans in snapping turtle eggs and plasma (Chelydra serpentina) were evaluated at three Areas of Concern (AOCs) on Lake Erie and its connecting channels (St. Clair River, Detroit River, and Wheatley Harbour), as well as two inland reference sites (Algonquin Provincial Park and Tiny Marsh) in 2001-2002. Eggs from the Detroit River and Wheatley Harbour AOCs had the highest levels of p,p'-DDE (24.4 and 57.9 ng/g) and sum PCBs (928.6 and 491.0 ng/g) wet weight, respectively. Contaminant levels in eggs from St. Clair River AOC were generally higher than those from Algonquin Park, but similar to those from Tiny Marsh. Dioxins appeared highest from the Detroit River. The PCB congener pattern in eggs suggested that turtles from the Detroit River and Wheatley Harbour AOCs were exposed to Aroclor 1260. TEQs of sum PCBs in eggs from all AOCs and p,p'-DDE levels in eggs from the Wheatley Harbour and the Detroit River AOCs exceeded the Canadian Environmental Quality Guidelines. Furthermore, sum PCBs in eggs from Detroit River and Wheatley Harbour exceeded partial restriction guidelines for consumption. Although estimated PCB body burdens in muscle tissue of females were well below consumption guidelines, estimated residues in liver and adipose were above guidelines for most sites

  19. A Best-Evidence Synthesis of Research on Orientation and Mobility Involving Tactile Maps and Models

    Science.gov (United States)

    Wright, Tessa; Harris, Beth; Sticken, Eric

    2010-01-01

    A review of the literature from 1965 to 2008 on tactile maps and models in orientation and mobility yielded four pre-experimental and three experimental articles. The articles were analyzed via best-evidence synthesis--a combined narrative and statistical approach--allowing for recommendations for the most effective use of tactile maps and models.…

  20. appraisal of the efficacy of tactile subjective test for anaesthesia of ...

    African Journals Online (AJOL)

    Dr Olaleye

    Tactile, verbal subjective, and objective tests were done on 300 patients after inferior dental, lingual, and buccal nerve anaesthetic block injections were given. Of the 78 patients who indicated that there was a change in the middle-third of the lower lip during tactile subjective test, 12 (15.4%) had pain while 66 (84.6%) had ...

  1. Application of tactile displays in sports : where to, how and when to move

    NARCIS (Netherlands)

    Erp, J.B.F. van; Saturday, I.; Jansen, C.

    2006-01-01

    In this paper we explore the possibilities of tactile displays in sports applications, and report an experiment that shows that a tactile feedback systems improves rowing efficiency compared to traditional feedback systems. Earlier papers have shown that localized vibrations provide intuitive cues

  2. Evidence for embodied predictive coding: the anterior insula coordinates cortical processing of tactile deviancy

    DEFF Research Database (Denmark)

    Allen, Micah; Fardo, Francesca; Dietz, Martin

    2015-01-01

    this possibility in the somatosensory domain, we measured brain activity using functional magnetic resonance imaging while healthy participants discriminated tactile stimuli in a roving oddball design. Dynamic Causal Modelling revealed that unexpected stimuli increased the strength of forward connections...... processing of tactile changes to support body awareness....

  3. Audio-tactile stimulation: A tool to improve health and well-being?

    NARCIS (Netherlands)

    Dijk, E.O.; Nijholt, A.; Erp, J.B.F. van; Wolferen, G. van; Kuyper, E.

    2013-01-01

    Stimulation of the tactile sense or the hearing sense can be used to improve a person's health and well-being. For example, to make someone relax, feel better or sleep better. In this position paper, we present the concept of auditory-tactile stimulation for health and well-being. Through carefully

  4. Beats, Flesh, and Grain : Sonic Tactility and Affect in Electronic Dance Music

    NARCIS (Netherlands)

    Garcia, Luis-Manuel

    2015-01-01

    This essay sets out to explore the tactilization of sound in electronic dance music (EDM), which offers an important sensory-affective bridge between touch, sonic experience, and an expansive sense of connection in dancing crowds. EDM events tend to engender spaces of heightened tactility and

  5. Sensory Responsiveness and the Effects of Equal Subjective Rewards on Tactile Learning and Memory of Honeybees

    Science.gov (United States)

    Scheiner, Ricarda; Kuritz-Kaiser, Anthea; Menzel, Randolf; Erber, Joachim

    2005-01-01

    In tactile learning, sucrose is the unconditioned stimulus and reward, which is usually applied to the antenna to elicit proboscis extension and which the bee can drink when it is subsequently applied to the extended proboscis. The conditioned stimulus is a tactile object that the bee can scan with its antennae. In this paper we describe the…

  6. Participation of Parents in the Early Exploration of Tactile Graphics by Children Who Are Visually Impaired

    Science.gov (United States)

    Ryles, Ruby; Bell, Edward

    2009-01-01

    Seventy-three children with visual impairments aged 2-10 and their parents participated in a project that examined the children's interest in and exploration of tactile graphics. The parents reported that the children's interest in and conceptual understanding of the project's tactile workbook were high and that the children explored the…

  7. Weber's Illusion and Body Shape: Anisotropy of Tactile Size Perception on the Hand

    Science.gov (United States)

    Longo, Matthew R.; Haggard, Patrick

    2011-01-01

    The perceived distance between touches on a single skin surface is larger on regions of high tactile sensitivity than those with lower acuity, an effect known as "Weber's illusion". This illusion suggests that tactile size perception involves a representation of the perceived size of body parts preserving characteristics of the somatosensory…

  8. Tactile acuity is disrupted in osteoarthritis but is unrelated to disruptions in motor imagery performance.

    NARCIS (Netherlands)

    Stanton, T.R.; Lin, C.W.; Bray, H.; Smeets, R.J.P.; Taylor, D.; Law, R.Y.; Moseley, G.L.

    2013-01-01

    OBJECTIVE: To determine whether tactile acuity is disrupted in people with knee OA and to determine whether tactile acuity, a clinical signature of primary sensory cortex representation, is related to motor imagery performance (MIP; evaluates working body schema) and pain. METHODS: Experiment 1:

  9. Effect of Electrostatic Tactile Feedback on Accuracy and Efficiency of Pan Gestures on Touch Screens.

    Science.gov (United States)

    Liu, Guohong; Sun, Xiaoying; Wang, Dangxiao; Liu, Yue; Zhang, Yuru

    2018-01-01

    Recently, many studies examined electrostatic tactile feedback on touch screens to enrich interaction experience. However, it is unclear as to whether added tactile feedback during a sliding process increases the accuracy of pan gestures with velocity constraints. In this study, a custom-designed electrostatic tactile display was considered. Initially, the accuracy and efficiency of pan gestures were compared under two conditions, namely with and without electrostatic tactile feedback. This was followed by exploring the evolution of completion time (CT) with different indices of difficulties (ID). Experimental results with 12 participants indicated that the accuracy and completion time of pan gestures with added tactile feedback significantly exceeded those without tactile feedback. Furthermore, the relationship between CT and ID satisfied Fitts' Law with a correlation coefficient exceeding 0.9. Based on the findings, a "Tactile Fruit Sorting" game was designed, and subjective and objective evaluations were conducted. The results confirmed that the added tactile feedback enhanced both user performance and interest with respect to the game.

  10. Perceived duration of visual and tactile stimuli depends on perceived speed

    Directory of Open Access Journals (Sweden)

    Alice eTomassini

    2011-09-01

    Full Text Available It is known that the perceived duration of visual stimuli is strongly influenced by speed: faster moving stimuli appear to last longer. To test whether this is a general property of sensory systems we asked participants to reproduce the duration of visual and tactile gratings, and visuo-tactile gratings moving at a variable speed (3.5 – 15 cm/s for three different durations (400, 600 and 800 ms. For both modalities, the apparent duration of the stimulus increased strongly with stimulus speed, more so for tactile than for visual stimuli. In addition, visual stimuli were perceived to last approximately 200 ms longer than tactile stimuli. The apparent duration of visuo-tactile stimuli lay between the unimodal estimates, as the Bayesian account predicts, but the bimodal precision of the reproduction did not show the theoretical improvement. A cross-modal speed-matching task revealed that visual stimuli were perceived to move faster than tactile stimuli. To test whether the large difference in the perceived duration of visual and tactile stimuli resulted from the difference in their perceived speed, we repeated the time reproduction task with visual and tactile stimuli matched in apparent speed. This reduced, but did not completely eliminate the difference in apparent duration. These results show that for both vision and touch, perceived duration depends on speed, pointing to common strategies of time perception.

  11. Tactile Sensing From Laser-Ablated Metallized PET Films

    KAUST Repository

    Nag, Anindya

    2016-10-17

    This paper reports the design, fabrication, and implementation of a novel sensor patch developed from commercial polyethylene terephthalate films metallized with aluminum on one side. The aluminum was ablated with laser to form interdigitated electrodes to make sensor prototypes. The interdigitated electrodes were patterned on the substrate with a laser cutter. Characterization of the prototypes was done to determine their operating frequency followed by experimentation. The prototypes have been used as a tactile sensor showing promising results for using these patches in applications with contact pressures considerably lesser than normal human contact pressure.

  12. A Comparison of Tactile Sensors for In-Hand Object Location

    Directory of Open Access Journals (Sweden)

    Raul Fernandez

    2016-01-01

    Full Text Available This work presents an extensive analysis of the usefulness of tactile sensors for in-hand object localization. Our analysis is based on a previous work where we proposed a method for the evaluation of tactile data using two algorithms: a Particle Filter algorithm and an Iterative Closest Point algorithm. In particular, we present a comparison of six different sensors, including two pairs of sensors based on similar technology, showing how the design and distribution of tactile sensors can affect the performance. Also, together with previous results where we demonstrated the importance of the synergy between tactile data and hand geometry, we corroborate that it is possible to obtain more similar performance with a simple fingertip sensor, than with more complex and expensive tactile sensors.

  13. Can tactile sensory processing differentiate between children with autistic disorder and asperger's disorder?

    Science.gov (United States)

    Ghanizadeh, Ahmad

    2011-05-01

    There are debates whether autistic disorder (autism) and Asperger's disorder are two distinct disorders. Moreover, interventional sensory occupational therapy should consider the clinical characteristics of patients. Already, commonalities and differences between Asperger's disorder and autistic disorder are not well studied. The aim of this study is to compare tactile sensory function of children with autistic disorder and children with Asperger's disorder. Tactile sensory function was compared between 36 children with autism and 19 children with Asperger's disorder. The two disorders were diagnosed based on Diagnostic and Statistical Manual of Mental Disorders Fourth Edition, Text Revision. The parent-reported Tactile Dysfunction Checklist was used to assess the three aspects of hypersensitivity, hyposensitivity, and poor tactile perception and discrimination. Developmental coordination was also assessed. Developmental coordination problems total score was not associated with group. The mean (standard deviation) score of tactile hyper-responsivity was not different between the groups. Tactile hyporesponsivity and poor tactile perception and discrimination scores were statistically higher in autistic disorder than Asperger's disorder group. These results for the first time indicated that at least some aspects of tactile perception can differentiate these two disorders. Children with autistic disorder have more tactile sensory seeking behaviors than children with Asperger's disorder. Moreover, the ability of children with autistic disorder for tactile discrimination and sensory perception is less than those with Asperger's disorder. Interventional sensory therapy in children with autistic disorder should have some characteristics that can be different and specific for children with Asperger's disorder. Formal intelligence quotient testing was not performed on all of the children evaluated, which is a limitation to this study. In some cases, a clinical estimation of

  14. Independent Attention Mechanisms Control the Activation of Tactile and Visual Working Memory Representations.

    Science.gov (United States)

    Katus, Tobias; Eimer, Martin

    2018-05-01

    Working memory (WM) is limited in capacity, but it is controversial whether these capacity limitations are domain-general or are generated independently within separate modality-specific memory systems. These alternative accounts were tested in bimodal visual/tactile WM tasks. In Experiment 1, participants memorized the locations of simultaneously presented task-relevant visual and tactile stimuli. Visual and tactile WM load was manipulated independently (one, two, or three items per modality), and one modality was unpredictably tested after each trial. To track the activation of visual and tactile WM representations during the retention interval, the visual contralateral delay activity (CDA) and tactile CDA (tCDA) were measured over visual and somatosensory cortex, respectively. CDA and tCDA amplitudes were selectively affected by WM load in the corresponding (tactile or visual) modality. The CDA parametrically increased when visual load increased from one to two and to three items. The tCDA was enhanced when tactile load increased from one to two items and showed no further enhancement for three tactile items. Critically, these load effects were strictly modality-specific, as substantiated by Bayesian statistics. Increasing tactile load did not affect the visual CDA, and increasing visual load did not modulate the tCDA. Task performance at memory test was also unaffected by WM load in the other (untested) modality. This was confirmed in a second behavioral experiment where tactile and visual loads were either two or four items, unimodal baseline conditions were included, and participants performed a color change detection task in the visual modality. These results show that WM capacity is not limited by a domain-general mechanism that operates across sensory modalities. They suggest instead that WM storage is mediated by distributed modality-specific control mechanisms that are activated independently and in parallel during multisensory WM.

  15. Can Tactile Sensory Processing Differentiate Between Children with Autistic Disorder and Asperger's Disorder?

    Science.gov (United States)

    2011-01-01

    Objective There are debates whether autistic disorder (autism) and Asperger's disorder are two distinct disorders. Moreover, interventional sensory occupational therapy should consider the clinical characteristics of patients. Already, commonalities and differences between Asperger's disorder and autistic disorder are not well studied. The aim of this study is to compare tactile sensory function of children with autistic disorder and children with Asperger's disorder. Methods Tactile sensory function was compared between 36 children with autism and 19 children with Asperger's disorder. The two disorders were diagnosed based on Diagnostic and Statistical Manual of Mental Disorders Fourth Edition, Text Revision. The parent-reported Tactile Dysfunction Checklist was used to assess the three aspects of hypersensitivity, hyposensitivity, and poor tactile perception and discrimination. Developmental coordination was also assessed. Results Developmental coordination problems total score was not associated with group. The mean (standard deviation) score of tactile hyper-responsivity was not different between the groups. Tactile hyporesponsivity and poor tactile perception and discrimination scores were statistically higher in autistic disorder than Asperger's disorder group. Conclusion These results for the first time indicated that at least some aspects of tactile perception can differentiate these two disorders. Children with autistic disorder have more tactile sensory seeking behaviors than children with Asperger's disorder. Moreover, the ability of children with autistic disorder for tactile discrimination and sensory perception is less than those with Asperger's disorder. Interventional sensory therapy in children with autistic disorder should have some characteristics that can be different and specific for children with Asperger's disorder. Formal intelligence quotient testing was not performed on all of the children evaluated, which is a limitation to this study. In

  16. Neural Activity Patterns in the Human Brain Reflect Tactile Stickiness Perception

    Science.gov (United States)

    Kim, Junsuk; Yeon, Jiwon; Ryu, Jaekyun; Park, Jang-Yeon; Chung, Soon-Cheol; Kim, Sung-Phil

    2017-01-01

    Our previous human fMRI study found brain activations correlated with tactile stickiness perception using the uni-variate general linear model (GLM) (Yeon et al., 2017). Here, we conducted an in-depth investigation on neural correlates of sticky sensations by employing a multivoxel pattern analysis (MVPA) on the same dataset. In particular, we statistically compared multi-variate neural activities in response to the three groups of sticky stimuli: A supra-threshold group including a set of sticky stimuli that evoked vivid sticky perception; an infra-threshold group including another set of sticky stimuli that barely evoked sticky perception; and a sham group including acrylic stimuli with no physically sticky property. Searchlight MVPAs were performed to search for local activity patterns carrying neural information of stickiness perception. Similar to the uni-variate GLM results, significant multi-variate neural activity patterns were identified in postcentral gyrus, subcortical (basal ganglia and thalamus), and insula areas (insula and adjacent areas). Moreover, MVPAs revealed that activity patterns in posterior parietal cortex discriminated the perceptual intensities of stickiness, which was not present in the uni-variate analysis. Next, we applied a principal component analysis (PCA) to the voxel response patterns within identified clusters so as to find low-dimensional neural representations of stickiness intensities. Follow-up clustering analyses clearly showed separate neural grouping configurations between the Supra- and Infra-threshold groups. Interestingly, this neural categorization was in line with the perceptual grouping pattern obtained from the psychophysical data. Our findings thus suggest that different stickiness intensities would elicit distinct neural activity patterns in the human brain and may provide a neural basis for the perception and categorization of tactile stickiness. PMID:28936171

  17. Enhanced Motor Imagery-Based BCI Performance via Tactile Stimulation on Unilateral Hand

    Directory of Open Access Journals (Sweden)

    Xiaokang Shu

    2017-12-01

    Full Text Available Brain-computer interface (BCI has attracted great interests for its effectiveness in assisting disabled people. However, due to the poor BCI performance, this technique is still far from daily-life applications. One of critical issues confronting BCI research is how to enhance BCI performance. This study aimed at improving the motor imagery (MI based BCI accuracy by integrating MI tasks with unilateral tactile stimulation (Uni-TS. The effects were tested on both healthy subjects and stroke patients in a controlled study. Twenty-two healthy subjects and four stroke patients were recruited and randomly divided into a control-group and an enhanced-group. In the control-group, subjects performed two blocks of conventional MI tasks (left hand vs. right hand, with 80 trials in each block. In the enhanced-group, subjects also performed two blocks of MI tasks, but constant tactile stimulation was applied on the non-dominant/paretic hand during MI tasks in the second block. We found the Uni-TS significantly enhanced the contralateral cortical activations during MI of the stimulated hand, whereas it had no influence on activation patterns during MI of the non-stimulated hand. The two-class BCI decoding accuracy was significantly increased from 72.5% (MI without Uni-TS to 84.7% (MI with Uni-TS in the enhanced-group (p < 0.001, paired t-test. Moreover, stroke patients in the enhanced-group achieved an accuracy >80% during MI with Uni-TS. This novel approach complements the conventional methods for BCI enhancement without increasing source information or complexity of signal processing. This enhancement via Uni-TS may facilitate clinical applications of MI-BCI.

  18. Feasibility study of patient motion monitoring by using tactile array sensors

    Science.gov (United States)

    Kim, Tae-Ho; Kang, Seong-Hee; Kim, Dong-Su; Cho, Min-Seok; Kim, Kyeong-Hyeon; Suh, Tae-Suk; Kim, Siyong

    2015-07-01

    An ideal alignment method based on the external anatomical surface of the patient should consider the entire region of interest. However, optical-camera-based systems cannot blindly monitor such areas as the patient's back, for example. Furthermore, collecting enough information to correct the associated deformation error is impossible. The study aim is to propose a new patient alignment method using tactile array sensors that can measure the distributed pressure profiles along the contact surface. The TactArray system includes one sensor, a signal-conditioning device (USB drive/interface electronics, power supply, and cables), and a PC. The tactile array sensor was placed between the patient's back and the treatment couch, and the deformations at different location on the patient's back were evaluated. Three healthy male volunteers were enrolled in this study, and pressure profile distributions (PPDs) were obtained with and without immobilization. After the initial pretreatment setup using the laser alignment system, the PPD of the patient's back was acquired. The results were obtained at four different times and included a reference PPD dataset. The contact area and the center-of-pressure value were also acquired based on the PPD data for a more elaborate quantitative data analysis. To evaluate the clinical feasibility of using the proposed alignment method for reducing the deformation error, we implemented a real-time self-correction procedure. Despite the initial alignment, we confirmed that PPD variations existed in both cases of the volunteer studies (with and without the use of the immobilization tool). Additionally, we confirmed that the contact area and the center of pressure varied in both cases, and those variations were observed in all three volunteers. With the proposed alignment method and the real-time selfcorrection procedure, the deformation error was significantly reduced. The proposed alignment method can be used to account for the limitation of

  19. Neuronal activity in somatosensory cortex related to tactile exploration

    Science.gov (United States)

    Fortier-Poisson, Pascal

    2015-01-01

    The very light contact forces (∼0.60 N) applied by the fingertips during tactile exploration reveal a clearly optimized sensorimotor strategy. To investigate the cortical mechanisms involved with this behavior, we recorded 230 neurons in the somatosensory cortex (S1), as two monkeys scanned different surfaces with the fingertips in search of a tactile target without visual feedback. During the exploration, the monkeys, like humans, carefully controlled the finger forces. High-friction surfaces offering greater tangential shear force resistance to the skin were associated with decreased normal contact forces. The activity of one group of neurons was modulated with either the normal or tangential force, with little or no influence from the orthogonal force component. A second group responded to kinetic friction or the ratio of tangential to normal forces rather than responding to a specific parameter, such as force magnitude or direction. A third group of S1 neurons appeared to respond to particular vectors of normal and tangential force on the skin. Although 45 neurons correlated with scanning speed, 32 were also modulated by finger forces, suggesting that forces on the finger should be considered as the primary parameter encoding the skin compliance and that finger speed is a secondary parameter that co-varies with finger forces. Neurons (102) were also tested with different textures, and the activity of 62 of these increased or decreased in relation to the surface friction. PMID:26467519

  20. A ferrofluid based artificial tactile sensor with magnetic field control

    International Nuclear Information System (INIS)

    Volkova, T.I.; Böhm, V.; Naletova, V.A.; Kaufhold, T.; Becker, F.; Zeidis, I.; Zimmermann, K.

    2017-01-01

    The paper deals with a tactile sensor inspired by biological hairs of mammals. The working principle is based on the effect of the magnetic force exerted on a paramagnetic body submerged into a ferrofluid volume under the influence of a nonuniform magnetic field. The deflection of the sensor's rod caused by external mechanical stimuli may be unambiguously identified by the distortion of the magnetic field, which occurs due to the motion of the attached body in the ferrofluid. The magnetic force acting on the body is evaluated experimentally and theoretically for the nonuniform magnetic field of a permanent magnet. The controlled oscillations of the rod are realised by applying a nonuniform magnetic field of periodically altering direction. - Highlights: • A design approach of a tactile sensor inspired by special mammalian hairs is presented. • The working principle is based on magnetic properties of a ferrofluid in magnetic fields. • The magnetic force acting on a body submerged into a ferrofluid volume is evaluated. • External mechanical stimuli may be identified by the distortion of the magnetic field. • The controlled whisking-like oscillations of the sensor's rod are realised experimentally.

  1. Feasibility study of patient motion monitoring using tactile array sensor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae Ho; Kang, Seong Hee; Kim, Dong Su; Cho, Min Seok; Kim, Kyeong Hyeon; Suh, Tae Suk [Dept. of Biomedical Engineering, Research Institute of Biomedical Engineering, the Catholic University of Korea, Seoul (Korea, Republic of); Kim, Si Yong [Dept. of Radiation Oncology, Virginia Commonwealth University, Richmond (United States)

    2014-11-15

    The aim of this study is to evaluate patient pretreatment set-up error and intra-fraction motion using the tactile array sensors (Pressure Profile Systems Inc, Los Angeles, CA) which could measure distributed pressure profiles along the contacting surface and to check a feasibility of the sensor (tactile array sensor) in the patient motion monitoring. Laser alignment and optical camera based monitoring system are very useful for reduce patient set-up error but these systems could not monitor the blind area like patient's back position. Actually after patient alignment using laser or optical monitoring system, it was assumed that there is no error in the patient's back position (pressure profile distribution). But if an error occurs in the patient's back position, it will affect the radiation therapy accuracy. In spite of optical motion monitoring or using the immobilization tool, distributed pressure profiles of patient's back position was changed during inter and intra-fraction. For more accurate patient set-up, blind area (patient's back) monitoring was necessary. We expect that the proposed method will be very useful for make up for the weakness of optical monitoring method.

  2. A ferrofluid based artificial tactile sensor with magnetic field control

    Energy Technology Data Exchange (ETDEWEB)

    Volkova, T.I., E-mail: tatiana.volkova@tu-ilmenau.de [Technical Mechanics Group, Faculty of Mechanical Engineering, Technische Universität Ilmenau, Ilmenau D-98684 (Germany); Böhm, V., E-mail: valter.boehm@tu-ilmenau.de [Technical Mechanics Group, Faculty of Mechanical Engineering, Technische Universität Ilmenau, Ilmenau D-98684 (Germany); Naletova, V.A., E-mail: naletova@imec.msu.ru [Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, 119991 Moscow (Russian Federation); Kaufhold, T., E-mail: tobias.kaufhold@tu-ilmenau.de [Technical Mechanics Group, Faculty of Mechanical Engineering, Technische Universität Ilmenau, Ilmenau D-98684 (Germany); Becker, F., E-mail: felix.becker@tu-ilmenau.de [Technical Mechanics Group, Faculty of Mechanical Engineering, Technische Universität Ilmenau, Ilmenau D-98684 (Germany); Zeidis, I., E-mail: igor.zeidis@tu-ilmenau.de [Technical Mechanics Group, Faculty of Mechanical Engineering, Technische Universität Ilmenau, Ilmenau D-98684 (Germany); Zimmermann, K., E-mail: klaus.zimmermann@tu-ilmenau.de [Technical Mechanics Group, Faculty of Mechanical Engineering, Technische Universität Ilmenau, Ilmenau D-98684 (Germany)

    2017-06-01

    The paper deals with a tactile sensor inspired by biological hairs of mammals. The working principle is based on the effect of the magnetic force exerted on a paramagnetic body submerged into a ferrofluid volume under the influence of a nonuniform magnetic field. The deflection of the sensor's rod caused by external mechanical stimuli may be unambiguously identified by the distortion of the magnetic field, which occurs due to the motion of the attached body in the ferrofluid. The magnetic force acting on the body is evaluated experimentally and theoretically for the nonuniform magnetic field of a permanent magnet. The controlled oscillations of the rod are realised by applying a nonuniform magnetic field of periodically altering direction. - Highlights: • A design approach of a tactile sensor inspired by special mammalian hairs is presented. • The working principle is based on magnetic properties of a ferrofluid in magnetic fields. • The magnetic force acting on a body submerged into a ferrofluid volume is evaluated. • External mechanical stimuli may be identified by the distortion of the magnetic field. • The controlled whisking-like oscillations of the sensor's rod are realised experimentally.

  3. D.S. Sense’s “On My Detroit Everything”: Self-Articulating Black Girl Magic

    Directory of Open Access Journals (Sweden)

    Kellie D. Hay

    2018-04-01

    Full Text Available Long before the hashtag #BlackGirlMagic was popularized on social network sites Black women in Detroit have been employing art in their processes of self-articulation and efforts to deal with the complexities and challenges of life in the city. The scripts of African American women that dominate the commercial hip hop industry and their impacts on girls and women have received thorough analysis in academia; yet, the practices, representations, and discursive articulations of independent, Black women hip hop artists remain underexplored. In particular, this essay draws on Deidre “D.S. Sense” Smith’s spoken word poem “On My Detroit Everything” to illuminate the counter-narratives and scripts that Black women have been creating to document, validate, and voice their experiences at a critical point in Detroit’s history as it underwent and continues to deal with the after effects of bankruptcy. Hip hop artists who use cultural production to accomplish grass roots community-building offer alternative visions of what it means to do political work. More than a strategy, we argue that such practices serve as the foundation for a movement that is significant and worthy of documentation in the contemporary neoliberal moment where in policies are accelerating the continued disenfranchisement of people of color in cities such as Detroit.

  4. Depth Camera-Based 3D Hand Gesture Controls with Immersive Tactile Feedback for Natural Mid-Air Gesture Interactions

    Directory of Open Access Journals (Sweden)

    Kwangtaek Kim

    2015-01-01

    Full Text Available Vision-based hand gesture interactions are natural and intuitive when interacting with computers, since we naturally exploit gestures to communicate with other people. However, it is agreed that users suffer from discomfort and fatigue when using gesture-controlled interfaces, due to the lack of physical feedback. To solve the problem, we propose a novel complete solution of a hand gesture control system employing immersive tactile feedback to the user’s hand. For this goal, we first developed a fast and accurate hand-tracking algorithm with a Kinect sensor using the proposed MLBP (modified local binary pattern that can efficiently analyze 3D shapes in depth images. The superiority of our tracking method was verified in terms of tracking accuracy and speed by comparing with existing methods, Natural Interaction Technology for End-user (NITE, 3D Hand Tracker and CamShift. As the second step, a new tactile feedback technology with a piezoelectric actuator has been developed and integrated into the developed hand tracking algorithm, including the DTW (dynamic time warping gesture recognition algorithm for a complete solution of an immersive gesture control system. The quantitative and qualitative evaluations of the integrated system were conducted with human subjects, and the results demonstrate that our gesture control with tactile feedback is a promising technology compared to a vision-based gesture control system that has typically no feedback for the user’s gesture inputs. Our study provides researchers and designers with informative guidelines to develop more natural gesture control systems or immersive user interfaces with haptic feedback.

  5. Design and fabrication of a novel tactile sensory system applicable in artificial palpation.

    Science.gov (United States)

    Afshari, Elnaz; Najarian, Siamak; Simforoosh, Nasser; Hajizade Farkoush, Siamak

    2011-01-01

    Force and position feedback are the two important parameters that are employed in different medical diagnoses and more specifically surgical operations. Furthermore, during different minimally invasive procedures, the ability of touch and force and position feedback are absent. In this regard, artificial palpation is a new technology that is employed to obtain tactile data in situations where physicians/surgeons cannot use their tactile sense. One of the most valuable achievements of artificial palpation are tactile sensory systems that have various applications in the detection of hard objects inside the soft tissue. Considering the present problems and limitations of kidney stone removal laparoscopy, the aim of this research is to design and fabricate a novel tactile sensory system capable of determining the exact location of stones during laparoscopy. This new tactile sensory system consists of four main parts: The sensory part, the mechanical part, the electrical part, and the display part. In this new system, due to the use of both displacement and force sensors, the usage limitations of previous tactile sensory systems are eliminated. The new tactile sensory system is well capable of finding the stone in the laboratory models through physical contact with the model's surface.

  6. Information transfer using wearable thin electrotactile displays with microneedle electrodes

    Science.gov (United States)

    Tezuka, Mayuko; Kitamura, Norihide; Miki, Norihisa

    2016-06-01

    Tactile sensation is considered as a promising information transfer tool that can replace or compensate for sight and hearing information. In this study, we developed a sheet-type electrotactile display with microneedle electrodes. This flexible and thin display is suitable for wearable applications. It can present tactile sensation to the skin at a low voltage by penetrating the stratum corneum with microneedles. As a proof-of-concept experiment of transferring information via tactile sensation, we first tried to convey signals of two patterns using a single display. Next, we attempted to use multiple displays and experimentally investigated the spatial resolution of the tactile sensation on the forearm. Finally, 3-bit information was successfully transferred by three devices attached to the forearm.

  7. Concurrent emotional pictures modulate temporal order judgments of spatially separated audio-tactile stimuli.

    Science.gov (United States)

    Jia, Lina; Shi, Zhuanghua; Zang, Xuelian; Müller, Hermann J

    2013-11-06

    Although attention can be captured toward high-arousal stimuli, little is known about how perceiving emotion in one modality influences the temporal processing of non-emotional stimuli in other modalities. We addressed this issue by presenting observers spatially uninformative emotional pictures while they performed an audio-tactile temporal-order judgment (TOJ) task. In Experiment 1, audio-tactile stimuli were presented at the same location straight ahead of the participants, who had to judge "which modality came first?". In Experiments 2 and 3, the audio-tactile stimuli were delivered one to the left and the other to the right side, and participants had to judge "which side came first?". We found both negative and positive high-arousal pictures to significantly bias TOJs towards the tactile and away from the auditory event when the audio-tactile stimuli were spatially separated; by contrast, there was no such bias when the audio-tactile stimuli originated from the same location. To further examine whether this bias is attributable to the emotional meanings conveyed by the pictures or to their high arousal effect, we compared and contrasted the influences of near-body threat vs. remote threat (emotional) pictures on audio-tactile TOJs in Experiment 3. The bias manifested only in the near-body threat condition. Taken together, the findings indicate that visual stimuli conveying meanings of near-body interaction activate a sensorimotor functional link prioritizing the processing of tactile over auditory signals when these signals are spatially separated. In contrast, audio-tactile signals from the same location engender strong crossmodal integration, thus counteracting modality-based attentional shifts induced by the emotional pictures. © 2013 Published by Elsevier B.V.

  8. The parietal cortices participate in encoding, short-term memory, and decision-making related to tactile shape.

    Science.gov (United States)

    Rojas-Hortelano, Eduardo; Concha, Luis; de Lafuente, Victor

    2014-10-15

    We routinely identify objects with our hands, and the physical attributes of touched objects are often held in short-term memory to aid future decisions. However, the brain structures that selectively process tactile information to encode object shape are not fully identified. In this article we describe the areas within the human cerebral cortex that specialize in encoding, short-term memory, and decision-making related to the shape of objects explored with the hand. We performed event-related functional magnetic resonance imaging in subjects performing a shape discrimination task in which two sequentially presented objects had to be explored to determine whether they had the same shape or not. To control for low-level and nonspecific brain activations, subjects performed a temperature discrimination task in which they compared the temperature of two spheres. Our results show that although a large network of brain structures is engaged in somatosensory processing, it is the areas lining the intraparietal sulcus that selectively participate in encoding, maintaining, and deciding on tactile information related to the shape of objects. Copyright © 2014 the American Physiological Society.

  9. Streets, strolls and spots: sex work, drug use and social space in Detroit.

    Science.gov (United States)

    Draus, Paul; Roddy, Juliette; Asabigi, Kanzoni

    2015-05-01

    In this paper, we explore social spaces related to street sex work and illicit drug use in Detroit. We consider these spaces as assemblages (Duff, 2011, 2013; Latour, 2005) that reflect the larger moral geography (Hubbard, 2012) of the city and fulfill specific functions in the daily lives of drug using sex workers. We draw on thirty-one in-depth qualitative interviews with former street sex workers who were recruited through a court-based treatment and recovery program, as well as ethnographic field notes from drug treatment and law enforcement settings. Our interview findings reveal highly organized and routine activities that exist in a relatively stable, symbiotic relationship with law enforcement practices, employment and commuter patterns, and built environments. While the daily life of street sex work involves a good deal of individual agency in terms of moving between spaces and negotiating terms of exchange, daily trajectories were also circumscribed by economics, illicit substance use, and the objective risks of the street and the police. We consider the implications of these results for future policy directed at harm reduction in the street setting. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Cancer incidence among Arab Americans in California, Detroit, and New Jersey SEER registries.

    Science.gov (United States)

    Bergmans, Rachel; Soliman, Amr S; Ruterbusch, Julie; Meza, Rafael; Hirko, Kelly; Graff, John; Schwartz, Kendra

    2014-06-01

    We calculated cancer incidence for Arab Americans in California; Detroit, Michigan; and New Jersey, and compared rates with non-Hispanic, non-Arab Whites (NHNAWs); Blacks; and Hispanics. We conducted a study using population-based data. We linked new cancers diagnosed in 2000 from the Surveillance, Epidemiology, and End Results Program (SEER) to an Arab surname database. We used standard SEER definitions and methodology for calculating rates. Population estimates were extracted from the 2000 US Census. We calculated incidence and rate ratios. Arab American men and women had similar incidence rates across the 3 geographic regions, and the rates were comparable to NHNAWs. However, the thyroid cancer rate was elevated among Arab American women compared with NHNAWs, Hispanics, and Blacks. For all sites combined, for prostate and lung cancer, Arab American men had a lower incidence than Blacks and higher incidence than Hispanics in all 3 geographic regions. Arab American male bladder cancer incidence was higher than that in Hispanics and Blacks in these regions. Our results suggested that further research would benefit from the federal recognition of Arab Americans as a specified ethnicity to estimate and address the cancer burden in this growing segment of the population.

  11. Cancer Incidence Among Arab Americans in California, Detroit, and New Jersey SEER Registries

    Science.gov (United States)

    Bergmans, Rachel; Ruterbusch, Julie; Meza, Rafael; Hirko, Kelly; Graff, John; Schwartz, Kendra

    2014-01-01

    Objectives. We calculated cancer incidence for Arab Americans in California; Detroit, Michigan; and New Jersey, and compared rates with non-Hispanic, non-Arab Whites (NHNAWs); Blacks; and Hispanics. Methods. We conducted a study using population-based data. We linked new cancers diagnosed in 2000 from the Surveillance, Epidemiology, and End Results Program (SEER) to an Arab surname database. We used standard SEER definitions and methodology for calculating rates. Population estimates were extracted from the 2000 US Census. We calculated incidence and rate ratios. Results. Arab American men and women had similar incidence rates across the 3 geographic regions, and the rates were comparable to NHNAWs. However, the thyroid cancer rate was elevated among Arab American women compared with NHNAWs, Hispanics, and Blacks. For all sites combined, for prostate and lung cancer, Arab American men had a lower incidence than Blacks and higher incidence than Hispanics in all 3 geographic regions. Arab American male bladder cancer incidence was higher than that in Hispanics and Blacks in these regions. Conclusions. Our results suggested that further research would benefit from the federal recognition of Arab Americans as a specified ethnicity to estimate and address the cancer burden in this growing segment of the population. PMID:24825237

  12. The Detroit Diesel DELTA Engine for Light Trucks and SUVs - Year 2000 Update

    International Nuclear Information System (INIS)

    Nabil S. Hakim; Charles E. Freese; Stanley P. Miller

    2000-01-01

    Detroit Diesel Corporation (DDC) is developing the DELTA 4.0L V6 engine, specifically for the North American light truck market. This market poses unique requirements for a diesel engine, necessitating a clean sheet engine design. DELTA was developed from a clean sheet of paper, with the first engine firing just 228 days later. The process began with a Quality Function Deployment (QFD) analysis, which prioritized the development criteria. The development process integrated a co-located, fully cross-functional team. Suppliers were fully integrated and maintained on-site representation. The first demonstration vehicle moved under its own power 12 weeks after the first engine fired. It was demonstrated to the automotive press 18 days later. DELTA has repeatedly demonstrated its ability to disprove historical North American diesel perceptions and compete directly with gasoline engines. This paper outlines the Generation 0.0 development process and briefly defines the engine. A brief indication of the Generation 0.5 development status is given

  13. Spatial Asynchronous Visuo-Tactile Stimuli influence Ownership of Virtual Wings

    DEFF Research Database (Denmark)

    Andreasen, Anastassia; Nilsson, Niels Chr.; Serafin, Stefania

    2018-01-01

    This poster describes a within-subject study of the virtual body ownership (VBO) illusion using anatomically similar but morphologically different body of a virtual bat. Participants experienced visuo-tactile stimulation of their arms while seeing an object touching the wing of the bat. The mapping...... between the real and the virtual touch points varied across three conditions: no spatial deviation between visual and tactile input, 50% deviation, and 70% deviation. The results suggest that the degree of experienced VBO varies across the conditions. The illusion was broken in the absence of visuo-tactile...

  14. Activation of the hippocampal complex during tactile maze solving in congenitally blind subjects

    DEFF Research Database (Denmark)

    Gagnon, Léa; Schneider, Fabien C; Siebner, Hartwig R

    2012-01-01

    imaging (fMRI) in congenitally blind and blindfolded sighted participants while they navigated through a tactile multiple T-maze. Both groups learned the maze task at a similar pace. In blind participants, tactile maze navigation was associated with increased BOLD responses in the right hippocampus...... and parahippocampus, occipital cortex and fusiform gyrus. Blindfolded sighted controls did not show increased BOLD responses in these areas; instead they activated the caudate nucleus and thalamus. Both groups activated the precuneus during tactile maze navigation. We conclude that cross-modal plastic processes allow...

  15. A silicon-based flexible tactile sensor for ubiquitous robot companion applications

    International Nuclear Information System (INIS)

    Kim, Kunnyun; Lee, Kang Ryeol; Lee, Dae Sung; Cho, Nam-Kyu; Kim, Won Hyo; Park, Kwang-Bum; Park, Hyo-Derk; Kim, Yong Kook; Park, Yon-Kyu; Kim, Jong-Ho

    2006-01-01

    We present the fabrication process and characteristics of a 3-axes flexible tactile sensor available for normal and shear mode fabricated using Si micromachining and packaging technologies. The fabrication processes for the 3 axes flexible tactile sensor were classified in the fabrication of sensor chips and their packaging on the flexible PCB. The variation rate of resistance was about 2.1%/N and 0.5%/N in applying normal and shear force, respectively. Because this tactile sensor can measure the variations of resistance of the semiconductor strain gauge for normal and shear force, it can be used to sense touch, pressure, hardness, and slip

  16. Use of early tactile stimulation in rehabilitation of digital nerve injuries.

    Science.gov (United States)

    Cheng, A S

    2000-01-01

    Digital nerves are the most frequently injured peripheral nerve. To improve the recovery of functional sensibility of digital nerve injuries, a prospective randomized controlled study was conducted to see the effect of using early tactile stimulation in rehabilitation of digital nerve injuries. Two specific tactile stimulators were made and prescribed for patients with digital nerve-injury. Twenty-four participants with 32 digital nerve injuries received the prescribed tactile stimulators (experimental group), and another 25 participants with 33 digital nerve injuries received only routine conventional therapy (control group). A significant difference (p sensibility in digital nerve injuries without combined nerve, tendon, and bone injuries.

  17. Tactile and visual perception of injection moulded plastic parts

    DEFF Research Database (Denmark)

    Jensen, Jacob Tobias; Akbas, Erkan; Madsen, Mads

    in today’s products and are very important competition factors. This is also the case for light switches which have been chosen as the object that this assignment with revolve around to exemplify the different plastic materials in use in our daily lives. In the light switch marked for traditional light...... switches the technology is almost the same for all manufactures and therefore the visual appeal is very important as a competition factor. Traditional light switches have the button made from plastic material. It is this button that is imagined to be examined to find a plastic surface with a good visual...... appeal (aesthetics) and tactile perception (ergonomics). From this the following thesis has been created: What plastic material and surface texture gives the best combination of aesthetics and ergonomics in the use for buttons on light switches? Throughout the report this thesis will be examined...

  18. A Portable Piezoelectric Tactile Terminal for Braille Readers

    Directory of Open Access Journals (Sweden)

    Ramiro Velázquez

    2012-01-01

    Full Text Available This paper introduces a novel concept on reading assistive technologies for the blind: the TactoBook, a system that is able to translate entire electronic books (eBooks to Braille code and to reproduce them in portable electronic Braille terminals. The TactoBook consists of a computer-based translator that converts fast and automatically any eBook into Braille. The Braille version of the eBook is then encrypted as a file and stored in a USB memory drive which is later inserted and reproduced in a compact, lightweight, and highly-portable tactile terminal. In particular, this paper presents a piezoelectric ultrasonic actuation approach to design and implement such portable Braille terminal. Actuating mechanism, design concept, first prototype, and performance results are presented and discussed.

  19. Tactile Architectural Models as Universal ‘Urban Furniture’

    Science.gov (United States)

    Kłopotowska, Agnieszka

    2017-10-01

    Tactile architectural models and maquettes have been built in the external public spaces of Polish cities since the latter half of the 00s of the 21st century. These objects are designed for the blind, but also other people - tourists, children, and those who arrive in wheelchairs. This collection has got currently more than 70 implements, which places Poland in the group of European leaders. Unfortunately, this “furniture”, is not always “convenient” and safe for all recipients. Studies, which have been conducted together with Maciej Kłopotowski since 2016 across the country, show a number of serious design and executive mistakes or examples of misuse. The purpose of this article is drawing attention to these issues and pointing out ways how they can be avoided. These objects may become completely valuable, universal tool for learning and a great way of studying architecture in an alternative way.

  20. A ferrofluid based artificial tactile sensor with magnetic field control

    Science.gov (United States)

    Volkova, T. I.; Böhm, V.; Naletova, V. A.; Kaufhold, T.; Becker, F.; Zeidis, I.; Zimmermann, K.

    2017-06-01

    The paper deals with a tactile sensor inspired by biological hairs of mammals. The working principle is based on the effect of the magnetic force exerted on a paramagnetic body submerged into a ferrofluid volume under the influence of a nonuniform magnetic field. The deflection of the sensor's rod caused by external mechanical stimuli may be unambiguously identified by the distortion of the magnetic field, which occurs due to the motion of the attached body in the ferrofluid. The magnetic force acting on the body is evaluated experimentally and theoretically for the nonuniform magnetic field of a permanent magnet. The controlled oscillations of the rod are realised by applying a nonuniform magnetic field of periodically altering direction.

  1. A Touchy Subject: The Tactile Metaphor Of Touch

    Directory of Open Access Journals (Sweden)

    Mirt Komel

    2016-09-01

    Full Text Available The article proposes an interpretation of metaphors and metaphoric discourse through the perspective of touch. The article first deals with metaphors of touch in the history of western philosophy (especially traditional metaphysics from Plato to Hegel in order to produce an operative category of touch that will allow, in the second step, to grasp the tactile quality of the metaphors. If metaphors are usually (rhetorics, politics, literature regarded as a specific form of language able to not only touch the subject matter in the most suitable way but also touch on the target subject (listener/reader, then it is precisely because there is a certain haptic quality involved in language itself, discernible especially in the discourse of those who know how to best exploit metaphors in their endeavours.

  2. Improving tactile sensation in laparoscopic surgery by overcoming size restrictions

    Directory of Open Access Journals (Sweden)

    Wiederer C.

    2015-09-01

    Full Text Available Hepatic tumors appear as stiff inclusions within the surrounding soft, healthy tissue. In open surgery they are searched for by manual palpation with the gloved fingertip. However, to exploit the benefits of MIS it is mandatory to implement a substitution for the human sense of touch. Therefore, a tactile instrument has been developed with the aim of enlarging the sensing area at the tool tip once it enters the abdominal cavity through the trocar. The provision of a large sensitive surface enables the detection of nearly all sizes of tumors and decreases the time needed for the performance of this task. A prototype was manufactured by laser sintering in PA serving as a carrier for an existing flexible silicone sensor. Automated as well as manual subject palpation tests have shown that a prototypical instrument with a laterally opening lid would be a suitable device for tumor detection in laparoscopic liver surgery.

  3. Attention modulates visual-tactile interaction in spatial pattern matching.

    Directory of Open Access Journals (Sweden)

    Florian Göschl

    Full Text Available Factors influencing crossmodal interactions are manifold and operate in a stimulus-driven, bottom-up fashion, as well as via top-down control. Here, we evaluate the interplay of stimulus congruence and attention in a visual-tactile task. To this end, we used a matching paradigm requiring the identification of spatial patterns that were concurrently presented visually on a computer screen and haptically to the fingertips by means of a Braille stimulator. Stimulation in our paradigm was always bimodal with only the allocation of attention being manipulated between conditions. In separate blocks of the experiment, participants were instructed to (a focus on a single modality to detect a specific target pattern, (b pay attention to both modalities to detect a specific target pattern, or (c to explicitly evaluate if the patterns in both modalities were congruent or not. For visual as well as tactile targets, congruent stimulus pairs led to quicker and more accurate detection compared to incongruent stimulation. This congruence facilitation effect was more prominent under divided attention. Incongruent stimulation led to behavioral decrements under divided attention as compared to selectively attending a single sensory channel. Additionally, when participants were asked to evaluate congruence explicitly, congruent stimulation was associated with better performance than incongruent stimulation. Our results extend previous findings from audiovisual studies, showing that stimulus congruence also resulted in behavioral improvements in visuotactile pattern matching. The interplay of stimulus processing and attentional control seems to be organized in a highly flexible fashion, with the integration of signals depending on both bottom-up and top-down factors, rather than occurring in an 'all-or-nothing' manner.

  4. Upcoming tactile events and body ownership in schizophrenia.

    Science.gov (United States)

    Ferri, Francesca; Costantini, Marcello; Salone, Anatolia; Di Iorio, Giuseppe; Martinotti, Giovanni; Chiarelli, Antonio; Merla, Arcangelo; Di Giannantonio, Massimo; Gallese, Vittorio

    2014-01-01

    Schizophrenic patients may report unusual perception of their own body. Studies using the rubber hand illusion (RHI) proposed that they exhibit a distorted sense of body ownership. However, since the RHI is mostly achieved with the contribution of visuo-tactile integration, the stronger RHI observed in schizophrenic patients could reflect either a general increase of the response to multisensory stimuli or a larger influence of visual cues on the tactile sensory experience. The purpose of the present study is to investigate patients' perception of their own body by means of a behavioral paradigm that measures their proneness to the RHI without relying on multisensory integration occurring during actual experience of touch. In a previous study we demonstrated in healthy participants that expectation of touch experience arising at the sight of a human hand approaching a rubber hand is enough to induce a sense of ownership over the same hand. Here we take advantage of the same paradigm to investigate body ownership in schizophrenia. Patients observed the experimenter's hand while approaching--without touching--either a rubber hand or a piece of wood placed in front of them. The seen object could be either aligned to participant's hand or rotated by 180°. Phenomenology of the illusion revealed that schizophrenic patients exhibited sense of ownership over the rubber hand, but more weakly than healthy controls. The present study sheds new light on the experience of body ownership in schizophrenic patients, corroborating the notion that alterations of bodily self-awareness play an important role in schizophrenia. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Tactile Digital Video Globes: a New Way to Outreach Oceanography.

    Science.gov (United States)

    Poteau, A.; Claustre, H.; Scheurle, C.; Jessin, T.; Fontana, C.

    2016-02-01

    One objective of the "Ocean Autonomous Observation" team of the Laboratory of Oceanography of Villefranche-sur-mer is to develop new means to outreach our science activities to various audiences. Besides the scientific community, this includes students and targets the general public, school pupils, and stakeholders. In this context, we have acquired a digital video globe with tactile capabilities and we will present here the various applications that we have been developing. A first type of products concerns the visualization of oceanic properties (SST, salinity, density, Chla, O2, NO3, irradiance) by diving from the surface (generally from satellite data) into the Ocean interior (through the use of global data bases, Argo, WOA). In second place, specific applications deal with surface animations allowing highlighting the seasonality of some properties (Chla, SST, ice cover, currents; based on satellite as well as modeling outputs). Finally, we show a variety of applications developed using the tactile functionality of the spherical display. In particular real-time vertical profiles acquired by Bio-Argo floats become directly accessible for the entire open ocean. Such a new tool plus its novel applications has been presented to school children, and to the wider public (at the so-called "fête de la science") as well as to potential sponsors of our science-outreach activities. Their feedback has always been highly positive and encouraging in terms of impact. From the scientists point of view, the use of this new support can easily compete with the classical PowerPoint, is much more attractive and fun and undeniably helps to outreach the various aspects of our pluridisciplinary science.

  6. Combining fibre optic Raman spectroscopy and tactile resonance measurement for tissue characterization

    International Nuclear Information System (INIS)

    Candefjord, Stefan; Nyberg, Morgan; Ramser, Kerstin; Lindahl, Olof A; Jalkanen, Ville

    2010-01-01

    Tissue characterization is fundamental for identification of pathological conditions. Raman spectroscopy (RS) and tactile resonance measurement (TRM) are two promising techniques that measure biochemical content and stiffness, respectively. They have potential to complement the golden standard-–histological analysis. By combining RS and TRM, complementary information about tissue content can be obtained and specific drawbacks can be avoided. The aim of this study was to develop a multivariate approach to compare RS and TRM information. The approach was evaluated on measurements at the same points on porcine abdominal tissue. The measurement points were divided into five groups by multivariate analysis of the RS data. A regression analysis was performed and receiver operating characteristic (ROC) curves were used to compare the RS and TRM data. TRM identified one group efficiently (area under ROC curve 0.99). The RS data showed that the proportion of saturated fat was high in this group. The regression analysis showed that stiffness was mainly determined by the amount of fat and its composition. We concluded that RS provided additional, important information for tissue identification that was not provided by TRM alone. The results are promising for development of a method combining RS and TRM for intraoperative tissue characterization

  7. A Dexterity and Tactility Evaluation of the Australian Nuclear Biological Chemical (NBC) Glove

    National Research Council Canada - National Science Library

    Scanlan, S

    2004-01-01

    This report details the tactility and dexterity of four different glove types, including the Australian in-service NBC butyl rubber glove and Nomex flying glove for standardized (Purdue pegboard) and operational...

  8. Classification of rigid and deformable objects using a novel tactile sensor

    DEFF Research Database (Denmark)

    Drimus, Alin; Kootstra, Gert; Bilberg, Arne

    2011-01-01

    In this paper, we present a novel array tactile sensor for use in robotic grippers based on a flexible piezoresistive rubber. We start by describing the physical principles of piezoresistive materials and continue by outlining how to build a flexible array tactile sensor using stitch electrodes...... various rigid and deformable objects. We represent the array of tactile images for each grasped object to a time series of features and use this as the input for a KNN classifier. Dynamic time warping is used for calculating distances between different time series of features. In the end, we compare...... the results with the ones obtained from an experimental setup that uses a Weiss Robotics tactile sensor with similar characteristics and we conclude by exemplifying how the results of the classification can be used in different industrial applications....

  9. Microfabrication of Three-Axis Tactile Feedback Actuator for Robot-Assisted Surgery

    Science.gov (United States)

    Doh, Eunhyup; Yoo, Jihyung; Lee, Hyungkew; Park, Joonah; Yun, Kwang-Seok

    2013-01-01

    In this paper, we propose and demonstrate a three-axis tactile feedback actuator using pneumatic balloons for human perception applications such as robot-assisted surgery systems. A tactile actuator is composed of a center structure having four balloons, sidewalls with one lateral balloon on each sidewall, and a bottom structure supporting the center structure. We fabricated the proposed device using flexible poly(dimethylsiloxane) and hard polyurethane with final dimensions of 18 ×18 ×18 mm3. The four balloons on the center structure produce normal tactile display during pneumatic-pressure-assisted inflation. The lateral movement of the center structure driven by sidewall balloons generates a shear tactile display on fingertips. The center deflections of the circular and rectangular balloons were calculated and measured experimentally.

  10. Making sense. What can we learn from experts of tactile knowledge?

    Directory of Open Access Journals (Sweden)

    Camilla Groth

    2013-09-01

    Full Text Available This article describes an embodied way of making sense through making with the hands. We examine the potential o ftactile experience in the making process and analyse what tactile experiences mean. The study takes place in the context of an era marked by audio-visual dominance.The article presents a case study that observed and interviewed deafblind makers while they worked with clay. The findings reveal that modelling in clay resembles the visualisation process of sketching. As such, it may contribute to thinking through the hands. Language is not a self-evident communication tool for transferring tactile skills. Based on our case study, we propose the use of tactile communication in the process of transferring tactile knowledge through making with another person’s hands.

  11. Capacitive wearable tactile sensor based on smart textile substrate with carbon black /silicone rubber composite dielectric

    Science.gov (United States)

    Guo, Xiaohui; Huang, Ying; Cai, Xia; Liu, Caixia; Liu, Ping

    2016-04-01

    To achieve the wearable comfort of electronic skin (e-skin), a capacitive sensor printed on a flexible textile substrate with a carbon black (CB)/silicone rubber (SR) composite dielectric was demonstrated in this paper. Organo-silicone conductive silver adhesive serves as a flexible electrodes/shielding layer. The structure design, sensing mechanism and the influence of the conductive filler content and temperature variations on the sensor performance were investigated. The proposed device can effectively enhance the flexibility and comfort of wearing the device asthe sensing element has achieved a sensitivity of 0.02536%/KPa, a hysteresis error of 5.6%, and a dynamic response time of ~89 ms at the range of 0-700 KPa. The drift induced by temperature variations has been calibrated by presenting the temperature compensation model. The research on the time-space distribution of plantar pressure information and the experiment of the manipulator soft-grasping were implemented with the introduced device, and the experimental results indicate that the capacitive flexible textile tactile sensor has good stability and tactile perception capacity. This study provides a good candidate for wearable artificial skin.

  12. Using time to investigate space: a review of tactile temporal order judgments as a window onto spatial processing in touch

    Directory of Open Access Journals (Sweden)

    Tobias eHeed

    2014-02-01

    Full Text Available To respond to a touch, it is often necessary to localize it in space, and not just on the skin. The computation of this external spatial location involves the integration of somatosensation with visual and proprioceptive information about current body posture. In the past years, the study of touch localization has received substantial attention and has become a central topic in the research field of multisensory integration. In this review, we will explore important findings from this research, zooming in on one specific experimental paradigm, the temporal order judgment (TOJ task, which has proven particularly fruitful for the investigation of tactile spatial processing. In a typical TOJ task participants perform non-speeded judgments about the order of two tactile stimuli presented in rapid succession to different skin sites. This task could be solved without relying on external spatial coordinates. However, postural manipulations affect TOJ performance, indicating that external coordinates are in fact computed automatically. We show that this makes the TOJ task a reliable indicator of spatial remapping, and provide an overview over the unusually versatile analysis options for TOJ. We introduce current theories of TOJ and touch localization, and then relate TOJ to behavioral and electrophysiological evidence from other paradigms, probing the benefit of TOJ for the study of spatial processing as well as related topics such as multisensory plasticity, body processing, and pain.

  13. Are We Ready to Build a System for Assisting Blind People in Tactile Exploration of Bas-Reliefs?

    Directory of Open Access Journals (Sweden)

    Francesco Buonamici

    2016-08-01

    Full Text Available Nowadays, the creation of methodologies and tools for facilitating the 3D reproduction of artworks and, contextually, to make their exploration possible and more meaningful for blind users is becoming increasingly relevant in society. Accordingly, the creation of integrated systems including both tactile media (e.g., bas-reliefs and interfaces capable of providing the users with an experience cognitively comparable to the one originally envisioned by the artist, may be considered the next step for enhancing artworks exploration. In light of this, the present work provides a description of a first-attempt system designed to aid blind people (BP in the tactile exploration of bas-reliefs. In detail, consistent hardware layout, comprising a hand-tracking system based on Kinect® sensor and an audio device, together with a number of methodologies, algorithms and information related to physical design are proposed. Moreover, according to experimental test on the developed system related to the device position, some design alternatives are suggested so as to discuss pros and cons.

  14. Vagus nerve stimulation paired with tactile training improved sensory function in a chronic stroke patient.

    Science.gov (United States)

    Kilgard, Michael P; Rennaker, Robert L; Alexander, Jen; Dawson, Jesse

    2018-01-01

    Recent studies indicate that vagus nerve stimulation (VNS) paired with rehabilitation can enhance neural plasticity in the primary sensory and motor cortices, improve forelimb function after stroke in animal models and improve motor function in patients with arm weakness after stroke. To gain "first-in-man" experience of VNS paired with tactile training in a patient with severe sensory impairment after stroke. During the long-term follow-up phase of a clinical trial of VNS paired with motor rehabilitation, a 71-year-old man who had made good motor recovery had ongoing severe sensory loss in his left hand and arm. He received VNS paired with tactile therapy in an attempt to improve his sensory function. During twenty 2-hour sessions, each passive and active tactile event was paired with a 0.5 second burst of 0.8 mA VNS. Sensory function was measured before, halfway through, and after this therapy. The patient did not report any side effects during or following VNS+Tactile therapy. Quantitative measures revealed lasting and clinically meaningful improvements in tactile threshold, proprioception, and stereognosis. After VNS+Tactile therapy, the patient was able to detect tactile stimulation to his affected hand that was eight times less intense, identify the joint position of his fingers in the affected hand three times more often, and identify everyday objects using his affected hand seven times more often, compared to baseline. Sensory function significantly improved in this man following VNS paired with tactile stimulation. This approach merits further study in controlled clinical trials.

  15. SOA thresholds for the perception of discrete/continuous tactile stimulation

    DEFF Research Database (Denmark)

    Eid, Mohamad; Korres, Georgios; Jensen, Camilla Birgitte Falk

    In this paper we present an experiment to measure the upper and lower thresholds of the Stimulus Onset Asynchrony (SOA) for continuous/discrete apparent haptic motion. We focus on three stimulation parameters: the burst duration, the SOA time, and the inter-actuator distance (between successive a...... speeds”. The results are discussed in reference to designing a tactile interface for providing continuous haptic motion with a desired speed of continuous tactile stimulation....

  16. Glove Type of Wearable Tactile Sensor Produced by Artificial Hollow Fiber

    OpenAIRE

    Hasegawa, Y.; Shikida, M.; Ogura, D.; Sato, K.

    2007-01-01

    We previously proposed an artificial hollow fiber, as a new MEMS material, for thedevelopment of a fabric tactile sensor. The artificial hollow fiber is fabricated by uniformly laminatingmetal and insulation layers onto the surface of an elastic hollow fiber. The fabric tactile sensor is madeby weaving the modified hollow fibers into a cloth. The sensor can detect the contact force bymeasuring changes in capacitance at the points where the warp and weft fibers intersect, and can detect2D cont...

  17. Telemetry narrows the search for sea lamprey spawning locations in the St. Clair-Detroit River System

    Science.gov (United States)

    Holbrook, Christopher; Jubar, Aaron K.; Barber, Jessica M.; Tallon, Kevin; Hondorp, Darryl W.

    2016-01-01

    Adult sea lamprey (Petromyzon marinus) abundance in Lake Erie has remained above targets set by fishery managers since 2005, possibly due to increased recruitment in the St. Clair-Detroit River System (SCDRS). Sea lamprey recruitment in the SCDRS poses an enormous challenge to sea lamprey control and assessment in Lake Erie because the SCDRS contains no dams to facilitate capture and discharge is at least an order of magnitude larger in the SCDRS than most other sea lamprey-producing tributaries in the Great Lakes. As a first step toward understanding population size, spatial distribution, and spawning habitat of adult sea lampreys in the SCDRS, we used acoustic telemetry to determine where sea lampreys ceased migration (due to spawning, death, or both) among major regions of the SCDRS. All tagged sea lampreys released in the lower Detroit River (N = 27) moved upstream through the Detroit River and entered Lake St. Clair. After entering Lake St. Clair, sea lampreys entered the St. Clair River (N = 22), Thames River (N = 1), or were not detected again (N = 4). Many sea lampreys (10 of 27) were last observed moving downstream (“fallback”) but we were unable to determine if those movements occurred before or after spawning, or while sea lampreys were dead or alive. Regardless of whether estimates of locations where sea lampreys ceased migration were based on the most upstream region occupied or final region occupied, most sea lampreys ceased migration in the St. Clair River or Lake St. Clair. Results suggest that spawning and rearing in the St. Clair River could be an important determinant of sea lamprey recruitment in the SCDRS and may direct future assessment and control activities in that system.

  18. A scientific basis for restoring fish spawning habitat in the St. Clair and Detroit Rivers of the Laurentian Great Lakes

    Science.gov (United States)

    Manny, Bruce A.; Roseman, Edward F.; Kennedy, Gregory W.; Boase, James C.; Craig, Jaquelyn; Bennion, David H.; Read, Jennifer; Vaccaro, Lynn; Chiotti, Justin A.; Drouin, Richard; Ellison, Roseanne

    2015-01-01

    Loss of functional habitat in riverine systems is a global fisheries issue. Few studies, however, describe the decision-making approach taken to abate loss of fish spawning habitat. Numerous habitat restoration efforts are underway and documentation of successful restoration techniques for spawning habitat of desirable fish species in large rivers connecting the Laurentian Great Lakes are reported here. In 2003, to compensate for the loss of fish spawning habitat in the St. Clair and Detroit Rivers that connect the Great Lakes Huron and Erie, an international partnership of state, federal, and academic scientists began restoring fish spawning habitat in both of these rivers. Using an adaptive management approach, we created 1,100 m2 of productive fish spawning habitat near Belle Isle in the Detroit River in 2004; 3,300 m2 of fish spawning habitat near Fighting Island in the Detroit River in 2008; and 4,000 m2 of fish spawning habitat in the Middle Channel of the St. Clair River in 2012. Here, we describe the adaptive-feedback management approach that we used to guide our decision making during all phases of spawning habitat restoration, including problem identification, team building, hypothesis development, strategy development, prioritization of physical and biological imperatives, project implementation, habitat construction, monitoring of fish use of the constructed spawning habitats, and communication of research results. Numerous scientific and economic lessons learned from 10 years of planning, building, and assessing fish use of these three fish spawning habitat restoration projects are summarized in this article.

  19. Assessment of Dementia in Individuals with Dual Sensory Loss: Application of a Tactile Test Battery

    Directory of Open Access Journals (Sweden)

    Peter Bruhn

    2018-01-01

    Full Text Available Background/Aims: Individuals with dual sensory loss (DSL are more likely to experience cognitive decline with age than individuals without sensory loss. Other studies have pointed to the challenges in assessing cognitive abilities in individuals with DSL, as most existing instruments rely on use of vision and hearing. The aim of this study was to develop and evaluate a Tactile Test Battery (TTB for cognitive assessment in individuals with DSL. Method: Twenty elderly individuals with DSL, 20 with diagnosed dementia, and 20 without dementia or DSL (controls completed the following tactile tests developed for the present study: Spatial learning, Spatial recall, Tactile form board, Clock reading, and Naming. The participants with dementia and controls also completed the Mini-Mental State Examination (MMSE. Results: Overall, participants with dementia performed significantly worse on the tactile tests than participants with DSL and control participants. No significant differences on the tactile tests were found between participants with DSL and controls. The TTB and MMSE scores correlated significantly. Conclusion: The findings from this study of applying tactile tests for cognitive examination in individuals with DSL are promising. They indicate that symptoms of dementia can be differentiated from symptoms related to DSL.

  20. Complex tactile performance in low visibility: the effect of nitrogen narcosis.

    Science.gov (United States)

    van Wijk, Charles H; Meintjes, Willem A J

    2014-06-01

    In a task-environment where visibility has deteriorated, individuals rely heavily on tactile performance (perception and manipulation) to complete complex tasks. When this happens under hyperbaric conditions, factors like nitrogen narcosis could influence a person's ability to successfully complete such tasks. To examine the effect of nitrogen narcosis on a complex neuropsychological task measuring tactile performance at a pressure of 608 kPa (6 atm abs), in the absence of visual access to the task. In a prospective cross-over study, 139 commercial divers were tested in a dry chamber at 101.3 kPa and 608 kPa. They completed the Tupperware Neuropsychological Task (TNT) of tactile performance without visual access to the task, and completed questionnaires to provide psychological and biographical data, which included trait anxiety and transient mood states, as well as formal qualifications and technical proficiency. A significant decrement (9.5%, P < 0.001) in performance on the TNT at depth was found, irrespective of the sequence of testing. Generally, neither the psychological nor biographical variables showed any significant effect on tactile performance. Tactile performance on the surface was a good indicator of performance at depth. These findings have practical implications for professional diving where conditions of low visibility during deeper diving occur. Recommendations are made towards managing potential impairments in tactile performance, such as pre-dive practical learning ('rehearsal') as an aid to successful completion of tasks.

  1. Retention of high tactile acuity throughout the life span in blindness.

    Science.gov (United States)

    Legge, Gordon E; Madison, Cindee; Vaughn, Brenna N; Cheong, Allen M Y; Miller, Joseph C

    2008-11-01

    Previous studies of tactile acuity on the fingertip, using passive touch, have demonstrated an age-related decline in spatial resolution for both sighted and blind subjects. We have reexamined this age dependence with two newly designed tactile-acuity charts that require active exploration of the test symbols. One chart used dot patterns similar to braille, and the other used embossed Landolt rings. Groups of blind braille readers and sighted subjects ranging from 12 to 85 years old were tested in two experiments. We replicated previous findings for sighted subjects by showing an age-related decrease in tactile acuity by nearly 1% per year. Surprisingly, the blind subjects retained high acuity into old age, showing no age-related decline. For the blind subjects, tactile acuity did not correlate with braille reading speed, the amount of daily reading, or the age at which braille was learned. We conclude that when measured with active touch, blind subjects retain high tactile acuity into old age, unlike their aging sighted peers. We propose that blind people's use of active touch in daily activities, not specifically braille reading, results in preservation of tactile acuity across the life span.

  2. New Magnetic Microactuator Design Based on PDMS Elastomer and MEMS Technologies for Tactile Display.

    Science.gov (United States)

    Streque, Jeremy; Talbi, Abdelkrim; Pernod, Philippe; Preobrazhensky, Vladimir

    2010-01-01

    Highly efficient tactile display devices must fulfill technical requirements for tactile stimulation, all the while preserving the lightness and compactness needed for handheld operation. This paper focuses on the elaboration of highly integrated magnetic microactuators for tactile display devices. FEM simulation, conception, fabrication, and characterization of these microactuators are presented in this paper. The current demonstrator offers a 4 × 4 flexible microactuator array with a resolution of 2 mm. Each actuator is composed of a Poly (Dimethyl-Siloxane) (PDMS) elastomeric membrane, magnetically actuated by coil-magnet interaction. It represents a proof of concept for fully integrated MEMS tactile devices, with fair actuation forces provided for a power consumption up to 100 mW per microactuator. The prototypes are destined to provide both static and dynamic tactile sensations, with an optimized membrane geometry for actuation frequencies between DC and 350 Hz. On the basis of preliminary experiments, this display device can offer skin stimulations for various tactile stimuli for applications in the fields of Virtual Reality or Human-Computer Interaction (HCI). Moreover, the elastomeric material used in this device and its global compactness offer great advantages in matter of comfort of use and capabilities of integration in haptic devices.

  3. Tactile spatial acuity in childhood: effects of age and fingertip size.

    Directory of Open Access Journals (Sweden)

    Ryan M Peters

    Full Text Available Tactile acuity is known to decline with age in adults, possibly as the result of receptor loss, but less is understood about how tactile acuity changes during childhood. Previous research from our laboratory has shown that fingertip size influences tactile spatial acuity in young adults: those with larger fingers tend to have poorer acuity, possibly because mechanoreceptors are more sparsely distributed in larger fingers. We hypothesized that a similar relationship would hold among children. If so, children's tactile spatial acuity might be expected to worsen as their fingertips grow. However, concomitant CNS maturation might result in more efficient perceptual processing, counteracting the effect of fingertip growth on tactile acuity. To investigate, we conducted a cross-sectional study, testing 116 participants ranging in age from 6 to 16 years on a precision-controlled tactile grating orientation task. We measured each participant's grating orientation threshold on the dominant index finger, along with physical properties of the fingertip: surface area, volume, sweat pore spacing, and temperature. We found that, as in adults, children with larger fingertips (at a given age had significantly poorer acuity, yet paradoxically acuity did not worsen significantly with age. We propose that finger growth during development results in a gradual decline in innervation density as receptive fields reposition to cover an expanding skin surface. At the same time, central maturation presumably enhances perceptual processing.

  4. Sensitivity analysis of the near-road dispersion model RLINE - An evaluation at Detroit, Michigan

    Science.gov (United States)

    Milando, Chad W.; Batterman, Stuart A.

    2018-05-01

    The development of accurate and appropriate exposure metrics for health effect studies of traffic-related air pollutants (TRAPs) remains challenging and important given that traffic has become the dominant urban exposure source and that exposure estimates can affect estimates of associated health risk. Exposure estimates obtained using dispersion models can overcome many of the limitations of monitoring data, and such estimates have been used in several recent health studies. This study examines the sensitivity of exposure estimates produced by dispersion models to meteorological, emission and traffic allocation inputs, focusing on applications to health studies examining near-road exposures to TRAP. Daily average concentrations of CO and NOx predicted using the Research Line source model (RLINE) and a spatially and temporally resolved mobile source emissions inventory are compared to ambient measurements at near-road monitoring sites in Detroit, MI, and are used to assess the potential for exposure measurement error in cohort and population-based studies. Sensitivity of exposure estimates is assessed by comparing nominal and alternative model inputs using statistical performance evaluation metrics and three sets of receptors. The analysis shows considerable sensitivity to meteorological inputs; generally the best performance was obtained using data specific to each monitoring site. An updated emission factor database provided some improvement, particularly at near-road sites, while the use of site-specific diurnal traffic allocations did not improve performance compared to simpler default profiles. Overall, this study highlights the need for appropriate inputs, especially meteorological inputs, to dispersion models aimed at estimating near-road concentrations of TRAPs. It also highlights the potential for systematic biases that might affect analyses that use concentration predictions as exposure measures in health studies.

  5. El funcionalismo en las fábricas Ford de Detroit proyectadas por Albert Kahn

    Directory of Open Access Journals (Sweden)

    Luis Pancorbo Crespo

    2014-10-01

    Full Text Available La arquitectura se enfrenta a un devenir de tipo histórico-cultural que muchas veces adopta una forma circular espiral con idas y retornos periódicos y revisiones continuas de las experiencias anteriores. Siempre puede ser reutilizada, reinterpretada y pasar a formar parte de nuevo del caudal principal de la evolución disciplinar. Su obsolescencia es siempre inconclusa y su valoración variable. Para relacionar esta reflexión con un concepto central para la modernidad como es el funcionalismo, analizaremos un caso único dentro de la historia de la arquitectura del siglo XX, las fábricas de la compañía Ford en Detroit, proyectadas por Albert Kahn. Esta elección se realiza por dos razones: por presentar una transición progresiva desde un objeto arquitectónico a una descendencia cada vez más pura técnicamente, y por realizarse dentro de una serie de edificios con un mismo programa, proyectados por un mismo arquitecto y en una rápida secuencia temporal. Este ejemplo evidencia la conexión entre la evolución del concepto de función y la propia obsolescencia del objeto. Desde el funcionalismo, se trata de explorar la delimitación entre el método de proyecto aplicable para un objeto arquitectónico y el de un objeto técnico puro según la definición de Gilbert Simondon.

  6. Stimulus-dependent effects on tactile spatial acuity

    Directory of Open Access Journals (Sweden)

    Tommerdahl M

    2005-10-01

    Full Text Available Abstract Background Previous studies have shown that spatio-tactile acuity is influenced by the clarity of the cortical response in primary somatosensory cortex (SI. Stimulus characteristics such as frequency, amplitude, and location of tactile stimuli presented to the skin have been shown to have a significant effect on the response in SI. The present study observes the effect of changing stimulus parameters of 25 Hz sinusoidal vertical skin displacement stimulation ("flutter" on a human subject's ability to discriminate between two adjacent or near-adjacent skin sites. Based on results obtained from recent neurophysiological studies of the SI response to different conditions of vibrotactile stimulation, we predicted that the addition of 200 Hz vibration to the same site that a two-point flutter stimulus was delivered on the skin would improve a subject's spatio-tactile acuity over that measured with flutter alone. Additionally, similar neurophysiological studies predict that the presence of either a 25 Hz flutter or 200 Hz vibration stimulus on the unattended hand (on the opposite side of the body from the site of two-point limen testing – the condition of bilateral stimulation – which has been shown to evoke less SI cortical activity than the contralateral-only stimulus condition would decrease a subject's ability to discriminate between two points on the skin. Results A Bekesy tracking method was employed to track a subject's ability to discriminate between two-point stimuli delivered to the skin. The distance between the two points of stimulation was varied on a trial-by-trial basis, and several different stimulus conditions were examined: (1 The "control" condition, in which 25 Hz flutter stimuli were delivered simultaneously to the two points on the skin of the attended hand, (2 the "complex" condition, in which a combination of 25 Hz flutter and 200 Hz vibration stimuli were delivered to the two points on the attended hand, and (3 a

  7. Development of tactile floor plan for the blind and the visually impaired by 3D printing technique

    Directory of Open Access Journals (Sweden)

    Raša Urbas

    2016-07-01

    Full Text Available The aim of the research was to produce tactile floor plans for blind and visually impaired people for the use in the museum. For the production of tactile floor plans 3D printing technique was selected among three different techniques. 3D prints were made of white and colored ABS polymer materials. Development of different elements of tactile floor plans, as well as the problems and the solutions during 3D printing, are described in the paper.

  8. Integrated trimodal SSEP experimental setup for visual, auditory and tactile stimulation

    Science.gov (United States)

    Kuś, Rafał; Spustek, Tomasz; Zieleniewska, Magdalena; Duszyk, Anna; Rogowski, Piotr; Suffczyński, Piotr

    2017-12-01

    Objective. Steady-state evoked potentials (SSEPs), the brain responses to repetitive stimulation, are commonly used in both clinical practice and scientific research. Particular brain mechanisms underlying SSEPs in different modalities (i.e. visual, auditory and tactile) are very complex and still not completely understood. Each response has distinct resonant frequencies and exhibits a particular brain topography. Moreover, the topography can be frequency-dependent, as in case of auditory potentials. However, to study each modality separately and also to investigate multisensory interactions through multimodal experiments, a proper experimental setup appears to be of critical importance. The aim of this study was to design and evaluate a novel SSEP experimental setup providing a repetitive stimulation in three different modalities (visual, tactile and auditory) with a precise control of stimuli parameters. Results from a pilot study with a stimulation in a particular modality and in two modalities simultaneously prove the feasibility of the device to study SSEP phenomenon. Approach. We developed a setup of three separate stimulators that allows for a precise generation of repetitive stimuli. Besides sequential stimulation in a particular modality, parallel stimulation in up to three different modalities can be delivered. Stimulus in each modality is characterized by a stimulation frequency and a waveform (sine or square wave). We also present a novel methodology for the analysis of SSEPs. Main results. Apart from constructing the experimental setup, we conducted a pilot study with both sequential and simultaneous stimulation paradigms. EEG signals recorded during this study were analyzed with advanced methodology based on spatial filtering and adaptive approximation, followed by statistical evaluation. Significance. We developed a novel experimental setup for performing SSEP experiments. In this sense our study continues the ongoing research in this field. On the

  9. Visual-tactile processing in primary somatosensory cortex emerges before cross-modal experience.

    Science.gov (United States)

    Bieler, Malte; Sieben, Kay; Schildt, Sandra; Röder, Brigitte; Hanganu-Opatz, Ileana L

    2017-06-01

    The presumptive unisensory neocortical areas process multisensory information by oscillatory entrainment of neuronal networks via direct cortico-cortical projections. While neonatal unimodal experience has been identified as necessary for setting up the neuronal networks of multisensory processing, it is still unclear whether early cross-modal experience equally controls the ontogeny of multisensory processing. Here, we assess the development of visual-somatosensory interactions and their anatomical substrate by performing extracellular recordings of network activity in primary sensory cortices in vivo and assessing the cortico-cortical connectivity in pigmented rats. Similar to adult animals, juvenile rats with minimal cross-modal experience display supra-additive augmentation of evoked responses, time-dependent modulation of power and phase reset of network oscillations in response to cross-modal light and whisker stimulation. Moreover, the neuronal discharge of individual neurons is stronger coupled to theta and alpha network oscillations after visual-tactile stimuli. The adult-like multisensory processing of juvenile rats relies on abundant direct visual-somatosensory connections and thalamocortical feedforward interactions. Thus, cellular and network interactions ensuring multisensory processing emerge before cross-modal experience and refine during juvenile development. © 2017 Wiley Periodicals, Inc.

  10. Illusory and veridical mapping of tactile objects in the primary somatosensory and posterior parietal cortex.

    Science.gov (United States)

    Bufalari, Ilaria; Di Russo, Francesco; Aglioti, Salvatore Maria

    2014-07-01

    While several behavioral and neuroscience studies have explored visual, auditory, and cross-modal illusions, information about the phenomenology and neural correlates of somatosensory illusions is meager. By combining psychophysics and somatosensory evoked potentials, we explored in healthy humans the neural correlates of 2 compelling tactuo-proprioceptive illusions, namely Aristotle (1 object touching the contact area between 2 crossed fingers is perceived as 2 lateral objects) and Reverse illusions (2 lateral objects are perceived as 1 between crossed-fingers object). These illusions likely occur because of the tactuo-proprioceptive conflict induced by fingers being crossed in a non-natural posture. We found that different regions in the somatosensory stream exhibit different proneness to the illusions. Early electroencephalographic somatosensory activity (at 20 ms) originating in the primary somatosensory cortex (S1) reflects the phenomenal rather than the physical properties of the stimuli. Notably, later activity (around 200 ms) originating in the posterior parietal cortex is higher when subjects resist the illusions. Thus, while S1 activity is related to illusory perception, PPC acts as a conflict resolver that recodes tactile events from somatotopic to spatiotopic frames of reference and ultimately enables veridical perception. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  11. Robotic and Virtual Reality BCIs Using Spatial Tactile and Auditory Oddball Paradigms.

    Science.gov (United States)

    Rutkowski, Tomasz M

    2016-01-01

    The paper reviews nine robotic and virtual reality (VR) brain-computer interface (BCI) projects developed by the author, in collaboration with his graduate students, within the BCI-lab research group during its association with University of Tsukuba, Japan. The nine novel approaches are discussed in applications to direct brain-robot and brain-virtual-reality-agent control interfaces using tactile and auditory BCI technologies. The BCI user intentions are decoded from the brainwaves in realtime using a non-invasive electroencephalography (EEG) and they are translated to a symbiotic robot or virtual reality agent thought-based only control. A communication protocol between the BCI output and the robot or the virtual environment is realized in a symbiotic communication scenario using an user datagram protocol (UDP), which constitutes an internet of things (IoT) control scenario. Results obtained from healthy users reproducing simple brain-robot and brain-virtual-agent control tasks in online experiments support the research goal of a possibility to interact with robotic devices and virtual reality agents using symbiotic thought-based BCI technologies. An offline BCI classification accuracy boosting method, using a previously proposed information geometry derived approach, is also discussed in order to further support the reviewed robotic and virtual reality thought-based control paradigms.

  12. Analysis of tactors for wearable simulator feedback: a tactile vest architecture

    Science.gov (United States)

    Prater, David; Gilbert, Stephen; Winer, Eliot

    2013-03-01

    Current training simulators for police officers and soldiers lack two critical qualities for establishing a compelling sense of immersion within a virtual environment: a strong disincentive to getting shot, and accurate feedback about the bodily location of a shot. This research addresses these issues with hardware architecture for a Tactical Tactile Training Vest (T3V). In this study, we have evaluated the design space of impact "tactors" and present a T3V prototype that can be viscerally felt. This research focuses on determining the optimal design parameters for creating maximum tactor hitting energy. The energy transferred to the projectile directly relates to the quality of the disincentive. The complete T3V design will include an array of these tactors on front and back of the body to offer accurate spatial feedback. The impact tactor created and tested for this research is an electromagnetic projectile launcher, similar to a solenoid, but lower profile and higher energy. Our best tactor produced projectile energy of approximately 0.08 Joules with an efficiency at just above 0.1%. Users in an informal pilot study described the feeling as "surprising," "irritating," and "startling," suggesting that this level of force is approaching our target level of disincentive.

  13. Robotic and Virtual Reality BCIs Using Spatial Tactile and Auditory Oddball Paradigms

    Directory of Open Access Journals (Sweden)

    Tomasz Maciej Rutkowski

    2016-12-01

    Full Text Available The paper reviews nine robotic and virtual reality (VR brain-computer interface (BCI projects developed by the author, in collaboration with his graduate students, within the BCI-lab research group during its association with University of Tsukuba, Japan. The nine novel approaches are discussed in applications to direct brain-robot and brain-virtual-reality-agent control interfaces using tactile and auditory BCI technologies. The BCI user intentions are decoded from the brainwaves in realtime using a non-invasive electroencephalography (EEG and they are translated to a symbiotic robot or virtual reality agent thought-based only control. A communication protocol between the BCI output and the robot or the virtual environment is realized in a symbiotic communication scenario using an user datagram protocol (UDP, which constitutes an internet of things (IoT control scenario. Results obtained from healthy users reproducing simple brain-robot and brain-virtual-agent control tasks in online experiments support the research goal of a possibility to interact with robotic devices and virtual reality agents using symbiotic thought-based BCI technologies. An offline BCI classification accuracy boosting method, using a previously proposed information geometry derived approach, is also discussed in order to further support the reviewed robotic and virtual reality thought-based control paradigms.

  14. The Causal Role of the Prefrontal Cortex and Somatosensory Cortex in Tactile Working Memory.

    Science.gov (United States)

    Zhao, Di; Zhou, Yong-Di; Bodner, Mark; Ku, Yixuan

    2017-08-22

    In the present study, we searched for causal evidence linking activity in the bilateral primary somatosensory cortex (SI), posterior parietal cortex (PPC), and prefrontal cortex (PFC) with behavioral performance in vibrotactile working memory. Participants performed a vibrotactile delayed matching-to-sample task, while single-pulse transcranial magnetic stimulation (sp-TMS) was applied over these cortical areas at 100, 200, 300, 600, 1600, and 1900 ms after the onset of vibrotactile stimulation (200 ms duration). In our experiments, sp-TMS over the contralateral SI at the early delay (100 and 200 ms) deteriorated the accuracy of task performance, and over the ipsilateral SI at the late delay (1600 and 1900 ms) also induced such deteriorating effects. Furthermore, deteriorating effects caused by sp-TMS over the contralateral DLPFC at the same maintenance stage (1600 ms) were correlated with the effects caused by sp-TMS over the ipsilateral SI, indicating that information retained in the ipsilateral SI during the late delay may be associated with the DLPFC. Taken together, these results suggest that both the contralateral and ipsilateral SIs are involved in tactile WM, and the contralateral DLPFC bridges the contralateral SI and ipsilateral SI for goal-directed action. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  15. Maintenance of tactile short-term memory for locations is mediated by spatial attention.

    Science.gov (United States)

    Katus, Tobias; Andersen, Søren K; Müller, Matthias M

    2012-01-01

    According to the attention-based rehearsal hypothesis, maintenance of spatial information is mediated by covert orienting towards memorized locations. In a somatosensory memory task, participants simultaneously received bilateral pairs of mechanical sample pulses. For each hand, sample stimuli were randomly assigned to one of three locations (fingers). A subsequent visual retro-cue determined whether the left or right hand sample was to be memorized. The retro-cue elicited lateralized activity reflecting the location of the relevant sample stimulus. Sensory processing during the retention period was probed by task-irrelevant pulses randomized to locations at the cued and uncued hand. The somatosensory N140 was enhanced for probes delivered to the cued hand, relative to uncued. Probes presented shortly after the retro-cue showed greatest attentional modulations. This suggests that transient contributions from retrospective selection overlapped with the sustained effect of attention-based rehearsal. In conclusion, focal attention shifts within tactile mnemonic content occurred after retro-cues and guided sensory processing during retention. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. State of the Art of Tactile Micro Coordinate Metrology

    Directory of Open Access Journals (Sweden)

    Rudolf Thalmann

    2016-05-01

    Full Text Available Micro parts are increasingly found in a number of industrial products. They often have complex geometrical features in the millimeter to micrometer range which are not accessible or difficult to measure by conventional coordinate measuring machines or by optical microscopy techniques. In the last years, several concepts of tactile micro coordinate measuring machines have been developed in research laboratories and were partly commercialized by industry. The major challenges were related to the development of innovative micro probes, to the requirements for traceability and to the performance assessment at reduced measurement uncertainty. This paper presents a review on state of the art developments of micro coordinate measuring machines and 3D micro probes in the last 20 years, as far as these were qualified in a comparable way, with a special emphasis on research conducted by the Federal Institute of Metrology METAS in this field. It outlines the accuracy limitations for the probe head including the probing element and for the geometrical errors of the machine axes. Finally, the achieved performances are summarized and the challenges for further research are addressed.

  17. Object recognition and localization: the role of tactile sensors.

    Science.gov (United States)

    Aggarwal, Achint; Kirchner, Frank

    2014-02-18

    Tactile sensors, because of their intrinsic insensitivity to lighting conditions and water turbidity, provide promising opportunities for augmenting the capabilities of vision sensors in applications involving object recognition and localization. This paper presents two approaches for haptic object recognition and localization for ground and underwater environments. The first approach called Batch Ransac and Iterative Closest Point augmented Particle Filter (BRICPPF) is based on an innovative combination of particle filters, Iterative-Closest-Point algorithm, and a feature-based Random Sampling and Consensus (RANSAC) algorithm for database matching. It can handle a large database of 3D-objects of complex shapes and performs a complete six-degree-of-freedom localization of static objects. The algorithms are validated by experimentation in ground and underwater environments using real hardware. To our knowledge this is the first instance of haptic object recognition and localization in underwater environments. The second approach is biologically inspired, and provides a close integration between exploration and recognition. An edge following exploration strategy is developed that receives feedback from the current state of recognition. A recognition by parts approach is developed which uses the BRICPPF for object sub-part recognition. Object exploration is either directed to explore a part until it is successfully recognized, or is directed towards new parts to endorse the current recognition belief. This approach is validated by simulation experiments.

  18. Object Recognition and Localization: The Role of Tactile Sensors

    Directory of Open Access Journals (Sweden)

    Achint Aggarwal

    2014-02-01

    Full Text Available Tactile sensors, because of their intrinsic insensitivity to lighting conditions and water turbidity, provide promising opportunities for augmenting the capabilities of vision sensors in applications involving object recognition and localization. This paper presents two approaches for haptic object recognition and localization for ground and underwater environments. The first approach called Batch Ransac and Iterative Closest Point augmented Particle Filter (BRICPPF is based on an innovative combination of particle filters, Iterative-Closest-Point algorithm, and a feature-based Random Sampling and Consensus (RANSAC algorithm for database matching. It can handle a large database of 3D-objects of complex shapes and performs a complete six-degree-of-freedom localization of static objects. The algorithms are validated by experimentation in ground and underwater environments using real hardware. To our knowledge this is the first instance of haptic object recognition and localization in underwater environments. The second approach is biologically inspired, and provides a close integration between exploration and recognition. An edge following exploration strategy is developed that receives feedback from the current state of recognition. A recognition by parts approach is developed which uses the BRICPPF for object sub-part recognition. Object exploration is either directed to explore a part until it is successfully recognized, or is directed towards new parts to endorse the current recognition belief. This approach is validated by simulation experiments.

  19. Nestmate recognition in ants is possible without tactile interaction

    Science.gov (United States)

    Brandstaetter, Andreas Simon; Endler, Annett; Kleineidam, Christoph Johannes

    2008-07-01

    Ants of the genus Camponotus are able to discriminate recognition cues of colony members (nestmates) from recognition cues of workers of a different colony (non-nestmates) from a distance of 1 cm. Free moving, individual Camponotus floridanus workers encountered differently treated dummies on a T-bar and their behavior was recorded. Aggressive behavior was scored as mandibular threat towards dummies. Dummies were treated with hexane extracts of postpharyngeal glands (PPGs) from nestmates or non-nestmates which contain long-chain hydrocarbons in ratios comparable to what is found on the cuticle. The cuticular hydrocarbon profile bears cues which are essential for nestmate recognition. Although workers were prevented from antennating the dummies, they showed significantly less aggressive behavior towards dummies treated with nestmate PPG extracts than towards dummies treated with non-nestmate PPG extracts. In an additional experiment, we show that cis-9-tricosene, an alkene naturally not found in C. floridanus’ cuticular profile, is behaviorally active and can interfere with nestmate recognition when presented together with a nestmate PPG extract. Our study demonstrates for the first time that the complex multi-component recognition cues can be perceived and discriminated by ants at close range. We conclude that contact chemosensilla are not crucial for nestmate recognition since tactile interaction is not necessary.

  20. Microfluidic tactile sensors for three-dimensional contact force measurements.

    Science.gov (United States)

    Nie, Baoqing; Li, Ruya; Brandt, James D; Pan, Tingrui

    2014-11-21

    A microfluidic tactile sensing device has been first reported for three-dimensional contact force measurement utilizing the microfluidic interfacial capacitive sensing (MICS) principle. Consisting of common and differential microfluidic sensing elements and topologically micro-textured surfaces, the microfluidic sensing devices are intended not only to resolve normal mechanical loads but also to measure forces tangent to the surface upon contact. In response to normal or shear loads, the membrane surface deforms the underlying sensing elements uniformly or differentially. The corresponding variation in interfacial capacitance can be detected from each sensing unit, from which the direction and magnitude of the original load can be determined. Benefiting from the highly sensitive and adaptive MICS principle, the microfluidic sensor is capable of detecting normal forces with a device sensitivity of 29.8 nF N(-1) in a 7 mm × 7 mm × 0.52 mm package, which is at least a thousand times higher than its solid-state counterparts to our best knowledge. In addition, the microfluidic sensing elements enable facilitated relaxation response/time in the millisecond range (up to 12 ms). To demonstrate the utility and flexibility of the three-dimensional microfluidic sensor, it has been successfully configured into a fingertip-amounted setting for continuous tracing of the fingertip movement and contact force measurement.

  1. Flexible Electronics Sensors for Tactile Multi-Touching

    Directory of Open Access Journals (Sweden)

    Shao-Hsing Yeh

    2009-02-01

    Full Text Available Flexible electronics sensors for tactile applications in multi-touch sensing and large scale manufacturing were designed and fabricated. The sensors are based on polyimide substrates, with thixotropy materials used to print organic resistances and a bump on the top polyimide layer. The gap between the bottom electrode layer and the resistance layer provides a buffer distance to reduce erroneous contact during large bending. Experimental results show that the top membrane with a bump protrusion and a resistance layer had a large deflection and a quick sensitive response. The bump and resistance layer provided a concentrated von Mises stress force and inertial force on the top membrane center. When the top membrane had no bump, it had a transient response delay time and took longer to reach steady-state. For printing thick structures of flexible electronics sensors, diffusion effects and dimensional shrinkages can be improved by using a paste material with a high viscosity. Linear algorithm matrixes with Gaussian elimination and control system scanning were used for multi-touch detection. Flexible electronics sensors were printed with a resistance thickness of about 32 µm and a bump thickness of about 0.2 mm. Feasibility studies show that printing technology is appropriate for large scale manufacturing, producing sensors at a low cost.

  2. Fabrication of strain gauge based sensors for tactile skins

    Science.gov (United States)

    Baptist, Joshua R.; Zhang, Ruoshi; Wei, Danming; Saadatzi, Mohammad Nasser; Popa, Dan O.

    2017-05-01

    Fabricating cost effective, reliable and functional sensors for electronic skins has been a challenging undertaking for the last several decades. Application of such skins include haptic interfaces, robotic manipulation, and physical human-robot interaction. Much of our recent work has focused on producing compliant sensors that can be easily formed around objects to sense normal, tension, or shear forces. Our past designs have involved the use of flexible sensors and interconnects fabricated on Kapton substrates, and piezoresistive inks that are 3D printed using Electro Hydro Dynamic (EHD) jetting onto interdigitated electrode (IDE) structures. However, EHD print heads require a specialized nozzle and the application of a high-voltage electric field; for which, tuning process parameters can be difficult based on the choice of inks and substrates. Therefore, in this paper we explore sensor fabrication techniques using a novel wet lift-off photolithographic technique for patterning the base polymer piezoresistive material, specifically Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) or PEDOT:PSS. Fabricated sensors are electrically and thermally characterized, and temperaturecompensated designs are proposed and validated. Packaging techniques for sensors in polymer encapsulants are proposed and demonstrated to produce a tactile interface device for a robot.

  3. Bouba/Kiki in Touch: Associations Between Tactile Perceptual Qualities and Japanese Phonemes

    Directory of Open Access Journals (Sweden)

    Maki Sakamoto

    2018-03-01

    Full Text Available Several studies have shown cross-modal associations between sounds and vision or gustation by asking participants to match pre-defined sound-symbolic words (SSWs, such as “bouba” or “kiki,” with visual or gustatory materials. Here, we conducted an explorative study on cross-modal associations of tactile sensations using spontaneous production of Japanese SSWs and semantic ratings. The Japanese language was selected, because it has a large number of SSWs that can represent a wide range of tactile perceptual spaces with fine resolution, and it shows strong associations between sound and touch. In the experiment, we used 120 everyday materials to cover basic material categories that could be associated with fundamental dimensions of tactile perception. Upon contact with these materials, participants expressed their tactile sensations by using Japanese SSWs, and at the same time, evaluated the tactile sensations by semantic differential scales using adjective pairs. Thanks to the variety of testing materials, we were able to demonstrate the existence of systematic associations between sounds and tactile fundamental perceptual dimensions in a more detailed and comprehensive way than ever done so before. In particular, we found that for vowels, positive tactile ratings were associated with the back vowel (/u/, while negative ratings were associated with the front vowels (/i/ and /e/. The central vowels (/o/ and /a/ were mainly associated with rough, hard, and dry feelings. Consonants were categorized based on vocal features and articulation. The category of the voiced consonants (e.g., /dz/ and /g/ corresponded to feelings of roughness, while that of voiceless consonants (e.g., /ʦ/, and /s/ corresponded to feelings of smoothness. The categories of the bilabial plosive (/p/ and /b/ and voiced alveolar nasal (/n/ consonants were mainly related to soft, sticky and wet feelings, while that of voiceless alveolar affricate (/ʦ/ and voiceless velar

  4. Detection of fever in children emergency care: comparisons of tactile and rectal temperatures in Nigerian children

    Directory of Open Access Journals (Sweden)

    Okafor Olubukola O

    2010-04-01

    Full Text Available Abstract Background Clinical thermometry is the objective method for temperature measurements but tactile assessment of fever at home is usually the basis for seeking medical attention especially where the cost and level of literacy preclude the use of thermometers. This study was carried out to determine the reliability of tactile perception of fever by caregivers, nurses and house physicians in comparison to rectal thermometry and also the use of commonly practiced surface of the hand in the care of ill children. All caregivers of children aged 6 to 59 months who presented to the emergency department were approached consecutively at the triage stage but 182 children participated. Each child had tactile assessment of fever using palmar and dorsal surfaces of the hand by the caregivers, House Physicians and Nursing Officers. Rectal temperature was also measured and read independently by nurses and house physicians. Comparisons were made between tactile assessments and thermometer readings using a cut-off for fever, 38.0°C and above. Findings The caregivers' perception of fever had a sensitivity, specificity, positive predictive value (PPV and negative predictive value (NPV of 95%, 23%, 66% and 73%, respectively compared with 93%, 26%, 67% and 69%, respectively for nursing officers. Irrespective of the groups studied, 77.1% of 336 assessors opined that the dorsal surface of the hand was more sensitive in tactile assessment of temperature and the frequently used site for assessment of fever were the head (35.6% and neck (33.3%. Tactile assessment of temperature over-detected fever in ≥ 24% of cases among the three groups of assessors. Conclusions The present study suggests that tactile assessment of temperature may over estimate the prevalence of fever, it does not detect some cases and the need for objective measurement of temperature is emphasised in paediatric emergency care.

  5. An Historical, Descriptive Study of the Television Teaching of Spanish in the Detroit Public Schools Following the Principles of Foreign Languages in the Elementary School (FLES).

    Science.gov (United States)

    Patterson, Dorothy Florence

    To investigate the television teaching of foreign languages in the elementary schools (specifically that of Spanish in the Detroit school system) based on the philosophy of FLES, the following factors were studied: (1) the historical background of foreign-language teaching methodology, of television teaching techniques; and of the emergence and…

  6. An Archeological Overview and Management Plan for the Detroit Arsenal, the Pontiac Storage Facility, and the Keweenaw Field Station, Macomb, Oakland, and Houghton Counties, Michigan.

    Science.gov (United States)

    1985-04-01

    Schmucker. vi ---------------/:.;. . ., ... " ,- .’. . .: .. .o . y , ? : - i .,-,.- . ... , . 0661D-1 TABLE OF CONTENTS Page NTIS FORM . i MANGMENT ...34. .-.., ,.. . . ,, .. .... " .. . .’,. - x.*,-. .,... .. .,--. .. .’.-. . -, ,,..-.., ... - . *.* . .,-.-. , ,,-- .-... ,-... . .. . -, 0651D-2 Soils on the Detroit facility belong to the...Lenawee-Corunna-Lamson and the Toledo-Paulding associations. Lenawee clay loam and Toledo silty clay loams are soils of glacial lake plains and were

  7. Assessment of cognitive workload of in-vehicle systems using a visual peripheral and tactile detection task setting.

    Science.gov (United States)

    Bengler, Klaus; Kohlmann, Martin; Lange, Christian

    2012-01-01

    The increase of driver information and infotainment systems includes also interaction technologies like speech interaction that minimize visual-manual demand and put the focus to cognitive demand. The question is whether this could lead to distraction effects and decreased traffic safety. This study presents an evaluation method for cognitive demand based on different detection paradigms in a dual task setting. A listening and a backward counting task are realized on three difficulty levels as simulations of cognitively loading secondary tasks and investigated using a visual versus a tactile detection paradigm. The results show that both detection paradigms are able to discriminate the task levels and that subjects successfully apply compensation strategies in the dual task setting especially during the listening task.

  8. Tactile-Sight: A Sensory Substitution Device Based on Distance-Related Vibrotactile Flow

    Directory of Open Access Journals (Sweden)

    Leandro Cancar

    2013-06-01

    Full Text Available Sensory substitution is a research field of increasing interest with regard to technical, applied and theoretical issues. Among the latter, it is of central interest to understand the form in which humans perceive the environment. Ecological psychology, among other approaches, proposes that we can detect higher-order informational variables (in the sense that they are defined over substantial spatial and temporal intervals that specify our interaction with the environment. When using a vibrotactile sensory substitution device, it is reasonable to ask if stimulation on the skin may be exploitable to detect higher-order variables. Motivated by this question, a portable vibrotactile sensory substitution device was built, using distance-based information as a source and driving a large number of vibrotactile actuators (72 in the reported version, 120 max. The portable device was designed to explore real environments, allowing natural unrestricted movement for the user while providing contingent real-time vibrotactile information. Two preliminary experiments were performed. In the first one, participants were asked to detect the time to contact of an approaching ball in a simulated (desktop environment. Reasonable performance was observed in all experimental conditions, including the one with only tactile stimulation. In the second experiment, a portable version of the device was used in a real environment, where participants were asked to hit an approaching ball. Participants were able to coordinate their arm movements with vibrotactile stimulation in appropriate timing. We conclude that vibrotactile flow can be generated by distance-based activation of the actuators and that this stimulation on the skin allows users to perceive time-to-contact related environmental properties.

  9. Variation in the autism candidate gene GABRB3 modulates tactile sensitivity in typically developing children

    Directory of Open Access Journals (Sweden)

    Tavassoli Teresa

    2012-07-01

    Full Text Available Abstract Background Autism spectrum conditions have a strong genetic component. Atypical sensory sensitivities are one of the core but neglected features of autism spectrum conditions. GABRB3 is a well-characterised candidate gene for autism spectrum conditions. In mice, heterozygous Gabrb3 deletion is associated with increased tactile sensitivity. However, no study has examined if tactile sensitivity is associated with GABRB3 genetic variation in humans. To test this, we conducted two pilot genetic association studies in the general population, analysing two phenotypic measures of tactile sensitivity (a parent-report and a behavioural measure for association with 43 SNPs in GABRB3. Findings Across both tactile sensitivity measures, three SNPs (rs11636966, rs8023959 and rs2162241 were nominally associated with both phenotypes, providing a measure of internal validation. Parent-report scores were nominally associated with six SNPs (P Conclusions This is the first human study to show an association between GABRB3 variation and tactile sensitivity. This provides support for the evidence from animal models implicating the role of GABRB3 variation in the atypical sensory sensitivity in autism spectrum conditions. Future research is underway to directly test this association in cases of autism spectrum conditions.

  10. Application of artificial tactile sensing approach in kidney-stone-removal laparoscopy.

    Science.gov (United States)

    Afshari, Elnaz; Najarian, Siamak; Simforoosh, Nasser

    2010-01-01

    Artificial tactile sensing is a novel method for obtaining different characteristics of a hard object embedded in a soft tissue. In this regard, artificial palpation is one of the most valuable achievements of artificial tactile sensing that can be used in various fields of medicine and more specifically in surgery. In this study, considering the present problems and limitations in kidney-stone-removal laparoscopy, a new application will be presented for artificial tactile sensing approach. Having imitated surgeon's palpation during open surgery and modeled it conceptually, indications of stone existence that appear on the surface of kidney (due to exerting mechanical load) were determined. A number of different cases were created and solved by the software. Using stress distribution contours and stress graphs, it is illustrated that the created stress patterns on the surface of kidney not only show the existence of stone inside, but also its exact location. In fact, the reliability and accuracy of artificial tactile sensing method in detection of kidney stone during laparoscopy is demonstrated by means of finite element analysis. Also, in this paper, the functional principles of tactile system capable of determining the exact location of stone during laparoscopy will be presented.

  11. Effects of hand posture on preparatory control processes and sensory modulations in tactile-spatial attention.

    Science.gov (United States)

    Eimer, Martin; Forster, Bettina; Fieger, Anne; Harbich, Stefanie

    2004-03-01

    Event-related brain potentials (ERPs) were measured to investigate spatial coordinate systems involved in the control of preparatory tactile-spatial orienting, and in subsequent attentional modulations of somatosensory processing. On each trial, a visual precue directed attention to the left or right hand, where infrequent tactile targets had to be detected. Hands were positioned either close together or wide apart. ERPs were recorded in the cue-target interval and in response to attended and unattended tactile non-targets. A frontal anterior directing attention negativity (ADAN) and a posterior late directing attention positivity (LDAP) were elicited in the cue-target interval contralateral to the direction of an attentional shift. The ADAN was unaffected by hand posture, but the LDAP was attenuated when hands were close together. N140 amplitudes were enhanced in response to tactile stimuli presented to the attended hand, and this effect was more pronounced when hands were wide apart. ADAN and LDAP are linked to separable anterior and posterior attentional control systems, which use coordinate systems based on somatotopic and external space, respectively. Effects of spatial attention on somatosensory stimulus processing are affected by variations in body posture. Our results demonstrate that representations of body locations in external space play a central role in the control of tactile attention.

  12. VARIATIONS IN TACTILE SIGNING – THE CASE OF ONE-HANDED SIGNING

    Directory of Open Access Journals (Sweden)

    Johanna Mesch

    2011-01-01

    Full Text Available Tactile sign language is a variety of a national sign language. Tactile signing among persons with deafblindness also includes some minor variations. Early analyses of tactile Swedish Sign Language (e.g. Mesch 1998, 2001 show how interactants use both their hands in tactile communication in two different positions: dialogue position and monologue position. This paper examines the signing variations that partially or functionally blind signers encounter when using one hand to communicate with each other in a conversation dyad in what is one of the most advanced types of sign language communication. In tactile one-handed signing, the signer uses her right hand both for producing and receiving signs, while the addressee uses her left hand not only for receiving but also for producing signs after turn-taking, even though it is the non-dominant hand and, therefore, is not normally used to produce one-handed signs. In this study, conversation analysis was conducted on the discourse of four groups. The results show that some variations depend on the linguistic background of individuals and their everyday communication. A comparative study of a two-handed and a one-handed system is then presented, focusing on issues of simplicity, flexibility, turn-taking, and feedback. Some results showing changes in the sign structures of both communication types are also presented.

  13. Peripheral Mechanosensory Neuron Dysfunction Underlies Tactile and Behavioral Deficits in Mouse Models of ASDs.

    Science.gov (United States)

    Orefice, Lauren L; Zimmerman, Amanda L; Chirila, Anda M; Sleboda, Steven J; Head, Joshua P; Ginty, David D

    2016-07-14

    Patients with autism spectrum disorders (ASDs) commonly experience aberrant tactile sensitivity, yet the neural alterations underlying somatosensory dysfunction and the extent to which tactile deficits contribute to ASD characteristics are unknown. We report that mice harboring mutations in Mecp2, Gabrb3, Shank3, and Fmr1 genes associated with ASDs in humans exhibit altered tactile discrimination and hypersensitivity to gentle touch. Deletion of Mecp2 or Gabrb3 in peripheral somatosensory neurons causes mechanosensory dysfunction through loss of GABAA receptor-mediated presynaptic inhibition of inputs to the CNS. Remarkably, tactile defects resulting from Mecp2 or Gabrb3 deletion in somatosensory neurons during development, but not in adulthood, cause social interaction deficits and anxiety-like behavior. Restoring Mecp2 expression exclusively in the somatosensory neurons of Mecp2-null mice rescues tactile sensitivity, anxiety-like behavior, and social interaction deficits, but not lethality, memory, or motor deficits. Thus, mechanosensory processing defects contribute to anxiety-like behavior and social interaction deficits in ASD mouse models. PAPERCLIP. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Investigating interocclusal perception in tactile teeth sensibility using symmetric and asymmetric analysis.

    Science.gov (United States)

    Enkling, Norbert; Nicolay, Claudia; Bayer, Stefan; Mericske-Stern, Regina; Utz, Karl-Heinz

    2010-12-01

    The purpose of this clinical trial was to determine the active tactile sensibility of natural teeth and to obtain a statistical analysis method fitting a psychometric function through the observed data points. On 68 complete dentulous test persons (34 males, 34 females, mean age 45.9 ± 16.1 years), one pair of healthy natural teeth each was tested: n = 24 anterior teeth and n = 44 posterior teeth. The computer-assisted, randomized measurement was done by having the subjects bite on thin copper foils of different thickness (5-200 µm) inserted between the teeth. The threshold of active tactile sensibility was defined by the 50% value of correct answers. Additionally, the gradient of the sensibility curve and the support area (90-10% value) as a description of the shape of the sensibility curve were calculated. For modeling the sensibility curve, symmetric and asymmetric functions were used. The mean sensibility threshold was 14.2 ± 12.1 µm. The older the subject, the higher the tactile threshold (r = 0.42, p = 0.0006). The support area was 41.8 ± 43.3 µm. The higher the 50% threshold, the smaller the gradient of the curve and the larger the support area. The curves showing the active tactile sensibility of natural teeth demonstrate a tendency towards asymmetry, so that the active tactile sensibility of natural teeth can mathematically best be described by using the asymmetric Weibull function.

  15. The TacTip Family: Soft Optical Tactile Sensors with 3D-Printed Biomimetic Morphologies.

    Science.gov (United States)

    Ward-Cherrier, Benjamin; Pestell, Nicholas; Cramphorn, Luke; Winstone, Benjamin; Giannaccini, Maria Elena; Rossiter, Jonathan; Lepora, Nathan F

    2018-04-01

    Tactile sensing is an essential component in human-robot interaction and object manipulation. Soft sensors allow for safe interaction and improved gripping performance. Here we present the TacTip family of sensors: a range of soft optical tactile sensors with various morphologies fabricated through dual-material 3D printing. All of these sensors are inspired by the same biomimetic design principle: transducing deformation of the sensing surface via movement of pins analogous to the function of intermediate ridges within the human fingertip. The performance of the TacTip, TacTip-GR2, TacTip-M2, and TacCylinder sensors is here evaluated and shown to attain submillimeter accuracy on a rolling cylinder task, representing greater than 10-fold super-resolved acuity. A version of the TacTip sensor has also been open-sourced, enabling other laboratories to adopt it as a platform for tactile sensing and manipulation research. These sensors are suitable for real-world applications in tactile perception, exploration, and manipulation, and will enable further research and innovation in the field of soft tactile sensing.

  16. Symbol recognition produced by points of tactile stimulation: the illusion of linear continuity.

    Science.gov (United States)

    Gonzales, G R

    1996-11-01

    To determine whether tactile receptive communication is possible through the use of a mechanical device that produces the phi phenomenon on the body surface. Twenty-six subjects (11 blind and 15 sighted participants) were tested with use of a tactile communication device (TCD) that produces an illusion of linear continuity forming numbers on the dorsal aspect of the wrist. Recognition of a number or number set was the goal. A TCD with protruding and vibrating solenoids produced sequentially delivered points of cutaneous stimulation along a pattern resembling numbers and created the illusion of dragging a vibrating stylet to form numbers, similar to what might be felt by testing for graphesthesia. Blind subjects recognized numbers with fewer trials than did sighted subjects, although all subjects were able to recognize all the numbers produced by the TCD. Subjects who had been blind since birth and had no prior tactile exposure to numbers were able to draw the numbers after experiencing them delivered by the TCD even though they did not recognize their meaning. The phi phenomenon is probably responsible for the illusion of continuous lines in the shape of numbers as produced by the TCD. This tactile illusion could potentially be used for more complex tactile communications such as letters and words.

  17. A Meta-Analytic Review of Tactile-Cued Self-Monitoring Interventions Used by Students in Educational Settings

    Science.gov (United States)

    McDougall, Dennis; Ornelles, Cecily; Mersberg, Kawika; Amona, Kekama

    2015-01-01

    In this meta-analytic review, we critically evaluate procedures and outcomes from nine intervention studies in which students used tactile-cued self-monitoring in educational settings. Findings suggest that most tactile-cued self-monitoring interventions have moderate to strong effects, have emerged only recently, and have not yet achieved the…

  18. Practice makes perfect: the neural substrates of tactile discrimination by Mah-Jong experts include the primary visual cortex

    Directory of Open Access Journals (Sweden)

    Honda Manabu

    2006-12-01

    Full Text Available Abstract Background It has yet to be determined whether visual-tactile cross-modal plasticity due to visual deprivation, particularly in the primary visual cortex (V1, is solely due to visual deprivation or if it is a result of long-term tactile training. Here we conducted an fMRI study with normally-sighted participants who had undergone long-term training on the tactile shape discrimination of the two dimensional (2D shapes on Mah-Jong tiles (Mah-Jong experts. Eight Mah-Jong experts and twelve healthy volunteers who were naïve to Mah-Jong performed a tactile shape matching task using Mah-Jong tiles with no visual input. Furthermore, seven out of eight experts performed a tactile shape matching task with unfamiliar 2D Braille characters. Results When participants performed tactile discrimination of Mah-Jong tiles, the left lateral occipital cortex (LO and V1 were activated in the well-trained subjects. In the naïve subjects, the LO was activated but V1 was not activated. Both the LO and V1 of the well-trained subjects were activated during Braille tactile discrimination tasks. Conclusion The activation of V1 in subjects trained in tactile discrimination may represent altered cross-modal responses as a result of long-term training.

  19. Practice makes perfect: the neural substrates of tactile discrimination by Mah-Jong experts include the primary visual cortex.

    Science.gov (United States)

    Saito, Daisuke N; Okada, Tomohisa; Honda, Manabu; Yonekura, Yoshiharu; Sadato, Norihiro

    2006-12-05

    It has yet to be determined whether visual-tactile cross-modal plasticity due to visual deprivation, particularly in the primary visual cortex (V1), is solely due to visual deprivation or if it is a result of long-term tactile training. Here we conducted an fMRI study with normally-sighted participants who had undergone long-term training on the tactile shape discrimination of the two dimensional (2D) shapes on Mah-Jong tiles (Mah-Jong experts). Eight Mah-Jong experts and twelve healthy volunteers who were naïve to Mah-Jong performed a tactile shape matching task using Mah-Jong tiles with no visual input. Furthermore, seven out of eight experts performed a tactile shape matching task with unfamiliar 2D Braille characters. When participants performed tactile discrimination of Mah-Jong tiles, the left lateral occipital cortex (LO) and V1 were activated in the well-trained subjects. In the naïve subjects, the LO was activated but V1 was not activated. Both the LO and V1 of the well-trained subjects were activated during Braille tactile discrimination tasks. The activation of V1 in subjects trained in tactile discrimination may represent altered cross-modal responses as a result of long-term training.

  20. Teacher-Made Tactile Science Materials with Critical and Creative Thinking Activities for Learners Including Those with Visual Impairments

    Science.gov (United States)

    Teske, Jolene K.; Gray, Phyllis; Kuhn, Mason A.; Clausen, Courtney K.; Smith, Latisha L.; Alsubia, Sukainah A.; Ghayoorad, Maryam; Rule, Audrey C.; Schneider, Jean Suchsland

    2014-01-01

    Gifted students with visual impairments are twice exceptional learners and may not evidence their advanced science aptitudes without appropriate accommodations for learning science. However, effective tactile science teaching materials may be easily made. Recent research has shown that when tactile materials are used with "all" students…