WorldWideScience

Sample records for systems utilizing coal-derived

  1. Recent trend in coal utilization technology. Coal utilization workshop

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chon Ho; Son, Ja Ek; Lee, In Chul; Jin, Kyung Tae; Kim, Seong Soo [Korea Inst. of Energy Research, Taejon (Korea, Republic of)

    1995-12-01

    The 11th Korea-U.S.A. joint workshop on coal utilization technology was held in somerset, Pennsylvania, U.S.A. from october 2 to 3, 1995. In the opening ceremony, Dr.C. Low-el Miller, associate deputy assistant secretary of office of clean coal technology, U.S.DOE, gave congratulatory remarks and Dr. Young Mok Son, president of KIER, made a keynote address. In this workshop, 30 papers were presented in the fields of emission control technology, advanced power generation systems, and advanced coal cleaning and liquid fuels. Especially, from the Korean side, not only KIER but also other private research institutes and major engineering companies including KEPCO, Daewoo Institute of Construction Technology, Jindo Engineering and Construction Co. Daewoo Institute for Advanced Engineering and universities participated in this workshop, reflecting their great interests. Attendants actively discussed about various coal utilization technologies and exchanged scientific and technical information on the state-of-art clean coal technologies under development. (author)

  2. Research program for an environmentally-friendly coal utilization system in the Philippines

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    Feasibility studies are conducted on the introduction of an environmentally-friendly coal utilization system into the Filipino electric power industry, cement industry, and domestic fuel sector. The studies cover the current status of economy and energy in that country, supply and demand of coal, environmental protection and Government's policy, study of the above-said system relative to its application to the fields of electric power industry, cement industry, and domestic fuel sector, and a study about the effective utilization of Filipino domestic coal by the use of the system. Imported coal is used in the electric power industry because of its cost and quality. It is learned after research, however, that domestic coal will be able to compete against imported coal when some technologies are resorted to, such as those pertinent to denitrification in the furnace, novel low-NOx burner, coal pulverization, and combustion diagnosis. As for the treatment of flue gas, it is concluded that the simplified wet lime/gypsum process will be suitable. It is inferred that the CWM (coal-water mixture) process technology will be effective for the utilization of domestic low-grade coal. (NEDO)

  3. Research program for an environmentally-friendly coal utilization system in the Philippines

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    Feasibility studies are conducted on the introduction of an environmentally-friendly coal utilization system into the Filipino electric power industry, cement industry, and domestic fuel sector. The studies cover the current status of economy and energy in that country, supply and demand of coal, environmental protection and Government's policy, study of the above-said system relative to its application to the fields of electric power industry, cement industry, and domestic fuel sector, and a study about the effective utilization of Filipino domestic coal by the use of the system. Imported coal is used in the electric power industry because of its cost and quality. It is learned after research, however, that domestic coal will be able to compete against imported coal when some technologies are resorted to, such as those pertinent to denitrification in the furnace, novel low-NOx burner, coal pulverization, and combustion diagnosis. As for the treatment of flue gas, it is concluded that the simplified wet lime/gypsum process will be suitable. It is inferred that the CWM (coal-water mixture) process technology will be effective for the utilization of domestic low-grade coal. (NEDO)

  4. Feasibility survey of the environmentally-friendly coal utilization system. Feasibility survey of the environmentally-friendly coal utilization system in Indonesia; Kankyo chowagata sekitan riyo system kanosei chosa. Indonesia ni okeru kankyo chowagata sekitan riyo system kanosei chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    With relation to the coal of Indonesia, where the expansion of the use of coal as a substitute for petroleum/plant fuel is aimed at, the paper grasped the situation of coal production/distribution/utilization and environmental problems, and analyzed the situation of the coal utilization/spread by industry including the commercial/residential use. The purpose of the survey is to work out a comprehensive master plan including Japan`s international cooperation for introducing the environmentally-friendly coal utilization system to Indonesia. Coal utilization systems, the introduction of which Indonesia should study in future, were picked up, according to the surveys in fiscal 1993 and 1994. In commercial/residential and small-scale industry sectors, needed is improvement of carbonization technology for production of coal carbonization briquette. Moreover, the introduction of bio-briquette should be studied in the future. In the power generation sector, studies should be made on the introduction of technology for SOx/NOx reduction and technology for coal ash treatment including the effective use of coal ash. For the introduction of coal boilers, the combustion mixed with bagasse, which is abundant in amount, is also necessary. In the coal production sector, coal preparation technology is studied, and a method to select the optimum process was proposed through the simulation. 76 figs., 43 tabs.

  5. Fiscal 1997 survey report. Feasibility study of the environmentally friendly type coal utilization system (feasibility study of the environmentally friendly type coal utilization system in India); 1997 nendo chosa hokokusho. Kankyo chowagata sekitan riyo system kanosei chosa (Indo ni okeru kankyo chowagata sekitan riyo system kanosei chosa)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    The survey was conducted of the present situation of coal utilization and the present coal situation such as the environmental state of India which is a coal producing/consuming country next to China in Asia. The paper studied a feasibility of the introduction of the environmental friendly type coal utilization system` to be planned in India. The items for survey are the present situation of economy and energy and the future trend, environmental problems on coal utilization, the present status of the coal distribution system and study subjects, the present status of coal utilization by field and study subjects, a possibility of briquette use, a possibility of coal fluidization, electric power development plans and coal combustion technology in each industry, etc. The subjects are the obligation of coal preparation to coal thermal power plants 1000 km away from coal mines starting 2001, measures taken for effective ash use, measures taken for superannuated gas furnaces, etc. Based on the results of these site surveys and reports of the investigation under consignment from CMPDI, the paper studied/analyzed possibilities of introducing the coal utilization system having actual introduction results in Japan to India, and made an investigational report. 39 refs., 12 figs., 56 tabs.

  6. Fiscal 1997 survey report. Feasibility study of the environmentally friendly type coal utilization system (survey of the coal utilization in Pakistan); 1997 nendo chosa hokokusho. Kankyo chowagata sekitan riyo system kanosei chosa (Pakistan ni okeru sekitan riyo gaikyo chosa)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    This paper made a literature survey, hearing survey, site survey/study on the coal in Pakistan such as the coal utilization system and the environmental situation, etc., and aimed at pre-examination for the survey of the introduction of the environmentally friendly type coal utilization system to be planned in Pakistan in the future. The examination, data collection and preparation were conducted in terms of the following items: the structure of coal consumption in energy supply, structure of coal consumption, mainly of domestic brown coal consumption, the situation of coal utilization by industry and by region, environmental problems caused by coal utilization such as air pollution, the trend of policies of environmental regulation, etc. The literature on the following was obtained and surveyed: the situation of economy/energy in Pakistan, coal utilization technology by industrial field, and environmental protection technology. The hearing survey was made to institutions concerned, corporation groups and men of learning and experience. Site surveys were conducted for the typically selected coal utilization equipment and existing environmental protection equipment. 66 figs., 56 tabs.

  7. Fiscal 1996 survey report on the environmentally friendly type coal utilization system feasibility study. Feasibility study of the environmentally friendly type coal utilization system in Malaysia and Vietnam; Kankyo chowagata sekitan riyo system kanosei chosa. Malaysia Vietnam ni okeru kankyo chowagata sekitan riyo system kanosei chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    This survey arranged the status of coal utilization technology and the status of coal production, supply, etc. in Malaysia and Vietnam, examined/studied coal utilization systems in both countries, and finally assessed feasibility of introducing the environmentally friendly type coal utilization system. As a country of primary energy source which is abundant in crude oil, natural gas, hydroelectric power, coal, etc., Malaysia now depends on crude oil and natural gas for 80% of its energy, and places emphasis on exploration of natural gas and oil refining. In electric power and cement industries where coal is consumed, effectiveness and environmental issues in association with coal utilization are future subjects. In Vietnam, the north is abundant in hydroelectric power and anthracite, and the south in oil and gas resource, but the north and central districts are in a state of undevelopment. Coal is used for coal thermal power generation, cement industry, and residential/commercial fuel. In the future, effective coal utilization and environmental issues will be subjects. 16 refs., 38 figs., 75 tabs.

  8. Energy Conversion Alternatives Study (ECAS), General Electric Phase 1. Volume 1: Executive summary. [using coal or coal derived fuels

    Science.gov (United States)

    Corman, J. C.

    1976-01-01

    A data base for the comparison of advanced energy conversion systems for utility applications using coal or coal-derived fuels was developed. Estimates of power plant performance (efficiency), capital cost, cost of electricity, natural resource requirements, and environmental intrusion characteristics were made for ten advanced conversion systems. Emphasis was on the energy conversion system in the context of a base loaded utility power plant. All power plant concepts were premised on meeting emission standard requirements. A steam power plant (3500 psig, 1000 F) with a conventional coal-burning furnace-boiler was analyzed as a basis for comparison. Combined cycle gas/steam turbine system results indicated competitive efficiency and a lower cost of electricity compared to the reference steam plant. The Open-Cycle MHD system results indicated the potential for significantly higher efficiency than the reference steam plant but with a higher cost of electricity.

  9. Fiscal 1996 survey report on the environmentally friendly type coal utilization system feasibility study. Feasibility study of the environmentally friendly type coal utilization system in the Philippines; Kankyo chowagata sekitan riyo system kanosei chosa. Philippines ni okeru kankyo chowagata sekitan riyo system kanosei chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    Grasping the present situation of coal utilization technology in the Philippines, the paper proposed a feasibility study of introduction of the environmentally friendly type coal utilization system which seems to be needed in the future. (1) Introduction of the environmentally friendly type coal utilization system in the electric power generation sector: there are only four full-scale running coal thermal power plants in the Philippines. In the future, several coal thermal plants are planned to be constructed by 2005, but for the new installation, it is desirable to adopt fluidized bed boilers with wide application to coal kinds. In case of 0.3-1.0 million MW class plants, it is planned to adopt high grade import coals, and it will be natural to fire pulverized coal. For the processing of flue gas, it is a must to install desulfurization facilities and smoke/soot removal devices. (2) Utilization/development of domestic low grade coals: at the mine-mouth generating plant, it is necessary to investigate the economically minable amount of coal, confirm productivity, survey coal quality, etc., and select boiler. As to coal briquetting technology, it is necessary to examine coal quality for tests and make a thorough study of what technology is most suitable. 50 figs., 78 tabs.

  10. Industrial coal utilization

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-01-01

    The effects of the National Energy Act on the use of coal in US industrial and utility power plants are considered. Innovative methods of using coal in an environmentally acceptable way are discussed: furnace types, fluidized-bed combustion, coal-oil-mixtures, coal firing in kilns and combustion of synthetic gas and liquid fuels. Fuel use in various industries is discussed with trends brought about by uncertain availability and price of natural gas and fuel oils: steel, chemical, cement, pulp and paper, glass and bricks. The symposium on Industrial Coal Utilization was sponsored by the US DOE, Pittsburgh Energy Technology Center, April 3 to 4, 1979. Twenty-one papers have been entered individually into the EDB. (LTN)

  11. Feasibility survey of the environmentally-friendly coal utilization system. Feasibility survey of the environmentally-friendly coal utilization system in the Philippines; Kankyo chowagata sekitan riyo system kanosei chosa. Philippines ni okeru kankyo chowagata sekitan riyo system kanosei chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    With relation to the coal of the Philippines, where the expansion of the use of coal as a substitute for petroleum/plant fuel is aimed at, the paper grasped the situation of coal production/development, the trend of coal import and domestic distribution, the coal utilization trend, and environmental problems, and analyzed the situation of coal utilization/spread by industry including the commercial/residential use. The purpose of the survey is to draw up a master plan for the introduction of the environmentally-friendly coal utilization system. As to the use of environmentally-friendly coal technology which should be adopted to the coal mining industry and commercial/residential sector, cited are the introduction of coal preparation technology and power transmission technology, and the development/spread of briquette as a firewood substituting fuel. In the electric power sector, the problem is the treatment of ash after combustion and the effective use. Relating to the treatment of flue gas, there is no installation at all of desulfurization facilities and denitrification facilities. In the cement industry sector, they wish to return fuel from heavy oil to coal. For it, it is necessary to study dust preventive measures. In the other sectors, coal hasn`t been used very much. An increase in coal demand is not expected also in the future, and big problems concerning coal haven`t occurred. 42 figs., 64 tabs.

  12. Feasibility study of environmentally friendly type coal utilization systems. Feasibility study of environmentally friendly type coal utilization systems in sectors except the coal industry in China; Kankyo chowagata sekitan riyo system kanosei chosa. Chugoku no sekitan kogyo igai no bumon ni okeru kankyo chowagata sekitan riyo system kanosei chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    For the purpose of working out a comprehensive master plan for application of the coal utilization system, the paper surveyed and studied the coal utilization system in terms of environmental measures and efficiency improvement in the utilization of coal. As a result of the discussion with NEDO and the National Planning Committee of China, Liaoning Province (the whole China) and Shenyang City were selected as a model area and a model city for the survey and study. As energy conservation measures taken in the former, desirable are intensifying/capacity-increase of boilers, kilns, etc. and adoption of new-type/high-efficient equipment. Also expected are reinforcement of combustion control and improvement of efficiency by using coal preparation, industrial use coal briquette, etc. Measures taken in the latter are the same as those taken in the whole China. As SOx reduction measures for Liaoning Province, desirable is installation of dry-type desulfurization equipment and simple desulfurization equipment. As dust prevention measures for it, desirable is installation of electrostatic precipitators or high-functional bag filters. SOx reduction measures for Shenyang City are the same as those taken in the whole China. SOx can be reduced by using coal-prepared low-sulfur coal and industrial use coal briquette added with desulfurizing agent. 88 figs., 163 tabs.

  13. Clean utilization of low-rank coals for low-cost power generation

    International Nuclear Information System (INIS)

    Sondreal, E.A.

    1992-01-01

    Despite the unique utilization problems of low-rank coals, the ten US steam electric plants having the lowest operating cost in 1990 were all fueled on either lignite or subbituminous coal. Ash deposition problems, which have been a major barrier to sustaining high load on US boilers burning high-sodium low-rank coals, have been substantially reduced by improvements in coal selection, boiler design, on-line cleaning, operating conditions, and additives. Advantages of low-rank coals in advanced systems are their noncaking behavior when heated, their high reactivity allowing more complete reaction at lower temperatures, and the low sulfur content of selected deposits. The principal barrier issues are the high-temperature behavior of ash and volatile alkali derived from the coal-bound sodium found in some low-rank coals. Successful upgrading of low-rank coals requires that the product be both stable and suitable for end use in conventional and advanced systems. Coal-water fuel produced by hydrothermal processing of high-moisture low-rank coal meets these criteria, whereas most dry products from drying or carbonizing in hot gas tend to create dust and spontaneous ignition problems unless coated, agglomerated, briquetted, or afforded special handling

  14. Research report of FY 1997 on the environmentally acceptable coal utilization system feasibility survey. Environmentally acceptable coal utilization system feasibility survey in Malaysia and Vietnam (Malaysia); 1997 nendo chosa hokokusho. Kankyo chowagata sekitan riyo system kanosei chosa (Malaysia oyobi Vietnam ni okeru kankyo chowagata sekitan riyo system kanosei chosa (Malaysia ban))

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    In this survey, the coal utilization status in individual consumption sectors and coal distribution status in Malaysia are summarized as basic data for the introduction of environmentally acceptable coal utilization systems. In this fiscal year, the status of existing coal utilization technology and environmental issues in Malaysia are summarized as basic data for the introduction of above-mentioned systems on the basis of data and information collected by basic research and site survey in FY 1996. Malaysia is one of the rich countries producing the primary resources with crude petroleum, natural gas, hydro-power, and coal. The coal demand will be realized after saturating LNG development since 2000. The major coal consumption industries are power generation sector and cement industry sector. As expected increase in the future coal consumption, efficiency of coal utilization and environmental issues are problems in the future. Based on the FS results of this survey, the survey will be continued for planning and conducting the model project required from Malaysia. 8 figs., 34 tabs.

  15. Development of coal energy utilization technologies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    Coal liquefaction produces new and clean energy by performing hydrogenation, decomposition and liquefaction on coal under high temperatures and pressures. NEDO has been developing bituminous coal liquefaction technologies by using a 150-t/d pilot plant. It has also developed quality improving and utilization technologies for liquefied coal, whose practical use is expected. For developing coal gasification technologies, construction is in progress for a 200-t/d pilot plant for spouted bed gasification power generation. NEDO intends to develop coal gasification composite cycle power generation with high efficiency and of environment harmonious type. This paper summarizes the results obtained during fiscal 1994. It also dwells on technologies to manufacture hydrogen from coal. It further describes development of technologies to manufacture methane and substituting natural gas (SNG) by hydrogenating and gasifying coal. The ARCH process can select three operation modes depending on which of SNG yield, thermal efficiency or BTX yield is targeted. With respect to promotion of coal utilization technologies, description is given on surveys on development of next generation technologies for coal utilization, and clean coal technology promotion projects. International coal utilization and application projects are also described. 9 figs., 3 tabs.

  16. Production and Optimization of Direct Coal Liquefaction derived Low Carbon-Footprint Transportation Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Steven Markovich

    2010-06-30

    This report summarizes works conducted under DOE Contract No. DE-FC26-05NT42448. The work scope was divided into two categories - (a) experimental program to pretreat and refine a coal derived syncrude sample to meet transportation fuels requirements; (b) system analysis of a commercial scale direct coal liquefaction facility. The coal syncrude was derived from a bituminous coal by Headwaters CTL, while the refining study was carried out under a subcontract to Axens North America. The system analysis included H{sub 2} production cost via six different options, conceptual process design, utilities requirements, CO{sub 2} emission and overall plant economy. As part of the system analysis, impact of various H{sub 2} production options was evaluated. For consistence the comparison was carried out using the DOE H2A model. However, assumptions in the model were updated using Headwaters database. Results of Tier 2 jet fuel specifications evaluation by the Fuels & Energy Branch, US Air Force Research Laboratory (AFRL/RZPF) located at Wright Patterson Air Force Base (Ohio) are also discussed in this report.

  17. Fiscal 1997 feasibility survey of an environment friendly type coal utilization system. Feasibility survey of the environment friendly type coal utilization system in Malaysia and Vietnam (case of Vietnam); 1997 nendo chosa hokokusho. Kankyo chowagata sekitan riyo system kanosei chosa (Malaysia oyobi Vietnam ni okeru kankyo chowagata sekitan riyo system kanosei chosa (Vietnam ban))

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    The paper grasped the state of coal utilization by coal consumption field, the state of coal physical flow in Vietnam, etc., surveyed/studied a possibility of introducing the environment friendly type coal utilization system, and assessed the possibility. As to energy resources, the north is abundant in hydroelectric and coal (mainly anthracite) resources, and the south in oil and natural gas resources. Coal production in fiscal 1997 is planned to be 10 million tons. Coal preparation technique presently available is only grain size sieving. Accordingly, it is necessary to study for heightening efficiency of facilities and modernizing facilities in accordance with the introduction of the environment friendly type coal utilization technology. During the study, it is possible to propose improvement on coal processing technology (coal preparation technology). Assessment and study are made especially of the coal selection system, fine coal recovery system and waste water treatment system. For the plan on new coal-fired power plants (300MWtimes4), there is left much necessity of proposing studying models considered of the anthracite combustion technology and environmental improvement and of assessing/studying them. 60 figs., 117 tabs.

  18. Coal Mines Security System

    OpenAIRE

    Ankita Guhe; Shruti Deshmukh; Bhagyashree Borekar; Apoorva Kailaswar; Milind E.Rane

    2012-01-01

    Geological circumstances of mine seem to be extremely complicated and there are many hidden troubles. Coal is wrongly lifted by the musclemen from coal stocks, coal washeries, coal transfer and loading points and also in the transport routes by malfunctioning the weighing of trucks. CIL —Coal India Ltd is under the control of mafia and a large number of irregularities can be contributed to coal mafia. An Intelligent Coal Mine Security System using data acquisition method utilizes sensor, auto...

  19. Joint verification project on environmentally friendly coal utilization systems. Joint verification project on the water-saving coal preparation system; Kankyo chowagata sekitan riyo system kyodo jissho jigyo. Shosuigata sentan system kyodo jissho jigyo

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    In this verification project, clean technology which should be spread in China was verified and the base structure for its spread was prepared for the purpose of controlling emissions of environmental pollutants associated with the coal utilization in China and of contributing to secure energy acquisition of Japan. As joint verification projects, a general rehabilitation type coal preparation system was installed in the Wangfenggang coal preparation plant, and a central control coal preparation system was installed in the Qingtan coal preparation plant. In the former, a system is verified in which optimum operation, water-saving, high quality, and heightening of efficiency can be obtained by introducing two computing systems for operation control and quality control, various measuring instruments, and analyzers to coal preparation plants where analog operation is conducted helped by Russia and Porland and have problems about quality control. In the latter, a central control system achieving water saving is verified by introducing rapid ash meters, scales, desitometers and computers to coal preparation plants having zigzag or heavy-fluid cyclon and connecting various kinds of information through network. For fiscal 1994, investigation and study were conducted. 51 figs., 9 tabs.

  20. The Czech base of hard coal, problems, possibilities for utilization

    International Nuclear Information System (INIS)

    Cermak, T.; Roubicek, V.

    1993-01-01

    The Czech coal and power engineering base is in a deep restructuring period now. The basic problems represents the changeover from the system of the centrally planned state economy to the market model of the energy resources mining, production and consumption. The Czech economy will have to face to up to now unknown competitive forces on the coal market in Europe where American, Canadian, Australian and South African coals compete. The paper discusses historical aspects of the development of the coal mining industry in the Czechoslavakia, the present coal preparation techniques for coking coals, the coking industry, and the utilization of brown coal. How to utilize the domestic coal base and coal generally is closely connected with the global restructuralization of the Czech economy. The most difficult step of this process is undoubtedly the adaptation of the Czech fuel and energy base to the market economy conditions

  1. Why do electricity utilities cooperate with coal suppliers? A theoretical and empirical analysis from China

    International Nuclear Information System (INIS)

    Zhao Xiaoli; Lyon, Thomas P.; Wang Feng; Song Cui

    2012-01-01

    The asymmetry of Chinese coal and electricity pricing reforms leads to serious conflict between coal suppliers and electricity utilities. Electricity utilities experience significant losses as a result of conflict: severe coal price fluctuations, and uncertainty in the quantity and quality of coal supplies. This paper explores whether establishing cooperative relationships between coal suppliers and electricity utilities can resolve conflicts. We begin with a discussion of the history of coal and electricity pricing reforms, and then conduct a theoretical analysis of relational contracting to provide a new perspective on the drivers behind the establishment of cooperative relationships between the two parties. Finally, we empirically investigate the role of cooperative relationships and the establishment of mine-mouth power plants on the performance of electricity utilities. The results show that relational contracting between electricity utilities and coal suppliers improves the market performance of electricity utilities; meanwhile, the transportation cost savings derived from mine-mouth power plants are of importance in improving the performance of electricity utilities. - Highlights: ► We discuss the history of coal and electricity pricing reforms. ► The roots of conflicts between electricity and coal firms are presented. ► We conduct a theoretical analysis of relational contracting. ► The role of mine-mouth power plants on the performance of power firms is examined.

  2. Critical paths to coal utilization

    Energy Technology Data Exchange (ETDEWEB)

    Hill, G R

    1977-01-01

    The present dilemma of energy producers, converters, and policy decision makers is presented. The consequences of environmental control regulations, coupled with the need for conservation and energy, and of energy resources on the increased utilization of coal, are discussed. Several recent technical accomplishments that make possible increased utilization of coal for power generation are described. Groundwork is laid for discussion of the technical development that must occur if the United States is to retain its energy viability.

  3. Basic studies on coal liquefaction reaction, reforming and utilization of liquefaction products

    Energy Technology Data Exchange (ETDEWEB)

    Shiraishi, M. (National Institute for Resources and Environment, Tsukuba (Japan))

    1993-09-01

    This report describes the achievement of research and development of coal liquefaction technologies in the Sunshine Project for FY 1992, regarding the coal liquefaction reaction, reforming and utilization of liquefaction products. For the fundamental study on coal liquefaction reaction, were investigated effect of asphaltene in petroleum residue on coprocessing, pretreatment effect in coprocessing of Taiheiyo coal and tarsand bitumen using oil soluble catalyst, solubilization and liquefaction of Taiheiyo coal at mild conditions with the aid of super acid, and flash hydropyrolysis of finely pulverized swollen coal under high hydrogen pressure. On the other hand, for the study on hydrotreatment of coal derived liquid, were investigated catalytic hydroprocessing of Wandoan coal liquids, production of gasoline from coal liquids by fluid catalytic cracking, solvent extraction of phenolic compounds from coal liquids, and separation of hetero compounds in coal liquid by means of high pressure crystallization. Further progress in these studies has been confirmed. 9 figs., 6 tabs.

  4. Comparative analysis of large biomass & coal co-utilization units

    NARCIS (Netherlands)

    Liszka, M.; Nowak, G.; Ptasinski, K.J.; Favrat, D.; Marechal, F.

    2010-01-01

    The co-utilization of coal and biomass in large power units is considered in many countries (e.g. Poland) as fast and effective way of increasing renewable energy share in the fuel mix. Such a method of biomass use is especially suitable for power systems where solid fuels (hard coal, lignite) are

  5. Assessment of Research Needs for Coal Utilization

    Energy Technology Data Exchange (ETDEWEB)

    Penner, S.S.

    1983-08-01

    The Coal Combustion and Applications Working Group (CCAWG), at the request of J.W. Mares (Assistant Secretary for Fossil Energy) and A.W. Trivelpiece (Director, Office of Energy Research), has reviewed and evaluated the U.S. programs on coal combustion and utilization. The important topical areas of coal gasification and coal liquefaction have been deliberately excluded because R and D needs for these technologies were reviewed previously by the DOE Fossil Energy Research Working Group. The CCAWG studies were performed in order to provide an independent assessment of research areas that affect prospects for augmented coal utilization. In this report, we summarize the findings and research recommendations of CCAWG.

  6. CO-COMBUSTION OF REFUSE DERIVED FUEL WITH COAL IN A FLUIDISED BED COMBUSTOR

    Directory of Open Access Journals (Sweden)

    W. A. WAN AB KARIM GHANI

    2009-03-01

    Full Text Available Power generation from biomass is an attractive technology which utilizes municipal solid waste-based refused derived fuel. In order to explain the behavior of biomass-fired fluidized bed incinerator, biomass sources from refuse derived fuel was co-fired with coal in a 0.15 m diameter and 2.3 m high fluidized bed combustor. The combustion efficiency and carbon monoxide emissions were studied and compared with those from pure coal combustion. This study proved that the blending effect had increased the carbon combustion efficiency up to 12% as compared to single MSW-based RDF. Carbon monoxide levels fluctuated between 200-1600 ppm were observed when coal is added. It is evident from this research that efficient co-firing of biomass with coal can be achieved with minimum modification of existing coal-fired boilers.

  7. Group separation of coal components and new ideas of coal utilization as petroleum

    Energy Technology Data Exchange (ETDEWEB)

    Zhi-hong Qin; Cui-li Hou; Juan Chen; Li-ying Zhang; Jie-qiong Ma [China University of Mining & Technology, Xuzhou (China). School of Chemical Engineering and Technology

    2009-09-15

    Four different groups of components were separated from coal under mild conditions of extraction and stripping process. Within these groups, and with pre-separation, individual utilization of all coal components can be realized, similar to petroleum components and enhance the inherent value and utilization value of coal, as well as increase environmental benefits. The characteristics of each component were analyzed with measurements by FTIR, GC/MS, TEM and the establishment of caking properties. The results show that coal can be separated into residues, ultra-pure coal, asphaltene components and light components by adding solvents for stripping into the CS{sub 2}/NMP mixed extraction solution. Those four groups of components present great differences in the presence of carbon and hydrogen elements, in the structure of functional groups, in their macroscopic structure and micro-morphology and caking properties. Every component possesses its own inherent values and approaches. A new idea of coal processes and utilization, similar to the use of petroleum is proposed. 11 refs., 6 figs., 6 tabs.

  8. Fiscal 1995 coal production/utilization technology promotion subsidy/clean coal technology promotion business/regional model survey. Study report on `Environmental load reduction measures: feasibility study of a coal utilization eco/energy supply system` (interim report); 1995 nendo sekitan seisan riyo gijutsu shinkohi hojokin clean coal technology suishin jigyo chiiki model chosa. `Kankyo fuka teigen taisaku: sekitan riyo eko energy kyokyu system no kanosei chosa` chosa hokokusho (chukan hokoku)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    The coal utilization is expected to make substantial growth according to the long-term energy supply/demand plan. To further expand the future coal utilization, however, it is indispensable to reduce environmental loads in its total use with other energies, based on the coal use. In this survey, a regional model survey was conducted as environmental load reduction measures using highly cleaned coal which were taken in fiscal 1993 and 1994. Concretely, a model system was assumed which combined facilities for mixed combustion with coal and other energy (hull, bagasse, waste, etc.) and facilities for effective use of burned ash, and potential reduction in environmental loads of the model system was studied. The technology of mixed combustion between coal and other energy is still in a developmental stage with no novelties in the country. Therefore, the mixed combustion technology between coal and other energy is an important field which is very useful for the future energy supply/demand and environmental issues. 34 refs., 27 figs., 48 tabs.

  9. Fiscal 2000 project on measures for assisting and diffusing environmentally-friendly coal utilization system introduction. CMG recovery/utilization system joint demonstration project; 2000 nendo kankyo chowagata sekitan riyo system donyu shien nado fukyu taisaku jigyo chosa hokoku. CMG kaishu riyo system kyodo jissho jigyo

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    A CMG (coal mine gas) recovery/utilization system was designed, constructed, and then demonstrated at a model coal mining district in Liaoning Province for the purpose of contributing to the solution of energy and environment related problems in China. The recovery system demonstration test, aiming to improve on safety and productivity of coal mining and to supply recovered gas with stability, involved gas drainage test boring, mine sealing, sealed gas induction control, centralized gas monitoring, etc., which were carried out at the coal mine working face. A utilization system demonstration test was conducted, and CMG would continue to be supplied to the current users and CMG utilization would be started at the other 6 coal mines. For the supply of CMG to large-scale gas consuming areas, steel materials were manufactured and processed for spherical gas holders and denitrification facilities, gas holders were constructed, pipe lines were installed, and a provisional gas supply was carried out. For the transfer and diffusion of the technology, Chinese engineers were trained in Japan and Japanese engineers were dispatched to China. (NEDO)

  10. Thermal coal utilization for the ESCAP region

    Energy Technology Data Exchange (ETDEWEB)

    1982-01-01

    A selection of papers is presented originating from talks to coal utilization workshops for the ASEAN region in 1981. The papers cover: planning aspects - economic and technical aspects of coal usage, long term planning for fuel coal needs, planning and coal selection for coal-fired power plants, coal availability and marketing, and economic aspects of coal usage in developing countries; combustion and plant - changing from coal to oil, principles and problems of coal combustion, use of indigenous and imported coals and their effects on plant design, coal pulverizing mills, ash and dust disposal, environmental aspects of coal combustion, industrial sized coal-fired boilers; transport and storage -ocean shipment, coal receival facilities and associated operations, shipping and rail transport, coal handling and transport, environmental issue in the transport and handling of coal, coal preparation and blending; testing and properties - coal types, characterization properties and classification; training power plant operators; the cement industry and coal, the Australian black coal industry.

  11. Coal's sleeping market: non-utility generators

    International Nuclear Information System (INIS)

    McMahan, R.L.; Knutson, K.S.

    1992-01-01

    The article briefly profiles the coal market for non-utility generation (NUG). Coal consumption by NUGs, currently estimated at around 6.1 million tons, is projected to reach nearly 13.6 million tons by 1995 and 21.2 million tons by 2000. If the projected growth is achieved the NUG market may become one of the strongest market segments for the coal industry into the next century. 3 figs., 2 tabs

  12. Moderate temperature gas purification system: Application to high calorific coal-derived fuel

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, M.; Shirai, H.; Nunokawa, M. [Central Research Institute of Electric Power Industry, Kanagawa (Japan)

    2008-01-15

    Simultaneous removal of dust, alkaline and alkaline-earth metals, halides and sulfur compounds is required to enlarge application of coal-derived gas to the high-temperature fuel cells and the fuel synthesis through chemical processing. Because high calorific fuel gas, such as oxygen-blown coal gas, has high carbon monoxide content, high-temperature (above 450{sup o}C) gas purification system is always subjected to the carbon deposition. We suggest moderate temperature (around 300{sup o}C) operation of the gas purification system to avoid the harmful disproportionation reaction and efficient removal of the various contaminants. Because the reaction rate is predominant to the performance of contaminant removal in the moderate temperature gas purification system, we evaluated the chemical removal processes; performance of the removal processes for halides and sulfur compounds was experimentally evaluated. The halide removal process with sodium aluminate sorbent had potential performance at around 300{sup o}C. The sulfur removal process with zinc ferrite sorbent was also applicable to the temperature range, though the reaction kinetics of the sorbent is essential to be approved.

  13. Environmental performance assessment of utility boiler energy conversion systems

    International Nuclear Information System (INIS)

    Li, Changchun; Gillum, Craig; Toupin, Kevin; Park, Young Ho; Donaldson, Burl

    2016-01-01

    Highlights: • Sustainability analyses of utility boilers are performed. • Natural gas fired boilers have the least CO_2 emissions in fossil fueled boilers. • Solar boilers rank last with an emergy yield ratio of 1.2. • Biomass boilers have the best emergy sustainability index. - Abstract: A significant amount of global electric power generation is produced from the combustion of fossil fuels. Steam boilers are one of the most important components for steam and electricity production. The objective of this paper is to establish a theoretical framework for the sustainability analysis of a utility boiler. These analyses can be used by decision-makers to diagnose and optimize the sustainability of a utility boiler. Seven utility boiler systems are analyzed using energy and embodied solar energy (emergy) principles in order to evaluate their environmental efficiencies. They include a subcritical coal fired boiler, a supercritical coal fired boiler, an oil fired boiler, a natural gas fired boiler, a concentrating solar power boiler utilizing a tower configuration, a biomass boiler, and a refuse derived fuel boiler. Their relative environmental impacts were compared. The results show that the natural gas boiler has significantly lower CO_2 emission than an equivalent coal or oil fired boiler. The refuse derived fuel boiler has about the same CO_2 emissions as the natural gas boiler. The emergy sustainability index of a utility boiler system is determined as the measure of its sustainability from an environmental perspective. Our analyses results indicate that the natural gas boiler has a relatively high emergy sustainability index compared to other fossil fuel boilers. Converting existing coal boilers to natural gas boilers is a feasible option to achieve better sustainability. The results also show that the biomass boiler has the best emergy sustainability index and it will remain a means to utilize the renewable energy within the Rankine steam cycle. Before

  14. Zinc isotopic composition of particulate matter generated during the combustion of coal and coal + tire-derived fuels

    Science.gov (United States)

    Borrok, D.M.; Gieré, R.; Ren, M.; Landa, E.R.

    2010-01-01

    Atmospheric Zn emissions from the burning of coal and tire-derived fuel (TDF) for power generation can be considerable. In an effort to lay the foundation for tracking these contributions, we evaluated the Zn isotopes of coal, a mixture of 95 wt % coal + 5 wt % TDF, and the particulate matter (PM) derived from their combustion in a power-generating plant. The average Zn concentrations and δ(66)Zn were 36 mg/kg and 183 mg/kg and +0.24‰ and +0.13‰ for the coal and coal + TDF, respectively. The δ(66)Zn of the PM sequestered in the cyclone-type mechanical separator was the lightest measured, -0.48‰ for coal and -0.81‰ for coal+TDF. The δ(66)Zn of the PM from the electrostatic precipitator showed a slight enrichment in the heavier Zn isotopes relative to the starting material. PM collected from the stack had the heaviest δ(66)Zn in the system, +0.63‰ and +0.50‰ for the coal and coal + TDF, respectively. Initial fractionation during the generation of a Zn-rich vapor is followed by temperature-dependent fractionation as Zn condenses onto the PM. The isotopic changes of the two fuel types are similar, suggesting that their inherent chemical differences have only a secondary impact on the isotopic fractionation process.

  15. Assessment of ground-water contamination by coal-tar derivatives, St. Louis Park area, Minnesota

    Science.gov (United States)

    Hult, M.F.

    1984-01-01

    Operation of a coal-tar distillation and wood-preserving facility in St. Louis Park, Minnesota, during 1918-72 contaminated ground water with coal-tar derivatives and inorganic chemicals. Coal-tar derivatives entered the groundwater system through three major paths: (1) Spills and drippings that percolated to the water table, (2) surface runoff and plant process water that was discharged to wetlands south of the former plant site, and (3) movement of coal tar directly into bedrock aquifers through a multiaquifer well on the site.

  16. Moderate temperature gas purification system: application to high calorific coal derived fuel

    Energy Technology Data Exchange (ETDEWEB)

    M. Kobayashi; H. Shirai; M. Nunokawa [Central Research Institute of Electric Power Industry (CRIEPI), Kanagawa (Japan)

    2005-07-01

    Simultaneous removal of dust, alkaline and alkaline-earth metals, halides and sulfur compounds is required to enlarge application of coal-derived gas to the high temperature fuel cells and the fuel synthesis through chemical processing. Because high calorific fuel gas, such as oxygen-blown coal gas, has high carbon monoxide content, high temperature gas purification system is always subjected to the carbon deposition and slippage of contaminant of high vapor pressure. It was suggested that moderate temperature operation of the gas purification system is applied to avoid the harmful disproportionation reaction and efficient removal of the various contaminants. To establish the moderate temperature gas purification system, the chemical-removal processes where the reaction rate is predominant to the performance of contaminant removal should be evaluated. Performance of the removal processes for halides and sulfur compounds were experimentally evaluated. The halide removal process with sodium based sorbent had potential good performance at around 300{sup o}C. The sulfur removal process was also applicable to the temperature range, although the improvement of the sulfidation reaction rate is considered to be essential. 11 refs., 8 figs., 1 tab.

  17. Analysis of ecological environment impact of coal exploitation and utilization

    Science.gov (United States)

    Zhang, Baoliu; Luo, Hong; Lv, Lianhong; Wang, Jian; Zhang, Baoshi

    2018-02-01

    Based on the theory of life cycle assessment, the ecological and environmental impacts of coal mining, processing, utilization and transportation will be analyzed, with analysing the status of china’s coal exploitation and utilization as the basis, it will find out the ecological and environmental impact in the development and utilization of coal, mainly consist of ecological impact including land damage, water resource destructionand biodiversity loss, etc., while the environmental impact include air, water, solid waste pollutions. Finally with a summary of the ecological and environmental problems, to propose solutionsand countermeasures to promote the rational development and consumption of coal, as well as to reduce the impact of coal production and consumption on the ecological environment, finally to achieve the coordinated development of energy and the environment.

  18. Fiscal 2000 operation report. Fiscal 2000 model project for promoting advanced utilization of coal (Survey on data control system for advanced utilization of coal in Japan); 2000 nendo sekitan kodo riyo shuishin moderu jigyo gyomu hokokusho. Nihon no sekitan kodo riyo ni kakawaru data kanri system chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    With the purpose of contributing to the drafting of, for example, measures for securing coal resources for Japan and strategies for developing coal utilization technologies from the standpoint of the world climate of the coal supply/demand in the future, database was built concerning coal information such as coal-related supply/demand trend, technological development and utilization status in Japan and foreign countries, with the results of fiscal 2000 reported. In the preparation of related applications, a jump function in the case of pages unregistered with related subjects was added to the coal information retrieval system completed last year, as were a subdividing function of retrieval conditions and a link function to pages of a technical term dictionary. In the arrangement of the database classified by the fields, programs were prepared on 14 tables primarily in relation to supply and demand, with the collection, processing and registration of the data performed. In addition, in order to deal with the clarification of the patent licensing of GIF related technologies, there was developed a graph display program using a general-purpose language, Java. (NEDO)

  19. Fiscal 1995 survey report on the feasibility study of the environmentally friendly type coal utilization system. Feasibility study of the environmentally friendly type coal utilization system in Thailand; Kankyo chowagata sekitan riyo system kanosei chosa. Tai ni okeru kankyo chowagata sekitan riyo system kanosei chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-06-01

    The paper surveyed the present situation and future trend of economy, energy supply/demand, coal production/distribution/utilization and the environmental effects in Thailand. The survey on the coal utilization and its environmental effects was partially requested of the environmental research institute in Thailand. The amount of coal utilization in Thailand rapidly increased to nearly four times as large as that ten years ago mainly in terms of domestic lignite under the government`s policy on expansion of the domestic energy use. However, most of this domestic lignite is low-grade coal with low calories and high sulfur content, and the use of it was rapidly increased mostly in power generation sector without no adequate environmental measures taken. This caused an environmental problem on air pollution due to sulfur oxides at Mae Moh power plant in the north several years ago, and the damages to the regional residents, etc. were given much publicity by journalism and developed the social problem. Accordingly, Thai people are now critical of the coal resource exploration and the coal use expansion. Under the circumstances, the Ministry of Industry and the energy related ministries/offices are obliged to review their development/promotion plans. 84 figs., 99 tabs.

  20. Geology in coal resource utilization

    International Nuclear Information System (INIS)

    Peters, D.C.

    1991-01-01

    The 37 papers in this book were compiled with an overriding theme in mind: to provide the coal industry with a comprehensive source of information on how geology and geologic concepts can be applied to the many facets of coal resource location, extraction, and utilization. The chapters have been arranged to address the major coal geology subfields of Exploration and Reserve Definition, Reserve Estimation, Coalbed Methane, Underground Coal Gasification, Mining, Coal Quality Concerns, and Environmental Impacts, with papers distributed on the basis of their primary emphasis. To help guide one through the collection, the author has included prefaces at the beginning of each chapter. They are intended as a brief lead-in to the subject of the chapter and an acknowledgement of the papers' connections to the subject and contributions to the chapter. In addition, a brief cross-reference section has been included in each preface to help one find papers of interest in other chapters. The subfields of coal geology are intimately intertwined, and investigations in one area may impact problems in another area. Some subfields tend to blur at their edges, such as with reserve definition and reserve estimation. Papers have been processed separately for inclusion on the data base

  1. SYNTHESIS OF METHACRYLATES FROM COAL-DERIVED SYNGAS

    Energy Technology Data Exchange (ETDEWEB)

    Jang, B.W.L.; Spivey, J.J.; Gogate, M.R.; Zoeller, J.R.; Colberg, R.D.; Choi, G.N.

    1999-12-01

    Research Triangle Institute (RTI), Eastman Chemical Company, and Bechtel have developed a novel process for synthesis of methyl methacrylate (MMA) from coal-derived syngas, under a contract from the US Department of Energy/Fossil Energy Technology Center (DOE/FETC). This project has resulted in five US patents (four already published and one pending publication). It has served as the basis for the technical and economic assessment of the production of this high-volume intermediate from coal-derived synthesis gas. The three-step process consists of the synthesis of a propionate from ethylene carbonylation using coal-derived CO, condensation of the propionate with formaldehyde to form methacrylic acid (MAA); and esterification of MAA with methanol to yield MMA. The first two steps, propionate synthesis and condensation catalysis, are the key technical challenges and the focus of the research presented here.

  2. Literature survey of properties of synfuels derived from coal

    Science.gov (United States)

    Reynolds, T. W.; Niedzwiecki, R. W.; Clark, J. S.

    1980-02-01

    A literature survey of the properties of synfuels for ground-based gas turbine applications is presented. Four major concepts for converting coal into liquid fuels are described: solvent extraction, catalytic liquefaction, pyrolysis, and indirect liquefaction. Data on full range syncrudes, various distillate cuts, and upgraded products are presented for fuels derived from various processes, including H-coal, synthoil, solvent-refined coal, donor solvent, zinc chloride hydrocracking, co-steam, and flash pyrolysis. Some typical ranges of data for coal-derived low Btu gases are also presented.

  3. Literature survey of properties of synfuels derived from coal

    Science.gov (United States)

    Reynolds, T. W.; Niedzwiecki, R. W.; Clark, J. S.

    1980-01-01

    A literature survey of the properties of synfuels for ground-based gas turbine applications is presented. Four major concepts for converting coal into liquid fuels are described: solvent extraction, catalytic liquefaction, pyrolysis, and indirect liquefaction. Data on full range syncrudes, various distillate cuts, and upgraded products are presented for fuels derived from various processes, including H-coal, synthoil, solvent-refined coal, donor solvent, zinc chloride hydrocracking, co-steam, and flash pyrolysis. Some typical ranges of data for coal-derived low Btu gases are also presented.

  4. Current status of U.S. coal utilization and non-fuel uses of fossil fuels

    International Nuclear Information System (INIS)

    Song, C.S.; Schobert, H.; Scaroni, A.W.

    1997-01-01

    An understanding of the current situation is important for projecting the future direction of coal utilization. The world's annual consumption of coal in 1995 was 5104.01 million short tons (MST, 1 short ton = 0.907 metric ton). Coal plays a very important role in the US energy supply; US coal production in 1995 totaled 1033 MST, including 611.1 MST of bituminous coal, 328.4 MST of subbituminous coal, 86.1 MST of lignite, and 4.1 MST of anthracite. US coal consumption totaled 940.6 MST, with 88.1% in electric utilities, 3.5% in coke plants, 7.8% for other industrial uses, and only 0.6% in the residential and commercial sectors. The amount of fossil resources used for non-fuel purposes accounted for 8.4% of the total annual consumption in 1995. Non-fuel uses of fossil fuels particularly coal may become more important in the future. The demonstrated coal reserves in the world are large enough for consumption for over 220 years at the 1995 level, while proven oil reserves are only about 40 times the world's 1995 consumption level. Coal has several positive attributes when considered as a feedstock for aromatic chemicals, specialty chemicals, and carbon-based materials. Existing nonfuel uses of coals include (1) high temperature carbonization of bituminous and subbituminous coals to make metallurgical coke; (2) gasification of coal to make synthesis gases and other chemicals; (3) use of coal in manufacturing other materials such as activated carbons, carbon molecular sieves (CMS) and production of phosphorus (phosphoric acid); (4) the use of coal tars from carbonization and gasification for making aromatic and phenolic chemicals; (5) the use of coal tar pitch for making carbon fibers and activated carbon fibers; and (6) other non-fuel products derived from coal including combustion by-products. Coal may become more important both as an energy source and as the source of chemical feedstocks in the 21st century

  5. FY 1999 report on the potential survey of the environmentally friendly type coal utilization system. Potential survey of the environmentally friendly type coal utilization system in the Philippines; 1999 nendo chosa hokokusho. Kankyo chowa gata sekitan riyo system kanosei chosa (Firipin ni okeru kankyo chowa gata system kanosei chosa)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    For the purpose of contributing to working out a master plan for the introduction of the environmentally friendly type coal utilization system in the Philippines, analysis was made of the state of coal use/the state of spread by industry mostly including the electric power industry, cement industry and residential/commercial use fuel sector. In the Philippines, the amount of coal use has rapidly been increasing since coal-fired power plants started operation. For the promotion of the use of domestic coals, it is important to reform low grade coal. Moreover, the technology is required which copes with the reinforced regulation against SOx emissions. In the cement industry, coal and coal ash have not yet been effectively used. Therefore, the following measures should be taken to increase the competitive force: energy conservation measures, reinforcement of environmental measures such as dust prevention, and effective use of the fly ash emitted from power plants. In general households and small-/medium-sized industries such as tobacco drying, they still use a large amount of charcoals and firewood, which is approximately 86% of the residential/commercial use energy. There is a growing tendency for the development/spread of coal briquette as substituting energy. (NEDO)

  6. Coal comprehensive utilization is the gateway for Shanxi Province

    International Nuclear Information System (INIS)

    Ma, L.; Gui, G.

    1997-01-01

    Shanxi Province is abundant in coal reserve. Taiyuan Coal Gasification Corporation is a large sized union enterprise engaged in comprehensive use of coal in Shanxi province, and significant economic, social, environmental benefits have been brought forth with it. This leads people to believe that coal comprehensive utilization is the gateway for Shanxi Province in the fields of improvement of environment and development of economy

  7. Competitive reaction in hydrodenitrogenation and hydrodeoxygenation of coal-derived naphtha

    Energy Technology Data Exchange (ETDEWEB)

    Machida, M. (Idemitsu Kosan Co. Ltd., Tokyo (Japan). Central Research Lab.); Sakao, Y.; Ono, S. (Idemitsu Kosan Co. Ltd., Tokyo (Japan))

    1994-03-01

    The naphtha fraction derived from coal is expected to be one of the most suitable blending stocks for motor gasoline because of its high contents of cyclic hydrocarbons. However, since the contents of nitrogen and oxygen are high in the coal naphtha, the amounts of these elements must be reduced to acceptable levels. In this study, aiming to clarify the hydrodenitrogenation (HDN) and hydrodeoxygenation (HDO) performances of practical feed stocks, HDN and HDO of coal-derived naphtha and its model compounds were examined by using a catalyst Ni-Mo/Al2O3 group. There are tree types of nitrogen compounds, pyridine, pyrrole and aniline, in the coal-derived naphtha. Aniline type nitrogen compounds in the coal-derived naphtha are more resistant to HDN than pyridine type compounds, though aniline is more reactive than pyridine when the reaction is carried out individually. 14 refs., 7 figs., 3 tabs.

  8. NOVEL SLURRY PHASE DIESEL CATALYSTS FOR COAL-DERIVED SYNGAS

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Dragomir B. Bukur; Dr. Ketil Hanssen; Alec Klinghoffer; Dr. Lech Nowicki; Patricia O' Dowd; Dr. Hien Pham; Jian Xu

    2001-01-07

    This report describes research conducted to support the DOE program in novel slurry phase catalysts for converting coal-derived synthesis gas to diesel fuels. The primary objective of this research program is to develop attrition resistant catalysts that exhibit high activities for conversion of coal-derived syngas.

  9. Fiscal 1996 survey report on the environmentally friendly type coal utilization system feasibility study. Feasibility study of the environmentally friendly type coal utilization system in Thailand; Kankyo chowagata sekitan riyo system kanosei chosa. Tai ni okeru kankyo chowagata sekitan riyo system kanosei chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    The paper investigated and studied the present situation and future trend of coal utilization and distribution in Thailand, and the present situation of environmental effects and the measures taken for environmental protection. Around 2010, coal will probably be produced only at EGAT`s Mae Moh (MM) coal mine. Demand for overseas coal is expected to be 40-50 million tons in 2011, and preparation of the coal center becomes a subject. For general industry use coal, pretreatment such as coal preparation, coal blending and briquetting is needed, considering coal quality, usage, transport distance and environmental effects. Brown coal of MM coal mine is a lignite with high sulfur, high ash content and low heating value. Wide spread of its use can be expected if upgrading is possible such as desulfurization, deashing, increasing heating value. In the electric power generation field, the absorber was installed at the existing boiler of the mine-mouth generating plant to conduct a verification test on high grade desulfurization of ultra-high sulfur lignite. In the industry field, the circulating fluidized bed boiler was adopted. In the residential/commercial field, introduction of briquette was proposed. 80 refs., 84 tabs.

  10. Center for Coal-Derived Low Energy Materials for Sustainable Construction

    Energy Technology Data Exchange (ETDEWEB)

    Jewell, Robert; Robl, Tom; Rathbone, Robert

    2012-06-30

    The overarching goal of this project was to create a sustained center to support the continued development of new products and industries that manufacture construction materials from coal combustion by-products or CCB’s (e.g., cements, grouts, wallboard, masonry block, fillers, roofing materials, etc). Specific objectives includes the development of a research kiln and associated system and the formulation and production of high performance low-energy, low-CO2 emitting calcium sulfoaluminate (CAS) cement that utilize coal combustion byproducts as raw materials.

  11. Empirical prediction of ash deposition propensities in coal-fired utilities

    Energy Technology Data Exchange (ETDEWEB)

    Frandsen, F.

    1997-01-01

    This report contain an outline of some of the ash chemistry indices utilized in the EPREDEPO (Empirical PREdiction of DEPOsition) PC-program, version 1.0 (DEPO10), developed by Flemming Frandsen, The CHEC Research Programme, at the Department of Chemical Engineering, Technical University of Denmark. DEPO10 is a 1st generation FTN77 Fortran PC-programme designed to empirically predict ash deposition propensities in coal-fired utility boilers. Expectational data (empirical basis) from an EPRI-sponsored survey of ash deposition experiences at coal-fired utility boilers, performed by Battelle, have been tested for use on Danish coal chemistry - boiler operational conditions, in this study. (au) 31 refs.

  12. Coal and energy: a southern perspective. Regional characterization report for the National Coal Utilization Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Boercker, F. D.; Davis, R. M.; Goff, F. G.; Olson, J. S.; Parzyck, D. C.

    1977-08-01

    This publication is the first of several reports to be produced for the National Coal Utilization Assessment, a program sponsored by the Assistant Administrator for Environment and Safety through the Division of Technology Overview of ERDA. The purpose of the report is to present the state and regional perspective on energy-related issues, especially those concerning coal production and utilization for 12 southern states. This report compiles information on the present status of: (1) state government infrastructure that deals with energy problems; (2) the balance between energy consumption and energy production; (3) the distribution of proved reserves of various mineral energy resources; (4) the major characteristics of the population; (5) the important features of the environment; and (6) the major constraints to increased coal production and utilization as perceived by the states and regional agencies. Many energy-related characteristics described vary significantly from state to state within the region. Regional and national generalizations obscure these important local variations. The report provides the state and regional perspective on energy issues so that these issues may be considered objectively and incorporated into the National Coal Utilization Assessment. This Assessment is designed to provide useful outputs for national, regional, and local energy planners.

  13. Characterization of coal blends for effective utilization in thermal power plants

    International Nuclear Information System (INIS)

    Santhosh Raaj, S.; Arumugam, S.; Muthukrishnan, M.; Krishnamoorthy, S.; Anantharaman, N.

    2016-01-01

    Highlights: • This work will assist utilities to decide on the choice of coals for blending. • Conventional and advanced analytical techniques were used for characterization. • Fuel ratio, burnout profile, ash chemistry and carbon burnout are key factors. • Basic properties were additive while carbon burnout was non additive for the blends. - Abstract: This paper deals with the characterization of coal blends using various conventional and advanced analytical techniques. There has been an increasing trend in utilizing imported coals for power generation in India and utilities are resorting to blended coal firing for various reasons, both financially as well as technically. Characterization studies were carried out on 2 combinations of Indian and imported coal blends. Conventional characterization such as proximate and ultimate analysis and determination of calorific value were carried out for the raw coals and blends as per ASTM standards. Following this thermal and mineral analysis of the samples were carried out using thermo gravimetric analyzer (TGA), X-ray fluorescence spectrometer (XRF) and computer controlled scanning electron microscope (CCSEM). Combustion experiments were also conducted using drop tube furnace (DTF) to determine the burnout of the raw coals and blends. The selection of technically suitable coal combination for blending, based on these characterization studies, has been detailed.

  14. Application of zeolite-based catalyst to hydrocracking of coal-derived liquids

    Energy Technology Data Exchange (ETDEWEB)

    Shimada, H.; Sato, T.; Yoshimura, Y.; Hinata, A.; Yoshitomi, S.; Castillo Mares, A.; Nishijima, A. (National Chemical Laboratory for Industry, Tsukuba (Japan))

    1990-06-01

    Y-zeolite supported catalysts were applied to the hydrocracking of coal-derived liquids. By the introduction of two-stage upgrading consisting of hydrotreating and hydrocracking, Wandoan coal-derived middle distillate was hydrocracked over Ni-Mo/Y-zeolite, producing a high gasoline fraction yield. Zeolite supported catalysts gave little hydrocracked compounds in the hydroprocessing of coal-derived heavy oils, even after hydrotreatment. The reaction inhibitors which seriously poison the active sites of zeolites were found to be small nitrogen-containing molecules. In the hydroprocessing of coal-derived heavy oils, zeolite supported catalysts were inferior to alumina supported catalysts. This is due to the high hydrocracking but low hydrogenation activity of zeolite supported catalysts. 22 refs., 5 figs., 11 tabs.

  15. Overview of Turkey's coal necessity, reserves and utilization

    Energy Technology Data Exchange (ETDEWEB)

    Kilic, Ahmet Mahmut; Kilic, Ozen

    2006-10-15

    This article deals with overview of Turkey's coal necessity, reserves and utilization. Turkey is rapidly growing in terms of both its economy and its population. In parallel, its demand for energy, particularly for electricity, is increasing. Turkey possesses fossil fuel resources of hard coal (HC) and lignite (LG) have the greatest importance in energy production and for the national economy. The hard coal and lignite reserves of Turkey are 1.126 and 8.375 millions tons(Mt), respectively. Coal, the major fuel source for Turkey utilized mainly for electric power, steel manufacturing and cement production, amounts to 31% of total energy consumption in Turkey. To sum up, providing the total consumption is taken into account in the Middle East, the coal consumption rate of Turkey is approximately 90% of the consumption in this region.

  16. Pd/activated carbon sorbents for mid-temperature capture of mercury from coal-derived fuel gas.

    Science.gov (United States)

    Li, Dekui; Han, Jieru; Han, Lina; Wang, Jiancheng; Chang, Liping

    2014-07-01

    Higher concentrations of Hg can be emitted from coal pyrolysis or gasification than from coal combustion, especially elemental Hg. Highly efficient Hg removal technology from coal-derived fuel gas is thus of great importance. Based on the very excellent Hg removal ability of Pd and the high adsorption abilities of activated carbon (AC) for H₂S and Hg, a series of Pd/AC sorbents was prepared by using pore volume impregnation, and their performance in capturing Hg and H₂S from coal-derived fuel gas was investigated using a laboratory-scale fixed-bed reactor. The effects of loading amount, reaction temperature and reaction atmosphere on Hg removal from coal-derived fuel gas were studied. The sorbents were characterized by N₂ adsorption, X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The results indicated that the efficiency of Hg removal increased with the increasing of Pd loading amount, but the effective utilization rate of the active component Pd decreased significantly at the same time. High temperature had a negative influence on the Hg removal. The efficiency of Hg removal in the N₂-H₂S-H₂-CO-Hg atmosphere (simulated coal gas) was higher than that in N₂-H₂S-Hg and N₂-Hg atmospheres, which showed that H₂ and CO, with their reducing capacity, could benefit promote the removal of Hg. The XPS results suggested that there were two different ways of capturing Hg over sorbents in N₂-H₂S-Hg and N₂-Hg atmospheres. Copyright © 2014. Published by Elsevier B.V.

  17. Primary migration of Jurassic coal-derived oil in Santanghu basin

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, W.; Zhong, N.; Ren, D. [China University of Mining and Technology, Beijing (China). Dept of Resource Exploitation Engineering

    2000-11-01

    It is known that the differential evolution of the multiple macerals results in 'oil generation by stage', and that 'early generation, early expulsion' is one of the preconditions for the efficient accumulation of the coal-derived oil. Based upon the study on the evolution of the physical properties, related to the hydrocarbon expulsion, of the Jurassic organic rock in Santanghu basin during the course of maturation, the mechanism of the primary migration of its coal-derived oil was discussed. The rapid loss of the inherent moisture in the organic rock was not accordant with the main generation stage of the coal-derived oil, so it was unrealistic that the oil migrated by dissolution in the expelled water. It is thought that the special forming mechanism of the continuous 'bitumen network' under the condition of over-pressure and an earlier history of primary migration may be essential to the Jurassic coal-derived oil in Santanghu basin. 17 refs., 4 figs.

  18. Environmental impact of coal utilization (from raw material to waste resources): Proceedings

    International Nuclear Information System (INIS)

    Sahu, K.C.

    1991-10-01

    The proceedings contains 27 papers presented at the conference on environmental impact of coal utilization from raw material to waste resources which was held at the Indian Institute of Technology, Bombay, during 14-15 January 1991. The conference was held as a follow-up of the research project to study the impact of coal utilization. The project was undertaken jointly by the Indian Institute of Technology, Bombay and the University of Western Ontario, Canada. The project was funded by the International Development Research Centre, Ottawa (Canada). The principle themes of the conference were : occurrence of trace elements in coal, fate of trace elements during combustion of coal, characterisation of fly ash and its properties and utilization, and environmental impact of ash disposal. (M.G.B.)

  19. Fiscal 1996 survey report on the environmentally friendly type coal utilization system feasibility study. Survey by region/industry in India; Kankyo chowagata sekitan riyo system kanosei chosa. Indo ni okeru sekitan riyo gaikyo chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    A survey was made in India which is a coal producing/consuming country following China in Asia and where coal is used for about 60% of the primary commercial energy. The survey was conducted on coal production/distribution/utilization and environmental issues, aiming at studying feasibility of introducing the environmentally friendly coal utilization system into every industry including the residential/commercial one, and at implementing a comprehensive master plan including Japan`s international cooperation. Total power source facilities in fiscal 1995 are 83.3 million kW, 64% of which are coal thermal power facilities and generated 260 TWh, 69% of the total output energy. Main commercial energy sources are coal, oil and natural gas, and oil is self-sufficient. The survey this time did not examine very well the actual state of the environmental pollution problem caused by the coal utilization. Indian coal is high in ash content but low in sulfur content, and therefore, SOx polluting air has not been a very important problem so far, but soot/smoke is almost the problem. Further, ash treatment after combustion at boilers, etc. is expected to be a big problem in the future. 49 figs., 88 tabs.

  20. Feasibility analysis of nuclear–coal hybrid energy systems from the perspective of low-carbon development

    International Nuclear Information System (INIS)

    Chen, QianQian; Tang, ZhiYong; Lei, Yang; Sun, YuHan; Jiang, MianHeng

    2015-01-01

    Highlights: • We report a nuclear–coal hybrid energy systems. • We address the high-carbon energy resource integrating with a low-carbon energy resource. • We establish a systematic techno-economic model. • Improving both energy and carbon efficiency. • A significantly lower CO 2 emission intensity is achieved by the system. - Abstract: Global energy consumption is expected to increase significantly due to the growth of the economy and population. The utilization of fossil resource, especially coal, will likely be constrained by carbon dioxide emissions, known to be the principal contributor to climate change. Therefore, the world is facing the challenge of how to utilize fossil resource without a large carbon footprint. In the present work, a nuclear–coal hybrid energy system is proposed as a potential solution to the aforementioned challenge. A high-carbon energy such as coal is integrated effectively with a low-carbon energy such as nuclear in a flexible and optimized manner, which is able to generate the chemicals and fuels with low carbon dioxide emissions. The nuclear–coal hybrid energy system is presented in this paper for the detailed analysis. In this case, the carbon resource required by the fuel syntheses and chemical production processes is mainly provided by coal while the hydrogen resource is derived from nuclear energy. Such integration can not only lead to a good balance between carbon and hydrogen, but also improve both energy and carbon efficiencies. More importantly, a significantly lower CO 2 emission intensity is achieved. A systematic techno-economic model is established, and a scenario analysis is carried out on the hybrid system to assess the economic competitiveness based on the considerations of various types of externalities. It is found that with the rising carbon tax and coal price as well as the decreasing cost of nuclear energy, the hybrid energy system will become more and more economically competitive with the

  1. Analysis of mineral phases in coal utilizing factor analysis

    International Nuclear Information System (INIS)

    Roscoe, B.A.; Hopke, P.K.

    1982-01-01

    The mineral phase inclusions of coal are discussed. The contribution of these to a coal sample are determined utilizing several techniques. Neutron activation analysis in conjunction with coal washability studies have produced some information on the general trends of elemental variation in the mineral phases. These results have been enhanced by the use of various statistical techniques. The target transformation factor analysis is specifically discussed and shown to be able to produce elemental profiles of the mineral phases in coal. A data set consisting of physically fractionated coal samples was generated. These samples were analyzed by neutron activation analysis and then their elemental concentrations examined using TTFA. Information concerning the mineral phases in coal can thus be acquired from factor analysis even with limited data. Additional data may permit the resolution of additional mineral phases as well as refinement of theose already identified

  2. The directory of United States coal & technology export resources. Profiles of domestic US corporations, associations and public entities, nationwide, which offer products or services suitable for export, relating to coal and its utilization

    Energy Technology Data Exchange (ETDEWEB)

    1994-01-01

    The purpose of this directory is to provide a listing of available U.S. coal and coal related resources to potential purchasers of those resources abroad. The directory lists business entities within the US which offer coal related resources, products and services for sale on the international market. Each listing is intended to describe the particular business niche or range of product and/or services offered by a particular company. The listing provides addresses, telephones, and telex/fax for key staff in each company committed to the facilitation of international trade. The content of each listing has been formulated especially for this directory and reflects data current as of the date of this edition. The directory listings are divided into four primary classifications: coal resources; technology resources; support services; and financing and resource packaging. The first three of which are subdivided as follows: Coal Resources -- coal derivatives, coal exporters, and coal mining; Technology Resources -- advanced utilization, architects and engineers, boiler equipment, emissions control and waste disposal systems, facility construction, mining equipment, power generation systems, technical publications, and transport equipment; Support Services -- coal transport, facility operations, freight forwarders, sampling services and equipment, and technical consultants. Listings for the directory were solicited on the basis of this industry breakdown. Each of the four sections of this directory begins with a matrix illustrating which companies fall within the particular subclassifications specific to that main classification. A general alphabetical index of companies and an index by product/service classification are provided following the last section of the directory.

  3. Coal utilization, the environment, and the role of geologists

    International Nuclear Information System (INIS)

    Dutcher, L.A.F.; Dutcher, R.R.

    1991-01-01

    The United States has demonstrated reserves (coal potentially minable with current technology) sufficient to meet demand for at least 300 yrs (Illinois Coal Association, 1990, p. 5) at the 1990 production rate of 930,900,000 tonnes (1,024,000,000 tons) (Energy Information Administration, 1991, p. 6). These deposits, underlying about 13% of the country's land area, are the energy equivalent of about 2,000,000,000,000 bbl of crude oil - more than triple the world's known oil reserves. About 85% of coal used in the nation goes to the electric utility industry to generate 55% of the electricity produced in the US. The remaining buyers include steel, other industrial facilities, and retail dealers to a limited extent. Future increases in demand will depend upon economic growth of domestic and foreign markets and the price of competing fuels. However, future demand especially will depend upon the scope of government regulation and the progress of research and technology development in reducing environmental impacts resulting from mining and utilization and in advancing clean coal-burning technologies

  4. Feasibility study on recovery and utilization of coal mine gas (CMG) at Donetsk Coal Field

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    For the purpose of getting petroleum substitution energy and reducing greenhouse effect gas emission, an investigational study was carried out of the project for methane gas recovery/utilization at the Donbassa coal mine in Ukraine. At the Donbassa coal mine, degassing by test boring is being conducted to reduce the gas emission at coal face for safety, but most of the gas is discharged into the air. In this project, the following were studied: degassing boring/gas induction from bore hole/measurement in gas induction pipe, gas recovery system combined with gas induction in flyash, and installation/operation of gas engine power generation facilities (1,710kW x 7 units) with exhaust heat recovery boiler using the recovered methane gas as fuel. The results obtained were the petroleum substitution amount of 31,000 toe/y and the amount of greenhouse effect gas reduction of 480,000 t/y. In the economical estimation, the initial investment amount was 3 billion yen, the profitability of the total investment used was 2.9%, and the internal earning rate was 6.5%. (NEDO)

  5. Computational fluid dynamic simulations of coal-fired utility boilers: An engineering tool

    Energy Technology Data Exchange (ETDEWEB)

    Efim Korytnyi; Roman Saveliev; Miron Perelman; Boris Chudnovsky; Ezra Bar-Ziv [Ben-Gurion University of the Negev, Beer-Sheva (Israel)

    2009-01-15

    The objective of this study was to develop an engineering tool by which the combustion behavior of coals in coal-fired utility boilers can be predicted. We presented in this paper that computational fluid dynamic (CFD) codes can successfully predict performance of - and emission from - full-scale pulverized-coal utility boilers of various types, provided that the model parameters required for the simulation are properly chosen and validated. For that purpose we developed a methodology combining measurements in a 50 kW pilot-scale test facility with CFD simulations using the same CFD code configured for both test and full-scale furnaces. In this method model parameters of the coal processes are extracted and validated. This paper presents the importance of the validation of the model parameters which are used in CFD codes. Our results show very good fit of CFD simulations with various parameters measured in a test furnace and several types of utility boilers. The results of this study demonstrate the viability of the present methodology as an effective tool for optimization coal burning in full-scale utility boilers. 41 refs., 9 figs., 3 tabs.

  6. The effects of coal quality on NO{sub x} emissions and carbon burnout in pulverised coal-fired utility boilers

    Energy Technology Data Exchange (ETDEWEB)

    O`Connor, M. [National Power plc, Swindon (United Kingdom)

    1999-04-01

    A comprehensive study is reported on the impact of coal quality on nitrogen oxides emissions and carbon burnout in utility boilers, with the aim of assessing their relationship and developing predictive tools for assessing coals. Experimental work was carried out on various laboratory-scale apparatus and on single burner test facilities ranging from 160 kW{sub th} to 40 MW{sub th} in size and measurements were obtained from full-scale 500 MW{sub e} utility boiler trials. This data and basic coal data were then used to develop mathematical models to predict full-scale boiler performance with respect to NO{sub x} emissions and carbon burnout. Power station trials demonstrated that coal quality effects nitrogen oxides and burnout. The variability in boiler conditions also impacted on these factors. Lower nitrogen and higher volatile coals generally produced less NO{sub x}. Volatile content was the most important generic coal property for predicting burnout. Modelling rig tests, using data from advanced laboratory-scale tests, were found to be just as successful as using rig tests for predicting NO{sub x} performance of different coals. Laboratory-scale tests were found to be successful in providing accurate predictions of burnout for the coals studied. Mathematical models, however, were found to be less successful in this area and further work to develop this is required. A major achievement was CFD solutions of full-scale utility boiler furnaces in a single mesh. 32 refs., 15 figs., 33 tabs., 2 apps.

  7. 30 CFR 817.87 - Coal mine waste: Burning and burned waste utilization.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Coal mine waste: Burning and burned waste...-UNDERGROUND MINING ACTIVITIES § 817.87 Coal mine waste: Burning and burned waste utilization. (a) Coal mine... extinguishing operations. (b) No burning or unburned coal mine waste shall be removed from a permitted disposal...

  8. 30 CFR 816.87 - Coal mine waste: Burning and burned waste utilization.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Coal mine waste: Burning and burned waste...-SURFACE MINING ACTIVITIES § 816.87 Coal mine waste: Burning and burned waste utilization. (a) Coal mine... extinguishing operations. (b) No burning or burned coal mine waste shall be removed from a permitted disposal...

  9. SYSTEM ANALYSIS OF NUCLEAR-ASSISTED SYNGAS PRODUCTION FROM COAL

    International Nuclear Information System (INIS)

    E. A. Harvego; M. G. McKellar; J. E. O'Brien

    2008-01-01

    A system analysis has been performed to assess the efficiency and carbon utilization of a nuclear-assisted coal gasification process. The nuclear reactor is a high-temperature helium-cooled reactor that is used primarily to provide power for hydrogen production via high-temperature electrolysis. The supplemental hydrogen is mixed with the outlet stream from an oxygen-blown coal gasifier to produce a hydrogen-rich gas mixture, allowing most of the carbon dioxide to be converted into carbon monoxide, with enough excess hydrogen to produce a syngas product stream with a hydrogen/carbon monoxide molar ratio of about 2:1. Oxygen for the gasifier is also provided by the high-temperature electrolysis process. Results of the analysis predict 90.5% carbon utilization with a syngas production efficiency (defined as the ratio of the heating value of the produced syngas to the sum of the heating value of the coal plus the high-temperature reactor heat input) of 66.1% at a gasifier temperature of 1866 K for the high-moisture-content lignite coal considered. Usage of lower moisture coals such as bituminous can yield carbon utilization approaching 100% and 70% syngas production efficiency

  10. System Analysis of Nuclear-Assisted Syngas Production from Coal

    International Nuclear Information System (INIS)

    Harvego, E.A.; McKellar, M.G.; O'Brien, J.E.

    2009-01-01

    A system analysis has been performed to assess the efficiency and carbon utilization of a nuclear-assisted coal gasification process. The nuclear reactor is a high-temperature helium-cooled reactor that is used primarily to provide power for hydrogen production via high temperature electrolysis. The supplemental hydrogen is mixed with the outlet stream from an oxygen-blown coal gasifier to produce a hydrogen-rich gas mixture, allowing most of the carbon dioxide to be converted into carbon monoxide, with enough excess hydrogen to produce a syngas product stream with a hydrogen/carbon monoxide molar ratio of about 2:1. Oxygen for the gasifier is also provided by the high-temperature electrolysis process. Results of the analysis predict 90.5% carbon utilization with a syngas production efficiency (defined as the ratio of the heating value of the produced syngas to the sum of the heating value of the coal plus the high-temperature reactor heat input) of 64.4% at a gasifier temperature of 1866 K for the high-moisture-content lignite coal considered. Usage of lower moisture coals such as bituminous can yield carbon utilization approaching 100% and 70% syngas production efficiency.

  11. Report on the fiscal 1997 result of the Japan-China joint demonstration project of environment-friendly cost utilization systems. Low grade coal combustion system (Zhejiang Huba Co. Ltd.); 1997 nendo seika hokokusho kankyo chowagata sekitan riyo system kyodo jissho jigyo. Teihin`itan nensho system ni kakawaru jissho jigyo

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    This demonstration project aims at reduction of pollutants derived from coal utilization in China by demonstration of CCT to be diffused in China and preparation of diffusion bases, and stable import of energy for Japan. A low-grade coal combustion system burns low-grade coal by use of an internal circulating fluidized bed boiler which burns coal by uniform mixing and circulation of coal and some particles such as limestone and ash. Main specifications of the boiler are as follows: evaporation rate of 35t/h, steam pressure of 3.82MPa (39.0kg/cm{sup 2}), steam temperature of 450degC, water supply temperature of 150degC, internal circulating fluidized bed combustion type, boiler efficiency of 75%, and desulfurization rate of 90% or more. Main properties of low-grade coal are as follows: calorific value of 1830kcal/kg, coal size of 10mm or less, total water content of 2.5%, total S content of 2.7%, ash content of 67.7%, limestone purity of 50% or more, and stone size of 3mm or less. The results in fiscal 1997 are as follows: field survey and arrangement, basic planning and design, design, production and procurement of equipment, training, and dispatch of field supervisor. 26 figs., 3 tabs.

  12. Firing a sub-bituminous coal in pulverized coal boilers configured for bituminous coals

    Energy Technology Data Exchange (ETDEWEB)

    N. Spitz; R. Saveliev; M. Perelman; E. Korytni; B. Chudnovsky; A. Talanker; E. Bar-Ziv [Ben-Gurion University of the Negev, Beer-Sheva (Israel)

    2008-07-15

    It is important to adapt utility boilers to sub-bituminous coals to take advantage of their environmental benefits while limiting operation risks. We discuss the performance impact that Adaro, an Indonesian sub-bituminous coal with high moisture content, has on opposite-wall and tangentially-fired utility boilers which were designed for bituminous coals. Numerical simulations were made with GLACIER, a computational-fluid-dynamic code, to depict combustion behavior. The predictions were verified with full-scale test results. For analysis of the operational parameters for firing Adaro coal in both boilers, we used EXPERT system, an on-line supervision system developed by Israel Electric Corporation. It was concluded that firing Adaro coal, compared to a typical bituminous coal, lowers NOx and SO{sub 2} emissions, lowers LOI content and improves fouling behavior but can cause load limitation which impacts flexible operation. 21 refs., 7 figs., 3 tabs.

  13. Advanced Acid Gas Separation Technology for the Utilization of Low Rank Coals

    Energy Technology Data Exchange (ETDEWEB)

    Kloosterman, Jeff

    2012-12-31

    Air Products has developed a potentially ground-breaking technology – Sour Pressure Swing Adsorption (PSA) – to replace the solvent-based acid gas removal (AGR) systems currently employed to separate sulfur containing species, along with CO{sub 2} and other impurities, from gasifier syngas streams. The Sour PSA technology is based on adsorption processes that utilize pressure swing or temperature swing regeneration methods. Sour PSA technology has already been shown with higher rank coals to provide a significant reduction in the cost of CO{sub 2} capture for power generation, which should translate to a reduction in cost of electricity (COE), compared to baseline CO{sub 2} capture plant design. The objective of this project is to test the performance and capability of the adsorbents in handling tar and other impurities using a gaseous mixture generated from the gasification of lower rank, lignite coal. The results of this testing are used to generate a high-level pilot process design, and to prepare a techno-economic assessment evaluating the applicability of the technology to plants utilizing these coals.

  14. Synergistic Effect of Co-utilization of Coal and Biomass Char: An Overview

    Science.gov (United States)

    Paiman, M. E. S.; Hamzah, N. S.; Idris, S. S.; Rahman, N. A.; Ismail, K.

    2018-05-01

    Global concerns on impact of greenhouse gases emission, mostly released from coal-fired power plant, and the depletion of fossil fuel particularly coal, has led the production of electricity from alternatives resources such as co-utilization technologies. Previous studies proved that the co-utilization of coal and biomass/biomass chars has significantly reduced the emission of greenhouse gases either during the pyrolysis, combustion or gasification process in laboratories, pilots as well as in the industrial scales. Interestingly, most of the studies reported the presence of synergistic effect during the co-utilization processes particularly between coal and biomass char while some are not. Biomass chars were found to have porous and highly disorder carbon structure and belong to the class of most reactive carbon material, resulting to be more reactive than those hard coal and lignite. Up to date, microwave assisted pyrolysis is one of the best and latest techniques employed to produce better quality of biomass chars and it is also reduce the processing cost. Lot of works has been done regarding on the existence of synergistic effects during its co-utilization. However, the knowledge is limited to thermal and product characteristics so far. Even so, the specific reasons behind its existence are yet to understand well. Therefore, in this paper, the emphasis will be given on the synergistic effects on emission characteristics of co-utilization of coal and biomass chars so that it can be apply in energy-based industries to help in reduction of the greenhouse gases emission.

  15. Environmental impacts of energy utilization

    International Nuclear Information System (INIS)

    Prado, C.P.C. do; Orsini, C.M.Q.; Rodrigues, D.; Barolli, E.; Nogueira, F.R.; Bosco, F.A.R.; Tabacniks, M.H.; Artaxo Netto, P.E.

    1981-04-01

    A survey is done of the available data on the physical environmental impacts in Brazil, derived from energetic systems such as: petroleum, hydroelectricity, firewood, coal, ethanol, methanol and hydrogen. A critical evalution of these data is done with respect to the preservation of the environment. The necessity of studying the environmental impact of the utilization of ethanol, nuclear fuels and coal is stressed. (M.A.) [pt

  16. Co-firing a pressurized fluidized-bed combustion system with coal and refuse derived fuels and/or sludges. Task 16

    Energy Technology Data Exchange (ETDEWEB)

    DeLallo, M.; Zaharchuk, R.

    1994-01-01

    The co-firing of waste materials with coal in utility scale power plants has emerged as an effective approach to produce energy and manage municipal waste. Leading this approach, the atmospheric fluidized-bed combustor (AFBC) has demonstrated its commercial acceptance in the utility market as a reliable source of power burning a variety of waste and alternative fuels. The fluidized bed, with its stability of combustion, reduces the amount of thermochemical transients and provides for easier process control. The application of pressurized fluidized-bed combustor (PFBC) technology, although relatively new, can provide significant enhancements to the efficient production of electricity while maintaining the waste management benefits of AFBC. A study was undertaken to investigate the technical and economic feasibility of co-firing a PFBC with coal and municipal and industrial wastes. Focus was placed on the production of electricity and the efficient disposal of wastes for application in central power station and distributed locations. Wastes considered for co-firing include municipal solid waste (MSW), tire-derived fuel (TDF), sewage sludge, and industrial de-inking sludge. Issues concerning waste material preparation and feed, PFBC operation, plant emissions, and regulations are addressed. This paper describes the results of this investigation, presents conclusions on the key issues, and provides recommendations for further evaluation.

  17. Sixth annual coal preparation, utilization, and environmental control contractors conference

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    A conference was held on coal preparation, utilization and environmental control. Topics included: combustion of fuel slurries; combustor performance; desulfurization chemically and by biodegradation; coal cleaning; pollution control of sulfur oxides and nitrogen oxides; particulate control; and flue gas desulfurization. Individual projects are processed separately for the databases. (CBS).

  18. Alkaloid-derived molecules in low rank Argonne premium coals.

    Energy Technology Data Exchange (ETDEWEB)

    Winans, R. E.; Tomczyk, N. A.; Hunt, J. E.

    2000-11-30

    Molecules that are probably derived from alkaloids have been found in the extracts of the subbituminous and lignite Argonne Premium Coals. High resolution mass spectrometry (HRMS) and liquid chromatography mass spectrometry (LCMS) have been used to characterize pyridine and supercritical extracts. The supercritical extraction used an approach that has been successful for extracting alkaloids from natural products. The first indication that there might be these natural products in coals was the large number of molecules found containing multiple nitrogen and oxygen heteroatoms. These molecules are much less abundant in bituminous coals and absent in the higher rank coals.

  19. 6th Conference on Coal Utilization Technology; Dai 6 kai sekitan riyo gijutsu kaigi koenshu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-01

    The paper compiled the papers presented in the 6th Conference on Coal Utilization Technology held in September 1996. With relation to the fluidized bed boiler, reported were Field operation test of Wakamatsu PFBC combined cycle power plant and Development of pressurized internally circulating fluidized bed combustion technology. Regarding the coal reformation, Development of advanced coal cleaning process, Coal preparation and coal cleaning in the dry process, etc. Concerning the combustion technology, Study of the O2/CO2 combustion technology, Development of pressurized coal partial combustor, etc. About the CWM, Development of low rank coals upgrading and their CWM producing technology, Technique of CWM distribution system, etc. Relating to the coal ash, Engineering characteristics of the improved soil by deep mixing method using coal ash, Employment of fluidized bed ash as a basecourse material, On-site verification trials using fly ash for reclamation behind bulkheads, Water permeabilities of pulverized fuel ash, Separation of unburned carbon from coal fly ash through froth flotation, Practical use technology of coal ash (POZ-O-TEC), etc

  20. Evaluation of a Compact Coaxial Underground Coal Gasification System Inside an Artificial Coal Seam

    Directory of Open Access Journals (Sweden)

    Fa-qiang Su

    2018-04-01

    Full Text Available The Underground Coal Gasification (UCG system is a clean technology for obtaining energy from coal. The coaxial UCG system is supposed to be compact and flexible in order to adapt to complicated geological conditions caused by the existence of faults and folds in the ground. In this study, the application of a coaxial UCG system with a horizontal well is discussed, by means of an ex situ model UCG experiment in a large-scale simulated coal seam with dimensions of 550 × 600 × 2740 mm. A horizontal well with a 45-mm diameter and a 2600-mm length was used as an injection/production well. During the experiment, changes in temperature field and product gas compositions were observed when changing the outlet position of the injection pipe. It was found that the UCG reactor is unstable and expands continuously due to fracturing activity caused by coal crack initiation and extension under the influence of thermal stress. Therefore, acoustic emission (AE is considered an effective tool to monitor fracturing activities and visualize the gasification zone of coal. The results gathered from monitoring of AEs agree with the measured data of temperatures; the source location of AE was detected around the region where temperature increased. The average calorific value of the produced gas was 6.85 MJ/Nm3, and the gasification efficiency, defined as the conversion efficiency of the gasified coal to syngas, was 65.43%, in the whole experimental process. The study results suggest that the recovered coal energy from a coaxial UCG system is comparable to that of a conventional UCG system. Therefore, a coaxial UCG system may be a feasible option to utilize abandoned underground coal resources without mining.

  1. Mercury in coal and the impact of coal quality on mercury emissions from combustion systems

    International Nuclear Information System (INIS)

    Kolker, Allan; Senior, Constance L.; Quick, Jeffrey C.

    2006-01-01

    The proportion of Hg in coal feedstock that is emitted by stack gases of utility power stations is a complex function of coal chemistry and properties, combustion conditions, and the positioning and type of air pollution control devices employed. Mercury in bituminous coal is found primarily within Fe-sulfides, whereas lower rank coal tends to have a greater proportion of organic-bound Hg. Preparation of bituminous coal to reduce S generally reduces input Hg relative to in-ground concentrations, but the amount of this reduction varies according to the fraction of Hg in sulfides and the efficiency of sulfide removal. The mode of occurrence of Hg in coal does not directly affect the speciation of Hg in the combustion flue gas. However, other constituents in the coal, notably Cl and S, and the combustion characteristics of the coal, influence the species of Hg that are formed in the flue gas and enter air pollution control devices. The formation of gaseous oxidized Hg or particulate-bound Hg occurs post-combustion; these forms of Hg can be in part captured in the air pollution control devices that exist on coal-fired boilers, without modification. For a given coal type, the capture efficiency of Hg by pollution control systems varies according to type of device and the conditions of its deployment. For bituminous coal, on average, more than 60% of Hg in flue gas is captured by fabric filter (FF) and flue-gas desulfurization (FGD) systems. Key variables affecting performance for Hg control include Cl and S content of the coal, the positioning (hot side vs. cold side) of the system, and the amount of unburned C in coal ash. Knowledge of coal quality parameters and their effect on the performance of air pollution control devices allows optimization of Hg capture co-benefit

  2. Ninth annual coal preparation, utilization, and environmental control contractors conference: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    Papers are grouped under the following sessions: compliance technology; high-efficiency preparation; characterization; advanced technologies; alternative fuels; coal utilization; industrial/commercial combustor development; combustion; superclean emission systems; carbon dioxide recovery and reuse; air toxics and fine particulates; air toxics sampling and analysis workshop; and combined poster session. Selected papers have been processed separately for inclusion in the Energy Science and Technology Database.

  3. Eleventh annual coal preparation, utilization, and environmental control contractors conference: Proceedings

    International Nuclear Information System (INIS)

    1995-01-01

    The 75 papers contained in this volume are divided into the following sections: compliance technology; technology base activities; high efficiency preparation; air toxics (especially mercury); air toxics and CO 2 control; superclean emissions; Combustion 2000; advanced research; commercial and industrial combustion systems; alternative fuels; environmental control; and coal utilization. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database

  4. Assessment of an atmospheric fluidized-bed coal-combustion gas-turbine cogeneration system for industrial application

    Energy Technology Data Exchange (ETDEWEB)

    Graves, R. L.; Holcomb, R. S.; Tallackson, J. R.

    1979-10-01

    This study was initiated to provide information on the future potential industrial market for a cogeneration system consisting of a fluidized-bed coal combustor coupled to a gas-turbine (Brayton cycle) power system that uses air as the working fluid. In assessing the potential applications for the system, the process heat energy consumption by industry is identified, with special detail included on the six most energy-intensive industries. The potential impact on the nation's oil and natural gas consumption that would result from wide-spread utilization of coal for process heat is also estimated. The fraction of industrial process heat that the system could feasibly satisfy from a thermodynamic viewpoint is estimated, and the performance (potential fuel efficiency and heat/power ratio) of the atmospheric fluidized-bed gas-turbine system is calculated. Also treated are several specific case studies of industries in which the system could be incorporated. Major parameters are specified, and flow sheets are derived for systems that would satisfy the heat and power requirements of the process or industry. The overall fuel utilization efficiency, thermal power rating, and potential number of installations are specified for these case studies. The findings of the study indicate that there is a sizable potential market for the system, with over 1000 possible installations disclosed after reviewing only 8 specific industries from 6 major Standard Industrial Classification (SIC) groups. The potential displacement of oil and gas by coal in process heating is shown to be about 1.60 m/sup 3//sec (870,000 bbl/d) of oil and 4590 m/sup 3//sec (14.0 billion ft/sup 3//d) of natural gas for all industries combined. Continued development of the fluidized-bed coal combustor and power system is recommended so that this potential may be at least partially realized.

  5. Survey report of FY 1997 on the environmentally acceptable coal utilization system feasibility survey. Dispatch of engineers; 1997 nendo chosa hokokusho. Kankyo chowagata sekitan riyo system kanosei chosa (senmonka haken)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    The purpose of this survey is to improve the coal utilization technology and to contribute to the environmental protection. Through long-term dispatch of experts for the coal utilization technology, coal utilization facilities are surveyed at the sites, advises for coal utilization technology and environmental protection technology are given, and useful information for the cooperation with the partner country are exchanged. In this fiscal year, experts were dispatched to Thailand in addition to China, to conduct cooperative surveys, technical exchanges and seminars with both countries. Experts for desulfurization technology, circulating fluidized bed boilers, effective coal ash utilization technology, and coal preparation technology were dispatched to various places in China. Among various model projects conducted in China, examples of model projects for simplified desulfurizer introduction, circulating fluidized bed boiler introduction, and briquette production facility introduction were presented at seminars held at two cities in China. Experts for briquette production technology and circulating fluidized bed boiler technology were dispatched to Thailand, to conduct cooperative surveys and technical exchanges. 22 figs., 9 tabs.

  6. Study for recovery and utilization of coal mine gas in Russia (Kuznetsk coal basin)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    For the purpose of reducing greenhouse effect gas emissions in line with the Joint Implementation, a study was conducted on recovery/utilization of methane gas emitted from the Chertinskaya coal mine in the Kuznetsk coal basin area. According to the survey, the methane gas emitted from the Chertinskaya coal mine into the atmospheric air is 26 million to 36 million tons on the levels of the annual coal production between 0.7 million and 1 million tons. However, the monthly gas recovery amount and concentration largely fluctuate, and therefore, the use method to cope with this was studied. The study was now under way, and the electric power production using gas engine was regarded as the best. In this project, only the Chertinskaya mine can generate power of 34,721 MWh. In the whole Kuznetsk coal basin, approximately 200 million m{sup 3} of gas is needed to be removed for safety of the mine. The use of this will probably bring energy substitution of about 128,000 tons/year and CO2 reduction of 2.8 million tons/year. (NEDO)

  7. Chromatographic methods and techniques used in studies of coals, their progenitors and coal-derived materials

    Energy Technology Data Exchange (ETDEWEB)

    Zubkova, Valentina [Jan Kochanowski University of Humanities and Sciences, Institute of Chemistry, Kielce (Poland)

    2011-03-15

    The use of chromatography in studies of coals, their progenitors and coal-related products was reviewed. The specificity of the coal structure was discussed. The use of extraction in preparing study samples was discussed paying special attention to the occurrence of undesirable phenomena such as aggregation of coal derivate molecules, resulting from the formation of their dimers and trimers, and degradation of polar solvents at temperatures above 350 C. The following ways of fractionating samples of coal materials were considered: thermal, solvent, column with the use of preparative size exclusive chromatography and preparative thin layer chromatography as well as membrane separation. The use of chromatography coupled with experimental techniques such as mass spectrometry, infrared spectroscopy, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and pyrolysis was analysed. (orig.)

  8. Carbon and oxygen isotopic composition of coal and carbon dioxide derived from laboratory coal combustion: A preliminary study

    Science.gov (United States)

    Warwick, Peter D.; Ruppert, Leslie F.

    2016-01-01

    The concentration of carbon dioxide (CO2) in the atmosphere has dramatically increased from the start of the industrial revolution in the mid-1700s to present levels exceeding 400 ppm. Carbon dioxide derived from fossil fuel combustion is a greenhouse gas and a major contributor to on-going climate change. Carbon and oxygen stable isotope geochemistry is a useful tool to help model and predict the contributions of anthropogenic sources of CO2 in the global carbon cycle. Surprisingly few studies have addressed the carbon and oxygen isotopic composition of CO2 derived from coal combustion. The goal of this study is to document the relationships between the carbon and oxygen isotope signatures of coal and signatures of the CO2 produced from laboratory coal combustion in atmospheric conditions.Six coal samples were selected that represent various geologic ages (Carboniferous to Tertiary) and coal ranks (lignite to bituminous). Duplicate splits of the six coal samples were ignited and partially combusted in the laboratory at atmospheric conditions. The resulting coal-combustion gases were collected and the molecular composition of the collected gases and isotopic analyses of δ13C of CO2, δ13C of CH4, and δ18O of CO2 were analysed by a commercial laboratory. Splits (~ 1 g) of the un-combusted dried ground coal samples were analyzed for δ13C and δ18O by the U.S. Geological Survey Reston Stable Isotope Laboratory.The major findings of this preliminary work indicate that the isotopic signatures of δ13C (relative to the Vienna Pee Dee Belemnite scale, VPDB) of CO2 resulting from coal combustion are similar to the δ13CVPDB signature of the bulk coal (− 28.46 to − 23.86 ‰) and are not similar to atmospheric δ13CVPDB of CO2 (~ − 8 ‰, see http://www.esrl.noaa.gov/gmd/outreach/isotopes/c13tellsus.html). The δ18O values of bulk coal are strongly correlated to the coal dry ash yields and appear to have little or no influence on the δ18O values of CO2

  9. Integrated report on the toxicological mitigation of coal liquids by hydrotreatment and other processes. [Petroleum and coal-derived products

    Energy Technology Data Exchange (ETDEWEB)

    Guerin, M.R.; Griest, W.H.; Ho, C.H.; Smith, L.H.; Witschi, H.P.

    1986-06-01

    Research here on the toxicological properties of coal-derived liquids focuses on characterizing the refining process and refined products. Principle attention is given to the potential tumorigenicity of coal-derived fuels and to the identification of means to further reduce tumorigenicity should this be found necessary. Hydrotreatment is studied most extensively because it will be almost certainly required to produce commercial products and because it is likely to also greatly reduce tumorigenic activity relative to that of crude coal-liquid feedstocks. This report presents the results of a lifetime C3H mouse skin tumorigenicity assay of an H-Coal series of oils and considers the relationships between tumorigenicity, chemistry, and processing. Lifetime assay results are reported for an H-Coal syncrude mode light oil/heavy oil blend, a low severity hydrotreatment product, a high severity hydrotreatment product, a naphtha reformate, a heating oil, a petroleum-derived reformate, and a petroleum derived heating oil. Data are compared with those for an earlier study of an SRC-II blend and products of its hydrotreatment. Adequate data are presented to allow an independent qualitative assessment of the conclusions while statistical evaluation of the data is being completed. The report also documents the physical and chemical properties of the oils tested. 33 refs., 14 figs., 53 tabs.

  10. Eleventh annual coal preparation, utilization, and environmental control contractors conference: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    The 75 papers contained in this volume are divided into the following sections: compliance technology; technology base activities; high efficiency preparation; air toxics (especially mercury); air toxics and CO{sub 2} control; superclean emissions; Combustion 2000; advanced research; commercial and industrial combustion systems; alternative fuels; environmental control; and coal utilization. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  11. Degradation and stabilization of coal derived liquid. (IV). ; Effect of alcohol on coloration of coal derived light oil. Sekitan ekikayu no anteika. (IV). ; Sekitan ekikayu no chakushoku yokusei ni oyobosu alcohol no tenka koka

    Energy Technology Data Exchange (ETDEWEB)

    Ukegawa, K.; Matsumura, A.; Kondo, T. (National Research Institute for Pollution and Resources, Tsukuba (Japan)); TAhara, N. (Nitto Denko Corp., Osaka (Japan)); Nakamura, E. (New Energy and Industrial Technology Development Organization, Tokyo (Japan)); Niki, E. (The University of Tokyo, Tokyo (Japan). Research Center for ADvanced Science and Technology)

    1990-01-20

    In order to improve the color stability of a coal derived light oil, the effect of hydrotreating and various additives has been studied. The color stability has been evaluated through measuring changes in absorbance by flow-cell spectrophotometer. Following results have been obtained: The color stabilities of hydrotreated coal derived light oils were improved remarkably with increasing hydrotreating temperature and pressure. Mild hydrotreating made the color stability of the coal derived light oil much better than the fuel oil, even though the nitrogen removal was very small. Phenolic compounds additives could not improve the color stability of the coal derived light oil. Alcohol, especially methanol, made the coloration rate of the coal derived light oil small to a great extent, on account of hydrogen bonding between methanol and nitrogen compounds in the fuel oil. 4 refs., 4 figs., 3 tabs.

  12. NOX EMISSION CONTROL OPTIONS FOR COAL-FIRED ELECTRIC UTILITY BOILERS

    Science.gov (United States)

    The paper reviews NOx control options for coal-fired electric utility boilers. (NOTE: Acid Rain NOx regulations, the Ozone Transport Commission's NOx Budget Program, revision of the New Source Performance Standards (NSPS) for NOx emissions from utility sources, and Ozone Transpor...

  13. Adsorption of ultra-low concentration malodorous substances using coal-derived granular activated carbons

    Energy Technology Data Exchange (ETDEWEB)

    Urano, K.; Maeda, T.; Yamashita, H.; Hagio, S.; Arioka, A.

    1986-01-01

    The experimental adsorption is reported of diosmin and 2-methylisoborneol using two types of coal-derived granular activated carbon and one derived from coconut husk. It was discovered that carbons with more pores below 15 angstroms in size gave a higher equilibrium adsorption of malodorous substances at mg/l concentrations. It was also found that the coal-derived materials, which contained more pores larger than 15 angstroms, gave faster adsorption. Given that the coal-derived carbons have a longer service life, it is concluded that they are suitable for use in full-scale adsorption plant where contact times are short. 3 references, 5 figures, 5 tables.

  14. Improvement of hydrodenitrogenation (HDN) in co-refining of coal-derived liquid and petroleum fraction

    Energy Technology Data Exchange (ETDEWEB)

    Machida, M.; Ono, S. [Idemitsu Kosan Co. Ltd., Tokyo (Japan); Hattori, H. [Hokkaido University, Sapporo (Japan). Center for Advanced Research of Energy Technology

    1997-09-01

    The improvement in hydrodenitrogenation (HDN) of coal-derived liquids by co-refining with a petroleum fraction results principally from lowering the nitrogen content of the feedstock (coal-derived liquid) by blending with a nitrogen-free petroleum fraction. Effects of different fractions of coal-derived liquids on HDN and hydrodeoxygenation (HDO) were also examined. The HDN improvement by co-refining could be interpreted in terms of Langmuir-Hinshelwood mechanism. 38 refs., 3 figs., 3 tabs.

  15. Coal utilization in the twenty-first century: How much and for how long?

    International Nuclear Information System (INIS)

    Gluskoter, H.

    1993-01-01

    It is projected that coal usage in the US will increase at approximately the historic rate as electricity consumption increases. Because the life expectancy of powerplants and coal mines is in the tens of years, the electricity to be produced from coal in 2001 will be generated in plants currently on line or under construction, and almost all of the coal consumed will come from existing mines. Coal produces two-thirds of the world's electricity and, on a worldwide basis, will continue to be a major source of energy for the remainder of this century and for some time to come. It is the longer term projections of coal utilization, beyond the next few decades, that remain much more difficult to predict. Fossil fuels are present in the Earth in finite amounts and are not renewable on the human scale of existence. Therefore, a shift to other sources of energy must occur eventually. A doubling of population will create a demand for greatly increased energy production. Historically, a 1% increase in world domestic product has been accompanied by a 1% increase in energy consumption. In most regions of the world, coal could supply a major portion of the increased energy and could do so without requiring major technological advances in coal mining and coal utilization technologies. The large, extensive, and accessible resources of coal, the ability to utilize it, and the demand pressures from an expanding population all bode well for the future of coal. However, there are also factors that may contribute to limiting the future use of coal. They include environmental concerns (acid rain, air toxics, and global warming) and the rate at which nonfossil-fuel sources (perhaps solar and nuclear) are developed. Although many of the decisions that will influence the future use of coal will be based on economic and environmental considerations, it is more than likely that politics will also play an important role in all of those decisions

  16. Economic comparison of clean coal generating technologies with natural gas-combined cycle systems

    International Nuclear Information System (INIS)

    Sebesta, J.J.; Hoskins, W.W.

    1990-01-01

    This paper reports that there are four combustion technologies upon which U.S. electric utilities are expected to rely for the majority of their future power generating needs. These technologies are pulverized coal- fired combustion (PC); coal-fired fluidized bed combustion (AFBC); coal gasification, combined cycle systems (CGCC); and natural gas-fired combined cycle systems (NGCC). The engineering and economic parameters which affect the choice of a technology include capital costs, operating and maintenance costs, fuel costs, construction schedule, process risk, environmental and site impacts, fuel efficiency and flexibility, plant availability, capacity factors, timing of startup, and the importance of utility economic and financial factors

  17. Basic study for promoting joint implementation and others. Feasibility study on the recovery and utilization of coal mine methane of an Upper Silesian Coal Field

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Having the Mining Industry Restructuring Public Corporation located in the city of Katowice, Poland as the counterpart, a feasibility study has been executed on a project to utilize coal bed gas for power generation. Selected for the study are the 'Budryk coal mine' owned by KWK 'Budryk' Coal Company and the 'Pniowek coal mine' owned by Jastrzebie Coal Company. Since the Pniowek coal mine can utilize the whole quantity of recovered methane by 2001, the Budryk coal mine was selected as the object of the project. As a result of the trial calculation on the economy when the new gas power plant is installed in the Budryk coal mine, the energy substitution effect was found to equal to a power amount at transmission terminal of 6 MWh/year. Furthermore, when proliferation effect is taken into consideration, an enormous effect can be expected if new coal mines are developed and the existing cola mines will go further deeper, because the Silesian coal mine presently has the coal resource quantity of 57 billion tons and the annual gas discharge quantity of 750 million m{sup 3}. Therefore, if the technologies to recover, manage and utilize the gas are established at the Budryk coal mine, a large effect leading to an aspiration would be expected under the current situation of the structural reorganization under which the Polish coal companies are placed. (NEDO)

  18. ULTRA LOW NOx INTEGRATED SYSTEM FOR NOx EMISSION CONTROL FROM COAL-FIRED BOILERS

    Energy Technology Data Exchange (ETDEWEB)

    Galen H. Richards; Charles Q. Maney; Richard W. Borio; Robert D. Lewis

    2002-12-30

    ALSTOM Power Inc.'s Power Plant Laboratories, working in concert with ALSTOM Power's Performance Projects Group, has teamed with the U.S. Department of Energy's National Energy Technology Laboratory (DOE NETL) to conduct a comprehensive study to develop/evaluate low-cost, efficient NOx control technologies for retrofit to pulverized coal fired utility boilers. The objective of this project was to develop retrofit NOx control technology to achieve less than 0.15 lb/MMBtu NOx (for bituminous coals) and 0.10 lb/MMBtu NOx (for subbituminous coals) from existing pulverized coal fired utility boilers at a cost which is at least 25% less than SCR technology. Efficient control of NOx is seen as an important, enabling step in keeping coal as a viable part of the national energy mix in this century, and beyond. Presently 57% of U.S. electrical generation is coal based, and the Energy Information Agency projects that coal will maintain a lead in U.S. power generation over all other fuel sources for decades (EIA 1998 Energy Forecast). Yet, coal-based power is being strongly challenged by society's ever-increasing desire for an improved environment and the resultant improvement in health and safety. The needs of the electric-utility industry are to improve environmental performance, while simultaneously improving overall plant economics. This means that emissions control technology is needed with very low capital and operating costs. This project has responded to the industry's need for low NOx emissions by evaluating ideas that can be adapted to present pulverized coal fired systems, be they conventional or low NOx firing systems. The TFS 2000{trademark} firing system has been the ALSTOM Power Inc. commercial offering producing the lowest NOx emission levels. In this project, the TFS 2000{trademark} firing system served as a basis for comparison to other low NOx systems evaluated and was the foundation upon which refinements were made to further

  19. Reducing NOx Emissions for a 600 MWe Down-Fired Pulverized-Coal Utility Boiler by Applying a Novel Combustion System.

    Science.gov (United States)

    Ma, Lun; Fang, Qingyan; Lv, Dangzhen; Zhang, Cheng; Chen, Yiping; Chen, Gang; Duan, Xuenong; Wang, Xihuan

    2015-11-03

    A novel combustion system was applied to a 600 MWe Foster Wheeler (FW) down-fired pulverized-coal utility boiler to solve high NOx emissions, without causing an obvious increase in the carbon content of fly ash. The unit included moving fuel-lean nozzles from the arches to the front/rear walls and rearranging staged air as well as introducing separated overfire air (SOFA). Numerical simulations were carried out under the original and novel combustion systems to evaluate the performance of combustion and NOx emissions in the furnace. The simulated results were found to be in good agreement with the in situ measurements. The novel combustion system enlarged the recirculation zones below the arches, thereby strengthening the combustion stability considerably. The coal/air downward penetration depth was markedly extended, and the pulverized-coal travel path in the lower furnace significantly increased, which contributed to the burnout degree. The introduction of SOFA resulted in a low-oxygen and strong-reducing atmosphere in the lower furnace region to reduce NOx emissions evidently. The industrial measurements showed that NOx emissions at full load decreased significantly by 50%, from 1501 mg/m3 (O2 at 6%) to 751 mg/m3 (O2 at 6%). The carbon content in the fly ash increased only slightly, from 4.13 to 4.30%.

  20. Materials for coal conversion and utilization

    Energy Technology Data Exchange (ETDEWEB)

    None,

    1981-01-01

    The Sixth annual conference on materials for coal conversion and utilization was held October 13-15, 1981 at the National Bureau of Standards Gaithersburg, Maryland. It was sponsored by the US Department of Energy, the Electric Power Research Institute, the Gas Research Institute and the National Bureau of Standards. Fifty-eight papers from the proceedings have been entered individually into EDB and ERA; four papers had been entered previously from other sources. (LTN)

  1. Enrichment of reactive macerals in coal: its characterization and utilization in coke making

    Science.gov (United States)

    Nag, Debjani; Kopparthi, P.; Dash, P. S.; Saxena, V. K.; Chandra, S.

    2018-01-01

    Macerals in coal are of different types: reactive and inert. These macerals are differ in their physical and chemical properties. Column flotation method has been used to separate the reactive macerals in a non-coking coal. The enriched coal is then characterized in order to understand the changes in the coking potential by different techniques. It is then used in making of metallurgical coke by proper blending with other coals. Enriched coal enhance the properties of metallurgical coke. This shows a path of utilization of non-coking coal in metallurgical coke making.

  2. Characterization of the coal derived humic acids from Mukah, Sarawak as soil conditioner

    Directory of Open Access Journals (Sweden)

    Fong Sim Siong

    2006-01-01

    Full Text Available In Malaysia, abundant coal resources were found in Sarawak and Sabah. The utilization of coal resources, to date, is emphasized on the energy productions. The non-energy utilization as soil conditioner is unexplored. Therefore, this study attempted to characterize the coal humic acids extracted from Mukah coal and to evaluate its properties as soil conditioner. The coal humic acids from the regenerated sample were also assessed. The results revealed that different extractants and concentrations influenced the properties of humic acids. The extraction with KOH at 0.5 mol L-1 produced humic acids with low ash content and high acidic functional groups, which are substantial as soil conditioner. However, the yield was low. Regeneration of coal sample with 10% nitric acids improved the yield to an average of 83.45%. The acidic functional groups of nitrohumic acids were improved with the ash content remained at a low level.

  3. Coal, energy and environment: Proceedings

    International Nuclear Information System (INIS)

    Mead, J.S.; Hawse, M.L.

    1994-01-01

    This international conference held in Czechoslovakia was a bold attempt to establish working relationships among scientists and engineers from three world areas: Taiwan, the United States of America, and Czechoslovakia. The magic words unifying this gathering were ''clean coal utilization.'' For the ten nationalities represented, the common elements were the clean use of coal as a domestic fuel and as a source of carbon, the efficient and clean use of coal in power generation, and other uses of coal in environmentally acceptable processes. These three world areas have serious environmental problems, differing in extent and nature, but sufficiently close to create a working community for discussions. Beyond this, Czechoslovakia is emerging from the isolation imposed by control from Moscow. The need for each of these nations to meet and know one another was imperative. The environmental problems in Czechoslovakia are extensive and deep-seated. These proceedings contain 63 papers grouped into the following sections: The research university and its relationship with accrediting associations, government and private industry; Recent advances in coal utilization research; New methods of mining and reclamation; Coal-derived waste disposal and utilization; New applications of coal and environmental technologies; Mineral and trace elements in coal; Human and environmental impacts of coal production and utilization in the Silesian/Moravian region; and The interrelationships between fossil energy use and environmental objectives. Most papers have been processed separately for inclusion on the data base

  4. Basic study for promoting joint implementation and others. Feasibility study on the recovery and utilization of coal mine methane of an Upper Silesian Coal Field

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Having the Mining Industry Restructuring Public Corporation located in the city of Katowice, Poland as the counterpart, a feasibility study has been executed on a project to utilize coal bed gas for power generation. Selected for the study are the 'Budryk coal mine' owned by KWK 'Budryk' Coal Company and the 'Pniowek coal mine' owned by Jastrzebie Coal Company. Since the Pniowek coal mine can utilize the whole quantity of recovered methane by 2001, the Budryk coal mine was selected as the object of the project. As a result of the trial calculation on the economy when the new gas power plant is installed in the Budryk coal mine, the energy substitution effect was found to equal to a power amount at transmission terminal of 6 MWh/year. Furthermore, when proliferation effect is taken into consideration, an enormous effect can be expected if new coal mines are developed and the existing cola mines will go further deeper, because the Silesian coal mine presently has the coal resource quantity of 57 billion tons and the annual gas discharge quantity of 750 million m{sup 3}. Therefore, if the technologies to recover, manage and utilize the gas are established at the Budryk coal mine, a large effect leading to an aspiration would be expected under the current situation of the structural reorganization under which the Polish coal companies are placed. (NEDO)

  5. National coal utilization assessment. An integrated assessment of increased coal use in the Midwest: impacts and constraints

    Energy Technology Data Exchange (ETDEWEB)

    Hoover, L. John

    1977-10-01

    This study was performed as a part of the Argonne National Laboratory Regional Studies program, which is sponsored by the Department of Energy. The purpose is to assess the impacts and consequences associated with alternative energy options on a regional basis, and to identify and analyze alternative mitigation and solution strategies for increasing the acceptability of these options. The National Coal Utilization Assessment is being conducted as a part of the Regional Studies Program. This particular study is focusing on impacts and constraints on increased coal utilization. In addition, a major focal point for the study is the identification and analysis of alternative solution strategies applicable to these constraints and problems.

  6. Innovative clean coal technology (ICCT): demonstration of selective catalytic reduction (SCR) technology for the control of nitrogen oxide (NOx) emission from high-sulfur, coal-fired boilers - economic evaluation of commercial-scale SCR applications for utility boilers

    International Nuclear Information System (INIS)

    Healy, E.C.; Maxwell, J.D.; Hinton, W.S.

    1996-09-01

    This report presents the results of an economic evaluation produced as part of the Innovative Clean Coal Technology project, which demonstrated selective catalytic reduction (SCR) technology for reduction of NO x emissions from utility boilers burning U.S. high-sulfur coal. The document includes a commercial-scale capital and O ampersand M cost evaluation of SCR technology applied to a new facility, coal-fired boiler utilizing high-sulfur U.S. coal. The base case presented herein determines the total capital requirement, fixed and variable operating costs, and levelized costs for a new 250-MW pulverized coal utility boiler operating with a 60-percent NO x removal. Sensitivity evaluations are included to demonstrate the variation in cost due to changes in process variables and assumptions. This report also presents the results of a study completed by SCS to determine the cost and technical feasibility of retrofitting SCR technology to selected coal-fired generating units within the Southern electric system

  7. Research report of FY 1997 on the environmentally acceptable coal utilization system feasibility survey. Clean coal technology model project seminar held in Thailand; 1997 nendo seika hokokusho. Kankyo chowagata sekitan riyo system kanosei chosa (Tai ni okeru clean coal technology model jigyo seminar no kaisai)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-02-01

    To reduce SOx with coal utilization, the desulfurization seminar diffusing the demonstration project of simplified desulfurizer introduction was held at the site in Thailand. The purpose is to reduce the environmental pollutants and contribute to the effective utilization of energy with coal utilization in Thailand. Invitation letters were sent to users of coal and heavy oil boilers through the Department of Factories, Ministry of Industry, Thailand, to call participation in the seminar. Inspection of the desulfurizer introduced in the factory of Thai Union Paper Public was included in the seminar for diffusing the project. The inspection site is in the demonstration project site of simplified desulfurizer introduction. There were a lot of participants from Thai users and from Japan. The seminar included the presentations from NEDO, JETRO, FTI, and MOSTE, introduction of general technology for processes of ENAA desulfurizer, introduction of demonstration unit plan by IHI, and introduction of operation of demonstration unit by TUP. 31 figs., 6 tabs.

  8. JV Task 126 - Mercury Control Technologies for Electric Utilities Burning Bituminous Coal

    Energy Technology Data Exchange (ETDEWEB)

    Jason Laumb; John Kay; Michael Jones; Brandon Pavlish; Nicholas Lentz; Donald McCollor; Kevin Galbreath

    2009-03-29

    The EERC developed an applied research consortium project to test cost-effective mercury (Hg) control technologies for utilities burning bituminous coals. The project goal was to test innovative Hg control technologies that have the potential to reduce Hg emissions from bituminous coal-fired power plants by {ge}90% at costs of one-half to three-quarters of current estimates for activated carbon injection (ACI). Hg control technology evaluations were performed using the EERC's combustion test facility (CTF). The CTF was fired on pulverized bituminous coals at 550,000 Btu/hr (580 MJ/hr). The CTF was configured with the following air pollution control devices (APCDs): selective catalytic reduction (SCR) unit, electrostatic precipitator (ESP), and wet flue gas desulfurization system (WFDS). The Hg control technologies investigated as part of this project included ACI (three Norit Americas, Inc., and eleven Envergex sorbents), elemental mercury (Hg{sup 0}) oxidation catalysts (i.e., the noble metals in Hitachi Zosen, Cormetech, and Hitachi SCR catalysts), sorbent enhancement additives (SEAs) (a proprietary EERC additive, trona, and limestone), and blending with a Powder River Basin (PRB) subbituminous coal. These Hg control technologies were evaluated separately, and many were also tested in combination.

  9. Effects of coal-derived trace species on performance of molten carbonate fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    1992-05-01

    The Carbonate Fuel Cell is a very promising option for highly efficient generation of electricity from many fuels. If coal-gas is to be used, the interactions of coal-derived impurities on various fuel cell components need to be understood. Thus the effects on Carbonate Fuel Cell performance due to ten different coal-derived contaminants viz., NH{sub 3}, H{sub 2}S, HC{ell}, H{sub 2}Se, AsH{sub 3}, Zn, Pb, Cd, Sn, and Hg, have been studied at Energy Research Corporation. Both experimental and theoretical evaluations were performed, which have led to mechanistic insights and initial estimation of qualitative tolerance levels for each species individually and in combination with other species. The focus of this study was to investigate possible coal-gas contaminant effects on the anode side of the Carbonate Fuel Cell, using both out-of-cell thermogravimetric analysis by isothermal TGA, and fuel cell testing in bench-scale cells. Separate experiments detailing performance decay in these cells with high levels of ammonia contamination (1 vol %) and with trace levels of Cd, Hg, and Sn, have indicated that, on the whole, these elements do not affect carbonate fuel cell performance. However, some performance decay may result when a number of the other six species are present, singly or simultaneously, as contaminants in fuel gas. In all cases, tolerance levels have been estimated for each of the 10 species and preliminary models have been developed for six of them. At this stage the models are limited to isothermal, benchscale (300 cm{sup 2} size) single cells. The information obtained is expected to assist in the development of coal-gas cleanup systems, while the contaminant performance effects data will provide useful basic information for modeling fuel cell endurance in conjunction with integrated gasifier/fuel-cell systems (IGFC).

  10. Fiscal 1999 report on results of joint demonstrative project for environmentally benign coal utilization system. Demonstrative project concerning coal preparation technology (China); 1999 nendo kankyo chowagata sekitan riyo system kyodo jissho jigyo seika hokokusho. Sentan gijutsu ni kakawaru jissho jigyo (Chugoku)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    This paper describes the demonstrative project for coal preparation technology, as a part of the measures against environmental pollution due to the structuring of demonstration and dissemination basis for clean coal technologies in China, The results for fiscal 1999 is reported. In the utilization of coal in China, a problem of urgency is the highly efficient selection and removal of sulfur contents in raw coal. Coal production in Chongquing City is yearly 30 million tons, of which 90% contains sulfur contents of 3% or higher. At Jinjia Colliery of Panjiang Coal and Electric Co. Ltd., Guizhou Province, a site for the present project, a number of coal seams are unsuitable for single utilization because of high sulfur contents. The coal preparation technologies to be introduced are expected to improve coal preparation efficiency and desulfurization ratio in terms of both the washability of raw coal and the accuracy of the coal washer. This is the third year of the project, with the following activities performed, namely, research/design, manufacturing/procurement of equipment, design for construction work, training of operators or the like, and documentation. The manufacturing and procurement are for such equipment as vacuum disk filter with accessories, waste water thickener, pressure filter for tailings with accessories, flocculant pump/piping, slurry tank/pump, high-shear mixer with accessories, and electric instrumentation. All the equipment arrived at the site in January, 2001. (NEDO)

  11. Report on investigations in fiscal 2000 on the projects to support introduction of environment friendly coal utilization system. Green helmet project for briquette production plant - Mae Moh coal mine, Thailand; 2000 nendo kankyo chowagata sekitan riyo system donyu shien jigyo chosa hokokusho. Briquette seizo setsubi ni kakawaru green helmet jigyo (Thai koku Mae Moh tanko)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-06-01

    This Green Helmet Project is intended to suppress generation of environment polluting substances in association with coal utilization in Thailand by demonstrating and improving the proliferation infrastructure for the clean coal technology to be used widely in Thailand. The project is also intended to serve for stabilized assurance of energies for Japan. The demonstration project related to briquette manufacturing facilities executed as one of the 'Projects to support introduction of environment friendly coal utilization system' is intended to manufacture at low cost a briquette which is low in odor, free of smoke, and suppressed largely of sulfur oxide generation. The briquette is made by adding clayish minerals, sulfur, a fixing agent and a binder into brown coal being a low grade coal. The project implements proliferation of the technology to reduce environmental load associated with coal utilization in developing countries according to the situation and needs of the counterpart countries. The present project has performed the site surveys and guidance of operation and maintenance techniques as follow-up works of the demonstration project having been completed by cooperation between Japan and Thailand. It is considered that what had been intended in the beginning has been achieved sufficiently. (NEDO)

  12. Warm Cleanup of Coal-Derived Syngas: Multicontaminant Removal Process Demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Spies, Kurt A.; Rainbolt, James E.; Li, Xiaohong S.; Braunberger, Beau; Li, Liyu; King, David L.; Dagle, Robert A.

    2017-02-15

    Warm cleanup of coal- or biomass-derived syngas requires sorbent and catalytic beds to protect downstream processes and catalysts from fouling. Sulfur is particularly harmful because even parts-per-million amounts are sufficient to poison downstream synthesis catalysts. Zinc oxide (ZnO) is a conventional sorbent for sulfur removal; however, its operational performance using real gasifier-derived syngas and in an integrated warm cleanup process is not well reported. In this paper, we report the optimal temperature for bulk desulfurization to be 450oC, while removal of sulfur to parts-per-billion levels requires a lower temperature of approximately 350oC. Under these conditions, we found that sulfur in the form of both hydrogen sulfide and carbonyl sulfide could be absorbed equally well using ZnO. For long-term operation, sorbent regeneration is desirable to minimize process costs. Over the course of five sulfidation and regeneration cycles, a ZnO bed lost about a third of its initial sulfur capacity, however sorbent capacity stabilized. Here, we also demonstrate, at the bench-scale, a process and materials used for warm cleanup of coal-derived syngas using five operations: 1) Na2CO3 for HCl removal, 2) regenerable ZnO beds for bulk sulfur removal, 3) a second ZnO bed for trace sulfur removal, 4) a Ni-Cu/C sorbent for multi-contaminant inorganic removal, and 5) a Ir-Ni/MgAl2O4 catalyst employed for ammonia decomposition and tar and light hydrocarbon steam reforming. Syngas cleanup was demonstrated through successful long-term performance of a poison-sensitive, Cu-based, water-gas-shift catalyst placed downstream of the cleanup process train. The tar reformer is an important and necessary operation with this particular gasification system; its inclusion was the difference between deactivating the water-gas catalyst with carbon deposition and successful 100-hour testing using 1 LPM of coal-derived syngas.

  13. Organic coal reserves in field and forest systems vs. Avifauna biodiversity

    Directory of Open Access Journals (Sweden)

    Szyszko-Podgórska Katarzyna

    2017-12-01

    Full Text Available The objective of this work was to determine the occurrence of birds depending on the use of the area and the content of organic coal in field-and-forest systems. The research demonstrated a great diversity of bird species and great differences in the content of organic coal in individual areas. According to the conducted analyses, human economic activity can influence the content of organic coal and, therefore, it also influences the occurrence of specific bird species. In connection with the fact that the entire area covered with the research has been modelled by humans, the content of organic coal, the composition of bird species and their functioning in spatial systems are derivatives of such an activity.

  14. Upgrading including heteroatom removal from Victorian brown coal-derived liquids

    Energy Technology Data Exchange (ETDEWEB)

    Larkins, F.P.; Youings, J.C.; Jackson, W.R.; Park, D. (University of Tasmania, Hobart, Tasmania (Australia))

    1989-10-01

    It has been shown using model compounds that the hydrodeoxygenation performance of a catalyst is severely inhibited by the presence of nitrogen-containing compounds under conditions of moderate reaction severity. For a low molecular weight coal-derived liquid commercial catalysts were effective for HDO and HDN at 400{degree}C, 10 MPa H{sub 2} for 30 min reaction time. For a coal-derived liquid high in asphaltene commercial catalysts and others prepared and tested in this study were ineffective. Alternative catalysts and hydrotreating conditions of greater severity will be required for such materials to effect acceptable heteroatom removal. 3 refs., 2 figs., 2 tabs.

  15. Clean coal technologies

    International Nuclear Information System (INIS)

    Aslanyan, G.S.

    1993-01-01

    According to the World Energy Council (WEC), at the beginning of the next century three main energy sources - coal, nuclear power and oil will have equal share in the world's total energy supply. This forecast is also valid for the USSR which possesses more than 40% of the world's coal resources and continuously increases its coal production (more than 700 million tons of coal are processed annually in the USSR). The stringent environmental regulations, coupled with the tendency to increase the use of coal are the reasons for developing different concepts for clean coal utilization. In this paper, the potential efficiency and environmental performance of different clean coal production cycles are considered, including technologies for coal clean-up at the pre-combustion stage, advanced clean combustion methods and flue gas cleaning systems. Integrated systems, such as combined gas-steam cycle and the pressurized fluidized bed boiler combined cycle, are also discussed. The Soviet National R and D program is studying new methods for coal utilization with high environmental performance. In this context, some basic research activities in the field of clean coal technology in the USSR are considered. Development of an efficient vortex combustor, a pressurized fluidized bed gasifier, advanced gas cleaning methods based on E-beam irradiation and plasma discharge, as well as new catalytic system, are are presented. In addition, implementation of technological innovations for retrofitting and re powering of existing power plants is discussed. (author)

  16. Clean coal technologies in Japan: technological innovation in the coal industry

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-12-15

    This brochure reviews the history clean coal technologies (CCT) in Japan and systematically describes the present state of CCT insofar. The brochure contains three parts. Part 1. CCT classifications; Part 2. CCT overview; and Part 3. Future outlook for CCT. The main section is part 2 which includes 1) technologies for coal resources development; 2) coal-fired power generation technologies - combustion technologies and gasification technologies; 3) iron making and general industry technologies; 4) multi-purpose coal utilization technologies - liquefaction technologies, pyrolysis technologies, powdering, fluidization, and co-utilisation technologies, and de-ashing and reforming technologies; 5) Environmental protection technologies - CO{sub 2} recovery technologies; flue gas treatment and gas cleaning technologies, and technologies to effectively use coal has; 6) basic technologies for advanced coal utilization; and 7) co-production systems.

  17. Life Cycle Assessment of Coal-fired Power Production

    Energy Technology Data Exchange (ETDEWEB)

    Spath, P. L.; Mann, M. K.; Kerr, D. R.

    1999-09-01

    Coal has the largest share of utility power generation in the US, accounting for approximately 56% of all utility-produced electricity (US DOE, 1998). Therefore, understanding the environmental implications of producing electricity from coal is an important component of any plan to reduce total emissions and resource consumption. A life cycle assessment (LCA) on the production of electricity from coal was performed in order to examine the environmental aspects of current and future pulverized coal boiler systems. Three systems were examined: (1) a plant that represents the average emissions and efficiency of currently operating coal-fired power plants in the US (this tells us about the status quo), (2) a new coal-fired power plant that meets the New Source Performance Standards (NSPS), and (3) a highly advanced coal-fired power plant utilizing a low emission boiler system (LEBS).

  18. Cofiring of rice straw and coal in a coal-fired utility boiler: thermodynamic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Miyake, Raphael Guardini; Bazzo, Edson [Federal University of Santa Catarina (UFSC), Florianopolis, SC (Brazil). Dept. of Mechanical Engineering], Emails: miyake@labcet.ufsc.br, ebazzo@emc.ufsc.br; Bzuneck, Marcelo [Tractebel Energia, Capivari de Baixo, SC (Brazil)], E-mail: marcelob@tractebelenergia.com.br

    2010-07-01

    Cofiring combustion of biomass and coal is a near-term, low cost alternative for reduction fossil greenhouse gas emissions in coal fired power plants. Recent reviews identified over 288 applications in over 16 countries with promising results for different coal and biomass combinations. In Brazil, there is no previous experience of cofiring biomass and coal, resulting in new challenges to fuel handling and boiler operation. A first experience is now proposed into an existing coal power plant, using rice straw as biomass fuel. A thermodynamic model was developed in order to predict operating and emissions data, which should be used in cofiring system design. For 10% of biomass input, the total CO{sub 2} emission is expected to slightly increase. However, considering only the coal CO{sub 2} emission, it is expected to decrease in about 10%. Also, the corresponding SO{sub 2} emission decreases in about 8%. (author)

  19. CEZ utility's coal-fired power plants: towards a higher environmental friendliness

    International Nuclear Information System (INIS)

    Kindl, V.; Spilkova, T.; Vanousek, I.; Stehlik, J.

    1996-01-01

    Environmental efforts of the major Czech utility, CEZ a.s., are aimed at reducing air pollution arising from electricity and heat generating facilities. There are 3 main kinds of activity in this respect: phasing out of coal fired power plants; technological provisions to reduce emissions of particulate matter, sulfur dioxide, and nitrogen oxides from those coal fired units that are to remain in operation after 1998; and completion of the Temelin nuclear power plant. In 1995, emissions of particulate matter, sulfur dioxide, nitrogen oxides, and carbon monoxide from CEZ's coal fired power plants were 19%, 79%, 59%, and 60%, respectively, with respect to the situation in 1992. The break-down of electricity generation by CEZ facilities (in GWh) was as follows in 1995: hydroelectric power plants 1673, nuclear power plants 12230, coal fired power plants without desulfurization equipment 30181, and coal fired power plants with desulfurization equipment 2277. Provisions implemented to improve the environmental friendliness of the individual CEZ's coal fired power plants are described in detail. (P.A.). 5 tabs., 1 fig

  20. Clean utilization of coal

    International Nuclear Information System (INIS)

    Yueruem, Y.

    1992-01-01

    This volume contains 23 lectures presented at the Advanced Study Institute on 'Chemistry and Chemical Engineering of Catalytic Solid Fuel Conversion for the Production of Clean Synthetic Fuels', which was held at Akcay, Edremit, Turkey, between 21 July and August 3, 1991. Three main subjects: structure and reactivity of coal; cleaning of coal and its products, and factors affecting the environmental balance of energy usage and solutions for the future, were discussed in the Institute and these are presented under six groups in the book: Part 1. Structure and reactivity of coal; Part 2. Factors affecting environmental balance; Part 3. Pre-usage cleaning operations and processes; Part 4. Upgrading of coal liquids and gases; Part 5. Oxygen enriched processes; and Part 6. Probable future solution for energy and pollution problems. Separate abstracts have been prepared for all the lectures

  1. The Research of Utilization Hours of Coal-Fired Power Generation Units Based on Electric Energy Balance

    Science.gov (United States)

    Liu, Junhui; Yang, Jianlian; Wang, Jiangbo; Yang, Meng; Tian, Chunzheng; He, Xinhui

    2018-01-01

    With grid-connected scale of clean energy such as wind power and photovoltaic power expanding rapidly and cross-province transmission scale being bigger, utilization hours of coal-fired power generation units become lower and lower in the context of the current slowdown in electricity demand. This paper analyzes the influencing factors from the three aspects of demand, supply and supply and demand balance, and the mathematical model has been constructed based on the electric energy balance. The utilization hours of coal-fired power generation units have been solved considering the relationship among proportion of various types of power installed capacity, the output rate and utilization hours. By carrying out empirical research in Henan Province, the utilization hours of coal-fired units of Henan Province in 2020 has been achieved. The example validates the practicability and the rationality of the model, which can provide a basis for the decision-making for coal-fired power generation enterprises.

  2. Effect of Coal Contaminants on Solid Oxide Fuel System Performance and Service Life

    Energy Technology Data Exchange (ETDEWEB)

    Gopala Krishnan; P. Jayaweera; J. Bao; J. Perez; K. H. Lau; M. Hornbostel; A. Sanjurjo; J. R. Albritton; R. P. Gupta

    2008-09-30

    The U.S. Department of Energy's SECA program envisions the development of high-efficiency, low-emission, CO{sub 2} sequestration-ready, and fuel-flexible technology to produce electricity from fossil fuels. One such technology is the integrated gasification-solid oxide fuel cell (SOFC) that produces electricity from the gas stream of a coal gasifier. SOFCs have high fuel-to-electricity conversion efficiency, environmental compatibility (low NO{sub x} production), and modularity. Naturally occurring coal has many impurities and some of these impurities end in the fuel gas stream either as a vapor or in the form of fine particulate matter. Establishing the tolerance limits of SOFCs for contaminants in the coal-derived gas will allow proper design of the fuel feed system that will not catastrophically damage the SOFC or allow long-term cumulative degradation. The anodes of Ni-cermet-based SOFCs are vulnerable to degradation in the presence of contaminants that are expected to be present in a coal-derived fuel gas stream. Whereas the effects of some contaminants such as H{sub 2}S, NH{sub 3} and HCl have been studied, the effects of other contaminants such as As, P, and Hg have not been ascertained. The primary objective of this study was to determine the sensitivity of the performance of solid oxide fuel cells to trace level contaminants present in a coal-derived gas stream in the temperature range 700 to 900 C. The results were used to assess catastrophic damage risk and long-term cumulative effects of the trace contaminants on the lifetime expectancy of SOFC systems fed with coal-derived gas streams.

  3. COAL-FIRED UTILITY BOILERS: SOLVING ASH DEPOSITION PROBLEMS; TOPICAL

    International Nuclear Information System (INIS)

    Christopher J. Zygarlicke; Donald P. McCollor; Steven A. Benson; Jay R. Gunderson

    2001-01-01

    The accumulation of slagging and fouling ash deposits in utility boilers has been a source of aggravation for coal-fired boiler operators for over a century. Many new developments in analytical, modeling, and combustion testing methods in the past 20 years have made it possible to identify root causes of ash deposition. A concise and comprehensive guidelines document has been assembled for solving ash deposition as related to coal-fired utility boilers. While this report accurately captures the current state of knowledge in ash deposition, note that substantial research and development is under way to more completely understand and mitigate slagging and fouling. Thus, while comprehensive, this document carries the title ''interim,'' with the idea that future work will provide additional insight. Primary target audiences include utility operators and engineers who face plant inefficiencies and significant operational and maintenance costs that are associated with ash deposition problems. Pulverized and cyclone-fired coal boilers are addressed specifically, although many of the diagnostics and solutions apply to other boiler types. Logic diagrams, ash deposit types, and boiler symptoms of ash deposition are used to aid the user in identifying an ash deposition problem, diagnosing and verifying root causes, determining remedial measures to alleviate or eliminate the problem, and then monitoring the situation to verify that the problem has been solved. In addition to a step-by-step method for identifying and remediating ash deposition problems, this guideline document (Appendix A) provides descriptions of analytical techniques for diagnostic testing and gives extensive fundamental and practical literature references and addresses of organizations that can provide help in alleviating ash deposition problems

  4. Numerical investigation of heat transfer characteristics in utility boilers of oxy-coal combustion

    International Nuclear Information System (INIS)

    Hu, Yukun; Li, Hailong; Yan, Jinyue

    2014-01-01

    Highlights: • Air-coal and oxy-coal combustion in an industrial scale PF boiler were simulated in ANSYS FLUENT. • The O 2 concentration of 33 vol% in the oxy-coal combustion case matches the air-coal combustion case most closely. • The moisture in the flue gas has little impact on flame temperature, but positive impact on surface incident radiation. - Abstract: Oxy-coal combustion has different flue gas composition from the conventional air-coal combustion. The different composition further results in different properties, such as the absorption coefficient, emissivity, and density, which can directly affect the heat transfer in both radiation and convection zones of utility boilers. This paper numerically studied a utility boiler of oxy-coal combustion and compares with air-coal combustion in terms of flame profile and heat transferred through boiler side walls in order to understand the effects of different operating conditions on oxy-coal boiler retrofitting and design. Based on the results, it was found that around 33 vol% of effective O 2 concentration ([O 2 ] effective ) the highest flame temperature and total heat transferred through boiler side walls in the oxy-coal combustion case match to those in the air-coal combustion case most; therefore, the 33 vol% of [O 2 ] effective could result in the minimal change for the oxy-coal combustion retrofitting of the existing boiler. In addition, the increase of the moisture content in the flue gas has little impact on the flame temperature, but results in a higher surface incident radiation on boiler side walls. The area of heat exchangers in the boiler was also investigated regarding retrofitting. If boiler operates under a higher [O 2 ] effective , to rebalance the load of each heat exchanger in the boiler, the feed water temperature after economizer can be reduced or part of superheating surfaces can be moved into the radiation zone to replace part of the evaporators

  5. Utilization of brown coal in FRG power plants

    Energy Technology Data Exchange (ETDEWEB)

    Kotler, V.R.

    1985-07-01

    FRG methods are studied for utilizing brown coal in view of the development of Kansk-Achinsk brown coal deposits. The use of brown coal in FRG power plants has increased from 15% in 1950- 1960 to 85% (total output) in 1982, providing 79.4 TWh of electrical energy. The remainder was used for briquetting, pulverization and breeze coke. In 1982 nearly 100 million tons of brown coal were burned by six large power stations (rated capacity 11,400 MW) to produce nearly 80 billion kWh of energy. Measures are discussed taken to reduce slagging and to remove excessive moisture content. Problems are analyzed associated with increased contamination of the atmosphere in areas with high population density (412/km/sup 2/) and cost of suppression is reviewed. According to available data, the cost of preventive measures taken by FRG, USA, Japan and the Netherlands is equal to 30% of the total cost of the energy. The most critical problem is suppression of sulfur dioxide, either by dry or wet scrubbers or by the addition of dry dolomite or lime to the furnace (75% of all SO/sub 2/ emissions in FRG comes from power stations). A method is described developed by RWE based on a series of distribution headers in the upper part of combustion chambers. At best, 70-80% reduction can be achieved. 14 references.

  6. The role of clean coal technologies in a deregulated rural utility market

    Energy Technology Data Exchange (ETDEWEB)

    Neal, J.W. [National Rural Electric Cooperative Association, Arlington, VA (United States)

    1997-12-31

    The nation`s rural electric cooperatives own a high proportion of coal-fired generation, in excess of 80 percent of their generating capacity. As the electric utility industry moves toward a competitive electricity market, the generation mix for electric cooperatives is expected to change. Distributed generation will likely serve more customer loads than is now the case, and that will lead to an increase in gas-fired generation capacity. But, clean low-cost central station coal-fired capacity is expected to continue to be the primary source of power for growing rural electric cooperatives. Gasification combined cycle could be the lowest cost coal based generation option in this new competitive market if both capital cost and electricity production costs can be further reduced. This paper presents anticipated utility business scenarios for the deregulated future and identifies combined cycle power plant configurations that might prove most competitive.

  7. MERCURY CONTROL IN MUNICIPAL WASTE COMBUSTORS AND COAL-FIRED UTILITIES

    Science.gov (United States)

    Control of mercury (Hg) emissions from municipal waste combustors (MWCs) and coal-fired utilities has attracted attention due to current and potential regulations. Among several techniques evaluated for Hg control, dry sorbent injection (primarily injection of activated carbon) h...

  8. Comparison of coal/solid recovered fuel (SRF) with coal/refuse derived fuel (RDF) in a fluidised bed reactor

    International Nuclear Information System (INIS)

    Wagland, S.T.; Kilgallon, P.; Coveney, R.; Garg, A.; Smith, R.; Longhurst, P.J.; Pollard, S.J.T.; Simms, N.

    2011-01-01

    An experimental study was undertaken to compare the differences between municipal solid waste (MSW) derived solid recovered fuel (SRF) (complying with CEN standards) and refuse derived fuel (RDF). Both fuels were co-combusted with coal in a 50 kW fluidised bed combustor and the metal emissions were compared. Synthetic SRF was prepared in the laboratory by grinding major constituents of MSW such as paper, plastic, textile and wood. RDF was obtained from a local mechanical treatment plant. Heavy metal emissions in flue gas and ash samples from the (coal + 10% SRF) fuel mixture were found to be within the acceptable range and were generally lower than that obtained for coal + 10% RDF fuel mixture. The relative distribution of heavy metals in ash components and the flue gas stream shows the presence of a large fraction (up to 98%) of most of the metals in the ash (except Hg and As). Thermo-gravimetric (TG) analysis of SRF constituents was performed to understand the behaviour of fuel mixtures in the absence and presence of air. The results obtained from the experimental study will enhance the confidence of fuel users towards using MSW-derived SRF as an alternative fuel.

  9. Evaluation methods of solar contribution in solar aided coal-fired power generation system

    International Nuclear Information System (INIS)

    Zhu, Yong; Zhai, Rongrong; Zhao, Miaomiao; Yang, Yongping; Yan, Qin

    2015-01-01

    Highlights: • Five methods for evaluating solar contribution are analyzed. • Method based on the second law of thermodynamics and thermal economics is more suitable for SACPGS. • Providing reliable reference for the formulation of feed-in tariff policies in China. - Abstract: Solar aided coal-fired power plants utilize solar thermal energy to couple with coal-fired power plants of various types by adopting characteristics of different thermal needs of plants. In this way, the costly thermal storage system and power generating system will become unnecessary, meanwhile the intermittent and unsteady nature of power generation can be avoided. In addition, large-scale utilization of solar thermal power and energy saving can be achieved. With the ever-deepening analyses of solar aided coal-fired power plants, the contribution evaluating system of solar thermal power is worth further exploration. In this paper, five common evaluation methods of solar contribution are analyzed, and solar aided coal-fired power plants of 1000 MW, 600 MW and 330 MW are studied with these five methods in a comparative manner. Therefore, this study can serve as a theoretical reference for future research of evaluation methods and subsidies for new energy

  10. Investigations in fiscal 2000 on feasibility of environment friendly coal utilization system. Feasibility survey on environment friendly coal utilization system in India; 2000 nendo kankyo chowagata sekitan riyo system kanosei chosa hokokusho. Indo ni okeru kankyo chowagata sekitan riyo system kanosei chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Taking the area of the clean coal technology (CCT) effective for energy conservation and environment preservation as the object, a feasibility survey has been performed on executing a model project in India. About 70% of the total power generation capacity in India depends upon coals existing in abundance inside the country. Since the local coals are high in ash, low in sulfur, and low in calorie, the environmental problem related to thermal power plants is the disposition of fly ash. The Central Electricity Authority of India expects solving this problem by CCT introduction. It also expects increase in combustion efficiency by using ultra-critical boilers. The Indian cement industry often uses in-house electric power generation facilities because of high electric power cost, wherein the produced coal ash is used as a cement raw material. The matter of the strongest interest is the introduction of a high-efficiency combustion system that depends on low-grade coals. Among the CCTs, strong interest was shown in the fluidized bed cement kiln and the circulating fluidized bed boiler. The iron and steel industry has expectations toward effective coal washing technologies and coke manufacturing technologies. (NEDO)

  11. The clean coal technologies for lignitic coal power generation in Pakistan

    International Nuclear Information System (INIS)

    Mir, S.; Raza, Z.; Aziz-ur-Rehman, A.

    1995-01-01

    Pakistan contains huge reserves of lignitic coals. These are high sulphur, high ash coals. In spite of this unfortunate situation, the heavy demand for energy production, requires the development utilization of these indigenous coal reserves to enhance energy production. The central of the environmental pollution caused by the combustion of these coals has been a major hindrance in their utilization. Recently a substantial reduction in coal combustion emissions have been achieved through the development of clean coal technologies. Pakistan through the transfer and adaptation of the advanced clean coal technologies can utilize incurring the high sulphur coals for energy production without incurring the environmental effects that the developed countries have experienced in the past. The author discusses the recently developed clean coal utilization technologies, their applications economies and feasibility of utilization with specific reference to Pakistan''s coal. (author)

  12. FY 1999 report on the potential survey of the environmentally friendly type coal utilization system - Dispatch of engineers. A. Project for supporting the introduction of the environmentally friendly type coal utilization system (model project)/pre-survey for the potential survey; 1999 nendo kankyo chowa gata sekitan riyo system kanosei chosa. Senmomka haken A. kankyo chowa gata sekitan riyo system donyu shien jigyo (model jigyo) - Kanosei chosa no jizen chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    For the purpose of the improvement of coal utilization technology and environmental preservation, the paper conducted the pre-survey of the introduction of coke oven gas desulfurization facilities in China and pre-survey of potentiality of the environmentally friendly type coal utilization system in India. The pre-survey in China was made for Anyang Steel Group Co. Ltd. and Laiwu Steel Group Co. Ltd. to judge their adaptability as site for the demonstrative project on the introduction of coke oven gas desulfurization facilities. As a result, it was confirmed that the former satisfied the conditions on Japan side such as the space for installation and prospect for fund raising. However, the amount of COG treatment was larger than that planned at Japan side, and it was found that as to the recovered sulfur, the company wanted the solid sulfur different from the fused sulfur planned at Japan side. In the survey in India, explanations were made to India of CFBC and the fluidized bed cement sintering system, bio-briquette production facilities, facilities for environmental measures, coal reforming technology, etc. At the same time, the site survey was made to examine/analyze possibilities of spread/development of Japan's CCT. (NEDO)

  13. Hydrotreating of coal-derived liquids

    Energy Technology Data Exchange (ETDEWEB)

    Lott, S.E.; Stohl, F.V.; Diegert, K.V. [Sandia National Lab., Albuquerque, NM (United States)] [and others

    1995-12-31

    To develop a database relating hydrotreating parameters to feed and product quality by experimentally evaluating options for hydrotreating whole coal liquids, distillate cuts of coal liquids, petroleum, and blends of coal liquids with petroleum.

  14. Biowaste utilization in the process of co-gasification with bituminous coal and lignite

    International Nuclear Information System (INIS)

    Howaniec, Natalia; Smoliński, Adam

    2017-01-01

    Biowaste utilization in co-gasification with bituminous coal and lignite gives the benefits of stable supplies of a primary energy source – coal and utilization of a zero-emission, waste material (i.e. agriculture waste, sewage sludge, etc.) with higher process efficiency and lower negative environmental impact than biomass or coal gasification, respectively. The main focus of the study presented is co-gasification of bituminous coal or lignite with biowaste to hydrogen-rich gas. The experiments were performed in the laboratory scale fixed-bed reactor installation at 700 and 900 °C. The Hierarchical Clustering Analysis complemented with a color map of studied data were applied in the selection of the optimal operating parameters for biowaste utilization in the co-gasification process based on the experimental data of gasification/co-gasification process as well as physical and chemical properties of fuels tested. The experimental results showed that the carbon conversion rate in co-gasification increased with increasing biomass content in a fuel. The total gas volume and hydrogen volume in co-gasification were higher than the values expected based on the results of the gasification process of the fuels analyzed. - Highlights: • Biowaste co-gasification with bituminous coal/lignite to hydrogen-rich gas. • Steam co-gasification in laboratory scale fixed-bed reactor at 700 and 900 °C. • Hierarchical Clustering Analysis complemented with color map of experimental data. • Carbon conversion increase with increasing biomass content. • The highest total gas and hydrogen volume in co-gasification of C-B20 blend at 900C.

  15. Effects of coal-derived trace species on performance of molten carbonate fuel cells. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1992-05-01

    The Carbonate Fuel Cell is a very promising option for highly efficient generation of electricity from many fuels. If coal-gas is to be used, the interactions of coal-derived impurities on various fuel cell components need to be understood. Thus the effects on Carbonate Fuel Cell performance due to ten different coal-derived contaminants viz., NH{sub 3}, H{sub 2}S, HC{ell}, H{sub 2}Se, AsH{sub 3}, Zn, Pb, Cd, Sn, and Hg, have been studied at Energy Research Corporation. Both experimental and theoretical evaluations were performed, which have led to mechanistic insights and initial estimation of qualitative tolerance levels for each species individually and in combination with other species. The focus of this study was to investigate possible coal-gas contaminant effects on the anode side of the Carbonate Fuel Cell, using both out-of-cell thermogravimetric analysis by isothermal TGA, and fuel cell testing in bench-scale cells. Separate experiments detailing performance decay in these cells with high levels of ammonia contamination (1 vol %) and with trace levels of Cd, Hg, and Sn, have indicated that, on the whole, these elements do not affect carbonate fuel cell performance. However, some performance decay may result when a number of the other six species are present, singly or simultaneously, as contaminants in fuel gas. In all cases, tolerance levels have been estimated for each of the 10 species and preliminary models have been developed for six of them. At this stage the models are limited to isothermal, benchscale (300 cm{sup 2} size) single cells. The information obtained is expected to assist in the development of coal-gas cleanup systems, while the contaminant performance effects data will provide useful basic information for modeling fuel cell endurance in conjunction with integrated gasifier/fuel-cell systems (IGFC).

  16. COAL DERIVED MATRIX PITCHES FOR CARBON-CARBON COMPOSITE MANUFACTURE/PRODUCTION OF FIBERS AND COMPOSITES FROM COAL-BASED PRECURSORS

    Energy Technology Data Exchange (ETDEWEB)

    Peter G. Stansberry; John W. Zondlo

    2001-07-01

    The Consortium for premium Carbon Products from Coal, with funding from the US Department of Energy, National Energy Technology Laboratory continue with the development of innovative technologies that will allow coal or coal-derived feedstocks to be used in the production of value-added carbon materials. In addition to supporting eleven independent projects during budget period 3, three meetings were held at two separate locations for the membership. The first was held at Nemacolin Woodlands Resort on May 15-16, 2000. This was followed by two meetings at Penn State, a tutorial on August 11, 2000 and a technical progress meeting on October 26-27.

  17. Chemical analysis of coal by energy dispersive x-ray fluorescence utilizing artificial standards

    International Nuclear Information System (INIS)

    Wheeler, B.D.

    1982-01-01

    Accurate determinations of the elemental composition of coal by classical methods can be quite difficult and are normally very time consuming. X-ray fluorescence utilizing the powder method, however, has the ability of providing accurate and rapid analyses. Unfortunately, well characterized standards, although available, are not plentiful. In addition, the durability of stability of ground and pelletized coal samples is poor resulting in deterioration with time. As a result, artificial coal standards were prepared from certified geological materials by fusing in lithium tetraborate in percentages approximating expected ash contents and compositions in coal. Since the lithium tetraborate comprises about the same percentage of the standard as does the carbon, hydrogen, and oxygen in coal, the ground and pelletized coal sample can be assayed against the fused calibration curves by compensating for the differences in the mass absorption coefficients of the two matrices. 5 figures, 4 tables

  18. Utilization of alternative fuels in diesel engines

    Science.gov (United States)

    Lestz, S. A.

    1984-01-01

    Performance and emission data are collected for various candidate alternate fuels and compare these data to that for a certified petroleum based number two Diesel fuel oil. Results for methanol, ethanol, four vegetable oils, two shale derived oils, and two coal derived oils are reported. Alcohol fumigation does not appear to be a practical method for utilizing low combustion quality fuels in a Diesel engine. Alcohol fumigation enhances the bioactivity of the emitted exhaust particles. While it is possible to inject many synthetic fuels using the engine stock injection system, wholly acceptable performance is only obtained from a fuel whose specifications closely approach those of a finished petroleum based Diesel oil. This is illustrated by the contrast between the poor performance of the unupgraded coal derived fuel blends and the very good performance of the fully refined shale derived fuel.

  19. Exergy analysis of a coal/biomass co-hydrogasification based chemical looping power generation system

    International Nuclear Information System (INIS)

    Yan, Linbo; Yue, Guangxi; He, Boshu

    2015-01-01

    Power generation from co-utilization of coal and biomass is very attractive since this technology can not only save the coal resource but make sufficient utilization of biomass. In addition, with this concept, net carbon discharge per unit electric power generation can also be sharply reduced. In this work, a coal/biomass co-hydrogasification based chemical looping power generation system is presented and analyzed with the assistance of Aspen Plus. The effects of different operating conditions including the biomass mass fraction, R_b, the hydrogen recycle ratio, R_h_r, the hydrogasification pressure, P_h_g, the iron to fuel mole ratio, R_i_f, the reducer temperature, T_r_e, the oxidizer temperature, T_o_x, and the fuel utilization factor, U_f of the SOFC (solid oxide fuel cell) on the system operation results including the energy efficiency, η_e, the total energy efficiency, η_t_e, the exergy efficiency, η_e_x, the total exergy efficiency, η_t_e_x and the carbon capture rate, η_c_c, are analyzed. The energy and exergy balances of the whole system are also calculated and the corresponding Sankey diagram and Grassmann diagram are drawn. Under the benchmark condition, exergy efficiencies of different units in the system are calculated. η_t_e, η_t_e_x and η_c_c of the system are also found to be 43.6%, 41.2% and 99.1%, respectively. - Highlights: • A coal/biomass co-hydrogasification based chemical looping power generation system is setup. • Sankey and Grassmann diagrams are presented based on the energy and exergy balance calculations. • Sensitivity analysis is done to understand the system operation characteristics. • Total energy and exergy efficiencies of this system can be 43.6% and 41.2%, respectively. • About 99.1% of the carbon contained in coal and biomass can be captured in this system.

  20. Ninth annual international Pittsburgh coal conference - proceedings

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    Over 200 papers are presented under the following headings: coal preparation; Clean Coal Technology Program status; pre- and post-utilization processing; advanced conversion technologies; integrated gasification combined cycle; indirect liquefaction; advanced liquefaction process development; conversion processes; coal - from a user's perspective; issues associated with coal use in heat engines; fundamentals of combustion; advanced combustion systems; low quality fuel applications/fluidised beds; combustion systems; ash and sludge disposal/utilization; developing SO 2 /NO x control technologies; technical overview of air toxics; scientific, economic and policy perspectives on global climate change; Clean Air Act compliance strategies; environmental policy/technology; spontaneous combustion; and special topics

  1. CVFA: Coal vendor financial advisor

    International Nuclear Information System (INIS)

    Goote, W.G.; Andersen, S.

    1992-01-01

    An expert system for determining coal vendor financial viability in fuel purchasing contracts at an electric utility is described. The system blends rules, data objects, and financial knowledge to provide a rational basis for accepting or rejecting coal contracts given the financial capability of the coal vendor. The discussion concludes with a critique of managerial issues in the development of the system and its use in decision making. 3 refs., 1 fig

  2. Preliminary assessment of the health and environmental impacts of fluidized-bed combustion of coal as applied to electrical utility systems

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-02-01

    The objective of this study was to assess the health and environmental impacts of fluidized-bed combustion of coal (FBC), specifically as applied to base-load generation of electrical energy by utilities. The public health impacts of Fluidized-Bed Combustion (FBC) plants are expected to be quite similar to those for Low Sulfur Coal (LSC) and Flue Gas Desulfurization (FGD) plants because all appear to be able to meet Federal emission standards; however, there are emissions not covered by standards. Hydrocarbon emissions are higher and trace element emissions are lower for FBC than for conventional technologies. For FBC, based on an analytical model and a single emission data point, the polycyclic organic material decreases the anticipated lifespan of the highly exposed public very slightly. Added health protection due to lower trace element emissions is not known. Although there is a large quantity of solid wastes from the generating plant, the environmental impact of the FBC technology due to solid residue appears lower than for FGD, where sludge management requires larger land areas and presents problems due to the environmentally noxious calcium sulfite in the waste. Fixing the sludge may become a requirement that increases the cost of wet-limestone FGD but makes that system more acceptable. The potential for aquatic or terrestrial impacts from hydrocarbon emissions is low. If application of AFBC technology increases the use of local high-sulfur coals to the detriment of western low-sulfur coal, a sociological benefit could accrue to the FBC (or FGD) technology, because impacts caused by western boom towns would decrease. The infrastructure of areas that mine high-sulfur coal in the Midwest are better equipped to handle increased mining than the West.

  3. Investigation of sulfur-polycyclic aromatic hydrocarbon in coal derived tars of pyrolysis and hydropyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Chen, H.; Li, B.; Zhang, B. [Chinese Academy of Sciences, Taiyuan (China). State Key Laboratory of Coal Conversion

    1999-07-01

    A study was undertaken to characterize sulphur forms in coal derived tars from pyrolysis and hydropyrolysis of bituminous coal and lignite. The pyrolysis tars were analyzed for content of polycyclic aromatic sulfur hydrocarbons (PASH). 5 refs., 3 figs., 3 tabs.

  4. Synergistic Utilization of Coal Fines and Municipal Solid Waste in Coal-Fired Boilers. Phase I Final Report

    Energy Technology Data Exchange (ETDEWEB)

    V. Zamansky; P. Maly; M. Klosky

    1998-06-12

    A feasibility study was performed on a novel concept: to synergistically utilize a blend of waste coal fines with so-called E-fuel for cofiring and reburning in utility and industrial boilers. The E-fuel is produced from MSW by the patented EnerTech's slurry carbonization process. The slurry carbonization technology economically converts MSW to a uniform, low-ash, low-sulfur, and essentially chlorine-free fuel with energy content of about 14,800 Btu/lb.

  5. Understanding the effects of sulfur on mercury capture from coal-fired utility flue gases

    Energy Technology Data Exchange (ETDEWEB)

    Morris, E.A.; Morita, K.; Jia, C.Q. [University of Toronto, Toronto, ON (Canada)

    2010-07-01

    Coal combustion continues to be a major source of energy throughout the world and is the leading contributor to anthropogenic mercury emissions. Effective control of these emissions requires a good understanding of how other flue gas constituents such as sulfur dioxide (SO{sub 2}) and sulfur trioxide (SO{sub 3}) may interfere in the removal process. Most of the current literature suggests that SO{sub 2} hinders elemental mercury (Hg{sup 0}) oxidation by scavenging oxidizing species such as chlorine (Cl2) and reduces the overall efficiency of mercury capture, while there is evidence to suggest that SO{sub 2} with oxygen (O{sub 2}) enhances Hg{sup 0} oxidation by promoting Cl2 formation below 100{sup o}C. However, studies in which SO{sub 2} was shown to have a positive correlation with Hg{sup 0} oxidation in full-scale utilities indicate that these interactions may be heavily dependent on operating conditions, particularly chlorine content of the coal and temperature. While bench-scale studies explicitly targeting SO{sub 3} are scarce, the general consensus among full-scale coal-fired utilities is that its presence in flue gas has a strong negative correlation with mercury capture efficiency. The exact reason behind this observed correlation is not completely clear, however. While SO{sub 3} is an inevitable product of SO{sub 2} oxidation by O{sub 2}, a reaction that hinders Hg{sup 0} oxidation, it readily reacts with water vapor, forms sulfuric acid (H{sub 2 }SO{sub 4}) at the surface of carbon, and physically blocks active sites of carbon. On the other hand, H{sub 2}SO{sub 4} on carbon surfaces may increase mercury capacity either through the creation of oxidation sites on the carbon surface or through a direct reaction of mercury with the acid. However, neither of these beneficial impacts is expected to be of practical significance for an activated carbon injection system in a real coal-fired utility flue gas.

  6. Optimized Production of Coal Fly Ash Derived Synthetic Zeolites for Mercury Removal from Wastewater

    Science.gov (United States)

    Tauanov, Z.; Shah, D.; Itskos, G.; Inglezakis, V.

    2017-09-01

    Coal fly ash (CFA) derived synthetic zeolites have become popular with recent advances and its ever-expanding range of applications, particularly as an adsorbent for water and gas purification and as a binder or additive in the construction industry and agriculture. Among these applications, perpetual interest has been in utilization of CFA derived synthetic zeolites for removal of heavy metals from wastewater. We herein focus on utilization of locally available CFA for efficient adsorption of mercury from wastewater. To this end, experimental conditions were investigated so that to produce synthetic zeolites from Kazakhstani CFAs with conversion into zeolite up to 78%, which has remarkably high magnetite content. In particular, the effect of synthesis reaction temperature, reaction time, and loading of adsorbent were systematically investigated and optimized. All produced synthetic zeolites and the respective CFAs were characterized using XRD, XRF, PSA and porosimetric instruments to obtain microstructural and mineralogical data. Furthermore, the synthesized zeolites were studied for the removal of mercury from aqueous solutions. A comparison of removal eficiency and its relationship to the physical and chemical properties of the synthetic zeolites were analyzed and interpreted.

  7. Advanced clean coal utilization technologies

    Energy Technology Data Exchange (ETDEWEB)

    Moritomi, Hiroshi [National Inst. for Resources and Environment, Tsukuba, Ibaraki (Japan)

    1993-12-31

    The most important greenhouse gas is CO{sub 2} from coal utilization. Ways of mitigating CO{sub 2} emissions include the use of alternative fuels, using renewable resources and increasing the efficiency of power generation and end use. Adding to such greenhouse gas mitigation technologies, post combustion control by removing CO{sub 2} from power station flue gases and then storing or disposing it will be available. Although the post combustion control have to be evaluated in a systematic manner relating them to whether they are presently available technology, to be available in the near future or long term prospects requiring considerable development, it is considered to be a less promising option owing to the high cost and energy penalty. By contrast, abatement technologies aimed at improving conversion efficiency or reducing energy consumption will reduce emissions while having their own commercial justification.

  8. Computerized information system on the impacts of coal-fired energy development in the Southwest

    International Nuclear Information System (INIS)

    Layton, D.W.

    1975-01-01

    An important part of the process of assessing the environmental impacts of coal-fired energy development in the Southwest is the transfer of information between electric utilities, federal agencies, and the interested public. There are, however, several problems associated with the transfer of information among the different groups. The acquisition of factual material on power projects by the interested public, for example, is adversely affected by the sufficiency, convenience, and credibility of present sources. Efforts of electric utilities and federal agencies to effectively communicate impact information are hindered by the inability of existing sources to selectively transfer information and to rapidly transmit information on the cumulative impacts of many combinations of power plants. This research concerns the development and evaluation of a computerized information system designed to selectively transfer information on both the cumulative and individual impacts of several electric generating facilities located in the southwestern United States. The information system incorporates features of management information systems, environmental information systems, and an issue-oriented system developed at The University of Illinois, making it a hybrid system capable of communicating impact information derived from a variety of sources

  9. NO{sub x} controls for coal-fired utility boilers in East Central Europe

    Energy Technology Data Exchange (ETDEWEB)

    Eskinazi, D. [Electric Power Research Inst., Washington, DC (United States); Tavoulareas, E.S. [Energy Technologies Enterprises Corp., McLean, VA (United States)

    1995-12-01

    Increasing environmental pressures worldwide, including East Central Europe are placing greater emphasis on NO{sub x} emission controls in utility power plants. Western Europe, Japan and the U.S. have significant experience in applying NO{sub x} controls, especially in boilers firing hard coal. Some countries in Europe (i.e., Germany and Austria), have gained experience in applying NO{sub x} controls in boilers firing low-rank coal. This experience can be applied to East Central European countries in providing the basis for planning NO{sub x} control projects, suggesting cost-effective solutions, and providing lessons learned. However, while the experience is generally applicable to East Central European countries, differences in boiler design, operation and coal characteristics also need to be considered. This paper begins with a comparison of the NO{sub x} regulations, identifies the key NO{sub x} control technologies and the worldwide experience with them, and discusses the achievable NO{sub x} reduction, O&M impacts, and retrofit costs for each technology. Emphasis is placed on retrofit applications for existing boilers, because new coal-fired power plants are not expected to be built for the next 5-10 years. This paper also focuses on technologies with relatively low cost and operational simplicity: combustion system tuning/optimization. low-NO{sub x} burners (LNB), overfire air (OFA), selective non-catalytic reduction (SNCR), and reburning.

  10. Capital cost: high and low sulfur coal plants-1200 MWe. [High sulfur coal

    Energy Technology Data Exchange (ETDEWEB)

    1977-01-01

    This Commercial Electric Power Cost Study for 1200 MWe (Nominal) high and low sulfur coal plants consists of three volumes. The high sulfur coal plant is described in Volumes I and II, while Volume III describes the low sulfur coal plant. The design basis and cost estimate for the 1232 MWe high sulfur coal plant is presented in Volume I, and the drawings, equipment list and site description are contained in Volume II. The reference design includes a lime flue gas desulfurization system. A regenerative sulfur dioxide removal system using magnesium oxide is also presented as an alternate in Section 7 Volume II. The design basis, drawings and summary cost estimate for a 1243 MWe low sulfur coal plant are presented in Volume III. This information was developed by redesigning the high sulfur coal plant for burning low sulfur sub-bituminous coal. These coal plants utilize a mechanical draft (wet) cooling tower system for condenser heat removal. Costs of alternate cooling systems are provided in Report No. 7 in this series of studies of costs of commercial electrical power plants.

  11. Utilization of coal fly ash in construction in relation to regulations within the framework of the Dutch Soil Protection Act

    International Nuclear Information System (INIS)

    van der Sloot, H.A.

    1991-01-01

    In 1987, the Dutch Government passed the Soil Protection Act. Within the framework of this act aiming at reduction of soil pollution by anthropogenic activities, a number of regulations will be enforced. One of these is the Regulation for Construction Materials, which is intended to control environmental impacts resulting from the utilization of industrial residues in construction. The regulation will apply to all conventional materials used in construction and raw materials derived from waste materials. For effective enforcement of this regulation by 1992, a full set of well documented procedures are needed to cover such aspects as sampling, storage, analysis of solids and liquids, leaching, and evaluation of test results. These procedures should ultimately be available as national (NEN), or preferably internationally (CEN, ISO), agreed standard protocols. A coherent program of projects has been started in 1990 in association with the Dutch Normalization Institute to generate these protocols and initiate the necessary research activities. As a result of the new regulations, initiatives have been taken to certify industrial residues for certain applications. The utilization of coal combustion residues in construction is governed by certificates. Thus, quality control at the utilities is an integral part of coal fly ash utilization and marketing. For public acceptance of utilization of these materials, quality control and certification is an essential element along with demonstrations of proper performance in practice

  12. Clean Coal Day '94 Hokkaido International Seminar; Clean coal day '94 Hokkaido kokusai seminar

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-06-01

    The lectures given at the seminar were 1) Coal energy be friendly toward the earth, 2) Clean coal technology in the United Kingdom, and 3) How clean coal should be in Australia. In lecture 1), remarks are made on the importance of coal and its future, coal that protects forest, whether coal is a dirty fuel, coal combustion tests started relative to environmental pollution, acid rain in China and coal combustion, briquets effective in energy conservation, etc. In lecture 2), remarks are made on the importance of coal utilization in the United Kingdom, current state of coal utilization in power generation, problems related to gasification furnaces, problems related to combustors, problems related to high-temperature gas cleaning, function of cleaning filters, advantages of high-temperature gas treatment, actualities of gas combustors, studies of gas combustors, etc. In lecture 3), remarks are made on Australia's coal situation, problems related to clean coal technology, problems related to coal preparation technology, potentialities of Australian brown coal, coal utilization in power generation, need of new technology development, current state of coal utilization in Australia, coal utilization in metal-making industry, international cooperation on technology, etc. (NEDO)

  13. Coal supplier perspective on the future of the utility-coal industry

    Energy Technology Data Exchange (ETDEWEB)

    Goldberg, G.J. [Kennecott Energy Company, Gillette, WY (United States)

    2000-07-01

    Kennecott Energy is the largest producer within Rio Tinto Energy, in turn owned by Rio Tinto, and has grown by 260% since 1993. However, coal's performance in the world trade market is currently suffering for reasons such as regulatory uncertainty. The presentation looked at how the company is striving to improve coal's future, for example by enhancing coal's value through beneficiation like K-fuels, enhancing pollution control through research efforts like Zero Emissions Coal Alliance and by supporting public outreach and legislation efforts. Coal's future is summed up under headings: earnings, efficiency, environment, education and e-commerce. 17 overheads/viewgraphs outline the presentation.

  14. Potential to cofire high-sulfur coal and MSW/RDF in Illinois utility boilers: A survey and analysis

    International Nuclear Information System (INIS)

    South, D.W.

    1993-01-01

    The disposal of refuse is of ever-increasing concern for municipalities and other organizations and agencies throughout the United States. Disposal in landfills is becoming more costly, and new landfills are more difficult to site because of stricter environmental regulations. Mass burning incinerators for municipal solid wastes (MSW) have also met with increased public resistance due to excessive emissions. Nevertheless, increased awareness of the need for alternative disposal techniques has led to a new interest in cofiring MSW with coal. In addition to solid waste concerns, the requirements to reduce SO 2 and NO x emissions from coal-fired utility boilers in the Clean Air Act Amendments of 1990, present an opportunity to cofire MSW/RDF with coal as an emission control measure. These issues were the impetus for a 1992 study (conducted by ANL for the Illinois Clean Coal Institute) to examine the potential to cofire coal with MSW/RDF in Illinois utility boilers. This paper will provide a synopsis of the ANL/ICCI report. It will summarize (1) the combustibility and emission characteristics of high-sulfur coal and MSW/RDF; (2) the facilities firing RDF and/or producing/selling RDF, together with their combustion and emissions experience; (3) the applicable emissions regulations in Illinois; and (4) the analysis of candidate utility boilers in Illinois capable of cofiring, together with the effect on coal consumption and SO 2 and NO x emissions that would result from 20% cofiring with RDF/MSW

  15. Intrinsic and extrinsic defects in a family of coal-derived graphene quantum dots

    Science.gov (United States)

    Singamaneni, Srinivasa Rao; van Tol, Johan; Ye, Ruquan; Tour, James M.

    2015-11-01

    In this letter, we report on the high frequency (239.2 and 336 GHz) electron spin resonance (ESR) studies performed on graphene quantum dots (GQDs), prepared through a wet chemistry route from three types of coal: (a) bituminous, (b) anthracite, and (c) coke; and from non-coal derived GQDs. The microwave frequency-, power-, and temperature-dependent ESR spectra coupled with computer-aided simulations reveal four distinct magnetic defect centers. In bituminous- and anthracite-derived GQDs, we have identified two of them as intrinsic carbon-centered magnetic defect centers (a broad signal of peak to peak width = 697 (10-4 T), g = 2.0023; and a narrow signal of peak to peak width = 60 (10-4 T), g = 2.003). The third defect center is Mn2+ (6S5/2, 3d5) (signal width = 61 (10-4 T), g = 2.0023, Aiso = 93(10-4 T)), and the fourth defect is identified as Cu2+ (2D5/2, 3d9) (g⊥ = 2.048 and g‖ = 2.279), previously undetected. Coke-derived and non-coal derived GQDs show Mn2+ and two-carbon related signals, and no Cu2+ signal. The extrinsic impurities most likely originate from the starting coal. Furthermore, Raman, photoluminescence, and ESR measurements detected no noticeable changes in the properties of the bituminous GQDs after one year. This study highlights the importance of employing high frequency ESR spectroscopy in identifying the (magnetic) defects, which are roadblocks for spin relaxation times of graphene-based materials. These defects would not have been possible to probe by other spin transport measurements.

  16. Study of the Korean anthracite for utilization and the coal mine data management

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-01

    This report consists of two articles. (1) Petrographic study of the Korean anthracite for utilization (5): This research was initiated for the development of filtering materials those can be used in waste water treatment sites The small scale of filtration tester was built on the waste water treatment site of Chungjoo electric Co. to use waste water processed by purifying system for the feasibility study. (2) Study of the closed coal mine data management: Underground maps about 1700 adits of 100 coal mines, and related graphic data have been collected in the database. And all those data were entered into the database in vectorial form, coordinates obtaining from the digitizing tablet. Detailed works are described in the other report, including the discussions of graphic database and data handling of graphical mine data. Comments about the GIS is also provided in the volume. (author). 25 refs., 45 figs., 50 tabs., 3 maps.

  17. acme: The Amendable Coal-Fire Modeling Exercise. A C++ Class Library for the Numerical Simulation of Coal-Fires

    Science.gov (United States)

    Wuttke, Manfred W.

    2017-04-01

    At LIAG, we use numerical models to develop and enhance understanding of coupled transport processes and to predict the dynamics of the system under consideration. Topics include geothermal heat utilization, subrosion processes, and spontaneous underground coal fires. Although the details make it inconvenient if not impossible to apply a single code implementation to all systems, their investigations go along similar paths: They all depend on the solution of coupled transport equations. We thus saw a need for a modular code system with open access for the various communities to maximize the shared synergistic effects. To this purpose we develop the oops! ( open object-oriented parallel solutions) - toolkit, a C++ class library for the numerical solution of mathematical models of coupled thermal, hydraulic and chemical processes. This is used to develop problem-specific libraries like acme( amendable coal-fire modeling exercise), a class library for the numerical simulation of coal-fires and applications like kobra (Kohlebrand, german for coal-fire), a numerical simulation code for standard coal-fire models. Basic principle of the oops!-code system is the provision of data types for the description of space and time dependent data fields, description of terms of partial differential equations (pde), their discretisation and solving methods. Coupling of different processes, described by their particular pde is modeled by an automatic timescale-ordered operator-splitting technique. acme is a derived coal-fire specific application library, depending on oops!. If specific functionalities of general interest are implemented and have been tested they will be assimilated into the main oops!-library. Interfaces to external pre- and post-processing tools are easily implemented. Thus a construction kit which can be arbitrarily amended is formed. With the kobra-application constructed with acme we study the processes and propagation of shallow coal seam fires in particular in

  18. Study on supported binary sulfide catalysts for secondary hydrogenation of coal-derived liquids; Sekitan ekikayu niji suisoka shokubai no kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Shimada, H.; Matsubayashi, N.; Sato, T.; Imamura, M.; Yoshimura, Y.; Nishijima, A. [National Institute of Materials and Chemical Research, Tsukuba (Japan)

    1995-07-28

    To utilize the high performance of supported catalysts in coal liquefaction processes, one of the promising ways is to apply hydroprocessing sulfide catalysts to the secondary hydrogenation of coal-derived liquids which have undergone the solid separation unit. However, when the product yield from the first-stage liquefaction is maximized, the feed stocks in the secondary hydrogenation contain large amounts of residual fractions with preasphaltenes and metallic components. In this case, the development of a long-life catalyst is essential to establish the two-stage process as a practical one. From this viewpoint, the authors have investigated the deactivation causes of supported Ni-Mo sulfide catalysts through the analysis of the used catalysts in the secondary hydrogenation of coal-derived liquids for long periods. The major cause of the catalyst deactivation has been found to be metallic and carbonaceous deposition on the catalyst, which results thin layer which covers the catalyst particles. The catalysts located at the reactor inlet are more rapidly deactivated than those at the rector exit because of larger amounts of metallic foul ants and the above described shell-like layer. Hydrocracking active sites are much heavily deactivated compared with hydrogenation active sites. It is inferred that the basic or polar compounds contained in coal liquids are permanency adsorbed on the hydrocracking active sites. Spectroscopic analysis of the used catalysts clarified the destruction of the active phase of the binary sulfides, through the segregation and crystal growth. The structural changes of the catalysts are very likely caused by heteroatom compounds in the preasphaltenes. Thus, the primary cause of the catalyst deactivation is the preasphaltenes in the coal liquids. Hydroaromatic compounds in the coal liquids suppress the change of the deposited carbonaceous materials into inert coke which permanently deactivate the catalyst.

  19. Characterization of coal-derived hydrocarbons and source-rock potential of coal beds, San Juan Basin, New Mexico and Colorado, U.S.A.

    Science.gov (United States)

    Rice, D.D.; Clayton, J.L.; Pawlewicz, M.J.

    1989-01-01

    Coal beds are considered to be a major source of nonassociated gas in the Rocky Mountain basins of the United States. In the San Juan basin of northwestern New Mexico and southwestern Colorado, significant quantities of natural gas are being produced from coal beds of the Upper Cretaceous Fruitland Formation and from adjacent sandstone reservoirs. Analysis of gas samples from the various gas-producing intervals provided a means of determining their origin and of evaluating coal beds as source rocks. The rank of coal beds in the Fruitland Formation in the central part of the San Juan basin, where major gas production occurs, increases to the northeast and ranges from high-volatile B bituminous coal to medium-volatile bituminous coal (Rm values range from 0.70 to 1.45%). On the basis of chemical, isotopic and coal-rank data, the gases are interpreted to be thermogenic. Gases from the coal beds show little isotopic variation (??13C1 values range -43.6 to -40.5 ppt), are chemically dry (C1/C1-5 values are > 0.99), and contain significant amounts of CO2 (as much as 6%). These gases are interpreted to have resulted from devolatilization of the humic-type bituminous coal that is composed mainly of vitrinite. The primary products of this process are CH4, CO2 and H2O. The coal-generated, methane-rich gas is usually contained in the coal beds of the Fruitland Formation, and has not been expelled and has not migrated into the adjacent sandstone reservoirs. In addition, the coal-bed reservoirs produce a distinctive bicarbonate-type connate water and have higher reservoir pressures than adjacent sandstones. The combination of these factors indicates that coal beds are a closed reservoir system created by the gases, waters, and associated pressures in the micropore coal structure. In contrast, gases produced from overlying sandstones in the Fruitland Formation and underlying Pictured Cliffs Sandstone have a wider range of isotopic values (??13C1 values range from -43.5 to -38

  20. Refinery Integration of By-Products from Coal-Derived Jet Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Caroline Clifford; Andre Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

    2008-03-31

    The final report summarizes the accomplishments toward project goals during length of the project. The goal of this project was to integrate coal into a refinery in order to produce coal-based jet fuel, with the major goal to examine the products other than jet fuel. These products are in the gasoline, diesel and fuel oil range and result from coal-based jet fuel production from an Air Force funded program. The main goal of Task 1 was the production of coal-based jet fuel and other products that would need to be utilized in other fuels or for non-fuel sources, using known refining technology. The gasoline, diesel fuel, and fuel oil were tested in other aspects of the project. Light cycle oil (LCO) and refined chemical oil (RCO) were blended, hydrotreated to removed sulfur, and hydrogenated, then fractionated in the original production of jet fuel. Two main approaches, taken during the project period, varied where the fractionation took place, in order to preserve the life of catalysts used, which includes (1) fractionation of the hydrotreated blend to remove sulfur and nitrogen, followed by a hydrogenation step of the lighter fraction, and (2) fractionation of the LCO and RCO before any hydrotreatment. Task 2 involved assessment of the impact of refinery integration of JP-900 production on gasoline and diesel fuel. Fuel properties, ignition characteristics and engine combustion of model fuels and fuel samples from pilot-scale production runs were characterized. The model fuels used to represent the coal-based fuel streams were blended into full-boiling range fuels to simulate the mixing of fuel streams within the refinery to create potential 'finished' fuels. The representative compounds of the coal-based gasoline were cyclohexane and methyl cyclohexane, and for the coal-base diesel fuel they were fluorine and phenanthrene. Both the octane number (ON) of the coal-based gasoline and the cetane number (CN) of the coal-based diesel were low, relative to

  1. Parametric utility comparison of coal and nuclear electricity generation

    International Nuclear Information System (INIS)

    Maurer, K.M.

    1977-02-01

    The advantages and limitations of an explicit quantitative model for decision making are discussed. Several different quantitative models are presented, noting that the use of an expected utility maximization decision rule allows both the direct incorporation of multidimensional descriptions of the possible outcomes, and considerations of risk averse behavior. A broad class of utility functions, characterized by linear risk tolerance, was considered and extended to a multidimensional form. Choosing a multivariate risk neutral extension, using constant absolute risk aversion utility functions for monetary effects and for increased mortality, the author indicated how the parameters of this utility function can be selected to represent the decision maker's preferences, and suggest a reasonable range of values for the parameters. After describing an illustrative set of data on the risks inherent in coal burning and nuclear electricity generation facilities, the author used the chosen utility model to compare the overall risks associated with each technology, observing the effect of variations in the utility parameters and in the risk distributions on the implied preferences

  2. Comparative Evaluation of Phase 1 Results from the Energy Conversion Alternatives Study (ECAS). [coal utilization for electric power plants feasibility analysis

    Science.gov (United States)

    1976-01-01

    Ten advanced energy conversion systems for central-station, based-load electric power generation using coal and coal-derived fuels which were studied by NASA are presented. Various contractors were selected by competitive bidding to study these systems. A comparative evaluation is provided of the contractor results on both a system-by-system and an overall basis. Ground rules specified by NASA, such as coal specifications, fuel costs, labor costs, method of cost comparison, escalation and interest during construction, fixed charges, emission standards, and environmental conditions, are presented. Each system discussion includes the potential advantages of the system, the scope of each contractor's analysis, typical schematics of systems, comparison of cost of electricity and efficiency for each contractor, identification and reconciliation of differences, identification of future improvements, and discussion of outside comments. Considerations common to all systems, such as materials and furnaces, are also discussed. Results of selected in-house analyses are presented, in addition to contractor data. The results for all systems are then compared.

  3. Transformations of inorganic coal constituents in combustion systems

    Energy Technology Data Exchange (ETDEWEB)

    Helble, J.J. (ed.); Srinivasachar, S.; Wilemski, G.; Boni, A.A. (PSI Technology Co., Andover, MA (United States)); Kang, Shin-Gyoo; Sarofim, A.F.; Graham, K.A.; Beer, J.M. (Massachusetts Inst. of Tech., Cambridge, MA (United States)); Peterson, T.W.; Wendt, J.O.L.; Gallagher, N.B.; Bool, L. (Arizona Univ., Tucson, AZ (United States)); Huggins, F.E.; Huffman, G.P.; Shah, N.; Shah, A. (Kentucky Univ., Lexingt

    1992-11-01

    The inorganic constituents or ash contained in pulverized coal significantly increase the environmental and economic costs of coal utilization. For example, ash particles produced during combustion may deposit on heat transfer surfaces, decreasing heat transfer rates and increasing maintenance costs. The minimization of particulate emissions often requires the installation of cleanup devices such as electrostatic precipitators, also adding to the expense of coal utilization. Despite these costly problems, a comprehensive assessment of the ash formation and had never been attempted. At the start of this program, it was hypothesized that ash deposition and ash particle emissions both depended upon the size and chemical composition of individual ash particles. Questions such as: What determines the size of individual ash particles What determines their composition Whether or not particles deposit How combustion conditions, including reactor size, affect these processes remained to be answered. In this 6-year multidisciplinary study, these issues were addressed in detail. The ambitious overall goal was the development of a comprehensive model to predict the size and chemical composition distributions of ash produced during pulverized coal combustion. Results are described.

  4. Fiscal 1995 survey report on the environmentally friendly type coal utilization system joint demonstration project. Water-saving coal preparation system joint demonstration project; Kankyo chowagata sekitan riyo system kyodo jissho jigyo. Shosuigata sentan system kyodo jissho jigyo

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    This project makes demonstration of clean coal technology (CCT) in China and preparation for the base of its spread, controlled environmental pollution due to the coal use by the countries concerned, and contributes to stably secure energy of Japan. The paper made analog operation in the 1960s-1970s, supported by Russia and Poland, introduced two computer systems for operational control and quality control, densimeter, level meter, flow meter and analyzer to coal preparation plants having problems on productivity and quality control, made the optimum operational diagnosis for the plants, and at the same time, demonstrated the comprehensive rehabilitation type system by which water saving, high quality and high effectiveness are obtained. Various types of sensors such as rapid ash meter, scale and densitometer and computers are introduced to coal preparation plants which were recently constructed in China, have jig or heavy liquid cyclone as main preparation equipment and conducts operational control. There, the central control system was demonstrated in which various information collected in the central operation room and in-site equipment is combined by network for high-grade data processing and water saving is achieved. 50 figs., 11 tabs.

  5. Geochemistry of Coal Ash in the Equatorial Wet Disposal System Environment

    OpenAIRE

    Kolay P. K.; Singh H.

    2013-01-01

    The coal utilization in thermal power plants in Malaysia has increased significantly which produces an enormous amount of coal combustion by-product (CCBP) or coal ash and poses severe disposal problem. As each coal ash is distinct, this study presents the geochemistry of the coal ash, in particular fly ash, produced from the combustion of local coal from Kuching Sarawak, Malaysia. The geochemical composition of the ash showed a high amount of silica, alumina, iron oxides and alkalies which w...

  6. Fourth annual conference on materials for coal conversion and utilization

    Energy Technology Data Exchange (ETDEWEB)

    1979-01-01

    The fourth annual conference on materials for coal conversion and utilization was held October 9 to 11, 1979, at the National Bureau of Standards, Gaithersburg, Maryland. It was sponsored by the National Bureau of Standards, the Electric Power Research Institute, the US Department of Energy, and the Gas Research Institute. The papers have been entered individually into EDB and ERA. (LTN)

  7. Width design for gobs and isolated coal pillars based on overall burst-instability prevention in coal mines

    Directory of Open Access Journals (Sweden)

    Junfei Zhang

    2016-08-01

    Full Text Available An investigation was conducted on the overall burst-instability of isolated coal pillars by means of the possibility index diagnosis method (PIDM. First, the abutment pressure calculation model of the gob in side direction was established to derive the abutment pressure distribution curve of the isolated coal pillar. Second, the overall burst-instability ratio of the isolated coal pillars was defined. Finally, the PIDM was utilized to judge the possibility of overall burst-instability and recoverability of isolated coal pillars. The results show that an overall burst-instability may occur due to a large gob width or a small pillar width. If the width of the isolated coal pillar is not large enough, the shallow coal seam will be damaged at first, and then the high abutment pressure will be transferred to the deep coal seam, which may cause an overall burst-instability accident. This approach can be adopted to design widths of gobs and isolated coal pillars and to evaluate whether an existing isolated coal pillar is recoverable in skip-mining mines.

  8. Newer methods for the characterization of higher molecular mass coal derivatives

    International Nuclear Information System (INIS)

    Bartle, K.D.

    1983-01-01

    Recent developments in a number of areas in the analytical chemistry of higher molecular mass coal derivatives are critically reviewed, viz. supercritical fluid chromatography, size-exclusion chromatography, charge-transfer fractionation, nmr spectroscopy, mass spectrometry and electrochemical analysis. (orig.) [de

  9. Thermodynamic comparison and efficiency enhancement mechanism of coal to alternative fuel systems

    International Nuclear Information System (INIS)

    Ji, Xiaozhou; Li, Sheng; Gao, Lin; Jin, Hongguang

    2016-01-01

    Highlights: • Energy and exergy analysis are presented to three coal-to-alternative-fuels systems. • Internal reasons for performance differences for different systems are disclosed. • The temperature and heat release of synthesis reactions are key to plant efficiency. • The distillation unit and purge gas recovery are important to efficiency enhancement. - Abstract: Coal to alternative fuels is an important path to enforce energy security and to provide clean energy. In this paper, we use exergy analysis and energy utilization diagram (EUD) methods to disclose the internal reasons for performance differences in typical coal to alternative fuel processes. ASPEN plus software is used to simulate the coal-based energy systems, and the simulation results are verified with engineering data. Results show that coal to substitute natural gas (SNG) process has a higher exergy efficiency of 56.56%, while the exergy efficiency of traditional coal to methanol process is 48.65%. It is indicated that three key factors impact the performance enhancement of coal to alternative fuel process: (1) whether the fuel is distillated, (2) the synthesis temperature and the amount of heat release from reactions, and (3) whether the chemical purge gases from synthesis and distillation units are recovered. Distillation unit is not recommended and synthesis at high temperature and with large heat release is preferable for coal to alternative fuel systems. Gasification is identified as the main source of exergy destruction, and thereby how to decrease its destruction is the key direction of plant efficiency improvement in the future. Also, decreasing the power consumption in air separation unit by seeking for advanced technologies, i.e. membrane, or using another kind of oxidant is another direction to improve plant performance.

  10. International Coal Report's coal year 1991

    Energy Technology Data Exchange (ETDEWEB)

    McCloskey, G [ed.

    1991-05-31

    Following introductory articles on factors affecting trade in coal and developments in the freight market, tables are given for coal exports and coal imports for major countries worldwide for 1989 and 1990. Figures are also included for coal consumption in Canada and the Eastern bloc,, power station consumption in Japan, coal supply and demand in the UK, electric utility coal consumption and stocks in the USA, coal production in Australia, Canada and USA by state, and world hard coal production. A final section gives electricity production and hard coal deliveries in the EEC, sales of imported and local coal and world production of pig iron and steel.

  11. National Coal Utilization Assessment: a preliminary assessment of coal utilizaton in the South. [Southern USA to 2020; forecasting

    Energy Technology Data Exchange (ETDEWEB)

    Berry, L. B.; Bjornstad, D. J.; Boercker, F. D.

    1978-01-01

    Some of the major problems and issues related to coal development and use in the South are identified and assessed assuming a base-case energy scenario for the next 45 years. This scenario assumes a midrange of coal use and a relatively high rate of nuclear use over the forecast period. The potential impacts from coal development and use are significant, particularly in the 1990-2020 time period. Practically all available sites suitable for power plant development in the assessment will be utilized by 2020. Overall, sulfur dioxide will be well below the annual primary standard; however, several local hot-spot areas were identified. In addition, sulfate concentrations will be increased significantly, particularly over Virginia, West Virginia, and northern Kentucky. Coal mining is expected to affect 6 of the 12 major ecological regions. Coal mining will lead to increased average suspended sediment concentrations in some river basins, and special measures will be required to control acid discharges from active mines in pyritic regions. The increased mining of coal and subsequent sulfur dioxide increases from its combustion may also give rise to a land-use confrontation with food and fiber production. Potential health effects from exposure to sulfur dioxide and sulfates are expected to increase rapidly in several areas, particularly in parts of Kentucky, Maryland, District of Columbia, and Georgia. Regional social costs should be relatively low, although some site-specific costs are expected to be very high. Alternative energy technologies, careful siting selection, and deployment of environmental control technologies and operating policies will be required to reduce or mitigate these potential impacts.

  12. Operation strategy analysis of a geothermal step utilization heating system

    International Nuclear Information System (INIS)

    Zheng, Guozhong; Li, Feng; Tian, Zhe; Zhu, Neng; Li, Qianru; Zhu, Han

    2012-01-01

    Geothermal energy has been successfully applied in many district heating systems. In order to promote better use of geothermal energy, it is important to analyze the operation strategy of geothermal heating system. This study proposes a comprehensive and systematic operation strategy for a geothermal step utilization heating system (GSUHS). Calculation models of radiator heating system (RHS), radiant floor heating system (RFHS), heat pump (HP), gas boiler (GB), plate heat exchanger (PHE) and pump are first established. Then the operation strategy of the GSUHS is analyzed with the aim to substantially reduce the conventional energy consumption of the whole system. Finally, the energy efficiency and geothermal tail water temperature are analyzed. With the operation strategy in this study, the geothermal energy provides the main heating amount for the system. The heating seasonal performance factor is 15.93. Compared with coal-fired heating, 75.1% of the standard coal equivalent can be saved. The results provide scientific guidance for the application of an operation strategy for a geothermal step utilization heating system. -- Highlights: ► We establish calculation models for the geothermal step utilization heating system. ► We adopt minimal conventional energy consumption to determine the operation strategy. ► The geothermal energy dominates the heating quantity of the whole system. ► The utilization efficiency of the geothermal energy is high. ► The results provide guidance to conduct operation strategy for scientific operation.

  13. Fluidized bed combustion of refuse-derived fuel in presence of protective coal ash

    Energy Technology Data Exchange (ETDEWEB)

    Ferrer, Eduardo [CIRCE, Universidad de Zaragoza, Maria de Luna, 3, Zaragoza (Spain); Aho, Martti [VTT Processes, P.O. Box 1603, 40101 Jyvaeskylae (Finland); Silvennoinen, Jaani; Nurminen, Riku-Ville [Kvaerner Power, P.O.Box 109, FIN-33101 Tampere (Finland)

    2005-12-15

    Combustion of refuse-derived fuel (RDF) alone or together with other biomass leads to superheater fouling and corrosion in efficient power plants (with high steam values) due to vaporization and condensation of alkali chlorides. In this study, means were found to raise the portion of RDF to 40% enb without risk to boilers. This was done by co-firing RDF with coal and optimizing coal quality. Free aluminum silicate in coal captured alkalies from vaporized alkali chlorides preventing Cl condensation to superheaters. Strong fouling and corrosion were simultaneously averted. Results from 100 kW and 4 MW CFB reactors are reported. (author)

  14. Illustrative comparison of one utility's coal and nuclear choices

    International Nuclear Information System (INIS)

    Keeney, R.L.; Sicherman, A.

    1983-01-01

    The technology choices facing an individual utility are complex decision problems. The paper illustrates a method designed to assist an individual utility company in making the choices in a logically consisnt manner. The resulting evaluation model, based on the principles of decision analysis, explicitly addresses the complexity to provide a basis for decision making and support for defending the decision before reviewers. The model, which incorporates economic, environmental, social, safety, and regulatory effects, is demonstrated using a coal/nuclear choice which may be faced by Utah Power and Light Company in the near future. This analysis is meant to be illustrative; more effort would be needed to gather information to support a policy decision

  15. Characterizing mercury emissions from a coal-fired power plant utilizing a venturi wet FGD system

    International Nuclear Information System (INIS)

    Vann Bush, P.; Dismukes, E.B.; Fowler, W.K.

    1995-01-01

    Southern Research Institute (SRI) conducted a test program at a coal-fired utility plant from October 24 to October 29, 1994. The test schedule was chosen to permit us to collect samples during a period of consecutive days with a constant coal source. SRI collected the samples required to measured concentrations of anions and trace elements around two scrubber modules and in the stack. Anions of interest were CI - , F - , and SO 4 = . We analyzed samples for five major elements (Al, Ca, Fe, Mg, and Ti) and 16 trace elements (As, B, Ba, Be, Cd, Co, Cr, Cu, Hg, Mn, Mo, Ni, Pb, Sb, Se, and V). SRI made measurements across two scrubber modules, each treating nominally 20% of the total effluent from the boiler. Across one module we examined the effects of changes in the liquid-to-gas ratio (L/G) on the efficiency with which the scrubber removes trace elements and anions from the flue gas. Across another module we examined the effects of slurry pH on the removal of trace elements and anions from the flue gas. Measurements in the stack quantified emissions rates of anions and trace elements

  16. Characterizing mercury emissions from a coal-fired power plant utilizing a venturi wet FGD system

    Energy Technology Data Exchange (ETDEWEB)

    Vann Bush, P.; Dismukes, E.B.; Fowler, W.K.

    1995-11-01

    Southern Research Institute (SRI) conducted a test program at a coal-fired utility plant from October 24 to October 29, 1994. The test schedule was chosen to permit us to collect samples during a period of consecutive days with a constant coal source. SRI collected the samples required to measured concentrations of anions and trace elements around two scrubber modules and in the stack. Anions of interest were CI{sup -}, F{sup -}, and SO{sub 4}{sup =}. We analyzed samples for five major elements (Al, Ca, Fe, Mg, and Ti) and 16 trace elements (As, B, Ba, Be, Cd, Co, Cr, Cu, Hg, Mn, Mo, Ni, Pb, Sb, Se, and V). SRI made measurements across two scrubber modules, each treating nominally 20% of the total effluent from the boiler. Across one module we examined the effects of changes in the liquid-to-gas ratio (L/G) on the efficiency with which the scrubber removes trace elements and anions from the flue gas. Across another module we examined the effects of slurry pH on the removal of trace elements and anions from the flue gas. Measurements in the stack quantified emissions rates of anions and trace elements.

  17. Development of I and C system for the coal feeder of coal firing plant

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Teak Soo; Park, Chan Ho [Korea Electric Power Corp. (KEPCO), Taejon (Korea, Republic of). Research Center

    1996-12-31

    KECC(Kepco Coal Feeder Control System) receives coal weight, conveyor speed and boiler demand signals. It controls coal flow by generating speed signal of feeder which conveys coal in hopper to pulverizer, displaying measured coal quantity and providing local auto and manual manipulator (author). 33 figs.

  18. Characterization of Rare Earth Element Minerals in Coal Utilization Byproducts

    Energy Technology Data Exchange (ETDEWEB)

    Montross, Scott N. [Oak Ridge Inst. for Science and Education (ORISE), Oak Ridge, TN (United States); Verba, Circe A. [National Energy Technology Lab. (NETL), Albany, OR (United States). Research Innovation Center; Collins, Keith [National Energy Technology Lab. (NETL), Albany, OR (United States). Research Innovation Center

    2017-07-17

    The United States currently produces over 100 million tons of coal utilization byproducts (CUB) per year in the form of fly ash, bottom ash, slag, and flue gas (American Coal Ash Association (ACCA), 2015). But this “waste material” also contains potentially useful levels of rare earth elements (REE). Rare earth elements are crucial for many existing and emerging technologies, but the U.S. lacks a domestic, sustainable REE source. Our project explored the possibility of developing a supply of REEs for U.S. technologies by extracting REEs from CUBs. This work offers the potential to reduce our dependence on other countries for supply of these critical elements (NETL, REE 2016 Project Portfolio). Geologic and diagenetic history, industrial preparation methods, and the specific combustion process all play major roles in the composition of CUB. During combustion, inorganic mineral phases of coal particles are fluidized at temperatures higher than 1400oC, so inorganic mineral materials are oxidized, fused, disintegrated, or agglomerated into larger spherical and amorphous (non-crystalline) particles. The original mineralogy of the coal-containing rock and heating/cooling of the material significantly affects the composition and morphology of the particles in the combustion byproduct (Kutchko and Kim, 2006). Thus, different types of coal/refuse/ash must be characterized to better understand mineral evolution during the combustion process. Our research focused on developing a working model to address how REE minerals behave during the combustion process: this research should help determine the most effective engineering methods for extracting REEs from CUBs. We used multimodal imaging and image processing techniques to characterize six rock and ash samples from different coal power plants with respect to morphology, grain size, presence of mineral phases, and elemental composition. The results of these characterization activities provided thresholds for realizing the

  19. UTILIZATION OF LIGHTWEIGHT MATERIALS MADE FROM COAL GASIFICATION SLAGS

    International Nuclear Information System (INIS)

    None

    1998-01-01

    The integrated-gasification combined-cycle (IGCC) process is an emerging technology that utilizes coal for power generation and production of chemical feedstocks. However, the process generates large amounts of solid waste, consisting of vitrified ash (slag) and some unconverted carbon. In previous projects, Praxis investigated the utilization of ''as-generated'' slags for a wide variety of applications in road construction, cement and concrete production, agricultural applications, and as a landfill material. From these studies, we found that it would be extremely difficult for ''as-generated'' slag to find large-scale acceptance in the marketplace even at no cost because the materials it could replace were abundantly available at very low cost. It was further determined that the unconverted carbon, or char, in the slag is detrimental to its utilization as sand or fine aggregate. It became apparent that a more promising approach would be to develop a variety of value-added products from slag that meet specific industry requirements. This approach was made feasible by the discovery that slag undergoes expansion and forms a lightweight material when subjected to controlled heating in a kiln at temperatures between 1400 and 1700 F. These results confirmed the potential for using expanded slag as a substitute for conventional lightweight aggregates (LWA). The technology to produce lightweight and ultra-lightweight aggregates (ULWA) from slag was subsequently developed by Praxis with funding from the Electric Power Research Institute (EPRI), Illinois Clean Coal Institute (ICCI), and internal resources. The major objectives of the subject project are to demonstrate the technical and economic viability of commercial production of LWA and ULWA from slag and to test the suitability of these aggregates for various applications. The project goals are to be accomplished in two phases: Phase I, comprising the production of LWA and ULWA from slag at the large pilot scale, and

  20. Clean Coal Day '94 Hokkaido International Seminar; Clean coal day '94 Hokkaido kokusai seminar

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-06-01

    The lectures given at the seminar were 1) Coal energy be friendly toward the earth, 2) Clean coal technology in the United Kingdom, and 3) How clean coal should be in Australia. In lecture 1), remarks are made on the importance of coal and its future, coal that protects forest, whether coal is a dirty fuel, coal combustion tests started relative to environmental pollution, acid rain in China and coal combustion, briquets effective in energy conservation, etc. In lecture 2), remarks are made on the importance of coal utilization in the United Kingdom, current state of coal utilization in power generation, problems related to gasification furnaces, problems related to combustors, problems related to high-temperature gas cleaning, function of cleaning filters, advantages of high-temperature gas treatment, actualities of gas combustors, studies of gas combustors, etc. In lecture 3), remarks are made on Australia's coal situation, problems related to clean coal technology, problems related to coal preparation technology, potentialities of Australian brown coal, coal utilization in power generation, need of new technology development, current state of coal utilization in Australia, coal utilization in metal-making industry, international cooperation on technology, etc. (NEDO)

  1. Coal development potential in Pakistan

    Energy Technology Data Exchange (ETDEWEB)

    Khan, M N; Pelofsky, A H [eds.

    1986-01-01

    A total of 48 papers were presented, and covered the following topics: the current situation in Pakistan with respect to development and utilization of coal resources; the policies that have been responsible for the development and utilization of coal resources in Pakistan; coal development and utilization in other developing nations e.g. Indonesia, Greece, Philippines, China, Thailand and Haiti; and technological developments in coal exploration; extraction, handling, transport and utilization which could accelerate future development of Pakistan's coal resources. Specific subjects covered include the use of coal in the cement industry of Pakistan; the production of briquettes for domestic use, development and training of personnel for the coal industry; and sources of finance for coal development projects. Particular emphasis is given throughout the conference to the Lakhra coal mine/power plant project which aims to develop and effectively utilize the lignite reserves of Sind Province. 47 papers have been abstracted separately.

  2. CONTROL OF NOX EMISSIONS FROM U.S. COAL-FIRED ELECTRIC UTILITY BOILERS

    Science.gov (United States)

    The paper discusses the control of nitrogen oxide (NOx) emissions from U.S. coal-fired electric utility boilers. (NOTE: In general, NOx control technologies are categorized as being either primary or secondary control technologies. Primary technologies reduce the amount of NOx pr...

  3. Preparation and evaluation of coal-derived activated carbons for removal of mercury vapor from simulated coal combustion flue fases

    Science.gov (United States)

    Hsi, H.-C.; Chen, S.; Rostam-Abadi, M.; Rood, M.J.; Richardson, C.F.; Carey, T.R.; Chang, R.

    1998-01-01

    Coal-derived activated carbons (CDACs) were tested for their suitability in removing trace amounts of vapor-phase mercury from simulated flue gases generated by coal combustion. CDACs were prepared in bench-scale and pilot-scale fluidized-bed reactors with a three-step process, including coal preoxidation, carbonization, and then steam activation. CDACs from high-organicsulfur Illinois coals had a greater equilibrium Hg0 adsorption capacity than activated carbons prepared from a low-organic-sulfur Illinois coal. When a low-organic-sulfur CDAC was impregnated with elemental sulfur at 600 ??C, its equilibrium Hg0 adsorption capacity was comparable to the adsorption capacity of the activated carbon prepared from the high-organicsulfur coal. X-ray diffraction and sulfur K-edge X-ray absorption near-edge structure examinations showed that the sulfur in the CDACs was mainly in organic forms. These results suggested that a portion of the inherent organic sulfur in the starting coal, which remained in the CDACs, played an important role in adsorption of Hg0. Besides organic sulfur, the BET surface area and micropore area of the CDACs also influenced Hg0 adsorption capacity. The HgCl2 adsorption capacity was not as dependent on the surface area and concentration of sulfur in the CDACs as was adsorption of Hg0. The properties and mercury adsorption capacities of the CDACs were compared with those obtained for commercial Darco FGD carbon.

  4. Coal in Europe: what future?: prospects of the coal industry and impacts study of the Kyoto Protocol

    International Nuclear Information System (INIS)

    Rudianto, E.

    2006-12-01

    From the industrial revolution to the 1960's, coal was massively consumed in Europe and its utilization was constantly raised. In the aftermath of World War II, coal had also an important part in reconstruction of Western Europe's economy. However, since the late 1960's, its demand has been declining. There is a (mis)conception from a number of policy makers that saying coal mining and utilizations in Europe is unnecessary. Therefore in the European Union (EU) Green Paper 2000, coal is described as an 'undesirable' fuel and the production of coal on the basis of economic criteria has no prospect. Furthermore, the commitment to the Kyoto Protocol in reducing greenhouse gases emission has aggravated this view. Faced with this situation, the quest for the future of coal industry (mining and utilization) in the lines of an energy policy is unavoidable. This dissertation did a profound inquiry trying to seek answers for several questions: Does the European Union still need coal? If coal is going to play a part in the EU, where should the EU get the coal from? What should be done to diminish negative environmental impacts of coal mining and utilization? and finally in regard to the CO 2 emission concerns, what will the state of the coal industry in the future in the EU? To enhance the analysis, a system dynamic model, called the Dynamics Coal for Europe (the DCE) was developed. The DCE is an Energy-Economy-Environment model. It synthesizes the perspectives of several disciplines, including geology, technology, economy and environment. It integrates several modules including exploration, production, pricing, demand, import and emission. Finally, the model emphasizes the impact of delays and feed-back in both the physical processes and the information and decision-making processes of the system. The calibration process for the DCE shows that the model reproduces past numbers on the scale well for several variables. Based on the results of this calibration process, it can

  5. Comparison tests, in a pilot plant, of the performance of a coal-derived granular activated carbon: a comparison with coconut husk derived activated carbon

    Energy Technology Data Exchange (ETDEWEB)

    Hirata, S.; Kasahara, A.; Tsuruzono, Y.; Gotoh, M.

    1986-01-01

    A 160 m/sup 3//d pilot plant has been used in a series of comparison tests of the performance of coal-derived and coconut husk derived activated carbons. Activated carbons are used to remove trihalomethane precursors and malodorous substances from city water. A higher mean removal of coloration and COD/sub M//sub n/ was achieved with the coal-derived carbon (by factors of 1.5 and 1.8, respectively). The two activated carbons gave similar performances as regards turbidity, alkalinity, total iron and total manganese. 4 figures, 5 tables.

  6. Coal use and coal technology study (KIS)

    International Nuclear Information System (INIS)

    Kram, T.; Okken, P.A.; Gerbers, D.; Lako, P.; Rouw, M.; Tiemersma, D.N.

    1991-11-01

    The title study aims to assess the possible role for coal in the Netherlands energy system in the first decades of the next century and the part new coal conversion technologies will play under various conditions. The conditions considered relate to (sectoral) energy demand derived from national scenarios in an international context, to energy prices, to environmental constraints (acidification, solid waste management and disposal) and to the future role for nuclear power production. Targets for reduction of greenhouse gas emissions are not explicitly included, but resulting CO 2 emissions are calculated for each variant case. The part that coal can play in the Dutch energy supply is calculated and analyzed by means

  7. Self-scrubbing coal

    International Nuclear Information System (INIS)

    Kindig, J.K.

    1992-01-01

    More than 502 million tons - 65 percent of all coal shipped to utilities in 1990 - were above 1.2 pounds of sulfur dioxide per million Btu. Most of the coal, even though cleaned in conventional coal preparation plants, still does not meet the emission limitation the Clean Air Act Amendments mandate for the year 2000. To cope with this fact, most utilities plan to switch to low sulfur (western U.S. or Central Appalachian) coal or install scrubbers. Both solutions have serous drawbacks. Switching puts local miners out of work and weakens the economy in the utility's service territory. Scrubbing requires a major capital expenditure by the utility. Scrubbers also increase the operating complexity and costs of the generating station and produce yet another environmental problem, scrubber sludge. Employing three new cost-effective technologies developed by Customer Coals International (CCl), most non-compliance coals east of the Mississippi River can be brought into year-2000 compliance. The compliance approach employed, depends upon the characteristics of the raw coal. Three types of raw coal are differentiated, based upon the amount of organic sulfur in the coals and the ease (or difficultly) of liberating the pyrite. They are: Low organic sulfur content and pyrite that liberates easily. Moderate organic sulfur content and pyrite that liberates easily. High organic sulfur content or the pyrite liberates with difficulty. In this paper examples of each type of raw coal are presented below, and the compliance approach employed for each is described. The names of the beneficiated coal products produced from each type of raw coal give above are: Carefree Coal, Self-Scrubbing Coal and Dry-Scrubbing Coal

  8. Intrinsic and extrinsic defects in a family of coal-derived graphene quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Singamaneni, Srinivasa Rao, E-mail: ssingam@ncsu.edu, E-mail: tour@rice.edu [Materials Science Division, Army Research Office, Research Triangle Park, North Carolina 27709 (United States); Department of Material Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Tol, Johan van [National High Magnetic Field Laboratory, Florida State University, 1800 E. Paul Dirac Drive, Tallahassee, Florida 32310 (United States); Ye, Ruquan [Department of Chemistry, Rice University, MS-222, 6100 Main Street, Houston, Texas 77005 (United States); Tour, James M., E-mail: ssingam@ncsu.edu, E-mail: tour@rice.edu [Department of Chemistry, Rice University, MS-222, 6100 Main Street, Houston, Texas 77005 (United States); Department of Materials Science and NanoEngineering, Rice University, MS-222, 6100 Main Street, Houston, Texas 77005 (United States); Smalley Institute for Nanoscale Science and Technology, Rice University, MS-222, 6100 Main Street, Houston, Texas 77005 (United States)

    2015-11-23

    In this letter, we report on the high frequency (239.2 and 336 GHz) electron spin resonance (ESR) studies performed on graphene quantum dots (GQDs), prepared through a wet chemistry route from three types of coal: (a) bituminous, (b) anthracite, and (c) coke; and from non-coal derived GQDs. The microwave frequency-, power-, and temperature-dependent ESR spectra coupled with computer-aided simulations reveal four distinct magnetic defect centers. In bituminous- and anthracite-derived GQDs, we have identified two of them as intrinsic carbon-centered magnetic defect centers (a broad signal of peak to peak width = 697 (10{sup −4} T), g = 2.0023; and a narrow signal of peak to peak width = 60 (10{sup −4} T), g = 2.003). The third defect center is Mn{sup 2+} ({sup 6}S{sub 5/2}, 3d{sup 5}) (signal width = 61 (10{sup −4} T), g = 2.0023, A{sub iso} = 93(10{sup −4} T)), and the fourth defect is identified as Cu{sup 2+} ({sup 2}D{sub 5/2}, 3d{sup 9}) (g{sub ⊥} = 2.048 and g{sub ‖} = 2.279), previously undetected. Coke-derived and non-coal derived GQDs show Mn{sup 2+} and two-carbon related signals, and no Cu{sup 2+} signal. The extrinsic impurities most likely originate from the starting coal. Furthermore, Raman, photoluminescence, and ESR measurements detected no noticeable changes in the properties of the bituminous GQDs after one year. This study highlights the importance of employing high frequency ESR spectroscopy in identifying the (magnetic) defects, which are roadblocks for spin relaxation times of graphene-based materials. These defects would not have been possible to probe by other spin transport measurements.

  9. The increase of the efficiency for comprehensive utilization of the fuel and energetic resources (The use coal enterprises of Kazakhstan as example)

    International Nuclear Information System (INIS)

    Satova, R.K.

    1999-01-01

    In Kazakhstan during the period of transition to the market economy in the condition of reduction of coal production and increasing expenditures in coal branch, the problem of of the rational utilization of coal resources becomes the most vital issue. In the thesis theoretical and methodological aspects of socio-economic efficiency of utilization of the fuel and energetic resources are investigated. Different fields of usage of coal and coal wastes are studied, economic evaluation of mechanic and thermo-chemical methods of producing coal in process of bringing resources saving technologies; the national efficiency of using products in the quantity of technological raw and energetic fuel is brought out; the influence refining for the widening of the raw-base of industry, promoting the economic results of production and the lowering environmental pollution. It was estimated that the extracted coal of the region includes 1020 thousand tonne of aluminium oxide and 996 thousand tonne of sulphur; in the course of extracting and coal processing 3650 thousand tonne of firm wastes appeared; during the extracting of Ehkibastuz coal - 90970 thousand tonne, and the Karaganda coal - 40040 thousand tonne.The coal components and wastes mentioned above should be considered not only as source of environment pollution but also as potential resource for the production of industrial goods according to their qualitative characteristics and the availability of technical ideas of the processing. The implementation of the mentioned pre-sup-positions in the conditions of the forming market economy will allow to use the organic part of coal more competently, to involve the other useful components of coal in the sphere of production consumption, to utilize gaseous and firm wastes and to gain of the basis the expansion of resource base of same branches of industry and the reduction of environment pollution. It will be also accompanied by the needs in capital investments for the industrial

  10. Healy Clean Coal Project: Healy coal firing at TRW Cleveland Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Koyama, T.; Petrill, E.; Sheppard, D.

    1991-08-01

    A test burn of two Alaskan coals was conducted at TRW's Cleveland test facility in support of the Healy Clean Coal Project, as part of Clean Coal Technology III Program in which a new power plant will be constructed using a TRW Coal Combustion System. This system features ash slagging technology combined with NO{sub x} and SO{sub x} control. The tests, funded by the Alaska Industrial Development and Export Authority (AIDEA) and TRW, were conducted to verify that the candidate Healy station coals could be successfully fired in the TRW coal combustor, to provide data required for scale-up to the utility project size requirements, and to produce sufficient flash-calcined material (FCM) for spray dryer tests to be conducted by Joy/NIRO. The tests demonstrated that both coals are viable candidates for the project, provided the data required for scale-up, and produced the FCM material. This report describes the modifications to the test facility which were required for the test burn, the tests run, and the results of the tests.

  11. Basic research program for innovated coal utilization in Japan. BRAIN-C program; Sekitan riyo kiban gijutsu kaihatsu. BRAIN-C program

    Energy Technology Data Exchange (ETDEWEB)

    Harada, M [Center for Coal Utilization, Japan, Tokyo (Japan)

    1996-09-01

    This paper introduces the circumstances and purpose of establishing the Basic Research Associate for Innovated Coal Utilization (BRAIN-C) Program started in October 1995, and the summary of the results therefrom in fiscal 1995. Although development of coal utilization technologies has been implemented over a number of years, there are many problems still requiring solutions. Early realization has been urged on diversification of coal utilization, acceleration of technological development and diversification of coal types. In order to achieve these goals, the necessity was recognized afresh on not only the hardwares, but also on basic technologies in terms of software which can identify properties of coals, systematize different reactions, and estimate reactions, fluidity and heat transmission of coals. Therefore, receiving a subsidy from the Agency of Natural Resources and Energy of the Ministry of International Trade and Industry, a research and development program to be implemented jointly by industries, administrative agencies and academic societies had been started with a five-year plan for the time being. With the activities for the program such as collecting 50 to 100 types of coals and supplying them to researchers, the program had been accelerated in fiscal 1995 on a large number of themes and results therefrom, including fundamental properties and thermo-chemical reactions. 2 figs., 4 tabs.

  12. JV Task 5 - Predictive Coal Quality Effects Screening Tool (PCQUEST)

    Energy Technology Data Exchange (ETDEWEB)

    Jason Laumb; Joshua Stanislowski

    2007-07-01

    PCQUEST, a package of eight predictive indices, was developed with U.S. Department of Energy (DOE) support by the Energy & Environmental Research Center to predict fireside performance in coal-fired utility boilers more reliably than traditional indices. Since the development of PCQUEST, the need has arisen for additional improvement, validation, and enhancement of the model, as well as to incorporate additional fuel types into the program database. PCQUEST was developed using combustion inorganic transformation theory from previous projects and from empirical data derived from laboratory experiments and coal boiler field observations. The goal of this joint venture project between commercial industry clients and DOE is to further enhance PCQUEST and improve its utility for a variety of new fuels and systems. Specific objectives include initiating joint venture projects with utilities, boiler vendors, and coal companies that involve real-world situations and needs in order to strategically improve algorithms and input-output functions of PCQUEST, as well as to provide technology transfer to the industrial sector. The main body of this report provides a short summary of the projects that were closed from February 1999 through July 2007. All of the reports sent to the commercial clients can be found in the appendix.

  13. Energy Conversion Alternatives Study (ECAS), Westinghouse phase 1. Volume 2: Materials considerations. [materials used in boilers and heat exchangers of energy conversion systems for electric power plants using coal

    Science.gov (United States)

    Thomas, D. E.

    1976-01-01

    Extensive studies are presented which were carried out on materials behavior in nine advanced energy conversion systems employing coal and coal-derived fuels. The areas of materials behavior receiving particular attention in this regard are: (1) fireside corrosion and erosion in boiler and heat exchanger materials, (2) oxidation and hot corrosion of gas turbine materials, (3) liquid metal corrosion and mass transport, (4) high temperature steam corrosion, (5) compatability of materials with coal slag and MHD seed, (6) reaction of materials with impure helium, (7) allowable stresses for boiler and heat exchanger materials, (8) environmental effects on mechanical properties, and (9) liquid metal purity control and instrumentation. Such information was then utilized in recommending materials for use in the critical components of the power systems, and at the same time to identify materials problem areas and to evaluate qualitatively the difficulty of solving those problems. Specific materials recommendations for critical components of the nine advanced systems under study are contained in summary tables.

  14. A bottom-up method to develop pollution abatement cost curves for coal-fired utility boilers

    International Nuclear Information System (INIS)

    Vijay, Samudra; DeCarolis, Joseph F.; Srivastava, Ravi K.

    2010-01-01

    This paper illustrates a new method to create supply curves for pollution abatement using boiler-level data that explicitly accounts for technology cost and performance. The Coal Utility Environmental Cost (CUECost) model is used to estimate retrofit costs for five different NO x control configurations on a large subset of the existing coal-fired, utility-owned boilers in the US. The resultant data are used to create technology-specific marginal abatement cost curves (MACCs) and also serve as input to an integer linear program, which minimizes system-wide control costs by finding the optimal distribution of NO x controls across the modeled boilers under an emission constraint. The result is a single optimized MACC that accounts for detailed, boiler-specific information related to NO x retrofits. Because the resultant MACCs do not take into account regional differences in air-quality standards or pre-existing NO x controls, the results should not be interpreted as a policy prescription. The general method as well as NO x -specific results presented here should be of significant value to modelers and policy analysts who must estimate the costs of pollution reduction.

  15. Advanced coal-fueled gas turbine systems

    Energy Technology Data Exchange (ETDEWEB)

    Wenglarz, R.A.

    1994-08-01

    Several technology advances since the early coal-fueled turbine programs that address technical issues of coal as a turbine fuel have been developed in the early 1980s: Coal-water suspensions as fuel form, improved methods for removing ash and contaminants from coal, staged combustion for reducing NO{sub x} emissions from fuel-bound nitrogen, and greater understanding of deposition/erosion/corrosion and their control. Several Advanced Coal-Fueled Gas Turbine Systems programs were awarded to gas turbine manufacturers for for components development and proof of concept tests; one of these was Allison. Tests were conducted in a subscale coal combustion facility and a full-scale facility operating a coal combustor sized to the Allison Model 501-K industrial turbine. A rich-quench-lean (RQL), low nitrogen oxide combustor design incorporating hot gas cleanup was developed for coal fuels; this should also be applicable to biomass, etc. The combustor tests showed NO{sub x} and CO emissions {le} levels for turbines operating with natural gas. Water washing of vanes from the turbine removed the deposits. Systems and economic evaluations identified two possible applications for RQL turbines: Cogeneration plants based on Allison 501-K turbine (output 3.7 MW(e), 23,000 lbs/hr steam) and combined cycle power plants based on 50 MW or larger gas turbines. Coal-fueled cogeneration plant configurations were defined and evaluated for site specific factors. A coal-fueled turbine combined cycle plant design was identified which is simple, compact, and results in lower capital cost, with comparable efficiency and low emissions relative to other coal technologies (gasification, advanced PFBC).

  16. Technology assessment of various coal-fuel options

    International Nuclear Information System (INIS)

    Coenen, R.; Findling, B.; Klein-Vielhauer, S.; Nieke, E.; Paschen, H.; Tangen, H.; Wintzer, D.

    1991-01-01

    The technology assessment (TA) study of coal-based fuels presented in this report was performed for the Federal Ministry for Research and Technology. Its goal was to support decision-making of the Federal Ministry for Research and Technology in the field of coal conversion. Various technical options of coal liquefaction have been analyzed on the basis of hard coal as well as lignite -- direct liquefaction of coal (hydrogenation) and different possibilities of indirect liquefaction, that is the production of fuels (methanol, gasoline) by processing products of coal gasification. The TA study takes into consideration the entire technology chain from coal mining via coal conversion to the utilization of coal-based fuels in road transport. The analysis focuses on costs of the various options, overall economic effects, which include effects on employment and public budgets, and on environmental consequences compared to the use of liquid fuels derived from oil. Furthermore, requirements of infrastructure and other problems of the introduction of coal-based fuels as well as prospects for the export of technologies of direct and indirect coal liquefaction have been analyzed in the study. 14 figs., 10 tabs

  17. Report of base consolidation promotion survey of overseas coal import in FY 1993. Feasibility survey of effective utilization of coal ash; 1993 nendo kaigaitan yunyu kiban seibi sokushin chosa. Sekitanbai yuko riyo jigyo no feasibility chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-03-01

    This report describes the effective utilization of coal ash discharged from general industry (general industry ash) as improving material of construction waste soil and deodorant for poultry industry. Coal ash is characterized by the pozzolan and self-hardening properties which are not shown in soil and sand. Coal ash having a large amount of free CaO in its composition has stronger such properties. Coal ash generated from fluidized bed combustor which is a kind of combustor of coal contains a large amount of free CaO, especially, resulting in the stronger such properties. On the other hand, coal ash has water and oil absorbing property due to its porous structure. To utilize these properties, the improving material of soft construction waste soil and deodorant for poultry industry have been selected. As a result of laboratory and field tests for the former, it was found that sufficient supporting force can be obtained. Since the protection of powder splash is required at the site, a humidification system has been developed, which can protect the splash by the humidification of 5%. The price between 500 and 1,000 yen/ton is suitable for the improving material of construction waste soil. The maximum price of the deodorant for poultry industry is 10 yen/kg. 14 refs., 40 figs., 49 tabs.

  18. Clean Coal Day '93. Hokkaido Seminar; Clean Coal Day '93. Hokkaido Seminar

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-11-01

    The titles of the lectures in this record are 1) Coal energy be friendly toward the earth, 2) Future development of coal-fired thermal power generation, 3) Current status of research and development of coalbed methane in the U.S., and 4) PFBC (pressurized fluidized bed combustion combined cycle) system. Under title 1), the reason is explained why coal is back as an energy source and is made much of. The actualities of coal being labelled as a dirty energy source are explained. The rapid growth of demand for coal in Asia is commented on and what is expected of clean coal technology is stated. Under title 2), it is predicted that atomic energy, LNG (liquefied natural gas), and coal will be the main energy sources for electric power in Japan. Under title 3), it is stated that 10% of America's total amount of methane production is attributable to coal mining, that methane is the cleanest of the hydrocarbon fuels although it is a pollution source from an environmental point of view, and that it is therefore reasonable to have its collection and utilization placed in the domain of clean coal technology. Under title 4), a PFBC system to serve as the No. 3 machine for the Tomahigashi-Atsuma power plant is described. (NEDO)

  19. Fiscal 2000 feasibility research on environmentally friendly coal utilization system. Seminar holding project (China: Zaozhuang, Yanshan, Jianshan, Jinzhou); 2000 nendo kankyo chowagata sekitan riyo system kanosei chosa hokokusho. Seminar kaisai jigyo (Chugoku Zhaozhuang, Yanshan, Jianshan, Jinzhou)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Seminars were held in China for the delivery of reports on the results of model projects with a view to popularizing the results of the clean coal technology model projects, which had been completed, for the purpose of contributing to the improvement on coal utilization technology and to the enhancement of environmental protection. The seminars took place at the sites of demonstration model projects just completed in China, namely, Zhejiang Huba Corporation (low-grade coal combustion system); Chaili Colliery, Zaozhuang Coal Mining Administration (CFBC - circulating fluidized bed combustion); Jinzhou Heat Power General Co., Ltd. (CFBC); and Beijing Yanshan Petrochemical Corporation (desulfurizing agent-added coal-water mixture system). At each of the project implementation sites, lectures were given on technical matters, technical know-how was exchanged, and study tours were organized to facilities concerned, which meant to promote the diffusion of the related technologies throughout China and, eventually, to contribute to the enhancement of environmental protection. The main subjects at the seminars included the introduction of GAP (green aid plan) projects in China, introduction of the outlines of technologies related to the model projects, verification and achievements, latest trends, and measures for the diffusion of the technologies. Study tours were made, and videos were shown relating to the local conditions. Every one of the seminars was successfully attended by 60-70 participants. (NEDO)

  20. Pneumatic automation systems in coal mines

    Energy Technology Data Exchange (ETDEWEB)

    Shmatkov, N.A.; Kiklevich, Yu.N.

    1981-04-01

    Giprougleavtomatizatsiya, Avtomatgormash, Dongiprouglemash, VNIIGD and other plants develop 30 new pneumatic systems for mine machines and equipment control each year. The plants produce about 200 types of pneumatic systems. Major pneumatic systems for face systems, machines and equipment are reviewed: Sirena system for remote control of ANShch and AShchM face systems for steep coal seams, UPS control systems for pump stations, PAUZA control system for stowing machines, remote control system of B100-200 drilling machines, PUSK control system for coal cutter loaders with pneumatic drive (A-70, Temp), PUVSh control system for ventilation barriers activated from moving electric locomotives, PAZ control system for skip hoist loading. Specifications of the systems are given. Economic benefit produced by the pneumatic control systems are evaluated (from 1,500 to 40,000 rubles/year). Using the systems increases productivity of face machines and other machines used in black coal mines by 5 to 30%.

  1. Coal slurries: An environmental bonus?

    International Nuclear Information System (INIS)

    Basta, N.; Moore, S.; Ondrey, G.

    1994-01-01

    Developers and promoters of coal-water slurries and similar CWF (coal-water fuel) technologies have had a hard time winning converts since they unveiled their first commercial processes in the 1970s. The economic appeal of such processes, marginal at best, varies with the price of oil. Nevertheless, the technology is percolating, as geopolitics and environmental pressures drive new processes. Such fuels are becoming increasingly important to coal-rich, oil-poor nations such as China, as they attempt to build an onshore fuel supply. Meanwhile, improvements are changing the way coal-fired processes are viewed. Where air pollution regulations once discouraged the use of coal fuels, new coal processes have been developed that cut nitrous oxides (NOx) emissions and provide a use for coal fines, previously viewed as waste. The latest developments in the field were all on display at the 19th International Technical Conference on Coal Utilization and Fuel Systems, held in Clearwater, Fla., on March 21--24. At this annual meeting, sponsored by the Coal and Slurry Technology Association, (Washington, D.C.) and the Pittsburgh Energy Technology Center of the US Dept. of Energy (PETC), some 200 visitors from around the work gathered to discuss the latest developments in coal slurry utilization--new and improved processes, and onstream plants. This paper presents highlights from the conference

  2. Automated mineralogical logging of coal and coal measure core

    Energy Technology Data Exchange (ETDEWEB)

    Stephen Fraser; Joan Esterle; Colin Ward; Ruth Henwood; Peter Mason; Jon Huntington; Phil Connor; Reneta Sliwa; Dave Coward; Lew Whitbourn [CSIRO Exploration & Mining (Australia)

    2006-06-15

    A mineralogical core logging system based on spectral reflectance (HyLogger{trademark}) has been used to detect and quantify mineralogies in coal and coal measure sediments. The HyLogger{trademark} system, as tested, operates in the visible-to-shortwave infrared spectral region, where iron oxides, sulphates, hydroxyl-bearing and carbonate minerals have characteristic spectral responses. Specialized software assists with mineral identification and data display. Three Phases of activity were undertaken. In Phase I, carbonates (siderite, ankerite, calcite) and clays (halloysite, dickite) were successfully detected and mapped in coal. Repeat measurements taken from one of the cores after three months demonstrated the reproducibility of the spectral approach, with some spectral differences being attributed to variations in moisture content and oxidation. Also, investigated was HyLogger{trademark} ability to create a 'brightness-profile' on coal materials, and these results were encouraging. In Phase II, geotechnically significant smectitic clays (montmorillonite) were detected and mapped in cores of clastic roof and floor materials. Such knowledge would be useful for mine planning and design purposes. In Phase III, our attempts at determining whether phosphorus-bearing minerals such as apatite could be spectrally detected were less than conclusive. A spectral index could only be created for apatite, and the relationships between the spectrally-derived apatite-index, the XRD results and the analytically-derived phosphorus measurements were ambiguous.

  3. Coal contract cost reduction through resale of coal

    International Nuclear Information System (INIS)

    Simon, R.

    1990-01-01

    The weak coal market of the 1980's has enabled utilities and other users of coal to enjoy stable or falling prices for coal supplies. Falling prices for coal stimulated the renegotiation of numerous coal contracts in recent years, as buyers look to take advantage of lower fuel prices available in the marketplace. This paper examines the use of coal resale transactions as a means of reducing fuel costs, and analyzes the benefits and risks associated with such transactions

  4. Development of a Coal Quality Expert

    Energy Technology Data Exchange (ETDEWEB)

    None

    1998-06-20

    ABB Power Plant Laboratories Combustion Engineering, Inc., (ABB CE) and CQ Inc. completed a broad, comprehensive program to demonstrate the economic and environmental benefits of using higher quality U.S. coals for electrical power generation and developed state-of-the-art user-friendly software--Coal Quality Expert (CQE)-to reliably predict/estimate these benefits in a consistent manner. The program was an essential extension and integration of R and D projects performed in the past under U.S. DOE and EPRI sponsorship and it expanded the available database of coal quality and power plant performance information. This software will permit utilities to purchase the lowest cost clean coals tailored to their specific requirements. Based on common interest and mutual benefit, the subject program was cosponsored by the U.S. DOE, EPRI, and eight U.S. coal-burning utilities. In addition to cosponsoring this program, EPN contributed its background research, data, and computer models, and managed some other supporting contracts under the terms of a project agreement established between CQ Inc. and EPRI. The essential work of the proposed project was performed under separate contracts to CQ Inc. by Electric Power Technologies (El?'T), Black and Veatch (B and V), ABB Combustion Engineering, Babcock and Wilcox (B and W), and Decision Focus, Inc. Although a significant quantity of the coals tied in the United States are now cleaned to some degree before firing, for many of these coals the residual sulfur content requires users to install expensive sulfur removal systems and the residual ash causes boilers to operate inefficiently and to require frequent maintenance. Disposal of the large quantities of slag and ash at utility plant sites can also be problematic and expensive. Improved and advanced coal cleaning processes can reduce the sulfur content of many coals to levels conforming to environmental standards without requiring post-combustion desulfurization systems. Also

  5. Clean coal technology. Coal utilisation by-products

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-08-15

    The need to remove the bulk of ash contained in flue gas from coal-fired power plants coupled with increasingly strict environmental regulations in the USA result in increased generation of solid materials referred to as coal utilisation by-products, or CUBs. More than 40% of CUBs were sold or reused in the USA in 2004 compared to less than 25% in 1996. A goal of 50% utilization has been established for 2010. The American Coal Ash Association (ACCA) together with the US Department of Energy's Power Plant Improvement Initiative (PPPI) and Clean Coal Power Initiative (CCPI) sponsor a number of projects that promote CUB utilization. Several are mentioned in this report. Report sections are: Executive summary; Introduction; Where do CUBs come from?; Market analysis; DOE-sponsored CUB demonstrations; Examples of best-practice utilization of CUB materials; Factors limiting the use of CUBs; and Conclusions. 14 refs., 1 fig., 5 tabs., 14 photos.

  6. A newer concept of setting up coal refineries in coal utilising industries through environmentally sound clean coal technology of organosuper refining of coals

    International Nuclear Information System (INIS)

    Sharma, D.K.

    1994-01-01

    In order to reduce the losses of premium organic matter of coal and its immense potential energy which is present in the form of stronger interatomic and intramolecular bonding energies, a newer and convenient technique of recovering the premium organic matter from low grade coals by organosuper-refining technique which operates under ambient pressure conditions has been developed. The residual coal obtained can be used as environmentally clean fuel or as a feedstock for the industries based on carbonization and gasification. It is suggested that a beginning be made by setting up coal refineries in coal utilizing industries on the basis of the presently developed new technology of organosuper-refining of coals to recover premium grade organic chemical feed stocks from coals before utilizing coal by techniques such as bubble bed or recirculatory fluidized bed or pulverized coal combustion in thermal power stations, carbonization in steel plants or other carbonization units, gasification in fertilizer industries or in integrated coal gasification combined cycle power generation. Thus, coal refineries may produce value added aromatic chemical feed stocks, formed coke or coke manufacturing; and carbon fillers for polymers. (author). 100 refs., 1 fig

  7. Enzymatic desulfurization of coal

    Energy Technology Data Exchange (ETDEWEB)

    Boyer, Y.N.; Crooker, S.C.; Kitchell, J.P.; Nochur, S.V.

    1991-05-16

    The overall objective of this program was to investigate the feasibility of an enzymatic desulfurization process specifically intended for organic sulfur removal from coal. Toward that end, a series of specific objectives were defined: (1) establish the feasibility of (bio)oxidative pretreatment followed by biochemical sulfate cleavage for representative sulfur-containing model compounds and coals using commercially-available enzymes; (2) investigate the potential for the isolation and selective use of enzyme preparations from coal-utilizing microbial systems for desulfurization of sulfur-containing model compounds and coals; and (3) develop a conceptual design and economic analysis of a process for enzymatic removal of organic sulfur from coal. Within the scope of this program, it was proposed to carry out a portion of each of these efforts concurrently. (VC)

  8. Coal-oil coprocessing at HTI - development and improvement of the technology

    Energy Technology Data Exchange (ETDEWEB)

    Stalzer, R.H.; Lee, L.K.; Hu, J.; Comolli, A. [Hydrocarbon Technologies, Inc., Lawrenceville, NJ (United States)

    1995-12-31

    Co-Processing refers to the combined processing of coal and petroleum-derived heavy oil feedstocks. The coal feedstocks used are those typically utilized in direct coal liquefaction: bituminous, subbituminous, and lignites. Petroleum-derived oil, is typically a petroleum residuum, containing at least 70 W% material boiling above 525{degrees}C. The combined coal and oil feedstocks are processed simultaneously with the dual objective of liquefying the coal and upgrading the petroleum-derived residuum to lower boiling (<525{degrees}C) premium products. HTI`s investigation of the Co-Processing technology has included work performed in laboratory, bench and PDU scale operations. The concept of co-processing technology is quite simple and a natural outgrowth of the work done with direct coal liquefaction. A 36 month program to evaluate new process concepts in coal-oil coprocessing at the bench-scale was begun in September 1994 and runs until September 1997. Included in this continuous bench-scale program are provisions to examine new improvements in areas such as: interstage product separation, feedstock concentrations (coal/oil), improved supported/dispersed catalysts, optimization of reactor temperature sequencing, and in-line hydrotreating. This does not preclude other ideas from DOE contracts and other sources that can lead to improved product quality and economics. This research work has led to important findings which significantly increased liquid yields, improved product quality, and improved process economics.

  9. Bio-coal briquettes using low-grade coal

    Science.gov (United States)

    Estiaty, L. M.; Fatimah, D.; Widodo

    2018-02-01

    The technology in using briquettes for fuel has been widely used in many countries for both domestic and industrial purposes. Common types of briquette used are coal, peat, charcoal, and biomass. Several researches have been carried out in regards to the production and the use of briquettes. Recently, researches show that mixing coal and biomass will result in an environmentally friendly briquette with better combustion and physical characteristics. This type of briquette is known as bio-coal briquettes. Bio-coal briquettes are made from agriculture waste and coal, which are readily available, cheap and affordable. Researchers make these bio-coal briquettes with different aims and objectives, depending on the issues to address, e.g. utilizing agricultural waste as an alternative energy to replace fossil fuels that are depleting its reserves, adding coal to biomass in order to add calorific value to bio-coal briquette, and adding biomass to coal to improve its chemical and physical properties. In our research, biocoal briquettes are made to utilize low grade coal. The biomass we use, however, is different from the ones used in past researches because it has undergone fermentation. The benefits of using such biomass are 1. Fermentation turns the hemi cellulose into a simpler form, so that the burning activation energy decreases while the calorific value increases. 2. Enzym produced will bind to heavy metals from coal as co-factors, forming metals that are environmentally friendly.

  10. The Rheology of a Three Component System: COAL/WATER/#4 Oil Emulsions.

    Science.gov (United States)

    Gilmartin, Barbara Jean

    The purpose of this investigation was to study the rheology of a three component system, coal/water/#4 oil emulsions (COW), in which the third component, water, was present in a significant concentration, and to determine the applicability of existing theories from suspension rheology to the three component system studied. In a coal/water/oil emulsion, free coal particles adhere to the surface of the water droplets, preventing their coagulation, while the larger coal particles reside in the matrix of stabilized water droplets. The use of liquid fuels containing coal is a means of utilizing our nation's coal reserves while conserving oil. These fuels can be burned in conventional oil-fired furnaces. In this investigation, a high sulfur, high ash, bituminous coal was used, along with a heavy #4 oil to prepare the emulsions. The coal was ground to a log-normal distribution with an average particle size of 62 microns. A Haake RV3 concentric cylinder viscometer, with a ribbed measuring system, was used to determine the viscosity of the emulsions. A physical pendulum settling device measured the shift in center of mass of the COW as a function of time. The flow behavior of the fuel in pipes was also tested. In interpreting the data from the viscometer and the pipe flow experiments, a power law analysis was used in the region from 30 s('-1) to 200 s('-1). Extrapolation methods were used to obtain the low and high shear behavior of the emulsions. In the shear rate region found in boiler feed systems, COW are shear thinning with a flow behavior index of 0.7. The temperature dependent characteristic of the emulsions studied were similar and followed an Arrhenius type relationship. The viscosity of the COW decreases with increasing coal average particle size and is also a function of the width of the size distribution used. The type of coal used strongly influences the rheology of the fuel. The volatile content and the atomic oxygen to nitrogen ratio of the coal are the most

  11. Co-gasification of coal and wood to reduce environmental pollution

    Energy Technology Data Exchange (ETDEWEB)

    Giovanni Pino; Martino Paolucci; Francesco Geri; F. Tunzio; G. Spazzafumo [APAT - National Agency for Environmental Protection and Technical Services, Rome (Italy)

    2005-07-01

    After presenting the paper 'Co-firing and Co-gasification Wood and Coal' at the First International Conference on Clean Coal Technologies, the authors thought about studying in depth the gasification process of woody biomass and coal. This would lead, once all the technical difficulties related to hybrid feeding were solved, to bear a system which mainly presents two advantages. The first advantage is derived by knowing that woody biomass contains a mass percentage of sulphur which is hundred times smaller as much when compared to coal. The second advantage derives from the fact that, given a capturing and sequestration system for the carbon dioxide, it is feasible to control the biomass/coal ratio at the feeding state. In doing so, emissions of carbon dioxide which are not captured will quantitatively be equal to the ones that would derive from the plain combustion of the biomass. 3 refs., 4 figs.

  12. Healy Clean Coal Project: Healy coal firing at TRW Cleveland Test Facility. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Koyama, T.; Petrill, E.; Sheppard, D.

    1991-08-01

    A test burn of two Alaskan coals was conducted at TRW`s Cleveland test facility in support of the Healy Clean Coal Project, as part of Clean Coal Technology III Program in which a new power plant will be constructed using a TRW Coal Combustion System. This system features ash slagging technology combined with NO{sub x} and SO{sub x} control. The tests, funded by the Alaska Industrial Development and Export Authority (AIDEA) and TRW, were conducted to verify that the candidate Healy station coals could be successfully fired in the TRW coal combustor, to provide data required for scale-up to the utility project size requirements, and to produce sufficient flash-calcined material (FCM) for spray dryer tests to be conducted by Joy/NIRO. The tests demonstrated that both coals are viable candidates for the project, provided the data required for scale-up, and produced the FCM material. This report describes the modifications to the test facility which were required for the test burn, the tests run, and the results of the tests.

  13. Plant concept of heat utilization of high temperature gas-cooled reactors. Co-generation and coal-gasification

    International Nuclear Information System (INIS)

    Tonogouchi, M.; Maeda, S.; Ide, A.

    1996-01-01

    In Japan, JAERI is now constructing the High temperature Engineering Test Reactor (HTTR) and the new era is coming for the development and utilization of HTR. Recognizing that the heat utilization of HTR would mitigate problems of environment and resources and contribute the effective use and steady supply of the energy, FAPIG organized a working group named 'HTR-HUC' to study the heat utilization of HTR in the field other than electric power generation. We chose three kinds of plants to study, 1) a co-generation plant in which the existing power units supplying steam and electricity can be replaced by a nuclear plant, 2) Coal gasification plant which can accelerate the clean use of coal and contribute stable supply of the energy and preservation of the environment in the world and 3) Hydrogen production plant which can help to break off the use of the new energy carrier HYDROGEN and will release people from the dependence of fossil energy. In this paper the former two plants, Co-generation chemical plant and Coal-gasification plant are focussed on. The main features, process flow and safety assessment of these plants are discussed. (J.P.N.)

  14. Projections of air toxic emissions from coal-fired utility combustion: Input for hazardous air pollutant regulators

    International Nuclear Information System (INIS)

    Szpunar, C.B.

    1993-01-01

    The US Environmental Protection Agency (EPA) is required by the 1990 CAAA to promulgate rules for all ''major'' sources of any of these HAPs. According to the HAPs section of the new Title III, any stationary source emitting 10 tons per year (TPY) of one HAP or 25 TPY of a combination of HAPs will be considered and designated a major source. In contrast to the original National Emission Standards for Hazardous Air Pollutants (NESHAP), which were designed to protect public health to ''an ample margin of safety,'' the new Title III, in its first phase, will regulate by industrial category those sources emitting HAPs in excess of the 10/25-TPY threshold levels, regardless of health risks. The trace elements normally associated with coal mineral matter and the various compounds formed during coal combustion have the potential to produce hazardous air toxic emissions from coal-fired electric utilities. Under Title III, the EPA is required to perform certain studies, prior to any regulation of electric utilities; these studies are currently underway. Also, the US Department of Energy (DOE) maintains a vested interest in addressing those energy policy questions affecting electric utility generation, coal mining, and steel producing critical to this country's economic well-being, where balancing the costs to the producers and users of energy with the benefits of environmental protection to the workers and the general populace remains of significant concern

  15. The role of coal in the US energy economy: Interfuel competition, environmental concerns, and the impact of utility restructuring

    International Nuclear Information System (INIS)

    Raschke, M.G.

    1988-01-01

    This paper briefly examines the role coal plays in the US energy economy and its competition with nuclear power, and then in greater detail the impact of environmental regulation, changes in utility regulation, and inter fuel competition on the future of coal. The US as the world's number two coal producer, shares many of the same problems and concerns as China, the world's number one coal producer. The use of coal in electric generation has been and will continue to be the only growth sector for the coal industry. The steel industry remains in permanent long-term decline. Forecasts vary, but there are indications that even in conservative forecasts, there is more down side risk than upside potential. Poor performance in the nuclear power sector can be expected to favorably impact coal consumption in the long term. Continued escalation of operating costs could erode any cost advantage that nuclear plants currently enjoy. However, environmental concerns could also escalate operating costs for coal fired plants. Also, concern over the greenhouse effect may lead policy makers to reexamine the nuclear option of inherently safe reactors. The greatest challenge to expanded use of coal comes from environmental concerns. Acid rain is a complex political, economic, and scientific issue. Clean coal technologies are seen by many as the answer to the threat posed by various forms of clean air legislation and regulation. Significant changes in the regulatory environment for electric and gas utilities and technological developments are likely in the 1990's to alter the nature of the electric generation industry

  16. FY 2000 Feasibility study on the environmentally-friendly coal utilization systems as part of the international project for coal utilization measures. Feasibility study on supporting introduction of the environmentally-friendly coal utilization systems in Vietnam (Model project for introduction of advanced coal preparation systems); 2000 nendo kokusai sekitan riyo taisaku jigyo chosa hokokusho. Kankyo chowagata sekitan riyo system kanosei chosa jigyo Vietnam ni okeru kankyo chowagata sekitan riyo system donyu shien jigyo (kodo sentan system donyu model jigyo kanosei chosa jigyo)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-06-01

    The feasibility study was conducted on a model project in Vietnam, aimed at solving the environmental pollution problems resulting from use of coal by demonstrating and disseminating the Japan's environmental technologies in the Southeast Asian countries. The feasibility study was conducted for the Cua Ong Coal Preparation Enterprise, which has the largest coal preparation capacity in Vietnam and port facilities. It is treating raw coal from 10 coal mines for classification and preparation, and shipping coal of various types that meet the standards for domestic use and export. The survey results point out that unrecovered coal remains in waste water discharged from the coal preparation plants to pollute the sea area, and that quantity of the refuse increases because of the unrecovered coal it contains. The environmental technologies needed to introduce include modification to variable wave pattern type jigging separator, refuse height measuring instrument and automatic controller, circulating heavy medium gravimeter, highly functional settling pond, and flocculent facilities. (NEDO)

  17. Thermodynamic analysis of a coal-based polygeneration system with partial gasification

    International Nuclear Information System (INIS)

    Li, Yuanyuan; Zhang, Guoqiang; Yang, Yongping; Zhai, Dailong; Zhang, Kai; Xu, Gang

    2014-01-01

    This study proposed a polygeneration system based on coal partial gasification, in which methanol and power were generated. This proposed system, comprising chemical and power islands, was designed and its characteristics are analyzed. The commercial software Aspen Plus was used to perform the system analysis. In the case study, the energy and exergy efficiency values of the proposed polygeneration system were 51.16% and 50.58%, which are 2.34% and 2.10%, respectively, higher than that of the reference system. Energy-Utilization Diagram analysis showed that removing composition adjustment and recycling 72.7% of the unreacted gas could reduce the exergy destruction during methanol synthesis by 46.85% and that the char utilized to preheat the compressed air could reduce the exergy destruction during combustion by 10.28%. Sensitivity analysis was also performed. At the same capacity ratio, the energy and exergy efficiency values of the proposed system were 1.30%–2.48% and 1.21%–2.30% higher than that of the reference system, respectively. The range of chemical-to-power capacity ratio in the proposed system was 0.41–1.40, which was narrower than that in the reference system. But the range of 1.04–1.4 was not recommended for the disappearance of energy saving potential in methanol synthesis. - Highlights: • A novel polygeneration system based on coal partial gasification is proposed. • The efficient conversion method for methanol and power is explored. • The exergy destruction in chemical energy conversion processes is decreased. • Thermodynamic performance and system characteristics are analyzed

  18. A collaborative project on the effects of coal quality on NO{sub x} emissions and carbon burnout in pulverised coal-fired utility boilers

    Energy Technology Data Exchange (ETDEWEB)

    Tilley, H.A.; O`Connor, M.; Stephenson, P.L.; Whitehouse, M.; Richards, D.G.; Hesselmann, G.; MacPhail, J.; Lockwood, F.C.; Williamson, J.; Williams, A.; Pourkashanian, M. [ETSU, Harwell (United Kingdom)

    1998-12-01

    This paper describes a UK Department of Trade and Industry-supported collaborative project entitled `The Effects of Coal Quality on Emission of Oxides of Nitrogen (NO{sub x}) and Carbon Burnout in Pulverised Coal-fired Utility Boilers`. The project involved extensive collaboration between the UK power generators, boiler and burner manufacturers and research groups in both industry and academia, together with several of the world`s leading computational fluid dynamics (CFD) `software houses`. The prime objectives of the project were to assess the relationship between NO{sub x} emissions and carbon burnout and to develop and validate predictive tools for assessing coals. Experimental work was carried out on various laboratory-scale apparatus and on single burner test facilities ranging from 160 kW{sub th} to 40 MW{sub th} in size and measurements were obtained from full-scale 500 MW{sub e} utility boiler trials. This data and basic coal data were then used to develop mathematical models to predict full-scale boiler performance with respect to NO{sub x} emissions and carbon-in-ash. Results showed good correlations for NO{sub x} and carbon burnout when comparing data from full-scale and large-scale rig trials. Laboratory-scale tests were found to be useful but the influence of burner aerodynamics was more difficult to quantify. Modelling showed that predicted NO{sub x} emissions were encouragingly close to measured emissions but predicting carbon burnout was less successful. 24 refs., 4 figs., 6 tabs.

  19. Proceedings of the 2nd symposium on valves for coal conversion and utilization

    Energy Technology Data Exchange (ETDEWEB)

    Maxfield, D.A. (ed.)

    1981-01-01

    The 2nd symposium on valves for coal conversion and utilization was held October 15 to 17, 1980. It was sponsored by the US Department of Energy, Morgantown Energy Technology Center, in cooperation with the Valve Manufacturers Association. Seventeen papers have been entered individually into EDB and ERA. (LTN)

  20. DEVELOPMENT OF CONTINUOUS SOLVENT EXTRACTION PROCESSES FOR COAL DERIVED CARBON PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    Elliot B. Kennel; Philip L. Biedler; Chong Chen; Dady Dadyburjor; Liviu Magean; Peter G. Stansberry; Alfred H. Stiller; John W. Zondlo

    2005-04-13

    The purpose of this DOE-funded effort is to develop continuous processes for solvent extraction of coal for the production of carbon products. These carbon products include materials used in metals smelting, especially in the aluminum and steel industries, as well as porous carbon structural material referred to as ''carbon foam'' and carbon fibers. A process has been developed which results in high quality binder pitch suitable for use in graphite electrodes or carbon anodes. A detailed description of the protocol is given by Clendenin. Briefly, aromatic heavy oils are hydro-treated under mild conditions in order to increase their ability to dissolve coal. An example of an aromatic heavy oil is Koppers Carbon Black Base (CBB) oil. CBB oil has been found to be an effective solvent and acceptably low cost (i.e., significantly below the market price for binder pitch, or about $280 per ton at the time of this writing). It is also possible to use solvents derived from hydrotreated coal and avoid reliance on coke oven recovery products completely if so desired.

  1. Prediction method of unburnt carbon for coal fired utility boiler using image processing technique of combustion flame

    International Nuclear Information System (INIS)

    Shimoda, M.; Sugano, A.; Kimura, T.; Watanabe, Y.; Ishiyama, K.

    1990-01-01

    This paper reports on a method predicting unburnt carbon in a coal fired utility boiler developed using an image processing technique. The method consists of an image processing unit and a furnace model unit. temperature distribution of combustion flames can be obtained through the former unit. The later calculates dynamics of the carbon reduction from the burner stages to the furnace outlet using coal feed rate, air flow rate, chemical and ash content of coal. An experimental study shows that the prediction error of the unburnt carbon can be reduced to 10%

  2. Prediction of China's coal production-environmental pollution based on a hybrid genetic algorithm-system dynamics model

    International Nuclear Information System (INIS)

    Yu Shiwei; Wei Yiming

    2012-01-01

    This paper proposes a hybrid model based on genetic algorithm (GA) and system dynamics (SD) for coal production–environmental pollution load in China. GA has been utilized in the optimization of the parameters of the SD model to reduce implementation subjectivity. The chain of “Economic development–coal demand–coal production–environmental pollution load” of China in 2030 was predicted, and scenarios were analyzed. Results show that: (1) GA performs well in optimizing the parameters of the SD model objectively and in simulating the historical data; (2) The demand for coal energy continuously increases, although the coal intensity has actually decreased because of China's persistent economic development. Furthermore, instead of reaching a turning point by 2030, the environmental pollution load continuously increases each year even under the scenario where coal intensity decreased by 20% and investment in pollution abatement increased by 20%; (3) For abating the amount of “three types of wastes”, reducing the coal intensity is more effective than reducing the polluted production per tonne of coal and increasing investment in pollution control. - Highlights: ► We propos a GA-SD model for China's coal production-pollution prediction. ► Genetic algorithm (GA) can objectively and accurately optimize parameters of system dynamics (SD) model. ► Environmental pollution in China is projected to grow in our scenarios by 2030. ► The mechanism of reducing waste production per tonne of coal mining is more effective than others.

  3. Economic and environmental aspects of coal preparation and the impact on coal use for power generation

    International Nuclear Information System (INIS)

    Lockhart, N.C.

    1995-01-01

    Australia is the world's largest coal exporter, and coal is the nation's largest export and dominant revenue earner. The future competitiveness of coal will be maintained through improved preparation of coal for traditional markets, by upgrading for new markets, and via coal utilization processes that are more efficient and environmentally acceptable. Australia is also a niche supplier of technologies and services with the potential to expand. This potential extends to the increasing vertical integration of coal supplies (whether Australian, indigenous or blended) with downstream utilization such as power generation. Technological advancement is a key element of industry strategy and coal preparation research and development, and clean coal technologies are critical aspects. This paper summarizes these issues, linking the economic and environmental aspects across the coal production and utilization chain. (author). 2 tabs., 1 fig., 6 refs

  4. Surface chemical problems in coal flotation

    Science.gov (United States)

    Taylor, S. R.; Miller, K. J.; Deurbrouck, A. W.

    1981-02-01

    As the use of coal increases and more fine material is produced by mining and processing, the need for improved methods of coal beneficiation increases. While flotation techniques can help meet these needs, the technique is beset with many problems. These problems involve surface chemical and interfacial properties of the coal-mineral-water slurry systems used in coal flotation. The problems associated with coal flotation include non-selectivity, inefficient reagent utilization, and excessive variablity of results. These problems can be broadely classified as a lack of predictability. The present knowledge of coal flotation is not sufficient, in terms of surface chemical parameters, to allow prediction of the flotation response of a given coal. In this paper, some of the surface chemical properties of coal and coal minerals that need to be defined will be discussed in terms of the problems noted above and their impact on coal cleaning.

  5. Utilization of net energy analysis as a method of evaluating energy systems

    International Nuclear Information System (INIS)

    Lee, Gi Won; Cho, Joo Hyun; Hah, Yung Joon

    1994-01-01

    It can be said that the upturn of Korean nuclear power program started in early 70's while future plants for the construction of new nuclear power plants virtually came to a halt in United States since the late 70's. It is projected that power plant systems from combination of nuclear and coal fired types might shift to all coal fired type in U.S., considering the current U.S. trend of construction on the new plants. However, with the depletion of natural resources, it may be desirable to understand the utilization of two competitive utility technologies in terms of invested energy. Presented in this paper is a method of comparing two energy systems in terms of energy investment and a brief result from energy economic analysis of nuclear power plant and coal fired steam power plant to illustrate the methodology. The method of comparison is Net Energy Analysis (NEA). In doing so, Input-Output Analysis (lOA) among industries and commodities is done. Using these information, net energy ratios are calculated and compared. Although NEA does not offer conclusive solution, it can be used as a screening process in decision making

  6. YEAR 2 BIOMASS UTILIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Christopher J. Zygarlicke

    2004-11-01

    This Energy & Environmental Research Center (EERC) Year 2 Biomass Utilization Final Technical Report summarizes multiple projects in biopower or bioenergy, transportation biofuels, and bioproducts. A prototype of a novel advanced power system, termed the high-temperature air furnace (HITAF), was tested for performance while converting biomass and coal blends to energy. Three biomass fuels--wood residue or hog fuel, corn stover, and switchgrass--and Wyoming subbituminous coal were acquired for combustion tests in the 3-million-Btu/hr system. Blend levels were 20% biomass--80% coal on a heat basis. Hog fuel was prepared for the upcoming combustion test by air-drying and processing through a hammer mill and screen. A K-Tron biomass feeder capable of operating in both gravimetric and volumetric modes was selected as the HITAF feed system. Two oxide dispersion-strengthened (ODS) alloys that would be used in the HITAF high-temperature heat exchanger were tested for slag corrosion rates. An alumina layer formed on one particular alloy, which was more corrosion-resistant than a chromia layer that formed on the other alloy. Research activities were completed in the development of an atmospheric pressure, fluidized-bed pyrolysis-type system called the controlled spontaneous reactor (CSR), which is used to process and condition biomass. Tree trimmings were physically and chemically altered by the CSR process, resulting in a fuel that was very suitable for feeding into a coal combustion or gasification system with little or no feed system modifications required. Experimental procedures were successful for producing hydrogen from biomass using the bacteria Thermotoga, a deep-ocean thermal vent organism. Analytical procedures for hydrogen were evaluated, a gas chromatography (GC) method was derived for measuring hydrogen yields, and adaptation culturing and protocols for mutagenesis were initiated to better develop strains that can use biomass cellulose. Fly ash derived from

  7. Palynology in coal systems analysis-The key to floras, climate, and stratigraphy of coal-forming environments

    Science.gov (United States)

    Nichols, D.J.

    2005-01-01

    Palynology can be effectively used in coal systems analysis to understand the nature of ancient coal-forming peat mires. Pollen and spores preserved in coal effectively reveal the floristic composition of mires, which differed substantially through geologic time, and contribute to determination of depositional environment and paleo- climate. Such applications are most effective when integrated with paleobotanical and coal-petrographic data. Examples of previous studies of Miocene, Carboniferous, and Paleogene coal beds illustrate the methods and results. Palynological age determinations and correlations of deposits are also important in coal systems analysis to establish stratigraphic setting. Application to studies of coalbed methane generation shows potential because certain kinds of pollen are associated with gas-prone lithotypes. ??2005 Geological Society of America.

  8. Use of continuous mercury monitors at coal-fired utilities

    Energy Technology Data Exchange (ETDEWEB)

    Laudal, Dennis L.; Thompson, Jeffrey S.; Pavlish, John H. [Energy and Environmental Research Center, PO Box 9018, Grand Forks, ND 58202-9018 (United States); Brickett, Lynn A. [U.S. Department of Energy National Energy Technology Laboratory, PO Box 10940 MS 922-273C, Pittsburgh, PA 15236-0940 (United States); Chu, Paul [EPRI, 3412 Hillview Avenue, PO Box 10412, Palo Alto, CA 94303 (United States)

    2004-06-15

    In December 2000, the U.S. Environmental Protection Agency (EPA) published a notice of its determination that regulation of coal-fired utilities for mercury is appropriate and necessary as part of the hazardous air pollutant emission regulation for electric utility steam-generating units. To aid in the determination of mercury emissions from these sources, on-line mercury semicontinuous emission monitors (Hg SCEMs) have been developed and tested in recent years. Although Hg SCEMs have shown promise during these previous tests, rigorous field or long-term testing has not been done. In the past year, commercially available and prototype Hg SCEMs have been used by the Energy and Environmental Research Center (EERC) and others at several power plants. As part of the EERC work, Hg SCEMs were operated at a range of conditions and locations. In addition, the Hg SCEMs were operated for up to 1 month. The use of Hg SCEMs at these plants allowed for near-real-time data to be collected under changing plant conditions, as well as during normal ranges of operating conditions. Mercury emission data were obtained from different plants with different configurations. The plant configurations incorporated various pollution control technologies, including selective catalytic reduction (SCR), selective noncatalytic reduction, ammonium sulfate injection for flue gas conditioning, and flue gas desulfurization (FGD). The particulate control devices included electrostatic precipitators (ESPs), a fabric filter (FF), and a venturi scrubber. The testing at these sites included the operation of Hg SCEMs before and after particulate control devices, in wet and dry stack conditions, and at high temperatures (343 C). The results from these field measurements have provided data that have been evaluated to determine the reliability, variability, biases, and overall capability of Hg SCEMs for monitoring mercury at coal-fired utilities. Even under the best conditions, operation of Hg SCEMs is by no

  9. Fiscal 2000 survey report on project for promoting international cooperation. Survey on coal utilization in APEC region (Coal note); 2000 nendo kokusai kyoryoku suishin jigyo chosa hokokusho. APEC iki nai ni okeru sekitan riyo jokyo tou chosa (Koru note)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    With the purpose of contributing to the infrastructure for promoting clean coal technology (CCT), there were compiled as the 'coal note' various kinds of coal-related information in China, Indonesia, Philippine, Thailand and Vietnam among APEC countries. Concerning China, for example, economic growth and energy supply/demand in the category of the energy outline were described in detail; as were the guiding principle. individual guidance plan, and specific energy policy of the 10th five year plan, in the category of the energy policy; coal deposits, geological summary, coal quality in each coal forming period, and the status quo of development, in the category of the coal mines and development; coal supply/demand, production, consumption, and export, in the category of the present status of the coal industry; producers, sales, quality of product coal, distribution, and price, in the category of the domestic supply; present state of environmental problems relating to coal, and environmental measures intended for coal, in the category of the coal-related environmental issues; and development, production, coal cleaning, quality control, safety control, and utilization (combustion, liquefaction and gasification), in the category of coal utilization technology, respectively. (NEDO)

  10. Refinery Integration of By-Products from Coal-Derived Jet Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Caroline E. Burgess Clifford; Andre Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

    2007-03-17

    hydrodesulfurization. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Combustion and characterization of the latest fuel oil (the high temperature fraction of RCO from the latest modification) indicates that the fraction is heavier than a No. 6 fuel oil. Combustion efficiency on our research boiler is {approx}63% for the heavy RCO fraction, lower than the combustion performance for previous co-coking fuel oils and No. 6 fuel oil. Emission testing indicates that the coal derived material has more trace metals related to coal than petroleum, as seen in previous runs. An additional coal has been procured and is being processed for the next series of delayed co-coking runs. The co-coking of the runs with the new coal have begun, with the coke yield similar to previous runs, but the gas yield is lower and the liquid yield is higher. Characterization of the products continues. Work continues on characterization of liquids and solids from co-coking of hydrotreated decant oils; liquid yields include more saturated and hydro- aromatics, while the coke quality varies depending on the conditions used. Pitch material is being generated from the heavy fraction of co-coking.

  11. 40 CFR 60.254 - Standards for coal processing and conveying equipment, coal storage systems, transfer and loading...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standards for coal processing and conveying equipment, coal storage systems, transfer and loading systems, and open storage piles. 60.254... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Coal Preparation...

  12. Reactivity of mechanical activated coals for special utilization

    Energy Technology Data Exchange (ETDEWEB)

    Turcaniova, L.; Kadarova, J.; Imrich, P.; Liptaj, T.; Vidlar, J.; Vasek, J.; Foldyna, F.; Sitek, J.; Balaz, P. [Slovak Academy of Science, Kosice (Slovakia). Inst. of Geotechnology

    2004-09-01

    The paper presents the coal activation effect as disintegration in the nano-submicron range and destruction carbon structure. The Slovak brown coal activated in planetary mill is characterised by destruction of organic structure of coal. The biggest activation effect connected with the destruction of C-C bonds of sp{sup 3} carbons has been confirmed by {sup 13}C NMR spectroscopy in the chemical structure of humic acids extracted from the coal sample activated for a period of 60 min. The specific surface of humic acids is much smaller then that of mechanically activated sample from which they were extracted. The black Czech coal was activated by two stage disintegration. In the first stage of mechanochemical activation using Grinding Aqueous Caustic Leaching, GACL method, a fine dispersed semiproduct is formed with the size of particles from 2.5 to 9000 nm. The additional disintegration using water jet increases the effect of disintegration in the submicron area of the coal product. The volume distribution maximum achieves in this stage about 60 wt% of 750 nm grains.

  13. Utilization potentiality of coal as a reductant for the production of sponge iron. [5 refs

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, H P

    1976-10-01

    With the ambitious plan of the Government of India to produce about 70 million tonnes of steel per annum towards the end of the century, the requirement of coal would be enormous. This calls for judicious planning and conservation of coal. Modern trend in steel plant practice is to use blast furnaces of capacity 10,000 to 12,000 t/day requiring superior quality coke of low ash content which will become scarce. Concerted efforts should be made to by-pass blast furnace technique by adopting direct reduction for the production of metallized iron ore, that is sponge iron, and using this as feed stock in electric furnaces. Experience has shown that the use of sponge iron as feed stock for electric arc furnaces instead of the scrap available from various fabrication and steel works results in better production of alloy steels. The use of non-coking coal as reductant for production of sponge iron will help conserve coking coal for bigger steel plants. In the solid state reduction process the technological design of the sponge iron plant has to be tailored to the type of feed stock to be used, particularly iron ore and coal. In India, non-coking coal is available at close proximity to the iron ore mines containing high grade iron ore. Planning for sponge iron, utilizing large reserves of non-coking coal as feed stock therefore has considerable potentiality. India has vast reserves of high grade iron ore and comparatively meager amount of coking coal. This calls for planning for sponge iron using non-coking coal as feed stock.

  14. Thar coal exploration : a radical view

    International Nuclear Information System (INIS)

    Khan, N.A.

    1996-01-01

    Pakistan needs a manpower intensive technology to utilize its immense human resource. This human resource, however, has low literacy rate and thus lower skills and therefore there is a requirement of visualizing an employment technique compatible with the human resource. The vast coal deposits at Thar Coal Field provide an opportunity for development of low cost coal mining technique utilizing this manpower. Our history is filled with examples of effective utilization of human resources in the recent past. 300 years ago a few Muslim Emperors of the subcontinents constructed 40 meters deep wells, by utilizing human power only, to reach drinking water deep down, now in 2000 AD, can we go down 120 meters to dig the coal in Thar Coal Field by utilizing much enlarged manpower? (author)

  15. Co-firing straw and coal in a 150-MWe utility boiler: in situ measurements

    DEFF Research Database (Denmark)

    Hansen, P. F.B.; Andersen, Karin Hedebo; Wieck-Hansen, K.

    1998-01-01

    A 2-year demonstration program is carried out by the Danish utility I/S Midtkraft at a 150-MWe PF-boiler unit reconstructed for co-firing straw and coal. As a part of the demonstration program, a comprehensive in situ measurement campaign was conducted during the spring of 1996 in collaboration...... with the Technical University of Denmark. Six sample positions have been established between the upper part of the furnace and the economizer. The campaign included in situ sampling of deposits on water/air-cooled probes, sampling of fly ash, flue gas and gas phase alkali metal compounds, and aerosols as well...... deposition propensities and high temperature corrosion during co-combustion of straw and coal in PF-boilers. Danish full scale results from co-firing straw and coal, the test facility and test program, and the potential theoretical support from the Technical University of Denmark are presented in this paper...

  16. Utilizing coal remaining resources and post-mining land use planning based on GIS-based optimization method : study case at PT Adaro coal mine in South Kalimantan

    Directory of Open Access Journals (Sweden)

    Mohamad Anis

    2017-06-01

    Full Text Available Coal mining activities may cause a series of environmental and socio-economic issues in communities around the mining area. Mining can become an obstacle to environmental sustainability and a major hidden danger to the security of the local ecology. Therefore, the coal mining industry should follow some specific principles and factors in achieving sustainable development. These factors include geological conditions, land use, mining technology, environmental sustainability policies and government regulations, socio-economic factors, as well as sustainability optimization for post-mining land use. Resources of the remains of the coal which is defined as the last remaining condition of the resources and reserves of coal when the coal companies have already completed the life of the mine or the expiration of the licensing contract (in accordance with government permission. This research uses approch of knowledge-driven GIS based methods mainly Analytical Hierarchy Process (AHP and Fuzzy logic for utilizing coal remaining resources and post-mining land use planning. The mining area selected for this study belongs to a PKP2B (Work Agreement for Coal Mining company named Adaro Indonesia (PT Adaro. The result shows that geologically the existing formation is dominated by Coal Bearing Formation (Warukin Formation which allows the presence of remains coal resource potential after the lifetime of mine, and the suitability of rubber plantation for the optimization of land use in all mining sites and also in some disposal places in conservation areas and protected forests.

  17. Environmental problems in Russian coal industry

    International Nuclear Information System (INIS)

    Kharchenko, V.; Oumnov, V.

    1996-01-01

    The state of the Russian coal industry is complicated both economically and environmentally. Most mines are unprofitable. Several coal mines are intended to be closed. So, under existing conditions, coal mines are unable to give much attention to environmental protection problems. At the same time, coal mining is one of the most polluting industries. The main trends in this industry's negative influence upon the environment are: land spoilage and immobilization to lay out open-pit mines and mineral waste dump areas and tailing piles as well as with industrial waste water runoff; atmospheric pollution with the air coming from underground and substances blown off from dumps, hydrogeological regime intervention in coal mining areas, etc. One way to solve environmental problems in coal mining is a more rational utilization of the accompanying natural coal resources. Such measures make it possible to obtain complementary profits not only at the expense of reducing environmental destruction but producing new kinds of goods or services as well. Examples of similar solutions are solid mineral wastes utilization, underground space utilization, coal gas utilization and other issues

  18. Alternative reaction routes during coal hydrogenation and coal derived oil upgrading

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, H.; Kordokuzis, G.; Langner, M. (University of Karlsruhe, Karlsruhe (Germany, F.R.). Engler-Bunte-Institute)

    1989-10-01

    Alternative reaction routes have been traced for the hydrodenitrogenation and hydrodeoxygenation of coal structure related model compounds. Reaction pathways are very structure specific. It is shown how reaction mechanisms switch from one route to another with changes in reaction conditions and catalyst features. Optimization of coal liquefaction processes can make use of this detailed understanding of selectivity. 5 refs., 7 figs.

  19. Assessing coal burnout

    Energy Technology Data Exchange (ETDEWEB)

    Lowe, A. [Pacific Power, Sydney, NSW (Australia)

    1999-11-01

    Recent research has allowed a quantitative description of the basic process of burnout for pulverized coals to be made. The Cooperative Research Centre for Black Coal Utilization has built on this work to develop a coal combustion model which will allow plant engineers and coal company representatives to assess their coals for combustion performance. The paper describes the model and its validation and outlines how it is run. 2 figs.

  20. CoalVal-A coal resource valuation program

    Science.gov (United States)

    Rohrbacher, Timothy J.; McIntosh, Gary E.

    2010-01-01

    CoalVal is a menu-driven Windows program that produces cost-of-mining analyses of mine-modeled coal resources. Geological modeling of the coal beds and some degree of mine planning, from basic prefeasibility to advanced, must already have been performed before this program can be used. United States Geological Survey mine planning is done from a very basic, prefeasibility standpoint, but the accuracy of CoalVal's output is a reflection of the accuracy of the data entered, both for mine costs and mine planning. The mining cost analysis is done by using mine cost models designed for the commonly employed, surface and underground mining methods utilized in the United States. CoalVal requires a Microsoft Windows? 98 or Windows? XP operating system and a minimum of 1 gigabyte of random access memory to perform operations. It will not operate on Microsoft Vista?, Windows? 7, or Macintosh? operating systems. The program will summarize the evaluation of an unlimited number of coal seams, haulage zones, tax entities, or other area delineations for a given coal property, coalfield, or basin. When the reader opens the CoalVal publication from the USGS website, options are provided to download the CoalVal publication manual and the CoalVal Program. The CoalVal report is divided into five specific areas relevant to the development and use of the CoalVal program: 1. Introduction to CoalVal Assumptions and Concepts. 2. Mine Model Assumption Details (appendix A). 3. CoalVal Project Tutorial (appendix B). 4. Program Description (appendix C). 5. Mine Model and Discounted Cash Flow Formulas (appendix D). The tutorial explains how to enter coal resource and quality data by mining method; program default values for production, operating, and cost variables; and ones own operating and cost variables into the program. Generated summary reports list the volume of resource in short tons available for mining, recoverable short tons by mining method; the seam or property being mined

  1. Development of world coal reserves, their registration and their utilization

    Energy Technology Data Exchange (ETDEWEB)

    Bachmann, H

    1979-10-01

    This paper examines statistics on world coal production and world coal reserves with figures from 1860 to 1974 provided in tables and graphs. Eighty percent of the total world coal reserves (92% of world brown coal reserves) lie in the USA and USSR. The recent increase in total coal reserve estimates is due to exploration in western USA and in the USSR east of the Urals. Depth and thickness of the world's coal seams are shown in graphs and variations in coal quality are discussed. Problems associated with the anticipated substantial increase in coal production up to the year 2000 are considered. Encouraging higher coal production is the successful development of highly mechanized underground mining techniques and highly productive heavy surface mining equipment which allows excavation at increased depths. Surface mining is expected to make up 50% of total world mining operations in the near future. More complete deposit exploitation also contributes to higher coal production. Low international ship freight rates would facilitate future world coal trade. Obstacles are seen as: high, long term investments due to the fact that coal reserves lie far from populated and industrialized areas; opening new mines; transportation costs and infrastructure development.

  2. DEMONSTRATION OF SORBENT INJECTION TECHNOLOGY ON A TANGENTIALLY COAL-FIRED UTILITY BOILER (YORKTOWN LIMB DEMONSTRATION)

    Science.gov (United States)

    The report summarizes activities conducted and results achieved in an EPA-sponsored program to demonstrate Limestone Injection Multistage Burner (LIMB) technology on a tangentially fired coal-burning utility boiler, Virginia Power's 180-MWe Yorktown Unit No. 2. his successfully d...

  3. Upper Paleozoic coal measures and unconventional natural gas systems of the Ordos Basin, China

    Directory of Open Access Journals (Sweden)

    Xuan Tang

    2012-11-01

    Full Text Available Upper Paleozoic coal measures in the Ordos Basin consist of dark mudstone and coal beds and are important source rocks for gas generation. Gas accumulations include coal-bed methane (CBM, tight gas and conventional gas in different structural areas. CBM accumulations are mainly distributed in the marginal area of the Ordos Basin, and are estimated at 3.5 × 1012 m3. Tight gas accumulations exist in the middle part of the Yishan Slope area, previously regarded as the basin-centered gas system and now considered as stratigraphic lithologic gas reservoirs. This paper reviews the characteristics of tight gas accumulations: poor physical properties (porosity < 8%, permeability < 0.85 × 10−3 μm2, abnormal pressure and the absence of well-defined gas water contacts. CBM is a self-generation and self-reservoir, while gas derived from coal measures migrates only for a short distance to accumulate in a tight reservoir and is termed near-generation and near-reservoir. Both CBM and tight gas systems require source rocks with a strong gas generation ability that extends together over wide area. However, the producing area of the two systems may be significantly different.

  4. The ENCOAL Mild Coal Gasification Project, A DOE Assessment

    Energy Technology Data Exchange (ETDEWEB)

    National Energy Technology Laboratory

    2002-03-15

    This report is a post-project assessment of the ENCOAL{reg_sign} Mild Coal Gasification Project, which was selected under Round III of the U.S. Department of Energy (DOE) Clean Coal Technology (CCT) Demonstration Program. The CCT Demonstration Program is a government and industry cofunded technology development effort to demonstrate a new generation of innovative coal utilization processes in a series of commercial-scale facilities. The ENCOAL{reg_sign} Corporation, a wholly-owned subsidiary of Bluegrass Coal Development Company (formerly SMC Mining Company), which is a subsidiary of Ziegler Coal Holding Company, submitted an application to the DOE in August 1989, soliciting joint funding of the project in the third round of the CCT Program. The project was selected by DOE in December 1989, and the Cooperative Agreement (CA) was approved in September 1990. Construction, commissioning, and start-up of the ENCOAL{reg_sign} mild coal gasification facility was completed in June 1992. In October 1994, ENCOAL{reg_sign} was granted a two-year extension of the CA with the DOE, that carried through to September 17, 1996. ENCOAL{reg_sign} was then granted a six-month, no-cost extension through March 17, 1997. Overall, DOE provided 50 percent of the total project cost of $90,664,000. ENCOAL{reg_sign} operated the 1,000-ton-per-day mild gasification demonstration plant at Triton Coal Company's Buckskin Mine near Gillette, Wyoming, for over four years. The process, using Liquids From Coal (LFC{trademark}) technology originally developed by SMC Mining Company and SGI International, utilizes low-sulfur Powder River Basin (PRB) coal to produce two new fuels, Process-Derived Fuel (PDF{trademark}) and Coal-Derived Liquids (CDL{trademark}). The products, as alternative fuel sources, are capable of significantly lowering current sulfur emissions at industrial and utility boiler sites throughout the nation thus reducing pollutants causing acid rain. In support of this overall

  5. Income risk of EU coal-fired power plants after Kyoto

    International Nuclear Information System (INIS)

    Abadie, Luis M.; Chamorro, Jose M.

    2009-01-01

    Coal-fired power plants enjoy a significant advantage relative to gas plants in terms of cheaper fuel cost. This advantage may erode (or turn into disadvantage) depending on CO 2 emission allowance price. Financial risks are further reinforced when the price of electricity is determined by natural gas-fired plants' marginal costs. We aim to empirically assess the risks in EU coal plants' margins up to the year 2020. Parameter values are derived from actual market data. Monte Carlo simulation allows compute the expected value and risk profile of coal plants' earnings. Future allowance prices may spell significant risks on utilities' balance sheets. (author)

  6. Low-rank coal study. Volume 4. Regulatory, environmental, and market analyses

    Energy Technology Data Exchange (ETDEWEB)

    1980-11-01

    The regulatory, environmental, and market constraints to development of US low-rank coal resources are analyzed. Government-imposed environmental and regulatory requirements are among the most important factors that determine the markets for low-rank coal and the technology used in the extraction, delivery, and utilization systems. Both state and federal controls are examined, in light of available data on impacts and effluents associated with major low-rank coal development efforts. The market analysis examines both the penetration of existing markets by low-rank coal and the evolution of potential markets in the future. The electric utility industry consumes about 99 percent of the total low-rank coal production. This use in utility boilers rose dramatically in the 1970's and is expected to continue to grow rapidly. In the late 1980's and 1990's, industrial direct use of low-rank coal and the production of synthetic fuels are expected to start growing as major new markets.

  7. Coal pump

    Science.gov (United States)

    Bonin, John H.; Meyer, John W.; Daniel, Jr., Arnold D.

    1983-01-01

    A device for pressurizing pulverized coal and circulating a carrier gas is disclosed. This device has utility in a coal gasification process and eliminates the need for a separate collection hopper and eliminates the separate compressor.

  8. Upgraded Coal Interest Group -- A vision for coal-based power in 1999 and beyond

    International Nuclear Information System (INIS)

    Hughes, E.; Battista, J.; Stopek, D.; Akers, D.

    1999-01-01

    The US is at a critical junction. Global competition is now a reality for a large number of US businesses and, ultimately, almost all US businesses will compete to one degree or another in the global marketplace. Under these circumstances, maintaining and improving the standard of living of US citizens requires a plentiful supply of low-cost electric energy to reduce the cost of providing goods and services both in the US an abroad. At the same time, segments of the public demand increased environmental restrictions on the utility industry. If the electric utility industry is to successfully respond to the goals of reducing electricity costs, maintaining reliability, and reducing emissions, fuels technology research is critical. For coal-fired units, fuel cost typically represents from 60--70% of operating costs. Reducing fuel cost, reduces operating costs. This can provide revenue that could be used to finance emissions control systems or advanced type of boilers resulting from post-combustion research. At the same time, improving coal quality reduces emissions from existing boilers without the need for substantial capital investment by the utility. If quality improvements can be accomplished with little or no increase in fuel costs, an immediate improvement in emissions can be achieved without an increase in electricity costs. All of this is directly dependent on continued and expanded levels of research on coal with the cooperation and partnership between government and industry. The paper describes enhanced fuel technologies (use of waste coal, coal water slurries, biomass/composite fuels, improved dewatering technologies, precombustion control of HAPs, dry cleaning technologies, and international coal characterization) and enhanced emission control technologies

  9. Utilization of coal-water fuels in fire-tube boilers

    International Nuclear Information System (INIS)

    Sommer, T.M.; Melick, T.A.

    1991-01-01

    The Energy and Environmental Research Corporation (EER), in cooperation with the University of Alabama and Jim Walter Resources, has been awarded a DOE contract to retrofit an existing fire-tube boiler with a coal-water slurry firing system. Recognizing that combustion efficiency is the principle concern when firing slurry in fire-tube boilers, EER has focused the program on innovative approaches for improving carbon burnout without major modifications to the boiler. This paper reports on the program which consists of five tasks. Task 1 provides for the design and retrofit of the host boiler to fire coal-water slurry. Task 2 is a series of optimization tests that will determine the effects of adjustable parameters on boiler performance. Task 3 will perform about 1000 hours of proof-of-concept system tests. Task 4 will be a comprehensive review of the test data in order to evaluate the economics of slurry conversions. Task 5 will be the decommissioning of the test facility if required

  10. Engineering Graphene Films from Coal

    Science.gov (United States)

    Vijapur, Santosh H.

    temperature operation. Annealing of copper support was required to remove the oxide layer present on its surface and low pressure operation was demonstrated to be suitable for crystalline graphene film formation. The CVD system and the synthesis procedure were modified to address these issues. This was done by increasing the synthesis temperature, incorporating a vacuum pump for low pressure operation, and implementing two step procedure of annealing the copper substrate followed by subsequent coal pyrolysis for the synthesis of crystalline graphene films. The synthesized few layer graphene films were uniform and continuous with thickness in the range of 3-7 nm. The optical transmittance and electrical conductivity measurements demonstrated that the graphene films have >95 % transparency and sheet resistivity of 5.0 kO sq-1, respectively. An investigation of growth mechanism of coal derived graphene films synthesized via CVD was conducted utilizing spectroscopy, microscopy, and chromatography techniques. Gas collection was performed at the graphene synthesis conditions utilizing the CVD reactor without vacuum in operation. Various gases released as products of coal pyrolysis in the CVD reactor were collected and analyzed using gas chromatography. The analysis showed the presence of methane, ethane, ethene, propane, propene, carbon monoxide, and carbon dioxide as coal pyrolysis products. The hydrocarbon gases act as precursors for graphene growth. Raman spectroscopy, selected area electron diffraction (SAED), and X-ray photoelectron spectroscopy (XPS) confirmed the formation of crystalline graphene films at 1055 °C and 18-30 min synthesis. The growth mechanism involves copper catalyzed reaction to produce amorphous carbon film within the first few minutes of synthesis. Raman spectroscopy and SAED validated that lower synthesis times (6-12 min) produced hybrid amorphous carbon films. This is followed by hydrogen catalyzed graphitization of the underlying carbon film to form

  11. Analysis of antitrust activity in the coal industry: 1964--1974

    Energy Technology Data Exchange (ETDEWEB)

    Hinson, W.R.

    1974-01-01

    During this period antitrust activity by the government in the coal industry was of a token nature and did not prevent (1) large investments in coal and uranium by large oil companies, nor (2) concentration with industry by large companies buying out small companies. A major result was the buying up of coal reserves, which were thus unavailable to small companies and hindered them from competing. Neither the government nor public utility companies did much to deter these developments and the results of the few court suits that were brought were not effective in discouraging the process. In fact, the widespread acceptance of nolo contendere pleas by the judicial system could make it profitable for a coal company to violate the antitrust laws. Several recommendations are made: (1) for more vigorous antitrust activity (with nonacceptance of nolo contendere pleas); (2) nationalisation of coal reserves (with bidding for reserves to be mined by competing companies); (3) a reporting system for ownership of coal reserves; and (4) encouragement of electric utilities to file private suit when anticompetitive behavior is suspected. (LTN)

  12. METHANE de-NOX for Utility PC Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Bruce Bryan; Serguei Nester; Joseph Rabovitser; Stan Wohadlo

    2005-09-30

    The overall project objective is the development and validation of an innovative combustion system, based on a novel coal preheating concept prior to combustion, that can reduce NO{sub x} emissions to 0.15 lb/million Btu or less on utility pulverized coal (PC) boilers. This NO{sub x} reduction should be achieved without loss of boiler efficiency or operating stability, and at more than 25% lower levelized cost than state-of-the-art SCR technology. A further objective is to ready technology for full-scale commercial deployment to meet the market demand for NO{sub x} reduction technologies. Over half of the electric power generated in the U.S. is produced by coal combustion, and more than 80% of these units utilize PC combustion technology. Conventional measures for NOx reduction in PC combustion processes rely on combustion and post-combustion modifications. A variety of combustion-based NO{sub x} reduction technologies are in use today, including low-NO{sub x} burners (LNBs), flue gas recirculation (FGR), air staging, and natural gas or other fuel reburning. Selective non-catalytic reduction (SNCR) and selective catalytic reduction (SCR) are post-combustion techniques. NO{sub x} reduction effectiveness from these technologies ranges from 30 to 60% and up to 90-93% for SCR. Typically, older wall-fired PC burner units produce NO{sub x} emissions in the range of 0.8-1.6 lb/million Btu. Low-NO{sub x} burner systems, using combinations of fuel staging within the burner and air staging by introduction of overfire air in the boiler, can reduce NO{sub x} emissions by 50-60%. This approach alone is not sufficient to meet the desired 0.15 lb/million Btu NO{sub x} standard with a range of coals and boiler loads. Furthermore, the heavy reliance on overfire air can lead to increased slagging and corrosion in furnaces, particularly with higher-sulfur coals, when LNBs are operated at sub-stoichiometric conditions to reduce fuel-derived NOx in the flame. Therefore, it is desirable

  13. Evaluation of catalytic combustion of actual coal-derived gas

    Science.gov (United States)

    Blanton, J. C.; Shisler, R. A.

    1982-01-01

    The combustion characteristics of a Pt-Pl catalytic reactor burning coal-derived, low-Btu gas were investigated. A large matrix of test conditions was explored involving variations in fuel/air inlet temperature and velocity, reactor pressure, and combustor exit temperature. Other data recorded included fuel gas composition, reactor temperatures, and exhaust emissions. Operating experience with the reactor was satisfactory. Combustion efficiencies were quite high (over 95 percent) over most of the operating range. Emissions of NOx were quite high (up to 500 ppm V and greater), owing to the high ammonia content of the fuel gas.

  14. A bottom-up method to develop pollution abatement cost curves for coal-fired utility boilers

    Science.gov (United States)

    This paper illustrates a new method to create supply curves for pollution abatement using boiler-level data that explicitly accounts for technology costs and performance. The Coal Utility Environmental Cost (CUECost) model is used to estimate retrofit costs for five different NO...

  15. Report on the achievements in the Sunshine Project in fiscal 1987. Collection of data from coal liquefaction processes, and development of a disposal system; 1987 nendo sekitan ekika process nado no data no shushu, shori system nado no kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1988-03-01

    The present study is intended to investigate the current status of the information control system in the coal liquefaction technology development project, and structure a coal liquefaction database system to manage and utilize comprehensively the items of information provided by the system. Section 2 shows the result of epitomizing opinions on the purpose of the coal liquefaction database by means of a questionnaire survey to NEDO, and opinions of people of experience and academic standing. Section 3 depicts the basic conception of a coal database total system. Section 4 summarizes the conceptual idea of the fundamental database by washing out the data input and output, and the contents recorded in the database. Section 5 summarizes the basic sub-system required for management and utilization of the database, and different application systems for data analysis required in each stage of performing the coal liquefaction technology development, and for operation assistance. Section 6 summarizes a general technological information retrieval system, in which general information on coal liquefaction is recorded, processed, and registered and accumulated in the database, and then the information retrieval and the original information providing service are carried out. Section 7 summarizes philosophies on development and operation of the coal liquefaction database, operating institutions, and problems to be solved. (NEDO)

  16. Innovation avenues for coal derived power essential for the future

    Energy Technology Data Exchange (ETDEWEB)

    Berkley, Mark; Cruz, Elizabet; Vatanakul, Maytinee; Hynes, Rory; Stickler, Alexander

    2010-09-15

    Current political climates are culminating in the conflict between economic development and environmental regulation -- Climate Change. Developed nations are driven by and dependent upon the cheap, abundant power of coal. Today, developing nations wish to duplicate this historical pathway, yet are subject to global scrutiny. The politico-economic conflict between nations may be alleviated by innovative technologies delivering power and improved environmental considerations. The long-term economic trend has been upward and thus targeting expanding and converting existing economies to utilize innovative technologies is fundamental to addressing the balance between socio-economic and environmental interests.

  17. Hydrotreating of heavy distillate derived from Wandoan coal liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Y. [National Institute for Resources and Environment, Osaka (Japan). Hydrocarbon Research Lab.

    1997-12-03

    The paper reports how the hydrotreatment of coal-derived heavy distillate, obtained from the liquefaction of Wandoan coal using a 1 t/day bench unit, was performed to clarify the effects of catalyst species, reaction temperature and hydrogen pressure on the chemical composition of the product. Experimental runs were carried out over alumina-supported Go-Mo and Ni-Mo catalysts in a fixed bed reactor of 20 ml in volume at 350-390{degree}C under hydrogen pressure of 50-150 kg/cm{sup 2}G with liquid hourly space velocity (LHSV) of 0.5-2 h{sup -1}. The product, as analyzed by gas chromatography, indicated that larger amounts of alkylbenzenes such as toluene or xylenes were produced at the elevated temperature of 390{degree}C, but the concentrations of condensed aromatics such as naphthalene, biphenyl, fluorene and phenanthrene decreased with the severity of reaction conditions. Pyrene and methylpyrene decreased in amount with a shorter LHSV and higher hydrogen pressure, but increased at higher temperature of 390{degree}C. Shorter LHSV and higher hydrogen pressure are much more effective in hydrogenation, hydrodnitrogenation and hydrodeoxygenation than the higher reaction temperature up to 390{degree}C.

  18. Opportunities for Decarbonizing Existing U.S. Coal-Fired Power Plants via CO2 Capture, Utilization and Storage.

    Science.gov (United States)

    Zhai, Haibo; Ou, Yang; Rubin, Edward S

    2015-07-07

    This study employs a power plant modeling tool to explore the feasibility of reducing unit-level emission rates of CO2 by 30% by retrofitting carbon capture, utilization, and storage (CCUS) to existing U.S. coal-fired electric generating units (EGUs). Our goal is to identify feasible EGUs and their key attributes. The results indicate that for about 60 gigawatts of the existing coal-fired capacity, the implementation of partial CO2 capture appears feasible, though its cost is highly dependent on the unit characteristics and fuel prices. Auxiliary gas-fired boilers can be employed to power a carbon capture process without significant increases in the cost of electricity generation. A complementary CO2 emission trading program can provide additional economic incentives for the deployment of CCS with 90% CO2 capture. Selling and utilizing the captured CO2 product for enhanced oil recovery can further accelerate CCUS deployment and also help reinforce a CO2 emission trading market. These efforts would allow existing coal-fired EGUs to continue to provide a significant share of the U.S. electricity demand.

  19. Energy Analysis of a Complementary Heating System Combining Solar Energy and Coal for a Rural Residential Building in Northwest China.

    Science.gov (United States)

    Zhen, Xiaofei; Li, Jinping; Abdalla Osman, Yassir Idris; Feng, Rong; Zhang, Xuemin; Kang, Jian

    2018-01-01

    In order to utilize solar energy to meet the heating demands of a rural residential building during the winter in the northwestern region of China, a hybrid heating system combining solar energy and coal was built. Multiple experiments to monitor its performance were conducted during the winter in 2014 and 2015. In this paper, we analyze the efficiency of the energy utilization of the system and describe a prototype model to determine the thermal efficiency of the coal stove in use. Multiple linear regression was adopted to present the dual function of multiple factors on the daily heat-collecting capacity of the solar water heater; the heat-loss coefficient of the storage tank was detected as well. The prototype model shows that the average thermal efficiency of the stove is 38%, which means that the energy input for the building is divided between the coal and solar energy, 39.5% and 60.5% energy, respectively. Additionally, the allocation of the radiation of solar energy projecting into the collecting area of the solar water heater was obtained which showed 49% loss with optics and 23% with the dissipation of heat, with only 28% being utilized effectively.

  20. Energy Analysis of a Complementary Heating System Combining Solar Energy and Coal for a Rural Residential Building in Northwest China

    Directory of Open Access Journals (Sweden)

    Xiaofei Zhen

    2018-01-01

    Full Text Available In order to utilize solar energy to meet the heating demands of a rural residential building during the winter in the northwestern region of China, a hybrid heating system combining solar energy and coal was built. Multiple experiments to monitor its performance were conducted during the winter in 2014 and 2015. In this paper, we analyze the efficiency of the energy utilization of the system and describe a prototype model to determine the thermal efficiency of the coal stove in use. Multiple linear regression was adopted to present the dual function of multiple factors on the daily heat-collecting capacity of the solar water heater; the heat-loss coefficient of the storage tank was detected as well. The prototype model shows that the average thermal efficiency of the stove is 38%, which means that the energy input for the building is divided between the coal and solar energy, 39.5% and 60.5% energy, respectively. Additionally, the allocation of the radiation of solar energy projecting into the collecting area of the solar water heater was obtained which showed 49% loss with optics and 23% with the dissipation of heat, with only 28% being utilized effectively.

  1. Energy Analysis of a Complementary Heating System Combining Solar Energy and Coal for a Rural Residential Building in Northwest China

    Science.gov (United States)

    Zhen, Xiaofei; Abdalla Osman, Yassir Idris; Feng, Rong; Zhang, Xuemin

    2018-01-01

    In order to utilize solar energy to meet the heating demands of a rural residential building during the winter in the northwestern region of China, a hybrid heating system combining solar energy and coal was built. Multiple experiments to monitor its performance were conducted during the winter in 2014 and 2015. In this paper, we analyze the efficiency of the energy utilization of the system and describe a prototype model to determine the thermal efficiency of the coal stove in use. Multiple linear regression was adopted to present the dual function of multiple factors on the daily heat-collecting capacity of the solar water heater; the heat-loss coefficient of the storage tank was detected as well. The prototype model shows that the average thermal efficiency of the stove is 38%, which means that the energy input for the building is divided between the coal and solar energy, 39.5% and 60.5% energy, respectively. Additionally, the allocation of the radiation of solar energy projecting into the collecting area of the solar water heater was obtained which showed 49% loss with optics and 23% with the dissipation of heat, with only 28% being utilized effectively. PMID:29651424

  2. Material balance in coal. 2. Oxygen determination and stoichiometry of 33 coals

    International Nuclear Information System (INIS)

    Volborth, A.; Miller, G.E.; Garner, C.K.; Jerabek, P.A.

    1977-01-01

    The chemical analysis of coal can be supplemented by the determination of oxygen in high and low temperature ash, in coal as received and in coal dried at 105 0 C. The rapid method utilizes fast-neutron activation. The reaction 16 O(n,p) 16 N and counting of the 6.1 and 7.1 MeV gammas of 7.3 second half-life are used. A specially designed dual transfer and simultaneous counting system gives very accurate results. Oxygen in 33 coals ranging from lignite to low volatile bituminous coal is determined and compared with ''oxygen by difference.'' Considerable discrepancies are observed. Better stoichiometric results are obtained if oxygen in coal ash, in wet coal and in the dried coal is determined. This permits the estimation of the true material balances using data of the ultimate and the proximate coal analysis. The oxygen determination provides the coal chemist with an accurate basis and can be used to rank coal. The summation of the percent of carbon, nitrogen, hydrogen, sulfur, and oxygen becomes more meaningful and some errors can be detected and the state of completeness of coal analysis thus evaluated. Total sulfur can be estimated and oxidation effects during drying can be detected. These affect the moisture determination. It appears that after more data are collected, the interpretation of solid fuel analyses may be facilitated and will be stoichiometrically more meaningful. It is shown that it may be possible to simplify the present time-consuming methods of coal analysis

  3. Utilization of coal ash/coal combustion products for mine reclamation

    International Nuclear Information System (INIS)

    Dolence, R.C.; Giovannitti, E.

    1997-01-01

    Society's demand for an inexpensive fuel, combined with ignorance of the long term impacts, has left numerous scars on the Pennsylvania landscape. There are over 250,000 acres of abandoned surface mines with dangerous highwalls and water filled pits. About 2,400 miles of streams do not meet water quality standards because of drainage from abandoned mines. There are uncounted households without an adequate water supply due to past mining practices. Mine fires and mine subsidence plague many Pennsylvania communities. The estimated cost to reclaim these past scars is over $15 billion. The beneficial use of coal ash in Pennsylvania for mine reclamation and mine drainage pollution abatement projects increased during the past ten years. The increase is primarily due to procedural and regulatory changes by the Department of Environmental Protection (DEP). Prior to 1986, DEP required a mining permit and a separate waste disposal permit for the use of coal ash in backfilling and reclaiming a surface mine site. In order to eliminate the dual permitting requirements and promote mine reclamation, procedural changes now allow a single permit which authorize both mining and the use of coal ash in reclaiming active and abandoned pits. The actual ash placement, however, must be conducted in accordance with the technical specifications in the solid waste regulations

  4. Modular High Temperature Gas-Cooled Reactor heat source for coal conversion

    International Nuclear Information System (INIS)

    Schleicher, R.W. Jr.; Lewis, A.C.

    1992-09-01

    In the industrial nations, transportable fuels in the form of natural gas and petroleum derivatives constitute a primary energy source nearly equivalent to that consumed for generating electric power. Nations with large coal deposits have the option of coal conversion to meet their transportable fuel demands. But these processes themselves consume huge amounts of energy and produce undesirable combustion by-products. Therefore, this represents a major opportunity to apply nuclear energy for both the environmental and energy conservation reasons. Because the most desirable coal conversion processes take place at 800 degree C or higher, only the High Temperature Gas-Cooled Reactors (HTGRs) have the potential to be adapted to coal conversion processes. This report provides a discussion of this utilization of HTGR reactors

  5. Fiscal 1995 survey of the base arrangement promotion for foreign coal import. Investigation on the policy of coal demand stabilization using low grade coal; 1995 nendo kaigaitan yunyu kiban sokushin chosa. Teihin`itan riyo ni yoru sekitan jukyu anteika hosaku ni kansuru chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    The paper investigated the trend of and the needs for low grade coal utilization and the seeds of low grade coal utilization technology and studied usability of low grade coal in the future. Importance of low grade coal utilization was described in consideration of features of the Asia/Pacific area in the world coal market, and the trend of production/utilization of low grade coal was examined mostly in countries holding main low grade coals in the Asia/Pacific area. The trend of the technical development contributing to the low grade coal utilization was studied to make it contribute to the extraction of technologies which are regarded as effective in the Asia/Pacific area. A study was made of applicability of the low grade coal utilization technology corresponding to the needs for low grade coal utilization, and at the same time, a study was made of the effect on the coal supply/demand in the Asia/Pacific area in case the low grade coal utilization is promoted helped by the study. Focusing on technical cooperation relating to clean coal technology, a study was conducted of the trend of international cooperation in Japan and various overseas countries and the trend of new cooperation in private sectors, and a discussion was made on how Japan should act toward promotion of low grade coal utilization. 12 figs., 91 tabs.

  6. The ENCOAL Mild Coal Gasification Project, A DOE Assessment; FINAL

    International Nuclear Information System (INIS)

    National Energy Technology Laboratory

    2002-01-01

    This report is a post-project assessment of the ENCOAL(reg s ign) Mild Coal Gasification Project, which was selected under Round III of the U.S. Department of Energy (DOE) Clean Coal Technology (CCT) Demonstration Program. The CCT Demonstration Program is a government and industry cofunded technology development effort to demonstrate a new generation of innovative coal utilization processes in a series of commercial-scale facilities. The ENCOAL(reg s ign) Corporation, a wholly-owned subsidiary of Bluegrass Coal Development Company (formerly SMC Mining Company), which is a subsidiary of Ziegler Coal Holding Company, submitted an application to the DOE in August 1989, soliciting joint funding of the project in the third round of the CCT Program. The project was selected by DOE in December 1989, and the Cooperative Agreement (CA) was approved in September 1990. Construction, commissioning, and start-up of the ENCOAL(reg s ign) mild coal gasification facility was completed in June 1992. In October 1994, ENCOAL(reg s ign) was granted a two-year extension of the CA with the DOE, that carried through to September 17, 1996. ENCOAL(reg s ign) was then granted a six-month, no-cost extension through March 17, 1997. Overall, DOE provided 50 percent of the total project cost of$90,664,000. ENCOAL(reg s ign) operated the 1,000-ton-per-day mild gasification demonstration plant at Triton Coal Company's Buckskin Mine near Gillette, Wyoming, for over four years. The process, using Liquids From Coal (LFC(trademark)) technology originally developed by SMC Mining Company and SGI International, utilizes low-sulfur Powder River Basin (PRB) coal to produce two new fuels, Process-Derived Fuel (PDF(trademark)) and Coal-Derived Liquids (CDL(trademark)). The products, as alternative fuel sources, are capable of significantly lowering current sulfur emissions at industrial and utility boiler sites throughout the nation thus reducing pollutants causing acid rain. In support of this overall

  7. 5. annual clean coal technology conference: powering the next millennium. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    The Fifth Annual Clean Coal Technology Conference focuses on presenting strategies and approaches that will enable clean coal technologies to resolve the competing, interrelated demands for power, economic viability, and environmental constraints associated with the use of coal in the post-2000 era. The program addresses the dynamic changes that will result from utility competition and industry restructuring, and to the evolution of markets abroad. Current projections for electricity highlight the preferential role that electric power will have in accomplishing the long-range goals of most nations. Increase demands can be met by utilizing coal in technologies that achieve environmental goals while keeping the cost- per-unit of energy competitive. Results from projects in the DOE Clean Coal Technology Demonstration Program confirm that technology is the pathway to achieving these goals. The industry/government partnership, cemented over the past 10 years, is focused on moving the clean coal technologies into the domestic and international marketplaces. The Fifth Annual Clean Coal Technology Conference provides a forum to discuss these benchmark issues and the essential role and need for these technologies in the post-2000 era. This volume contains technical papers on: advanced coal process systems; advanced industrial systems; advanced cleanup systems; and advanced power generation systems. In addition, there are poster session abstracts. Selected papers from this proceedings have been processed for inclusion in the Energy Science and Technology database.

  8. Balance of natural radionuclides in the brown coal based power generation and harmlessness of the residues and side product utilization

    International Nuclear Information System (INIS)

    Schulz, Hartmut; Kunze, Christian; Hummrich, Holger

    2017-01-01

    During brown coal combustion a partial enrichment of natural radionuclides occurs in different residues. Residues and side product from brown coal based power generation are used in different ways, for example filter ashes and gypsum from flue gas desulfurization facilities are used in the construction materials fabrication and slags for road construction. Detailed measurement and accounting of radionuclides in the mass throughputs in coal combustion power plants have shown that the utilized gypsum and filter ashes are harmless in radiologic aspects.

  9. Analysis of oxy-fuel combustion power cycle utilizing a pressurized coal combustor

    OpenAIRE

    Gazzino, Marco; Hong, Jongsup; Chaudhry, Gunaranjan; Brisson II, John G; Field, Randall; Ghoniem, Ahmed F

    2009-01-01

    Growing concerns over greenhouse gas emissions have driven extensive research into new power generation cycles that enable carbon dioxide capture and sequestration. In this regard, oxy-fuel combustion is a promising new technology in which fuels are burned in an environment of oxygen and recycled combustion gases. In this paper, an oxy-fuel combustion power cycle that utilizes a pressurized coal combustor is analyzed. We show that this approach recovers more thermal energy from the flue gases...

  10. Manufacture of lightweight aggregates utilizing coal fly ash. Sekitan bai riyo ni yoru jinko keiryo kotsuzai seizo

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, K [Kyushu Electric Power Co. Inc., Fukuoka (Japan)

    1990-11-20

    Processing of a large amount of coal ash is a serious problem in considering the locational conditions of coal firing power generation plants. 46% of the coal ash was effectively used in 1985, and the remaining 54% was disposed at landfills on land and sea. Positive promotion of the effective use of coal ash is the necessity. A production method for an artificial lightweight aggregate utilizing coal ash was established by a joint research. The history of the research and development of this artificial lightweight aggregate (brand name: FA-lIGHT), outline of the manufacturing facilities, physical properties and result of use are introduced. The lightweight aggregates are used not only for the construction of multistoried buildings but also used as most suitable aggregates for making lightweight large scale panels and concrete secondary products such as lightweight blocks. FA-LIGHT is most suitable for use in the production of concrete lightweight aggregates, and can be used for hydroponic agriculture and for the improvement of drainage of land. Spread of its use is expected. 5 figs., 5 tabs.

  11. Issues and prospects for coal utilization in Zimbabwe's rural households

    International Nuclear Information System (INIS)

    Maya, R.S.

    1990-01-01

    The increasing shortage of traditional fuels in Zimbabwe has prompted government to consider seriously the use of coal in rural households. In this regard, both government and the privately owned coal industry have begun pilot projects in selected rural areas to initiate the introduction of coal stoves and coal fuels. These efforts by government and the coal industry need to be informed by knowledge of the financial and economic dimensions of coal diffusion to rural economies, the environmental implications of widespread coal use in rural households, and the general acceptability of coal as a fuel to households with a long tradition of free fuels. This paper summarizes the results of a study undertaken to provide such background information. Conducted over six months during 1988, the study included field surveys of four districts in Zimbabwe: Murewa, Shurugwi, Mberengwa, and Mazoe Citrus Estates. All but the Mazoe district are rural settings with severe shortages of fuelwood. Mazoe Citrus Estates is a semi-urban plantation community which has had over twenty years' experience with coal use in households under a company-sponsored programme which supplies both fuels and stoves free of charge

  12. Quarterly coal report, January--March 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-08-20

    The United States produced 242 million short tons of coal in the first quarter of 1993, a decrease of 6 percent (14 million short tons) from the amount produced during the first quarter of 1992. The decrease was due to a decline in production east of the Mississippi River. All major coal-producing States in this region had lower coal production levels led by West Virginia, which produced 5 million short tons less coal. The principal reasons for the overall drop in coal output compared to a year earlier were: A decrease in demand for US coal in foreign markets; a slower rate of producer/distributor stock build-up; and a drawn-down of electric utility coal stocks. Distribution of US coal in the first quarter of 1993 was 10 million short tons lower than in the first quarter of 1992, with 5 million short tons less distributed to both electric utilities and overseas markets. The average price of coal delivered to electric utilities during the first quarter of 1993 was $28.65 per short ton, the lowest value since the first quarter of 1980. Coal consumption in the first quarter of 1993 was 230 million short tons, 4 percent higher than in the first quarter of 1992, due primarily to a 5-percent increase in consumption at electric utility plants. Total consumer stocks, at 153 million short tons, and electric utility stocks, at 144 million short tons, were at their lowest quarterly level since the end of 1989. US. coal exports totaled 19 million short tons, 6 million short tons less than in the first quarter of 1992, and the lowest quarterly level since 1988. The decline was primarily due to a 1-million-short-ton drop in exports to each of the following destinations: Italy, France, Belgium and Luxembourg, and Canada.

  13. Quarterly coal report, January--March 1993

    International Nuclear Information System (INIS)

    1993-01-01

    The United States produced 242 million short tons of coal in the first quarter of 1993, a decrease of 6 percent (14 million short tons) from the amount produced during the first quarter of 1992. The decrease was due to a decline in production east of the Mississippi River. All major coal-producing States in this region had lower coal production levels led by West Virginia, which produced 5 million short tons less coal. The principal reasons for the overall drop in coal output compared to a year earlier were: A decrease in demand for US coal in foreign markets; a slower rate of producer/distributor stock build-up; and a drawn-down of electric utility coal stocks. Distribution of US coal in the first quarter of 1993 was 10 million short tons lower than in the first quarter of 1992, with 5 million short tons less distributed to both electric utilities and overseas markets. The average price of coal delivered to electric utilities during the first quarter of 1993 was $28.65 per short ton, the lowest value since the first quarter of 1980. Coal consumption in the first quarter of 1993 was 230 million short tons, 4 percent higher than in the first quarter of 1992, due primarily to a 5-percent increase in consumption at electric utility plants. Total consumer stocks, at 153 million short tons, and electric utility stocks, at 144 million short tons, were at their lowest quarterly level since the end of 1989. US. coal exports totaled 19 million short tons, 6 million short tons less than in the first quarter of 1992, and the lowest quarterly level since 1988. The decline was primarily due to a 1-million-short-ton drop in exports to each of the following destinations: Italy, France, Belgium and Luxembourg, and Canada

  14. Gc/ms analysis of coal tar composition produced from coal

    African Journals Online (AJOL)

    Coal pyrolysis is one of the significant approaches for the comprehensive utilization ... planigraphy-GC/MS; therefore a satisfactory analytical result obtained, which .... Among the aliphatic group of the coal tar, the proportion of alkene is larger ...

  15. Coal combustion by-product quality at two stoker boilers: Coal source vs. fly ash collection system design

    Energy Technology Data Exchange (ETDEWEB)

    Mardon, Sarah M. [Kentucky Department for Environmental Protection, Division of Water, Frankfort, KY 40601 (United States); Hower, James C. [University of Kentucky Center for Applied Energy Research, 2540 Research Park Drive, Lexington, KY 40511 (United States); O' Keefe, Jennifer M.K. [Morehead State University, Department of Physical Sciences, Morehead, KY 40351 (United States); Marks, Maria N. [Environmental Consulting Services, Lexington, KY 40508 (United States); Hedges, Daniel H. [University of Kentucky, Department of Earth and Environmental Sciences, Lexington, KY 40506 (United States)

    2008-09-15

    Fly ashes from two stoker boilers burning Pennsylvanian Eastern Kentucky high volatile A bituminous coal blends were examined for their petrology and chemistry. The source coals have similar trace element contents. One of the ash collection systems was retrofitted with a baghouse (fabric filter) system, collecting a finer fly ash at a cooler flue gas temperature than the plant that has not been reconfigured. The baghouse ash has a markedly higher trace element content than the coarser fly ash from the other plant. The enhanced trace element content is most notable in the As concentration, reaching nearly 9000 ppm (ash basis) for one of the collection units. Differences in the ash chemistry are not due to any substantial differences in the coal source, even though the coal sources were from different counties and from different coal beds, but rather to the improved pollution control system in the steam plant with the higher trace element contents. (author)

  16. Clean coal technologies for gas turbines

    Energy Technology Data Exchange (ETDEWEB)

    Todd, D.M. [GE Industrial & Power Systems, Schenectady, NY (United States)

    1994-12-31

    The oil- and gas-fired turbine combined-cycle penetration of industrial and utility applications has escalated rapidly due to the lower cost, higher efficiency and demonstrated reliability of gas turbine equipment in combination with fuel economics. Gas turbine technology growth has renewed the interest in the use of coal and other solid fuels in combined cycles for electrical and thermal energy production to provide environmentally acceptable plants without extra cost. Four different types of systems utilizing the gas turbine advantages with solid fuel have been studied: direct coal combustion, combustor processing, fuel processing and indirect cycles. One of these, fuel processing (exemplified by coal gasification), is emerging as the superior process for broad scale commercialization at this time. Advances in gas turbine design, proven in operation above 200 MW, are establishing new levels of combined-cycle net plant efficiencies up to 55% and providing the potential for a significant shift to gas turbine solid fuel power plant technology. These new efficiencies can mitigate the losses involved in gasifying coal and other solid fuels, and economically provide the superior environmental performance required today. Based on demonstration of high baseload reliability for large combined cycles (98%) and the success of several demonstrations of Integrated Gasification Combined Cycle (IGCC) plants in the utility size range, it is apparent that many commercial IGCC plants will be sites in the late 1990s. This paper discusses different gas turbine systems for solid fuels while profiling available IGCC systems. The paper traces the IGCC option as it moved from the demonstration phase to the commercial phase and should now with planned future improvements, penetrate the solid fuel power generation market at a rapid pace.

  17. DEVELOPMENT OF CONTINUOUS SOLVENT EXTRACTION PROCESSES FOR COAL DERIVED CARBON PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    Elliot B. Kennel; R. Michael Bergen; Stephen P. Carpenter; Dady Dadyburjor; Manoj Katakdaunde; Liviu Magean; Alfred H. Stiller; W. Morgan Summers; John W. Zondlo

    2006-05-12

    The purpose of this DOE-funded effort is to develop continuous processes for solvent extraction of coal for the production of carbon products. The largest applications are those which support metals smelting, such as anodes for aluminum smelting and electrodes for arc furnaces. Other carbon products include materials used in creating fuels for the Direct Carbon Fuel Cell, metals smelting, especially in the aluminum and steel industries, as well as porous carbon structural material referred to as ''carbon foam'' and carbon fibers. During this reporting period, coking and composite fabrication continued using coal-derived samples. These samples were tested in direct carbon fuel cells. Methodology was refined for determining the aromatic character of hydro treated liquid, based on Nuclear Magnetic Resonance (NMR) and Fourier Transform Infrared (FTIR). Tests at GrafTech International showed that binder pitches produced using the WVU solvent extraction protocol can result in acceptable graphite electrodes for use in arc furnaces. These tests were made at the pilot scale.

  18. Characterization of seven United States coal regions. The development of optimal terrace pit coal mining systems

    Energy Technology Data Exchange (ETDEWEB)

    Wimer, R.L.; Adams, M.A.; Jurich, D.M.

    1981-02-01

    This report characterizes seven United State coal regions in the Northern Great Plains, Rocky Mountain, Interior, and Gulf Coast coal provinces. Descriptions include those of the Fort Union, Powder River, Green River, Four Corners, Lower Missouri, Illinois Basin, and Texas Gulf coal resource regions. The resource characterizations describe geologic, geographic, hydrologic, environmental and climatological conditions of each region, coal ranks and qualities, extent of reserves, reclamation requirements, and current mining activities. The report was compiled as a basis for the development of hypothetical coal mining situations for comparison of conventional and terrace pit surface mining methods, under contract to the Department of Energy, Contract No. DE-AC01-79ET10023, entitled The Development of Optimal Terrace Pit Coal Mining Systems.

  19. Highly-productive mechanization systems for coal mining in the Polish coal industry

    Energy Technology Data Exchange (ETDEWEB)

    Sikora, W

    1985-01-01

    Effects of mechanization on underground coal mining in Poland from 1960 to 1980 and mining equipment used in Poland is reviewed. In 1983 black coal output increased to 191.1 Mt. There were 765 working faces, 442 of which with powered supports. Six hundred thirty-four shearer loaders were in use. About 82.7% of coal output fell on faces mined by sets of mining equipment (shearer loaders, powered supports and chain conveyors). The average coal output per working face amounted to 889 t/d. About 50% of mine roadways was driven by heading machines (346 heading machines were in use). The average coal output per face mined by a set of mining equipment amounted to 1248 t/d. About 86% of shearer loaders fell on double drum shearer loaders. Types of mining equipment used in underground mining are reviewed: powered supports (Pioma, Fazos, Glinik and the SOW), shearer loaders (drum shearer loaders and double-drum shearer loaders with chain haulage and chainless haulage systems for unidirectional and bi-directional mining), chain conveyors (Samson, Rybnik). Statistical data on working faces with various sets of equipment are given. 3 references.

  20. Role of the Liquids From Coal process in the world energy picture

    Energy Technology Data Exchange (ETDEWEB)

    Frederick, J.P.; Knottnerus, B.A. [ENCOAL Corp., Gillette, WY (United States)

    1997-12-31

    ENCOAL Corporation, a wholly owned indirect subsidiary of Zeigler Coal Holding Company, has essentially completed the demonstration phase of a 1,000 Tons per day (TPD) Liquids From Coal (LFC{trademark}) plant near Gillette, Wyoming. The plant has been in operation for 4{1/2} years and has delivered 15 unit trains of Process Derived Fuel (PDF{trademark}), the low-sulfur, high-Btu solid product to five major utilities. Recent test burns have indicated the PDF{trademark} can offer the following benefits to utility customers: lower sulfur emissions, lower NO{sub x} emissions, lower utilized fuel costs to power plants, and long term stable fuel supply. More than three million gallons of Coal Derived Liquid (CDL{trademark}) have also been delivered to seven industrial fuel users and one steel mill blast furnace. Additionally, laboratory characteristics of CDL{trademark} and process development efforts have indicated that CDL{trademark} can be readily upgraded into higher value chemical feedstocks and transportation fuels. Commercialization of the LFC{trademark} is also progressing. Permit work for a large scale commercial ENCOAL{reg_sign} plant in Wyoming is now underway and domestic and international commercialization activity is in progress by TEK-KOL, a general partnership between SGI International and a Zeigler subsidiary. This paper covers the historical background of the project, describes the LFC{trademark} process and describes the worldwide outlook for commercialization.

  1. Predicted coal production trends in Kentucky: The results of available coal resources, coal quality demands, and regulatory factors

    International Nuclear Information System (INIS)

    Watson, W.D.

    1993-01-01

    Many factors affect the viability of regional coal production markets including (1) coal quality and recoverable tonnage, (2) coal mining cost, (3) the regional and time varying patterns of coal demand growth, (4) regulations and other institutional constraints that affect coal demand and utilization, and (5) the regional array of coal transport modes and rates. This analysis integrates these factors into an assessment of coal production prospects (separately) for eastern and western Kentucky coal producing counties for the decade of the 90's. The integration indicates that eastern Kentucky coal production will peak and begin to decline by the end of the decade whereas western Kentucky coal production will continue to grow. No single factor explains these trends. There is plenty of available minable coal. The combination of changes in environmental regulations, some increase in coal mining costs, and the mining-out of low sulfur reserves are the main factors that account for the production trends

  2. Production of High-Hydrogen Content Coal-Derived Liquids [Part 2 of 3

    Energy Technology Data Exchange (ETDEWEB)

    Stephen Bergin

    2011-03-30

    The primary goal of this project has been to evaluate and compare the effect of the intrinsic differences between cobalt (Co) and iron (Fe) catalysts for Fischer-Tropsch (FT) synthesis using coal-derived syngas. Crude oil, especially heavy, high-sulfur crude, is no longer the appropriate source for the additional, or marginal, amounts of middle-distillate fuels needed to meet growing US and world demand for diesel and jet fuels. Only about 1/3 of the marginal crude oil barrel can be made into diesel and jet fuels. The remaining 2/3 contributes further to global surpluses of by-products. FT can produce these needed marginal, low-sulfur middle-distillate fuels more efficiently, with less environmental impact, and from abundant US domestic resources. Cobalt FT catalyst is more efficient, and less expensive overall, than iron FT catalyst. Mechanisms of cobalt FT catalyst functioning, and poisoning, have been elucidated. Each of these primary findings is amplified by several secondary findings, and these are presented, and verified in detail. The most effective step the United States can take to begin building toward improved long-term national energy security, and to reduce dependence, over time, on imported crude oil from unfriendly and increasingly unstable areas of the world, is to begin producing additional, or marginal amounts of, middle-distillate-type fuels, such as ultralow sulfur diesel (ULSD) and jet fuel (not gasoline) from US domestic resources other than petroleum. FT synthesis of these middle distillate fuels offers the advantage of being able to use abundant and affordable US coal and biomass as the primary feedstocks. Use of the cobalt FT catalyst system has been shown conclusively to be more effective and less expensive than the use of iron FT catalyst with syngas derived from coal, or from coal and biomass combined. This finding is demonstrated in detail for the initial case of a relatively small FT plant of about 2000 barrels per day based upon coal

  3. Production of High-Hydrogen Content Coal-Derived Liquids [Part 3 of 3

    Energy Technology Data Exchange (ETDEWEB)

    Stephen Bergin

    2011-03-30

    The primary goal of this project has been to evaluate and compare the effect of the intrinsic differences between cobalt (Co) and iron (Fe) catalysts for Fischer-Tropsch (FT) synthesis using coal-derived syngas. Crude oil, especially heavy, high-sulfur crude, is no longer the appropriate source for the additional, or marginal, amounts of middle-distillate fuels needed to meet growing US and world demand for diesel and jet fuels. Only about 1/3 of the marginal crude oil barrel can be made into diesel and jet fuels. The remaining 2/3 contributes further to global surpluses of by-products. FT can produce these needed marginal, low-sulfur middle-distillate fuels more efficiently, with less environmental impact, and from abundant US domestic resources. Cobalt FT catalyst is more efficient, and less expensive overall, than iron FT catalyst. Mechanisms of cobalt FT catalyst functioning, and poisoning, have been elucidated. Each of these primary findings is amplified by several secondary findings, and these are presented, and verified in detail. The most effective step the United States can take to begin building toward improved long-term national energy security, and to reduce dependence, over time, on imported crude oil from unfriendly and increasingly unstable areas of the world, is to begin producing additional, or marginal amounts of, middle-distillate-type fuels, such as ultralow sulfur diesel (ULSD) and jet fuel (not gasoline) from US domestic resources other than petroleum. FT synthesis of these middle distillate fuels offers the advantage of being able to use abundant and affordable US coal and biomass as the primary feedstocks. Use of the cobalt FT catalyst system has been shown conclusively to be more effective and less expensive than the use of iron FT catalyst with syngas derived from coal, or from coal and biomass combined. This finding is demonstrated in detail for the initial case of a relatively small FT plant of about 2000 barrels per day based upon coal

  4. Production of High-Hydrogen Content Coal-Derived Liquids [Part 1 of 3

    Energy Technology Data Exchange (ETDEWEB)

    Stephen Bergin

    2011-03-30

    The primary goal of this project has been to evaluate and compare the effect of the intrinsic differences between cobalt (Co) and iron (Fe) catalysts for Fischer-Tropsch (FT) synthesis using coal-derived syngas. Crude oil, especially heavy, high-sulfur crude, is no longer the appropriate source for the additional, or marginal, amounts of middle-distillate fuels needed to meet growing US and world demand for diesel and jet fuels. Only about 1/3 of the marginal crude oil barrel can be made into diesel and jet fuels. The remaining 2/3 contributes further to global surpluses of by-products. FT can produce these needed marginal, low-sulfur middle-distillate fuels more efficiently, with less environmental impact, and from abundant US domestic resources. Cobalt FT catalyst is more efficient, and less expensive overall, than iron FT catalyst. Mechanisms of cobalt FT catalyst functioning, and poisoning, have been elucidated. Each of these primary findings is amplified by several secondary findings, and these are presented, and verified in detail. The most effective step the United States can take to begin building toward improved long-term national energy security, and to reduce dependence, over time, on imported crude oil from unfriendly and increasingly unstable areas of the world, is to begin producing additional, or marginal amounts of, middle-distillate-type fuels, such as ultralow sulfur diesel (ULSD) and jet fuel (not gasoline) from US domestic resources other than petroleum. FT synthesis of these middle distillate fuels offers the advantage of being able to use abundant and affordable US coal and biomass as the primary feedstocks. Use of the cobalt FT catalyst system has been shown conclusively to be more effective and less expensive than the use of iron FT catalyst with syngas derived from coal, or from coal and biomass combined. This finding is demonstrated in detail for the initial case of a relatively small FT plant of about 2000 barrels per day based upon coal

  5. Coal tar pitch. Interrelations between properties and utilization of coal tar pitch

    Energy Technology Data Exchange (ETDEWEB)

    Collin, G; Koehler, H [Ruetgerswerke A.G., Duisburg (Germany, F.R.)

    1977-06-01

    Coal tar pitch is won as a highly aromatic, thermoplastic residue by destillating coal tar. In this paper the structure as well as the chemical and physical data of this pitch are introduced. In addition to this the actual as well as possible applications are indicated. For example, the pitch can be used for the production of binders, e.g. for electrodes and road construction as well as in combination with plastics for the production of insulating material and corrosion protection material.

  6. 21st century energy solutions. Coal and Power Systems FY2001 program briefing

    International Nuclear Information System (INIS)

    None

    2001-01-01

    The continued strength of American's economy depends on the availability of affordable energy, which has long been provided by the Nations rich supplies of fossil fuels. Forecasts indicate that fossil fuels will continue to meet much of the demand for economical electricity and transportation fuels for decades to come. It is projected that natural gas, oil, and coal will supply nearly 90% of US energy in 2020, with coal fueling around 50% of the electricity. It is essential to develop ways to achieve the objectives for a cleaner environment while using these low-cost, high-value fuels. A national commitment to improved technologies-for use in the US and abroad-is the solution. The Coal and Power Systems program is responding to this commitment by offering energy solutions to advance the clean, efficient, and affordable use of the Nations abundant fossil fuel resources. These solutions include: (1) Vision 21-A multi-product, pollution-free energy plant-producing electricity, fuels, and/or industry heat-could extract 80% or more of the energy value of coal and 85% or more of the energy value of natural gas; (2) Central Power Systems-Breakthrough turbines and revolutionary new gasification technologies that burn less coal and gas to obtain energy, while reducing emissions; (3) Distributed Generation-Fuel cell technology providing highly efficient, clean modular power; (4) Fuels-The coproduction of coal-derived transportation fuels and power from gasification-based technology; (5) Carbon Sequestration-Capturing greenhouse gases from the exhaust gases of combustion or other sources, or from the atmosphere itself, and storing them for centuries or recycling them into useful products; and (6) Advanced Research-Going beyond conventional thinking in the areas of computational science, biotechnology, and advanced materials

  7. Chemistry and structure of coal derived asphaltenes and preasphaltenes. Quarterly progress report, April-June 1980

    Energy Technology Data Exchange (ETDEWEB)

    Yen, T. F.

    1980-01-01

    It is the objective of this project to isolate the asphaltene and preasphaltene fractions from coal liquids from a number of liquefaction processes. These processes consist of in general: catalytic hydrogenation, staged pyrolysis and solvent refining. These asphaltene fractions may be further separated by both gradient elution through column chromatography, and molecular size distribution through gel permeation chromatography. Those coal-derived asphaltene and preasphaltene fractions will be investigated by various chemical and physical methods for characterization of their structures. After the parameters are obtained, these parameters will be correlated with the refining and conversion variables which control a given type of liquefaction process. The effects of asphaltene in catalysis, ash or metal removal, desulfurization and denitrification will also be correlated. It is anticipated that understanding the role of asphaltenes in liquefaction processes will enable engineers to both improve existing processes, and to make recommendations for operational changes in planned liquefaction units in the United States. The objective of Phase 1 was to complete the isolation and separation of coal liquid fractions and to initiate their characterization. The objective of Phase 2 is to continue the characterization of coal asphaltenes and other coal liquid fractions by use of physical and instrumental methods. The structural parameters obtained will be used to postulate hypothetical average structures for coal liquid fractions. The objective of Phase 3 is to concentrate on the characterization of the preasphaltene (benzene insoluble fraction) of coal liquid fraction by the available physical and chemical methods to obtain a number of structural parameters.

  8. Structure determination of small molecular phase in coal by solvent extraction

    Energy Technology Data Exchange (ETDEWEB)

    Feng, J.; Wang, B.; Ye, C.; Li, W.; Xie, K. [Taiyuan University of Technology, Taiyuan (China)

    2004-04-01

    7 typical Chinese coal samples were extracted by NMP/CS{sub 2} system at around 90{degree}C by Soxhlet method. Compared with results from NMP, a higher coal extraction rate was acquired when NMP + CS{sub 2} solvent system was adopted. Except for anthracite extraction rate of about 20% was acquired, particularly 41% for long flame coal. By using the method of retention index of coal extracts analysis by HPLC, it is found that the polar part with less than six-carbon numbers in coal is the active site for coal reactivity, and the inert site belongs to the aromatic hydrocarbon derivation with 3 aromatic rings. 13 refs., 3 figs., 2 tabs.

  9. Clean coal use in China: Challenges and policy implications

    International Nuclear Information System (INIS)

    Tang, Xu; Snowden, Simon; McLellan, Benjamin C.; Höök, Mikael

    2015-01-01

    Energy consumption in China is currently dominated by coal, a major source of air pollution and carbon emissions. The utilization of clean coal technologies is a likely strategic choice for China at present, however, although there have been many successes in clean coal technologies worldwide, they are not widely used in China. This paper examines the challenges that China faces in the implementation of such clean coal technologies, where the analysis shows that those drivers that have a negative bearing on the utilization of clean coal in China are mainly non-technical factors such as the low legal liability of atmospheric pollution related to coal use, and the lack of laws and mandatory regulations for clean coal use in China. Policies for the development of clean coal technologies are in their early stages in China, and the lack of laws and detailed implementation requirements for clean coal require resolution in order to accelerate China's clean coal developments. Currently, environmental pollution has gained widespread attention from the wider Chinese populace and taking advantage of this opportunity provides a space in which to regain the initiative to raise people’s awareness of clean coal products, and improve enterprises’ enthusiasm for clean coal. - Highlights: • Clean coal is not widely used in China due to many management issues. • Legal liability of pollution related with coal utilization is too low in China. • China is lack of laws and mandatory regulations for clean coal utilization. • It is difficult to accelerate clean coal utilization by incentive subsidies alone.

  10. Modeling and optimization of processes for clean and efficient pulverized coal combustion in utility boilers

    Directory of Open Access Journals (Sweden)

    Belošević Srđan V.

    2016-01-01

    Full Text Available Pulverized coal-fired power plants should provide higher efficiency of energy conversion, flexibility in terms of boiler loads and fuel characteristics and emission reduction of pollutants like nitrogen oxides. Modification of combustion process is a cost-effective technology for NOx control. For optimization of complex processes, such as turbulent reactive flow in coal-fired furnaces, mathematical modeling is regularly used. The NOx emission reduction by combustion modifications in the 350 MWe Kostolac B boiler furnace, tangentially fired by pulverized Serbian lignite, is investigated in the paper. Numerical experiments were done by an in-house developed three-dimensional differential comprehensive combustion code, with fuel- and thermal-NO formation/destruction reactions model. The code was developed to be easily used by engineering staff for process analysis in boiler units. A broad range of operating conditions was examined, such as fuel and preheated air distribution over the burners and tiers, operation mode of the burners, grinding fineness and quality of coal, boiler loads, cold air ingress, recirculation of flue gases, water-walls ash deposition and combined effect of different parameters. The predictions show that the NOx emission reduction of up to 30% can be achieved by a proper combustion organization in the case-study furnace, with the flame position control. Impact of combustion modifications on the boiler operation was evaluated by the boiler thermal calculations suggesting that the facility was to be controlled within narrow limits of operation parameters. Such a complex approach to pollutants control enables evaluating alternative solutions to achieve efficient and low emission operation of utility boiler units. [Projekat Ministarstva nauke Republike Srbije, br. TR-33018: Increase in energy and ecology efficiency of processes in pulverized coal-fired furnace and optimization of utility steam boiler air preheater by using in

  11. Steam coal processing technology: handling, high-order processing, COM, meth-coal

    Energy Technology Data Exchange (ETDEWEB)

    Kamata, H.; Onodera, J.

    1982-01-01

    Topics covered include: various handling techologies (overland and marine transport, storage, water removal, drying, comminution and sizing); various coal processing technologies (gravity concentration, magnetic separation, multi-stage flotation, liquid-phase pelletizing, chemical processing); production methods for coal-oil mixtures (COM), their physical properties, stability, storage, transport, advantages, plus recent trends in research and development; production of coal-methanol slurry (meth-coal), its stability, storage, transport, utilization and environmental problems, plus latest trends in research and development. (In Japanese)

  12. Computer-aided planning of brown coal seam mining in regard to coal quality

    Energy Technology Data Exchange (ETDEWEB)

    Ciesielski, R.; Lehmann, A.; Rabe, H.; Richter, S.

    1988-09-01

    Discusses features of the geologic SORVER software developed at the Freiberg Fuel Institute, GDR. The program processes geologic data from exploratory wells, petrographic characteristics of a coal seam model, technological mining parameters and coal quality requirements of consumers. Brown coal reserves of coking coal, gasification coal, briquetting coal and steam coal are calculated. Vertical seam profiles and maps of seam horizon isolines can be plotted using the program. Coal quality reserves along the surface of mine benches, mining block widths and lengths for excavators, maximum possible production of individual coal qualities by selective mining, and coal quality losses due to mining procedures are determined. The program is regarded as a means of utilizing deposit reserves more efficiently. 5 refs.

  13. The importance of coal in energy

    International Nuclear Information System (INIS)

    Onal, Guven

    2006-01-01

    An 87% of the total energy requirement of the world is supplied by fossil fuels such as coal, fuel oil, and natural gas, while the rest comes from the other sources, like hydroelectric and nuclear power plants. Coal, as a fuel oil equivalent, has the greatest reserves (70%) among the fossil fuels and is very commonly found in the world. While the share of coal in the production of electricity was 39% in 2004 it is expected to rise to 48% in 2020. In the direction of sustainable development, the utilization of coal in energy production is constantly increasing and related researches are continuing. Today, the development and economics of hybrid electricity production; gas, fluid fuel, and hydrogen production from coal are being investigated and their industrial applications are slowly emerging. The surprisingly sharp increase in fuel oil and natural gas prices proves the defectiveness of the energy strategies of Turkey in effect since the 1990. Turkey should turn to coal without wasting more time, accept the utilization of clean coal in energy production, and determine her road-map. Increasing the efficiency of thermal power plants which utilize coal; hybrid technology; and gas, fluid fuel, and hydrogen production technologies from coal are investigated in this paper and suggestions are made.

  14. Development of a dry-feed system for a coal-fired gas turbine

    Energy Technology Data Exchange (ETDEWEB)

    Rothrock, J.W. Jr.; Smith, C.F.

    1993-11-01

    The objective of the reported of the reported work is to develop a dry coal feed system that provides smooth, controllable flow of coal solids into the high pressure combustor of the engine and all test rigs. The system must start quickly and easily, run continuously with automatic transfer of coal from low pressure hoppers to the high pressure delivery system, and offer at least a 3:1 smooth turn-down ratio. cost of the equipment must be minimized to maintain the economic attractiveness of the whole system. Before the current contract started some work was done with dry powder coal. For safety and convenience reasons, coal water slurry was selected as the fuel for all work on the program. Much of the experimental work, including running the Allison 501-KM engine was done with coal slurry. Recent economic analysis led to a change to powdered coal.

  15. Research on mechanism of and catalysts for extraction liquefaction of coal using coal-based solvents; Sekitankei yozai ni yoru sekitan no chushutsu ekika kiko to shokubai no kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1981-07-01

    Papers of Professor Yoshio Kamiya of Tokyo University are compiled into this report. The list of the papers includes (1) Synthesis of heavy fuel oils from coal; (2) Research and development of coal liquefaction; (3) Dissolution reaction of coal by hydrogen-donating aromatic solvents (I); (4) Effect of hydrogen-donor solvent on the liquefaction of coal; (5) Recent studies on the chemical structure of solvent refined coal; (6) Dissolution reaction of coal by hydrogen-donating aromatic solvents (II); (7) Future of coal as energy material; (8), (9), (10) same as (6) in the subject discussed; (11) Recent studies on coal liquefaction catalysts; (12) Environmental problems and drain treatment to accompany processes of converting fossil resources into fuels; (13) Chemistry of coal oxidation; (14) Fractionation and analysis of solvent refined coal by gel permeation chromatography; (15) Current state of research and development of coal liquefaction; (16) Properties and components of coal oils from coal liquefaction processes under development; (17) Solvent effect of coal derived aromatic compounds on the liquefaction of Akabira coal; (18) Chemistry of coal liquefaction; (19) Research and development of coal liquefaction in the U.S.; (20) Thermal treatment of coal-related aromatic ethers in tetralin solution; (21) Recent technology of utilizing heavy carbon resources; (22) Chemical properties and reactivity of coal; (23) Current state and future of development of coal liquefaction processes; and (24) Development of overseas coal liquefaction projects. (NEDO)

  16. Conversion of Coal Mine Gas to LNG

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2016-02-05

    This project evolved from a 1995, DOE-NETL competitive solicitation for practical CMM capture and utilization concepts. Appalachian Pacific was one of three companies selected to proceed with the construction and operation of a cost-shared demonstration plant. In the course of trying to proceed with this demonstration plant, AP examined several liquefaction technologies, discussed obtaining rights to coal mine methane with a number of coal companies, explored marketing potential with a wide variety of customers in many sections of the United States, studied in great detail the impact of a carbon credit exchange, and developed a suite of analytical tools with which to evaluate possible project options. In the end, the newness of the product, reluctance on the part of the coal companies to venture away from time tested practices, difficulty with obtaining financing, the failure of a carbon credit market to develop and the emergence of shale derived gas production prevented a demonstration plant from being built.

  17. ASSESSMENT OF CONTROL TECHNOLOGIES FOR REDUCING EMISSIONS OF SO2 AND NOX FROM EXISTING COAL-FIRED UTILITY BOILERS

    Science.gov (United States)

    The report reviews information and estimated costs on 15 emissioncontrol technology categories applicable to existing coal-fired electric utility boilers. he categories include passive controls such as least emission dispatching, conventional processes, and emerging technologies ...

  18. Low-rank coal research

    Energy Technology Data Exchange (ETDEWEB)

    Weber, G. F.; Laudal, D. L.

    1989-01-01

    This work is a compilation of reports on ongoing research at the University of North Dakota. Topics include: Control Technology and Coal Preparation Research (SO{sub x}/NO{sub x} control, waste management), Advanced Research and Technology Development (turbine combustion phenomena, combustion inorganic transformation, coal/char reactivity, liquefaction reactivity of low-rank coals, gasification ash and slag characterization, fine particulate emissions), Combustion Research (fluidized bed combustion, beneficiation of low-rank coals, combustion characterization of low-rank coal fuels, diesel utilization of low-rank coals), Liquefaction Research (low-rank coal direct liquefaction), and Gasification Research (hydrogen production from low-rank coals, advanced wastewater treatment, mild gasification, color and residual COD removal from Synfuel wastewaters, Great Plains Gasification Plant, gasifier optimization).

  19. Performance effects of coal-derived contaminants on the carbonate fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Pigeaud, A. [Energy Research Corp., Danbury, CT (United States); Wilemski, G. [Physical Sciences, Inc., Andover, MA (United States)

    1993-05-01

    Coal-derived contaminant studies have been pursued at ERC since the early 1980`s when the pace of carbonate fuel cell development began to markedly increase. Initial work was concerned with performance effects on laboratory and bench-scale carbonate fuel cells primarily due to sulfur compounds. Results have now also been obtained with respect to nine additional coal-gas contaminants, including volatile trace metal species. Thermochemical calculations, out-of-cell experiments, and cell performance as well as endurance testshave recently been conducted which have involved the following species: NH{sub 3}, H{sub 2}S [COS], HCl, AsH{sub 3}[As{sub 2}(v)], Zn(v), Pb(v), Cd(v), H{sub 2} Se, Hg(v), Sn(v). Employing thermochemically calculated results, thermogravimetric (TGA) and pre-, and post-test analytical data as well as fuel cell performance observations, it has been shown that there are four main mechanisms of contaminant interaction with the carbonate fuel cell. These have been formulated into performance models for six significant contaminant species, thus providing long-term endurance estimations.

  20. Performance effects of coal-derived contaminants on the carbonate fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Pigeaud, A. (Energy Research Corp., Danbury, CT (United States)); Wilemski, G. (Physical Sciences, Inc., Andover, MA (United States))

    1993-01-01

    Coal-derived contaminant studies have been pursued at ERC since the early 1980's when the pace of carbonate fuel cell development began to markedly increase. Initial work was concerned with performance effects on laboratory and bench-scale carbonate fuel cells primarily due to sulfur compounds. Results have now also been obtained with respect to nine additional coal-gas contaminants, including volatile trace metal species. Thermochemical calculations, out-of-cell experiments, and cell performance as well as endurance testshave recently been conducted which have involved the following species: NH[sub 3], H[sub 2]S [COS], HCl, AsH[sub 3][As[sub 2](v)], Zn(v), Pb(v), Cd(v), H[sub 2] Se, Hg(v), Sn(v). Employing thermochemically calculated results, thermogravimetric (TGA) and pre-, and post-test analytical data as well as fuel cell performance observations, it has been shown that there are four main mechanisms of contaminant interaction with the carbonate fuel cell. These have been formulated into performance models for six significant contaminant species, thus providing long-term endurance estimations.

  1. Model documentation, Coal Market Module of the National Energy Modeling System

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-01-01

    This report documents the objectives and the conceptual and methodological approach used in the development of the National Energy Modeling System`s (NEMS) Coal Market Module (CMM) used to develop the Annual Energy Outlook 1998 (AEO98). This report catalogues and describes the assumptions, methodology, estimation techniques, and source code of CMM`s two submodules. These are the Coal Production Submodule (CPS) and the Coal Distribution Submodule (CDS). CMM provides annual forecasts of prices, production, and consumption of coal for NEMS. In general, the CDS integrates the supply inputs from the CPS to satisfy demands for coal from exogenous demand models. The international area of the CDS forecasts annual world coal trade flows from major supply to major demand regions and provides annual forecasts of US coal exports for input to NEMS. Specifically, the CDS receives minemouth prices produced by the CPS, demand and other exogenous inputs from other NEMS components, and provides delivered coal prices and quantities to the NEMS economic sectors and regions.

  2. The future of coal trading. Part 1: obstacles to coal trading

    International Nuclear Information System (INIS)

    Schafer, W.; Vaninetti, J.

    1998-01-01

    'Trading' as used in this article means routine buying and selling of futures contracts or options and other derivatives of future contracts. The variable nature of coal, lack of liquidity, and the coal industry's understanding and acceptance of commodity trading concepts are identified as three major barriers to successful trading of a coal futures contract. The article discusses these obstacles

  3. Competitive edge of western coal

    International Nuclear Information System (INIS)

    Keith, R.D.

    1990-01-01

    This paper expresses views on the competitive advantages of one of the nation's most remarkable energy resources--Western coal. It covers utilization of Western coal, and its advantages. The Arkansas Power and Light Company and its demand for coal are also covered

  4. REFINERY INTEGRATION OF BY-PRODUCTS FROM COAL-DERIVED JET FUELS

    Energy Technology Data Exchange (ETDEWEB)

    Leslie R. Rudnick; Andre Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

    2005-05-18

    This report summarizes the accomplishments toward project goals during the first six months of the second year of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts, acquisition and installation of a research gasoline engine, and modification of diesel engines for use in evaluating diesel produced in the project. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Coal samples have procured and are being assessed for cleaning prior to use in coking studies.

  5. Refinery Integration of By-Products from Coal-Derived Jet Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Leslie R. Rudnick; Andre Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

    2005-11-17

    This report summarizes the accomplishments toward project goals during the first six months of the second year of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts, acquisition and installation of a research gasoline engine, and modification of diesel engines for use in evaluating diesel produced in the project. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Evaluations to assess the quality of coal based fuel oil are reported. Coal samples have procured and are being assessed for cleaning prior to use in coking studies.

  6. Refinery Integration of By-Products from Coal-Derived Jet Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Leslie R. Rudnick; Andre Boehman; Chunshan Song; Bruce Miller; John Andresen

    2004-09-17

    This report summarizes the accomplishments toward project goals during the first twelve months of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts, acquisition and installation of a research gasoline engine, and modification of diesel engines for use in evaluating diesel produced in the project. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Coal samples have procured and are being assessed for cleaning prior to use in coking studies.

  7. Coal liquefaction in an inorganic-organic medium. [DOE patent application

    Science.gov (United States)

    Vermeulen, T.; Grens, E.A. II; Holten, R.R.

    Improved process for liquefaction of coal by contacting pulverized coal in an inorganic-organic medium solvent system containing a ZnCl/sub 2/ catalyst, a polar solvent with the structure RX where X is one of the elements O, N, S, or P, and R is hydrogen or a lower hydrocarbon radical; the solvent system can contain a hydrogen donor solvent (and must when RX is water) which is immiscible in the ZnCl/sub 2/ and is a hydroaromatic hydrocarbon selected from tetralin, dihydrophenanthrene, dihydroanthracene or a hydrogenated coal derived hydroaromatic hydrocarbon distillate fraction.

  8. A comparison of hydrogen with alternate energy forms from coal and nuclear energy

    International Nuclear Information System (INIS)

    Cox, K.E.

    1976-01-01

    Alternate energy forms that can be produced from coal and nuclear energy have been analyzed on efficiency, economic and end-use grounds. These forms include hydrogen, methane, electricity, and EVA-ADAM, a 'chemical heat pipe' approach to energy transmission. The EVA-ADAM system for nuclear heat appears to be economically competitive with the other energy carriers except over very large distances. The cost of hydrogen derived from coal is approximately equal to that of methane derived from the same source when compared on an equal BTU basis. Thermochemically derived hydrogen from nuclear energy shows a break-even range with hydrogen derived from coal at coal costs of from Pound33 to 80/ton depending on the cost of nuclear heat. Electricity and electrolytically derived hydrogen are the most expensive energy carriers and electricity's use should be limited to applications involving work rather than heat. Continued work in thermochemical hydrogen production schemes should be supported as an energy option for the future. (author)

  9. Using plasma-fuel systems at Eurasian coal-fired thermal power stations

    Science.gov (United States)

    Karpenko, E. I.; Karpenko, Yu. E.; Messerle, V. E.; Ustimenko, A. B.

    2009-06-01

    The development of plasma technology for igniting solid fuels at coal-fired thermal power stations in Russia, Kazakhstan, China, and other Eurasian countries is briefly reviewed. Basic layouts and technical and economic characteristics of plasma-fuel systems installed in different coal-fired boiles are considered together with some results from using these systems at coal-fired thermal power stations.

  10. Chinese coal supply and future production outlooks

    International Nuclear Information System (INIS)

    Wang, Jianliang; Feng, Lianyong; Davidsson, Simon; Höök, Mikael

    2013-01-01

    China's energy supply is dominated by coal, making projections of future coal production in China important. Recent forecasts suggest that Chinese coal production may reach a peak in 2010–2039 but with widely differing peak production levels. The estimated URR (ultimately recoverable resources) influence these projections significantly, however, widely different URR-values were used due to poor understanding of the various Chinese coal classification schemes. To mitigate these shortcomings, a comprehensive investigation of this system and an analysis of the historical evaluation of resources and reporting issues are performed. A more plausible URR is derived, which indicates that many analysts underestimate volumes available for exploitation. Projections based on the updated URR using a modified curve-fitting model indicate that Chinese coal production could peak as early as 2024 at a maximum annual production of 4.1 Gt. By considering other potential constraints, it can be concluded that peak coal in China appears inevitable and immediate. This event can be expected to have significant impact on the Chinese economy, energy strategies and GHG (greenhouse gas) emissions reduction strategies. - Highlights: • Review of Chinese coal geology and resources/reserves. • Presentation of the Chinese coal classification system. • Forecasting future Chinese coal production using Hubbert curves. • Critical comparison with other forecasts. • Discussions transportation, environmental impact, water consumption, etc

  11. A study of toxic emissions from a coal-fired power plant utilizing an ESP while demonstrating the ICCT CT-121 FGD Project. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-16

    The US Department of Energy is performing comprehensive assessments of toxic emissions from eight selected coal-fired electric utility units. This program responds to the Clean Air Act Amendments of 1990, which require the US Environmental Protection Agency (EPA) to evaluate emissions of hazardous air pollutants (HAPs) from electric utility power plants for Potential health risks. The resulting data will be furnished to EPA utility power plants and health risk determinations. The assessment of emissions involves the collection and analysis of samples from the major input, process, and output streams of each of the eight power plants for selected hazardous Pollutants identified in Title III of the Clean Air Act. Additional goals are to determine the removal efficiencies of pollution control subsystems for these selected pollutants and the Concentrations associated with the particulate fraction of the flue gas stream as a function of particle size. Material balances are being performed for selected pollutants around the entire power plant and several subsystems to identify the fate of hazardous substances in each utility system. Radian Corporation was selected to perform a toxics assessment at a plant demonstrating an Innovative Clean Coal Technology (ICCT) Project. The site selected is Plant Yates Unit No. 1 of Georgia Power Company, which includes a Chiyoda Thoroughbred-121 demonstration project.

  12. Advanced coal-fueled industrial cogeneration gas turbine system -- combustion development

    Energy Technology Data Exchange (ETDEWEB)

    LeCren, R.T.

    1994-06-01

    This topical report summarizes the combustor development work accomplished under the subject contract. The objective was to develop a combustion system for the Solar 4MW Type H Centaur gas turbine generator set which was to be used to demonstrate the economic, technical and environmental feasibility of a direct coal-fueled gas turbine in a 100 hour proof-of-concept test. This program started with a design configuration derived during the CSC program. The design went through the following evolution: CSC design which had some known shortcomings, redesigned CSC now designated as the Two Stage Slagging Combustor (TSSC), improved TSSC with the PRIS evaluated in the IBSTF, and full scale design. Supporting and complimentary activities included computer modelling, flow visualization, slag removal, SO{sub x} removal, fuel injector development and fuel properties evaluation. Three combustor rigs were utilized: the TSSC, the IBSTF and the full scale rig at Peoria. The TSSC rig, which was 1/10th scale of the proposed system, consisted of a primary and secondary zone and was used to develop the primary zone performance and to evaluate SO{sub x} and slag removal and fuel properties variations. The IBSTF rig which included all the components of the proposed system was also 1/10th scale except for the particulate removal system which was about 1/30th scale. This rig was used to verify combustor performance data obtained on the TSSC and to develop the PRIS and the particulate removal system. The full scale rig initially included the primary and secondary zones and was later modified to incorporate the PRIS. The purpose of the full scale testing was to verify the scale up calculations and to provide a combustion system for the proof-of-concept engine test that was initially planned in the program.

  13. Innovative Clean Coal Technology (ICCT): Demonstration of selective catalytic reduction (SCR) technology for the control of nitrogen oxide (NO{sub x}) emissions from high-sulfur coal-fired boilers. Technical progress report, third and fourth quarters 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    The objective of this project is to demonstrate and evaluate commercially available selective catalytic reduction (SCR) catalysts from U.S., Japanese, and European catalyst suppliers on a high-sulfur U.S. Coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO{sub x}) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NO{sub x} to form nitrogen and water vapor. Although SCR is widely practiced in Japan and European gas-, oil-, and low-sulfur coal-fired boilers, there are several technical uncertainties associated with applying SCR to U.S. coals. These uncertainties include: (1) potential catalyst deactivation due to poisoning by trace metal species present in U.S. coals that are not present in other fuels; (2) performance of the technology and effects on the balance-of-plant equipment in the presence of high amounts of SO{sub 2} and SO{sub 3}; performance of a wide variety of SCR catalyst compositions, geometries, and methods of manufacture under typical high-sulfur coal-fired utility operating conditions. These uncertainties are being explored by operating a series of small- scale SCR reactors and simultaneously exposing different SCR catalysts to flue gas derived from the combustion of high sulfur U.S. coal. The demonstration is being performed at Gulf Power Company`s Plant Crist Unit No. 5 (75 MW capacity) near Pensacola, Florida. The project is funded by the U.S. Department of Energy (DOE), Southern Company Services, Inc. (SCS on behalf of the entire Southern electric system), the Electric Power Research Institute (EPRI), and Ontario Hydro. SCS is the participant responsible for managing al aspects of this project. 1 ref., 69 figs., 45 tabs.

  14. Hot coal gas desulfurization with manganese-based sorbents. Final report, September 1992--December 1994

    Energy Technology Data Exchange (ETDEWEB)

    Hepworth, M.T.; Slimane, R.B.

    1994-11-01

    The focus of much current work being performed by the Morgantown Energy Technology Center (METC) of the Department of Energy on hot coal-derived fuel gas desulfurization is in the use of zinc-based sorbents. METC has shown interest in formulating and testing manganese-based pellets as alternative effective sulfur sorbents in the 700 to 1200{degree}C temperature range. To substantiate the potential superiority of Mn-based pellets, a systematic approach toward the evaluation of the desulfurizing power of single-metal sorbents is developed based on thermodynamic considerations. This novel procedure considered several metal-based sorbents and singled out manganese oxide as a prime candidate sorbent capable of being utilized under a wide temperature range, irrespective of the reducing power (determined by CO{sub 2}/CO ratio) of the fuel gas. Then, the thermodynamic feasibility of using Mn-based pellets for the removal of H{sub 2}S from hot-coal derived fuel gases, and the subsequent oxidative regeneration of loaded (sulfided) pellets was established. It was concluded that MnO is the stable form of manganese for virtually all commercially available coal-derived fuel gases. In addition, the objective of reducing the H{sub 2}S concentration below 150 ppMv to satisfy the integrated gasification combined cycle system requirement was shown to be thermodynamically feasible. A novel process is developed for the manufacture of Mn-based spherical pellets which have the desired physical and chemical characteristics required.

  15. Forty years of the Weglopochodne Enterprise for Sale of Coal-Derived Products

    Energy Technology Data Exchange (ETDEWEB)

    Pinkowski, Z.

    1986-02-01

    Organizational structure of trade in coal-derived products in Poland from 1945 to 1985 is discussed. Fluctuations of organizational structures reflecting phases of centralization and decentralization of the national economy are analyzed. Coordinating role of the Weglopochodne Enterprise in the coking and chemical industries is stressed. Types of products produced by coking plants in Poland, trade and exports are discussed. Effects of organizational structures on development of coking plants are also discussed (increasing wear of coking plants, insufficient investment etc.). 3 references.

  16. EIA projections of coal supply and demand

    International Nuclear Information System (INIS)

    Klein, D.E.

    1989-01-01

    Contents of this report include: EIA projections of coal supply and demand which covers forecasted coal supply and transportation, forecasted coal demand by consuming sector, and forecasted coal demand by the electric utility sector; and policy discussion

  17. Derivative pricing based on local utility maximization

    OpenAIRE

    Jan Kallsen

    2002-01-01

    This paper discusses a new approach to contingent claim valuation in general incomplete market models. We determine the neutral derivative price which occurs if investors maximize their local utility and if derivative demand and supply are balanced. We also introduce the sensitivity process of a contingent claim. This process quantifies the reliability of the neutral derivative price and it can be used to construct price bounds. Moreover, it allows to calibrate market models in order to be co...

  18. Utilization of coal fly ash in solidification of liquid radioactive waste from research reactor.

    Science.gov (United States)

    Osmanlioglu, Ahmet Erdal

    2014-05-01

    In this study, the potential utilization of fly ash was investigated as an additive in solidification process of radioactive waste sludge from research reactor. Coal formations include various percentages of natural radioactive elements; therefore, coal fly ash includes various levels of radioactivity. For this reason, fly ashes have to be evaluated for potential environmental implications in case of further usage in any construction material. But for use in solidification of radioactive sludge, the radiological effects of fly ash are in the range of radioactive waste management limits. The results show that fly ash has a strong fixing capacity for radioactive isotopes. Specimens with addition of 5-15% fly ash to concrete was observed to be sufficient to achieve the target compressive strength of 20 MPa required for near-surface disposal. An optimum mixture comprising 15% fly ash, 35% cement, and 50% radioactive waste sludge could provide the solidification required for long-term storage and disposal. The codisposal of radioactive fly ash with radioactive sludge by solidification decreases the usage of cement in solidification process. By this method, radioactive fly ash can become a valuable additive instead of industrial waste. This study supports the utilization of fly ash in industry and the solidification of radioactive waste in the nuclear industry.

  19. Underground coal gasification with extended CO2 utilization as economic and carbon neutral approach to address energy and fertilizer supply shortages in Bangladesh

    Science.gov (United States)

    Nakaten, Natalie; Islam, Rafiqul; Kempka, Thomas

    2014-05-01

    The application of underground coal gasification (UCG) with proven carbon mitigation techniques may provide a carbon neutral approach to tackle electricity and fertilizer supply shortages in Bangladesh. UCG facilitates the utilization of deep-seated coal seams, not economically exploitable by conventional coal mining. The high-calorific synthesis gas produced by UCG can be used for e.g. electricity generation or as chemical raw material for hydrogen, methanol and fertilizer production. Kempka et al. (2010) carried out an integrated assessment of UCG operation, demonstrating that about 19 % of the CO2 produced during UCG may be mitigated by CO2 utilization in fertilizer production. In the present study, we investigated an extension of the UCG system by introducing excess CO2 storage in the gas deposit of the Bahkrabad gas field (40 km east of Dhaka, Bangladesh). This gas field still holds natural gas resources of 12.8 million tons of LNG equivalent, but is close to abandonment due to a low reservoir pressure. Consequently, applying enhanced gas recovery (EGR) by injection of excess carbon dioxide from the coupled UCG-urea process may mitigate carbon emissions and support natural gas production from the Bahkrabad gas field. To carry out an integrated techno-economic assessment of the coupled system, we adapted the techno-economic UCG-CCS model developed by Nakaten et al. (2014) to consider the urea and EGR processes. Reservoir simulations addressing EGR in the Bakhrabad gas field by utilization of excess carbon dioxide from the UCG process were carried out to account for the induced pressure increase in the reservoir, and thus additional gas recovery potentials. The Jamalganj coal field in Northwest Bangladesh provides favorable geological and infrastructural conditions for a UCG operation at coal seam depths of 640 m to 1,158 m. Excess CO2 can be transported via existing pipeline networks to the Bahkrabad gas field (about 300 km distance from the coal deposit) to be

  20. Cofiring of biofuels in coal fired boilers: Results of case study analysis

    Energy Technology Data Exchange (ETDEWEB)

    Tillman, D.A. [Ebasco Environmental, Sacramento, CA (United States); Hughes, E. [Electric Power Research Institute, Palo Alto, CA (United States); Gold, B.A. [TVA, Chattanooga, TN (United States)

    1993-12-31

    Ebasco Environmental and Reaction Engineering, under contract to EPRI, performed a case study analysis of cofiring biomass in coal-fired boilers of the Tennessee Valley Authority (TVA). The study was also sponsored by DOE. This analysis included evaluating wood fuel receiving, preparation, and combustion in pulverized coal (PC) boilers and cyclone furnaces and an assessment of converting wood into pyrolysis oil or low Btu gas for use in a new combined cycle combustion turbine (CCCT) installation. Cofiring wood in existing coal-fired boilers has the most immediate potential for increasing the utilization of biofuels in electricity generation. Cofiring biofuels with coal can potentially generate significant benefits for utilities including: (1) reducing emissions of SO{sub 2} and NO{sub x}; (2) reducing the net emissions of CO{sub 2}; (3) potentially reducing the fuel cost to the utility depending upon local conditions and considering biomass is potentially exempt from the proposed Btu tax and may get a 1.5 cent/kWh credit for energy generated by wood combustion; (4) supporting local industrial forest industry; and (5) providing a long term market for the development of a biofuel supply and delivery industry. Potential benefits are reviewed in the context of cofiring biofuel at a rate of 15% heat input to the boiler, and compares this cofiring strategy and others previously tested or developed by other utilities. Other issues discussed include: (1) wood fuel specifications as a function of firing method; (2) wood fuel receiving and preparation system requirements; (3) combustion system requirements for cofiring biofuels with coal; (4) combustion impacts of firing biofuels with coal; (5) system engineering issues; (6) the economics of cofiring biofuel with coal. The Allen, TN 330 MW(e) cyclone boiler and Kingston, TN 135 MW(e) Boiler {number_sign}1, a tangentially fired PC unit, case studies are then summarized in the paper, highlighting the cofiring opportunities.

  1. Coal combustion technology in China

    International Nuclear Information System (INIS)

    Huang, Z.X.

    1994-01-01

    Coal is the most important energy source in China, the environmental pollution problem derived from coal burning is rather serious in China. The present author discusses coal burning technologies both in boilers and industrial furnaces and their relations with environmental protection problems in China. The technological situations of Circulating Fluidized Bed Coal Combustor, Pulverized Coal Combustor with Aerodynamic Flame Holder and Coal Water Slurry Combustion have been discussed here as some of the interesting problems in China only. (author). 3 refs

  2. Technology of CCS coal utilization (outline of large-size demonstration test for CCS); CCS tan riyo gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    Konno, K [Center for Coal Utilization, Japan, Tokyo (Japan); Hironaka, H [Idemitsu Kosan Co. Ltd., Tokyo (Japan)

    1996-09-01

    The coal cartridge system (CCS) is a series of the total system, in which coal is processed centrally at a supply base for each unit of consumer areas, supplied as pulverized coal in bulk units, and coal ash after combustion is recovered and treated. The system is expected of advantages resulted from the centralized production, elimination of handling troubles, and cleanliness. Following a small scale demonstration test, a large demonstration test for practically usable scale has begun in 1990, and completed in fiscal 1995. This paper introduces the CCS and reports the result of the test. In the large demonstration test, a supply station (with manufacturing capability of 200,000 tons a year) was installed in the Aichi refinery of Idemitsu Kosan Co., Ltd., and systematization on quality design and system technologies has been carried out. Long-term continuous operation for five years was achieved (operation time of the supply facilities was about 19,000 hours) without a failure and accident, to which every elemental technology was evaluated highly, and convenience and reliability of the system was verified. 13 figs., 3 tabs.

  3. GC/MS analysis of coal tar composition produced from coal pyrolysis

    African Journals Online (AJOL)

    Coal tar is a significant product generated from coal pyrolysis. A detailed analytical study on its composition and chemical structure will be of great advantage to its further processing and utilization. Using a combined method of planigraphy-gas chromatograph/mass spectroscopy (GC/MS), this work presents a composition ...

  4. New coal-based energy systems

    International Nuclear Information System (INIS)

    Barnert, H.

    1986-01-01

    Conversion of coal into liquid fuels or into coal gas is considered and the use of high temperature nuclear reactors whose waste heat can be used for remote (district) heating mentioned. The use of high temperature reactors as energy source for coal gasification is also examined and, finally, the extraction of heat from combined coal, steel and high temperature nuclear reactors is suggested. (G.M.E.)

  5. Coal sulfur-premium models for SO2 allowance valuation

    International Nuclear Information System (INIS)

    Henry, J.B. II; Radulski, D.R.; Ellingson, E.G.; Engels, J.P.

    1995-01-01

    Clean Air Capital Markets, an investment bank structuring SO 2 Allowance transactions, has designed two allowance value models. The first forecasts an equilibrium allowance value based on coal supply and demand. The second estimates the sulfur premium of all reported coal deliveries to utilities. Both models demonstrate that the fundamental allowance value is approximately double current spot market prices for small volumes of off-system allowances

  6. Early detection of spontaneous combustion of coal in underground coal mines with development of an ethylene enriching system

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Jun; Xue, Sheng [CSIRO Earth Science and Resource Engineering, Kenmore (Australia); Cheng, Weimin; Wang, Gang [Shandong University of Science and Technology, Qingdao (China)

    2011-01-01

    Spontaneous combustion of coal (sponcom) is a major hazard in underground coal mining operations. If not detected early and managed properly, it can seriously affect mine safety and productivity. Gaseous products of sponcom, such as carbon monoxide, ethylene and hydrogen, are commonly used in coal mines as indicators to reflect the state of the sponcom. Studies have shown that ethylene starts to occur when sponcom reaches a characteristic temperature. However, due to dilution of ventilation air and detection limits of the instruments used for gas analysis at coal mines, ethylene cannot be detected until the sponcom has developed past its early stage, missing an optimum opportunity for mine operators to control the hazard. To address the issue, an ethylene-enriching system, based on its physical adsorption and desorption properties, has been developed to increase detection sensitivity of the ethylene concentration in mine air by about 10 times. This system has successfully been applied in a number of underground coal mines in China to detect sponcom at its early stage and enable mine operators to take effective control measures. This paper describes the ethylene enriching system and its application. (author)

  7. Production of synthesis gas and methane via coal gasification utilizing nuclear heat

    International Nuclear Information System (INIS)

    van Heek, K.H.; Juentgen, H.

    1982-01-01

    The steam gasificaton of coal requires a large amount of energy for endothermic gasification, as well as for production and heating of the steam and for electricity generation. In hydrogasification processes, heat is required primarily for the production of hydrogen and for preheating the reactants. Current developments in nuclear energy enable a gas cooled high temperature nuclear reactor (HTR) to be the energy source, the heat produced being withdrawn from the system by means of a helium loop. There is a prospect of converting coal, in optimal yield, into a commercial gas by employing the process heat from a gas-cooled HTR. The advantages of this process are: (1) conservation of coal reserves via more efficient gas production; (2) because of this coal conservation, there are lower emissions, especially of CO 2 , but also of dust, SO 2 , NO/sub x/, and other harmful substances; (3) process engineering advantages, such as omission of an oxygen plant and reduction in the number of gas scrubbers; (4) lower gas manufacturing costs compared to conventional processes. The main problems involved in using nuclear energy for the industrial gasification of coal are: (1) development of HTRs with helium outlet temperatures of at least 950 0 C; (2) heat transfer from the core of the reactor to the gas generator, methane reforming oven, or heater for the hydrogenation gas; (3) development of a suitable allothermal gas generator for the steam gasification; and (4) development of a helium-heated methane reforming oven and adaption of the hydrogasification process for operation in combination with the reactor. In summary, processes for gasifying coal that employ heat from an HTR have good economic and technical prospects of being realized in the future. However, time will be required for research and development before industrial application can take place. 23 figures, 4 tables. (DP)

  8. Fiscal 1995 survey report on the environmentally friendly type coal utilization system introduction support project. Verification project on the circulating fluidized bed boiler; Kankyo chowagata sekitan riyo system donyu shien jigyo. Junkan ryudosho boiler ni kakawaru jissho jigyo

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-01

    In relation to the circulating fluidized bed boiler which reduces the amount of sulfur oxides emitted in coal utilization, a verification project was carried out on installation of the equipment and spread activity in China and the Philippines contributing to the control of environmental pollutant associated with coal utilization and the effective use of energy. At the Fanshan area, installed was a 10t/h internal circulating fluidized bed boiler. At the performance test, coal includes around 7% of impurities such as stone, and the impurities should be excluded continuously at the time of actual run. Therefore, the boiler efficiency had to be changed from 89.5% to 85.8%. Further, power generation facilities have not yet been finished, and the overall operation of boiler turbine has not been executed. At the Zibo area, a 30t/h external circulating fluidized bed boiler was installed. The boiler efficiency reached 86.1%, over the targeted value. At the Batangas area in the Philippines, a 10t/h internal circulating fluidized bed boiler was installed. The boiler efficiency reached 85.8%, over the designed value. About the coal produced in the Philippines, slagging was feared, but the combustion state was favorable. 82 figs., 21 tabs.

  9. Development of upgraded brown coal process

    Energy Technology Data Exchange (ETDEWEB)

    Komatsu, N.; Sugita, S.; Deguchi, T.; Shigehisa, T.; Makino, E. [Kobe Steel Ltd., Hyogo (Japan). Coal and Energy Project Department

    2004-07-01

    Half of the world's coal resources are so-called low rank coal (LRC) such as lignite, subbituminous coal. Utilization of such coal is limited due to low heat value and high propensity of spontaneous combustion. Since some of LRCs have advantages as clean coal, i.e. low ash and low sulfur content, LRC can be the excellent feedstock for power generation and metallurgy depending on the upgrading technology. The UBC (upgraded brown coal) process introduced here converts LRC to solid fuel with high heat value and less propensity of self-heating. Various world coals, such as Australian, Indonesian and USA LRC, were tested using the Autoclave and Bench Scale Unit, and the process application to LRC of wide range is proven. The R & D activities of the UBC process are introduced including a demonstration project with a 5 ton/day test plant in progress in Indonesia, expecting near future commercialisation in order to utilize abundant LRC of clean properties. 8 refs., 12 figs., 3 tabs.

  10. Model documentation Coal Market Module of the National Energy Modeling System

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-04-30

    This report documents objectives and conceptual and methodological approach used in the development of the National Energy Modeling System (NEMS) Coal Market Module (CMM) used to develop the Annual Energy Outlook 1996 (AEO96). This report catalogues and describes the assumptions, methodology, estimation techniques, and source code of CMM`s three submodules: Coal Production Submodule, Coal Export Submodule, and Coal Distribution Submodule.

  11. Strontium isotope study of coal utilization by-products interacting with environmental waters.

    Science.gov (United States)

    Spivak-Birndorf, Lev J; Stewart, Brian W; Capo, Rosemary C; Chapman, Elizabeth C; Schroeder, Karl T; Brubaker, Tonya M

    2012-01-01

    Sequential leaching experiments on coal utilization by-products (CUB) were coupled with chemical and strontium (Sr) isotopic analyses to better understand the influence of coal type and combustion processes on CUB properties and the release of elements during interaction with environmental waters during disposal. Class C fly ash tended to release the highest quantity of minor and trace elements-including alkaline earth elements, sodium, chromium, copper, manganese, lead, titanium, and zinc-during sequential extraction, with bottom ash yielding the lowest. Strontium isotope ratios ((87)Sr/(86)Sr) in bulk-CUB samples (total dissolution of CUB) are generally higher in class F ash than in class C ash. Bulk-CUB ratios appear to be controlled by the geologic source of the mineral matter in the feed coal, and by Sr added during desulfurization treatments. Leachates of the CUB generally have Sr isotope ratios that are different than the bulk value, demonstrating that Sr was not isotopically homogenized during combustion. Variations in the Sr isotopic composition of CUB leachates were correlated with mobility of several major and trace elements; the data suggest that arsenic and lead are held in phases that contain the more radiogenic (high-(87)Sr/(86)Sr) component. A changing Sr isotope ratio of CUB-interacting waters in a disposal environment could forecast the release of certain strongly bound elements of environmental concern. This study lays the groundwork for the application of Sr isotopes as an environmental tracer for CUB-water interaction. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  12. Promotive study on preparation of basis for foreign coal import. Study on coal renaissance

    Energy Technology Data Exchange (ETDEWEB)

    Muraoka, Yoji [Japan Economic Research Institute, Tokyo

    1988-09-16

    This is an interim report on the coal renaissance study carried out in 1987 as a part of the Promotive Study on Preparation of Basis for Foreign Coal Import. The background and ideology of coal renaissance, future aspect of demand for coal, problems pertaining to the expansion of application, and a proposal for the expansion of coal usage are described in order. The role of coal expected as an alternate fuel for petroleum, development of new application fields for coal, conversion to coal, contribution of Japan to the stablization of international coal supply are outlined. Coal renaissance aims, based on technology, at stimulation of coal demand, change in the image of coal, and the utilization of the accumulated abundant knowhow. The aspect of coal demand in 2000, solution and current status of various restricting factors relating to the use of coal in general industry, and the remaining problems are discussed. 6 figures, 10 tables.

  13. Comprehensive evaluation on low-carbon development of coal enterprise groups.

    Science.gov (United States)

    Wang, Bang-Jun; Wu, Yan-Fang; Zhao, Jia-Lu

    2017-12-19

    Scientifically evaluating the level of low-carbon development in terms of theoretical and practical significance is extremely important to coal enterprise groups for implementing national energy-related systems. This assessment can assist in building institutional mechanisms that are conducive for the economic development of coal business cycle and energy conservation as well as promoting the healthy development of coal enterprises to realize coal scientific development and resource utilization. First, by adopting systematic analysis method, this study builds low-carbon development evaluation index system for coal enterprise groups. Second, to determine the weight serving as guideline and criteria of the index, analytic hierarchy process (AHP) is applied using integrated linear weighted sum method to evaluate the level of low-carbon development of coal enterprise groups. Evaluation is also performed by coal enterprise groups, and the process comprises field analysis and evaluation. Finally, industrial policies are proposed regarding the development of low-carbon coal conglomerate strategies and measures. This study aims mainly to guide the low-carbon development of coal enterprise groups, solve the problem of coal mining and the destruction of ecological environment, support the conservation of raw materials and various resources, and achieve the sustainable development of the coal industry.

  14. Development of a coal-fired combustion system for industrial process heating applications. Phase 3 final report, November 1992--December 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-26

    A three phase research and development program has resulted in the development and commercialization of a Cyclone Melting System (CMS{trademark}), capable of being fueled by pulverized coal, natural gas, and other solid, gaseous, or liquid fuels, for the vitrification of industrial wastes. The Phase 3 research effort focused on the development of a process heater system to be used for producing value added glass products from the vitrification of boiler/incinerator ashes and industrial wastes. The primary objective of the Phase 3 project was to develop and integrate all the system components, from fuel through total system controls, and then test the complete system in order to evaluate its potential for successful commercialization. The demonstration test consisted of one test run with a duration of 105 hours, approximately one-half (46 hours) performed with coal as the primary fuel source (70% to 100%), the other half with natural gas. Approximately 50 hours of melting operation were performed vitrifying approximately 50,000 lbs of coal-fired utility boiler flyash/dolomite mixture, producing a fully-reacted vitrified product.

  15. The economical production of alcohol fuels from coal-derived synthesis gas. Quarterly technical progress report Number 8, 1 July, 1993--30 September, 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-10-01

    Task 1, the preparation of catalyst materials, is proceeding actively. At WVU, catalysts based on Mo are being prepared using a variety of approaches to alter the oxidation state and environment of the Mo. At UCC and P, copper-based zinc chromite spinel catalysts will be prepared and tested. The modeling of the alcohol-synthesis reaction in a membrane reactor is proceeding actively. Under standard conditions, pressure drop in the membrane reactor has been shown to be negligible. In Task 2, base case designs had previously been completed with a Texaco gasifier. Now, similar designs have been completed using the Shell gasifier. A comparison of the payback periods or production cost of these plants shows significant differences among the base cases. However, a natural gas only design, prepared for comparison purposes, gives a lower payback period or production cost. Since the alcohol synthesis portion of the above processes is the same, the best way to make coal-derived higher alcohols more attractive economically than natural gas-derived higher alcohols is by making coal-derived syngas less expensive than natural gas-derived syngas. The maximum economically feasible capacity for a higher alcohol plant from coal-derived syngas appears to be 32 MM bbl/yr. This is based on consideration of regional coal supply in the eastern US, coal transportation, and regional product demand. The benefits of economics of scale are illustrated for the base case designs. A value for higher alcohol blends has been determined by appropriate combination of RVP, octane number, and oxygen content, using MTBE as a reference. This analysis suggests that the high RVP of methanol in combination with its higher water solubility make higher alcohols more valuable than methanol.

  16. Coal to SNG: Technical progress, modeling and system optimization through exergy analysis

    International Nuclear Information System (INIS)

    Li, Sheng; Ji, Xiaozhou; Zhang, Xiaosong; Gao, Lin; Jin, Hongguang

    2014-01-01

    Highlights: • Technical progresses of coal to SNG technologies are reported. • The entire coal to SNG system is modeled. • Coupling between SNG production and power generation is investigated. • Breakthrough points for further energy saving are determined. • System performance is optimized based on the first and second laws of thermodynamics. - Abstract: For both energy security and CO 2 emission reduction, synthetic natural gas (SNG) production from coal is an important path to implement clean coal technologies in China. In this paper, an overview of the progress of coal to SNG technologies, including the development of catalysts, reactor designs, synthesis processes, and systems integration, is provided. The coal to SNG system is modeled, the coupling between SNG production and power generation is investigated, the breakthrough points for further energy savings are determined, and the system performance is optimized based on the first and the second laws of thermodynamics. From the viewpoint of the first law of thermodynamics, the energy conversion efficiency of coal to SNG system can reach 59.8%. To reduce the plant auxiliary power, the breakthrough points are the development of low-energy-consumption oxygen production technology and gas purification technology or seeking new oxidants for coal gasification instead of oxygen. From the viewpoint of the second law of thermodynamics, the major exergy destruction in a coal to SNG system occurs in the coal gasification unit, SNG synthesis unit and the raw syngas cooling process. How to reduce the exergy destruction in these units is the key to energy savings and system performance enhancement. The conversion ratio of the first SNG synthesis reactor and the split ratio of the recycle gas are key factors that determine the performance of both the SNG synthesis process and the whole plant. A “turning point” phenomenon is observed: when the split ratio is higher than 0.90, the exergy destruction of the SNG

  17. Coal and sustainable development: utilities and activity

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    Reflecting its continuing focus on coal and sustainable development, the CIAB surveyed its Members about their attitudes to sustainable development and to obtain information on sustainable development activities within their organisations. The survey revealed that awareness of the importance of sustainable development has increased significantly in the past three years, with a clear majority of respondents seeing it as aligning with their commercial objectives. Reducing emissions from coal use is seen as the key priority, although the importance of this relative to other priorities varies on a regional basis depending on local circumstances. While a large majority of respondents recognised the importance of sustainable development and its increasing influence on decision-making within the coal industry, there was a wide range in the extent of activities. Some organisations have embarked on broad initiatives to better align their practices to sustainable development priorities. The range of activities suggests an evolutionary process - one that commences with a sole internal focus on economic priorities for the business, and then broadens to include local environmental issues and the community. Leading organisations are now moving to look more at global issues, to recognise and share the responsibility for the social and environmental impacts of producing and using their products, and to better engage stakeholders. 4 figs.

  18. An experimental study on the hazard assessment and mechanical properties of porous concrete utilizing coal bottom ash coarse aggregate in Korea.

    Science.gov (United States)

    Park, Seung Bum; Jang, Young Il; Lee, Jun; Lee, Byung Jae

    2009-07-15

    This study evaluates quality properties and toxicity of coal bottom ash coarse aggregate and analyzes mechanical properties of porous concrete depending on mixing rates of coal bottom ash. As a result, soundness and resistance to abrasion of coal bottom ash coarse aggregate were satisfied according to the standard of coarse aggregate for concrete. To satisfy the standard pertaining to chloride content, the coarse aggregates have to be washed more than twice. In regards to the result of leaching test for coal bottom ash coarse aggregate and porous concrete produced with these coarse aggregates, it was satisfied with the environment criteria. As the mixing rate of coal bottom ash increased, influence of void ratio and permeability coefficient was very little, but compressive and flexural strength decreased. When coal bottom ash was mixed over 40%, strength decreased sharply (compressive strength: by 11.7-27.1%, flexural strength: by maximum 26.4%). Also, as the mixing rate of coal bottom ash increased, it was confirmed that test specimens were destroyed by aggregate fracture more than binder fracture and interface fracture. To utilize coal bottom ash in large quantities, it is thought that an improvement method in regards to strength has to be discussed such as incorporation of reinforcing materials and improvement of aggregate hardness.

  19. Physicochemical Characterization and Thermal Decomposition of Garin Maiganga Coal

    Directory of Open Access Journals (Sweden)

    Nyakuma Bemgba Bevan

    2016-12-01

    Full Text Available The paper examined physicochemical and thermal characteristics of the newly discovered Garin Maiganga (GMG coal from Nigeria. The physicochemical characterization comprised of elemental, proximate, calorific value, and classification (rank analyses. Thermal analysis was examined using combined Thermogravimetric (TG and Derivative Thermogravimetric analyses (DTG. Hence, the coal was heated from 30°C to 1000°C at 20°C/min under inert conditions to examine its thermal degradation behaviour and temperature profile characteristics (TPC. The results indicated that the GMG coal fuel properties consist of low Ash, Nitrogen, and Sulphur content. Moisture content was > 5%, Volatile Matter > 50%, Fixed Carbon > 22%, and Heating Value (HHV 23.74 MJ/kg. Based on its fuel properties, the GMG coal can be classified as a Sub-Bituminous B, non-agglomerating low rank coal (LRC. The GMG coal TPCs – onset, peak, and offset temperatures – were 382.70°C, 454.60°C, and 527.80°C, respectively. The DTG profile revealed four (4 endothermic peaks corresponding to loss of moisture (drying, volatile matter (devolatization, and coke formation. The residual mass Rm was 50.16%, which indicates that higher temperatures above 1000°C are required for the complete pyrolytic decomposition of the GMG coal. In conclusion, the results indicate that the GMG coal is potentially suitable for future utilization in electric power generation and the manufacture of cement and steel.

  20. The economic production of alcohol fuels from coal-derived synthesis gas

    Energy Technology Data Exchange (ETDEWEB)

    Kugler, E.L.; Dadyburjor, D.B.; Yang, R.Y.K. [West Virginia Univ., Morgantown, WV (United States)] [and others

    1995-12-31

    The objectives of this project are to discover, (1) study and evaluate novel heterogeneous catalytic systems for the production of oxygenated fuel enhancers from synthesis gas. Specifically, alternative methods of preparing catalysts are to be investigated, and novel catalysts, including sulfur-tolerant ones, are to be pursued. (Task 1); (2) explore, analytically and on the bench scale, novel reactor and process concepts for use in converting syngas to liquid fuel products. (Task 1); (3) simulate by computer the most energy efficient and economically efficient process for converting coal to energy, with primary focus on converting syngas to fuel alcohols. (Task 2); (4) develop on the bench scale the best holistic combination of chemistry, catalyst, reactor and total process configuration integrated with the overall coal conversion process to achieve economic optimization for the conversion of syngas to liquid products within the framework of achieving the maximum cost effective transformation of coal to energy equivalents. (Tasks 1 and 2); and (5) evaluate the combustion, emission and performance characteristics of fuel alcohols and blends of alcohols with petroleum-based fuels. (Task 2)

  1. Implementation of Paste Backfill Mining Technology in Chinese Coal Mines

    Science.gov (United States)

    Chang, Qingliang; Zhou, Huaqiang; Bai, Jianbiao

    2014-01-01

    Implementation of clean mining technology at coal mines is crucial to protect the environment and maintain balance among energy resources, consumption, and ecology. After reviewing present coal clean mining technology, we introduce the technology principles and technological process of paste backfill mining in coal mines and discuss the components and features of backfill materials, the constitution of the backfill system, and the backfill process. Specific implementation of this technology and its application are analyzed for paste backfill mining in Daizhuang Coal Mine; a practical implementation shows that paste backfill mining can improve the safety and excavation rate of coal mining, which can effectively resolve surface subsidence problems caused by underground mining activities, by utilizing solid waste such as coal gangues as a resource. Therefore, paste backfill mining is an effective clean coal mining technology, which has widespread application. PMID:25258737

  2. Nano-mineralogical investigation of coal and fly ashes from coal-based captive power plant (India): An introduction of occupational health hazards

    International Nuclear Information System (INIS)

    Oliveira, Marcos L.S.; Marostega, Fabiane; Taffarel, Silvio R.; Saikia, Binoy K.; Waanders, Frans B.; DaBoit, Kátia; Baruah, Bimala P.

    2014-01-01

    Coal derived nano-particles has been received much concern recently around the world for their adverse effects on human health and the environment during their utilization. In this investigation the mineral matter present in some industrially important Indian coals and their ash samples are addressed. Coal and fly ash samples from the coal-based captive power plant in Meghalaya (India) were collected for different characterization and nano-mineralogy studies. An integrated application of advanced characterization techniques such as X-ray diffraction (XRD), High Resolution-Transmission Electron microscopy (HR-TEM)/(Energy Dispersive Spectroscopy) EDS/(selected-area diffraction pattern) SAED, Field Emission-Scanning Electron Microscopy (FE-SEM)/EDS analysis, and Mössbauer spectroscopy were used to know their extent of risks to the human health when present in coal and fly ash. The study has revealed that the coals contain mainly clay minerals, whilst glass fragments, spinel, quartz, and other minerals in lesser quantities were found to be present in the coal fly ash. Fly ash carbons were present as chars. Indian coal fly ash also found to contain nanominerals and ultrafine particles. The coal-fired power plants are observed to be the largest anthropogenic source of Hg emitted to the atmosphere and expected to increase its production in near future years. The Multi Walled Carbon Nano-Tubes (MWCNTs) are detected in our fly ashes, which contains residual carbonaceous matter responsible for the Hg capture/encapsulation. This detailed investigation on the inter-relationship between the minerals present in the samples and their ash components will also be useful for fulfilling the clean coal technology principles. - Highlights: • We research changes in the level of ultrafine and nanoparticles about coal–ash quality. • Increasing dates will increase human health quality in this Indian coal area. • Welfare effects depend on ex-ante or ex-post assumptions about

  3. Wabash River Coal Gasification Repowering Project: A DOE Assessment; FINAL

    International Nuclear Information System (INIS)

    National Energy Technology Laboratory

    2002-01-01

    The goal of the U.S. Department of Energy (DOE) Clean Coal Technology Program (CCT) is to furnish the energy marketplace with a number of advanced, more efficient, and environmentally responsible coal utilization technologies through demonstration projects. These projects seek to establish the commercial feasibility of the most promising advanced coal technologies that have developed beyond the proof-of-concept stage. This document serves as a DOE post-project assessment (PPA) of a project selected in CCT Round IV, the Wabash River Coal Gasification Repowering (WRCGR) Project, as described in a Report to Congress (U.S. Department of Energy 1992). Repowering consists of replacing an existing coal-fired boiler with one or more clean coal technologies to achieve significantly improved environmental performance. The desire to demonstrate utility repowering with a two-stage, pressurized, oxygen-blown, entrained-flow, integrated gasification combined-cycle (IGCC) system prompted Destec Energy, Inc., and PSI Energy, Inc., to form a joint venture and submit a proposal for this project. In July 1992, the Wabash River Coal Gasification Repowering Project Joint Venture (WRCGRPJV, the Participant) entered into a cooperative agreement with DOE to conduct this project. The project was sited at PSI Energy's Wabash River Generating Station, located in West Terre Haute, Indiana. The purpose of this CCT project was to demonstrate IGCC repowering using a Destec gasifier and to assess long-term reliability, availability, and maintainability of the system at a fully commercial scale. DOE provided 50 percent of the total project funding (for capital and operating costs during the demonstration period) of$438 million

  4. Transformations of inorganic coal constituents in combustion systems. Volume 1, sections 1--5: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Helble, J.J. [ed.; Srinivasachar, S.; Wilemski, G.; Boni, A.A. [PSI Technology Co., Andover, MA (United States); Kang, Shin-Gyoo; Sarofim, A.F.; Graham, K.A.; Beer, J.M. [Massachusetts Inst. of Tech., Cambridge, MA (United States); Peterson, T.W.; Wendt, J.O.L.; Gallagher, N.B.; Bool, L. [Arizona Univ., Tucson, AZ (United States); Huggins, F.E.; Huffman, G.P.; Shah, N.; Shah, A. [Kentucky Univ., Lexington, KY (United States)

    1992-11-01

    The inorganic constituents or ash contained in pulverized coal significantly increase the environmental and economic costs of coal utilization. For example, ash particles produced during combustion may deposit on heat transfer surfaces, decreasing heat transfer rates and increasing maintenance costs. The minimization of particulate emissions often requires the installation of cleanup devices such as electrostatic precipitators, also adding to the expense of coal utilization. Despite these costly problems, a comprehensive assessment of the ash formation and had never been attempted. At the start of this program, it was hypothesized that ash deposition and ash particle emissions both depended upon the size and chemical composition of individual ash particles. Questions such as: What determines the size of individual ash particles? What determines their composition? Whether or not particles deposit? How combustion conditions, including reactor size, affect these processes? remained to be answered. In this 6-year multidisciplinary study, these issues were addressed in detail. The ambitious overall goal was the development of a comprehensive model to predict the size and chemical composition distributions of ash produced during pulverized coal combustion. Results are described.

  5. Catalytic hydrotreatment of Illinois No. 6 coal-derived naphtha: comparison of molybdenum nitride and molybdenum sulfide for heteroatom removal

    Energy Technology Data Exchange (ETDEWEB)

    Raje, A.; Liaw, S.J.; Chary, K.V.R.; Davis, B.H. [University of Kentucky, Lexington, KY (United States). Center for Applied Energy Research

    1995-03-16

    The hydrotreatment of naphtha derived from Illinois No. 6 coal was investigated using molybdenum sulfide and nitride catalysts. The two catalysts are compared on the basis of total catalyst weight. Molybdenum sulfide is more active than molybdenum nitride for hydrodesulfurization (HDS) of a coal-derived naphtha. The rate of hydrodeoxygenation (HDO) of the naphtha over both catalysts are comparable. For hydrodenitrogenation (HDN), the sulfide is more active than the nitride only at higher temperatures ({gt}325{degree}C). Based upon conversion data, the naphtha can be lumped into a reactive and a less reactive fraction with each following first-order kinetics for heteroatom removal. The HDS and HDN rates and activation energies of the less reactive lump are smaller for the nitride than for the sulfide catalyst.

  6. Coal Integrated Gasification Fuel Cell System Study

    Energy Technology Data Exchange (ETDEWEB)

    Chellappa Balan; Debashis Dey; Sukru-Alper Eker; Max Peter; Pavel Sokolov; Greg Wotzak

    2004-01-31

    This study analyzes the performance and economics of power generation systems based on Solid Oxide Fuel Cell (SOFC) technology and fueled by gasified coal. System concepts that integrate a coal gasifier with a SOFC, a gas turbine, and a steam turbine were developed and analyzed for plant sizes in excess of 200 MW. Two alternative integration configurations were selected with projected system efficiency of over 53% on a HHV basis, or about 10 percentage points higher than that of the state-of-the-art Integrated Gasification Combined Cycle (IGCC) systems. The initial cost of both selected configurations was found to be comparable with the IGCC system costs at approximately $1700/kW. An absorption-based CO2 isolation scheme was developed, and its penalty on the system performance and cost was estimated to be less approximately 2.7% and $370/kW. Technology gaps and required engineering development efforts were identified and evaluated.

  7. Phyto-bioconversion of hard coal in the Cynodon dactylon/coal rhizosphere.

    Science.gov (United States)

    Igbinigie, Eric E; Mutambanengwe, Cecil C Z; Rose, Peter D

    2010-03-01

    Fundamental processes involved in the microbial degradation of coal and its derivatives have been well documented. A mutualistic interaction between plant roots and certain microorganisms to aid growth of plants such as Cynodon dactylon (Bermuda grass) on hard coal dumps has recently been suggested. In the present study coal bioconversion activity of nonmycorrhizal fungi was investigated in the C. dactylon/coal rhizosphere. Fungal growth on 2% Duff-agar, gutation formation on nitric acid treated coal and submerged culture activity in nitrogen-rich and -deficient broth formed part of the screening and selection of the fungi. The selected fungal isolates were confirmed to be found in pristine C. dactylon/coal rhizosphere. To simulate bioconversion, a fungal aliquot of this rhizosphere was used as inoculum for a Perfusate fixed bed bioreactor, packed with coal. The results demonstrate an enhanced coal bioconversion facilitated by low molecular weight organics and the bioconversion of coal may be initiated by an introduction of nitrogen moieties to the coal substrate. These findings suggest a phyto-bioconversion of hard coal involving plant and microbes occurring in the rhizosphere to promote the growth of C. dactylon. An understanding of this relationship can serve as a benchmark for coal dumps rehabilitation as well as for the industrial scale bioprocessing of hard coal.

  8. SELECTION OF SUSTAINABLE TECHNOLOGIES FOR COMBUSTION OF BOSNIAN COALS

    Directory of Open Access Journals (Sweden)

    Anes Kazagić

    2010-01-01

    Full Text Available This paper deals with optimization of coal combustion conditions to support selection a sustainable combustion technology and an optimal furnace and boiler design. A methodology for optimization of coal combustion conditions is proposed and demonstrated on the example of Bosnian coals. The properties of Bosnian coals vary widely from one coal basin to the next, even between coal mines within the same basin. Very high percentage of ash (particularly in Bosnian brown coal makes clear certain differences between Bosnian coal types and other world coal types, providing a strong argument for investigating specific problems related to the combustion of Bosnian coals, as well as ways to improve their combustion behaviour. In this work, options of the referent energy system (boiler with different process temperatures, corresponding to the different combustion technologies; pulverised fuel combustion (slag tap or dry bottom furnace and fluidized bed combustion, are under consideration for the coals tested. Sustainability assessment, based on calculation economic and environment indicators, in combination with common low cost planning method, is used for the optimization. The total costs in the lifetime are presented by General index of total costs, calculated on the base of agglomeration of basic economic indicators and the economic indicators derived from environmental indicators. So, proposed methodology is based on identification of those combustion technologies and combustion conditions for coals tested for which the total costs in lifetime of the system under consideration are lowest, provided that all environmental issues of the energy system is fulfilled during the lifetime. Inputs for calculation of the sustainability indicators are provided by the measurements on an experimental furnace with possibility of infinite variation of process temperature, supported by good praxis from the power plants which use the fuels tested and by thermal

  9. Environmental characteristics of clean coal technologies

    International Nuclear Information System (INIS)

    Bossart, S.J.

    1992-01-01

    The Department of Energy's (DOE) Clean Coal Technology (CCT) Program is aimed at demonstrating the commercial readiness of advanced coal-based technologies. A major goal of the CCT program is to introduce into the US energy marketplace those coal-based power generation technologies that have superior economic and environmental performance over the current suite of commercial coal-based power generation technologies. The commercialization of CCTs will provide the electric utility industry with technology options for replacing aging power plants and meeting future growth in electricity demand. This paper discusses the environmental advantages of two CCTs used for electric power generation: pressurized fluidized-bed combustion (PFBC) and integrated gasification combined-cycle (IGCC). These CCTs are suitable for repowering existing power plants or for grassroots construction. Due to their high efficiency and advanced environmental control systems, they emit less sulfur dioxide (SO 2 ), nitrogen oxides (NO x ), particulate matter, and carbon dioxide (CO 2 ) than a state-of-the-art, pulverized coal power plant with flue gas desulfurization (PC/FGD)

  10. Optimal Wonderful Life Utility Functions in Multi-Agent Systems

    Science.gov (United States)

    Wolpert, David H.; Tumer, Kagan; Swanson, Keith (Technical Monitor)

    2000-01-01

    The mathematics of Collective Intelligence (COINs) is concerned with the design of multi-agent systems so as to optimize an overall global utility function when those systems lack centralized communication and control. Typically in COINs each agent runs a distinct Reinforcement Learning (RL) algorithm, so that much of the design problem reduces to how best to initialize/update each agent's private utility function, as far as the ensuing value of the global utility is concerned. Traditional team game solutions to this problem assign to each agent the global utility as its private utility function. In previous work we used the COIN framework to derive the alternative Wonderful Life Utility (WLU), and experimentally established that having the agents use it induces global utility performance up to orders of magnitude superior to that induced by use of the team game utility. The WLU has a free parameter (the clamping parameter) which we simply set to zero in that previous work. Here we derive the optimal value of the clamping parameter, and demonstrate experimentally that using that optimal value can result in significantly improved performance over that of clamping to zero, over and above the improvement beyond traditional approaches.

  11. 76 FR 70075 - Proximity Detection Systems for Continuous Mining Machines in Underground Coal Mines

    Science.gov (United States)

    2011-11-10

    ... Detection Systems for Continuous Mining Machines in Underground Coal Mines AGENCY: Mine Safety and Health... proposed rule addressing Proximity Detection Systems for Continuous Mining Machines in Underground Coal... Detection Systems for Continuous Mining Machines in Underground Coal Mines. MSHA conducted hearings on...

  12. Study on structuring the supervision system of coal mine associated with radionuclides in Xinjiang

    International Nuclear Information System (INIS)

    Feng Guangwen; Jia Xiahui

    2012-01-01

    Xinjiang is one of China's rich coal provinces (areas) and it accounts for about 40% national coal reserves. In the long-term radioactive scientific research, monitoring and environmental impact assessment works, we found parts of Yili and Hetian's coal was associated with higher radionuclide, and parts of coal seam even reached nuclear mining level. However the laws and regulations about associated radioactive coal mine supervision were not perfect, and the supervision system is still in the exploration. This article mainly started with the coal mine enterprises' geological prospecting reports, radiation environmental impact assessment and monitoring report preparation for environment acceptance checking and supervisory monitoring, controlled the coal radioactive pollution from the sources, and carried out the research of building Xinjiang associated radioactive coal mine supervision system. The establishment of supervision system will provide technical guidance for the enterprises' coal exploitation and cinders using on the one hand, and on the other hand will provide decision-making basis for strengthening the associated radioactive coal mine supervision for Xinjiang environmental regulators. (authors)

  13. PALLADIUM/COPPER ALLOY COMPOSITE MEMBRANES FOR HIGH TEMPERATURE HYDROGEN SEPARATION FROM COAL-DERIVED GAS STREAMS; F

    International Nuclear Information System (INIS)

    J. Douglas Way; Robert L. McCormick

    2001-01-01

    Recent advances have shown that Pd-Cu composite membranes are not susceptible to the mechanical, embrittlement, and poisoning problems that have prevented widespread industrial use of Pd for high temperature H(sub 2) separation. These membranes consist of a thin ((approx)10(micro)m) film of metal deposited on the inner surface of a porous metal or ceramic tube. Based on preliminary results, thin Pd(sub 60)Cu(sub 40) films are expected to exhibit hydrogen flux up to ten times larger than commercial polymer membranes for H(sub 2) separation, and resist poisoning by H(sub 2)S and other sulfur compounds typical of coal gas. Similar Pd-membranes have been operated at temperatures as high as 750 C. The overall objective of the proposed project is to demonstrate the feasibility of using sequential electroless plating to fabricate Pd(sub 60)Cu(sub 40) alloy membranes on porous supports for H(sub 2) separation. These following advantages of these membranes for processing of coal-derived gas will be demonstrated: High H(sub 2) flux; Sulfur tolerant, even at very high total sulfur levels (1000 ppm); Operation at temperatures well above 500 C; and Resistance to embrittlement and degradation by thermal cycling. The proposed research plan is designed to providing a fundamental understanding of: Factors important in membrane fabrication; Optimization of membrane structure and composition; Effect of temperature, pressure, and gas composition on H(sub 2) flux and membrane selectivity; and How this membrane technology can be integrated in coal gasification-fuel cell systems

  14. Bioassays for risk assessment of coal conversion products

    Energy Technology Data Exchange (ETDEWEB)

    Schacht, S.; Sinder, C.; Pfeifer, F.; Klein, J. [DMT-Gesellschaft fuer Forschung und Pruefung mbH, Essen (Germany)

    1999-07-01

    Traditional as well as biotechnological processing coal leads to complex mixtures of products. Besides chemical and physical characterization, which provides the information for product application, there is a need for bioassays to monitor properties that are probably toxic, mutagenic or cancerogenic. Investigations carried out focused on the selection, adaptation and validation of bioassays for the sensitive estimation of toxic effects. Organisms like bacteria, Daphnia magna and Scenedesmus subspicatus, representing different complexities in the biosphere, were selected as test systems for ecotoxicological and mutagenicity studies. The results obtained indicate that bioassays are, in principle, suitable tools for characterization and evaluation of coal-derived substances and bioconversion products. Using coal products, coal-relevant model compounds and bioconversion products, data for risk assessment are presented. (orig.)

  15. Trends and outlook of coal energy in Malaysia

    Energy Technology Data Exchange (ETDEWEB)

    Zainal Abidin Husin (Tenaga Nasional Berhad, Kuala Lumpur (Malaysia). Fuel and Materials Management Dept.)

    1993-03-01

    Current energy policy in Malaysia is directed towards development of natural gas resources although there is a strategy to diversify energy sources to gas, hydro, coal and oil. By the year 2000, however, coal could emerge as a major energy source. The author advocates the need for a policy direction for the coal industry - for exploration, mine planning, mixing methods, transport and regulations to ensure occupational health and safety. Malaysia has abundant coal resources but most are in Sarawak and Sabah whereas the bulk of energy demand is in the Peninsula Malaysia. A table defines known coal resources in Malaysia and a map shows their location. To ensure successful development of the coal industry, technologies must be developed to meet environmental requirements and global market competition. Several emerging technologies are mentioned: production of process-derived fuel and coal-derived liquid from sub-bituminous coal, coal liquefaction, manufacture of coal water mixture, coal beneficiation, and fluidised bed combustion. 1 fig., 1 tab.

  16. Approach to reducing the effect of bone—coal power station on radiation environment

    Institute of Scientific and Technical Information of China (English)

    NIShi-Ying; GUPei-Long; 等

    2002-01-01

    The effect of two bone-coal power stations(6MWe) on environment was investigated within the scope of the dose contribution caused by various radionucildes in different ways.It is found that the best measures to reduce the effect of bone-coal power station on radiation environment include to select a fine boiler system and a comprehensive utilization of the bone-coal cinder(BCC),soot and ash in the catchers.

  17. Approach to reducing the effect of bone-coal power station on radiation environment

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The effect of two bone-coal power stations (6 MWe) on environment wasinvestigated within the scope of the dose contribution caused by various radionucildes in different ways. It is found that the best measures to reduce the effect of bone-coal power station on radiation environment include to select a fine boiler system and a comprehensive utilization of the bone-coal cinder (BCC), soot and ash in the catchers.

  18. Clean Coal Program Research Activities

    Energy Technology Data Exchange (ETDEWEB)

    Larry Baxter; Eric Eddings; Thomas Fletcher; Kerry Kelly; JoAnn Lighty; Ronald Pugmire; Adel Sarofim; Geoffrey Silcox; Phillip Smith; Jeremy Thornock; Jost Wendt; Kevin Whitty

    2009-03-31

    Although remarkable progress has been made in developing technologies for the clean and efficient utilization of coal, the biggest challenge in the utilization of coal is still the protection of the environment. Specifically, electric utilities face increasingly stringent restriction on the emissions of NO{sub x} and SO{sub x}, new mercury emission standards, and mounting pressure for the mitigation of CO{sub 2} emissions, an environmental challenge that is greater than any they have previously faced. The Utah Clean Coal Program addressed issues related to innovations for existing power plants including retrofit technologies for carbon capture and sequestration (CCS) or green field plants with CCS. The Program focused on the following areas: simulation, mercury control, oxycoal combustion, gasification, sequestration, chemical looping combustion, materials investigations and student research experiences. The goal of this program was to begin to integrate the experimental and simulation activities and to partner with NETL researchers to integrate the Program's results with those at NETL, using simulation as the vehicle for integration and innovation. The investigators also committed to training students in coal utilization technology tuned to the environmental constraints that we face in the future; to this end the Program supported approximately 12 graduate students toward the completion of their graduate degree in addition to numerous undergraduate students. With the increased importance of coal for energy independence, training of graduate and undergraduate students in the development of new technologies is critical.

  19. Proceedings of the international symposium on coal - science, technology, industry, business, environment

    Energy Technology Data Exchange (ETDEWEB)

    Narasimhan, K.S.; Sen, S. [eds.

    1996-12-31

    Papers were presented which covered the areas of coal science, advanced coal preparation, coal utilization, coal chemicals and the environment. These included carbon aromaticity, mineral studies, utilization of low rank coals, bioconversion of methane, swelling of coals, photocatalytic activity, flotation and effects of oxidation, microbial desulfurization, deashing, briquetting, commercial scale conversion of coal to fuels and chemicals, role of coal in iron and steel making, coal-water mixtures, dyes and chemical products, nitrogen oxides emissions and pollution control. 45 papers have been abstracted separately for the IEA Coal Research CD-ROM.

  20. Technical analysis of advanced wastewater-treatment systems for coal-gasification plants

    Energy Technology Data Exchange (ETDEWEB)

    1981-03-31

    This analysis of advanced wastewater treatment systems for coal gasification plants highlights the three coal gasification demonstration plants proposed by the US Department of Energy: The Memphis Light, Gas and Water Division Industrial Fuel Gas Demonstration Plant, the Illinois Coal Gasification Group Pipeline Gas Demonstration Plant, and the CONOCO Pipeline Gas Demonstration Plant. Technical risks exist for coal gasification wastewater treatment systems, in general, and for the three DOE demonstration plants (as designed), in particular, because of key data gaps. The quantities and compositions of coal gasification wastewaters are not well known; the treatability of coal gasification wastewaters by various technologies has not been adequately studied; the dynamic interactions of sequential wastewater treatment processes and upstream wastewater sources has not been tested at demonstration scale. This report identifies key data gaps and recommends that demonstration-size and commercial-size plants be used for coal gasification wastewater treatment data base development. While certain advanced treatment technologies can benefit from additional bench-scale studies, bench-scale and pilot plant scale operations are not representative of commercial-size facility operation. It is recommended that coal gasification demonstration plants, and other commercial-size facilities that generate similar wastewaters, be used to test advanced wastewater treatment technologies during operation by using sidestreams or collected wastewater samples in addition to the plant's own primary treatment system. Advanced wastewater treatment processes are needed to degrade refractory organics and to concentrate and remove dissolved solids to allow for wastewater reuse. Further study of reverse osmosis, evaporation, electrodialysis, ozonation, activated carbon, and ultrafiltration should take place at bench-scale.

  1. Basic survey for coal resources exploitation for Fiscal 1998. Coal GIS survey; 1998 nendo seitan shigeh kaihatsu kiso chosa. Sekitan GIS chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    For the construction of a coal mine assessment technology system, surveys are conducted on the current state and technology trends of resources-related GIS (geographical information system) in other countries. When one ponders over coal-rich areas to be newly explored and developed in one's study on the stable exploitation of coal abroad and its import to this country, what interests one gradually shifts from known superior large-scale coal mine areas to next-generation coal mine areas yet to be exploited. Accordingly, it is mandatory to build an assessment-oriented comprehensive technology system capable of promptly dealing with any changes in natural, geological conditions that may be presented by coal mines to be exploited. Although GIS is recognized as a useful means not only in the field of natural science but also in other fields whose data may be plotted on a map, its position is not yet established when it comes to coal resources. It is therefore necessary to promptly introduce GIS into the field of coal. In fiscal 1998, on-site surveys were conducted not only in Japan but also in the U.S., Canada, and Australia who are senior to Japan in terms of GIS application. Also, information was collected from literature and via Internet, surveys were conducted about the use of GIS in the field of earth science especially in the field of coal resources, and the state of the digital data utilizing setup indispensable for the proper operation of GIS was investigated. (NEDO)

  2. The future of coal-fired generation

    Energy Technology Data Exchange (ETDEWEB)

    White, G. [Sherritt International Corp., Calgary, AB (Canada)

    2004-07-01

    The 3 features that will ensure coal's place as a primary energy source are its affordability, availability and its abundance. Coal reserves represent more than 200 years of supply. Graphs depicting coal consumption in North America, Central and South America, Western Europe, Easter Europe, Middle East, Africa, and Asia show that coal use is expected to grow 1.5 per cent annually. Asia is the greatest consumer of coal, while the consumption of coal in Eastern Europe is steadily declining. About half of the electricity supply in the United States will continue to be generated by coal and non-electrical utilization is also expected to grow. Emerging technologies that are promoting efficiency of coal utilization include combustion technology, clean coal technology, conversion technology and emissions technology. These technologies also address environmental concerns regarding coal combustion, such as removal of carbon dioxide through sequestration and reduction in nitrogen oxides, sulphur dioxide and particulates. Mercury mitigation technologies are also being developed. It was noted that the use of coal is mitigated by other available supply such as nuclear, natural gas and hydro which provide the base load generation. Renewable energy supply can meet up to 20 per cent of the base load, while coal can fill be gap between base load and peak loads. It was noted that the use of coal in direct industrial processes allows for synergies such as syngas for bitumen upgrading, coal as a chemical feedstock with electricity as a by-product, combined heat and power and cogeneration. tabs., figs.

  3. Direct Coal -to-Liquids (CTL) for Jet Fuel Using Biomass-Derived Solvents

    Energy Technology Data Exchange (ETDEWEB)

    Chauhan, Satya P. [Battelle Memorial Inst., Columbus, OH (United States); Garbark, Daniel B. [Battelle Memorial Inst., Columbus, OH (United States); Taha, Rachid [Battelle Memorial Inst., Columbus, OH (United States); Peterson, Rick [Battelle Memorial Inst., Columbus, OH (United States)

    2017-09-30

    Battelle has demonstrated a novel and potentially breakthrough technology for a direct coal-to-liquids (CTL) process for producing jet fuel using biomass-derived coal solvents (bio-solvents). The Battelle process offers a significant reduction in capital and operating costs and a substantial reduction in greenhouse gas (GHG) emissions, without requiring carbon capture and storage (CCS). The results of the project are the advancement of three steps of the hybrid coal/biomass-to-jet fuel process to the technology readiness level (TRL) of 5. The project objectives were achieved over two phases. In Phase 1, all three major process steps were explored and refined at bench-scale, including: (1) biomass conversion to high hydrogen-donor bio-solvent; (2) coal dissolution in biomass-derived bio-solvent, without requiring molecular H2, to produce a synthetic crude (syncrude); and (3) two-stage catalytic hydrotreating/hydrogenation of syncrude to jet fuel and other distillates. In Phase 2, all three subsystems of the CTL process were scaled up to a pre-pilot scale, and an economic analysis was carried out. A total of over 40 bio-solvents were identified and prepared. The most unique attribute of Battelle’s bio-solvents is their ability to provide much-needed hydrogen to liquefy coal and thus increase its hydrogen content so much that the resulting syncrude is liquid at room temperature. Based on the laboratory-scale testing with bituminous coals from Ohio and West Virginia, a total of 12 novel bio-solvent met the goal of greater than 80% coal solubility, with 8 bio-solvents being as good as or better than a well-known but expensive hydrogen-donor solvent, tetralin. The Battelle CTL process was then scaled up to 1 ton/day (1TPD) at a pre-pilot facility operated in Morgantown, WV. These tests were conducted, in part, to produce enough material for syncrude-upgrading testing. To convert the Battelle-CTL syncrude into a form suitable as a blending stock for jet

  4. DEVELOPMENT OF A VALIDATED MODEL FOR USE IN MINIMIZING NOx EMISSIONS AND MAXIMIZING CARBON UTILIZATION WHEN CO-FIRING BIOMASS WITH COAL

    Energy Technology Data Exchange (ETDEWEB)

    Larry G. Felix; P. Vann Bush; Stephen Niksa

    2003-04-30

    In full-scale boilers, the effect of biomass cofiring on NO{sub x} and unburned carbon (UBC) emissions has been found to be site-specific. Few sets of field data are comparable and no consistent database of information exists upon which cofiring fuel choice or injection system design can be based to assure that NOX emissions will be minimized and UBC be reduced. This report presents the results of a comprehensive project that generated an extensive set of pilot-scale test data that were used to validate a new predictive model for the cofiring of biomass and coal. All testing was performed at the 3.6 MMBtu/hr (1.75 MW{sub t}) Southern Company Services/Southern Research Institute Combustion Research Facility where a variety of burner configurations, coals, biomasses, and biomass injection schemes were utilized to generate a database of consistent, scalable, experimental results (422 separate test conditions). This database was then used to validate a new model for predicting NO{sub x} and UBC emissions from the cofiring of biomass and coal. This model is based on an Advanced Post-Processing (APP) technique that generates an equivalent network of idealized reactor elements from a conventional CFD simulation. The APP reactor network is a computational environment that allows for the incorporation of all relevant chemical reaction mechanisms and provides a new tool to quantify NOx and UBC emissions for any cofired combination of coal and biomass.

  5. Environmental pollution caused by coal mining and utilization in China; Umweltbelastungen durch Kohlefoerderung und -nutzung in China

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Fuchen [Guangdong Ocean Univ., Zhanjiang (China). Dept. of Scientific Research Management

    2013-07-15

    After the BP Statistical Review of World Energy of 2010 45.6% of coal production and 46.9% of coal consumption in the world in 2009 are accounted for China. The large-scale coal production and use cause major environmental impacts. A large environmental impact is through the emission of some unavoidable reaction products (for example waste gas, waste heat) that affect and damage the ecosystem. A steady influence can lead to long-term climate changes and medium term damage to the ecosystem. Other environmental impacts occur during mining of coal by the change in the water balance and the transformation of the landscape (surface mining, spoil tips). The environmental problems caused by coal mining and utilization can not be ignored in China. [German] Nach der BP-Statistik der Weltenergie 2010 sind 45,6% der Kohleproduktion und 46,9% des Kohleverbrauchs in der Welt im Jahr 2009 auf China entfallen. Die grossangelegte Kohlefoerderung und -verwendung fuehren zu grossen Umweltbelastungen. Eine grosse Umweltbeeinflussung erfolgt durch die Emission von zum Teil unvermeidbaren Umsetzungsprodukten (zum Beispiel Abgas, Abwaerme), die das Oekosystem beeinflussen und schaedigen. Eine stetige Beeinflussung kann langfristig zu den Klimaveraenderungen und mittelfristig zur Schaedigung des Oekosystems fuehren. Weitere Umweltbelastungen erfolgen beim Abbau der Kohle durch die Veraenderung des Wasserhaushalts und durch die Umgestaltung der Landschaft (Tagebau, Abbauhalden). Die Umweltprobleme, die durch die Kohlefoerderung und -nutzung verursacht werden, koennen in China nicht ignoriert werden.

  6. Issue of fossil fuel resources and coal technology strategy for the 21st century - toward the globalization

    Energy Technology Data Exchange (ETDEWEB)

    Ando, K. [Japan Coal Energy Center, Tokyo (Japan)

    2001-03-01

    The President of the Japan Coal Energy Centre gives an outlook on coal demand worldwide and particularly in Asia as a whole and Japan, and outlines the present day environmental concerns concerning coal. World reserves of coal, petroleum, natural gas and uranium are compared. The huge resources of coal may not be realized due to difficulty of development in both technical and economic terms. The 'triangle strategy' to resolve problems of supply and the environment is outlined - this considers the relationship between resources (supply) and utilization (demand); between resources and environment; and between utilization and environment. Technical tasks to tackle to exploit coal are listed. These include: advance in technology for resource exploration; improvement in refining and storing low-grade coal; establishing a highly efficient mining system; promoting of clean coal technology; recovery of coalbed methane; and CO{sub 2} fixation. 6 figs., 1 tab.

  7. Environmental impact of coal mine methane emissions and responding strategies in China

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Y.P.; Wang, L.; Zhang, X.L. [China University of Mining & Technology, Xuzhou (China)

    2011-01-15

    The impact on global climate change from coal mine methane emissions in China has been drawing attention as coal production has powered its economic development. Data on coal mine methane emissions from the State Administration of Coal Mine Safety of China has been analyzed. It is estimated that the methane emission from coal mining in China reached 20 billions of cubic meters in 2008, most of which comes from state-owned coal mines with high-gas content. China releases six times as much of methane from coal mines as compared to the United States. However, Chinese methane emission from coal production accounts for only a very small proportion on the environmental impact when compared to emissions of carbon dioxide from fossil fuel consumption. The Chinese government has shown environmental awareness and resolution on the mitigation and utilization of coal mine methane emissions. Measures have been taken to implement the programs of mitigation and utilization of coal mine methane, and at the same time, to ensure mining safety. Nearly 7.2 billions of cubic meters of methane were drained from the coal mines, and 32% of it was utilized in 2008. The slow advancement of technologies for the drainage and utilization of low-concentration methane from ventilation air hinders the progress of mitigation of atmospheric methane and the utilization of coal mine methane emissions.

  8. Subtask 3.9 - Direct Coal Liquefaction Process Development

    Energy Technology Data Exchange (ETDEWEB)

    Aulich, Ted; Sharma, Ramesh

    2012-07-01

    The Energy and Environmental Research Center (EERC), in partnership with the U.S. Department of Energy (DOE) and Accelergy Corporation, an advanced fuels developer with technologies exclusively licensed from ExxonMobil, undertook Subtask 3.9 to design, build, and preliminarily operate a bench-scale direct coal liquefaction (DCL) system capable of converting 45 pounds/hour of pulverized, dried coal to a liquid suitable for upgrading to fuels and/or chemicals. Fabrication and installation of the DCL system and an accompanying distillation system for off-line fractionation of raw coal liquids into 1) a naphtha middle distillate stream for upgrading and 2) a recycle stream was completed in May 2012. Shakedown of the system was initiated in July 2012. In addition to completing fabrication of the DCL system, the project also produced a 500-milliliter sample of jet fuel derived in part from direct liquefaction of Illinois No. 6 coal, and submitted the sample to the Air Force Research Laboratory (AFRL) at Wright Patterson Air Force Base, Dayton, Ohio, for evaluation. The sample was confirmed by AFRL to be in compliance with all U.S. Air Force-prescribed alternative aviation fuel initial screening criteria.

  9. The identification of unusual microscopic features in coal and their derived chars: Influence on coal fluidized bed combustion

    Energy Technology Data Exchange (ETDEWEB)

    Valentim, B. [Centro de Geologia da Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto (Portugal); Lemos de Sousa, M.J. [Centro de Geologia da Universidade do Porto, Praca de Gomes Teixeira, 4099-002 Porto (Portugal); Abelha, P.; Boavida, D.; Gulyurtlu, I. [Departamento de Engenharia Energetica e Controlo Ambiental (DEECA), Instituto Nacional de Engenharia, Tecnologia e Inovacao (INETI), Estrada do Paco do Lumiar, 22, Edif. J, 1649-038, Lisboa (Portugal)

    2006-06-06

    During the petrographic study of seven feed coals from different origins, it was found that these coals presented microfeatures such as: material size, shape, weathering, thermally affected particles and contamination. After devolatilization under fluidized bed conditions, some chars presented the consequences of the above mentioned microfeatures, i.e., unreacted coal, unswelled particles, coatings and microstratification. Since the amounts of the microfeatures observed were low (less than 1%), the present study is essentially observational/descriptional. However, it seems very likely, from the observations that were made, that the occurrence of one or more of these microfeatures in coal, depending on their kind and abundance, may have significant effect on the coal devolatilization. (author)

  10. DEVELOPMENT OF NOVEL CERAMIC NANOFILM-FIBER INTEGRATED OPTICAL SENSORS FOR RAPID DETECTION OF COAL DERIVED SYNTHESIS GAS

    Energy Technology Data Exchange (ETDEWEB)

    Junhang Dong; Hai Xiao; Xiling Tang; Hongmin Jiang; Kurtis Remmel; Amardeep Kaur

    2012-09-30

    The overall goal of this project is to conduct fundamental studies on advanced ceramic materials and fiber optic devices for developing new types of high temperature (>500{degree}C) fiber optic chemical sensors (FOCS) for monitoring fossil (mainly coal) and biomass derived gases in power plants. The primary technical objective is to investigate and demonstrate the nanocrystalline doped-ceramic thin film enabled FOCS that possess desired stability, sensitivity and selectivity for in-situ, rapid gas detection in the syngas streams from gasification and combustion flue gases. This report summarizes research works of two integrated parts: (1) development of metal oxide solid thin films as sensing materials for detection and measurement of important gas components relevant to the coal- and biomass-derived syngas and combustion gas streams at high temperatures; and (2) development of fiber optic devices that are potentially useful for constructing FOCS in combination with the solid oxide thin films identified in this program.

  11. Coal combustion waste management study

    International Nuclear Information System (INIS)

    1993-02-01

    Coal-fired generation accounted for almost 55 percent of the production of electricity in the United States in 1990. Coal combustion generates high volumes of ash and flue gas desulfurization (FGD) wastes, estimated at almost 90 million tons. The amount of ash and flue gas desulfurization wastes generated by coal-fired power plants is expected to increase as a result of future demand growth, and as more plants comply with Title IV of the 1990 Clean Air Act Amendments. Nationwide, on average, over 30 percent of coal combustion wastes is currently recycled for use in various applications; the remaining percentage is ultimately disposed in waste management units. There are a significant number of on-site and off-site waste management units that are utilized by the electric utility industry to store or dispose of coal combustion waste. Table ES-1 summarizes the number of disposal units and estimates of waste contained at these unites by disposal unit operating status (i.e, operating or retired). Further, ICF Resources estimates that up to 120 new or replacement units may need to be constructed to service existing and new coal capacity by the year 2000. The two primary types of waste management units used by the industry are landfills and surface impoundments. Utility wastes have been exempted by Congress from RCRA Subtitle C hazardous waste regulation since 1980. As a result of this exemption, coal combustion wastes are currently being regulated under Subtitle D of RCRA. As provided under Subtitle D, wastes not classified as hazardous under Subtitle C are subject to State regulation. At the same time Congress developed this exemption, also known as the ''Bevill Exclusion,'' it directed EPA to prepare a report on coal combustion wastes and make recommendations on how they should be managed

  12. Creating a Chinese-style coal-industry economic system

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Y

    1985-04-25

    Efforts to keep China's coal industry financially healthy and to continue increasing production also created problems in terms of output, transport, environmental damage, accidents, and labor pressures. In addition to the historical and economic reasons for these pressures, inadequate leadership and policy errors made things worse. An analysis suggests three problems: (1) an inequitable division of duties between government and business, (2) a neglected marketplace, and (3) the dominance of egalitarianism. The report relates these problems to the production of coal and a package of reforms which restructured the economic system of the industry to give it more autonomy and economic responsibility. The reforms emphasize rational pricing and use of coal as well as management of the industry.

  13. The coal cleat system: A new approach to its study

    Directory of Open Access Journals (Sweden)

    C.F. Rodrigues

    2014-06-01

    Full Text Available After a general analysis regarding the concept of coal “cleat system”, its genetic origin and practical applications to coalbed methane (CBM commercial production and to CO2 geological sequestration projects, the authors have developed a method to answer, quickly and accurately in accordance with the industrial practice and needs, the following yet unanswered questions: (1 how to define the spatial orientation of the different classes of cleats presented in a coal seam and (2 how to determine the frequency of their connectivites. The new available and presented techniques to answer these questions have a strong computer based tool (geographic information system, GIS, able to build a complete georeferentiated database, which will allow to three-dimensionally locate the laboratory samples in the coalfield. It will also allow to better understand the coal cleat system and consequently to recognize the best pathways to gas flow through the coal seam. Such knowledge is considered crucial for understanding what is likely to be the most efficient opening of cleat network, then allowing the injection with the right spatial orientation, of pressurized fluids in order to directly drain the maximum amount of gas flow to a CBM exploitation well. The method is also applicable to the CO2 geological sequestration technologies and operations corresponding to the injection of CO2 sequestered from industrial plants in coal seams of abandoned coal mines or deep coal seams.

  14. Fluidized bed selective pyrolysis of coal

    Science.gov (United States)

    Shang, Jer Y.; Cha, Chang Y.; Merriam, Norman W.

    1992-01-01

    The present invention discloses a process for the pyrolysis of coal which comprises the effective utilization of two zonal inclined fluidized beds, where said zones can be selectively controlled as to temperature and heating rate. The first zonal inclined fluidized bed serves as a dryer for crushed coal and additionally is controlled to selectively pyrolyze said coal producing substantially carbon dioxide for recycle use. The second zonal inclined fluidized bed further pyrolyzes the coal to gaseous, liquid and char products under controlled temperature and heating rate zones designed to economically integrate the product mix. The gas and liquid products are recovered from the gaseous effluent stream while the char which remains can be further treated or utilized in a subsequent process step.

  15. Rosebud SynCoal Partnership, SynCoal{reg_sign} demonstration technology update

    Energy Technology Data Exchange (ETDEWEB)

    Sheldon, R.W. [Rosebud SynCoal Partnership, Billings, MT (United States)

    1997-12-31

    An Advanced Coal Conversion Process (ACCP) technology being demonstrated in eastern Montana (USA) at the heart of one of the world`s largest coal deposits is providing evidence that the molecular structure of low-rank coals can be altered successfully to produce a unique product for a variety of utility and industrial applications. The product is called SynCoal{reg_sign} and the process has been developed by the Rosebud SynCoal Partnership (RSCP) through the US Department of Energy`s multi-million dollar Clean Coal Technology Program. The ACCP demonstration process uses low-pressure, superheated gases to process coal in vibrating fluidized beds. Two vibratory fluidized processing stages are used to heat and convert the coal. This is followed by a water spray quench and a vibratory fluidized stage to cool the coal. Pneumatic separators remove the solid impurities from the dried coal. There are three major steps to the SynCoal{reg_sign} process: (1) thermal treatment of the coal in an inert atmosphere, (2) inert gas cooling of the hot coal, and (3) removal of ash minerals. When operated continuously, the demonstration plant produces over 1,000 tons per day (up to 300,000 tons per year) of SynCoal{reg_sign} with a 2% moisture content, approximately 11,800b Btu/lb and less than 1.0 pound of SO{sub 2} per million Btu. This product is obtained from Rosebud Mine sub-bituminous coal which starts with 25% moisture, 8,600 Btu/lb and approximately 1.6 pounds of SO{sub 2} per million Btu.

  16. Dissolution of subbituminous coal in tetrahydroquinoline

    Energy Technology Data Exchange (ETDEWEB)

    Silver, H F; Frazee, W S; Broderick, T E; Hurtubise, R J

    1986-05-01

    Two different samples of Wyodak subbituminous coal from the Powder River Basin in Wyoming were liquefied in a two dm/sup 3/ batch reactor using 1,2,3,4 tetrahydroquinoline, THQ, as a solvent. Sufficient sample was produced to determine product boiling ranges by distillation and to measure THQ distribution in the product. Product distillation showed that even at cyclohexane conversions greater than 50%, net distillate yields produced using THQ as a solvent were negative. In some cases, high boiling, coal-derived residue yields were greater than the dry coal charged to the reactor. These observations have been attributed to THQ losses resulting from dimerization of the THQ and reactions between THQ and coal derived components. 5 references.

  17. Coal-fired high performance power generating system. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-31

    As a result of the investigations carried out during Phase 1 of the Engineering Development of Coal-Fired High-Performance Power Generation Systems (Combustion 2000), the UTRC-led Combustion 2000 Team is recommending the development of an advanced high performance power generation system (HIPPS) whose high efficiency and minimal pollutant emissions will enable the US to use its abundant coal resources to satisfy current and future demand for electric power. The high efficiency of the power plant, which is the key to minimizing the environmental impact of coal, can only be achieved using a modern gas turbine system. Minimization of emissions can be achieved by combustor design, and advanced air pollution control devices. The commercial plant design described herein is a combined cycle using either a frame-type gas turbine or an intercooled aeroderivative with clean air as the working fluid. The air is heated by a coal-fired high temperature advanced furnace (HITAF). The best performance from the cycle is achieved by using a modern aeroderivative gas turbine, such as the intercooled FT4000. A simplified schematic is shown. In the UTRC HIPPS, the conversion efficiency for the heavy frame gas turbine version will be 47.4% (HHV) compared to the approximately 35% that is achieved in conventional coal-fired plants. This cycle is based on a gas turbine operating at turbine inlet temperatures approaching 2,500 F. Using an aeroderivative type gas turbine, efficiencies of over 49% could be realized in advanced cycle configuration (Humid Air Turbine, or HAT). Performance of these power plants is given in a table.

  18. Wabash River Coal Gasification Combined Cycle Repowering Project: Clean Coal Technology Program

    International Nuclear Information System (INIS)

    1993-05-01

    The proposed project would result in a combined-cycle power plant with lower emissions and higher efficiency than most existing coal-fired power plants of comparable size. The net plant heat rate (energy content of the fuel input per useable electrical generation output; i.e., Btu/kilowatt hour) for the new repowered unit would be a 21% improvement over the existing unit, while reducing SO 2 emissions by greater than 90% and limiting NO x emissions by greater than 85% over that produced by conventional coal-fired boilers. The technology, which relies on gasified coal, is capable of producing as much as 25% more electricity from a given amount of coal than today's conventional coal-burning methods. Besides having the positive environmental benefit of producing less pollutants per unit of power generated, the higher overall efficiency of the proposed CGCC project encourages greater utilization to meet base load requirements in order to realize the associated economic benefits. This greater utilization (i.e., increased capacity factor) of a cleaner operating plant has global environmental benefits in that it is likely that such power would replace power currently being produced by less efficient plants emitting a greater volume of pollutants per unit of power generated

  19. Oil from coal: just not worth it, say NCB

    Energy Technology Data Exchange (ETDEWEB)

    Grainger, L

    1970-01-01

    The creation of new markets by making oil fuels from coal in Britain is unresolved at this time. The dominant factor in the economics is the price ratio between coal and oil, which in Britain is 3 times less favorable than in the U.S. Current conversion results in a price more than double that of natural oil; however, the National Coal Board (NCB) continues to assess oil-from-coal processes. A sound research background in the new field of coal derivatives from solvent processing is being developed to produce materials of higher specific value than fuels. A continuous pilot plant is being built to prepare coke from filtered coal solution on the scale of a half-a-ton per week. Future prospects of the industry lie in areas where markets for coal will diminish, such as metallurgical coke. The fate of the coal industry will depend more and more on its largest market-electricity generation. In order to compete with nuclear power, the NCB is developing a new system of fluidized combustion.

  20. Hard coal; Steinkohle

    Energy Technology Data Exchange (ETDEWEB)

    Loo, Kai van de; Sitte, Andreas-Peter [Gesamtverband Steinkohle e.V., Herne (Germany)

    2013-04-01

    The year 2012 benefited from a growth of the consumption of hard coal at the national level as well as at the international level. Worldwide, the hard coal still is the number one energy source for power generation. This leads to an increasing demand for power plant coal. In this year, the conversion of hard coal into electricity also increases in this year. In contrast to this, the demand for coking coal as well as for coke of the steel industry is still declining depending on the market conditions. The enhanced utilization of coal for the domestic power generation is due to the reduction of the nuclear power from a relatively bad year for wind power as well as reduced import prices and low CO{sub 2} prices. Both justify a significant price advantage for coal in comparison to the utilisation of natural gas in power plants. This was mainly due to the price erosion of the inexpensive US coal which partly was replaced by the expansion of shale gas on the domestic market. As a result of this, the inexpensive US coal looked for an outlet for sales in Europe. The domestic hard coal has continued the process of adaptation and phase-out as scheduled. Two further hard coal mines were decommissioned in the year 2012. RAG Aktiengesellschaft (Herne, Federal Republic of Germany) running the hard coal mining in this country begins with the preparations for the activities after the time of mining.

  1. Cooperative research program in coal liquefaction. Quarterly report, May 1, 1993--October 31, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, G.P. [ed.

    1994-07-01

    This report summarizes progress in four areas of research under the general heading of Coal Liquefaction. Results of studies concerning the coliquefaction of coal with waste organic polymers or chemical products of these polymers were reported. Secondly, studies of catalytic systems for the production of clean transportation fuels from coal were discussed. Thirdly, investigations of the chemical composition of coals and their dehydrogenated counterparts were presented. These studies were directed toward elucidation of coal liquefaction processes on the chemical level. Finally, analytical methodologies developed for in situ monitoring of coal liquefaction were reported. Techniques utilizing model reactions and methods based on XAFS, ESR, and GC/MS are discussed.

  2. Assessment of industrial energy options based on coal and nuclear systems

    International Nuclear Information System (INIS)

    Anderson, T.D.; Bowers, H.I.; Bryan, R.H.; Delene, J.G.; Hise, E.C.; Jones, J.E. Jr.; Klepper, O.H.; Reed, S.A.; Spiewak, I.

    1975-07-01

    Industry consumes about 40 percent of the total primary energy used in the United States. Natural gas and oil, the major industrial fuels, are becoming scarce and expensive; therefore, there is a critical national need to develop alternative sources of industrial energy based on the more plentiful domestic fuels--coal and nuclear. This report gives the results of a comparative assessment of nuclear- and coal-based industrial energy systems which includes technical, environmental, economic, and resource aspects of industrial energy supply. The nuclear options examined were large commercial nuclear power plants (light-water reactors or high-temperature gas-cooled reactors) and a small [approximately 300-MW(t)] special-purpose pressurized-water reactor for industrial applications. Coal-based systems selected for study were those that appear capable of meeting environmental standards, especially with respect to sulfur dioxide; these are (1) conventional firing using either low- or high-sulfur coal with stack-gas scrubbing equipment, (2) fluidized-bed combustion using high-sulfur coal, (3) low- and intermediate-Btu gas, (4) high-Btu pipeline-quality gas, (5) solvent-refined coal, (6) liquid boiler fuels, and (7) methanol from coal. Results of the study indicated that both nuclear and coal fuel can alleviate the industrial energy deficit resulting from the decline in availability of natural gas and oil. However, because of its broader range of application and relative ease of implementation, coal is expected to be the more important substitute industrial fuel over the next 15 years. In the longer term, nuclear fuels could assume a major role for supplying industrial steam. (U.S.)

  3. Refinery Integration of By-Products from Coal-Derived Jet Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Caroline E. Burgess Clifford; Andre Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

    2006-05-17

    This report summarizes the accomplishments toward project goals during the first six months of the third year of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts, acquisition and installation of a research gasoline engine, and modification of diesel engines for use in evaluating diesel produced in the project. Characterization of the gasoline fuel indicates a dominance of single ring alkylcycloalkanes that have a low octane rating; however, blends containing these compounds do not have a negative effect upon gasoline when blended in refinery gasoline streams. Characterization of the diesel fuel indicates a dominance of 3-ring aromatics that have a low cetane value; however, these compounds do not have a negative effect upon diesel when blended in refinery diesel streams. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Combustion and characterization of fuel oil indicates that the fuel is somewhere in between a No. 4 and a No. 6 fuel oil. Emission testing indicates the fuel burns similarly to these two fuels, but trace metals for the coal-based material are different than petroleum-based fuel oils. Co-coking studies using cleaned coal are highly reproducible in the pilot-scale delayed coker. Evaluation of the coke by Alcoa, Inc. indicated that while the coke produced is of very good quality, the metals content of the carbon is still high in iron and silica. Coke is being evaluated for other possible uses

  4. Production of blast furnace coke from soft brown coal

    Energy Technology Data Exchange (ETDEWEB)

    Scholz, G.; Wundes, H.; Schkommodau, F.; Zinke, H.-G. (VEB Gaskombinat Schwarze Pumpe (German Democratic Republic))

    1988-01-01

    Reviews experimental production and utilization of high quality brown coal coke in the GDR during 1985 and 1986. The technology of briquetting and coking brown coal dust is described; the superior parameters of produced coke quality are listed in comparison to those of regular industrial coke made from brown and black coal. Dust emission from high quality brown coal coke was suppressed by coke surface treatment with dispersion foam. About 4,200 t of this coke were employed in black coal coke substitution tests in a blast furnace. Substitution rate was 11%, blast furnace operation was positive, a substitution factor of 0.7 t black coal coke per 1 t of brown coal coke was calculated. Technology development of high quality brown coal coke production is regarded as complete; blast furnace coke utilization, however, requires further study. 8 refs.

  5. Studies of the fate of sulfur trioxide in coal-fired utility boilers based on modified selected condensation methods.

    Science.gov (United States)

    Cao, Yan; Zhou, Hongcang; Jiang, Wu; Chen, Chien-Wei; Pan, Wei-Ping

    2010-05-01

    The formation of sulfur trioxide (SO(3)) in coal-fired utility boilers can have negative effects on boiler performance and operation, such as fouling and corrosion of equipment, efficiency loss in the air preheater (APH), increase in stack opacity, and the formation of PM(2.5). Sulfur trioxide can also compete with mercury when bonding with injected activated carbons. Tests in a lab-scale reactor confirmed there are major interferences between fly ash and SO(3) during SO(3) sampling. A modified SO(3) procedure to maximize the elimination of measurement biases, based on the inertial-filter-sampling and the selective-condensation-collecting of SO(3), was applied in SO(3) tests in three full-scale utility boilers. For the two units burning bituminous coal, SO(3) levels starting at 20 to 25 ppmv at the inlet to the selective catalytic reduction (SCR), increased slightly across the SCR, owing to catalytic conversion of SO(2) to SO(3,) and then declined in other air pollutant control device (APCD) modules downstream to approximately 5 ppmv and 15 ppmv at the two sites, respectively. In the unit burning sub-bituminous coal, the much lower initial concentration of SO(3) estimated to be approximately 1.5 ppmv at the inlet to the SCR was reduced to about 0.8 ppmv across the SCR and to about 0.3 ppmv at the exit of the wet flue gas desulfurization (WFGD). The SO(3) removal efficiency across the WFGD scrubbers at the three sites was generally 35% or less. Reductions in SO(3) across either the APH or the dry electrostatic precipitator (ESP) in units burning high-sulfur bituminous coal were attributed to operating temperatures being below the dew point of SO(3).

  6. Coal preparation and coal cleaning in the dry process; Kanshiki sentaku to coal cleaning

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Z; Morikawa, M; Fujii, Y [Okayama University, Okayama (Japan). Faculty of Engineering

    1996-09-01

    Because the wet process has a problem such as waste water treatment, coal cleaning in the dry process was discussed. When a fluidized bed (using glass beads and calcium carbonate) is utilized instead of the heavy liquid, the fluidized bed will have apparent density as the liquid does, whereas the relative relationship therewith determines whether a substance having been put into the fluidized bed will float or sink. This is utilized for coals. In addition, two powder constituents of A and B may be wanted to be separated using the fluidized extraction process (similar to the liquid-liquid extraction process). In such a case, a fluidized bed in which both constituents are mixed is added with a third constituent C (which will not mix with A, but mix well with B), where the constituents are separated into A and (B + C), and the (B + C) constituent is separated further by using a sieve. If coal has the coal content mixed with ash content and pulverized, it turns into particle groups which have distributions in grain size and density. Groups having higher density may contain more ash, and those having lower density less ash. In addition, the ash content depends also on the grain size. The ash content may be classified by using simultaneously wind classification (for density and grain size) and a sieve (for grain size). This inference may be expanded to consideration of constructing a multi-stage fluidized bed classification tower. 12 figs., 5 tabs.

  7. Coal-fired high performance power generating system

    Energy Technology Data Exchange (ETDEWEB)

    1992-07-01

    The goals of the program are to develop a coal-fired high performance power generation system (HIPPS) by the year 2000 that is capable of > 47% thermal efficiency; NO[sub x] SO [sub x] and Particulates < 25% NSPS; Cost of electricity 10% lower; coal > 65% of heat input and all solid wastes benign. In order to achieve these goals our team has outlined a research plan based on an optimized analysis of a 250 MW[sub e] combined cycle system applicable to both frame type and aeroderivative gas turbines. Under the constraints of the cycle analysis we have designed a high temperature advanced furnace (HITAF) which integrates several combustor and air heater designs with appropriate ash management procedures. Most of this report discusses the details of work on these components, and the R D Plan for future work. The discussion of the combustor designs illustrates how detailed modeling can be an effective tool to estimate NO[sub x] production, minimum burnout lengths, combustion temperatures and even particulate impact on the combustor walls. When our model is applied to the long flame concept it indicates that fuel bound nitrogen will limit the range of coals that can use this approach. For high nitrogen coals a rapid mixing, rich-lean, deep staging combustor will be necessary. The air heater design has evolved into two segments: a convective heat exchanger downstream of the combustion process; a radiant panel heat exchanger, located in the combustor walls; The relative amount of heat transferred either radiatively or convectively will depend on the combustor type and the ash properties.

  8. Fiscal 1999 report on basic research for promotion of joint implementation programs. Research on collection and utilization of coal mine methane gas in Russia (Kuznetsk coal field); Russia (Kuznetsk tanden) ni okeru tanko methane gas kaishu riyo chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    The above-mentioned effort is to comply with the COP3 (Third Session of the Conference of the Parties to the United Nations Framework Convention on Climate Change) joint implementation clause. At this coal field, mining facilities are growing superannuated and obsolescent in the prolonged business depression, causing frequent occurrence of disasters such as gas explosions. The coal mine gas collection rate at the Kuznetsk coal field is as low as 17%, with concern for safety discouraging sufficient collection. Even the small amount of the collected gas is, in the absence of gas utilizing facilities, totally discharged into the air. For the mitigation of global warming, for mining safety, and for the establishment of a foundation for business, it is desired that coal mine methane gas collection/utilization facilities and related technologies be introduced into the coal field. Gas purging from the pits is incomplete, which is attributed to the lack of equipment capable of excavating proper-diameter bores longer than 100m for longwall mining. Ventilation also needs improvement. The research is under way on the premise that highly reliable intermediate range (300m) boring equipment and gas management technologies will be available. Collection of gas of a 30-35% concentration level at a collection rate of 40% is the target. (NEDO)

  9. PROBLEMY I PERSPEKTIVY ISPOL'ZOVANIYA SHAKHTNOGO METANA [PROBLEMS AND PROSPECTS OF COAL MINE METHANE

    Directory of Open Access Journals (Sweden)

    Mogileva Ye.M.

    2017-09-01

    Full Text Available The use of coal mine methane ensures the implementation of the principle of integrated development of the deposit. The urgency of the problem of coal mine methane is determined by the fact that the Presidential Decree of September 30, 2013 № 752 "On the reduction of greenhouse gas emissions" is to bring to the 2020 decrease in emissions. The article substantiates the necessity of cardinal growth of the volumes of utilization of mine methane, as well as the strengthening of the role of degassing methods. The main reasons for the low level of utilization in the Russian Federation are noted. The main directions of using coal mine methane at present are considered, among which are: heat generation (fuel in boilers and other heat generators; generation of electricity (fuel for diesel engines of alternators; fuel for motor vehicles; raw materials for the chemical industry. The analysis of the main methods of utilization of methane-air mixtures is presented. Three perspective technologies for recycling methane from the ventilation streams of coal mines to the atmosphere are singled out: a thermal reactor with reversible flows "VOCSIDIZER", developed by MEGTEC Systems; a thermal reactor with reversible flows "VAMOX", developed by the company "Biothermica Technologies Inc."; a catalytic reversible reactor developed by Canadian Mineral and Energy Technologies. International practice shows that the implementation of projects for the utilization of coal mine methane, as a rule, requires the economic stimulation of such works. The article gives the main incentives and identifies the main directions for solving the problem of coal mine methane utilization.

  10. Coal chemical industry and its sustainable development in China

    International Nuclear Information System (INIS)

    Xie, Kechang; Li, Wenying; Zhao, Wei

    2010-01-01

    China is rich in coal resource, which is vital for energy security in this country. In early 21st century, the coal chemical industry in China will be oriented to the development of high efficiency, safety, cleanliness, and optimum utilization. In this review, the authors present an introduction to the utilization status of primary energy production and consumption in China. Since 2005, fundamental research studies, supported by the Ministry of Science and Technology of Chinese National Basic Research Program, have been carried out at Taiyuan University of Technology. The Ministry stresses that the new coal chemical industry should be developed in a sustainable manner to realize effective utilization of energy. Moreover, upgrading the high technology to improve actively the recycling processes of coal chemical engineering is of strategic importance to realize the modern coal chemical engineering.

  11. Electrostatic beneficiation of coal

    Energy Technology Data Exchange (ETDEWEB)

    Mazumder, M.K.; Tennal, K.B.; Lindquist, D.

    1994-10-01

    Dry physical beneficiation of coal has many advantages over wet cleaning methods and post combustion flue gas cleanup processes. The dry beneficiation process is economically competitive and environmentally safe and has the potential of making vast amounts of US coal reserves available for energy generation. While the potential of the electrostatic beneficiation has been studied for many years in laboratories and in pilot plants, a successful full scale electrostatic coal cleaning plant has not been commercially realized yet. In this paper the authors review some of the technical problems that are encountered in this method and suggest possible solutions that may lead toward its full utilization in cleaning coal.

  12. Investigation on characterization of Ereen coal deposit

    OpenAIRE

    S. Jargalmaa; B. Purevsuren; Ya. Davaajav; B. Avid; B. Bat-Ulzii; B. Ochirhuyag

    2016-01-01

    The Ereen coal deposit is located 360 km west from Ulaanbaatar and 95 km from Bulgan town. The coal reserve of this deposit is approximately 345.2 million tons. The Ereen coal is used directly for the Erdenet power plant for producing of electricity and heat. The utilization of this coal for gas and liquid product using gasification and pyrolysis is now being considered. The proximate and ultimate analysis show that the Ereen coal is low rank D mark hard coal, which corresponds to subbitumino...

  13. Planning of fuel coal imports using a mixed integer programming method

    Energy Technology Data Exchange (ETDEWEB)

    Shih, L.H. [National Cheng Kung University, Tainan (Taiwan). Dept. of Mineral and Petroleum Engineering

    1997-12-31

    In the public utility and commercial fuel industries, commodities from multiple supply sources are sometimes blended before use to reduce costs and assure quality. A typical example of these commodities is the fuel coal used in coal fired power plants. The diversity of the supply sources for these plants makes the planning and scheduling of fuel coal logistics difficult, especially for a power company that has more than one power plant. This study proposes a mixed integer programming model that provides planning and scheduling of coal imports from multiple suppliers for the Taiwan Power Company. The objective is to minimize total inventory cost by minimizing procurement cost, transportation cost and holding cost. Constraints on the system include company procurement policy, power plant demand, harbor unloading capacity, inventory balance equations, blending requirements, and safety stock. An example problem is presented using the central coal logistics system of the Taiwan Power Company to demonstrate the validity of the proposed model.

  14. Planning of fuel coal imports using a mixed integer programming method

    International Nuclear Information System (INIS)

    Shih, L.H.

    1997-01-01

    In the public utility and commercial fuel industries, commodities from multiple supply sources are sometimes blended before use to reduce costs and assure quality. A typical example of these commodities is the fuel coal used in coal fired power plants. The diversity of the supply sources for these plants makes the planning and scheduling of fuel coal logistics difficult, especially for a power company that has more than one power plant. This study proposes a mixed integer programming model that provides planning and scheduling of coal imports from multiple suppliers for the Taiwan Power Company. The objective is to minimize total inventory cost by minimizing procurement cost, transportation cost and holding cost. Constraints on the system include company procurement policy, power plant demand, harbor unloading capacity, inventory balance equations, blending requirements, and safety stock. An example problem is presented using the central coal logistics system of the Taiwan Power Company to demonstrate the validity of the proposed model

  15. Energy economics of nuclear and coal fired power plant

    International Nuclear Information System (INIS)

    Lee, Kee Won; Cho, Joo Hyun; Kim, Sung Rae; Choi, Hae Yoon

    1995-01-01

    The upturn of Korean nuclear power program can be considered to have started in early 70's while future plants for the construction of new nuclear power plants virtually came to a halt in United States. It is projected that power plant systems from combination of nuclear and coal fired types might shift to all coal fired type, considering the current trend of construction on the new plants in the United States. However, with the depletion of natural resources, it is desirable to understand the utilization of two competitive utility technologies in terms of of invested energy. Presented in this paper is a comparison between two systems, nuclear power plant and coal fired steam power plant in terms of energy investment. The method of comparison is Net Energy Analysis (NEA). In doing so, Input-Output Analysis (IOA) among industries and commodities is done. Using these information, net energy ratios are calculated and compared. NEA is conducted for power plants in U.S. because the availability of necessary data are limited in Korea. Although NEA does not offer conclusive solution, this method can work as a screening process in decision making. When considering energy systems, results from such analysis can be used as a general guideline. 2 figs., 12 tabs., 5 refs. (Author)

  16. Exploratory Research on Novel Coal

    Energy Technology Data Exchange (ETDEWEB)

    Winschel, R.A.; Brandes, S.D.

    1998-05-01

    The report presents the findings of work performed under DOE Contract No. DE-AC22 -95PC95050, Task 3 - Flow Sheet Development. A novel direct coal liquefaction technology was investigated in a program being conducted by CONSOL Inc. with the University of Kentucky Center for Applied Energy Research and LDP Associates. The process concept explored consists of a first-stage coal dissolution step in which the coal is solubilized by hydride ion donation. In the second stage, the products are catalytically upgraded to refinery feedstocks. Integrated first-stage and solids-separation steps were used to prepare feedstocks for second-stage catalytic upgrading. An engineering and economic evaluation was conducted concurrently with experimental work throughout the program. Parameters were established for a low-cost, low-severity first-stage reaction system. A hydride ion reagent system was used to effect high coal conversions of Black Thunder Mine Wyoming subbituminous coal. An integrated first-stage and filtration step was successfully demonstrated and used to produce product filtrates with extremely low solids contents. High filtration rates previously measured off-line in Task 2 studies were obtained in the integrated system. Resid conversions of first-stage products in the second stage were found to be consistently greater than for conventional two-stage liquefaction resids. In Task 5, elementally balanced material balance data were derived from experimental results and an integrated liquefaction system balance was completed. The economic analysis indicates that the production of refined product (gasoline) via this novel direct liquefaction technology is higher than the cost associated with conventional two-stage liquefaction technologies. However, several approaches to reduce costs for the conceptual commercial plant were recommended. These approaches will be investigated in the next task (Task 4) of the program.

  17. National Coal Quality Inventory (NACQI)

    Energy Technology Data Exchange (ETDEWEB)

    Robert Finkelman

    2005-09-30

    The U.S. Geological Survey (USGS) conducted the National Coal Quality Inventory (NaCQI) between 1999 and 2005 to address a need for quality information on coals that will be mined during the next 20-30 years. Collaboration between the USGS, State geological surveys, universities, coal burning utilities, and the coal mining industry plus funding support from the Electric Power Research Institute (EPRI) and the U.S. Department of Energy (DOE) permitted collection and submittal of coal samples for analysis. The chemical data (proximate and ultimate analyses; major, minor and trace element concentrations) for 729 samples of raw or prepared coal, coal associated shale, and coal combustion products (fly ash, hopper ash, bottom ash and gypsum) from nine coal producing States are included. In addition, the project identified a new coal reference analytical standard, to be designated CWE-1 (West Elk Mine, Gunnison County, Colorado) that is a high-volatile-B or high-volatile-A bituminous coal with low contents of ash yield and sulfur, and very low, but detectable contents of chlorine, mercury and other trace elements.

  18. Utilization of coal-biomass fly ash in reactive barriers for treating acid mine drainage

    International Nuclear Information System (INIS)

    Penney, K.; Mohammedelhassan, E.; Catalan, L.J.

    2009-01-01

    Coal- and biomass-derived fly ash (CBFA) was used as a reactive barrier system for treating acid mine drainage. Two reactive barriers were investigated, notably a flow-through reactive barrier with minimum disruption to the existing flow regime, and a low-permeability barrier for the construction of containment dams. A synthetic acid mine drainage system was prepared in a laboratory. Kinetic column tests were conducted to analyze the effects of acid mine drainage flow on the hydraulic conductivity and leachate composition for mixtures of mine tailings and CBFA. The tests demonstrated that a mixture of the CBFA of between 10 to 50 per cent with mine tailings increased the pH and decreased the dissolved concentrations of heavy metals in acid mine drainage. Mineral precipitation caused large reductions in hydraulic conductivity in relation to the cumulative amounts of acid mine drainage flowing through the columns. It was concluded that the number of progressive pore volumes of acid mine drainage required for achieving reductions in hydraulic conductivity is inversely related to the fly ash content of the column packs. 13 refs., 4 tabs., 7 figs.

  19. Proceedings of the workshop on radioactivity associated with coal use

    International Nuclear Information System (INIS)

    1981-12-01

    A workshop on radioactivity in coal use was held on September 15 through 17, 1981, under the auspices of the US Department of Energy, Office of Environmental Programs, and the Los Alamos National Laboratory. The purpose of the workshop was to identify research issues associated with radioactivity resulting from the use of coal for electric power generation. The concensus of the 10 scientists participating in the workshop was that a moderate to strong need exists for research in solubility of fly ash in different fluids and for determination of radioactivity in construction materials. Several additional research issues were identified but were given a lower priority. Summaries of each presentation are included. Titles are: some effects of coal combustion on the radiation environment; radionuclides in western coal at Mound; low-level radiation in coals utilized and ashes produced at New York State electric utilities; radioactivity from coal use - where are the problems; chemistry of radionuclides in coal preparation; uranium daughters in natural atmospheric aerosols and coal-fired power plant emissions; possible contributions of coal extraction and utilization to radioactivity contributions in drinking water; and impact on water quality from radionuclides in coal. One paper has been abstracted separately for inclusion in the Energy Data Base

  20. Overall requirements for an advanced underground coal extraction system. [environment effects, miner health and safety, production cost, and coal conservation

    Science.gov (United States)

    Goldsmith, M.; Lavin, M. L.

    1980-01-01

    Underground mining systems suitable for coal seams expoitable in the year 2000 are examined with particular relevance to the resources of Central Appalachia. Requirements for such systems may be summarized as follows: (1) production cost; (2)miner safety; (3) miner health; (4) environmental impact; and (5) coal conservation. No significant trade offs between production cost and other performance indices were found.

  1. Low-level radiation in coals utilized and ashes produced at New York State electric utilities

    International Nuclear Information System (INIS)

    Hornibrook, C.

    1981-01-01

    Eight coal-fired power plants in New York State were sampled for coal, fly ash and bottom ash. Samples were analyzed for uranium 238, uranium 235, uranium 234, thorium 232, thorium 230, radium 226, lead 210, polonium 210, radon 222. The leachate of six fly ash samples was analyzed for all of the above except radon 222. Some data on fly ash analysis are included

  2. Multiple-heteroatom-containing sulfur compounds in a high sulfur coal

    International Nuclear Information System (INIS)

    Winans, R.E.; Neill, P.H.

    1990-01-01

    Flash vacuum pyrolysis of a high sulfur coal has been combined with high resolution mass spectrometry yielding information on aromatic sulfur compounds containing an additional heteroatom. Sulfur emission from coal utilization is a critical problem and in order to devise efficient methods for removing organic sulfur, it is important to know what types of molecules contain sulfur. A high sulfur Illinois No. 6 bituminous coal (Argonne Premium Coal Sample No. 3) was pyrolyzed on a platinum grid using a quartz probe inserted into a modified all glass heated inlet system and the products characterized by high resolution mass spectrometry (HRMS). A significant number of products were observed which contained both sulfur and an additional heteroatom. In some cases two additional heteroatoms were observed. These results are compared to those found in coal extracts and liquefaction products

  3. Clean coal technology roadmap: issues paper

    Energy Technology Data Exchange (ETDEWEB)

    Pearson, B. [Natural Resources Canada, Ottawa, ON (Canada). CANMET Energy Technology Centre

    2003-07-01

    The need for the Clean Coal Technology Roadmap is based on the climate change threat, Canada's commitment to the Kyoto protocol, and the need to keep options open in determining the future position of coal in Canada's energy mix. The current role of coal, issues facing coal-fired utilities, and greenhouse gas emission policies and environmental regulations are outlined. The IEA energy outlook (2002) and a National Energy Board draft concerning Canada's energy future are outlined. Environmental, market, and technical demands facing coal, technology options for existing facilities, screening new developments in technology, and clean coal options are considered. 13 figs. 5 tabs.

  4. Energy Conversion Alternatives Study (ECAS), Westinghouse phase 1. Volume 1: Introduction and summary and general assumptions. [energy conversion systems for electric power plants using coal - feasibility

    Science.gov (United States)

    Beecher, D. T.

    1976-01-01

    Nine advanced energy conversion concepts using coal or coal-derived fuels are summarized. They are; (1) open-cycle gas turbines, (2) combined gas-steam turbine cycles, (3) closed-cycle gas turbines, (4) metal vapor Rankine topping, (5) open-cycle MHD; (6) closed-cycle MHD; (7) liquid-metal MHD; (8) advanced steam; and (9) fuel cell systems. The economics, natural resource requirements, and performance criteria for the nine concepts are discussed.

  5. Utilization of coal fired power plant by-products. Utilization of coal ash; Sekitan karyoku ni okeru fukusanbutsu no yuko riyo gijutsu. Sekitanbai no yuko riyo

    Energy Technology Data Exchange (ETDEWEB)

    Kishimoto, K. [The Federation of Electric Power Companies, Tokyo (Japan); Watanabe, M. [Electric Power Development Co. Ltd., Tokyo (Japan)

    1997-11-05

    The paper introduced the present situation and future task of the tackling with effective use of coal ash discharged from coal thermal power plants. Making the use of the characteristics, coal ash is mostly used in the fields of cement/concrete, civil engineering/construction, and agriculture/forestry/fisheries. In the case of using fly ash to concrete, the effects are the heightening of long-term strength, increase in workability, decrease in hydration heat, control of alkali aggregate reaction, etc. In the civil engineering/construction field, coal ash is allowed to be used for road bed material and mixed civil engineering material as road materials, for revetment back-filling material, soft ground surface layer treatment, soft ground/soil improvement materials, FGC deep layer mixing treatment process, SPC (sand compaction pile) material, etc. as earth work materials. Besides, it is used for light coarse aggregate, light sand, etc., as construction materials, for material substituting ceramics products, etc. as building materials, and for agricultural material, potassium silicate fertilizer and ocean structure in the agriculture/forestry/fisheries field. 4 refs., 2 tabs.

  6. Coal 1992

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    ACR's Coal 1992, the successor to the ACR Coal Marketing Manual, contains a comprehensive set of data on many aspects of the Australian coal industry for several years leading up to 1992. Tables and text give details of coal production and consumption in New South Wales, Queensland and other states. Statistics of the Australian export industry are complemented by those of South Africa, USA, New Zealand, Canada, Indonesia, China, Colombia, Poland and ex-USSR. Also listed are prices of Australian coking and non-coking coal, Australian coal stocks (and those of other major countries), loading port capacities, freight rates and coal quality requirements (analysis of coals by brand and supplier). A listing of Australian coal exporting companies is provided. A description of the spot Coal Screen Dealing System is given. World hard coal imports are listed by country and coal imports by major Asian countries tabulated. A forecast of demand by coal type and country up to the year 2000 is included.

  7. Life cycle assessment of solar aided coal-fired power system with and without heat storage

    International Nuclear Information System (INIS)

    Zhai, Rongrong; Li, Chao; Chen, Ying; Yang, Yongping; Patchigolla, Kumar; Oakey, John E.

    2016-01-01

    Highlights: • The comprehensive performances of three kinds of different systems were compared through LCA. • The comprehensive results of all systems were evaluated by grey relation theory. • The effects of life span, coal price, and solar collector field cost, among other factors, on the results were explored. - Abstract: Pollutant emissions from coal-fired power system have been receiving increasing attention over the past few years. Integration of solar thermal energy can greatly reduce pollutant emissions from these power stations. The performances of coal-fired power system (S1), solar aided coal-fired power system with thermal storage (S2), and solar aided coal-fired power system without thermal storage (S3) with three capacities of each kind of system (i.e., nine subsystems) were analyzed over the entire life span. The pollutant emissions and primary energy consumptions (PECs) of S1, S2, and S3 were estimated using life cycle assessment (LCA). The evaluation value of global warming potential (GWP), acidification potential (AP), respiratory effects potential (REP) and PEC were obtained based on the LCA results. Furthermore, the system investments were estimated, and grey relation theory was used to evaluate the performance of the three types of systems comprehensively. Finally, in order to find the effect of some main factors on the solar aided coal-fired power system (SACFPS), uncertainty analysis has been carried out. The LCA results show that the pollutant emissions and PEC mainly take place in the fuel processing and operation stages for all three system types, and S2 performs the best among the three systems based on the grey relation analysis results. And the uncertainty analysis shows that with longer life span, the power system have better performance; with higher coal price, the power system will have worse performance; with lower solar collector field cost, the solar aided coal-fired power system will be more profitable than the base

  8. Low NOx firing systems for bituminous coal and lignite

    International Nuclear Information System (INIS)

    Knyrim, W.; Scheffknecht, G.

    1997-01-01

    In the case of lignite fluidized boilers the denitrification down to less than 200 mg/m 3 was possible with primary measures on the firing side only. On account of the excellent results achieved with the reconstructed plants the firing systems for the new generation of brown coal fire steam generators with a capacity of 800 MW and more is designed in a similar way. For bituminous coal fire steam generators the primary measures on the firing side are nor sufficient to keep the German NO x emission limit. Therefore these units had to be retrofitted with a SCR-DENOX plant. The experience with the new firing system made in a 110 MW steam generator in Austria with a wide range of fuels is introduced. One of the largest bituminous coal fired once-trough steam generator built by EVT is the boiler for the power station Bexbach I (750 MW). The firing system is designed as a tangential firing system with 32 jet burners. These are arranged in pairs in the corners and divided into 4 burner levels with 4 burner pairs each. One mill is allocated to each burner level. An important characteristic feature is that the four bowl mills are arranged on one side of the steam generator. The plant is constructed with upper air nozzles which are arranged above the top burner level for the reduced of nitrogen oxides. During tests at steam generator with similar design, the nO x formation could be reduced from 750 to 500 mg/m 3 s.t.p. (dry, 6% O 2 ) with an addition of upper air of 20% at 100% unit capacity and constant total flow. As a main approach for the further reduction of the primary NO x emission at bituminous coal fired steam generators with tangential firing systems, the experience gained from the firing of brown coal has also been taken into account. A fundamental aspect in this respect was the vertical air staging in the direction of the furnace height. The results of many tests in a test reactor have shown that the differences of the achievable NO x values of brown and

  9. US and world coal trade

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, B

    1988-07-01

    This paper reviews the US's coal trade with other countries in the world. Despite being pressed to support domestic coal producers, US utilities are looking towards Colombia for more of their supplies. Whilst the amount of Colombian coal imported into the US is small, it is a combination of this and coal imported from Australia, Canada and China which is causing concern. Studies indicate that the volume of coal imported into the US may rise to 3 Mt/year within three years. Coal exports may suffer if Brazil bans the import of significant quantities of US coking coal in retaliation against American trade sanctions against Brazilian computer import barriers. Also, Romania is expected to impose tariffs on US imports which will have an impact on US coal exported to Romania. US remains the top coal exporter to the European Communities but its lead was cut back due to a big rise of Australian export. A portion of EC market has also been lost to the USSR and Poland. Meanwhile, Japan is resisting buying US's steam coal because it is too expensive.

  10. New stage of clean coal technology in Japan; Clean coal technology no aratana tenkai ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Kawaguchi, Y [Agency of Natural Resources and Energy, Tokyo (Japan)

    1996-09-01

    The paper described the positioning and new development of clean coal technology. Coal is an important resource which supplies approximately 30% of the energy consumed in all the world. In the Asian/Pacific region, especially, a share of coal in energy is high, around 60% of the world, and it is indispensable to continue using coal which is abundantly reserved. Japan continues using coal as an important energy among petroleum substituting energies taking consideration of the global environment, and is making efforts for development and promotion of clean coal technology aiming at further reduction of environmental loads. Moreover, in the Asian region where petroleum depends greatly upon outside the region, it is extremely important for stabilization of Japan`s energy supply that coal producing countries in the region promote development/utilization of their coal resources. For this, it is a requirement for Japan to further a coal policy having an outlook of securing stable coal supply/demand in the Asian region. 6 figs., 2 tabs.

  11. Taipower - latest projects to boost coal import levels

    Energy Technology Data Exchange (ETDEWEB)

    Hargreaves, D

    1985-05-01

    The activities are reviewd for Taipower, the state enterprise electrical power utility for Taiwan RC: its generating facilities and comparability; the status of major projects, especially the Taichung thermal project; the status of coal; coal burn performance; air pollution controls; coal ash performance; coal imports; transport logistics; including terminal facilities at the Taichung thermal power plant.

  12. FY 2000 report on the potential survey of the environmentally-friendly coal utilization system. Survey of the applicability of low grade coal reformation technology in Indonesia; 2000 nendo kankyo chowagata sekitan riyo system kanosei chosa hokokusho. Indonesia ni okeru teihin'itan kaishitsu gijutsu no tekiyosei chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Survey was made of the case of applying the low grade coal reformation technology to commercial plants in Indonesia. In the survey, supposing the UBC process as reformation technology and 5,000 t/d as size of the commercial plant, studies were made of companies to be applied, schemes on the usable fund raising/governmental supporting policy, potential diffusion/effects of diffusion, facilities which can be domestically manufactured/subjects in promoting the domestic manufacture, economic F/S, etc. Different from the first generation coal companies, the second generation coal companies own low grade coal for the most part of the coal resource. Therefore, the companies are very much interested in the reformation technology. In the financial plan, the equipment cost of a commercial plant of this size was estimated at approximately 10 billion yen. This is a large initial investment for coal companies in Indonesia. So, it is necessary to consider a system of joint venture with Japanese users, etc. As to the study of the economical efficiency, the trial calculation indicated that the reformation cost was 7.35 US$/product ton and the price of reformed coal briquette product was 19.85 US$/product ton. In this case, ROI (return on investment) of 8.40%/year was expected. (NEDO)

  13. Coal - 96

    International Nuclear Information System (INIS)

    Sparre, C.

    1996-09-01

    The report deals mainly with coal consumption, but also gives some information about technology, environmental aspects and markets. Data have been collected by questionnaires or via telephone. The use of steam coal for heating was 0.8 Mtons (down 20% from 1994). Cogeneration plants were the main users. Taxes and environmental reasons cause a reduction of the coal use that will probably continue the next years. Use of steam coal in industry has been constant at a level of 0.7 Mtons. The import of metallurgical coal rests constant at a level of 1.6 Mtons. 1.2 Mtons of coke was produced, and 0.3 Mtons imported. The PFBC-plant at Vaertan, Stockholm used 0.13 Mtons of coal, while some coal fired power plants have been converted to peat and wood fuels. The average price of steam coal imported to Sweden in 1995 was 333 SEK/ton, 6% higher than in 1994. The contract prices for delivery 1996 are about the same as at the end of 1995. All cogeneration plants have some sort of SO 2 removal system, mostly wet-dry. The largest plant, at Vaesteraas, has recently invested in a SCR system for NO x removal. Most other plants are using low NO x burners or SNCR systems, based on ammonia or urea, which reduce the emissions 50 - 70%. Some statistic about the world coal market is also given in the report

  14. Preliminary assessment of the health and environmental effects of coal utilization in the midwest. Volume I. Energy scenarios, technology characterizations, air and water resource impacts, and health effects

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-01-01

    An initial evaluation of the major health and environmental issues associated with increased coal use in the six midwestern states of Illinois, Indiana, Michigan, Minnesota, Ohio, and Wisconsin is presented. Using an integrated assessment approach, the evaluation proceeds from a base-line scenario of energy demand and facility siting for the period 1975 to 2020. Emphasis is placed on impacts from coal extraction, land reclamation, coal combustion for electrical generation, and coal gasification. The range of potential impacts and constraints is illustrated by a second scenario that represents an expected upper limit for coal utilization in Illinois. Included are: (1) a characterization of the energy demand and siting scenarios, coal related technologies, and coal resources, and (2) the related impacts on air quality, water availability, water quality, and human health.

  15. Biomass-derived carbon composites for enrichment of dilute methane from underground coal mines.

    Science.gov (United States)

    Bae, Jun-Seok; Jin, Yonggang; Huynh, Chi; Su, Shi

    2018-07-01

    Ventilation air methane (VAM), which is the main source of greenhouse gas emissions from coal mines, has been a great challenge to deal with due to its huge flow rates and dilute methane levels (typically 0.3-1.0 vol%) with almost 100% humidity. As part of our continuous endeavor to further improve the methane adsorption capacity of carbon composites, this paper presents new carbon composites derived from macadamia nut shells (MNSs) and incorporated with carbon nanotubes (CNTs). These new carbon composites were fabricated in a honeycomb monolithic structure to tolerate dusty environment and to minimize pressure drop. This paper demonstrates the importance of biomass particle size distributions when formed in a composite and methane adsorption capacities at low pressures relevant to VAM levels. The selectivity of methane over nitrogen was about 10.4 at each relevant partial pressure, which was much greater than that (6.5) obtained conventionally (at very low pressures), suggesting that capturing methane in the presence of pre-adsorbed nitrogen would be a practical option. The equilibrium and dynamic performance of biomass-derived carbon composites were enhanced by 30 and 84%, respectively, compared to those of our previous carbon fiber composites. In addition, the presence of moisture in ventilation air resulted in a negligible effect on the dynamic VAM capture performance of the carbon composites, suggesting that our carbon composites have a great potential for site applications at coal mines because the cost and performance of solid adsorbents are critical factors to consider. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Cooling Effect Analysis of Suppressing Coal Spontaneous Ignition with Heat Pipe

    Science.gov (United States)

    Zhang, Yaping; Zhang, Shuanwei; Wang, Jianguo; Hao, Gaihong

    2018-05-01

    Suppression of spontaneous ignition of coal stockpiles was an important issue for safe utilization of coal. The large thermal energy from coal spontaneous ignition can be viewed as the latent energy source to further utilize for saving energy purpose. Heat pipe was the more promising way to diffuse effectively concentrated energy of the coal stockpile, so that retarding coal spontaneous combustion was therefore highly desirable. The cooling mechanism of the coal with heat pipe was pursued. Based on the research result, the thermal energy can be transported from the coal seam to the surface continuously with the use of heat pipe. Once installed the heat pipes will work automatically as long as the coal oxidation reaction was happened. The experiment was indicated that it can significantly spread the high temperature of the coal pile.

  17. Demonstration of SCR technology for the control of NOx emissions from high-sulfur coal-fired utility boilers

    Energy Technology Data Exchange (ETDEWEB)

    Hinton, W.S. [W.S. Hinton and Associates, Cantonment, FL (United States); Maxwell, J.D.; Healy, E.C.; Hardman, R.R. [Southern Company Services, Inc., Birmingham, AL (United States); Baldwin, A.L. [Dept. of Energy, Pittsburgh, PA (United States)

    1997-12-31

    This paper describes the completed Innovative Clean Coal Technology project which demonstrated SCR technology for reduction of flue gas NO{sub x} emissions from a utility boiler burning US high-sulfur coal. The project was sponsored by the US Department of Energy, managed and co-funded by Southern Company Services, Inc. on behalf of the Southern Company, and also co-funded by the Electric Power Research Institute and Ontario Hydro. The project was located at Gulf Power Company`s Plant Crist Unit 5 (a 75 MW tangentially-fired boiler burning US coals that had a sulfur content ranging from 2.5--2.9%), near Pensacola, Florida. The test program was conducted for approximately two years to evaluate catalyst deactivation and other SCR operational effects. The SCR test facility had nine reactors: three 2.5 MW (5,000 scfm), and operated on low-dust flue gas. The reactors operated in parallel with commercially available SCR catalysts obtained from suppliers throughout the world. Long-term performance testing began in July 1993 and was completed in July 1995. A brief test facility description and the results of the project are presented in this paper.

  18. An innovative concept for maximizing the use of coal and nuclear energy for co-generation applications

    International Nuclear Information System (INIS)

    Choong, P.T.S.

    1995-01-01

    Despite the abundance in coal reserves in the world, coal fired power plants are not the desirable long-term solution to the energy shortage in most nations, because of environmental and transportation difficulties. However, nuclear power is inherently inefficient due to low temperature operations. The prudent solution to world's energy crisis should address both the immediate need for electricity and the long-term need for an environmentally sound energy system capable of providing low cost electricity and district heating energy utilizing mainly indigenous energy resources (coal, uranium, and thorium). The new energy utilization system has to be environment friendly. A conceptual solution plan is the subject matter of this presentation. The concept calls for an innovative integration of coal gasification, gas turbine, steam turbine and an intermediate bulk coolant heating nuclear power technologies. The output of the nuclear heated coolant is to cool the syngas output which is to drive the high temperature gas turbine generator. The waste heat from the gas turbine is recovered to drive the steam turbine. The exhaust steam from the steam turbine is used for district heating. The siting of the nuclear power plant is to be near the coal mines and water resources. Bulk of the electricity output is transmitted via HVDC lines to far away population centers. Excess coal gas from the gasification plant is to be piped to surrounding districts to drive remote combined cycle power plants. The thermal efficiency of power cycle can be over 50%. The overall energy utilization efficiency can be as high as 85% when district heating effect included. An example of INCTES (Integrated Nuclear/Coal Total Energy System) for China power/energy infra structure is briefly touched upon

  19. DEVELOPMENT OF ANALYTICAL METHODS FOR THE QUANTIFICATION OF THE CHEMICAL FORMS OF MERCURY AND OTHER TARGET POLLUTANTS IN COAL-FIRED BOILER FLUE GAS

    Energy Technology Data Exchange (ETDEWEB)

    Terence J. McManus, Ph.D.

    1999-06-30

    Since approximately 55% of the electrical power produced in the U. S. is generated by coal-based power utility plants, there is serious concern about the massive amounts of coal combustion products emitted into the atmosphere annually. Furthermore, Title III of the 1990 Clean Air Act Amendments (CAAA) requires the measurement and inventory of a possible 189 hazardous air pollutants (HAPs) from any stationary source producing more than 10 tons per year of any one pollutant or more than 25 tons per year of total pollutants. Although power utilities are not presently included on the list of source categories, the CAAA requires the U. S. Environmental Protection Agency to carry out a study of emissions from electricity generation using fossil fuels. Since many of these HAPs are known to be present in coal derived flue gas, coal-fired electric power utilities may be subject to regulation following these studies if Congress considers it necessary. In a cooperative effort with the U. S. Environmental Protection Agency (EPA), the U. S. Department of Energy (DOE) through its Federal Energy Technology Center (FETC) initiated such a study in 1991. DOE-FETC commissioned five primary contractors to conduct emission studies at eight different coal-fired electric utilities. The eight sites represented a cross section of feed coal type, boiler designs, and particulate and gaseous pollutant control technologies. The major goal of these studies was to determine the sampling and analytical methodologies that could be used efficiently to perform these emission tests while producing representative and reliable emission data. The successful methodology could then be recommended to the EPA for use in compliance testing in the event the regulation of air toxic emissions from coal-fired power plants is implemented. A secondary purpose of the testing was to determine the effectiveness of the control technologies in reducing target hazardous air pollutants. Advanced Technology Systems, Inc

  20. Analysis of oxy-fuel combustion power cycle utilizing a pressurized coal combustor

    International Nuclear Information System (INIS)

    Hong, Jongsup; Chaudhry, Gunaranjan; Brisson, J.G.; Field, Randall; Gazzino, Marco; Ghoniem, Ahmed F.

    2009-01-01

    Growing concerns over greenhouse gas emissions have driven extensive research into new power generation cycles that enable carbon dioxide capture and sequestration. In this regard, oxy-fuel combustion is a promising new technology in which fuels are burned in an environment of oxygen and recycled combustion gases. In this paper, an oxy-fuel combustion power cycle that utilizes a pressurized coal combustor is analyzed. We show that this approach recovers more thermal energy from the flue gases because the elevated flue gas pressure raises the dew point and the available latent enthalpy in the flue gases. The high-pressure water-condensing flue gas thermal energy recovery system reduces steam bleeding which is typically used in conventional steam cycles and enables the cycle to achieve higher efficiency. The pressurized combustion process provides the purification and compression unit with a concentrated carbon dioxide stream. For the purpose of our analysis, a flue gas purification and compression process including de-SO x , de-NO x , and low temperature flash unit is examined. We compare a case in which the combustor operates at 1.1 bars with a base case in which the combustor operates at 10 bars. Results show nearly 3% point increase in the net efficiency for the latter case.

  1. ADVANCED MULTI-PRODUCT COAL UTILIZATION BY-PRODUCT PROCESSING PLANT

    Energy Technology Data Exchange (ETDEWEB)

    Robert Jewell; Thomas Robl; John Groppo

    2005-03-01

    The objective of the project is to build a multi-product ash beneficiation plant at Kentucky Utilities 2,200-MW Ghent Generating Station, located in Carroll County, Kentucky. This part of the study includes the examination of the feedstocks for the beneficiation plant. The ash, as produced by the plant, and that stored in the lower pond were examined. The ash produced by the plant was found to be highly variable as the plant consumes high and low sulfur bituminous coal, in Units 1 and 2 and a mixture of subbituminous and bituminous coal in Units 3 and 4. The ash produced reflected this consisting of an iron-rich ({approx}24%, Fe{sub 2}O{sub 3}), aluminum rich ({approx}29% Al{sub 2}O{sub 3}) and high calcium (6%-7%, CaO) ash, respectively. The LOI of the ash typically was in the range of 5.5% to 6.5%, but individual samples ranged from 1% to almost 9%. The lower pond at Ghent is a substantial body, covering more than 100 acres, with a volume that exceeds 200 million cubic feet. The sedimentation, stratigraphy and resource assessment of the in place ash was investigated with vibracoring and three-dimensional, computer-modeling techniques. Thirteen cores to depths reaching nearly 40 feet, were retrieved, logged in the field and transported to the lab for a series of analyses for particle size, loss on ignition, petrography, x-ray diffraction, and x-ray fluorescence. Collected data were processed using ArcViewGIS, Rockware, and Microsoft Excel to create three-dimensional, layered iso-grade maps, as well as stratigraphic columns and profiles, and reserve estimations. The ash in the pond was projected to exceed 7 million tons and contain over 1.5 million tons of coarse carbon, and 1.8 million tons of fine (<10 {micro}m) glassy pozzolanic material. The size, quality and consistency of the ponded material suggests that it is the better feedstock for the beneficiation plant.

  2. Volcanic ash in feed coal and its influence on coal combustion products

    Energy Technology Data Exchange (ETDEWEB)

    Brownfield, M.E.; Affolter, R.H.; Cathcart, J.D.; Brownfield, I.K.; Hower, J.C.; Stricker, G.D.; O' Connor, J.T.

    2000-07-01

    The US Geological Survey and the University of Kentucky Center for Applied Energy Research are collaborating with an Indiana Utility to determine the physical and chemical properties of feed coal and coal combustion products (CCPs) from a coal-fired power plant. The plant utilizes a low-sulfur (.23--.47 weight percent S) coal from the Powder River Basin, Wyoming. Scanning Electron Microscope (SEM) and X-ray diffraction (XRD) analysis of feed coal samples identified two mineral suites. A primary suite (not authigenic) consisting of quartz (detrital and volcanic beta-form grains), biotite, and minor zircon and a secondary authigenic mineral suite containing calcite, alumino-phosphates (crandallite and gorceixite), kaolinite, quartz, anatase, barite, and pyrite. The authigenic minerals are attributed to air-fall and reworked volcanic ash that was deposited in peat-forming mires. The Powder River Basin feed coals contain higher amounts of Ba, Ca, Mg, Na, Sr, and P compared to other analyzed eastern coals. These elements are associated with alumino-phosphate, biotite, calcite, and clay minerals. The element associations are indicative of coal that incorporated volcanic ash during deposition. XRD analysis of CCPs revealed a predominance of glass, perovskite, lime, gehlenite, quartz, and phosphates with minor amounts of periclase, anhydrite, hematite, and spinel group minerals in the fly ash; and quartz, plagioclase (albite and anorthite), pyroxene (augite and fassaite), rhodonite, and akermanite in the bottom ash. Microprobe and SEM analysis of fly ash samples revealed quartz, zircon, monazite, euhedral laths of corundum with merrillite, hematite, dendritic spinels/ferrites, and rounded grains of wollastonite with periclase. The abundant Ca and Mg mineral phases in the fly ashes are related to the presence of carbonate, clay, and phosphate minerals in the feed coal. The Ca- and Mg-rich mineral phases in the CCPs can be attributed to volcanic minerals deposited in the

  3. Coal preparation

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    The acid rain control legislation has prompted the Department of Energy (DOE) to seek new technology using the Clean Coal Technology program solicitation. The main goal of the program is to reduce SO 2 emissions below 9 Mt/a (10 million stpy) and NO x emission below 5.4 Mt/a (6 million stpy) by the year 2000. This would be accomplished by using precombustion, combustion, post combustion and conversion technology. Utilities are considering installing new scrubbers, switching fuel or possibly deep clean. However, the time required to implement the control technology is short. Due to the legislation, about 110 plants will have to adopt one of the approaches. This paper reports that in characterization of coal, Ames Laboratory used a scanning electron microscope- based, automated image analysis (SEM-AIA) technique to identify coal and mineral matter association. Various forms of organic sulfur were identified using peroxyacetic acid oxidation of coal. This was followed by subsequent microscopic, GC-MS, and HRMS analysis by Southern Illinois University. In ultrafine grinding of coal, it was reported by the Mining and Mineral Institute of Alabama that silica sand or flint shot used less energy compared to steel ball mills

  4. Effect of H/C ratio on coal ignition

    Energy Technology Data Exchange (ETDEWEB)

    Furimsky, E.

    1988-09-01

    The Cahn balance technique was found to be suitable for estimating ignition temperature and its dependence on the H/C ratio of the coal. This temperature decreased with increasing H/C ratio of coals. For coals a linear correlation between H/C ratio and the temperature was established. Chars derived from the coals deviated from the linear correlation established on coals. 17 refs., 4 figs.

  5. Tenth annual coal preparation, utilization, and environmental control contractors conference: Proceedings. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    1994-08-01

    Volume I contains papers presented at the following sessions: high efficiency preparation; advanced physical coal cleaning; superclean emission systems; air toxics and mercury measurement and control workshop; and mercury measurement and control workshop. Selected papers have been processed for inclusion in the Energy Science and Technology Database.

  6. FIELD TEST PROGRAM TO DEVELOP COMPREHENSIVE DESIGN, OPERATING AND COST DATA FOR MERCURY CONTROL SYSTEMS ON NON-SCRUBBED COAL-FIRED BOILERS

    International Nuclear Information System (INIS)

    C. Jean Bustard

    2001-01-01

    With the Nation's coal-burning utilities facing the possibility of tighter controls on mercury pollutants, the U.S. Department of Energy is funding projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Mercury is known to have toxic effects on the nervous system of humans and wildlife. Although it exists only in trace amounts in coal, mercury is released when coal burns and can accumulate on land and in water. In water, bacteria transform the metal into methylmercury, the most hazardous form of the metal. Methylmercury can collect in fish and marine mammals in concentrations hundreds of thousands times higher than the levels in surrounding waters. One of the goals of DOE is to develop technologies by 2005 that will be capable of cutting mercury emissions 50 to 70 percent at well under one-half of today's costs. ADA Environmental Solutions (ADA-ES) is managing a project to test mercury control technologies at full scale at four different power plants from 2000 to 2003. The ADA-ES project is focused on those power plants that are not equipped with wet flue gas desulfurization systems. ADA-ES will develop a portable system that will be moved to four different utility power plants for field testing. Each of the plants is equipped with either electrostatic precipitators or fabric filters to remove solid particles from the plant's flue gas. ADA-ES's technology will inject a dry sorbent, such as fly ash or activated carbon, that removes the mercury and makes it more susceptible to capture by the particulate control devices. A fine water mist may be sprayed into the flue gas to cool its temperature to the range where the dry sorbent is most effective. PG and E National Energy Group is providing two test sites that fire bituminous coals and are both equipped with electrostatic precipitators and carbon/ash separation systems. Wisconsin Electric Power Company is providing a third test site that burns Powder River Basin (PRB

  7. FIELD TEST PROGRAM TO DEVELOP COMPREHENSIVE DESIGN, OPERATING AND COST DATA FOR MERCURY CONTROL SYSTEMS ON NON-SCRUBBED COAL-FIRED BOILERS

    International Nuclear Information System (INIS)

    C. Jean Bustard

    2002-01-01

    With the Nation's coal-burning utilities facing the possibility of tighter controls on mercury pollutants, the U.S. Department of Energy is funding projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Mercury is known to have toxic effects on the nervous system of humans and wildlife. Although it exists only in trace amounts in coal, mercury is released when coal burns and can accumulate on land and in water. In water, bacteria transform the metal into methylmercury, the most hazardous form of the metal. Methylmercury can collect in fish and marine mammals in concentrations hundreds of thousands times higher than the levels in surrounding waters. One of the goals of DOE is to develop technologies by 2005 that will be capable of cutting mercury emissions 50 to 70 percent at well under one-half of today's costs. ADA Environmental Solutions (ADA-ES) is managing a project to test mercury control technologies at full scale at four different power plants from 2000-2003. The ADA-ES project is focused on those power plants that are not equipped with wet flue gas desulfurization systems. ADA-ES will develop a portable system that will be moved to four different utility power plants for field testing. Each of the plants is equipped with either electrostatic precipitators or fabric filters to remove solid particles from the plant's flue gas. ADA-ES's technology will inject a dry sorbent, such as fly ash or activated carbon, that removes the mercury and makes it more susceptible to capture by the particulate control devices. A fine water mist may be sprayed into the flue gas to cool its temperature to the range where the dry sorbent is most effective. PG and E National Energy Group is providing two test sites that fire bituminous coals and are both equipped with electrostatic precipitators and carbon/ash separation systems. Wisconsin Electric Power Company is providing a third test site that burns Powder River Basin (PRB

  8. FIELD TEST PROGRAM TO DEVELOP COMPREHENSIVE DESIGN, OPERATING AND COST DATA FOR MERCURY CONTROL SYSTEMS ON NON-SCRUBBED COAL-FIRED BOILERS

    International Nuclear Information System (INIS)

    C. Jean Bustard

    2001-01-01

    With the Nation's coal-burning utilities facing the possibility of tighter controls on mercury pollutants, the U.S. Department of Energy is funding projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Mercury is known to have toxic effects on the nervous system of humans and wildlife. Although it exists only in trace amounts in coal, mercury is released when coal burns and can accumulate on land and in water. In water, bacteria transform the metal into methylmercury, the most hazardous form of the metal. Methylmercury can collect in fish and marine mammals in concentrations hundreds of thousands times higher than the levels in surrounding waters. One of the goals of DOE is to develop technologies by 2005 that will be capable of cutting mercury emissions 50 to 70 percent at well under one-half of today's costs. ADA Environmental Solutions (ADA-ES) is managing a project to test mercury control technologies at full scale at four different power plants from 2000-2003. The ADA-ES project is focused on those power plants that are not equipped with wet flue gas desulfurization systems. ADA-ES will develop a portable system that will be moved to four different utility power plants for field testing. Each of the plants is equipped with either electrostatic precipitators or fabric filters to remove solid particles from the plant's flue gas. ADA-ES's technology will inject a dry sorbent, such as fly ash or activated carbon, that removes the mercury and makes it more susceptible to capture by the particulate control devices. A fine water mist may be sprayed into the flue gas to cool its temperature to the range where the dry sorbent is most effective. PG and E National Energy Group is providing two test sites that fire bituminous coals and are both equipped with electrostatic precipitators and carbon/ash separation systems. Wisconsin Electric Power Company is providing a third test site that burns Powder River Basin coal

  9. FIELD TEST PROGRAM TO DEVELOP COMPREHENSIVE DESIGN, OPERATING AND COST DATA FOR MERCURY CONTROL SYSTEMS ON NON-SCRUBBED COAL-FIRED BOILERS

    International Nuclear Information System (INIS)

    C. Jean Bustard

    2001-01-01

    With the Nation's coal-burning utilities facing the possibility of tighter controls on mercury pollutants, the U.S. Department of Energy is funding projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Mercury is known to have toxic effects on the nervous system of humans and wildlife. Although it exists only in trace amounts in coal, mercury is released when coal burns and can accumulate on land and in water. In water, bacteria transform the metal into methylmercury, the most hazardous form of the metal. Methylmercury can collect in fish and marine mammals in concentrations hundreds of thousands times higher than the levels in surrounding waters. One of the goals of DOE is to develop technologies by 2005 that will be capable of cutting mercury emissions 50 to 70 percent at well under one-half of today's costs. ADA Environmental Solutions (ADA-ES) is managing a project to test mercury control technologies at full scale at four different power plants from 2000-2003. The ADA-ES project is focused on those power plants that are not equipped with wet flue gas desulfurization systems. ADA-ES will develop a portable system that will be moved to four different utility power plants for field testing. Each of the plants is equipped with either electrostatic precipitators or fabric filters to remove solid particles from the plant's flue gas. ADA-ES's technology will inject a dry sorbent, such as fly ash or activated carbon, that removes the mercury and makes it more susceptible to capture by the particulate control devices. A fine water mist may be sprayed into the flue gas to cool its temperature to the range where the dry sorbent is most effective. PG and E National Energy Group is providing two test sites that fire bituminous coals and are both equipped with electrostatic precipitators and carbon/ash separation systems. Wisconsin Electric Power Company is providing a third test site that burns Powder River Basin (PRB

  10. Development of melting system using oxy-coal combustion; Sekitan chokusetsu riyo kinzoku yoyu system gijutsu (NSR) (pilot setsubi unten jokyo ni tsuite)

    Energy Technology Data Exchange (ETDEWEB)

    Sugiyama, T [Center for Coal Utilization, Japan, Tokyo (Japan); Suwa, T; Kobayashi, N; Iino, K; Yamamoto, Y; Igarashi, H [Nippon Sanso K.K., Tokyo (Japan)

    1996-09-01

    This metal melting system is a process to efficiently melt and regenerate scraps of aluminum, copper and iron by utilizing high-temperature energy obtained from pulverized coal-oxygen combustion. The process is intended to utilize coal in place of petroleum for reduced fuel cost. Joint studies have been carried out as a subsidy operation of the Agency of Natural Resources and Energy with a schedule of six years starting fiscal 1992. Development tests are being performed using a 5-ton/ch pilot plant facility since fiscal 1995 after having gone through experiments using a 1-ton/ch bench scale furnace. This paper reports the results obtained to date. Using the pilot plant facility, fiscal 1995 has achieved the initial target values, such as thermal efficiency of 55% or higher, and yield of 96% or higher for non-ferrous metals and 94% or higher for iron. The melting behavior in the furnace has improved the thermal efficiency as a whole by retaining the conditions in the preheating step for an extended period of time. The thermal efficiency has been improved better than with the bench furnace as a result of upscaling effect. 9 figs., 3 tabs.

  11. Slope stability probability classification, Waikato Coal Measures, New Zealand

    Energy Technology Data Exchange (ETDEWEB)

    Lindsay, P.; Gillard, G.R.; Moore, T.A. [CRL Energy, PO Box 29-415, Christchurch (New Zealand); Campbell, R.N.; Fergusson, D.A. [Solid Energy North, Private Bag 502, Huntly (New Zealand)

    2001-01-01

    Ferm classified lithological units have been identified and described in the Waikato Coal Measures in open pits in the Waikato coal region. These lithological units have been classified geotechnically by mechanical tests and discontinuity measurements. Using these measurements slope stability probability classifications (SSPC) have been quantified based on an adaptation of Hack's [Slope Stability Probability Classification, ITC Delft Publication, Enschede, Netherlands, vol. 43, 1998, 273 pp.] SSPC system, which places less influence on rock quality designation and unconfined compressive strength than previous slope/rock mass rating systems. The Hack weathering susceptibility rating has been modified by using chemical index of alteration values determined from XRF major element analyses. Slaking is an important parameter in slope stability in the Waikato Coal Measures lithologies and hence, a non-subjective method of assessing slaking in relation to the chemical index of alteration has been introduced. Another major component of this adapted SSPC system is the inclusion of rock moisture content effects on slope stability. The main modifications of Hack's SSPC system are the introduction of rock intact strength derived from the modified Mohr-Coulomb failure criterion, which has been adapted for varying moisture content, weathering state and confining pressure. It is suggested that the subjectivity in assessing intact rock strength within broad bands in the initial SSPC system is a major weakness of the initial system. Initial results indicate a close relationship between rock mass strength values, calculated from rock mass friction angles and rock mass cohesion values derived from two established rock mass classification methods (modified Hoek-Brown failure criteria and MRMR) and the adapted SSPC system. The advantage of the modified SSPC system is that slope stability probabilities based on discontinuity-independent and discontinuity-dependent data and a

  12. Method selection for mercury removal from hard coal

    Directory of Open Access Journals (Sweden)

    Dziok Tadeusz

    2017-01-01

    Full Text Available Mercury is commonly found in coal and the coal utilization processes constitute one of the main sources of mercury emission to the environment. This issue is particularly important for Poland, because the Polish energy production sector is based on brown and hard coal. The forecasts show that this trend in energy production will continue in the coming years. At the time of the emission limits introduction, methods of reducing the mercury emission will have to be implemented in Poland. Mercury emission can be reduced as a result of using coal with a relatively low mercury content. In the case of the absence of such coals, the methods of mercury removal from coal can be implemented. The currently used and developing methods include the coal cleaning process (both the coal washing and the dry deshaling as well as the thermal pretreatment of coal (mild pyrolysis. The effectiveness of these methods various for different coals, which is caused by the diversity of coal origin, various characteristics of coal and, especially, by the various modes of mercury occurrence in coal. It should be mentioned that the coal cleaning process allows for the removal of mercury occurring in mineral matter, mainly in pyrite. The thermal pretreatment of coal allows for the removal of mercury occurring in organic matter as well as in the inorganic constituents characterized by a low temperature of mercury release. In this paper, the guidelines for the selection of mercury removal method from hard coal were presented. The guidelines were developed taking into consideration: the effectiveness of mercury removal from coal in the process of coal cleaning and thermal pretreatment, the synergy effect resulting from the combination of these processes, the direction of coal utilization as well as the influence of these processes on coal properties.

  13. Energy Conservation Alternatives Study (ECAS): Conceptual Design and Implementation Assessment of a Utility Steam Plant with Conventional Furnace and Wet Lime Stack Gas Scrubbers

    Science.gov (United States)

    Brown, Dale H.

    1976-01-01

    A study was performed to estimate the technical/economic characteristics of a steam power plant (3500 pounds per square inch gauge, 1000 degrees Fahrenheit / 1000 degrees Fahrenheit) with a coal-burning radiant furnace and a wet lime stack gas scrubber to control sulfur emissions. Particulate emissions were controlled by an electrostatic precipitator operating at 300 degrees Fahrenheit. The stack gas from the scrubber was reheated from 125 degrees Fahrenheit to 250 degrees Fahrenheit as a base case, and from 125 degrees Fahrenheit to 175 degrees Fahrenheit as an alternate case. The study was performed on a basis consistent with the General Electric ECAS Phase II evaluation of advanced energy conversion systems for electric utility baseload applications using coal or coal-derived fuels. A conceptual design of the power plant was developed, including the on-site calcination of limestone to lime and the provision of sludge ponds to store the products of flue gas scrubbing. From this design, estimates were derived for power plant efficiency, capital cost, environmental intrusion characteristics, natural resource requirements, and cost of electricity at an assumed capacity factor of 65 percent. An implementation assessment was performed where factors affecting applicability of the conceptual design power plant in electric utility generation systems were appraised. At 250 degrees Fahrenheit and 175 degrees Fahrenheit stack gas temperatures respectively, the plants showed a cost of electricity of 39.8 and 37.0 mills per kilowatt-hours and overall plant efficiencies of 32 percent and 34 percent.

  14. Comparative study of coal and biomass co-combustion with coal burning separately through emissions analysis

    International Nuclear Information System (INIS)

    Siddique, M.; Asadullah, A.; Khan, G.; Soomro, S.A.

    2016-01-01

    Appropriate eco-friendly methos to mitigate the problem of emissions from combustion of fossil fuel are highly demanded. The current study was focused on the effect of using coal and coal biomass co-combustion on the gaseous emissions. Different biomass were used along with coal. The coal used was lignite coal and the biomass' were tree waste, cow dung and banana tree leaves Various ratios of coal and biomass were used to investigate the combustion behavior of coal cow dung and 100% banana tree leaves emits less emission of CO, CO/sub 2/, NOx and SO/sub 2/ as compared to 100% coal, Maximum amount of CO emission were 1510.5 ppm for bannana tree waste and minimum amount obtained for lakhra coal and cow dung manure (70:30) of 684.667 leaves (90:10) and minimum amount of SO/sub 2/ present in samples is in lakhra coal-banana tree waste (80:20). The maximum amount of NO obtained for banana tree waste were 68 ppm whereas amount from cow dung manure (30.83 ppm). The study concludes that utilization of biomass with coal could make remedial action against environment pollution. (author)

  15. Inorganic Constituents in Coal

    Directory of Open Access Journals (Sweden)

    Rađenović A.

    2006-02-01

    Full Text Available Coal contains not only organic matter but also small amounts of inorganic constituents. More thanone hundred different minerals and virtually every element in the periodic table have been foundin coal. Commonly found group minerals in coal are: major (quartz, pyrite, clays and carbonates,minor, and trace minerals. Coal includes a lot of elements of low mass fraction of the orderof w=0.01 or 0.001 %. They are trace elements connected with organic matter or minerals comprisedin coal. The fractions of trace elements usually decrease when the rank of coal increases.Fractions of the inorganic elements are different, depending on the coal bed and basin. A varietyof analytical methods and techniques can be used to determine the mass fractions, mode ofoccurrence, and distribution of organic constituents in coal. There are many different instrumentalmethods for analysis of coal and coal products but atomic absorption spectroscopy – AAS is theone most commonly used. Fraction and mode of occurrence are one of the main factors that haveinfluence on transformation and separation of inorganic constituents during coal conversion.Coal, as an important world energy source and component for non-fuels usage, will be continuouslyand widely used in the future due to its relatively abundant reserves. However, there is aconflict between the requirements for increased use of coal on the one hand and less pollution onthe other. It’s known that the environmental impacts, due to either coal mining or coal usage, canbe: air, water and land pollution. Although, minor components, inorganic constituents can exert asignificant influence on the economic value, utilization, and environmental impact of the coal.

  16. Refinery Integration of By-Products from Coal-Derived Jet Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Caroline E. Burgess Clifford; Andre' Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

    2006-09-17

    This report summarizes the accomplishments toward project goals during the second six months of the third year of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts and examination of carbon material, the use of a research gasoline engine to test coal-based gasoline, and modification of diesel engines for use in evaluating diesel produced in the project. At the pilot scale, the hydrotreating process was modified to separate the heavy components from the LCO and RCO fractions before hydrotreating in order to improve the performance of the catalysts in further processing. Characterization of the gasoline fuel indicates a dominance of single ring alkylcycloalkanes that have a low octane rating; however, blends containing these compounds do not have a negative effect upon gasoline when blended in refinery gasoline streams. Characterization of the diesel fuel indicates a dominance of 3-ring aromatics that have a low cetane value; however, these compounds do not have a negative effect upon diesel when blended in refinery diesel streams. Both gasoline and diesel continue to be tested for combustion performance. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Activated carbons have proven useful to remove the heavy sulfur components, and unsupported Ni/Mo and Ni/Co catalysts have been very effective for hydrodesulfurization. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Combustion and characterization of the latest fuel oil (the high temperature fraction of RCO

  17. Energy Policy Act transportation rate study: Interim report on coal transportation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-01

    The primary purpose of this report is to examine changes in domestic coal distribution and railroad coal transportation rates since enactment of the Clean Air Act Amendments of 1990 (CAAA90). From 1988 through 1993, the demand for low-sulfur coal increased, as a the 1995 deadline for compliance with Phase 1 of CAAA90 approached. The shift toward low-sulfur coal came sooner than had been generally expected because many electric utilities switched early from high-sulfur coal to ``compliance`` (very low-sulfur) coal. They did so to accumulate emissions allowances that could be used to meet the stricter Phase 2 requirements. Thus, the demand for compliance coal increased the most. The report describes coal distribution and sulfur content, railroad coal transportation and transportation rates, and electric utility contract coal transportation trends from 1979 to 1993 including national trends, regional comparisons, distribution patterns and regional profiles. 14 figs., 76 tabs.

  18. Geological evaluation on productibility of coal seam gas; Coal seam gas no chishitsugakuteki shigen hyoka ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, K [University of Shizuoka, Shizuoka (Japan). Faculty of Education

    1996-09-01

    Coal seam gas is also called coal bed methane gas, indicating the gas existing in coal beds. The gas is distinguished from the oil field based gas, and also called non-conventional type gas. Its confirmed reserve is estimated to be 24 trillion m {sup 3}, with the trend of its development seen worldwide as utilization of unused resource. For the necessity of cultivating relevant technologies in Japan, this paper considers processes of production, movement, stockpiling, and accumulation of the gas. Its productibility is controlled by thickness of a coal bed, degree of coalification, gas content, permeability, groundwater flow, and deposition structure. Gas generation potential is evaluated by existing conditions of coal and degree of coalification, and methane production by biological origin and thermal origin. Economically viable methane gas is mainly of the latter origin. Evaluating gas reserve potential requires identification of the whole mechanism of adsorption, accumulation and movement of methane gas. The gas is expected of effect on environmental aspects in addition to availability as utilization of unused energy. 5 figs.

  19. FY 1999 report on the potential survey of the environmentally friendly type coal utilization system. Potential survey of the spread of high efficiency coal boiler; 1999 nendo kankyo chowa gata sekitan system kanosei chosa. Kokoritsu sekitan boira fukyu kanosei chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    For the purpose of reducing the coal consumption amount and reducing the emission amount of environmental pollutants, study of small stoker boilers in China was made in terms of sampling of the data on changes in boiler efficiency caused by combustion conditions and how to improve efficiency. As objects of survey, one boiler use plant in Beijing city and two in Taiyuan city, Shanxi province, were selected to make site survey on the state of installation and operational management of coal boiler. As a result of the actual measurement of boiler efficiency at the plants, the boiler efficiency was the maximum, about 76%, in Beijing city and the minimum, about 51%, in Taiyuan city. In China, the number of boiler with the Beijing city level was extremely small, and most of the boilers were the same as the Taiyuan city level. As a result of studying how to improve efficiency based on the survey results, the following were cited as the main measures for improvement: selection of coal by boiler type and supply of the secondary air, strengthening of the combustion management by controlling furnace pressure and air amount, etc. For the selection of coal, it is necessary to set up a system to be supported by the whole country or the whole department. (NEDO)

  20. MHD power station with coal gasification

    International Nuclear Information System (INIS)

    Brzozowski, W.S.; Dul, J.; Pudlik, W.

    1976-01-01

    A description is given of the proposed operating method of a MHD-power station including a complete coal gasification into lean gas with a simultaneous partial gas production for the use of outside consumers. A comparison with coal gasification methods actually being used and full capabilities of power stations heated with coal-derived gas shows distinct advantages resulting from applying the method of coal gasification with waste heat from MHD generators working within the boundaries of the thermal-electric power station. (author)

  1. Australian coal mine methane emissions mitigation potential using a Stirling engine-based CHP system

    International Nuclear Information System (INIS)

    Meybodi, Mehdi Aghaei; Behnia, Masud

    2013-01-01

    Methane, a major contributor to global warming, is a greenhouse gas emitted from coal mines. Abundance of coal mines and consequently a considerable amount of methane emission requires drastic measures to mitigate harmful effects of coal mining on the environment. One of the commonly adopted methods is to use emitted methane to fuel power generation systems; however, instability of fuel sources hinders the development of systems using conventional prime movers. To address this, application of Stirling engines may be considered. Here, we develop a techno-economic methodology for conducting an optimisation-based feasibility study on the application of Stirling engines as the prime movers of coal mine CHP systems from an economic and an environmental point of view. To examine the impact of environmental policies on the economics of the system, the two commonly implemented ones (i.e. a carbon tax and emissions trading scheme) are considered. The methodology was applied to a local coal mine. The results indicate that incorporating the modelled system not only leads to a substantial reduction in greenhouse gas emissions, but also to improved economics. Further, due to the heavy economic burden, the carbon tax scheme creates great incentive for coal mine industry to address the methane emissions. -- Highlights: •We study the application of Stirling engines in coal mine CHP systems. •We develop a thermo-economic approach based on the net present worth analysis. •We examine the impact of a carbon tax and ETS on the economics of the system. •The modeled system leads to a substantial reduction in greenhouse gas emissions. •Carbon tax provides a greater incentive to address the methane emissions

  2. Status of Westinghouse coal-fueled combustion turbine programs

    International Nuclear Information System (INIS)

    Scalzo, A.J.; Amos, D.J.; Bannister, R.L.; Garland, R.V.

    1992-01-01

    Developing clean, efficient, cost effective coal utilization technologies for future power generation is an essential part of our National Energy Strategy. Westinghouse is actively developing power plants utilizing advanced gasification, atmospheric fluidized beds (AFB), pressurized fluidized beds (PFB), and direct firing technology through programs sponsored by the U.S. Dept. of Energy (DOE). The DOE Office of Fossil Energy is sponsoring the Direct Coal-Fired Turbine program. This paper presents the status of current and potential Westinghouse Power Generation Business Unit advanced coal-fueled power generation programs as well as commercial plans

  3. Slag processing system for direct coal-fired gas turbines

    Science.gov (United States)

    Pillsbury, Paul W.

    1990-01-01

    Direct coal-fired gas turbine systems and methods for their operation are provided by this invention. The gas turbine system includes a primary zone for burning coal in the presence of compressed air to produce hot combustion gases and debris, such as molten slag. The turbine system further includes a secondary combustion zone for the lean combustion of the hot combustion gases. The operation of the system is improved by the addition of a cyclone separator for removing debris from the hot combustion gases. The cyclone separator is disposed between the primary and secondary combustion zones and is in pressurized communication with these zones. In a novel aspect of the invention, the cyclone separator includes an integrally disposed impact separator for at least separating a portion of the molten slag from the hot combustion gases.

  4. System applications CRC -Biomass + Coal; Aplicaciones Sistema CRC-Biomasa+Carbon

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    Main object of Phase I of the project is to analyse the technical-economic feasibility of the combined use of biomass and coal for power generation in the Spanish region of Andalusia, by means of new medium-size independent power plants or using biomass as supplementary fuel in existing large coal power plants, including: -Analysis and classification of biomass and coal resources in the region -Technical-economic study of conventional alternatives using the steam cycle -Analysis of efficiency improvement provided by advanced Rankine-cycle technologies, like the SMR cycle -Analysis of alternatives based on parallel combined cycles using gas turbines, including advanced solutions, like the EAPI and CRC-EAPI systems. -Description and evaluation of different biomass drying systems. -Description and evaluation of the three main biomass gasification systems currently under development: atmospheric direct, atmospheric indirect and pressurized. Main objects of Phase II of the project are to analyse a specific application of the EAPI system to a real cogeneration plant project and to analyse the application of the CRC2 system to a commercial supercritical power plant, including technical-economic study of both applications. (Author)

  5. Cogeneration feasibility study in the Gulf States Utilities service area

    Energy Technology Data Exchange (ETDEWEB)

    1979-12-01

    Sites in the Gulf States Utilities service are considered for cogeneration feasibility studies. The sources of steam considered for the Orange, Texas and Geismar, Lake Charles, and North Baton Rouge, Louisiana sites include oil, coal, HTGR steamers, consolidated nuclear steam system, atmospheric fluidized-bed coal combustion, and coal gasification. Concepts concerning cogeneration fuel systems were categorized by technical applicability as: current technology (pulverized coal-fired boilers and fuel oil-fired boilers), advanced technology under development (HTGR steamers and the CNSS), and advanced technology for future development (atmospheric fluidized-bed boilers and coal gasification). In addition to providing data on cogeneration plant generally useful in the US, the study determined the technical and economic feasibility of steam and electric power cogeneration using coal and nuclear fuels for localized industrial complexes. Details on site selection, plant descriptions, cost estimates, economic analysis, and plant schedule and implementation. (MCW)

  6. A system to analyze the complex physiological states of coal solubilizing fungi

    Energy Technology Data Exchange (ETDEWEB)

    Hoelker, U.; Moenkemann, H.; Hoefer, M. [Universitaet Bonn, Bonn (Germany). Botanisches Institut

    1997-11-01

    The mechanism by which some microorganisms solubilize brown coal is still unknown. The paper discusses the deuteromycetes Fusarium oxysporum and Trichoderma atroviride as a suitable test system to analyse the complex fungal physiology relating to coal solubilization. The two fungi can occur in two different growth substrate-controlled physiological states: a coal-solubilizing one, when cells are grown on glutamate or gluconate as substrate and a non-solubilizing one, when grown on carbohydrates. When grown on carbohydrates, F.oxysporum produces the pigment bikaverein. Purified bikaverein inhibits also coal solubilization by T. atroviride. The ability to solubilize coal is constitutive in F. oxysporum, while in T. atroviride, it has to be induced. 10 refs., 3 figs., 3 tabs.

  7. Arsenic concentrations in Chinese coals

    International Nuclear Information System (INIS)

    Wang Mingshi; Zheng Baoshan; Wang Binbin; Li Shehong; Wu Daishe; Hu Jun

    2006-01-01

    The arsenic concentrations in 297 coal samples were collected from the main coal-mines of 26 provinces in China were determined by molybdenum blue coloration method. These samples were collected from coals that vary widely in coal rank and coal-forming periods from the five main coal-bearing regions in China. Arsenic content in Chinese coals range between 0.24 to 71 mg/kg. The mean of the concentration of Arsenic is 6.4 ± 0.5 mg/kg and the geometric mean is 4.0 ± 8.5 mg/kg. The level of arsenic in China is higher in northeastern and southern provinces, but lower in northwestern provinces. The relationship between arsenic content and coal-forming period, coal rank is studied. It was observed that the arsenic contents decreases with coal rank in the order: Tertiary > Early Jurassic > Late Triassic > Late Jurassic > Middle Jurassic > Late Permian > Early Carboniferous > Middle Carboniferous > Late Carboniferous > Early Permian; It was also noted that the arsenic contents decrease in the order: Subbituminous > Anthracite > Bituminous. However, compared with the geological characteristics of coal forming region, coal rank and coal-forming period have little effect on the concentration of arsenic in Chinese coal. The average arsenic concentration of Chinese coal is lower than that of the whole world. The health problems in China derived from in coal (arsenism) are due largely to poor local life-style practices in cooking and home heating with coal rather than to high arsenic contents in the coal

  8. USGS compilation of geographic information system (GIS) data of coal mines and coal-bearing areas in Mongolia

    Science.gov (United States)

    Trippi, Michael H.; Belkin, Harvey E.

    2015-09-10

    Geographic information system (GIS) information may facilitate energy studies, which in turn provide input for energy policy decisions. The U.S. Geological Survey (USGS) has compiled GIS data representing coal mines, deposits (including those with and without coal mines), occurrences, areas, basins, and provinces of Mongolia as of 2009. These data are now available for download, and may be used in a GIS for a variety of energy resource and environmental studies of Mongolia. Chemical data for 37 coal samples from a previous USGS study of Mongolia (Tewalt and others, 2010) are included in a downloadable GIS point shapefile and shown on the map of Mongolia. A brief report summarizes the methodology used for creation of the shapefiles and the chemical analyses run on the samples.

  9. Seca Coal-Based Systems Program

    International Nuclear Information System (INIS)

    Alinger, Matthew

    2008-01-01

    This report summarizes the progress made during the August 1, 2006 - May 31, 2008 award period under Cooperative Agreement DE-FC26-05NT42614 for the U. S. Department of Energy/National Energy Technology Laboratory (USDOE/NETL) entitled 'SECA Coal Based Systems'. The initial overall objective of this program was to design, develop, and demonstrate multi-MW integrated gasification fuel cell (IGFC) power plants with >50% overall efficiency from coal (HHV) to AC power. The focus of the program was to develop low-cost, high performance, modular solid oxide fuel cell (SOFC) technology to support coal gas IGFC power systems. After a detailed GE internal review of the SOFC technology, the program was de-scoped at GE's request. The primary objective of this program was then focused on developing a performance degradation mitigation path for high performing, cost-effective solid oxide fuel cells (SOFCs). There were two initial major objectives in this program. These were: (1) Develop and optimize a design of a >100 MWe integrated gasification fuel cell (IGFC) power plant; (2) Resolve identified barrier issues concerning the long-term economic performance of SOFC. The program focused on designing and cost estimating the IGFC system and resolving technical and economic barrier issues relating to SOFC. In doing so, manufacturing options for SOFC cells were evaluated, options for constructing stacks based upon various cell configurations identified, and key performance characteristics were identified. Key factors affecting SOFC performance degradation for cells in contact with metallic interconnects were be studied and a fundamental understanding of associated mechanisms was developed using a fixed materials set. Experiments and modeling were carried out to identify key processes/steps affecting cell performance degradation under SOFC operating conditions. Interfacial microstructural and elemental changes were characterized, and their relationships to observed degradation

  10. China’s farewell to coal: A forecast of coal consumption through 2020

    International Nuclear Information System (INIS)

    Hao, Yu; Zhang, Zong-Yong; Liao, Hua; Wei, Yi-Ming

    2015-01-01

    In recent decades, China has encountered serious environmental problem, especially severe air pollution that has affected eastern and northern China frequently. Because most air pollutants in China are closely related to coal combustion, the restriction of coal consumption is critical to the improvement of the environment in China. In this study, a panel of 29 Chinese provinces from 1995 to 2012 is utilized to predict China’s coal consumption through 2020. After controlling for the spatial correlation of coal consumption among neighboring provinces, an inverted U-shaped Environmental Kuznets Curve (EKC) between coal consumption per capita and GDP per capita in China is detected. Furthermore, based on the estimation results and reasonable predictions of key control variables, China’s provincial and national coal consumption through 2020 is forecasted. Specifically, under the benchmark scenario, consumption is expected to continue growing at a decreasing rate until 2020, when China’s coal consumption would be approximately 4.43 billion tons. However, if China can maintain relatively high growth rate (an annual growth rate of 7.8 percent), the turning point in total coal consumption would occur in 2019, with projected consumption peaking at 4.16 billion tons. - Highlights: • Provincial panel data is used to investigate the influential factors of coal consumption in China. • The spatial correlations of coal consumption in neighboring provinces are fully considered. • An inverted-U shaped Environmental Kuznets Curve for coal consumption in China has been found. • Based on the estimation results, China’s national coal consumption before 2020 is forecasted. • Under the basic scenario, China’s national coal consumption will grow at a decreasing speed till 2020.

  11. Energy Information Administration quarterly coal report, October--December 1992

    International Nuclear Information System (INIS)

    1993-01-01

    The United States produced just over 1 billion short tons of coal in 1992, 0.4 percent more than in 1991. Most of the 4-million-short-ton increase in coal production occurred west of the Mississippi River, where a record level of 408 million short tons of coal was produced. The amount of coal received by domestic consumers in 1992 totaled 887 million short tons. This was 7 million short tons more than in 1991, primarily due to increased coal demand from electric utilities. The average price of delivered coal to each sector declined by about 2 percent. Coal consumption in 1992 was 893 million short tons, only 1 percent higher than in 1991, due primarily to a 1-percent increase in consumption at electric utility plants. Consumer coal stocks at the end of 1992 were 163 million short tons, a decrease of 3 percent from the level at the end of 1991, and the lowest year-end level since 1989. US coal exports fell 6 percent from the 1991 level to 103 million short tons in 1992. Less coal was exported to markets in Europe, Asia, and South America, but coal exports to Canada increased 4 million short tons

  12. An overview of coal preparation initiatives with application to coal conversion in South Africa

    International Nuclear Information System (INIS)

    Reinecke, C.F.; Bunt, J.R.

    1999-01-01

    Coal has for many years been the most important energy resource in South Africa and has contributed to more than 70 % of South Africa's energy needs in 1998. The large in-situ coal deposits (in excess of 120 x 10 9 t) and relatively large recoverable reserves (about 33.5 x 10 9 t) will ensure that coal will for many a year still be South Africa's single biggest energy resource. Biomass burning consumes approximately 11 Mt/a of which 8 Mt/a is natural wood. This equals natural wood production. The use of firewood is considered to be unsustainable. Of the 225 Mt/a of coal extracted in South Africa in 1998, 67.0 Mt/a was exported. Of this, 62.9 Mt/a were exported as steam coal, 2.1 Mt/a as metallurgical coal, and the rest as anthracite. Current exports are conducted via the Richards Bay terminal (63.6 Mt/a), Durban (2.0 Mt/a) and a small amount via Maputo. The Richards Bay terminal is to be expanded to 72 Mt/a by 1999. It is also very important to note that most of the coal resources possess calorific values of below 25 MJ/kg, which limits its utilization to power generation (Eskom) and processes such as fixed bed dry bottom gasification (Sasol). A break-down of production and usage of coal by the various controlling groups in South Africa shows that Sasol (54.2 Mt/a) and Escom (91.0 Mt/a) are major consumers of coal. It has been proposed earlier by Horsfall (1993) that for power generation and coal conversion, the in-situ quality is generally regarded as satisfactory for use. All that is required in the way of processing is crushing to an appropriate top size and, for conversion, screening of the unwashed coal. Most other consumers require some degree of beneficiation, which generally entails the removal of stone/shale and low quality coal. More recently, the introduction of destoning plants at Duvha Colliery (Larcodems) and New Vaal Colliery (Drewboy washers) has significantly reduced the abrasiveness content of these local thermal coals, together with an increase

  13. Japan's New Sunshine Project. 1994 annual summary of coal liquefaction and gasification

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-01

    This paper summarizes the report for fiscal 1994 on research and development related to coal liquefaction and gasification. In the research and development of coal liquefaction technologies, reports were given on research of liquefaction characteristics of different coals and liquefaction process thereof, and on research of catalysts for the coal liquefaction. In the research and development of coal gasification technologies, reports were given on fundamental studies on gasification characteristics of different coals. In the research and development of liquefaction technologies for bituminous coal, reports were given on design, construction and operation of a bituminous coal liquefaction pilot plant with a capacity of 150 t/d, and the operation supporting studies on the pilot plant. In the fundamental research on the coal liquefaction process, reports were given on refining technologies and utilization of the refined materials, and studies on environment preservation in applying the coal liquefaction technologies. In the research on hydrogen manufacturing technologies by using the fundamental coal technology, reports were given on design, construction and operational studies of a pilot plant. In the research and development of the coal gasification technologies, reports were given on development of a jet-flow gasified coal electric power plant, selection of coals, and development of a data processing system. (NEDO)

  14. Solids throttling valves for coal conversion and utilization development. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Sine, G.C.

    1980-11-01

    A complete test system to test, evaluate, and develop control valves for slurry letdown service in coal liquefaction plants is needed. The site identified for the test system was the SRC II Pilot Plant located at Ft. Lewis, Washington. The US Department of Energy, Morgantown Energy Technology Center, requested a test system design that would enable testing of various configuration letdown valves that would be compatible with the existing facility and have minimum impact on Pilot Plant operations. Drawings and specifications for such a test system were prepared, coordinated with Ft. Lewis personnel, revised to reflect Ft. Lewis operating personnel comments, and approved for use by the Morgantown Energy Technology Center. These drawings and specifications will enable the test system to be built, installed, and integrated with the existing facility by a general contractor.

  15. Applying Rock Engineering Systems (RES approach to Evaluate and Classify the Coal Spontaneous Combustion Potential in Eastern Alborz Coal Mines

    Directory of Open Access Journals (Sweden)

    Amir Saffari

    2013-12-01

    Full Text Available Subject analysis of the potential of spontaneous combustion in coal layers with analytical and numerical methods has been always considered as a difficult task because of the complexity of the coal behavior and the number of factors influencing it. Empirical methods, due to accounting for certain and specific factors, have not accuracy and efficiency for all positions. The Rock Engineering Systems (RES approach as a systematic method for analyzing and classifying is proposed in engineering projects. The present study is concerned with employing the RES approach to categorize coal spontaneous combustion in coal regions. Using this approach, the interaction of parameters affecting each other in an equal scale on the coal spontaneous combustion was evaluated. The Intrinsic, geological and mining characteristics of coal seams were studied in order to identifying important parameters. Then, the main stages of implementation of the RES method i.e. interaction matrix formation, coding matrix and forming a list category were performed. Later, an index of Coal Spontaneous Combustion Potential (CSCPi was determined to format the mathematical equation. Then, the obtained data related to the intrinsic, geological and mining, and special index were calculated for each layer in the case study (Pashkalat coal region, Iran. So, the study offers a perfect and comprehensive classification of the layers. Finally, by using the event of spontaneous combustion occurred in Pashkalat coal region, an initial validation for this systematic approach in the study area was conducted, which suggested relatively good concordance in Pashkalat coal region.

  16. 76 FR 63238 - Proximity Detection Systems for Continuous Mining Machines in Underground Coal Mines

    Science.gov (United States)

    2011-10-12

    ... Detection Systems for Continuous Mining Machines in Underground Coal Mines AGENCY: Mine Safety and Health... Agency's proposed rule addressing Proximity Detection Systems for Continuous Mining Machines in... proposed rule for Proximity Detection Systems on Continuous Mining Machines in Underground Coal Mines. Due...

  17. 76 FR 54163 - Proximity Detection Systems for Continuous Mining Machines in Underground Coal Mines

    Science.gov (United States)

    2011-08-31

    ... Detection Systems for Continuous Mining Machines in Underground Coal Mines AGENCY: Mine Safety and Health... (except full-face continuous mining machines) with proximity detection systems. Miners working near..., each underground coal mine operator would be required to install proximity detection systems on...

  18. Microbial diversity of western Canadian subsurface coal beds and methanogenic coal enrichment cultures

    Energy Technology Data Exchange (ETDEWEB)

    Penner, Tara J.; Foght, Julia M. [Department of Biological Sciences, University of Alberta, Edmonton, Alberta (Canada); Budwill, Karen [Carbon and Energy Management, Alberta Innovates-Technology Futures, 250 Karl Clark Road, Edmonton, Alberta (Canada)

    2010-05-01

    Coalbed methane is an unconventional fuel source associated with certain coal seams. Biogenic methane can comprise a significant portion of the gas found in coal seams, yet the role of microbes in methanogenesis in situ is uncertain. The purpose of this study was to detect and identify major bacterial and archaeal species associated with coal sampled from sub-bituminous methane-producing coal beds in western Canada, and to examine the potential for methane biogenesis from coal. Enrichment cultures of coal samples were established to determine how nutrient amendment influenced the microbial community and methane production in the laboratory. 16S rRNA gene clone libraries were constructed using DNA extracted and amplified from uncultured coal samples and from methanogenic coal enrichment cultures. Libraries were screened using restriction fragment length polymorphism, and representative clones were sequenced. Most (> 50%) of the bacterial sequences amplified from uncultured coal samples were affiliated with Proteobacteria that exhibit nitrate reduction, nitrogen fixation and/or hydrogen utilization activities, including Pseudomonas, Thauera and Acidovorax spp., whereas enrichment cultures were dominated by Bacteroidetes, Clostridia and/or Lactobacillales. Archaeal 16S rRNA genes could not be amplified from uncultured coal, suggesting that methanogens are present in coal below the detection levels of our methods. However, enrichment cultures established with coal inocula produced significant volumes of methane and the archaeal clone libraries were dominated by sequences closely affiliated with Methanosarcina spp. Enrichment cultures incubated with coal plus organic nutrients produced more methane than either nutrient or coal supplements alone, implying that competent methanogenic consortia exist in coal beds but that nutrient limitations restrict their activity in situ. This report adds to the scant literature on coal bed microbiology and suggests how microbes may be

  19. Coal Technology Program progress report for April 1976

    Energy Technology Data Exchange (ETDEWEB)

    1976-06-01

    In the Hydrocarbonization Research program, two successful experiments were completed in the bench-scale hydrocarbonizer. A settling test at a lower temperature (390/sup 0/F) using 20 percent toluene in Solvent Refined Coal (SRC) Unfiltered Oil (UFO) produced a 30 percent clarified product in 2 hr. Characterization tests include distillation curves for Wilsonville's SRC-UFO and a particle size distribution of Pittsburg and Midway Coal Mining Company's (PAMCO) SRC-UFO. Studies of intermediate-temperature pyrolysis of large blocks have been maintained with char samples continuing to demonstrate pyrophoricity, even after heating to 700/sup 0/C. Simulated distillation analysis of tars produced by the last eight experiments are being compared with those performed at Laramie upon tars produced by the Hanna No. 2 experiment. In Coal-Fueled MIUS, stainless steel tubing to be used in one of the furnace tube bundles was ordered and the bid package for the furnace completed. Tests continued on the coal feed system and with the cold flow fluidized bed model. For the Synthoil process, flow diagrams, material balances, and utilities requirements were completed for the entire facility. For the Hydrocarbonization process, flowsheets were reviewed for compatibility; equipment lists were brought up to date; and utilities requirements were compiled from the individual flowsheets. The char recovery and storage subsystem flowsheet was completed. (auth)

  20. Survey of trace elements in coals and coal-related materials by neutron activation analysis

    International Nuclear Information System (INIS)

    Ruch, R.R.; Cahill, R.A.; Frost, J.K.; Camp, L.R.; Gluskoter, H.J.

    1977-01-01

    Utilizing primarily instrumental neutron activation analysis and other analytical methods such as neutron-activation analysis with radiochemical separation, emission spectrochemical analysis, atomic absorption spectroscopy, X-ray fluorescence analysis, ion-selective electrode analysis, and American Society for Testing of Materials procedures (ASTM), as many as 61 elements were quantitatively surveyed in 170 U.S. whole coals, 70 washed coals, and 40 bench samples. Data on areal and vertical distributions in various regions were obtained along with extensive information on the mode of occurence of various elements in the coal matrix itself. Efforts have been made to attain the maximal accuracy and precision possible for a wide variety of elements in the inhomogeneous coal matrix. (T.G.)

  1. Coal and public perceptions

    International Nuclear Information System (INIS)

    Porter, R.C.

    1993-01-01

    The Department of Energy's (DOE) clean coal outreach efforts are described. The reason why clean coal technology outreach must be an integral part of coal's future is discussed. It is important that we understand the significance of these advances in coal utilization not just in terms of of hardware but in terms of public perception. Four basic premises in the use of coal are presented. These are: (1) that coal is fundamentally important to this nation's future; (2) that, despite premise number 1, coal's future is by no means assured and that for the last 10 years, coal has been losing ground; (3) that coal's future hinges on the public understanding of the benefits of the public's acceptance of advanced clean coal technology; and (4) hat public acceptance of clean coal technology is not going to be achieved through a nationwide advertising program run by the Federal government or even by the private sector. It is going to be gained at the grassroots level one community at a time, one plant at a time, and one referendum at a time. The Federal government has neither the resources, the staff, nor the mandate to lead the charge in those debates. What is important is that the private sector step up to the plate as individual companies and an individual citizens working one-one-one at the community level, one customer, one civic club, and one town meeting at a time

  2. Measurements and simulation for design optimization for low NOx coal-firing system

    Energy Technology Data Exchange (ETDEWEB)

    E. Bar-Ziv; Y. Yasur; B. Chudnovsky; L. Levin; A. Talanker [Ben-Gurion University of Negev, Beer-Sheva (Israel)

    2003-07-01

    The information required to design a utility steam generator is the heat balance, fuel analysis and emission. These establish the furnace wall configuration, the heat release rates, and the firing technology. The furnace must be sized for (1) residence time for complete combustion with low NOx, and (2) reduction of flue gas temperature to minimize ash deposition. To meet these, computational fluid dynamics (CFD) of the combustion process in the furnace were performed and proven to be a powerful tool for this purpose. Still, reliable numerical simulations require careful interpretation and comparison with measurements. We report numerical results and measurements for a 575 MW pulverized coal tangential firing boiler of the Hadera power plant of Israel Electric Corporation (IEC). Measured and calculated values were found to be in reasonable agreement. We used the simulations for optimization and investigated temperature distribution, heat fluxes and concentration of chemical species. We optimized both the furnace flue gas temperature entering the convective path and the staged residence time for low NOx. We tested mass flow rates through close-coupled and separate overfire air ports and its arrangement and the coal powder fineness. These parameters can control the mixing rate between the fuel and the oxidizer streams and can affect the most important characteristics of the boiler such as temperature regimes, coal burning rate and nitrogen oxidation/reduction. From this effort, IEC started to improve the boiler performance by replacing the existing typical tangential burners to low NOx firing system to ensure the current regulation requirements of emission pollutions.

  3. Environmental control implications of generating electric power from coal. Appendix B. Assessment of status of technology for solvent refining of coal. 1977 technology status report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-12-01

    This report reviews the technology and environmental impacts of the solvent refined coal process to produce clean solid fuel (SRC-I). Information on SRC-I pilot plant operation, process design, and economics is presented. A bibliography of current available literature in this technology area, divided into fourteen categories with abstracts of the references, is appended. The history, current operations, and future plans for the SRC pilot plants at Fort Lewis and Wilsonville are reviewed. Process data generated at these pilot plants for various coals are used as a basis for a conceptual commercial plant design with a capacity to process 20,000 tons per day (TPD) of prepared coal. Block flow diagrams, material balances, an energy balance, and a list of raw materials for the plant are also provided. Capital cost estimates for a 20,000 TPD coal feed plant derived from four prior economic studies range from $706 million to $1093 million in 1976 dollars. The annual net operating cost is estimated at $238.6 million (1976 dollars) and the average product cost at $2.71/MM Btu based on utility financing (equity 25:debt 75) with $25/ton as the delivered price of the dry coal. The report also discusses special technical considerations associated with some of the process operations and major equipment items and enumerates technical risks associated with the commercialization of the SRC-I process.

  4. Co-firing coal and hospital waste in a circulating fluidized bed boiler

    International Nuclear Information System (INIS)

    Coulthard, E.J.; Korenberg, J.; Oswald, K.D.

    1991-01-01

    The Department of Energy - Morgantown Energy Technology Center and the Pennsylvania Energy Development Authority are co-funding a project which will demonstrate the reduction of infectious hospital waste to an environmentally safe disposable ash by cofiring the waste with coal in a circulating fluidized bed (CFB). The main objective of this paper is increased utilization of coal but the project also provides a solution to a problem which has grown rapidly and become very visible in recent years (e.g., hospital waste washed up on beaches). The application of CFB boilers in hospitals introduces an economical clean coal technology into a size range and market dominated by gas and oil combustion systems. The use of CFB represents the utilization of state-of-the-art technology for burning coal in an environmentally benign manner. SO 2 , NO x , CO and particulate emissions lower than the latest New Source Performance Standards have proven to be achievable in CFB combustion systems. By processing the infectious waste in a steam generation system which operates continuously, the problem of creating excessive gaseous emissions during repeated start-ups (as is the case with current incinerator technology) is avoided. The operating conditions with respect to residence time, temperature and turbulence that are inherent to a CFB combustion system, provide an excellent environment for complete combustion and destruction of potentially hazardous solid and gaseous emissions (e.g., dioxins). The limestone, which is injected into the combustion system to reduce SO 2 emissions, will also react with chlorine. Thus chlorine compound emissions and the corrosive nature of the flue gas are reduced. The work efforts to date indicate that infectious waste thermal processing in a coal-fired CFB is a technically and economically viable on-site disposal option

  5. Concentrated Brine Treatment using New Energy in Coal Mine Evaporation Ponds

    Science.gov (United States)

    Li, Ting; Li, Jingfeng

    2017-12-01

    Recently, more and more coal mine water is being advanced treated and reused in China. The concentrated brine that results from advanced treatment methods can only be evaporated in an evaporation pond. Because of limited treatment capabilities and winter freezing, evaporation ponds often overflow, causing environment contamination. In this paper, based on analysis of brine water quality and economic-technical feasibility, we present a suitable treatment method for brine in evaporation ponds as electrodialysis using solar energy. In addition, we propose a new system to treat brine in coal mine evaporation ponds, which is powered by solar and wind. The operating efficiency of this treatment system proposed in this paper can meet the concentrated brine treatment demands in most coal mines in western mining areas of China and it places the photovoltaic power generation plates on the surface of the evaporation pond on a fixed floating island, which reduces any risk associated with land acquisition. This system can enhance brine treatment efficiency, requires a reduced evaporation pond area, increases the utilization of coal mine water, and minimizes the risk of environment contamination.

  6. Dispatcher's monitoring systems of coal preparation processes. Systemy dyspozytorskiej kontroli procesow wzbogacania wegla

    Energy Technology Data Exchange (ETDEWEB)

    Cierpisz, S [Politechnika Slaska, Gliwice (Poland); Cierpisz, T; Glowacki, D; Puczylowski, T [Min-Tech Sp. z o.o., Katowice (Poland)

    1994-08-01

    The computer-based control and dispatcher's monitoring systems for coal preparation plants are described. The article refers to the local automation systems of coal blending production, control systems of heavy media separation process and dispatcher's visualization systems of technological lines operation. The effects of implementation of the above mentioned systems as well as some experiences gained at the designing and operational stages are given. (author). 2 refs., 6 figs.

  7. Coal business heats up in the US

    Energy Technology Data Exchange (ETDEWEB)

    Mohan, M. [CN Rail (United States)

    2002-03-01

    The fact that CN's Coal Business Unit moved just under 50 million t of coal in 2001 would have been unimaginable just a year earlier, as CN's coal franchise faced a number of challenges last year. On the metallurgical side, where bituminous coal is used in steel production, rising extraction costs in relation to national and international values forced the closure of three CN-served mines in 2000: TeckCominco's Quinteet mine in British Columbia; Smoky River Coal's Smoky River facility and Luscar's Gregg River mine, Alberta. As for thermal coal, utilities had been moving to alternative fuels, maintaining only low coal inventories, and there were few plans for new coal plants. The article explains how North America's railroad helps fuel growing demand for thermal and metallurgical coal. 5 photos.

  8. Feedlot biomass co-firing: a renewable energy alternative for coal-fired utilities. Paper no. IGEC-1-128

    International Nuclear Information System (INIS)

    Arumugam, S.; Thien, B.; Annamalai, K.; Sweeten, J.

    2005-01-01

    The swiftly growing feedlot industry in the United States upshots in the production of manure from one or more animal species in excess of what can safely be applied to farmland in accordance with nutrient management plans. Disposal of the vast quantity of manure produced as a by-product of the cattle feeding industry is one of the major operating tasks of the industry. Aside from the traditional means of disposal as fertilizer, an alternative and attractive way of overcoming this threat is to develop processes that make use of manure as an energy resource. In the present study, the feasibility of using of manure as a fuel in existing coal fired power plants is considered and appropriately termed Feedlot Biomass (FB). The technology of co-firing coal: feedlot biomass facilitates an environment friendly utilization of animal waste for the production of valuable power/steam concurrently addressing the renewable energy, groundwater contamination, and greenhouse gas concerns. Co-firing tests were performed at the Texas AandM University 30 kW t (100,000 Btu/h) laboratory-scale facility. The trials revealed the enhanced combustion of the blends. The NO emissions were less for the blend even with higher nitrogen content of FB as compared to coal. (author)

  9. Coal use in the People`s Republic of China, Volume 2: The economic effects of constraining coal utilization

    Energy Technology Data Exchange (ETDEWEB)

    Rose, A.; Lim, D.; Frias, O.; Benavides, J. [Pennsylvania State Univ., University Park, PA (United States). Dept. of Mineral Economics; Tompkins, M.M. [Argonne National Lab., IL (United States)

    1994-12-01

    The People`s Republic of China (hereafter referred to as China) is the largest producer and consumer of coal in the world. The dominance of coal in China`s energy balance has come at a high price to the environment. With the recent attention given to global warming issues, China`s energy consumption and production practices have become the subject of much concern. Of particular concern is China`s ability to reduce CO{sub 2} emissions by constraining coal use and the impact such policies will likely have on the Chinese economy. The study is divided into two reports. Volume 1 focuses on the full coal fuel cycle, emissions, and environmental effects. This report (Volume 2) analyzes various CO{sub 2} mitigation strategies and determines their effect on economic growth. Contrary to what some analysts have claimed, the current work suggests that it would not be costly for the Chinese to reduce CO{sub 2} emissions. In fact, some strategies were accompanied by increases in China`s energy and economic efficiency, which actually stimulated economic growth.

  10. Energy Conversion Alternatives Study (ECAS), General Electric Phase 1. Volume 3: Energy conversion subsystems and components. Part 3: Gasification, process fuels, and balance of plant

    Science.gov (United States)

    Boothe, W. A.; Corman, J. C.; Johnson, G. G.; Cassel, T. A. V.

    1976-01-01

    Results are presented of an investigation of gasification and clean fuels from coal. Factors discussed include: coal and coal transportation costs; clean liquid and gas fuel process efficiencies and costs; and cost, performance, and environmental intrusion elements of the integrated low-Btu coal gasification system. Cost estimates for the balance-of-plant requirements associated with advanced energy conversion systems utilizing coal or coal-derived fuels are included.

  11. Study on coal mine macro, meso and micro safety management system

    Directory of Open Access Journals (Sweden)

    Longkang Wang

    2016-03-01

    Full Text Available In recent years, the coal mine safety production situation in our country improved year by year, but severe accidents still occurred; the accidents caused great economic loss to the national economy. According to statistical analysis, almost all of the coal mine accidents will expose the hidden danger in before, most of the accidents caused due to safety management not reaching the designated position and the hidden danger management does not take any decision in time. Based on the coal mine safety management holes in our country, the coal mine macro, meso and micro safety management system was established in this paper, which includes meaning and conception of the theories of the macro, meso and micro safety management, and also includes the matching hardware equipment, in order to achieve the hidden danger's closed-loop control and dynamic early warning in the process of coal mine production.

  12. National Coal Utilization Assessment. An integrated assessment of increased coal use in the Midwest: impacts and constraints. [14 states Midwest region

    Energy Technology Data Exchange (ETDEWEB)

    1977-10-01

    This study examines the impacts and constraints to increased coal production and use for a 14-state Midwestern region. The assessment considers technology characteristics, energy supply and demand trends, siting constraints, impacts on water availability and coal reserves, impacts on air and water quality, and ecosystems, effects of trace elements, social and economic impacts, and health risks. The significant air quality constraints to coal use are related to the short-term National Ambient Air Quality Standards, PSD standards, and exposure to sulfates. In general, cumulative water supply in the 14-state region is adequate to satisfy foreseeable energy requirements; however, on a localized basis significant water shortages may develop which could constrain a smaller portion of the energy development. Water quality impacts are primarily restricted to areas with insufficient water resources. Coal mining will continue to have significant effects on water quality in smaller streams draining the major coal regions unless strict control practices are maintained. Coal-conversion plants may cause localized water quality problems; however, the effluent characteristics of these plants are not well-known. A significant amount of the coal development is anticipated to occur in counties with high susceptibility to social and economic impacts. The timing, magnitude, and nature of these impacts could be mitigated by the development of effective management strategies.

  13. Prospects for coal: technical developments

    Energy Technology Data Exchange (ETDEWEB)

    Kaye, W G; Peirce, T J

    1983-07-01

    This article summarises the reasons for predicting an increase in the use of coal as an industrial energy source in the United Kingdom. The development of efficient and reliable coal-burning techniques is therefore of great importance. Various techniques are then discussed, including conventional combustion systems, fluidised bed combustion systems, fluidised bed boilers and furnaces, coal and ash handling, coal-liquid mixtures, coal gasification and coal liquefaction. (4 refs.)

  14. Economic effects of western Federal land-use restrictions on U.S. coal markets

    Science.gov (United States)

    Watson, William Downing; Medlin, A.L.; Krohn, K.K.; Brookshire, D.S.; Bernknopf, R.L.

    1991-01-01

    Current regulations on land use in the Western United States affect access to surface minable coal resources. This U.S. Geological Survey study analyzes the long-term effects of Federal land-use restrictions on the national cost of meeting future coal demands. The analysis covers 45 years. The U.S. Bureau of Land Management has determined the environmental, aesthetic, and economic values of western Federal coal lands and has set aside certain areas from surface coal mining to protect other valued land uses, including agricultural, environmental, and aesthetic uses. Although there are benefits to preserving natural areas and to developing areas for other land uses, these restrictions produce long-term national and regional costs that have not been estimated previously. The Dynamic Coal Allocation Model integrates coal supply (coal resource tonnage and coal quality by mining cost for 60 coal supply regions) with coal demand (in 243 regions) for the entire United States. The model makes it possible to evaluate the regional economic impacts of coal supply restrictions wherever they might occur in the national coal market. The main factors that the economic methodology considers are (1) coal mining costs, (2) coal transportation costs, (3) coal flue gas desulfurization costs, (4) coal demand, (5) regulations to control sulfur dioxide discharges, and (6) specific reductions in coal availability occurring as a result of land-use restrictions. The modeling system combines these economic factors with coal deposit quantity and quality information--which is derived from the U.S. Geological Survey's National Coal Resources Data System and the U.S. Department of Energy's Demonstrated Reserve Base--to determine a balance between supply and demand so that coal is delivered at minimum cost.

  15. Mercury speciation and distribution in a 660-megawatt utility boiler in Taiwan firing bituminous coals.

    Science.gov (United States)

    Hsi, Hsing-Cheng; Lee, Hsiu-Hsia; Hwang, Jyh-Feng; Chen, Wang

    2010-05-01

    Mercury speciation and distribution in a 660-MW tangential-fired utility boiler in Taiwan burning Australian and Chinese bituminous coal blends was investigated. Flue gases were simultaneously sampled at the selective catalytic reduction (SCR) inlet, the SCR outlet, the electrostatic precipitator (ESP) outlet, and the stack. Samplings of coal, lime, bottom ash/slag, fly ash, and gypsum slurry were also conducted. Results indicated that flue gases at the inlet to SCR contained a great potion of particle-bound mercury (Hg(p)), 59-92% of the total mercury. Removal of mercury was not observed for the SCR system. However, repartitioning of mercury species across the SCR occurred that significantly increased the portion of elemental mercury (Hg0) to up to 29% and oxidized mercury (Hg2+) to up to 33% in the SCR outlet gas. Overreporting of Hg(p) at the inlet of SCR may cause the observed repartitioning; the high ammonia/nitric oxide circumstance in the SCR unit was also speculated to cause the mercury desorption from ash particles and subsequent reentrance into the gas phase. ESP can remove up to 99% of Hg(p), and wet flue gas desulfurization (FGD) can remove up to 84% of Hg2+. Mercury mass balances were calculated to range between 81 and 127.4%, with an average of 95.7% wherein 56-82% was in ESP fly ash, 8.7-18.6% was retained in the FGD gypsum, and 6.2-26.1% was emitted from the stack. Data presented here suggest that mercury removal can be largely enhanced by increasing the conversion of Hg0 into Hg(p) and Hg2+.

  16. Bugs and coal: processing fuels with biotechnology

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, M

    1987-06-01

    Bioprocessing of coal is developing along several fronts, each of potential significance to utilities. Researchers have found a fungus, polyporous versicolor, which can liquefy certain kinds of coal and scientists have genetically engineered bacteria that remove sulfur and ash-forming metal impurities from coal. Research programs are being undertaken to find organisms that will convert lignite into gaseous methane to produce gaseous fuel more economically than the current coal gasification methods. Researchers looking for ways to remove sulfur from coal before it is burned are evaluating the use of a bacterium called thiobacillus ferroxidans to enhance the physical removal of pyrite. 2 refs.

  17. Deuterium as a tracer in coal liquefaction. Pt. 1

    International Nuclear Information System (INIS)

    Wilson, M.A.; Collin, P.J.; Barron, P.F.; Vassallo, A.M.

    1982-01-01

    Deuterium has been used to trace the pathways by which hydrogen reacts with an Australian bituminous coal (Liddell) in the presence of a nickel/molybdenum catalyst. The results show that at 400 0 C extensive scrambling of hydrogen and deuterium occurs among aromatic and α to aromatic aliphatic hydrogen and deuterium substituents. Deuterium can enter all structural groups in both asphaltene and hexane-soluble fractions of the coal-derived liquids, but it enters aromatic and α to aromatic groups in preference to alkyl groups remote from aromatic rings. Thus the results indicate that hydrogen atoms are very mobile during coal hydrogenation. Deuterium from deuterium oxide generated during conversion can also be incorporated into the coal-derived liquids. During coal hydrogenation, the eventual fate of much of the hydrogen in the gas phase is to substitute for hydrogen already in the coal. (Auth.)

  18. Converting coal

    Energy Technology Data Exchange (ETDEWEB)

    Avigliano, A. [Bedeschi (Italy)

    2006-10-15

    In September 2005, Bedeschi was commissioned to design and supply a coal unloading, conveying and storage facility for a new raw coal line system within Hatien II Cement Co. The new plant is composed of a grab unloader, a conveyor system, a storage shed with stacking and reclaiming facilities, a complete dedusting system and civil and steel structure engineering. The scope of supply includes a local fabrication portion; however, main components will be imported. The project will be completed in 21 months. The paper looks into the mechanics of loading and unloading coal. 4 figs., 4 photos.

  19. Increasing flexibility of coal power plant by control system modifications

    Directory of Open Access Journals (Sweden)

    Marušić Ante

    2016-01-01

    Full Text Available Expanding implementation of intermittent renewable energy sources has already started to change the role of thermal power plants in energy systems across Europe. Traditionally base load plants are now forced to operate as peaking plants. A familiar transition in upcoming years is expected in Croatia and coal power plant operators are preparing accordingly. To evaluate cycling capabilities and control system operation for flexible operation of selected 210 MW coal plant, series of tests with different load gradients were performed and results were thoroughly analyzed. Two possible “bottlenecks” are identified, thermal stress in superheater header, and achievable ramping rate considering operational limitations of coal feeders, firing system and evaporator dynamics. Several unexpected readings were observed, usually caused by malfunctioning sensors and equipment, resulting in unexpected oscillations of superheated steam temperature. Based on superheater geometry and experimental data, maximal steam temperature gradient during ramping was evaluated. Since thermal stress was well inside the safety margins, the simulation model of the whole boiler was used to evaluate achievable ramping on electric side.

  20. ADVANCED FLUE GAS CONDITIONING AS A RETROFIT UPGRADE TO ENHANCE PM COLLECTION FROM COAL-FIRED ELECTRIC UTILITY BOILERS

    International Nuclear Information System (INIS)

    Kenneth E. Baldrey

    2002-01-01

    The U.S. Department of Energy and ADA Environmental Solutions are engaged in a project to develop commercial flue gas conditioning additives. The objective is to develop conditioning agents that can help improve particulate control performance of smaller or under-sized electrostatic precipitators on utility coal-fired boilers. The new chemicals will be used to control both the electrical resistivity and the adhesion or cohesivity of the fly ash. There is a need to provide cost-effective and safer alternatives to traditional flue gas conditioning with SO(sub 3) and ammonia. During this reporting quarter, performance testing of flue gas conditioning was underway at the PacifiCorp Jim Bridger Power Plant. The product tested, ADA-43, was a combination resistivity modifier with cohesivity polymers. This represents the first long-term full-scale testing of this class of products. Modifications to the flue gas conditioning system at Jim Bridger, including development of alternate injection lances, was also undertaken to improve chemical spray distribution and to avoid spray deposition to duct interior surfaces. Also in this quarter, a firm commitment was received for another long-term test of the cohesivity additives. This plant fires a bituminous coal and has opacity and particulate emissions performance issues related to fly ash re-entrainment. Ammonia conditioning is employed here on one unit, but there is interest in liquid cohesivity additives as a safer alternative

  1. Activities of the Institute of Chemical Processing of Coal at Zabrze

    Energy Technology Data Exchange (ETDEWEB)

    Dreszer, K.

    1995-12-31

    The Institute of Chemical Processing of Coal at Zabrze was established in 1955. The works on carbochemical technologies have been, therefore, carried out at the Institute for 40 years. The targets of the Institute`s activities are research, scientific and developing works regarding a sensible utilization of fuels via their processing into more refined forms, safe environment, highly efficient use of energy carriers and technological products of special quality. The Institute of Chemical Processing of Coal has been dealing with the following: optimized use of home hard coals; improvement of classic coal coking technologies, processing and utilization of volatile coking products; production technologies of low emission rate fuels for communal management; analyses of coal processing technologies; new technologies aimed at increasing the efficiency of coal utilization for energy-generating purposes, especially in industry and studies on the ecological aspects of these processes; production technologies of sorbents and carbon activating agents and technologies of the utilization; rationalization of water and wastes management in the metallurgical and chemical industries in connection with removal of pollution especially dangerous to the environment from wastes; utilization technologies of refined materials (electrode cokes, binders, impregnating agents) for making electrodes, refractories and new generation construction carbon materials; production technologies of high quality bituminous and bituminous and resin coating, anti-corrosive and insulation materials; environmentally friendly utilization technologies for power station, mine and other wastes, and dedusting processes in industrial gas streams.

  2. Wabash River Coal Gasification Repowering Project: A DOE Assessment; FINAL

    International Nuclear Information System (INIS)

    National Energy Technology Laboratory

    2002-01-01

    The goal of the U.S. Department of Energy (DOE) Clean Coal Technology Program (CCT) is to furnish the energy marketplace with a number of advanced, more efficient, and environmentally responsible coal utilization technologies through demonstration projects. These projects seek to establish the commercial feasibility of the most promising advanced coal technologies that have developed beyond the proof-of-concept stage. This document serves as a DOE post-project assessment (PPA) of a project selected in CCT Round IV, the Wabash River Coal Gasification Repowering (WRCGR) Project, as described in a Report to Congress (U.S. Department of Energy 1992). Repowering consists of replacing an existing coal-fired boiler with one or more clean coal technologies to achieve significantly improved environmental performance. The desire to demonstrate utility repowering with a two-stage, pressurized, oxygen-blown, entrained-flow, integrated gasification combined-cycle (IGCC) system prompted Destec Energy, Inc., and PSI Energy, Inc., to form a joint venture and submit a proposal for this project. In July 1992, the Wabash River Coal Gasification Repowering Project Joint Venture (WRCGRPJV, the Participant) entered into a cooperative agreement with DOE to conduct this project. The project was sited at PSI Energy's Wabash River Generating Station, located in West Terre Haute, Indiana. The purpose of this CCT project was to demonstrate IGCC repowering using a Destec gasifier and to assess long-term reliability, availability, and maintainability of the system at a fully commercial scale. DOE provided 50 percent of the total project funding (for capital and operating costs during the demonstration period) of$438 million. Construction for the demonstration project was started in July 1993. Pre-operational tests were initiated in August 1995, and construction was completed in November 1995. Commercial operation began in November 1995, and the demonstration period was completed in December

  3. In situ and Enriched Microbial Community Composition and Function Associated with Coal Bed Methane from Powder River Basin Coals

    Science.gov (United States)

    Barnhart, Elliott; Davis, Katherine; Varonka, Matthew; Orem, William; Fields, Matthew

    2016-04-01

    Coal bed methane (CBM) is a relatively clean source of energy but current CBM production techniques have not sustained long-term production or produced enough methane to remain economically practical with lower natural gas prices. Enhancement of the in situ microbial community that actively generates CBM with the addition of specific nutrients could potentially sustain development. CBM production more than doubled from native microbial populations from Powder River Basin (PRB) coal beds, when yeast extract and several individual components of yeast extract (proteins and amino acids) were added to laboratory microcosms. Microbial populations capable of hydrogenotrophic (hydrogen production/utilization) methanogenesis were detected in situ and under non-stimulated conditions. Stimulation with yeast extract caused a shift in the community to microorganisms capable of acetoclastic (acetate production/utilization) methanogenesis. Previous isotope analysis from CBM production wells indicated a similar microbial community shift as observed in stimulation experiments: hydrogenotrophic methanogenesis was found throughout the PRB, but acetoclastic methanogenesis dominated major recharge areas. In conjunction, a high proportion of cyanobacterial and algal SSU rRNA gene sequences were detected in a CBM well within a major recharge area, suggesting that these phototrophic organisms naturally stimulate methane production. In laboratory studies, adding phototrophic (algal) biomass stimulated CBM production by PRB microorganisms similarly to yeast extract (~40μg methane increase per gram of coal). Analysis of the British thermal unit (BTU) content of coal from long-term incubations indicated >99.5% of BTU content remained after CBM stimulation with either algae or yeast extract. Biomimicry of in situ algal CBM stimulation could lead to technologies that utilize coupled biological systems (photosynthesis and methane production) that sustainably enhance CBM production and generate

  4. 30 CFR 819.13 - Auger mining: Coal recovery.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Auger mining: Coal recovery. 819.13 Section 819....13 Auger mining: Coal recovery. (a) Auger mining shall be conducted so as to maximize the utilization and conservation of the coal in accordance with § 816.59 of this chapter. (b) Auger mining shall be...

  5. Continuous quality control of mined hard and soft coals

    International Nuclear Information System (INIS)

    Fertl, W.H.; Gant, P.L.

    1978-01-01

    A method is provided for determining the shale content of mined coal by monitoring the thorium content of the coal. Thorium content and ash content are shown to be related whereby a direct reading of the thorium will be indicative of the shale content of the coal and the ash content of the coal. The method utilizes the natural radiation of thorium to provide the continuous or selective control of mined coals

  6. Potential for thermal coal and Clean Coal Technology (CCT) in the Asia-Pacific

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, C.J.; Long, S.

    1991-11-22

    The Coal Project was able to make considerable progress in understanding the evolving energy situation in Asia and the future role of coal and Clean Coal Technologies. It is clear that there will be major growth in consumption of coal in Asia over the next two decades -- we estimate an increase of 1.2 billion metric tons. Second, all governments are concerned about the environmental impacts of increased coal use, however enforcement of regulations appears to be quite variable among Asian countries. There is general caution of the part of Asian utilities with respect to the introduction of CCT's. However, there appears to be potential for introduction of CCT's in a few countries by the turn of the century. It is important to emphasize that it will be a long term effort to succeed in getting CCT's introduced to Asia. The Coal Project recommends that the US CCT program be expanded to allow the early introduction of CCT's in a number of countries.

  7. The two faces of coal : uncertainty the common prospect for metallurgical and thermal coal

    International Nuclear Information System (INIS)

    Zlotnikov, D.

    2010-01-01

    Although the methods of producing thermal and metallurgical coal are the same, metallurgical coal is destined to cross the world for steel manufacturing and thermal coal is destined for power plants close to where it was mined. This article discussed the factors influencing the price of these 2 coals. The production of thermal coal can remain steady during an economic crisis because coal-fired power plants generally provide low-cost-base-load electricity that remains stable during economic cycles. However, the demand for metallurgical coal is more volatile during an economic crisis because it is directly related to the demand for steel products in the construction and automotive industry, which are very sensitive to the state of the economy. There have been recent indications that Canada's export market for thermal coal is on the rise. In 2008, China became a net importer of coking coal. China's need for more coal to fuel its growing economy despite the global economic slowdown has meant that producers are diverting excess supply from European markets to China. Higher-end thermal coal offers low sulphur content and higher energy content, both desirable traits for power utilities facing strict emissions control. In addition to having huge reserves of very high-quality coal that is becoming increasingly important to China, Canada has the advantage of having the available transportation capacity in its west coast terminals and on its rail network. 3 figs.

  8. Comparative Study of Coal and Biomass Co-Combustion With Coal Burning Separately Through Emissions Analysis

    Directory of Open Access Journals (Sweden)

    Mohammad Siddique

    2016-06-01

    Full Text Available Appropriate eco-friendly methods to mitigate the problem of emissions from combustion of fossil fuel are highly demanded. The current study was focused on the effect of using coal & coal-biomass co-combustion on the gaseous emissions. Different biomass' were used along with coal. The coal used was lignite coal and the biomass' were tree waste, cow dung and banana tree leaves. Various ratios of coal and biomass were used to investigate the combustion behavior of coal-biomass blends and their emissions. The study revealed that the ratio of 80:20 of coal (lignite-cow dung and 100% banana tree leaves emits less emissions of CO, CO2, NOx and SO2 as compared to 100% coal. Maximum amount of CO emissions were 1510.5 ppm for banana tree waste and minimum amount obtained for lakhra coal and cow dung manure (70:30 of 684.667 ppm. Maximum percentage of SO2 (345.33 ppm was released from blend of lakhra coal and tree leaves (90:10 and minimum amount of SO2 present in samples is in lakhra coal-banana tree waste (80:20. The maximum amount of NO obtained for banana tree waste were 68 ppm whereas maximum amount of NOx was liberated from lakhra coal-tree leaves (60:40 and minimum amount from cow dung manure (30.83 ppm. The study concludes that utilization of biomass with coal could make remedial action against environment pollution.

  9. Programmer's guide to the Argonne Coal Market Model. [USA; mathematical models

    Energy Technology Data Exchange (ETDEWEB)

    Guziel, K.A.; Krohm, G.C.; VanKuiken, J.C.; Macal, C.M.

    1980-02-01

    The Argonne Coal Market Model was developed as part of a comprehensive DOE study of coal-related environmental, health, and safety impacts. The model includes a high degree of regional detail on both supply and demand. Coal demand is input separately for industrial and utility users in each region, and coal supply in each region is characterized by a linearly increasing function relating increments of new mine capacity to the marginal cost of extraction. Rail transportation costs and control technology costs are estimated for each supply-demand link. A quadratic programming algorithm is used to optimize flow patterns for the system. This report documents the model for programmers and users interested in technical details of the computer code.

  10. The NOXSO clean coal project

    Energy Technology Data Exchange (ETDEWEB)

    Black, J.B.; Woods, M.C.; Friedrich, J.J.; Browning, J.P. [NOXSO Corp., Bethel Park, PA (United States)

    1997-12-31

    The NOXSO Clean Coal Project will consist of designing, constructing, and operating a commercial-scale flue-gas cleanup system utilizing the NOXSO Process. The process is a waste-free, dry, post-combustion flue-gas treatment technology which uses a regenerable sorbent to simultaneously adsorb sulfur dioxide (SO{sub 2}) and nitrogen oxides (NO{sub x}) from flue gas from coal-fired boilers. The NOXSO plant will be constructed at Alcoa Generating Corporation`s (AGC) Warrick Power Plant near Evansville, Indiana and will treat all the flue gas from the 150-MW Unit 2 boiler. The NOXSO plant is being designed to remove 98% of the SO{sub 2} and 75% of the NO{sub x} when the boiler is fired with 3.4 weight percent sulfur, southern-Indiana coal. The NOXSO plant by-product will be elemental sulfur. The elemental sulfur will be shipped to Olin Corporation`s Charleston, Tennessee facility for additional processing. As part of the project, a liquid SO{sub 2} plant has been constructed at this facility to convert the sulfur into liquid SO{sub 2}. The project utilizes a unique burn-in-oxygen process in which the elemental sulfur is oxidized to SO{sub 2} in a stream of compressed oxygen. The SO{sub 2} vapor will then be cooled and condensed. The burn-in-oxygen process is simpler and more environmentally friendly than conventional technologies. The liquid SO{sub 2} plant produces 99.99% pure SO{sub 2} for use at Olin`s facilities. The $82.8 million project is co-funded by the US Department of Energy (DOE) under Round III of the Clean Coal Technology program. The DOE manages the project through the Pittsburgh Energy Technology Center (PETC).

  11. Chemical and Pyrolytic Thermogravimetric Characterization of Nigerian Bituminous Coals

    Directory of Open Access Journals (Sweden)

    Nyakuma Bemgba Bevan

    2016-12-01

    Full Text Available The discovery of new coal deposits in Nigeria presents solutions for nation’s energy crises and prospects for socioeconomic growth and sustainable development. Furthermore, the quest for sustainable energy to limit global warming, climate change, and environmental degradation has necessitated the exploration of alternatives using cleaner technologies such as coal pyrolysis. However, a lack of comprehensive data on physico-chemical and thermal properties of Nigerian coals has greatly limited their utilization. Therefore, the physico-chemical properties, rank (classification, and thermal decomposition profiles of two Nigerian bituminous coals – Afuze (AFZ and Shankodi-Jangwa (SKJ – were examined in this study. The results indicate that the coals contain high proportions of C, H, N, S, O and a sufficiently high heating value (HHV for energy conversion. The coal classification revealed that the Afuze (AFZ coal possesses a higher rank, maturity, and coal properties compared to the Shankodi-Jangwa (SKJ coal. A thermal analysis demonstrated that coal pyrolysis in both cases occurred in three stages; drying (30-200 °C, devolatilization (200-600 °C, and char decomposition (600-1000 °C. The results also indicated that pyrolysis at 1000 °C is not sufficient for complete pyrolysis. In general, the thermochemical and pyrolytic fuel properties indicate that the coal from both places can potentially be utilized for future clean energy applications.

  12. A coal combine

    Energy Technology Data Exchange (ETDEWEB)

    Wlachovsky, I; Bartos, J

    1980-02-15

    A design is presented for a coal combine, equipped with two drum operational units, on whose both ends of the upper surface of the body, two coal saws are mounted with the help of a lever system. These saws, found in an operational position, form a gap in the block of the coal block, which is not embraced by the drum operational unit. The coal block, found between the gap and the support, falls down onto the longwall scraper conveyor. The lever system of each coal saw is controlled by two hydraulic jacks. One of the jacks is mounted vertically on the facial wall of the body of the combine and is used for the hoisting for the required height of the horizontal arm of the lever, reinforced by one end in the hinge on the body of the combine. On the ''free'' end of that lever, a coal saw is mounted in a hinge-like fashion and which is connected by the hydraulic jack to the horizontal arm of the lever system. This hydraulic jack is used for the clamping of the coal saw to the face.

  13. Environmentally favourable electricity production using allothermal coal gasification in accordance with the MBG system

    International Nuclear Information System (INIS)

    Rost, M.; Heek, K.H. van; Knop, K.

    1988-01-01

    Combined gas- and steam turbine power plants with integrated coal gasification are an important foundation alone for the further development of coal processing. The basis of the development is a new allothermal coal gasification system in a fluidized bed, which has been developed from the long operating experience accumulated at a half-scale plant. In contrast with the concept adopted so far of combination with nuclear process heat, in the MGB system (M.A.N.-Bergbauforschung-Gaserzeugung) the reaction heat required for the gasification is obtained by burning part of the coal gas produced. The gasification in the fluidized bed occurs at temperatures of between 800 and 850 0 C within a pressure range of between 20 and 25 bar. The paper describes the integration of the MBG system into a 250 MW power plant as well as the state of development of allothermal coal gasification and test results from the half-scale experimental plant. The construction of a demonstration plant, which will be incorporated in the bypass of a bituminous coal-fired unit, is planned in order to prove the function of the gas generator. (orig.) [de

  14. Catalysis in coal liquefaction: New directions for research

    Energy Technology Data Exchange (ETDEWEB)

    Derbyshire, F.J.

    1988-06-01

    The economic viability and operability of processes to convert coals to useful liquid products could be greatly improved by the successful development and application of suitable catalysts. New and improved catalysts can lead to more favorable process economics by increasing the rates of reaction and product selectively and by lowering reaction temperatures and pressures. Hydrogenation catalysts, such as certain metal sulfides, may function by providing a source of H atoms through the dissociation of molecular hydrogen. The H atoms can promote bond cleavage reactions and assist in stabilizing the products of these reactions. The partial pressure of H/sub 2/S is important to the catalyst mechanism. Acid catalysts, such as metal halides, promote bond cleavage by an ionic mechanism. In general, they are not particularly active hydrogenation catalysts which create the potential for the stabilization of cracked products through the formation of high molecular weight adducts. Consideration has been given to the limitations of these catalysts and to approaches which could lead to improvements in their performance and utilization. Multicomponent systems appear to offer excellent prospects for the development of more active and selective catalysts. Existing supported catalysts are quite adequate to the task of hydroprocessing distillate coal liquids. In the presence of high boiling and nondistillable coal-derived liquids they are rapidly deactivated by the deposition of carbonaceous materials and metals. One prospective solution to this problem is to generate feeds which are more amenable to upgrading by enhanced catalytic control of the dissolution process. There is also a need for the development of supported catalysts which are resistant to deactivation. 275 refs.

  15. Symbiotic Nuclear—Coal Systems for Production of Liquid Fuels

    Science.gov (United States)

    Taczanowski, S.

    (LWRs). The direct coal hydrogenation (Bergius method) has been proposed as the optimum process for liquid fuels production, as distinct by the best hydrogen economy, thus reducing the consumption of need nuclear energy. The present concept allows for simultaneous achievement of a number of aims: production of motor fuels without CO2 emissions (thus without carbon tax) based upon domestic energy carriers — coals, supply of the electricity produced in the nuclear power plant to the national grid to cover the peak demand. Such concept broadens the palette of liquid fuels supply, thus heightens energy safety of the country or e.g. whole of the EU. In an emergency case (for instance — disturbances of gas deliveries) the supply of produced H2 directly to the gas grid is also not excluded too. The performed preliminary cost evaluation indicates that the coal—nuclear symbiont can be well economic. Finally, the most radical option of coal-nuclear alliance is mentioned — the production of liquid fuels in the Fischer—Tropsch process from CO2 as a raw material sequestered from a coal power plant. The latter would use the oxy-combustion technique profiting on the O2 obtained earlier together with H2 what would facilitate the sequestration of CO2 at the plant. Unfortunately, this variant requires for reduction of CO2 to C much more hydrogen, achievable effectively in High Temperature Reactors commercially still unavailable. But on the basis of coal alone great resources — natural, technological and human of the coal sector can be best utilized too. Summarizing: the coal-nuclear synergy is the optimum far-sighted concept of safe development of the EU energy and fuels sector.

  16. America's Changing Energy Landscape - USGS National Coal Resources Data System Changes to National Energy Resources Data System.

    Science.gov (United States)

    East, J. A., II

    2016-12-01

    The U.S. Geological Survey's (USGS) Eastern Energy Resources Science Center (EERSC) has an ongoing project which has mapped coal chemistry and stratigraphy since 1977. Over the years, the USGS has collected various forms of coal data and archived that data into the National Coal Resources Data System (NCRDS) database. NCRDS is a repository that houses data from the major coal basins in the United States and includes information on location, seam thickness, coal rank, geologic age, geographic region, geologic province, coalfield, and characteristics of the coal or lithology for that data point. These data points can be linked to the US Coal Quality Database (COALQUAL) to include ultimate, proximate, major, minor and trace-element data. Although coal is an inexpensive energy provider, the United States has shifted away from coal usage recently and branched out into other forms of non-renewable and renewable energy because of environmental concerns. NCRDS's primary method of data capture has been USGS field work coupled with cooperative agreements with state geological agencies and universities doing coal-related research. These agreements are on competitive five-year cycles that have evolved into larger scope research efforts including solid fuel resources such as coal-bed methane, shale gas and oil. Recently these efforts have expanded to include environmental impacts of the use of fossil fuels, which has allowed the USGS to enter into agreements with states for the Geologic CO2 Storage Resources Assessment as required by the Energy Independence and Security Act. In 2016 they expanded into research areas to include geothermal, conventional and unconventional oil and gas. The NCRDS and COALQUAL databases are now online for the public to use, and are in the process of being updated to include new data for other energy resources. Along with this expansion of scope, the database name will change to the National Energy Resources Data System (NERDS) in FY 2017.

  17. Gasification Characteristics of Coal/Biomass Mixed Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Reginald [Stanford Univ., CA (United States). Mechanical Engineering Dept.

    2014-09-01

    A research project was undertaken that had the overall objective of developing the models needed to accurately predict conversion rates of coal/biomass mixtures to synthesis gas under conditions relevant to a commercially-available coal gasification system configured to co-produce electric power as well as chemicals and liquid fuels. In our efforts to accomplish this goal, experiments were performed in an entrained flow reactor in order to produce coal and biomass chars at high heating rates and temperatures, typical of the heating rates and temperatures fuel particles experience in real systems. Mixed chars derived from coal/biomass mixtures containing up to 50% biomass and the chars of the pure coal and biomass components were subjected to a matrix of reactivity tests in a pressurized thermogravimetric analyzer (TGA) in order to obtain data on mass loss rates as functions of gas temperature, pressure and composition as well as to obtain information on the variations in mass specific surface area during char conversion under kinetically-limited conditions. The experimental data were used as targets when determining the unknown parameters in the chemical reactivity and specific surface area models developed. These parameters included rate coefficients for the reactions in the reaction mechanism, enthalpies of formation and absolute entropies of adsorbed species formed on the carbonaceous surfaces, and pore structure coefficients in the model used to describe how the mass specific surface area of the char varies with conversion. So that the reactivity models can be used at high temperatures when mass transport processes impact char conversion rates, Thiele modulus – effectiveness factor relations were also derived for the reaction mechanisms developed. In addition, the reactivity model and a mode of conversion model were combined in a char-particle gasification model that includes the effects of chemical reaction and diffusion of reactive gases through particle

  18. Report on the achievements in the Sunshine Project in fiscal 1988. Development of a collection and processing system for data of the coal liquefaction process; 1988 nendo sekitan ekika process nado no data no shushu, shori system nado no kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1989-03-01

    Storing and managing comprehensively a huge amount of data acquired in developing the coal liquefaction technologies would greatly contribute to moving forward the development of the coal liquefaction technologies, and realizing a commercial plant being the ultimate goal. It is intended to investigate the current status of information management systems used for development projects being implemented or planned in developing the coal liquefaction technologies. It is also intended to structure a coal liquefaction database system to utilize comprehensively and effective the information discovered by the above investigation. The current fiscal year has performed developments on the following items to structure a coal liquefaction database system by using a computer: (1) conceptual design of the fundamental database, and (2) basic design on a general technological information retrieval system. The development during the current fiscal year established a method to classify levels of data accommodation for the fundamental database based on the investigation and analysis of the experimental data. In addition, with regard to the general technological information retrieval system, summarization was performed on the specifications of the hardware and software, the basic configuration, the input and output specifications, and the retrieval screens. (NEDO)

  19. Clean coal: Global opportunities for small businesses

    International Nuclear Information System (INIS)

    1998-01-01

    The parallel growth in coal demand and environmental concern has spurred interest in technologies that burn coal with greater efficiency and with lower emissions. Clean Coal Technologies (CCTs) will ensure that continued use of the world's most abundant energy resource is compatible with a cleaner, healthier environment. Increasing interest in CCTs opens the door for American small businesses to provide services and equipment for the clean and efficient use of coal. Key players in most coal-related projects are typically large equipment manufacturers, power project developers, utilities, governments, and multinational corporations. At the same time, the complexity and scale of many of these projects creates niche markets for small American businesses with high-value products and services. From information technology, control systems, and specialized components to management practices, financial services, and personnel training methods, small US companies boast some of the highest value products and services in the world. As a result, American companies are in a prime position to take advantage of global niche markets for CCTs. This guide is designed to provide US small businesses with an overview of potential international market opportunities related to CCTs and to provide initial guidance on how to cost-effectively enter that growing global market

  20. Clean coal: Global opportunities for small businesses

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-01-01

    The parallel growth in coal demand and environmental concern has spurred interest in technologies that burn coal with greater efficiency and with lower emissions. Clean Coal Technologies (CCTs) will ensure that continued use of the world`s most abundant energy resource is compatible with a cleaner, healthier environment. Increasing interest in CCTs opens the door for American small businesses to provide services and equipment for the clean and efficient use of coal. Key players in most coal-related projects are typically large equipment manufacturers, power project developers, utilities, governments, and multinational corporations. At the same time, the complexity and scale of many of these projects creates niche markets for small American businesses with high-value products and services. From information technology, control systems, and specialized components to management practices, financial services, and personnel training methods, small US companies boast some of the highest value products and services in the world. As a result, American companies are in a prime position to take advantage of global niche markets for CCTs. This guide is designed to provide US small businesses with an overview of potential international market opportunities related to CCTs and to provide initial guidance on how to cost-effectively enter that growing global market.