WorldWideScience

Sample records for t-cell priming capacity

  1. Termination of T cell priming relies on a phase of unresponsiveness promoting disengagement from APCs and T cell division.

    Science.gov (United States)

    Bohineust, Armelle; Garcia, Zacarias; Beuneu, Hélène; Lemaître, Fabrice; Bousso, Philippe

    2018-05-07

    T cells are primed in secondary lymphoid organs by establishing stable interactions with antigen-presenting cells (APCs). However, the cellular mechanisms underlying the termination of T cell priming and the initiation of clonal expansion remain largely unknown. Using intravital imaging, we observed that T cells typically divide without being associated to APCs. Supporting these findings, we demonstrate that recently activated T cells have an intrinsic defect in establishing stable contacts with APCs, a feature that was reflected by a blunted capacity to stop upon T cell receptor (TCR) engagement. T cell unresponsiveness was caused, in part, by a general block in extracellular calcium entry. Forcing TCR signals in activated T cells antagonized cell division, suggesting that T cell hyporesponsiveness acts as a safeguard mechanism against signals detrimental to mitosis. We propose that transient unresponsiveness represents an essential phase of T cell priming that promotes T cell disengagement from APCs and favors effective clonal expansion. © 2018 Bohineust et al.

  2. Antigen storage compartments in mature dendritic cells facilitate prolonged cytotoxic T lymphocyte cross-priming capacity.

    Science.gov (United States)

    van Montfoort, Nadine; Camps, Marcel G; Khan, Selina; Filippov, Dmitri V; Weterings, Jimmy J; Griffith, Janice M; Geuze, Hans J; van Hall, Thorbald; Verbeek, J Sjef; Melief, Cornelis J; Ossendorp, Ferry

    2009-04-21

    Dendritic cells (DCs) are crucial for priming of naive CD8(+) T lymphocytes to exogenous antigens, so-called "cross-priming." We report that exogenous protein antigen can be conserved for several days in mature DCs, coinciding with strong cytotoxic T lymphocyte cross-priming potency in vivo. After MHC class I peptide elution, protein antigen-derived peptide presentation is efficiently restored, indicating the presence of an intracellular antigen depot. We characterized this depot as a lysosome-like organelle, distinct from MHC class II compartments and recently described early endosomal compartments that allow acute antigen presentation in MHC class I. The storage compartments we report here facilitate continuous supply of MHC class I ligands. This mechanism ensures sustained cross-presentation by DCs, despite the short-lived expression of MHC class I-peptide complexes at the cell surface.

  3. Liver-primed memory T cells generated under noninflammatory conditions provide anti-infectious immunity.

    Science.gov (United States)

    Böttcher, Jan P; Schanz, Oliver; Wohlleber, Dirk; Abdullah, Zeinab; Debey-Pascher, Svenja; Staratschek-Jox, Andrea; Höchst, Bastian; Hegenbarth, Silke; Grell, Jessica; Limmer, Andreas; Atreya, Imke; Neurath, Markus F; Busch, Dirk H; Schmitt, Edgar; van Endert, Peter; Kolanus, Waldemar; Kurts, Christian; Schultze, Joachim L; Diehl, Linda; Knolle, Percy A

    2013-03-28

    Development of CD8(+) T cell (CTL) immunity or tolerance is linked to the conditions during T cell priming. Dendritic cells (DCs) matured during inflammation generate effector/memory T cells, whereas immature DCs cause T cell deletion/anergy. We identify a third outcome of T cell priming in absence of inflammation enabled by cross-presenting liver sinusoidal endothelial cells. Such priming generated memory T cells that were spared from deletion by immature DCs. Similar to central memory T cells, liver-primed T cells differentiated into effector CTLs upon antigen re-encounter on matured DCs even after prolonged absence of antigen. Their reactivation required combinatorial signaling through the TCR, CD28, and IL-12R and controlled bacterial and viral infections. Gene expression profiling identified liver-primed T cells as a distinct Neuropilin-1(+) memory population. Generation of liver-primed memory T cells may prevent pathogens that avoid DC maturation by innate immune escape from also escaping adaptive immunity through attrition of the T cell repertoire. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Circumvention of regulatory CD4(+) T cell activity during cross-priming strongly enhances T cell-mediated immunity.

    Science.gov (United States)

    Heit, Antje; Gebhardt, Friedemann; Lahl, Katharina; Neuenhahn, Michael; Schmitz, Frank; Anderl, Florian; Wagner, Hermann; Sparwasser, Tim; Busch, Dirk H; Kastenmüller, Kathrin

    2008-06-01

    Immunization with purified antigens is a safe and practical vaccination strategy but is generally unable to induce sustained CD8(+) T cell-mediated protection against intracellular pathogens. Most efforts to improve the CD8(+) T cell immunogenicity of these vaccines have focused on co-administration of adjuvant to support cross-presentation and dendritic cell maturation. In addition, it has been shown that CD4(+) T cell help during the priming phase contributes to the generation of protective CD8(+) memory T cells. In this report we demonstrate that the depletion of CD4(+) T cells paradoxically enhances long-lasting CD8-mediated protective immunity upon protein vaccination. Functional and genetic in vivo inactivation experiments attribute this enhancement primarily to MHC class II-restricted CD4(+) regulatory T cells (Treg), which appear to physiologically suppress the differentiation process towards long-living effector memory T cells. Since, in functional terms, this suppression by Treg largely exceeds the positive effects of conventional CD4(+) T cell help, even the absence of all CD4(+) T cells or lack of MHC class II-mediated interactions on priming dendritic cells result in enhanced CD8(+) T cell immunogenicity. These findings have important implications for the improvement of vaccines against intracellular pathogens or tumors, especially in patients with highly active Treg.

  5. Antigen-primed helper T cell function in CBA/N mice is radiosensitive

    International Nuclear Information System (INIS)

    Phillips, N.E.; Campbell, P.A.

    1981-01-01

    CBA/N mice have an X-linked immunodeficiency that includes a deficient humoral response to sheep red blood cells (SRBC). In order to study the cellular mechanisms of this deficiency we have examined helper T cell function to SRBC in an adoptive transfer system by using 2 different sources of helper T cells. When thymocytes were used as the source of helper T cell precursors in an adoptive transfer system, CBA/N thymocytes were as effective as CBA/Ca thymocytes in inducing CBA/Ca bone marrow cells to develop into both direct and indirect anti-SRBC plaque-forming cells (PFC). However, when SRBC-primed, irradiated recipient mice were used as the source of helper T cells, primed and irradiated CBA/N recipiets developed significantly fewer direct and indirect anti-SRBC PFC than similarly treated CBA/CA recipients when reconstituted with CBA/Ca bone marrow cells and challenged with SRBC. We conclude that antigen-primed helper T cell function in CBA/N mice is radiosensitive. Possible reasons for this are evaluated and discussed

  6. Priming of CD8 T Cells by Adenoviral Vectors Is Critically Dependent on B7 and Dendritic Cells but Only Partially Dependent on CD28 Ligation on CD8 T Cells

    DEFF Research Database (Denmark)

    Nielsen, Karen N; Steffensen, Maria A; Christensen, Jan P

    2014-01-01

    expression resulted in a delayed primary response, whereas memory CD8 T cells generated in CD28-deficient mice appeared almost normal in terms of both phenotype and effector cytokine profile, but they exhibited a significantly reduced proliferative capacity upon secondary challenge while retaining immediate...... in vivo effector capabilities: in vivo cytotoxicity and short-term in vivo protective capacity. Overall, our data point to an absolute requirement for professional APCs and the expression of the costimulatory molecules CD80/86 for efficient CD8 T cell priming by adenoviral vectors. Additionally, our......Adenoviral vectors have long been forerunners in the development of effective CD8 T cell-based vaccines; therefore, it is imperative that we understand the factors controlling the induction of robust and long-lasting transgene-specific immune responses by these vectors. In this study, we...

  7. Mast-Cell-Derived TNF Amplifies CD8+ Dendritic Cell Functionality and CD8+ T Cell Priming

    Directory of Open Access Journals (Sweden)

    Jan Dudeck

    2015-10-01

    Full Text Available Mast cells are critical promoters of adaptive immunity in the contact hypersensitivity model, but the mechanism of allergen sensitization is poorly understood. Using Mcpt5-CreTNFFL/FL mice, we show here that the absence of TNF exclusively in mast cells impaired the expansion of CD8+ T cells upon sensitization and the T-cell-driven adaptive immune response to elicitation. T cells primed in the absence of mast cell TNF exhibited a diminished efficiency to transfer sensitization to naive recipients. Specifically, mast cell TNF promotes CD8+ dendritic cell (DC maturation and migration to draining lymph nodes. The peripherally released mast cell TNF further critically boosts the CD8+ T-cell-priming efficiency of CD8+ DCs, thereby linking mast cell effects on T cells to DC modulation. Collectively, our findings identify the distinct potential of mast cell TNF to amplify CD8+ DC functionality and CD8+ T-cell-dominated adaptive immunity, which may be of great importance for immunotherapy and vaccination approaches.

  8. In Vitro Priming of Naı̈ve T-cells with p-Phenylenediamine and Bandrowski's Base.

    Science.gov (United States)

    Gibson, Andrew; Kim, Seung-Hyun; Faulkner, Lee; Evely, Jane; Pirmohamed, Munir; Park, Kevin B; Naisbitt, Dean J

    2015-10-19

    p-Phenylenediamine (PPD) is a component of hair dye formulations that is associated with T-cell mediated allergic contact dermatitis. Antigen-specific T-cells from allergic contact dermatitis patients are activated with either PPD or the oxidation product, Bandrowski's base. In nonallergic individuals, T-cells that are activated by Bandrowski's base, but not by PPD, are readily detectable. The aim of the current study was to use an in vitro T-cell priming assay to assess the activation of memory and naı̈ve T-cells from healthy donors with PPD and Bandrowski's base, and to compare these responses to those observed from allergic patients. Both PPD and Bandrowski's base-responsive clones were generated from allergic patients. The majority of Bandrowski's base-responsive clones were CD4+ and displayed a lack of PPD reactivity. In contrast, CD4+ and CD8+ clones displaying PPD reactivity were detected. Approximately 25% of these displayed low levels of reactivity to Bandrowski's base. Clones from the allergic patients secreted a range of cytokines including IFN-γ, Il-13, and Il-22. In healthy donors, Bandrowski's base-specific T-cell proliferative responses and cytokine secretion were detected with both naı̈ve and memory T-cells. T-cell clones generated from the Bandrowski's base-responsive cultures responded to Bandrowski's base but not PPD. PPD-specific naı̈ve and memory T-cell responses were not detected from healthy donors. These data show that Bandrowski's base stimulates pre-existing memory T-cells isolated from healthy donors and primes naı̈ve T-cells when the chemical is bound to autologous dendritic cells. Priming naı̈ve T-cells against PPD failed, suggesting an important individual susceptibility factor is missing from the in vitro T-cell priming assay.

  9. Memory T follicular helper CD4 T cells

    Directory of Open Access Journals (Sweden)

    J. Scott eHale

    2015-02-01

    Full Text Available T follicular helper (Tfh cells are the subset of CD4 T helper cells that are required for generation and maintenance of germinal center reactions and the generation of long-lived humoral immunity. This specialized T helper subset provides help to cognate B cells via their expression of CD40 ligand, IL-21, IL-4, and other molecules. Tfh cells are characterized by their expression of the chemokine receptor CXCR5, expression of the transcriptional repressor Bcl6, and their capacity to migrate to the follicle and promote germinal center B cell responses. Until recently, it remained unclear whether Tfh cells differentiated into memory cells and whether they maintain their Tfh commitment at the memory phase. This review will highlight several recent studies that support the idea of Tfh-committed CD4 T cells at the memory stage of the immune response. The implication of these findings is that memory Tfh cells retain their capacity to recall their Tfh-specific effector functions upon reactivation to provide help for B cell responses and play an important role in prime and boost vaccination or during recall responses to infection. The markers that are useful for distinguishing Tfh effector and memory cells, as well as the limitations of using these markers will be discussed. Tfh effector and memory generation, lineage maintenance, and plasticity relative to other T helper lineages (Th1, Th2, Th17, etc will also be discussed. Ongoing discoveries regarding the maintenance and lineage stability versus plasticity of memory Tfh cells will improve strategies that utilize CD4 T cell memory to modulate antibody responses during prime and boost vaccination.

  10. Regulation and Gene Expression Profiling of NKG2D Positive Human Cytomegalovirus-Primed CD4+ T-Cells

    Science.gov (United States)

    Jensen, Helle; Folkersen, Lasse; Skov, Søren

    2012-01-01

    NKG2D is a stimulatory receptor expressed by natural killer (NK) cells, CD8+ T-cells, and γδ T-cells. NKG2D expression is normally absent from CD4+ T-cells, however recently a subset of NKG2D+ CD4+ T-cells has been found, which is specific for human cytomegalovirus (HCMV). This particular subset of HCMV-specific NKG2D+ CD4+ T-cells possesses effector-like functions, thus resembling the subsets of NKG2D+ CD4+ T-cells found in other chronic inflammations. However, the precise mechanism leading to NKG2D expression on HCMV-specific CD4+ T-cells is currently not known. In this study we used genome-wide analysis of individual genes and gene set enrichment analysis (GSEA) to investigate the gene expression profile of NKG2D+ CD4+ T-cells, generated from HCMV-primed CD4+ T-cells. We show that the HCMV-primed NKG2D+ CD4+ T-cells possess a higher differentiated phenotype than the NKG2D– CD4+ T-cells, both at the gene expression profile and cytokine profile. The ability to express NKG2D at the cell surface was primarily determined by the activation or differentiation status of the CD4+ T-cells and not by the antigen presenting cells. We observed a correlation between CD94 and NKG2D expression in the CD4+ T-cells following HCMV stimulation. However, knock-down of CD94 did not affect NKG2D cell surface expression or signaling. In addition, we show that NKG2D is recycled at the cell surface of activated CD4+ T-cells, whereas it is produced de novo in resting CD4+ T-cells. These findings provide novel information about the gene expression profile of HCMV-primed NKG2D+ CD4+ T-cells, as well as the mechanisms regulating NKG2D cell surface expression. PMID:22870231

  11. Regulation and gene expression profiling of NKG2D positive human cytomegalovirus-primed CD4+ T-cells.

    Directory of Open Access Journals (Sweden)

    Helle Jensen

    Full Text Available NKG2D is a stimulatory receptor expressed by natural killer (NK cells, CD8(+ T-cells, and γδ T-cells. NKG2D expression is normally absent from CD4(+ T-cells, however recently a subset of NKG2D(+ CD4(+ T-cells has been found, which is specific for human cytomegalovirus (HCMV. This particular subset of HCMV-specific NKG2D(+ CD4(+ T-cells possesses effector-like functions, thus resembling the subsets of NKG2D(+ CD4(+ T-cells found in other chronic inflammations. However, the precise mechanism leading to NKG2D expression on HCMV-specific CD4(+ T-cells is currently not known. In this study we used genome-wide analysis of individual genes and gene set enrichment analysis (GSEA to investigate the gene expression profile of NKG2D(+ CD4(+ T-cells, generated from HCMV-primed CD4(+ T-cells. We show that the HCMV-primed NKG2D(+ CD4(+ T-cells possess a higher differentiated phenotype than the NKG2D(- CD4(+ T-cells, both at the gene expression profile and cytokine profile. The ability to express NKG2D at the cell surface was primarily determined by the activation or differentiation status of the CD4(+ T-cells and not by the antigen presenting cells. We observed a correlation between CD94 and NKG2D expression in the CD4(+ T-cells following HCMV stimulation. However, knock-down of CD94 did not affect NKG2D cell surface expression or signaling. In addition, we show that NKG2D is recycled at the cell surface of activated CD4(+ T-cells, whereas it is produced de novo in resting CD4(+ T-cells. These findings provide novel information about the gene expression profile of HCMV-primed NKG2D(+ CD4(+ T-cells, as well as the mechanisms regulating NKG2D cell surface expression.

  12. Aging Impairs the Ability of Conventional Dendritic Cells to Cross-Prime CD8+ T Cells upon Stimulation with a TLR7 Ligand.

    Directory of Open Access Journals (Sweden)

    Estefanía R Zacca

    Full Text Available The aging process is accompanied by altered immune system functioning and an increased risk of infection. Dendritic cells (DCs are antigen-presenting cells that play a key role in both adaptive and innate immunity, but how aging affects DCs and their influence on immunity has not been thoroughly established. Here we examined the function of conventional DCs (cDCs in old mice after TLR7 stimulation, focusing on their ability to cross-prime CD8+ T cells. Using polyU, a synthetic ssRNA analog, as TLR7 ligand and OVA as an antigen (Ag model, we found that cDCs from old mice have a poor ability to stimulate a CD8+ T cell-mediated cytotoxic response. cDCs from old mice exhibit alterations in Ag-processing machinery and TLR7 activation. Remarkably, CD8α+ cDCs from old mice have an impaired ability to activate naïve CD8+ T cells and, moreover, a lower capacity to mature and to process exogenous Ag. Taken together, our results suggest that immunosenescence impacts cDC function, affecting the activation of naïve CD8+ T cells and the generation of effector cytotoxic T cells.

  13. The role of natural killer T cells in dendritic cell licensing, cross-priming and memory CD8+ T cell generation

    Directory of Open Access Journals (Sweden)

    Catherine eGottschalk

    2015-07-01

    Full Text Available New vaccination strategies focus on achieving CD8+ T cell (CTL immunity rather than on induction of protective antibody responses. While the requirement of CD4+ T (Th cell help in dendritic cell (DC activation and licensing, and in CTL memory induction has been described in several disease models, CTL responses may occur in a Th cell help independent manner. Natural Killer T cells (NKT cells can substitute for Th cell help and license DC as well. NKT cells produce a broad spectrum of Th1 and Th2 cytokines, thereby inducing a similar set of costimulatory molecules and cytokines in DC. This form of licensing differs from Th cell help by inducing other chemokines: while Th cell licensed DC produce CCR5 ligands, NKT cell-licensed DC produce CCL17 which attracts CCR4+ CD8+ T cells for subsequent activation. It has recently been shown that iNKT cells do not only enhance immune responses against bacterial pathogens or parasites, but also play a role in viral infections. The inclusion of NKT cell ligands in Influenza virus vaccines enhanced memory CTL generation and protective immunity in a mouse model. This review will focus on the role of iNKT cells in the cross-talk with cross-priming DC and memory CD8+ T cell formation.

  14. CD8 T cells primed in the gut-associated lymphoid tissue induce immune-mediated cholangitis in mice.

    Science.gov (United States)

    Seidel, Daniel; Eickmeier, Ira; Kühl, Anja A; Hamann, Alf; Loddenkemper, Christoph; Schott, Eckart

    2014-02-01

    The pathogenesis of primary sclerosing cholangitis (PSC) remains poorly understood. Since PSC predominantly occurs in patients with inflammatory bowel disease, autoimmunity triggered by activated T cells migrating from the gut to the liver is a possible mechanism. We hypothesized that T cells primed in the gut-associated lymphoid tissue (GALT) by a specific antigen migrate to the liver and cause cholangitis when they recognize the same antigen on cholangiocytes. We induced ovalbumin-dependent colitis in mice that express ovalbumin in biliary epithelia (ASBT-OVA mice) and crossed ASBT-OVA mice with mice that express ovalbumin in enterocytes (iFABP-OVA mice). We analyzed T-cell activation in the GALT and crossreactivity to the same antigen in the liver as well as the effects of colitis per se on antigen-presentation and T-cell activation in the liver. Intrarectal application of ovalbumin followed by transfer of CD8 OT-I T cells led to antigen-dependent colitis. CD8 T cells primed in the GALT acquired effector function and the capability to migrate to the liver, where they caused cholangitis in a strictly antigen-dependent manner. Likewise, cholangitis developed in mice expressing ovalbumin simultaneously in biliary epithelia and enterocytes after transfer of OT-I T cells. Dextran sodium sulfate colitis led to increased levels of inflammatory cytokines in the portal venous blood, induced activation of resident liver dendritic cells, and promoted the induction of T-cell-dependent cholangitis. Our data strengthen the notion that immune-mediated cholangitis is caused by T cells primed in the GALT and provide the first link between colitis and cholangitis in an antigen-dependent mouse model. © 2013 by the American Association for the Study of Liver Diseases.

  15. Concanavalin A-mediated in vitro activation of a secondary cytotoxic T-cell response in virus-primed splenocytes

    DEFF Research Database (Denmark)

    Thomsen, Allan Randrup; Jensen, B L

    1980-01-01

    In a recent report it was shown that what appeared to be secondary cytotoxic T cells could be obtained from lymphocytic choriomeningitis virus (LCMV)-primed splenocytes after stimulation in vitro with the non-specific T cell mitogen concanavalin A (Con A). The present experiments attempt to chara......In a recent report it was shown that what appeared to be secondary cytotoxic T cells could be obtained from lymphocytic choriomeningitis virus (LCMV)-primed splenocytes after stimulation in vitro with the non-specific T cell mitogen concanavalin A (Con A). The present experiments attempt...... to characterize further these effector cells and, in particular, to establish whether the Con A-activated cytotoxic effectors are qualitatively different from the secondary cytotoxic T cells induced by restimulation with the homologous antigen. It was found that: (1) in vitro activation with Con A could......, since no evidence was found to indicate a role for other cell types or soluble (cytotoxic or arming) factors; (4) cytotoxicity was specific with regard to both virus and 'self'. By comparison with previous data on LCMV-induced cytotoxic T cells, it is concluded that Con A induces the generation...

  16. Commensal oral bacteria antigens prime human dendritic cells to induce Th1, Th2 or Treg differentiation.

    Science.gov (United States)

    Kopitar, A N; Ihan Hren, N; Ihan, A

    2006-02-01

    In various immunopathologic conditions, bacterial flora induce an immune response which results in inflammatory manifestations, e.g. periapical granuloma. Dendritic cells provide the main orchestration of specific immune responses. The aim of our study was to test the capacity of distinct oral bacterial antigens (prepared from Streptococcus mitis, Propionibacterium acnes, and Bacteroides spp.) to prime human dendritic cells for stimulation of the T-lymphocyte response. To assess the T-lymphocyte response, the expression of CD25, CD69, intracellular interferon gamma (cIFN-gamma), and intracellular interleukin 4 (cIL-4) was determined. Dendritic cells were prepared from leukocyte buffy coat from healthy blood donors. Monocytes were stimulated with IL-4 and GM-CSF and dendritic cells activated with bacterial lysates. Cell suspensions contained up to 90% dendritic cells, which represented 2-12% of the initial number of mononuclear cells. Lymphocyte subsets that developed in lymphocyte cultures after 1 week of stimulation were analyzed by flow cytometry. Dendritic cells, primed with antigens of Bacteroides fragilis have shown significantly higher activation and expression of intercellular IFN-gamma by T lymphocytes compared to negative controls. The dendritic cells primed with antigens of P. acnes had no effect on T-lymphocyte activation or cytokine production; instead they induced differentiation of T lymphocytes into CD25bright cells (regulatory T cells) with a potentially inhibitory effect on immune response. Dendritic cells primed with antigens of S. mitis induced increased expression of cIL-4. We conclude that commensal oral bacteria antigens prepared from B. fragilis, S. mitis, and P. acnes prime human dendritic cells to induce Th1, Th2, and T(reg) differentiation, respectively. This may advance our understanding of immunopathologic manifestations in the oral cavity and offer new possibilities for redirecting immune responses in mucosal vaccination.

  17. Exploiting the role of endogenous lymphoid-resident dendritic cells in the priming of NKT cells and CD8+ T cells to dendritic cell-based vaccines.

    Directory of Open Access Journals (Sweden)

    Troels R Petersen

    2011-03-01

    Full Text Available Transfer of antigen between antigen-presenting cells (APCs is potentially a physiologically relevant mechanism to spread antigen to cells with specialized stimulatory functions. Here we show that specific CD8+ T cell responses induced in response to intravenous administration of antigen-loaded bone marrow-derived dendritic cells (BM-DCs, were ablated in mice selectively depleted of endogenous lymphoid-resident langerin+ CD8α+ dendritic cells (DCs, suggesting that the antigen is transferred from the injected cells to resident APCs. In contrast, antigen-specific CD4+ T cells were primed predominantly by the injected BM-DCs, with only very weak contribution of resident APCs. Crucially, resident langerin+ CD8α+ DCs only contributed to the priming of CD8+ T cells in the presence of maturation stimuli such as intravenous injection of TLR ligands, or by loading the BM-DCs with the glycolipid α-galactosylceramide (α-GalCer to recruit the adjuvant activity of activated invariant natural killer-like T (iNKT cells. In fact, injection of α-GalCer-loaded CD1d-/- BM-DCs resulted in potent iNKT cell activation, suggesting that this glycolipid antigen can also be transferred to resident CD1d+ APCs. While iNKT cell activation per se was independent of langerin+ CD8α+ DCs, some iNKT cell-mediated activities were reduced, notably release of IL-12p70 and transactivation of NK cells. We conclude that both protein and glycolipid antigens can be exchanged between distinct DC species. These data suggest that the efficacy of DC-based vaccination strategies may be improved by the incorporation of a systemic maturation signal aimed to engage resident APCs in CD8+ T cell priming, and α-GalCer may be particularly well suited to this purpose.

  18. Differential requirements of CD4(+) T-cell signals for effector cytotoxic T-lymphocyte (CTL) priming and functional memory CTL development at higher CD8(+) T-cell precursor frequency.

    Science.gov (United States)

    Umeshappa, Channakeshava S; Nanjundappa, Roopa H; Xie, Yufeng; Freywald, Andrew; Xu, Qingyong; Xiang, Jim

    2013-04-01

    Increased CD8(+) T-cell precursor frequency (PF) precludes the requirement of CD4(+) helper T (Th) cells for primary CD8(+) cytotoxic T-lymphocyte (CTL) responses. However, the key questions of whether unhelped CTLs generated at higher PF are functional effectors, and whether unhelped CTLs can differentiate into functional memory cells at higher PF are unclear. In this study, ovalbumin (OVA) -pulsed dendritic cells (DC(OVA)) derived from C57BL/6, CD40 knockout (CD40(-/-)) or CD40 ligand knockout (CD40L(-/-)) mice were used to immunize C57BL/6, Ia(b-/-), CD40(-/-) or CD40L(-/-) mice, whose PF was previously increased with transfer of 1 × 10(6) CD8(+) T cells derived from OVA-specific T-cell receptor (TCR) transgenic OTI, OTI(CD40(-/-)) or OTI(CD40L(-/-)) mice. All the immunized mice were then assessed for effector and memory CTL responses. Following DC immunization, relatively comparable CTL priming occurred without CD4(+) T-cell help and Th-provided CD40/CD40L signalling. In addition, the unhelped CTLs were functional effectors capable of inducing therapeutic immunity against established OVA-expressing tumours. In contrast, the functional memory development of CTLs was severely impaired in the absence of CD4(+) T-cell help and CD40/CD40L signalling. Finally, unhelped memory CTLs failed to protect mice against lethal tumour challenge. Taken together, these results demonstrate that CD4(+) T-cell help at higher PF, is not required for effector CTL priming, but is required for functional memory CTL development against cancer. Our data may impact the development of novel preventive and therapeutic approaches in cancer patients with compromised CD4(+) T-cell functions. © 2012 Blackwell Publishing Ltd.

  19. Virus-specific regulatory T cells ameliorate encephalitis by repressing effector T cell functions from priming to effector stages.

    Directory of Open Access Journals (Sweden)

    Jingxian Zhao

    2014-08-01

    Full Text Available Several studies have demonstrated the presence of pathogen-specific Foxp3+ CD4 regulatory T cells (Treg in infected animals, but little is known about where and how these cells affect the effector T cell responses and whether they are more suppressive than bulk Treg populations. We recently showed the presence of both epitope M133-specific Tregs (M133 Treg and conventional CD4 T cells (M133 Tconv in the brains of mice with coronavirus-induced encephalitis. Here, we provide new insights into the interactions between pathogenic Tconv and Tregs responding to the same epitope. M133 Tregs inhibited the proliferation but not initial activation of M133 Tconv in draining lymph nodes (DLN. Further, M133 Tregs inhibited migration of M133 Tconv from the DLN. In addition, M133 Tregs diminished microglia activation and decreased the number and function of Tconv in the infected brain. Thus, virus-specific Tregs inhibited pathogenic CD4 T cell responses during priming and effector stages, particularly those recognizing cognate antigen, and decreased mortality and morbidity without affecting virus clearance. These cells are more suppressive than bulk Tregs and provide a targeted approach to ameliorating immunopathological disease in infectious settings.

  20. Optimizing HIV-1-specific CD8+ T-cell induction by recombinant BCG in prime-boost regimens with heterologous viral vectors.

    Science.gov (United States)

    Hopkins, Richard; Bridgeman, Anne; Bourne, Charles; Mbewe-Mvula, Alice; Sadoff, Jerald C; Both, Gerald W; Joseph, Joan; Fulkerson, John; Hanke, Tomáš

    2011-12-01

    The desire to induce HIV-1-specific responses soon after birth to prevent breast milk transmission of HIV-1 led us to propose a vaccine regimen which primes HIV-1-specific T cells using a recombinant Mycobacterium bovis bacillus Calmette-Guérin (rBCG) vaccine. Because attenuated live bacterial vaccines are typically not sufficiently immunogenic as stand-alone vaccines, rBCG-primed T cells will likely require boost immunization(s). Here, we compared modified Danish (AERAS-401) and Pasteur lysine auxotroph (222) strains of BCG expressing the immunogen HIVA for their potency to prime HIV-1-specific responses in adult BALB/c mice and examined four heterologous boosting HIVA vaccines for their immunogenic synergy. We found that both BCG.HIVA(401) and BCG.HIVA(222) primed HIV-1-specific CD8(+) T-cell-mediated responses. The strongest boosts were delivered by human adenovirus-vectored HAdV5.HIVA and sheep atadenovirus-vectored OAdV7.HIVA vaccines, followed by poxvirus MVA.HIVA; the weakest was plasmid pTH.HIVA DNA. The prime-boost regimens induced T cells capable of efficient in vivo killing of sensitized target cells. We also observed that the BCG.HIVA(401) and BCG.HIVA(222) vaccines have broadly similar immunologic properties, but display a number of differences mainly detected through distinct profiles of soluble intercellular signaling molecules produced by immune splenocytes in response to both HIV-1- and BCG-specific stimuli. These results encourage further development of the rBCG prime-boost regimen. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Deficient CD4+ T cell priming and regression of CD8+ T cell functionality in virus-infected mice lacking a normal B cell compartment

    DEFF Research Database (Denmark)

    Christensen, Jan Pravsgaard; Kauffmann, Susanne Ørding; Thomsen, Allan Randrup

    2003-01-01

    of virus-specific CD4(+) T cells was markedly impaired in B(-/-) mice infected with either virus strain. Thus, our results indicate that B cells play an important role in antiviral immunity not only as Ab producers, but also in promoting an optimal and sustained T cell response. The T cell defects......In this study, we investigate the state of T cell-mediated immunity in B cell-deficient (B(-/-)) mice infected with two strains of lymphocytic choriomeningitis virus known to differ markedly in their capacity to persist. In B(-/-) C57BL mice infected with the more persisting virus, virus......-specific CD8(+) T cells are initially generated that are qualitatively similar to those in wild-type mice. However, although cell numbers are well sustained over time, the capacity to produce cytokines is rapidly impaired. In similarly infected B(-/-) BALB/c mice, virus-specific CD8(+) T cells are completely...

  2. Friends not foes: CTLA-4 blockade and mTOR inhibition cooperate during CD8+ T cell priming to promote memory formation and metabolic readiness.

    Science.gov (United States)

    Pedicord, Virginia A; Cross, Justin R; Montalvo-Ortiz, Welby; Miller, Martin L; Allison, James P

    2015-03-01

    During primary Ag encounter, T cells receive numerous positive and negative signals that control their proliferation, function, and differentiation, but how these signals are integrated to modulate T cell memory has not been fully characterized. In these studies, we demonstrate that combining seemingly opposite signals, CTLA-4 blockade and rapamycin-mediated mammalian target of rapamycin inhibition, during in vivo T cell priming leads to both an increase in the frequency of memory CD8(+) T cells and improved memory responses to tumors and bacterial challenges. This enhanced efficacy corresponds to increased early expansion and memory precursor differentiation of CD8(+) T cells and increased mitochondrial biogenesis and spare respiratory capacity in memory CD8(+) T cells in mice treated with anti-CTLA-4 and rapamycin during immunization. Collectively, these results reveal that mammalian target of rapamycin inhibition cooperates with rather than antagonizes blockade of CTLA-4, promoting unrestrained effector function and proliferation, and an optimal metabolic program for CD8(+) T cell memory. Copyright © 2015 by The American Association of Immunologists, Inc.

  3. Estradiol-induced vaginal mucus inhibits antigen penetration and CD8(+) T cell priming in response to intravaginal immunization.

    Science.gov (United States)

    Seavey, Matthew M; Mosmann, Tim R

    2009-04-14

    Although vaginal immunization has been explored as a strategy to induce mucosal immunity in the female reproductive tract, this site displays unique immunological features that probably evolved to inhibit anti-paternal T cell responses after insemination to allow successful pregnancy. We previously demonstrated that estradiol, which induces an estrus-like state, prevented CD8(+) T cell priming during intravaginal immunization of mice. We now show that estradiol prevented antigen loading of vaginal antigen presenting cells (APCs) after intravaginal immunization. Histological examination confirmed that estradiol prevented penetration of peptide antigen into the vaginal wall. Removal of the estradiol-induced mucus barrier by mucinase partially restored antigen loading of vaginal APC and CD8(+) T cell proliferation in vivo. The estradiol-induced mucus barrier may thus prevent exposure to antigens delivered intravaginally, supplementing additional estradiol-dependent mechanism(s) that inhibit CD8(+) T cell priming after insemination or vaginal vaccination.

  4. Estradiol-induced vaginal mucus inhibits antigen penetration and CD8+ T cell priming in response to intravaginal immunization

    Science.gov (United States)

    Seavey, Matthew M.; Mosmann, Tim R.

    2010-01-01

    Although vaginal immunization has been explored as a strategy to induce mucosal immunity in the female reproductive tract, this site displays unique immunological features that probably evolved to inhibit anti-paternal T cell responses after insemination to allow successful pregnancy. We previously demonstrated that estradiol, which induces an estrus-like state, prevented CD8+ T cell priming during intravaginal immunization of mice. We now show that estradiol prevented antigen loading of vaginal antigen presenting cells (APC) after intravaginal immunization. Histological examination confirmed that estradiol prevented penetration of peptide antigen into the vaginal wall. Removal of the estradiol-induced mucus barrier by mucinase partially restored antigen loading of vaginal APC and CD8+ T cell proliferation in vivo. The estradiol-induced mucus barrier may thus prevent exposure to antigens delivered intravaginally, supplementing additional estradiol-dependent mechanism(s) that inhibit CD8+ T cell priming after insemination or vaginal vaccination. PMID:19428849

  5. Activation of Antigen-Specific CD8(+) T Cells by Poly-DL-Lactide/Glycolide (PLGA) Nanoparticle-Primed Gr-1(high) Cells.

    Science.gov (United States)

    Luo, Wen-Hui; Yang, Ya-Wun

    2016-04-01

    The aim of this study was to investigate the induction of antigen-specific T cell activation and cell cycle modulation by a poly-DL-lactide/glycolide (PLGA) nanoparticle (NP)-primed CD11b(+)Gr-1(high) subset isolated from mouse bone marrow. PLGA NPs containing the ovalbumin (OVA) antigen were prepared using the double emulsion and solvent evaporation method, and protein release rate and cell viability were determined. The Lin2(¯)CD11b(+)Gr-1(high)Ly6c(low) (Gr-1(high)) subset was sorted from the bone marrow of C57BL/6 J mice by fluorescence-activated cell sorting (FACS) and co-cultured with OT-I CD8(+) splenic T cells. Proliferation of OT-I CD8(+) T cells was monitored, and cell cycles were determined by 5-bromo-2'-deoxyuridine (BrdU) labeling. Treatment of Gr-1(high) cells with PLGA/OVA NPs upregulated expression of the SIINFEKL-H2K(b) complex in the context of MHC I. Co-cultures of OT-I CD8(+) T cells with the PLGA/OVA NP-primed Gr-1(high) cells induced the proliferation of T cells in vitro and modulated cell division and morphology. Treatment of Gr-1(high) cells with PLGA/OVA NPs also induced cell apoptosis and necrosis. This study demonstrated the function of PLGA/OVA NPs in the activation of OT-I CD8(+) T cells and the capability of cross-presentation via the Gr-1(high) polymorphonuclear subset from mouse bone marrow.

  6. Liver-Primed Memory T Cells Generated under Noninflammatory Conditions Provide Anti-infectious Immunity

    Directory of Open Access Journals (Sweden)

    Jan P. Böttcher

    2013-03-01

    Full Text Available Development of CD8+ T cell (CTL immunity or tolerance is linked to the conditions during T cell priming. Dendritic cells (DCs matured during inflammation generate effector/memory T cells, whereas immature DCs cause T cell deletion/anergy. We identify a third outcome of T cell priming in absence of inflammation enabled by cross-presenting liver sinusoidal endothelial cells. Such priming generated memory T cells that were spared from deletion by immature DCs. Similar to central memory T cells, liver-primedcells differentiated into effector CTLs upon antigen re-encounter on matured DCs even after prolonged absence of antigen. Their reactivation required combinatorial signaling through the TCR, CD28, and IL-12R and controlled bacterial and viral infections. Gene expression profiling identified liver-primedcells as a distinct Neuropilin-1+ memory population. Generation of liver-primed memory T cells may prevent pathogens that avoid DC maturation by innate immune escape from also escaping adaptive immunity through attrition of the T cell repertoire.

  7. Differential presentation of endogenous and exogenous hepatitis B surface antigens influences priming of CD8(+) T cells in an epitope-specific manner.

    Science.gov (United States)

    Riedl, Petra; Reiser, Michael; Stifter, Katja; Krieger, Jana; Schirmbeck, Reinhold

    2014-07-01

    Little is known about whether presentation of endogenous and exogenous hepatitis B virus (HBV) surface antigens on APCs targeted by vaccination and/or virus-harboring hepatocytes influences de novo priming of CD8(+) T cells. We showed that surface antigen-expressing transfectants exclusively display a K(b) /S190 epitope, whereas cells pulsed with recombinant surface particles (rSPs) exclusively present a K(b) /S208 epitope to CD8(+) T cells. The differential presentation of these epitopes largely reflects the selective, but not exclusive, priming of K(b) /S190- and K(b) /S208-specific T cells in C57BL/6 mice by endogenous/DNA- or exogenous/protein-based vaccines, respectively. Silencing the K(b) /S190 epitope (K(b) /S190V194F ) in antigen-expressing vectors rescued the presentation of the K(b) /S208 epitope in stable transfectants and significantly enhanced priming of K(b) /S208-specific T cells in C57BL/6 mice. A K(b) /S190-mediated immunodominance operating in surface antigen-expressing cells, but not in rSP-pulsed cells, led to an efficient suppression in the presentation of the K(b) /S208 epitope and a consequent decrease in the priming of K(b) /S208-specific T cells. This K(b) /S190-mediated immunodominance also operated in 1.4HBV-S(mut) transgenic (tg) hepatocytes selectively expressing endogenous surface antigens and allowed priming of K(b) /S208- but not K(b) /S190-specific T cells in 1.4HBV-S(mut) tg mice. However, IFN-γ(+) K(b) /S208-specific T cells could not inhibit HBV replication in the liver of 1.4HBV-S(mut) tg mice. These results have practical implications for the design of T-cell-stimulating therapeutic vaccines. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Immunity to experimental Salmonella typhimurium infections in rats. Transfer of immunity with primed CD45RC+ and CD45RC- CD4 T-cell subpopulations

    DEFF Research Database (Denmark)

    Thygesen, P; Christensen, H B; Hougen, H P

    1996-01-01

    The protective effect of primed CD4 T cells against a lethal dose of Salmonella typhimurium was studied in Lewis rats. Primed CD4 T cells were obtained by inoculating Lewis rats with a non-lethal dose of S. typhimurium. Four weeks after the infection, spleen CD4 T cells were separated by antibody......-induced increase in CD45RC+ cells is most likely due to generation of antigen-specific memory T cells....

  9. Mycobacterium leprae-Infected Macrophages Preferentially Primed Regulatory T Cell Responses and Was Associated with Lepromatous Leprosy.

    Directory of Open Access Journals (Sweden)

    Degang Yang

    2016-01-01

    Full Text Available The persistence of Mycobacterium leprae (M. leprae infection is largely dependent on the types of host immune responses being induced. Macrophage, a crucial modulator of innate and adaptive immune responses, could be directly infected by M. leprae. We therefore postulated that M. leprae-infected macrophages might have altered immune functions.Here, we treated monocyte-derived macrophages with live or killed M. leprae, and examined their activation status and antigen presentation. We found that macrophages treated with live M. leprae showed committed M2-like function, with decreased interleukin 1 beta (IL-1beta, IL-6, tumor necrosis factor alpha (TNF-alpha and MHC class II molecule expression and elevated IL-10 and CD163 expression. When incubating with naive T cells, macrophages treated with live M. leprae preferentially primed regulatory T (Treg cell responses with elevated FoxP3 and IL-10 expression, while interferon gamma (IFN-gamma expression and CD8+ T cell cytotoxicity were reduced. Chromium release assay also found that live M. leprae-treated macrophages were more resistant to CD8+ T cell-mediated cytotoxicity than sonicated M. leprae-treated monocytes. Ex vivo studies showed that the phenotype and function of monocytes and macrophages had clear differences between L-lep and T-lep patients, consistent with the in vitro findings.Together, our data demonstrate that M. leprae could utilize infected macrophages by two mechanisms: firstly, M. leprae-infected macrophages preferentially primed Treg but not Th1 or cytotoxic T cell responses; secondly, M. leprae-infected macrophages were more effective at evading CD8+ T cell-mediated cytotoxicity.

  10. Mycobacterium leprae-Infected Macrophages Preferentially Primed Regulatory T Cell Responses and Was Associated with Lepromatous Leprosy.

    Science.gov (United States)

    Yang, Degang; Shui, Tiejun; Miranda, Jake W; Gilson, Danny J; Song, Zhengyu; Chen, Jia; Shi, Chao; Zhu, Jianyu; Yang, Jun; Jing, Zhichun

    2016-01-01

    The persistence of Mycobacterium leprae (M. leprae) infection is largely dependent on the types of host immune responses being induced. Macrophage, a crucial modulator of innate and adaptive immune responses, could be directly infected by M. leprae. We therefore postulated that M. leprae-infected macrophages might have altered immune functions. Here, we treated monocyte-derived macrophages with live or killed M. leprae, and examined their activation status and antigen presentation. We found that macrophages treated with live M. leprae showed committed M2-like function, with decreased interleukin 1 beta (IL-1beta), IL-6, tumor necrosis factor alpha (TNF-alpha) and MHC class II molecule expression and elevated IL-10 and CD163 expression. When incubating with naive T cells, macrophages treated with live M. leprae preferentially primed regulatory T (Treg) cell responses with elevated FoxP3 and IL-10 expression, while interferon gamma (IFN-gamma) expression and CD8+ T cell cytotoxicity were reduced. Chromium release assay also found that live M. leprae-treated macrophages were more resistant to CD8+ T cell-mediated cytotoxicity than sonicated M. leprae-treated monocytes. Ex vivo studies showed that the phenotype and function of monocytes and macrophages had clear differences between L-lep and T-lep patients, consistent with the in vitro findings. Together, our data demonstrate that M. leprae could utilize infected macrophages by two mechanisms: firstly, M. leprae-infected macrophages preferentially primed Treg but not Th1 or cytotoxic T cell responses; secondly, M. leprae-infected macrophages were more effective at evading CD8+ T cell-mediated cytotoxicity.

  11. Autoimmune vitiligo does not require the ongoing priming of naïve CD8 T cells for disease progression or associated protection against melanoma1

    Science.gov (United States)

    Byrne, Katelyn T.; Zhang, Peisheng; Steinberg, Shannon M.; Turk, Mary Jo

    2014-01-01

    Vitiligo is a CD8 T cell-mediated autoimmune disease that has been shown to promote the longevity of memory T cell responses to melanoma. However mechanisms whereby melanocyte/melanoma antigen-specific T cell responses are perpetuated in the context of vitiligo are not well understood. The present studies investigate the possible phenomenon of naïve T cell priming in hosts with melanoma-initiated, self-perpetuating, autoimmune vitiligo. Using naïve pmel (gp10025-33-specific) transgenic CD8 T cells, we demonstrate that autoimmune melanocyte destruction induces naive T cell proliferation in skin-draining lymph nodes, in an antigen-dependent fashion. These pmel T cells upregulate expression of CD44, P-selectin ligand, and granzyme B. However, they do not downregulate CD62L, nor do they acquire the ability to produce IFN-γ, indicating a lack of functional priming. Accordingly, adult thymectomized mice exhibit no reduction in the severity or kinetics of depigmentation or long-lived protection against melanoma, indicating that the continual priming of naïve T cells is not required for vitiligo or its associated anti-tumor immunity. Despite this, depletion of CD4 T cells during the course of vitiligo rescues the priming of naïve pmel T cells that are capable of producing IFN-γ and persisting as memory, suggesting an ongoing and dominant mechanism of suppression by regulatory T cells. This work reveals the complex regulation of self-reactive CD8 T cells in vitiligo, and demonstrates the overall poorly immunogenic nature of this autoimmune disease setting. PMID:24403535

  12. Multiple dendritic cell populations activate CD4+ T cells after viral stimulation.

    Directory of Open Access Journals (Sweden)

    Adele M Mount

    2008-02-01

    Full Text Available Dendritic cells (DC are a heterogeneous cell population that bridge the innate and adaptive immune systems. CD8alpha DC play a prominent, and sometimes exclusive, role in driving amplification of CD8(+ T cells during a viral infection. Whether this reliance on a single subset of DC also applies for CD4(+ T cell activation is unknown. We used a direct ex vivo antigen presentation assay to probe the capacity of flow cytometrically purified DC populations to drive amplification of CD4(+ and CD8(+ T cells following infection with influenza virus by different routes. This study examined the contributions of non-CD8alpha DC populations in the amplification of CD8(+ and CD4(+ T cells in cutaneous and systemic influenza viral infections. We confirmed that in vivo, effective immune responses for CD8(+ T cells are dominated by presentation of antigen by CD8alpha DC but can involve non-CD8alpha DC. In contrast, CD4(+ T cell responses relied more heavily on the contributions of dermal DC migrating from peripheral lymphoid tissues following cutaneous infection, and CD4 DC in the spleen after systemic infection. CD4(+ T cell priming by DC subsets that is dependent upon the route of administration raises the possibility that vaccination approaches could be tailored to prime helper T cell immunity.

  13. Langerin negative dendritic cells promote potent CD8+ T-cell priming by skin delivery of live adenovirus vaccine microneedle arrays.

    Science.gov (United States)

    Bachy, Veronique; Hervouet, Catherine; Becker, Pablo D; Chorro, Laurent; Carlin, Leo M; Herath, Shanthi; Papagatsias, Timos; Barbaroux, Jean-Baptiste; Oh, Sea-Jin; Benlahrech, Adel; Athanasopoulos, Takis; Dickson, George; Patterson, Steven; Kwon, Sung-Yun; Geissmann, Frederic; Klavinskis, Linda S

    2013-02-19

    Stabilization of virus protein structure and nucleic acid integrity is challenging yet essential to preserve the transcriptional competence of live recombinant viral vaccine vectors in the absence of a cold chain. When coupled with needle-free skin delivery, such a platform would address an unmet need in global vaccine coverage against HIV and other global pathogens. Herein, we show that a simple dissolvable microneedle array (MA) delivery system preserves the immunogenicity of vaccines encoded by live recombinant human adenovirus type 5 (rAdHu5). Specifically, dried rAdHu5 MA immunization induced CD8(+) T-cell expansion and multifunctional cytokine responses equipotent with conventional injectable routes of immunization. Intravital imaging demonstrated MA cargo distributed both in the epidermis and dermis, with acquisition by CD11c(+) dendritic cells (DCs) in the dermis. The MA immunizing properties were attributable to CD11c(+) MHCII(hi) CD8α(neg) epithelial cell adhesion molecule (EpCAM(neg)) CD11b(+) langerin (Lang; CD207)(neg) DCs, but neither Langerhans cells nor Lang(+) DCs were required for CD8(+) T-cell priming. This study demonstrates an important technical advance for viral vaccine vectors progressing to the clinic and provides insights into the mechanism of CD8(+) T-cell priming by live rAdHu5 MAs.

  14. Antigen Requirements for Efficient Priming of CD8+ T Cells by Leishmania major-Infected Dendritic Cells

    Science.gov (United States)

    Bertholet, Sylvie; Debrabant, Alain; Afrin, Farhat; Caler, Elisabeth; Mendez, Susana; Tabbara, Khaled S.; Belkaid, Yasmine; Sacks, David L.

    2005-01-01

    CD4+ and CD8+ T-cell responses have been shown to be critical for the development and maintenance of acquired resistance to infections with the protozoan parasite Leishmania major. Monitoring the development of immunodominant or clonally restricted T-cell subsets in response to infection has been difficult, however, due to the paucity of known epitopes. We have analyzed the potential of L. major transgenic parasites, expressing the model antigen ovalbumin (OVA), to be presented by antigen-presenting cells to OVA-specific OT-II CD4+ or OT-I CD8+ T cells. Truncated OVA was expressed in L. major as part of a secreted or nonsecreted chimeric protein with L. donovani 3′ nucleotidase (NT-OVA). Dendritic cells (DC) but not macrophages infected with L. major that secreted NT-OVA could prime OT-I T cells to proliferate and release gamma interferon. A diminished T-cell response was observed when DC were infected with parasites expressing nonsecreted NT-OVA or with heat-killed parasites. Inoculation of mice with transgenic parasites elicited the proliferation of adoptively transferred OT-I T cells and their recruitment to the site of infection in the skin. Together, these results demonstrate the possibility of targeting heterologous antigens to specific cellular compartments in L. major and suggest that proteins secreted or released by L. major in infected DC are a major source of peptides for the generation of parasite-specific CD8+ T cells. The ability of L. major transgenic parasites to activate OT-I CD8+ T cells in vivo will permit the analysis of parasite-driven T-cell expansion, differentiation, and recruitment at the clonal level. PMID:16177338

  15. Characterization of the antigen-specific CD4+ T cell response induced by prime-boost strategies with CAF01 and CpG adjuvants administered by the intranasal and subcutaneous routes

    Directory of Open Access Journals (Sweden)

    Annalisa eCiabattini

    2015-08-01

    Full Text Available The design of heterologous prime-boost vaccine combinations that optimally shape the immune response is of critical importance for the development of next generation vaccines. Here we tested different prime-boost combinations using the tuberculosis vaccine antigen H56 with CAF01 or CpG ODN 1821 adjuvants, administered by the parenteral and nasal routes. By using peptide-MHC class II tetramers, antigen-specific CD4+ T cells were tracked following primary and booster immunizations. Both parenteral priming with H56 plus CAF01 and nasal priming with H56 plus CpG elicited significant expansion of CD4+ tetramer-positive T cells in the spleen, however only parenterally primed cells responded to booster immunization. Subcutaneous priming with H56 and CAF01 followed by nasal boosting with H56 and CpG showed the greater expansion of CD4+ tetramer-positive T cells in the spleen and lungs compared to all the other homologous and heterologous prime-boost combinations. Nasal boosting exerted a recruitment of primed CD4+ T cells into lungs that was stronger in subcutaneously than nasally primed mice, in accordance with different chemokine receptor expression induced by primary immunization. These data demonstrate that subcutaneous priming is fundamental for eliciting CD4+ T cells that can be efficiently boosted by the nasal route and results in the recruitment of antigen-experienced cells into the lungs. Combination of different vaccine formulations and routes of delivery for priming and boosting is a strategic approach for improving and directing vaccine-induced immune responses.

  16. Understanding delayed T-cell priming, lung recruitment, and airway luminal T-cell responses in host defense against pulmonary tuberculosis.

    Science.gov (United States)

    Shaler, Christopher R; Horvath, Carly; Lai, Rocky; Xing, Zhou

    2012-01-01

    Mycobacterium tuberculosis (M.tb), the causative bacterium of pulmonary tuberculosis (TB), is a serious global health concern. Central to M.tb effective immune avoidance is its ability to modulate the early innate inflammatory response and prevent the establishment of adaptive T-cell immunity for nearly three weeks. When compared with other intracellular bacterial lung pathogens, such as Legionella pneumophila, or even closely related mycobacterial species such as M. smegmatis, this delay is astonishing. Customarily, the alveolar macrophage (AM) acts as a sentinel, detecting and alerting surrounding cells to the presence of an invader. However, in the case of M.tb, this may be impaired, thus delaying the recruitment of antigen-presenting cells (APCs) to the lung. Upon uptake by APC populations, M.tb is able to subvert and delay the processing of antigen, MHC class II loading, and the priming of effector T cell populations. This delay ultimately results in the deferred recruitment of effector T cells to not only the lung interstitium but also the airway lumen. Therefore, it is of upmost importance to dissect the mechanisms that contribute to the delayed onset of immune responses following M.tb infection. Such knowledge will help design the most effective vaccination strategies against pulmonary TB.

  17. Heterologous prime-boost regimens with a recombinant chimpanzee adenoviral vector and adjuvanted F4 protein elicit polyfunctional HIV-1-specific T-Cell responses in macaques.

    Science.gov (United States)

    Lorin, Clarisse; Vanloubbeeck, Yannick; Baudart, Sébastien; Ska, Michaël; Bayat, Babak; Brauers, Geoffroy; Clarinval, Géraldine; Donner, Marie-Noëlle; Marchand, Martine; Koutsoukos, Marguerite; Mettens, Pascal; Cohen, Joe; Voss, Gerald

    2015-01-01

    HIV-1-specific CD4+ and CD8+ T lymphocytes are important for HIV-1 replication control. F4/AS01 consists of F4 recombinant fusion protein (containing clade B Gag/p24, Pol/RT, Nef and Gag/p17) formulated in AS01 Adjuvant System, and was shown to induce F4-specific polyfunctional CD4+ T-cell responses in humans. While replication-incompetent recombinant HIV-1/SIV antigen-expressing human adenoviral vectors can elicit high-frequency antigen-specific CD8+ T-cell responses, their use is hampered by widespread pre-existing immunity to human serotypes. Non-human adenovirus serotypes associated with lower prevalence may offer an alternative strategy. We evaluated the immunogenicity of AdC7-GRN ('A'), a recombinant chimpanzee adenovirus type 7 vector expressing clade B Gag, RT and Nef, and F4/AS01 ('P'), when delivered intramuscularly in homologous (PP or AA) and heterologous (AAPP or PPAA) prime-boost regimens, in macaques and mice. Vaccine-induced HIV-1-antigen-specific T cells in peripheral blood (macaques), liver, spleen, and intestinal and genital mucosa (mice) were characterized by intracellular cytokine staining. Vaccine-specific IgG antibodies (macaques) were detected using ELISA. In macaques, only the heterologous prime-boost regimens induced polyfunctional, persistent and balanced CD4+ and CD8+ T-cell responses specific to each HIV-1 vaccine antigen. AdC7-GRN priming increased the polyfunctionality of F4/AS01-induced CD4+ T cells. Approximately 50% of AdC7-GRN-induced memory CD8+ T cells exhibited an effector-memory phenotype. HIV-1-specific antibodies were detected with each regimen. In mice, antigen-specific CD4+ and CD8+ T-cell responses were detected in the mucosal and systemic anatomical compartments assessed. When administered in heterologous prime-boost regimens, AdC7-GRN and F4/AS01 candidate vaccines acted complementarily in inducing potent and persistent peripheral blood HIV-1-specific CD4+ and CD8+ T-cell responses and antibodies in macaques. Besides

  18. The role of cDC1s in vivo: CD8 T cell priming through cross-presentation [version 1; referees: 3 approved

    Directory of Open Access Journals (Sweden)

    Derek Theisen

    2017-02-01

    Full Text Available The cDC1 subset of classical dendritic cells is specialized for priming CD8 T cell responses through the process of cross-presentation. The molecular mechanisms of cross-presentation remain incompletely understood because of limited biochemical analysis of rare cDC1 cells, difficulty in their genetic manipulation, and reliance on in vitro systems based on monocyte- and bone-marrow-derived dendritic cells. This review will discuss cross-presentation from the perspective of studies with monocyte- or bone-marrow-derived dendritic cells while highlighting the need for future work examining cDC1 cells. We then discuss the role of cDC1s as a cellular platform to combine antigen processing for class I and class II MHC presentation to allow the integration of “help” from CD4 T cells during priming of CD8 T cell responses.

  19. TLR1/2 activation during heterologous prime-boost vaccination (DNA-MVA enhances CD8+ T Cell responses providing protection against Leishmania (Viannia.

    Directory of Open Access Journals (Sweden)

    Asha Jayakumar

    2011-06-01

    Full Text Available Leishmania (Viannia parasites present particular challenges, as human and murine immune responses to infection are distinct from other Leishmania species, indicating a unique interaction with the host. Further, vaccination studies utilizing small animal models indicate that modalities and antigens that prevent infection by other Leishmania species are generally not protective.Using a newly developed mouse model of chronic L. (Viannia panamensis infection and the heterologous DNA prime - modified vaccinia virus Ankara (MVA boost vaccination modality, we examined whether the conserved vaccine candidate antigen tryparedoxin peroxidase (TRYP could provide protection against infection/disease.Heterologous prime - boost (DNA/MVA vaccination utilizing TRYP antigen can provide protection against disease caused by L. (V. panamensis. However, protection is dependent on modulating the innate immune response using the TLR1/2 agonist Pam3CSK4 during DNA priming. Prime-boost vaccination using DNA alone fails to protect. Prior to infection protectively vaccinated mice exhibit augmented CD4 and CD8 IFNγ and memory responses as well as decreased IL-10 and IL-13 responses. IL-13 and IL-10 have been shown to be independently critical for disease in this model. CD8 T cells have an essential role in mediating host defense, as CD8 depletion reversed protection in the vaccinated mice; vaccinated mice depleted of CD4 T cells remained protected. Hence, vaccine-induced protection is dependent upon TLR1/2 activation instructing the generation of antigen specific CD8 cells and restricting IL-13 and IL-10 responses.Given the general effectiveness of prime-boost vaccination, the recalcitrance of Leishmania (Viannia to vaccine approaches effective against other species of Leishmania is again evident. However, prime-boost vaccination modality can with modulation induce protective responses, indicating that the delivery system is critical. Moreover, these results suggest that

  20. Effect of low-dose irradiation upon T cell subsets involved in the response of primed A/J mice to SaI cells

    International Nuclear Information System (INIS)

    Anderson, R.E.; Williams, W.L.; Tokuda, Sei

    1988-01-01

    A/Jax (A/J) mice primed to Sarcoma I (SaI) exhibit an augmented response in association with low-dose (0.15 Gy) irradiation. This phenomenon is best demonstrated in tumour neutralization (Winn assay) or cell transfer experiments utilizing mice depleted of thymus-derived (T) cells. It is particularly dependent upon the duration of priming and the growth characteristics of the tumour in the primary host. The importance of these two variables appears to relate to their influence upon the cell types responsible for the host response, and includes both an effector and a suppressor component. Radiation-induced inhibition of the suppressor component appears responsible for low-dose augmentation and results in injury to a T cell of the Lyt-1 - 2 + phenotype. In Winn assays employing equal numbers of immune spleen cells and SaI cells, the smallest tumours are associated with Lyt-1-positive (Lyt-1 + 2 - and Lyt-1 + 2 + ) cells and exposure to 0.15 Gy markedly inhibits their anti-SaI activity. Thus, even though the effect is in the opposite direction, both the effector and suppressor components of the anti-SaI response in A/J mice are exceedingly radiosensitive. (author)

  1. Consequences of exposure to ionizing radiation for effector T cell function in vivo

    International Nuclear Information System (INIS)

    Rouse, B.T.; Hartley, D.; Doherty, P.C.

    1989-01-01

    The adoptive transfer of acutely primed and memory virus-immune CD8+ T cells causes enhanced meningitis in both cyclophosphamide (Cy) suppressed, and unsuppressed, recipients infected with lymphocytic choriomeningitis virus (LCMV). The severity of meningitis is assessed by counting cells in cerebrospinal fluid (CSF) obtained from the cisterna magna, which allows measurement of significant inflammatory process ranging from 3 to more than 300 times the background number of cells found in mice injected with virus alone. Exposure of the donor immune population to ionizing radiation prior to transfer has shown that activated T cells from mice primed 7 or 8 days previously with virus may still promote a low level of meningitis in unsuppressed recipients following as much as 800 rads, while this effect is lost totally in Cy-suppressed mice at 600 rads. Memory T cells are more susceptible and show no evidence of in vivo effector function in either recipient population subsequent to 400 rads, a dose level which also greatly reduces the efficacy of acutely-primed T cells. The results are interpreted as indicating that heavily irradiated cells that are already fully functional show evidence of primary localization to the CNS and a limited capacity to cause pathology. Secondary localization, and events that require further proliferation of the T cells in vivo, are greatly inhibited by irradiation

  2. Consequences of exposure to ionizing radiation for effector T cell function in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Rouse, B.T.; Hartley, D.; Doherty, P.C. (Univ. of Tennessee, Knoxville (USA))

    1989-01-01

    The adoptive transfer of acutely primed and memory virus-immune CD8+ T cells causes enhanced meningitis in both cyclophosphamide (Cy) suppressed, and unsuppressed, recipients infected with lymphocytic choriomeningitis virus (LCMV). The severity of meningitis is assessed by counting cells in cerebrospinal fluid (CSF) obtained from the cisterna magna, which allows measurement of significant inflammatory process ranging from 3 to more than 300 times the background number of cells found in mice injected with virus alone. Exposure of the donor immune population to ionizing radiation prior to transfer has shown that activated T cells from mice primed 7 or 8 days previously with virus may still promote a low level of meningitis in unsuppressed recipients following as much as 800 rads, while this effect is lost totally in Cy-suppressed mice at 600 rads. Memory T cells are more susceptible and show no evidence of in vivo effector function in either recipient population subsequent to 400 rads, a dose level which also greatly reduces the efficacy of acutely-primed T cells. The results are interpreted as indicating that heavily irradiated cells that are already fully functional show evidence of primary localization to the CNS and a limited capacity to cause pathology. Secondary localization, and events that require further proliferation of the T cells in vivo, are greatly inhibited by irradiation.

  3. CCL3 Enhances Antitumor Immune Priming in the Lymph Node via IFNγ with Dependency on Natural Killer Cells

    Directory of Open Access Journals (Sweden)

    Frederick Allen

    2017-10-01

    Full Text Available Lymph node (LN plays a critical role in tumor cell survival outside of the primary tumor sites and dictates overall clinical response in many tumor types (1, 2. Previously, we and others have demonstrated that CCL3 plays an essential role in orchestrating T cell—antigen-presenting cell (APC encounters in the draining LN following vaccination, and such interactions enhance the magnitude of the memory T cell pool (3–5. In the current study, we investigate the cellular responses in the tumor-draining lymph nodes (TDLNs of a CCL3-secreting CT26 colon tumor (L3TU as compared to wild-type tumor (WTTU during the priming phase of an antitumor response (≤10 days. In comparison to WTTU, inoculation of L3TU resulted in suppressed tumor growth, a phenomenon that is accompanied by altered in vivo inflammatory responses on several fronts. Autologous tumor-derived CCL3 (aCCL3 secretion by L3TU bolstered the recruitment of T- and B-lymphocytes, tissue-migratory CD103+ dendritic cells (DCs, and CD49b+ natural killer (NK cells, resulting in significant increases in the differentiation and activation of multiple Interferon-gamma (IFNγ-producing leukocytes in the TDLN. During this early phase of immune priming, NK cells constitute the major producers of IFNγ in the TDLN. CCL3 also enhances CD8+ T cell proliferation and differentiation by augmenting DC capacity to drive T cell activation in the TDLN. Our results revealed that CCL3-dependent IFNγ production and CCL3-induced DC maturation drive the priming of effective antitumor immunity in the TDLN.

  4. Transfer of primed CD4+OX40- T lymphocytes induces increased immunity to experimental Salmonella typhimurium infections in rats

    DEFF Research Database (Denmark)

    Thygesen, P; Christensen, H B; Hougen, H P

    1997-01-01

    The protective effect of primed CD4 T cells against a lethal dose of Salmonella typhimurium was studied in Lewis rats. Primed CD4 T cells were obtained by inoculating Lewis rats with a non-lethal dose of S. typhimurium. Four weeks after the infection, spleen non-adherent mononuclear cells were is......-specific memory T cells that have returned to a resting state....

  5. Oxygen transfer rate identifies priming compounds in parsley cells.

    Science.gov (United States)

    Schilling, Jana Viola; Schillheim, Britta; Mahr, Stefan; Reufer, Yannik; Sanjoyo, Sandi; Conrath, Uwe; Büchs, Jochen

    2015-11-25

    In modern agriculture, the call for an alternative crop protection strategy increases because of the desired reduction of fungicide and pesticide use and the continuously evolving resistance of pathogens and pests to agrochemicals. The direct activation of the plant immune system does not provide a promising plant protection measure because of high fitness costs. However, upon treatment with certain natural or synthetic compounds, plant cells can promote to a fitness cost-saving, primed state of enhanced defense. In the primed state, plants respond to biotic and abiotic stress with faster and stronger activation of defense, and this is often associated with immunity and abiotic stress tolerance. Until now, the identification of chemical compounds with priming-inducing activity (so-called plant activators) relied on tedious and invasive approaches, or required the late detection of secreted furanocoumarin phytoalexins in parsley cell cultures. Thus, simple, fast, straightforward, and noninvasive techniques for identifying priming-inducing compounds for plant protection are very welcome. This report demonstrates that a respiration activity-monitoring system (RAMOS) can identify compounds with defense priming-inducing activity in parsley cell suspension in culture. RAMOS relies on the quasi-continuous, noninvasive online determination of the oxygen transfer rate (OTR). Treatment of parsley culture cells with the known plant activator salicylic acid (SA), a natural plant defense signal, resulted in an OTR increase. Addition of the defense elicitor Pep13, a cell wall peptide of Phythophthora sojae, induced two distinctive OTR peaks that were higher in SA-primed cells than in unprimed cells upon Pep13 challenge. Both, the OTR increase after priming with SA and the Pep13 challenge were dose-dependent. Furthermore, there was a close correlation of a compound's activity to enhance the oxygen consumption in parsley cells and its capacity to prime Pep13-induced furanocoumarin

  6. Eosinophils from eosinophilic oesophagitis patients have T cell suppressive capacity and express FOXP3.

    Science.gov (United States)

    Lingblom, C; Wallander, J; Ingelsten, M; Bergquist, H; Bove, M; Saalman, R; Welin, A; Wennerås, C

    2017-03-01

    Eosinophilic esophagitis (EoE) is an antigen-driven T cell-mediated chronic inflammatory disease where food and environmental antigens are thought to have a role. Human eosinophils express the immunoregulatory protein galectin-10 and have T cell suppressive capacity similar to regulatory T cells (T regs ). We hypothesized that one function of eosinophils in EoE might be to regulate the T cell-driven inflammation in the oesophagus. This was tested by evaluating the suppressive capacity of eosinophils isolated from the blood of adult EoE patients in a mixed lymphocyte reaction. In addition, eosinophilic expression of forkhead box protein 3 (FOXP3), the canonical transcription factor of T regs , was determined by conventional and imaging flow cytometry, quantitative polymerase chain reaction (qPCR), confocal microscopy and immunoblotting. It was found that blood eosinophils from EoE patients had T cell suppressive capacity, and that a fraction of the eosinophils expressed FOXP3. A comparison of EoE eosinophils with healthy control eosinophils indicated that the patients' eosinophils had inferior suppressive capacity. Furthermore, a higher percentage of the EoE eosinophils expressed FOXP3 protein compared with the healthy eosinophils, and they also had higher FOXP3 protein and mRNA levels. FOXP3 was found in the cytosol and nucleus of the eosinophils from both the patients and healthy individuals, contrasting with the strict nuclear localization of FOXP3 in T regs . To conclude, these findings suggest that the immunoregulatory function of eosinophils may be impaired in EoE. © 2016 British Society for Immunology.

  7. Diverse Epitope Specificity, Immunodominance Hierarchy, and Functional Avidity of Effector CD4 T Cells Established During Priming Is Maintained in Lung After Influenza A Virus Infection.

    Science.gov (United States)

    Richards, Katherine A; DiPiazza, Anthony T; Rattan, Ajitanuj; Knowlden, Zackery A G; Yang, Hongmei; Sant, Andrea J

    2018-01-01

    One of the major contributions to protective immunity to influenza viruses that is provided by virus-specific CD4 T cells is delivery of effector function to the infected lung. However, there is little known about the selection and breadth of viral epitope-specific CD4 T cells that home to the lung after their initial priming. In this study, using a mouse model of influenza A infection and an unbiased method of epitope identification, the viral epitope-specific CD4 T cells elicited after infection were identified and quantified. We found that a very diverse specificity of CD4 T cells is primed by infection, including epitopes from hemagglutinin, neuraminidase, matrix protein, nucleoprotein, and non-structural protein-1. Using peptide-specific cytokine EliSpots, the diversity and immunodominance hierarchies established in the lung-draining lymph node were compared with specificities of CD4 T cells that home to the lung. Our studies revealed that CD4 T cells of all epitope specificities identified in peripheral lymphoid tissue home back to the lung and that most of these lung-homing cells are localized within the tissue rather than the pulmonary vasculature. There is a striking shift of CD4 T cell functionality that enriches for IFN-γ production as cells are primed in the lymph node, enter the lung vasculature, and finally establish residency in the tissue, but with no apparent shifts in their functional avidity. We conclude that CD4 T cells of broad viral epitope specificity are recruited into the lung after influenza infection, where they then have the opportunity to encounter infected or antigen-bearing antigen-presenting cells.

  8. Cis-acting pathways selectively enforce the non-immunogenicity of shed placental antigen for maternal CD8 T cells.

    Directory of Open Access Journals (Sweden)

    Chin-Siean Tay

    Full Text Available Maternal immune tolerance towards the fetus and placenta is thought to be established in part by pathways that attenuate T cell priming to antigens released from the placenta into maternal blood. These pathways remain largely undefined and their existence, at face value, seems incompatible with a mother's need to maintain a functional immune system during pregnancy. A particular conundrum is evident if we consider that maternal antigen presenting cells, activated in order to prime T cells to pathogen-derived antigens, would also have the capacity to prime T cells to co-ingested placental antigens. Here, we address this paradox using a transgenic system in which placental membranes are tagged with a strong surrogate antigen (ovalbumin. We find that although a remarkably large quantity of acellular ovalbumin-containing placental material is released into maternal blood, splenic CD8 T cells in pregnant mice bearing unmanipulated T cell repertoires are not primed to ovalbumin even if the mice are intravenously injected with adjuvants. This failure was largely independent of regulatory T cells, and instead was linked to the intrinsic characteristics of the released material that rendered it selectively non-immunogenic, potentially by sequestering it from CD8α(+ dendritic cells. The release of ovalbumin-containing placental material into maternal blood thus had no discernable impact on CD8 T cell priming to soluble ovalbumin injected intravenously during pregnancy, nor did it induce long-term tolerance to ovalbumin. Together, these results outline a major pathway governing the maternal immune response to the placenta, and suggest how tolerance to placental antigens can be maintained systemically without being detrimental to host defense.

  9. Cis-Acting Pathways Selectively Enforce the Non-Immunogenicity of Shed Placental Antigen for Maternal CD8 T Cells

    Science.gov (United States)

    Tay, Chin-Siean; Tagliani, Elisa; Collins, Mary K.; Erlebacher, Adrian

    2013-01-01

    Maternal immune tolerance towards the fetus and placenta is thought to be established in part by pathways that attenuate T cell priming to antigens released from the placenta into maternal blood. These pathways remain largely undefined and their existence, at face value, seems incompatible with a mother's need to maintain a functional immune system during pregnancy. A particular conundrum is evident if we consider that maternal antigen presenting cells, activated in order to prime T cells to pathogen-derived antigens, would also have the capacity to prime T cells to co-ingested placental antigens. Here, we address this paradox using a transgenic system in which placental membranes are tagged with a strong surrogate antigen (ovalbumin). We find that although a remarkably large quantity of acellular ovalbumin-containing placental material is released into maternal blood, splenic CD8 T cells in pregnant mice bearing unmanipulated T cell repertoires are not primed to ovalbumin even if the mice are intravenously injected with adjuvants. This failure was largely independent of regulatory T cells, and instead was linked to the intrinsic characteristics of the released material that rendered it selectively non-immunogenic, potentially by sequestering it from CD8α+ dendritic cells. The release of ovalbumin-containing placental material into maternal blood thus had no discernable impact on CD8 T cell priming to soluble ovalbumin injected intravenously during pregnancy, nor did it induce long-term tolerance to ovalbumin. Together, these results outline a major pathway governing the maternal immune response to the placenta, and suggest how tolerance to placental antigens can be maintained systemically without being detrimental to host defense. PMID:24391885

  10. Lack of Both Nucleotide-Binding Oligomerization Domain-Containing Proteins 1 and 2 Primes T Cells for Activation-Induced Cell Death.

    Science.gov (United States)

    Kasimsetty, Sashi G; Shigeoka, Alana A; Scheinok, Andrew A; Gavin, Amanda L; Ulevitch, Richard J; McKay, Dianne B

    2017-08-01

    Nucleotide-binding oligomerization domain (Nod)-containing proteins Nod1 and Nod2 play important roles in the innate immune response to pathogenic microbes, but mounting data suggest these pattern recognition receptors might also play key roles in adaptive immune responses. Targeting Nod1 and Nod2 signaling pathways in T cells is likely to provide a new strategy to modify inflammation in a variety of disease states, particularly those that depend on Ag-induced T cell activation. To better understand how Nod1 and Nod2 proteins contribute to adaptive immunity, this study investigated their role in alloantigen-induced T cell activation and asked whether their absence might impact in vivo alloresponses using a severe acute graft versus host disease model. The study provided several important observations. We found that the simultaneous absence of Nod1 and Nod2 primed T cells for activation-induced cell death. T cells from Nod1 × 2 -/- mice rapidly underwent cell death upon exposure to alloantigen. The Nod1 × 2 -/- T cells had sustained p53 expression that was associated with downregulation of its negative regulator MDM2. In vivo, mice transplanted with an inoculum containing Nod1 × 2 -/- T cells were protected from severe graft versus host disease. The results show that the simultaneous absence of Nod1 and Nod2 is associated with accelerated T cell death upon alloantigen encounter, suggesting these proteins might provide new targets to ameliorate T cell responses in a variety of inflammatory states, including those associated with bone marrow or solid organ transplantation. Copyright © 2017 by The American Association of Immunologists, Inc.

  11. Nasal-associated lymphoid tissues (NALTs) support the recall but not priming of influenza virus-specific cytotoxic T cells.

    Science.gov (United States)

    Pizzolla, Angela; Wang, Zhongfang; Groom, Joanna R; Kedzierska, Katherine; Brooks, Andrew G; Reading, Patrick C; Wakim, Linda M

    2017-05-16

    The lymphoid tissue that drains the upper respiratory tract represents an important induction site for cytotoxic T lymphocyte (CTL) immunity to airborne pathogens and intranasal vaccines. Here, we investigated the role of the nasal-associated lymphoid tissues (NALTs), which are mucosal-associated lymphoid organs embedded in the submucosa of the nasal passage, in the initial priming and recall expansion of CD8 + T cells following an upper respiratory tract infection with a pathogenic influenza virus and immunization with a live attenuated influenza virus vaccine. Whereas NALTs served as the induction site for the recall expansion of memory CD8 + T cells following influenza virus infection or vaccination, they failed to support activation of naïve CD8 + T cells. Strikingly, NALTs, unlike other lymphoid tissues, were not routinely surveyed during the steady state by circulating T cells. The selective recruitment of memory T cells into these lymphoid structures occurred in response to infection-induced elevation of the chemokine CXCL10, which attracted CXCR3 + memory CD8 + T cells. These results have significant implications for intranasal vaccines, which deliver antigen to mucosal-associated lymphoid tissue and aim to elicit protective CTL-mediated immunity.

  12. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) induces Fas-dependent activation-induced cell death in superantigen-primed T cells

    Energy Technology Data Exchange (ETDEWEB)

    Camacho, Iris A; Nagarkatti, Mitzi [Department of Microbiology and Immunology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298 (United States); Nagarkatti, Prakash S [Department of Pharmacology and Toxicology, PO Box 980613, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298-0613 (United States)

    2002-10-01

    Immune response against a foreign antigen is characterized by a growth phase, in which antigen-specific T cells clonally expand, followed by a decline phase in which the activated T cells undergo apoptosis, a process termed activation-induced cell death (AICD). In the current study, we have investigated the phase at which 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) acts to downregulate the antigen-specific T cell response. To this end, C57BL/6 +/+ mice were injected with staphylococcal enterotoxin A (SEA) into the footpads (10 {mu}g/footpad), and simultaneously treated with TCDD (10 or 50 {mu}g/kg intraperitoneally). At various time points, the draining lymph node (LN) cells were analyzed for SEA-activated T cells. The data demonstrated that in C57BL/6 +/+ mice, TCDD treatment did not alter the growth phase but facilitated the decline phase of SEA-reactive T cells. TCDD caused a significant decrease in the percentage and absolute numbers of CD4{sup +} and CD8{sup +} SEA-responsive T cells expressing V{beta}3{sup +} and V{beta}11{sup +} but did not affect SEA-nonresponsive V{beta}8{sup +} T cells. Upon in vitro culture, TCDD-exposed SEA-immunized LN cells exhibited increased levels of apoptosis when compared with the vehicle controls. When Fas-deficient (C57BL/6 lpr/lpr) or Fas ligand defective (C57BL/6 gld/gld) mice were treated with TCDD, they failed to exhibit a decrease in percentage and cellularity of SEA-reactive T cells, thereby suggesting a role of Fas-Fas ligand interactions in the TCDD-induced downregulation of SEA-reactive T cell response. The resistance to TCDD-induced decrease in T cell responsiveness to SEA seen in Fas- and FasL-mutant mice was neither due to decreased aryl hydrocabon receptor (AhR) expression nor to altered T cell responsiveness to SEA. The current study demonstrates that TCDD does not prevent T cell activation, but prematurely induces Fas-based AICD, which may contribute to the deletion of antigen-primed T cells. (orig.)

  13. Increased antigen presentation but impaired T cells priming after upregulation of interferon-beta induced by lipopolysaccharides is mediated by upregulation of B7H1 and GITRL.

    Directory of Open Access Journals (Sweden)

    Fang Wang

    Full Text Available Dendritic cells are able to present Ag-derived peptides on MHC class I and II molecules and induce T cells priming. Lipopolysaccharides (LPS, an activator of Toll-like 4 receptor (TLR4 signaling, has been demonstrated to facilitate Ag-presentation, up-regulate surface molecules expression but impair T cells priming. In this study, we investigated the effect of LPS on nicotine-enhanced DCs-dependent T cells priming and the mechanisms of LPS orchestrating the immunosuppressive program. We could demonstrate that the treatment with LPS resulted in increased surface molecules expression, enhanced Ag-presentation, up-regulated release of TGF-beta, TNF-alpha, IL-6, and IFN-beta. Concomititantly, the upregulation of IFN-beta in DCs induces the up-regulation of coinhibitory molecules B7H1 and GITRL, which cause an impaired activation of naïve Ag-specific T cells and the induction of T cell tolerance by enhancing B7H1-PD-1 interactions and promoting GITRL-GITL facilitated Treg generation, respectively. These data provide a mechanistic basis for the immunomodulatory action of IFN-beta which might open new possibilities in the development of therapeutic approaches aimed at the control of excessive immune response and persistent infection.

  14. Antigen-Specific Th17 Cells Are Primed by Distinct and Complementary Dendritic Cell Subsets in Oropharyngeal Candidiasis.

    Directory of Open Access Journals (Sweden)

    Kerstin Trautwein-Weidner

    2015-10-01

    Full Text Available Candida spp. can cause severe and chronic mucocutaneous and systemic infections in immunocompromised individuals. Protection from mucocutaneous candidiasis depends on T helper cells, in particular those secreting IL-17. The events regulating T cell activation and differentiation toward effector fates in response to fungal invasion in different tissues are poorly understood. Here we generated a Candida-specific TCR transgenic mouse reactive to a novel endogenous antigen that is conserved in multiple distant species of Candida, including the clinically highly relevant C. albicans and C. glabrata. Using TCR transgenic T cells in combination with an experimental model of oropharyngeal candidiasis (OPC we investigated antigen presentation and Th17 priming by different subsets of dendritic cells (DCs present in the infected oral mucosa. Candida-derived endogenous antigen accesses the draining lymph nodes and is directly presented by migratory DCs. Tissue-resident Flt3L-dependent DCs and CCR2-dependent monocyte-derived DCs collaborate in antigen presentation and T cell priming during OPC. In contrast, Langerhans cells, which are also present in the oral mucosa and have been shown to prime Th17 cells in the skin, are not required for induction of the Candida-specific T cell response upon oral challenge. This highlights the functional compartmentalization of specific DC subsets in different tissues. These data provide important new insights to our understanding of tissue-specific antifungal immunity.

  15. Impact of recombinant adenovirus serotype 35 priming versus boosting of a Plasmodium falciparum protein: Characterization of T- and B-Cell responses to liver-stage antigen 1

    NARCIS (Netherlands)

    Rodriguez, Ariane; Goudsmit, Jaap; Companjen, Arjen; Mintardjo, Ratna; Gillissen, Gert; Tax, Dennis; Sijtsma, Jeroen; Weverling, Gerrit Jan; Holterman, Lennart; Lanar, David E.; Havenga, Menzo J. E.; Radosevic, Katarina

    2008-01-01

    Prime-boost vaccination regimens with heterologous antigen delivery systems have indicated that redirection of the immune response is feasible. We showed earlier that T-cell responses to circumsporozoite (CS) protein improved significantly when the protein is primed with recombinant adenovirus

  16. Ursolic acid isolated from Uncaria rhynchophylla activates human dendritic cells via TLR2 and/or TLR4 and induces the production of IFN-gamma by CD4+ naïve T cells.

    Science.gov (United States)

    Jung, Tae-Young; Pham, Thanh Nhan Nguyen; Umeyama, Akemi; Shoji, Noboru; Hashimoto, Toshihiro; Lee, Je-Jung; Takei, Masao

    2010-09-25

    Ursolic acid is triterpene isolated from Uncaria rhynchophylla and is a pharmacologically active substance. The induction of dendritic cell maturation is critical for the induction of Ag-specific T-lymphocyte response and may be essential for the development of human vaccine relying on T cell immunity. In this study, we investigated that the effect of Ursolic acid on the phenotypic and functional maturation of human monocyte-derived dendritic cells in vitro. Dendritic cells harvested on day 8 were examined using functional assay. The expression levels of CD1a, CD80, CD83, CD86, HLA-DR and CCR7 on Ursolic acid-primed dendritic cells was slightly enhanced. Ursolic acid dose-dependently enhanced the T cell stimulatory capacity in an allogeneic mixed lymphocyte reaction, as measured by T cell proliferation. The production of IL-12p70 induced by Ursolic acid-primed dendritic cells was inhibited by the anti-Toll-like receptor-2 (TLR2) mAb and anti-TLR4 mAb. Moreover, Ursolic acid-primed dendritic cells expressed levels of mRNA coding for both TLR2 and TLR4. The majority of cells produced considerable interferon-gamma (IFN-gamma), but also small amounts of interleukin (IL-4)-4. Ursolic acid-primed dendritic cells have an intermediate migratory capacity towards CCL19 and CCL21. These results suggest that Ursolic acid modulates human dendritic cells function in a fashion that favors Th1 polarization via the activation of IL-12p70 dependent on TLR2 and/or TLR4, and may be used on dendritic cells-based vaccines for cancer immunotherapy. 2010 Elsevier B.V. All rights reserved.

  17. T-Cell Therapy Using Interleukin-21-Primed Cytotoxic T-Cell Lymphocytes Combined With Cytotoxic T-Cell Lymphocyte Antigen-4 Blockade Results in Long-Term Cell Persistence and Durable Tumor Regression.

    Science.gov (United States)

    Chapuis, Aude G; Roberts, Ilana M; Thompson, John A; Margolin, Kim A; Bhatia, Shailender; Lee, Sylvia M; Sloan, Heather L; Lai, Ivy P; Farrar, Erik A; Wagener, Felecia; Shibuya, Kendall C; Cao, Jianhong; Wolchok, Jedd D; Greenberg, Philip D; Yee, Cassian

    2016-11-01

    Purpose Peripheral blood-derived antigen-specific cytotoxic T cells (CTLs) provide a readily available source of effector cells that can be administered with minimal toxicity in an outpatient setting. In metastatic melanoma, this approach results in measurable albeit modest clinical responses in patients resistant to conventional therapy. We reasoned that concurrent cytotoxic T-cell lymphocyte antigen-4 (CTLA-4) checkpoint blockade might enhance the antitumor activity of adoptively transferred CTLs. Patients and Methods Autologous MART1-specific CTLs were generated by priming with peptide-pulsed dendritic cells in the presence of interleukin-21 and enriched by peptide-major histocompatibility complex multimer-guided cell sorting. This expeditiously yielded polyclonal CTL lines uniformly expressing markers associated with an enhanced survival potential. In this first-in-human strategy, 10 patients with stage IV melanoma received the MART1-specific CTLs followed by a standard course of anti-CTLA-4 (ipilimumab). Results The toxicity profile of the combined treatment was comparable to that of ipilimumab monotherapy. Evaluation of best responses at 12 weeks yielded two continuous complete remissions, one partial response (PR) using RECIST criteria (two PRs using immune-related response criteria), and three instances of stable disease. Infused CTLs persisted with frequencies up to 2.9% of CD8 + T cells for as long as the patients were monitored (up to 40 weeks). In patients who experienced complete remissions, PRs, or stable disease, the persisting CTLs acquired phenotypic and functional characteristics of long-lived memory cells. Moreover, these patients also developed responses to nontargeted tumor antigens (epitope spreading). Conclusion We demonstrate that combining antigen-specific CTLs with CTLA-4 blockade is safe and produces durable clinical responses, likely reflecting both enhanced activity of transferred cells and improved recruitment of new responses

  18. Fusion-Expressed CTB Improves Both Systemic and Mucosal T-Cell Responses Elicited by an Intranasal DNA Priming/Intramuscular Recombinant Vaccinia Boosting Regimen

    Directory of Open Access Journals (Sweden)

    Sugan Qiu

    2014-01-01

    Full Text Available Previous study showed that CTB (Cholera toxin subunit B can be used as a genetic adjuvant to enhance the systemic immune responses. To further investigate whether it can also be used as a genetic adjuvant to improve mucosal immune responses, we constructed DNA and recombinant Tiantan vaccinia (rTTV vaccines expressing OVA-CTB fusion antigen. Female C57BL/6 mice were immunized with an intranasal DNA priming/intramuscular rTTV boosting regimen. OVA specific T-cell responses were measured by IFN-γ ELISPOT and specific antibody responses were determined by ELISA. Compared to the nonadjuvant group (pSV-OVA intranasal priming/rTTV-OVA intramuscular boosting, pSV-OVA-CTB intranasal priming/rTTV-OVA-CTB intramuscular boosting group significantly improved the magnitudes of T-cell responses at spleen (1562±567 SFCs/106 splenocytes versus 330±182 SFCs/106 splenocytes, P<0.01, mesenteric LN (96±83 SFCs/106 lymphocytes versus 1±2 SFCs/106 lymphocytes, P<0.05, draining LNs of respiratory tract (109±60 SFCs/106 lymphocytes versus 2±2 SFCs/106 lymphocytes, P<0.01 and female genital tract (89±48 SFCs/106 lymphocytes versus 23±21 SFCs/106 lymphocytes, P<0.01. These results collectively demonstrated that fusion-expressed CTB could act as a potent adjuvant to improve both systemic and mucosal T-cell responses.

  19. The Role of B Cells for in Vivo T Cell Responses to a Friend Virus-Induced Leukemia

    Science.gov (United States)

    Schultz, Kirk R.; Klarnet, Jay P.; Gieni, Randall S.; Hayglass, Kent T.; Greenberg, Philip D.

    1990-08-01

    B cells can function as antigen-presenting cells and accessory cells for T cell responses. This study evaluated the role of B cells in the induction of protective T cell immunity to a Friend murine leukemia virus (F-MuLV)-induced leukemia (FBL). B cell-deficient mice exhibited significantly reduced tumor-specific CD4^+ helper and CD8^+ cytotoxic T cell responses after priming with FBL or a recombinant vaccinia virus containing F-MuLV antigens. Moreover, these mice had diminished T cell responses to the vaccinia viral antigens. Tumor-primed T cells transferred into B cell-deficient mice effectively eradicated disseminated FBL. Thus, B cells appear necessary for efficient priming but not expression of tumor and viral T cell immunity.

  20. 2B4-SAP signaling is required for the priming of naive CD8+ T cells by antigen-expressing B cells and B lymphoma cells.

    Science.gov (United States)

    Huang, Yu-Hsuan; Tsai, Kevin; Tan, Sara Y; Kang, Sohyeong; Ford, Mandy L; Harder, Kenneth W; Priatel, John J

    2017-01-01

    Mutations in SH2D1A gene that encodes SAP (SLAM-associated protein) result in X-linked lymphoproliferative disease (XLP), a rare primary immunodeficiency disease defined by exquisite sensitivity to the B-lymphotropic Epstein-Barr virus (EBV) and B cell lymphomas. However, the precise mechanism of how the loss of SAP function contributes to extreme vulnerability to EBV and the development of B cell lymphomas remains unclear. Here, we investigate the hypothesis that SAP is critical for CD8 + T cell immune surveillance of antigen (Ag)-expressing B cells or B lymphoma cells under conditions of defined T cell receptor (TCR) signaling. Sh2d1a - / - CD8 + T cells exhibited greatly diminished proliferation relative to wild type when Ag-presenting-B cells or -B lymphoma cells served as the primary Ag-presenting cell (APC). By contrast, Sh2d1a - / - CD8 + T cells responded equivalently to wild-type CD8 + T cells when B cell-depleted splenocytes, melanoma cells or breast carcinoma cells performed Ag presentation. Through application of signaling lymphocyte activation molecule (SLAM) family receptor blocking antibodies or SLAM family receptor-deficient CD8 + T cells and APCs, we found that CD48 engagement on the B cell surface by 2B4 is crucial for initiating SAP-dependent signaling required for the Ag-driven CD8 + T cell proliferation and differentiation. Altogether, a pivotal role for SAP in promoting the expansion and differentiation of B cell-primed viral-specific naive CD8 + T cells may explain the selective immune deficiency of XLP patients to EBV and B cell lymphomas.

  1. 2B4-SAP signaling is required for the priming of naive CD8+ T cells by antigen-expressing B cells and B lymphoma cells

    Science.gov (United States)

    2017-01-01

    ABSTRACT Mutations in SH2D1A gene that encodes SAP (SLAM-associated protein) result in X-linked lymphoproliferative disease (XLP), a rare primary immunodeficiency disease defined by exquisite sensitivity to the B-lymphotropic Epstein–Barr virus (EBV) and B cell lymphomas. However, the precise mechanism of how the loss of SAP function contributes to extreme vulnerability to EBV and the development of B cell lymphomas remains unclear. Here, we investigate the hypothesis that SAP is critical for CD8+ T cell immune surveillance of antigen (Ag)-expressing B cells or B lymphoma cells under conditions of defined T cell receptor (TCR) signaling. Sh2d1a−/− CD8+ T cells exhibited greatly diminished proliferation relative to wild type when Ag-presenting-B cells or -B lymphoma cells served as the primary Ag-presenting cell (APC). By contrast, Sh2d1a−/− CD8+ T cells responded equivalently to wild-type CD8+ T cells when B cell-depleted splenocytes, melanoma cells or breast carcinoma cells performed Ag presentation. Through application of signaling lymphocyte activation molecule (SLAM) family receptor blocking antibodies or SLAM family receptor-deficient CD8+ T cells and APCs, we found that CD48 engagement on the B cell surface by 2B4 is crucial for initiating SAP-dependent signaling required for the Ag-driven CD8+ T cell proliferation and differentiation. Altogether, a pivotal role for SAP in promoting the expansion and differentiation of B cell-primed viral-specific naive CD8+ T cells may explain the selective immune deficiency of XLP patients to EBV and B cell lymphomas. PMID:28344876

  2. T-Cell Therapy Using Interleukin-21–Primed Cytotoxic T-Cell Lymphocytes Combined With Cytotoxic T-Cell Lymphocyte Antigen-4 Blockade Results in Long-Term Cell Persistence and Durable Tumor Regression

    Science.gov (United States)

    Chapuis, Aude G.; Roberts, Ilana M.; Thompson, John A.; Margolin, Kim A.; Bhatia, Shailender; Lee, Sylvia M.; Sloan, Heather L.; Lai, Ivy P.; Farrar, Erik A.; Wagener, Felecia; Shibuya, Kendall C.; Cao, Jianhong; Wolchok, Jedd D.; Greenberg, Philip D.

    2016-01-01

    Purpose Peripheral blood–derived antigen-specific cytotoxic T cells (CTLs) provide a readily available source of effector cells that can be administered with minimal toxicity in an outpatient setting. In metastatic melanoma, this approach results in measurable albeit modest clinical responses in patients resistant to conventional therapy. We reasoned that concurrent cytotoxic T-cell lymphocyte antigen-4 (CTLA-4) checkpoint blockade might enhance the antitumor activity of adoptively transferred CTLs. Patients and Methods Autologous MART1-specific CTLs were generated by priming with peptide-pulsed dendritic cells in the presence of interleukin-21 and enriched by peptide-major histocompatibility complex multimer-guided cell sorting. This expeditiously yielded polyclonal CTL lines uniformly expressing markers associated with an enhanced survival potential. In this first-in-human strategy, 10 patients with stage IV melanoma received the MART1-specific CTLs followed by a standard course of anti–CTLA-4 (ipilimumab). Results The toxicity profile of the combined treatment was comparable to that of ipilimumab monotherapy. Evaluation of best responses at 12 weeks yielded two continuous complete remissions, one partial response (PR) using RECIST criteria (two PRs using immune-related response criteria), and three instances of stable disease. Infused CTLs persisted with frequencies up to 2.9% of CD8+ T cells for as long as the patients were monitored (up to 40 weeks). In patients who experienced complete remissions, PRs, or stable disease, the persisting CTLs acquired phenotypic and functional characteristics of long-lived memory cells. Moreover, these patients also developed responses to nontargeted tumor antigens (epitope spreading). Conclusion We demonstrate that combining antigen-specific CTLs with CTLA-4 blockade is safe and produces durable clinical responses, likely reflecting both enhanced activity of transferred cells and improved recruitment of new responses

  3. Rejection of a kidney transplant does not always lead to priming of cytotoxic T cells against mismatched donor HLA class I antigens

    NARCIS (Netherlands)

    van Kampen, C. A.; Versteeg-van der Voort Maarschalk, M. F.; Roelen, D. L.; ten Berge, I. J.; Claas, F. H.

    2001-01-01

    BACKGROUND: Previous studies showed that graft rejection is often associated with the presence of primed cytotoxic T cells (CTLs) with a high avidity for donor cells. Similar high avidity CTLs have been found in individuals who have formed IgG anti-HLA antibodies. The presence of such CTLs to a

  4. The timing of T cell priming and cycling

    Directory of Open Access Journals (Sweden)

    Reinhard eObst

    2015-11-01

    Full Text Available The proliferation of specific lymphocytes is the central tenet of the clonal selection paradigm. Antigen recognition by T cells triggers a series of events that produces expanded clones of differentiated effector cells. TCR signaling events are detectable within seconds and minutes and are likely to continue for hours and days in vivo. Here, I review the work done on the importance of TCR signals in the later part of the expansion phase of the primary T cell response, primarily regarding the regulation of the cell cycle in CD4+ and CD8+ cells. The results suggest a degree of programming by early signals for effector differentiation, particularly in the CD8+ T cell compartment, with optimal expansion supported by persistent antigen presentation later on. Differences to CD4+ T cell expansion and new avenues towards a molecular understanding of cell cycle regulation in lymphocytes are discussed.

  5. CD4 and CD8 T cell responses to the M. tuberculosis Ag85B-TB10.4 promoted by adjuvanted subunit, adenovector or heterologous prime boost vaccination

    DEFF Research Database (Denmark)

    Elvang, Tara; Christensen, Jan P; Billeskov, Rolf

    2009-01-01

    recruited to the site of infection, at the onset of infection. However, compared to CD8 T cells, CD4 T cells showed more extensive recruitment and were the main T cell subset proliferating at the site of infection. CONCLUSIONS/SIGNIFICANCE: Heterologous prime boost based on H4, produced an additive effect...

  6. Crosstalk between T lymphocytes and dendritic cells.

    Science.gov (United States)

    Hivroz, Claire; Chemin, Karine; Tourret, Marie; Bohineust, Armelle

    2012-01-01

    Dendritic cells (DCs) are professional antigen-presenting cells (APCs) with the unique property of inducing priming and differentiation of naïve CD4+ and CD8+ T cells into helper and cytotoxic effectors. Their efficiency is due to their unique ability to process antigen, express costimulatory molecules, secrete cytokines, and migrate to tissues or lymphoid organs to prime T cells. DCs also play an important role in T-cell peripheral tolerance. There is ample evidence that the DC ability to present antigens is regulated by CD4+ helper T cells. Indeed, interactions between surface receptors and ligands expressed respectively by T cells and DCs, as well as T-cell-derived cytokines modify DC functions. This T-cell-induced modification of DCs has been called "education" or "licensing." This intimate crosstalk between DCs and T lymphocytes is key in establishing appropriate adaptive immune responses. It requires cognate interactions between T lymphocytes and DCs, which are organized in time and space by structures called immunological synapses. Here we discuss the particular aspects of immunological synapses formed between T cells and DCs and the role these organized interactions have in T-cell-DC crosstalk.

  7. Refrigerator with variable capacity compressor and cycle priming action through capacity control and associated methods

    Science.gov (United States)

    Gomes, Alberto Regio; Litch, Andrew D.; Wu, Guolian

    2016-03-15

    A refrigerator appliance (and associated method) that includes a condenser, evaporator and a multi-capacity compressor. The appliance also includes a pressure reducing device arranged within an evaporator-condenser refrigerant circuit, and a valve system for directing or restricting refrigerant flow through the device. The appliance further includes a controller for operating the compressor upon the initiation of a compressor ON-cycle at a priming capacity above a nominal capacity for a predetermined or calculated duration.

  8. Incomplete effector/memory differentiation of antigen-primed CD8+ T cells in gene gun DNA-vaccinated mice

    DEFF Research Database (Denmark)

    Bartholdy, Christina; Stryhn, Anette; Hansen, Nils Jacob Vest

    2003-01-01

    DNA vaccination is an efficient way to induce CD8+ T cell memory, but it is still unclear to what extent such memory responses afford protection in vivo. To study this, we induced CD8+ memory responses directed towards defined viral epitopes, using DNA vaccines encoding immunodominant MHC class I......-restricted epitopes of lymphocytic choriomeningitis virus covalently linked to beta2-microglobulin. This vaccine construct primed for a stronger recall response than did a more conventional minigene construct. Despite this, vaccinated mice were only protected against systemic infection whereas protection against...... sites. Thus, our DNA vaccine induces a long-lived memory CD8+ T cell population that provides efficient protection against high-dose systemic infection. However, viral replication in solid non-lymphoid organs is not curtailed sufficiently fast to prevent significant virus-induced inflammation. Our...

  9. Accessory signals in T-T cell interactions between antigen- and alloantigen-specific, human memory T cells generated in vitro

    DEFF Research Database (Denmark)

    Odum, N; Ryder, L P; Georgsen, J

    1990-01-01

    The potential of activated HLA class II-positive T cells as antigen-/alloantigen-presenting cells remains controversial. In our model system we use in vitro-primed, HLA class II-specific T cells of the memory T-cell phenotype, CD4+, CD29+ (4B4+), and CD45RO+ (UCHL-1). We have previously shown......), or a calcium ionophore (A23187) enabled Ta to elicit alloantigen-specific memory T-cell responses and to present purified protein derivative (PPD) to PPD-specific T-cell lines. The addition of irradiated, Epstein-Barr virus-transformed B-cell lines (EBV-LCL) (but not their supernatants) had a similar but less...

  10. AMP Affects Intracellular Ca2+ Signaling, Migration, Cytokine Secretion and T Cell Priming Capacity of Dendritic Cells

    Science.gov (United States)

    Panther, Elisabeth; Dürk, Thorsten; Ferrari, Davide; Di Virgilio, Francesco; Grimm, Melanie; Sorichter, Stephan; Cicko, Sanja; Herouy, Yared; Norgauer, Johannes; Idzko, Marco; Müller, Tobias

    2012-01-01

    The nucleotide adenosine-5′-monophosphate (AMP) can be released by various cell types and has been shown to elicit different cellular responses. In the extracellular space AMP is dephosphorylated to the nucleoside adenosine which can then bind to adenosine receptors. However, it has been shown that AMP can also activate A1 and A2a receptors directly. Here we show that AMP is a potent modulator of mouse and human dendritic cell (DC) function. AMP increased intracellular Ca2+ concentration in a time and dose dependent manner. Furthermore, AMP stimulated actin-polymerization in human DCs and induced migration of immature human and bone marrow derived mouse DCs, both via direct activation of A1 receptors. AMP strongly inhibited secretion of TNF-α and IL-12p70, while it enhanced production of IL-10 both via activation of A2a receptors. Consequently, DCs matured in the presence of AMP and co-cultivated with naive CD4+CD45RA+ T cells inhibited IFN-γ production whereas secretion of IL-5 and IL-13 was up-regulated. An enhancement of Th2-driven immune response could also be observed when OVA-pulsed murine DCs were pretreated with AMP prior to co-culture with OVA-transgenic naïve OTII T cells. An effect due to the enzymatic degradation of AMP to adenosine could be ruled out, as AMP still elicited migration and changes in cytokine secretion in bone-marrow derived DCs generated from CD73-deficient animals and in human DCs pretreated with the ecto-nucleotidase inhibitor 5′-(alpha,beta-methylene) diphosphate (APCP). Finally, the influence of contaminating adenosine could be excluded, as AMP admixed with adenosine desaminase (ADA) was still able to influence DC function. In summary our data show that AMP when present during maturation is a potent regulator of dendritic cell function and point out the role for AMP in the pathogenesis of inflammatory disorders. PMID:22624049

  11. AMP affects intracellular Ca2+ signaling, migration, cytokine secretion and T cell priming capacity of dendritic cells.

    Directory of Open Access Journals (Sweden)

    Elisabeth Panther

    Full Text Available The nucleotide adenosine-5'-monophosphate (AMP can be released by various cell types and has been shown to elicit different cellular responses. In the extracellular space AMP is dephosphorylated to the nucleoside adenosine which can then bind to adenosine receptors. However, it has been shown that AMP can also activate A(1 and A(2a receptors directly. Here we show that AMP is a potent modulator of mouse and human dendritic cell (DC function. AMP increased intracellular Ca(2+ concentration in a time and dose dependent manner. Furthermore, AMP stimulated actin-polymerization in human DCs and induced migration of immature human and bone marrow derived mouse DCs, both via direct activation of A(1 receptors. AMP strongly inhibited secretion of TNF-α and IL-12p70, while it enhanced production of IL-10 both via activation of A(2a receptors. Consequently, DCs matured in the presence of AMP and co-cultivated with naive CD4(+CD45RA(+ T cells inhibited IFN-γ production whereas secretion of IL-5 and IL-13 was up-regulated. An enhancement of Th2-driven immune response could also be observed when OVA-pulsed murine DCs were pretreated with AMP prior to co-culture with OVA-transgenic naïve OTII T cells. An effect due to the enzymatic degradation of AMP to adenosine could be ruled out, as AMP still elicited migration and changes in cytokine secretion in bone-marrow derived DCs generated from CD73-deficient animals and in human DCs pretreated with the ecto-nucleotidase inhibitor 5'-(alpha,beta-methylene diphosphate (APCP. Finally, the influence of contaminating adenosine could be excluded, as AMP admixed with adenosine desaminase (ADA was still able to influence DC function. In summary our data show that AMP when present during maturation is a potent regulator of dendritic cell function and point out the role for AMP in the pathogenesis of inflammatory disorders.

  12. Delineation of canine parvovirus T cell epitopes with peripheral blood mononuclear cells and T cell clones from immunized dogs.

    NARCIS (Netherlands)

    G.F. Rimmelzwaan (Guus); M.C.M. Poelen (Martien); R.H. Meloen; J. Carlson; F.G.C.M. Uytdehaag (Fons); A.D.M.E. Osterhaus (Albert)

    1990-01-01

    textabstractThree synthetic peptides derived from the amino acid sequence of VP2 of canine parvovirus (CPV) which were recently shown to represent three distinct T cell epitopes for BALB/c mice could prime BALB/c mice for a CPV-specific proliferative T cell response upon immunization. Proliferative

  13. Microenvironmental cues enhance mesenchymal stem cell-mediated immunomodulation and regulatory T-cell expansion.

    Science.gov (United States)

    Kadle, Rohini L; Abdou, Salma A; Villarreal-Ponce, Alvaro P; Soares, Marc A; Sultan, Darren L; David, Joshua A; Massie, Jonathan; Rifkin, William J; Rabbani, Piul; Ceradini, Daniel J

    2018-01-01

    Mesenchymal stem cells (MSCs) are known to both have powerful immunosuppressive properties and promote allograft tolerance. Determining the environmental oxygen tension and inflammatory conditions under which MSCs are optimally primed for this immunosuppressive function is essential to their utilization in promoting graft tolerance. Of particular interest is the mechanisms governing the interaction between MSCs and regulatory T cells (Tregs), which is relatively unknown. We performed our experiments utilizing rat bone marrow derived MSCs. We observed that priming MSCs in hypoxia promotes maintenance of stem-like characteristics, with greater expression of typical MSC cell-surface markers, increased proliferation, and maintenance of differentiation potential. Addition of autologous MSCs to CD4+/allogeneic endothelial cell (EC) co-culture increases regulatory T cell (Treg) proliferation, which is further enhanced when MSCs are primed in hypoxia. Furthermore, MSC-mediated Treg expansion does not require direct cell-cell contact. The expression of indolamine 2,3-dioxygenase, a mediator of MSC immunomodulation, increases when MSCs are primed in hypoxia, and inhibition of IDO significantly decreases the expansion of Tregs. Priming with inflammatory cytokines IFNγ and TNFα increases also expression of markers associated with MSC immunomodulatory function, but decreases MSC proliferation. The expression of IDO also increases when MSCs are primed with inflammatory cytokines. However, there is no increase in Treg expansion when MSCs are primed with IFNγ, suggesting an alternate mechanism for inflammatory-stimulated MSC immunomodulation. Overall, these results suggest that MSCs primed in hypoxia or inflammatory conditions are optimally primed for immunosuppressive function. These results provide a clearer picture of how to enhance MSC immunomodulation for clinical use.

  14. IFN-beta inhibits T cell activation capacity of central nervous system APCs

    DEFF Research Database (Denmark)

    Teige, Ingrid; Liu, Yawei; Issazadeh-Navikas, Shohreh

    2006-01-01

    We have previously investigated the physiological effects of IFN-beta on chronic CNS inflammation and shown that IFN-beta(-/-) mice develop a more severe experimental autoimmune encephalomyelitis than their IFN-beta(+/-) littermates. This result was shown to be associated with a higher activation...... state of the glial cells and a higher T cell cytokine production in the CNS. Because this state suggested a down-regulatory effect of IFN-beta on CNS-specific APCs, these results were investigated further. We report that IFN-beta pretreatment of astrocytes and microglia (glial cells) indeed down......-modulate their capacity to activate autoreactive Th1 cells. First, we investigated the intrinsic ability of glial cells as APCs and report that glial cells prevent autoreactive Th1 cells expansion while maintaining Ag-specific T cell effector functions. However, when the glial cells are treated with IFN-beta before...

  15. Donor T cells primed on leukemia lysate-pulsed recipient APCs mediate strong graft-versus-leukemia effects across MHC barriers in full chimeras.

    Science.gov (United States)

    Ghosh, Arnab; Koestner, Wolfgang; Hapke, Martin; Schlaphoff, Verena; Länger, Florian; Baumann, Rolf; Koenecke, Christian; Cornberg, Markus; Welte, Karl; Blazar, Bruce R; Sauer, Martin G

    2009-04-30

    Antigen-presenting cells (APCs) of host origin drive graft-versus-leukemia (GVL) effects but can also trigger life-threatening graft-versus-host disease (GVHD) after hematopoietic cell transplantation (HCT) across major histocompatibility complex (MHC) barriers. We show that in vitro priming of donor lymphocytes can circumvent the need of recipient-derived APCs in vivo for mediating robust GVL effects and significantly diminishes the risk of severe GVHD. In vitro, generated and expanded T cells (ETCs) mediate anti-leukemia effects only when primed on recipient-derived APCs. Loading of APCs in vitro with leukemia cell lysate, chimerism status of the recipient, and timing of adoptive transfer after HCT are important factors determining the outcome. Delayed transfer of ETCs resulted in strong GVL effects in leukemia-bearing full chimera (FC) and mixed chimera (MC) recipients, which were comparable with the GVL/GVHD rates observed after the transfer of naive donor lymphocyte infusion (DLI). Upon early transfer, GVL effects were more pronounced with ETCs but at the expense of significant GVHD. The degree of GVHD was most severe in MCs after transfer of ETCs that had been in vitro primed either on nonpulsed recipient-derived APCs or with donor-derived APCs.

  16. Priming T-cell responses with recombinant measles vaccine vector in a heterologous prime-boost setting in non-human primates.

    Science.gov (United States)

    Bolton, Diane L; Santra, Sampa; Swett-Tapia, Cindy; Custers, Jerome; Song, Kaimei; Balachandran, Harikrishnan; Mach, Linh; Naim, Hussein; Kozlowski, Pamela A; Lifton, Michelle; Goudsmit, Jaap; Letvin, Norman; Roederer, Mario; Radošević, Katarina

    2012-09-07

    Licensed live attenuated virus vaccines capable of expressing transgenes from other pathogens have the potential to reduce the number of childhood immunizations by eliciting robust immunity to multiple pathogens simultaneously. Recombinant attenuated measles virus (rMV) derived from the Edmonston Zagreb vaccine strain was engineered to express simian immunodeficiency virus (SIV) Gag protein for the purpose of evaluating the immunogenicity of rMV as a vaccine vector in rhesus macaques. rMV-Gag immunization alone elicited robust measles-specific humoral and cellular responses, but failed to elicit transgene (Gag)-specific immune responses, following aerosol or intratracheal/intramuscular delivery. However, when administered as a priming vaccine to a heterologous boost with recombinant adenovirus serotype 5 expressing the same transgene, rMV-Gag significantly enhanced Gag-specific T lymphocyte responses following rAd5 immunization. Gag-specific humoral responses were not enhanced, however, which may be due to either the transgene or the vector. Cellular response priming by rMV against the transgene was highly effective even when using a suboptimal dose of rAd5 for the boost. These data demonstrate feasibility of using rMV as a priming component of heterologous prime-boost vaccine regimens for pathogens requiring strong cellular responses. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Priming with ceramide-1 phosphate promotes the therapeutic effect of mesenchymal stem/stromal cells on pulmonary artery hypertension

    International Nuclear Information System (INIS)

    Lim, Jisun; Kim, YongHwan; Heo, Jinbeom; Kim, Kang-Hyun; Lee, Seungun; Lee, Sei Won; Kim, Kyunggon; Kim, In-Gyu; Shin, Dong-Myung

    2016-01-01

    Some molecules enriched in damaged organs can contribute to tissue repair by stimulating the mobilization of stem cells. These so-called “priming” factors include bioactive lipids, complement components, and cationic peptides. However, their therapeutic significance remains to be determined. Here, we show that priming of mesenchymal stromal/stem cells (MSCs) with ceramide-1 phosphate (C1P), a bioactive lipid, enhances their therapeutic efficacy in pulmonary artery hypertension (PAH). Human bone marrow (BM)-derived MSCs treated with 100 or 200 μM C1P showed improved migration activity in Transwell assays compared with non-primed MSCs and concomitantly activated MAPK p42/44 and AKT signaling cascades. Although C1P priming had little effect on cell surface marker phenotypes and the multipotency of MSCs, it potentiated their proliferative, colony-forming unit-fibroblast, and anti-inflammatory activities. In a monocrotaline-induced PAH animal model, a single administration of human MSCs primed with C1P significantly attenuated the PAH-related increase in right ventricular systolic pressure, right ventricular hypertrophy, and thickness of α-smooth muscle actin-positive cells around the vessel wall. Thus, this study shows that C1P priming increases the effects of MSC therapy by enhancing the migratory, self-renewal, and anti-inflammatory activity of MSCs and that MSC therapy optimized with priming protocols might be a promising option for the treatment of PAH patients. - Highlights: • Human BM-derived MSCs primed with C1P have enhanced migratory activity. • C1P primed MSCs increase proliferation, self-renewal, and anti-inflammatory capacity. • C1P priming enhances the therapeutic capacity of MSCs in a PAH animal model.

  18. Priming with ceramide-1 phosphate promotes the therapeutic effect of mesenchymal stem/stromal cells on pulmonary artery hypertension

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Jisun [Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Department of Physiology, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, 88 Olympic-ro 43 gil, Songpa-gu, Seoul 05505 (Korea, Republic of); Kim, YongHwan; Heo, Jinbeom; Kim, Kang-Hyun; Lee, Seungun [Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Department of Physiology, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Lee, Sei Won [Department of Pulmonary and Critical Care Medicine and Clinical Research Center for Chronic Obstructive Airway Diseases, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Kim, Kyunggon [Department of Convergence Medicine, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Clinical Proteomics Core Lab, Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Kim, In-Gyu, E-mail: igkim@plaza.snu.ac.kr [Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, 88 Olympic-ro 43 gil, Songpa-gu, Seoul 05505 (Korea, Republic of); Shin, Dong-Myung, E-mail: d0shin03@amc.seoul.kr [Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Department of Physiology, University of Ulsan College of Medicine, Seoul (Korea, Republic of)

    2016-04-22

    Some molecules enriched in damaged organs can contribute to tissue repair by stimulating the mobilization of stem cells. These so-called “priming” factors include bioactive lipids, complement components, and cationic peptides. However, their therapeutic significance remains to be determined. Here, we show that priming of mesenchymal stromal/stem cells (MSCs) with ceramide-1 phosphate (C1P), a bioactive lipid, enhances their therapeutic efficacy in pulmonary artery hypertension (PAH). Human bone marrow (BM)-derived MSCs treated with 100 or 200 μM C1P showed improved migration activity in Transwell assays compared with non-primed MSCs and concomitantly activated MAPK{sup p42/44} and AKT signaling cascades. Although C1P priming had little effect on cell surface marker phenotypes and the multipotency of MSCs, it potentiated their proliferative, colony-forming unit-fibroblast, and anti-inflammatory activities. In a monocrotaline-induced PAH animal model, a single administration of human MSCs primed with C1P significantly attenuated the PAH-related increase in right ventricular systolic pressure, right ventricular hypertrophy, and thickness of α-smooth muscle actin-positive cells around the vessel wall. Thus, this study shows that C1P priming increases the effects of MSC therapy by enhancing the migratory, self-renewal, and anti-inflammatory activity of MSCs and that MSC therapy optimized with priming protocols might be a promising option for the treatment of PAH patients. - Highlights: • Human BM-derived MSCs primed with C1P have enhanced migratory activity. • C1P primed MSCs increase proliferation, self-renewal, and anti-inflammatory capacity. • C1P priming enhances the therapeutic capacity of MSCs in a PAH animal model.

  19. Dissociating markers of senescence and protective ability in memory T cells.

    Directory of Open Access Journals (Sweden)

    Martin Prlic

    Full Text Available No unique transcription factor or biomarker has been identified to reliably distinguish effector from memory T cells. Instead a set of surface markers including IL-7Rα and KLRG1 is commonly used to predict the potential of CD8 effector T cells to differentiate into memory cells. Similarly, these surface markers together with the tumor necrosis factor family member CD27 are frequently used to predict a memory T cell's ability to mount a recall response. Expression of these markers changes every time a memory cell is stimulated and repeated stimulation can lead to T cell senescence and loss of memory T cell responsiveness. This is a concern for prime-boost vaccine strategies which repeatedly stimulate T cells with the aim of increasing memory T cell frequency. The molecular cues that cause senescence are still unknown, but cell division history is likely to play a major role. We sought to dissect the roles of inflammation and cell division history in developing T cell senescence and their impact on the expression pattern of commonly used markers of senescence. We developed a system that allows priming of CD8 T cells with minimal inflammation and without acquisition of maximal effector function, such as granzyme expression, but a cell division history similar to priming with systemic inflammation. Memory cells derived from minimal effector T cells are fully functional upon rechallenge, have full access to non-lymphoid tissue and appear to be less senescent by phenotype upon rechallenge. However, we report here that these currently used biomarkers to measure senescence do not predict proliferative potential or protective ability, but merely reflect initial priming conditions.

  20. Exoenzyme T Plays a Pivotal Role in the IFN-γ Production after Pseudomonas Challenge in IL-12 Primed Natural Killer Cells

    Directory of Open Access Journals (Sweden)

    Mickael Vourc’h

    2017-10-01

    Full Text Available Pseudomonas aeruginosa (PA expresses the type III secretion system (T3SS and effector exoenzymes that interfere with intracellular pathways. Natural killer (NK cells play a key role in antibacterial immunity and their activation is highly dependent on IL-12 produced by myeloid cells. We studied PA and NK cell interactions and the role of IL-12 using human peripheral blood mononuclear cells, sorted human NK cells, and a human NK cell line (NK92. We used a wild-type (WT strain of PA (PAO1 or isogenic PA-deleted strains to delineate the role of T3SS and exoenzymes. Our hypotheses were tested in vivo in a PA-pneumonia mouse model. Human NK cells or NK92 cell line produced low levels of IFN-γ in response to PA without IL-12 stimulation, whereas PA significantly increased IFN-γ after IL-12 priming. The modulation of IFN-γ production by PA required bacteria-to-cell contact. Among T3SS effectors, exoenzyme T (ExoT upregulates IFN-γ production and control ERK activation. In vivo, ExoT also increases IFN-γ levels and the percentage of IFN-γ+ NK cells in lungs during PA pneumonia, confirming in vitro data. In conclusion, our results suggest that T3SS could modulate the production of IFN-γ by NK cells after PA infection through ERK activation.

  1. Transfer of in vivo primed transgenic T cells supports allergic lung inflammation and FIZZ1 and Ym1 production in an IL-4Rα and STAT6 dependent manner

    Directory of Open Access Journals (Sweden)

    Keegan Achsah D

    2011-10-01

    Full Text Available Abstract Background CD4+ T helper type 2 (TH2 cells, their cytokines IL-4, IL-5 and IL-13 and the transcription factor STAT6 are known to regulate various features of asthma including lung inflammation, mucus production and airway hyperreactivity and also drive alternative activation of macrophages (AAM. However, the precise roles played by the IL-4/IL-13 receptors and STAT6 in inducing AAM protein expression and modulating specific features of airway inflammation are still unclear. Since TH2 differentiation and activation plays a pivotal role in this disease, we explored the possibility of developing an asthma model in mice using T cells that were differentiated in vivo. Results In this study, we monitored the activation and proliferation status of adoptively transferred allergen-specific naïve or in vivo primed CD4+ T cells. We found that both the naïve and in vivo primed T cells expressed similar levels of CD44 and IL-4. However, in vivo primed T cells underwent reduced proliferation in a lymphopenic environment when compared to naïve T cells. We then used these in vivo generated effector T cells in an asthma model. Although there was reduced inflammation in mice lacking IL-4Rα or STAT6, significant amounts of eosinophils were still present in the BAL and lung tissue. Moreover, specific AAM proteins YM1 and FIZZ1 were expressed by epithelial cells, while macrophages expressed only YM1 in RAG2-/- mice. We further show that FIZZ1 and YM1 protein expression in the lung was completely dependent on signaling through the IL-4Rα and STAT6. Consistent with the enhanced inflammation and AAM protein expression, there was a significant increase in collagen deposition and smooth muscle thickening in RAG2-/- mice compared to mice deficient in IL-4Rα or STAT6. Conclusions These results establish that transfer of in vivo primed CD4+ T cells can induce allergic lung inflammation. Furthermore, while IL-4/IL-13 signaling through IL-4Rα and STAT6 is

  2. Glutathione Primes T Cell Metabolism for Inflammation

    DEFF Research Database (Denmark)

    Mak, Tak W.; Grusdat, Melanie; Duncan, Gordon S.

    2017-01-01

    the activation of mammalian target of rapamycin-1 (mTOR) and expression of NFAT and Myc transcription factors, abrogating the energy utilization and Myc-dependent metabolic reprogramming that allows activated T cells to switch to glycolysis and glutaminolysis. In vivo, T-cell-specific ablation of murine Gclc...

  3. Nodular inflammatory foci are sites of T cell priming and control of murine cytomegalovirus infection in the neonatal lung.

    Directory of Open Access Journals (Sweden)

    Felix R Stahl

    Full Text Available Neonates, including mice and humans, are highly susceptible to cytomegalovirus (CMV infection. However, many aspects of neonatal CMV infections such as viral cell tropism, spatio-temporal distribution of the pathogen as well as genesis of antiviral immunity are unknown. With the use of reporter mutants of the murine cytomegalovirus (MCMV we identified the lung as a primary target of mucosal infection in neonatal mice. Comparative analysis of neonatal and adult mice revealed a delayed control of virus replication in the neonatal lung mucosa explaining the pronounced systemic infection and disease in neonates. This phenomenon was supplemented by a delayed expansion of CD8(+ T cell clones recognizing the viral protein M45 in neonates. We detected viral infection at the single-cell level and observed myeloid cells forming "nodular inflammatory foci" (NIF in the neonatal lung. Co-localization of infected cells within NIFs was associated with their disruption and clearance of the infection. By 2-photon microscopy, we characterized how neonatal antigen-presenting cells (APC interacted with T cells and induced mature adaptive immune responses within such NIFs. We thus define NIFs of the neonatal lung as niches for prolonged MCMV replication and T cell priming but also as sites of infection control.

  4. Changing T cell specificity by retroviral T cell receptor display

    NARCIS (Netherlands)

    Kessels, H. W.; van den Boom, M. D.; Spits, H.; Hooijberg, E.; Schumacher, T. N.

    2000-01-01

    The diversity of the T cell receptor (TCR) repertoire is limited, because of the processes of positive and negative T cell selection. To obtain T cells with specificities beyond the immune system's capacity, we have developed a strategy for retroviral TCR display. In this approach, a library of T

  5. Donor T cells primed on leukemia lysate-pulsed recipient APCs mediate strong graft-versus-leukemia effects across MHC barriers in full chimeras

    OpenAIRE

    Ghosh, Arnab; Koestner, Wolfgang; Hapke, Martin; Schlaphoff, Verena; Länger, Florian; Baumann, Rolf; Koenecke, Christian; Cornberg, Markus; Welte, Karl; Blazar, Bruce R.; Sauer, Martin G.

    2009-01-01

    Antigen-presenting cells (APCs) of host origin drive graft-versus-leukemia (GVL) effects but can also trigger life-threatening graft-versus-host disease (GVHD) after hematopoietic cell transplantation (HCT) across major histocompatibility complex (MHC) barriers. We show that in vitro priming of donor lymphocytes can circumvent the need of recipient-derived APCs in vivo for mediating robust GVL effects and significantly diminishes the risk of severe GVHD. In vitro, generated and expanded T cel...

  6. Oral dendritic cells mediate antigen-specific tolerance by stimulating TH1 and regulatory CD4+ T cells.

    Science.gov (United States)

    Mascarell, Laurent; Lombardi, Vincent; Louise, Anne; Saint-Lu, Nathalie; Chabre, Henri; Moussu, Hélène; Betbeder, Didier; Balazuc, Anne-Marie; Van Overtvelt, Laurence; Moingeon, Philippe

    2008-09-01

    A detailed characterization of oral antigen-presenting cells is critical to improve second-generation sublingual allergy vaccines. To characterize oral dendritic cells (DCs) within lingual and buccal tissues from BALB/c mice with respect to their surface phenotype, distribution, and capacity to polarize CD4(+) T-cell responses. In situ analysis of oral DCs was performed by immunohistology. Purified DCs were tested in vitro for their capacity to capture, process, and present the ovalbumin antigen to naive CD4(+) T cells. In vivo priming of ovalbumin-specific T cells adoptively transferred to BALB/c mice was analyzed by cytofluorometry in cervical lymph nodes after sublingual administration of mucoadhesive ovalbumin. Three subsets of oral DCs with a distinct tissue distribution were identified: (1) a minor subset of CD207(+) Langerhans cells located in the mucosa itself, (2) a major subpopulation of CD11b(+)CD11c(-) and CD11b(+)CD11c(+) myeloid DCs at the mucosal/submucosal interface, and (3) B220(+)120G8(+) plasmacytoid DCs found in submucosal tissues. Purified myeloid and plasmacytoid oral DCs capture and process the antigen efficiently and are programmed to elicit IFN-gamma and/or IL-10 production together with a suppressive function in naive CD4(+) T cells. Targeting the ovalbumin antigen to oral DCs in vivo by using mucoadhesive particles establishes tolerance in the absence of cell depletion through the stimulation of IFN-gamma and IL-10-producing CD4(+) regulatory T cells in cervical lymph nodes. The oral immune system is composed of various subsets of tolerogenic DCs organized in a compartmentalized manner and programmed to induce T(H)1/regulatory T-cell responses.

  7. Metabolic activity is necessary for activation of T suppressor cells by B cells

    International Nuclear Information System (INIS)

    Elkins, K.L.; Stashak, P.W.; Baker, P.J.

    1990-01-01

    Ag-primed B cells must express cell-surface IgM, but not IgD or Ia Ag, and must remain metabolically active, in order to activate suppressor T cells (Ts) specific for type III pneumococcal polysaccharide. Ag-primed B cells that were gamma-irradiated with 1000r, or less, retained the ability to activate Ts; however, Ag-primed B cells exposed to UV light were not able to do so. gamma-Irradiated and UV-treated Ag-primed B cells both expressed comparable levels of cell-surface IgM, and both localized to the spleen after in vivo transfer; neither could proliferate in vitro in response to mitogens. By contrast, gamma-irradiated primed B cells were still able to synthesize proteins, whereas UV-treated primed B cells could not. These findings suggest that in order for Ag-primed B cells to activate Ts, they must (a) express cell-associated IgM (sIgM) antibody bearing the idiotypic determinants of antibody specific for type III pneumococcal polysaccharide, and (b) be able to synthesize protein for either the continued expression of sIgM after cell transfer, or for the elaboration of another protein molecule that is also required for the activation of Ts; this molecule does not appear to be Ia Ag

  8. Superantigen-primed T cells exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) replicate poorly following recall encounter

    Energy Technology Data Exchange (ETDEWEB)

    Faulconer, Laura; Camacho, Iris; Nagarkatti, Mitzi [Virginia Commonwealth University, Department of Microbiology and Immunology, Medical College of Virginia Campus, 980613, Richmond, VA (United States); Nagarkatti, Prakash S [Virginia Commonwealth University, Department of Pharmacology and Toxicology, Medical College of Virginia Campus, 980613, Richmond, VA (United States)

    2006-03-15

    The current study investigated the effect of tetrachlorodibenzo-p-dioxin (TCDD) on the ability of staphylococcal enterotoxin A (SEA)-primed T cells to divide by dual-labeling the cells with 5,6-carboxyfluorescein diacetate succinimidyl ester (CFSE) and antibodies against the specific T cell receptors. C57BL/6 wild-type mice were injected ip with TCDD (10 {mu}g/kg body weight) followed by hind footpad injections of SEA (10 {mu}g/footpad). The draining popliteal lymph nodes (PLN) were harvested 1-4 days posttreatment, labeled with CFSE and cultured for 1-4 days without further stimulation or in the presence of the recall antigen. TCDD-exposed SEA-reactive V{beta}3+ and V{beta}11+ T cells showed decreased cell divisions upon in vitro culture in the absence of any stimulation, which correlated with increased levels of apoptosis. The recall cell-division response was also defective in SEA-reactive T cells isolated from TCDD-exposed mice. However, during the recall response, cells from TCDD-exposed mice did not exhibit a defect in apoptosis, suggesting the defective recall response may result from a state of anergy rather than increased apoptosis. Using AhR knockout (KO) mice, we found AhR involvement in the regulation of defective cell division and apoptosis induced by TCDD. Together, these data demonstrate, while TCDD-induced apoptosis may account for the decreased primary T cell proliferative response, that the reduced cell division seen during subsequent exposure to recall antigen may result from a state of anergy. The study also demonstrates that a combined use of superantigen and CFSE may offer a simple and useful tool to monitor the ability of immunotoxicants to alter the proliferative responsiveness of antigen-specific T cells. (orig.)

  9. Human Asymptomatic Epitope Peptide/CXCL10-Based Prime/Pull Vaccine Induces Herpes Simplex Virus-Specific Gamma Interferon-Positive CD107+ CD8+ T Cells That Infiltrate the Cornea and Trigeminal Ganglia of Humanized HLA Transgenic Rabbits and Protect against Ocular Herpes Challenge.

    Science.gov (United States)

    Khan, Arif A; Srivastava, Ruchi; Vahed, Hawa; Roy, Soumyabrata; Walia, Sager S; Kim, Grace J; Fouladi, Mona A; Yamada, Taikun; Ly, Vincent T; Lam, Cynthia; Lou, Anthony; Nguyen, Vivianna; Boldbaatar, Undariya; Geertsema, Roger; Fraser, Nigel W; BenMohamed, Lbachir

    2018-06-13

    Herpes simplex virus 1 (HSV-1) is a prevalent human pathogen that infects the cornea causing potentially blinding herpetic disease. A clinical herpes vaccine is still lacking. In the present study, a novel prime/pull vaccine was tested in Human Leukocyte Antigen- (HLA-) transgenic rabbit model of ocular herpes (HLA Tg rabbit). Three asymptomatic (ASYMP) peptide epitopes were selected from the HSV-1 membrane glycoprotein C (UL44 400-408 ), the DNA replication binding helicase (UL9 196-204 ), and the tegument protein (UL25 572-580 ), all preferentially recognized by CD8 + T cells from "naturally protected" HSV-1-seropositive healthy ASYMP individuals (who never had recurrent corneal herpetic disease). HLA Tg rabbits were immunized with a mixture of these three ASYMP CD8 + T cell peptide epitopes (UL44 400-408 , UL9 196-204 and UL25 572-580 ), delivered subcutaneously with CpG 2007 adjuvant (prime). Fifteen days later, half of the rabbits received a topical ocular treatment with a recombinant neurotropic AAV8 vector, expressing the T cell-attracting CXCL10 chemokine (pull). The frequency, function of HSV-specific CD8 + T cells induced by the prime/pull vaccine were assessed in peripheral blood, cornea, and trigeminal ganglia (TG). Compared to peptides alone, the peptides/CXCL10 prime/pull vaccine generated frequent polyfunctional gamma interferon-positive (IFN-γ + ) CD107 + CD8 + T cells that infiltrated both the cornea and TG. CD8 + T cells mobilization into cornea and TG of prime/pull- vaccinated rabbits was associated with a significant reduction in corneal herpes infection and disease following an ocular HSV-1 challenge (McKrae). These findings draw attention to the novel prime/pull vaccine strategy to mobilize anti-viral CD8 + T cells into tissues protecting them against herpes infection and disease. IMPORTANCE There is an urgent need for a vaccine against widespread herpes simplex virus infections. The present study demonstrates that immunization of HLA

  10. Umbilical cord-derived mesenchymal stem cells reversed the suppressive deficiency of T regulatory cells from peripheral blood of patients with multiple sclerosis in a co-culture – a preliminary study

    Science.gov (United States)

    Yang, Hongna; Sun, Jinhua; Wang, Feng; Li, Yan; Bi, Jianzhong; Qu, Tingyu

    2016-01-01

    The immunoregulatory function of T regulatory cells (Tregs) is impaired in multiple sclerosis (MS). Recent studies have shown that umbilical cord-derived mesenchymal stem cells (UC-MSCs) exert regulatory effect on the functions of immune cells. Thus, we investigated whether UC-MSCs could improve the impaired function of Tregs from MS patients. Co-cultures of UC-MSCs with PBMCs of MS patients were performed for 3 days. Flow cytometry was used to determine the frequency of Tregs. A cell proliferation assay was used to evaluate the suppressive capacity of Tregs. ELISA was conducted for cytokine analysis in the co-cultures. Our results showed that UC-MSCs significantly increased the frequency of CD4+CD25+CD127low/− Tregs in resting CD4+ T cells (pUC-MSC-primed Tregs of MS patients significantly inhibited the proliferation of PHA-stimulated autologous and allogeneic CD4+CD25− T effector cells (Teffs) from MS patients and healthy individuals compared to non-UC-MSC-primed (naïve) Tregs from the same MS patients (pUC-MSC-primed Tregs from MS patients and naïve Tregs from healthy subjects. The impaired suppressive function of Tregs from MS can be completely reversed in a co-culture by UC-MSC modulation. This report is the first to demonstrate that functional defects of Tregs in MS can be repaired in vitro using a simple UC-MSC priming approach. PMID:27705922

  11. Conventional CD4+ T cells present bacterial antigens to induce cytotoxic and memory CD8+ T cell responses.

    Science.gov (United States)

    Cruz-Adalia, Aránzazu; Ramirez-Santiago, Guillermo; Osuna-Pérez, Jesús; Torres-Torresano, Mónica; Zorita, Virgina; Martínez-Riaño, Ana; Boccasavia, Viola; Borroto, Aldo; Martínez Del Hoyo, Gloria; González-Granado, José María; Alarcón, Balbino; Sánchez-Madrid, Francisco; Veiga, Esteban

    2017-11-17

    Bacterial phagocytosis and antigen cross-presentation to activate CD8 + T cells are principal functions of professional antigen presenting cells. However, conventional CD4 + T cells also capture and kill bacteria from infected dendritic cells in a process termed transphagocytosis (also known as transinfection). Here, we show that transphagocytic T cells present bacterial antigens to naive CD8 + T cells, which proliferate and become cytotoxic in response. CD4 + T-cell-mediated antigen presentation also occurs in vivo in the course of infection, and induces the generation of central memory CD8 + T cells with low PD-1 expression. Moreover, transphagocytic CD4 + T cells induce protective anti-tumour immune responses by priming CD8 + T cells, highlighting the potential of CD4 + T cells as a tool for cancer immunotherapy.

  12. Cytokine production and apoptosis among T cells from patients under treatment for Plasmodium falciparum malaria

    DEFF Research Database (Denmark)

    Kemp, K; Akanmori, B D; Adabayeri, V

    2002-01-01

    of peripheral T cells during and after the period of antimalarial treatment. A high proportion of peripheral CD3+ cells had an activated phenotype at and shortly after time of admission (day 0) and initiation of therapy. This activation peaked around day 2, and at this time-point peripheral T cells from......Available evidence suggests that Plasmodium falciparum malaria causes activation and reallocation of T cells, and that these in vivo primed cells re-emerge into the periphery following drug therapy. Here we have examined the cytokine production capacity and susceptibility to programmed cell death...... the patients could be induced to produce cytokines at conditions of limited cytokine response in cells from healthy control donors. Activated CD8hi and TCR-gammadelta+ cells were the primary IFN-gamma producers, whereas CD4+ cells constituted an important source of TNF-alpha. The proportion of apoptotic T...

  13. Enhancement of the priming efficacy of DNA vaccines encoding dendritic cell-targeted antigens by synergistic toll-like receptor ligands

    Directory of Open Access Journals (Sweden)

    Kornbluth Richard S

    2009-08-01

    Full Text Available Abstract Background Targeting of protein antigens to dendritic cells (DC via the DEC205 receptor enhances presentation of antigen-derived peptides on MHC-I and MHC-II molecules and, in the presence of costimulatory signals, antigen-specific immune responses. The immunogenicity and efficacy of DNA vaccination can also be enhanced by fusing the encoded antigen to single chain antibodies directed against DEC205. To further improve this strategy, we evaluated different toll-like receptor ligands (TLR and CD40 ligands (CD40L as adjuvants for DNA vaccines encoding a DEC205-single-chain antibody fused to the ovalbumin model antigen or HIV-1 Gag and assessed the priming efficacy of DNA in a DNA prime adenoviral vector boost immunization regimen. Results Mice were primed with the adjuvanted DEC-205 targeted DNA vaccines and boosted with adenoviral vectors encoding the same antigens. CD8+ T cell responses were determined after the adenoviral booster immunization, to determine how well the different DNA immunization regimens prime for the adenoviral boost. In the absence of adjuvants, targeting of DNA-encoded ovalbumin to DCs suppressed CD8+ T-cell responses after the adenoviral booster immunization. CD8+ T-cell responses to the DEC205 targeted DNA vaccines increased only slightly by adding either the TLR-9 ligand CpG, the TLR-3 ligand Poly I:C, or CD40 ligand expression plasmids. However, the combination of both TLR-ligands led to a strong enhancement of CD8+ T-cell responses compared to a non-targeted DNA vaccine. This finding was confirmed using HIV Gag as antigen. Conclusion Although DNA prime adenoviral vector boost immunizations belong to the strongest inducers of cytotoxic T cell responses in different animal models and humans, the CD8+ T cell responses can be further improved by targeting the DNA encoded antigen to DEC205 in the presence of synergistic TLR ligands CpG and Poly I:C.

  14. Differences between primed allogeneic T-cell responses and the primary mixed leucocyte reaction. Primed T cells become independent of the blocking effects of monoclonal antibodies against IL-1 beta and the CD5, CD11a (LFA-1), and CD11c (p 150,95) molecules

    DEFF Research Database (Denmark)

    Ødum, Niels; Hofmann, B; Morling, N

    1988-01-01

    .01) and the purified protein derivative (PPD) induced lymphocyte transformation response (42%, P less than or equal to 0.01) of peripheral blood mononuclear cells (PBMC), whereas primed allogeneic responses to PBMC and Epstein-Barr virus (EBV) cell lines were unaffected by this MoAb. In addition, preliminary data...... monoclonal antibodies (MoAb) directed against (i) adhesion molecules belonging to the CD11 cluster of leucocyte antigens (CD11a, LFA-1; CD11b, MAC1 = CR3; and CD11c, p 150,95); (ii) various T cell-related antigens (CD2, CD4, CD5 and CD8); and (iii) recombinant IL-1 beta. The CD5-, CD11a- and CD11c...

  15. Interaction of an immunodominant epitope with Ia molecules in T-cell activation

    DEFF Research Database (Denmark)

    Adorini, L; Sette, A; Buus, S

    1988-01-01

    The amino acid sequence corresponding to residues 107-116 of hen egg-white lysozyme (HEL) has been identified as containing an immunodominant T-cell epitope recognized in association with the I-Ed molecule. The immunodominance of this epitope in HEL-primed H-2d mice was demonstrated by analysis o......-120)-peptide was found to be immunogenic in H-2d mice. Thus, a single semiconservative substitution drastically reduces binding capacity and abolishes immunogenicity, suggesting that a strict correlation exists between binding of a peptide to Ia molecules and its immunogenicity....

  16. Thioredoxin priming prolongs lung allograft survival by promoting immune tolerance.

    Directory of Open Access Journals (Sweden)

    Hanbo Hu

    Full Text Available Tolerance to allograft antigen is the major challenge and final goal of transplant medicine. Our previous study demonstrated that thioredoxin-1 (Trx priming of donor lung significantly protected allogeneic lung graft. To determine whether Trx priming of donor lung inhibits allograft rejection, extends allograft survival and induces immune tolerance, orthotopic left lung transplantation was performed from Lewis to Sprague-Dawley rats without immunosuppression. Donor lungs were primed with Trx at 4°C for 4 hr prior to transplantation. After up to 37 days post-transplantation, allograft lung morphology, recipient T cell and humoral alloantigen-specific immune responses were examined. We found that Trx-primed lungs exhibited much reduced acute rejection and associated lung injuries resulting in loss of graft functional area at 5-37 days post-transplant in contrast to the control groups. CD4+ T cells from the recipients with Trx-primed grafts responded to the stimulation of dendritic cells (DCs of donor origin, in contrast to DCs from the third party, with significantly reduced proliferation. Consistent with above findings, we observed that CD4+Foxp3+ regulatory T cells in spleen cells from the recipients with Trx-primed grafts were significantly increased compared to controls, and CD4+ T cells from the recipients with Trx-primed grafts produced much higher levels of immunosuppressive cytokine, IL-10 when stimulated with allogeneic donor DCs. In addition, humoral immune tolerance was also induced as there was no significant increase levels of serum antibodies against donor antigens in Trx-lung recipients when re-challenged with allogeneic donor antigens. Our results demonstrate that one-time Trx-priming of donor lung grafts prior to transplantation significantly prolongs the survival of the grafts through inducing or promoting cellular and humoral alloantigen-specific immune tolerance, which might be associated with the induction of

  17. Targeting the genital tract mucosa with a lipopeptide/recombinant adenovirus prime/boost vaccine induces potent and long-lasting CD8+ T cell immunity against herpes: importance of MyD88.

    Science.gov (United States)

    Zhang, Xiuli; Dervillez, Xavier; Chentoufi, Aziz Alami; Badakhshan, Tina; Bettahi, Ilham; Benmohamed, Lbachir

    2012-11-01

    Targeting of the mucosal immune system of the genital tract with subunit vaccines has failed to induce potent and durable local CD8(+) T cell immunity, which is crucial for protection against many sexually transmitted viral pathogens, including HSV type 2 (HSV-2), which causes genital herpes. In this study, we aimed to investigate the potential of a novel lipopeptide/adenovirus type 5 (Lipo/rAdv5) prime/boost mucosal vaccine for induction of CD8(+) T cell immunity to protect the female genital tract from herpes. The lipopeptide vaccine and the rAdv5 vaccine express the immunodominant HSV-2 CD8(+) T cell epitope (gB(498-505)), and both were delivered intravaginally in the progesterone-induced B6 mouse model of genital herpes. Compared with mice immunized with the homologous lipopeptide/lipopeptide (Lipo/Lipo) vaccine, the Lipo/rAdv5 prime/boost immunized mice 1) developed potent and sustained HSV-specific CD8(+) T cells, detected in both the genital tract draining nodes and in the vaginal mucosa; 2) had significantly lower virus titers; 3) had decreased overt signs of genital herpes disease; and 4) did not succumb to lethal infection (p herpes infection and disease.

  18. Conditional ablation of CD205+ conventional dendritic cells impacts the regulation of T-cell immunity and homeostasis in vivo.

    Science.gov (United States)

    Fukaya, Tomohiro; Murakami, Ryuichi; Takagi, Hideaki; Sato, Kaori; Sato, Yumiko; Otsuka, Haruna; Ohno, Michiko; Hijikata, Atsushi; Ohara, Osamu; Hikida, Masaki; Malissen, Bernard; Sato, Katsuaki

    2012-07-10

    Dendritic cells (DCs) are composed of multiple subsets that play a dual role in inducing immunity and tolerance. However, it is unclear how CD205(+) conventional DCs (cDCs) control immune responses in vivo. Here we generated knock-in mice with the selective conditional ablation of CD205(+) cDCs. CD205(+) cDCs contributed to antigen-specific priming of CD4(+) T cells under steady-state conditions, whereas they were dispensable for antigen-specific CD4(+) T-cell responses under inflammatory conditions. In contrast, CD205(+) cDCs were required for antigen-specific priming of CD8(+) T cells to generate cytotoxic T lymphocytes (CTLs) mediated through cross-presentation. Although CD205(+) cDCs were involved in the thymic generation of CD4(+) regulatory T cells (Tregs), they maintained the homeostasis of CD4(+) Tregs and CD4(+) effector T cells in peripheral and mucosal tissues. On the other hand, CD205(+) cDCs were involved in the inflammation triggered by Toll-like receptor ligand as well as bacterial and viral infections. Upon microbial infections, CD205(+) cDCs contributed to the cross-priming of CD8(+) T cells for generating antimicrobial CTLs to efficiently eliminate pathogens, whereas they suppressed antimicrobial CD4(+) T-cell responses. Thus, these findings reveal a critical role for CD205(+) cDCs in the regulation of T-cell immunity and homeostasis in vivo.

  19. Mechanisms behind functional avidity maturation in T cells

    DEFF Research Database (Denmark)

    von Essen, Marina Rode; Kongsbak, Martin; Geisler, Carsten

    2012-01-01

    During an immune response antigen-primed B-cells increase their antigen responsiveness by affinity maturation mediated by somatic hypermutation of the genes encoding the antigen-specific B-cell receptor (BCR) and by selection of higher-affinity B cell clones. Unlike the BCR, the T-cell receptor...

  20. Caspase-2-dependent dendritic cell death, maturation, and priming of T cells in response to Brucella abortus infection.

    Directory of Open Access Journals (Sweden)

    Xinna Li

    presentation, and T cell priming.

  1. Targeting the Genital Tract Mucosa with a Lipopeptide/Recombinant Adenovirus Prime/Boost Vaccine Induces Potent and Long-Lasting CD8+ T Cell Immunity Against Herpes: Importance of Myeloid Differentiation Factor 881

    Science.gov (United States)

    Zhang, Xiuli; Dervillez, Xavier; Chentoufi, Aziz Alami; Badakhshan, Tina; Bettahi, Ilham; BenMohamed, Lbachir

    2012-01-01

    Targeting the mucosal immune system of the genital tract (GT) with subunit vaccines failed to induce potent and durable local CD8+ T cell immunity, crucial for protection against many sexually transmitted viral (STV) pathogens, including herpes simplex virus type 2 (HSV-2) that causes genital herpes. In this study, we aimed to investigate the potential of a novel lipopeptide/adenovirus type 5 (Lipo/rAdv5) prime/boost mucosal vaccine for induction of CD8+ T cell immunity to protect the female genital tract from herpes. The lipopeptide and the rAdv5 vaccine express the immunodominant HSV-2 CD8+ T cell epitope (gB498-505) and both were delivered intravaginally (IVAG) in the progesterone-induced B6 mouse model of genital herpes. Compared to its homologous lipopeptide/lipopeptide (Lipo/Lipo); the Lipo/rAdv5 prime/boost immunized mice: (i) developed potent and sustained HSV-specific CD8+ T cells, detected in both the GT draining nodes (GT-DLN) and in the vaginal mucosa (VM); (ii) had significantly lower virus titers; (iii) had decreased overt signs of genital herpes disease; and (iv) did not succumb to lethal infection (p herpes infection and disease. PMID:23018456

  2. PRIMING OF A LOW CAPACITY WASTE WATER TREATEMENT PLANT

    Directory of Open Access Journals (Sweden)

    Nicoleta Luminiţa Jurj

    2012-12-01

    Full Text Available In wastewater treatment plants, secondary biologic treatment is generally compulsory for the localities having less than 10,000 equivalent inhabitants, with a supplementary removal of nutrients if the area is a sensitive one. For the areas which are not suitable for centralized household used water collecting network individual treatment devices or collective low capacity devices are recommended. For certain settlements, for instance for the mountainous dispersed villages, or for detached individual households or farms the collective devices can not be an economic solution as involves high maintenance costs and exploiting problems due to long pipes for low flow rates. Priming is one of the starting up processes of a waste water treatment plant. This is not a very difficult process and requires no specialized staff. However, for helping the owners of a low capacity treatment plant, priming of ORM 5 type mechanical - biological equipment consisting in a tank with four compartments, designed for five equivalent inhabitants was studied inside the plant of Timisoara municipality. For the experimental tests waste water from the Timisoara city sewage network was used. This is mixed waste water resulted from faecal/domestic, industrial and rain water. The study comprised tests in unfavorable technological conditions. The conclusions of the monitoring process underline the need of control of the aeration process and the negative technological and consequently the negative economic effect of the less effective process control.

  3. Utility of a mouse model of osteoarthritis to demonstrate cartilage protection by IFNγ-primed equine mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Marie Maumus

    2016-09-01

    Full Text Available Objective. Mesenchymal stem cells isolated from adipose tissue (ASC have been shown to influence the course of osteoarthritis (OA in different animal models and are promising in veterinary medicine for horses involved in competitive sport. The aim of this study was to characterize equine ASCs (eASC and investigate the role of interferon-gamma (IFNγ-priming on their therapeutic effect in a murine model of OA, which could be relevant to equine OA.Methods. ASC were isolated from subcutaneous fat. Expression of specific markers was tested by cytometry and RT-qPCR. Differentiation potential was evaluated by histology and RT-qPCR. For functional assays, naïve or IFNγ-primed eASCs were cocultured with PBMC or articular cartilage explants. Finally, the therapeutic effect of eASCs was tested in the model of collagenase-induced OA in mice (CIOA.Results. The immunosuppressive function of eASCs on equine T cell proliferation and their chondroprotective effect on equine cartilage explants were demonstrated in vitro. Both cartilage degradation and T cell activation were reduced by naïve and IFNγ-primed eASCs but IFNγ-priming enhanced these functions. In CIOA, intra-articular injection of eASCs prevented articular cartilage from degradation and IFNγ-primed eASCs were more potent than naïve cells. This effect was related to the modulation of eASC secretome by IFNγ-priming.Conclusion. IFNγ-priming of eASCs potentiated their antiproliferative and chondroprotective functions. We demonstrated that the immunocompetent mouse model of CIOA was relevant to test the therapeutic efficacy of xenogeneic eASCs for OA and confirmed that IFNγ-primed eASCs may have a therapeutic value for musculoskeletal diseases in veterinary medicine.

  4. How Do CD4+ T Cells Detect and Eliminate Tumor Cells That Either Lack or Express MHC Class II Molecules?

    Science.gov (United States)

    Haabeth, Ole Audun Werner; Tveita, Anders Aune; Fauskanger, Marte; Schjesvold, Fredrik; Lorvik, Kristina Berg; Hofgaard, Peter O.; Omholt, Hilde; Munthe, Ludvig A.; Dembic, Zlatko; Corthay, Alexandre; Bogen, Bjarne

    2014-01-01

    CD4+ T cells contribute to tumor eradication, even in the absence of CD8+ T cells. Cytotoxic CD4+ T cells can directly kill MHC class II positive tumor cells. More surprisingly, CD4+ T cells can indirectly eliminate tumor cells that lack MHC class II expression. Here, we review the mechanisms of direct and indirect CD4+ T cell-mediated elimination of tumor cells. An emphasis is put on T cell receptor (TCR) transgenic models, where anti-tumor responses of naïve CD4+ T cells of defined specificity can be tracked. Some generalizations can tentatively be made. For both MHCIIPOS and MHCIINEG tumors, presentation of tumor-specific antigen by host antigen-presenting cells (APCs) appears to be required for CD4+ T cell priming. This has been extensively studied in a myeloma model (MOPC315), where host APCs in tumor-draining lymph nodes are primed with secreted tumor antigen. Upon antigen recognition, naïve CD4+ T cells differentiate into Th1 cells and migrate to the tumor. At the tumor site, the mechanisms for elimination of MHCIIPOS and MHCIINEG tumor cells differ. In a TCR-transgenic B16 melanoma model, MHCIIPOS melanoma cells are directly killed by cytotoxic CD4+ T cells in a perforin/granzyme B-dependent manner. By contrast, MHCIINEG myeloma cells are killed by IFN-γ stimulated M1-like macrophages. In summary, while the priming phase of CD4+ T cells appears similar for MHCIIPOS and MHCIINEG tumors, the killing mechanisms are different. Unresolved issues and directions for future research are addressed. PMID:24782871

  5. How do CD4+ T cells detect and eliminate tumor cells that either lack or express MHC class II molecules?

    Directory of Open Access Journals (Sweden)

    Ole Audun Werner Haabeth

    2014-04-01

    Full Text Available CD4+ T cells contribute to tumor eradication, even in the absence of CD8+ T cells. Cytotoxic CD4+ T cells can directly kill MHC class II positive tumor cells. More surprisingly, CD4+ T cells can indirectly eliminate tumor cells that lack MHC class II expression. Here, we review the mechanisms of direct and indirect CD4+ T cell-mediated elimination of tumor cells. An emphasis is put on T cell receptor (TCR transgenic models, where anti-tumor responses of naïve CD4+ T cells of defined specificity can be tracked. Some generalizations can tentatively be made. For both MHCIIPOS and MHCIINEG tumors, presentation of tumor specific antigen by host antigen presenting cells (APCs appears to be required for CD4+ T cell priming. This has been extensively studied in a myeloma model (MOPC315, where host APCs in tumor-draining lymph nodes are primed with secreted tumor antigen. Upon antigen recognition, naïve CD4+ T cells differentiate into Th1 cells and migrate to the tumor. At the tumor site, the mechanisms for elimination of MHCIIPOS and MHCIINEG tumor cells differ. In a TCR transgenic B16 melanoma model, MHCIIPOS melanoma cells are directly killed by cytotoxic CD4+ T cells in a perforin/granzyme B-dependent manner. By contrast, MHCIINEG myeloma cells are killed by IFN-g stimulated M1-like macrophages. In summary, while the priming phase of CD4+ T cells appears similar for MHCIIPOS and MHCIINEG tumors, the killing mechanisms are different. Unresolved issues and directions for future research are addressed.

  6. CD8+ T cells from a novel T cell receptor transgenic mouse induce liver-stage immunity that can be boosted by blood-stage infection in rodent malaria.

    Directory of Open Access Journals (Sweden)

    Lei Shong Lau

    2014-05-01

    Full Text Available To follow the fate of CD8+ T cells responsive to Plasmodium berghei ANKA (PbA infection, we generated an MHC I-restricted TCR transgenic mouse line against this pathogen. T cells from this line, termed PbT-I T cells, were able to respond to blood-stage infection by PbA and two other rodent malaria species, P. yoelii XNL and P. chabaudi AS. These PbT-I T cells were also able to respond to sporozoites and to protect mice from liver-stage infection. Examination of the requirements for priming after intravenous administration of irradiated sporozoites, an effective vaccination approach, showed that the spleen rather than the liver was the main site of priming and that responses depended on CD8α+ dendritic cells. Importantly, sequential exposure to irradiated sporozoites followed two days later by blood-stage infection led to augmented PbT-I T cell expansion. These findings indicate that PbT-I T cells are a highly versatile tool for studying multiple stages and species of rodent malaria and suggest that cross-stage reactive CD8+ T cells may be utilized in liver-stage vaccine design to enable boosting by blood-stage infections.

  7. The impact of depressed mood, working memory capacity, and priming on delay discounting.

    Science.gov (United States)

    Szuhany, Kristin L; MacKenzie, Danny; Otto, Michael W

    2018-09-01

    The impaired ability to delay rewards, delay discounting (DD), is associated with several problematic conditions in which impulsive decision-making derails long-term goals. Working memory (WM), the ability to actively store and manipulate information, is associated with DD. The purpose of this study was to examine the effect of cognitive priming on DD and to identify moderation of this effect dependent on degree of WM capacity (WMC) and depressed mood. A WM task (n-back) was used as a cognitive prime before assessment of DD (Monetary Choice Questionnaire) and was compared to a similar prime from an inhibition task in a factorial design in 183 community participants. All participants completed a DD task and assessment of depressive symptoms (Beck Depression Inventory-II). Priming effects were evaluated relative to WMC of participants. Higher WMC and lower depression scores were associated with greater relative preference for larger, delayed rewards. The effects of a WM prime were moderated by WMC; benefits of the prime were only evident for individuals with lower WMC. No effects were found for an alternative inhibition task. Limitations included depression scores mainly in subclinical range, use of hypothetical instead of real rewards in the DD task, and no examination of the time course of effects. This study provides support for the effectiveness of a brief WM prime in enhancing ability to delay rewards. Priming may be a useful adjunctive intervention for individuals with WM dysfunction or conditions in which impulsive decision-making may derail long-term goals. Copyright © 2018. Published by Elsevier Ltd.

  8. OX62+OX6+OX35+ rat dendritic cells are unable to prime CD4+ T cells for an effective immune response following acute burn injury.

    Science.gov (United States)

    Fazal, Nadeem

    2013-01-01

    Co-stimulatory molecules expressed on Dendritic Cells (DCs) function to coordinate an efficient immune response by T cells in the peripheral lymph nodes. We hypothesized that CD4+ T cell-mediated immune suppression following burn injury may be related to dysfunctional DCs residing in gut associated lymphoid tissues (GALT), such as Mesenteric Lymph Nodes (MLN). Therefore, we studied co-stimulatory molecules expressed on burn rat MLN DCs as an index of functional DCs that would mount an effective normal CD4+ T cell immune response. In a rat model of 30% Total Body Surface Area (TBSA) scald burn, OX62+OX6+OX35+ DCs and CD4+ T cells were isolated from MLN of day 3 post-burn and sham control rats. DCs were tested for their expression of co-stimulatory molecules, and prime CD4+ T cell (DC:CD4+T cell co-culture assays) to determine an effector immune response such as CD4+ T cell proliferation. The surface receptor expressions of MLN DCs co-stimulatory molecules, i.e., MHC-II, CD40, CD80 (B7-1), and CD86 (B7-2) were determined by Flow cytometry (quantitatively) and confocal microscopy (qualitatively). Tritiated thymidine and CFDA-SE determined CD4+ T cell proliferation following co-incubation with DCs. Cytokine milieu of MLN (IL-12 and IL-10) was assessed by mRNA determination by RT-PCR. The results showed down-regulated expressions of co-stimulatory markers (CD80, CD86, CD40 and MHC-II) of MLN DCs obtained from burn-injured rats, as well as lack of ability of these burn-induced DCs to stimulate CD4+ T cell proliferation in co-culture assays, as compared to the sham rats. Moreover, anti-CD40 stimulation of affected burn MLN DCs did not reverse this alteration. Furthermore, a marked up-regulation of mRNA IL-10 and down-regulation of mRNA IL-12 in burn MLN as compared to sham animals was also observed. To surmise, the data indicated that dysfunctional OX62+OX6+OX35+ rat MLN DCs may contribute to CD4+ T-cell-mediated immune suppression observed following acute burn injury.

  9. OX62+OX6+OX35+ rat dendritic cells are unable to prime CD4+ T cells for an effective immune response following acute burn injury☆

    Science.gov (United States)

    Fazal, Nadeem

    2013-01-01

    Co-stimulatory molecules expressed on Dendritic Cells (DCs) function to coordinate an efficient immune response by T cells in the peripheral lymph nodes. We hypothesized that CD4+ T cell-mediated immune suppression following burn injury may be related to dysfunctional DCs residing in gut associated lymphoid tissues (GALT), such as Mesenteric Lymph Nodes (MLN). Therefore, we studied co-stimulatory molecules expressed on burn rat MLN DCs as an index of functional DCs that would mount an effective normal CD4+ T cell immune response. In a rat model of 30% Total Body Surface Area (TBSA) scald burn, OX62+OX6+OX35+ DCs and CD4+ T cells were isolated from MLN of day 3 post-burn and sham control rats. DCs were tested for their expression of co-stimulatory molecules, and prime CD4+ T cell (DC:CD4+T cell co-culture assays) to determine an effector immune response such as CD4+ T cell proliferation. The surface receptor expressions of MLN DCs co-stimulatory molecules, i.e., MHC-II, CD40, CD80 (B7-1), and CD86 (B7-2) were determined by Flow cytometry (quantitatively) and confocal microscopy (qualitatively). Tritiated thymidine and CFDA-SE determined CD4+ T cell proliferation following co-incubation with DCs. Cytokine milieu of MLN (IL-12 and IL-10) was assessed by mRNA determination by RT-PCR. The results showed down-regulated expressions of co-stimulatory markers (CD80, CD86, CD40 and MHC-II) of MLN DCs obtained from burn-injured rats, as well as lack of ability of these burn-induced DCs to stimulate CD4+ T cell proliferation in co-culture assays, as compared to the sham rats. Moreover, anti-CD40 stimulation of affected burn MLN DCs did not reverse this alteration. Furthermore, a marked up-regulation of mRNA IL-10 and down-regulation of mRNA IL-12 in burn MLN as compared to sham animals was also observed. To surmise, the data indicated that dysfunctional OX62+OX6+OX35+ rat MLN DCs may contribute to CD4+ T-cell-mediated immune suppression observed following acute burn injury

  10. Small hypoxia-primed mesenchymal stem cells attenuate graft-versus-host disease

    KAUST Repository

    Kim, YongHwan

    2018-05-22

    Mesenchymal stem cells (MSCs) are of particular interest for the treatment of immune-related diseases due to their immunosuppressive capacity. Here, we show that Small MSCs primed with Hypoxia and Calcium ions (SHC-MSCs) exhibit enhanced stemness and immunomodulatory functions for treating allogeneic conflicts. Compared with naïve cultured human umbilical cord blood-derived MSCs, SHC-MSCs were resistant to passage-dependent senescence mediated via the monocyte chemoattractant protein-1 and p53/p21 cascade and secreted large amounts of pro-angiogenic and immunomodulatory factors, resulting in suppression of T-cell proliferation. SHC-MSCs showed DNA demethylation in pluripotency, germline, and imprinted genes similarly to very small embryonic-like stem cells, suggesting a potential mutual relationship. Genome-wide DNA methylome and transcriptome analyses indicated that genes related to immune modulation, cell adhesion, and the cell cycle were up-regulated in SHC-MSCs. Particularly, polo-like kinase-1 (PLK1), zinc-finger protein-143, dehydrogenase/reductase-3, and friend-of-GATA2 play a key role in the beneficial effects of SHC-MSCs. Administration of SHC-MSCs or PLK1-overexpressing MSCs significantly ameliorated symptoms of graft-versus-host disease (GVHD) in a humanized mouse model, resulting in significantly improved survival, less weight loss, and reduced histopathologic injuries in GVHD target organs compared with naïve MSC-infused mice. Collectively, our findings suggest that SHC-MSCs can improve the clinical treatment of allogeneic conflicts, including GVHD.

  11. Different Competitive Capacities of Stat4 and Stat6 Deficient CD4+ T Cells during Lymphophenia-Driven Proliferation

    DEFF Research Database (Denmark)

    Sanchez-Guajardo, Vanesa Maria; Borghans, J.A.M.; Marquez, M.-E.

    2005-01-01

    The outcome of an immune response relies on the competitive capacities acquired through differentiation of CD4ﰀ T cells into Th1 or Th2 effector cells. Because Stat4 and Stat6 proteins are implicated in the Th1 vs Th2 generation and maintenance, respectively, we compare in this study the kinetics...... of Stat4ﰐ/ﰐ and Stat6ﰐ/ﰐ CD4ﰀ T cells during competitive bone marrow reconstitution and lymphopenia-driven proliferation. After bone marrow transplantation, both populations reconstitute the peripheral T cell pools equally well. After transfer into lymphopenic hosts, wild-type and Stat6ﰐ/ﰐ CD4ﰀ T cells...... show a proliferation advantage, which is early associated with the expression of an active phospho-Stat4 and the down-regulation of Stat6. Despite these differences, Stat4- and Stat6-deficient T cells reach similar steady state numbers. However, when both Stat4ﰐ/ﰐ and Stat6ﰐ/ﰐ CD4ﰀ T cells...

  12. De novo alloreactive memory CD8+ T cells develop following allogeneic challenge when CNI immunosuppression is delayed.

    Science.gov (United States)

    Hart-Matyas, M; Gareau, A J; Hirsch, G M; Lee, T D G

    2015-01-01

    Allospecific memory T cells are a recognized threat to the maintenance of solid-organ transplants. Limited information exists regarding the development of alloreactive memory T cells when post-transplant immunosuppression is present. The clinical practice of delaying calcineurin inhibitor (CNI) initiation post-transplant may permit the development of a de novo allospecific memory population. We investigated the development of de novo allospecific memory CD8+ T cells following the introduction of CNI immunosuppression in a murine model using allogeneic cell priming. Recipient mice alloprimed with splenocytes from fully mismatched donors received cyclosporine (CyA), initiated at 0, 2, 6, or 10days post-prime. Splenocytes from recipients were analyzed by flow cytometry or enzyme-linked immunosorbent assay for evidence of memory cell formation. Memory and effector CD8+ T cell development was prevented when CyA was initiated at 0day or 2days post-prime (p0.05). Delaying CyA up to 6days or later post-prime permits the development of functional de novo allospecific memory CD8+ T cells. The development of this potentially detrimental T cell population in patients could be prevented by starting CNI immunosuppression early post-transplant. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. In vitro Th1 and Th2 cell polarization is severely influenced by the initial ratio of naïve and memory CD4+ T cells

    DEFF Research Database (Denmark)

    Blom, Lars; Poulsen, Lars K.

    2013-01-01

    by even small percentages (99% naïve CD4+ T cells resulted in better Th1 and Th2 polarization with significant reduced fractions of IL-4+ and IFN-γ+ CD4+ T cells, respectively. Moreover, the Th2 primed >99% naïve CD4+ T cells showed significantly higher ratio of IL-4+:IFN-γ+ (>4 fold) and GATA-3:+T......-bet+ (>3 fold) CD4+ T cells when compared with the standard purified >90-95% naïve CD4+ T cells primed under the same culture conditions. This suggests immunomagnetic bead separation, a low cost and easy available technique, with few modifications to the manufacturer's protocol as an attractive alternative...... for laboratories not having a cell sorter. Taken together, we report that it is essential to use rigorously purified (>99%) naïve CD4+ T cells for optimal initial in vitro Th1 and Th2 priming....

  14. Changing the threshold-Signals and mechanisms of mast cell priming.

    Science.gov (United States)

    Halova, Ivana; Rönnberg, Elin; Draberova, Lubica; Vliagoftis, Harissios; Nilsson, Gunnar P; Draber, Petr

    2018-03-01

    Mast cells play a key role in allergy and other inflammatory diseases involving engagement of multivalent antigen with IgE bound to high-affinity IgE receptors (FcεRIs). Aggregation of FcεRIs on mast cells initiates a cascade of signaling events that eventually lead to degranulation, secretion of leukotrienes and prostaglandins, and cytokine and chemokine production contributing to the inflammatory response. Exposure to pro-inflammatory cytokines, chemokines, bacterial and viral products, as well as some other biological products and drugs, induces mast cell transition from the basal state into a primed one, which leads to enhanced response to IgE-antigen complexes. Mast cell priming changes the threshold for antigen-mediated activation by various mechanisms, depending on the priming agent used, which alone usually do not induce mast cell degranulation. In this review, we describe the priming processes induced in mast cells by various cytokines (stem cell factor, interleukins-4, -6 and -33), chemokines, other agents acting through G protein-coupled receptors (adenosine, prostaglandin E 2 , sphingosine-1-phosphate, and β-2-adrenergic receptor agonists), toll-like receptors, and various drugs affecting the cytoskeleton. We will review the current knowledge about the molecular mechanisms behind priming of mast cells leading to degranulation and cytokine production and discuss the biological effects of mast cell priming induced by several cytokines. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Effector/memory CD4 T cells making either Th1 or Th2 cytokines commonly co-express T-bet and GATA-3.

    Directory of Open Access Journals (Sweden)

    Arundhoti Das

    Full Text Available Naïve CD4 T (NCD4T cells post-activation undergo programming for inducible production of cytokines leading to generation of memory cells with various functions. Based on cytokine based polarization of NCD4T cells in vitro, programming for either 'Th1' (interferon-gamma [IFNg] or 'Th2' (interleukin [IL]-4/5/13 cytokines is thought to occur via mutually exclusive expression and functioning of T-bet or GATA-3 transcription factors (TFs. However, we show that a high proportion of mouse and human memory-phenotype CD4 T (MCD4T cells generated in vivo which expressed either Th1 or Th2 cytokines commonly co-expressed T-bet and GATA-3. While T-bet levels did not differ between IFNg-expressing and IL-4/5/13-expressing MCD4T cells, GATA-3 levels were higher in the latter. These observations were also confirmed in MCD4T cells from FVB/NJ or aged C57BL/6 or IFNg-deficient mice. While MCD4T cells from these strains showed greater Th2 commitment than those from young C57BL/6 mice, pattern of co-expression of TF was similar. Effector T cells generated in vivo following immunization also showed TF co-expression in Th1 or Th2 cytokine producing cells. We speculated that the difference in TF expression pattern of MCD4T cells generated in vivo and those generated in cytokine polarized cultures in vitro could be due to relative absence of polarizing conditions during activation in vivo. We tested this by NCD4T cell activation in non-polarizing conditions in vitro. Anti-CD3 and anti-CD28-mediated priming of polyclonal NCD4T cells in vitro without polarizing milieu generated cells that expressed either IFNg or IL-4/5/13 but not both, yet both IFNg- and IL-4/5/13-expressing cells showed upregulation of both TFs. We also tested monoclonal T cell populations activated in non-polarizing conditions. TCR-transgenic NCD4T cells primed in vitro by cognate peptide in non-polarizing conditions which expressed either IFNg or IL-4/5/13 also showed a high proportion of cells co

  16. Aging impairs recipient T cell intrinsic and extrinsic factors in response to transplantation.

    Directory of Open Access Journals (Sweden)

    Hua Shen

    Full Text Available As increasing numbers of older people are listed for solid organ transplantation, there is an urgent need to better understand how aging modifies alloimmune responses. Here, we investigated whether aging impairs the ability of donor dendritic cells or recipient immunity to prime alloimmune responses to organ transplantation.Using murine experimental models, we found that aging impaired the host environment to expand and activate antigen specific CD8(+ T cells. Additionally, aging impaired the ability of polyclonal T cells to induce acute allograft rejection. However, the alloimmune priming capability of donor dendritic cells was preserved with aging.Aging impairs recipient responses, both T cell intrinsic and extrinsic, in response to organ transplantation.

  17. First-in-Human Evaluation of the Safety and Immunogenicity of an Intranasally Administered Replication-Competent Sendai Virus–Vectored HIV Type 1 Gag Vaccine: Induction of Potent T-Cell or Antibody Responses in Prime-Boost Regimens

    Science.gov (United States)

    Nyombayire, Julien; Anzala, Omu; Gazzard, Brian; Karita, Etienne; Bergin, Philip; Hayes, Peter; Kopycinski, Jakub; Omosa-Manyonyi, Gloria; Jackson, Akil; Bizimana, Jean; Farah, Bashir; Sayeed, Eddy; Parks, Christopher L.; Inoue, Makoto; Hironaka, Takashi; Hara, Hiroto; Shu, Tsugumine; Matano, Tetsuro; Dally, Len; Barin, Burc; Park, Harriet; Gilmour, Jill; Lombardo, Angela; Excler, Jean-Louis; Fast, Patricia; Laufer, Dagna S.; Cox, Josephine H.

    2017-01-01

    Background. We report the first-in-human safety and immunogenicity assessment of a prototype intranasally administered, replication-competent Sendai virus (SeV)–vectored, human immunodeficiency virus type 1 (HIV-1) vaccine. Methods. Sixty-five HIV-1–uninfected adults in Kenya, Rwanda, and the United Kingdom were assigned to receive 1 of 4 prime-boost regimens (administered at 0 and 4 months, respectively; ratio of vaccine to placebo recipients, 12:4): priming with a lower-dose SeV-Gag given intranasally, followed by boosting with an adenovirus 35–vectored vaccine encoding HIV-1 Gag, reverse transcriptase, integrase, and Nef (Ad35-GRIN) given intramuscularly (SLA); priming with a higher-dose SeV-Gag given intranasally, followed by boosting with Ad35-GRIN given intramuscularly (SHA); priming with Ad35-GRIN given intramuscularly, followed by boosting with a higher-dose SeV-Gag given intranasally (ASH); and priming and boosting with a higher-dose SeV-Gag given intranasally (SHSH). Results. All vaccine regimens were well tolerated. Gag-specific IFN-γ enzyme-linked immunospot–determined response rates and geometric mean responses were higher (96% and 248 spot-forming units, respectively) in groups primed with SeV-Gag and boosted with Ad35-GRIN (SLA and SHA) than those after a single dose of Ad35-GRIN (56% and 54 spot-forming units, respectively) or SeV-Gag (55% and 59 spot-forming units, respectively); responses persisted for ≥8 months after completion of the prime-boost regimen. Functional CD8+ T-cell responses with greater breadth, magnitude, and frequency in a viral inhibition assay were also seen in the SLA and SHA groups after Ad35-GRIN boost, compared with those who received either vaccine alone. SeV-Gag did not boost T-cell counts in the ASH group. In contrast, the highest Gag-specific antibody titers were seen in the ASH group. Mucosal antibody responses were sporadic. Conclusions. SeV-Gag primed functional, durable HIV-specific T-cell

  18. Vaginal type-II mucosa is an inductive site for primary CD8+ T-cell mucosal immunity

    Science.gov (United States)

    Wang, Yichuan; Sui, Yongjun; Kato, Shingo; Hogg, Alison E.; Steel, Jason C.; Morris, John C.; Berzofsky, Jay A.

    2014-01-01

    The structured lymphoid tissues are considered the only inductive sites where primary T cell immune responses occur. The naïve T cells in structured lymphoid tissues, once being primed by antigen -bearing dendritic cells, differentiate into memory T cells and traffic back to the mucosal sites through the bloodstream. Contrary to this belief, here we show that the vaginal type-II mucosa itself, despite lack of structured lymphoid tissues, can act as an inductive site during primary CD8+ T cell immune responses. We provide evidence that the vaginal mucosa supports both the local immune priming of naïve CD8+ T cells and the local expansion of antigen-specific CD8+ T cells, thereby demonstrating a different paradigm for primary mucosal T cell immune induction. PMID:25600442

  19. Expansion and retention of pulmonary CD4+ T cells after prime boost vaccination correlates with improved longevity and strength of immunity against tularemia.

    Science.gov (United States)

    Roberts, Lydia M; Wehrly, Tara D; Crane, Deborah D; Bosio, Catharine M

    2017-05-02

    Francisella tularensis subsp. tularensis strain SchuS4 (Ftt) is a highly virulent intracellular bacterium. Inhalation of 10 or fewer organisms results in an acute and potentially lethal disease called pneumonic tularemia. Ftt infections occur naturally in the U.S. and Ftt was developed as a bioweapon. Thus, there is a need for vaccines that protect against this deadly pathogen. Although a live vaccine strain of Francisella tularensis (LVS) exists, LVS fails to generate long-lived protective immunity against modest challenge doses of Ftt. We recently identified an important role for high avidity CD4 + T cells in short-term protection and hypothesized that expanding this pool of cells would improve overall vaccine efficacy with regard to longevity and challenge dose. In support of our hypothesis, application of a prime/boost vaccination strategy increased the pool of high avidity CD4 + T cells which correlated with improved survival following challenge with either increased doses of virulent Ftt or at late time points after vaccination. In summary, we demonstrate that both epitope selection and vaccination strategies that expand antigen-specific T cells correlate with superior immunity to Ftt as measured by survival. Copyright © 2017. Published by Elsevier Ltd.

  20. CD4+ T‐cell activation is differentially modulated by bacteria‐primed dendritic cells, but is generally down‐regulated by n‐3 polyunsaturated fatty acids

    DEFF Research Database (Denmark)

    Pedersen, Susanne Brix; Lund, Pia; Kjær, Tanja

    2010-01-01

    provided by dendritic cells (DCs). Upon interaction with DCs primed by different concentrations and species of gut bacteria, CD4+ T cells were activated according to the type of DC stimulus. The levels of CD80 were found to correlate to the levels of expression of CD28 and to the proliferation of CD4+ T......, thereby affecting and shaping activation of acquired immunity by differential regulation of proliferation and costimulatory molecule expression in CD4+ T cells....

  1. HIV-1 Subtype C Mosaic Gag Expressed by BCG and MVA Elicits Persistent Effector T Cell Responses in a Prime-Boost Regimen in Mice.

    Directory of Open Access Journals (Sweden)

    Tsungai Ivai Jongwe

    Full Text Available Over 90% of HIV/AIDS positive individuals in sub-Saharan Africa are infected with highly heterogeneous HIV-1 subtype C (HIV-1C viruses. One of the best ways to reduce the burden of this disease is the development of an affordable and effective prophylactic vaccine. Mosaic immunogens are computationally designed to overcome the hurdle of HIV diversity by maximizing the expression of potential T cell epitopes. Mycobacterium bovis BCG ΔpanCD auxotroph and modified vaccinia Ankara (MVA vaccines expressing HIV-1C mosaic Gag (GagM were tested in a prime-boost regimen to demonstrate immunogenicity in a mouse study. The BCG-GagM vaccine was stable and persisted 11.5 weeks post vaccination in BALB/c mice. Priming with BCG-GagM and boosting with MVA-GagM elicited higher Gag-specific IFN-γ ELISPOT responses than the BCG-GagM only and MVA-GagM only homologous vaccination regimens. The heterologous vaccination also generated a more balanced and persistent CD4+ and CD8+ T cell Gag-specific IFN-γ ELISPOT response with a predominant effector memory phenotype. A Th1 bias was induced by the vaccines as determined by the predominant secretion of IFN-γ, TNF-α, and IL-2. This study shows that a low dose of MVA (104 pfu can effectively boost a BCG prime expressing the same mosaic immunogen, generating strong, cellular immune responses against Gag in mice. Our data warrants further evaluation in non-human primates. A low dose vaccine would be an advantage in the resource limited countries of sub-Saharan Africa and India (where the predominating virus is HIV-1 subtype C.

  2. Uncarinic Acid C Isolated from Uncaria rhynchophylla Induces Differentiation of Th1-Promoting Dendritic Cells Through TLR4 Signaling.

    Science.gov (United States)

    Kim, Kyu Sik; Pham, Thanh Nhan Nguyen; Jin, Chun-Ji; Umeyama, Akemi; Shoji, Noboru; Hashimoto, Toshihiro; Lee, Je-Jung; Takei, Masao

    2011-02-28

    Uncarinic acid C (URC) is triterpene isolated from Uncaria rhynchophylla and is a pharmacologically active substance. The induction of dendritic cells (DC) is critical for the induction of Ag-specific T lymphocyte responses and may be essential for the development of human vaccines relying on T cell immunity. DC might be a potential target for URC. We demonstrate that URC activates human DC as documented by phenotypic and functional maturation, and altered cytokine production. The expression of CD1a, CD38, CD40, CD54, CD80, CD83, CD86, HLA-DR and CCR7 on URC-primed DC was enhanced. The production of IL-12p70 by URC-primed DC was higher than that of lipopolysaccharide (LPS)-primed DC. The production of IL-12p70 by URC-primed DC was inhibited by the anti-Toll-like receptor 4 (TLR4) monoclonal antibody (mAb), but partially abolished by anti-TLR2 mAb. mRNA coding for TLR2 and TLR4 was expressed in URC-primed DC. URC-primed DC induced the NF-κB transcription factor. Naïve T cells co-cultured with URC-primed DC turned into typical Th1 cells that produced large quantities of IFN-γ depending on IL-12 secretion. URC enhanced the T cell stimulatory capacity in an allo MLR. In the cytotoxic T-lymphocyte assay (CTL) assay, DNA fragmentation assay and (51)Cr release on URC-primed DC were more augmented than that of TNF-α-primed DC. DC matured with URC had an intermediate migratory capacity towards CCL19 and CCL21. These results suggest that URC modulates DC function in a fashion that favors Th1 polarization via the activation of IL-12p70 dependent on TLR4 signaling, and may be used on DC-based vaccine for cancer immunotherapy.

  3. Direct stimulation of T cells by membrane vesicles from antigen-presenting cells

    Czech Academy of Sciences Publication Activity Database

    Kovář, Marek; Boyman, O.; Shen, X.; Hwang, I.; Kohler, R.; Sprent, J.

    2006-01-01

    Roč. 103, č. 31 (2006), s. 11671-11676 ISSN 0027-8424 Institutional research plan: CEZ:AV0Z50200510 Keywords : immunotherapy * t cell priming * tumors Subject RIV: EE - Microbiology, Virology Impact factor: 9.643, year: 2006

  4. Pregnancy promotes tolerance to future offspring by programming selective dysfunction in long-lived maternal T cells.

    Science.gov (United States)

    Barton, Brendan M; Xu, Rong; Wherry, E John; Porrett, Paige M

    2017-04-01

    Fetal antigen available during pregnancy induces the proliferation of maternal T cells. It is unknown, however, whether these antigen-activated T cells differentiate into long-lived memory T cells that are capable of mediating rapid-recall responses to tissue antigens. To test the hypothesis that pregnancy induces an alternative fate in fetal-specific maternal T cells, we used a murine model to track longitudinally fetal-specific T cells in pregnant and postpartum animals and test the response of these cells when challenged with the same antigen during sequential pregnancy or skin transplantation. Fetal-specific CD8 + T cells were robustly primed during pregnancy but failed to acquire robust effector functions. These primed cells persisted long term in postpartum animals, frequently maintained a programmed death 1 (PD-1) + phenotype, and failed to expand or produce cytokines robustly in response to second pregnancy or skin transplantation. However, whereas there was no impact on second pregnancy as a result of the persistence of fetal-primed memory CD8 + T cells in the mother, skin grafts bearing the same antigen were rejected more rapidly. Altogether, our data suggest that fetal antigen exposure during pregnancy induces the differentiation of long-lived maternal CD8 + T cells with context-dependent, selective effector dysfunction. This programmed effector dysfunction provides temporal and systemic restraint of maternal anti-fetal alloreactivity to promote reproductive fitness efficiently, while preserving potentially protective effector T cell responses. © Society for Leukocyte Biology.

  5. G-CSF-primed autologous and allogeneic bone marrow for transplantation in clinical oncology. Cell content and immunological characteristics

    Science.gov (United States)

    Grivtsova, L. Yu; Melkova, K. N.; Kupryshkina, N. A.; Vorotnikov, I. K.; Grigoryeva, T. A.; Selchuk, V. Yu; Grebennikova, O. P.; Titova, G. V.; Tupitsyn, N. N.

    2018-01-01

    60 samples of G-CSF-primed bone marrow (39 cancer patients and 21 healthy donors) to be used for transplantation to cancer patients were analyzed and compared by main characteristics with historical control and 13 bone marrow samples from control patient with mastopathy. Basing on morphological and multicolor flow cytometry findings certain characteristics of G-CSF-primed bone marrow were discovered, such as a significant increase in blast count in cancer patients as compared to donors and control patients (p<0.037), a higher neutrophil maturation index (p<0.001) and a lower percentage of mature lymphocytes (p<0.008) as compared to the control group. Among lymphocyte populations G-CSF-priming was associated with a significant increase in the total of mature CD3+ T-cells and CD8+ T-killers (p<0.0001) and a decrease in CD56+CD3- and/or CD16+CD3- NK-cells (p<0.006) both in cancer patients and healthy donors in comparison with the controls.

  6. Variational study of the stability of the Nagaoka state against single-spin flips in the two-dimensional t-t#prime# Hubbard model

    International Nuclear Information System (INIS)

    Bajdich, M.; Hlubina, R.

    2001-01-01

    Making use of variational wave functions of the Basile-Elser type we study the stability of the Nagaoka state against single-spin flips in the two-dimensional t-t#prime# Hubbard model for t#prime#/t∼0.5. In the low-density limit the variational estimate of the stability region of the Nagaoka state is in qualitative agreement with the predictions of the T-matrix approximation

  7. First-in-Human Evaluation of the Safety and Immunogenicity of an Intranasally Administered Replication-Competent Sendai Virus-Vectored HIV Type 1 Gag Vaccine: Induction of Potent T-Cell or Antibody Responses in Prime-Boost Regimens.

    Science.gov (United States)

    Nyombayire, Julien; Anzala, Omu; Gazzard, Brian; Karita, Etienne; Bergin, Philip; Hayes, Peter; Kopycinski, Jakub; Omosa-Manyonyi, Gloria; Jackson, Akil; Bizimana, Jean; Farah, Bashir; Sayeed, Eddy; Parks, Christopher L; Inoue, Makoto; Hironaka, Takashi; Hara, Hiroto; Shu, Tsugumine; Matano, Tetsuro; Dally, Len; Barin, Burc; Park, Harriet; Gilmour, Jill; Lombardo, Angela; Excler, Jean-Louis; Fast, Patricia; Laufer, Dagna S; Cox, Josephine H

    2017-01-01

     We report the first-in-human safety and immunogenicity assessment of a prototype intranasally administered, replication-competent Sendai virus (SeV)-vectored, human immunodeficiency virus type 1 (HIV-1) vaccine.  Sixty-five HIV-1-uninfected adults in Kenya, Rwanda, and the United Kingdom were assigned to receive 1 of 4 prime-boost regimens (administered at 0 and 4 months, respectively; ratio of vaccine to placebo recipients, 12:4): priming with a lower-dose SeV-Gag given intranasally, followed by boosting with an adenovirus 35-vectored vaccine encoding HIV-1 Gag, reverse transcriptase, integrase, and Nef (Ad35-GRIN) given intramuscularly (S L A); priming with a higher-dose SeV-Gag given intranasally, followed by boosting with Ad35-GRIN given intramuscularly (S H A); priming with Ad35-GRIN given intramuscularly, followed by boosting with a higher-dose SeV-Gag given intranasally (AS H ); and priming and boosting with a higher-dose SeV-Gag given intranasally (S H S H ).  All vaccine regimens were well tolerated. Gag-specific IFN-γ enzyme-linked immunospot-determined response rates and geometric mean responses were higher (96% and 248 spot-forming units, respectively) in groups primed with SeV-Gag and boosted with Ad35-GRIN (S L A and S H A) than those after a single dose of Ad35-GRIN (56% and 54 spot-forming units, respectively) or SeV-Gag (55% and 59 spot-forming units, respectively); responses persisted for ≥8 months after completion of the prime-boost regimen. Functional CD8 + T-cell responses with greater breadth, magnitude, and frequency in a viral inhibition assay were also seen in the S L A and S H A groups after Ad35-GRIN boost, compared with those who received either vaccine alone. SeV-Gag did not boost T-cell counts in the AS H group. In contrast, the highest Gag-specific antibody titers were seen in the AS H group. Mucosal antibody responses were sporadic.  SeV-Gag primed functional, durable HIV-specific T-cell responses and boosted antibody

  8. Microfluidic squeezing for intracellular antigen loading in polyclonal B-cells as cellular vaccines

    Science.gov (United States)

    Lee Szeto, Gregory; van Egeren, Debra; Worku, Hermoon; Sharei, Armon; Alejandro, Brian; Park, Clara; Frew, Kirubel; Brefo, Mavis; Mao, Shirley; Heimann, Megan; Langer, Robert; Jensen, Klavs; Irvine, Darrell J.

    2015-05-01

    B-cells are promising candidate autologous antigen-presenting cells (APCs) to prime antigen-specific T-cells both in vitro and in vivo. However to date, a significant barrier to utilizing B-cells as APCs is their low capacity for non-specific antigen uptake compared to “professional” APCs such as dendritic cells. Here we utilize a microfluidic device that employs many parallel channels to pass single cells through narrow constrictions in high throughput. This microscale “cell squeezing” process creates transient pores in the plasma membrane, enabling intracellular delivery of whole proteins from the surrounding medium into B-cells via mechano-poration. We demonstrate that both resting and activated B-cells process and present antigens delivered via mechano-poration exclusively to antigen-specific CD8+T-cells, and not CD4+T-cells. Squeezed B-cells primed and expanded large numbers of effector CD8+T-cells in vitro that produced effector cytokines critical to cytolytic function, including granzyme B and interferon-γ. Finally, antigen-loaded B-cells were also able to prime antigen-specific CD8+T-cells in vivo when adoptively transferred into mice. Altogether, these data demonstrate crucial proof-of-concept for mechano-poration as an enabling technology for B-cell antigen loading, priming of antigen-specific CD8+T-cells, and decoupling of antigen uptake from B-cell activation.

  9. Antigen-specific and non-specific CD4+ T cell recruitment and proliferation during influenza infection

    International Nuclear Information System (INIS)

    Chapman, Timothy J.; Castrucci, Maria R.; Padrick, Ryan C.; Bradley, Linda M.; Topham, David J.

    2005-01-01

    To track epitope-specific CD4 + T cells at a single-cell level during influenza infection, the MHC class II-restricted OVA 323-339 epitope was engineered into the neuraminidase stalk of influenza/A/WSN, creating a surrogate viral antigen. The recombinant virus, influenza A/WSN/OVA II , replicated well, was cleared normally, and stimulated both wild-type and DO11.10 or OT-II TCR transgenic OVA-specific CD4 + T cells. OVA-specific CD4 T cells proliferated during infection only when the OVA epitope was present. However, previously primed (but not naive) transgenic CD4 + T cells were recruited to the infected lung both in the presence and absence of the OVA 323-339 epitope. These data show that, when primed, CD4 + T cells may traffic to the lung in the absence of antigen, but do not proliferate. These results also document a useful tool for the study of CD4 T cells in influenza infection

  10. Can resting B cells present antigen to T cells

    International Nuclear Information System (INIS)

    Ashwell, J.D.; DeFranco, A.L.; Paul, W.E.; Schwartz, R.H.

    1985-01-01

    Antigen stimulation of T lymphocytes can occur only in the presence of an antigen-presenting cell (APC). An ever-increasing number of cell types have been found to act as APCs; these include macrophages, splenic and lymph node dendritic cells, and Langerhans cells of the skin. Although activated B lymphocytes and B cell lymphomas are known to serve as APCs, it has been generally believed that resting B cells cannot perform this function. However, in recent studies the authors have found that resting B cells can indeed present soluble antigen to T cell clones as well as to antigen-primed T cells. The previous difficulty in demonstrating this activity can be explained by the finding that, in contrast to macrophages and dendritic cells, the antigen-presenting ability of resting B cells is very radiosensitive. Macrophages are usually irradiated with 2000-3300 rads to prevent them from incorporating [ 3 H]thymidine in the T cell proliferation assay. Resting B cells, however, begin to lose presenting function at 1500 rads and have completely lost this activity at 3300 rads. It was also possible to distinguish two distinct T cell clonal phenotypes when resting B cells were used as APCs on the basis of two different assays (T cell proliferation, and B cell proliferation resulting from T cell activation). The majority of T cell clones tested were capable of both proliferating themselves and inducing the proliferation of B cells. Some T cells clones, however, could not proliferate in the presence of antigen and B cell APCs, although they were very good at inducing the proliferation of B cells

  11. Rational design of nanoparticles towards targeting antigen-presenting cells and improved T cell priming.

    Science.gov (United States)

    Zupančič, Eva; Curato, Caterina; Paisana, Maria; Rodrigues, Catarina; Porat, Ziv; Viana, Ana S; Afonso, Carlos A M; Pinto, João; Gaspar, Rogério; Moreira, João N; Satchi-Fainaro, Ronit; Jung, Steffen; Florindo, Helena F

    2017-07-28

    Vaccination is a promising strategy to trigger and boost immune responses against cancer or infectious disease. We have designed, synthesized and characterized aliphatic-polyester (poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NP) to investigate how the nature of protein association (adsorbed versus entrapped) and polymer/surfactant concentrations impact on the generation and modulation of antigen-specific immune responses. The ability of the NP formulations to target dendritic cells (DC), be internalized and activate the T cells was characterized and optimized in vitro and in vivo using markers of DC activation and co-stimulatory molecules. Ovalbumin (OVA) was used as a model antigen in combination with the engraftment of CD4 + and CD8 + T cells, carrying a transgenic OVA-responding T cell receptor (TCR), to trace and characterize the activation of antigen-specific CD4 + and CD8 + lymph node T cells upon NP vaccination. Accordingly, the phenotype and frequency of immune cell stimulation induced by the NP loaded with OVA, isolated or in combination with synthetic unmethylated cytosine-phosphate-guanine (CpG) oligodeoxynucleotide (ODN) motifs, were characterized. DC-NP interactions increased with incubation time, presenting internalization values between 50 and 60% and 30-40%, in vitro and in vivo, respectively. Interestingly, animal immunization with antigen-adsorbed NP up-regulated major histocompatibility complex (MHC) class II (MHCII), while NP entrapping the antigen up-regulated MHCI, suggesting a more efficient cross-presentation. On the other hand, rather surprisingly, the surfactant used in the NP formulation had a major impact on the activation of antigen presenting cells (APC). In fact, DC collected from lymph nodes of animals immunized with NP prepared using poly(vinil alcohol) (PVA), as a surfactant, expressed significantly higher levels of CD86, MHCI and MHCII. In addition, those NP prepared with PVA and co-entrapping OVA and the toll

  12. Role of 4-1BB receptor in the control played by CD8(+ T cells on IFN-gamma production by Mycobacterium tuberculosis antigen-specific CD4(+ T Cells.

    Directory of Open Access Journals (Sweden)

    Carla Palma

    Full Text Available BACKGROUND: Antigen-specific IFN-gamma producing CD4(+ T cells are the main mediators of protection against Mycobacterium tuberculosis infection both under natural conditions and following vaccination. However these cells are responsible for lung damage and poor vaccine efficacy when not tightly controlled. Discovering new tools to control nonprotective antigen-specific IFN-gamma production without affecting protective IFN-gamma is a challenge in tuberculosis research. METHODS AND FINDINGS: Immunization with DNA encoding Ag85B, a candidate vaccine antigen of Mycobacterium tuberculosis, elicited in mice a low but protective CD4(+ T cell-mediated IFN-gamma response, while in mice primed with DNA and boosted with Ag85B protein a massive increase in IFN-gamma response was associated with loss of protection. Both protective and non-protective Ag85B-immunization generated antigen-specific CD8(+ T cells which suppressed IFN-gamma-secreting CD4(+ T cells. However, ex vivo ligation of 4-1BB, a member of TNF-receptor super-family, reduced the massive, non-protective IFN-gamma responses by CD4(+ T cells in protein-boosted mice without affecting the low protective IFN-gamma-secretion in mice immunized with DNA. This selective inhibition was due to the induction of 4-1BB exclusively on CD8(+ T cells of DNA-primed and protein-boosted mice following Ag85B protein stimulation. The 4-1BB-mediated IFN-gamma inhibition did not require soluble IL-10, TGF-beta, XCL-1 and MIP-1beta. In vivo Ag85B stimulation induced 4-1BB expression on CD8(+ T cells and in vivo 4-1BB ligation reduced the activation, IFN-gamma production and expansion of Ag85B-specific CD4(+ T cells of DNA-primed and protein-boosted mice. CONCLUSION/SIGNIFICANCE: Antigen-specific suppressor CD8(+ T cells are elicited through immunization with the mycobacterial antigen Ag85B. Ligation of 4-1BB receptor further enhanced their suppressive activity on IFN-gamma-secreting CD4(+ T cells. The selective

  13. Low dose ultraviolet B-irradiated Langerhans cells preferentially activate CD4+ cells of the T helper 2 subset

    International Nuclear Information System (INIS)

    Simon, J.C.; Cruz, P.D. Jr.; Bergstresser, P.R.; Tigelaar, R.E.

    1990-01-01

    UVB radiation distorts the Ag-presenting function of epidermal Langerhans cells (LC); this has been shown for the presentation of soluble Ag to primed T cells in vitro and for the initiation of delayed-type hypersensitivity in vivo, such as contact hypersensitivity (CH). Previous work has also demonstrated UVB-induced suppression of CH to be mediated ultimately by T cells. Two subsets of CD4+ Th cells, Th1 and Th2, have been identified, based on their cytokine production and functional activities. In particular, Th1 mediate delayed-type hypersensitivity, whereas Th2 do not. To investigate whether the perturbation of LC function induced by UVB radiation leads to a differential activation of these subsets of CD4+ cells, we examined the capacity of unirradiated and irradiated (200 J/m2) APC from adult BALB/c mice to present keyhole limpet hemocyanin to Ag-specific, H2d-restricted Th1 and Th2 cell lines. Four sources of APC were utilized: epidermal cells (EC), flow microfluorometry-purified Ia+ EC (LC), flow microfluorometry-purified Ia- EC, and splenic adherent cells (SAC). Unirradiated EC, LC, and SAC, but not Ia-EC, presented keyhole limpet hemocyanin to both Th1 and Th2. Irradiated EC and LC lost their ability to stimulate Th1, but retained fully their capacity to stimulate Th2. On the other hand, irradiated SAC were unable to induce proliferation of either Th1 or Th2. These findings indicate that suppression of CH mediated by UVB-irradiated LC may result from an alteration of the ratio and/or activity of Th1 and Th2 cells normally generated during the induction of such responses

  14. Vaginal immunization to elicit primary T-cell activation and dissemination.

    Directory of Open Access Journals (Sweden)

    Elena Pettini

    Full Text Available Primary T-cell activation at mucosal sites is of utmost importance for the development of vaccination strategies. T-cell priming after vaginal immunization, with ovalbumin and CpG oligodeoxynucleotide adjuvant as model vaccine formulation, was studied in vivo in hormone-synchronized mice and compared to the one induced by the nasal route. Twenty-four hours after both vaginal or nasal immunization, antigen-loaded dendritic cells were detected within the respective draining lymph nodes. Vaginal immunization elicited a strong recruitment of antigen-specific CD4(+ T cells into draining lymph nodes that was more rapid than the one observed following nasal immunization. T-cell clonal expansion was first detected in iliac lymph nodes, draining the genital tract, and proliferated T cells disseminated towards distal lymph nodes and spleen similarly to what observed following nasal immunization. T cells were indeed activated by the antigen encounter and acquired homing molecules essential to disseminate towards distal lymphoid organs as confirmed by the modulation of CD45RB, CD69, CD44 and CD62L marker expression. A multi-type Galton Watson branching process, previously used for in vitro analysis of T-cell proliferation, was applied to model in vivo CFSE proliferation data in draining lymph nodes 57 hours following immunization, in order to calculate the probabilistic decision of a cell to enter in division, rest in quiescence or migrate/die. The modelling analysis indicated that the probability of a cell to proliferate was higher following vaginal than nasal immunization. All together these data show that vaginal immunization, despite the absence of an organized mucosal associated inductive site in the genital tract, is very efficient in priming antigen-specific CD4(+ T cells and inducing their dissemination from draining lymph nodes towards distal lymphoid organs.

  15. Aberrant Signaling Pathways in T-Cell Acute Lymphoblastic Leukemia

    Science.gov (United States)

    Bongiovanni, Deborah; Saccomani, Valentina

    2017-01-01

    T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive disease caused by the malignant transformation of immature progenitors primed towards T-cell development. Clinically, T-ALL patients present with diffuse infiltration of the bone marrow by immature T-cell blasts high blood cell counts, mediastinal involvement, and diffusion to the central nervous system. In the past decade, the genomic landscape of T-ALL has been the target of intense research. The identification of specific genomic alterations has contributed to identify strong oncogenic drivers and signaling pathways regulating leukemia growth. Notwithstanding, T-ALL patients are still treated with high-dose multiagent chemotherapy, potentially exposing these patients to considerable acute and long-term side effects. This review summarizes recent advances in our understanding of the signaling pathways relevant for the pathogenesis of T-ALL and the opportunities offered for targeted therapy. PMID:28872614

  16. Bystander chronic infection negatively impacts development of CD8+ T cell memory

    Science.gov (United States)

    Stelekati, Erietta; Shin, Haina; Doering, Travis A.; Dolfi, Douglas V.; Ziegler, Carly G.; Beiting, Daniel P.; Dawson, Lucas; Liboon, Jennifer; Wolski, David; Ali, Mohammed-Alkhatim A.; Katsikis, Peter D.; Shen, Hao; Roos, David S.; Haining, W. Nicholas; Lauer, Georg M.; Wherry, E. John

    2014-01-01

    Summary Epidemiological evidence suggests that chronic infections impair immune responses to unrelated pathogens and vaccines. The underlying mechanisms, however, are unclear and distinguishing effects on priming versus development of immunological memory has been challenging. We investigated whether bystander chronic infections impact differentiation of memory CD8+ T cells, the hallmark of protective immunity against intracellular pathogens. Chronic bystander infections impaired development of memory CD8+ T cells in several mouse models and humans. These effects were independent of initial priming and were associated with chronic inflammatory signatures. Chronic inflammation negatively impacted the number of bystander CD8+ T cells and their memory development. Distinct underlying mechanisms of altered survival and differentiation were revealed with the latter regulated by the transcription factors T-bet and Blimp-1. Thus, exposure to prolonged bystander inflammation impairs the effector to memory transition. These data have relevance for immunity and vaccination during persisting infections and chronic inflammation. PMID:24837104

  17. Antigen-specific cytotoxic T cell and antigen-specific proliferating T cell clones can be induced to cytolytic activity by monoclonal antibodies against T3

    NARCIS (Netherlands)

    Spits, H.; Yssel, H.; Leeuwenberg, J.; de Vries, J. E.

    1985-01-01

    T3 is a human differentiation antigen expressed exclusively on mature T cells. In this study it is shown that anti-T3 monoclonal antibodies, in addition to their capacity to induce T cells to proliferate, are able to induce antigen-specific cytotoxic T lymphocyte clones to mediate antigen

  18. IRF8 dependent classical dendritic cells are essential for intestinal T cell homeostasis

    DEFF Research Database (Denmark)

    Luda, K.; Joeris, Thorsten; Persson, E. K.

    2016-01-01

    The role of dendritic cells (DCs) in intestinal immune homeostasis remains incompletely defined. Here we show that mice lacking IRF8 dependent DCs have reduced numbers of T cells in the small intestine (SI), but not large intestine (LI), including an almost complete absence of SI CD8ab+ andCD4+CD8......aa+ T cells; the latter requiring b8 integrin expression by migratory IRF8 dependent CD103+CD11b- DCs. SI homing receptor induction was impaired during T cell priming in mesenteric lymph nodes (MLN), which correlated with a reduction in aldehyde dehydrogenase activity by SI derived MLN DCs......, and inefficient T cell localization to the SI. Finally, mice with a DC deletion in IRF8 lacked intestinal T helper 1 (Th1) cells, and failed to support Th1 cell differentiation in MLN and mount Th1 responses to Trichuris muris infection. Collectively these results highlight multiple non-redundant roles for IRF8...

  19. Highly-Immunogenic Virally-Vectored T-cell Vaccines Cannot Overcome Subversion of the T-cell Response by HCV during Chronic Infection

    Directory of Open Access Journals (Sweden)

    Leo Swadling

    2016-08-01

    Full Text Available An effective therapeutic vaccine for the treatment of chronic hepatitis C virus (HCV infection, as an adjunct to newly developed directly-acting antivirals (DAA, or for the prevention of reinfection, would significantly reduce the global burden of disease associated with chronic HCV infection. A recombinant chimpanzee adenoviral (ChAd3 vector and a modified vaccinia Ankara (MVA, encoding the non-structural proteins of HCV (NSmut, used in a heterologous prime/boost regimen induced multi-specific, high-magnitude, durable HCV-specific CD4+ and CD8+ T-cell responses in healthy volunteers, and was more immunogenic than a heterologous Ad regimen. We now assess the immunogenicity of this vaccine regimen in HCV infected patients (including patients with a low viral load suppressed with interferon/ribavirin therapy, determine T-cell cross-reactivity to endogenous virus, and compare immunogenicity with that observed previously in both healthy volunteers and in HCV infected patients vaccinated with the heterologous Ad regimen. Vaccination of HCV infected patients with ChAd3-NSmut/MVA-NSmut was well tolerated. Vaccine-induced HCV-specific T-cell responses were detected in 8/12 patients; however, CD4+ T-cell responses were rarely detected, and the overall magnitude of HCV-specific T-cell responses was markedly reduced when compared to vaccinated healthy volunteers. Furthermore, HCV-specific cells had a distinct partially-functional phenotype (lower expression of activation markers, granzyme B, and TNFα production, weaker in vitro proliferation, and higher Tim3 expression, with comparable Tbet and Eomes expression compared to healthy volunteers. Robust anti-vector T-cells and antibodies were induced, showing that there is no global defect in immunity. The level of viremia at the time of vaccination did not correlate with the magnitude of the vaccine-induced T-cell response. Full-length, next-generation sequencing of the circulating virus demonstrated that T-cells

  20. Radiation-induced transformation in oncogene primed C3H/10T1/2 cells; a new system for analysis of multi-step transformation in vitro

    International Nuclear Information System (INIS)

    Drozdoff, V.V.

    1988-01-01

    Several established rodent cell lines, such as C3H/10T1/2 fibroblasts, have been developed to study radiation and chemically-induced malignant transformation. Most experimental evidence has supported the idea that transformation in 10T1/2 cells involved at least two steps but that the apparent frequency of transformation depends on the density of plated cells. A new approach is presented here for studying radiation-induced transformation. An oncogene primed cell system (C3H-myc) was developed by introducing a constitutively active mouse c-myc gene into 10T1/2 cells. A primary goal was to determine if the introduction of an activated oncogene could substitute for one of the required steps in radiation-induced transformation. Results are presented that show that the expression of the exogenous myc gene significantly increased the frequency of radiation-induced transformation in these cells. Subculture experiments performed to analyze the kinetics of transformation in C3H-myc cells and reconstruction experiments allowing the effects of normal cells on radiation-induced transformants to be determined indicated that transformed cells arose very shortly after irradiation. These results support the conclusion that a radiation-induced event can complement the effect of myc in C3H-myc cells and directly result in transformation. This system thus provides an opportunity to isolate early steps in radiation-induced transformation and should facilitate the identification and analysis of these events

  1. Relative contribution of "determinant selection" and "holes in the T-cell repertoire" to T-cell responses

    DEFF Research Database (Denmark)

    Schaeffer, E B; Sette, A; Johnson, D L

    1989-01-01

    -cell responses. Ia binding and Ia-restricted T-cell immunogenicity could be determined for a total of 54 peptide-MHC combinations. Only 30% of the 54 instances examined involved detectable Ia binding, but they represented almost all (12 of 13) of the immune responses found. However, binding to Ia......Using BALB/c and CBA/J mice, the I-region associated (Ia) binding capacity and T-cell immunogenicity of a panel of 14 overlapping peptides that span the entire sequence of the protein staphylococcal nuclease (Nase) was examined to evaluate major histocompatibility gene complex (MHC) control of T...... was not sufficient to ensure T-cell immunogenicity, since only 70% of the binding events were productive--i.e., were associated with an immune response. Thus, Ia molecules have the expected characteristics of a highly permissive capacity for antigen interaction that allows them to function as restriction elements...

  2. Cells of the J774 macrophage cell line are primed for antibody-dependent cell-mediated cytotoxicity following exposure to γ-irradiation

    International Nuclear Information System (INIS)

    Duerst, R.; Werberig, K.

    1991-01-01

    Activation of macrophages (M phi) for host defense against tumor cells follows a sequence of priming events followed by an initiating stimulus that results in production and release of cytotoxic molecules that mediate target cell killing. The authors have developed a model to study specific macrophage cytotoxicity in vitro utilizing a cultured murine M phi cell line, J774. Specific cytotoxicity of cultured human gastrointestinal tumor cells is achieved in the presence of murine IgG2a monoclonal antibody (mAb) 17-1-A. The ability of these cells to mediate antibody-dependent cell-mediated cytotoxicity (ADCC) is greatly enhanced following gamma-irradiation. ADCC can be demonstrated at mAb 17-1-A concentrations greater than or equal to 1 microgram/ml and effector/target cell ratios greater than or equal to 2. Exposure to doses greater than or equal to 10 Gy of gamma-irradiation increases ADCC threefold. Varying the duration from J774 M phi exposure to γ-irradiation until addition of antibody-coated target cells showed that the primed state for ADCC is stable for at least 8 days but approximately 24 hr is required for complete development of the primed state. mAb-dependent target cell death begins 8 hr after addition of mAb and labeled target cells to primed effector cells and is complete by 24 hr. Incubation of unirradiated J774 M phi effector cells with recombinant murine interferon-γ (rmIFN-γ) also results in enhanced ADCC, but the extent of target cell killing achieved is less than that following priming by γ-irradiation. Concomitant priming of γ-irradiated J774 M phi with rmIFN-γ increases the extent of ADCC. Further study of irradiated J774 cells may elucidate the molecular pathways utilized by M phi for achieving and maintaining the primed state for ADCC

  3. CD27 instructs CD4+ T cells to provide help for the memory CD8+ T cell response after protein immunization

    NARCIS (Netherlands)

    Xiao, Yanling; Peperzak, Victor; Keller, Anna M.; Borst, Jannie

    2008-01-01

    For optimal quality, memory CD8(+) T cells require CD4(+) T cell help. We have examined whether CD4(+) T cells require CD27 to deliver this help, in a model of intranasal OVA protein immunization. CD27 deficiency reduced the capacity of CD4(+) T cells to support Ag-specific CD8(+) T cell

  4. ATP Release from Chemotherapy-Treated Dying Leukemia Cells Elicits an Immune Suppressive Effect by Increasing Regulatory T Cells and Tolerogenic Dendritic Cells.

    Science.gov (United States)

    Lecciso, Mariangela; Ocadlikova, Darina; Sangaletti, Sabina; Trabanelli, Sara; De Marchi, Elena; Orioli, Elisa; Pegoraro, Anna; Portararo, Paola; Jandus, Camilla; Bontadini, Andrea; Redavid, Annarita; Salvestrini, Valentina; Romero, Pedro; Colombo, Mario P; Di Virgilio, Francesco; Cavo, Michele; Adinolfi, Elena; Curti, Antonio

    2017-01-01

    Chemotherapy-induced immunogenic cell death can favor dendritic cell (DC) cross-priming of tumor-associated antigens for T cell activation thanks to the release of damage-associated molecular patterns, including ATP. Here, we tested the hypothesis that in acute myeloid leukemia (AML), ATP release, along with its well-known immune stimulatory effect, may also contribute to the generation of an immune suppressive microenvironment. In a cohort of AML patients, undergoing combined daunorubicin and cytarabine chemotherapy, a population of T regulatory cells (Tregs) with suppressive phenotype, expressing the immune checkpoint programmed cell death protein 1 (PD-1), was significantly increased. Moving from these results, initial in vitro data showed that daunorubicin was more effective than cytarabine in modulating DC function toward Tregs induction and such difference was correlated with the higher capacity of daunorubicin to induce ATP release from treated AML cells. DCs cultured with daunorubicin-treated AML cells upregulated indoleamine 2,3-dioxygenase 1 (IDO1), which induced anti-leukemia Tregs. These data were confirmed in vivo as daunorubicin-treated mice show an increase in extracellular ATP levels with increased number of Tregs, expressing PD-1 and IDO1 + CD39 + DCs. Notably, daunorubicin failed to induce Tregs and tolerogenic DCs in mice lacking the ATP receptor P2X7. Our data indicate that ATP release from chemotherapy-treated dying cells contributes to create an immune suppressive microenvironment in AML.

  5. Eosinophils from hematopoietic stem cell recipients suppress allogeneic T cell proliferation.

    Science.gov (United States)

    Andersson, Jennie; Cromvik, Julia; Ingelsten, Madeleine; Lingblom, Christine; Andersson, Kerstin; Johansson, Jan-Erik; Wennerås, Christine

    2014-12-01

    Eosinophilia has been associated with less severe graft-versus-host disease (GVHD), but the underlying mechanism is unknown. We hypothesized that eosinophils diminish allogeneic T cell activation in patients with chronic GVHD. The capacity of eosinophils derived from healthy subjects and hematopoietic stem cell (HSC) transplant recipients, with or without chronic GVHD, to reduce allogeneic T cell proliferation was evaluated using a mixed leukocyte reaction. Eosinophil-mediated inhibition of proliferation was observed for the eosinophils of both healthy subjects and patients who underwent HSC transplantation. Eosinophils from patients with and without chronic GVHD were equally suppressive. Healthy eosinophils required cell-to-cell contact for their suppressive capacity, which was directed against CD4(+) T cells and CD8(+) T cells. Neither eosinophilic cationic protein, eosinophil-derived neurotoxin, indoleamine 2,3-dioxygenase, or increased numbers of regulatory T cells could account for the suppressive effect of healthy eosinophils. Real-time quantitative PCR analysis revealed significantly increased mRNA levels of the immunoregulatory protein galectin-10 in the eosinophils of both chronic GVHD patients and patients without GVHD, as compared with those from healthy subjects. The upregulation of galectin-10 expression in eosinophils from patients suggests a stimulatory effect of HSC transplantation in itself on eosinophilic galectin-10 expression, regardless of chronic GVHD status. To conclude, eosinophils from HSC transplant recipients and healthy subjects have a T cell suppressive capacity. Copyright © 2014 American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.

  6. Strong adhesion by regulatory T cells induces dendritic cell cytoskeletal polarization and contact-dependent lethargy.

    Science.gov (United States)

    Chen, Jiahuan; Ganguly, Anutosh; Mucsi, Ashley D; Meng, Junchen; Yan, Jiacong; Detampel, Pascal; Munro, Fay; Zhang, Zongde; Wu, Mei; Hari, Aswin; Stenner, Melanie D; Zheng, Wencheng; Kubes, Paul; Xia, Tie; Amrein, Matthias W; Qi, Hai; Shi, Yan

    2017-02-01

    Dendritic cells are targeted by regulatory T (T reg) cells, in a manner that operates as an indirect mode of T cell suppression. In this study, using a combination of single-cell force spectroscopy and structured illumination microscopy, we analyze individual T reg cell-DC interaction events and show that T reg cells exhibit strong intrinsic adhesiveness to DCs. This increased DC adhesion reduces the ability of contacted DCs to engage other antigen-specific cells. We show that this unusually strong LFA-1-dependent adhesiveness of T reg cells is caused in part by their low calpain activities, which normally release integrin-cytoskeleton linkage, and thereby reduce adhesion. Super resolution imaging reveals that such T reg cell adhesion causes sequestration of Fascin-1, an actin-bundling protein essential for immunological synapse formation, and skews Fascin-1-dependent actin polarization in DCs toward the T reg cell adhesion zone. Although it is reversible upon T reg cell disengagement, this sequestration of essential cytoskeletal components causes a lethargic state of DCs, leading to reduced T cell priming. Our results reveal a dynamic cytoskeletal component underlying T reg cell-mediated DC suppression in a contact-dependent manner. © 2017 Chen et al.

  7. LOCAL IMMUNITY BY TISSUE-RESIDENT CD8+ MEMORY T CELLS

    Directory of Open Access Journals (Sweden)

    Thomas eGebhardt

    2012-11-01

    Full Text Available Microbial infection primes a CD8+ cytotoxic T cell response that gives rise to a long-lived population of circulating memory cells able to provide protection against systemic reinfection. Despite this, effective CD8+ T cell surveillance of barrier tissues such as skin and mucosa typically wanes with time, resulting in limited T cell-mediated protection in these peripheral tissues. However, recent evidence suggests that a specialized subset of CD103+ memory T cells can permanently lodge and persist in peripheral tissues, and that these cells can compensate for the loss of peripheral immune surveillance by circulating memory T cells. Here, we review evolving concepts regarding the generation and long-term persistence of these tissue-resident memory T cells (TRM in epithelial and neuronal tissues. We further discuss the role of TRM cells in local infection control and their contribution to localized immune phenomena, in both mice and humans.

  8. Involvement of IRF4 dependent dendritic cells in T cell dependent colitis

    DEFF Research Database (Denmark)

    Pool, Lieneke; Rivollier, Aymeric Marie Christian; Agace, William Winston

    in genetically susceptible individuals and pathogenic CD4+ T cells, which accumulate in the inflamed mucosa, are believed to be key drivers of the disease. While dendritic cells (DCs) are important in the priming of intestinal adaptive immunity and tolerance their role in the initiation and perpetuation...... of chronic intestinal inflammation remains unclear. In the current study we used the CD45RBhi T cell transfer model of colitis to determine the role of IRF4 dependent DCs in intestinal inflammation. In this model naïve CD4+ T cells when transferred into RAG-/- mice, proliferate and expand in response...... to bacterial derived luminal antigen, localize to the intestinal mucosa and induce colitis. Adoptive transfer of naïve T cells into CD11cCre.IRF4fl/fl.RAG-1-/- mice resulted in reduced monocyte recruitment to the intestine and mesenteric lymph nodes (MLN) compared to Cre- controls. Inflammatory cytokines...

  9. Regulatory T cells with reduced repressor capacities are extensively amplified in pulmonary sarcoid lesions and sustain granuloma formation.

    Science.gov (United States)

    Rappl, Gunter; Pabst, Stefan; Riemann, Dagmar; Schmidt, Annette; Wickenhauser, Claudia; Schütte, Wolfgang; Hombach, Andreas A; Seliger, Barbara; Grohé, Christian; Abken, Hinrich

    2011-07-01

    Sarcoidosis can evolve into a chronic disease with persistent granulomas accompanied by progressive fibrosis. While an unlimited inflammatory response suggests an impaired immune control in sarcoid lesions, it stands in contrast to the massive infiltration with CD4(+)CD25(high)FoxP3(+) regulatory T cells. We here revealed that those Treg cells in affected lung lesions were mainly derived from activated natural Treg cells with GARP (LRRC32)-positive phenotype but exhibited reduced repressor capacities despite high IL-10 and TGF-beta 1 levels. The repressive capacity of blood Treg cells, in contrast, was not impaired compared to age-matched healthy donors. Treg derived cells in granuloma lesions have undergone extensive rounds of amplifications indicated by shortened telomeres compared to blood Treg cells of the same patient. Lesional Treg derived cells moreover secreted pro-inflammatory cytokines including IL-4 which sustains granuloma formation through fibroblast amplification and the activation of mast cells, the latter indicated by the expression of membrane-bound oncostatin M. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Prophylactic and therapeutic adenoviral vector-based multivirus-specific T-cell immunotherapy for transplant patients

    Directory of Open Access Journals (Sweden)

    Vijayendra Dasari

    2016-01-01

    Full Text Available Viral infections including cytomegalovirus, Epstein-Barr virus, adenovirus, and BK virus are a common and predictable problem in transplant recipients. While cellular immune therapies have been successfully used to tackle infectious complications in transplant recipients, manufacturing immunotherapies to address the multitude of possible pathogens can be technically challenging and labor-intensive. Here we describe a novel adenoviral antigen presentation platform (Ad-MvP as a tool for rapid generation of multivirus-specific T-cells in a single step. Ad-MvP encodes 32 CD8+ T-cell epitopes from cytomegalovirus, Epstein-Barr virus, adenovirus, and BK virus as a contiguous polyepitope. We demonstrate that Ad-MvP vector can be successfully used for rapid in vitro expansion of multivirus-specific T-cells from transplant recipients and in vivo priming of antiviral T-cell immunity. Most importantly, using an in vivo murine model of Epstein-Barr virus-induced lymphoma, we also show that adoptive immunotherapy with Ad-MvP expanded autologous and allogeneic multivirus-specific T-cells is highly effective in controlling Epstein-Barr virus tumor outgrowth and improving overall survival. We propose that Ad-MvP has wide ranging therapeutic applications in greatly facilitating in vivo priming of antiviral T-cells, the generation of third-party T-cell banks as “off-the-shelf” therapeutics as well as autologous T-cell therapies for transplant patients.

  11. Early programming and late-acting checkpoints governing the development of CD4 T cell memory.

    Science.gov (United States)

    Dhume, Kunal; McKinstry, K Kai

    2018-04-27

    CD4 T cells contribute to protection against pathogens through numerous mechanisms. Incorporating the goal of memory CD4 T cell generation into vaccine strategies thus offers a powerful approach to improve their efficacy, especially in situations where humoral responses alone cannot confer long-term immunity. These threats include viruses such as influenza that mutate coat proteins to avoid neutralizing antibodies, but that are targeted by T cells that recognize more conserved protein epitopes shared by different strains. A major barrier in the design of such vaccines is that the mechanisms controlling the efficiency with which memory cells form remain incompletely understood. Here, we discuss recent insights into fate decisions controlling memory generation. We focus on the importance of three general cues: interleukin-2, antigen, and costimulatory interactions. It is increasingly clear that these signals have a powerful influence on the capacity of CD4 T cells to form memory during two distinct phases of the immune response. First, through 'programming' that occurs during initial priming, and second, through 'checkpoints' that operate later during the effector stage. These findings indicate that novel vaccine strategies must seek to optimize cognate interactions, during which interleukin-2-, antigen, and costimulation-dependent signals are tightly linked, well beyond initial antigen encounter to induce robust memory CD4 T cells. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  12. Functions of NKG2D in CD8+ T cells: an opportunity for immunotherapy.

    Science.gov (United States)

    Prajapati, Kushal; Perez, Cynthia; Rojas, Lourdes Beatriz Plaza; Burke, Brianna; Guevara-Patino, Jose A

    2018-02-05

    Natural killer group 2 member D (NKG2D) is a type II transmembrane receptor. NKG2D is present on NK cells in both mice and humans, whereas it is constitutively expressed on CD8 + T cells in humans but only expressed upon T-cell activation in mice. NKG2D is a promiscuous receptor that recognizes stress-induced surface ligands. In NK cells, NKG2D signaling is sufficient to unleash the killing response; in CD8 + T cells, this requires concurrent activation of the T-cell receptor (TCR). In this case, the function of NKG2D is to authenticate the recognition of a stressed target and enhance TCR signaling. CD28 has been established as an archetype provider of costimulation during T-cell priming. It has become apparent, however, that signals from other costimulatory receptors, such as NKG2D, are required for optimal T-cell function outside the priming phase. This review will focus on the similarities and differences between NKG2D and CD28; less well-described characteristics of NKG2D, such as the potential role of NKG2D in CD8 + T-cell memory formation, cancer immunity and autoimmunity; and the opportunities for targeting NKG2D in immunotherapy.Cellular and Molecular Immunology advance online publication, 5 February 2018; doi:10.1038/cmi.2017.161.

  13. Retinoic acid: an educational "vitamin elixir" for gut-seeking T cells.

    Science.gov (United States)

    Mora, J Rodrigo; von Andrian, Ulrich H

    2004-10-01

    T cell priming by dendritic cells (DC) from gut-associated lymphoid tissues gives rise to effector cells with pronounced gut tropism. The mechanism for DC-dependent imprinting of gut specificity has remained unknown. New findings point to retinoic acid, which is uniquely produced by intestinal DC, but not by DC from other lymphoid organs.

  14. Increased numbers of preexisting memory CD8 T cells and decreased T-bet expression can restrain terminal differentiation of secondary effector and memory CD8 T cells.

    Science.gov (United States)

    Joshi, Nikhil S; Cui, Weiguo; Dominguez, Claudia X; Chen, Jonathan H; Hand, Timothy W; Kaech, Susan M

    2011-10-15

    Memory CD8 T cells acquire effector memory cell properties after reinfection and may reach terminally differentiated, senescent states ("Hayflick limit") after multiple infections. The signals controlling this process are not well understood, but we found that the degree of secondary effector and memory CD8 T cell differentiation was intimately linked to the amount of T-bet expressed upon reactivation and preexisting memory CD8 T cell number (i.e., primary memory CD8 T cell precursor frequency) present during secondary infection. Compared with naive cells, memory CD8 T cells were predisposed toward terminal effector (TE) cell differentiation because they could immediately respond to IL-12 and induce T-bet, even in the absence of Ag. TE cell formation after secondary (2°) or tertiary infections was dependent on increased T-bet expression because T-bet(+/-) cells were resistant to these phenotypic changes. Larger numbers of preexisting memory CD8 T cells limited the duration of 2° infection and the amount of IL-12 produced, and consequently, this reduced T-bet expression and the proportion of 2° TE CD8 T cells that formed. Together, these data show that over repeated infections, memory CD8 T cell quality and proliferative fitness is not strictly determined by the number of serial encounters with Ag or cell divisions, but is a function of the CD8 T cell differentiation state, which is genetically controlled in a T-bet-dependent manner. This differentiation state can be modulated by preexisting memory CD8 T cell number and the intensity of inflammation during reinfection. These results have important implications for vaccinations involving prime-boost strategies.

  15. Langerhans cells from human oral epithelium are more effective at stimulating allogeneic T cells in vitro than Langerhans cells from skin.

    Science.gov (United States)

    Hasséus, B; Jontell, M; Bergenholtz, G; Dahlgren, U I

    2004-06-01

    This report is focused on the functional capacity of Langerhans cells (LC) in the epithelium of skin and oral mucosa, which both meet different antigenic challenges. The capacity of LC from human oral and skin epithelium to provide co-stimulatory signals to T cells in vitro was compared. LC in a crude suspension of oral epithelial cells had a significantly enhanced T cell co-stimulatory capacity compared to skin epithelial cells. This applied both to cultures with concanavalin A (con-A)-stimulated syngeneic T cells and to a mixed epithelial cell lymphocyte reaction involving allogeneic T cells. The co-stimulatory capacity of oral and skin epithelial cells was reduced by >70% if monoclonal antibodies against HLA-DR, -DP and -DQ were added to the cultures with allogeneic T cells, indicating the involvement of HLA class II expressing LC. Immunohistochemistry revealed that 6% of the epithelial cells were CD1a + LC in sections from both oral and skin epithelium. Interleukin (IL)-8 production was higher in cultures of oral epithelial cells and con-A stimulated T cells than in corresponding cultures with skin epithelial cells as accessory cells. The results suggest that LC in human oral epithelium are more efficient at stimulating T cells than those of skin.

  16. Chemokines: a new dendritic cell signal for T cell activation

    Directory of Open Access Journals (Sweden)

    Christoph A Thaiss

    2011-08-01

    Full Text Available Dendritic cells (DCs are the main inducers and regulators of cytotoxic T lymphocyte (CTL responses against viruses and tumors. One checkpoint to avoid misguided CTL activation, which might damage healthy cells of the body, is the necessity for multiple activation signals, involving both antigenic as well as additional signals that reflect the presence of pathogens. DCs provide both signals when activated by ligands of pattern recognition receptors and licensed by helper lymphocytes. Recently, it has been established that such T cell licensing can be facilitated by CD4+ T helper cells (classical licensing or by NKT cells (alternative licensing. Licensing regulates the DC/CTL cross-talk at multiple layers. Direct recruitment of CTLs through chemokines released by licensed DCs has recently emerged as a common theme and has a crucial impact on the efficiency of CTL responses. Here, we discuss recent advances in our understanding of DC licensing for cross-priming and implications for the temporal and spatial regulation underlying this process. Future vaccination strategies will benefit from a deeper insight into the mechanisms that govern CTL activation.

  17. Vitamin D3 targets epidermal and dermal dendritic cells for induction of distinct regulatory T cells

    NARCIS (Netherlands)

    van der Aar, Angelic M. G.; Sibiryak, Darya S.; Bakdash, Ghaith; van Capel, Toni M. M.; van der Kleij, Hanneke P. M.; Opstelten, Dirk-Jan E.; Teunissen, Marcel B. M.; Kapsenberg, Martien L.; de Jong, Esther C.

    2011-01-01

    Background: The vitamin D metabolite 1,25(OH) 2D3 (VitD3) is a potent immunosuppressive drug and, among others, is used for topical treatment of psoriasis. A proposed mechanism of VitD3-mediated suppression is priming of dendritic cells (DCs) to induce regulatory T (Treg) cells. Objective:

  18. Tumor rejection induced by CD70-mediated quantitative and qualitative effects on effector CD8+ T cell formation

    NARCIS (Netherlands)

    Arens, Ramon; Schepers, Koen; Nolte, Martijn A.; van Oosterwijk, Michiel F.; van Lier, René A. W.; Schumacher, Ton N. M.; van Oers, Marinus H. J.

    2004-01-01

    In vivo priming of antigen-specific CD8+ T cells results in their expansion and differentiation into effector T cells followed by contraction into a memory T cell population that can be maintained for life. Recent evidence suggests that after initial antigenic stimulation, the magnitude and kinetics

  19. Clonal analysis of T-cell responses to herpes simplex virus: isolation, characterization and antiviral properties of an antigen-specific helper T-cell clone.

    Science.gov (United States)

    Leung, K N; Nash, A A; Sia, D Y; Wildy, P

    1984-12-01

    A herpes simplex virus (HSV)-specific long-term T-cell clone has been established from the draining lymph node cells of BALB/c mice; the cells required repeated in vitro restimulation with UV-irradiated virus. The established T-cell clone expresses the Thy-1 and Lyt-1+2,3- surface antigens. For optimal proliferation of the cloned cells, both the presence of specific antigen and an exogenous source of T-cell growth factor are required. The proliferative response of the cloned T cells was found to be virus-specific but it did not distinguish between HSV-1 and HSV-2. Adoptive cell transfer of the cloned T cells helped primed B cells to produce anti-herpes antibodies: the response was antigen-specific and cell dose-dependent. The clone failed to produce a significant DTH reaction in vivo, but did produce high levels of macrophage-activating factor. Furthermore, the T-cell clone could protect from HSV infection, as measured by a reduction in local virus growth, and by enhanced survival following the challenge of mice with a lethal dose of virus. The mechanism(s) whereby this clone protects in vivo is discussed.

  20. Monocyte-derived dendritic cells are essential for CD8+ T cell activation and anti-tumor responses after local immunotherapy

    Directory of Open Access Journals (Sweden)

    Sabine eKuhn

    2015-11-01

    Full Text Available Tumors harbor several populations of dendritic cells with the ability to prime tumor-specific T cells. However, these T cells mostly fail to differentiate into armed effectors and are unable to control tumor growth. We have previously shown that treatment with immunostimulatory agents at the tumor site can activate anti-tumor immune responses, and is associated with the appearance of a population of monocyte-derived dendritic cells in the tumor and tumor-draining lymph node. Here we use dendritic cell or monocyte depletion and monocyte transfer to show that these monocyte-derived dendritic cells are critical to the activation of anti-tumor immune responses. Treatment with the immunostimulatory agents Monosodium Urate crystals and Mycobacterium smegmatis induced the accumulation of monocytes in the draining lymph node, their upregulation of CD11c and MHCII, and expression of iNOS, TNFα and IL12p40. Blocking monocyte entry into the lymph node and tumor through neutralization of the chemokine CCL2 or inhibition of Colony Stimulating Factor-1 receptor signaling prevented the generation of monocyte-derived dendritic cells, the infiltration of tumor-specific T cells into the tumor, and anti-tumor responses. In a reciprocal fashion, monocytes transferred into mice depleted of CD11c+ cells were sufficient to rescue CD8+ T cell priming in lymph node and delay tumor growth. Thus monocytes exposed to the appropriate conditions become powerful activators of tumor-specific CD8+ T cells and anti-tumor immunity.

  1. Different levels of immunogenicity of two strains of Fowlpox virus as recombinant vaccine vectors eliciting T-cell responses in heterologous prime-boost vaccination strategies.

    Science.gov (United States)

    Cottingham, Matthew G; van Maurik, Andre; Zago, Manola; Newton, Angela T; Anderson, Richard J; Howard, M Keith; Schneider, Jörg; Skinner, Michael A

    2006-07-01

    The FP9 strain of F has been described as a more immunogenic recombinant vaccine vector than the Webster FPV-M (FPW) strain (R. J. Anderson et al., J. Immunol. 172:3094-3100, 2004). This study expands the comparison to include two separate recombinant antigens and multiple, rather than single, independent viral clones derived from the two strains. Dual-poxvirus heterologous prime-boost vaccination regimens using individual clones of recombinant FP9 or FPW in combination with recombinant modified V Ankara expressing the same antigen were evaluated for their ability to elicit T-cell responses against recombinant antigens from Plasmodium berghei (circumsporozoite protein) or human immunodeficiency virus type 1 (a Gag-Pol-Nef fusion protein). Gamma interferon enzyme-linked immunospot assay and fluorescence-activated cell sorting assays of the responses to specific epitopes confirmed the approximately twofold-greater cellular immunogenicity of FP9 compared to FPW, when given as the priming or boosting immunization. Equality of transgene expression in mouse cells infected with the two strains in vitro was verified by Western blotting. Directed partial sequence analysis and PCR analysis of FPW and comparison to available whole-genome sequences revealed that many loci that are mutated in the highly attenuated and culture-adapted FP9 strain are wild type in FPW, including the seven multikilobase deletions. These "passage-specific" alterations are hypothesized to be involved in determining the immunogenicity of fowlpox virus as a recombinant vaccine vector.

  2. Enhanced gastric cancer growth potential of mesenchymal stem cells derived from gastric cancer tissues educated by CD4+ T cells.

    Science.gov (United States)

    Xu, Rongman; Zhao, Xiangdong; Zhao, Yuanyuan; Chen, Bin; Sun, Li; Xu, Changgen; Shen, Bo; Wang, Mei; Xu, Wenrong; Zhu, Wei

    2018-04-01

    Gastric cancer mesenchymal stem cells (GC-MSCs) can promote the development of tumour growth. The tumour-promoting role of tumour-associated MSCs and T cells has been demonstrated. T cells as the major immune cells may influence and induce a pro-tumour phenotype in MSCs. This study focused on whether CD4 + T cells can affect GC-MSCs to promote gastric cancer growth. CD4 + T cells upregulation of programmed death ligand 1 (PD-L1) expression in GC-MSCs through the phosphorylated signal transducer and activator of transcription (p-STAT3) signalling pathway was confirmed by immunofluorescence, western blotting and RT-PCR. Migration of GC cells was detected by Transwell migration assay, and apoptosis of GC cells was measured by flow cytometry using annexin V/propidium iodide double staining. CD4 + T cell-primed GC-MSCs promoted GC growth in a subcutaneously transplanted tumour model in BALB/c nu/nu mice. Gastric cancer mesenchymal stem cells stimulated by activated CD4 + T cells promoted migration of GC cells and enhanced GC growth potential in BALB/c nu/nu xenografts. PD-L1 upregulation of GC-MSCs stimulated by CD4 + T cells was mediated through the p-STAT3 signalling pathway. CD4 + T cells-primed GC-MSCs have greater GC volume and growth rate-promoting role than GC-MSCs, with cancer cell-intrinsic PD-1/mammalian target of rapamycin (mTOR) signalling activation. This study showed that GC-MSCs are plastic. The immunophenotype of GC-MSCs stimulated by CD4 + T cells has major changes that may influence tumour cell growth. This research was based on the interaction between tumour cells, MSCs and immune cells, providing a new understanding of the development and immunotherapy of GC. © 2017 John Wiley & Sons Ltd.

  3. Primed T cell responses to chemokines are regulated by the immunoglobulin-like molecule CD31.

    Directory of Open Access Journals (Sweden)

    Madhav Kishore

    Full Text Available CD31, an immunoglobulin-like molecule expressed by leukocytes and endothelial cells, is thought to contribute to the physiological regulation T cell homeostasis due to the presence of two immunotyrosine-based inhibitory motifs in its cytoplasmic tail. Indeed, loss of CD31 expression leads to uncontrolled T cell-mediated inflammation in a variety of experimental models of disease and certain CD31 polymorphisms correlate with increased disease severity in human graft-versus-host disease and atherosclerosis. The molecular mechanisms underlying CD31-mediated regulation of T cell responses have not yet been clarified. We here show that CD31-mediated signals attenuate T cell chemokinesis both in vitro and in vivo. This effect selectively affects activated/memory T lymphocytes, in which CD31 is clustered on the cell membrane where it segregates to the leading edge. We provide evidence that this molecular segregation, which does not occur in naïve T lymphocytes, might lead to cis-CD31 engagement on the same membrane and subsequent interference with the chemokine-induced PI3K/Akt signalling pathway. We propose that CD31-mediated modulation of memory T cell chemokinesis is a key mechanism by which this molecule contributes to the homeostatic regulation of effector T cell immunity.

  4. ATP Release from Chemotherapy-Treated Dying Leukemia Cells Elicits an Immune Suppressive Effect by Increasing Regulatory T Cells and Tolerogenic Dendritic Cells

    Directory of Open Access Journals (Sweden)

    Mariangela Lecciso

    2017-12-01

    Full Text Available Chemotherapy-induced immunogenic cell death can favor dendritic cell (DC cross-priming of tumor-associated antigens for T cell activation thanks to the release of damage-associated molecular patterns, including ATP. Here, we tested the hypothesis that in acute myeloid leukemia (AML, ATP release, along with its well-known immune stimulatory effect, may also contribute to the generation of an immune suppressive microenvironment. In a cohort of AML patients, undergoing combined daunorubicin and cytarabine chemotherapy, a population of T regulatory cells (Tregs with suppressive phenotype, expressing the immune checkpoint programmed cell death protein 1 (PD-1, was significantly increased. Moving from these results, initial in vitro data showed that daunorubicin was more effective than cytarabine in modulating DC function toward Tregs induction and such difference was correlated with the higher capacity of daunorubicin to induce ATP release from treated AML cells. DCs cultured with daunorubicin-treated AML cells upregulated indoleamine 2,3-dioxygenase 1 (IDO1, which induced anti-leukemia Tregs. These data were confirmed in vivo as daunorubicin-treated mice show an increase in extracellular ATP levels with increased number of Tregs, expressing PD-1 and IDO1+CD39+ DCs. Notably, daunorubicin failed to induce Tregs and tolerogenic DCs in mice lacking the ATP receptor P2X7. Our data indicate that ATP release from chemotherapy-treated dying cells contributes to create an immune suppressive microenvironment in AML.

  5. IRF8 Transcription-Factor-Dependent Classical Dendritic Cells Are Essential for Intestinal T Cell Homeostasis.

    Science.gov (United States)

    Luda, Katarzyna M; Joeris, Thorsten; Persson, Emma K; Rivollier, Aymeric; Demiri, Mimoza; Sitnik, Katarzyna M; Pool, Lieneke; Holm, Jacob B; Melo-Gonzalez, Felipe; Richter, Lisa; Lambrecht, Bart N; Kristiansen, Karsten; Travis, Mark A; Svensson-Frej, Marcus; Kotarsky, Knut; Agace, William W

    2016-04-19

    The role of dendritic cells (DCs) in intestinal immune homeostasis remains incompletely defined. Here we show that mice lacking IRF8 transcription-factor-dependent DCs had reduced numbers of T cells in the small intestine (SI), but not large intestine (LI), including an almost complete absence of SI CD8αβ(+) and CD4(+)CD8αα(+) T cells; the latter requiring β8 integrin expression by migratory IRF8 dependent CD103(+)CD11b(-) DCs. SI homing receptor induction was impaired during T cell priming in mesenteric lymph nodes (MLN), which correlated with a reduction in aldehyde dehydrogenase activity by SI-derived MLN DCs, and inefficient T cell localization to the SI. These mice also lacked intestinal T helper 1 (Th1) cells, and failed to support Th1 cell differentiation in MLN and mount Th1 cell responses to Trichuris muris infection. Collectively these results highlight multiple non-redundant roles for IRF8 dependent DCs in the maintenance of intestinal T cell homeostasis. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Epithelial-to-mesenchymal transition (EMT) induced by inflammatory priming elicits mesenchymal stromal cell-like immune-modulatory properties in cancer cells.

    Science.gov (United States)

    Ricciardi, M; Zanotto, M; Malpeli, G; Bassi, G; Perbellini, O; Chilosi, M; Bifari, F; Krampera, M

    2015-03-17

    Epithelial-to-mesenchymal transition (EMT) has a central role in cancer progression and metastatic dissemination and may be induced by local inflammation. We asked whether the inflammation-induced acquisition of mesenchymal phenotype by neoplastic epithelial cells is associated with the onset of mesenchymal stromal cell-like immune-regulatory properties that may enhance tumour immune escape. Cell lines of lung adenocarcinoma (A549), breast cancer (MCF7) and hepatocellular carcinoma (HepG2) were co-cultured with T, B and NK cells before and after EMT induction by either the supernatant of mixed-lymphocyte reactions or inflammatory cytokines. EMT occurrence following inflammatory priming elicited multiple immune-regulatory effects in cancer cells resulting in NK and T-cell apoptosis, inhibition of lymphocyte proliferation and stimulation of regulatory T and B cells. Indoleamine 2,3-dioxygenase, but not Fas ligand pathway, was involved at least in part in these effects, as shown by the use of specific inhibitors. EMT induced by inflammatory stimuli confers to cancer cells some mesenchymal stromal cell-like immune-modulatory properties, which could be a cue for cancer progression and metastatic dissemination by favouring immune escape.

  7. Functional and morphological recovery of the T-cell compartment in lethally irradiated and reconstituted mice

    International Nuclear Information System (INIS)

    Kraal, G.; Hilst, B. van der; Boden, D.

    1979-01-01

    The recovery of the T-cell compartment in mice after lethal irradiation and reconstitution was studied using functional and morphological parameters. T-helper cell activity, determined by the direct SRBC-plaque-forming cell (PFC) response, recovered in a similar fashion as T-memory function which was studied by adoptive transfer of carrier-primed cells. Both functions returned to control levels in 2.5 to 3 months. Using immunoperoxidase staining of frozen sections with anti-T cell serum, the morphological recovery of the T-cell dependent areas in the white pulp of the spleen could be studied and compared with the functional recovery. (author)

  8. Chloroquine inhibits accessory cell presentation of soluble natural and synthetic protein antigens

    DEFF Research Database (Denmark)

    Buus, S; Werdelin, O

    1984-01-01

    We have studied the in vitro effect of the lysosomotrophic agent, chloroquine, on the presentation of soluble protein antigens by guinea pig accessory cells. Chloroquine inhibited the capacity of antigen-pulsed accessory cells to stimulate proliferation in appropriately primed T cells. The effect...... was time- and dose-dependent. A brief treatment solely of the accessory cells with the drug compromised their ability to stimulate primed T cells in a subsequent culture provided the accessory cells were treated with chloroquine before their exposure to the antigen. These results suggest that chloroquine...... acts on an early event in the antigen handling by accessory cells. Chloroquine is a well known inhibitor of lysosomal proteolysis, and it is likely that its effect on antigen presentation is caused by an inhibition of antigen degradation....

  9. Semi-allogeneic dendritic cells can induce antigen-specific T-cell activation, which is not enhanced by concurrent alloreactivity.

    Science.gov (United States)

    Wells, James W; Cowled, Chris J; Darling, David; Guinn, Barbara-Ann; Farzaneh, Farzin; Noble, Alistair; Galea-Lauri, Joanna

    2007-12-01

    Alloreactive T-cell responses are known to result in the production of large amounts of proinflammatory cytokines capable of activating and maturing dendritic cells (DC). However, it is unclear whether these allogeneic responses could also act as an adjuvant for concurrent antigen-specific responses. To examine effects of simultaneous alloreactive and antigen-specific T-cell responses induced by semi-allogeneic DC. Semi-allogeneic DC were generated from the F(1) progeny of inbred strains of mice (C57BL/6 and C3H, or C57BL/6 and DBA). We directly primed antigen-specific CD8(+) and CD4(+) T-cells from OT-I and OT-II mice, respectively, in the absence of allogeneic responses, in vitro, and in the presence or absence of alloreactivity in vivo. In vitro, semi-allogeneic DC cross-presented ovalbumin (OVA) to naïve CD8(+) OT-I transgenic T-cells, primed naïve CD4(+) OT-II transgenic T-cells and could stimulate strong alloreactive T-cell proliferation in a primary mixed lymphocyte reaction (MLR). In vivo, semi-allogeneic DC migrated efficiently to regional lymph nodes but did not survive there as long as autologous DC. In addition, they were not able to induce cytotoxic T-lymphocyte (CTL) activity to a target peptide, and only weakly stimulated adoptively transferred OT-II cells. The CD4(+) response was unchanged in allo-tolerized mice, indicating that alloreactive T-cell responses could not provide help for concurrently activated antigen-specific responses. In an EL4 tumour-treatment model, vaccination with semi-allogeneic DC/EL4 fusion hybrids, but not allogeneic DC/EL4 hybrids, significantly increased mouse survival. Expression of self-Major histocompatibility complex (MHC) by semi-allogeneic DC can cause the induction of antigen-specific immunity, however, concurrently activated allogeneic bystander responses do not provide helper or adjuvant effects.

  10. Differential and transferable modulatory effects of mesenchymal stromal cell-derived extracellular vesicles on T, B and NK cell functions.

    Science.gov (United States)

    Di Trapani, Mariano; Bassi, Giulio; Midolo, Martina; Gatti, Alessandro; Kamga, Paul Takam; Cassaro, Adriana; Carusone, Roberta; Adamo, Annalisa; Krampera, Mauro

    2016-04-13

    Mesenchymal stromal cells (MSCs) are multipotent cells, immunomodulatory stem cells that are currently used for regenerative medicine and treatment of a number of inflammatory diseases, thanks to their ability to significantly influence tissue microenvironments through the secretion of large variety of soluble factors. Recently, several groups have reported the presence of extracellular vesicles (EVs) within MSC secretoma, showing their beneficial effect in different animal models of disease. Here, we used a standardized methodological approach to dissect the immunomodulatory effects exerted by MSC-derived EVs on unfractionated peripheral blood mononuclear cells and purified T, B and NK cells. We describe here for the first time: i. direct correlation between the degree of EV-mediated immunosuppression and EV uptake by immune effector cells, a phenomenon further amplified following MSC priming with inflammatory cytokines; ii. induction in resting MSCs of immunosuppressive properties towards T cell proliferation through EVs obtained from primed MSCs, without any direct inhibitory effect towards T cell division. Our conclusion is that the use of reproducible and validated assays is not only useful to characterize the mechanisms of action of MSC-derived EVs, but is also capable of justifying EV potential use as alternative cell-free therapy for the treatment of human inflammatory diseases.

  11. Evaluation of the radioinduced damage, repair capacity and cell death on human tumorigenic (T-47D and MCF-7) and nontumorigenic (MCF-10) cell lines of breast

    International Nuclear Information System (INIS)

    Valdoge, Flavia Gomes Silva

    2008-01-01

    Breast cancer is one of the most common malignancies that account women, representing about one in three of all female neoplasm. Approximately, 90% of cases are considered sporadic, attributed to somatic events and about 10% have a family history and this only 4 - 5 % is due to hereditary factors. In the clinic, ionizing radiation is a major tool utilized in the control of tumour growth, besides surgery and chemotherapy. There is, however, little information concerning cellular response to the action of ionizing radiation in the target cells, i.e., cell lines originating from breast cancer. The present study proposed to analyze the radiosensitivity of the human tumorigenic (T-47D and MCF-7) and non tumorigenic (MCF-10) cell lines, originating from breast and submitted to various doses (0.5 to 30 Gy) of 60 Co rays (0.72 - 1.50 Gy/min). For this purpose, DNA radioinduced damage, repair capacity and cell death were utilized as parameters of radiosensitivity by micronucleus, single cell gel electrophoresis (Comet assay) and cell viability techniques. The data obtained showed that tumorigenic cell lines were more radiosensitive than non tumorigenic breast cells in all assays here utilized. The T-47D cell line was presenting the highest amount of radioinduced damage, a more accelerated proliferation rate and a higher rate of cell death. The three cell lines presented a relatively efficient repair capacity, since one hour after the irradiation all of them showed a considerable reduction of radioinduced damage. The techniques employed showed to be secure, sensitive and reproducible, allowing to quantify and evaluate DNA damage, repair capacity and cell death in the three human breast cell lines. (author)

  12. Effects of low priming dose irradiation on cell cycle arrest of HepG2 cells caused by high dose irradiation

    International Nuclear Information System (INIS)

    Xia Jingguang; Jin Xiaodong; Chinese Academy of Sciences, Beijing; Li Wenjian; Wang Jufang; Guo Chuanling; Gao Qingxiang

    2005-01-01

    Human hepatoma cells hepG2 were irradiated twice by 60 Co γ-rays with a priming dose of 5 cGy and a higher dose of 3 Gy performed 4h or 8h after the low dose irradiation. Effects of the priming dose irradiation on cell cycle arrest caused by high dose were examined with flow cytometry. Cells in G 2 /M phase accumulated temporarily after the 5 cGy irradiation, and proliferation of tumor cells was promoted significantly by the low dose irradiation. After the 3 Gy irradiation, G 2 phase arrest occurred, and S phase delayed temporally. In comparison with 3 kGy irradiation only, the priming dose delivered 4h prior to the high dose irradiation facilitated accumulation of hepG2 cells in G 2 /M phase, whereas the priming dose delivered 8h prior to the high dose irradiation helped the cells to overcome G 2 arrest. It was concluded that effects of the priming dose treatment on cell cycle arrest caused by high dose irradiation were dependent on time interval between the two irradiations. (authors)

  13. Local HPV Recombinant Vaccinia Boost Following Priming with an HPV DNA Vaccine Enhances Local HPV-Specific CD8+ T-cell-Mediated Tumor Control in the Genital Tract.

    Science.gov (United States)

    Sun, Yun-Yan; Peng, Shiwen; Han, Liping; Qiu, Jin; Song, Liwen; Tsai, Yachea; Yang, Benjamin; Roden, Richard B S; Trimble, Cornelia L; Hung, Chien-Fu; Wu, T-C

    2016-02-01

    Two viral oncoproteins, E6 and E7, are expressed in all human papillomavirus (HPV)-infected cells, from initial infection in the genital tract to metastatic cervical cancer. Intramuscular vaccination of women with high-grade cervical intraepithelial neoplasia (CIN2/3) twice with a naked DNA vaccine, pNGVL4a-sig/E7(detox)/HSP70, and a single boost with HPVE6/E7 recombinant vaccinia vaccine (TA-HPV) elicited systemic HPV-specific CD8 T-cell responses that could traffic to the lesion and was associated with regression in some patients (NCT00788164). Here, we examine whether alteration of this vaccination regimen by administration of TA-HPV vaccination in the cervicovaginal tract, rather than intramuscular (IM) delivery, can more effectively recruit antigen-specific T cells in an orthotopic syngeneic mouse model of HPV16(+) cervical cancer (TC-1 luc). We found that pNGVL4a-sig/E7(detox)/HSP70 vaccination followed by cervicovaginal vaccination with TA-HPV increased accumulation of total and E7-specific CD8(+) T cells in the cervicovaginal tract and better controlled E7-expressing cervicovaginal TC-1 luc tumor than IM administration of TA-HPV. Furthermore, the E7-specific CD8(+) T cells in the cervicovaginal tract generated through the cervicovaginal route of vaccination expressed the α4β7 integrin and CCR9, which are necessary for the homing of the E7-specific CD8(+) T cells to the cervicovaginal tract. Finally, we show that cervicovaginal vaccination with TA-HPV can induce potent local HPV-16 E7 antigen-specific CD8(+) T-cell immune responses regardless of whether an HPV DNA vaccine priming vaccination was administered IM or within the cervicovaginal tract. Our results support future clinical translation using cervicovaginal TA-HPV vaccination. ©2015 American Association for Cancer Research.

  14. Local HPV Recombinant Vaccinia Boost Following Priming with an HPV DNA Vaccine Enhances Local HPV-Specific CD8+ T Cell Mediated Tumor Control in the Genital Tract

    Science.gov (United States)

    Sun, Yun-Yan; Peng, Shiwen; Han, Liping; Qiu, Jin; Song, Liwen; Tsai, Yachea; Yang, Benjamin; Roden, Richard B.S.; Trimble, Cornelia L.; Hung, Chien-Fu; Wu, T-C

    2015-01-01

    Purpose Two viral oncoproteins, E6 and E7, are expressed in all human papillomavirus (HPV)-infected cells, from initial infection in the genital tract to metastatic cervical cancer. Intramuscular vaccination of women with high grade cervical intraepithelial neoplasia (CIN2/3) twice with a naked DNA vaccine, pNGVL4a-sig/E7(detox)/HSP70, and a single boost with HPVE6/E7 recombinant vaccinia vaccine (TA-HPV) elicited systemic HPV-specific CD8 T cell responses that could traffic to the lesion and was associated with regression in some patients (NCT00788164). Experimental Design Here we examine whether alteration of this vaccination regimen by administration of TA-HPV vaccination in the cervicovaginal tract, rather than IM delivery, can more effectively recruit antigen-specific T cells in an orthotopic syngeneic mouse model of HPV16+ cervical cancer (TC-1 luc). Results We found that pNGVL4a-sig/E7(detox)/HSP70 vaccination followed by cervicovaginal vaccination with TA-HPV increased accumulation of total and E7-specific CD8+ T cells in the cervicovaginal tract and better controlled E7-expressing cervicovaginal TC-1 luc tumor than IM administration of TA-HPV. Furthermore, the E7-specific CD8+ T cells in the cervicovaginal tract generated through the cervicovaginal route of vaccination expressed the α4β7 integrin and CCR9, which are necessary for the homing of the E7-specific CD8+ T cells to the cervicovaginal tract. Finally, we show that cervicovaginal vaccination with TA-HPV can induce potent local HPV-16 E7 antigen-specific CD8+ T cell immune responses regardless of whether an HPV DNA vaccine priming vaccination was administered IM or within the cervicovaginal tract. Conclusions Our results support future clinical translation using cervicovaginal TA-HPV vaccination. PMID:26420854

  15. Memory CD8 T cell inflation vs tissue-resident memory T cells: Same patrollers, same controllers?

    Science.gov (United States)

    Welten, Suzanne P M; Sandu, Ioana; Baumann, Nicolas S; Oxenius, Annette

    2018-05-01

    The induction of long-lived populations of memory T cells residing in peripheral tissues is of considerable interest for T cell-based vaccines, as they can execute immediate effector functions and thus provide protection in case of pathogen encounter at mucosal and barrier sites. Cytomegalovirus (CMV)-based vaccines support the induction and accumulation of a large population of effector memory CD8 T cells in peripheral tissues, in a process called memory inflation. Tissue-resident memory (T RM ) T cells, induced by various infections and vaccination regimens, constitute another subset of memory cells that take long-term residence in peripheral tissues. Both memory T cell subsets have evoked substantial interest in exploitation for vaccine purposes. However, a direct comparison between these two peripheral tissue-localizing memory T cell subsets with respect to their short- and long-term ability to provide protection against heterologous challenge is pending. Here, we discuss communalities and differences between T RM and inflationary CD8 T cells with respect to their development, maintenance, function, and protective capacity. In addition, we discuss differences and similarities between the transcriptional profiles of T RM and inflationary T cells, supporting the notion that they are distinct memory T cell populations. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Mesenchymal Stromal Cells Prevent Allostimulation In Vivo and Control Checkpoints of Th1 Priming: Migration of Human DC to Lymph Nodes and NK Cell Activation.

    Science.gov (United States)

    Consentius, C; Akyüz, L; Schmidt-Lucke, J A; Tschöpe, C; Pinzur, L; Ofir, R; Reinke, P; Volk, H-D; Juelke, K

    2015-10-01

    Although the immunomodulatory potency of mesenchymal stromal cells (MSC) is well established, the mechanisms behind are still not clear. The crosstalk between myeloid dendritic cells (mDC) and natural killer (NK) cells and especially NK cell-derived interferon-gamma (IFN-γ) play a pivotal role in the development of type 1 helper (Th1) cell immune responses. While many studies explored the isolated impact of MSC on either in vitro generated DC, NK, or T cells, there are only few data available on the complex interplay between these cells. Here, we investigated the impact of MSC on the functionality of human mDC and the consequences for NK cell and Th1 priming in vitro and in vivo. In critical limb ischemia patients, who have been treated with allogeneic placenta-derived mesenchymal-like stromal cells (PLX-PAD), no in vivo priming of Th1 responses toward the major histocompatibility complex (MHC) mismatches could be detected. Further in vitro studies revealed that mDC reprogramming could play a central role for these effects. Following crosstalk with MSC, activated mDC acquired a tolerogenic phenotype characterized by reduced migration toward CCR7 ligand and impaired ability to stimulate NK cell-derived IFN-γ production. These effects, which were strongly related to an altered interleukin (IL)-12/IL-10 production by mDC, were accompanied by an effective prevention of Th1 priming in vivo. Our findings provide novel evidence for the regulation of Th1 priming by MSC via modulation of mDC and NK cell crosstalk and show that off-the-shelf produced MHC-mismatched PLX-PAD can be used in patients without any sign of immunogenicity. © 2015 AlphaMed Press.

  17. Phenotypic and Functional Alterations in Circulating Memory CD8 T Cells with Time after Primary Infection.

    Directory of Open Access Journals (Sweden)

    Matthew D Martin

    2015-10-01

    Full Text Available Memory CD8 T cells confer increased protection to immune hosts upon secondary viral, bacterial, and parasitic infections. The level of protection provided depends on the numbers, quality (functional ability, and location of memory CD8 T cells present at the time of infection. While primary memory CD8 T cells can be maintained for the life of the host, the full extent of phenotypic and functional changes that occur over time after initial antigen encounter remains poorly characterized. Here we show that critical properties of circulating primary memory CD8 T cells, including location, phenotype, cytokine production, maintenance, secondary proliferation, secondary memory generation potential, and mitochondrial function change with time after infection. Interestingly, phenotypic and functional alterations in the memory population are not due solely to shifts in the ratio of effector (CD62Llo and central memory (CD62Lhi cells, but also occur within defined CD62Lhi memory CD8 T cell subsets. CD62Lhi memory cells retain the ability to efficiently produce cytokines with time after infection. However, while it is was not formally tested whether changes in CD62Lhi memory CD8 T cells over time occur in a cell intrinsic manner or are due to selective death and/or survival, the gene expression profiles of CD62Lhi memory CD8 T cells change, phenotypic heterogeneity decreases, and mitochondrial function and proliferative capacity in either a lymphopenic environment or in response to antigen re-encounter increase with time. Importantly, and in accordance with their enhanced proliferative and metabolic capabilities, protection provided against chronic LCMV clone-13 infection increases over time for both circulating memory CD8 T cell populations and for CD62Lhi memory cells. Taken together, the data in this study reveal that memory CD8 T cells continue to change with time after infection and suggest that the outcome of vaccination strategies designed to elicit

  18. The role of nitric oxide radicals in removal of hyper-radiosensitivity by priming irradiation

    International Nuclear Information System (INIS)

    Edin, Nina Jeppesen; Sandvik, Joe Alexander; Pettersen, Erik Olai; Vollan, Hilde Synnove; Reger, Katharina; Görlach, Agnes

    2013-01-01

    In this study, a mechanism in which low-dose hyper-radiosensitivity (HRS) is permanently removed, induced by low-dose-rate (LDR) (0.2 - 0.3 Gy/h for 1 h) but not by high-dose-rate priming (0.3 Gy at 40 Gy/h) was investigated. One HRS-negative cell line (NHIK 3025) and two HRS-positive cell lines (T-47D, T98G) were used. The effects of different pretreatments on HRS were investigated using the colony assay. Cell-based ELISA was used to measure nitric oxide synthase (NOS) levels, and microarray analysis to compare gene expression in primed and unprimed cells. The data show how permanent removal of HRS, previously found to be induced by LDR priming irradiation, can also be induced by addition of nitric oxide (NO)-donor DEANO combined with either high-dose-rate priming or exposure to prolonged cycling hypoxia followed by reoxygenation, a treatment not involving radiation. The removal of HRS appears not to involve DNA damage induced during priming irradiation as it was also induced by LDR irradiation of cell-conditioned medium without cells present. The permanent removal of HRS in LDR-primed cells was reversed by treatment with inducible nitric oxide synthase (iNOS) inhibitor 1400W. Furthermore, 1400W could also induce HRS in an HRS-negative cell line. The data suggest that LDR irradiation for 1 h, but not 15 min, activates iNOS, and also that sustained iNOS activation is necessary for the permanent removal of HRS by LDR priming. The data indicate that nitric oxide production is involved in the regulatory processes determining cellular responses to low-dose-rate irradiation. (author)

  19. Generation of TCR-Expressing Innate Lymphoid-like Helper Cells that Induce Cytotoxic T Cell-Mediated Anti-leukemic Cell Response.

    Science.gov (United States)

    Ueda, Norihiro; Uemura, Yasushi; Zhang, Rong; Kitayama, Shuichi; Iriguchi, Shoichi; Kawai, Yohei; Yasui, Yutaka; Tatsumi, Minako; Ueda, Tatsuki; Liu, Tian-Yi; Mizoro, Yasutaka; Okada, Chihiro; Watanabe, Akira; Nakanishi, Mahito; Senju, Satoru; Nishimura, Yasuharu; Kuzushima, Kiyotaka; Kiyoi, Hitoshi; Naoe, Tomoki; Kaneko, Shin

    2018-06-05

    CD4 + T helper (Th) cell activation is essential for inducing cytotoxic T lymphocyte (CTL) responses against malignancy. We reprogrammed a Th clone specific for chronic myelogenous leukemia (CML)-derived b3a2 peptide to pluripotency and re-differentiated the cells into original TCR-expressing T-lineage cells (iPS-T cells) with gene expression patterns resembling those of group 1 innate lymphoid cells. CD4 gene transduction into iPS-T cells enhanced b3a2 peptide-specific responses via b3a2 peptide-specific TCR. iPS-T cells upregulated CD40 ligand (CD40L) expression in response to interleukin-2 and interleukin-15. In the presence of Wilms tumor 1 (WT1) peptide, antigen-specific dendritic cells (DCs) conditioned by CD4-modified CD40L high iPS-T cells stimulated WT1-specific CTL priming, which eliminated WT1 peptide-expressing CML cells in vitro and in vivo. Thus, CD4 modification of CD40L high iPS-T cells generates innate lymphoid helper-like cells inducing bcr-abl-specific TCR signaling that mediates effectiveanti-leukemic CTL responses via DC maturation, showing potential for adjuvant immunotherapy against leukemia. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Interferon-γ Reduces the Proliferation of Primed Human Renal Tubular Cells

    Directory of Open Access Journals (Sweden)

    Omar García-Sánchez

    2014-01-01

    Full Text Available Background/Aims: Chronic kidney disease (CKD is a progressive deterioration of the kidney function, which may eventually lead to renal failure and the need for dialysis or kidney transplant. Whether initiated in the glomeruli or the tubuli, CKD is characterized by progressive nephron loss, for which the process of tubular deletion is of key importance. Tubular deletion results from tubular epithelial cell death and defective repair, leading to scarring of the renal parenchyma. Several cytokines and signaling pathways, including transforming growth factor-β (TGF-β and the Fas pathway, have been shown to participate in vivo in tubular cell death. However, there is some controversy about their mode of action, since a direct effect on normal tubular cells has not been demonstrated. We hypothesized that epithelial cells would require specific priming to become sensitive to TGF-β or Fas stimulation and that this priming would be brought about by specific mediators found in the pathological scenario. Methods: Herein we studied whether the combined effect of several stimuli known to take part in CKD progression, namely TGF-β, tumor necrosis factor-α, interferon-γ (IFN-γ, and Fas stimulation, on primed resistant human tubular cells caused cell death or reduced proliferation. Results: We demonstrate that these cytokines have no synergistic effect on the proliferation or viability of human kidney (HK2 cells. We also demonstrate that IFN-γ, but not the other stimuli, reduces the proliferation of cycloheximide-primed HK2 cells without affecting their viability. Conclusion: Our results point at a potentially important role of IFN-γ in defective repair, leading to nephron loss during CKD.

  1. Increased numbers of pre-existing memory CD8 T cells and decreased T-bet expression can restrain terminal differentiation of secondary effector and memory CD8 T cells1

    Science.gov (United States)

    Joshi, Nikhil S.; Cui, Weiguo; Dominguez, Claudia; Chen, Jonathan H.; Hand, Timothy W.; Kaech, Susan M.

    2011-01-01

    Memory CD8 T cells acquire TEM properties following reinfection, and may reach terminally differentiated, senescent states (“Hayflick limit”) after multiple infections. The signals controlling this process are not well understood, but we found that the degree of 2o effector and memory CD8 T cell differentiation was intimately linked to the amount of T-bet expressed upon reactivation and pre-existing memory CD8 T cell number (i.e., 1o memory CD8 T cell precursor frequency) present during secondary infection. Compared to naïve cells, memory CD8 T cells were predisposed towards terminal effector (TE) cell differentiation because they could immediately respond to IL-12 and induce T-bet, even in the absence of antigen. TE cell formation following 2o or 3o infections was dependent on increased T-bet expression because T-bet+/− cells were resistant to these phenotypic changes. Larger numbers of pre-existing memory CD8 T cells limited the duration of 2o infection and the amount of IL-12 produced, and consequently, this reduced T-bet expression and the proportion of 2o TE CD8 T cells that formed. Together, these data show that, over repeated infections, memory CD8 T cell quality and proliferative fitness is not strictly determined by the number of serial encounters with antigen or cell divisions, but is a function of the CD8 T cell differentiation state, which is genetically controlled in a T-bet-dependent manner. This differentiation state can be modulated by pre-existing memory CD8 T cell number and the intensity of inflammation during reinfection. These results have important implications for vaccinations involving prime-boost strategies. PMID:21930973

  2. Clonorchis sinensis-derived total protein attenuates airway inflammation in murine asthma model by inducing regulatory T cells and modulating dendritic cell functions

    International Nuclear Information System (INIS)

    Jeong, Young-Il; Kim, Seung Hyun; Ju, Jung Won; Cho, Shin Hyeong; Lee, Won Ja; Park, Jin Wook; Park, Yeong-Min; Lee, Sang Eun

    2011-01-01

    Highlights: → Treatment with Clonorchis sinensis-derived total protein attenuates OVA-induced airway inflammation and AHR to methacholine. → Induction of CD4 + CD25 + Foxp3 + T cells and IL-10 along with suppression of splenocyte proliferation by C. sinensis-derived total protein. → C. sinensis-derived total protein interferes with the expression of co-stimulatory molecules in DCs. -- Abstract: Asthma is characterized by Th2-mediated inflammation, resulting in airway hyperresponsiveness (AHR) through airway remodeling. Recent epidemiological and experimental reports have suggested an inverse relationship between the development of allergy and helminth infections. Infection by Clonorchis sinensis, a liver fluke that resides in the bile duct of humans, is endemic predominantly in Asia including Korea and China. Using a murine model for asthma, we investigated the effects of C. sinensis-derived total protein (Cs-TP) on allergen-induced airway inflammation and the mechanism underlying the protective effects of Cs-TP administration on asthma. Treatment with Cs-TP attenuated OVA-induced airway inflammation and methacholine-induced AHR, as well as eosinophilia development, lymphocyte infiltration into the lung, and goblet cell metaplasia. This protective effect of Cs-TP is associated with markedly reduced OVA-specific IgE and Th1/Th2 cytokine production. Moreover, Cs-TP increased the number of CD4 + CD25 + Foxp3 + regulatory T (Treg) cells as well as their suppressive activity. In fact, proliferation of OVA-restimulated splenocytes was suppressed significantly. Cs-TP also inhibited the expression of such co-stimulatory molecules as CD80, CD86, and CD40 in LPS- or OVA-stimulated dendritic cells (DCs), suggesting that Cs-TP could interfere with the capacity of airway DCs to prime naive T cells. These data demonstrate the capacity of C. sinensis to ameliorate allergic asthma and broaden our understanding of the paradoxical relationship between the allergic immune

  3. The link between CD8⁺ T-cell antigen-sensitivity and HIV-suppressive capacity depends on HLA restriction, target epitope and viral isolate.

    Science.gov (United States)

    Lissina, Anna; Fastenackels, Solène; Inglesias, Maria C; Ladell, Kristin; McLaren, James E; Briceño, Olivia; Gostick, Emma; Papagno, Laura; Autran, Brigitte; Sauce, Delphine; Price, David A; Saez-Cirion, Asier; Appay, Victor

    2014-02-20

    Although it is established that CD8 T-cell immunity is critical for the control of HIV replication in vivo, the key factors that determine antiviral efficacy are yet to be fully elucidated. Antigen-sensitivity and T-cell receptor (TCR) avidity have been identified as potential determinants of CD8⁺ T-cell efficacy. However, there is no general consensus in this regard because the relationship between these parameters and the control of HIV infection has been established primarily in the context of immunodominant CD8⁺ T-cell responses against the Gag₂₆₃₋₂₇₂ KK10 epitope restricted by human leukocyte antigen (HLA)-B27. To investigate the relationship between antigen-sensitivity, TCR avidity and HIV-suppressive capacity in vitro across epitope specificities and HLA class I restriction elements, we used a variety of techniques to study CD8⁺ T-cell clones specific for Nef₇₃₋₈₂ QK10 and Gag₂₀₋₂₉ RY10, both restricted by HLA-A3, alongside CD8⁺ T-cell clones specific for Gag₂₆₃₋₂₇₂ KK10. For each targeted epitope, the linked parameters of antigen-sensitivity and TCR avidity correlated directly with antiviral efficacy. However, marked differences in HIV-suppressive capacity were observed between epitope specificities, HLA class I restriction elements and viral isolates. Collectively, these data emphasize the central role of the TCR as a determinant of CD8⁺ T-cell efficacy and demonstrate that the complexities of antigen recognition across epitope and HLA class I boundaries can confound simple relationships between TCR engagement and HIV suppression.

  4. Specific Schistosoma mansoni rat T cell clones. I. Generation and functional analysis in vitro and in vivo.

    Science.gov (United States)

    Pestel, J; Dissous, C; Dessaint, J P; Louis, J; Engers, H; Capron, A

    1985-06-01

    In an attempt to determine the role of schistosome-specific T cells in the immune mechanisms developed during schistosomiasis, Schistosoma mansoni-specific T cells and clones were generated in vitro and some of their functions analyzed in vitro and in vivo in the fischer rat model. The data presented here can be summarized as follows: a) Lymph node cells (LNC) from rats primed with the excretory/secretory antigens-incubation products (IPSm) of adult worms proliferate in vitro only in response to the homologous schistosome antigens and not to unrelated antigens (Ag) such as ovalbumin (OVA) or Dipetalonema viteae and Fasciola hepatica parasite extracts. b) After in vitro restimulation of the primed LNC population with IPSm in the presence of antigen-presenting cells (APC) and maintenance in IL 2-containing medium, the frequency of IPSm-specific T cells is increased and the T cells can be restimulated only in the presence of APC possessing the same major histocompatibility complex (MHC) antigens. c) Following appropriate limiting dilution assays (LDA) (1 cell/well), 10 IPSm-specific T cell clones were obtained, and two of four maintained in culture were tested for their helper activity because they expressed only the W3/13+ W3/25+ surface phenotypes. d) The two highly proliferating IPSm-specific T cell clones (G5 and E23) exhibit an IPSm-dependent helper activity, as shown by the increase in IgG production by IPSm-primed B cells. e) IPSm-T cell clone (G5) as well as IPSm-T cell lines when injected in S. mansoni-infested rats can exert an in vivo helper activity, which is characterized by an accelerated production of IgG antibodies specific for the previously identified 30 to 40 kilodaltons (kd) schistosomula surface antigens (Ag). As recent studies have demonstrated that rat monoclonal antibodies recognize some incubation products of adult S. mansoni as well as one of the 30 to 40 kd schistosomula surface antigens, and taking into account the fact that the T cell

  5. Human Infant Memory B Cell and CD4+ T Cell Responses to HibMenCY-TT Glyco-Conjugate Vaccine.

    Directory of Open Access Journals (Sweden)

    Angela Fuery

    Full Text Available Carrier-specific T cell and polysaccharide-specific B cell memory responses are not well characterised in infants following glyco-conjugate vaccination. We aimed to determine if the number of Meningococcal (Men C- and Y- specific memory B cells and; number and quality of Tetanus Toxoid (TT carrier-specific memory CD4+ T cells are associated with polysaccharide-specific IgG post HibMenCY-TT vaccination. Healthy infants received HibMenCY-TT vaccine at 2, 4 and 6 months with a booster at 12 months. Peripheral blood mononuclear cells were isolated and polysaccharide-specific memory B cells enumerated using ELISpot. TT-specific memory CD4+ T cells were detected and phenotyped based on CD154 expression and intracellular TNF-α, IL-2 and IFN-γ expression following stimulation. Functional polysaccharide-specific IgG titres were measured using the serum bactericidal activity (SBA assay. Polysaccharide-specific Men C- but not Men Y- specific memory B cell frequencies pre-boost (12 months were significantly associated with post-boost (13 months SBA titres. Regression analysis showed no association between memory B cell frequencies post-priming (at 6 or 7 months and SBA at 12 months or 13 months. TT-specific CD4+ T cells were detected at frequencies between 0.001 and 0.112 as a percentage of CD3+ T cells, but their numbers were not associated with SBA titres. There were significant negative associations between SBA titres at M13 and cytokine expression at M7 and M12.Induction of persistent polysaccharide-specific memory B cells prior to boosting is an important determinant of secondary IgG responses in infants. However, polysaccharide-specific functional IgG responses appear to be independent of the number and quality of circulating carrier-specific CD4+ T cells after priming.

  6. Regulatory T cells expanded from HIV-1-infected individuals maintain phenotype, TCR repertoire and suppressive capacity.

    Directory of Open Access Journals (Sweden)

    Mathieu Angin

    Full Text Available While modulation of regulatory T cell (Treg function and adoptive Treg transfer are being explored as therapeutic modalities in the context of autoimmune diseases, transplantation and cancer, their role in HIV-1 pathogenesis remains less well defined. Controversy persists regarding their beneficial or detrimental effects in HIV-1 disease, which warrants further detailed exploration. Our objectives were to investigate if functional CD4(+ Tregs can be isolated and expanded from HIV-1-infected individuals for experimental or potential future therapeutic use and to determine phenotype and suppressive capacity of expanded Tregs from HIV-1 positive blood and tissue. Tregs and conventional T cell controls were isolated from blood and gut-associated lymphoid tissue of individuals with HIV-1 infection and healthy donors using flow-based cell-sorting. The phenotype of expanded Tregs was assessed by flow-cytometry and quantitative PCR. T-cell receptor ß-chain (TCR-β repertoire diversity was investigated by deep sequencing. Flow-based T-cell proliferation and chromium release cytotoxicity assays were used to determine Treg suppressive function. Tregs from HIV-1 positive individuals, including infants, were successfully expanded from PBMC and GALT. Expanded Tregs expressed high levels of FOXP3, CTLA4, CD39 and HELIOS and exhibited a highly demethylated TSDR (Treg-specific demethylated region, characteristic of Treg lineage. The TCRß repertoire was maintained following Treg expansion and expanded Tregs remained highly suppressive in vitro. Our data demonstrate that Tregs can be expanded from blood and tissue compartments of HIV-1+ donors with preservation of Treg phenotype, function and TCR repertoire. These results are highly relevant for the investigation of potential future therapeutic use, as currently investigated for other disease states and hold great promise for detailed studies on the role of Tregs in HIV-1 infection.

  7. Breast cancer instructs dendritic cells to prime interleukin 13–secreting CD4+ T cells that facilitate tumor development

    Science.gov (United States)

    Aspord, Caroline; Pedroza-Gonzalez, Alexander; Gallegos, Mike; Tindle, Sasha; Burton, Elizabeth C.; Su, Dan; Marches, Florentina; Banchereau, Jacques; Palucka, A. Karolina

    2007-01-01

    We previously reported (Bell, D., P. Chomarat, D. Broyles, G. Netto, G.M. Harb, S. Lebecque, J. Valladeau, J. Davoust, K.A. Palucka, and J. Banchereau. 1999. J. Exp. Med. 190: 1417–1426) that breast cancer tumors are infiltrated with mature dendritic cells (DCs), which cluster with CD4+ T cells. We now show that CD4+ T cells infiltrating breast cancer tumors secrete type 1 (interferon γ) as well as high levels of type 2 (interleukin [IL] 4 and IL-13) cytokines. Immunofluorescence staining of tissue sections revealed intense IL-13 staining on breast cancer cells. The expression of phosphorylated signal transducer and activator of transcription 6 in breast cancer cells suggests that IL-13 actually delivers signals to cancer cells. To determine the link between breast cancer, DCs, and CD4+ T cells, we implanted human breast cancer cell lines in nonobese diabetic/LtSz-scid/scid β2 microglobulin–deficient mice engrafted with human CD34+ hematopoietic progenitor cells and autologous T cells. There, CD4+ T cells promote early tumor development. This is dependent on DCs and can be partially prevented by administration of IL-13 antagonists. Thus, breast cancer targets DCs to facilitate its development. PMID:17438063

  8. Differentiation, distribution and gammadelta T cell-driven regulation of IL-22-producing T cells in tuberculosis.

    Directory of Open Access Journals (Sweden)

    Shuyu Yao

    2010-02-01

    Full Text Available Differentiation, distribution and immune regulation of human IL-22-producing T cells in infections remain unknown. Here, we demonstrated in a nonhuman primate model that M. tuberculosis infection resulted in apparent increases in numbers of T cells capable of producing IL-22 de novo without in vitro Ag stimulation, and drove distribution of these cells more dramatically in lungs than in blood and lymphoid tissues. Consistently, IL-22-producing T cells were visualized in situ in lung tuberculosis (TB granulomas by confocal microscopy and immunohistochemistry, indicating that mature IL-22-producing T cells were present in TB granuloma. Surprisingly, phosphoantigen HMBPP activation of Vgamma2Vdelta2 T cells down-regulated the capability of T cells to produce IL-22 de novo in lymphocytes from blood, lung/BAL fluid, spleen and lymph node. Up-regulation of IFNgamma-producing Vgamma2Vdelta2 T effector cells after HMBPP stimulation coincided with the down-regulated capacity of these T cells to produce IL-22 de novo. Importantly, anti-IFNgamma neutralizing Ab treatment reversed the HMBPP-mediated down-regulation effect on IL-22-producing T cells, suggesting that Vgamma2Vdelta2 T-cell-driven IFNgamma-networking function was the mechanism underlying the HMBPP-mediated down-regulation of the capability of T cells to produce IL-22. These novel findings raise the possibility to ultimately investigate the function of IL-22 producing T cells and to target Vgamma2Vdelta2 T cells for balancing potentially hyper-activating IL-22-producing T cells in severe TB.

  9. T Follicular Helper Cells and B Cell Dysfunction in Aging and HIV-1 Infection.

    Science.gov (United States)

    Pallikkuth, Suresh; de Armas, Lesley; Rinaldi, Stefano; Pahwa, Savita

    2017-01-01

    T follicular helper (Tfh) cells are a subset of CD4 T cells that provide critical signals to antigen-primed B cells in germinal centers to undergo proliferation, isotype switching, and somatic hypermutation to generate long-lived plasma cells and memory B cells during an immune response. The quantity and quality of Tfh cells therefore must be tightly controlled to prevent immune dysfunction in the form of autoimmunity and, on the other hand, immune deficiency. Both Tfh and B cell perturbations appear during HIV infection resulting in impaired antibody responses to vaccines such as seasonal trivalent influenza vaccine, also seen in biologic aging. Although many of the HIV-associated defects improve with antiretroviral therapy (ART), excess immune activation and antigen-specific B and T cell responses including Tfh function are still impaired in virologically controlled HIV-infected persons on ART. Interestingly, HIV infected individuals experience increased risk of age-associated pathologies. This review will discuss Tfh and B cell dysfunction in HIV infection and highlight the impact of chronic HIV infection and aging on Tfh-B cell interactions.

  10. The Living Eye “Disarms” Uncommitted Autoreactive T Cells by Converting Them to FoxP3+ Regulatory Cells Following Local Antigen Recognition

    Science.gov (United States)

    Zhou, Ru; Horai, Reiko; Silver, Phyllis B; Mattapallil, Mary J; Zárate-Bladés, Carlos R; Chong, Wai Po; Chen, Jun; Rigden, Rachael C; Villasmil, Rafael; Caspi, Rachel R

    2011-01-01

    Immune privilege is used by the eye, brain, reproductive organs and gut to preserve structural and functional integrity in the face of inflammation. The eye is arguably the most vulnerable, and therefore also the most “privileged” of tissues, but paradoxically, remains subject to destructive autoimmunity. It has been proposed, although never proven in vivo, that the eye can induce T regulatory cells (Tregs) locally. Using FoxP3-GFP reporter mice expressing a retina-specific T cell receptor, we now show that uncommitted T cells rapidly convert in the living eye to FoxP3+ Tregs in a process involving retinal antigen recognition, de novo FoxP3 induction and proliferation. This takes place within the ocular tissue and is supported by retinoic acid, which is normally present in the eye due to its function in the chemistry of vision. Non-converted T cells showed evidence of priming, but appeared restricted from expressing effector function in the eye. Preexisting ocular inflammation impeded conversion of uncommitted T cells into Tregs. Importantly, retina-specific T cells primed in vivo before introduction into the eye were resistant to Treg conversion in the ocular environment, and instead caused severe uveitis. Thus, uncommitted T cells can be disarmed, but immune privilege is unable to protect from uveitogenic T cells that have acquired effector function prior to entering the eye. These findings shed new light on the phenomenon of immune privilege and on its role, as well as its limitations, in actively controlling immune responses in the tissue. PMID:22238462

  11. Targetless T cells in cancer immunotherapy

    DEFF Research Database (Denmark)

    thor Straten, Eivind Per; Garrido, Federico

    2016-01-01

    Attention has recently focused on new cancer immunotherapy protocols aiming to activate T cell mediated anti-tumor responses. To this end, administration of antibodies that target inhibitory molecules regulating T-cell cytotoxicity has achieved impressive clinical responses, as has adoptive cell...... infiltrate tumor tissues and destroy HLA class I positive tumor cells expressing the specific antigen. In fact, current progress in the field of cancer immune therapy is based on the capacity of T cells to kill cancer cells that present tumor antigen in the context on an HLA class I molecule. However......, it is also well established that cancer cells are often characterized by loss or down regulation of HLA class I molecules, documented in a variety of human tumors. Consequently, immune therapy building on CD8 T cells will be futile in patients harboring HLA class-I negative or deficient cancer cells...

  12. Elimination of immunodominant epitopes from multispecific DNA-based vaccines allows induction of CD8 T cells that have a striking antiviral potential

    DEFF Research Database (Denmark)

    Riedl, Petra; Wieland, Andreas; Lamberth, Kasper

    2009-01-01

    Immunodominance limits the TCR diversity of specific antiviral CD8 T cell responses elicited by vaccination or infection. To prime multispecific T cell responses, we constructed DNA vaccines that coexpress chimeric, multidomain Ags (with CD8 T cell-defined epitopes of the hepatitis B virus (HBV...... cell immunity by multidomain Ags. The "weak" (i.e., easily suppressed) K(b)/C(93-100)-specific CD8 T cell response was efficiently elicited by a HBV core Ag-encoding vector in 1.4HBV-S(mut) tg mice (that harbor a replicating HBV genome that produces HBV surface, core, and precore Ag in the liver). K......(b)/C(93-100)-specific CD8 T cells accumulated in the liver of vaccinated 1.4HBV-S(mut) transgenic mice where they suppressed HBV replication. Subdominant epitopes in vaccines can hence prime specific CD8 T cell immunity in a tolerogenic milieu that delivers specific antiviral effects to HBV...

  13. MIF inhibition interferes with the inflammatory and T cell-stimulatory capacity of NOD macrophages and delays autoimmune diabetes onset.

    Directory of Open Access Journals (Sweden)

    Hannelie Korf

    Full Text Available Macrophages contribute in the initiation and progression of insulitis during type 1 diabetes (T1D. However, the mechanisms governing their recruitment into the islets as well as the manner of retention and activation are incompletely understood. Here, we investigated a role for macrophage migration inhibitory factor (MIF and its transmembrane receptor, CD74, in the progression of T1D. Our data indicated elevated MIF concentrations especially in long-standing T1D patients and mice. Additionally, NOD mice featured increased MIF gene expression and CD74+ leukocyte frequencies in the pancreas. We identified F4/80+ macrophages as the main immune cells in the pancreas expressing CD74 and showed that MIF antagonism of NOD macrophages prevented their activation-induced cytokine production. The physiological importance was highlighted by the fact that inhibition of MIF delayed the onset of autoimmune diabetes in two different diabetogenic T cell transfer models. Mechanistically, macrophages pre-conditioned with the MIF inhibitor featured a refractory capacity to trigger T cell activation by keeping them in a naïve state. This study underlines a possible role for MIF/CD74 signaling pathways in promoting macrophage-mediated inflammation in T1D. As therapies directed at the MIF/CD74 pathway are in clinical development, new opportunities may be proposed for arresting T1D progression.

  14. The Polyunsaturated Fatty Acids Arachidonic Acid and Docosahexaenoic Acid Induce Mouse Dendritic Cells Maturation but Reduce T-Cell Responses In Vitro

    Science.gov (United States)

    Carlsson, Johan A.; Wold, Agnes E.; Sandberg, Ann-Sofie; Östman, Sofia M.

    2015-01-01

    Long-chain polyunsaturated fatty acids (PUFAs) might regulate T-cell activation and lineage commitment. Here, we measured the effects of omega-3 (n-3), n-6 and n-9 fatty acids on the interaction between dendritic cells (DCs) and naïve T cells. Spleen DCs from BALB/c mice were cultured in vitro with ovalbumin (OVA) with 50 μM fatty acids; α-linolenic acid, arachidonic acid (AA), eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), linoleic acid or oleic acid and thereafter OVA-specific DO11.10 T cells were added to the cultures. Fatty acids were taken up by the DCs, as shown by gas chromatography analysis. After culture with arachidonic acid or DHA CD11c+ CD11b+ and CD11c+ CD11bneg DCs expressed more CD40, CD80, CD83, CD86 and PDL-1, while IAd remained unchanged. However, fewer T cells co-cultured with these DCs proliferated (CellTrace Violetlow) and expressed CD69 or CD25, while more were necrotic (7AAD+). We noted an increased proportion of T cells with a regulatory T cell (Treg) phenotype, i.e., when gating on CD4+ FoxP3+ CTLA-4+, CD4+ FoxP3+ Helios+ or CD4+ FoxP3+ PD-1+, in co-cultures with arachidonic acid- or DHA-primed DCs relative to control cultures. The proportion of putative Tregs was inversely correlated to T-cell proliferation, indicating a suppressive function of these cells. With arachidonic acid DCs produced higher levels of prostaglandin E2 while T cells produced lower amounts of IL-10 and IFNγ. In conclusion arachidonic acid and DHA induced up-regulation of activation markers on DCs. However arachidonic acid- and DHA-primed DCs reduced T-cell proliferation and increased the proportion of T cells expressing FoxP3, indicating that these fatty acids can promote induction of regulatory T cells. PMID:26619195

  15. Human mesenchymal stromal cells transiently increase cytokine production by activated T cells before suppressing T-cell proliferation: effect of interferon-γ and tumor necrosis factor-α stimulation.

    Science.gov (United States)

    Cuerquis, Jessica; Romieu-Mourez, Raphaëlle; François, Moïra; Routy, Jean-Pierre; Young, Yoon Kow; Zhao, Jing; Eliopoulos, Nicoletta

    2014-02-01

    Mesenchymal stromal cells (MSCs) suppress T-cell proliferation, especially after activation with inflammatory cytokines. We compared the dynamic action of unprimed and interferon (IFN)-γ plus tumor necrosis factor (TNF)-α-pretreated human bone marrow-derived MSCs on resting or activated T cells. MSCs were co-cultured with allogeneic peripheral blood mononuclear cells (PBMCs) at high MSC-to-PBMC ratios in the absence or presence of concomitant CD3/CD28-induced T-cell activation. The kinetic effects of MSCs on cytokine production and T-cell proliferation, cell cycle and apoptosis were assessed. Unprimed MSCs increased the early production of IFN-γ and interleukin (IL)-2 by CD3/CD28-activated PBMCs before suppressing T-cell proliferation. In non-activated PBMC co-cultures, low levels of IL-2 and IL-10 synthesis were observed with MSCs in addition to low levels of CD69 expression by T cells and no T-cell proliferation. MSCs also decreased apoptosis in resting and activated T cells and inhibited the transition of these cells into the sub-G0/G1 and the S phases. With inhibition of indoleamine 2,3 dioxygenase, MSCs increased CD3/CD28-induced T-cell proliferation. After priming with IFN-γ plus TNF-α, MSCs were less potent at increasing cytokine production by CD3/CD28-activated PBMCs and more effective at inhibiting T-cell proliferation but had preserved anti-apoptotic functions. Unprimed MSCs induce a transient increase in IFN-γ and IL-2 synthesis by activated T cells. Pre-treatment of MSCs with IFN-γ plus TNF-α may increase their effectiveness and safety in vivo. Copyright © 2014 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  16. T-cell effector function and unresponsiveness in the murine lymphocytic choriomeningitis virus infection. II. Delayed-type hypersensitivity unresponsiveness reflects a defective differentiation from TD precursor to effector cell

    DEFF Research Database (Denmark)

    Thomsen, Allan Randrup; Marker, O

    1986-01-01

    is markedly depressed in high-dose mice, suggesting an association between DTH and virus clearance. When virus-primed memory cells are transferred, DTH reactivity as well as virus-clearing capacity is restored in high-dose mice, indicating that the virus is not present in a changed or concealed form. The role...... transfer a DTH response emerged, indicating that TD priming had taken place in high-dose animals. Pre-irradiation of high-dose primed cells markedly inhibited the antiviral activity as well as DTH, suggesting that upon transfer to naive recipients TD precursors from high-dose mice would proliferate...... precursor into effector cells which is reversible upon transfer to a less antigen loaded environment. Furthermore, it is suggested that TD function is crucial to the process of virus clearance....

  17. Characterizing T Cells in SCID Patients Presenting with Reactive or Residual T Lymphocytes

    Directory of Open Access Journals (Sweden)

    Atar Lev

    2012-01-01

    Full Text Available Introduction. Patients with severe combined immunodeficiency (SCID may present with residual circulating T cells. While all cells are functionally deficient, resulting in high susceptibility to infections, only some of these cells are causing autoimmune symptoms. Methods. Here we compared T-cell functions including the number of circulating CD3+ T cells, in vitro responses to mitogens, T-cell receptor (TCR repertoire, TCR excision circles (TREC levels, and regulatory T cells (Tregs enumeration in several immunodeficinecy subtypes, clinically presenting with nonreactive residual cells (MHC-II deficiency or reactive cells. The latter includes patients with autoreactive clonal expanded T cell and patients with alloreactive transplacentally maternal T cells. Results. MHC-II deficient patients had slightly reduced T-cell function, normal TRECs, TCR repertoires, and normal Tregs enumeration. In contrast, patients with reactive T cells exhibited poor T-cell differentiation and activity. While the autoreactive cells displayed significantly reduced Tregs numbers, the alloreactive transplacentally acquired maternal lymphocytes had high functional Tregs. Conclusion. SCID patients presenting with circulating T cells show different patterns of T-cell activity and regulatory T cells enumeration that dictates the immunodeficient and autoimmune manifestations. We suggest that a high-tolerance capacity of the alloreactive transplacentally acquired maternal lymphocytes represents a toleration advantage, yet still associated with severe immunodeficiency.

  18. Thy1+ NK [corrected] cells from vaccinia virus-primed mice confer protection against vaccinia virus challenge in the absence of adaptive lymphocytes.

    Directory of Open Access Journals (Sweden)

    Geoffrey O Gillard

    2011-08-01

    Full Text Available While immunological memory has long been considered the province of T- and B-lymphocytes, it has recently been reported that innate cell populations are capable of mediating memory responses. We now show that an innate memory immune response is generated in mice following infection with vaccinia virus, a poxvirus for which no cognate germline-encoded receptor has been identified. This immune response results in viral clearance in the absence of classical adaptive T and B lymphocyte populations, and is mediated by a Thy1(+ subset of natural killer (NK cells. We demonstrate that immune protection against infection from a lethal dose of virus can be adoptively transferred with memory hepatic Thy1(+ NK cells that were primed with live virus. Our results also indicate that, like classical immunological memory, stronger innate memory responses form in response to priming with live virus than a highly attenuated vector. These results demonstrate that a defined innate memory cell population alone can provide host protection against a lethal systemic infection through viral clearance.

  19. FoxP3+ regulatory T cells are distinct from leukemia cells in HTLV-1-associated adult T-cell leukemia.

    Science.gov (United States)

    Toulza, Frederic; Nosaka, Kisato; Takiguchi, Masafumi; Pagliuca, Tony; Mitsuya, Hiroaki; Tanaka, Yuetsu; Taylor, Graham P; Bangham, Charles R M

    2009-11-15

    Human T-lymphotropic virus type 1 (HTLV-1) is the causative agent of adult T-cell leukemia/lymphoma (ATLL). It has been postulated that ATLL cells might act as regulatory T cells (T(regs)) which, in common with ATLL cells, express both CD25 and FoxP3, and so contribute to the severe immune suppression typical of ATLL. We report here that the frequency of CD25(+) cells varied independently of the frequency of FoxP3(+) cells in both a cross-sectional study and in a longitudinal study of 2 patients with chronic ATLL. Furthermore, the capacity of ATLL cells to suppress proliferation of heterologous CD4(+)CD25(-) cells correlated with the frequency of CD4(+) FoxP3(+) cells but was independent of CD25 expression. Finally, the frequency of CD4(+)FoxP3(+) cells was inversely correlated with the lytic activity of HTLV-1-specific CTLs in patients with ATLL. We conclude that ATLL is not a tumor of FoxP3(+) regulatory T cells, and that a population of FoxP3(+) cells distinct from ATLL cells has regulatory functions and may impair the cell-mediated immune response to HTLV-1 in patients with ATLL.

  20. Curtailed T-cell activation curbs effector differentiation and generates CD8+ T cells with a naturally-occurring memory stem cell phenotype.

    Science.gov (United States)

    Zanon, Veronica; Pilipow, Karolina; Scamardella, Eloise; De Paoli, Federica; De Simone, Gabriele; Price, David A; Martinez Usatorre, Amaia; Romero, Pedro; Mavilio, Domenico; Roberto, Alessandra; Lugli, Enrico

    2017-09-01

    Human T memory stem (T SCM ) cells with superior persistence capacity and effector functions are emerging as important players in the maintenance of long-lived T-cell memory and are thus considered an attractive population to be used in adoptive transfer-based immunotherapy of cancer. However, the molecular signals regulating their generation remain poorly defined. Here we show that curtailed T-cell receptor stimulation curbs human effector CD8 + T-cell differentiation and allows the generation of CD45RO - CD45RA + CCR7 + CD27 + CD95 + -phenotype cells from highly purified naïve T-cell precursors, resembling naturally-occurring human T SCM . These cells proliferate extensively in vitro and in vivo, express low amounts of effector-associated genes and transcription factors and undergo considerable self-renewal in response to IL-15 while retaining effector differentiation potential. Such a phenotype is associated with a lower number of mitochondria compared to highly-activated effector T cells committed to terminal differentiation. These results shed light on the molecular signals that are required to generate long-lived memory T cells with potential application in adoptive cell transfer immunotherapy. © 2017 The Authors. European Journal of Immunology published by WILEY-VCH Verlag GmbH & Co.KGaA, Weinheim.

  1. Transfer of experimental autoimmune thyroiditis with T cell clones

    International Nuclear Information System (INIS)

    Romball, C.G.; Weigle, W.O.

    1987-01-01

    We have investigated three T lymphocyte clones isolated from CBA/CaJ mice primed with mouse thyroid extract (MTE) in adjuvant. All three clones are L3T4+, Ig-, and Lyt2- and proliferate to MTE, mouse thyroglobulin (MTG) and rat thyroid extract. Clones A7 and B7 transfer thyroiditis to irradiated (475 rad) syngeneic mice, but not to normal recipients. The thyroid lesion induced by the B7 clone is characterized by the infiltration of both mononuclear and polymorphonuclear cells. The thyroiditis is transient in that lesions are apparent 7 and 14 days after transfer, but thyroids return to normal by day 21. Clone B7 showed helper activity for trinitrophenyl-keyhole limpet hemocyanin-primed B cells in vitro when stimulated with trinitrophenyl-MTG and also stimulated the production of anti-MTG antibody in recipient mice. Clone A7 induced thyroid lesions characterized by infiltration of the thyroid with mononuclear cells, with virtually no polymorphonuclear cell infiltration. This clone has shown no helper activity following stimulation with trinitrophenyl-MTG. The third clone (D2) proliferates to and shows helper activity to MTG, but fails to transfer thyroiditis to syngeneic, irradiated mice. On continuous culture, clone B7 lost its surface Thy. The loss of Thy appears unrelated to the ability to transfer thyroiditis since subclones of B7 with markedly different percentages of Thy+ cells transferred disease equally well

  2. Cytokines affecting CD4+T regulatory cells in transplant tolerance. III. Interleukin-5 (IL-5) promotes survival of alloantigen-specific CD4+ T regulatory cells.

    Science.gov (United States)

    Hall, Bruce M; Plain, Karren M; Tran, Giang T; Verma, Nirupama D; Robinson, Catherine M; Nomura, Masaru; Boyd, Rochelle; Hodgkinson, Suzanne J

    2017-08-01

    CD4 + T cells mediate antigen-specific allograft tolerance, but die in culture without activated lymphocyte derived cytokines. Supplementation of the media with cytokine rich supernatant, from ConA activated spleen cells, preserves the capacity of tolerant cells to transfer tolerance and suppress rejection. rIL-2 or rIL-4 alone are insufficient to maintain these cells, however. We observed that activation of naïve CD4 + CD25 + FOXP3 + Treg with alloantigen and the Th2 cytokine rIL-4 induces them to express interleukin-5 specific receptor alpha (IL-5Rα) suggesting that IL-5, a Th2 cytokine that is produced later in the immune response may promote tolerance mediating Treg. This study examined if recombinant IL-5(rIL-5) promoted survival of tolerant CD4 + , especially CD4 + CD25 + T cells. CD4 + T cells, from DA rats tolerant to fully allogeneic PVG heart allografts surviving over 100days without on-going immunosuppression, were cultured with PVG alloantigen and rIL-5. The ability of these cells to adoptively transfer tolerance to specific-donor allograft and suppress normal CD4 + T cell mediated rejection in adoptive DA hosts was examined. Tolerant CD4 + CD25 + T cells' response to rIL-5 and expression of IL-5Rα was also assessed. rIL-5 was sufficient to promote transplant tolerance mediating CD4 + T cells' survival in culture with specific-donor alloantigen. Tolerant CD4 + T cells cultured with rIL-5 retained the capacity to transfer alloantigen-specific tolerance and inhibited naïve CD4 + T cells' capacity to effect specific-donor graft rejection. rIL-5 promoted tolerant CD4 + CD25 + T cells' proliferation in vitro when stimulated with specific-donor but not third-party stimulator cells. Tolerant CD4 + CD25 + T cells expressed IL-5Rα. This study demonstrated that IL-5 promoted the survival of alloantigen-specific CD4 + CD25 + T cells that mediate transplant tolerance. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Type I interferons as stimulators of DC-mediated cross-priming: impact on anti-tumor response

    Directory of Open Access Journals (Sweden)

    Giovanna eSchiavoni

    2013-12-01

    Full Text Available Induction of potent tumor-specific cytotoxic T-cell responses is a fundamental objective in anticancer therapeutic strategies. This event requires that antigen-presenting cells (APC present tumor-associated antigens (Ag on their MHC class-I molecule, in a process termed cross-presentation. Dendritic cells (DC are particularly keen on this task and can induce the cross-priming of CD8+ T cells, when exposed to danger or inflammatory signals that stimulate their activation. Type I interferons (IFN-I, a family of long-known immunostimulatory cytokines, have been proven to produce optimal activation signal for DC-induced cross-priming. Recent in vitro and in vivo evidences have suggested that IFN-I -stimulated cross-priming by DC against tumor-associated Ag is a key mechanism for cancer immunosurveillance and may be usefully exploited to boost anti-tumor CD8+ T-cell responses. Here, we will review the cross-presentation properties of different DC subsets, with special focus on cell-associated and tumor Ag, and discuss how IFN-I can modify this function, with the aim of identifying more specific and effective strategies for improving anticancer responses.

  4. Diminished primary and secondary influenza virus-specific CD8(+) T-cell responses in CD4-depleted Ig(-/-) mice

    DEFF Research Database (Denmark)

    Riberdy, J M; Christensen, Jan Pravsgaard; Branum, K

    2000-01-01

    Optimal expansion of influenza virus nucleoprotein (D(b)NP(366))-specific CD8(+) T cells following respiratory challenge of naive Ig(-/-) microMT mice was found to require CD4(+) T-cell help, and this effect was also observed in primed animals. Absence of the CD4(+) population was consistently...

  5. Suboptimal T-cell receptor signaling compromises protein translation, ribosome biogenesis, and proliferation of mouse CD8 T cells.

    Science.gov (United States)

    Tan, Thomas C J; Knight, John; Sbarrato, Thomas; Dudek, Kate; Willis, Anne E; Zamoyska, Rose

    2017-07-25

    Global transcriptomic and proteomic analyses of T cells have been rich sources of unbiased data for understanding T-cell activation. Lack of full concordance of these datasets has illustrated that important facets of T-cell activation are controlled at the level of translation. We undertook translatome analysis of CD8 T-cell activation, combining polysome profiling and microarray analysis. We revealed that altering T-cell receptor stimulation influenced recruitment of mRNAs to heavy polysomes and translation of subsets of genes. A major pathway that was compromised, when TCR signaling was suboptimal, was linked to ribosome biogenesis, a rate-limiting factor in both cell growth and proliferation. Defective TCR signaling affected transcription and processing of ribosomal RNA precursors, as well as the translation of specific ribosomal proteins and translation factors. Mechanistically, IL-2 production was compromised in weakly stimulated T cells, affecting the abundance of Myc protein, a known regulator of ribosome biogenesis. Consequently, weakly activated T cells showed impaired production of ribosomes and a failure to maintain proliferative capacity after stimulation. We demonstrate that primary T cells respond to various environmental cues by regulating ribosome biogenesis and mRNA translation at multiple levels to sustain proliferation and differentiation.

  6. Transfer of in vitro expanded T lymphocytes after activation with dendritomas prolonged survival of mice challenged with EL4 tumor cells.

    Science.gov (United States)

    Li, Jinhua; Theofanous, Leigh; Stickel, Sara; Bouton-Verville, Hilary; Burgin, Kelly E; Jakubchak, Susan; Wagner, Thomas E; Wei, Yanzhang

    2007-07-01

    Adoptive T cell transfer after in vitro expansion represents an attractive cancer immunotherapy. The majority of studies so far have been focusing on the expansion of tumor infiltrated lymphocytes (TIL) and some have shown very encouraging results. Recently, we have developed a unique tumor immune response activator, dendritomas, by fusion of dendritic cells and tumor cells. Animal studies and early clinical trials have shown that dendritomas are able to activate tumor specific immune responses. In this study, we hypothesized that naïve T cells can be primed with dendritomas and expanded in vitro to develop an adoptive transfer therapy for patients who do not have solid tumors, such as leukemia. T cells were isolated and purified from lymph nodes of mice. The cells were then incubated with dendritomas made from syngeneic DCs and tumor cells and expanded in vitro using Dynabeads mouse CD3/CD28 T cell expander for approximately three weeks. The in vitro primed and expanded T cells showed tumor cell specific CTL activity and increased secretion of IFN-gamma. Tumor bearing mice receiving the in vitro expanded T cells survived significantly longer than control mice. Furthermore, the depletion of regulator T cells enhanced the survival of the mice that received the adoptive transfer therapy.

  7. Tumor-specific CD4+ T cells develop cytotoxic activity and eliminate virus-induced tumor cells in the absence of regulatory T cells.

    Science.gov (United States)

    Akhmetzyanova, Ilseyar; Zelinskyy, Gennadiy; Schimmer, Simone; Brandau, Sven; Altenhoff, Petra; Sparwasser, Tim; Dittmer, Ulf

    2013-02-01

    The important role of tumor-specific cytotoxic CD8(+) T cells is well defined in the immune control of the tumors, but the role of effector CD4(+) T cells is poorly understood. In the current research, we have used a murine retrovirus-induced tumor cell line of C57BL/6 mouse origin, namely FBL-3 cells, as a model to study basic mechanisms of immunological control and escape during tumor formation. This study shows that tumor-specific CD4(+) T cells are able to protect against virus-induced tumor cells. We show here that there is an expansion of tumor-specific CD4(+) T cells producing cytokines and cytotoxic molecule granzyme B (GzmB) in the early phase of tumor growth. Importantly, we demonstrate that in vivo depletion of regulatory T cells (Tregs) and CD8(+) T cells in FBL-3-bearing DEREG transgenic mice augments IL-2 and GzmB production by CD4(+) T cells and increases FV-specific CD4(+) T-cell effector and cytotoxic responses leading to the complete tumor regression. Therefore, the capacity to reject tumor acquired by tumor-reactive CD4(+) T cells largely depends on the direct suppressive activity of Tregs. We suggest that a cytotoxic CD4(+) T-cell immune response may be induced to enhance resistance against oncovirus-associated tumors.

  8. The specificity of immune priming in silkworm, Bombyx mori, is mediated by the phagocytic ability of granular cells.

    Science.gov (United States)

    Wu, Gongqing; Li, Mei; Liu, Yi; Ding, Ying; Yi, Yunhong

    2015-10-01

    In the past decade, the phenomenon of immune priming was documented in many invertebrates in a large number of studies; however, in most of these studies, behavioral evidence was used to identify the immune priming. The underlying mechanism and the degree of specificity of the priming response remain unclear. We studied the mechanism of immune priming in the larvae of the silkworm, Bombyx mori, and analyzed the specificity of the priming response using two closely related Gram-negative pathogenic bacteria (Photorhabdus luminescens TT01 and P. luminescens H06) and one Gram-positive pathogenic bacterium (Bacillus thuringiensis HD-1). Primed with heat-killed bacteria, the B. mori larvae were more likely to survive subsequent homologous exposure (the identical bacteria used in the priming and in the subsequent challenge) than heterologous (different bacteria used in the priming and subsequent exposure) exposure to live bacteria. This result indicated that the B. mori larvae possessed a strong immune priming response and revealed a degree of specificity to TT01, H06 and HD-1 bacteria. The degree of enhanced immune protection was positively correlated with the level of phagocytic ability of the granular cells and the antibacterial activity of the cell-free hemolymph. Moreover, the granular cells of the immune-primed larvae increased the phagocytosis of a previously encountered bacterial strain compared with other bacteria. Thus, the enhanced immune protection of the B. mori larvae after priming was mediated by the phagocytic ability of the granular cells and the antibacterial activity of the hemolymph; the specificity of the priming response was primarily attributed to the phagocytosis of bacteria by the granular cells. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. CD4 T cells play important roles in maintaining IL-17-producing γδ T-cell subsets in naive animals.

    Science.gov (United States)

    Do, Jeong-Su; Visperas, Anabelle; O'Brien, Rebecca L; Min, Booki

    2012-04-01

    A proportional balance between αβ and γδ T-cell subsets in the periphery is exceedingly well maintained by a homeostatic mechanism. However, a cellular mechanism underlying the regulation remains undefined. We recently reported that a subset of developing γδ T cells spontaneously acquires interleukin (IL)-17-producing capacity even within naive animals through a transforming growth factor (TGF)β1-dependent mechanism, thus considered 'innate' IL-17-producing cells. Here, we report that γδ T cells generated within αβ T cell (or CD4 T cell)-deficient environments displayed altered cytokine profiles; particularly, 'innate' IL-17 expression was significantly impaired compared with those in wild-type mice. Impaired IL-17 production in γδ T cells was directly related to CD4 T-cell deficiency, because depletion of CD4 T cells in wild-type mice diminished and adoptive CD4 T-cell transfer into T-cell receptor β-/- mice restored IL-17 expression in γδ T cells. CD4 T cell-mediated IL-17 expression required TGFβ1. Moreover, Th17 but not Th1 or Th2 effector CD4 T cells were highly efficient in enhancing γδ T-cell IL-17 expression. Taken together, our results highlight a novel CD4 T cell-dependent mechanism that shapes the generation of IL-17+ γδ T cells in naive settings.

  10. Strategy to prime the host and cells to augment therapeutic efficacy of progenitor cells for patients with myocardial infarction

    Directory of Open Access Journals (Sweden)

    Jeehoon Kang

    2016-11-01

    Full Text Available Cell therapy in myocardial infarction (MI is an innovative strategy that is regarded as a rescue therapy to repair the damaged myocardium and to promote neovascularization for the ischemic border zone. Among several stem cell sources for this purpose, autologous progenitors from bone marrow or peripheral blood would be the most feasible and safest cell-source. Despite the theoretical benefit of cell therapy, this method is not widely adopted in the actual clinical practice due to its low therapeutic efficacy. Various methods have been used to augment the efficacy of cell therapy in MI, such as using different source of progenitors, genetic manipulation of cells, or priming of the cells or hosts (patients with agents. Among these methods, the strategy to augment the therapeutic efficacy of the autologous peripheral blood mononuclear cells by priming agents may be the most feasible and the safest method that can be applied directly to the clinic. In this review, we will discuss the current status and future directions of priming peripheral blood mononuclear cells or patients, as for cell therapy of MI.

  11. Tumor-associated mesenchymal stem cells inhibit naïve T cell expansion by blocking cysteine export from dendritic cells.

    Science.gov (United States)

    Ghosh, Tithi; Barik, Subhasis; Bhuniya, Avishek; Dhar, Jesmita; Dasgupta, Shayani; Ghosh, Sarbari; Sarkar, Madhurima; Guha, Ipsita; Sarkar, Koustav; Chakrabarti, Pinak; Saha, Bhaskar; Storkus, Walter J; Baral, Rathindranath; Bose, Anamika

    2016-11-01

    Mesenchymal stem cells (MSCs) represent an important cellular constituent of the tumor microenvironment, which along with tumor cells themselves, serve to regulate protective immune responses in support of progressive disease. We report that tumor MSCs prevent the ability of dendritic cells (DC) to promote naïve CD4(+) and CD8(+) T cell expansion, interferon gamma secretion and cytotoxicity against tumor cells, which are critical to immune-mediated tumor eradication. Notably, tumor MSCs fail to prevent DC-mediated early T cell activation events or the ability of responder T cells to produce IL-2. The immunoregulatory activity of tumor MSCs is IL-10- and STAT3-dependent, with STAT3 repressing DC expression of cystathionase, a critical enzyme that converts methionine-to-cysteine. Under cysteine-deficient priming conditions, naïve T cells exhibit defective cellular metabolism and proliferation. Bioinformatics analyses as well as in vitro observations suggest that STAT3 may directly bind to a GAS-like motif within the cystathionase promoter (-269 to -261) leading to IL-10-STAT3 mediated repression of cystathionase gene transcription. Our collective results provide evidence for a novel mechanism of tumor MSC-mediated T cell inhibition within tumor microenvironment. © 2016 UICC.

  12. Rapid and sustained CD4(+) T-cell-independent immunity from adenovirus-encoded vaccine antigens

    DEFF Research Database (Denmark)

    Holst, Peter J; Bartholdy, Christina; Buus, Anette Stryhn

    2007-01-01

    -linked lymphocytic choriomeningitis virus (LCMV)-derived epitopes was long-lived and protective. Notably, in contrast to full-length protein, the response elicited with the beta(2)-microglobulin-linked LCMV-derived epitope was CD4(+) T-cell independent. Furthermore, virus-specific CD8(+) T cells primed...... in the absence of CD4(+) T-cell help were sustained in the long term and able to expand and control a secondary challenge with LCMV. Our results demonstrate that modifications to the antigen used in adenovirus vaccines may be used to improve the induced T-cell response. Such a strategy for CD4(+) T-cell...... to that elicited with an adenovirus-encoded minimal epitope covalently linked to beta(2)-microglobulin. We demonstrate that the beta(2)-microglobulin-linked epitope induced an accelerated and augmented CD8(+) T-cell response. Furthermore, the immunity conferred by vaccination with beta(2)-microglobulin...

  13. Interleukin 4: signalling mechanisms and control of T cell differentiation.

    Science.gov (United States)

    Paul, W E

    1997-01-01

    Interleukin 4 (IL-4) is a pleiotropic type I cytokine that controls both growth and differentiation among haemopoietic and non-haemopoietic cells. Its receptor is a heterodimer. One chain, the IL-4R alpha chain, binds IL-4 with high affinity and determines the nature of the biochemical signals that are induced. The second chain, gamma c, is required for the induction of such signals. IL-4-mediated growth depends upon activation events that involve phosphorylation of Y497 of IL-4R alpha, leading to the binding and phosphorylation of 4PS/IRS-2 in haemopoietic cells and of IRS-1 in non-haemopoietic cells. By contrast, IL-4-mediated differentiation events depend upon more distal regions of the IL-4R alpha chain that include a series of STAT-6 binding sites. The distinctive roles of these receptor domains was verified by receptor-reconstruction experiments. The 'growth' and 'differentiation' domains of the IL-4R alpha chain, independently expressed as chimeric structures with a truncated version of the IL-2R beta chain, were shown to convey their functions to the hybrid receptor. The critical role of STAT-6 in IL-4-mediated gene activation and differentiation was made clear by the finding that lymphocytes from STAT-6 knockout mice are strikingly deficient in these functions but have retained the capacity to grow, at least partially, in response to IL-4. IL-4 plays a central role in determining the phenotype of naive CD4+ T cells. In the presence of IL-4, newly primed naive T cells develop into IL-4 producers while in its absence they preferentially become gamma-interferon (IFN-gamma) producers. Recently, a specialized subpopulation of T cells, CD4+/NK1.1+ cells, has been shown to produce large amounts of IL-4 upon stimulation. Two examples of mice with deficiencies in these cells are described--beta 2-microglobulin knockout mice and SJL mice. Both show defects in the development of IL-4-producing cells and in the increase in serum IgE in response to stimulation with the

  14. Virus-like particle vaccine primes immune responses preventing inactivated-virus vaccine-enhanced disease against respiratory syncytial virus.

    Science.gov (United States)

    Hwang, Hye Suk; Lee, Young-Tae; Kim, Ki-Hye; Ko, Eun-Ju; Lee, Youri; Kwon, Young-Man; Kang, Sang-Moo

    2017-11-01

    Formalin inactivated respiratory syncytial virus (FI-RSV) vaccination caused vaccine-enhanced respiratory disease (ERD) upon exposure to RSV in children. Virus-like particles presenting RSV F fusion protein (F VLP) are known to increase T helper type-1 (Th1) immune responses and avoid ERD in animal models. We hypothesized that F VLP would prime immune responses preventing ERD upon subsequent exposure to ERD-prone FI-RSV. Here, we demonstrated that heterologous F VLP priming and FI-RSV boosting of mice prevented FI-RSV vaccine-enhanced lung inflammation and eosinophilia upon RSV challenge. F VLP priming redirected pulmonary T cells toward effector CD8 T cells producing Th1 cytokines and significantly suppressed pulmonary Th2 cytokines. This study suggests that RSV F VLP priming would modulate and shift immune responses to subsequent exposure to ERD-prone FI-RSV vaccine and RSV infection, suppressing Th2 immune-mediated pulmonary histopathology and eosinophilia. Copyright © 2017. Published by Elsevier Inc.

  15. Impaired T-lymphocyte colony formation by cord blood mononuclear cells

    International Nuclear Information System (INIS)

    Herrod, H.G.; Valenski, W.R.

    1982-01-01

    When compared to adult mononuclear cells, cord blood mononuclear cells demonstrated significantly decreased T-lymphocyte colony formation (1351 +/- 643 vs 592 +/- 862, P less than 0.01). This diminished colony-forming activity did not appear to be associated with impaired responsiveness to the stimulant phytohemagglutinin or with excessive suppressor-cell activity. Irradiation reduced the colony-forming capacity of cord blood mononuclear cells more than it did that of adult mononuclear cells. Depletion of adherent cells reduced cord blood mononuclear-cell colony-forming capacity by 40%, while similar treatment reduced adult colony formation by 10%. Lymphocyte proliferation in liquid culture of cord and adult cells was minimally affected by these procedures. The colony-forming capacity of cord blood could be enhanced by the addition of irradiated adult cells (284 +/- 72 vs 752 +/- 78, P less than 0.01). This enhancement was demonstrated to be due to a soluble factor produced by a population of irradiated adult cells depleted of the OKT8+ subpopulation of lymphocytes. These results indicate that the progenitor cells of T-lymphocyte colonies in cord blood have distinct biologic characteristics when compared to colony progenitors present in adult blood. This assay may prove to be useful in our efforts to understand the differentiation of T-cell function in man

  16. Final Scientific/Technical Report for Low Cost, High Capacity Non- Intercalation Chemistry Automotive Cells

    Energy Technology Data Exchange (ETDEWEB)

    Berdichevsky, Gene [Sila Nanotechnologies, Inc., Alameda, CA (United States)

    2017-09-08

    Commercial Li-ion batteries typically use Ni- and Co-based intercalation cathodes. As the demand for improved performance from batteries increases, these cathode materials will no longer be able to provide the desired energy storage characteristics since they are currently approaching their theoretical limits. Conversion cathode materials are prime candidates for improvement of Li-ion batteries. On both a volumetric and gravimetric basis they have higher theoretical capacity than intercalation cathode materials. Metal fluoride (MFx) cathodes offer higher specific energy density and dramatically higher volumetric energy density. Challenges associated with metal fluoride cathodes were addressed through nanostructured material design and synthesis. A major goal of this project was to develop and demonstrate Li-ion cells based on Si-comprising anodes and metal fluoride (MFx) comprising cathodes. Pairing the high-capacity MFx cathode with a high-capacity anode, such as an alloying Si anode, allows for the highest possible energy density on a cell level. After facing and overcoming multiple material synthesis and electrochemical instability challenges, we succeeded in fabrication of MFx half cells with cycle stability in excess of 500 cycles (to 20% or smaller degradation) and full cells with MFx-based cathodes and Si-based anodes with cycle stability in excess of 200 cycles (to 20% or smaller degradation).

  17. Suppression of IL-7-dependent Effector T-cell Expansion by Multipotent Adult Progenitor Cells and PGE2

    Science.gov (United States)

    Reading, James L; Vaes, Bart; Hull, Caroline; Sabbah, Shereen; Hayday, Thomas; Wang, Nancy S; DiPiero, Anthony; Lehman, Nicholas A; Taggart, Jen M; Carty, Fiona; English, Karen; Pinxteren, Jef; Deans, Robert; Ting, Anthony E; Tree, Timothy I M

    2015-01-01

    T-cell depletion therapy is used to prevent acute allograft rejection, treat autoimmunity and create space for bone marrow or hematopoietic cell transplantation. The evolved response to T-cell loss is a transient increase in IL-7 that drives compensatory homeostatic proliferation (HP) of mature T cells. Paradoxically, the exaggerated form of this process that occurs following lymphodepletion expands effector T-cells, often causing loss of immunological tolerance that results in rapid graft rejection, autoimmunity, and exacerbated graft-versus-host disease (GVHD). While standard immune suppression is unable to treat these pathologies, growing evidence suggests that manipulating the incipient process of HP increases allograft survival, prevents autoimmunity, and markedly reduces GVHD. Multipotent adult progenitor cells (MAPC) are a clinical grade immunomodulatory cell therapy known to alter γ-chain cytokine responses in T-cells. Herein, we demonstrate that MAPC regulate HP of human T-cells, prevent the expansion of Th1, Th17, and Th22 effectors, and block the development of pathogenic allograft responses. This occurs via IL-1β-primed secretion of PGE2 and activates T-cell intrinsic regulatory mechanisms (SOCS2, GADD45A). These data provide proof-of-principle that HP of human T-cells can be targeted by cellular and molecular therapies and lays a basis for the development of novel strategies to prevent immunopathology in lymphodepleted patients. PMID:26216515

  18. Semiallogenic fusions of MSI+ tumor cells and activated B cells induce MSI-specific T cell responses

    International Nuclear Information System (INIS)

    Garbe, Yvette; Klier, Ulrike; Linnebacher, Michael

    2011-01-01

    Various strategies have been developed to transfer tumor-specific antigens into antigen presenting cells in order to induce cytotoxic T cell responses against tumor cells. One approach uses cellular vaccines based on fusions of autologous antigen presenting cells and allogeneic tumor cells. The fusion cells combine antigenicity of the tumor cell with optimal immunostimulatory capacity of the antigen presenting cells. Microsatellite instability caused by mutational inactivation of DNA mismatch repair genes results in translational frameshifts when affecting coding regions. It has been shown by us and others that these mutant proteins lead to the presentation of immunogenic frameshift peptides that are - in principle - recognized by a multiplicity of effector T cells. We chose microsatellite instability-induced frameshift antigens as ideal to test for induction of tumor specific T cell responses by semiallogenic fusions of microsatellite instable carcinoma cells with CD40-activated B cells. Two fusion clones of HCT116 with activated B cells were selected for stimulation of T cells autologous to the B cell fusion partner. Outgrowing T cells were phenotyped and tested in functional assays. The fusion clones expressed frameshift antigens as well as high amounts of MHC and costimulatory molecules. Autologous T cells stimulated with these fusions were predominantly CD4 + , activated, and reacted specifically against the fusion clones and also against the tumor cell fusion partner. Interestingly, a response toward 6 frameshift-derived peptides (of 14 tested) could be observed. Cellular fusions of MSI + carcinoma cells and activated B cells combine the antigen-presenting capacity of the B cell with the antigenic repertoire of the carcinoma cell. They present frameshift-derived peptides and can induce specific and fully functional T cells recognizing not only fusion cells but also the carcinoma cells. These hybrid cells may have great potential for cellular immunotherapy and

  19. An allospecific murine T helper clone which can help both T and B cell responses in vitro and in vivo

    DEFF Research Database (Denmark)

    Crispe, I N; Gascoigne, N R; Owens, T

    1984-01-01

    . Here we describe an in vitro and in vivo study of this problem, using a Th clone, designated MTH-1. The clone carries the cell surface markers Thy-1 and L3T4a, but lacks Lyt-2. It recognizes a minor alloantigen shared by DBA/2, B10.D2 and NZB spleen cells, and such recognition is restricted by H-2Ed...... in the polyclonal activation and maturation of the B cells to secrete immunoglobulin; also, antigen-primed B cells are augmented in their in vivo synthesis of specific antibody to the Thy-1 X 1 alloantigen by around 10(5) MTH-1 cells. Taken together, these results suggest a single Th clone can help both B cells......Both B lymphocytes and cytotoxic T lymphocytes respond to signals from the T helper (Th) compartment, and such signals are mediated by a number of biochemically distinct factors. This raises the question whether help for B cells and T cells is a function of one or several different kinds of Th cell...

  20. Clonorchis sinensis-derived total protein attenuates airway inflammation in murine asthma model by inducing regulatory T cells and modulating dendritic cell functions

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Young-Il [Div. of Malaria and Parasitic Diseases, Korea Centers for Disease Control and Prevention, Osong (Korea, Republic of); Kim, Seung Hyun [Div. of AIDS, National Institute of Health, Korea Centers for Disease Control and Prevention, Osong (Korea, Republic of); Ju, Jung Won; Cho, Shin Hyeong; Lee, Won Ja [Div. of Malaria and Parasitic Diseases, Korea Centers for Disease Control and Prevention, Osong (Korea, Republic of); Park, Jin Wook; Park, Yeong-Min [Dept. of Microbiology and Immunology, College of Medicine, Pusan National University, Yang-San (Korea, Republic of); Lee, Sang Eun, E-mail: ondalgl@cdc.go.kr [Div. of Malaria and Parasitic Diseases, Korea Centers for Disease Control and Prevention, Osong (Korea, Republic of)

    2011-04-22

    Highlights: {yields} Treatment with Clonorchis sinensis-derived total protein attenuates OVA-induced airway inflammation and AHR to methacholine. {yields} Induction of CD4{sup +}CD25{sup +}Foxp3{sup +} T cells and IL-10 along with suppression of splenocyte proliferation by C. sinensis-derived total protein. {yields} C. sinensis-derived total protein interferes with the expression of co-stimulatory molecules in DCs. -- Abstract: Asthma is characterized by Th2-mediated inflammation, resulting in airway hyperresponsiveness (AHR) through airway remodeling. Recent epidemiological and experimental reports have suggested an inverse relationship between the development of allergy and helminth infections. Infection by Clonorchis sinensis, a liver fluke that resides in the bile duct of humans, is endemic predominantly in Asia including Korea and China. Using a murine model for asthma, we investigated the effects of C. sinensis-derived total protein (Cs-TP) on allergen-induced airway inflammation and the mechanism underlying the protective effects of Cs-TP administration on asthma. Treatment with Cs-TP attenuated OVA-induced airway inflammation and methacholine-induced AHR, as well as eosinophilia development, lymphocyte infiltration into the lung, and goblet cell metaplasia. This protective effect of Cs-TP is associated with markedly reduced OVA-specific IgE and Th1/Th2 cytokine production. Moreover, Cs-TP increased the number of CD4{sup +}CD25{sup +}Foxp3{sup +} regulatory T (Treg) cells as well as their suppressive activity. In fact, proliferation of OVA-restimulated splenocytes was suppressed significantly. Cs-TP also inhibited the expression of such co-stimulatory molecules as CD80, CD86, and CD40 in LPS- or OVA-stimulated dendritic cells (DCs), suggesting that Cs-TP could interfere with the capacity of airway DCs to prime naive T cells. These data demonstrate the capacity of C. sinensis to ameliorate allergic asthma and broaden our understanding of the paradoxical

  1. Boosting BCG-primed responses with a subunit Apa vaccine during the waning phase improves immunity and imparts protection against Mycobacterium tuberculosis.

    Science.gov (United States)

    Nandakumar, Subhadra; Kannanganat, Sunil; Dobos, Karen M; Lucas, Megan; Spencer, John S; Amara, Rama Rao; Plikaytis, Bonnie B; Posey, James E; Sable, Suraj B

    2016-05-13

    Heterologous prime-boosting has emerged as a powerful vaccination approach against tuberculosis. However, optimal timing to boost BCG-immunity using subunit vaccines remains unclear in clinical trials. Here, we followed the adhesin Apa-specific T-cell responses in BCG-primed mice and investigated its BCG-booster potential. The Apa-specific T-cell response peaked 32-52 weeks after parenteral or mucosal BCG-priming but waned significantly by 78 weeks. A subunit-Apa-boost during the contraction-phase of BCG-response had a greater effect on the magnitude and functional quality of specific cellular and humoral responses compared to a boost at the peak of BCG-response. The cellular response increased following mucosal BCG-prime-Apa-subunit-boost strategy compared to Apa-subunit-prime-BCG-boost approach. However, parenteral BCG-prime-Apa-subunit-boost by a homologous route was the most effective strategy in-terms of enhancing specific T-cell responses during waning in the lung and spleen. Two Apa-boosters markedly improved waning BCG-immunity and significantly reduced Mycobacterium tuberculosis burdens post-challenge. Our results highlight the challenges of optimization of prime-boost regimens in mice where BCG drives persistent immune-activation and suggest that boosting with a heterologous vaccine may be ideal once the specific persisting effector responses are contracted. Our results have important implications for design of prime-boost regimens against tuberculosis in humans.

  2. Peripheral blood T cell activation after radioiodine treatment for graves' disease

    International Nuclear Information System (INIS)

    Teng Weiping; Weetman, A.P.

    1992-01-01

    Radioiodine therapy for Graves' thyrotoxicosis produces a rise in thyroid autoantibodies in the first three months after treatment, but little is known of its effects on T cells. We have therefore followed the changes in T cells subsets in sequential samples from 23 patients with Graves' disease treated with radioiodine, using dual-colour flow cytometry. In the first month after treatment there was a significant rise in activated T cells, identified by the markers HLA-DR (Ia) and CDW 26/Ta 1 (P<0.025 in both case). CD45RO-positive T cells, which are the prime population containing memory cells, also increased (P<0.025), but there was no change in CD45R-positive, resting cells or in the CD4/CD8 (helper to cytotoxic/suppressor) ratio. Vicia villosa-binding T cells, containing the contra-suppressor population, showed a more variable response, but the trend was to an overall increase from pre-treatment values (P<0.025). The change did not appear to be related to antithyroid drugs treatment, since they were seen irrespective of whether patients convinced such therapy. These results suggest that T cell activation and enhanced contra-suppressor activity may in part be responsible for the rise in autoantibodies after radioiodine therapy

  3. Prolonged antigen presentation is required for optimal CD8+ T cell responses against malaria liver stage parasites.

    Directory of Open Access Journals (Sweden)

    Ian A Cockburn

    2010-05-01

    Full Text Available Immunization with irradiated sporozoites is currently the most effective vaccination strategy against liver stages of malaria parasites, yet the mechanisms underpinning the success of this approach are unknown. Here we show that the complete development of protective CD8+ T cell responses requires prolonged antigen presentation. Using TCR transgenic cells specific for the malaria circumsporozoite protein, a leading vaccine candidate, we found that sporozoite antigen persists for over 8 weeks after immunization--a remarkable finding since irradiated sporozoites are incapable of replication and do not differentiate beyond early liver stages. Persisting antigen was detected in lymphoid organs and depends on the presence of CD11c+ cells. Prolonged antigen presentation enhanced the magnitude of the CD8+ T cell response in a number of ways. Firstly, reducing the time primed CD8+ T cells were exposed to antigen in vivo severely reduced the final size of the developing memory population. Secondly, fully developed memory cells expanded in previously immunized mice but not when transferred to naïve animals. Finally, persisting antigen was able to prime naïve cells, including recent thymic emigrants, to become functional effector cells capable of eliminating parasites in the liver. Together these data show that the optimal development of protective CD8+ T cell immunity against malaria liver stages is dependent upon the prolonged presentation of sporozoite-derived antigen.

  4. Malaria drives T cells to exhaustion

    Directory of Open Access Journals (Sweden)

    Michelle N Wykes

    2014-05-01

    Full Text Available Malaria is a significant global burden but after >30 years of effort there is no vaccine on the market. While the complex life cycle of the parasite presents several challenges, many years of research have also identified several mechanisms of immune evasion by Plasmodium spp.. Recent research on malaria, has investigated the Programmed cell death-1 (PD-1 pathway which mediates exhaustion of T cells, characterized by poor effector functions and recall responses and in some cases loss of the cells by apoptosis. Such studies have shown exhaustion of CD4+ T cells and an unappreciated role for CD8+ T cells in promoting sterile immunity against blood stage malaria. This is because PD-1 mediates up to a 95% reduction in numbers and functional capacity of parasite-specific CD8+ T cells, thus masking their role in protection. The role of T cell exhaustion during malaria provides an explanation for the absence of sterile immunity following the clearance of acute disease which will be relevant to future malaria-vaccine design and suggests the need for novel therapeutic solutions. This review will thus examine the role of PD-1-mediated T cell exhaustion in preventing lasting immunity against malaria.

  5. TNFRSF14 aberrations in follicular lymphoma increase clinically significant allogeneic T-cell responses.

    Science.gov (United States)

    Kotsiou, Eleni; Okosun, Jessica; Besley, Caroline; Iqbal, Sameena; Matthews, Janet; Fitzgibbon, Jude; Gribben, John G; Davies, Jeffrey K

    2016-07-07

    Donor T-cell immune responses can eradicate lymphomas after allogeneic hematopoietic stem cell transplantation (AHSCT), but can also damage healthy tissues resulting in harmful graft-versus-host disease (GVHD). Next-generation sequencing has recently identified many new genetic lesions in follicular lymphoma (FL). One such gene, tumor necrosis factor receptor superfamily 14 (TNFRSF14), abnormal in 40% of FL patients, encodes the herpes virus entry mediator (HVEM) which limits T-cell activation via ligation of the B- and T-lymphocyte attenuator. As lymphoma B cells can act as antigen-presenting cells, we hypothesized that TNFRSF14 aberrations that reduce HVEM expression could alter the capacity of FL B cells to stimulate allogeneic T-cell responses and impact the outcome of AHSCT. In an in vitro model of alloreactivity, human lymphoma B cells with TNFRSF14 aberrations had reduced HVEM expression and greater alloantigen-presenting capacity than wild-type lymphoma B cells. The increased immune-stimulatory capacity of lymphoma B cells with TNFRSF14 aberrations had clinical relevance, associating with higher incidence of acute GVHD in patients undergoing AHSCT. FL patients with TNFRSF14 aberrations may benefit from more aggressive immunosuppression to reduce harmful GVHD after transplantation. Importantly, this study is the first to demonstrate the impact of an acquired genetic lesion on the capacity of tumor cells to stimulate allogeneic T-cell immune responses which may have wider consequences for adoptive immunotherapy strategies. © 2016 by The American Society of Hematology.

  6. High Fat Diet Inhibits Dendritic Cell and T Cell Response to Allergens but Does Not Impair Inhalational Respiratory Tolerance.

    Directory of Open Access Journals (Sweden)

    Angela Pizzolla

    Full Text Available The incidence of obesity has risen to epidemic proportions in recent decades, most commonly attributed to an increasingly sedentary lifestyle, and a 'western' diet high in fat and low in fibre. Although non-allergic asthma is a well-established co-morbidity of obesity, the influence of obesity on allergic asthma is still under debate. Allergic asthma is thought to result from impaired tolerance to airborne antigens, so-called respiratory tolerance. We sought to investigate whether a diet high in fats affects the development of respiratory tolerance. Mice fed a high fat diet (HFD for 8 weeks showed weight gain, metabolic disease, and alteration in gut microbiota, metabolites and glucose metabolism compared to age-matched mice fed normal chow diet (ND. Respiratory tolerance was induced by repeated intranasal (i.n. administration of ovalbumin (OVA, prior to induction of allergic airway inflammation (AAI by sensitization with OVA in alum i.p. and subsequent i.n. OVA challenge. Surprisingly, respiratory tolerance was induced equally well in HFD and ND mice, as evidenced by decreased lung eosinophilia and serum OVA-specific IgE production. However, in a pilot study, HFD mice showed a tendency for impaired activation of airway dendritic cells and regulatory T cells compared with ND mice after induction of respiratory tolerance. Moreover, the capacity of lymph node cells to produce IL-5 and IL-13 after AAI was drastically diminished in HFD mice compared to ND mice. These results indicate that HFD does not affect the inflammatory or B cell response to an allergen, but inhibits priming of Th2 cells and possibly dendritic cell and regulatory T cell activation.

  7. Macrophage colony-stimulating factor receptor marks and regulates a fetal myeloid-primed B-cell progenitor in mice.

    Science.gov (United States)

    Zriwil, Alya; Böiers, Charlotta; Wittmann, Lilian; Green, Joanna C A; Woll, Petter S; Jacobsen, Sten Eirik W; Sitnicka, Ewa

    2016-07-14

    Although it is well established that unique B-cell lineages develop through distinct regulatory mechanisms during embryonic development, much less is understood about the differences between embryonic and adult B-cell progenitor cells, likely to underpin the genetics and biology of infant and childhood PreB acute lymphoblastic leukemia (PreB-ALL), initiated by distinct leukemia-initiating translocations during embryonic development. Herein, we establish that a distinct subset of the earliest CD19(+) B-cell progenitors emerging in the E13.5 mouse fetal liver express the colony-stimulating factor-1 receptor (CSF1R), previously thought to be expressed, and play a lineage-restricted role in development of myeloid lineages, and macrophages in particular. These early embryonic CSF1R(+)CD19(+) ProB cells also express multiple other myeloid genes and, in line with this, possess residual myeloid as well as B-cell, but not T-cell lineage potential. Notably, these CSF1R(+) myeloid-primed ProB cells are uniquely present in a narrow window of embryonic fetal liver hematopoiesis and do not persist in adult bone marrow. Moreover, analysis of CSF1R-deficient mice establishes a distinct role of CSF1R in fetal B-lymphopoiesis. CSF1R(+) myeloid-primed embryonic ProB cells are relevant for infant and childhood PreB-ALLs, which frequently have a bi-phenotypic B-myeloid phenotype, and in which CSF1R-rearrangements have recently been reported. © 2016 by The American Society of Hematology.

  8. Capacity of lung stroma to educate dendritic cells inhibiting mycobacteria-specific T-cell response depends upon genetic susceptibility to tuberculosis.

    Science.gov (United States)

    Kapina, Marina A; Rubakova, Elvira I; Majorov, Konstantin B; Logunova, Nadezhda N; Apt, Alexander S

    2013-01-01

    The balance between activation and inhibition of local immune responses in affected tissues during prolonged chronic infections is important for host protection. There is ample evidence that regulatory, tolerogenic dendritic cells (DC) are developed and present in tissues and inhibit overwhelming inflammatory reactions. Also, it was firmly established that stromal microenvironment of many organs is able to induce development of immature regulatory DC (DCreg), an essential element of a general immune regulatory network. However, direct experimental data demonstrating inhibition of immune responses by stroma-instructed immature DCreg in infectious models are scarce, and virtually nothing is known about functioning of this axis of immunity during tuberculosis (TB) infection. In this study, we demonstrate that lung stromal cells are capable of supporting the development in culture of immature CD11b(+)CD11c(low)CD103(-) DCreg from lineage-negative (lin(-)) bone marrow precursors. DCreg developed on lung stroma isolated from mice of genetically TB-hyper-susceptible I/St and relatively resistant B6 inbred strains inhibited proliferative response of mycobacteria-specific CD4(+) T-cell lines a dose-dependent manner. Importantly, the inhibitory activity of B6 DCreg was substantially higher than that of I/St Dcreg. Moreover, when the donors of stromal cells were chronically infected with virulent mycobacteria, the capacity to instruct inhibitory DCreg was retained in B6, but further diminished in I/St stromal cells. DCreg-provided suppression was mediated by a few soluble mediators, including PGE2, NO and IL-10. The content of CD4(+)Foxp3(+) Treg cells in the mediastinal, lung-draining lymph nodes at the advanced stages of chronic infection did not change in I/St, but increased 2-fold in B6 mice, and lung pathology was much more pronounced in the former mice. Taken together, these data provide genetic evidence that the capacity to maintain populations of regulatory cells

  9. Capacity of lung stroma to educate dendritic cells inhibiting mycobacteria-specific T-cell response depends upon genetic susceptibility to tuberculosis.

    Directory of Open Access Journals (Sweden)

    Marina A Kapina

    Full Text Available The balance between activation and inhibition of local immune responses in affected tissues during prolonged chronic infections is important for host protection. There is ample evidence that regulatory, tolerogenic dendritic cells (DC are developed and present in tissues and inhibit overwhelming inflammatory reactions. Also, it was firmly established that stromal microenvironment of many organs is able to induce development of immature regulatory DC (DCreg, an essential element of a general immune regulatory network. However, direct experimental data demonstrating inhibition of immune responses by stroma-instructed immature DCreg in infectious models are scarce, and virtually nothing is known about functioning of this axis of immunity during tuberculosis (TB infection. In this study, we demonstrate that lung stromal cells are capable of supporting the development in culture of immature CD11b(+CD11c(lowCD103(- DCreg from lineage-negative (lin(- bone marrow precursors. DCreg developed on lung stroma isolated from mice of genetically TB-hyper-susceptible I/St and relatively resistant B6 inbred strains inhibited proliferative response of mycobacteria-specific CD4(+ T-cell lines a dose-dependent manner. Importantly, the inhibitory activity of B6 DCreg was substantially higher than that of I/St Dcreg. Moreover, when the donors of stromal cells were chronically infected with virulent mycobacteria, the capacity to instruct inhibitory DCreg was retained in B6, but further diminished in I/St stromal cells. DCreg-provided suppression was mediated by a few soluble mediators, including PGE2, NO and IL-10. The content of CD4(+Foxp3(+ Treg cells in the mediastinal, lung-draining lymph nodes at the advanced stages of chronic infection did not change in I/St, but increased 2-fold in B6 mice, and lung pathology was much more pronounced in the former mice. Taken together, these data provide genetic evidence that the capacity to maintain populations of regulatory

  10. Vitamin D-binding protein controls T cell responses to vitamin D

    DEFF Research Database (Denmark)

    Kongsbak, Martin; von Essen, Marina Rode; Levring, Trine Bøegh

    2014-01-01

    BACKGROUND: In vitro studies have shown that the active form of vitamin D3, 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3), can regulate differentiation of CD4+ T cells by inhibiting Th1 and Th17 cell differentiation and promoting Th2 and Treg cell differentiation. However, the serum concentration of 1...... that activated T cells express the 25(OH)D-1α-hydroxylase CYP27B1 that converts 25(OH)D3 to 1,25(OH)2D3, it is still controversial whether activated T cells have the capacity to produce sufficient amounts of 1,25(OH)2D3 to affect vitamin D-responsive genes. Furthermore, it is not known how the vitamin D......-binding protein (DBP) found in high concentrations in serum affects T cell responses to 25(OH)D3. RESULTS: We found that activated T cells express CYP27B1 and have the capacity to produce sufficient 1,25(OH)2D3 to affect vitamin D-responsive genes when cultured with physiological concentrations of 25(OH)D3...

  11. Peripheral blood T cell activation after radioiodine treatment for Graves' disease

    Energy Technology Data Exchange (ETDEWEB)

    Wei-Ping Teng; Stark, R.; Borysiewicz, L.K.; Weetman, A.P. (Department of Medicine, University of Cambridge Clinical School, Level 5, Addenbrooke' s Hospital, Cambridge (UK)); Munro, A.J. (Department of Clinical Oncology, Hammersmith Hospital, London (UK)); McHardy Young, S. (Department of Medicine, Central Middlesex Hospital, London (UK))

    1990-01-01

    Radioiodine therapy for Graves' thyrotoxicosis produces a rise in thyroid autoantibodies in the first three months after treatment, but little is known of its effects on T cells. We have therefore followed the changes in T cell subsets in sequential samples from 23 patients with Graves' disease treated with radioiodine, using dualcolour flow cytometry. In the first month after treatment there was a significant rise in activated T cells, identified by the markers HLA-DR(la) and CDw26/Tal (p<0.025 in both cases). CD45RO-positive T cells, which are the primed population containing memory cells, also increased (p<0.025), but there was no change in CD45R-positive, resting T cells or in the CD4 to CD8 (helper to cytotoxic/suppressor) ratio. Vicia villosa-binding T cells, containing the contrasuppressor population, showed a more variable response, but the trend was to an overall increase from pre-treatment values (p<0.025). The changes did not appear to be related to antithyroid drug treatment, since they were seen irrespective of whether patients continued such therapy. These results suggest that T cell activation and enhanced contrasuppressor activity may in part be responsible for the rise in autoantibodies after radioiodine. The T cell changes could also contribute to the worsening of ophthalmopathy seen in some radioiodine-treated patients. (author).

  12. Monitoring the initiation and kinetics of human dendritic cell-induced polarization of autologous naive CD4+ T cells.

    Directory of Open Access Journals (Sweden)

    Tammy Oth

    Full Text Available A crucial step in generating de novo immune responses is the polarization of naive cognate CD4+ T cells by pathogen-triggered dendritic cells (DC. In the human setting, standardized DC-dependent systems are lacking to study molecular events during the initiation of a naive CD4+ T cell response. We developed a TCR-restricted assay to compare different pathogen-triggered human DC for their capacities to instruct functional differentiation of autologous, naive CD4+ T cells. We demonstrated that this methodology can be applied to compare differently matured DC in terms of kinetics, direction, and magnitude of the naive CD4+ T cell response. Furthermore, we showed the applicability of this assay to study the T cell polarizing capacity of low-frequency blood-derived DC populations directly isolated ex vivo. This methodology for addressing APC-dependent instruction of naive CD4+ T cells in a human autologous setting will provide researchers with a valuable tool to gain more insight into molecular mechanisms occurring in the early phase of T cell polarization. In addition, it may also allow the study of pharmacological agents on DC-dependent T cell polarization in the human system.

  13. T cell cytokine responses to stimulation with Ureaplasma parvum in pregnancy.

    Science.gov (United States)

    Friedland, Yael D; Lee-Pullen, Tracey F; Nathan, Elizabeth A; Watts, Rory; Keelan, Jeffrey A; Payne, Matthew S; Ireland, Demelza J

    2016-08-01

    Ureaplasma spp. are a common vaginal microorganism causally linked to inflammation-driven preterm birth (PTB). The nature of the immune response to Ureaplasma spp. may influence PTB risk. This study sought to define maternal T cell cytokine responses to in vitro stimulation with Ureaplasma parvum serovar 3 (UpSV3) in vaginally colonised (UP+) and non-colonised (UP-) pregnant women. Whole blood flow cytometry demonstrated an increase (p=0.027) in the baseline frequency of IFNγ-positive CD3(+)CD4(-)(CD8(+)) T cells in UP+ women. UpSV3 stimulation resulted in a significant and specific increase (p=0.001) in the frequency of IFNγ-positive CD3(+)CD4(-)(CD8(+)) T cells, regardless of vaginal colonisation status. UpSV3 stimulation also increased the frequency of IFNγ-positive CD3(+)CD4(+) T cells, particularly in the UP+ group (p=0.003). This is the first published study to examine T cell responses to Ureaplasma spp. Future appropriately-powered studies are needed to assess whether insufficient priming or a loss of tolerance to Ureaplasma spp. is occurring in UP+ women at risk of PTB. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. The transcription factor KLF2 restrains CD4⁺ T follicular helper cell differentiation.

    Science.gov (United States)

    Lee, June-Yong; Skon, Cara N; Lee, You Jeong; Oh, Soohwan; Taylor, Justin J; Malhotra, Deepali; Jenkins, Marc K; Rosenfeld, M Geoffrey; Hogquist, Kristin A; Jameson, Stephen C

    2015-02-17

    T follicular helper (Tfh) cells are essential for efficient B cell responses, yet the factors that regulate differentiation of this CD4(+) T cell subset are incompletely understood. Here we found that the KLF2 transcription factor serves to restrain Tfh cell generation. Induced KLF2 deficiency in activated CD4(+) T cells led to increased Tfh cell generation and B cell priming, whereas KLF2 overexpression prevented Tfh cell production. KLF2 promotes expression of the trafficking receptor S1PR1, and S1PR1 downregulation is essential for efficient Tfh cell production. However, KLF2 also induced expression of the transcription factor Blimp-1, which repressed transcription factor Bcl-6 and thereby impaired Tfh cell differentiation. Furthermore, KLF2 induced expression of the transcription factors T-bet and GATA3 and enhanced Th1 differentiation. Hence, our data indicate KLF2 is pivotal for coordinating CD4(+) T cell differentiation through two distinct and complementary mechanisms: via control of T cell localization and by regulation of lineage-defining transcription factors. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Cytolytic T lymphocyte precursor cells in congenitally athymic C57BL/6 nu/nu mice: Quantitation, enrichment, and specificity

    Energy Technology Data Exchange (ETDEWEB)

    Maryanski, J.L. (Ludwig Inst. for Cancer Research, Epalinges, Switzerland); MacDonald, H.R.; Sordat, B.; Cerottini, J.C.

    1981-03-01

    A sensitive limiting dilution microculture system was used to obtain minimal estimates of the frequency of CTL precursor cells (CTL-P) in spleens from 5- to 14-mo-old C57BL/6 nu/nu mice. Frequency determinations of CTL-P directed against H-2delta alloantigens ranged from 1/159,000 to 1/12,400. The relatively low frequency of CTL-P was enriched nearly 10-fold (to 1/2300) by passage of nude spleen cells over a column of nylon wool. After priming nude spleen cells for 7 days in conventional MLC, 1 to 3% of the MLC cells could be operationally identified as CTL-P. Furthermore, the progeny of MLC-primed nude CTL-P were specifically cytolytic for target cells of the strain used for priming. Such a system may be useful for analyzing the specificity repertoires of cells of the T cell lineage that have not undergone thymic influence.

  16. T cell telomere length in HIV-1 infection: no evidence for increased CD4+ T cell turnover

    NARCIS (Netherlands)

    Wolthers, K. C.; Bea, G.; Wisman, A.; Otto, S. A.; de Roda Husman, A. M.; Schaft, N.; de Wolf, F.; Goudsmit, J.; Coutinho, R. A.; van der Zee, A. G.; Meyaard, L.; Miedema, F.

    1996-01-01

    Progression to acquired immunodeficiency syndrome (AIDS) has been related to exhaustion of the regenerative capacity of the immune system resulting from high T cell turnover. Analysis of telomeric terminal restriction fragment (TRF) length, a marker for cellular replicative history, showed that

  17. Optimization of heterologous DNA-prime, protein boost regimens and site of vaccination to enhance therapeutic immunity against human papillomavirus-associated disease.

    Science.gov (United States)

    Peng, Shiwen; Qiu, Jin; Yang, Andrew; Yang, Benjamin; Jeang, Jessica; Wang, Joshua W; Chang, Yung-Nien; Brayton, Cory; Roden, Richard B S; Hung, Chien-Fu; Wu, T-C

    2016-01-01

    Human papillomavirus (HPV) has been identified as the primary etiologic factor of cervical cancer as well as subsets of anogenital and oropharyngeal cancers. The two HPV viral oncoproteins, E6 and E7, are uniquely and consistently expressed in all HPV infected cells and are therefore promising targets for therapeutic vaccination. Both recombinant naked DNA and protein-based HPV vaccines have been demonstrated to elicit HPV-specific CD8+ T cell responses that provide therapeutic effects against HPV-associated tumor models. Here we examine the immunogenicity in a preclinical model of priming with HPV DNA vaccine followed by boosting with filterable aggregates of HPV 16 L2E6E7 fusion protein (TA-CIN). We observed that priming twice with an HPV DNA vaccine followed by a single TA-CIN booster immunization generated the strongest antigen-specific CD8+ T cell response compared to other prime-boost combinations tested in C57BL/6 mice, whether naïve or bearing the HPV16 E6/E7 transformed syngeneic tumor model, TC-1. We showed that the magnitude of antigen-specific CD8+ T cell response generated by the DNA vaccine prime, TA-CIN protein vaccine boost combinatorial strategy is dependent on the dose of TA-CIN protein vaccine. In addition, we found that a single booster immunization comprising intradermal or intramuscular administration of TA-CIN after priming twice with an HPV DNA vaccine generated a comparable boost to E7-specific CD8+ T cell responses. We also demonstrated that the immune responses elicited by the DNA vaccine prime, TA-CIN protein vaccine boost strategy translate into potent prophylactic and therapeutic antitumor effects. Finally, as seen for repeat TA-CIN protein vaccination, we showed that the heterologous DNA prime and protein boost vaccination strategy is well tolerated by mice. Our results provide rationale for future clinical testing of HPV DNA vaccine prime, TA-CIN protein vaccine boost immunization regimen for the control of HPV-associated diseases.

  18. T-Bet Enhances Regulatory T Cell Fitness and Directs Control of Th1 Responses in Crescentic GN.

    Science.gov (United States)

    Nosko, Anna; Kluger, Malte A; Diefenhardt, Paul; Melderis, Simon; Wegscheid, Claudia; Tiegs, Gisa; Stahl, Rolf A K; Panzer, Ulf; Steinmetz, Oliver M

    2017-01-01

    Th1 cells are central pathogenic mediators of crescentic GN (cGN). Mechanisms responsible for Th1 cell downregulation, however, remain widely unknown. Recently, it was proposed that activation of the Th1-characteristic transcription factor T-bet optimizes Foxp3 + regulatory T (Treg) cells to counteract Th1-type inflammation. Because very little is known about the role of T-bet + Treg1 cells in inflammatory diseases, we studied the function of these cells in the nephrotoxic nephritis (NTN) model of cGN. The percentage of Treg1 cells progressively increased in kidneys of nephritic wild-type mice during the course of NTN, indicating their functional importance. Notably, naïve Foxp3 Cre xT-bet fl/fl mice, lacking Treg1 cells, showed spontaneous skewing toward Th1 immunity. Furthermore, absence of Treg1 cells resulted in aggravated NTN with selectively dysregulated renal and systemic Th1 responses. Detailed analyses of Treg cells from Foxp3 Cre xT-bet fl/fl mice revealed unaltered cytokine production and suppressive capacity. However, in competitive cotransfer experiments, wild-type Treg cells outcompeted T-bet-deficient Treg cells in terms of population expansion and expression levels of Foxp3, indicating that T-bet expression is crucial for general Treg fitness. Additionally, T-bet-deficient Treg cells lacked expression of the Th1-characteristic trafficking receptor CXCR3, which correlated with significant impairment of renal Treg infiltration. In summary, our data indicate a new subtype of Treg cells in cGN. These Treg1 cells are characterized by activation of the transcription factor T-bet, which enhances the overall fitness of these cells and optimizes their capacity to downregulate Th1 responses by inducing chemokine receptor CXCR3 expression. Copyright © 2016 by the American Society of Nephrology.

  19. T Cell Receptor Vβ Staining Identifies the Malignant Clone in Adult T cell Leukemia and Reveals Killing of Leukemia Cells by Autologous CD8+ T cells.

    Directory of Open Access Journals (Sweden)

    Aileen G Rowan

    2016-11-01

    Full Text Available There is growing evidence that CD8+ cytotoxic T lymphocyte (CTL responses can contribute to long-term remission of many malignancies. The etiological agent of adult T-cell leukemia/lymphoma (ATL, human T lymphotropic virus type-1 (HTLV-1, contains highly immunogenic CTL epitopes, but ATL patients typically have low frequencies of cytokine-producing HTLV-1-specific CD8+ cells in the circulation. It remains unclear whether patients with ATL possess CTLs that can kill the malignant HTLV-1 infected clone. Here we used flow cytometric staining of TCRVβ and cell adhesion molecule-1 (CADM1 to identify monoclonal populations of HTLV-1-infected T cells in the peripheral blood of patients with ATL. Thus, we quantified the rate of CD8+-mediated killing of the putative malignant clone in ex vivo blood samples. We observed that CD8+ cells from ATL patients were unable to lyse autologous ATL clones when tested directly ex vivo. However, short in vitro culture restored the ability of CD8+ cells to kill ex vivo ATL clones in some donors. The capacity of CD8+ cells to lyse HTLV-1 infected cells which expressed the viral sense strand gene products was significantly enhanced after in vitro culture, and donors with an ATL clone that expressed the HTLV-1 Tax gene were most likely to make a detectable lytic CD8+ response to the ATL cells. We conclude that some patients with ATL possess functional tumour-specific CTLs which could be exploited to contribute to control of the disease.

  20. BRAF and MEK Inhibitors Influence the Function of Reprogrammed T Cells: Consequences for Adoptive T-Cell Therapy

    Directory of Open Access Journals (Sweden)

    Jan Dörrie

    2018-01-01

    Full Text Available BRAF and MEK inhibitors (BRAFi/MEKi, the standard treatment for patients with BRAFV600 mutated melanoma, are currently explored in combination with various immunotherapies, notably checkpoint inhibitors and adoptive transfer of receptor-transfected T cells. Since two BRAFi/MEKi combinations with similar efficacy are approved, potential differences in their effects on immune cells would enable a rational choice for triple therapies. Therefore, we characterized the influence of the clinically approved BRAFi/MEKi combinations dabrafenib (Dabra and trametinib (Tram vs. vemurafenib (Vem and cobimetinib (Cobi on the activation and functionality of chimeric antigen receptor (CAR-transfected T cells. We co-cultured CAR-transfected CD8+ T cells and target cells with clinically relevant concentrations of the inhibitors and determined the antigen-induced cytokine secretion. All BRAFi/MEKi reduced this release as single agents, with Dabra having the mildest inhibitory effect, and Dabra + Tram having a clearly milder inhibitory effect than Vem + Cobi. A similar picture was observed for the upregulation of the activation markers CD25 and CD69 on CAR-transfected T cells after antigen-specific stimulation. Most importantly, the cytolytic capacity of the CAR-T cells was significantly inhibited by Cobi and Vem + Cobi, whereas the other kinase inhibitors showed no effect. Therefore, the combination Dabra + Tram would be more suitable for combining with T-cell-based immunotherapy than Vem + Cobi.

  1. Human rotavirus specific T cells: quantification by ELISPOT and expression of homing receptors on CD4+ T cells

    International Nuclear Information System (INIS)

    Rojas, Olga Lucia; Gonzalez, Ana Maria; Gonzalez, Rosabel; Perez-Schael, Irene; Greenberg, Harry B.; Franco, Manuel A.; Angel, Juana

    2003-01-01

    Using an intracellular cytokine assay, we recently showed that the frequencies of rotavirus (RV)-specific CD4 + and CD8 + T cells secreting INFγ, circulating in RV infected and healthy adults, are very low compared to the frequencies of circulating cytomegalovirus (CMV) reactive T cells in comparable individuals. In children with acute RV infection, these T cells were barely or not detectable. In the present study, an ELISPOT assay enabled detection of circulating RV-specific INFγ-secreting cells in children with RV diarrhea but not in children with non-RV diarrhea without evidence of a previous RV infection. Using microbead-enriched CD4 + and CD8 + T cell subsets, IFNγ-secreting RV-specific CD8 + but not CD4 + T cells were detected in recently infected children. Using the same approach, both CD4 + and CD8 + RV-specific T cells were detected in healthy adults. Furthermore, stimulation of purified subsets of PBMC that express lymphocyte homing receptors demonstrated that RV-specific INFγ-secreting CD4 + T cells from adult volunteers preferentially express the intestinal homing receptor α4β7, but not the peripheral lymph node homing receptor L-selectin. In contrast, CMV-specific INFγ-secreting CD4 + T cells preferentially express L-selectin but not α4β7. These results suggest that the expression of homing receptors on virus-specific T cells depends on the organ where these cells were originally stimulated and that their capacity to secrete INFγ is independent of the expression of these homing receptors

  2. Past matrix stiffness primes epithelial cells and regulates their future collective migration through a mechanical memory.

    Science.gov (United States)

    Nasrollahi, Samila; Walter, Christopher; Loza, Andrew J; Schimizzi, Gregory V; Longmore, Gregory D; Pathak, Amit

    2017-11-01

    During morphogenesis and cancer metastasis, grouped cells migrate through tissues of dissimilar stiffness. Although the influence of matrix stiffness on cellular mechanosensitivity and motility are well-recognized, it remains unknown whether these matrix-dependent cellular features persist after cells move to a new microenvironment. Here, we interrogate whether priming of epithelial cells by a given matrix stiffness influences their future collective migration on a different matrix - a property we refer to as the 'mechanical memory' of migratory cells. To prime cells on a defined matrix and track their collective migration onto an adjoining secondary matrix of dissimilar stiffness, we develop a modular polyacrylamide substrate through step-by-step polymerization of different PA compositions. We report that epithelial cells primed on a stiff matrix migrate faster, display higher actomyosin expression, form larger focal adhesions, and retain nuclear YAP even after arriving onto a soft secondary matrix, as compared to their control behavior on a homogeneously soft matrix. Priming on a soft ECM causes a reverse effect. The depletion of YAP dramatically reduces this memory-dependent migration. Our results present a previously unidentified regulation of mechanosensitive collective cell migration by past matrix stiffness, in which mechanical memory depends on YAP activity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Toxicity and management in CAR T-cell therapy

    Directory of Open Access Journals (Sweden)

    Challice L Bonifant

    2016-01-01

    Full Text Available T cells can be genetically modified to target tumors through the expression of a chimeric antigen receptor (CAR. Most notably, CAR T cells have demonstrated clinical efficacy in hematologic malignancies with more modest responses when targeting solid tumors. However, CAR T cells also have the capacity to elicit expected and unexpected toxicities including: cytokine release syndrome, neurologic toxicity, “on target/off tumor” recognition, and anaphylaxis. Theoretical toxicities including clonal expansion secondary to insertional oncogenesis, graft versus host disease, and off-target antigen recognition have not been clinically evident. Abrogating toxicity has become a critical step in the successful application of this emerging technology. To this end, we review the reported and theoretical toxicities of CAR T cells and their management.

  4. Redirection to the bone marrow improves T cell persistence and antitumor functions.

    Science.gov (United States)

    Khan, Anjum B; Carpenter, Ben; Santos E Sousa, Pedro; Pospori, Constandina; Khorshed, Reema; Griffin, James; Velica, Pedro; Zech, Mathias; Ghorashian, Sara; Forrest, Calum; Thomas, Sharyn; Gonzalez Anton, Sara; Ahmadi, Maryam; Holler, Angelika; Flutter, Barry; Ramirez-Ortiz, Zaida; Means, Terry K; Bennett, Clare L; Stauss, Hans; Morris, Emma; Lo Celso, Cristina; Chakraverty, Ronjon

    2018-05-01

    A key predictor for the success of gene-modified T cell therapies for cancer is the persistence of transferred cells in the patient. The propensity of less differentiated memory T cells to expand and survive efficiently has therefore made them attractive candidates for clinical application. We hypothesized that redirecting T cells to specialized niches in the BM that support memory differentiation would confer increased therapeutic efficacy. We show that overexpression of chemokine receptor CXCR4 in CD8+ T cells (TCXCR4) enhanced their migration toward vascular-associated CXCL12+ cells in the BM and increased their local engraftment. Increased access of TCXCR4 to the BM microenvironment induced IL-15-dependent homeostatic expansion and promoted the differentiation of memory precursor-like cells with low expression of programmed death-1, resistance to apoptosis, and a heightened capacity to generate polyfunctional cytokine-producing effector cells. Following transfer to lymphoma-bearing mice, TCXCR4 showed a greater capacity for effector expansion and better tumor protection, the latter being independent of changes in trafficking to the tumor bed or local out-competition of regulatory T cells. Thus, redirected homing of T cells to the BM confers increased memory differentiation and antitumor immunity, suggesting an innovative solution to increase the persistence and functions of therapeutic T cells.

  5. Stroma cell priming in enteric lymphoid organ morphogenesis

    Directory of Open Access Journals (Sweden)

    Manuela eFerreira

    2012-07-01

    Full Text Available The lymphoid system is equipped with a network of specialized platforms located at strategic sites, which grant strict immune-surveillance and efficient immune responses. The development of these peripheral secondary lymphoid organs occurs mainly in utero, while tertiary lymphoid structures can form in adulthood generally in response to persistent infection and inflammation. Regardless of the lymphoid tissue and intrinsic cellular and molecular differences, it is now well established that the recruitment of fully functional Lymphoid Tissue inducer (LTi cells to presumptive lymphoid organ sites, and their consequent close and reciprocal interaction with resident stroma cells, are central to secondary lymphoid organ formation. In contrast, the nature of events that initially prime resident sessile stroma cells to recruit and retain LTi cells remains poorly understood.

  6. Epigenetic programming of T cells impacts immune reconstitution in hematopoietic stem cell transplant recipients.

    Science.gov (United States)

    Hardy, Kristine; Smith, Corey; Tu, Wen Juan; McCuaig, Robert; Panikkar, Archana; Dasari, Vijayendra; Wu, Fan; Tey, Siok-Keen; Hill, Geoffrey R; Khanna, Rajiv; Rao, Sudha

    2018-03-27

    Immune reconstitution following hematopoietic stem cell transplantation (HSCT) is critical in preventing harmful sequelae in recipients with cytomegalovirus (CMV) infection. To understand the molecular mechanisms underlying immune reconstitution kinetics, we profiled the transcriptome-chromatin accessibility landscape of CMV-specific CD8 + T cells from HCST recipients with different immune reconstitution efficiencies. CMV-specific T cells from HSCT recipients with stable antiviral immunity expressed higher levels of interferon/defense response and cell cycle genes in an interconnected network involving PI3KCG , STAT5B , NFAT , RBPJ , and lower HDAC6 , increasing chromatin accessibility at the enhancer regions of immune and T-cell receptor signaling pathway genes. By contrast, the transcriptional and epigenomic signatures of CMV-specific T cells from HSCT recipients with unstable immune reconstitution showed commonalities with T-cell responses in other nonresolving chronic infections. These signatures included higher levels of EGR and KLF factors that, along with lower JARID2 expression, maintained higher accessibility at promoter and CpG-rich regions of genes associated with apoptosis. Furthermore, epigenetic targeting via inhibition of HDAC6 or JARID2 enhanced the transcription of genes associated with differential responses, suggesting that drugs targeting epigenomic modifiers may have therapeutic potential for enhancing immune reconstitution in HSCT recipients. Taken together, these analyses demonstrate that transcription factors and chromatin modulators create different chromatin accessibility landscapes in T cells of HSCT recipients that not only affect immediate gene expression but also differentially prime cells for responses to additional signals. Epigenetic therapy may be a promising strategy to promote immune reconstitution in HSCT recipients. © 2018 by The American Society of Hematology.

  7. Fatty Acids, Lipid Mediators, and T-Cell Function

    Science.gov (United States)

    de Jong, Anja J.; Kloppenburg, Margreet; Toes, René E. M.; Ioan-Facsinay, Andreea

    2014-01-01

    Research toward the mechanisms underlying obesity-linked complications has intensified during the last years. As a consequence, it has become clear that metabolism and immunity are intimately linked. Free fatty acids and other lipids acquired in excess by current feeding patterns have been proposed to mediate this link due to their immune modulatory capacity. The functional differences between saturated and unsaturated fatty acids, in combination with their dietary intake are believed to modulate the outcome of immune responses. Moreover, unsaturated fatty acids can be oxidized in a tightly regulated and specific manner to generate either potent pro-inflammatory or pro-resolving lipid mediators. These oxidative derivatives of fatty acids have received detailed attention during the last years, as they have proven to have strong immune modulatory capacity, even in pM ranges. Both fatty acids and oxidized fatty acids have been studied especially in relation to macrophage and T-cells functions. In this review, we propose to focus on the effect of fatty acids and their oxidative derivatives on T-cells, as it is an active area of research during the past 5 years. The effect of fatty acids and their derivatives on activation and proliferation of T-cells, as well as the delicate balance between stimulation and lipotoxicity will be discussed. Moreover, the receptors involved in the interaction between free fatty acids and their derivatives with T-cells will be summarized. Finally, the mechanisms involved in modulation of T-cells by fatty acids will be addressed, including cellular signaling and metabolism of T-cells. The in vitro results will be placed in context of in vivo studies both in humans and mice. In this review, we summarize the latest findings on the immune modulatory function of lipids on T-cells and will point out novel directions for future research. PMID:25352844

  8. DNA vaccine delivered by a needle-free injection device improves potency of priming for antibody and CD8+ T-cell responses after rAd5 boost in a randomized clinical trial.

    Directory of Open Access Journals (Sweden)

    Barney S Graham

    Full Text Available DNA vaccine immunogenicity has been limited by inefficient delivery. Needle-free delivery of DNA using a CO2-powered Biojector® device was compared to delivery by needle and syringe and evaluated for safety and immunogenicity.Forty adults, 18-50 years, were randomly assigned to intramuscular (IM vaccinations with DNA vaccine, VRC-HIVDNA016-00-VP, (weeks 0, 4, 8 by Biojector® 2000™ or needle and syringe (N/S and boosted IM at week 24 with VRC-HIVADV014-00-VP (rAd5 with N/S at 10(10 or 10(11 particle units (PU. Equal numbers per assigned schedule had low (≤500 or high (>500 reciprocal titers of preexisting Ad5 neutralizing antibody.120 DNA and 39 rAd5 injections were given; 36 subjects completed follow-up research sample collections. IFN-γ ELISpot response rates were 17/19 (89% for Biojector® and 13/17 (76% for N/S delivery at Week 28 (4 weeks post rAd5 boost. The magnitude of ELISpot response was about 3-fold higher in Biojector® compared to N/S groups. Similar effects on response rates and magnitude were observed for CD8+, but not CD4+ T-cell responses by ICS. Env-specific antibody responses were about 10-fold higher in Biojector-primed subjects.DNA vaccination by Biojector® was well-tolerated and compared to needle injection, primed for greater IFN-γ ELISpot, CD8+ T-cell, and antibody responses after rAd5 boosting.ClinicalTrials.gov NCT00109629.

  9. T cell responses in senior patients with community-acquired pneumonia related to disease severity.

    Science.gov (United States)

    Bian, Lu-Qin; Bi, Ying; Zhou, Shao-Wei; Chen, Zi-Dan; Wen, Jun; Shi, Jin; Mao, Ling; Wang, Ling

    2017-12-01

    Senior individuals older than 65 years of age are at a disproportionally higher risk of developing pneumonia. Impaired capacity to defend against airway infections may be one of the reasons. It is generally believed that weaker regulatory T cell responses may be beneficial to host defense against pathogens. In senior patients with community-acquired bacterial pneumonia, we investigated the frequencies and functions of regulatory T cells. Interestingly, we found that compared to age- and sex-matched healthy controls, senior pneumonia patients presented lower frequencies of Foxp3-expressing and Helios-expressing CD4 + T cells. The quantity of Foxp3 and Helios being expressed, measured by their mRNA transcription levels, was also lower in CD4 + T cells from pneumonia patients. Furthermore, following TCR and TGF-β stimulation, pneumonia patients presented impaired capacity to upregulate Foxp3 and Helios. Functional analyses revealed that CD4 + T cells from pneumonia patients secreted lower amounts of IL-10 and TGF-β, two cytokines critical to regulatory T cell-mediated suppression. Also, the expression of granzyme B and perforin, which were cytolytic molecules potentially utilized by regulatory T cells to mediate the elimination of antigen-presenting cells and effector T cells, were reduced in CD4 + CD25 + T cells from senior pneumonia patients. In addition, the CD4 + CD25 + T cells from senior pneumonia patients presented reduced capacity to suppress effector CD4 + and CD8 + T cell proliferation. Moreover, the value of pneumonia severity index was inversely correlated with several parameters of regulatory T cell function. Together, our results demonstrated that senior pneumonia patients presented a counterintuitive impairment in regulatory T cell responses that was associated with worse prognosis. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. The kinase TBK1 functions in dendritic cells to regulate T cell homeostasis, autoimmunity, and antitumor immunity.

    Science.gov (United States)

    Xiao, Yichuan; Zou, Qiang; Xie, Xiaoping; Liu, Ting; Li, Haiyan S; Jie, Zuliang; Jin, Jin; Hu, Hongbo; Manyam, Ganiraju; Zhang, Li; Cheng, Xuhong; Wang, Hui; Marie, Isabelle; Levy, David E; Watowich, Stephanie S; Sun, Shao-Cong

    2017-05-01

    Dendritic cells (DCs) are crucial for mediating immune responses but, when deregulated, also contribute to immunological disorders, such as autoimmunity. The molecular mechanism underlying the function of DCs is incompletely understood. In this study, we have identified TANK-binding kinase 1 (TBK1), a master innate immune kinase, as an important regulator of DC function. DC-specific deletion of Tbk1 causes T cell activation and autoimmune symptoms and also enhances antitumor immunity in animal models of cancer immunotherapy. The TBK1-deficient DCs have up-regulated expression of co-stimulatory molecules and increased T cell-priming activity. We further demonstrate that TBK1 negatively regulates the induction of a subset of genes by type I interferon receptor (IFNAR). Deletion of IFNAR1 could largely prevent aberrant T cell activation and autoimmunity in DC-conditional Tbk1 knockout mice. These findings identify a DC-specific function of TBK1 in the maintenance of immune homeostasis and tolerance. © 2017 Xiao et al.

  11. Antigen-specific and nonspecific mediators of T cell/B cell cooperation. III. Characterization of the nonspecific mediator(s) from different sources.

    Science.gov (United States)

    Harwell, L; Kappler, J W; Marrack, P

    1976-05-01

    T cell-containing lymphoid populations produce a nonantigen-specific mediator(s) (NSM) which can replace T cell helper function in vitro in the response of B cells to sheep red blood cells (SRBC), but not to the hapten-protein conjugate, trinitrophenyl-keyhole limpet hemocyanin, (TNP-KLH). NSM produced under three conditions: 1) stimulation of KLH-primed cells with KLH; 2) allogeneic stimulation of normal spleen cells; and 3) stimulation of normal spleen cells with Con A (but not PHA) are indistinguishable on the basis of their biologic activity and m.w., estimated as 30 to 40,000 daltons by G-200 chromatography. Production of NSM is dependent on the presence of T cells. The action of NSM on B cells responding to SRBC in the presence of 2-mercaptoethanol is unaffected by severe macrophage depletion. Extensive absorption of NSM with SRBC failed to remove its activity, confirming its nonantigen-specific nature.

  12. APRIL modulates B and T cell immunity

    NARCIS (Netherlands)

    Stein, Jens V.; López-Fraga, Marta; Elustondo, Fernando A.; Carvalho-Pinto, Carla E.; Rodríguez, Dolores; Gómez-Caro, Ruth; de Jong, Joan; Martínez-A, Carlos; Medema, Jan Paul; Hahne, Michael

    2002-01-01

    The TNF-like ligands APRIL and BLyS are close relatives and share the capacity to bind the receptors TACI and BCMA. BLyS has been shown to play an important role in B cell homeostasis and autoimmunity, but the biological role of APRIL remains less well defined. Analysis of T cells revealed an

  13. HBV-specific CD4+ cytotoxic T cells in hepatocellular carcinoma are less cytolytic toward tumor cells and suppress CD8+ T cell-mediated antitumor immunity.

    Science.gov (United States)

    Meng, Fanzhi; Zhen, Shoumei; Song, Bin

    2017-08-01

    In East Asia and sub-Saharan Africa, chronic infection is the main cause of the development of hepatocellular carcinoma, an aggressive cancer with low survival rate. Cytotoxic T cell-based immunotherapy is a promising treatment strategy. Here, we investigated the possibility of using HBV-specific CD4 + cytotoxic T cells to eliminate tumor cells. The naturally occurring HBV-specific cytotoxic CD4 + and CD8 + T cells were identified by HBV peptide pool stimulation. We found that in HBV-induced hepatocellular carcinoma patients, the HBV-specific cytotoxic CD4 + T cells and cytotoxic CD8 + T cells were present at similar numbers. But compared to the CD8 + cytotoxic T cells, the CD4 + cytotoxic T cells secreted less cytolytic factors granzyme A (GzmA) and granzyme B (GzmB), and were less effective at eliminating tumor cells. In addition, despite being able to secrete cytolytic factors, CD4 + T cells suppressed the cytotoxicity mediated by CD8 + T cells, even when CD4 + CD25 + regulator T cells were absent. Interestingly, we found that interleukin 10 (IL-10)-secreting Tr1 cells were enriched in the cytotoxic CD4 + T cells. Neutralization of IL-10 abrogated the suppression of CD8 + T cells by CD4 + CD25 - T cells. Neither the frequency nor the absolute number of HBV-specific CD4 + cytotoxic T cells were correlated with the clinical outcome of advanced stage hepatocellular carcinoma patients. Together, this study demonstrated that in HBV-related hepatocellular carcinoma, CD4 + T cell-mediated cytotoxicity was present naturally in the host and had the potential to exert antitumor immunity, but its capacity was limited and was associated with immunoregulatory properties. © 2017 APMIS. Published by John Wiley & Sons Ltd.

  14. Pro- and anti-apoptotic CD95 signaling in T cells

    Directory of Open Access Journals (Sweden)

    Janssen Ottmar

    2011-04-01

    Full Text Available Abstract The TNF receptor superfamily member CD95 (Fas, APO-1, TNFRSF6 is known as the prototypic death receptor in and outside the immune system. In fact, many mechanisms involved in apoptotic signaling cascades were solved by addressing consequences and pathways initiated by CD95 ligation in activated T cells or other "CD95-sensitive" cell populations. As an example, the binding of the inducible CD95 ligand (CD95L to CD95 on activated T lymphocytes results in apoptotic cell death. This activation-induced cell death was implicated in the control of immune cell homeostasis and immune response termination. Over the past years, however, it became evident that CD95 acts as a dual function receptor that also exerts anti-apoptotic effects depending on the cellular context. Early observations of a potential non-apoptotic role of CD95 in the growth control of resting T cells were recently reconsidered and revealed quite unexpected findings regarding the costimulatory capacity of CD95 for primary T cell activation. It turned out that CD95 engagement modulates TCR/CD3-driven signal initiation in a dose-dependent manner. High doses of immobilized CD95 agonists or cellular CD95L almost completely silence T cells by blocking early TCR-induced signaling events. In contrast, under otherwise unchanged conditions, lower amounts of the same agonists dramatically augment TCR/CD3-driven activation and proliferation. In the present overview, we summarize these recent findings with a focus on the costimulatory capacity of CD95 in primary T cells and discuss potential implications for the T cell compartment and the interplay between T cells and CD95L-expressing cells including antigen-presenting cells.

  15. Priming 3D cultures of human mesenchymal stromal cells toward cartilage formation via developmental pathways.

    Science.gov (United States)

    Centola, Matteo; Tonnarelli, Beatrice; Schären, Stefan; Glaser, Nicolas; Barbero, Andrea; Martin, Ivan

    2013-11-01

    The field of regenerative medicine has increasingly recognized the importance to be inspired by developmental processes to identify signaling pathways crucial for 3D organogenesis and tissue regeneration. Here, we aimed at recapitulating the first events occurring during limb development (ie, cell condensation and expansion of an undifferentiated mesenchymal cell population) to prime 3D cultures of human bone marrow-derived mesenchymal stromal/stem cells (hBM-MSC) toward the chondrogenic route. Based on embryonic development studies, we hypothesized that Wnt3a and fibroblast growth factor 2 (FGF2) induce hBM-MSC to proliferate in 3D culture as an undifferentiated pool of progenitors (defined by clonogenic capacity and expression of typical markers), retaining chondrogenic potential upon induction by suitable morphogens. hBM-MSC were responsive to Wnt signaling in 3D pellet culture, as assessed by significant upregulation of main target genes and increase of unphosphorylated β-catenin levels. Wnt3a was able to induce a five-fold increase in the number of proliferating hBM-MSC (6.4% vs. 1.3% in the vehicle condition), although total DNA content of the 3D construct was decreasing over time. Preconditioning with Wnt3a improved transforming growth factor-β1 mediated chondrogenesis (30% more glycosaminoglycans/cell in average). In contrast to developmental and 2D MSC culture models, FGF2 antagonized the Wnt-mediated effects. Interestingly, the CD146⁺ subpopulation was found to be more responsive to Wnt3a. The presented data indicate a possible strategy to prime 3D cultures of hBM-MSC by invoking a "developmental engineering" approach. The study also identifies some opportunities and challenges to cross-fertilize skeletal development models and 3D hBM-MSC culture systems.

  16. Memory CD8 T cells mediate severe immunopathology following respiratory syncytial virus infection.

    Directory of Open Access Journals (Sweden)

    Megan E Schmidt

    2018-01-01

    Full Text Available Memory CD8 T cells can provide protection from re-infection by respiratory viruses such as influenza and SARS. However, the relative contribution of memory CD8 T cells in providing protection against respiratory syncytial virus (RSV infection is currently unclear. To address this knowledge gap, we utilized a prime-boost immunization approach to induce robust memory CD8 T cell responses in the absence of RSV-specific CD4 T cells and antibodies. Unexpectedly, RSV infection of mice with pre-existing CD8 T cell memory led to exacerbated weight loss, pulmonary disease, and lethal immunopathology. The exacerbated disease in immunized mice was not epitope-dependent and occurred despite a significant reduction in RSV viral titers. In addition, the lethal immunopathology was unique to the context of an RSV infection as mice were protected from a normally lethal challenge with a recombinant influenza virus expressing an RSV epitope. Memory CD8 T cells rapidly produced IFN-γ following RSV infection resulting in elevated protein levels in the lung and periphery. Neutralization of IFN-γ in the respiratory tract reduced morbidity and prevented mortality. These results demonstrate that in contrast to other respiratory viruses, RSV-specific memory CD8 T cells can induce lethal immunopathology despite mediating enhanced viral clearance.

  17. Synovial CD4+ T-cell-derived GM-CSF supports the differentiation of an inflammatory dendritic cell population in rheumatoid arthritis

    Science.gov (United States)

    Reynolds, G; Gibbon, J R; Pratt, A G; Wood, M J; Coady, D; Raftery, G; Lorenzi, A R; Gray, A; Filer, A; Buckley, C D; Haniffa, M A; Isaacs, J D; Hilkens, C M U

    2016-01-01

    Objective A population of synovial inflammatory dendritic cells (infDCs) has recently been identified in rheumatoid arthritis (RA) and is thought to be monocyte-derived. Here, we investigated the role and source of granulocyte macrophage-colony-stimulating factor (GM-CSF) in the differentiation of synovial infDC in RA. Methods Production of GM-CSF by peripheral blood (PB) and synovial fluid (SF) CD4+ T cells was assessed by ELISA and flow cytometry. In vitro CD4+ T-cell polarisation experiments were performed with T-cell activating CD2/CD3/CD28-coated beads in the absence or presence of pro-Th1 or pro-Th17 cytokines. CD1c+ DC and CD16+ macrophage subsets were flow-sorted and analysed morphologically and functionally (T-cell stimulatory/polarising capacity). Results RA-SF CD4+ T cells produced abundant GM-CSF upon stimulation and significantly more than RA-SF mononuclear cells depleted of CD4+ T cells. GM-CSF-producing T cells were significantly increased in RA-SF compared with non-RA inflammatory arthritis SF, active RA PB and healthy donor PB. GM-CSF-producing CD4+ T cells were expanded by Th1-promoting but not Th17-promoting conditions. Following coculture with RA-SF CD4+ T cells, but not healthy donor PB CD4+ T cells, a subpopulation of monocytes differentiated into CD1c+ infDC; a process dependent on GM-CSF. These infDC displayed potent alloproliferative capacity and enhanced GM-CSF, interleukin-17 and interferon-γ production by CD4+ T cells. InfDC with an identical phenotype to in vitro generated cells were significantly enriched in RA-SF compared with non-RA-SF/tissue/PB. Conclusions We demonstrate a therapeutically tractable feedback loop of GM-CSF secreted by RA synovial CD4+ T cells promoting the differentiation of infDC with potent capacity to induce GM-CSF-producing CD4+ T cells. PMID:25923217

  18. Enhanced vaccine-induced CD8+ T cell responses to malaria antigen ME-TRAP by fusion to MHC class ii invariant chain.

    Directory of Open Access Journals (Sweden)

    Alexandra J Spencer

    Full Text Available The orthodox role of the invariant chain (CD74; Ii is in antigen presentation to CD4+ T cells, but enhanced CD8+ T cells responses have been reported after vaccination with vectored viral vaccines encoding a fusion of Ii to the antigen of interest. In this study we assessed whether fusion of the malarial antigen, ME-TRAP, to Ii could increase the vaccine-induced CD8+ T cell response. Following single or heterologous prime-boost vaccination of mice with a recombinant chimpanzee adenovirus vector, ChAd63, or recombinant modified vaccinia virus Ankara (MVA, higher frequencies of antigen-specific CD4+ and CD8+ T cells were observed, with the largest increases observed following a ChAd63-MVA heterologous prime-boost regimen. Studies in non-human primates confirmed the ability of Ii-fusion to augment the T cell response, where a 4-fold increase was maintained up to 11 weeks after the MVA boost. Of the numerous different approaches explored to increase vectored vaccine induced immunogenicity over the years, fusion to the invariant chain showed a consistent enhancement in CD8+ T cell responses across different animal species and may therefore find application in the development of vaccines against human malaria and other diseases where high levels of cell-mediated immunity are required.

  19. Role of DNA damage repair capacity in radiation induced adaptive response

    International Nuclear Information System (INIS)

    Yuan Dexiao; Pan Yan; Zhao Meijia; Chen Honghong; Shao Cunlin

    2009-01-01

    This work was to explore γ-ray induced radioadaptive response (RAR) in Chinese hamster ovary(CHO) cell lines of different DNA damage repair capacities. CHO-9 cells and the two repair-deficient strains, EM-C11(DNA single strand break repair deficient) and XR-C1(DNA double strand break repair deficient), were irradiated with a priming dose of 0.08 Gy or 0.016 Gy. After 4 or 7 hours, they were irradiated again with a challenging dose of 1 Gy. The micronucleus induction and plating efficiency of the cells were assayed. Under 0.08 Gy priming dose and 4-h interval, just the CHO-9 cells showed RAR, while with the 7-h interval the CHO-9 and EM-C11 showed RAR, but XR-C1 did not. When the cells were pretreated with a lower priming dose of 0.016 Gy in a 4-h time interval, all the three cell lines showed RAR to subsequent 1 Gy irradiation. It can be concluded that RAR is not only related to the priming dose and time interval, but also has close dependence on the ability of DNA damage repair. (authors)

  20. Estimating cell capacity for multi-cell electrical energy system

    Science.gov (United States)

    Hashemi, Iman Ahari

    A Multi-Cell Electrical Energy System is a set of batteries that are connected in series. The series batteries provide the required voltage necessary for the contraption. After using the energy that is provided by the batteries, some cells within the system tend to have a lower voltage than the other cells. Also, other factors, such as the number of times a battery has been charged or discharged, how long it has been within the system and many other factors, result in some cells having a lesser capacity compared to the other cells within the system. The outcome is that it lowers the required capacity that the electrical energy system is required to provide. By having an unknown cell capacity within the system, it is unknown how much of a charge can be provided to the system so that the cells are not overcharged or undercharged. Therefore, it is necessary to know the cells capacity within the system. Hence, if we were dealing with a single cell, the capacity could be obtained by a full charge and discharge of the cell. In a series system that contains multiple cells a full charging or discharging cannot happen as it might result in deteriorating the structure of some cells within the system. Hence, to find the capacity of a single cell within an electrical energy system it is required to obtain a method that can estimate the value of each cell within the electrical energy system. To approach this method an electrical energy system is required. The electrical energy system consists of rechargeable non-equal capacity batteries to provide the required energy to the system, a battery management system (BMS) board to monitor the cells voltages, an Arduino board that provides the required communication to BMS board, and the PC, and a software that is able to deliver the required data obtained from the Arduino board to the PC. The outcome, estimating the capacity of a cell within a multi-cell system, can be used in many battery related technologies to obtain unknown

  1. Epithelial cells prime the immune response to an array of gut-derived commensals towards a tolerogenic phenotype through distinct actions of thymic stromal lymphopoietin and transforming growth factor-beta

    DEFF Research Database (Denmark)

    Zeuthen, Louise Hjerrild; Fink, Lisbeth Nielsen; Frøkiær, Hanne

    2007-01-01

    in DC priming of naive T cells with elevated levels of transforming growth factor-beta (TGF-beta) and markedly reduced levels of bacteria-induced interferon-gamma production. Caco2 cell production of IL-8, thymic stromal lymphopoietin (TSLP) and TGF-beta increases upon microbial stimulation in a strain...

  2. Chronic schistosomiasis during pregnancy epigenetically reprograms T-cell differentiation in offspring of infected mothers.

    Science.gov (United States)

    Klar, Kathrin; Perchermeier, Sophie; Bhattacharjee, Sonakshi; Harb, Hani; Adler, Thure; Istvanffy, Rouzanna; Loffredo-Verde, Eva; Oostendorp, Robert A; Renz, Harald; Prazeres da Costa, Clarissa

    2017-05-01

    Schistosomiasis is a nontransplacental helminth infection. Chronic infection during pregnancy suppresses allergic airway responses in offspring. We addressed the question whether in utero exposure to chronic schistosome infection (Reg phase) in mice affects B-cell and T-cell development. Therefore, we focused our analyses on T-cell differentiation capacity induced by epigenetic changes in promoter regions of signature cytokines in offspring. Here, we show that naïve T cells from offspring of schistosome infected female mice had a strong capacity to differentiate into T H 1 cells, whereas T H 2 differentiation was impaired. In accordance, reduced levels of histone acetylation of the IL-4 promoter regions were observed in naïve T cells. To conclude, our mouse model revealed distinct epigenetic changes within the naïve T-cell compartment affecting T H 2 and T H 1 cell differentiation in offspring of mothers with chronic helminth infection. These findings could eventually help understand how helminths alter T-cell driven immune responses induced by allergens, bacterial or viral infections, as well as vaccines. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. An unexpected antibody response to an engineered influenza virus modifies CD8+ T cell responses.

    Science.gov (United States)

    Thomas, Paul G; Brown, Scott A; Yue, Wen; So, Jenny; Webby, Richard J; Doherty, Peter C

    2006-02-21

    The ovalbumin(323-339) peptide that binds H2I-A(b) was engineered into the globular heads of hemagglutinin (H) molecules from serologically non-cross-reactive H1N1 and H3N2 influenza A viruses, the aim being to analyze recall CD4+ T cell responses in a virus-induced respiratory disease. Prime/challenge experiments with these H1ova and H3ova viruses in H2(b) mice gave the predicted, ovalbumin-specific CD4+ T cell response but showed an unexpectedly enhanced, early expansion of viral epitope-specific CD8+ T cells in spleen and a greatly diminished inflammatory process in the virus-infected respiratory tract. At the same time, the primary antibody response to the H3N2 challenge virus was significantly reduced, an effect that has been associated with preexisting neutralizing antibody in other experimental systems. Analysis of serum from the H1ova-primed mice showed low-level binding to H3ova but not to the wild-type H3N2 virus. Experiments with CD4+ T cell-depleted and Ig-/- mice indicated that this cross-reactive Ig is indeed responsible for the modified pathogenesis after respiratory challenge. Furthermore, the effect does not seem to be virus-dose related, although it does require infection. These findings suggest intriguing possibilities for vaccination and, at the same time, emphasize that engineered modifications in viruses may have unintended immunological consequences.

  4. Safety Profile of Good Manufacturing Practice Manufactured Interferon γ-Primed Mesenchymal Stem/Stromal Cells for Clinical Trials.

    Science.gov (United States)

    Guess, Adam J; Daneault, Beth; Wang, Rongzhang; Bradbury, Hillary; La Perle, Krista M D; Fitch, James; Hedrick, Sheri L; Hamelberg, Elizabeth; Astbury, Caroline; White, Peter; Overolt, Kathleen; Rangarajan, Hemalatha; Abu-Arja, Rolla; Devine, Steven M; Otsuru, Satoru; Dominici, Massimo; O'Donnell, Lynn; Horwitz, Edwin M

    2017-10-01

    Mesenchymal stem/stromal cells (MSCs) are widely studied by both academia and industry for a broad array of clinical indications. The collective body of data provides compelling evidence of the clinical safety of MSC therapy. However, generally accepted proof of therapeutic efficacy has not yet been reported. In an effort to generate a more effective therapeutic cell product, investigators are focused on modifying MSC processing protocols to enhance the intrinsic biologic activity. Here, we report a Good Manufacturing Practice-compliant two-step MSC manufacturing protocol to generate MSCs or interferon γ (IFNγ) primed MSCs which allows freshly expanded cells to be infused in patients on a predetermined schedule. This protocol eliminates the need to infuse cryopreserved, just thawed cells which may reduce the immune modulatory activity. Moreover, using (IFNγ) as a prototypic cytokine, we demonstrate the feasibility of priming the cells with any biologic agent. We then characterized MSCs and IFNγ primed MSCs prepared with our protocol, by karyotype, in vitro potential for malignant transformation, biodistribution, effect on engraftment of transplanted hematopoietic cells, and in vivo toxicity in immune deficient mice including a complete post-mortem examination. We found no evidence of toxicity attributable to the MSC or IFNγ primed MSCs. Our data suggest that the clinical risk of infusing MSCs or IFNγ primed MSCs produced by our two-step protocol is not greater than MSCs currently in practice. While actual proof of safety requires phase I clinical trials, our data support the use of either cell product in new clinical studies. Stem Cells Translational Medicine 2017;6:1868-1879. © 2017 The Authors Stem Cells Translational Medicine published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  5. Mito-priming as a method to engineer Bcl-2 addiction.

    Science.gov (United States)

    Lopez, Jonathan; Bessou, Margaux; Riley, Joel S; Giampazolias, Evangelos; Todt, Franziska; Rochegüe, Tony; Oberst, Andrew; Green, Douglas R; Edlich, Frank; Ichim, Gabriel; Tait, Stephen W G

    2016-02-02

    Most apoptotic stimuli require mitochondrial outer membrane permeabilization (MOMP) in order to execute cell death. As such, MOMP is subject to tight control by Bcl-2 family proteins. We have developed a powerful new technique to investigate Bcl-2-mediated regulation of MOMP. This method, called mito-priming, uses co-expression of pro- and anti-apoptotic Bcl-2 proteins to engineer Bcl-2 addiction. On addition of Bcl-2 targeting BH3 mimetics, mito-primed cells undergo apoptosis in a rapid and synchronous manner. Using this method we have comprehensively surveyed the efficacy of BH3 mimetic compounds, identifying potent and specific MCL-1 inhibitors. Furthermore, by combining different pro- and anti-apoptotic Bcl-2 pairings together with CRISPR/Cas9-based genome editing, we find that tBID and PUMA can preferentially kill in a BAK-dependent manner. In summary, mito-priming represents a facile and robust means to trigger mitochondrial apoptosis.

  6. Promising Therapeutic Strategies for Mesenchymal Stem Cell-Based Cardiovascular Regeneration: From Cell Priming to Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Seung Taek Ji

    2017-01-01

    Full Text Available The primary cause of death among chronic diseases worldwide is ischemic cardiovascular diseases, such as stroke and myocardial infarction. Recent evidence indicates that adult stem cell therapies involving cardiovascular regeneration represent promising strategies to treat cardiovascular diseases. Owing to their immunomodulatory properties and vascular repair capabilities, mesenchymal stem cells (MSCs are strong candidate therapeutic stem cells for use in cardiovascular regeneration. However, major limitations must be overcome, including their very low survival rate in ischemic lesion. Various attempts have been made to improve the poor survival and longevity of engrafted MSCs. In order to develop novel therapeutic strategies, it is necessary to first identify stem cell modulators for intracellular signal triggering or niche activation. One promising therapeutic strategy is the priming of therapeutic MSCs with stem cell modulators before transplantation. Another is a tissue engineering-based therapeutic strategy involving a cell scaffold, a cell-protein-scaffold architecture made of biomaterials such as ECM or hydrogel, and cell patch- and 3D printing-based tissue engineering. This review focuses on the current clinical applications of MSCs for treating cardiovascular diseases and highlights several therapeutic strategies for promoting the therapeutic efficacy of MSCs in vitro or in vivo from cell priming to tissue engineering strategies, for use in cardiovascular regeneration.

  7. Alphavirus replicon DNA expressing HIV antigens is an excellent prime for boosting with recombinant modified vaccinia Ankara (MVA or with HIV gp140 protein antigen.

    Directory of Open Access Journals (Sweden)

    Maria L Knudsen

    Full Text Available Vaccination with DNA is an attractive strategy for induction of pathogen-specific T cells and antibodies. Studies in humans have shown that DNA vaccines are safe, but their immunogenicity needs further improvement. As a step towards this goal, we have previously demonstrated that immunogenicity is increased with the use of an alphavirus DNA-launched replicon (DREP vector compared to conventional DNA vaccines. In this study, we investigated the effect of varying the dose and number of administrations of DREP when given as a prime prior to a heterologous boost with poxvirus vector (MVA and/or HIV gp140 protein formulated in glucopyranosyl lipid A (GLA-AF adjuvant. The DREP and MVA vaccine constructs encoded Env and a Gag-Pol-Nef fusion protein from HIV clade C. One to three administrations of 0.2 μg DREP induced lower HIV-specific T cell and IgG responses than the equivalent number of immunizations with 10 μg DREP. However, the two doses were equally efficient as a priming component in a heterologous prime-boost regimen. The magnitude of immune responses depended on the number of priming immunizations rather than the dose. A single low dose of DREP prior to a heterologous boost resulted in greatly increased immune responses compared to MVA or protein antigen alone, demonstrating that a mere 0.2 μg DREP was sufficient for priming immune responses. Following a DREP prime, T cell responses were expanded greatly by an MVA boost, and IgG responses were also expanded when boosted with protein antigen. When MVA and protein were administered simultaneously following multiple DREP primes, responses were slightly compromised compared to administering them sequentially. In conclusion, we have demonstrated efficient priming of HIV-specific T cell and IgG responses with a low dose of DREP, and shown that the priming effect depends on number of primes administered rather than dose.

  8. CD4 T Cell Epitope Specificity and Cytokine Potential Are Preserved as Cells Transition from the Lung Vasculature to Lung Tissue following Influenza Virus Infection.

    Science.gov (United States)

    DiPiazza, Anthony; Laniewski, Nathan; Rattan, Ajitanuj; Topham, David J; Miller, Jim; Sant, Andrea J

    2018-07-01

    Pulmonary CD4 T cells are critical in respiratory virus control, both by delivering direct effector function and through coordinating responses of other immune cells. Recent studies have shown that following influenza virus infection, virus-specific CD4 T cells are partitioned between pulmonary vasculature and lung tissue. However, very little is known about the peptide specificity or functional differences of CD4 T cells within these two compartments. Using a mouse model of influenza virus infection in conjunction with intravascular labeling in vivo , the cell surface phenotype, epitope specificity, and functional potential of the endogenous polyclonal CD4 T cell response was examined by tracking nine independent CD4 T cell epitope specificities. These studies revealed that tissue-localized CD4 cells were globally distinct from vascular cells in expression of markers associated with transendothelial migration, residency, and micropositioning. Despite these differences, there was little evidence for remodeling of the viral epitope specificity or cytokine potential as cells transition from vasculature to the highly inflamed lung tissue. Our studies also distinguished cells in the pulmonary vasculature from peripheral circulating CD4 T cells, providing support for the concept that the pulmonary vasculature does not simply reflect circulating cells that are trapped within the narrow confines of capillary vessels but rather is enriched in transitional cells primed in the draining lymph node that have specialized potential to enter the lung tissue. IMPORTANCE CD4 T cells convey a multitude of functions in immunity to influenza, including those delivered in the lymph node and others conveyed by CD4 T cells that leave the lymph node, enter the blood, and extravasate into the lung tissue. Here, we show that the transition of recently primed CD4 cells detected in the lung vasculature undergo profound changes in expression of markers associated with tissue localization as

  9. Identifying main factors of capacity fading in lithium ion cells using orthogonal design of experiments

    International Nuclear Information System (INIS)

    Su, Laisuo; Zhang, Jianbo; Wang, Caijuan; Zhang, Yakun; Li, Zhe; Song, Yang; Jin, Ting; Ma, Zhao

    2016-01-01

    Highlights: • The effect of seven principal factors on the aging behavior of lithium ion cells is studied. • Orthogonal design of experiments is used to reduce the experiment units. • Capacity fades linearly during the initial 10% capacity fading period. • Statistical methods are used to compare the significance of each principal factor. • A multi-factor statistical model is developed to predict the aging rate of cells. - Abstract: The aging rate under cycling conditions for lithium-ion cells is affected by many factors. Seven principal factors are systematically examined using orthogonal design of experiments, and statistical analysis was used to identify the order of principal factors in terms of strength in causing capacity fade. These seven principal factors are: the charge and discharge currents (i_1, i_2) during the constant current regime, the charge and discharge cut-off voltages (V_1, V_2) and the corresponding durations (t_1, t_2) during the constant voltage regime, and the ambient temperature (T). An orthogonal array with 18 test units was selected for the experiments. The test results show that (1) during the initial 10% capacity fading period, the capacity faded linearly with Wh-throughput for all the test conditions; (2) after the initial period, certain cycling conditions exacerbated aging rates, while the others remain the same. The statistical results show that: (1) except for t_1, the other six principal factors significantly affect the aging rate; (2) the strength of the principal factors was ranked as: i_1 > V_1 > T > t_2 > V_2 > i_2 > t_1. Finally, a multi-factor statistical aging model is developed to predict the aging rate, and the accuracy of the model is validated.

  10. Prime-Boost Vaccination Using Chemokine-Fused gp120 DNA and HIV Envelope Peptides Activates Both Immediate and Long-Term Memory Cellular Responses in Rhesus Macaques

    Directory of Open Access Journals (Sweden)

    Hong Qin

    2010-01-01

    Full Text Available HIV vaccine candidates with improved immunogenicity and induction of mucosal T-cell immunity are needed. A prime-boost strategy using a novel HIV glycoprotein 120 DNA vaccine was employed to immunize rhesus macaques. The DNA vaccine encoded a chimeric gp120 protein in fusion with monocyte chemoattractant protein-3, which was hypothesized to improve the ability of antigen-presenting cells to capture viral antigen through chemokine receptor-mediated endocytosis. DNA vaccination induced virus-reactive T cells in peripheral blood, detectable by T cell proliferation, INFγ ELISPOT and sustained IL-6 production, without humoral responses. With a peptide-cocktail vaccine containing a set of conserved polypeptides of HIV-1 envelope protein, given by nasogastric administration, primed T-cell immunity was significantly boosted. Surprisingly, long-term and peptide-specific mucosal memory T-cell immunity was detected in both vaccinated macaques after one year. Therefore, data from this investigation offer proof-of-principle for potential effectiveness of the prime-boost strategy with a chemokine-fused gp120 DNA and warrant further testing in the nonhuman primate models for developing as a potential HIV vaccine candidate in humans.

  11. Equine dendritic cells generated with horse serum have enhanced functionality in comparison to dendritic cells generated with fetal bovine serum.

    Science.gov (United States)

    Ziegler, Anja; Everett, Helen; Hamza, Eman; Garbani, Mattia; Gerber, Vinzenz; Marti, Eliane; Steinbach, Falko

    2016-11-15

    Dendritic cells are professional antigen-presenting cells that play an essential role in the initiation and modulation of T cell responses. They have been studied widely for their potential clinical applications, but for clinical use to be successful, alternatives to xenogeneic substances like fetal bovine serum (FBS) in cell culture need to be found. Protocols for the generation of dendritic cells ex vivo from monocytes are well established for several species, including horses. Currently, the gold standard protocol for generating dendritic cells from monocytes across various species relies upon a combination of GM-CSF and IL-4 added to cell culture medium which is supplemented with FBS. The aim of this study was to substitute FBS with heterologous horse serum. For this purpose, equine monocyte-derived dendritic cells (eqMoDC) were generated in the presence of horse serum or FBS and analysed for the effect on morphology, phenotype and immunological properties. Changes in the expression of phenotypic markers (CD14, CD86, CD206) were assessed during dendritic cell maturation by flow cytometry. To obtain a more complete picture of the eqMoDC differentiation and assess possible differences between FBS- and horse serum-driven cultures, a transcriptomic microarray analysis was performed. Lastly, immature eqMoDC were primed with a primary antigen (ovalbumin) or a recall antigen (tetanus toxoid) and, after maturation, were co-cultured with freshly isolated autologous CD5 + T lymphocytes to assess their T cell stimulatory capacity. The microarray analysis demonstrated that eqMoDC generated with horse serum were indistinguishable from those generated with FBS. However, eqMoDC incubated with horse serum-supplemented medium exhibited a more characteristic dendritic cell morphology during differentiation from monocytes. A significant increase in cell viability was also observed in eqMoDC cultured with horse serum. Furthermore, eqMoDC generated in the presence of horse serum

  12. Multi-Capacity Load Cell Concept

    Directory of Open Access Journals (Sweden)

    Seif. M. OSMAN

    2014-09-01

    Full Text Available Force measuring systems are usually used to calibrate force generated systems, it is not preferable to use load cells to measure forces less than 10 % of its nominal capacity. Several load cells are required to offer calibration facilities at sites to cover different ranges, this lead to difficulties in handling procedures, through the need for several carrying cases to carry this overweight in addition to the over cost of purchasing several load cells. This article concerns with introducing a new concept for designing a multi-capacity load cell as a new force standard in the field of measuring the force. This multi-capacity load cell will replace a set of load cells and reflects economically on the total cost and on easiness of handling procedures.

  13. Rapid selection of escape mutants by the first CD8 T cell responses in acute HIV-1 infection

    Energy Technology Data Exchange (ETDEWEB)

    Korber, Bette Tina Marie [Los Alamos National Laboratory

    2008-01-01

    The recent failure of a vaccine that primes T cell responses to control primary HIV-1 infection has raised doubts about the role of CD8+ T cells in early HIV-1 infection. We studied four patients who were identified shortly after HIV-1 infection and before seroconversion. In each patient there was very rapid selection of multiple HIV-1 escape mutants in the transmitted virus by CD8 T cells, including examples of complete fixation of non-synonymous substitutions within 2 weeks. Sequencing by single genome amplification suggested that the high rate of virus replication in acute infection gave a selective advantage to virus molecules that contained simultaneous and gained sequential T cell escape mutations. These observations show that whilst early HIV-1 specific CD8 T cells can act against virus, rapid escape means that these T cell responses are unlikely to benefit the patient and may in part explain why current HIV-1 T cell vaccines may not be protective.

  14. Presentation of human T cell leukemia virus type 1 (HTLV-1) Tax protein by dendritic cells: the underlying mechanism of HTLV-1-associated neuroinflammatory disease.

    Science.gov (United States)

    Manuel, Sharrón L; Schell, Todd D; Acheampong, Edward; Rahman, Saifur; Khan, Zafar K; Jain, Pooja

    2009-11-01

    HTLV-1 is the etiologic agent of a debilitating neurologic disorder, HAM/TSP. This disease features a robust immune response including the oligoclonal expansion of CD8+ CTLs specific for the viral oncoprotein Tax. The key pathogenic process resulting in the proliferation of CTLs and the presentation of Tax peptide remains uncharacterized. We have investigated the role of APCs, particularly DCs, in priming of the anti-Tax CTL response under in vitro and in vivo conditions. We investigated two routes (direct vs. indirect) of Tax presentation using live virus, infected primary CD4+/CD25+ T cells, and the CD4+ T cell line (C8166, a HTLV-1-mutated line that only expresses Tax). Our results indicated that DCs are capable of priming a pronounced Tax-specific CTL response in cell cultures consisting of naïve PBLs as well as in HLA-A*0201 transgenic mice (line HHD II). DCs were able to direct the presentation of Tax successfully through infected T cells, live virus, and cell-free Tax. These observations were comparable with those made with a known stimulant of DC maturation, a combination of CD40L and IFN-gamma. Our studies clearly establish a role for this important immune cell component in HTLV-1 immuno/neuropathogenesis and suggest that modulation of DC functions could be an important tool for therapeutic interventions.

  15. Chimeric Antigen Receptor-Engineered T Cells for Immunotherapy of Cancer

    Directory of Open Access Journals (Sweden)

    Marc Cartellieri

    2010-01-01

    Full Text Available CD4+ and CD8+ T lymphocytes are powerful components of adaptive immunity, which essentially contribute to the elimination of tumors. Due to their cytotoxic capacity, T cells emerged as attractive candidates for specific immunotherapy of cancer. A promising approach is the genetic modification of T cells with chimeric antigen receptors (CARs. First generation CARs consist of a binding moiety specifically recognizing a tumor cell surface antigen and a lymphocyte activating signaling chain. The CAR-mediated recognition induces cytokine production and tumor-directed cytotoxicity of T cells. Second and third generation CARs include signal sequences from various costimulatory molecules resulting in enhanced T-cell persistence and sustained antitumor reaction. Clinical trials revealed that the adoptive transfer of T cells engineered with first generation CARs represents a feasible concept for the induction of clinical responses in some tumor patients. However, further improvement is required, which may be achieved by second or third generation CAR-engrafted T cells.

  16. IFNγ signaling endows DCs with the capacity to control type I inflammation during parasitic infection through promoting T-bet+ regulatory T cells.

    Directory of Open Access Journals (Sweden)

    Hyang-Mi Lee

    2015-02-01

    Full Text Available IFNγ signaling drives dendritic cells (DCs to promote type I T cell (Th1 immunity. Here, we show that activation of DCs by IFNγ is equally crucial for the differentiation of a population of T-bet+ regulatory T (Treg cells specialized to inhibit Th1 immune responses. Conditional deletion of IFNγ receptor in DCs but not in Treg cells resulted in a severe defect in this specific Treg cell subset, leading to exacerbated immune pathology during parasitic infections. Mechanistically, IFNγ-unresponsive DCs failed to produce sufficient amount of IL-27, a cytokine required for optimal T-bet induction in Treg cells. Thus, IFNγ signalling endows DCs with the ability to efficiently control a specific type of T cell immunity through promoting a corresponding Treg cell population.

  17. In vitro analysis of cytotoxic T cell recruitment mediated by the DC-derived chemokine CCL17

    OpenAIRE

    sprotocols

    2015-01-01

    Dendritic cell (DC) licensing in cross-priming requires physical interaction of several rare immune cells, i.e. cytotoxic T cells (CTL), and cross-presenting DCs. Here we describe a novel in vitro method of analyzing chemokine effects on complex recruitment events in a multi-cellular system. To study CTL recruitment towards CCL17-producing DCs, we established a co-culture system of murine splenic DCs with polyclonal splenic CTL from donor mice, which enables visualization of cell motility and...

  18. Tumor cell-released TLR4 ligands stimulate Gr-1+CD11b+F4/80+ cells to induce apoptosis of activated T cells.

    Science.gov (United States)

    Liu, Yan-Yan; Sun, Ling-Cong; Wei, Jing-Jing; Li, Dong; Yuan, Ye; Yan, Bin; Liang, Zhi-Hui; Zhu, Hui-Fen; Xu, Yong; Li, Bo; Song, Chuan-Wang; Liao, Sheng-Jun; Lei, Zhang; Zhang, Gui-Mei; Feng, Zuo-Hua

    2010-09-01

    Gr-1(+)CD11b(+)F4/80(+) cells play important roles in tumor development and have a negative effect on tumor immunotherapy. So far, the mechanisms underlying the regulation of their immunosuppressive phenotype by classical and alternative macrophage activation stimuli are not well elucidated. In this study, we found that molecules from necrotic tumor cells (NTC-Ms) stimulated Gr-1(+)CD11b(+)F4/80(+) cells to induce apoptosis of activated T cells but not nonstimulated T cells. The apoptosis-inducing capacity was determined by higher expression levels of arginase I and IL-10 relative to those of NO synthase 2 and IL-12 in Gr-1(+)CD11b(+)F4/80(+) cells, which were induced by NTC-Ms through TLR4 signaling. The apoptosis-inducing capacity of NTC-Ms-stimulated Gr-1(+)CD11b(+)F4/80(+) cells could be enhanced by IL-10. IFN-gamma may reduce the apoptosis-inducing capacity of Gr-1(+)CD11b(+)F4/80(+) cells only if their response to IFN-gamma was not attenuated. However, the potential of Gr-1(+)CD11b(+)F4/80(+) cells to express IL-12 in response to IFN-gamma could be attenuated by tumor, partially due to the existence of active STAT3 in Gr-1(+)CD11b(+)F4/80(+) cells and NTC-Ms from tumor. In this situation, IFN-gamma could not effectively reduce the apoptosis-inducing capacity of Gr-1(+)CD11b(+)F4/80(+) cells. Tumor immunotherapy with 4-1BBL/soluble programmed death-1 may significantly reduce, but not abolish the apoptosis-inducing capacity of Gr-1(+)CD11b(+)F4/80(+) cells in local microenvironment. Blockade of TLR4 signaling could further reduce the apoptosis-inducing capacity of Gr-1(+)CD11b(+)F4/80(+) cells and enhance the suppressive effect of 4-1BBL/soluble form of programmed death-1 on tumor growth. These findings indicate the relationship of distinct signaling pathways with apoptosis-inducing capacity of Gr-1(+)CD11b(+)F4/80(+) cells and emphasize the importance of blocking TLR4 signaling to prevent the induction of T cell apoptosis by Gr-1(+)CD11b(+)F4/80(+) cells.

  19. T cell receptor-engineered T cells to treat solid tumors: T cell processing toward optimal T cell fitness

    NARCIS (Netherlands)

    C.H.J. Lamers (Cor); S. van Steenbergen-Langeveld (Sabine); M. van Brakel (Mandy); C.M. Groot-van Ruijven (Corrien); P.M.M.L. van Elzakker (Pascal); B.A. van Krimpen (Brigitte); S. Sleijfer (Stefan); J.E.M.A. Debets (Reno)

    2014-01-01

    textabstractTherapy with autologous T cells that have been gene-engineered to express chimeric antigen receptors (CAR) or T cell receptors (TCR) provides a feasible and broadly applicable treatment for cancer patients. In a clinical study in advanced renal cell carcinoma (RCC) patients with CAR T

  20. T Cell Responses: Naive to Memory and Everything in Between

    Science.gov (United States)

    Pennock, Nathan D.; White, Jason T.; Cross, Eric W.; Cheney, Elizabeth E.; Tamburini, Beth A.; Kedl, Ross M.

    2013-01-01

    The authors describe the actions that take place in T cells because of their amazing capacity to proliferate and adopt functional roles aimed at clearing a host of an infectious agent. There is a drastic decline in the T cell population once the primary response is over and the infection is terminated. What remains afterward is a population of T…

  1. Xyloside-primed Chondroitin Sulfate/Dermatan Sulfate from Breast Carcinoma Cells with a Defined Disaccharide Composition Has Cytotoxic Effects in Vitro.

    Science.gov (United States)

    Persson, Andrea; Tykesson, Emil; Westergren-Thorsson, Gunilla; Malmström, Anders; Ellervik, Ulf; Mani, Katrin

    2016-07-08

    We previously reported that the xyloside 2-(6-hydroxynaphthyl) β-d-xylopyranoside (XylNapOH), in contrast to 2-naphthyl β-d-xylopyranoside (XylNap), specifically reduces tumor growth both in vitro and in vivo Although there are indications that this could be mediated by the xyloside-primed glycosaminoglycans (GAGs) and that these differ in composition depending on xyloside and cell type, detailed knowledge regarding a structure-function relationship is lacking. In this study we isolated XylNapOH- and XylNap-primed GAGs from a breast carcinoma cell line, HCC70, and a breast fibroblast cell line, CCD-1095Sk, and demonstrated that both XylNapOH- and XylNap-primed chondroitin sulfate/dermatan sulfate GAGs derived from HCC70 cells had a cytotoxic effect on HCC70 cells and CCD-1095Sk cells. The cytotoxic effect appeared to be mediated by induction of apoptosis and was inhibited in a concentration-dependent manner by the XylNap-primed heparan sulfate GAGs. In contrast, neither the chondroitin sulfate/dermatan sulfate nor the heparan sulfate derived from CCD-1095Sk cells primed on XylNapOH or XylNap had any effect on the growth of HCC70 cells or CCD-105Sk cells. These observations were related to the disaccharide composition of the XylNapOH- and XylNap-primed GAGs, which differed between the two cell lines but was similar when the GAGs were derived from the same cell line. To our knowledge this is the first report on cytotoxic effects mediated by chondroitin sulfate/dermatan sulfate. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Suppressive effects of primed eosinophils on single epicutaneous sensitization through regulation of dermal dendritic cells.

    Science.gov (United States)

    Lin, Jing-Yi; Ta, Yng-Cun; Liu, I-Lin; Chen, Hsi-Wen; Wang, Li-Fang

    2016-07-01

    Eosinophils are multifunctional innate immune cells involved in many aspects of innate and adaptive immunity. Epicutaneous sensitization with protein allergen is an important sensitization route for atopic dermatitis. In this study, using a murine single protein-patch model, we show that eosinophils of a primed status accumulate in draining lymph nodes following single epicutaneous sensitization. Further, depletion of eosinophils results in enhancement of the induced Th1/Th2 immune responses, whereas IL-5-induced hypereosinophilia suppresses these responses. Mechanistically, primed eosinophils cause a reduction in the numbers and activation status of dermal dendritic cells in draining lymph nodes. Collectively, these results demonstrate that primed eosinophils exert suppressive effects on single epicutaneous sensitization through regulation of dermal dendritic cells. Thus, these findings highlight the critical roles of eosinophils in the pathogenesis of atopic dermatitis with important clinical implications for the prevention of allergen sensitization. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Secretory Vesicle Priming by CAPS Is Independent of Its SNARE-Binding MUN Domain

    Directory of Open Access Journals (Sweden)

    Cuc Quynh Nguyen Truong

    2014-11-01

    Full Text Available Priming of secretory vesicles is a prerequisite for their Ca2+-dependent fusion with the plasma membrane. The key vesicle priming proteins, Munc13s and CAPSs, are thought to mediate vesicle priming by regulating the conformation of the t-SNARE syntaxin, thereby facilitating SNARE complex assembly. Munc13s execute their priming function through their MUN domain. Given that the MUN domain of Ca2+-dependent activator protein for secretion (CAPS also binds syntaxin, it was assumed that CAPSs prime vesicles through the same mechanism as Munc13s. We studied naturally occurring splice variants of CAPS2 in CAPS1/CAPS2-deficient cells and found that CAPS2 primes vesicles independently of its MUN domain. Instead, the pleckstrin homology domain of CAPS2 seemingly is essential for its priming function. Our findings indicate a priming mode for secretory vesicles. This process apparently requires membrane phospholipids, does not involve the binding or direct conformational regulation of syntaxin by MUN domains of CAPSs, and is therefore not redundant with Munc13 action.

  4. Different capacity of in vitro generated myeloid dendritic cells of newborns of healthy and allergic mothers to respond to probiotic strain E. coli O83:K24:H31.

    Science.gov (United States)

    Súkeníková, Lenka; Černý, Viktor; Novotná, Olga; Petrásková, Petra; Boráková, Kristýna; Kolářová, Libuše; Prokešová, Ludmila; Hrdý, Jiří

    2017-09-01

    Allergic diseases belong to one of the most common diseases with steadily increasing incidence even among young children. There is an urgent need to identify a prognostic marker pointing to increased risk of allergy development enabling early preventive measures introduction. It has been shown that administration of selected probiotic strains or mixtures could prevent allergy development. In our study, we have tested the capacity of probiotic strain Escherichia coli O83:K24:H31 (E. coli O83) to promote dendritic cell (DC) maturation and polarisation of immune responses. Increased presence of activation marker CD83 was observed on DC stimulated by E. coli O83 and DC of newborns of allergic mothers have significantly more increased cell surface presence of CD83 in comparison to children of healthy mothers. Increased gene expression and secretion of IL-10 was detected in DC stimulated with E. coli O83 being higher in DC of newborns of healthy mothers in comparison to allergic ones. Generally, increased presence of intracellular cytokines (IL-4, IL-13, IFN-gamma, IL-17A, IL-22, IL-10) was detected in CD4+ T cells cocultured with DC of children of allergic mothers in comparison to healthy ones. E. coli O83 primed DC significantly increased IL-10 and IL-17A in CD4 T cells of newborns of healthy mothers in comparison to the levels detected in CD4 T cells cocultured with control non-stimulated DC. We can conclude E. coli O83 induces dendritic cell maturation and IL-10 production in DC. Newborns of allergic mothers have generally increased reactivity of both DC and CD4 T cells which together with decreased capacity of DC of newborns of allergic mothers to produce IL-10 could support inappropriate immune responses development after allergen encounter. Copyright © 2017 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.

  5. Herpes simplex virus (HSV)-specific proliferative and cytotoxic T-cell responses in humans immunized with an HSF type 2 glycoprotein subunit vaccine

    Energy Technology Data Exchange (ETDEWEB)

    Zarling, J.M.; Moran, P.A.; Brewer, L.; Ashley, R.; Corey, L.

    1988-12-01

    Studies were undertaken to determine whether immunization of humans with a herpes simplex virus type 2 (HSV-2) glycoprotein-subunit vaccine would result in the priming of both HSV-specific proliferating cells and cytotoxic T cells. Peripheral blood lymphocytes (PBL) from all eight vaccinees studied responded by proliferating after stimulation with HSV-2, HSV-1, and glycoprotein gB-1. The PBL of five of these eight vaccinees proliferated following stimulation with gD-2, whereas stimulation with Gd-1 resulted in relatively low or no proliferative responses. T-cell clones were generated from HSV-2-stimulated PBL of three vaccinees who demonstrated strong proliferative responses to HSV-1 and HSV-2. Of 12 clones studied in lymphoproliferative assays, 9 were found to be cross-reactive for HSV-1 and HSV-2. Of the approximately 90 T-cell clones isolated, 14 demonstrated HSV-specific cytotoxic activity. Radioimmunoprecipitation-polyacrylamide gel electrophoresis analyses confirmed that the vaccinees had antibodies only to HSV glycoproteins, not to proteins which are absent in the subunit vaccine, indicating that these vaccinees had not become infected with HSV. Immunization of humans with an HSV-2 glycoprotein-subunit vaccine thus results in the priming of T cells that proliferate in response to stimulation with HSV and its glycoproteins and T cells that have cytotoxic activity against HSV-infected cells. Such HSV-specific memory T cells were detected as late as 2 years following the last boost with the subunit vaccine.

  6. HIV-1 Vif's Capacity To Manipulate the Cell Cycle Is Species Specific.

    Science.gov (United States)

    Evans, Edward L; Becker, Jordan T; Fricke, Stephanie L; Patel, Kishan; Sherer, Nathan M

    2018-04-01

    Cells derived from mice and other rodents exhibit profound blocks to HIV-1 virion production, reflecting species-specific incompatibilities between viral Tat and Rev proteins and essential host factors cyclin T1 (CCNT1) and exportin-1 (XPO1, also known as CRM1), respectively. To determine if mouse cell blocks other than CCNT1 and XPO1 affect HIV's postintegration stages, we studied HIV-1 NL4-3 gene expression in mouse NIH 3T3 cells modified to constitutively express HIV-1-compatible versions of CCNT1 and XPO1 (3T3.CX cells). 3T3.CX cells supported both Rev-independent and Rev-dependent viral gene expression and produced relatively robust levels of virus particles, confirming that CCNT1 and XPO1 represent the predominant blocks to these stages. Unexpectedly, however, 3T3.CX cells were remarkably resistant to virus-induced cytopathic effects observed in human cell lines, which we mapped to the viral protein Vif and its apparent species-specific capacity to induce G 2 /M cell cycle arrest. Vif was able to mediate rapid degradation of human APOBEC3G and the PPP2R5D regulatory B56 subunit of the PP2A phosphatase holoenzyme in mouse cells, thus demonstrating that Vif NL4-3 's modulation of the cell cycle can be functionally uncoupled from some of its other defined roles in CUL5-dependent protein degradation. Vif was also unable to induce G 2 /M cell cycle arrest in other nonhuman cell types, including cells derived from nonhuman primates, leading us to propose that one or more human-specific cofactors underpin Vif's ability to modulate the cell cycle. IMPORTANCE Cells derived from mice and other rodents exhibit profound blocks to HIV-1 replication, thus hindering the development of a low-cost small-animal model for studying HIV/AIDS. Here, we engineered otherwise-nonpermissive mouse cells to express HIV-1-compatible versions of two species-specific host dependency factors, cyclin T1 (CCNT1) and exportin-1 (XPO1) (3T3.CX cells). We show that 3T3.CX cells rescue HIV-1

  7. T cell reactivity with allergoids: influence of the type of APC.

    Science.gov (United States)

    Kahlert, H; Grage-Griebenow, E; Stüwe, H T; Cromwell, O; Fiebig, H

    2000-08-15

    The use of allergoids for allergen-specific immunotherapy has been established for many years. The characteristic features of these chemically modified allergens are their strongly reduced IgE binding activity compared with the native form and the retained immunogenicity. T cell reactivity of chemically modified allergens is documented in animals, but in humans indirect evidence of reactivity has been concluded from the induction of allergen-specific IgG during immunotherapy. Direct evidence of T cell reactivity was obtained recently using isolated human T cells. To obtain further insight into the mechanism of action of allergoids, we compared the Ag-presenting capacity of different APC types, including DC and macrophages, generated from CD14+ precursor cells from the blood of grass pollen allergic subjects, autologous PBMC, and B cells. These APC were used in experiments together with Phl p 5-specific T cell clones under stimulation with grass pollen allergen extract, rPhl p 5b, and the respective allergoids. Using DC and macrophages, allergoids exhibited a pronounced and reproducible T cell-stimulating capacity. Responses were superior to those with PBMC, and isolated B cells failed to present allergoids. Considerable IL-12 production was observed only when using the DC for Ag presentation of both allergens and allergoids. The amount of IL-10 in supernatants was dependent on the phenotype of the respective T cell clone. High IL-10 production was associated with suppressed IL-12 production from the DC in most cases. In conclusion, the reactivity of Th cells with allergoids is dependent on the type of the APC.

  8. Cytokine-primed bone marrow stem cells vs. peripheral blood stem cells for autologous transplantation: a randomized comparison of GM-CSF vs. G-CSF.

    Science.gov (United States)

    Weisdorf, D; Miller, J; Verfaillie, C; Burns, L; Wagner, J; Blazar, B; Davies, S; Miller, W; Hannan, P; Steinbuch, M; Ramsay, N; McGlave, P

    1997-10-01

    Autologous transplantation for non-Hodgkins lymphoma and Hodgkin's disease is widely used as standard therapy for those with high-risk or relapsed tumor. Peripheral blood stem cell (PBSC) collections have nearly completely replaced bone marrow stem cell (BMSC) harvests because of the perceived advantages of more rapid engraftment, less tumor contamination in the inoculum, and better survival after therapy. The advantage of PBSC, however, may derive from the hematopoietic stimulating cytokines used for PBSC mobilization. Therefore, we tested a randomized comparison of GM-CSF vs. G-CSF used to prime either BMSC or PBSC before collection for use in autologous transplantation. Sixty-two patients receiving transplants (31 PBSC; 31 BMSC) for non-Hodgkin's lymphoma (n = 51) or Hodgkin's disease (n = 11) were treated. All patients received 6 days of randomly assigned cytokine. Those with cellular marrow in morphologic remission underwent BMSC harvest, while those with hypocellular marrow or microscopic marrow tumor involvement had PBSC collected. Neutrophil recovery was similarly rapid in all groups (median 14 days; range 10-23 days), though two patients had delayed neutrophil recovery using GM-CSF primed PBSC (p = 0.01). Red cell and platelet recovery were significantly quicker after BMSC mobilized with GM-CSF or PBSC mobilized with G-CSF. This speedier hematologic recovery resulted in earlier hospital discharge as well. However, in multivariate analysis, neither the stem cell source nor randomly assigned G-CSF vs. GM-CSF was independently associated with earlier multilineage hematologic recovery or shorter hospital stay. Relapse-free survival was not independently affected by either the assigned stem cell source or the randomly assigned priming cytokine, though malignant relapse was more frequent in those assigned to PBSC (RR of relapse 3.15, p = 0.03). These data document that BMSC, when collected following cytokine priming, can yield a similarly rapid hematologic

  9. Reversal of tolerance induced by transplantation of skin expressing the immunodominant T cell epitope of rat type II collagen entitles development of collagen-induced arthritis but not graft rejection

    DEFF Research Database (Denmark)

    Bäcklund, Johan; Treschow, Alexandra; Firan, Mihail

    2002-01-01

    rejection or instead to tolerance and arthritis protection. Interestingly, TSC grafts were accepted and not even immunization of recipient mice with CII in adjuvant induced graft rejection. Instead, TSC skin recipients displayed a reduced T and B cell response to CII and were also protected from arthritis...... collagen (CI), e.g. in skin, are tolerized against rat CII and resistant to CIA. In this study we transplanted skin from TSC transgenic mice onto non-transgenic CIA-susceptible littermates to investigate whether introduction of this epitope to a naïve immune system would lead to T cell priming and graft....... However, additional priming could break arthritis protection and was accompanied by an increased T cell response to the grafted epitope. Strikingly, despite the regained T cell response, development of arthritis was not accompanied by graft rejection, showing that these immune-mediated inflammatory...

  10. In Vitro T-Cell Generation From Adult, Embryonic, and Induced Pluripotent Stem Cells: Many Roads to One Destination.

    Science.gov (United States)

    Smith, Michelle J; Webber, Beau R; Mohtashami, Mahmood; Stefanski, Heather E; Zúñiga-Pflücker, Juan Carlos; Blazar, Bruce R

    2015-11-01

    T lymphocytes are critical mediators of the adaptive immune system and have the capacity to serve as therapeutic agents in the areas of transplant and cancer immunotherapy. While T cells can be isolated and expanded from patients, T cells derived in vitro from both hematopoietic stem/progenitor cells (HSPCs) and human pluripotent stem cells (hPSCs) offer great potential advantages in generating a self-renewing source of T cells that can be readily genetically modified. T-cell differentiation in vivo is a complex process requiring tightly regulated signals; providing the correct signals in vitro to induce T-cell lineage commitment followed by their development into mature, functional, single positive T cells, is similarly complex. In this review, we discuss current methods for the in vitro derivation of T cells from murine and human HSPCs and hPSCs that use feeder-cell and feeder-cell-free systems. Furthermore, we explore their potential for adoption for use in T-cell-based therapies. © 2015 AlphaMed Press.

  11. Priming healthy eating. You can't prime all the people all of the time.

    Science.gov (United States)

    Forwood, Suzanna E; Ahern, Amy L; Hollands, Gareth J; Ng, Yin-Lam; Marteau, Theresa M

    2015-06-01

    In the context of a food purchasing environment filled with advertising and promotions, and an increased desire from policy makers to guide individuals toward choosing healthier foods, this study tests whether priming methods that use healthy food adverts to increase preference for healthier food generalize to a representative population. In two studies (Study 1 n = 143; Study 2 n = 764), participants were randomly allocated to a prime condition, where they viewed fruit and vegetable advertisements, or a control condition, with no advertisements. A subsequent forced choice task assessed preference between fruits and other sweet snacks. Additional measures included current hunger and thirst, dietary restraint, age, gender, education and self-reported weight and height. In Study 1, hunger reduced preferences for fruits (OR (95% CI) = 0.38 (0.26-0.56), p choice was unaffected by hunger or the prime. This study provides preliminary evidence that the effects of adverts on healthy eating choices depend on key individual traits (education level) and states (hunger), do not generalize to a broader population and have the potential to increase health inequalities arising from food choice. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Priming healthy eating. You can't prime all the people all of the time☆

    Science.gov (United States)

    Forwood, Suzanna E.; Ahern, Amy L.; Hollands, Gareth J.; Ng, Yin-Lam; Marteau, Theresa M.

    2015-01-01

    Objective In the context of a food purchasing environment filled with advertising and promotions, and an increased desire from policy makers to guide individuals toward choosing healthier foods, this study tests whether priming methods that use healthy food adverts to increase preference for healthier food generalize to a representative population. MethodsIn two studies (Study 1 n = 143; Study 2 n = 764), participants were randomly allocated to a prime condition, where they viewed fruit and vegetable advertisements, or a control condition, with no advertisements. A subsequent forced choice task assessed preference between fruits and other sweet snacks. Additional measures included current hunger and thirst, dietary restraint, age, gender, education and self-reported weight and height. ResultsIn Study 1, hunger reduced preferences for fruits (OR (95% CI) = 0.38 (0.26–0.56), p choice was unaffected by hunger or the prime. ConclusionThis study provides preliminary evidence that the effects of adverts on healthy eating choices depend on key individual traits (education level) and states (hunger), do not generalize to a broader population and have the potential to increase health inequalities arising from food choice. PMID:25636234

  13. Unique and Common Features of Innate-Like Human Vδ2+ γδT Cells and Mucosal-Associated Invariant T Cells

    Directory of Open Access Journals (Sweden)

    Nicholas M. Provine

    2018-04-01

    Full Text Available Mucosal-associated invariant T (MAIT cells are innate-like T cells abundant in humans that can be activated in a TCR-independent manner by inflammatory and antiviral cytokines. In humans, the capacity for TCR-independent activation is functionally linked to a transcriptional program that can be identified by the expression of the C-type lectin receptor, CD161. In addition to MAIT cells, it has been demonstrated that a subset of γδT cells expresses CD161 and can be activated by TCR-independent cytokine stimulation. In this study, we sought to clarify the nature of cytokine-responsive human γδT cells. We could link CD161 expression on Vδ2+ versus Vδ1+ γδT cells to the observation that Vδ2+ γδT cells, but not Vδ1+ γδT cells, robustly produced IFN-γ upon stimulation with a variety of cytokine combinations. Interestingly, both CD161+ and CD161− Vδ2+ γδT cells responded to these stimuli, with increased functionality within the CD161+ subset. This innate-like responsiveness corresponded to high expression of PLZF and IL-18Rα, analogous to MAIT cells. Vδ2+ γδT cells in human duodenum and liver maintained a CD161+ IL-18Rα+ phenotype and produced IFN-γ in response to IL-12 and IL-18 stimulation. In contrast to MAIT cells, we could not detect IL-17A production but observed higher steady-state expression of Granzyme B by Vδ2+ γδT cells. Finally, we investigated the frequency and functionality of γδT cells in the context of chronic hepatitis C virus infection, as MAIT cells are reduced in frequency in this disease. By contrast, Vδ2+ γδT cells were maintained in frequency and displayed unimpaired IFN-γ production in response to cytokine stimulation. In sum, human Vδ2+ γδT cells are a functionally distinct population of cytokine-responsive innate-like T cells that is abundant in blood and tissues with similarities to human MAIT cells.

  14. Tumor Immunology meets…Immunology: Modified cancer cells as professional APC for priming naïve tumor-specific CD4+ T cells.

    Science.gov (United States)

    Bou Nasser Eddine, Farah; Ramia, Elise; Tosi, Giovanna; Forlani, Greta; Accolla, Roberto S

    2017-01-01

    Although recent therapeutic approaches have revitalized the enthusiasm of the immunological way to combat cancer, still the comprehension of immunity against tumors is largely incomplete. Due to their specific function, CD8+ T cells with cytolytic activity (CTL) have attracted the attention of most investigators because CTL are considered the main effectors against tumor cells. Nevertheless, CTL activity and persistence is largely dependent on the action of CD4+ T helper cells (TH). Thus establishment of tumor-specific TH cell response is key to the optimal response against cancer. Here we describe emerging new strategies to increase the TH cell recognition of tumor antigens. In particular, we review recent data indicating that tumor cells themselves can act as surrogate antigen presenting cells for triggering TH response and how these findings can help in constructing immunotherapeutic protocols for anti-cancer vaccine development.

  15. Roles of T Cells in the Pathogenesis of Autoimmune Diseases

    Directory of Open Access Journals (Sweden)

    Dinglei Su

    2013-01-01

    Full Text Available γδ T cells are a minor population of T cells that express the TCR γδ chains, mainly distributed in the mucosal and epithelial tissue and accounting for less than 5% of the total T cells in the peripheral blood. By bridging innate and adaptive immunity, γδ T cells play important roles in the anti-infection, antitumor, and autoimmune responses. Previous research on γδ T cells was primarily concentrated on infectious diseases and tumors, whereas their functions in autoimmune diseases attracted much attention. In this paper, we summarized the various functions of γδ T cells in two prototypical autoimmune connective tissue diseases, that is, SLE and RA, elaborating on their antigen-presenting capacity, secretion of proinflammatory cytokines, immunomodulatory effects, and auxiliary function for B cells, which contribute to overproduction of proinflammatory cytokines and pathogenic autoantibodies, ultimately leading to the onset of these autoimmune diseases. Elucidation of the roles of γδ T cells in autoimmune diseases is not only conducive to in-depth understanding of the pathogenesis of these diseases, but also beneficial in providing theoretical support for the development of γδ T-cell-targeted therapy.

  16. The combined effects of neurostimulation and priming on creative thinking. A preliminary tDCS study on dorsolateral prefrontal cortex

    Science.gov (United States)

    Colombo, Barbara; Bartesaghi, Noemi; Simonelli, Luisa; Antonietti, Alessandro

    2015-01-01

    The role of prefrontal cortex (PFC) in influencing creative thinking has been investigated by many researchers who, while succeeding in proving an effective involvement of PFC, reported suggestive but sometimes conflicting results. In order to better understand the relationships between creative thinking and brain activation in a more specific area of the PFC, we explored the role of dorsolateral PFC (DLPFC). We devised an experimental protocol using transcranial direct-current stimulation (tDCS). The study was based on a 3 (kind of stimulation: anodal vs. cathodal vs. sham) × 2 (priming: divergent vs. convergent) design. Forty-five healthy adults were randomly assigned to one stimulation condition. Participants’ creativity skills were assessed using the Product Improvement subtest from the Torrance Tests of Creative Thinking (TTCT). After 20 min of tDCS stimulation, participants were presented with visual images of common objects. Half of the participants were instructed to visualize themselves using the object in an unusual way (divergent priming), whereas the other half were asked to visualize themselves while using the object in a common way (convergent priming). Priming was aimed at inducing participants to adopt different attitudes toward the creative task. Afterwards, participants were asked to describe all of the possible uses of the objects that were presented. Participants’ physiological activation was recorded using a biofeedback equipment. Results showed a significant effect of anodal stimulation that enhanced creative performance, but only after divergent priming. Participants showed lower skin temperature values after cathodal stimulation, a finding which is coherent with studies reporting that, when a task is not creative or creative thinking is not prompted, people show lower levels of arousal. Differences in individual levels of creativity as assessed by the Product Improvement test were not influential. The involvement of DLPFC in creativity

  17. The combined effects of neurostimulation and priming on creative thinking. A preliminary tDCS study on dorsolateral prefrontal cortex.

    Science.gov (United States)

    Colombo, Barbara; Bartesaghi, Noemi; Simonelli, Luisa; Antonietti, Alessandro

    2015-01-01

    The role of prefrontal cortex (PFC) in influencing creative thinking has been investigated by many researchers who, while succeeding in proving an effective involvement of PFC, reported suggestive but sometimes conflicting results. In order to better understand the relationships between creative thinking and brain activation in a more specific area of the PFC, we explored the role of dorsolateral PFC (DLPFC). We devised an experimental protocol using transcranial direct-current stimulation (tDCS). The study was based on a 3 (kind of stimulation: anodal vs. cathodal vs. sham) × 2 (priming: divergent vs. convergent) design. Forty-five healthy adults were randomly assigned to one stimulation condition. Participants' creativity skills were assessed using the Product Improvement subtest from the Torrance Tests of Creative Thinking (TTCT). After 20 min of tDCS stimulation, participants were presented with visual images of common objects. Half of the participants were instructed to visualize themselves using the object in an unusual way (divergent priming), whereas the other half were asked to visualize themselves while using the object in a common way (convergent priming). Priming was aimed at inducing participants to adopt different attitudes toward the creative task. Afterwards, participants were asked to describe all of the possible uses of the objects that were presented. Participants' physiological activation was recorded using a biofeedback equipment. Results showed a significant effect of anodal stimulation that enhanced creative performance, but only after divergent priming. Participants showed lower skin temperature values after cathodal stimulation, a finding which is coherent with studies reporting that, when a task is not creative or creative thinking is not prompted, people show lower levels of arousal. Differences in individual levels of creativity as assessed by the Product Improvement test were not influential. The involvement of DLPFC in creativity has

  18. Qualitative and quantitative analysis of adenovirus type 5 vector-induced memory CD8 T cells

    DEFF Research Database (Denmark)

    Steffensen, Maria Abildgaard; Holst, Peter Johannes; Steengaard, Sanne Skovvang

    2013-01-01

    infection with lymphocytic choriomeningitis virus. We found that localized immunization with intermediate doses of Ad vector induce a moderate number of functional CD8 T cells, which qualitatively match those found in LCMV-infected mice. Numbers of these cells may be efficiently increased by additional...... adenoviral boosting and, importantly, the generated secondary memory cells cannot be qualitatively differentiated from those induced by primary infection with replicating virus. Quantitatively, DNA priming prior to Ad-vaccination will lead to even higher numbers of memory cells. In this case, the vaccination...

  19. Influence of adenovirus and MVA vaccines on the breadth and hierarchy of T cell responses.

    Science.gov (United States)

    Rollier, Christine S; Hill, Adrian V S; Reyes-Sandoval, Arturo

    2016-08-31

    Viral-vectored vaccines are in clinical development for several infectious diseases where T-cell responses can mediate protection, and responses to sub-dominant epitopes is needed. Little is known about the influence of MVA or adenoviral vectors on the hierarchy of the dominant and sub-dominant T-cell epitopes. We investigated this aspect in mice using a malaria immunogen. Our results demonstrate that the T-cell hierarchy is influenced by the timing of analysis, rather than by the vector after a single immunization, with hierarchy changing over time. Repeated homologous immunization reduced the breadth of responses, while heterologous prime-boost induced the strongest response to the dominant epitope, albeit with only modest response to the sub-dominant epitopes. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Modulation of immune response by bacterial lipopolysaccharide (LPS): cellular basis of stimulatory and inhibitory effects of LPS on the in vitro IGM antibody response to a T-dependent antigen

    International Nuclear Information System (INIS)

    Uchiyama, T.; Jacobs, D.M.

    1978-01-01

    The role of thymus-derived lymphocytes (T cells) in LPS modulation of T cell-development antibody responses has been investigated. We have assessed the effect of LPS on the primary anti-TNP response to TNP-SRBC of cultures of whole spleen cells or T cell-depleted spleen cells that were supplemented with various subpopulations of carrier-primed (SRBC) spleen cells. The TNP-PFC response was enhanced in the presence of irradiated SRBC-primed spleen cells by addition of 0.16 to 20 μg/ml LPS, but inhibition was observed when irradiation of primed cells was omitted. Enhancement but no inhibition occurred when added primed cells were first passed through a nylon wool column. LPS-mediated enhancement was dependent on a T cell in the primed population. These results suggest that LPS modulation of antibody synthesis is dependent on two populations of antigen-specific cells that have opposing effects on B cell responses to a T-dependent antigen: a helper cell that is irradiation resistant, nonadherent to nylon wool, and sensitive to anti-T cell serum, and a suppressor cell that is irradiation sensitive and adherent to nylon wool

  1. MicroRNA 10a marks regulatory T cells

    DEFF Research Database (Denmark)

    Jeker, Lukas T; Zhou, Xuyu; Gershberg, Kseniya

    2012-01-01

    MicroRNAs (miRNAs) are crucial for regulatory T cell (Treg) stability and function. We report that microRNA-10a (miR-10a) is expressed in Tregs but not in other T cells including individual thymocyte subsets. Expression profiling in inbred mouse strains demonstrated that non-obese diabetic (NOD......) mice with a genetic susceptibility for autoimmune diabetes have lower Treg-specific miR-10a expression than C57BL/6J autoimmune resistant mice. Inhibition of miR-10a expression in vitro leads to reduced FoxP3 expression levels and miR-10a expression is lower in unstable "exFoxP3" T cells. Unstable...... and phenotype of natural Treg nor the capacity of conventional T cells to induce FoxP3 in response to TGFβ, RA, or a combination of the two. Thus, miR-10a is selectively expressed in Treg but inhibition by antagomiRs or genetic ablation resulted in discordant effects on FoxP3....

  2. Biogenesis and function of T cell-derived exosomes

    Directory of Open Access Journals (Sweden)

    Miguel Angel Alonso

    2016-08-01

    Full Text Available Exosomes are a particular type of extracellular vesicle, characterized by their endosomal origin as intraluminal vesicles present in large endosomes with a multivesicular structure. After these endosomes fuse with the plasma membrane, exosomes are secreted into the extracellular space. The ability of exosomes to carry and selectively deliver bioactive molecules (e.g., lipids, proteins and nucleic acids confers on them the capacity to modulate the activity of receptor cells, even if these cells are located in distant tissues or organs. Since exosomal cargo depends on cell type, a detailed understanding of the mechanisms that regulate the biochemical composition of exosomes is fundamental to a comprehensive view of exosome function. Here, we review the latest advances concerning exosome function and biogenesis in T cells, with particular focus on the mechanism of protein sorting at multivesicular endosomes. Exosomes secreted by specific T-cell subsets can modulate the activity of immune cells, including other T-cell subsets. Ceramide, tetraspanins and MAL have been revealed to be important in exosome biogenesis by T cells. These molecules, therefore, constitute potential molecular targets for artificially modulating exosome production and, hence, the immune response for therapeutic purposes.

  3. Memory T Cells Generated by Prior Exposure to Influenza Cross React with the Novel H7N9 Influenza Virus and Confer Protective Heterosubtypic Immunity

    Science.gov (United States)

    McMaster, Sean R.; Gabbard, Jon D.; Koutsonanos, Dimitris G.; Compans, Richard W.; Tripp, Ralph A.; Tompkins, S. Mark; Kohlmeier, Jacob E.

    2015-01-01

    Influenza virus is a source of significant health and economic burden from yearly epidemics and sporadic pandemics. Given the potential for the emerging H7N9 influenza virus to cause severe respiratory infections and the lack of exposure to H7 and N9 influenza viruses in the human population, we aimed to quantify the H7N9 cross-reactive memory T cell reservoir in humans and mice previously exposed to common circulating influenza viruses. We identified significant cross-reactive T cell populations in humans and mice; we also found that cross-reactive memory T cells afforded heterosubtypic protection by reducing morbidity and mortality upon lethal H7N9 challenge. In context with our observation that PR8-primed mice have limited humoral cross-reactivity with H7N9, our data suggest protection from H7N9 challenge is indeed mediated by cross-reactive T cell populations established upon previous priming with another influenza virus. Thus, pre-existing cross-reactive memory T cells may limit disease severity in the event of an H7N9 influenza virus pandemic. PMID:25671696

  4. Memory T cells generated by prior exposure to influenza cross react with the novel H7N9 influenza virus and confer protective heterosubtypic immunity.

    Directory of Open Access Journals (Sweden)

    Sean R McMaster

    Full Text Available Influenza virus is a source of significant health and economic burden from yearly epidemics and sporadic pandemics. Given the potential for the emerging H7N9 influenza virus to cause severe respiratory infections and the lack of exposure to H7 and N9 influenza viruses in the human population, we aimed to quantify the H7N9 cross-reactive memory T cell reservoir in humans and mice previously exposed to common circulating influenza viruses. We identified significant cross-reactive T cell populations in humans and mice; we also found that cross-reactive memory T cells afforded heterosubtypic protection by reducing morbidity and mortality upon lethal H7N9 challenge. In context with our observation that PR8-primed mice have limited humoral cross-reactivity with H7N9, our data suggest protection from H7N9 challenge is indeed mediated by cross-reactive T cell populations established upon previous priming with another influenza virus. Thus, pre-existing cross-reactive memory T cells may limit disease severity in the event of an H7N9 influenza virus pandemic.

  5. Viral RNA-Unprimed Rig-I Restrains Stat3 Activation in the Modulation of Regulatory T Cell/Th17 Cell Balance.

    Science.gov (United States)

    Yang, Hui; Guo, He-Zhou; Li, Xian-Yang; Lin, Jian; Zhang, Wu; Zhao, Jun-Mei; Zhang, Hong-Xin; Chen, Sai-Juan; Chen, Zhu; Zhu, Jiang

    2017-07-01

    Innate immunity activation by viral RNA-primed retinoid acid inducible gene-I (Rig-I) in CD4 + T cells antagonizes TGFβ signaling to suppress the differentiation of regulatory T cells (Tregs). However, how viral RNA-unliganded Rig-I (apo-Rig-I) modulates Treg generation remains unclear. In this article, we show that, in the absence of viral infection, Treg differentiation of Rig-I -/- CD4 + T cells was compromised, in the presence of increased generation of Th17 cells and overactivation of Stat3, a critical regulator tilting the Treg/Th17 cell balance. Mechanistically, apo-Rig-I physically associates with Stat3, thereby inhibiting Jak1's association with Stat3 while facilitating Shp2's association to inhibit p-Stat3 levels. Interestingly, inhibition of Stat3 ameliorates the Treg/Th17 imbalance and the colitis observed in Rig-I -/- mice. Collectively, these results uncover an independent functional contribution of the apo-Rig-I/Stat3 interaction in the maintenance of Treg/Th17 cell balance. Copyright © 2017 by The American Association of Immunologists, Inc.

  6. The role of T cell subsets and cytokines in the regulation of intracellular bacterial infection

    Directory of Open Access Journals (Sweden)

    Oliveira S.C.

    1998-01-01

    Full Text Available Cellular immune responses are a critical part of the host's defense against intracellular bacterial infections. Immunity to Brucella abortus crucially depends on antigen-specific T cell-mediated activation of macrophages, which are the major effectors of cell-mediated killing of this organism. T lymphocytes that proliferate in response to B. abortus were characterized for phenotype and cytokine activity. Human, murine, and bovine T lymphocytes exhibited a type 1 cytokine profile, suggesting an analogous immune response in these different hosts. In vivo protection afforded by a particular cell type is dependent on the antigen presented and the mechanism of antigen presentation. Studies using MHC class I and class II knockout mice infected with B. abortus have demonstrated that protective immunity to brucellosis is especially dependent on CD8+ T cells. To target MHC class I presentation we transfected ex vivo a murine macrophage cell line with B. abortus genes and adoptively transferred them to BALB/c mice. These transgenic macrophage clones induced partial protection in mice against experimental brucellosis. Knowing the cells required for protection, vaccines can be designed to activate the protective T cell subset. Lastly, as a new strategy for priming a specific class I-restricted T cell response in vivo, we used genetic immunization by particle bombardment-mediated gene transfer

  7. T cell subpopulations in lymph nodes may not be predictive of patient outcome in colorectal cancer

    Directory of Open Access Journals (Sweden)

    Yoon Han-Seung

    2011-08-01

    Full Text Available Abstract Background The immune response has been proposed to be an important factor in determining patient outcome in colorectal cancer (CRC. Previous studies have concentrated on characterizing T cell populations in the primary tumour where T cells with regulatory effect (Foxp3+ Tregs have been identified as both enhancing and diminishing anti-tumour immune responses. No previous studies have characterized the T cell response in the regional lymph nodes in CRC. Methods Immunohistochemistry was used to analyse CD4, CD8 or Foxp3+ T cell populations in the regional lymph nodes of patients with stage II CRC (n = 31, with (n = 13 or without (n = 18 cancer recurrence after 5 years of follow up, to determine if the priming environment for anti-tumour immunity was associated with clinical outcome. Results The proportions of CD4, CD8 or Foxp3+ cells in the lymph nodes varied widely between and within patients, and there was no association between T cell populations and cancer recurrence or other clinicopathological characteristics. Conclusions These data indicate that frequency of these T cell subsets in lymph nodes may not be a useful tool for predicting patient outcome.

  8. Network topologies and dynamics leading to endotoxin tolerance and priming in innate immune cells.

    Directory of Open Access Journals (Sweden)

    Yan Fu

    Full Text Available The innate immune system, acting as the first line of host defense, senses and adapts to foreign challenges through complex intracellular and intercellular signaling networks. Endotoxin tolerance and priming elicited by macrophages are classic examples of the complex adaptation of innate immune cells. Upon repetitive exposures to different doses of bacterial endotoxin (lipopolysaccharide or other stimulants, macrophages show either suppressed or augmented inflammatory responses compared to a single exposure to the stimulant. Endotoxin tolerance and priming are critically involved in both immune homeostasis and the pathogenesis of diverse inflammatory diseases. However, the underlying molecular mechanisms are not well understood. By means of a computational search through the parameter space of a coarse-grained three-node network with a two-stage Metropolis sampling approach, we enumerated all the network topologies that can generate priming or tolerance. We discovered three major mechanisms for priming (pathway synergy, suppressor deactivation, activator induction and one for tolerance (inhibitor persistence. These results not only explain existing experimental observations, but also reveal intriguing test scenarios for future experimental studies to clarify mechanisms of endotoxin priming and tolerance.

  9. Non-cognate translation priming in masked priming lexical decision experiments: A meta-analysis.

    Science.gov (United States)

    Wen, Yun; van Heuven, Walter J B

    2017-06-01

    The masked translation priming paradigm has been widely used in the last 25 years to investigate word processing in bilinguals. Motivated by studies reporting mixed findings, in particular for second language (L2) to first language (L1) translation priming, we conducted, for the first time in the literature, a meta-analysis of 64 masked priming lexical decision experiments across 24 studies to assess the effect sizes of L1-L2 and L2-L1 non-cognate translation priming effects in bilinguals. Our meta-analysis also investigated the influence of potential moderators of translation priming effects. The results provided clear evidence of significant translation priming effects for both directions, with L1-L2 translation priming significantly larger than L2-L1 translation priming (i.e., effect size of 0.86 vs. 0.31). The analyses also revealed that L1-L2 translation effect sizes were moderated by the interval between prime and target (ISI), whereas L2-L1 translation effect sizes were modulated by the number of items per cell. Theoretical and methodological implications of this meta-analysis are discussed and recommendations for future studies are provided.

  10. Antigen presentation by resting B cells. Radiosensitivity of the antigen-presentation function and two distinct pathways of T cell activation

    International Nuclear Information System (INIS)

    Ashwell, J.D.; DeFranco, A.L.; Paul, W.E.; Schwartz, R.H.

    1984-01-01

    In this report we have examined the ability of small resting B cells to act as antigen-presenting cells (APC) to antigen-specific MHC-restricted T cells as assessed by either T cell proliferation or T cell-dependent B cell stimulation. We found that 10 of 14 in vitro antigen-specific MHC-restricted T cell clones and lines and three of four T cell hybridomas could be induced to either proliferate or secrete IL-2 in the presence of lightly irradiated (1,000 rads) purified B cells and the appropriate foreign antigen. All T cell lines and hybridomas were stimulated to proliferate or make IL-2 by macrophage- and dendritic cell-enriched populations and all T cells tested except one hybridoma caused B cell activation when stimulated with B cells as APC. Furthermore, lightly irradiated, highly purified syngeneic B cells were as potent a source of APC for inducing B cell activation as were low density dendritic and macrophage-enriched cells. Lymph node T cells freshly taken from antigen-primed animals were also found to proliferate when cultured with purified B cells and the appropriate antigen. This APC function was easily measured when the cells were irradiated with 1,000 rads, but was greatly diminished or absent when they were irradiated with 3,300 rads. In addition, this radiosensitivity allowed us to easily distinguish B cell antigen presentation from presentation by the dendritic cell and macrophage, as the latter was resistant to 3,300 rads. Finally, one T cell clone that failed to proliferate when B cells were used as APC was able to recruit allogeneic B cells to proliferate in the presence of syngeneic B cells and the appropriate antigen. This result suggests that there are at least two distinct pathways of activation in T cells, one that leads to T cell proliferation and one that leads to the secretion of B cell recruitment factor(s)

  11. Unexpected T cell regulatory activity of anti-histone H1 autoantibody: Its mode of action in regulatory T cell-dependent and -independent manners

    Energy Technology Data Exchange (ETDEWEB)

    Takaoka, Yuki [Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima (Japan); Kawamoto, Seiji, E-mail: skawa@hiroshima-u.ac.jp [Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima (Japan); Katayama, Akiko [Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima (Japan); Nakano, Toshiaki [Liver Transplantation Program, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Chang Gung University College of Medicine, Kaohsiung, Taiwan (China); Yamanaka, Yasushi; Takahashi, Miki [Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima (Japan); Shimada, Yayoi; Chiang, Kuei-Chen [Kazusa Institute for Drug Discovery, Josai International University, Kisarazu (Japan); Ohmori, Naoya [Kazusa Institute for Drug Discovery, Josai International University, Kisarazu (Japan); Faculty of Nursing, Josai International University, Togane (Japan); Aki, Tsunehiro [Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima (Japan); Goto, Takeshi; Sato, Shuji [Kazusa Institute for Drug Discovery, Josai International University, Kisarazu (Japan); Faculty of Nursing, Josai International University, Togane (Japan); Goto, Shigeru [Liver Transplantation Program, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Chang Gung University College of Medicine, Kaohsiung, Taiwan (China); Iwao Hospital, Yufuin (Japan); Chen, Chao-Long [Liver Transplantation Program, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Chang Gung University College of Medicine, Kaohsiung, Taiwan (China); Ono, Kazuhisa [Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima (Japan)

    2013-02-08

    Highlights: ► Anti-histone H1 autoantibody (anti-H1) acts on T cells to inhibit their activation. ► Anti-H1 suppresses T cell activation in Treg cell-dependent and -independent manners. ► Suboptimal dose of anti-H1 enhances suppressor function of Treg cells. ► High dose of anti-H1 directly inhibits T cell receptor signaling. -- Abstract: Induction of anti-nuclear antibodies against DNA or histones is a hallmark of autoimmune disorders, but their actual contribution to disease predisposition remains to be clarified. We have previously reported that autoantibodies against histone H1 work as a critical graft survival factor in a rat model of tolerogeneic liver transplantation. Here we show that an immunosuppressive anti-histone H1 monoclonal antibody (anti-H1 mAb) acts directly on T cells to inhibit their activation in response to T cell receptor (TCR) ligation. Intriguingly, the T cell activation inhibitory activity of anti-H1 mAb under suboptimal dosages required regulatory T (Treg) cells, while high dose stimulation with anti-H1 mAb triggered a Treg cell-independent, direct negative regulation of T cell activation upon TCR cross-linking. In the Treg cell-dependent mode of immunosuppressive action, anti-H1 mAb did not induce the expansion of CD4{sup +}Foxp3{sup +} Treg cells, but rather potentiated their regulatory capacity. These results reveal a previously unappreciated T cell regulatory role of anti-H1 autoantibody, whose overproduction is generally thought to be pathogenic in the autoimmune settings.

  12. Unexpected T cell regulatory activity of anti-histone H1 autoantibody: Its mode of action in regulatory T cell-dependent and -independent manners

    International Nuclear Information System (INIS)

    Takaoka, Yuki; Kawamoto, Seiji; Katayama, Akiko; Nakano, Toshiaki; Yamanaka, Yasushi; Takahashi, Miki; Shimada, Yayoi; Chiang, Kuei-Chen; Ohmori, Naoya; Aki, Tsunehiro; Goto, Takeshi; Sato, Shuji; Goto, Shigeru; Chen, Chao-Long; Ono, Kazuhisa

    2013-01-01

    Highlights: ► Anti-histone H1 autoantibody (anti-H1) acts on T cells to inhibit their activation. ► Anti-H1 suppresses T cell activation in Treg cell-dependent and -independent manners. ► Suboptimal dose of anti-H1 enhances suppressor function of Treg cells. ► High dose of anti-H1 directly inhibits T cell receptor signaling. -- Abstract: Induction of anti-nuclear antibodies against DNA or histones is a hallmark of autoimmune disorders, but their actual contribution to disease predisposition remains to be clarified. We have previously reported that autoantibodies against histone H1 work as a critical graft survival factor in a rat model of tolerogeneic liver transplantation. Here we show that an immunosuppressive anti-histone H1 monoclonal antibody (anti-H1 mAb) acts directly on T cells to inhibit their activation in response to T cell receptor (TCR) ligation. Intriguingly, the T cell activation inhibitory activity of anti-H1 mAb under suboptimal dosages required regulatory T (Treg) cells, while high dose stimulation with anti-H1 mAb triggered a Treg cell-independent, direct negative regulation of T cell activation upon TCR cross-linking. In the Treg cell-dependent mode of immunosuppressive action, anti-H1 mAb did not induce the expansion of CD4 + Foxp3 + Treg cells, but rather potentiated their regulatory capacity. These results reveal a previously unappreciated T cell regulatory role of anti-H1 autoantibody, whose overproduction is generally thought to be pathogenic in the autoimmune settings

  13. Induction of CD4 suppressor T cells with anti-Leu-8 antibody

    International Nuclear Information System (INIS)

    Kanof, M.E.; Strober, W.; James, S.P.

    1987-01-01

    To characterize the conditions under which CD4 T cells suppress polyclonal immunoglobulin synthesis, we investigated the capacity of CD4 T cells that coexpress the surface antigen recognized by the monoclonal antibody anti-Leu-8 to mediate suppression. In an in vitro system devoid of CD8 T cells, CD4, Leu-8+ T cells suppressed pokeweed mitogen-induced immunoglobulin synthesis. Similarly, suppressor function was induced in unfractionated CD4 T cell populations after incubation with anti-Leu-8 antibody under cross-linking conditions. This induction of suppressor function by anti-Leu-8 antibody was not due to expansion of the CD4, Leu-8+ T cell population because CD4 T cells did not proliferate in response to anti-Leu-8 antibody. However, CD4, Leu-8+ T cell-mediated suppression was radiosensitive. Finally, CD4, Leu-8+ T cells do not inhibit immunoglobulin synthesis when T cell lymphokines were used in place of helper CD4 T cells (CD4, Leu-8- T cells), suggesting that CD4 T cell-mediated suppression occurs at the T cell level. We conclude that CD4 T cells can be induced to suppress immunoglobulin synthesis by modulation of the membrane antigen recognized by anti-Leu-8 antibody

  14. Acquisition of repertoires of suppressor T cells under the influence of macrophages

    International Nuclear Information System (INIS)

    Soejima, T.; Nagayama, A.; Sado, T.; Taniguchi, M.

    1988-01-01

    Acquisition of repertoires and genetic restriction specificities of suppressor T cells (Ts) and their factors were studied by using full allogeneic radiation bone marrow chimera and H-2 congenic pairs, B10.A(3R) and B10.A(5R), which received conventional or cloned macrophages by cell transfer. Suppressor T-cell factor (TsF) from C3H----C57BL/6 or C57BL/6----C3H chimera suppressed only donor but not host-type responses of either C3H or C57BL/6, in an antigen-specific fashion. However, if chimera mice were given conventional or cloned macrophages of the host type, the chimera TsF in turn suppressed both the responses of C3H and C57BL/6 mice but not those of the third party, BALB/c, indicating that macrophages are responsible for the acquisition of host restriction specificity. Similarly, B10.A(5R) mice developed I-Jb restricted Ts or TsF when the B10.A(3R) macrophage cell line was injected at the time of antigen priming. The reverse was also true. B10.A(3R) mice did generate I-Jk restricted Ts when they received the B10.A(5R) macrophage cell line. Thus, the results clearly demonstrated that B10.A(3R) or B10.A(5R) mice potentially possessed their ability to express both I-Jk and I-Jb determinants and that repertoires and genetic restriction specificity of Ts and their TsF were acquired at a macrophage level at the time of antigen-priming

  15. Cellular cooperation in lymphocyte activation. III. B-cell helper effect in the enhancement of T-cell response.

    Science.gov (United States)

    Kasahara, T; Kin, K; Itoh, Y; Kawai, T; Kano, Y; Shioiri-Nakano, K

    1979-01-01

    T and B cells were purified from human tonsil and peripheral blood by the removal of phagocytic cells, followed by filtration through a nylon fiber column (NC) and E-rosette formation. Purified T and B cells contained less than 1% of other cell types. The responses of T cells to concanavalin A (Con A) and soluble protein A were greatly enhanced in the presence of autologous B cells. Participation of B cells in T-cell enhancement was confirmed by the following observations: (a) purified B copulation, which was separated further from adherent B cells, retained its enhancing activity. (b) Another adherent cell-free B-cell preparation, which was purified from the NC-passed fraction, and (c) no T lymphoid but some B lymphoid cell lines, elicited strong T-cell enhancement. It was also found that the enhancing capacity of B cells required no metabolic activity, but rather an intact cell form and direct cell-to-cell contact with responding cells. The stimulatory determinants on B cells were resistant to trypsin and neuraminidase treatment. In this paper a hypothesis will be presented that at least two signals are prerequisite for the effective activation of T cells.

  16. Mind bomb-1 in dendritic cells is specifically required for Notch-mediated T helper type 2 differentiation.

    Directory of Open Access Journals (Sweden)

    Hyun-Woo Jeong

    Full Text Available In dendritic cell (DC-CD4(+ T cell interaction, Notch signaling has been implicated in the CD4(+ T cell activation, proliferation, and subset differentiation. However, there has been a lot of debate on the exact role of Notch signaling. Here, we observed that expression of Mind bomb-1 (Mib1, a critical regulator of Notch ligands for the activation of Notch signaling, increases gradually as precursor cells differentiate into DCs in mice. To clarify the role of Mib1 in DC-CD4(+ T cell interactions, we generated Mib1-null bone marrow-derived DCs. These cells readily expressed Notch ligands but failed to initiate Notch activation in the adjacent cells. Nevertheless, Mib1-null DCs were able to prime the activation and proliferation of CD4(+ T cells, suggesting that Notch activation in CD4(+ T cells is not required for these processes. Intriguingly, stimulation of CD4(+ T cells with Mib1-null DCs resulted in dramatically diminished Th2 cell populations, while preserving Th1 cell populations, both in vitro and in vivo. Our results demonstrate that Mib1 in DCs is critical for the activation of Notch signaling in CD4(+ T cells, and Notch signaling reinforces Th2 differentiation, but is not required for the activation or proliferation of the CD4(+ T cells.

  17. Proliferative capacity of murine hematopoietic stem cells

    International Nuclear Information System (INIS)

    Hellman, S.; Botnick, L.E.; Hannon, E.C.; Vigneulle, R.M.

    1978-01-01

    The present study demonstrates a decrease in self-renewal capacity with serial transfer of murine hematopoietic stem cells. Production of differentiated cell progeny is maintained longer than stem cell self-renewal. In normal animals the capacity for self-renewal is not decreased with increasing donor age. The stem cell compartment in normal animals, both young and old, appears to be proliferatively quiescent. After apparent recovery from the alkylating agent busulfan, the probability of stem cell self-renewal is decreased, there is a permanent defect in the capacity of the bone marrow for serial transplantation, and the stem cells are proliferatively active. These findings support a model of the hematopoietic stem cell compartment as a continuum of cells with decreasing capacities for self-renewal, increasing likelihood for differentiation, and increasing proliferative activity. Cells progress in the continuum in one direction and such progression is not reversible

  18. Incorporation of a hinge domain improves the expansion of chimeric antigen receptor T cells

    Directory of Open Access Journals (Sweden)

    Le Qin

    2017-03-01

    Full Text Available Abstract Background Multiple iterations of chimeric antigen receptors (CARs have been developed, mainly focusing on intracellular signaling modules. However, the effect of non-signaling extracellular modules on the expansion and therapeutic efficacy of CARs remains largely undefined. Methods We generated two versions of CAR vectors, with or without a hinge domain, targeting CD19, mesothelin, PSCA, MUC1, and HER2, respectively. Then, we systematically compared the effect of the hinge domains on the growth kinetics, cytokine production, and cytotoxicity of CAR T cells in vitro and in vivo. Results During in vitro culture period, the percentages and absolute numbers of T cells expressing the CARs containing a hinge domain continuously increased, mainly through the promotion of CD4+ CAR T cell expansion, regardless of the single-chain variable fragment (scFv. In vitro migration assay showed that the hinges enhanced CAR T cells migratory capacity. The T cells expressing anti-CD19 CARs with or without a hinge had similar antitumor capacities in vivo, whereas the T cells expressing anti-mesothelin CARs containing a hinge domain showed enhanced antitumor activities. Conclusions Hence, our results demonstrate that a hinge contributes to CAR T cell expansion and is capable of increasing the antitumor efficacy of some specific CAR T cells. Our results suggest potential novel strategies in CAR vector design.

  19. T Cell Zone Resident Macrophages Silently Dispose of Apoptotic Cells in the Lymph Node.

    Science.gov (United States)

    Baratin, Myriam; Simon, Léa; Jorquera, Audrey; Ghigo, Clément; Dembele, Doulaye; Nowak, Jonathan; Gentek, Rebecca; Wienert, Stephan; Klauschen, Frederick; Malissen, Bernard; Dalod, Marc; Bajénoff, Marc

    2017-08-15

    In lymph nodes (LNs), dendritic cells (DCs) are thought to dispose of apoptotic cells, a function pertaining to macrophages in other tissues. We found that a population of CX3CR1 + MERTK + cells located in the T cell zone of LNs, previously identified as DCs, are efferocytic macrophages. Lineage-tracing experiments and shield chimeras indicated that these T zone macrophages (TZM) are long-lived macrophages seeded in utero and slowly replaced by blood monocytes after birth. Imaging the LNs of mice in which TZM and DCs express different fluorescent proteins revealed that TZM-and not DCs-act as the only professional scavengers, clearing apoptotic cells in the LN T cell zone in a CX3CR1-dependent manner. Furthermore, similar to other macrophages, TZM appear inefficient in priming CD4 T cells. Thus, efferocytosis and T cell activation in the LN are uncoupled processes designated to macrophages and DCs, respectively, with implications to the maintenance of immune homeostasis. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Activation of nickel-specific CD4+ T lymphocytes in the absence of professional antigen-presenting cells.

    Science.gov (United States)

    Nasorri, Francesca; Sebastiani, Silvia; Mariani, Valentina; De Pità, Ornella; Puddu, Pietro; Girolomoni, Giampiero; Cavani, Andrea

    2002-01-01

    Allergic contact dermatitis ensues from exaggerated T cell responses to haptens. Dendritic cells are required for the initiation of hapten sensitization, but they may not be necessary for disease expression. Here we investigated the antigen-presenting cell requirement of nickel-specific CD4+ lymphocytes isolated from the blood of six allergic individuals. A significant proportion (42 out of 121; 35%) of the T cell clones proliferated in vitro to nickel also in the absence of professional antigen-presenting cells, suggesting a direct T-T hapten presentation. Antigen-presenting-cell-independent T cells showed a predominant T helper 1 phenotype. Nickel recognition by these T cells was major histocompatibility complex class II restricted, not influenced by CD28 triggering, independent from their state of activation, and did not require processing. The capacity of this T cell subset to be directly stimulated by nickel was not due to unique antigen-presenting properties, as both antigen-presenting-cell-dependent and antigen-presenting-cell-independent clones displayed comparable levels of HLA-DR, CD80, and CD86, and were equally capable of presenting nickel to antigen-presenting-cell-independent clones. In contrast, neither T cell types activated antigen-presenting-cell-dependent T lymphocytes. T-T presentation induced T cell receptor downregulation, CD25, CD80, CD86, and HLA-DR upregulation, and interferon-gamma release, although to a lesser extent compared to those induced by dendritic cell-T presentation. Following T-T presentation, the clones did not undergo unresponsiveness and maintained the capacity to respond to dendritic cells pulsed with antigen. In aggregate, our data suggest that antigen-presenting-cell-independent T cell activation can effectively amplify hapten- specific immune responses.

  1. Osteoblast-like MC3T3-E1 Cells Prefer Glycolysis for ATP Production but Adipocyte-like 3T3-L1 Cells Prefer Oxidative Phosphorylation.

    Science.gov (United States)

    Guntur, Anyonya R; Gerencser, Akos A; Le, Phuong T; DeMambro, Victoria E; Bornstein, Sheila A; Mookerjee, Shona A; Maridas, David E; Clemmons, David E; Brand, Martin D; Rosen, Clifford J

    2018-06-01

    Mesenchymal stromal cells (MSCs) are early progenitors that can differentiate into osteoblasts, chondrocytes, and adipocytes. We hypothesized that osteoblasts and adipocytes utilize distinct bioenergetic pathways during MSC differentiation. To test this hypothesis, we compared the bioenergetic profiles of preosteoblast MC3T3-E1 cells and calvarial osteoblasts with preadipocyte 3T3L1 cells, before and after differentiation. Differentiated MC3T3-E1 osteoblasts met adenosine triphosphate (ATP) demand mainly by glycolysis with minimal reserve glycolytic capacity, whereas nondifferentiated cells generated ATP through oxidative phosphorylation. A marked Crabtree effect (acute suppression of respiration by addition of glucose, observed in both MC3T3-E1 and calvarial osteoblasts) and smaller mitochondrial membrane potential in the differentiated osteoblasts, particularly those incubated at high glucose concentrations, indicated a suppression of oxidative phosphorylation compared with nondifferentiated osteoblasts. In contrast, both nondifferentiated and differentiated 3T3-L1 adipocytes met ATP demand primarily by oxidative phosphorylation despite a large unused reserve glycolytic capacity. In sum, we show that nondifferentiated precursor cells prefer to use oxidative phosphorylation to generate ATP; when they differentiate to osteoblasts, they gain a strong preference for glycolytic ATP generation, but when they differentiate to adipocytes, they retain the strong preference for oxidative phosphorylation. Unique metabolic programming in mesenchymal progenitor cells may influence cell fate and ultimately determine the degree of bone formation and/or the development of marrow adiposity. © 2018 American Society for Bone and Mineral Research. © 2018 American Society for Bone and Mineral Research.

  2. Constitutively polarized granules prime KHYG-1 NK cells.

    Science.gov (United States)

    Suck, Garnet; Branch, Donald R; Aravena, Paola; Mathieson, Mark; Helke, Simone; Keating, Armand

    2006-09-01

    The major mechanism for NK cell lysis of tumor cells is granule-mediated cytotoxicity. Polarization of granules is a prelude to the release of their cytotoxic contents in response to target-cell binding. We describe the novel observation of constitutive granule polarization in the cytotoxic NK cell line, KHYG-1. Continuous degranulation of KHYG-1 cells, however, does not occur and still requires target-cell contact. Disruption of microtubules with colcemid is sufficient to disperse the granules in KHYG-1 and significantly decreases cytotoxicity. A similar effect is not obtained by inhibiting extracellular signal-related kinase 2 (ERK2), the most distal kinase investigated in the cytolytic pathway. Disruption of microtubules significantly down-regulates activation receptors, NKp44 and NKG2D, implicating them as potential microtubule-trafficking receptors. Such changes in upstream receptor expression may have caused deactivation of ERK2, since NKG2D cross-linking also leads to receptor down-regulation and diminished ERK phosphorylation. Thus, a functional role for NKG2D in KHYG-1 cytotoxicity is demonstrated. Moreover, the novel primed state may contribute to the high cytotoxicity exhibited by KHYG-1.

  3. Exposure to 4-tert-octylphenol, an environmentally persistent alkylphenol, enhances interleukin-4 production in T cells via NF-AT activation

    International Nuclear Information System (INIS)

    Lee, Mi H.; Kim, Eugene; Kim, Tae S.

    2004-01-01

    4-tert-Octylphenol (OP) is a representative endocrine disruptor that may have adverse effects on human health. The influence of this compound on allergic immune responses remains unclear. In this study, we have examined the effects of OP on production of interleukin-4 (IL-4), a pro-inflammatory cytokine closely associated with allergic immune responses. OP significantly enhanced IL-4 production in antigen-primed T cells in a dose-dependent manner. Treatment with OP in vivo resulted in significant increase of IL-4 production in T cells and of IgE levels in sera of antigen-primed mice. Furthermore, OP enhanced the activation of IL-4 gene promoter in EL4 T cells transiently transfected with IL-4 promoter/reporter constructs, and the enhancing effect mapped to a region in the IL-4 promoter containing binding sites for nuclear factor of activated T cell (NF-AT). Activation of T cells by phorbol-12-myristate-13-acetate (PMA) resulted in markedly enhanced binding activities to the NF-AT site, which significantly increased upon addition of OP, indicating that the transcription factor NF-AT was involved in the enhancing effect of OP on IL-4 production. The enhancement of IL-4 production by OP was blocked by FK506, a calcineurin inhibitor, but not by the estrogen receptor (ER) antagonist ICI 182 780. FK506 inhibited the NF-AT-DNA binding activity and IL-4 gene promoter activity enhanced by OP in a dose-dependent manner. These findings demonstrate that OP enhances IL-4 production in T cells via the stimulation of calcineurin-dependent NF-AT activation

  4. Large, but not small, antigens require time- and temperature-dependent processing in accessory cells before they can be recognized by T cells

    DEFF Research Database (Denmark)

    Buus, S; Werdelin, O

    1986-01-01

    We have studied if antigens of different size and structure all require processing in antigen-presenting cells of guinea-pigs before they can be recognized by T cells. The method of mild paraformaldehyde fixation was used to stop antigen-processing in the antigen-presenting cells. As a measure...... of antigen presentation we used the proliferative response of appropriately primed T cells during a co-culture with the paraformaldehyde-fixed and antigen-exposed presenting cells. We demonstrate that the large synthetic polypeptide antigen, dinitrophenyl-poly-L-lysine, requires processing. After an initial......-dependent and consequently energy-requiring. Processing is strongly inhibited by the lysosomotrophic drug, chloroquine, suggesting a lysosomal involvement in antigen processing. The existence of a minor, non-lysosomal pathway is suggested, since small amounts of antigen were processed even at 10 degrees C, at which...

  5. Human multipotent adult progenitor cells are nonimmunogenic and exert potent immunomodulatory effects on alloreactive T-cell responses.

    Science.gov (United States)

    Jacobs, Sandra A; Pinxteren, Jef; Roobrouck, Valerie D; Luyckx, Ariane; van't Hof, Wouter; Deans, Robert; Verfaillie, Catherine M; Waer, Mark; Billiau, An D; Van Gool, Stefaan W

    2013-01-01

    Multipotent adult progenitor cells (MAPCs) are bone marrow-derived nonhematopoietic stem cells with a broad differentiation potential and extensive expansion capacity. A comparative study between human mesenchymal stem cells (hMSCs) and human MAPCs (hMAPCs) has shown that hMAPCs have clearly distinct phenotypical and functional characteristics from hMSCs. In particular, hMAPCs express lower levels of MHC class I than hMSCs and cannot only differentiate into typical mesenchymal cell types but can also differentiate in vitro and in vivo into functional endothelial cells. The use of hMSCs as cellular immunomodulatory stem cell products gained much interest since their immunomodulatory capacities in vitro became evident over the last decade. Currently, the clinical grade stem cell product of hMAPCs is already used in clinical trials to prevent graft-versus-host disease (GVHD), as well as for the treatment of acute myocardial infarct, ischemic stroke, and Crohn's disease. Therefore, we studied the immune phenotype, immunogenicity, and immunosuppressive effect of hMAPCs in vitro. We demonstrated that hMAPCs are nonimmunogenic for T-cell proliferation and cytokine production. In addition, hMAPCs exert strong immunosuppressive effects on T-cell alloreactivity and on T-cell proliferation induced by mitogens and recall antigens. This immunomodulatory effect was not MHC restricted, which makes off-the-shelf use promising. The immunosuppressive effect of hMAPCs is partially mediated via soluble factors and dependent on indoleamine 2,3-dioxygenase (IDO) activity. At last, we isolated hMAPCs, the clinical grade stem cell product of hMAPCs, named MultiStem, and hMSCs from one single donor and observed that both the immunogenicity and the immunosuppressive capacities of all three stem cell products are comparable in vitro. In conclusion, hMAPCs have potent immunomodulatory properties in vitro and can serve as a valuable cell source for the clinical use of immunomodulatory cellular

  6. Human CD3+ T-Cells with the Anti-ERBB2 Chimeric Antigen Receptor Exhibit Efficient Targeting and Induce Apoptosis in ERBB2 Overexpressing Breast Cancer Cells

    Science.gov (United States)

    Munisvaradass, Rusheni; Kumar, Suresh; Govindasamy, Chandramohan; Alnumair, Khalid S.; Mok, Pooi Ling

    2017-01-01

    Breast cancer is a common malignancy among women. The innate and adaptive immune responses failed to be activated owing to immune modulation in the tumour microenvironment. Decades of scientific study links the overexpression of human epidermal growth factor receptor 2 (ERBB2) antigen with aggressive tumours. The Chimeric Antigen Receptor (CAR) coding for specific tumour-associated antigens could initiate intrinsic T-cell signalling, inducing T-cell activation, and cytotoxic activity without the need for major histocompatibility complex recognition. This renders CAR as a potentially universal immunotherapeutic option. Herein, we aimed to establish CAR in CD3+ T-cells, isolated from human peripheral blood mononucleated cells that could subsequently target and induce apoptosis in the ERBB2 overexpressing human breast cancer cell line, SKBR3. Constructed CAR was inserted into a lentiviral plasmid containing a green fluorescent protein tag and produced as lentiviral particles that were used to transduce activated T-cells. Transduced CAR-T cells were then primed with SKBR3 cells to evaluate their functionality. Results showed increased apoptosis in SKBR3 cells co-cultured with CAR-T cells compared to the control (non–transduced T-cells). This study demonstrates that CAR introduction helps overcome the innate limitations of native T-cells leading to cancer cell apoptosis. We recommend future studies should focus on in vivo cytotoxicity of CAR-T cells against ERBB2 expressing tumours. PMID:28885562

  7. Fusion of a viral antigen to invariant chain leads to augmented T-cell immunity and improved protection in gene-gun DNA-vaccinated mice

    DEFF Research Database (Denmark)

    Grujic, Mirjana; Holst, Peter J; Christensen, Jan P

    2009-01-01

    It has recently been demonstrated that a recombinant replication-deficient human adenovirus 5 (Ad5) vector expressing lymphocytic choriomeningitis virus (LCMV) glycoprotein (GP) fused to the p31 invariant (Ii) chain confers broad, long-lasting T-cell immunity that completely protects C57BL/6 mice...... with the unlinked construct. In contrast, substantial protection against peripheral challenge was not observed. Additional experiments with T-cell subset-depleted or perforin-deficient mice revealed that virus control in vaccinated mice depends critically on cytotoxic CD8(+) T cells. Finally, priming with the naked...

  8. New approaches to design HIV-1 T-cell vaccines.

    Science.gov (United States)

    Perrin, Hélène; Canderan, Glenda; Sékaly, Rafick-Pierre; Trautmann, Lydie

    2010-09-01

    Following the evidence that T-cell responses are crucial in the control of HIV-1 infection, vaccines targeting T-cell responses were tested in recent clinical trials. However, these vaccines showed a lack of efficacy. This review attempts to define the qualitative and quantitative features that are desirable for T-cell-induced responses by vaccines. We also describe strategies that could lead to achievement of this goal. Using the yellow fever vaccine as a benchmark of an efficient vaccine, recent studies identified factors of immune protection and more importantly innate immune pathways needed for the establishment of long-term protective adaptive immunity. To prevent or control HIV-1 infection, a vaccine must induce efficient and persistent antigen-specific T cells endowed with mucosal homing capacity. Such cells should have the capability to counteract HIV-1 diversity and its rapid spread from the initial site of infection. To achieve this goal, the activation of a diversified innate immune response is critical. New systems biology approaches will provide more precise correlates of immune protection that will pave the way for new approaches in T-cell-based vaccines.

  9. Oestrogen, an evolutionary conserved regulator of T cell differentiation and immune tolerance in jawed vertebrates?

    Science.gov (United States)

    Paiola, Matthieu; Knigge, Thomas; Duflot, Aurélie; Pinto, Patricia I S; Farcy, Emilie; Monsinjon, Tiphaine

    2018-07-01

    In teleosts, as in mammals, the immune system is tightly regulated by sexual steroid hormones, such as oestrogens. We investigated the effects of 17β-oestradiol on the expression of several genes related to T cell development and resulting T cell subpopulations in sea bass, Dicentrarchus labrax, for a primary lymphoid organ, the thymus, and two secondary lymphoid organs, the head-kidney and the spleen. In parallel, the oxidative burst capacity was assessed in leucocytes of the secondary lymphoid organs. Apoptosis- and proliferation-related genes, indicative of B and T cell clonal selection and lymphoid progenitor activity, were not affected by elevated oestrogen-levels. Sex-related oestrogen-responsiveness in T cell and antigen-presenting cell markers was observed, the expression of which was differentially induced by oestrogen-exposure in the three lymphoid organs. Remarkably, in the spleen, oestrogen increased regulatory T cell-related gene expression was associated with a decrease in oxidative burst capacity. To the best of our knowledge, this study indicates for the first time that physiological levels of oestrogen are likely to promote immune tolerance by modulating thymic function (i.e., T cell development and output) and peripheral T cells in teleosts, similar to previously reported oestrogenic effects in mammals. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. The Immunodominance Change and Protection of CD4+ T-Cell Responses Elicited by an Envelope Protein Domain III-Based Tetravalent Dengue Vaccine in Mice.

    Directory of Open Access Journals (Sweden)

    Hsin-Wei Chen

    Full Text Available Dengue is the leading cause of mosquito-borne viral infections and no vaccine is available now. Envelope protein domain III (ED3 is the major target for the binding of dengue virus neutralizing antibodies; however, the ED3-specifc T-cell response is less well understood. To investigate the T-cell responses to four serotypes of dengue virus (DENV-1 to 4, we immunized mice using either a tetravalent ED3-based DNA or protein vaccine, or combined both as a DNA prime-protein boost strategy (prime-boost. A significant serotype-dependent IFN-γ or IL-4 response was observed in mice immunized with either the DNA or protein vaccine. The IFN-γ response was dominant to DENV-1 to 3, whereas the IL-4 response was dominant to DENV-4. Although the similar IgG titers for the four serotypes were observed in mice immunized with the tetravalent vaccines, the neutralizing antibody titers varied and followed the order of 2 = 3>1>4. Interestingly, the lower IFN-γ response to DENV-4 is attributable to the immunodominance change between two CD4+ T-cell epitopes; one T-cell epitope located at E349-363 of DENV-1 to 3 was more immunogenic than the DENV-4 epitope E313-327. Despite DENV-4 specific IFN-γ responses were suppressed by immunodominance change, either DENV-4-specific IFN-γ or neutralizing antibody responses were still recalled after DENV-4 challenge and contributed to virus clearance. Immunization with the prime-boost elicited both IFN-γ and neutralizing antibody responses and provided better protection than either DNA or protein immunization. Our findings shed light on how ED3-based tetravalent dengue vaccines sharpen host CD4 T-cell responses and contribute to protection against dengue virus.

  11. A novel kefir product (PFT) activates dendritic cells to induce CD4+T and CD8+T cell responses in vitro.

    Science.gov (United States)

    Ghoneum, Mamdooh; Felo, Nouran; Agrawal, Sudhanshu; Agrawal, Anshu

    2015-12-01

    Lactobacilli have been widely studied for their probiotic effects and have been reported to function as antiviral and anticancer agents. However, the underlying mechanisms via immune modulation are poorly understood. PFT is a freeze dried compound of Lactobacillus kefiri P-IF with a unique composition and functionality. In this study, we examined the potential stimulatory effects of two concentrations (50 µg and 100 µg/mL) of PFT on human monocyte-derived dendritic cell (DC) function in vitro. Results showed that PFT upregulated the expression of DC surface co-stimulatory and maturation markers CD80, CD86, and HLADR in a concentration dependent manner. PFT at 100 µg/mL markedly increased the secretion of IL-6, IL-10, TNF-α, and IL-1β by DCs. This concentration of PFT also stimulated the production of antiviral cytokines, IFN-α and IFN-λ(IL29) in DCs. Additionally, PFT at 100 µg/mL activated moDCs prime CD4(+)T cells and significantly increased the levels of IL-10, IFN-γ, and TNF-α by 1.7, four, three-fold, respectively. Furthermore PFT-stimulated DCs were also effective in enhancing the cytotoxic potential of CD8(+)T cells via the induction of Granzyme-B and upregulation of CD107a, and CD103 expression, a marker of resident/regulatory CD8(+)T cells. These data suggest that PFT functions as a natural adjuvant for DC activation and thus may be used in DC-based vaccine strategies against viral infections and cancer. © The Author(s) 2015.

  12. Heterologous prime-boost vaccinations for poverty-related diseases: advantages and future prospects.

    Science.gov (United States)

    Radosević, Katarina; Rodriguez, Ariane; Lemckert, Angelique; Goudsmit, Jaap

    2009-05-01

    Classical vaccination approaches, based on a single vaccine administered in a homologous prime-boost schedule and optimized to induce primarily neutralizing antibodies, are unlikely to be sufficiently efficacious to prevent TB, malaria or HIV infections. Novel vaccines, capable of inducing a more powerful immune response, in particular T-cell immunity, are desperately needed. Combining different vaccine modalities that are able to complement each other and induce broad and sustainable immunity is a promising approach. This review provides an overview of heterologous prime-boost vaccination modalities currently in development for the 'big three' poverty-related diseases and emphasizes the need for innovative vaccination approaches.

  13. [Inhibition and resource capacity during normal aging: a confrontation of the dorsal-ventral and frontal models in a modified version of negative priming].

    Science.gov (United States)

    Martin, S; Brouillet, D; Guerdoux, E; Tarrago, R

    2006-01-01

    -be-ignored properties' responsiveness. In contrast, information matching subjects' goal is enhanced through an automatic excitatory imbalance. The accurate functioning of the Match/Mismatch field requires efficient executive functioning responsible for the uphold of goals and correct responses. In the case of negative priming, manipulating the efficiency of working memory is of interest as it should affect the triggering of slowing, ie, an indirect inhibitory deficit, when the task is resource demanding [Conwayet al. (6)]. Moreover, if inhibition, as reflected by negative priming, is mediated by individual resource capacity, then NP should disappear during aging only when individuals are engaged in a resource-demanding task. To address this issue, we examine whether cognitive control load in a gender decision task contributed to the presence or absence of NP during aging. According to the dorsal-ventral model, task complexity should not have any impact on performance, since gender decision task relies on a conceptual analysis of information. In turn, the frontal model predicts that age differences in performance profile will only differ when individual resource capacity is overloaded. Sixty-four participants (32 young and 32 older adults) performed a gender categorisation task through two experiments. Trials involved two stimuli presented successively at the same location. A word served as a prime and a word as a target. Both prime and target could be male or female. When prime and target matched on gender, we talked about VALID pairs (or compatible). When prime and target mismatched on the manipulated features, we talked about INVALID pairs (or incompatible). Participants' task was to identify the gender of the target. They were explicitly instructed not to respond to primes but to read them silently. Our interest was in response latencies for valid versus invalid pairs. We manipulated task complexity by the absence (experiment 1) or presence (experiment 2) of a distractor during

  14. Langerhans cells favor skin flora tolerance through limited presentation of bacterial antigens and induction of regulatory T cells

    NARCIS (Netherlands)

    van der Aar, Angelic M. G.; Picavet, Daisy I.; Muller, Femke J.; de Boer, Leonie; van Capel, Toni M. M.; Zaat, Sebastian A. J.; Bos, Jan D.; Janssen, Hans; George, Thaddeus C.; Kapsenberg, Martien L.; van Ham, S. Marieke; Teunissen, Marcel B. M.; de Jong, Esther C.

    2013-01-01

    The mechanisms preventing detrimental T-cell responses against commensal skin bacteria remain elusive. Using monocyte-derived and skin-derived dendritic cells (DCs), we demonstrate that epidermal Langerhans cells (LCs), the DCs in the most superficial layer of the skin, have a poor capacity to

  15. Efficacy of in vitro sensitized cells generated by in vivo priming with OK-432 for adoptive immunotherapy of the poorly immunogenic B16-Bl6 melanoma.

    Science.gov (United States)

    Mukai, S; Kato, H; Kimura, S; Asai, K; Kawahito, Y; Inoue, M; Yamamura, Y; Sano, H; Sugino, S; Shu, S; Kondo, M

    1996-02-01

    We investigated the efficacy of the streptococcal preparation OK-432 as an adjuvant for in vivo priming in induction of sensitized cells for adoptive immunotherapy of the poorly immunogenic B16-BL6 (BL6) melanoma. C57BL/6 (B6) mice were immunized subcutaneously (s.c.) with 3 x 10(6) viable BL6 tumor cells admixed with various doses of OK-432 ranging from 1 to 100 micrograms in the foot-pad. Draining popliteal lymph nodes (LNs) were harvested 7 days after immunization and LN cells were further sensitized with irradiated tumor cells in the presence of 60-300 IU/ml of IL-2 for 11 days. These in vitro sensitized (IVS) cells (2 x 10(6)) were transferred intravenously (i.v.) to B6 mice bearing 4-day pulmonary metastases established by i.v. injection of 2-4 x 10(5) viable BL6 cells. The mice were also received intraperitoneally (i.p.) 4 x 10(4) IU/day of IL-2 for 4 days after adoptive transfer. Transfer of IVS cells from mice immunized by s.c. injection of tumor cells admixed with 10 micrograms of OK-432 significantly reduced the numbers of BL6 pulmonary metastases compared with that of control IVS' cells without the administration of OK-432 (P = 0.003). These effective IVS cells also significantly prolonged the survival of treated animals (P = 0.003). Functional IVS cells required in vitro stimulation with tumor cells. However, addition of OK-432 in the vaccine resulted in no enhancement of in vitro cytotoxicity and no characteristic change of phenotype of IVS cells. These results suggest that in vivo priming of OK-432 facilitates the sensitization of tumor-reactive T-cells. The procedure of in vivo priming with OK-432 may be beneficial in the adoptive immunotherapy of melanoma.

  16. Profound protection against respiratory challenge with a lethal H7N7 influenza A virus by increasing the magnitude of CD8(+) T-cell memory

    DEFF Research Database (Denmark)

    Christensen, Jan Pravsgaard; Doherty, P C; Branum, K C

    2000-01-01

    The recall of CD8(+) T-cell memory established by infecting H-2(b) mice with an H1N1 influenza A virus provided a measure of protection against an extremely virulent H7N7 virus. The numbers of CD8(+) effector and memory T cells specific for the shared, immunodominant D(b)NP(366) epitope were...... greatly increased subsequent to the H7N7 challenge, and though lung titers remained as high as those in naive controls for 5 days or more, the virus was cleared more rapidly. Expanding the CD8(+) memory T-cell pool (10%) by sequential priming with two different influenza A viruses (H3N2-->H1N1......) gave much better protection. Though the H7N7 virus initially grew to equivalent titers in the lungs of naive and double-primed mice, the replicative phase was substantially controlled within 3 days. This tertiary H7N7 challenge caused little increase in the magnitude of the CD8(+) D(b)NP(366)(+) T...

  17. Systemic immunological tolerance to ocular antigens is mediated by TRAIL-expressing CD8+ T cells.

    Science.gov (United States)

    Griffith, Thomas S; Brincks, Erik L; Gurung, Prajwal; Kucaba, Tamara A; Ferguson, Thomas A

    2011-01-15

    Systemic immunological tolerance to Ag encountered in the eye restricts the formation of potentially damaging immune responses that would otherwise be initiated at other anatomical locations. We previously demonstrated that tolerance to Ag administered via the anterior chamber (AC) of the eye required Fas ligand-mediated apoptotic death of inflammatory cells that enter the eye in response to the antigenic challenge. Moreover, the systemic tolerance induced after AC injection of Ag was mediated by CD8(+) regulatory T cells. This study examined the mechanism by which these CD8(+) regulatory T cells mediate tolerance after AC injection of Ag. AC injection of Ag did not prime CD4(+) T cells and led to increased TRAIL expression by splenic CD8(+) T cells. Unlike wild-type mice, Trail(-/-) or Dr5(-/-) mice did not develop tolerance to Ag injected into the eye, even though responding lymphocytes underwent apoptosis in the AC of the eyes of these mice. CD8(+) T cells from Trail(-/-) mice that were first injected via the AC with Ag were unable to transfer tolerance to naive recipient wild-type mice, but CD8(+) T cells from AC-injected wild-type or Dr5(-/-) mice could transfer tolerance. Importantly, the transferred wild-type (Trail(+/+)) CD8(+) T cells were also able to decrease the number of infiltrating inflammatory cells into the eye; however, Trail(-/-) CD8(+) T cells were unable to limit the inflammatory cell ingress. Together, our data suggest that "helpless" CD8(+) regulatory T cells generated after AC injection of Ag enforce systemic tolerance in a TRAIL-dependent manner to inhibit inflammation in the eye.

  18. The Multi-Purpose Tool of Tumor Immunotherapy: Gene-Engineered T Cells.

    Science.gov (United States)

    Mo, Zeming; Du, Peixin; Wang, Guoping; Wang, Yongsheng

    2017-01-01

    A detailed summary of the published clinical trials of chimeric antigen receptor T cells (CAR-T) and TCR-transduced T cells (TCR-T) was constructed to understand the development trend of adoptive T cell therapy (ACT). In contrast to TCR-T, the number of CAR-T clinical trials has increased dramatically in China in the last three years. The ACT seems to be very prosperous. But, the multidimensional interaction of tumor, tumor associated antigen (TAA) and normal tissue exacerbates the uncontrolled outcome of T cells gene therapy. It reminds us the importance that optimizing treatment security to prevent the fatal serious adverse events. How to balance the safety and effectiveness of the ACT? At least six measures can potentially optimize the safety of ACT. At the same time, with the application of gene editing techniques, more endogenous receptors are disrupted while more exogenous receptors are expressed on T cells. As a multi-purpose tool of tumor immunotherapy, gene-engineered T cells (GE-T) have been given different functional weapons. A network which is likely to link radiation therapy, tumor vaccines, CAR-T and TCR-T is being built. Moreover, more and more evidences indicated that the combination of the ACT and other therapies would further enhance the anti-tumor capacity of the GE-T.

  19. Cytomegalovirus vector expressing RAE-1γ induces enhanced anti-tumor capacity of murine CD8+ T cells.

    Science.gov (United States)

    Tršan, Tihana; Vuković, Kristina; Filipović, Petra; Brizić, Ana Lesac; Lemmermann, Niels A W; Schober, Kilian; Busch, Dirk H; Britt, William J; Messerle, Martin; Krmpotić, Astrid; Jonjić, Stipan

    2017-08-01

    Designing CD8 + T-cell vaccines, which would provide protection against tumors is still considered a great challenge in immunotherapy. Here we show the robust potential of cytomegalovirus (CMV) vector expressing the NKG2D ligand RAE-1γ as CD8 + T cell-based vaccine against malignant tumors. Immunization with the CMV vector expressing RAE-1γ, delayed tumor growth or even provided complete protection against tumor challenge in both prophylactic and therapeutic settings. Moreover, a potent tumor control in mice vaccinated with this vector can be further enhanced by blocking the immune checkpoints TIGIT and PD-1. CMV vector expressing RAE-1γ potentiated expansion of KLRG1 + CD8 + T cells with enhanced effector properties. This vaccination was even more efficient in neonatal mice, resulting in the expansion and long-term maintenance of epitope-specific CD8 + T cells conferring robust resistance against tumor challenge. Our data show that immunomodulation of CD8 + T-cell responses promoted by herpesvirus expressing a ligand for NKG2D receptor can provide a powerful platform for the prevention and treatment of CD8 + T-cell sensitive tumors. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. The Non-structural Protein 5 and Matrix Protein Are Antigenic Targets of T Cell Immunity to Genotype 1 Porcine Reproductive and Respiratory Syndrome Viruses

    DEFF Research Database (Denmark)

    Mokhtar, Helen; Pedrera, Miriam; Frossard, Jean-Pierre

    2016-01-01

    The porcine reproductive and respiratory syndrome virus (PRRSV) is the cause of one of the most economically important diseases affecting swine worldwide. Efforts to develop a next-generation vaccine have largely focused on envelope glycoproteins to target virus-neutralizing antibody responses...... proposed that T cell-mediated immunity plays a key role. Therefore, we hypothesized that conserved T cell antigens represent prime candidates for the development a novel PRRS vaccine. Antigens were identified by screening a proteome-wide synthetic peptide library with T cells from cohorts of pigs rendered...... attractive vaccine candidate T cell antigens, which should be evaluated further in the context of PRRSV vaccine development....

  1. HIV-Specific CD8+ T Cell-Mediated Viral Suppression Correlates With the Expression of CD57

    DEFF Research Database (Denmark)

    Jensen, Sanne S; Tingstedt, Jeanette Linnea; Larsen, Tine Kochendorf

    2016-01-01

    BACKGROUND: Virus-specific CD8(+) T-cell responses are believed to play an important role in the control of HIV-1 infection; however, what constitutes an effective HIV-1 CD8(+) T-cell response remains a topic of debate. The ex vivo viral suppressive capacity was measured of CD8(+) T cells from 44...

  2. In situ depletion of CD4(+) T cells in human skin by Zanolimumab

    DEFF Research Database (Denmark)

    Villadsen, L.S.; Skov, L.; Dam, T.N.

    2007-01-01

    CD4(+) T cells, in activated or malignant form, are involved in a number of diseases including inflammatory skin diseases such as psoriasis, and T cell lymphomas such as the majority of cutaneous T cell lymphomas (CTCL). Targeting CD4 with an antibody that inhibits and/or eliminates disease......-driving T cells in situ may therefore be a useful approach in the treatment of inflammatory and malignant skin diseases. Depletion of CD4(+) T cells in intact inflamed human skin tissue by Zanolimumab, a fully human therapeutic monoclonal antibody (IgG1, kappa) against CD4, was studied in a human psoriasis......(+), but not CD8(+) CD3(+) T cells. The capacity of Zanolimumab to deplete the CD4(+) T cells in the skin may be of importance in diseases where CD4(+) T cells play a central role. Indeed, in a phase II clinical trial Zanolimumab has shown a dose-dependent clinical response in patients with CTCL and the antibody...

  3. The specificity and flexibility of l1 reverse transcription priming at imperfect T-tracts.

    Directory of Open Access Journals (Sweden)

    Clément Monot

    2013-05-01

    Full Text Available L1 retrotransposons have a prominent role in reshaping mammalian genomes. To replicate, the L1 ribonucleoprotein particle (RNP first uses its endonuclease (EN to nick the genomic DNA. The newly generated DNA end is subsequently used as a primer to initiate reverse transcription within the L1 RNA poly(A tail, a process known as target-primed reverse transcription (TPRT. Prior studies demonstrated that most L1 insertions occur into sequences related to the L1 EN consensus sequence (degenerate 5'-TTTT/A-3' sites and frequently preceded by imperfect T-tracts. However, it is currently unclear whether--and to which degree--the liberated 3'-hydroxyl extremity on the genomic DNA needs to be accessible and complementary to the poly(A tail of the L1 RNA for efficient priming of reverse transcription. Here, we employed a direct assay for the initiation of L1 reverse transcription to define the molecular rules that guide this process. First, efficient priming is detected with as few as 4 matching nucleotides at the primer 3' end. Second, L1 RNP can tolerate terminal mismatches if they are compensated within the 10 last bases of the primer by an increased number of matching nucleotides. All terminal mismatches are not equally detrimental to DNA extension, a C being extended at higher levels than an A or a G. Third, efficient priming in the context of duplex DNA requires a 3' overhang. This suggests the possible existence of additional DNA processing steps, which generate a single-stranded 3' end to allow L1 reverse transcription. Based on these data we propose that the specificity of L1 reverse transcription initiation contributes, together with the specificity of the initial EN cleavage, to the distribution of new L1 insertions within the human genome.

  4. The specificity and flexibility of l1 reverse transcription priming at imperfect T-tracts.

    Science.gov (United States)

    Monot, Clément; Kuciak, Monika; Viollet, Sébastien; Mir, Ashfaq Ali; Gabus, Caroline; Darlix, Jean-Luc; Cristofari, Gaël

    2013-05-01

    L1 retrotransposons have a prominent role in reshaping mammalian genomes. To replicate, the L1 ribonucleoprotein particle (RNP) first uses its endonuclease (EN) to nick the genomic DNA. The newly generated DNA end is subsequently used as a primer to initiate reverse transcription within the L1 RNA poly(A) tail, a process known as target-primed reverse transcription (TPRT). Prior studies demonstrated that most L1 insertions occur into sequences related to the L1 EN consensus sequence (degenerate 5'-TTTT/A-3' sites) and frequently preceded by imperfect T-tracts. However, it is currently unclear whether--and to which degree--the liberated 3'-hydroxyl extremity on the genomic DNA needs to be accessible and complementary to the poly(A) tail of the L1 RNA for efficient priming of reverse transcription. Here, we employed a direct assay for the initiation of L1 reverse transcription to define the molecular rules that guide this process. First, efficient priming is detected with as few as 4 matching nucleotides at the primer 3' end. Second, L1 RNP can tolerate terminal mismatches if they are compensated within the 10 last bases of the primer by an increased number of matching nucleotides. All terminal mismatches are not equally detrimental to DNA extension, a C being extended at higher levels than an A or a G. Third, efficient priming in the context of duplex DNA requires a 3' overhang. This suggests the possible existence of additional DNA processing steps, which generate a single-stranded 3' end to allow L1 reverse transcription. Based on these data we propose that the specificity of L1 reverse transcription initiation contributes, together with the specificity of the initial EN cleavage, to the distribution of new L1 insertions within the human genome.

  5. 5-hydroxytryptamine modulates migration, cytokine and chemokine release and T-cell priming capacity of dendritic cells in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Tobias Müller

    Full Text Available Beside its well described role in the central and peripheral nervous system 5-hydroxytryptamine (5-HT, commonly known as serotonin, is also a potent immuno-modulator. Serotoninergic receptors (5-HTR are expressed by a broad range of inflammatory cell types, including dendritic cells (DCs. In this study, we aimed to further characterize the immuno-biological properties of serotoninergic receptors on human monocyte-derived DCs. 5-HT was able to induce oriented migration in immature but not in LPS-matured DCs via activation of 5-HTR(1 and 5-HTR(2 receptor subtypes. Accordingly, 5-HT also increased migration of pulmonary DCs to draining lymph nodes in vivo. By binding to 5-HTR(3, 5-HTR(4 and 5-HTR(7 receptors, 5-HT up-regulated production of the pro-inflammatory cytokine IL-6. Additionally, 5-HT influenced chemokine release by human monocyte-derived DCs: production of the potent Th1 chemoattractant IP-10/CXCL10 was inhibited in mature DCs, whereas CCL22/MDC secretion was up-regulated in both immature and mature DCs. Furthermore, DCs matured in the presence of 5-HT switched to a high IL-10 and low IL-12p70 secreting phenotype. Consistently, 5-HT favoured the outcome of a Th2 immune response both in vitro and in vivo. In summary, our study shows that 5-HT is a potent regulator of human dendritic cell function, and that targeting serotoninergic receptors might be a promising approach for the treatment of inflammatory disorders.

  6. iNKT cells suppress the CD8+ T cell response to a murine Burkitt's-like B cell lymphoma.

    Directory of Open Access Journals (Sweden)

    Ryan L Bjordahl

    Full Text Available The T cell response to B cell lymphomas differs from the majority of solid tumors in that the malignant cells themselves are derived from B lymphocytes, key players in immune response. B cell lymphomas are therefore well situated to manipulate their surrounding microenvironment to enhance tumor growth and minimize anti-tumor T cell responses. We analyzed the effect of T cells on the growth of a transplantable B cell lymphoma and found that iNKT cells suppressed the anti-tumor CD8(+ T cell response. Lymphoma cells transplanted into syngeneic wild type (WT mice or Jalpha18(-/- mice that specifically lack iNKT cells grew initially at the same rate, but only the mice lacking iNKT cells were able to reject the lymphoma. This effect was due to the enhanced activity of tumor-specific CD8(+ T cells in the absence of iNKT cells, and could be partially reversed by reconstitution of iNKT cells in Jalpha 18(-/- mice. Treatment of tumor-bearing WT mice with alpha -galactosyl ceramide, an activating ligand for iNKT cells, reduced the number of tumor-specific CD8(+ T cells. In contrast, lymphoma growth in CD1d1(-/- mice that lack both iNKT and type II NKT cells was similar to that in WT mice, suggesting that type II NKT cells are required for full activation of the anti-tumor immune response. This study reveals a tumor-promoting role for iNKT cells and suggests their capacity to inhibit the CD8(+ T cell response to B cell lymphoma by opposing the effects of type II NKT cells.

  7. Isatis tinctoria L. combined with co-stimulatory molecules blockade prolongs survival of cardiac allografts in alloantigen-primed mice.

    Science.gov (United States)

    Kang, Xiangpeng; Chen, Jibing; Qin, Qing; Wang, Feng; Wang, Yongzhi; Lan, Tianshu; Xu, Shuo; Wang, Feiyu; Xia, Junjie; Ekberg, Henrik; Qi, Zhongquan; Liu, Zhongchen

    2010-05-01

    Memory T cells present a unique challenge in transplantation. Although memory T cells express robust immune responses to invading pathogens, they may be resistant to the effects of immunosuppressive therapies used to prolong graft survival. In previous studies, we found that compound K, the synthesized analogue of highly unsaturated fatty acids from Isatis tinctoria L., reduced acute cardiac allograft rejection in mice (Wang et al., 2009 [1]). Here, we further investigated the effect of compound K on cardiac allograft rejection in alloantigen-primed mice. We found that compound K significantly inhibited CD4(+) and CD8(+) memory T cells proliferation in a mixed lymphocyte reaction (MLR). In vivo, compound K combined with anti-CD154 and anti-LFA-1 monoclonal antibodies (mAbs) significantly extended the survival time of heart grafts in alloantigen-primed mice with no obvious toxic side effects. Furthermore, our data suggests that compound K works by reducing the expression of both IL-2 and IFN-gamma within the graft rather than enhancing expression of regulatory T cells (Tregs). Compound K can also inhibit the alloresponses of memory T cells, while increasing the proportion of CD4(+) memory T cells in the spleen of the recipients and significantly reducing the level of alloantibodies in the serum. Our study highlights the unique immune effects of compound K that may be further explored for clinical use in extending the survival of transplant grafts. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  8. Fragmentation of SIV-gag vaccine induces broader T cell responses.

    Directory of Open Access Journals (Sweden)

    Adel Benlahrech

    Full Text Available High mutation rates of human immunodeficiency virus (HIV allows escape from T cell recognition preventing development of effective T cell vaccines. Vaccines that induce diverse T cell immune responses would help overcome this problem. Using SIV gag as a model vaccine, we investigated two approaches to increase the breadth of the CD8 T cell response. Namely, fusion of vaccine genes to ubiquitin to target the proteasome and increase levels of MHC class I peptide complexes and gene fragmentation to overcome competition between epitopes for presentation and recognition.three vaccines were compared: full-length unmodified SIV-mac239 gag, full-length gag fused at the N-terminus to ubiquitin and 7 gag fragments of equal size spanning the whole of gag with ubiquitin-fused to the N-terminus of each fragment. Genes were cloned into a replication defective adenovirus vector and immunogenicity assessed in an in vitro human priming system. The breadth of the CD8 T cell response, defined by the number of distinct epitopes, was assessed by IFN-γ-ELISPOT and memory phenotype and cytokine production evaluated by flow cytometry. We observed an increase of two- to six-fold in the number of epitopes recognised in the ubiquitin-fused fragments compared to the ubiquitin-fused full-length gag. In contrast, although proteasomal targeting was achieved, there was a marked reduction in the number of epitopes recognised in the ubiquitin-fused full-length gag compared to the full-length unmodified gene, but there were no differences in the number of epitope responses induced by non-ubiquitinated full-length gag and the ubiquitin-fused mini genes. Fragmentation and ubiquitination did not affect T cell memory differentiation and polyfunctionality, though most responses were directed against the Ad5 vector.Fragmentation but not fusion with ubiquitin increases the breadth of the CD8 T vaccine response against SIV-mac239 gag. Thus gene fragmentation of HIV vaccines may maximise

  9. Defective immunoregulatory T-cell function in chronic lymphocytic leukemia

    International Nuclear Information System (INIS)

    Han, T.; Ozer, H.; Henderson, E.S.; Dadey, B.; Nussbaum-Blumenson, A.; Barcos, M.

    1981-01-01

    Chronic lymphocytic leukemia (CLL) of B-cell origin results in the malignant proliferation of small immunoglobulin-bearing lymphocytes. There is currently a controversy in the literature regarding both the ability of this leukemic population to differentiate into mature plasma cells, as well as the ability of apparently normal T cells from these patients to regulate allogeneic B-cell differentiation. In the present study we have examined the lymphocytes of CLL patients in various clinical stages of their disease and with different surface phenotypes of their leukemic B-cell population. Our results show that leukemic CLL B cells from all 20 patients (including one patient with a monoclonal IgM paraprotein and another with a monoclonal IgG paraprotein) are incapable of further differentiation even in the absence of suppressor T cells and the presence of helper T lymphocytes. This lack of capacity to differentiate is unaffected by clinical stage, by therapy, or by the phenotype of the malignant population. Since the leukemic B population did not suppress normal allogeneic B-cell differentiation, the maturation deficit is evidently intrinsic to the leukemic clone rather than a result of activity of non-T suppressor cells. T helper function was also variably depressed in the blood of some patients with CLL, and this depression did not correlate with clinical stage, with therapy, or with the degree of lymphocytosis. Dysfunction of radiosensitive T suppressor cells was found to be the most consistent regulatory deficit of CLL T cells. Each of 11 patients whose leukemic cell population was of the μdelta, μα, or μ phenotype had both helper and suppressor cell defects

  10. Human CD141+ Dendritic Cell and CD1c+ Dendritic Cell Undergo Concordant Early Genetic Programming after Activation in Humanized Mice In Vivo

    Directory of Open Access Journals (Sweden)

    Yoshihito Minoda

    2017-10-01

    Full Text Available Human immune cell subsets develop in immunodeficient mice following reconstitution with human CD34+ hematopoietic stem cells. These “humanized” mice are useful models to study human immunology and human-tropic infections, autoimmunity, and cancer. However, some human immune cell subsets are unable to fully develop or acquire full functional capacity due to a lack of cross-reactivity of many growth factors and cytokines between species. Conventional dendritic cells (cDCs in mice are categorized into cDC1, which mediate T helper (Th1 and CD8+ T cell responses, and cDC2, which mediate Th2 and Th17 responses. The likely human equivalents are CD141+ DC and CD1c+ DC subsets for mouse cDC1 and cDC2, respectively, but the extent of any interspecies differences is poorly characterized. Here, we exploit the fact that human CD141+ DC and CD1c+ DC develop in humanized mice, to further explore their equivalency in vivo. Global transcriptome analysis of CD141+ DC and CD1c+ DC isolated from humanized mice demonstrated that they closely resemble those in human blood. Activation of DC subsets in vivo, with the TLR3 ligand poly I:C, and the TLR7/8 ligand R848 revealed that a core panel of genes consistent with DC maturation status were upregulated by both subsets. R848 specifically upregulated genes associated with Th17 responses by CD1c+ DC, while poly I:C upregulated IFN-λ genes specifically by CD141+ DC. MYCL expression, known to be essential for CD8+ T cell priming by mouse DC, was specifically induced in CD141+ DC after activation. Concomitantly, CD141+ DC were superior to CD1c+ DC in their ability to prime naïve antigen-specific CD8+ T cells. Thus, CD141+ DC and CD1c+ DC share a similar activation profiles in vivo but also have induce unique signatures that support specialized roles in CD8+ T cell priming and Th17 responses, respectively. In combination, these data demonstrate that humanized mice provide an attractive and tractable model to study

  11. Resident CD141 (BDCA3)+ dendritic cells in human skin produce IL-10 and induce regulatory T cells that suppress skin inflammation.

    Science.gov (United States)

    Chu, Chung-Ching; Ali, Niwa; Karagiannis, Panagiotis; Di Meglio, Paola; Skowera, Ania; Napolitano, Luca; Barinaga, Guillermo; Grys, Katarzyna; Sharif-Paghaleh, Ehsan; Karagiannis, Sophia N; Peakman, Mark; Lombardi, Giovanna; Nestle, Frank O

    2012-05-07

    Human skin immune homeostasis, and its regulation by specialized subsets of tissue-residing immune sentinels, is poorly understood. In this study, we identify an immunoregulatory tissue-resident dendritic cell (DC) in the dermis of human skin that is characterized by surface expression of CD141, CD14, and constitutive IL-10 secretion (CD141(+) DDCs). CD141(+) DDCs possess lymph node migratory capacity, induce T cell hyporesponsiveness, cross-present self-antigens to autoreactive T cells, and induce potent regulatory T cells that inhibit skin inflammation. Vitamin D(3) (VitD3) promotes certain phenotypic and functional properties of tissue-resident CD141(+) DDCs from human blood DCs. These CD141(+) DDC-like cells can be generated in vitro and, once transferred in vivo, have the capacity to inhibit xeno-graft versus host disease and tumor alloimmunity. These findings suggest that CD141(+) DDCs play an essential role in the maintenance of skin homeostasis and in the regulation of both systemic and tumor alloimmunity. Finally, VitD3-induced CD141(+) DDC-like cells have potential clinical use for their capacity to induce immune tolerance.

  12. Cytotoxic potential of decidual NK cells and CD8+ T cells awakened by infections.

    Science.gov (United States)

    Crespo, Ângela C; van der Zwan, Anita; Ramalho-Santos, João; Strominger, Jack L; Tilburgs, Tamara

    2017-02-01

    To establish a healthy pregnancy the maternal immune system must tolerate fetal allo-antigens, yet remain competent to respond to infections. The ability of decidual NK cells (dNK) to promote migration of fetal extravillous trophoblasts (EVT) and placental growth as well as the capacity of EVT to promote immune tolerance are topics of high interest and extensive research. However, the problem of how dNK and decidual CD8+ T cells (CD8+ dT) provide immunity to infections of the placenta and the mechanisms that regulate their cytolytic function has thus far largely been ignored. Fetal EVT are the most invasive cells of the placenta and directly interact with maternal decidual immune cells at this maternal-fetal interface. Besides the expression of non-polymorphic HLA-E and HLA-G molecules that are associated with immune tolerance, EVT also express highly polymorphic HLA-C molecules that can serve as targets for maternal dNK and CD8+ dT responses. HLA-C expression by EVT has a dual role as the main molecule to which immune tolerance needs to be established and as the only molecule that can present pathogen-derived peptides and provide protective immunity when EVT are infected. The focus of this review is to address the regulation of cytotoxicity of dNK and CD8+ dT, which is essential for maternal-fetal immune tolerance as well as recent evidence that both cell types can provide immunity to infections at the maternal-fetal interface. A particular emphasis is given to the role of HLA-C expressed by EVT and its capacity to elicit dNK and CD8+ dT responses. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. Meningeal mast cell-T cell crosstalk regulates T cell encephalitogenicity.

    Science.gov (United States)

    Russi, Abigail E; Walker-Caulfield, Margaret E; Guo, Yong; Lucchinetti, Claudia F; Brown, Melissa A

    2016-09-01

    GM-CSF is a cytokine produced by T helper (Th) cells that plays an essential role in orchestrating neuroinflammation in experimental autoimmune encephalomyelitis, a rodent model of multiple sclerosis. Yet where and how Th cells acquire GM-CSF expression is unknown. In this study we identify mast cells in the meninges, tripartite tissues surrounding the brain and spinal cord, as important contributors to antigen-specific Th cell accumulation and GM-CSF expression. In the absence of mast cells, Th cells do not accumulate in the meninges nor produce GM-CSF. Mast cell-T cell co-culture experiments and selective mast cell reconstitution of the meninges of mast cell-deficient mice reveal that resident meningeal mast cells are an early source of caspase-1-dependent IL-1β that licenses Th cells to produce GM-CSF and become encephalitogenic. We also provide evidence of mast cell-T cell co-localization in the meninges and CNS of recently diagnosed acute MS patients indicating similar interactions may occur in human demyelinating disease. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Arithmetically Related Ideal Topologies and the Infinitude of Primes ...

    African Journals Online (AJOL)

    algebra. Mathematics Subject Classification (1991): 11N80, 11N25, 11A41, 11T99, 13A15, 20M25 Keywords: x-ideal, topological semigroup, ideal topology, infinitude of primes, generalized primes and integers, distribution, integers, specified multiplicative constraints, primes, ideals, multiplicative ideal theory, semigroup

  15. Positional priming of pop-out is nested in visuospatial context.

    Science.gov (United States)

    Gokce, Ahu; Müller, Hermann J; Geyer, Thomas

    2013-11-26

    The present study investigated facilitatory and inhibitory positional priming using a variant of Maljkovic and Nakayama's (1996) priming of pop-out task. Here, the singleton target and the distractors could be presented in different visuospatial contexts-but identical screen locations-across trials, permitting positional priming based on individual locations to be disentangled from priming based on interitem configural relations. The results revealed both significant facilitatory priming, i.e., faster reaction times (RTs) to target presented at previous target relative to previously empty locations, and inhibitory priming, i.e., slower RTs to target at previous distractor relative to previously empty locations. However, both effects were contingent on repetitions versus changes of stimulus arrangement: While facilitation of target locations was dependent on the repetition of the exact item configuration (e.g., T-type followed by T-type stimulus arrangement), the inhibitory effect was more "tolerant," being influenced by repetitions versus changes of the item's visuospatial category (T-type followed by Z-type pattern; cf. Garner & Clement, 1963). The results suggest that facilitatory and inhibitory priming are distinct phenomena (Finke et al., 2009) and that both effects are sensitive to subtle information about the arrangement of the display items (Geyer, Zehetleitner, & Müller, 2010). The results are discussed with respect to the stage(s) of visual pop-out search that are influenced by positional priming.

  16. Harnessing the Power of T Cells: The Promising Hope for a Universal Influenza Vaccine

    Directory of Open Access Journals (Sweden)

    E. Bridie Clemens

    2018-03-01

    Full Text Available Next-generation vaccines that utilize T cells could potentially overcome the limitations of current influenza vaccines that rely on antibodies to provide narrow subtype-specific protection and are prone to antigenic mismatch with circulating strains. Evidence from animal models shows that T cells can provide heterosubtypic protection and are crucial for immune control of influenza virus infections. This has provided hope for the design of a universal vaccine able to prime against diverse influenza virus strains and subtypes. However, multiple hurdles exist for the realisation of a universal T cell vaccine. Overall primary concerns are: extrapolating human clinical studies, seeding durable effective T cell resident memory (Trm, population human leucocyte antigen (HLA coverage, and the potential for T cell-mediated immune escape. Further comprehensive human clinical data is needed during natural infection to validate the protective role T cells play during infection in the absence of antibodies. Furthermore, fundamental questions still exist regarding the site, longevity and duration, quantity, and phenotype of T cells needed for optimal protection. Standardised experimental methods, and eventually simplified commercial assays, to assess peripheral influenza-specific T cell responses are needed for larger-scale clinical studies of T cells as a correlate of protection against influenza infection. The design and implementation of a T cell-inducing vaccine will require a consensus on the level of protection acceptable in the community, which may not provide sterilizing immunity but could protect the individual from severe disease, reduce the length of infection, and potentially reduce transmission in the community. Therefore, increasing the standard of care potentially offered by T cell vaccines should be considered in the context of pandemic preparedness and zoonotic infections, and in combination with improved antibody vaccine targeting methods

  17. B Cells and Autoantibodies in Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Anne-Katrin Pröbstel

    2015-07-01

    Full Text Available While over the past decades T cells have been considered key players in the pathogenesis of multiple sclerosis (MS, it has only recently become evident that B cells have a major contributing role. Our understanding of the role of B cells has evolved substantially following the clinical success of B cell-targeting therapies and increasing experimental evidence for significant B cell involvement. Rather than mere antibody-producing cells, it is becoming clear that they are team players with the capacity to prime and regulate T cells, and function both as pro- and anti-inflammatory mediators. However, despite tremendous efforts, the target antigen(s of B cells in MS have yet to be identified. The first part of this review summarizes the clinical evidence and results from animal studies pointing to the relevance of B cells in the pathogenesis of MS. The second part gives an overview of the currently known potential autoantigen targets. The third part recapitulates and critically appraises the currently available B cell-directed therapies.

  18. Transplantation of neuronal-primed human bone marrow mesenchymal stem cells in hemiparkinsonian rodents.

    Directory of Open Access Journals (Sweden)

    Melissa L M Khoo

    Full Text Available Bone marrow-derived human mesenchymal stem cells (hMSCs have shown promise in in vitro neuronal differentiation and in cellular therapy for neurodegenerative disorders, including Parkinson' disease. However, the effects of intracerebral transplantation are not well defined, and studies do not agreed on the optimal neuronal differentiation method. Here, we investigated three growth factor-based neuronal differentiation procedures (using FGF-2/EGF/PDGF/SHH/FGF-8/GDNF, and found all to be capable of eliciting an immature neural phenotype, in terms of cell morphology and gene/protein expression. The neuronal-priming (FGF-2/EGF method induced neurosphere-like formation and the highest NES and NR4A2 expression by hMSCs. Transplantation of undifferentiated and neuronal-primed hMSCs into the striatum and substantia nigra of 6-OHDA-lesioned hemiparkinsonian rats revealed transient graft survival of 7 days, despite the reported immunosuppressive properties of MSCs and cyclosporine-immunosuppression of rats. Neither differentiation of hMSCs nor induction of host neurogenesis was observed at injection sites, and hMSCs continued producing mesodermal fibronectin. Strategies for improving engraftment and differentiation post-transplantation, such as prior in vitro neuronal-priming, nigral and striatal grafting, and co-transplantation of olfactory ensheathing cells that promote neural regeneration, were unable to provide advantages. Innate inflammatory responses (Iba-1-positive microglia/macrophage and GFAP-positive astrocyte activation and accumulation were detected around grafts within 7 days. Our findings indicate that growth factor-based methods allow hMSC differentiation toward immature neuronal-like cells, and contrary to previous reports, only transient survival and engraftment of hMSCs occurs following transplantation in immunosuppressed hemiparkinsonian rats. In addition, suppression of host innate inflammatory responses may be a key factor for

  19. Gamma-irradiated influenza A virus can prime for a cross-reactive and cross-protective immune response against influenza A viruses

    International Nuclear Information System (INIS)

    Mullbacher, A.; Ada, G.L.; Tha Hla, R.

    1988-01-01

    A-strain influenza virus A/JAP (H2N2) was tested for its ability to induce cytotoxic T cells (Tc) after being rendered non-infectious by either UV or gamma irradiation. Gamma-irradiated virus proved to be more efficient than UV-inactivated virus in priming for a memory Tc cell response or in boosting memory spleen cells in vitro. Most importantly, γ-inactivated, but not UV-inactivated, A/JAP immunized animals survived lethal challenge with heterologous (A/PC(H3N2), A/WSN(H1N1)) virus as effectively as mice primed with infectious virus

  20. T-cell proliferative responses following sepsis in neonatal rats.

    Science.gov (United States)

    Dallal, Ousama; Ravindranath, Thyyar M; Choudhry, Mashkoor A; Kohn, Annamarie; Muraskas, Jonathan K; Namak, Shahla Y; Alattar, Mohammad H; Sayeed, Mohammed M

    2003-01-01

    Both experimental and clinical evidence suggest a suppression of T-cell function in burn and sepsis. The objective of the present study was to evaluate splenocyte and purified T-cell proliferative response and IL-2 production in septic neonatal rats. We also examined if alterations in T-cell proliferation and IL-2 production in neonatal sepsis is due to elevation in PGE2. PGE2 is known to play a significant role in T-cell suppression during sepsis in adults. Sepsis was induced in 15-day-old neonatal Sprague-Dawley rats by implanting 0.1 cm3 of fecal pellet impregnated with Escherichia coli (50 CFU) and Bacteroides fragilis (10(3) CFU). Animals receiving fecal pellets without the bacteria were designated as sterile. A group of septic and sterile rats were treated with PGE2 synthesis inhibitors, NS398 and resveratrol. These treatments of animals allowed us to evaluate the role of PGE2 in T-cell suppression during neonatal sepsis. Splenocytes as well as purified T cells were prepared and then proliferative response and IL-2 productive capacities were measured. A significant suppression of splenocyte proliferation and IL-2 production was noticed in both sterile and septic animals compared to the T cells from unoperated control rats. In contrast, the proliferation and IL-2 production by nylon wool purified T cells in sterile rats was not significantly different from control rats, whereas, a significant suppression in Con A-mediated T-cell proliferation and IL-2 production noticed in septic rat T cells compared to the sterile and control rat T cells. Such decrease in T-cell proliferation and IL-2 production was accompanied with 20-25% deaths in neonates implanted with septic pellets. No mortality was noted in sterile-implanted neonates. Treatment of animals with COX-1 inhibitor had no effect on T-cell proliferation response in both septic and sterile groups, whereas COX-2 inhibitor abrogated the decrease in T-cell proliferative response in the septic group. The treatment

  1. Role of GATA Transcription Factors in the T Cell Lineage

    NARCIS (Netherlands)

    J.P. van Hamburg (Jan Piet)

    2008-01-01

    textabstractT lymphocytes play a central role in the mammalian immune response against potentially hazardous pathogens, such as parasites, bacteria, viruses and fungi. These cells have the remarkable capacity to specifically recognize foreign substances, termed antigens, to which they respond by

  2. Full restoration of Brucella-infected dendritic cell functionality through Vγ9Vδ2 T helper type 1 crosstalk.

    Directory of Open Access Journals (Sweden)

    Ming Ni

    Full Text Available Vγ9Vδ2 T cells play an important role in the immune response to infectious agents but the mechanisms contributing to this immune process remain to be better characterized. Following their activation, Vγ9Vδ2 T cells develop cytotoxic activity against infected cells, secrete large amounts of cytokines and influence the function of other effectors of immunity, notably cells playing a key role in the initiation of the adaptive immune response such as dendritic cells. Brucella infection dramatically impairs dendritic cell maturation and their capacity to present antigens to T cells. Herein, we investigated whether V T cells have the ability to restore the full functional capacities of Brucella-infected dendritic cells. Using an in vitro multicellular infection model, we showed that: 1/Brucella-infected dendritic cells activate Vγ9Vδ2 T cells through contact-dependent mechanisms, 2/activated Vγ9Vδ2 T cells induce full differentiation into IL-12 producing cells of Brucella-infected dendritic cells with functional antigen presentation activity. Furthermore, phosphoantigen-activated Vγ9Vδ2 T cells also play a role in triggering the maturation process of dendritic cells already infected for 24 h. This suggests that activated Vγ9Vδ2 T cells could be used to modulate the outcome of infectious diseases by promoting an adjuvant effect in dendritic cell-based cellular therapies.

  3. Single-epitope DNA vaccination prevents exhaustion and facilitates a broad antiviral CD8+ T cell response during chronic viral infection

    DEFF Research Database (Denmark)

    Bartholdy, Christina; Stryhn, Anette; Christensen, Jan Pravsgaard

    2004-01-01

    Induction of a monospecific antiviral CD8+ T cell response may pose a risk to the host due to the narrow T cell response induced. At the individual level, this may result in selection of CD8+ T cell escape variants, particularly during chronic viral infection. Second, prior immunization toward a ...... with escape variants. These findings underscore that a monospecific vaccine may induce efficient protective immunity given the right set of circumstances....... of DNA vaccines encoding immunodominant epitopes of lymphocytic choriomeningitis virus (LCMV). We analyzed the spectrum of the CD8+ T cell response and the susceptibility to infection in H-2(b) and H-2(d) mice. Priming for a monospecific, CD8+ T cell response did not render mice susceptible to viral...... variants. Thus, vaccinated mice were protected against chronic infection with LCMV, and no evidence indicating biologically relevant viral escape was obtained. In parallel, a broad and sustained CD8+ T cell response was generated upon infection, and in H-2(d) mice epitope spreading was observed. Even after...

  4. T-cell help permits memory CD8(+) T-cell inflation during cytomegalovirus latency.

    Science.gov (United States)

    Walton, Senta M; Torti, Nicole; Mandaric, Sanja; Oxenius, Annette

    2011-08-01

    CD4(+) T cells are implied to sustain CD8(+) T-cell responses during persistent infections. As CD4(+) T cells are often themselves antiviral effectors, they might shape CD8(+) T-cell responses via help or via controlling antigen load. We used persistent murine CMV (MCMV) infection to dissect the impact of CD4(+) T cells on virus-specific CD8(+) T cells, distinguishing between increased viral load in the absence of CD4(+) T cells and CD4(+) T-cell-mediated helper mechanisms. Absence of T-helper cells was associated with sustained lytic MCMV replication and led to a slow and gradual reduction of the size and function of the MCMV-specific CD8(+) T-cell pool. However, when virus replication was controlled in the absence of CD4(+) T cells, CD8(+) T-cell function was comparably impaired, but in addition CD8(+) T-cell inflation, a hallmark of CMV infection, was completely abolished. Thus, CD8(+) T-cell inflation during latent CMV infection is strongly dependent on CD4(+) T-cell helper functions, which can partially be compensated by ongoing lytic viral replication in the absence of CD4(+) T cells. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Targeting allergen to FcgammaRI reveals a novel T(H)2 regulatory pathway linked to thymic stromal lymphopoietin receptor.

    Science.gov (United States)

    Hulse, Kathryn E; Reefer, Amanda J; Engelhard, Victor H; Patrie, James T; Ziegler, Steven F; Chapman, Martin D; Woodfolk, Judith A

    2010-01-01

    The molecule H22-Fel d 1, which targets cat allergen to FcgammaRI on dendritic cells (DCs), has the potential to treat cat allergy because of its T-cell modulatory properties. We sought to investigate whether the T-cell response induced by H22-Fel d 1 is altered in the presence of the T(H)2-promoting cytokine thymic stromal lymphopoietin (TSLP). Studies were performed in subjects with cat allergy with and without atopic dermatitis. Monocyte-derived DCs were primed with H22-Fel d 1 in the presence or absence of TSLP, and the resulting T-cell cytokine repertoire was analyzed by flow cytometry. The capacity for H22-Fel d 1 to modulate TSLP receptor expression on DCs was examined by flow cytometry in the presence or absence of inhibitors of Fc receptor signaling molecules. Surprisingly, TSLP alone was a weak inducer of T(H)2 responses irrespective of atopic status; however, DCs coprimed with TSLP and H22-Fel d 1 selectively and synergistically amplified T(H)2 responses in highly atopic subjects. This effect was OX40 ligand independent, pointing to an unconventional TSLP-mediated pathway. Expression of TSLP receptor was upregulated on atopic DCs primed with H22-Fel d 1 through a pathway regulated by FcgammaRI-associated signaling components, including src-related tyrosine kinases and Syk, as well as the downstream molecule phosphoinositide 3-kinase. Inhibition of TSLP receptor upregulation triggered by H22-Fel d 1 blocked TSLP-mediated T(H)2 responses. Discovery of a novel T(H)2 regulatory pathway linking FcgammaRI signaling to TSLP receptor upregulation and consequent TSLP-mediated effects questions the validity of receptor-targeted allergen vaccines. Copyright 2010 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.

  6. CD4 T cell-mediated protection from lethal influenza: perforin and antibody-mediated mechanisms give a one-two punch.

    Science.gov (United States)

    Brown, Deborah M; Dilzer, Allison M; Meents, Dana L; Swain, Susan L

    2006-09-01

    The mechanisms whereby CD4 T cells contribute to the protective response against lethal influenza infection remain poorly characterized. To define the role of CD4 cells in protection against a highly pathogenic strain of influenza, virus-specific TCR transgenic CD4 effectors were generated in vitro and transferred into mice given lethal influenza infection. Primed CD4 effectors conferred protection against lethal infection over a broad range of viral dose. The protection mediated by CD4 effectors did not require IFN-gamma or host T cells, but did result in increased anti-influenza Ab titers compared with untreated controls. Further studies indicated that CD4-mediated protection at high doses of influenza required B cells, and that passive transfer of anti-influenza immune serum was therapeutic in B cell-deficient mice, but only when CD4 effectors were present. Primed CD4 cells also acquired perforin (Pfn)-mediated cytolytic activity during effector generation, suggesting a second mechanism used by CD4 cells to confer protection. Pfn-deficient CD4 effectors were less able to promote survival in intact BALB/c mice and were unable to provide protection in B cell-deficient mice, indicating that Ab-independent protection by CD4 effectors requires Pfn. Therefore, CD4 effectors mediate protection to lethal influenza through at least two mechanisms: Pfn-mediated cytotoxicity early in the response promoted survival independently of Ab production, whereas CD4-driven B cell responses resulted in high titer Abs that neutralized remaining virus.

  7. Analysis of the CD4(+) T cell responses to house dust mite allergoid

    NARCIS (Netherlands)

    Kalinski, P.; Lebre, M. C.; Kramer, D.; de Jong, E. C.; van Schijndel, J. W. P. M.; Kapsenberg, M. L.

    2003-01-01

    Background: Modified allergen extracts (allergoids) with reduced IgE-binding capacity are successfully used in immunotherapy of atopic allergy. Their reduced T-cell stimulatory capacity is less well studied and is a subject of the present study. Methods: We compared the ability of native house dust

  8. PRMT7 Preserves Satellite Cell Regenerative Capacity

    Directory of Open Access Journals (Sweden)

    Roméo Sébastien Blanc

    2016-02-01

    Full Text Available Regeneration of skeletal muscle requires the continued presence of quiescent muscle stem cells (satellite cells, which become activated in response to injury. Here, we report that whole-body protein arginine methyltransferase PRMT7−/− adult mice and mice conditionally lacking PRMT7 in satellite cells using Pax7-CreERT2 both display a significant reduction in satellite cell function, leading to defects in regenerative capacity upon muscle injury. We show that PRMT7 is preferentially expressed in activated satellite cells and, interestingly, PRMT7-deficient satellite cells undergo cell-cycle arrest and premature cellular senescence. These defects underlie poor satellite cell stem cell capacity to regenerate muscle and self-renew after injury. PRMT7-deficient satellite cells express elevated levels of the CDK inhibitor p21CIP1 and low levels of its repressor, DNMT3b. Restoration of DNMT3b in PRMT7-deficient cells rescues PRMT7-mediated senescence. Our findings define PRMT7 as a regulator of the DNMT3b/p21 axis required to maintain muscle stem cell regenerative capacity.

  9. RhoA Drives T-Cell Activation and Encephalitogenic Potential in an Animal Model of Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Alba Manresa-Arraut

    2018-05-01

    Full Text Available T-cells are known to be intimately involved in the pathogenesis of multiple sclerosis (MS and its animal model experimental autoimmune encephalomyelitis (EAE. T-cell activation is controlled by a range of intracellular signaling pathways regulating cellular responses such as proliferation, cytokine production, integrin expression, and migration. These processes are crucial for the T-cells’ ability to mediate inflammatory processes in autoimmune diseases such as MS. RhoA is a ubiquitously expressed small GTPase well described as a regulator of the actin cytoskeleton. It is essential for embryonic development and together with other Rho GTPases controls various cellular processes such as cell development, shaping, proliferation, and locomotion. However, the specific contribution of RhoA to these processes in T-cells in general, and in autoreactive T-cells in particular, has not been fully characterized. Using mice with a T-cell specific deletion of the RhoA gene (RhoAfl/flLckCre+, we investigated the role of RhoA in T-cell development, functionality, and encephalitogenic potential in EAE. We show that lack of RhoA specifically in T-cells results in reduced numbers of mature T-cells in thymus and spleen but normal counts in peripheral blood. EAE induction in RhoAfl/flLckCre+ mice results in significantly reduced disease incidence and severity, which coincides with a reduced CNS T-cell infiltration. Besides presenting reduced migratory capacity, both naïve and autoreactive effector T-cells from RhoAfl/flLckCre+ mice show decreased viability, proliferative capacity, and an activation profile associated with reduced production of Th1 pro-inflammatory cytokines. Our study demonstrates that RhoA is a central regulator of several archetypical T-cell responses, and furthermore points toward RhoA as a new potential therapeutic target in diseases such as MS, where T-cell activity plays a central role.

  10. Two separate defects affecting true naive or virtual memory T cell precursors combine to reduce naive T cell responses with aging.

    Science.gov (United States)

    Renkema, Kristin R; Li, Gang; Wu, Angela; Smithey, Megan J; Nikolich-Žugich, Janko

    2014-01-01

    Naive T cell responses are eroded with aging. We and others have recently shown that unimmunized old mice lose ≥ 70% of Ag-specific CD8 T cell precursors and that many of the remaining precursors acquire a virtual (central) memory (VM; CD44(hi)CD62L(hi)) phenotype. In this study, we demonstrate that unimmunized TCR transgenic (TCRTg) mice also undergo massive VM conversion with age, exhibiting rapid effector function upon both TCR and cytokine triggering. Age-related VM conversion in TCRTg mice directly depended on replacement of the original TCRTg specificity by endogenous TCRα rearrangements, indicating that TCR signals must be critical in VM conversion. Importantly, we found that VM conversion had adverse functional effects in both old wild-type and old TCRTg mice; that is, old VM, but not old true naive, T cells exhibited blunted TCR-mediated, but not IL-15-mediated, proliferation. This selective proliferative senescence correlated with increased apoptosis in old VM cells in response to peptide, but decreased apoptosis in response to homeostatic cytokines IL-7 and IL-15. Our results identify TCR as the key factor in differential maintenance and function of Ag-specific precursors in unimmunized mice with aging, and they demonstrate that two separate age-related defects--drastic reduction in true naive T cell precursors and impaired proliferative capacity of their VM cousins--combine to reduce naive T cell responses with aging.

  11. Cytokines affecting CD4+T regulatory cells in transplant tolerance. II. Interferon gamma (IFN-γ) promotes survival of alloantigen-specific CD4+T regulatory cells.

    Science.gov (United States)

    Nomura, Masaru; Hodgkinson, Suzanne J; Tran, Giang T; Verma, Nirupama D; Robinson, Catherine; Plain, Karren M; Boyd, Rochelle; Hall, Bruce M

    2017-06-01

    CD4 + T cells that transfer alloantigen-specific transplant tolerance are short lived in culture unless stimulated with specific-donor alloantigen and lymphocyte derived cytokines. Here, we examined if IFN-γ maintained survival of tolerance transferring CD4 + T cells. Alloantigen-specific transplant tolerance was induced in DA rats with heterotopic adult PVG heart allografts by a short course of immunosuppression and these grafts functioned for >100days with no further immunosuppression. In previous studies, we found the CD4 + T cells from tolerant rats that transfer tolerance to an irradiated DA host grafted with a PVG heart, lose their tolerance transferring ability after 3days of culture, either with or without donor alloantigen, and effect rejection of specific-donor grafts. If cultures with specific-donor alloantigen are supplemented by supernatant from ConA activated lymphocytes the tolerance transferring cells survive, suggesting these cells depend on cytokines for their survival. In this study, we found addition of rIFN-γ to MLC with specific-donor alloantigen maintained the capacity of tolerant CD4 + T cells to transfer alloantigen-specific tolerance and their ability to suppress PVG allograft rejection mediated by co-administered naïve CD4 + T cells. IFN-γ suppressed the in vitro proliferation of tolerant CD4 + T cells. Tolerant CD4 + CD25 + T cells did not proliferate in MLC to PVG stimulator cells with no cytokine added, but did when IFN-γ was present. IFN-γ did not alter proliferation of tolerant CD4 + CD25 + T cells to third-party Lewis. Tolerant CD4 + CD25 + T cells' expression of IFN-γ receptor (IFNGR) was maintained in culture when IFN-γ was present. This study suggested that IFN-γ maintained tolerance mediating alloantigen-specific CD4 + CD25 + T cells. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  12. IFN-Gamma-Dependent and Independent Mechanisms of CD4+ Memory T Cell-Mediated Protection from Listeria Infection

    Directory of Open Access Journals (Sweden)

    Stephanie M. Meek

    2018-02-01

    Full Text Available While CD8+ memory T cells can promote long-lived protection from secondary exposure to intracellular pathogens, less is known regarding the direct protective mechanisms of CD4+ T cells. We utilized a prime/boost model in which mice are initially exposed to an acutely infecting strain of lymphocytic choriomeningitis virus (LCMV, followed by a heterologous rechallenge with Listeria monocytogenes recombinantly expressing the MHC Class II-restricted LCMV epitope, GP61–80 (Lm-gp61. We found that heterologous Lm-gp61 rechallenge resulted in robust activation of CD4+ memory T cells and that they were required for rapid bacterial clearance. We further assessed the relative roles of TNF and IFNγ in the direct anti-bacterial function of CD4+ memory T cells. We found that disruption of TNF resulted in a complete loss of protection mediated by CD4+ memory T cells, whereas disruption of IFNγ signaling to macrophages results in only a partial loss of protection. The protective effect mediated by CD4+ T cells corresponded to the rapid accumulation of pro-inflammatory macrophages in the spleen and an altered inflammatory environment in vivo. Overall, we conclude that protection mediated by CD4+ memory T cells from heterologous Listeria challenge is most directly dependent on TNF, whereas IFNγ only plays a minor role.

  13. Pharmacologic suppression of target cell recognition by engineered T cells expressing chimeric T-cell receptors.

    Science.gov (United States)

    Alvarez-Vallina, L; Yañez, R; Blanco, B; Gil, M; Russell, S J

    2000-04-01

    Adoptive therapy with autologous T cells expressing chimeric T-cell receptors (chTCRs) is of potential interest for the treatment of malignancy. To limit possible T-cell-mediated damage to normal tissues that weakly express the targeted tumor antigen (Ag), we have tested a strategy for the suppression of target cell recognition by engineered T cells. Jurkat T cells were transduced with an anti-hapten chTCR tinder the control of a tetracycline-suppressible promoter and were shown to respond to Ag-positive (hapten-coated) but not to Ag-negative target cells. The engineered T cells were then reacted with hapten-coated target cells at different effector to target cell ratios before and after exposure to tetracycline. When the engineered T cells were treated with tetracycline, expression of the chTCR was greatly decreased and recognition of the hapten-coated target cells was completely suppressed. Tetracycline-mediated suppression of target cell recognition by engineered T cells may be a useful strategy to limit the toxicity of the approach to cancer gene therapy.

  14. Tissue specific heterogeneity in effector immune cell response

    Directory of Open Access Journals (Sweden)

    Saba eTufail

    2013-08-01

    Full Text Available Post pathogen invasion, migration of effector T-cell subsets to specific tissue locations is of prime importance for generation of robust immune response. Effector T cells are imprinted with distinct ‘homing codes’ (adhesion molecules and chemokine receptors during activation which regulate their targeted trafficking to specific tissues. Internal cues in the lymph node microenvironment along with external stimuli from food (vitamin A and sunlight (vitamin D3 prime dendritic cells, imprinting them to play centrestage in the induction of tissue tropism in effector T cells. B cells as well, in a manner similar to effector T cells, exhibit tissue tropic migration. In this review, we have focused on the factors regulating the generation and migration of effector T cells to various tissues alongwith giving an overview of tissue tropism in B cells.

  15. The common mouse protozoa Tritrichomonas muris alters mucosal T cell homeostasis and colitis susceptibility.

    Science.gov (United States)

    Escalante, Nichole K; Lemire, Paul; Cruz Tleugabulova, Mayra; Prescott, David; Mortha, Arthur; Streutker, Catherine J; Girardin, Stephen E; Philpott, Dana J; Mallevaey, Thierry

    2016-12-12

    The mammalian gastrointestinal tract hosts a diverse community of microbes including bacteria, fungi, protozoa, helminths, and viruses. Through coevolution, mammals and these microbes have developed a symbiosis that is sustained through the host's continuous sensing of microbial factors and the generation of a tolerant or pro-inflammatory response. While analyzing T cell-driven colitis in nonlittermate mouse strains, we serendipitously identified that a nongenetic transmissible factor dramatically increased disease susceptibility. We identified the protozoan Tritrichomonas muris as the disease-exacerbating element. Furthermore, experimental colonization with T. muris induced an elevated Th1 response in the cecum of naive wild-type mice and accelerated colitis in Rag1 -/- mice after T cell transfer. Overall, we describe a novel cross-kingdom interaction within the murine gut that alters immune cell homeostasis and disease susceptibility. This example of unpredicted microbial priming of the immune response highlights the importance of studying trans-kingdom interactions and serves as a stark reminder of the importance of using littermate controls in all mouse research. © 2016 Escalante et al.

  16. Increase in IFNγ(-IL-2(+ cells in recent human CD4 T cell responses to 2009 pandemic H1N1 influenza.

    Directory of Open Access Journals (Sweden)

    Jason M Weaver

    Full Text Available Human CD4 T cell recall responses to influenza virus are strongly biased towards Type 1 cytokines, producing IFNγ, IL-2 and TNFα. We have now examined the effector phenotypes of CD4 T cells in more detail, particularly focusing on differences between recent versus long-term, multiply-boosted responses. Peptides spanning the proteome of temporally distinct influenza viruses were distributed into pools enriched for cross-reactivity to different influenza strains, and used to stimulate antigen-specific CD4 T cells representing recent or long-term memory. In the general population, peptides unique to the long-circulating influenza A/New Caledonia/20/99 (H1N1 induced Th1-like responses biased toward the expression of IFNγ(+TNFα(+ CD4 T cells. In contrast, peptide pools enriched for non-cross-reactive peptides of the pandemic influenza A/California/04/09 (H1N1 induced more IFNγ(-IL-2(+TNFα(+ T cells, similar to the IFNγ(-IL-2(+ non-polarized, primed precursor T cells (Thpp that are a predominant response to protein vaccination. These results were confirmed in a second study that compared samples taken before the 2009 pandemic to samples taken one month after PCR-confirmed A/California/04/09 infection. There were striking increases in influenza-specific TNFα(+, IFNγ(+, and IL-2(+ cells in the post-infection samples. Importantly, peptides enriched for non-cross-reactive A/California/04/09 specificities induced a higher proportion of Thpp-like IFNγ(-IL-2(+TNFα(+ CD4 T cells than peptide pools cross-reactive with previous influenza strains, which induced more Th1 (IFNγ(+TNFα(+ responses. These IFNγ(-IL-2(+TNFα(+ CD4 T cells may be an important target population for vaccination regimens, as these cells are induced upon infection, may have high proliferative potential, and may play a role in providing future effector cells during subsequent infections.

  17. Withania somnifera Root Extract Enhances Chemotherapy through 'Priming'.

    Directory of Open Access Journals (Sweden)

    Aine Brigette Henley

    Full Text Available Withania somnifera extracts are known for their anti-cancerous, anti-inflammatory and antioxidative properties. One of their mechanisms of actions is to modulate mitochondrial function through increasing oxidative stress. Recently 'priming' has been suggested as a potential mechanism for enhancing cancer cell death. In this study we demonstrate that 'priming', in HT-29 colon cells, with W. somnifera root extract increased the potency of the chemotherapeutic agent cisplatin. We have also showed the W. somnifera root extract enhanced mitochondrial dysfunction and that the underlying mechanism of 'priming' was selectively through increased ROS. Moreover, we showed that this effect was not seen in non-cancerous cells.

  18. Bivalent promoter marks and a latent enhancer may prime the leukaemia oncogene LMO1 for ectopic expression in T-cell leukaemia.

    Science.gov (United States)

    Oram, S H; Thoms, J; Sive, J I; Calero-Nieto, F J; Kinston, S J; Schütte, J; Knezevic, K; Lock, R B; Pimanda, J E; Göttgens, B

    2013-06-01

    LMO1 is a transcriptional regulator and a T-acute lymphoblastic leukaemia (T-ALL) oncogene. Although first identified in association with a chromosomal translocation in T-ALL, the ectopic expression of LMO1 occurs far more frequently in the absence of any known mutation involving its locus. Given that LMO1 is barely expressed in any haematopoietic lineage, and activation of transcriptional drivers in leukaemic cells is not well described, we investigated the regulation of this gene in normal haematopoietic and leukaemic cells. We show that LMO1 has two promoters that drive reporter gene expression in transgenic mice to neural tissues known to express endogenous LMO1. The LMO1 promoters display bivalent histone marks in multiple blood lineages including T-cells, and a 3' flanking region at LMO1 +57 contains a transcriptional enhancer that is active in developing blood cells in transgenic mouse embryos. The LMO1 promoters become activated in T-ALL together with the 3' enhancer, which is bound in primary T-ALL cells by SCL/TAL1 and GATA3. Taken together, our results show that LMO1 is poised for expression in normal progenitors, where activation of SCL/TAL1 together with a breakdown of epigenetic repression of LMO1 regulatory elements induces ectopic LMO1 expression that contributes to the development and maintenance of T-ALL.

  19. Leukemia-associated activating mutation of Flt3 expands dendritic cells and alters T cell responses.

    Science.gov (United States)

    Lau, Colleen M; Nish, Simone A; Yogev, Nir; Waisman, Ari; Reiner, Steven L; Reizis, Boris

    2016-03-07

    A common genetic alteration in acute myeloid leukemia is the internal tandem duplication (ITD) in FLT3, the receptor for cytokine FLT3 ligand (FLT3L). Constitutively active FLT3-ITD promotes the expansion of transformed progenitors, but also has pleiotropic effects on hematopoiesis. We analyzed the effect of FLT3-ITD on dendritic cells (DCs), which express FLT3 and can be expanded by FLT3L administration. Pre-leukemic mice with the Flt3(ITD) knock-in allele manifested an expansion of classical DCs (cDCs) and plasmacytoid DCs. The expansion originated in DC progenitors, was cell intrinsic, and was further enhanced in Flt3(ITD/ITD) mice. The mutation caused the down-regulation of Flt3 on the surface of DCs and reduced their responsiveness to Flt3L. Both canonical Batf3-dependent CD8(+) cDCs and noncanonical CD8(+) cDCs were expanded and showed specific alterations in their expression profiles. Flt3(ITD) mice showed enhanced capacity to support T cell proliferation, including a cell-extrinsic expansion of regulatory T (T reg) cells. Accordingly, these mice restricted alloreactive T cell responses during graft-versus-host reaction, but failed to control autoimmunity without T reg cells. Thus, the FLT3-ITD mutation directly affects DC development, indirectly modulating T cell homeostasis and supporting T reg cell expansion. We hypothesize that this effect of FLT3-ITD might subvert immunosurveillance and promote leukemogenesis in a cell-extrinsic manner. © 2016 Lau et al.

  20. T-cell receptor transfer into human T cells with ecotropic retroviral vectors.

    Science.gov (United States)

    Koste, L; Beissert, T; Hoff, H; Pretsch, L; Türeci, Ö; Sahin, U

    2014-05-01

    Adoptive T-cell transfer for cancer immunotherapy requires genetic modification of T cells with recombinant T-cell receptors (TCRs). Amphotropic retroviral vectors (RVs) used for TCR transduction for this purpose are considered safe in principle. Despite this, TCR-coding and packaging vectors could theoretically recombine to produce replication competent vectors (RCVs), and transduced T-cell preparations must be proven free of RCV. To eliminate the need for RCV testing, we transduced human T cells with ecotropic RVs so potential RCV would be non-infectious for human cells. We show that transfection of synthetic messenger RNA encoding murine cationic amino-acid transporter 1 (mCAT-1), the receptor for murine retroviruses, enables efficient transient ecotropic transduction of human T cells. mCAT-1-dependent transduction was more efficient than amphotropic transduction performed in parallel, and preferentially targeted naive T cells. Moreover, we demonstrate that ecotropic TCR transduction results in antigen-specific restimulation of primary human T cells. Thus, ecotropic RVs represent a versatile, safe and potent tool to prepare T cells for the adoptive transfer.

  1. Modulation of dendritic cell and T cell cross-talk during aging: The potential role of checkpoint inhibitory molecules.

    Science.gov (United States)

    Gardner, Joanne K; Mamotte, Cyril D S; Jackaman, Connie; Nelson, Delia J

    2017-09-01

    Dendritic cells (DCs) undergo continuous changes throughout life, and there is evidence that elderly DCs have a reduced capacity to stimulate T cells, which may contribute to impaired anti-tumour immune responses in elderly people with cancer. Changes in checkpoint inhibitory molecules/pathways during aging may be one mechanism that impairs the ability of elderly DCs to activate T cells. However, little is currently known regarding the combined effects of aging and cancer on DC and T cell inhibitory molecules/pathways. In this review, we discuss our current understanding of the influence of aging and cancer on key DC and T cell inhibitory molecules/pathways, the potential underlying cellular and molecular mechanisms contributing to their modulation, and the possibility of therapeutically targeting inhibitory molecules in elderly cancer patients. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Dissecting the T Cell Response: Proliferation Assays vs. Cytokine Signatures by ELISPOT

    Directory of Open Access Journals (Sweden)

    Magdalena Tary-Lehmann

    2012-05-01

    Full Text Available Chronic allograft rejection is in part mediated by host T cells that recognize allogeneic antigens on transplanted tissue. One factor that determines the outcome of a T cell response is clonal size, while another is the effector quality. Studies of alloimmune predictors of transplant graft survival have most commonly focused on only one measure of the alloimmune response. Because differing qualities and frequencies of the allospecific T cell response may provide distinctly different information we analyzed the relationship between frequency of soluble antigen and allo-antigen specific memory IFN-g secreting CD4 and CD8 T cells, their ability to secrete IL-2, and their proliferative capacity, while accounting for cognate and bystander proliferation. The results show proliferative responses primarily reflect on IL-2 production by antigen-specific T cells, and that proliferating cells in such assays entail a considerable fraction of bystander cells. On the other hand, proliferation (and IL-2 production did not reflect on the frequency of IFN-γ producing memory cells, a finding particularly accentuated in the CD8 T cell compartment. These data provide rationale for considering both frequency and effector function of pre-transplant T cell reactivity when analyzing immune predictors of graft rejection.

  3. Dissecting the T Cell Response: Proliferation Assays vs. Cytokine Signatures by ELISPOT

    Science.gov (United States)

    Anthony, Donald D.; Milkovich, Kimberly A.; Zhang, Wenji; Rodriguez, Benigno; Yonkers, Nicole L.; Tary-Lehmann, Magdalena; Lehmann, Paul V.

    2012-01-01

    Chronic allograft rejection is in part mediated by host T cells that recognize allogeneic antigens on transplanted tissue. One factor that determines the outcome of a T cell response is clonal size, while another is the effector quality. Studies of alloimmune predictors of transplant graft survival have most commonly focused on only one measure of the alloimmune response. Because differing qualities and frequencies of the allospecific T cell response may provide distinctly different information we analyzed the relationship between frequency of soluble antigen and allo-antigen specific memory IFN-γ secreting CD4 and CD8 T cells, their ability to secrete IL-2, and their proliferative capacity, while accounting for cognate and bystander proliferation. The results show proliferative responses primarily reflect on IL-2 production by antigen-specific T cells, and that proliferating cells in such assays entail a considerable fraction of bystander cells. On the other hand, proliferation (and IL-2 production) did not reflect on the frequency of IFN-γ producing memory cells, a finding particularly accentuated in the CD8 T cell compartment. These data provide rationale for considering both frequency and effector function of pre-transplant T cell reactivity when analyzing immune predictors of graft rejection. PMID:24710419

  4. Increased endothelial cell-leukocyte interaction in murine schistosomiasis: possible priming of endothelial cells by the disease.

    Directory of Open Access Journals (Sweden)

    Suellen D S Oliveira

    Full Text Available BACKGROUND AND AIMS: Schistosomiasis is an intravascular parasitic disease associated with inflammation. Endothelial cells control leukocyte transmigration and vascular permeability being modulated by pro-inflammatory mediators. Recent data have shown that endothelial cells primed in vivo in the course of a disease keep the information in culture. Herein, we evaluated the impact of schistosomiasis on endothelial cell-regulated events in vivo and in vitro. METHODOLOGY AND PRINCIPAL FINDINGS: The experimental groups consisted of Schistosoma mansoni-infected and age-matched control mice. In vivo infection caused a marked influx of leukocytes and an increased protein leakage in the peritoneal cavity, characterizing an inflamed vascular and cellular profile. In vitro leukocyte-mesenteric endothelial cell adhesion was higher in cultured cells from infected mice as compared to controls, either in the basal condition or after treatment with the pro-inflammatory cytokine tumor necrosis factor (TNF. Nitric oxide (NO donation reduced leukocyte adhesion to endothelial cells from control and infected groups; however, in the later group the effect was more pronounced, probably due to a reduced NO production. Inhibition of control endothelial NO synthase (eNOS increased leukocyte adhesion to a level similar to the one observed in the infected group. Besides, the adhesion of control leukocytes to endothelial cells from infected animals is similar to the result of infected animals, confirming that schistosomiasis alters endothelial cells function. Furthermore, NO production as well as the expression of eNOS were reduced in cultured endothelial cells from infected animals. On the other hand, the expression of its repressor protein, namely caveolin-1, was similar in both control and infected groups. CONCLUSION/SIGNIFICANCE: Schistosomiasis increases vascular permeability and endothelial cell-leukocyte interaction in vivo and in vitro. These effects are partially

  5. Histamine type I (H1) receptor radioligand binding studies on normal T cell subsets, B cells, and monocytes

    International Nuclear Information System (INIS)

    Cameron, W.; Doyle, K.; Rocklin, R.E.

    1986-01-01

    A single, specific binding site for [ 3 H]pyrilamine on normal human T helper, T suppressor, B cells, and monocytes was documented. The binding of the radioligand to its receptor is reversible with cold H 1 antagonist, saturates at 40 to 60 nM, and binding equilibrium is achieved in 2 to 4 min. Using a computer program (Ligand), the authors calculated the dissociation constants, binding capacities, and numbers of receptors per cell for each of the different cell types. Monocytes were found to have the highest affinity for [ 3 H]pyrilamine, followed by T helper cells, B cells and T suppressor cells (K/sub D/ = 44.6 +/- 49.4 nM). T suppressor cells were found to express the higher number of H 1 receptors per cell followed by B cells, T helper cells, and monocytes. The binding affinity for [ 3 H]pyrilamine increased over a 48-hr period, whereas the number of receptors per T cell was essentially unchanged. In contrast, T cells stimulated with Con A or PHA were shown to have a greater than fourfold increase in the number of receptors per cell, whereas the binding affinity for [ 3 H]pyrilamine decreased over the 48-hr period. Although the function of H 1 receptors on T cells, B cells, and monocytes has not been completely defined, this receptor has the potential of playing an important role in the modulating the immune response

  6. Reexamining unconscious response priming: A liminal-prime paradigm.

    Science.gov (United States)

    Avneon, Maayan; Lamy, Dominique

    2018-03-01

    Research on the limits of unconscious processing typically relies on the subliminal-prime paradigm. However, this paradigm is limited in the issues it can address. Here, we examined the implications of using the liminal-prime paradigm, which allows comparing unconscious and conscious priming with constant stimulation. We adapted an iconic demonstration of unconscious response priming to the liminal-prime paradigm. On the one hand, temporal attention allocated to the prime and its relevance to the task increased the magnitude of response priming. On the other hand, the longer RTs associated with the dual task inherent to the paradigm resulted in response priming being underestimated, because unconscious priming effects were shorter-lived than conscious-priming effects. Nevertheless, when the impact of long RTs was alleviated by considering the fastest trials or by imposing a response deadline, conscious response priming remained considerably larger than unconscious response priming. These findings suggest that conscious perception strongly modulates response priming. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Selection and characterization of T-cell variants lacking molecules involved in T-cell activation (T3 T-cell receptor, T44, and T11): analysis of the functional relationship among different pathways of activation

    International Nuclear Information System (INIS)

    Moretta, A.; Poggi, A.; Olive, D.; Bottino, C.; Fortis, C.; Pantaleo, G.; Moretta, L.

    1987-01-01

    A clone of the interleukin 2-producing Jurkat leukemia cell line termed JA3 (surface phenotype, T3 + , Ti + , T44 + , T11 + , T40 + ) has been used to induce and select cell variants lacking surface molecules involved in T-cell activation. Following 200 rad of γ-radiation (1 rad = 0.01 Gy), cells were treated with monoclonal antibodies (mAbs) directed to T3, Ti, T44, or T11 antigen and complement. After growth of the residual cells in culture, negative cells were cloned under limiting conditions. Depending on the specificity of the mAb used for the immunoselection, three groups of variants were obtained. (i) The use of mAbs directed to T3 or Ti resulted in cell variants that expressed the T3 - Ti - T44 + Leu1 + T11 + T40 + 4F2 + HLA class I + surface phenotype. (ii) Immunoselection with anti-T44 mAb resulted in 2 variants that shared the T3 - Ti - T44 - Leu1 - T11 - T40 - 4F2 - HLA class I + phenotype. (iii) Cell treatment with anti-T11 mAb resulted in 15 variants characterized by the lack of T11 antigen expression and of all the other T-cell-specific surface antigens. Therefore, it appears that the different sets of JA3 cell variants, like T cells at discrete stages of intrathymic differentiation, may follow a coordinated expression of surface differentiation antigens. Analysis of the functional responsiveness of the three distinct groups of JA3 cell variants to different stimuli showed that all produced interleukin 2 in response to A23187 calcium ionophore plus phorbol 12-myristate 13-acetate

  8. Type I NKT-cell-mediated TNF-α is a positive regulator of NLRP3 inflammasome priming.

    Science.gov (United States)

    Chow, Melvyn T; Duret, Helene; Andrews, Daniel M; Faveeuw, Christelle; Möller, Andreas; Smyth, Mark J; Paget, Christophe

    2014-07-01

    The NLRP3 inflammasome plays a crucial role in the innate immune response to pathogens and exogenous or endogenous danger signals. Its activity must be precisely and tightly regulated to generate tailored immune responses. However, the immune cell subsets and cytokines controlling NLRP3 inflammasome activity are still poorly understood. Here, we have shown a link between NKT-cell-mediated TNF-α and NLRP3 inflammasome activity. The NLRP3 inflammasome in APCs was critical to potentiate NKT-cell-mediated immune responses, since C57BL/6 NLRP3 inflammasome-deficient mice exhibited reduced responsiveness to α-galactosylceramide. Importantly, NKT cells were found to act as regulators of NLRP3 inflammasome signaling, as NKT-cell-derived TNF-α was required for optimal IL-1β and IL-18 production by myeloid cells in response to α-galactosylceramide, by acting on the NLRP3 inflammasome priming step. Thus, NKT cells play a role in the positive regulation of NLRP3 inflammasome priming by mediating the production of TNF-α, thus demonstrating another means by which NKT cells control early inflammation. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. CCR6 is expressed on an IL-10-producing, autoreactive memory T cell population with context-dependent regulatory function.

    Science.gov (United States)

    Rivino, Laura; Gruarin, Paola; Häringer, Barbara; Steinfelder, Svenja; Lozza, Laura; Steckel, Bodo; Weick, Anja; Sugliano, Elisa; Jarrossay, David; Kühl, Anja A; Loddenkemper, Christoph; Abrignani, Sergio; Sallusto, Federica; Lanzavecchia, Antonio; Geginat, Jens

    2010-03-15

    Interleukin (IL)-10 produced by regulatory T cell subsets is important for the prevention of autoimmunity and immunopathology, but little is known about the phenotype and function of IL-10-producing memory T cells. Human CD4(+)CCR6(+) memory T cells contained comparable numbers of IL-17- and IL-10-producing cells, and CCR6 was induced under both Th17-promoting conditions and upon tolerogenic T cell priming with transforming growth factor (TGF)-beta. In normal human spleens, the majority of CCR6(+) memory T cells were in the close vicinity of CCR6(+) myeloid dendritic cells (mDCs), and strikingly, some of them were secreting IL-10 in situ. Furthermore, CCR6(+) memory T cells produced suppressive IL-10 but not IL-2 upon stimulation with autologous immature mDCs ex vivo, and secreted IL-10 efficiently in response to suboptimal T cell receptor (TCR) stimulation with anti-CD3 antibodies. However, optimal TCR stimulation of CCR6(+) T cells induced expression of IL-2, interferon-gamma, CCL20, and CD40L, and autoreactive CCR6(+) T cell lines responded to various recall antigens. Notably, we isolated autoreactive CCR6(+) T cell clones with context-dependent behavior that produced IL-10 with autologous mDCs alone, but that secreted IL-2 and proliferated upon stimulation with tetanus toxoid. We propose the novel concept that a population of memory T cells, which is fully equipped to participate in secondary immune responses upon recognition of a relevant recall antigen, contributes to the maintenance of tolerance under steady-state conditions.

  10. FOXO3 regulates CD8 T cell memory by T cell-intrinsic mechanisms.

    Directory of Open Access Journals (Sweden)

    Jeremy A Sullivan

    2012-02-01

    Full Text Available CD8 T cell responses have three phases: expansion, contraction, and memory. Dynamic alterations in proliferation and apoptotic rates control CD8 T cell numbers at each phase, which in turn dictate the magnitude of CD8 T cell memory. Identification of signaling pathways that control CD8 T cell memory is incomplete. The PI3K/Akt signaling pathway controls cell growth in many cell types by modulating the activity of FOXO transcription factors. But the role of FOXOs in regulating CD8 T cell memory remains unknown. We show that phosphorylation of Akt, FOXO and mTOR in CD8 T cells occurs in a dynamic fashion in vivo during an acute viral infection. To elucidate the potentially dynamic role for FOXO3 in regulating homeostasis of activated CD8 T cells in lymphoid and non-lymphoid organs, we infected global and T cell-specific FOXO3-deficient mice with Lymphocytic Choriomeningitis Virus (LCMV. We found that FOXO3 deficiency induced a marked increase in the expansion of effector CD8 T cells, preferentially in the spleen, by T cell-intrinsic mechanisms. Mechanistically, the enhanced accumulation of proliferating CD8 T cells in FOXO3-deficient mice was not attributed to an augmented rate of cell division, but instead was linked to a reduction in cellular apoptosis. These data suggested that FOXO3 might inhibit accumulation of growth factor-deprived proliferating CD8 T cells by reducing their viability. By virtue of greater accumulation of memory precursor effector cells during expansion, the numbers of memory CD8 T cells were strikingly increased in the spleens of both global and T cell-specific FOXO3-deficient mice. The augmented CD8 T cell memory was durable, and FOXO3 deficiency did not perturb any of the qualitative attributes of memory T cells. In summary, we have identified FOXO3 as a critical regulator of CD8 T cell memory, and therapeutic modulation of FOXO3 might enhance vaccine-induced protective immunity against intracellular pathogens.

  11. Diet-induced obesity does not impact the generation and maintenance of primary memory CD8 T cells.

    Science.gov (United States)

    Khan, Shaniya H; Hemann, Emily A; Legge, Kevin L; Norian, Lyse A; Badovinac, Vladimir P

    2014-12-15

    The extent to which obesity compromises the differentiation and maintenance of protective memory CD8 T cell responses and renders obese individuals susceptible to infection remains unknown. In this study, we show that diet-induced obesity did not impact the maintenance of pre-existing memory CD8 T cells, including acquisition of a long-term memory phenotype (i.e., CD27(hi), CD62L(hi), KLRG1(lo)) and function (i.e., cytokine production, secondary expansion, and memory CD8 T cell-mediated protection). Additionally, obesity did not influence the differentiation and maintenance of newly evoked memory CD8 T cell responses in inbred and outbred hosts generated in response to different types of systemic (LCMV, L. monocytogenes) and/or localized (influenza virus) infections. Interestingly, the rate of naive-to-memory CD8 T cell differentiation after a peptide-coated dendritic cell immunization was similar in lean and obese hosts, suggesting that obesity-associated inflammation, unlike pathogen- or adjuvant-induced inflammation, did not influence the development of endogenous memory CD8 T cell responses. Therefore, our studies reveal that the obese environment does not influence the development or maintenance of memory CD8 T cell responses that are either primed before or after obesity is established, a surprising notion with important implications for future studies aiming to elucidate the role obesity plays in host susceptibility to infections. Copyright © 2014 by The American Association of Immunologists, Inc.

  12. Differential sensitivity of regulatory and effector T cells to cell death: a prerequisite for transplant tolerance

    Directory of Open Access Journals (Sweden)

    Sylvaine eYou

    2015-05-01

    Full Text Available Despite significant progress achieved in transplantation, immunosuppressive therapies currently used to prevent graft rejection are still endowed with severe side effects impairing their efficiency over the long term. Thus, the development of graft-specific, non toxic innovative therapeutic strategies has become a major challenge, the goal being to selectively target alloreactive effector T cells while sparing CD4+Foxp3+ regulatory T cells (Tregs to promote operational tolerance. Various approaches, notably the one based on monoclonal antibodies or fusion proteins directed against the TCR/CD3 complex, TCR coreceptors, or costimulatory molecules, have been proposed to reduce the alloreactive T cell pool which is an essential prerequisite to create a therapeutic window allowing Tregs to induce and maintain allograft tolerance. In this minireview, we focus on the differential sensitivity of Tregs and effector T cells to the depleting and inhibitory effect of these immunotherapies, with a particular emphasis on CD3-specific antibodies that beyond their immunosuppressive effect, also express potent tolerogenic capacities.

  13. Heterologous prime-boost vaccination with DNA and MVA vaccines, expressing HIV-1 subtype C mosaic Gag virus-like particles, is highly immunogenic in mice.

    Directory of Open Access Journals (Sweden)

    Ros Chapman

    Full Text Available In an effort to make affordable vaccines suitable for the regions most affected by HIV-1, we have constructed stable vaccines that express an HIV-1 subtype C mosaic Gag immunogen (BCG-GagM, MVA-GagM and DNA-GagM. Mosaic immunogens have been designed to address the tremendous diversity of this virus. Here we have shown that GagM buds from cells infected and transfected with MVA-GagM and DNA-GagM respectively and forms virus-like particles. Previously we showed that a BCG-GagM prime MVA-GagM boost generated strong cellular immune responses in mice. In this study immune responses to the DNA-GagM and MVA-GagM vaccines were evaluated in homologous and heterologous prime-boost vaccinations. The DNA homologous prime boost vaccination elicited predominantly CD8+ T cells while the homologous MVA vaccination induced predominantly CD4+ T cells. A heterologous DNA-GagM prime MVA-GagM boost induced strong, more balanced Gag CD8+ and CD4+ T cell responses and that were predominantly of an effector memory phenotype. The immunogenicity of the mosaic Gag (GagM was compared to a naturally occurring subtype C Gag (GagN using a DNA homologous vaccination regimen. DNA-GagN expresses a natural Gag with a sequence that was closest to the consensus sequence of subtype C viruses sampled in South Africa. DNA-GagM homologous vaccination induced cumulative HIV-1 Gag-specific IFN-γ ELISPOT responses that were 6.5-fold higher than those induced by the DNA-GagN vaccination. Similarly, DNA-GagM vaccination generated 7-fold higher levels of cytokine-positive CD8+ T cells than DNA-GagN, indicating that this subtype C mosaic Gag elicits far more potent immune responses than a consensus-type Gag. Cells transfected and infected with DNA-GagM and MVA-GagM respectively, expressed high levels of GagM and produced budding virus-like particles. Our data indicates that a heterologous prime boost regimen using DNA and MVA vaccines expressing HIV-1 subtype C mosaic Gag is highly

  14. Specific central nervous system recruitment of HLA-G(+) regulatory T cells in multiple sclerosis.

    Science.gov (United States)

    Huang, Yu-Hwa; Zozulya, Alla L; Weidenfeller, Christian; Metz, Imke; Buck, Dorothea; Toyka, Klaus V; Brück, Wolfgang; Wiendl, Heinz

    2009-08-01

    We have recently described a novel population of natural regulatory T cells (T(reg)) that are characterized by the expression of HLA-G and may be found at sites of tissue inflammation (HLA-G(pos) T(reg)). Here we studied the role of these cells in multiple sclerosis (MS), a prototypic autoimmune inflammatory disorder of the central nervous system (CNS). Sixty-four patients with different types of MS, 9 patients with other neurological diseases, and 20 healthy donors were included in this study. Inflamed brain lesions from 5 additional untreated MS patients were examined. HLA-G(pos) T(reg) were analyzed in the cerebrospinal fluid (CSF) by flow cytometry and in inflammatory demyelinating lesions of MS brain specimens by immunohistochemistry. Functional capacity was accessed and transmigration was determined using an in vitro model of the human blood-brain barrier (BBB). HLA-G(pos) T(reg) were found enriched in the inflamed CSF of MS patients and in inflammatory demyelinating lesions of MS brain specimens. HLA-G(pos) T(reg) showed a strong propensity to transmigrate across BBB, which was vigorously driven by inflammatory chemokines, and associated with a gain of suppressive capacity upon transmigration. CSF-derived HLA-G(pos) T(reg) of MS patients represented a population of activated central memory activated T cells with an upregulated expression of inflammatory chemokine receptors and exhibiting full suppressive capacity. Unlike natural FoxP3-expressing T(reg), HLA-G(pos) T(reg) derived from peripheral blood were functionally unimpaired in MS. In MS, HLA-G(pos) T(reg) may serve to control potentially destructive immune responses directly at the sites of CNS inflammation and to counterbalance inflammation once specifically recruited to the CNS.

  15. Local induction of immunosuppressive CD8+ T cells in the gut-associated lymphoid tissues.

    Directory of Open Access Journals (Sweden)

    Diana Fleissner

    Full Text Available BACKGROUND: In contrast to intestinal CD4(+ regulatory T cells (T(regs, the generation and function of immunomodulatory intestinal CD8(+ T cells is less well defined. To dissect the immunologic mechanisms of CD8(+ T cell function in the mucosa, reactivity against hemagglutinin (HA expressed in intestinal epithelial cells of mice bearing a MHC class-I-restricted T-cell-receptor specific for HA was studied. METHODOLOGY AND PRINCIPAL FINDINGS: HA-specific CD8(+ T cells were isolated from gut-associated tissues and phenotypically and functionally characterized for the expression of Foxp3(+ and their suppressive capacity. We demonstrate that intestinal HA expression led to peripheral induction of HA-specific CD8(+Foxp3(+ T cells. Antigen-experienced CD8(+ T cells in this transgenic mouse model suppressed the proliferation of CD8(+ and CD4(+ T cells in vitro. Gene expression analysis of suppressive HA-specific CD8(+ T cells revealed a specific up-regulation of CD103, Nrp1, Tnfrsf9 and Pdcd1, molecules also expressed on CD4(+ T(reg subsets. Finally, gut-associated dendritic cells were able to induce HA-specific CD8(+Foxp3(+ T cells. CONCLUSION AND SIGNIFICANCE: We demonstrate that gut specific antigen presentation is sufficient to induce CD8(+ T(regsin vivo which may maintain intestinal homeostasis by down-modulating effector functions of T cells.

  16. Local induction of immunosuppressive CD8+ T cells in the gut-associated lymphoid tissues.

    Science.gov (United States)

    Fleissner, Diana; Hansen, Wiebke; Geffers, Robert; Buer, Jan; Westendorf, Astrid M

    2010-10-20

    In contrast to intestinal CD4(+) regulatory T cells (T(regs)), the generation and function of immunomodulatory intestinal CD8(+) T cells is less well defined. To dissect the immunologic mechanisms of CD8(+) T cell function in the mucosa, reactivity against hemagglutinin (HA) expressed in intestinal epithelial cells of mice bearing a MHC class-I-restricted T-cell-receptor specific for HA was studied. HA-specific CD8(+) T cells were isolated from gut-associated tissues and phenotypically and functionally characterized for the expression of Foxp3(+) and their suppressive capacity. We demonstrate that intestinal HA expression led to peripheral induction of HA-specific CD8(+)Foxp3(+) T cells. Antigen-experienced CD8(+) T cells in this transgenic mouse model suppressed the proliferation of CD8(+) and CD4(+) T cells in vitro. Gene expression analysis of suppressive HA-specific CD8(+) T cells revealed a specific up-regulation of CD103, Nrp1, Tnfrsf9 and Pdcd1, molecules also expressed on CD4(+) T(reg) subsets. Finally, gut-associated dendritic cells were able to induce HA-specific CD8(+)Foxp3(+) T cells. We demonstrate that gut specific antigen presentation is sufficient to induce CD8(+) T(regs)in vivo which may maintain intestinal homeostasis by down-modulating effector functions of T cells.

  17. Maternal exposure to fish oil primes offspring to harbor intestinal pathobionts associated with altered immune cell balance.

    Science.gov (United States)

    Gibson, D L; Gill, S K; Brown, K; Tasnim, N; Ghosh, S; Innis, S; Jacobson, K

    2015-01-01

    Our previous studies revealed that offspring from rat dams fed fish oil (at 8% and 18% energy), developed impaired intestinal barriers sensitizing the colon to exacerbated injury later in life. To discern the mechanism, we hypothesized that in utero exposure to fish oil, rich in n-3 polyunsaturated fatty acid (PUFA), caused abnormal intestinal reparative responses to mucosal injury through differences in intestinal microbiota and the presence of naïve immune cells. To identify such mechanisms, gut microbes and naïve immune cells were compared between rat pups born to dams fed either n-6 PUFA, n-3 PUFA or breeder chow. Maternal exposure to either of the PUFA rich diets altered the development of the intestinal microbiota with an overall reduction in microbial density. Using qPCR, we found that each type of PUFA differentially altered the major gut phyla; fish oil increased Bacteroidetes and safflower oil increased Firmicutes. Both PUFA diets reduced microbes known to dominate the infant gut like Enterobacteriaceae and Bifidobacteria spp. when compared to the chow group. Uniquely, maternal fish oil diets resulted in offspring showing blooms of opportunistic pathogens like Bilophila wadsworthia, Enterococcus faecium and Bacteroides fragilis in their gut microbiota. As well, fish oil groups showed a reduction in colonic CD8+ T cells, CD4+ Foxp3+ T cells and arginase+ M2 macrophages. In conclusion, fish oil supplementation in pharmacological excess, at 18% by energy as shown in this study, provides an example where excess dosing in utero can prime offspring to harbor intestinal pathobionts and alter immune cell homeostasis.

  18. The role of CD80/CD86 in generation and maintenance of functional virus-specific CD8+ T cells in mice infected with lymphocytic choriomeningitis virus

    DEFF Research Database (Denmark)

    Grujic, Mirjana; Bartholdy, Christina; Remy, Melissa

    2010-01-01

    Lymphocytic choriomeningitis virus (LCMV)-specific CD8(+) T cell responses are considered to be independent of CD28-B7 costimulation. However, the LCMV-specific response has never been evaluated in B7.1/B7.2(-/-) mice. For this reason, we decided to study the T cell response in B7.1/B7.2(-/-) mice......, but no chronic infection. Taken together, these results indicate that B7 costimulation is required for induction and maintenance of LCMV-specific CD8(+) T cell memory, irrespective of the LCMV strain used for priming. However, the erosion of CD8(+) T cell memory in B7.1/B7.2(-/-) mice was more pronounced...

  19. Engineering CAR-T cells.

    Science.gov (United States)

    Zhang, Cheng; Liu, Jun; Zhong, Jiang F; Zhang, Xi

    2017-01-01

    Chimeric antigen receptor redirected T cells (CAR-T cells) have achieved inspiring outcomes in patients with B cell malignancies, and are now being investigated in other hematologic malignancies and solid tumors. CAR-T cells are generated by the T cells from patients' or donors' blood. After the T cells are expanded and genetically modified, they are reinfused into the patients. However, many challenges still need to be resolved in order for this technology to gain widespread adoption. In this review, we first discuss the structure and evolution of chimeric antigen receptors. We then report on the tools used for production of CAR-T cells. Finally, we address the challenges posed by CAR-T cells.

  20. A heterologous prime-boost Ebola virus vaccine regimen induces durable neutralizing antibody response and prevents Ebola virus-like particle entry in mice.

    Science.gov (United States)

    Chen, Tan; Li, Dapeng; Song, Yufeng; Yang, Xi; Liu, Qingwei; Jin, Xia; Zhou, Dongming; Huang, Zhong

    2017-09-01

    Ebola virus (EBOV) is one of the most virulent pathogens known to humans. Neutralizing antibodies play a major role in the protection against EBOV infections. Thus, an EBOV vaccine capable of inducing a long-lasting neutralizing antibody response is highly desirable. We report here that a heterologous prime-boost vaccine regimen can elicit durable EBOV-neutralizing antibody response in mice. A chimpanzee serotype 7 adenovirus expressing EBOV GP (denoted AdC7-GP) was generated and used for priming. A truncated version of EBOV GP1 protein (denoted GP1t) was produced at high levels in Drosophila S2 cells and used for boosting. Mouse immunization studies showed that the AdC7-GP prime/GP1t boost vaccine regimen was more potent in eliciting neutralizing antibodies than either the AdC7-GP or GP1t alone. Neutralizing antibodies induced by the heterologous prime-boost regimen sustained at high titers for at least 18 weeks after immunization. Significantly, in vivo challenge studies revealed that the entry of reporter EBOV-like particles was efficiently blocked in mice receiving the heterologous prime-boost regimen even at 18 weeks after the final dose of immunization. These results suggest that this novel AdC7-GP prime/GP1t boost regimen represents an EBOV vaccine approach capable of establishing long-term protection, and therefore warrants further development. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Regulatory Eosinophils Suppress T Cells Partly through Galectin-10.

    Science.gov (United States)

    Lingblom, Christine; Andersson, Jennie; Andersson, Kerstin; Wennerås, Christine

    2017-06-15

    Eosinophils have the capacity to regulate the function of T cell subsets. Our aim was to test the hypothesis of the existence of a regulatory subset of eosinophils. Human eosinophils were incubated with T cells that were stimulated with allogeneic leukocytes or CD3/CD28 cross-linking. After 2 d of coculture, 11% of the eosinophils gained CD16 expression. A CD16 hi subset of eosinophils, encompassing 1-5% of all eosinophils, was also identified in the blood of healthy subjects. FACS sorting showed that these CD16 hi eosinophils were significantly stronger suppressors of T cell proliferation than were conventional CD16 neg eosinophils. Human eosinophils contain stores of the immunoregulatory protein galectin-10. We found that Ab-mediated neutralization of galectin-10 partially abrogated the suppressive function of the eosinophils. Moreover, recombinant galectin-10 by itself was able to suppress T cell proliferation. Finally, we detected galectin-10-containing immune synapses between eosinophils and lymphocytes. To conclude, we describe a subset of suppressive eosinophils expressing CD16 that may escape detection because CD16-based negative selection is the standard procedure for the isolation of human eosinophils. Moreover, we show that galectin-10 functions as a T cell-suppressive molecule in eosinophils. Copyright © 2017 by The American Association of Immunologists, Inc.

  2. Extending models of visual-word recognition to semicursive scripts: Evidence from masked priming in Uyghur.

    Science.gov (United States)

    Yakup, Mahire; Abliz, Wayit; Sereno, Joan; Perea, Manuel

    2015-12-01

    One basic feature of the Arabic script is its semicursive style: some letters are connected to the next, but others are not, as in the Uyghur word [see text]/ya xʃi/ ("good"). None of the current orthographic coding schemes in models of visual-word recognition, which were created for the Roman script, assign a differential role to the coding of within letter "chunks" and between letter "chunks" in words in the Arabic script. To examine how letter identity/position is coded at the earliest stages of word processing in the Arabic script, we conducted 2 masked priming lexical decision experiments in Uyghur, an agglutinative Turkic language. The target word was preceded by an identical prime, by a transposed-letter nonword prime (that either kept the ligation pattern or did not), or by a 2-letter replacement nonword prime. Transposed-letter primes were as effective as identity primes when the letter transposition in the prime kept the same ligation pattern as the target word (e.g., [see text]/inta_jin/-/itna_jin/), but not when the transposed-letter prime didn't keep the ligation pattern (e.g., [see text]/so_w_ʁa_t/-/so_ʁw_a_t/). Furthermore, replacement-letter primes were more effective when they kept the ligation pattern of the target word than when they did not (e.g., [see text]/so_d_ʧa_t/-/so_w_ʁa_t/ faster than [see text]/so_ʧd_a_t/-/so_w_ʁa_t/). We examined how input coding schemes could be extended to deal with the intricacies of semicursive scripts. (c) 2015 APA, all rights reserved).

  3. Retinoic acid induction of CD1d expression primes chronic lymphocytic leukemia B cells for killing by CD8+ invariant natural killer T cells.

    Science.gov (United States)

    Ghnewa, Yasmeen G; O'Reilly, Vincent P; Vandenberghe, Elisabeth; Browne, Paul V; McElligott, Anthony M; Doherty, Derek G

    2017-10-01

    Invariant natural killer T (iNKT) cells are cytotoxic T cells that respond to glycolipid antigens presented by CD1d. Therapeutic activation of iNKT cells with α-galactosylceramide (α-GalCer) can prevent and reverse tumor growth in mice and clinical trials involving α-GalCer-stimulated iNKT cells are ongoing in humans. B cells express CD1d, however, we show that CD1d expression is reduced on B cells from patients with chronic lymphocytic leukemia (CLL). B cells from CLL patients pulsed with α-GalCer failed to stimulate cytolytic degranulation by iNKT cell lines, but could present the more potent glycolipid analogue, 7DW8-5. Retinoic acid receptor-α (RAR-α) agonists induced CD1d expression by CLL B cells, restoring their ability to present α-GalCer to CD8α + iNKT cells, resulting in cytolytic degranulation. Thus, RAR-α agonists can augment the anti-tumor activities of iNKT cells against CLL cells in vitro. Their inclusion in iNKT cell-based therapies may benefit patients with CLL. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Requirement for CD4 T Cell Help in Generating Functional CD8 T Cell Memory

    Science.gov (United States)

    Shedlock, Devon J.; Shen, Hao

    2003-04-01

    Although primary CD8 responses to acute infections are independent of CD4 help, it is unknown whether a similar situation applies to secondary responses. We show that depletion of CD4 cells during the recall response has minimal effect, whereas depletion during the priming phase leads to reduced responses by memory CD8 cells to reinfection. Memory CD8 cells generated in CD4+/+ mice responded normally when transferred into CD4-/- hosts, whereas memory CD8 cells generated in CD4-/- mice mounted defective recall responses in CD4+/+ adoptive hosts. These results demonstrate a previously undescribed role for CD4 help in the development of functional CD8 memory.

  5. CD4+ T cell-mediated rejection of MHC class II-positive tumor cells is dependent on antigen secretion and indirect presentation on host APCs.

    Science.gov (United States)

    Haabeth, Ole Audun Werner; Fauskanger, Marte; Manzke, Melanie; Lundin, Katrin U; Corthay, Alexandre; Bogen, Bjarne; Tveita, Anders Aune

    2018-05-11

    Tumor-specific CD4+ T cells have been shown to mediate efficient anti-tumor immune responses against cancer. Such responses can occur through direct binding to MHC class II (MHC II)-expressing tumor cells or indirectly via activation of professional antigen-presenting cells (APC) that take up and present the tumor antigen. We have previously shown that CD4+ T cells reactive against an epitope within the Ig light chain variable region of a murine B cell lymphoma can reject established tumors. Given the presence of MHC II molecules at the surface of lymphoma cells, we investigated whether MHC II-restricted antigen presentation on tumor cells alone was required for rejection. Variants of the A20 B lymphoma cell line that either secreted or intracellularly retained different versions of the tumor-specific antigen revealed that antigen secretion by the MHC II-expressing tumor cells was essential both for the priming and effector phase of CD4+ T cell-driven anti-tumor immune responses. Consistent with this, genetic ablation of MHC II in tumor cells, both in the case of B lymphoma and B16 melanoma, did not preclude rejection of tumors by tumor antigen-specific CD4+ T cells in vivo. These findings demonstrate that MHC class II expression on tumor cells themselves is not required for CD4+ T cell-mediated rejection, and that indirect display on host APC is sufficient for effective tumor elimination. These results support the importance of tumor-infiltrating APC as mediators of tumor cell killing by CD4+ T cells. Copyright ©2018, American Association for Cancer Research.

  6. Influence of low dose irradiation on differentiation, maturation and T-cell activation of human dendritic cells

    Energy Technology Data Exchange (ETDEWEB)

    Jahns, Jutta [Department of Radiotherapy and Radiation Oncology, University of Leipzig, Stephanstrasse 21, 04103 Leipzig (Germany); Anderegg, Ulf; Saalbach, Anja [Department for Dermatology, Venerology and Allergology, University of Leipzig, Johannisallee 30, 04103 Leipzig (Germany); Rosin, Britt; Patties, Ina; Glasow, Annegret [Department of Radiotherapy and Radiation Oncology, University of Leipzig, Stephanstrasse 21, 04103 Leipzig (Germany); Kamprad, Manja [Institute for Clinical Immunology and Transfusion Medicine, University of Leipzig, Johannisallee 30, 04103 Leipzig (Germany); Scholz, Markus [Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Haertelstr. 16-18, 04103 Leipzig (Germany); Hildebrandt, Guido, E-mail: Guido.Hildebrandt@uni-rostock.de [Department of Radiotherapy and Radiation Oncology, University of Rostock, Suedring 75, 18059 Rostock (Germany); Department of Radiotherapy and Radiation Oncology, University of Leipzig, Stephanstrasse 21, 04103 Leipzig (Germany)

    2011-05-10

    Ionizing irradiation could act directly on immune cells and may induce bystander effects mediated by soluble factors that are released by the irradiated cells. This is the first study analyzing both the direct effect of low dose ionizing radiation (LDIR) on the maturation and cytokine release of human dendritic cells (DCs) and the functional consequences for co-cultured T-cells. We showed that irradiation of DC-precursors in vitro does not influence surface marker expression or cytokine profile of immature DCs nor of mature DCs after LPS treatment. There was no difference of single dose irradiation versus fractionated irradiation protocols on the behavior of the mature DCs. Further, the low dose irradiation did not change the capacity of the DCs to stimulate T-cell proliferation. But the irradiation of the co-culture of DCs and T-cells revealed significantly lower proliferation of T-cells with higher doses. Summarizing the data from approx. 50 DC preparations there is no significant effect of low dose ionizing irradiation on the cytokine profile, surface marker expression and maturation of DCs in vitro although functional consequences cannot be excluded.

  7. Characterization of CD8+ T-Cell Responses in the Peripheral Blood and Skin Injection Sites of Melanoma Patients Treated with mRNA Electroporated Autologous Dendritic Cells (TriMixDC-MEL

    Directory of Open Access Journals (Sweden)

    Daphné Benteyn

    2013-01-01

    Full Text Available Treatment of melanoma patients with mRNA electroporated dendritic cells (TriMixDC-MEL stimulates T-cell responses against the presented tumor-associated antigens (TAAs. In the current clinical trials, melanoma patients with systemic metastases are treated, requiring priming and/or expansion of preexisting TAA-specific T cells that are able to migrate to both the skin and internal organs. We monitored the presence of TAA-specific CD8+ T cells infiltrating the skin at sites of intradermal TriMixDC-MEL injection (SKILs and within the circulation of melanoma patients treated in two clinical trials. In 10 out of fourteen (71% patients screened, CD8+ T cells recognizing any of the four TAA presented by TriMixDC-MEL cellular vaccine were found in both compartments. In total, 30 TAA-specific T-cell responses were detected among the SKILs and 29 among peripheral blood T cells, of which 24 in common. A detailed characterization of the antigen specificity of CD8+ T-cell populations in four patients indicates that the majority of the epitopes detected were only recognized by CD8+ T cells derived from either skin biopsies or peripheral blood, indicating that some compartmentalization occurs after TriMix-DC therapy. To conclude, functional TAA-specific CD8+ T cells distribute both to the skin and peripheral blood of patients after TriMixDC-MEL therapy.

  8. Characterization of CD8+ T-cell responses in the peripheral blood and skin injection sites of melanoma patients treated with mRNA electroporated autologous dendritic cells (TriMixDC-MEL).

    Science.gov (United States)

    Benteyn, Daphné; Van Nuffel, An M T; Wilgenhof, Sofie; Corthals, Jurgen; Heirman, Carlo; Neyns, Bart; Thielemans, Kris; Bonehill, Aude

    2013-01-01

    Treatment of melanoma patients with mRNA electroporated dendritic cells (TriMixDC-MEL) stimulates T-cell responses against the presented tumor-associated antigens (TAAs). In the current clinical trials, melanoma patients with systemic metastases are treated, requiring priming and/or expansion of preexisting TAA-specific T cells that are able to migrate to both the skin and internal organs. We monitored the presence of TAA-specific CD8(+) T cells infiltrating the skin at sites of intradermal TriMixDC-MEL injection (SKILs) and within the circulation of melanoma patients treated in two clinical trials. In 10 out of fourteen (71%) patients screened, CD8(+) T cells recognizing any of the four TAA presented by TriMixDC-MEL cellular vaccine were found in both compartments. In total, 30 TAA-specific T-cell responses were detected among the SKILs and 29 among peripheral blood T cells, of which 24 in common. A detailed characterization of the antigen specificity of CD8(+) T-cell populations in four patients indicates that the majority of the epitopes detected were only recognized by CD8(+) T cells derived from either skin biopsies or peripheral blood, indicating that some compartmentalization occurs after TriMix-DC therapy. To conclude, functional TAA-specific CD8(+) T cells distribute both to the skin and peripheral blood of patients after TriMixDC-MEL therapy.

  9. Concentrated fed-batch cell culture increases manufacturing capacity without additional volumetric capacity.

    Science.gov (United States)

    Yang, William C; Minkler, Daniel F; Kshirsagar, Rashmi; Ryll, Thomas; Huang, Yao-Ming

    2016-01-10

    Biomanufacturing factories of the future are transitioning from large, single-product facilities toward smaller, multi-product, flexible facilities. Flexible capacity allows companies to adapt to ever-changing pipeline and market demands. Concentrated fed-batch (CFB) cell culture enables flexible manufacturing capacity with limited volumetric capacity; it intensifies cell culture titers such that the output of a smaller facility can rival that of a larger facility. We tested this hypothesis at bench scale by developing a feeding strategy for CFB and applying it to two cell lines. CFB improved cell line A output by 105% and cell line B output by 70% compared to traditional fed-batch (TFB) processes. CFB did not greatly change cell line A product quality, but it improved cell line B charge heterogeneity, suggesting that CFB has both process and product quality benefits. We projected CFB output gains in the context of a 2000-L small-scale facility, but the output was lower than that of a 15,000-L large-scale TFB facility. CFB's high cell mass also complicated operations, eroded volumetric productivity, and showed our current processes require significant improvements in specific productivity in order to realize their full potential and savings in manufacturing. Thus, improving specific productivity can resolve CFB's cost, scale-up, and operability challenges. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Antigen and Memory CD8 T Cells: Were They Both Right?

    Directory of Open Access Journals (Sweden)

    Epelman Slava

    2007-06-01

    Full Text Available Picture yourself as a researcher in immunology. To begin your project, you ask a question: Do CD8 T cells require antigen to maintain a memory response? This question is of prime importance to numerous medical fields. In chronologic order, you digest the literature, but unfortunately, you hit a major stumbling block in the 1990s. The crux of the problem is that which so often happens in science: two well-recognized, capable groups emerge with diametrically opposed conclusions, leaving you pondering which set of wellcontrolled data to believe. Fortunately, years later, a surprising group of articles sheds light on this mystery and subtly reconciles these two positions.

  11. Induction of Regulatory T Cells by Intravenous Immunoglobulin: A Bridge between Adaptive and Innate Immunity.

    Science.gov (United States)

    Kaufman, Gabriel N; Massoud, Amir H; Dembele, Marieme; Yona, Madelaine; Piccirillo, Ciriaco A; Mazer, Bruce D

    2015-01-01

    Intravenous immunoglobulin (IVIg) is a polyclonal immunoglobulin G preparation with potent immunomodulatory properties. The mode of action of IVIg has been investigated in multiple disease states, with various mechanisms described to account for its benefits. Recent data indicate that IVIg increases both the number and the suppressive capacity of regulatory T cells, a subpopulation of T cells that are essential for immune homeostasis. IVIg alters dendritic cell function, cytokine and chemokine networks, and T lymphocytes, leading to development of regulatory T cells. The ability of IVIg to influence Treg induction has been shown both in animal models and in human diseases. In this review, we discuss data on the potential mechanisms contributing to the interaction between IVIg and the regulatory T-cell compartment.

  12. Characterization of CD4 and CD8 T Cell Responses in MuSK Myasthenia Gravis

    Science.gov (United States)

    Yi, JS; Guidon, A; Sparks, S; Osborne, R; Juel, VC; Massey, JM; Sanders, DB; Weinhold, KJ; Guptill, JT

    2014-01-01

    Muscle specific tyrosine kinase myasthenia gravis (MuSK MG) is a form of autoimmune MG that predominantly affects women and has unique clinical features, including prominent bulbar weakness, muscle atrophy, and excellent response to therapeutic plasma exchange. Patients with MuSK MG have predominantly IgG4 autoantibodies directed against MuSK on the postsynaptic muscle membrane. Lymphocyte functionality has not been reported in this condition. The goal of this study was to characterize T-cell responses in patients with MuSK MG. Intracellular production of IFN-gamma, TNF-alpha, IL-2, IL-17, and IL-21 by CD4+ and CD8+ T-cells was measured by polychromatic flow cytometry in peripheral blood samples from 11 Musk MG patients and 10 healthy controls. Only one MuSK MG patient was not receiving immunosuppressive therapy. Regulatory T-cells (Treg) were also included in our analysis to determine if changes in T cell function were due to altered Treg frequencies. CD8+ T-cells from MuSK MG patients had higher frequencies of polyfunctional responses than controls, and CD4+ T-cells had higher IL-2, TNF-alpha, and IL-17. MuSK MG patients had a higher percentage of CD4+ T-cells producing combinations of IFN-gamma/IL-2/TNF-gamma, TNF-alpha/IL-2, and IFN-gamma/TNF-alpha. Interestingly, Treg numbers and CD39 expression were not different from control values. MuSK MG patients had increased frequencies of Th1 and Th17 cytokines and were primed for polyfunctional proinflammatory responses that cannot be explained by a defect in Treg function or number. PMID:24378287

  13. Chimeric Antigen Receptor T Cell (Car T Cell Therapy In Hematology

    Directory of Open Access Journals (Sweden)

    Pinar Ataca

    2015-12-01

    Full Text Available It is well demonstrated that immune system can control and eliminate cancer cells. Immune-mediated elimination of tumor cells has been discovered and is the basis of both cancer vaccines and cellular therapies including hematopoietic stem cell transplantation (HSCT. Adoptive T cell transfer has been improved to be more specific and potent and cause less off-target toxicities. Currently, there are two forms of engineered T cells being tested in clinical trials: T cell receptor (TCR and chimeric antigen receptor (CAR modified T cells. On July 1, 2014, the United States Food and Drug Administration granted ‘breakthrough therapy’ designation to anti-CD19 CAR T cell therapy. Many studies were conducted to evaluate the beneficiaries of this exciting and potent new treatment modality. This review summarizes the history of adoptive immunotherapy, adoptive immunotherapy using CARs, the CAR manufacturing process, preclinical-clinical studies, effectiveness and drawbacks of this strategy.

  14. Nonmalignant T cells stimulate growth of T-cell lymphoma cells in the presence of bacterial toxins

    DEFF Research Database (Denmark)

    Woetmann, Anders; Lovato, Paola; Eriksen, Karsten W

    2007-01-01

    Bacterial toxins including staphylococcal enterotoxins (SEs) have been implicated in the pathogenesis of cutaneous T-cell lymphomas (CTCLs). Here, we investigate SE-mediated interactions between nonmalignant T cells and malignant T-cell lines established from skin and blood of CTCL patients....... The malignant CTCL cells express MHC class II molecules that are high-affinity receptors for SE. Although treatment with SE has no direct effect on the growth of the malignant CTCL cells, the SE-treated CTCL cells induce vigorous proliferation of the SE-responsive nonmalignant T cells. In turn, the nonmalignant...... T cells enhance proliferation of the malignant cells in an SE- and MHC class II-dependent manner. Furthermore, SE and, in addition, alloantigen presentation by malignant CTCL cells to irradiated nonmalignant CD4(+) T-cell lines also enhance proliferation of the malignant cells. The growth...

  15. Working memory capacity differentially influences responses to tDCS and HD-tDCS in a retro-cue task.

    Science.gov (United States)

    Gözenman, Filiz; Berryhill, Marian E

    2016-08-26

    There is growing interest in non-invasive brain stimulation techniques. A drawback is that the relationship between stimulation and cognitive outcomes for various tasks are unknown. Transcranial direct current stimulation (tDCS) provides diffuse current spread, whereas high-definition tDCS (HD-tDCS) provides more targeted current. The direction of behavioral effects after tDCS can be difficult to predict in cognitive realms such as attention and working memory (WM). Previously, we showed that in low and high WM capacity groups tDCS modulates performance in nearly equal and opposite directions on a change detection task, with improvement for the high capacity participants alone. Here, we used the retro-cue paradigm to test attentional shifting among items in WM to investigate whether WM capacity (WMC) predicted different behavioral consequences during anodal tDCS or HD-tDCS to posterior parietal cortex (PPC). In two experiments, with 24 participants each, we used different stimulus categories (colored circles, letters) and stimulation sites (right, left PPC). The results showed a significant (Experiment 1) or trending (Experiment 2) WMC x stimulation interaction. Compared to tDCS, after HD-tDCS the retro-cueing benefit was significantly greater for the low WMC group but numerically worse for the high WMC group. These data highlight the importance of considering group differences when using non-invasive neurostimulation techniques. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. Structural characteristics of an antigen required for its interaction with Ia and recognition by T cells

    DEFF Research Database (Denmark)

    Sette, A; Buus, S; Colon, S

    1987-01-01

    A detailed analysis of the residues within an immunogenic peptide that endow it with the capacity to interact with Ia and to be recognized by T cells is presented. Ia interacts with only a few of the peptide residues and overall exhibits a very broad specificity. Some residues appear to interact...... both with Ia and with T cells, leading to a model in which a peptide antigen is 'sandwiched' between Ia and the T-cell receptor....

  17. Induction of potent NK cell-dependent anti-myeloma cytotoxic T cells in response to combined mapatumumab and bortezomib.

    Science.gov (United States)

    Neeson, Paul J; Hsu, Andy K; Chen, Yin R; Halse, Heloise M; Loh, Joanna; Cordy, Reece; Fielding, Kate; Davis, Joanne; Noske, Josh; Davenport, Alex J; Lindqvist-Gigg, Camilla A; Humphreys, Robin; Tai, Tsin; Prince, H Miles; Trapani, Joseph A; Smyth, Mark J; Ritchie, David S

    2015-09-01

    There is increasing evidence that some cancer therapies can promote tumor immunogenicity to boost the endogenous antitumor immune response. In this study, we used the novel combination of agonistic anti-TRAIL-R1 antibody (mapatumumab, Mapa) with low dose bortezomib (LDB) for this purpose. The combination induced profound myeloma cell apoptosis, greatly enhanced the uptake of myeloma cell apoptotic bodies by dendritic cell (DC) and induced anti-myeloma cytotoxicity by both CD8 + T cells and NK cells. Cytotoxic lymphocyte expansion was detected within 24 h of commencing therapy and was maximized when myeloma-pulsed DC were co-treated with low dose bortezomib and mapatumumab (LDB+Mapa) in the presence of NK cells. This study shows that Mapa has two distinct but connected modes of action against multiple myeloma (MM). First, when combined with LDB, Mapa produced powerful myeloma cell apoptosis; secondly, it promoted DC priming and an NK cell-mediated expansion of anti-myeloma cytotoxic lymphocyte (CTL). Overall, this study indicates that Mapa can be used to drive potent anti-MM immune responses.

  18. Masked priming effect reflects evidence accumulated by the prime.

    Science.gov (United States)

    Kinoshita, Sachiko; Norris, Dennis

    2010-01-01

    In the same-different match task, masked priming is observed with the same responses but not different responses. Norris and Kinoshita's (2008) Bayesian reader account of masked priming explains this pattern based on the same principle as that explaining the absence of priming for nonwords in the lexical decision task. The pattern of priming follows from the way the model makes optimal decisions in the two tasks; priming does not depend on first activating the prime and then the target. An alternative explanation is in terms of a bias towards responding "same" that exactly counters the facilitatory effect of lexical access. The present study tested these two views by varying both the degree to which the prime predicts the response and the visibility of the prime. Unmasked primes produced effects expected from the view that priming is influenced by the degree to which the prime predicts the response. In contrast, with masked primes, the size of priming for the same response was completely unaffected by predictability. These results rule out response bias as an explanation of the absence of masked priming for different responses and, in turn, indicate that masked priming is not a consequence of automatic lexical access of the prime.

  19. Activated human neonatal CD8+ T cells are subject to immunomodulation by direct TLR2 or TLR5 stimulation.

    LENUS (Irish Health Repository)

    McCarron, Mark

    2012-02-01

    In conditions of optimal priming, the neonate possesses competency to mount quantitatively adult-like responses. Vaccine formulations containing sufficiently potent adjuvants may overcome the neonate\\'s natural tendency for immunosuppression and provoke a similarly robust immune response. TLR expression on T cells represents the possibility of directly enhancing T cell immunity. We examined the ex vivo responsiveness of highly purified human cord blood-derived CD8(+) T cells to direct TLR ligation by a repertoire of TLR agonists. In concert with TCR stimulation, only Pam(3)Cys (palmitoyl-3-Cys-Ser-(Lys)(4)) and flagellin monomers significantly enhanced proliferation, CD25(+) expression, IL-2, IFN-gamma, TNF-alpha, and intracellular granzyme B expression. TLR2 and TLR5 mRNA was detected in the CD8(+) T cells. Blocking studies confirmed that the increase in IFN-gamma production was by the direct triggering of surface TLR2 or TLR5. The simultaneous exposure of CD8(+) T cells to both TLR agonists had an additive effect on IFN-gamma production. These data suggest that a combination of the two TLR ligands would be a potent T cell adjuvant. This may represent a new approach to TLR agonist-based adjuvant design for future human neonatal vaccination strategies requiring a CD8(+) component.

  20. Regulatory T Cells in Skin Facilitate Epithelial Stem Cell Differentiation.

    Science.gov (United States)

    Ali, Niwa; Zirak, Bahar; Rodriguez, Robert Sanchez; Pauli, Mariela L; Truong, Hong-An; Lai, Kevin; Ahn, Richard; Corbin, Kaitlin; Lowe, Margaret M; Scharschmidt, Tiffany C; Taravati, Keyon; Tan, Madeleine R; Ricardo-Gonzalez, Roberto R; Nosbaum, Audrey; Bertolini, Marta; Liao, Wilson; Nestle, Frank O; Paus, Ralf; Cotsarelis, George; Abbas, Abul K; Rosenblum, Michael D

    2017-06-01

    The maintenance of tissue homeostasis is critically dependent on the function of tissue-resident immune cells and the differentiation capacity of tissue-resident stem cells (SCs). How immune cells influence the function of SCs is largely unknown. Regulatory T cells (Tregs) in skin preferentially localize to hair follicles (HFs), which house a major subset of skin SCs (HFSCs). Here, we mechanistically dissect the role of Tregs in HF and HFSC biology. Lineage-specific cell depletion revealed that Tregs promote HF regeneration by augmenting HFSC proliferation and differentiation. Transcriptional and phenotypic profiling of T regs and HFSCs revealed that skin-resident Tregs preferentially express high levels of the Notch ligand family member, Jagged 1 (Jag1). Expression of Jag1 on Tregs facilitated HFSC function and efficient HF regeneration. Taken together, our work demonstrates that Tregs in skin play a major role in HF biology by promoting the function of HFSCs. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Inhibitory effect of extracellular purine nucleotide and nucleoside concentrations on T cell proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Weiler, Monica [Department of Medicine III and Transfusion Medicine, University Hospital Grosshadern, Ludwig-Maximilians-University, Munich (Germany); Schmetzer, Helga [Helmholtz Center Munich (Germany); German Research Center for Environmental Health, Munich (Germany); Braeu, Marion; Buhmann, Raymund [Helmholtz Center Munich (Germany); German Research Center for Environmental Health, Munich (Germany); Department of Medicine III and Transfusion Medicine, University Hospital Grosshadern, Ludwig-Maximilians-University, Munich (Germany)

    2016-11-15

    The release of nucleic acids and derivatives after tissue-injury may affect cellular immune-response. We studied the impact of extracellular ribo-, desoxyribonucleotides and nucleosides on T-cell immunity. Peripheral-blood-mononuclear-cells (PBMCs) or isolated CD3{sup +}T-cells obtained from 6 healthy donors were stimulated via CD3/CD28 Dynabeads or dendritic cells (DCs) in the presence or absence of pyrimidine-, purine-nucleotides and -nucleosides (range 2–200 µM). Addition of deoxy-, guanosine-triphosphate (dGTP, GTP) and guanosine resulted concentration dependent in a complete, adenosine-triphosphate (ATP) in a partial inhibition of the induced T-cell-proliferation. Deoxyadenosine-triphosphate (dATP), adenosine and the pyrimidine-ribo- and -deoxyribonucleotides displayed no inhibitory capacity. Inhibitory effects of dGTP and GTP, but not of guanosine and ATP were culture-media-dependent and could be almost abrogated by use of the serum-free lymphocyte-culture-media X-Vivo15 instead of RPMI1640 with standard-supplementation. In contrast to RPMI1640, X-Vivo15 resulted in a significant down-regulation of the cell-surface-located ectonucleotidases CD39 (Ecto-Apyrase) and CD73 (Ecto-5′-Nucleotidase), critical for the extracellular nucleotides-hydrolysis to nucleosides, explaining the loss of inhibition mediated by dGTP and GTP, but not Guanosine. In line with previous findings ATP was found to exert immunosuppressive effects on T-cell-proliferation. Purine-nucleotides, dGTP and GTP displayed a higher inhibitory capacity, but seem to be strictly dependent on the microenvironmental conditions modulating the responsiveness of the respective T-lymphocytes. Further evaluation of experimental and respective clinical settings should anticipate these findings.

  2. Inhibitory effect of extracellular purine nucleotide and nucleoside concentrations on T cell proliferation

    International Nuclear Information System (INIS)

    Weiler, Monica; Schmetzer, Helga; Braeu, Marion; Buhmann, Raymund

    2016-01-01

    The release of nucleic acids and derivatives after tissue-injury may affect cellular immune-response. We studied the impact of extracellular ribo-, desoxyribonucleotides and nucleosides on T-cell immunity. Peripheral-blood-mononuclear-cells (PBMCs) or isolated CD3 + T-cells obtained from 6 healthy donors were stimulated via CD3/CD28 Dynabeads or dendritic cells (DCs) in the presence or absence of pyrimidine-, purine-nucleotides and -nucleosides (range 2–200 µM). Addition of deoxy-, guanosine-triphosphate (dGTP, GTP) and guanosine resulted concentration dependent in a complete, adenosine-triphosphate (ATP) in a partial inhibition of the induced T-cell-proliferation. Deoxyadenosine-triphosphate (dATP), adenosine and the pyrimidine-ribo- and -deoxyribonucleotides displayed no inhibitory capacity. Inhibitory effects of dGTP and GTP, but not of guanosine and ATP were culture-media-dependent and could be almost abrogated by use of the serum-free lymphocyte-culture-media X-Vivo15 instead of RPMI1640 with standard-supplementation. In contrast to RPMI1640, X-Vivo15 resulted in a significant down-regulation of the cell-surface-located ectonucleotidases CD39 (Ecto-Apyrase) and CD73 (Ecto-5′-Nucleotidase), critical for the extracellular nucleotides-hydrolysis to nucleosides, explaining the loss of inhibition mediated by dGTP and GTP, but not Guanosine. In line with previous findings ATP was found to exert immunosuppressive effects on T-cell-proliferation. Purine-nucleotides, dGTP and GTP displayed a higher inhibitory capacity, but seem to be strictly dependent on the microenvironmental conditions modulating the responsiveness of the respective T-lymphocytes. Further evaluation of experimental and respective clinical settings should anticipate these findings.

  3. Heparin Interaction with the Primed Polymorphonuclear Leukocyte CD11b Induces Apoptosis and Prevents Cell Activation

    Directory of Open Access Journals (Sweden)

    Meital Cohen-Mazor

    2015-01-01

    Full Text Available Heparin is known to have anti-inflammatory effects, yet the mechanisms are not completely understood. In this study, we tested the hypothesis that heparin has a direct effect on activated polymorphonuclear leukocytes (PMNLs, changing their activation state, and can explain its anti-inflammatory effect. To test our hypothesis, we designed both in vitro and ex vivo studies to elucidate the mechanism by which heparin modulates PMNL functions and therefore the inflammatory response. We specifically tested the hypothesis that priming of PMNLs renders them more susceptible to heparin. Amplified levels of CD11b and increased rate of superoxide release manifested PMNL priming. Increase in cell priming resulted in a dose-dependent increase in heparin binding to PMNLs followed by augmented apoptosis. Blocking antibodies to CD11b inhibited heparin binding and abolished the apoptotic response. Moreover, heparin caused a significant dose-dependent decrease in the rate of superoxide release from PMNLs, which was blunted by blocking antibodies to CD11b. Altogether, this study shows that the interaction of heparin with the PMNL CD11b results in cell apoptosis and explains heparin’s anti-inflammatory effects.

  4. IFN-Gamma-Dependent and Independent Mechanisms of CD4⁺ Memory T Cell-Mediated Protection from Listeria Infection.

    Science.gov (United States)

    Meek, Stephanie M; Williams, Matthew A

    2018-02-13

    While CD8⁺ memory T cells can promote long-lived protection from secondary exposure to intracellular pathogens, less is known regarding the direct protective mechanisms of CD4⁺ T cells. We utilized a prime/boost model in which mice are initially exposed to an acutely infecting strain of lymphocytic choriomeningitis virus (LCMV), followed by a heterologous rechallenge with Listeria monocytogenes recombinantly expressing the MHC Class II-restricted LCMV epitope, GP 61-80 (Lm-gp61). We found that heterologous Lm-gp61 rechallenge resulted in robust activation of CD4⁺ memory T cells and that they were required for rapid bacterial clearance. We further assessed the relative roles of TNF and IFNγ in the direct anti-bacterial function of CD4⁺ memory T cells. We found that disruption of TNF resulted in a complete loss of protection mediated by CD4⁺ memory T cells, whereas disruption of IFNγ signaling to macrophages results in only a partial loss of protection. The protective effect mediated by CD4⁺ T cells corresponded to the rapid accumulation of pro-inflammatory macrophages in the spleen and an altered inflammatory environment in vivo. Overall, we conclude that protection mediated by CD4⁺ memory T cells from heterologous Listeria challenge is most directly dependent on TNF, whereas IFNγ only plays a minor role.

  5. Percentage and function of CD4+CD25+ regulatory T cells in patients with hyperthyroidism

    Science.gov (United States)

    Jiang, Ting-Jun; Cao, Xue-Liang; Luan, Sha; Cui, Wan-Hui; Qiu, Si-Huang; Wang, Yi-Chao; Zhao, Chang-Jiu; Fu, Peng

    2018-01-01

    The current study observed the percentage of peripheral blood (PB) CD4+CD25+ regulatory T cells (Tregs) and the influence of CD4+CD25+ Tregs on the proliferation of naïve CD4 T cells in patients with hyperthyroidism. Furthermore, preliminary discussions are presented on the action mechanism of CD4+CD25+ Tregs on hyperthyroidism attacks. The present study identified that compared with the percentage of PB CD4+CD25+ Tregs in healthy control subjects, no significant changes were observed in the percentage of PB CD4+CD25+ Tregs in patients with hyperthyroidism (P>0.05). For patients with hyperthyroidism, CD4+CD25+ Tregs exhibited significantly reduced inhibition of the proliferation of naïve CD4 T cells and decreased secretion capacity on the cytokines of CD4 T cells, compared with those of healthy control subjects (Phyperthyroidism was significantly improved (Phyperthyroidism before treatment, no significant changes were observed in the percentage of PB CD4+CD25+ Tregs in hyperthyroidism patients following treatment (P>0.05). In the patients with hyperthyroidism, following treatment, CD4+CD25+ Tregs exhibited significantly increased inhibition of the proliferation of naïve CD4 T cells and increased secretion capacity of CD4 T cell cytokines, compared with those of the patients with hyperthyroidism prior to treatment (Phyperthyroidism, and its non-proportional decrease may be closely associated with the occurrence and progression of hyperthyroidism. PMID:29207121

  6. Capacity Decline and Characteristics Changes of Lithium-ion Cells with Large Capacity during Trickle Charge at High Temperature

    Science.gov (United States)

    Matsushima, Toshio

    Large-scale 40-Ah Li-ion cells have been developed for use in industrial applications. To contribute to techniques for ascertaining the state of these cells and detecting deterioration during actual use, we produce a cell whose capacity is reduced by trickle charging at high temperature, and we determine the relationship between the cell's properties such as its capacity and charging/discharging characteristics when the capacity is reduced. When the capacity of a Li-ion cell is reduced, the discharge voltage also decreases. We show that the residual capacity is well correlated to the discharge voltage and to the duration of continuous discharge before reaching a fixed end-voltage. We also show that the constant-current constant-voltage charging characteristics are maintained even when the capacity is degraded, and that the constant-current charging time and discharge voltage are closely related to the residual capacity. We confirm that the reaction coefficient of the capacity degradation formula can be calculated from the capacity change characteristics at multiple temperatures, and that an 8°C change in temperature causes the lifetime to decrease by half.

  7. Ibrutinib treatment improves T cell number and function in CLL patients.

    Science.gov (United States)

    Long, Meixiao; Beckwith, Kyle; Do, Priscilla; Mundy, Bethany L; Gordon, Amber; Lehman, Amy M; Maddocks, Kami J; Cheney, Carolyn; Jones, Jeffrey A; Flynn, Joseph M; Andritsos, Leslie A; Awan, Farrukh; Fraietta, Joseph A; June, Carl H; Maus, Marcela V; Woyach, Jennifer A; Caligiuri, Michael A; Johnson, Amy J; Muthusamy, Natarajan; Byrd, John C

    2017-08-01

    Ibrutinib has been shown to have immunomodulatory effects by inhibiting Bruton's tyrosine kinase (BTK) and IL-2-inducible T cell kinase (ITK). The relative importance of inhibiting these 2 kinases has not been examined despite its relevance to immune-based therapies. Peripheral blood mononuclear cells from chronic lymphocytic leukemia (CLL) patients on clinical trials of ibrutinib (BTK/ITK inhibitor; n = 19) or acalabrutinib (selective BTK inhibitor; n = 13) were collected serially. T cell phenotype, immune function, and CLL cell immunosuppressive capacity were evaluated. Ibrutinib markedly increased CD4+ and CD8+ T cell numbers in CLL patients. This effect was more prominent in effector/effector memory subsets and was not observed with acalabrutinib. Ex vivo studies demonstrated that this may be due to diminished activation-induced cell death through ITK inhibition. PD-1 and CTLA-4 expression was significantly markedly reduced in T cells by both agents. While the number of Treg cells remained unchanged, the ratio of these to conventional CD4+ T cells was reduced with ibrutinib, but not acalabrutinib. Both agents reduced expression of the immunosuppressive molecules CD200 and BTLA as well as IL-10 production by CLL cells. Ibrutinib treatment increased the in vivo persistence of activated T cells, decreased the Treg/CD4+ T cell ratio, and diminished the immune-suppressive properties of CLL cells through BTK-dependent and -independent mechanisms. These features provide a strong rationale for combination immunotherapy approaches with ibrutinib in CLL and other cancers. ClinicalTrials.gov NCT01589302 and NCT02029443. Samples described here were collected per OSU-0025. The National Cancer Institute.

  8. Neuron-mediated generation of regulatory T cells from encephalitogenic T cells suppresses EAE

    DEFF Research Database (Denmark)

    Liu, Yawei; Teige, Ingrid; Birnir, Bryndis

    2006-01-01

    Neurons have been neglected as cells with a major immune-regulatory function because they do not express major histocompatibility complex class II. Our data show that neurons are highly immune regulatory, having a crucial role in governing T-cell response and central nervous system (CNS) inflamma......Neurons have been neglected as cells with a major immune-regulatory function because they do not express major histocompatibility complex class II. Our data show that neurons are highly immune regulatory, having a crucial role in governing T-cell response and central nervous system (CNS......) inflammation. Neurons induce the proliferation of activated CD4+ T cells through B7-CD28 and transforming growth factor (TGF)-beta1-TGF-beta receptor signaling pathways, resulting in amplification of T-cell receptor signaling through phosphorylated ZAP-70, interleukin (IL)-2 and IL-9. The interaction between...... neurons and T cells results in the conversion of encephalitogenic T cells to CD25+ TGF-beta1+ CTLA-4+ FoxP3+ T regulatory (Treg) cells that suppress encephalitogenic T cells and inhibit experimental autoimmune encephalomyelitis. Suppression is dependent on cytotoxic T lymphocyte antigen (CTLA)-4...

  9. Adenosinergic Immunosuppression by Human Mesenchymal Stromal Cells Requires Co-Operation with T cells.

    Science.gov (United States)

    Kerkelä, Erja; Laitinen, Anita; Räbinä, Jarkko; Valkonen, Sami; Takatalo, Maarit; Larjo, Antti; Veijola, Johanna; Lampinen, Milla; Siljander, Pia; Lehenkari, Petri; Alfthan, Kaija; Laitinen, Saara

    2016-03-01

    Mesenchymal stem/stromal cells (MSCs) have the capacity to counteract excessive inflammatory responses. MSCs possess a range of immunomodulatory mechanisms, which can be deployed in response to signals in a particular environment and in concert with other immune cells. One immunosuppressive mechanism, not so well-known in MSCs, is mediated via adenosinergic pathway by ectonucleotidases CD73 and CD39. In this study, we demonstrate that adenosine is actively produced from adenosine 5'-monophosphate (AMP) by CD73 on MSCs and MSC-derived extracellular vesicles (EVs). Our results indicate that although MSCs express CD39 at low level and it colocalizes with CD73 in bulge areas of membranes, the most efficient adenosine production from adenosine 5'-triphosphate (ATP) requires co-operation of MSCs and activated T cells. Highly CD39 expressing activated T cells produce AMP from ATP and MSCs produce adenosine from AMP via CD73 activity. Furthermore, adenosinergic signaling plays a role in suppression of T cell proliferation in vitro. In conclusion, this study shows that adenosinergic signaling is an important immunoregulatory mechanism of MSCs, especially in situations where ATP is present in the extracellular environment, like in tissue injury. An efficient production of immunosuppressive adenosine is dependent on the concerted action of CD39-positive immune cells with CD73-positive cells such as MSCs or their EVs. © 2016 AlphaMed Press.

  10. Antibody formation in mouse bone marrow. IV. The influence of splenectomy on the bone marrow plaque-forming cell response to sheep red blood cells

    International Nuclear Information System (INIS)

    Benner, R.; Oudenaren, A. van

    1975-01-01

    Mouse bone marrow is barely capable of plaque-forming cell (PFC) activity during the primary response to sheep red blood cells (SRBC). However, during the secondary response, it becomes the major center of activity containing IgM-, IgG- and IgA-PFC. In the present paper the influence of splenectomy was studied on primary and secondary PFC activity in the bone marrow. Differences in primary and secondary bone marrow PFC responses are probably related to the presence of B and T memory cells in situ. Therefore the effect of splenectomy on the appearance of B and T memory cells in the bone marrow was also investigated. iv.plenectomy before intravenous (iv) immunization with 4 x 10 8 SRBC prevented any primary PFC activity in the bone marrow. The influence of splenectomy before priming on secondary PFC activity in the bone marrow depended on the priming dose of SRBC. Splenectomy before priming with 10 7 SRBC iv completely prevented IgM-, IgG-, and IgA-PFC activity in the bone marrow upon subsequent boosting with 4 x 10 8 SRBC iv. By means of cell transfer experiments it was shown that after splenectomy no B or T memory cells appeared in the bone marrow after priming with 10 7 SRBC iv. Cell transfer experiments showed that splenectomy before priming with 10 7 SRBC iv not only interfered with the appearance of B and T memory cells in the bone marrow, but also with the appearance of B memory cells in peripheral lymph nodes, mesenteric lymph node, Peyer's patches, thymus, and blood. Immunization of spenectomized mice with 4 x 10 8 SRBC iv induced the appearance of B memory cells in peripheral lymph nodes, mesenteric lymph node, Peyer's patches, thymus, and blood

  11. CD4+ T cell effects on CD8+ T cell location defined using bioluminescence.

    Directory of Open Access Journals (Sweden)

    Mitra Azadniv

    2011-01-01

    Full Text Available T lymphocytes of the CD8+ class are critical in delivering cytotoxic function and in controlling viral and intracellular infections. These cells are "helped" by T lymphocytes of the CD4+ class, which facilitate their activation, clonal expansion, full differentiation and the persistence of memory. In this study we investigated the impact of CD4+ T cells on the location of CD8+ T cells, using antibody-mediated CD4+ T cell depletion and imaging the antigen-driven redistribution of bioluminescent CD8+ T cells in living mice. We documented that CD4+ T cells influence the biodistribution of CD8+ T cells, favoring their localization to abdominal lymph nodes. Flow cytometric analysis revealed that this was associated with an increase in the expression of specific integrins. The presence of CD4+ T cells at the time of initial CD8+ T cell activation also influences their biodistribution in the memory phase. Based on these results, we propose the model that one of the functions of CD4+ T cell "help" is to program the homing potential of CD8+ T cells.

  12. A reversion of an IL2RG mutation in combined immunodeficiency providing competitive advantage to the majority of CD8+ T cells.

    Science.gov (United States)

    Kuijpers, Taco W; van Leeuwen, Ester M M; Barendregt, Barbara H; Klarenbeek, Paul; aan de Kerk, Daan J; Baars, Paul A; Jansen, Machiel H; de Vries, Niek; van Lier, René A W; van der Burg, Mirjam

    2013-07-01

    Mutations in the common gamma chain (γc, CD132, encoded by the IL2RG gene) can lead to B(+)T(-)NK(-) X-linked severe combined immunodeficiency, as a consequence of unresponsiveness to γc-cytokines such as interleukins-2, -7 and -15. Hypomorphic mutations in CD132 may cause combined immunodeficiencies with a variety of clinical presentations. We analyzed peripheral blood mononuclear cells of a 6-year-old boy with normal lymphocyte counts, who suffered from recurrent pneumonia and disseminated mollusca contagiosa. Since proliferative responses of T cells and NK cells to γc -cytokines were severely impaired, we performed IL2RG gene analysis, showing a heterozygous mutation in the presence of a single X-chromosome. Interestingly, an IL2RG reversion to normal predominated in both naïve and antigen-primed CD8(+) T cells and increased over time. Only the revertant CD8(+) T cells showed normal expression of CD132 and the various CD8(+) T cell populations had a different T-cell receptor repertoire. Finally, a fraction of γδ(+) T cells and differentiated CD4(+)CD27(-) effector-memory T cells carried the reversion, whereas NK or B cells were repeatedly negative. In conclusion, in a patient with a novel IL2RG mutation, gene-reverted CD8(+) T cells accumulated over time. Our data indicate that selective outgrowth of particular T-cell subsets may occur following reversion at the level of committed T progenitor cells.

  13. Relationship between laminin binding capacity and laminin expression on tumor cells sensitive or resistant to natural cell-mediated cytotoxicity

    International Nuclear Information System (INIS)

    Laybourn, K.A.; Varani, J.; Fligiel, S.E.G.; Hiserodt, J.C.

    1986-01-01

    Previous studies have identified the presence of laminin binding sites on murine NK and NC sensitive tumor cells by 125 I-laminin binding and laminin induced cell-cell aggregation. The finding that the addition of exogenous laminin inhibits NK/NC binding to sensitive tumor cells suggests laminin binding sites may serve as target antigens for NK cells. The present study extends earlier reports by analyzing a large panel of tumor cells for laminin binding capacity, laminin expression and sensitivity to NK/NC killing. The data indicate that all tumor cells which bind to NK/NC cells (8 lines tested) express laminin binding sites. All of these tumor cells were capable of competing for NK lysis of YAC-1 cells in cold target competition assays, and all bound enriched NK cells in direct single cell binding assays. In contrast, tumor cells expressing high levels of surface laminin (B16 melanomas, C57B1/6 fibrosarcomas, and RAS transfected 3T3 fibroblasts) but low levels of laminin binding capacity did not bind NK/NC cells and were resistant to lysis. These data support the hypothesis that expression of laminin/laminin binding sites may contribute to tumor cell sensitivity to NK/NC binding and/or killing

  14. γδ T Cells Support Pancreatic Oncogenesis by Restraining αβ T Cell Activation.

    Science.gov (United States)

    Daley, Donnele; Zambirinis, Constantinos Pantelis; Seifert, Lena; Akkad, Neha; Mohan, Navyatha; Werba, Gregor; Barilla, Rocky; Torres-Hernandez, Alejandro; Hundeyin, Mautin; Mani, Vishnu Raj Kumar; Avanzi, Antonina; Tippens, Daniel; Narayanan, Rajkishen; Jang, Jung-Eun; Newman, Elliot; Pillarisetty, Venu Gopal; Dustin, Michael Loran; Bar-Sagi, Dafna; Hajdu, Cristina; Miller, George

    2016-09-08

    Inflammation is paramount in pancreatic oncogenesis. We identified a uniquely activated γδT cell population, which constituted ∼40% of tumor-infiltrating T cells in human pancreatic ductal adenocarcinoma (PDA). Recruitment and activation of γδT cells was contingent on diverse chemokine signals. Deletion, depletion, or blockade of γδT cell recruitment was protective against PDA and resulted in increased infiltration, activation, and Th1 polarization of αβT cells. Although αβT cells were dispensable to outcome in PDA, they became indispensable mediators of tumor protection upon γδT cell ablation. PDA-infiltrating γδT cells expressed high levels of exhaustion ligands and thereby negated adaptive anti-tumor immunity. Blockade of PD-L1 in γδT cells enhanced CD4(+) and CD8(+) T cell infiltration and immunogenicity and induced tumor protection suggesting that γδT cells are critical sources of immune-suppressive checkpoint ligands in PDA. We describe γδT cells as central regulators of effector T cell activation in cancer via novel cross-talk. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Targeting of non-dominant antigens as a vaccine strategy to broaden T-cell responses during chronic viral infection

    DEFF Research Database (Denmark)

    Holst, Peter Johannes; Jensen, Benjamin Anderschou Holbech; Ragonnaud, Emeline

    2015-01-01

    In this study, we compared adenoviral vaccine vectors with the capacity to induce equally potent immune responses against non-dominant and immunodominant epitopes of murine lymphocytic choriomeningitis virus (LCMV). Our results demonstrate that vaccination targeting non-dominant epitopes facilita......In this study, we compared adenoviral vaccine vectors with the capacity to induce equally potent immune responses against non-dominant and immunodominant epitopes of murine lymphocytic choriomeningitis virus (LCMV). Our results demonstrate that vaccination targeting non-dominant epitopes...... was lost over time in T cells specific for the dominant T cell epitopes, and these cells were fully capable of expanding in response to a new viral challenge. Overall, our data suggests a potential for broadening of the antiviral CD8+ T-cell response by selecting non-dominant antigens to be targeted...

  16. T cells from fully H-2 allogeneic (A replaced by B) radiation bone marrow chimeras are functionally competent and host restricted but are alloreactive against hybrid Ia determinants expressed on (A x B)F1 cells

    International Nuclear Information System (INIS)

    Kruisbeek, A.M.; Hathcock, K.S.; Hodes, R.J.; Singer, A.

    1982-01-01

    In this communication it is demonstrated that T cells from fully allogeneic A replaced by B radiation bone marrow chimeras are alloreactive against the hybrid Ia molecules expressed on the surface of heterozygous A X B cells. These results suggested that previous failures to generate cytotoxic T lymphocyte (CTL) responses from fully allogeneic chimeras by sensitizing the chimeric T cells to antigen in an (A X B)F1-priming environment might have been confounded by an ongoing alloreaction against determinants created by hybrid Ia molecules expressed on F1 cells. Consequently, the ability to generate CTL responses from fully allogeneic chimeras was re-examined by sensitizing the chimeric T cells to antigen presented by homozygous rather that F1 stimulator cells. It was found that T cells of donor bone marrow origin that mediate cytotoxic responses to trinitrophenyl-modified self determinants do differentiate into functional competence in an H-2-incompatible host environment and are restricted to the host H-2 haplotype

  17. Characterization of nonlymphoid cells in rat spleen, with special reference to strongly Ia-positive branched cells in T-cell areas

    International Nuclear Information System (INIS)

    Dijkstra, C.D.

    1982-01-01

    By use of a monoclonal antibody against Ia antigen in an immunoperoxidase method, strongly Ia-positive branched cells are found in the T-cell areas of the splenic white pulp of the rat. In order to further characterize these cells, enzyme histochemical characteristics, phagocytic capacity, and irradiation sensitivity have been studied. Evidence is presented that these strongly Ia-positive branched cells represent interdigitating cells. The influence of whole-body irradiation on interdigitating cells is discussed. Comparison with data from the literature on the in vitro dendritic cell isolated from spleen cell suspensions reveals many similarities between the described interdigitating cell in vivo and the dendritic cell in vitro

  18. Merkel cell polyomavirus small T antigen induces genome instability by E3 ubiquitin ligase targeting.

    Science.gov (United States)

    Kwun, H J; Wendzicki, J A; Shuda, Y; Moore, P S; Chang, Y

    2017-12-07

    The formation of a bipolar mitotic spindle is an essential process for the equal segregation of duplicated DNA into two daughter cells during mitosis. As a result of deregulated cellular signaling pathways, cancer cells often suffer a loss of genome integrity that might etiologically contribute to carcinogenesis. Merkel cell polyomavirus (MCV) small T (sT) oncoprotein induces centrosome overduplication, aneuploidy, chromosome breakage and the formation of micronuclei by targeting cellular ligases through a sT domain that also inhibits MCV large T oncoprotein turnover. These results provide important insight as to how centrosome number and chromosomal stability can be affected by the E3 ligase targeting capacity of viral oncoproteins such as MCV sT, which may contribute to Merkel cell carcinogenesis.

  19. The PDL1-PD1 Axis Converts Human Th1 Cells Into Regulatory T Cells

    Science.gov (United States)

    Amarnath, Shoba; Mangus, Courtney W.; Wang, James C.M.; Wei, Fang; He, Alice; Kapoor, Veena; Foley, Jason E.; Massey, Paul R.; Felizardo, Tania C.; Riley, James L.; Levine, Bruce L.; June, Carl H.; Medin, Jeffrey A.; Fowler, Daniel H.

    2011-01-01

    Immune surveillance by T helper type 1 (Th1) cells is critical for the host response to tumors and infection, but also contributes to autoimmunity and graft-versus-host disease (GvHD) after transplantation. The inhibitory molecule programmed death ligand-1 (PDL1) has been shown to anergize human Th1 cells, but other mechanisms of PDL1-mediated Th1 inhibition such as the conversion of Th1 cells to a regulatory phenotype have not been well characterized. We hypothesized that PDL1 may cause Th1 cells to manifest differentiation plasticity. Conventional T cells or irradiated K562 myeloid tumor cells overexpressing PDL1 converted TBET+ Th1 cells into FOXP3+ regulatory T cells (TREGS) in vivo, thereby preventing human-into-mouse xenogeneic GvHD (xGvHD). Either blocking PD1 expression on Th1 cells by siRNA targeting or abrogation of PD1 signaling by SHP1/2 pharmacologic inhibition stabilized Th1 cell differentiation during PDL1 challenge and restored the capacity of Th1 cells to mediate lethal xGVHD. PD1 signaling therefore induces human Th1 cells to manifest in vivo plasticity, resulting in a TREG phenotype that severely impairs cell-mediated immunity. Converting human Th1 cells to a regulatory phenotype with PD1 signaling provides a potential way to block GvHD after transplantation. Moreover, because this conversion can be prevented by blocking PD1 expression or pharmacologically inhibiting SHP1/2, this pathway provides a new therapeutic direction for enhancing T cell immunity to cancer and infection. PMID:22133721

  20. T-cell clones from Th1, Th17 or Th1/17 lineages and their signature cytokines have different capacity to activate endothelial cells or synoviocytes.

    Science.gov (United States)

    Lavocat, Fabien; Maggi, Laura; Annunziato, Francesco; Miossec, Pierre

    2016-12-01

    To compare the direct effect of cytokines on synoviocytes and endothelial cells to the effects of supernatants from Th1, Th17 and Th1/17 clones and the direct cell-cell interactions with the same clones. Th17 and Th1/17 clones were obtained from the CD161+CCR6+ fraction and Th1 clones from the CD161-CCR6- fraction of human CD4+ T-cells. Endothelial cells or synoviocytes were cultured in the presence of either isolated pro-inflammatory cytokines (IL-17 and/or TNF-α) or supernatants from the T-cell clones or co-cultured with T-cell clones themselves. IL-6 and IL-8 expression and production were analyzed. IL-17 and TNF-α induced IL-6 and IL-8 expression, although IL-17 alone had a limited effect on endothelial cells compared to synoviocytes. Supernatants from activated T-helper clones also induced IL-6 and IL-8 expression but with discrepancies between endothelial cells and synoviocytes. Endothelial cells were mostly activated by Th1 clone supernatants whereas synoviocytes were activated by all T-cell subtypes. Finally, cell-cell contact experiments showed a great heterogeneity among cell clones, even from the same lineage. IL-6 expression was mostly induced by contact with Th1 clones both in endothelial and mesenchymal cells whereas IL-8 expression was induced by all T-cell clones whatever their phenotype. We showed that endothelial cells were much more sensitive to Th1 activation whereas synoviocytes were activated by all T-helper lineages. This work highlights the heterogeneity of interactions between T-cells and stromal cells through soluble factors or direct cell contact. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Supernatural T cells: genetic modification of T cells for cancer therapy.

    Science.gov (United States)

    Kershaw, Michael H; Teng, Michele W L; Smyth, Mark J; Darcy, Phillip K

    2005-12-01

    Immunotherapy is receiving much attention as a means of treating cancer, but complete, durable responses remain rare for most malignancies. The natural immune system seems to have limitations and deficiencies that might affect its ability to control malignant disease. An alternative to relying on endogenous components in the immune repertoire is to generate lymphocytes with abilities that are greater than those of natural T cells, through genetic modification to produce 'supernatural' T cells. This Review describes how such T cells can circumvent many of the barriers that are inherent in the tumour microenvironment while optimizing T-cell specificity, activation, homing and antitumour function.

  2. Memory phenotype CD4 T cells undergoing rapid, nonburst-like, cytokine-driven proliferation can be distinguished from antigen-experienced memory cells.

    Directory of Open Access Journals (Sweden)

    Souheil-Antoine Younes

    2011-10-01

    Full Text Available Memory phenotype (CD44(bright, CD25(negative CD4 spleen and lymph node T cells (MP cells proliferate rapidly in normal or germ-free donors, with BrdU uptake rates of 6% to 10% per day and Ki-67 positivity of 18% to 35%. The rapid proliferation of MP cells stands in contrast to the much slower proliferation of lymphocytic choriomeningitis virus (LCMV-specific memory cells that divide at rates ranging from <1% to 2% per day over the period from 15 to 60 days after LCMV infection. Anti-MHC class II antibodies fail to inhibit the in situ proliferation of MP cells, implying a non-T-cell receptor (TCR-driven proliferation. Such proliferation is partially inhibited by anti-IL-7Rα antibody. The sequence diversity of TCRβ CDR3 gene segments is comparable among the proliferating and quiescent MP cells from conventional and germ-free mice, implying that the majority of proliferating MP cells have not recently derived from a small cohort of cells that expand through multiple continuous rounds of cell division. We propose that MP cells constitute a diverse cell population, containing a subpopulation of slowly dividing authentic antigen-primed memory cells and a majority population of rapidly proliferating cells that did not arise from naïve cells through conventional antigen-driven clonal expansion.

  3. Components of Streptococcus pneumoniae suppress allergic airways disease and NKT cells by inducing regulatory T cells.

    Science.gov (United States)

    Thorburn, Alison N; Foster, Paul S; Gibson, Peter G; Hansbro, Philip M

    2012-05-01

    Asthma is an allergic airways disease (AAD) caused by dysregulated immune responses and characterized by eosinophilic inflammation, mucus hypersecretion, and airway hyperresponsiveness (AHR). NKT cells have been shown to contribute to AHR in some mouse models. Conversely, regulatory T cells (Tregs) control aberrant immune responses and maintain homeostasis. Recent evidence suggests that Streptococcus pneumoniae induces Tregs that have potential to be harnessed therapeutically for asthma. In this study, mouse models of AAD were used to identify the S. pneumoniae components that have suppressive properties, and the mechanisms underlying suppression were investigated. We tested the suppressive capacity of type-3-polysaccharide (T3P), isolated cell walls, pneumolysoid (Ply) and CpG. When coadministered, T3P + Ply suppressed the development of: eosinophilic inflammation, Th2 cytokine release, mucus hypersecretion, and AHR. Importantly, T3P + Ply also attenuated features of AAD when administered during established disease. We show that NKT cells contributed to the development of AAD and also were suppressed by T3P + Ply treatment. Furthermore, adoptive transfer of NKT cells induced AHR, which also could be reversed by T3P + Ply. T3P + Ply-induced Tregs were essential for the suppression of NKT cells and AAD, which was demonstrated by Treg depletion. Collectively, our results show that the S. pneumoniae components T3P + Ply suppress AAD through the induction of Tregs that blocked the activity of NKT cells. These data suggest that S. pneumoniae components may have potential as a therapeutic strategy for the suppression of allergic asthma through the induction of Tregs and suppression of NKT cells.

  4. IL-12-mediated STAT4 signaling and TCR signal strength cooperate in the induction of CD40L in human and mouse CD8+ T cells.

    Science.gov (United States)

    Stark, Regina; Hartung, Anett; Zehn, Dietmar; Frentsch, Marco; Thiel, Andreas

    2013-06-01

    CD40L is one of the key molecules bridging the activation of specific T cells and the maturation of professional and nonprofessional antigen-presenting cells including B cells. CD4(+) T cells have been regarded as the major T-cell subset that expresses CD40L upon cognate activation; however, we demonstrate here that a putative CD8(+) helper T-cell subset expressing CD40L is induced in human and murine CD8(+) T cells in vitro and in mice immunized with antigen-pulsed dendritic cells. IL-12 and STAT4-mediated signaling was the major instructive cytokine signal boosting the ability of CD8(+) T cells to express CD40L both in vitro and in vivo. Additionally, TCR signaling strength modulated CD40L expression in CD8(+) T cells after primary differentiation in vitro as well as in vivo. The induction of CD40L in CD8(+) T cells regulated by IL-12 and TCR signaling may enable CD8(+) T cells to respond autonomously of CD4(+) T cells. Thus, we propose that under proinflammatory conditions, a self-sustaining positive feedback loop could facilitate the efficient priming of T cells stimulated by high affinity peptide displaying APCs. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Wnt/β-catenin signaling promotes self-renewal and inhibits the primed state transition in naïve human embryonic stem cells.

    Science.gov (United States)

    Xu, Zhuojin; Robitaille, Aaron M; Berndt, Jason D; Davidson, Kathryn C; Fischer, Karin A; Mathieu, Julie; Potter, Jennifer C; Ruohola-Baker, Hannele; Moon, Randall T

    2016-10-18

    In both mice and humans, pluripotent stem cells (PSCs) exist in at least two distinct states of pluripotency, known as the naïve and primed states. Our understanding of the intrinsic and extrinsic factors that enable PSCs to self-renew and to transition between different pluripotent states is important for understanding early development. In mouse embryonic stem cells (mESCs), Wnt proteins stimulate mESC self-renewal and support the naïve state. In human embryonic stem cells (hESCs), Wnt/β-catenin signaling is active in naïve-state hESCs and is reduced or absent in primed-state hESCs. However, the role of Wnt/β-catenin signaling in naïve hESCs remains largely unknown. Here, we demonstrate that inhibition of the secretion of Wnts or inhibition of the stabilization of β-catenin in naïve hESCs reduces cell proliferation and colony formation. Moreover, we show that addition of recombinant Wnt3a partially rescues cell proliferation in naïve hESCs caused by inhibition of Wnt secretion. Notably, inhibition of Wnt/β-catenin signaling in naïve hESCs did not cause differentiation. Instead, it induced primed hESC-like proteomic and metabolic profiles. Thus, our results suggest that naïve hESCs secrete Wnts that activate autocrine or paracrine Wnt/β-catenin signaling to promote efficient self-renewal and inhibit the transition to the primed state.

  6. Blocking of PDL-1 interaction enhances primary and secondary CD8 T cell response to herpes simplex virus-1 infection.

    Directory of Open Access Journals (Sweden)

    Rudragouda Channappanavar

    Full Text Available The blocking of programmed death ligand-1 (PDL-1 has been shown to enhance virus-specific CD8 T cell function during chronic viral infections. Though, how PDL-1 blocking at the time of priming affects the quality of CD8 T cell response to acute infections is not well understood and remains controversial. This report demonstrates that the magnitude of the primary and secondary CD8 T cell responses to herpes simplex virus-1 (HSV-1 infection is subject to control by PDL-1. Our results showed that after footpad HSV-1 infection, PD-1 expression increases on immunodominant SSIEFARL peptide specific CD8 T cells. Additionally, post-infection, the level of PDL-1 expression also increases on CD11c+ dendritic cells. Intraperitoneal administration of anti-PDL-1 monoclonal antibody given one day prior to and three days after cutaneous HSV-1 infection, resulted in a marked increase in effector and memory CD8 T cell response to SSIEFARL peptide. This was shown by measuring the quantity and quality of SSIEFARL-specific CD8 T cells by making use of ex-vivo assays that determine antigen specific CD8 T cell function, such as intracellular cytokine assay, degranulation assay to measure cytotoxicity and viral clearance. Our results are discussed in terms of the beneficial effects of blocking PDL-1 interactions, while giving prophylactic vaccines, to generate a more effective CD8 T cell response to viral infection.

  7. Phenotypic and functional characterization of human memory T cell responses to Burkholderia pseudomallei.

    Directory of Open Access Journals (Sweden)

    Patcharaporn Tippayawat

    Full Text Available Infection with the Gram-negative bacterium Burkholderia pseudomallei is an important cause of community-acquired lethal sepsis in endemic regions in southeast Asia and northern Australia and is increasingly reported in other tropical areas. In animal models, production of interferon-gamma (IFN-gamma is critical for resistance, but in humans the characteristics of IFN-gamma production and the bacterial antigens that are recognized by the cell-mediated immune response have not been defined.Peripheral blood from 133 healthy individuals who lived in the endemic area and had no history of melioidosis, 60 patients who had recovered from melioidosis, and 31 other patient control subjects were stimulated by whole bacteria or purified bacterial proteins in vitro, and IFN-gamma responses were analyzed by ELISPOT and flow cytometry.B. pseudomallei was a potent activator of human peripheral blood NK cells for innate production of IFN-gamma. In addition, healthy individuals with serological evidence of exposure to B. pseudomallei and patients recovered from active melioidosis developed CD4(+ (and CD8(+ T cells that recognized whole bacteria and purified proteins LolC, OppA, and PotF, members of the B. pseudomallei ABC transporter family. This response was primarily mediated by terminally differentiated T cells of the effector-memory (T(EMRA phenotype and correlated with the titer of anti-B. pseudomallei antibodies in the serum.Individuals living in a melioidosis-endemic region show clear evidence of T cell priming for the ability to make IFN-gamma that correlates with their serological status. The ability to detect T cell responses to defined B. pseudomallei proteins in large numbers of individuals now provides the opportunity to screen candidate antigens for inclusion in protein or polysaccharide-conjugate subunit vaccines against this important but neglected disease.

  8. Splenectomy alters distribution and turnover but not numbers or protective capacity of de novo generated memory CD8 T cells.

    Directory of Open Access Journals (Sweden)

    Marie eKim

    2014-11-01

    Full Text Available The spleen is a highly compartmentalized lymphoid organ that allows for efficient antigen presentation and activation of immune responses. Additionally, the spleen itself functions to remove senescent red blood cells, filter bacteria, and sequester platelets. Splenectomy, commonly performed after blunt force trauma or splenomegaly, has been shown to increase risk of certain bacterial and parasitic infections years after removal of the spleen. Although previous studies report defects in memory B cells and IgM titers in splenectomized patients, the effect of splenectomy on CD8 T cell responses and memory CD8 T cell function remains ill defined. Using TCR-transgenic P14 cells, we demonstrate that homeostatic proliferation and representation of pathogen-specific memory CD8 T cells in the blood are enhanced in splenectomized compared to sham surgery mice. Surprisingly, despite the enhanced turnover, splenectomized mice displayed no changes in total memory CD8 T cell numbers nor impaired protection against lethal dose challenge with Listeria monocytogenes. Thus, our data suggest that memory CD8 T cell maintenance and function remain intact in the absence of the spleen.

  9. Ligation of TLR7 on CD19(+) CD1d(hi) B cells suppresses allergic lung inflammation via regulatory T cells.

    Science.gov (United States)

    Khan, Adnan R; Amu, Sylvie; Saunders, Sean P; Hams, Emily; Blackshields, Gordon; Leonard, Martin O; Weaver, Casey T; Sparwasser, Tim; Sheils, Orla; Fallon, Padraic G

    2015-06-01

    cells have been described as having the capacity to regulate cellular immune responses and suppress inflammatory processes. One such regulatory B-cell population is defined as IL-10-producing CD19(+) CD1d(hi) cells. Previous work has identified an expansion of these cells in mice infected with the helminth, Schistosoma mansoni. Here, microarray analysis of CD19(+) CD1d(hi) B cells from mice infected with S. mansoni demonstrated significantly increased Tlr7 expression, while CD19(+) CD1d(hi) B cells from uninfected mice also demonstrated elevated Tlr7 expression. Using IL-10 reporter, Il10(-/-) and Tlr7(-/-) mice, we formally demonstrate that TLR7 ligation of CD19(+) CD1d(hi) B cells increases their capacity to produce IL-10. In a mouse model of allergic lung inflammation, the adoptive transfer of TLR7-elicited CD19(+) CD1d(hi) B cells reduced airway inflammation and associated airway hyperresponsiveness. Using DEREG mice to deplete FoxP3(+) T regulatory cells in allergen-sensitized mice, we show that that TLR7-elicited CD19(+) CD1d(hi) B cells suppress airway hyperresponsiveness via a T regulatory cell dependent mechanism. These studies identify that TLR7 stimulation leads to the expansion of IL-10-producing CD19(+) CD1d(hi) B cells, which can suppress allergic lung inflammation via T regulatory cells. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Memory vs memory-like: The different facets of CD8+ T-cell memory in HCV infection.

    Science.gov (United States)

    Hofmann, Maike; Wieland, Dominik; Pircher, Hanspeter; Thimme, Robert

    2018-05-01

    Memory CD8 + T cells are essential in orchestrating protection from re-infection. Hallmarks of virus-specific memory CD8 + T cells are the capacity to mount recall responses with rapid induction of effector cell function and antigen-independent survival. Growing evidence reveals that even chronic infection does not preclude virus-specific CD8 + T-cell memory formation. However, whether this kind of CD8 + T-cell memory that is established during chronic infection is indeed functional and provides protection from re-infection is still unclear. Human chronic hepatitis C virus infection represents a unique model system to study virus-specific CD8 + T-cell memory formation during and after cessation of persisting antigen stimulation. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. A novel method to generate T-cell receptor-deficient chimeric antigen receptor T cells.

    Science.gov (United States)

    Kamiya, Takahiro; Wong, Desmond; Png, Yi Tian; Campana, Dario

    2018-03-13

    Practical methods are needed to increase the applicability and efficacy of chimeric antigen receptor (CAR) T-cell therapies. Using donor-derived CAR-T cells is attractive, but expression of endogenous T-cell receptors (TCRs) carries the risk for graft-versus-host-disease (GVHD). To remove surface TCRαβ, we combined an antibody-derived single-chain variable fragment specific for CD3ε with 21 different amino acid sequences predicted to retain it intracellularly. After transduction in T cells, several of these protein expression blockers (PEBLs) colocalized intracellularly with CD3ε, blocking surface CD3 and TCRαβ expression. In 25 experiments, median TCRαβ expression in T lymphocytes was reduced from 95.7% to 25.0%; CD3/TCRαβ cell depletion yielded virtually pure TCRαβ-negative T cells. Anti-CD3ε PEBLs abrogated TCRαβ-mediated signaling, without affecting immunophenotype or proliferation. In anti-CD3ε PEBL-T cells, expression of an anti-CD19-41BB-CD3ζ CAR induced cytokine secretion, long-term proliferation, and CD19 + leukemia cell killing, at rates meeting or exceeding those of CAR-T cells with normal CD3/TCRαβ expression. In immunodeficient mice, anti-CD3ε PEBL-T cells had markedly reduced GVHD potential; when transduced with anti-CD19 CAR, these T cells killed engrafted leukemic cells. PEBL blockade of surface CD3/TCRαβ expression is an effective tool to prepare allogeneic CAR-T cells. Combined PEBL and CAR expression can be achieved in a single-step procedure, is easily adaptable to current cell manufacturing protocols, and can be used to target other T-cell molecules to further enhance CAR-T-cell therapies. © 2018 by The American Society of Hematology.

  12. Conventional CD11chigh Dendritic Cells Are Important for T Cell Priming during the Initial Phase of Plasmodium yoelii Infection, but Are Dispensable at Later Time Points.

    Science.gov (United States)

    Ueffing, Kristina; Abberger, Hanna; Westendorf, Astrid M; Matuschewski, Kai; Buer, Jan; Hansen, Wiebke

    2017-01-01

    Dendritic cells (DCs) are highly specialized antigen-presenting cells that orchestrate adaptive immune responses to pathogens. During malaria infection pro- and anti-inflammatory T cell responses have to be tightly balanced to ensure parasite clearance without induction of severe immune pathologies. However, the precise role of CD11c high DCs in this process is still discussed controversially. Here, we demonstrate that long-term depletion of conventional CD11c high DCs in Plasmodium yoelii ( P. yoelii )-infected diphtheria toxin (DT)-treated RosaiDTR/CD11c-cre mice interferes with the activation of CD8 + and CD4 + T cells as well as CD4 + Foxp3 + regulatory T cells at early time points during infection. Moreover, systemic levels of the pro-inflammatory cytokines IFN-γ and TNF-α were decreased in P. yoelii -infected mice deficient for CD11c high DCs compared to infected RosaiDTR controls. To further elucidate the importance of CD11c high DCs during the later phase of infection, we treated RosaiDTR/CD11c-cre and control mice with DT only from day 4 of P. yoelii infection onward. Strikingly, this approach had no impact on the activation and IFN-γ production of CD4 + and CD8 + effector T cells. These results indicate that CD11c high DCs play a crucial role in eliciting effector T cell responses during the initial phase, but are dispensable during ongoing infection with P. yoelii .

  13. Conventional CD11chigh Dendritic Cells Are Important for T Cell Priming during the Initial Phase of Plasmodium yoelii Infection, but Are Dispensable at Later Time Points

    Directory of Open Access Journals (Sweden)

    Kristina Ueffing

    2017-10-01

    Full Text Available Dendritic cells (DCs are highly specialized antigen-presenting cells that orchestrate adaptive immune responses to pathogens. During malaria infection pro- and anti-inflammatory T cell responses have to be tightly balanced to ensure parasite clearance without induction of severe immune pathologies. However, the precise role of CD11chigh DCs in this process is still discussed controversially. Here, we demonstrate that long-term depletion of conventional CD11chigh DCs in Plasmodium yoelii (P. yoelii-infected diphtheria toxin (DT-treated RosaiDTR/CD11c-cre mice interferes with the activation of CD8+ and CD4+ T cells as well as CD4+Foxp3+ regulatory T cells at early time points during infection. Moreover, systemic levels of the pro-inflammatory cytokines IFN-γ and TNF-α were decreased in P. yoelii-infected mice deficient for CD11chigh DCs compared to infected RosaiDTR controls. To further elucidate the importance of CD11chigh DCs during the later phase of infection, we treated RosaiDTR/CD11c-cre and control mice with DT only from day 4 of P. yoelii infection onward. Strikingly, this approach had no impact on the activation and IFN-γ production of CD4+ and CD8+ effector T cells. These results indicate that CD11chigh DCs play a crucial role in eliciting effector T cell responses during the initial phase, but are dispensable during ongoing infection with P. yoelii.

  14. Long-Term Atmospheric Corrosion Behavior of Epoxy Prime Coated Aluminum Alloy 7075-T6 in Coastal Environment

    Directory of Open Access Journals (Sweden)

    Sheng Zhang

    2018-06-01

    Full Text Available The atmospheric corrosion of epoxy prime coated aluminum alloy 7075-T6 exposed for 7, 12 and 20 years was investigated. The remaining thicknesses of epoxy prime coatings for macroscopically intact coating areas followed a normal distribution and decreased linearly. EIS results demonstrated that the corrosion resistance of the coating decreased with exposure time. After 20 years of exposure, the epoxy coating had lost its protection as cracks existed within the coating and exfoliation corrosion had occurred on the substrate. The substrate was sensitive to exfoliation corrosion through metallographic and TEM analysis. The corrosion products were mainly hydroxides of aluminum. The morphology and chemical compositions of the coating bubbling area and propagation characterizations of exfoliation corrosion were analyzed by SEM, EPMA and EDS. Cracks between the lumps of corrosion products provided the channels for the transmission of corrosion mediums. Furthermore, the mechanical model was proposed to analyze the propagation characterization of exfoliation corrosion.

  15. Dendritic cells transduced with Rsf-1/HBXAP gene generate specific cytotoxic T lymphocytes against ovarian cancer in vitro

    International Nuclear Information System (INIS)

    Sun, Li; Kong, Beihua; Sheng, Xiugui; Sheu, Jim Jinn-Chyuan; Shih, Ie-Ming

    2010-01-01

    Recently, some studies have indicated that Rsf-1/HBXAP plays a role in chromatin remodeling and transcriptional regulation that may contribute to tumorigenesis in ovarian cancer. The present study demonstrates that using dendritic cells (DCs) from human cord blood CD34 + cells transduced with Rsf-1/HBXAP DNA plasmids by nucleofection generate specific cytotoxic T lymphocytes (CTL) against ovarian cancer in vitro. After transfection, DCs were analyzed for Rsf-1/HBXAP mRNA expression by RT-PCR and protein expression by Western blot. Then the DC phenotypes, T-cell stimulatory capacity, endocytic activity and migration capacity were explored by flow cytometry analysis, allogeneic mixed lymphocyte reaction, endocytosis and transwell chemotaxis assay, respectively. After transfection, Rsf-1/HBXAP expression was detected at mRNA and protein levels. Allogeneic T-cell proliferation induced by transfected DCs was obviously higher than non-transfected DCs, but the endocytosis capacity and migratory ability were not different. Rsf-1/HBXAP gene-transduced DCs could induce antigen-specific CTL and generate a very potent cytotoxicity to OVCAR3 cells. These data suggest that Rsf-1/HBXAP gene-transduced DCs may be a potential adjuvant immunotherapy for ovarian cancer in clinical applications.

  16. Stimulation with lysates of Aspergillus terreus, Candida krusei and Rhizopus oryzae maximizes cross-reactivity of anti-fungal T cells.

    Science.gov (United States)

    Deo, Shivashni S; Virassamy, Balaji; Halliday, Catriona; Clancy, Leighton; Chen, Sharon; Meyer, Wieland; Sorrell, Tania C; Gottlieb, David J

    2016-01-01

    Invasive fungal diseases caused by filamentous fungi and yeasts are significant causes of morbidity and mortality in immunosuppressed hematology patients. We previously published a method to expand Aspergillus fumigatus-specific T cells for clinical cell therapy. In the present study, we investigated expansion of T cells specific for other fungal pathogens and creation of a broadly reactive panfungal T-cell product. Fungal strains selected were those frequently observed in the clinical hematology setting and included Aspergillus, Candida, Fusarium, Rhizopus and Lomentospora/Scedosporium. Four T-cell cultures specific to each fungus were established. We selected lysates of Aspergillus terreus, Candida krusei and Rhizopus oryzae to expand panfungal T cells. Allelic restriction of anti-fungal activity was determined through the use of specific major histocompatibility complex class II-blocking antibodies. Individual T-cell cultures specific to each fungus could be expanded in vitro, generating predominantly CD4(+) T cells of which 8% to 20% were fungus-specific. We successfully expanded panfungal T cells from the peripheral blood (n = 8) and granulocyte-colony-stimulating factor-primed stem cell products (n = 3) of normal donors by using a combination of lysates from Aspergillus terreus, Candida krusei and Rhizopus oryzae. Anti-fungal activity was mediated through human leukocyte antigen (HLA)-DR alleles and was maintained when antigen-presenting cells from partially HLA-DRB1-matched donors were used to stimulate T cells. We demonstrate a method to manufacture panfungal T-cell products with specificity against a range of clinical fungal pathogens by use of the blood and stem cells of healthy donors as the starting material. The safety and efficacy of these products will need to be tested clinically. Copyright © 2015 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  17. Sequential Immunization with gp140 Boosts Immune Responses Primed by Modified Vaccinia Ankara or DNA in HIV-Uninfected South African Participants.

    Directory of Open Access Journals (Sweden)

    Gavin Churchyard

    Full Text Available The safety and immunogenicity of SAAVI DNA-C2 (4 mg IM, SAAVI MVA-C (2.9 x 109 pfu IM and Novartis V2-deleted subtype C gp140 (100 mcg with MF59 adjuvant in various vaccination regimens was evaluated in HIV-uninfected adults in South Africa.Participants at three South African sites were randomized (1:1:1:1 to one of four vaccine regimens: MVA prime, sequential gp140 protein boost (M/M/P/P; concurrent MVA/gp140 (MP/MP; DNA prime, sequential MVA boost (D/D/M/M; DNA prime, concurrent MVA/gp140 boost (D/D/MP/MP or placebo. Peak HIV specific humoral and cellular responses were measured.184 participants were enrolled: 52% were female, all were Black/African, median age was 23 years (range, 18-42 years and 79% completed all vaccinations. 159 participants reported at least one adverse event, 92.5% were mild or moderate. Five, unrelated, serious adverse events were reported. The M/M/P/P and D/D/MP/MP regimens induced the strongest peak neutralizing and binding antibody responses and the greatest CD4+ T-cell responses to Env. All peak neutralizing and binding antibody responses decayed with time. The MVA, but not DNA, prime contributed to the humoral and cellular immune responses. The D/D/M/M regimen was poorly immunogenic overall but did induce modest CD4+ T-cell responses to Gag and Pol. CD8+ T-cell responses to any antigen were low for all regimens.The SAAVI DNA-C2, SAAVI MVA-C and Novartis gp140 with MF59 adjuvant in various combinations were safe and induced neutralizing and binding antibodies and cellular immune responses. Sequential immunization with gp140 boosted immune responses primed by MVA or DNA. The best overall immune responses were seen with the M/M/P/P regimen.ClinicalTrials.gov NCT01418235.

  18. T-cells fighting B-cell lymphoproliferative malignancies: the emerging field of CD19 CAR T-cell therapy

    NARCIS (Netherlands)

    Heijink, D. M.; Kater, A. P.; Hazenberg, M. D.; Hagenbeek, A.; Kersten, M. J.

    2016-01-01

    CAR T-cells are autologous T-cells transduced with a chimeric antigen receptor (CAR). The CAR contains an antigen recognition part (originating from an antibody), a T-cell receptor transmembrane and cytoplasmic signalling part, and one or more co-stimulatory domains. While CAR T-cells can be

  19. T cell immunity

    OpenAIRE

    Emel Bülbül Başkan

    2013-01-01

    Since birth, our immune system is constantly bombarded with self-antigens and foreign pathogens. To stay healthy, complex immune strategies have evolved in our immune system to maintain self-tolerance and to defend against foreign pathogens. Effector T cells are the key players in steering the immune responses to execute immune functions. While effector T cells were initially identified to be immune promoting, recent studies unraveled negative regulatory functions of effector T cells...

  20. Anti-regulatory T cells

    DEFF Research Database (Denmark)

    Andersen, Mads Hald

    2017-01-01

    responses to tumours or inhibiting autoimmunity development. However, recent studies report the discovery of self-reactive pro-inflammatory T cells—termed anti-regulatory T cells (anti-Tregs)—that target immune-suppressive cells. Thus, regulatory cells can now be defined as both cells that suppress immune...... reactions as well as effector cells that counteract the effects of suppressor cells and support immune reactions. Self-reactive anti-Tregs have been described that specifically recognize human leukocyte antigen-restricted epitopes derived from proteins that are normally expressed by regulatory immune cells......Our initial understanding of immune-regulatory cells was based on the discovery of suppressor cells that assure peripheral T-cell tolerance and promote immune homeostasis. Research has particularly focused on the importance of regulatory T cells (Tregs) for immune modulation, e.g. directing host...

  1. Self-reactive T cells

    DEFF Research Database (Denmark)

    Becker, Jürgen C; thor Straten, Per; Andersen, Mads Hald

    2014-01-01

    -proteins expressed in regulatory immune cells have been reported, especially in patients with cancer. The seemingly lack of tolerance toward such proteins is interesting, as it suggests a regulatory function of self-reactive T (srT) cells, which may be important for the fine tuning of the immune system......The immune system is a tightly regulated and complex system. An important part of this immune regulation is the assurance of tolerance toward self-antigens to maintain immune homeostasis. However, in recent years, antigen-specific cellular immune responses toward several normal self....... In particular, surprising has been the description of cytotoxic srT cells that are able to eliminate normal regulatory immune cells. Such srT cells may be important as effector cells that suppress regulatory suppressor cells. The current knowledge of the nature and function of srT cells is still limited. Still...

  2. Complement-Opsonized HIV-1 Alters Cross Talk Between Dendritic Cells and Natural Killer (NK Cells to Inhibit NK Killing and to Upregulate PD-1, CXCR3, and CCR4 on T Cells

    Directory of Open Access Journals (Sweden)

    Rada Ellegård

    2018-04-01

    Full Text Available Dendritic cells (DCs, natural killer (NK cells, and T cells play critical roles during primary HIV-1 exposure at the mucosa, where the viral particles become coated with complement fragments and mucosa-associated antibodies. The microenvironment together with subsequent interactions between these cells and HIV at the mucosal site of infection will determine the quality of immune response that ensues adaptive activation. Here, we investigated how complement and immunoglobulin opsonization influences the responses triggered in DCs and NK cells, how this affects their cross talk, and what T cell phenotypes are induced to expand following the interaction. Our results showed that DCs exposed to complement-opsonized HIV (C-HIV were less mature and had a poor ability to trigger IFN-driven NK cell activation. In addition, when the DCs were exposed to C-HIV, the cytotolytic potentials of both NK cells and CD8 T cells were markedly suppressed. The expression of PD-1 as well as co-expression of negative immune checkpoints TIM-3 and LAG-3 on PD-1 positive cells were increased on both CD4 as well as CD8 T cells upon interaction with and priming by NK–DC cross talk cultures exposed to C-HIV. In addition, stimulation by NK–DC cross talk cultures exposed to C-HIV led to the upregulation of CD38, CXCR3, and CCR4 on T cells. Together, the immune modulation induced during the presence of complement on viral surfaces is likely to favor HIV establishment, dissemination, and viral pathogenesis.

  3. Gap junctions at the dendritic cell-T cell interface are key elements for antigen-dependent T cell activation.

    Science.gov (United States)

    Elgueta, Raul; Tobar, Jaime A; Shoji, Kenji F; De Calisto, Jaime; Kalergis, Alexis M; Bono, Maria R; Rosemblatt, Mario; Sáez, Juan C

    2009-07-01

    The acquired immune response begins with Ag presentation by dendritic cells (DCs) to naive T cells in a heterocellular cell-cell contact-dependent process. Although both DCs and T cells are known to express connexin43, a gap junction protein subunit, the role of connexin43 on the initiation of T cell responses remains to be elucidated. In the present work, we report the formation of gap junctions between DCs and T cells and their role on T cell activation during Ag presentation by DCs. In cocultures of DCs and T cells, Lucifer yellow microinjected into DCs is transferred to adjacent transgenic CD4(+) T cells, only if the specific antigenic peptide was present at least during the first 24 h of cocultures. This dye transfer was sensitive to gap junction blockers, such as oleamide, and small peptides containing the extracellular loop sequences of conexin. Furthermore, in this system, gap junction blockers drastically reduced T cell activation as reflected by lower proliferation, CD69 expression, and IL-2 secretion. This lower T cell activation produced by gap junction blockers was not due to a lower expression of CD80, CD86, CD40, and MHC-II on DCs. Furthermore, gap junction blocker did not affect polyclonal activation of T cell induced with anti-CD3 plus anti-CD28 Abs in the absence of DCs. These results strongly suggest that functional gap junctions assemble at the interface between DCs and T cells during Ag presentation and that they play an essential role in T cell activation.

  4. The Hayflick Limit May Determine the Effective Clonal Diversity of Naive T Cells.

    Science.gov (United States)

    Ndifon, Wilfred; Dushoff, Jonathan

    2016-06-15

    Having a large number of sufficiently abundant T cell clones is important for adequate protection against diseases. However, as shown in this paper and elsewhere, between young adulthood and >70 y of age the effective clonal diversity of naive CD4/CD8 T cells found in human blood declines by a factor of >10. (Effective clonal diversity accounts for both the number and the abundance of T cell clones.) The causes of this observation are incompletely understood. A previous study proposed that it might result from the emergence of certain rare, replication-enhancing mutations in T cells. In this paper, we propose an even simpler explanation: that it results from the loss of T cells that have attained replicative senescence (i.e., the Hayflick limit). Stochastic numerical simulations of naive T cell population dynamics, based on experimental parameters, show that the rate of homeostatic T cell proliferation increases after the age of ∼60 y because naive T cells collectively approach replicative senescence. This leads to a sharp decline of effective clonal diversity after ∼70 y, in agreement with empirical data. A mathematical analysis predicts that, without an increase in the naive T cell proliferation rate, this decline will occur >50 yr later than empirically observed. These results are consistent with a model in which exhaustion of the proliferative capacity of naive T cells causes a sharp decline of their effective clonal diversity and imply that therapeutic potentiation of thymopoiesis might either prevent or reverse this outcome. Copyright © 2016 by The American Association of Immunologists, Inc.

  5. Vaccination of mice using the West Nile virus E-protein in a DNA prime-protein boost strategy stimulates cell-mediated immunity and protects mice against a lethal challenge.

    Directory of Open Access Journals (Sweden)

    Marina De Filette

    Full Text Available West Nile virus (WNV is a mosquito-borne flavivirus that is endemic in Africa, the Middle East, Europe and the United States. There is currently no antiviral treatment or human vaccine available to treat or prevent WNV infection. DNA plasmid-based vaccines represent a new approach for controlling infectious diseases. In rodents, DNA vaccines have been shown to induce B cell and cytotoxic T cell responses and protect against a wide range of infections. In this study, we formulated a plasmid DNA vector expressing the ectodomain of the E-protein of WNV into nanoparticles by using linear polyethyleneimine (lPEI covalently bound to mannose and examined the potential of this vaccine to protect against lethal WNV infection in mice. Mice were immunized twice (prime--boost regime with the WNV DNA vaccine formulated with lPEI-mannose using different administration routes (intramuscular, intradermal and topical. In parallel a heterologous boost with purified recombinant WNV envelope (E protein was evaluated. While no significant E-protein specific humoral response was generated after DNA immunization, protein boosting of DNA-primed mice resulted in a marked increase in total neutralizing antibody titer. In addition, E-specific IL-4 T-cell immune responses were detected by ELISPOT after protein boost and CD8(+ specific IFN-γ expression was observed by flow cytometry. Challenge experiments using the heterologous immunization regime revealed protective immunity to homologous and virulent WNV infection.

  6. A bispecific nanobody approach to leverage the potent and widely applicable tumor cytolytic capacity of Vγ9Vδ2-T cells.

    Science.gov (United States)

    de Bruin, Renée C G; Veluchamy, John P; Lougheed, Sinéad M; Schneiders, Famke L; Lopez-Lastra, Silvia; Lameris, Roeland; Stam, Anita G; Sebestyen, Zsolt; Kuball, Jürgen; Molthoff, Carla F M; Hooijberg, Erik; Roovers, Rob C; Santo, James P Di; van Bergen En Henegouwen, Paul M P; Verheul, Henk M W; de Gruijl, Tanja D; van der Vliet, Hans J

    2017-01-01

    Though Vγ9Vδ2-T cells constitute only a small fraction of the total T cell population in human peripheral blood, they play a vital role in tumor defense and are therefore of major interest to explore for cancer immunotherapy. Vγ9Vδ2-T cell-based cancer immunotherapeutic approaches developed so far have been generally well tolerated and were able to induce significant clinical responses. However, overall results were inconsistent, possibly due to the fact that these strategies induced systemic activation of Vγ9Vδ2-T cells without preferential accumulation and targeted activation in the tumor. Here we show that a novel bispecific nanobody-based construct targeting both Vγ9Vδ2-T cells and EGFR induced potent Vγ9Vδ2-T cell activation and subsequent tumor cell lysis both in vitro and in an in vivo mouse xenograft model. Tumor cell lysis was independent of KRAS and BRAF tumor mutation status and common Vγ9Vδ2-T cell receptor sequence variations. In combination with the conserved monomorphic nature of the Vγ9Vδ2-TCR and the facile replacement of the tumor-specific nanobody, this immunotherapeutic approach can be applied to a large group of cancer patients.

  7. Extracellular ATP reduces HIV-1 transfer from immature dendritic cells to CD4+ T lymphocytes

    Directory of Open Access Journals (Sweden)

    Barat Corinne

    2008-03-01

    Full Text Available Abstract Background Dendritic cells (DCs are considered as key mediators of the early events in human immunodeficiency virus type 1 (HIV-1 infection at mucosal sites. Previous studies have shown that surface-bound virions and/or internalized viruses found in endocytic vacuoles of DCs are efficiently transferred to CD4+ T cells. Extracellular adenosine triphosphate (ATP either secreted or released from necrotic cells induces a distorted maturation of DCs, transiently increases their endocytic capacity and affects their migratory capacity. Knowing that high extracellular ATP concentrations are present in situations of tissue injury and inflammation, we investigated the effect of ATP on HIV-1 transmission from DCs to CD4+ T lymphocytes. Results In this study, we show that extracellular ATP reduces HIV-1 transfer from immature monocyte-derived DCs (iDCs to autologous CD4+ T cells. This observed decrease in viral replication was related to a lower proportion of infected CD4+ T cells following transfer, and was seen with both X4- and R5-tropic isolates of HIV-1. Extracellular ATP had no effect on direct CD4+ T cell infection as well as on productive HIV-1 infection of iDCs. These observations indicate that extracellular ATP affects HIV-1 infection of CD4+ T cells in trans with no effect on de novo virus production by iDCs. Additional experiments suggest that extracellular ATP might modulate the trafficking pathway of internalized virions within iDCs leading to an increased lysosomal degradation, which could be partly responsible for the decreased HIV-1 transmission. Conclusion These results suggest that extracellular ATP can act as a factor controlling HIV-1 propagation.

  8. Modelling transport-limited discharge capacity of lithium-sulfur cells

    International Nuclear Information System (INIS)

    Zhang, Teng; Marinescu, Monica; Walus, Sylwia; Offer, Gregory J.

    2016-01-01

    Highlights: • We modelled the rate capability of a Li-S cell based on mass-transport limitation • The model predicts a discharged Li-S cell to regain capacity upon short relaxation • Modelled rate capability and capacity recovery effect validated with measurements - Abstract: Lithium-sulfur (Li-S) battery could bring a step-change in battery technology with a potential specific energy density of 500 - 600 Wh/kg. A key challenge for further improving the specific energy-density of Li-S cells is to understand the mechanisms behind reduced sulfur utilisation at low electrolyte loadings and high discharge currents. While several Li-S models have been developed to explore the discharge mechanisms of Li-S cells, they so far fail to capture the discharge profiles at high currents. In this study, we propose that the slow ionic transport in concentrated electrolyte is limiting the rate capability of Li-S cells. This transport-limitation mechanism is demonstrated through a one-dimensional Li-S model which qualitatively captures the discharge capacities of a sulfolane-based Li-S cell at different currents. Furthermore, our model predicts that a discharged Li-S cell is able regain some capacity with a short period of relaxation. This capacity recovery phenomenon is validated experimentally for different discharge currents and relaxation durations. The transport-limited discharge behavior of Li-S cells highlights the importance of optimizing the electrolyte loading and electrolyte transport property in Li-S cells.

  9. γ/δ T cell subsets in human aging using the classical α/β T cell model.

    Science.gov (United States)

    Vasudev, Anusha; Ying, Crystal Tan Tze; Ayyadhury, Shamini; Puan, Kia Joo; Andiappan, Anand Kumar; Nyunt, Ma Shwe Zin; Shadan, Nurhidaya Binte; Mustafa, Seri; Low, Ivy; Rotzschke, Olaf; Fulop, Tamas; Ng, Tze Pin; Larbi, Anis

    2014-10-01

    Aging is associated with an increased susceptibility to infections and diseases. It has also been associated with reduced functionality and altered distribution of immune cells, especially T cells. Whereas classical α/β T cells, especially CD8(+) T cells, were shown to be highly susceptible to aging, the effects of viral persistent stimulations on the fate of γ/δ T cells are much less documented. Healthy, elderly individuals of Chinese ethnical background were recruited under the aegis of SLAS-II. In this observational study, γ/δ T cell populations were characterized by flow cytometry and compared with the α/β CD4(+) and CD8(+) T cells in elderly and young controls. In our study, we identified a reduced frequency of γ/δ T cells but not α/β T cells with aging. The classical markers of α/β T cell aging, including CD28, CD27, and CD57, did not prove significant for γ/δ T cells. The extreme range of expression of these markers in γ/δ T cells was responsible for the lack of relationship between γ/δ T cell subsets, CD4/CD8 ratio, and anti-CMV titers that was significant for α/β T cells and, especially, CD8(+) T cells. Although markers of aging for γ/δ T cells are not clearly identified, our data collectively suggest that the presence of CD27 γ/δ T cells is associated with markers of α/β T cell aging. © 2014 Society for Leukocyte Biology.

  10. Baicalein induces cell death in murine T cell lymphoma via inhibition of thioredoxin system.

    Science.gov (United States)

    Patwardhan, Raghavendra S; Pal, Debojyoti; Checker, Rahul; Sharma, Deepak; Sandur, Santosh K

    2017-10-01

    We have earlier demonstrated the radioprotective potential of baicalein using murine splenic lymphocytes. Here, we have studied the effect of baicalein on murine T cell lymphoma EL4 cells and investigated the underlying mechanism of action. We observed that baicalein induced a dose dependent cell death in EL4 cells in vitro and significantly reduced the frequency of cancer stem cells. Previously, we have reported that murine and human T cell lymphoma cells have increased oxidative stress tolerance capacity due to active thioredoxin system. Hence, we monitored the effect of baicalein on thioredoxin system in EL4 cells. Docking studies revealed that baicalein could bind to the active site of thioredoxin reductase. Baicalein treatment led to significant reduction in the activity of thioredoxin reductase and nuclear levels of thioredoxin-1 thereby increasing ASK1 levels and caspase-3 activity. Interestingly, CRISPR-Cas9 based knock-out of ASK1 or over-expression of thioredoxin-1 abolished anti-tumor effects of baicalein in EL4 cells. Further, baicalein administration significantly reduced intra-peritoneal tumor burden of EL4 cells in C57BL/6 mice. Thus, our study describes anti-tumor effects of baicalein in EL4 cells via inhibition of thioredoxin system. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Systemic immunological tolerance to ocular antigens is mediated by TNF-related apoptosis-inducing ligand (TRAIL)-expressing CD8+ T cells*

    Science.gov (United States)

    Griffith, Thomas S.; Brincks, Erik L.; Gurung, Prajwal; Kucaba, Tamara A.; Ferguson, Thomas A.

    2010-01-01

    Systemic immunological tolerance to Ag encountered in the eye restricts the formation of potentially damaging immune responses that would otherwise be initiated at other anatomical locations. We previously demonstrated that tolerance to Ag administered via the anterior chamber (AC) of the eye required FasL-mediated apoptotic death of inflammatory cells that enter the eye in response to the antigenic challenge. Moreover, the systemic tolerance induced after AC injection of Ag was mediated by CD8+ regulatory T cells. The present study examined the mechanism by which these CD8+ regulatory T cells mediate tolerance after AC injection of Ag. AC injection of Ag did not prime CD4+ T cells, and led to increased TRAIL expression by splenic CD8+ T cells. Unlike wildtype mice, Trail−/− or Dr5−/− mice did not develop tolerance to Ag injected into the eye, even though responding lymphocytes underwent apoptosis in the AC of the eyes of these mice. CD8+ T cells from Trail−/− mice that were first injected AC with Ag were unable to transfer tolerance to naïve recipient wildtype mice, but CD8+ T cells from AC-injected wildtype or Dr5−/− mice could transfer tolerance. Importantly, the transferred wildtype (Trail+/+) CD8+ T cells were also able to decrease the number of infiltrating inflammatory cells into the eye; however, Trail−/− CD8+ T cells were unable to limit the inflammatory cell ingress. Together, our data suggest that “helpless” CD8+ regulatory T cells generated after AC injection of Ag enforce systemic tolerance in a TRAIL-dependent manner to inhibit inflammation in the eye. PMID:21169546

  12. CD4+ T cell-mediated cytotoxicity is associated with MHC class II expression on malignant CD19+ B cells in diffuse large B cell lymphoma.

    Science.gov (United States)

    Zhou, Yong; Zha, Jie; Lin, Zhijuan; Fang, Zhihong; Zeng, Hanyan; Zhao, Jintao; Luo, Yiming; Li, Zhifeng; Xu, Bing

    2018-01-15

    Diffuse large B cell lymphoma (DLBCL) is a common B cell malignancy with approximately 30% of patients present relapsed or refractory disease after first-line therapy. Research of further treatment options is needed. Cytotoxic CD4 + T cells express cytolytic molecules and have potential antitumor function. Here, we showed that the CD19 + cells from DLBCL patients presented significantly reduced expression of MHC II molecules than those from healthy controls. Three years after the first-line treatment, patients that presented relapsed disease had significantly lower MHC II expression on their CD19 + cells than patients who did not show recurrence. Examining cytotoxic CD4 + T cells show that DLBCL patients presented significantly elevated frequencies of granzyme A-, granzyme B-, and/or perforin-expressing cytotoxic CD4 + T cells. Also, frequency of cytotoxic CD4 + T cells in DLBCL patients was positively correlated with the MHC II expression level. Subsequently, the cytotoxic potential of CD4 + T cells against autologous CD19 + cells was investigated. We found that the cytotoxic potential of CD4 + T cells was highest in MHC II-high, intermediate in MHC II-mid, and lowest in MHC II-low patients. The percentage of MHC II-expressing viable CD19 + cells presented a significant reduction after longer incubation with cytotoxic CD4 + T cells, suggesting that cytotoxic CD4 + T cells preferentially eliminated MHC II-expressing CD19 + cells. Blocking MHC II on CD19 + cells significantly reduced the cytolytic capacity of CD4 + T cells. Despite these discoveries, the frequency of cytotoxic CD4 + T cells did not predict the clinical outcome of DLBCL patients. Together, these results demonstrated that cytotoxic CD4 + T cells presented an MHC II-dependent cytotoxic potential against autologous CD19 + cells and could potentially represent a future treatment option for DLBCL. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. ArtinM Mediates Murine T Cell Activation and Induces Cell Death in Jurkat Human Leukemic T Cells

    Science.gov (United States)

    Oliveira-Brito, Patrícia Kellen Martins; Gonçalves, Thiago Eleutério; Vendruscolo, Patrícia Edivânia; Roque-Barreira, Maria Cristina

    2017-01-01

    The recognition of cell surface glycans by lectins may be critical for the innate and adaptive immune responses. ArtinM, a d-mannose-binding lectin from Artocarpus heterophyllus, activates antigen-presenting cells by recognizing TLR2 N-glycans and induces Th1 immunity. We recently demonstrated that ArtinM stimulated CD4+ T cells to produce proinflammatory cytokines. Here, we further studied the effects of ArtinM on adaptive immune cells. We showed that ArtinM activates murine CD4+ and CD8+ T cells, augmenting their positivity for CD25, CD69, and CD95 and showed higher interleukin (IL)-2 and interferon (IFN)-γ production. The CD4+ T cells exhibited increased T-bet expression in response to ArtinM, and IL-2 production by CD4+ and CD8+ T cells depended on the recognition of CD3εγ-chain glycans by ArtinM. The ArtinM effect on aberrantly-glycosylated neoplastic lymphocytes was studied in Jurkat T cells, in which ArtinM induced IL-2, IFN-γ, and IL-1β production, but decreased cell viability and growth. A higher frequency of AnnexinV- and propidium iodide-stained cells demonstrated the induction of Jurkat T cells apoptosis by ArtinM, and this apoptotic response was reduced by caspases and protein tyrosine kinase inhibitors. The ArtinM effects on murine T cells corroborated with the immunomodulatory property of lectin, whereas the promotion of Jurkat T cells apoptosis may reflect a potential applicability of ArtinM in novel strategies for treating lymphocytic leukemia. PMID:28665310

  14. Insulin priming effect on estradiol-induced breast cancer metabolism and growth.

    Science.gov (United States)

    Wairagu, Peninah M; Phan, Ai N H; Kim, Min-Kyu; Han, Jeongwoo; Kim, Hyun-Won; Choi, Jong-Whan; Kim, Ki Woo; Cha, Seung-Kuy; Park, Kwang Hwa; Jeong, Yangsik

    2015-01-01

    Diabetes is a risk factor for breast cancer development and is associated with poor prognosis for breast cancer patients. However, the molecular and biochemical mechanisms underlying the association between diabetes and breast cancer have not been fully elucidated. Here, we investigated estradiol response in MCF-7 breast cancer cells with or without chronic exposure to insulin. We found that insulin priming is necessary and specific for estradiol-induced cancer cell growth, and induces anaplerotic shunting of glucose into macromolecule biosynthesis in the estradiol treated cells. Treatment with ERK or Akt specific inhibitors, U0126 or LY294002, respectively, suppressed estradiol-induced growth. Interestingly, molecular analysis revealed that estradiol treatment markedly increases expression of cyclin A and B, and decreases p21 and p27 in the insulin-primed cells. In addition, estradiol treatment activated metabolic genes in pentose phosphate (PPP) and serine biosynthesis pathways in the insulin-primed cells while insulin priming decreased metabolic gene expression associated with glucose catabolism in the breast cancer cells. Finally, we found that anti-diabetic drug metformin and AMPK ligand AICAR, but not thiazolidinediones (TZDs), specifically suppress the estradiol-induced cellular growth in the insulin-primed cells. These findings suggest that estrogen receptor (ER) activation under chronic hyperinsulinemic condition increases breast cancer growth through the modulation of cell cycle and apoptotic factors and nutrient metabolism, and further provide a mechanistic evidence for the clinical benefit of metformin use for ER-positive breast cancer patients with diabetes.

  15. No adaptive response is induced by chronic low-dose radiation from Ra-226 in the CHSE/F fish embryonic cell line and the HaCaT human epithelial cell line

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Xiaopei, E-mail: shix22@mcmaster.ca; Mothersill, Carmel; Seymour, Colin

    2016-11-15

    Purpose: To determine whether chronic low-dose α-particle radiation from Ra-226 over multiple cell generations can lead to an adaptive response in CHSE/F fish embryonic cells or HaCaT human epithelial cells receiving subsequent acute high-dose γ-ray radiation. Methods: CHSE/F and HaCaT cells were exposed to very low doses of Ra-226 in medium for multiple generations prior to being challenged by a higher dose γ-ray radiation. The clonogenic assay was used to test the clonogenic survival of cells with or without being pretreated by radiation from Ra-226. Results: In general, pretreatment with chronic radiation has no significant influence on the reaction of cells to the subsequent challenge radiation. Compared to unprimed cells, the change in clonogenic survival of primed cells after receiving challenge radiation is mainly due to the influence of the chronic exposure, and there's little adaptive response induced. However at several dose points, pretreatment of CHSE/F fish cells with chronic radiation resulted in a radiosensitive response to a challenge dose of γ-ray radiation, and pretreatment of HaCaT cells resulted in no effect except for a slightly radioresistant response to the challenge radiation which was not significant. Conclusion: The results suggest that chronic low-dose radiation is not effective enough to induce adaptive response. There was a difference between human and fish cells and it may be important to consider results from multiple species before making conclusions about effects of chronic or low doses of radiation in the environment. The term “radiosensitive” or “adaptive” make no judgment about whether such responses are ultimately beneficial or harmful. - Highlights: • No obvious adaptive response is induced by chronic low-dose radiation from Ra-226. • Priming radiation from Ra-226 sensitized CHSE/F cells to the challenge radiation. • Linear model is inconsistent with current work using chronic low-dose radiation.

  16. Analysis of FOXP3+ regulatory T cells that display apparent viral antigen specificity during chronic hepatitis C virus infection.

    Directory of Open Access Journals (Sweden)

    Shuo Li

    2009-12-01

    Full Text Available We reported previously that a proportion of natural CD25(+ cells isolated from the PBMC of HCV patients can further upregulate CD25 expression in response to HCV peptide stimulation in vitro, and proposed that virus-specific regulatory T cells (Treg were primed and expanded during the disease. Here we describe epigenetic analysis of the FOXP3 locus in HCV-responsive natural CD25(+ cells and show that these cells are not activated conventional T cells expressing FOXP3, but hard-wired Treg with a stable FOXP3 phenotype and function. Of approximately 46,000 genes analyzed in genome wide transcription profiling, about 1% were differentially expressed between HCV-responsive Treg, HCV-non-responsive natural CD25(+ cells and conventional T cells. Expression profiles, including cell death, activation, proliferation and transcriptional regulation, suggest a survival advantage of HCV-responsive Treg over the other cell populations. Since no Treg-specific activation marker is known, we tested 97 NS3-derived peptides for their ability to elicit CD25 response (assuming it is a surrogate marker, accompanied by high resolution HLA typing of the patients. Some reactive peptides overlapped with previously described effector T cell epitopes. Our data offers new insights into HCV immune evasion and tolerance, and highlights the non-self specific nature of Treg during infection.

  17. Beyond the antigen receptor: editing the genome of T-cells for cancer adoptive cellular therapies

    Directory of Open Access Journals (Sweden)

    Angharad eLloyd

    2013-08-01

    Full Text Available Recent early-stage clinical trials evaluating the adoptive transfer of patient CD8+ T-cells re-directed with antigen receptors recognising tumours have shown very encouraging results. These reports provide strong support for further development of the therapeutic concept as a curative cancer treatment. In this respect combining the adoptive transfer of tumour-specific T-cells with therapies that increase their anti-tumour capacity is viewed as a promising strategy to improve treatment outcome. The ex-vivo genetic engineering step that underlies T-cell re-direction offers a unique angle to combine antigen receptor delivery with the targeting of cell intrinsic pathways that restrict T-cell effector functions. Recent progress in genome editing technologies such as protein- and RNA-guided endonucleases raise the possibility of disrupting gene expression in T-cells in order to enhance effector functions or to bypass tumour immune suppression. This approach would avoid the systemic administration of compounds that disrupt immune homeostasis, potentially avoiding autoimmune adverse effects, and could improve the efficacy of T-cell based adoptive therapies.

  18. The role of dendritic cells in cancer

    DEFF Research Database (Denmark)

    Hansen, Morten; Andersen, Mads Hald

    2017-01-01

    Though present in low numbers, dendritic cells (DCs) are recognized as major players in the control of cancer by adaptive immunity. The roles of cytotoxic CD8+ T-cells and Th1 helper CD4+ T-cells are well-documented in murine models of cancer and associated with a profound prognostic impact when...... infiltrating human tumors, but less information is known about how these T-cells gain access to the tumor or how they are primed to become tumor-specific. Here, we highlight recent findings that demonstrate a vital role of CD103+ DCs, which have been shown to be experts in cross-priming and the induction...... of anti-tumor immunity. We also focus on two different mediators that impair the function of tumor-associated DCs: prostaglandin E2 and β-catenin. Both of these mediators seem to be important for the exclusion of T-cells in the tumor microenvironment and may represent key pathways to target in optimized...

  19. The cell biology of T-dependent B cell activation

    DEFF Research Database (Denmark)

    Owens, T; Zeine, R

    1989-01-01

    The requirement that CD4+ helper T cells recognize antigen in association with class II Major Histocompatibility Complex (MHC) encoded molecules constrains T cells to activation through intercellular interaction. The cell biology of the interactions between CD4+ T cells and antigen-presenting cells...... includes multipoint intermolecular interactions that probably involve aggregation of both polymorphic and monomorphic T cell surface molecules. Such aggregations have been shown in vitro to markedly enhance and, in some cases, induce T cell activation. The production of T-derived lymphokines that have been...... implicated in B cell activation is dependent on the T cell receptor for antigen and its associated CD3 signalling complex. T-dependent help for B cell activation is therefore similarly MHC-restricted and involves T-B intercellular interaction. Recent reports that describe antigen-independent B cell...

  20. CD4+CD62L+ Central Memory T Cells Can Be Converted to Foxp3+ T Cells

    Science.gov (United States)

    Zhang, Xiaolong; Chang Li, Xian; Xiao, Xiang; Sun, Rui; Tian, Zhigang; Wei, Haiming

    2013-01-01

    The peripheral Foxp3+ Treg pool consists of naturally arising Treg (nTreg) and adaptive Treg cells (iTreg). It is well known that naive CD4+ T cells can be readily converted to Foxp3+ iTreg in vitro, and memory CD4+ T cells are resistant to conversion. In this study, we investigated the induction of Foxp3+ T cells from various CD4+ T-cell subsets in human peripheral blood. Though naive CD4+ T cells were readily converted to Foxp3+ T cells with TGF-β and IL-2 treatment in vitro, such Foxp3+ T cells did not express the memory marker CD45RO as do Foxp3+ T cells induced in the peripheral blood of Hepatitis B Virus (HBV) patients. Interestingly, a subset of human memory CD4+ T cells, defined as CD62L+ central memory T cells, could be induced by TGF-β to differentiate into Foxp3+ T cells. It is well known that Foxp3+ T cells derived from human CD4+CD25- T cells in vitro are lack suppressive functions. Our data about the suppressive functions of CD4+CD62L+ central memory T cell-derived Foxp3+ T cells support this conception, and an epigenetic analysis of these cells showed a similar methylation pattern in the FOXP3 Treg-specific demethylated region as the naive CD4+ T cell-derived Foxp3+ T cells. But further research showed that mouse CD4+ central memory T cells also could be induced to differentiate into Foxp3+ T cells, such Foxp3+ T cells could suppress the proliferation of effector T cells. Thus, our study identified CD4+CD62L+ central memory T cells as a novel potential source of iTreg. PMID:24155942

  1. What Are the Molecules Involved in Regulatory T-Cells Induction by Dendritic Cells in Cancer?

    Directory of Open Access Journals (Sweden)

    Rodrigo Nalio Ramos

    2013-01-01

    Full Text Available Dendritic cells (DCs are essential for the maintenance of homeostasis in the organism, and they do that by modulating lymphocyte priming, expansion, and response patterns according to signals they receive from the environment. The induction of suppressive lymphocytes by DCs is essential to hinder the development of autoimmune diseases but can be reverted against homeostasis when in the context of neoplasia. In this setting, the induction of suppressive or regulatory T cells contributes to the establishment of a state of tolerance towards the tumor, allowing it to grow unchecked by an otherwise functional immune system. Besides affecting its local environment, tumor also has been described as potent sources of anti-inflammatory/suppressive factors, which may act systemically, generating defects in the differentiation and maturation of immune cells, far beyond the immediate vicinity of the tumor mass. Cytokines, as IL-10 and TGF-beta, as well as cell surface molecules like PD-L1 and ICOS seem to be significantly involved in the redirection of DCs towards tolerance induction, and recent data suggest that tumor cells may, indeed, modulate distinct DCs subpopulations through the involvement of these molecules. It is to be expected that the identification of such molecules should provide molecular targets for more effective immunotherapeutic approaches to cancer.

  2. Expression of GARP selectively identifies activated human FOXP3+ regulatory T cells.

    Science.gov (United States)

    Wang, Rui; Kozhaya, Lina; Mercer, Frances; Khaitan, Alka; Fujii, Hodaka; Unutmaz, Derya

    2009-08-11

    The molecules that define human regulatory T cells (Tregs) phenotypically and functionally remain to be fully characterized. We recently showed that activated human Tregs express mRNA for a transmembrane protein called glycoprotein A repetitions predominant (GARP, or LRRC32). Here, using a GARP-specific mAb, we demonstrate that expression of GARP on activated Tregs correlates with their suppressive capacity. However, GARP was not induced on T cells activated in the presence of TGFbeta, which expressed high levels of FOXP3 and lacked suppressive function. Ectopic expression of FOXP3 in conventional T cells was also insufficient for induction of GARP expression in most donors. Functionally, silencing GARP in Tregs only moderately attenuated their suppressive activity. CD25+ T cells sorted for high GARP expression displayed more potent suppressive activity compared with CD25+GARP- cells. Remarkably, CD25+GARP- T cells expanded in culture contained 3-5 fold higher IL-17-secreting cells compared with either CD25+GARP+ or CD25-GARP- cells, suggesting that high GARP expression can potentially discriminate Tregs from those that have switched to Th17 lineage. We also determined whether GARP expression correlates with FOXP3-expressing T cells in human immunodeficiency virus (HIV) -infected subjects. A subset of HIV+ individuals with high percentages of FOXP3+ T cells did not show proportionate increase in GARP+ T cells. This finding suggests that higher FOXP3 levels observed in these HIV+ individuals is possibly due to immune activation rather than to an increase in Tregs. Our findings highlight the significance of GARP both in dissecting duality of Treg/Th17 cell differentiation and as a marker to identify bona fide Tregs during diseases with chronic immune activation.

  3. Comparative immune phenotypic analysis of cutaneous Squamous Cell Carcinoma and Intraepidermal Carcinoma in immune-competent individuals: proportional representation of CD8+ T-cells but not FoxP3+ Regulatory T-cells is associated with disease stage.

    Directory of Open Access Journals (Sweden)

    Andrew Freeman

    Full Text Available Squamous Cell Carcinoma (SCC is a type of non-melanoma skin cancer prevalent in immune-suppressed transplant recipients and older individuals with a history of chronic sun-exposure. SCC itself is believed to be a late-stage manifestation that can develop from premalignant lesions including Intraepidermal Carcinoma (IEC. Notably, while SCC regression is rare, IEC typically regresses in response to immune modifying topical treatments, however the underlying immunological reasons for these differential responses remain unclear. This study aimed to define whether IEC and SCC are associated with distinct immune profiles. We investigated the immune cell infiltrate of photo-damaged skin, IEC, and SCC tissue using 10-colour flow cytometry following fresh lesion digest. We found that IEC lesions contain higher percentages of CD3+ T-cells than photo-damaged skin, however, the abundance of CD3-CD56+ Natural Killer (NK cells, CD11c+HLA-DR+ conventional Dendritic Cells (cDC, BDCA-2+HLA-DR+ plasmacytoid DC (pDC, FoxP3+ Regulatory T-cells (T-reg, Vα24+Vβ11+ invariant NKT-cells, and γδ Tcells did not alter with disease stage. Within the total T-cell population, high percentages of CD4+ T-cells were associated with SCC, yet CD8+ T-cells were less abundant in SCC compared with IEC. Our study demonstrates that while IEC lesions contain a higher proportion of T-cells than SCC lesions in general, SCC lesions specifically display a lower abundance of CD8+ T-cells than IEC. We propose that differences in CD8+ T-cell abundance contribute critically to the different capacity of SCC and IEC to regress in response to immune modifying topical treatments. Our study also suggests that a high ratio of CD4+ T-cells to CD8+ T-cells may be a immunological diagnostic indicator of late-stage SCC development in immune-competent patients.

  4. CCL22-specific T Cells

    DEFF Research Database (Denmark)

    Martinenaite, Evelina; Munir Ahmad, Shamaila; Hansen, Morten

    2016-01-01

    Tumor cells and tumor-infiltrating macrophages produce the chemokine CCL22, which attracts regulatory T cells (Tregs) into the tumor microenvironment, decreasing anticancer immunity. Here, we investigated the possibility of targeting CCL22-expressing cells by activating specific T cells. We...... analyzed the CCL22 protein signal sequence, identifying a human leukocyte antigen A2- (HLA-A2-) restricted peptide epitope, which we then used to stimulate peripheral blood mononuclear cells (PMBCs) to expand populations of CCL22-specific T cells in vitro. T cells recognizing an epitope derived from...... the signal-peptide of CCL22 will recognize CCL22-expressing cells even though CCL22 is secreted out of the cell. CCL22-specific T cells recognized and killed CCL22-expressing cancer cells. Furthermore, CCL22-specific T cells lysed acute monocytic leukemia cells in a CCL22 expression-dependent manner. Using...

  5. Pleural mesothelial cells promote expansion of IL-17-producing CD8+ T cells in tuberculous pleural effusion.

    Science.gov (United States)

    Li, X; Zhou, Q; Yang, W B; Xiong, X Z; Du, R H; Zhang, J C

    2013-05-01

    IL-17-producing CD8(+) T lymphocytes (Tc17 cells) have recently been detected in many cancers and autoimmune diseases. However, the possible implication of Tc17 cells in tuberculous pleural effusion remains unclarified. In this study, distribution and phenotypic features of Tc17 cells in both tuberculous pleural effusion (TPE) and peripheral blood from patients with tuberculosis were determined. The effects of proinflammatory cytokines and local accessory cells (pleural mesothelial cells) on Tc17 cell expansion were also explored. We found that TPE contained more Tc17 cells than the blood. Compared with IFN-γ-producing CD8(+) T cells, Tc17 cells displayed higher expression of chemokine receptors (CCRs) and lower expression of cytotoxic molecules. In particularly, Tc17 cells in TPE exhibited high expression levels of CCR6, which could migrate in response to CCL20. Furthermore, IL-1β, IL-6, IL-23, or their various combinations could promote Tc17 cell expansion from CD8(+) T cells, whereas the proliferative response of Tc17 cells to above cytokines was lower than that of Th17 cells. Pleural mesothelial cells (PMCs) were able to stimulate Tc17 cell expansion via cell contact in an IL-1β/IL-6/IL-23 independent fashion. Thus this study demonstrates that Tc17 cells marks a subset of non-cytotoxic, CCR6(+) CD8(+) T lymphocytes with low proliferative capacity. The overrepresentation of Tc17 cells in TPE may be due to Tc17 cell expansion stimulated by pleural proinflammatory cytokines and to recruitment of Tc17 cells from peripheral blood. Additionally, PMCs may promote the production of IL-17 by CD8(+) T cells at sites of TPE via cell-cell interactions.

  6. CMV-specific CD8 T Cell Differentiation and Localization: Implications for Adoptive Therapies

    Directory of Open Access Journals (Sweden)

    Corinne J Smith

    2016-09-01

    Full Text Available Human cytomegalovirus (HCMV is a ubiquitous virus that causes chronic infection, and thus is one of the most common infectious complications of immune suppression. Adoptive transfer of HCMV-specific T cells has emerged as an effective method to reduce the risk for HCMV infection and/or reactivation by restoring immunity in transplant recipients. However, the CMV-specific CD8+ T cell response is comprised of a heterogenous mixture of subsets with distinct functions and localization and it is not clear if current adoptive immunotherapy protocols can reconstitute the full spectrum of CD8+ T cell immunity. The aim of this review is to briefly summarize the role of these T cell subsets in CMV immunity and to describe how current adoptive immunotherapy practices might affect their reconstitution in patients. The bulk of the CMV-specific CD8+ T cell population is made up of terminally differentiated effector T cells with immediate effector function and a short life span. Self-renewing memory T cells within the CMV-specific population retain the capacity to expand and differentiate upon challenge and are important for the long-term persistence of the CD8+ T cell response. Finally mucosal organs, which are frequent sites of CMV reactivation, are primarily inhabited by tissue resident memory T cells, which do not recirculate. Future work on adoptive transfer strategies may need to focus on striking a balance between the formation of these subsets to ensure the development of long lasting and protective immune responses that can access the organs affected by CMV disease.

  7. Invariant natural killer T-cell control of type 1 diabetes: a dendritic cell genetic decision of a silver bullet or Russian roulette.

    Science.gov (United States)

    Driver, John P; Scheuplein, Felix; Chen, Yi-Guang; Grier, Alexandra E; Wilson, S Brian; Serreze, David V

    2010-02-01

    In part, activation of invariant natural killer T (iNKT)-cells with the superagonist alpha-galactosylceramide (alpha-GalCer) inhibits the development of T-cell-mediated autoimmune type 1 diabetes in NOD mice by inducing the downstream differentiation of antigen-presenting dendritic cells (DCs) to an immunotolerogenic state. However, in other systems iNKT-cell activation has an adjuvant-like effect that enhances rather than suppresses various immunological responses. Thus, we tested whether in some circumstances genetic variation would enable activated iNKT-cells to support rather than inhibit type 1 diabetes development. We tested whether iNKT-conditioned DCs in NOD mice and a major histocompatibility complex-matched C57BL/6 (B6) background congenic stock differed in capacity to inhibit type 1 diabetes induced by the adoptive transfer of pathogenic AI4 CD8 T-cells. Unlike those of NOD origin, iNKT-conditioned DCs in the B6 background stock matured to a state that actually supported rather than inhibited AI4 T-cell-induced type 1 diabetes. The induction of a differing activity pattern of T-cell costimulatory molecules varying in capacity to override programmed death-ligand-1 inhibitory effects contributes to the respective ability of iNKT-conditioned DCs in NOD and B6 background mice to inhibit or support type 1 diabetes development. Genetic differences inherent to both iNKT-cells and DCs contribute to their varying interactions in NOD and B6.H2(g7) mice. This great variability in the interactions between iNKT-cells and DCs in two inbred mouse strains should raise a cautionary note about considering manipulation of this axis as a potential type 1 diabetes prevention therapy in genetically heterogeneous humans.

  8. The self-antigen, thyroglobulin, induces antigen-experienced CD4+ T cells from healthy donors to proliferate and promote production of the regulatory cytokine, interleukin-10, by monocytes

    DEFF Research Database (Denmark)

    Nielsen, Claus Kim Hostein; Galdiers, Marcel P; Hedegaard, Chris Juul

    2010-01-01

    Thyroglobulin (TG), as autoantigen, induces in vitro proliferation of T and B cells from normal individuals, but the cytokine production differs from that in patients with autoimmune thyroid disease. Here, we investigate whether normal T cells responding to TG are naive, or have previously....... Whereas TT induced pro-inflammatory cytokines [interleukin-2 (IL-2)/interferon-gamma (IFN-gamma)/IL-4/IL-5], TG evoked persistent release of the regulatory IL-10. Some donors, however, also responded with late IFN-gamma production, suggesting that the regulation by IL-10 could be overridden. Although...... monocytes were prime producers of IL-10 in the early TG response, a few IL-10-secreting CD4(+) T cells, primarily with CD45RO(+) memory phenotype, were also detected. Furthermore, T-cell depletion from the mononuclear cell preparation abrogated monocyte IL-10 production. Our findings indicate active...

  9. In vivo evidence for CD4+ and CD8+ suppressor T cells in vaccination-induced suppression of murine experimental autoimmune thyroiditis

    International Nuclear Information System (INIS)

    Flynn, J.C.; Kong, Y.C.

    1991-01-01

    In several experimental autoimmune diseases, including experimental autoimmune thyroiditis (EAT), vaccination with attenuated autoantigen-specific T cells has provided protection against subsequent induction of disease. However, the mechanism(s) of vaccination-induced suppression remains to be clarified. Since the authors have previously shown that suppression generated by pretreatment with mouse thyroglobulin (MTg) or thyroid-stimulating hormone in EAT is mediated by CD4+, not CD8+, suppressor T cells, they examined the role of T cell subsets in vaccination-induced suppression of EAT. Mice were vaccinated with irradiated, MTg-primed, and MTg-activated spleen cells and then challenged. Pretreatment with these cells suppressed EAT induced by immunization with MTg and adjuvant, but not by adoptive transfer of thyroiditogenic cells, suggesting a mechanism of afferent suppression. The activation of suppressor mechanisms did not require CD8+ cells, since mice depleted of CD8+ cells before vaccination showed reduced EAT comparable to control vaccinated mice. Furthermore, depletion of either the CD4+ or the CD8+ subset after vaccination did not significantly abrogate suppression. However, suppression was eliminated by the depletion of both CD4+ and CD8+ cells in vaccinated mice. These results provide evidence for the cooperative effects of CD4+ and CD8+ T cells in vaccination-induced suppression of EAT

  10. Mast cells enhance T cell activation: Importance of mast cell-derived TNF

    Science.gov (United States)

    Nakae, Susumu; Suto, Hajime; Kakurai, Maki; Sedgwick, Jonathon D.; Tsai, Mindy; Galli, Stephen J.

    2005-05-01

    Mast cells are not only important effector cells in immediate hypersensitivity reactions and immune responses to pathogens but also can contribute to T cell-mediated disorders. However, the mechanisms by which mast cells might influence T cells in such settings are not fully understood. We find that mast cells can enhance proliferation and cytokine production in multiple T cell subsets. Mast cell-dependent enhancement of T cell activation can be promoted by FcRI-dependent mast cell activation, TNF production by both mast cells and T cells, and mast cell-T cell contact. However, at high concentrations of cells, mast cells can promote T cell activation independent of IgE or TNF. Finally, mast cells also can promote T cell activation by means of soluble factors. These findings identify multiple mechanisms by which mast cells can influence T cell proliferation and cytokine production. allergy | asthma | autoimmunity | cytokines | immune response

  11. Effects of nilotinib on regulatory T cells: the dose matters

    Directory of Open Access Journals (Sweden)

    Chen Baoan

    2010-01-01

    Full Text Available Abstract Background Nilotinib is a tyrosine kinase inhibitor with high target specificity. Here, we characterized the effects of nilotinib for the first time on CD4+CD25+ regulatory T cells (Tregs which regulate anti-tumor/leukemia immune responses. Design and Methods Carboxyfluorescein diacetate succinimidyl ester (CFSE and 5-bromo-2-deoxy -uridine (BrdU were used to assess the proliferation and cell cycle distribution of Tregs. The expression of the transcription factor forkhead box P3 (FoxP3 and the glucocorticoid-induced tumor necrosis factor receptor (GITR were measured by flow cytometry. Western blotting analysis was used to detect the effects of nilotinib on the signal transduction cascade of T-cell receptor (TCR in Tregs. Results Nilotinib inhibited the proliferation and suppressive capacity of Tregs in a dose-dependent manner. However, the production of cytokines secreted by Tregs and CD4+CD25- T cells was only inhibited at high concentrations of nilotinib exceeding the mean therapeutic serum concentrations of the drug in patients. Only high doses of nilotinib arrested both Tregs and CD4+CD25- T cells in the G0/G1 phase and down-regulated the expression of FoxP3 and GITR. In western blotting analysis, nilotinib did not show significant inhibitory effects on TCR signaling events in Tregs and CD4+CD25- T cells. Conclusions These findings indicate that nilotinib does not hamper the function of Tregs at clinical relevant doses, while long-term administration of nilotinib still needs to be investigated.

  12. Transposed-Letter Priming Effects with Masked Subset Primes: A Re-Examination of the "Relative Position Priming Constraint"

    Science.gov (United States)

    Stinchcombe, Eric J.; Lupker, Stephen J.; Davis, Colin J.

    2012-01-01

    Three experiments are reported investigating the role of letter order in orthographic subset priming (e.g., "grdn"-GARDEN) using both the conventional masked priming technique as well as the sandwich priming technique in a lexical decision task. In all three experiments, subset primes produced priming with the effect being considerably…

  13. CXCR5-Dependent Entry of CD8 T Cells into Rhesus Macaque B-Cell Follicles Achieved through T-Cell Engineering.

    Science.gov (United States)

    Ayala, Victor I; Deleage, Claire; Trivett, Matthew T; Jain, Sumiti; Coren, Lori V; Breed, Matthew W; Kramer, Joshua A; Thomas, James A; Estes, Jacob D; Lifson, Jeffrey D; Ott, David E

    2017-06-01

    Follicular helper CD4 T cells, T FH , residing in B-cell follicles within secondary lymphoid tissues, are readily infected by AIDS viruses and are a major source of persistent virus despite relative control of viral replication. This persistence is due at least in part to a relative exclusion of effective antiviral CD8 T cells from B-cell follicles. To determine whether CD8 T cells could be engineered to enter B-cell follicles, we genetically modified unselected CD8 T cells to express CXC chemokine receptor 5 (CXCR5), the chemokine receptor implicated in cellular entry into B-cell follicles. Engineered CD8 T cells expressing human CXCR5 (CD8 hCXCR5 ) exhibited ligand-specific signaling and chemotaxis in vitro Six infected rhesus macaques were infused with differentially fluorescent dye-labeled autologous CD8 hCXCR5 and untransduced CD8 T cells and necropsied 48 h later. Flow cytometry of both spleen and lymph node samples revealed higher frequencies of CD8 hCXCR5 than untransduced cells, consistent with preferential trafficking to B-cell follicle-containing tissues. Confocal fluorescence microscopy of thin-sectioned lymphoid tissues demonstrated strong preferential localization of CD8 hCXCR5 T cells within B-cell follicles with only rare cells in extrafollicular locations. CD8 hCXCR5 T cells were present throughout the follicles with some observed near infected T FH In contrast, untransduced CD8 T cells were found in the extrafollicular T-cell zone. Our ability to direct localization of unselected CD8 T cells into B-cell follicles using CXCR5 expression provides a strategy to place highly effective virus-specific CD8 T cells into these AIDS virus sanctuaries and potentially suppress residual viral replication. IMPORTANCE AIDS virus persistence in individuals under effective drug therapy or those who spontaneously control viremia remains an obstacle to definitive treatment. Infected follicular helper CD4 T cells, T FH , present inside B-cell follicles represent a

  14. Doc2B acts as a calcium sensor for vesicle priming requiring synaptotagmin-1, Munc13-2 and SNAREs

    DEFF Research Database (Denmark)

    Houy, Sébastien; Groffen, Alexander J; Ziomkiewicz, Iwona

    2017-01-01

    Doc2B is a cytosolic protein with binding sites for Munc13 and Tctex-1 (dynein light chain), and two C2-domains that bind to phospholipids, Ca2+ and SNAREs. Whether Doc2B functions as a calcium sensor akin to synaptotagmins, or in other calcium-independent or calcium-dependent capacities is debated....... We here show by mutation and overexpression that Doc2B plays distinct roles in two sequential priming steps in mouse adrenal chromaffin cells. Mutating Ca2+-coordinating aspartates in the C2A-domain localizes Doc2B permanently at the plasma membrane, and renders an upstream priming step Ca2......+-independent, whereas a separate function in downstream priming depends on SNARE-binding, Ca2+-binding to the C2B-domain of Doc2B, interaction with ubMunc13-2 and the presence of synaptotagmin-1. Another function of Doc2B - inhibition of release during sustained calcium elevations - depends on an overlapping...

  15. A bispecific nanobody approach to leverage the potent and widely applicable tumor cytolytic capacity of Vγ9Vδ2-T cells

    NARCIS (Netherlands)

    de Bruin, Renée C G; Veluchamy, John P.; Lougheed, Sinéad M; Schneiders, Famke L.; Lopez-Lastra, Silvia; Lameris, Roeland; Stam, Anita G M; Sebestyen, Zsolt; Kuball, Jürgen; Molthoff, Carla F M; Hooijberg, Erik; Roovers, Rob C.; Santo, James P.Di; van Bergen En Henegouwen, Paul M P; Verheul, Henk M. W.; de Gruijl, Tanja D; van Vliet, Hans J

    2017-01-01

    Though Vγ9Vδ2-T cells constitute only a small fraction of the total T cell population in human peripheral blood, they play a vital role in tumor defense and are therefore of major interest to explore for cancer immunotherapy. Vγ9Vδ2-T cell-based cancer immunotherapeutic approaches developed so far

  16. T-cell libraries allow simple parallel generation of multiple peptide-specific human T-cell clones.

    Science.gov (United States)

    Theaker, Sarah M; Rius, Cristina; Greenshields-Watson, Alexander; Lloyd, Angharad; Trimby, Andrew; Fuller, Anna; Miles, John J; Cole, David K; Peakman, Mark; Sewell, Andrew K; Dolton, Garry

    2016-03-01

    Isolation of peptide-specific T-cell clones is highly desirable for determining the role of T-cells in human disease, as well as for the development of therapies and diagnostics. However, generation of monoclonal T-cells with the required specificity is challenging and time-consuming. Here we describe a library-based strategy for the simple parallel detection and isolation of multiple peptide-specific human T-cell clones from CD8(+) or CD4(+) polyclonal T-cell populations. T-cells were first amplified by CD3/CD28 microbeads in a 96U-well library format, prior to screening for desired peptide recognition. T-cells from peptide-reactive wells were then subjected to cytokine-mediated enrichment followed by single-cell cloning, with the entire process from sample to validated clone taking as little as 6 weeks. Overall, T-cell libraries represent an efficient and relatively rapid tool for the generation of peptide-specific T-cell clones, with applications shown here in infectious disease (Epstein-Barr virus, influenza A, and Ebola virus), autoimmunity (type 1 diabetes) and cancer. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  17. Transfusion of CXCR4-primed endothelial progenitor cells reduces cerebral ischemic damage and promotes repair in db/db diabetic mice.

    Directory of Open Access Journals (Sweden)

    Ji Chen

    Full Text Available This study investigated the role of stromal cell-derived factor-1α (SDF-1α/CXC chemokine receptor 4 (CXCR4 axis in brain and endothelial progenitor cells (EPCs, and explored the efficacy of CXCR4 primed EPCs in treating ischemic stroke in diabetes. The db/db diabetic and db/+ mice were used in this study. Levels of plasma SDF-1α and circulating CD34+CXCR4+ cells were measured. Brain SDF-1α and CXCR4 expression were quantified at basal and after middle cerebral artery occlusion (MCAO. In in vitro study, EPCs were transfected with adenovirus carrying null (Ad-null or CXCR4 (Ad-CXCR4 followed with high glucose (HG treatment for 4 days. For pathway block experiments, cells were pre-incubated with PI3K inhibitor or nitric oxide synthase (NOS inhibitor for two hours. The CXCR4 expression, function and apoptosis of EPCs were determined. The p-Akt/Akt and p-eNOS/eNOS expression in EPCs were also measured. In in vivo study, EPCs transfected with Ad-null or Ad-CXCR4 were infused into mice via tail vein. On day 2 and 7, the cerebral blood flow, neurologic deficit score, infarct volume, cerebral microvascular density, angiogenesis and neurogenesis were determined. We found: 1 The levels of plasma SDF-1α and circulating CD34+CXCR4+ cells were decreased in db/db mice; 2 The basal level of SDF-1α and MCAO-induced up-regulation of SDF-1α/CXCR4 axis were reduced in the brain of db/db mice; 3 Ad-CXCR4 transfection increased CXCR4 expression in EPCs and enhanced EPC colonic forming capacity; 4 Ad-CXCR4 transfection prevented EPCs from HG-induced dysfunction (migration and tube formation and apoptosis via activation of PI3K/Akt/eNOS signal pathway; 4 Ad-CXCR4 transfection enhanced the efficacy of EPC infusion in attenuating infarct volume and promoting angiogenesis and neurogenesis. Our data suggest that Ad-CXCR4 primed EPCs have better therapeutic effects for ischemia stroke in diabetes than unmodified EPCs do.

  18. IL-7 and CCL19 expression in CAR-T cells improves immune cell infiltration and CAR-T cell survival in the tumor.

    Science.gov (United States)

    Adachi, Keishi; Kano, Yosuke; Nagai, Tomohiko; Okuyama, Namiko; Sakoda, Yukimi; Tamada, Koji

    2018-04-01

    Infiltration, accumulation, and survival of chimeric antigen receptor T (CAR-T) cells in solid tumors is crucial for tumor clearance. We engineered CAR-T cells to express interleukin (IL)-7 and CCL19 (7 × 19 CAR-T cells), as these factors are essential for the maintenance of T-cell zones in lymphoid organs. In mice, 7 × 19 CAR-T cells achieved complete regression of pre-established solid tumors and prolonged mouse survival, with superior anti-tumor activity compared to conventional CAR-T cells. Histopathological analyses showed increased infiltration of dendritic cells (DC) and T cells into tumor tissues following 7 × 19 CAR-T cell therapy. Depletion of recipient T cells before 7 × 19 CAR-T cell administration dampened the therapeutic effects of 7 × 19 CAR-T cell treatment, suggesting that CAR-T cells and recipient immune cells collaborated to exert anti-tumor activity. Following treatment of mice with 7 × 19 CAR-T cells, both recipient conventional T cells and administered CAR-T cells generated memory responses against tumors.

  19. HIV-1 Tat affects the programming and functionality of human CD8⁺ T cells by modulating the expression of T-box transcription factors.

    Science.gov (United States)

    Sforza, Fabio; Nicoli, Francesco; Gallerani, Eleonora; Finessi, Valentina; Reali, Eva; Cafaro, Aurelio; Caputo, Antonella; Ensoli, Barbara; Gavioli, Riccardo

    2014-07-31

    HIV infection is characterized by several immune dysfunctions of both CD8⁺ and CD4⁺ T cells as hyperactivation, impairment of functionality and expansion of memory T cells. CD8⁺ T-cell dysfunctions have been associated with increased expression of T-bet, Eomesdermin and pro-inflammatory cytokines, and with down-regulation of CD127. The HIV-1 trans-activator of transcription (Tat) protein, which is released by infected cells and detected in tissues of HIV-positive individuals, is known to contribute to the dysregulation of CD4⁺ T cells; however, its effects on CD8⁺ T cells have not been investigated. Thus, in this study, we sought to address whether Tat may affect CD8⁺ T-cell functionality and programming. CD8⁺ T cells were activated by T-cell receptor engagement in the presence or absence of Tat. Cytokine production, killing capacity, surface phenotype and expression of transcription factors important for T-cell programming were evaluated. Tat favors the secretion of interleukin-2, interferon-γ and granzyme B in CD8⁺ T cells. Behind this functional modulation we observed that Tat increases the expression of T-bet, Eomesdermin, Blimp-1, Bcl-6 and Bcl-2 in activated but not in unstimulated CD8⁺ T lymphocytes. This effect is associated with the down-regulation of CD127 and the up-regulation of CD27. Tat deeply alters the programming and functionality of CD8⁺ T lymphocytes.

  20. T Cell Phenotype and T Cell Receptor Repertoire in Patients with Major Depressive Disorder

    Directory of Open Access Journals (Sweden)

    Kostas Patas

    2018-02-01

    Full Text Available While a link between inflammation and the development of neuropsychiatric disorders, including major depressive disorder (MDD is supported by a growing body of evidence, little is known about the contribution of aberrant adaptive immunity in this context. Here, we conducted in-depth characterization of T cell phenotype and T cell receptor (TCR repertoire in MDD. For this cross-sectional case–control study, we recruited antidepressant-free patients with MDD without any somatic or psychiatric comorbidities (n = 20, who were individually matched for sex, age, body mass index, and smoking status to a non-depressed control subject (n = 20. T cell phenotype and repertoire were interrogated using a combination of flow cytometry, gene expression analysis, and next generation sequencing. T cells from MDD patients showed significantly lower surface expression of the chemokine receptors CXCR3 and CCR6, which are known to be central to T cell differentiation and trafficking. In addition, we observed a shift within the CD4+ T cell compartment characterized by a higher frequency of CD4+CD25highCD127low/− cells and higher FOXP3 mRNA expression in purified CD4+ T cells obtained from patients with MDD. Finally, flow cytometry-based TCR Vβ repertoire analysis indicated a less diverse CD4+ T cell repertoire in MDD, which was corroborated by next generation sequencing of the TCR β chain CDR3 region. Overall, these results suggest that T cell phenotype and TCR utilization are skewed on several levels in patients with MDD. Our study identifies putative cellular and molecular signatures of dysregulated adaptive immunity and reinforces the notion that T cells are a pathophysiologically relevant cell population in this disorder.