Sample records for systems research aircraft

  1. Aircraft Electric Propulsion Systems Applied Research at NASA

    Clarke, Sean


    Researchers at NASA are investigating the potential for electric propulsion systems to revolutionize the design of aircraft from the small-scale general aviation sector to commuter and transport-class vehicles. Electric propulsion provides new degrees of design freedom that may enable opportunities for tightly coupled design and optimization of the propulsion system with the aircraft structure and control systems. This could lead to extraordinary reductions in ownership and operating costs, greenhouse gas emissions, and noise annoyance levels. We are building testbeds, high-fidelity aircraft simulations, and the first highly distributed electric inhabited flight test vehicle to begin to explore these opportunities.

  2. The Proposed Use of Unmanned Aerial System Surrogate Research Aircraft for National Airspace System Integration Research

    Howell, Charles T., III


    Research is needed to determine what procedures, aircraft sensors and other systems will be required to allow Unmanned Aerial Systems (UAS) to safely operate with manned aircraft in the National Airspace System (NAS). This paper explores the use of Unmanned Aerial System (UAS) Surrogate research aircraft to serve as platforms for UAS systems research, development, and flight testing. These aircraft would be manned with safety pilots and researchers that would allow for flight operations almost anywhere in the NAS without the need for a Federal Aviation Administration (FAA) Certificate of Authorization (COA). With pilot override capability, these UAS Surrogate aircraft would be controlled from ground stations like true UAS s. It would be possible to file and fly these UAS Surrogate aircraft in the NAS with normal traffic and they would be better platforms for real world UAS research and development over existing vehicles flying in restricted ranges or other sterilized airspace. These UAS surrogate aircraft could be outfitted with research systems as required such as computers, state sensors, video recording, data acquisition, data link, telemetry, instrumentation, and Automatic Dependent Surveillance-Broadcast (ADS-B). These surrogate aircraft could also be linked to onboard or ground based simulation facilities to further extend UAS research capabilities. Potential areas for UAS Surrogate research include the development, flight test and evaluation of sensors to aide in the process of air traffic "see-and-avoid". These and other sensors could be evaluated in real-time and compared with onboard human evaluation pilots. This paper examines the feasibility of using UAS Surrogate research aircraft as test platforms for a variety of UAS related research.

  3. Rotor Systems Research Aircraft /RSRA/ canopy explosive severance/fracture

    Bement, L. J.


    The Rotor Systems Research Aircraft (RSRA), a compound rotor/fixed-wing aircraft, incorporates an emergency escape system for the three crew members; to achieve unobstructed egress, the overhead acrylic canopies of each crew member will be explosively severed and fractured into predictably small, low-mass pieces. A canopy explosive severance/fracture system was developed under this investigation that included the following system design considerations: selection of canopy and explosive materials, determining the acrylic's explosive severance and fracture characteristics, evaluating the effects of installation variables and temperature, determining the most effective explosive patterns, conducting full-scale, flat and double-curvature canopy tests, and evaluating the effects of back-blast of the explosive into the cockpit.

  4. Evaluation and use of remotely piloted aircraft systems for operations and research - RxCADRE 2012

    Thomas J. Zajkowski; Matthew B. Dickinson; J. Kevin Hiers; William Holley; Brett W. Williams; Alexander Paxton; Otto Martinez; Gregory W. Walker


    Small remotely piloted aircraft systems (RPAS), also known as unmanned aircraft systems (UAS), are expected to provide important contributions to wildland fire operations and research, but their evaluation and use have been limited. Our objectives were to leverage US Air Force-controlled airspace to (1) deploy RPAS in support of the 2012 Prescribed Fire...

  5. NASA-Langley Research Center's Aircraft Condition Analysis and Management System Implementation

    Frye, Mark W.; Bailey, Roger M.; Jessup, Artie D.


    This document describes the hardware implementation design and architecture of Aeronautical Radio Incorporated (ARINC)'s Aircraft Condition Analysis and Management System (ACAMS), which was developed at NASA-Langley Research Center (LaRC) for use in its Airborne Research Integrated Experiments System (ARIES) Laboratory. This activity is part of NASA's Aviation Safety Program (AvSP), the Single Aircraft Accident Prevention (SAAP) project to develop safety-enabling technologies for aircraft and airborne systems. The fundamental intent of these technologies is to allow timely intervention or remediation to improve unsafe conditions before they become life threatening.

  6. The research of optical windows used in aircraft sensor systems

    Zhou Feng; Li Yan; Tang Tian-Jin


    The optical windows used in aircrafts protect their imaging sensors from environmental effects. Considering the imaging performance, flat surfaces are traditionally used in the design of optical windows. For aircrafts operating at high speeds, the optical windows should be relatively aerodynamic, but a flat optical window may introduce unacceptably high drag to the airframes. The linear scanning infrared sensors used in aircrafts with, respectively, a flat window, a spherical window and a toric window in front of the aircraft sensors are designed and compared. Simulation results show that the optical design using a toric surface has the integrated advantages of field of regard, aerodynamic drag, narcissus effect, and imaging performance, so the optical window with a toric surface is demonstrated to be suited for this application. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  7. Application of variable structure system theory to aircraft flight control. [AV-8A and the Augmentor Wing Jet STOL Research Aircraft

    Calise, A. J.; Kadushin, I.; Kramer, F.


    The current status of research on the application of variable structure system (VSS) theory to design aircraft flight control systems is summarized. Two aircraft types are currently being investigated: the Augmentor Wing Jet STOL Research Aircraft (AWJSRA), and AV-8A Harrier. The AWJSRA design considers automatic control of longitudinal dynamics during the landing phase. The main task for the AWJSRA is to design an automatic landing system that captures and tracks a localizer beam. The control task for the AV-8A is to track velocity commands in a hovering flight configuration. Much effort was devoted to developing computer programs that are needed to carry out VSS design in a multivariable frame work, and in becoming familiar with the dynamics and control problems associated with the aircraft types under investigation. Numerous VSS design schemes were explored, particularly for the AWJSRA. The approaches that appear best suited for these aircraft types are presented. Examples are given of the numerical results currently being generated.

  8. Research on Heat Exchange Process in Aircraft Air Conditioning System

    Chichindaev, A. V.


    Using of heat-exchanger-condenser in the air conditioning system of the airplane Tu-204 (Boeing, Airbus, Superjet 100, MS-21, etc.) for cooling the compressed air by the cold air with negative temperature exiting the turbine results in a number of operational problems. Mainly it’s frosting of the heat exchange surface, which is the cause of live-section channels frosting, resistance increasing and airflow in the system decreasing. The purpose of this work is to analyse the known freeze-up-fighting methods for heat-exchanger-condenser, description of the features of anti-icing protection and offering solutions to this problem. For the problem of optimizing the design of heat exchangers in this work used generalized criterion that describes the ratio of thermal resistances of cold and hot sections, which include: the ratio of the initial values of heat transfer agents flow state; heat exchange surface finning coefficients; factors which describes the ratio of operating parameters and finning area. By controlling the ratio of the thermal resistances can be obtained the desired temperature of the heat exchange surface, which would prevent freezing. The work presents the results of a numerical study of the effect of different combinations of regime and geometrical factors changes on reduction of the heat-exchanger-condenser freezing surface area, including using of variable ratio of thermal resistances.

  9. Performance of an Electro-Hydrostatic Actuator on the F-18 Systems Research Aircraft

    Navarro, Robert


    An electro-hydrostatic actuator was evaluated at NASA Dryden Flight Research Center, Edwards, California. The primary goal of testing this actuator system was the flight demonstration of power-by-wire technology on a primary flight control surface. The electro-hydrostatic actuator uses an electric motor to drive a hydraulic pump and relies on local hydraulics for force transmission. This actuator replaced the F-18 standard left aileron actuator on the F-18 Systems Research Aircraft and was evaluated throughout the Systems Research Aircraft flight envelope. As of July 24, 1997 the electro-hydrostatic actuator had accumulated 23.5 hours of flight time. This paper presents the electro-hydrostatic actuator system configuration and component description, ground and flight test plans, ground and flight test results, and lessons learned. This actuator performs as well as the standard actuator and has more load capability than required by aileron actuator specifications of McDonnell- Douglas Aircraft, St. Louis, Missouri. The electro-hydrostatic actuator system passed all of its ground tests with the exception of one power-off test during unloaded dynamic cycling.

  10. Unmanned aircraft systems in wildlife research: Current and future applications of a transformative technology

    Christie, Katherine S.; Gilbert, Sophie L.; Brown, Casey L.; Hatfield, Michael; Hanson, Leanne


    Unmanned aircraft systems (UAS) – also called unmanned aerial vehicles (UAVs) or drones – are an emerging tool that may provide a safer, more cost-effective, and quieter alternative to traditional research methods. We review examples where UAS have been used to document wildlife abundance, behavior, and habitat, and illustrate the strengths and weaknesses of this technology with two case studies. We summarize research on behavioral responses of wildlife to UAS, and discuss the need to understand how recreational and commercial applications of this technology could disturb certain species. Currently, the widespread implementation of UAS by scientists is limited by flight range, regulatory frameworks, and a lack of validation. UAS are most effective when used to examine smaller areas close to their launch sites, whereas manned aircraft are recommended for surveying greater distances. The growing demand for UAS in research and industry is driving rapid regulatory and technological progress, which in turn will make them more accessible and effective as analytical tools.

  11. Flight Test Experience With an Electromechanical Actuator on the F-18 Systems Research Aircraft

    Jensen, Stephen C.; Jenney, Gavin D.; Raymond, Bruce; Dawson, David


    Development of reliable power-by-wire actuation systems for both aeronautical and space applications has been sought recently to eliminate hydraulic systems from aircraft and spacecraft and thus improve safety, efficiency, reliability, and maintainability. The Electrically Powered Actuation Design (EPAD) program was a joint effort between the Air Force, Navy, and NASA to develop and fly a series of actuators validating power-by-wire actuation technology on a primary flight control surface of a tactical aircraft. To achieve this goal, each of the EPAD actuators was installed in place of the standard hydraulic actuator on the left aileron of the NASA F/A-18B Systems Research Aircraft (SRA) and flown throughout the SRA flight envelope. Numerous parameters were recorded, and overall actuator performance was compared with the performance of the standard hydraulic actuator on the opposite wing. This paper discusses the integration and testing of the EPAD electromechanical actuator (EMA) on the SRA. The architecture of the EMA system is discussed, as well as its integration with the F/A-18 Flight Control System. The flight test program is described, and actuator performance is shown to be very close to that of the standard hydraulic actuator it replaced. Lessons learned during this program are presented and discussed, as well as suggestions for future research.

  12. The Small Aircraft Transportation System (SATS), Higher Volume Operations (HVO) Concept and Research

    Baxley, B.; Williams, D.; Consiglio, M.; Adams, C.; Abbott, T.


    The ability to conduct concurrent, multiple aircraft operations in poor weather at virtually any airport offers an important opportunity for a significant increase in the rate of flight operations, a major improvement in passenger convenience, and the potential to foster growth of operations at small airports. The Small Aircraft Transportation System, (SATS) Higher Volume Operations (HVO) concept is designed to increase capacity at the 3400 non-radar, non-towered airports in the United States where operations are currently restricted to one-in/one-out procedural separation during low visibility or ceilings. The concept s key feature is that pilots maintain their own separation from other aircraft using air-to-air datalink and on-board software within the Self-Controlled Area (SCA), an area of flight operations established during poor visibility and low ceilings around an airport without Air Traffic Control (ATC) services. While pilots self-separate within the SCA, an Airport Management Module (AMM) located at the airport assigns arriving pilots their sequence based on aircraft performance, position, winds, missed approach requirements, and ATC intent. The HVO design uses distributed decision-making, safe procedures, attempts to minimize pilot and controller workload, and integrates with today's ATC environment. The HVO procedures have pilots make their own flight path decisions when flying in Instrument Metrological Conditions (IMC) while meeting these requirements. This paper summarizes the HVO concept and procedures, presents a summary of the research conducted and results, and outlines areas where future HVO research is required. More information about SATS HVO can be found at

  13. Alaska Center for Unmanned Aircraft Systems Integration (ACUASI): Operational Support and Geoscience Research

    Webley, P. W.; Cahill, C. F.; Rogers, M.; Hatfield, M. C.


    Unmanned Aircraft Systems (UAS) have enormous potential for use in geoscience research and supporting operational needs from natural hazard assessment to the mitigation of critical infrastructure failure. They provide a new tool for universities, local, state, federal, and military organizations to collect new measurements not readily available from other sensors. We will present on the UAS capabilities and research of the Alaska Center for Unmanned Aircraft Systems Integration (ACUASI, Our UAS range from the Responder with its dual visible/infrared payload that can provide simultaneous data to our new SeaHunter UAS with 90 lb. payload and multiple hour flight time. ACUASI, as a designated US Federal Aviation Administration (FAA) test center, works closely with the FAA on integrating UAS into the national airspace. ACUASI covers all aspects of working with UAS from pilot training, airspace navigation, flight operations, and remote sensing analysis to payload design and integration engineers and policy experts. ACUASI's recent missions range from supporting the mapping of sea ice cover for safe passage of Alaskans across the hazardous winter ice to demonstrating how UAS can be used to provide support during oil spill response. Additionally, we will present on how ACUASI has worked with local authorities in Alaska to integrate UAS into search and rescue operations and with NASA and the FAA on their UAS Transport Management (UTM) project to fly UAS within the manned airspace. ACUASI is also working on developing new capabilities to sample volcanic plumes and clouds, map forest fire impacts and burn areas, and develop a new citizen network for monitoring snow extent and depth during Northern Hemisphere winters. We will demonstrate how UAS can be integrated in operational support systems and at the same time be used in geoscience research projects to provide high precision, accurate, and reliable observations.

  14. AutoGNI, the Robot Under the Aircraft Floor: An Automated System for Sampling Giant Aerosol Particles by Impaction in the Free Airstream Outside a Research Aircraft

    Jensen, J. B.; Schwenz, K.; Aquino, J.; Carnes, J.; Webster, C.; Munnerlyn, J.; Wissman, T.; Lugger, T.


    Giant sea-salt aerosol particles, also called Giant Cloud Condensation Nuclei (GCCN), have been proposed as a means of rapidly forming precipitation sized drizzle drops in warm marine clouds (e.g., Jensen and Nugent, 2017). Such rare particles are best sampled from aircraft in air below cloud base, where normal laser optical instruments have too low sample volume to give statistically significant samples of the large particle tail. An automated sampling system (the AutoGNI) has been built to operate from inside a pressurized aircraft. Under the aircraft floor, a pressurized vessel contains 32 custom-built polycarbonate microscope slides. Using robotics with 5 motor drives and 18 positioning switches, the AutoGNI can take slides from their holding cassettes, pass them onto a caddy in an airfoil that extends 200 mm outside the aircraft, where they are exposed in the free airstream, thus avoiding the usual problems with large particle losses in air intakes. Slides are typically exposed for 10-30 s in the marine boundary layer, giving sample volumes of about 100-300 L or more. Subsequently the slides are retracted into the pressure vessel, stored and transported for laboratory microscope image analysis, in order to derive size-distribution histograms. While the aircraft is flying, the AutoGNI system is remotely controlled from a laptop on the ground, using an encrypted commercial satellite connection to the NSF/NCAR GV research aircraft's main server, and onto the AutoGNI microprocessor. The sampling of such GCCN is becoming increasingly important in order to provide complete input data for model calculations of aerosol-cloud interactions and their feedbacks in climate prediction. The AutoGNI has so far been sampling sea-salt GCCN in the Magellan Straight during the 2016 ORCAS project and over the NW Pacific during the 2017 ARISTO project, both from the NSF/NCAR GV research aircraft. Sea-salt particle sizes of 1.4 - 32 μm dry diameter have been observed.

  15. Estimation of dynamic rotor loads for the rotor systems research aircraft: Methodology development and validation

    Duval, R. W.; Bahrami, M.


    The Rotor Systems Research Aircraft uses load cells to isolate the rotor/transmission systm from the fuselage. A mathematical model relating applied rotor loads and inertial loads of the rotor/transmission system to the load cell response is required to allow the load cells to be used to estimate rotor loads from flight data. Such a model is derived analytically by applying a force and moment balance to the isolated rotor/transmission system. The model is tested by comparing its estimated values of applied rotor loads with measured values obtained from a ground based shake test. Discrepancies in the comparison are used to isolate sources of unmodeled external loads. Once the structure of the mathematical model has been validated by comparison with experimental data, the parameters must be identified. Since the parameters may vary with flight condition it is desirable to identify the parameters directly from the flight data. A Maximum Likelihood identification algorithm is derived for this purpose and tested using a computer simulation of load cell data. The identification is found to converge within 10 samples. The rapid convergence facilitates tracking of time varying parameters of the load cell model in flight.

  16. The Use of a Satellite Communications System for Command and Control of the National Aeronautics and Space Administration Surrogate Unmanned Aerial System Research Aircraft

    Howell, Charles T.; Jones, Frank; Hutchinson, Brian; Joyce, Claude; Nelson, Skip; Melum, Mike


    The NASA Langley Research Center has transformed a Cirrus Design SR22 general aviation (GA) aircraft into an Unmanned Aerial Systems (UAS) Surrogate research aircraft which has served for several years as a platform for unmanned systems research and development. The aircraft is manned with a Safety Pilot and a Research Systems Operator (RSO) that allows for flight operations almost any-where in the national airspace system (NAS) without the need for a Federal Aviation Administration (FAA) Certificate of Authorization (COA). The UAS Surrogate can be remotely controlled from a modular, transportable ground control station (GCS) like a true UAS. Ground control of the aircraft is accomplished by the use of data links that allow the two-way passage of the required data to control the aircraft and provide the GCS with situational awareness. The original UAS Surrogate data-link system was composed of redundant very high frequency (VHF) data radio modems with a maximum range of approximately 40 nautical miles. A new requirement was developed to extend this range beyond visual range (BVR). This new requirement led to the development of a satellite communications system that provided the means to command and control the UAS Surrogate at ranges beyond the limits of the VHF data links. The system makes use of the Globalstar low earth orbit (LEO) satellite communications system. This paper will provide details of the development, implementation, and flight testing of the satellite data communications system on the UAS Surrogate research aircraft.

  17. Subsonic Ultra Green Aircraft Research

    Bradley, Marty K.; Droney, Christopher K.


    This Final Report summarizes the work accomplished by the Boeing Subsonic Ultra Green Aircraft Research (SUGAR) team in Phase 1, which includes the time period of October 2008 through March 2010. The team consisted of Boeing Research and Technology, Boeing Commercial Airplanes, General Electric, and Georgia Tech. The team completed the development of a comprehensive future scenario for world-wide commercial aviation, selected baseline and advanced configurations for detailed study, generated technology suites for each configuration, conducted detailed performance analysis, calculated noise and emissions, assessed technology risks, and developed technology roadmaps. Five concepts were evaluated in detail: 2008 baseline, N+3 reference, N+3 high span strut braced wing, N+3 gas turbine battery electric concept, and N+3 hybrid wing body. A wide portfolio of technologies was identified to address the NASA N+3 goals. Significant improvements in air traffic management, aerodynamics, materials and structures, aircraft systems, propulsion, and acoustics are needed. Recommendations for Phase 2 concept and technology projects have been identified.

  18. Flight Demonstration of X-33 Vehicle Health Management System Components on the F/A-18 Systems Research Aircraft

    Schweikhard, Keith A.; Richards, W. Lance; Theisen, John; Mouyos, William; Garbos, Raymond


    The X-33 reusable launch vehicle demonstrator has identified the need to implement a vehicle health monitoring system that can acquire data that monitors system health and performance. Sanders, a Lockheed Martin Company, has designed and developed a COTS-based open architecture system that implements a number of technologies that have not been previously used in a flight environment. NASA Dryden Flight Research Center and Sanders teamed to demonstrate that the distributed remote health nodes, fiber optic distributed strain sensor, and fiber distributed data interface communications components of the X-33 vehicle health management (VHM) system could be successfully integrated and flown on a NASA F-18 aircraft. This paper briefly describes components of X-33 VHM architecture flown at Dryden and summarizes the integration and flight demonstration of these X-33 VHM components. Finally, it presents early results from the integration and flight efforts.

  19. Definition of propulsion system for V/STOL research and technology aircraft


    Wind tunnel test support, aircraft contractor support, a propulsion system computer card deck, preliminary design studies, and propulsion system development plan are reported. The Propulsion system consists of two lift/cruise turbofan engines, one turboshaft engine and one lift fan connected together with shafting into a combiner gearbox. Distortion parameter levels from 40 x 80 test data were within the established XT701-AD-700 limits. The three engine-three fan system card deck calculates either vertical or conventional flight performance, installed or uninstalled. Design study results for XT701 engine modifications, bevel gear cross shaft location, fixed and tilt fan frames and propulsion system controls are described. Optional water-alcohol injection increased total net thrust 10.3% on a 90 F day. Engines have sufficient turbine life for 500 hours of the RTA duty cycle.

  20. Multidisciplinary Techniques and Novel Aircraft Control Systems

    Padula, Sharon L.; Rogers, James L.; Raney, David L.


    The Aircraft Morphing Program at NASA Langley Research Center explores opportunities to improve airframe designs with smart technologies. Two elements of this basic research program are multidisciplinary design optimization (MDO) and advanced flow control. This paper describes examples where MDO techniques such as sensitivity analysis, automatic differentiation, and genetic algorithms contribute to the design of novel control systems. In the test case, the design and use of distributed shape-change devices to provide low-rate maneuvering capability for a tailless aircraft is considered. The ability of MDO to add value to control system development is illustrated using results from several years of research funded by the Aircraft Morphing Program.

  1. An Overview of NASA's Subsonic Research Aircraft Testbed (SCRAT)

    Baumann, Ethan; Hernandez, Joe; Ruhf, John C.


    National Aeronautics and Space Administration Dryden Flight Research Center acquired a Gulfstream III (GIII) aircraft to serve as a testbed for aeronautics flight research experiments. The aircraft is referred to as SCRAT, which stands for SubsoniC Research Aircraft Testbed. The aircraft's mission is to perform aeronautics research; more specifically raising the Technology Readiness Level (TRL) of advanced technologies through flight demonstrations and gathering high-quality research data suitable for verifying the technologies, and validating design and analysis tools. The SCRAT has the ability to conduct a range of flight research experiments throughout a transport class aircraft's flight envelope. Experiments ranging from flight-testing of a new aircraft system or sensor to those requiring structural and aerodynamic modifications to the aircraft can be accomplished. The aircraft has been modified to include an instrumentation system and sensors necessary to conduct flight research experiments along with a telemetry capability. An instrumentation power distribution system was installed to accommodate the instrumentation system and future experiments. An engineering simulation of the SCRAT has been developed to aid in integrating research experiments. A series of baseline aircraft characterization flights has been flown that gathered flight data to aid in developing and integrating future research experiments. This paper describes the SCRAT's research systems and capabilities.

  2. Aircraft Turbine Engine Control Research at NASA Glenn Research Center

    Garg, Sanjay


    This lecture will provide an overview of the aircraft turbine engine control research at NASA (National Aeronautics and Space Administration) Glenn Research Center (GRC). A brief introduction to the engine control problem is first provided with a description of the current state-of-the-art control law structure. A historical aspect of engine control development since the 1940s is then provided with a special emphasis on the contributions of GRC. The traditional engine control problem has been to provide a means to safely transition the engine from one steady-state operating point to another based on the pilot throttle inputs. With the increased emphasis on aircraft safety, enhanced performance and affordability, and the need to reduce the environmental impact of aircraft, there are many new challenges being faced by the designers of aircraft propulsion systems. The Controls and Dynamics Branch (CDB) at GRC is leading and participating in various projects in partnership with other organizations within GRC and across NASA, other government agencies, the U.S. aerospace industry, and academia to develop advanced propulsion controls and diagnostics technologies that will help meet the challenging goals of NASA programs under the Aeronautics Research Mission. The second part of the lecture provides an overview of the various CDB technology development activities in aircraft engine control and diagnostics, both current and some accomplished in the recent past. The motivation for each of the research efforts, the research approach, technical challenges and the key progress to date are summarized. The technologies to be discussed include system level engine control concepts, gas path diagnostics, active component control, and distributed engine control architecture. The lecture will end with a futuristic perspective of how the various current technology developments will lead to an Intelligent and Autonomous Propulsion System requiring none to very minimum pilot interface

  3. Flight evaluation of advanced controls and displays for transition and landing on the NASA V/STOL systems research aircraft

    Franklin, James A.; Stortz, Michael W.; Borchers, Paul F.; Moralez, Ernesto, III


    Flight experiments were conducted on Ames Research Center's V/STOL Systems Research Aircraft (VSRA) to assess the influence of advanced control modes and head-up displays (HUD's) on flying qualities for precision approach and landing operations. Evaluations were made for decelerating approaches to hover followed by a vertical landing and for slow landings for four control/display mode combinations: the basic YAV-8B stability augmentation system; attitude command for pitch, roll, and yaw; flightpath/acceleration command with translational rate command in the hover; and height-rate damping with translational-rate command. Head-up displays used in conjunction with these control modes provided flightpath tracking/pursuit guidance and deceleration commands for the decelerating approach and a mixed horizontal and vertical presentation for precision hover and landing. Flying qualities were established and control usage and bandwidth were documented for candidate control modes and displays for the approach and vertical landing. Minimally satisfactory bandwidths were determined for the translational-rate command system. Test pilot and engineer teams from the Naval Air Warfare Center, the Boeing Military Airplane Group, Lockheed Martin, McDonnell Douglas Aerospace, Northrop Grumman, Rolls-Royce, and the British Defense Research Agency participated in the program along with NASA research pilots from the Ames and Lewis Research Centers. The results, in conjunction with related ground-based simulation data, indicate that the flightpath/longitudinal acceleration command response type in conjunction with pursuit tracking and deceleration guidance on the HUD would be essential for operation to instrument minimums significantly lower than the minimums for the AV-8B. It would also be a superior mode for performing slow landings where precise control to an austere landing area such as a narrow road is demanded. The translational-rate command system would reduce pilot workload for

  4. Study of aircraft electrical power systems


    The formulation of a philosophy for devising a reliable, efficient, lightweight, and cost effective electrical power system for advanced, large transport aircraft in the 1980 to 1985 time period is discussed. The determination and recommendation for improvements in subsystems and components are also considered. All aspects of the aircraft electrical power system including generation, conversion, distribution, and utilization equipment were considered. Significant research and technology problem areas associated with the development of future power systems are identified. The design categories involved are: (1) safety-reliability, (2) power type, voltage, frequency, quality, and efficiency, (3) power control, and (4) selection of utilization equipment.

  5. Potential uses of small unmanned aircraft systems (UAS) in weed research

    Rasmussen, Jesper; Nielsen, Jon; Garcia Ruiz, Francisco Jose


    applications in UAS imagery weed research. In two experiments with post-emergence weed harrowing in barley, the crop resistance parameter, which reflects the crop response to harrowing, was unaffected by image capture altitude in the range from 1 to 50 m. This corresponded to image spatial resolution...... with ground truth data. UAS imagery also gave excellent results in logarithmic sprayer experiments in oilseed rape, where we captured 37 m long plots in each image from an altitude of 35 m. Furthermore, perennial weeds could be mapped from UAS images. These first experiences with a small rotary-wing UAS show...

  6. Aircraft Fuel Cell Power Systems

    Needham, Robert


    In recent years, fuel cells have been explored for use in aircraft. While the weight and size of fuel cells allows only the smallest of aircraft to use fuel cells for their primary engines, fuel cells have showed promise for use as auxiliary power units (APUs), which power aircraft accessories and serve as an electrical backup in case of an engine failure. Fuel cell MUS are both more efficient and emit fewer pollutants. However, sea-level fuel cells need modifications to be properly used in aircraft applications. At high altitudes, the ambient air has a much lower pressure than at sea level, which makes it much more difficult to get air into the fuel cell to react and produce electricity. Compressors can be used to pressurize the air, but this leads to added weight, volume, and power usage, all of which are undesirable things. Another problem is that fuel cells require hydrogen to create electricity, and ever since the Hindenburg burst into flames, aircraft carrying large quantities of hydrogen have not been in high demand. However, jet fuel is a hydrocarbon, so it is possible to reform it into hydrogen. Since jet fuel is already used to power conventional APUs, it is very convenient to use this to generate the hydrogen for fuel-cell-based APUs. Fuel cells also tend to get large and heavy when used for applications that require a large amount of power. Reducing the size and weight becomes especially beneficial when it comes to fuel cells for aircraft. My goal this summer is to work on several aspects of Aircraft Fuel Cell Power System project. My first goal is to perform checks on a newly built injector rig designed to test different catalysts to determine the best setup for reforming Jet-A fuel into hydrogen. These checks include testing various thermocouples, transmitters, and transducers, as well making sure that the rig was actually built to the design specifications. These checks will help to ensure that the rig will operate properly and give correct results

  7. Aircraft Maintenance Expert Systems.



  8. Small Aircraft Data Distribution System

    Chazanoff, Seth L.; Dinardo, Steven J.


    The CARVE Small Aircraft Data Distribution System acquires the aircraft location and attitude data that is required by the various programs running on a distributed network. This system distributes the data it acquires to the data acquisition programs for inclusion in their data files. It uses UDP (User Datagram Protocol) to broadcast data over a LAN (Local Area Network) to any programs that might have a use for the data. The program is easily adaptable to acquire additional data and log that data to disk. The current version also drives displays using precision pitch and roll information to aid the pilot in maintaining a level-level attitude for radar/radiometer mapping beyond the degree available by flying visually or using a standard gyro-driven attitude indicator. The software is designed to acquire an array of data to help the mission manager make real-time decisions as to the effectiveness of the flight. This data is displayed for the mission manager and broadcast to the other experiments on the aircraft for inclusion in their data files. The program also drives real-time precision pitch and roll displays for the pilot and copilot to aid them in maintaining the desired attitude, when required, during data acquisition on mapping lines.

  9. V/STOL tilt rotor aircraft study. Volume 2: Preliminary design of research aircraft


    A preliminary design study was conducted to establish a minimum sized, low cost V/STOL tilt-rotor research aircraft with the capability of performing proof-of-concept flight research investigations applicable to a wide range of useful military and commercial configurations. The analysis and design approach was based on state-of-the-art methods and maximum use of off-the-shelf hardware and systems to reduce development risk, procurement cost and schedules impact. The rotors to be used are of 26 foot diameter and are the same as currently under construction and test as part of NASA Tilt-Rotor Contract NAS2-6505. The aircraft has a design gross weight of 12,000 lbs. The proposed engines to be used are Lycoming T53-L-13B rated at 1550 shaft horsepower which are fully qualified. A flight test investigation is recommended which will determine the capabilities and limitations of the research aircraft.

  10. Cryogenic system options for a superconducting aircraft propulsion system

    Berg, F; Dodds, Graham; Palmer, J; Bertola, L; Miller, Paul


    There is a perceived need in the future for a move away from traditional aircraft designs in order to meet ambitious emissions and fuel burn targets. High temperature superconducting distributed propulsion may be an enabler for aircraft designs that have better propulsive efficiency and lower drag. There has been significant work considering the electrical systems required, but less on the cryogenics to enable it. This paper discusses some of the major choices to be faced in cryocooling for aircraft. The likely need for a disposable cryogen to reduce power demand is explained. A set of cryocooling methods are considered in a sensitivity study, which shows that the feasibility of the cryogenic system will depend strongly on the superconducting technology and the aircraft platform. It is argued that all three aspects must be researched and designed in close collaboration to reach a viable solution. (paper)

  11. X-36 Tailless Fighter Agility Research Aircraft arrival at Dryden


    The NASA/McDonnell Douglas Corporation (MDC) X-36 Tailless Fighter Agility Research Aircraft in it's hangar at NASA Dryden Flight Research Center, Edwards, California, following its arrival on July 2, 1996. The NASA/Boeing X-36 Tailless Fighter Agility Research Aircraft program successfully demonstrated the tailless fighter design using advanced technologies to improve the maneuverability and survivability of possible future fighter aircraft. The program met or exceeded all project goals. For 31 flights during 1997 at the Dryden Flight Research Center, Edwards, California, the project team examined the aircraft's agility at low speed / high angles of attack and at high speed / low angles of attack. The aircraft's speed envelope reached up to 206 knots (234 mph). This aircraft was very stable and maneuverable. It handled very well. The X-36 vehicle was designed to fly without the traditional tail surfaces common on most aircraft. Instead, a canard forward of the wing was used as well as split ailerons and an advanced thrust-vectoring nozzle for directional control. The X-36 was unstable in both pitch and yaw axes, so an advanced, single-channel digital fly-by-wire control system (developed with some commercially available components) was put in place to stabilize the aircraft. Using a video camera mounted in the nose of the aircraft and an onboard microphone, the X-36 was remotely controlled by a pilot in a ground station virtual cockpit. A standard fighter-type head-up display (HUD) and a moving-map representation of the vehicle's position within the range in which it flew provided excellent situational awareness for the pilot. This pilot-in-the-loop approach eliminated the need for expensive and complex autonomous flight control systems and the risks associated with their inability to deal with unknown or unforeseen phenomena in flight. Fully fueled the X-36 prototype weighed approximately 1,250 pounds. It was 19 feet long and three feet high with a wingspan of

  12. X-36 Tailless Fighter Agility Research Aircraft in flight


    The lack of a vertical tail on the X-36 technology demonstrator is evident as the remotely piloted aircraft flies a low-altitude research flight above Rogers Dry Lake at Edwards Air Force Base in the California desert on October 30, 1997. The NASA/Boeing X-36 Tailless Fighter Agility Research Aircraft program successfully demonstrated the tailless fighter design using advanced technologies to improve the maneuverability and survivability of possible future fighter aircraft. The program met or exceeded all project goals. For 31 flights during 1997 at the Dryden Flight Research Center, Edwards, California, the project team examined the aircraft's agility at low speed / high angles of attack and at high speed / low angles of attack. The aircraft's speed envelope reached up to 206 knots (234 mph). This aircraft was very stable and maneuverable. It handled very well. The X-36 vehicle was designed to fly without the traditional tail surfaces common on most aircraft. Instead, a canard forward of the wing was used as well as split ailerons and an advanced thrust-vectoring nozzle for directional control. The X-36 was unstable in both pitch and yaw axes, so an advanced, single-channel digital fly-by-wire control system (developed with some commercially available components) was put in place to stabilize the aircraft. Using a video camera mounted in the nose of the aircraft and an onboard microphone, the X-36 was remotely controlled by a pilot in a ground station virtual cockpit. A standard fighter-type head-up display (HUD) and a moving-map representation of the vehicle's position within the range in which it flew provided excellent situational awareness for the pilot. This pilot-in-the-loop approach eliminated the need for expensive and complex autonomous flight control systems and the risks associated with their inability to deal with unknown or unforeseen phenomena in flight. Fully fueled the X-36 prototype weighed approximately 1,250 pounds. It was 19 feet long and three

  13. Making the Case for New Research to Support the Integration of Small Unmanned Aircraft Systems into the National Airspace System

    McAdaragh, Raymon M.; Comstock, James R., Jr.; Ghatas, Rania W.; Burdette, Daniel W.; Trujillo, Anna C.


    This paper describes the current state of sUAS regulation, their technical capabilities and the latest technologies that will allow for sUAS NAS integration. The research that is needed to demonstrate sUAS NAS integration capability is identified, and recommendations for conducting this necessary research are suggested.

  14. High temperature aircraft research furnace facilities

    Smith, James E., Jr.; Cashon, John L.


    Focus is on the design, fabrication, and development of the High Temperature Aircraft Research Furnace Facilities (HTARFF). The HTARFF was developed to process electrically conductive materials with high melting points in a low gravity environment. The basic principle of operation is to accurately translate a high temperature arc-plasma gas front as it orbits around a cylindrical sample, thereby making it possible to precisely traverse the entire surface of a sample. The furnace utilizes the gas-tungsten-arc-welding (GTAW) process, also commonly referred to as Tungsten-Inert-Gas (TIG). The HTARFF was developed to further research efforts in the areas of directional solidification, float-zone processing, welding in a low-gravity environment, and segregation effects in metals. The furnace is intended for use aboard the NASA-JSC Reduced Gravity Program KC-135A Aircraft.

  15. Deicing System Protects General Aviation Aircraft


    Kelly Aerospace Thermal Systems LLC worked with researchers at Glenn Research Center on deicing technology with assistance from the Small Business Innovation Research (SBIR) program. Kelly Aerospace acquired Northcoast Technologies Ltd., a firm that had conducted work on a graphite foil heating element under a NASA SBIR contract and developed a lightweight, easy-to-install, reliable wing and tail deicing system. Kelly Aerospace engineers combined their experiences with those of the Northcoast engineers, leading to the certification and integration of a thermoelectric deicing system called Thermawing, a DC-powered air conditioner for single-engine aircraft called Thermacool, and high-output alternators to run them both. Thermawing, a reliable anti-icing and deicing system, allows pilots to safely fly through ice encounters and provides pilots of single-engine aircraft the heated wing technology usually reserved for larger, jet-powered craft. Thermacool, an innovative electric air conditioning system, uses a new compressor whose rotary pump design runs off an energy-efficient, brushless DC motor and allows pilots to use the air conditioner before the engine even starts

  16. Fuel-conservative guidance system for powered-lift aircraft

    Erzberger, H.; Mclean, J. D.


    A concept for automatic terminal area guidance, comprising two modes of operation, was developed and evaluated in flight tests. In the predictive mode, fuel efficient approach trajectories are synthesized in fast time. In the tracking mode, the synthesized trajectories are reconstructed and tracked automatically. An energy rate performance model derived from the lift, drag, and propulsion system characteristics of the aircraft is used in the synthesis algorithm. The method optimizes the trajectory for the initial aircraft position and wind and temperature profiles encountered during each landing approach. The design theory and the results of simulations and flight tests using the Augmentor Wing Jet STOL Research Aircraft are described.

  17. Aircraft System Design and Integration

    D. P. Coldbeck


    Full Text Available In the 1980's the British aircraft industry changed its approach to the management of projects from a system where a project office would manage a project and rely on a series of specialist departments to support them to a more process oriented method, using systems engineering models, whose most outwardly visible signs were the introduction of multidisciplinary product teams. One of the problems with the old method was that the individual departments often had different priorities and projects would get uneven support. The change in the system was only made possible for complex designs by the electronic distribution of data giving instantaneous access to all involved in the project. In 1997 the Defence and Aerospace Foresight Panel emphasised the need for a system engineering approach if British industry was to remain competitive. The Royal Academy of Engineering recognised that the change in working practices also changed what was required of a chartered engineer and redefined their requirements in 1997 [1]. The result of this is that engineering degree courses are now judged against new criteria with more emphasis placed on the relevance to industry rather than on purely academic content. At the University of Glasgow it was realized that the students ought to be made aware of current working practices and that there ought to be a review to ensure that the degrees give students the skills required by industry. It was decided to produce a one week introduction course in systems engineering for Masters of Engineering (MEng students to be taught by both university lecturers and practitioners from a range of companies in the aerospace industry with the hope of expanding the course into a module. The reaction of the students was favourable in terms of the content but it seems ironic that the main criticism was that there was not enough discussion involving the students. This paper briefly describes the individual teaching modules and discusses the

  18. Aircraft interrogation and display system: A ground support equipment for digital flight systems

    Glover, R. D.


    A microprocessor-based general purpose ground support equipment for electronic systems was developed. The hardware and software are designed to permit diverse applications in support of aircraft flight systems and simulation facilities. The implementation of the hardware, the structure of the software, describes the application of the system to an ongoing research aircraft project are described.

  19. National Unmanned Aircraft Systems Project Office

    Goplen, Susan E.; Sloan, Jeff L.


    The U.S. Geological Survey (USGS) National Unmanned Aircraft Systems (UAS) Project Office leads the implementation of UAS technology in the Department of the Interior (DOI). Our mission is to support the transition of UAS into DOI as a new cost-effective tool for collecting remote-sensing data to monitor environmental conditions, respond to natural hazards, recognize the consequences and benefits of land and climate change and conduct wildlife inventories. The USGS is teaming with all DOI agencies and academia as well as local, State, and Tribal governments with guidance from the Federal Aviation Administration and the DOI Office of Aviation Services (OAS) to lead the safe, efficient, costeffective and leading-edge adoption of UAS technology into the scientific research and operational activities of the DOI.

  20. Research on aircraft emissions. Need for future work

    Schmitt, A [German Aerospace Establishment, Cologne (Germany). Transport Research Div.


    Reflecting the present status of the research on aircraft emissions and their impacts upon the atmosphere, task-fields for a work programme for the research on aircraft emissions can be derived. Most important measures are to support the efforts to define adequate reduction measures, and (with highest priority) scenario-writing for the long-term development in aircraft emissions, to be able to include into the decision making process the aspect of in-time-reaction against unwanted future. Besides that, a steady monitoring of global aircraft emissions will be necessary. (author) 5 refs.

  1. Research on aircraft emissions. Need for future work

    Schmitt, A. [German Aerospace Establishment, Cologne (Germany). Transport Research Div.


    Reflecting the present status of the research on aircraft emissions and their impacts upon the atmosphere, task-fields for a work programme for the research on aircraft emissions can be derived. Most important measures are to support the efforts to define adequate reduction measures, and (with highest priority) scenario-writing for the long-term development in aircraft emissions, to be able to include into the decision making process the aspect of in-time-reaction against unwanted future. Besides that, a steady monitoring of global aircraft emissions will be necessary. (author) 5 refs.

  2. Hybrid Propulsion Systems for Remotely Piloted Aircraft Systems

    Mithun Abdul Sathar Eqbal


    Full Text Available The development of more efficient propulsion systems for aerospace vehicles is essential to achieve key objectives. These objectives are to increase efficiency while reducing the amount of carbon-based emissions. Hybrid electric propulsion (HEP is an ideal means to maintain the energy density of hydrocarbon-based fuels and utilize energy-efficient electric machines. A system that integrates different propulsion systems into a single system, with one being electric, is termed an HEP system. HEP systems have been studied previously and introduced into Land, Water, and Aerial Vehicles. This work presents research into the use of HEP systems in Remotely Piloted Aircraft Systems (RPAS. The systems discussed in this paper are Internal Combustion Engine (ICE–Electric Hybrid systems, ICE–Photovoltaic (PV Hybrid systems, and Fuel-Cell Hybrid systems. The improved performance characteristics in terms of fuel consumption and endurance are discussed.

  3. Aircraft Icing Weather Data Reporting and Dissemination System

    Bass, Ellen J.; Minsk, Brian; Lindholm, Tenny; Politovich, Marcia; Reehorst, Andrew (Technical Monitor)


    The long-term operational concept of this research is to develop an onboard aircraft system that assesses and reports atmospheric icing conditions automatically and in a timely manner in order to improve aviation safety and the efficiency of aircraft operations via improved real-time and forecast weather products. The idea is to use current measurement capabilities on aircraft equipped with icing sensors and in-flight data communication technologies as a reporting source. Without requiring expensive avionics upgrades, aircraft data must be processed and available for downlink. Ideally, the data from multiple aircraft can then be integrated (along with other real-time and modeled data) on the ground such that aviation-centered icing hazard metrics for volumes of airspace can be assessed. As the effect of icing on different aircraft types can vary, the information should be displayed in meaningful ways such that multiple types of users can understand the information. That is, information must be presented in a manner to allow users to understand the icing conditions with respect to individual concerns and aircraft capabilities. This research provides progress toward this operational concept by: identifying an aircraft platform capable of digitally capturing, processing, and downlinking icing data; identifying the required in situ icing data processing; investigating the requirements for routing the icing data for use by weather products; developing an icing case study in order to gain insight into major air carrier needs; developing and prototyping icing display concepts based on the National Center for Atmospheric Research's existing diagnostic and forecast experimental icing products; and conducting a usability study for the prototyped icing display concepts.

  4. Smart aircraft fastener evaluation (SAFE) system: a condition-based corrosion detection system for aging aircraft

    Schoess, Jeffrey N.; Seifert, Greg; Paul, Clare A.


    The smart aircraft fastener evaluation (SAFE) system is an advanced structural health monitoring effort to detect and characterize corrosion in hidden and inaccessible locations of aircraft structures. Hidden corrosion is the number one logistics problem for the U.S. Air Force, with an estimated maintenance cost of $700M per year in 1990 dollars. The SAFE system incorporates a solid-state electrochemical microsensor and smart sensor electronics in the body of a Hi-Lok aircraft fastener to process and autonomously report corrosion status to aircraft maintenance personnel. The long-term payoff for using SAFE technology will be in predictive maintenance for aging aircraft and rotorcraft systems, fugitive emissions applications such as control valves, chemical pipeline vessels, and industrial boilers. Predictive maintenance capability, service, and repair will replace the current practice of scheduled maintenance to substantially reduce operational costs. A summary of the SAFE concept, laboratory test results, and future field test plans is presented.

  5. Development of an Unmanned Aircraft Systems Program: ACUASI

    Webley, P. W.; Cahill, C. F.; Rogers, M.; Hatfield, M. C.


    The Alaska Center for Unmanned Aircraft Systems Integration (ACUASI) has developed a comprehensive program that incorporates pilots, flight/mission planners, geoscientists, university undergraduate and graduate students, and engineers together as one. We lead and support unmanned aircraft system (UAS) missions for geoscience research, emergency response, humanitarian needs, engineering design, and policy development. We are the University of Alaska's UAS research program, lead the Federal Aviation Administration (FAA) Pan-Pacific UAS Test Range Complex (PPUTRC) with Hawaii, Oregon, and Mississippi and in 2015 became a core member of the FAA Center of Excellence for UAS Research, managed by Mississippi State University. ACUASI's suite of aircraft include small hand-launched/vertical take-off and landing assets for short-term rapid deployment to large fixed-wing gas powered systems that provide multiple hours of flight time. We have extensive experience in Arctic and sub-Arctic environments and will present on how we have used our aircraft and payloads in numerous missions that include beyond visual line of sight flights, mapping the river ice-hazard in Alaska during spring break-up, and providing UAS-based observations for local Alaskans to navigate through the changing ice shelf of Northern Alaska. Several sensor developments of interest in the near future include building payloads for thermal infrared mapping at high spatial resolutions, combining forward and nadir looking cameras on the same UAS aircraft for topographic mapping, and using neutral density and narrow band filters to map very high temperature thermally active hazards, such as forest fires and volcanic eruptions. The ACUASI team working together provide us the experience, tools, capabilities, and personnel to build and maintain a world class research center for unmanned aircraft systems as well as support both real-time operations and geoscience research.

  6. Impact of aircraft systems within aircraft operation: A MEA trajectory optimisation study

    Seresinhe, R.


    Air transport has been a key component of the socio-economic globalisation. The ever increasing demand for air travel and air transport is a testament to the success of the aircraft. But this growing demand presents many challenges. One of which is the environmental impact due to aviation. The scope of the environmental impact of aircraft can be discussed from many viewpoints. This research focuses on the environmental impact due to aircraft operation. Aircraft operation causes...

  7. Developing aircraft photonic networks for airplane systems

    White, Henry J.; Brownjohn, Nick; Baptista, João


    Achieving affordable high speed fiber optic communication networks for airplane systems has proved to be challenging. In this paper we describe a summary of the EU Framework 7 project DAPHNE (Developing Aircraft Photonic Networks). DAPHNE aimed to exploit photonic technology from terrestrial...

  8. Overview of NASA Electrified Aircraft Propulsion Research for Large Subsonic Transports

    Jansen, Ralph H.; Bowman, Cheryl; Jankovsky, Amy; Dyson, Rodger; Felder, James L.


    NASA is investing in Electrified Aircraft Propulsion (EAP) research as part of the portfolio to improve the fuel efficiency, emissions, and noise levels in commercial transport aircraft. Turboelectric, partially turboelectric, and hybrid electric propulsion systems are the primary EAP configurations being evaluated for regional jet and larger aircraft. The goal is to show that one or more viable EAP concepts exist for narrow body aircraft and mature tall-pole technologies related to those concepts. A summary of the aircraft system studies, technology development, and facility development is provided. The leading concept for mid-term (2035) introduction of EAP for a single aisle aircraft is a tube and wing, partially turbo electric configuration (STARC-ABL), however other viable configurations exist. Investments are being made to raise the TRL level of light weight, high efficiency motors, generators, and electrical power distribution systems as well as to define the optimal turbine and boundary layer ingestion systems for a mid-term tube and wing configuration. An electric aircraft power system test facility (NEAT) is under construction at NASA Glenn and an electric aircraft control system test facility (HEIST) is under construction at NASA Armstrong. The correct building blocks are in place to have a viable, large plane EAP configuration tested by 2025 leading to entry into service in 2035 if the community chooses to pursue that goal.

  9. Transport aircraft loading and balancing system: Using a CLIPS expert system for military aircraft load planning

    Richardson, J.; Labbe, M.; Belala, Y.; Leduc, Vincent


    The requirement for improving aircraft utilization and responsiveness in airlift operations has been recognized for quite some time by the Canadian Forces. To date, the utilization of scarce airlift resources has been planned mainly through the employment of manpower-intensive manual methods in combination with the expertise of highly qualified personnel. In this paper, we address the problem of facilitating the load planning process for military aircraft cargo planes through the development of a computer-based system. We introduce TALBAS (Transport Aircraft Loading and BAlancing System), a knowledge-based system designed to assist personnel involved in preparing valid load plans for the C130 Hercules aircraft. The main features of this system which are accessible through a convivial graphical user interface, consists of the automatic generation of valid cargo arrangements given a list of items to be transported, the user-definition of load plans and the automatic validation of such load plans.

  10. Fuel-Conservation Guidance System for Powered-Lift Aircraft

    Erzberger, Heinz; McLean, John D.


    A technique is described for the design of fuel-conservative guidance systems and is applied to a system that was flight tested on board NASA's sugmentor wing jet STOL research aircraft. An important operational feature of the system is its ability to rapidly synthesize fuel-efficient trajectories for a large set of initial aircraft positions, altitudes, and headings. This feature allows the aircraft to be flown efficiently under conditions of changing winds and air traffic control vectors. Rapid synthesis of fuel-efficient trajectories is accomplished in the airborne computer by fast-time trajectory integration using a simplified dynamic performance model of the aircraft. This technique also ensures optimum flap deployment and, for powered-lift STOL aircraft, optimum transition to low-speed flight. Also included in the design is accurate prediction of touchdown time for use in four-dimensional guidance applications. Flight test results have demonstrated that the automatically synthesized trajectories produce significant fuel savings relative to manually flown conventional approaches.

  11. The Automated Aircraft Rework System (AARS): A system integration approach

    Benoit, Michael J.


    The Mercer Engineering Research Center (MERC), under contract to the United States Air Force (USAF) since 1989, has been actively involved in providing the Warner Robins Air Logistics Center (WR-ALC) with a robotic workcell designed to perform rework automated defastening and hole location/transfer operations on F-15 wings. This paper describes the activities required to develop and implement this workcell, known as the Automated Aircraft Rework System (AARS). AARS is scheduled to be completely installed and in operation at WR-ALC by September 1994.

  12. Advanced Air Data Systems for Commercial Aircraft


    It is possible to get a crude estimate of wind speed and direction while driving a car at night in the rain, with the motion of the raindrop reflections in the headlights providing clues about the wind. The clues are difficult to interpret, though, because of the relative motions of ground, car, air, and raindrops. More subtle interpretation is possible if the rain is replaced by fog, because the tiny droplets would follow the swirling currents of air around an illuminated object, like, for example, a walking pedestrian. Microscopic particles in the air (aerosols) are better for helping make assessments of the wind, and reflective air molecules are best of all, providing the most refined measurements. It takes a bright light to penetrate fog, so it is easy to understand how other factors, like replacing the headlights with the intensity of a searchlight, can be advantageous. This is the basic principle behind a lidar system. While a radar system transmits a pulse of radiofrequency energy and interprets the received reflections, a lidar system works in a similar fashion, substituting a near-optical laser pulse. The technique allows the measurement of relative positions and velocities between the transmitter and the air, which allows measurements of relative wind and of air temperature (because temperature is associated with high-frequency random motions on a molecular level). NASA, as well as the National Oceanic and Atmospheric Administration (NOAA), have interests in this advanced lidar technology, as much of their explorative research requires the ability to measure winds and turbulent regions within the atmosphere. Lidar also shows promise for providing warning of turbulent regions within the National Airspace System to allow commercial aircraft to avoid encounters with turbulence and thereby increase the safety of the traveling public. Both agencies currently employ lidar and optical sensing for a variety of weather-related research projects, such as analyzing

  13. Unmanned Aircraft Systems Integration in the National Airspace System Project

    National Aeronautics and Space Administration — There is an increasing need to fly Unmanned Aircraft Systems (UAS) in the National Airspace System (NAS) to perform missions of vital importance to national security...

  14. Unmanned Aircraft Systems Roadmap, 2005-2030


    UCAV Unmanned Combat Air Vehicle ISS Integrated Sensor Suite UCS Unmanned Control System ITU International Telecommunications Union UFO UHF...RDC) at Groton, CT. These have included alien and drug interdiction along the Texas coast and in the Caribbean, UA launch and recovery systems...altitude aircraft and UA; and narrowband services to support mobile and handheld services as a replacement or follow-on for the UHF Follow-On ( UFO

  15. Applications for Navy Unmanned Aircraft Systems


    comunication intelligence (COMINT) collection, and airborne electronic attack applications. If the UCAS-D program is successful in addressing many of the...position navigation and timing RF radio frequency RSTA reconnaissance, surveillance, and target acquisition SAB Scientific Advisory Board SAR synthetic...Aircraft Systems Roadmap 2005–2030 and Unmanned Systems Roadmap 2007–2032, and the 2003 Air Force Scientific Advisory Board (SAB) UAS study

  16. The Aircraft Electric Taxi System: A Qualitative Multi Case Study

    Johnson, Thomas Frank

    The problem this research addresses is the airline industry, and the seemingly unwillingness attitude towards adopting ways to taxi aircraft without utilizing thrust from the main engines. The purpose of the study was to get a better understanding of the decision-making process of airline executives, in respect to investing in cost saving technology. A qualitative research method is used from personal interviews with 24 airline executives from two major U.S. airlines, related industry journal articles, and aircraft performance data. The following three research questions are addressed. RQ1. Does the cost of jet fuel influence airline executives' decision of adopting the aircraft electric taxi system technology? RQ2 Does the measurable payback period for a return on investment influence airline executives' decision of adopting ETS technology? RQ3. Does the amount of government assistance influence airline executives' decision of adopting ETS technology? A multi case research study design is used with a triangulation technique. The participant perceptions indicate the need to reduce operating costs, they have concerns about investment risk, and they are in favor of future government sponsored performance improvement projects. Based on the framework, findings and implications of this study, a future research paper could focus on the positive environmental effects of the ETS application. A study could be conducted on current airport area air quality and the effects that aircraft main engine thrust taxiing has on the surrounding air quality.

  17. Electric Aircraft Systems Technology Development

    National Aeronautics and Space Administration — This project looks at multiple manned/unmanned full-scale/sub-scale flying research prototypes that will lead to the integration of electric propulsion technology on...

  18. Terminal area automatic navigation, guidance, and control research using the Microwave Landing System (MLS). Part 2: RNAV/MLS transition problems for aircraft

    Pines, S.


    The problems in navigation and guidance encountered by aircraft in the initial transition period in changing from distance measuring equipment, VORTAC, and barometric instruments to the more precise microwave landing system data type navaids in the terminal area are investigated. The effects of the resulting discontinuities on the estimates of position and velocity for both optimal (Kalman type navigation schemes) and fixed gain (complementary type) navigation filters, and the effects of the errors in cross track, track angle, and altitude on the guidance equation and control commands during the critical landing phase are discussed. A method is presented to remove the discontinuities from the navigation loop and to reconstruct an RNAV path designed to land the aircraft with minimal turns and altitude changes.

  19. Next Generation Civil Transport Aircraft Design Considerations for Improving Vehicle and System-Level Efficiency

    Acosta, Diana M.; Guynn, Mark D.; Wahls, Richard A.; DelRosario, Ruben,


    The future of aviation will benefit from research in aircraft design and air transportation management aimed at improving efficiency and reducing environmental impacts. This paper presents civil transport aircraft design trends and opportunities for improving vehicle and system-level efficiency. Aircraft design concepts and the emerging technologies critical to reducing thrust specific fuel consumption, reducing weight, and increasing lift to drag ratio currently being developed by NASA are discussed. Advancements in the air transportation system aimed towards system-level efficiency are discussed as well. Finally, the paper describes the relationship between the air transportation system, aircraft, and efficiency. This relationship is characterized by operational constraints imposed by the air transportation system that influence aircraft design, and operational capabilities inherent to an aircraft design that impact the air transportation system.

  20. Collaborative Systems Driven Aircraft Configuration Design Optimization

    Shiva Prakasha, Prajwal; Ciampa, Pier Davide; Nagel, Björn


    A Collaborative, Inside-Out Aircraft Design approach is presented in this paper. An approach using physics based analysis to evaluate the correlations between the airframe design, as well as sub-systems integration from the early design process, and to exploit the synergies within a simultaneous optimization process. Further, the disciplinary analysis modules involved in the optimization task are located in different organization. Hence, the Airframe and Subsystem design tools are integrated ...

  1. Integrated controls pay-off. [for flight/propulsion aircraft systems

    Putnam, Terrill W.; Christiansen, Richard S.


    It is shown that the integration of the propulsion and flight control systems for high performance aircraft can help reduce pilot workload while simultaneously increasing overall aircraft performance. Results of the Highly Integrated Digital Electronic Control (HiDEC) flight research program are presented to demonstrate the emerging payoffs of controls integration. Ways in which the performance of fighter aircraft can be improved through the use of propulsion for primary aircraft control are discussed. Research being conducted by NASA with the F-18 High Angle-of Attack Research Vehicle is described.

  2. Fire Resistant Aircraft Hydraulic System.


    Chemical Division "Fluorinert" FC-48 - Fluorinated Hydrocarbon "Fluorinert" FC-70 - Fluorinated Hydrocarbon Montedison S. p. A. "Fomblin" Z-04...forming substances such as varnish which could seize a spool valve or other small-clearance sliding surfaces. The test setup is pictorially described in...breakdown products such as solid particles, gels, and sludge’can plug system filters and even small fluid passages, nozzles, and orifices. Varnish -like

  3. Review of Aircraft Electric Power Systems and Architectures

    Zhao, Xin; Guerrero, Josep M.; Wu, Xiaohao


    In recent years, the electrical power capacity is increasing rapidly in more electric aircraft (MEA), since the conventional mechanical, hydraulic and pneumatic energy systems are partly replaced by electrical power system. As a consequence, capacity and complexity of aircraft electric power...... systems (EPS) will increase dramatically and more advanced aircraft EPSs need to be developed. This paper gives a brief description of the constant frequency (CF) EPS, variable frequency (VF) EPS and advanced high voltage (HV) EPS. Power electronics in the three EPS is overviewed. Keywords: Aircraft Power...... System, More Electric Aircraft, Constant Frequency, Variable Frequency, High Voltage....

  4. Systems Analysis Initiated for All-Electric Aircraft Propulsion

    Kohout, Lisa L.


    A multidisciplinary effort is underway at the NASA Glenn Research Center to develop concepts for revolutionary, nontraditional fuel cell power and propulsion systems for aircraft applications. There is a growing interest in the use of fuel cells as a power source for electric propulsion as well as an auxiliary power unit to substantially reduce or eliminate environmentally harmful emissions. A systems analysis effort was initiated to assess potential concepts in an effort to identify those configurations with the highest payoff potential. Among the technologies under consideration are advanced proton exchange membrane (PEM) and solid oxide fuel cells, alternative fuels and fuel processing, and fuel storage. Prior to this effort, the majority of fuel cell analysis done at Glenn was done for space applications. Because of this, a new suite of models was developed. These models include the hydrogen-air PEM fuel cell; internal reforming solid oxide fuel cell; balance-of-plant components (compressor, humidifier, separator, and heat exchangers); compressed gas, cryogenic, and liquid fuel storage tanks; and gas turbine/generator models for hybrid system applications. Initial mass, volume, and performance estimates of a variety of PEM systems operating on hydrogen and reformate have been completed for a baseline general aviation aircraft. Solid oxide/turbine hybrid systems are being analyzed. In conjunction with the analysis efforts, a joint effort has been initiated with Glenn s Computer Services Division to integrate fuel cell stack and component models with the visualization environment that supports the GRUVE lab, Glenn s virtual reality facility. The objective of this work is to provide an environment to assist engineers in the integration of fuel cell propulsion systems into aircraft and provide a better understanding of the interaction between system components and the resulting effect on the overall design and performance of the aircraft. Initially, three

  5. FY 1995 annual report on research and development of propulsion systems for supersonic transport aircraft. Pt. 2. Research and development of methane-fueled engines for aircraft; 1995 nendo choonsoku yusokiyo suishin system no kenkyu kaihatsu seika hokokusho. 2. Methane nenryo kokukiyo engine no kaihatsu



    Described herein are the R and D results of FY 1995 for the total system as part of R and D of propulsion systems for supersonic transport aircraft. For R and D of the intake, researches on aerodynamic flow passages at a combined intake design point of Mach 5 are conducted, in which the effects of the boundary layer are taken into consideration, and the wind tunnel tests are conducted for the combined intake. For R and D of the nozzle, experiments are conducted to establish the techniques for designing exhaust nozzle variable schedules in the turbo region, aerodynamic force in the turbo and ram regions, cooling systems, and composite liners. For R and D of the turbojet engines, the second phase engine tests are conducted with the engine of improved designs and two-dimensional variable exhaust nozzle. The tests produce good results in terms of engine endurance and mechanical soundness of the low-pressure systems. For R and D of the combined cycle engine incorporating the turbojet and ramjet engines, the model tests are conducted to understand aerodynamic characteristics when these engines are switched to each other. (NEDO)

  6. Integrating the Unmanned Aircraft System into the National Airspace System


    HALE High Altitude Long Endurance IFR Instrument Flight Rules ISR Intelligence, Surveillance, and Reconnaissance JFC Joint Force Commander JP...many advantages and disadvantages of unmanned aircraft now made national headlines as UAS executed missions, once reserved for manned aircraft...of this research. To operate above 18,000 feet MSL the UAS must be filed under Instrument Flight Rules, or IFR flight plan. Additionally, the

  7. Future Integrated Systems Concept for Preventing Aircraft Loss-of-Control Accidents

    Belcastro, Christine M.; Jacobson, Steven r.


    Loss of control remains one of the largest contributors to aircraft fatal accidents worldwide. Aircraft loss-of-control accidents are highly complex in that they can result from numerous causal and contributing factors acting alone or (more often) in combination. Hence, there is no single intervention strategy to prevent these accidents. This paper presents future system concepts and research directions for preventing aircraft loss-of-control accidents.

  8. FY 1998 Report on technical results. Part 2 of 2. Research and development of supersonic transportation aircraft propulsion systems (Development of methane-fueled aircraft engines); 1998 nendo choonsoku yusokiyo suishin system no kenkyu kaihatsu seika hokokusho. 2/2. Methane nenryo kokukiyo engine no kaihatsu



    The research and development project is conducted for (1) ramjet systems, (2) high-performance turbojet systems, (3) instrumentation/control systems and (4) total systems, in order to develop methane-fueled supersonic transportation aircraft engines, and the intended targets are achieved. This project has ended with preparation of the overall plans of the target engine. Described herein is the R and D of the combined cycle engine, following the results described in Part 1 of 2. This program includes designs and development of (1) the turbojet engine, and (2) combined cycle engine. The item (1) includes studies on cycles, preparation of the overall plans and studies on the systems, and the item (2) includes the designs, ground and altitudes function tests, and ground noise tests. (NEDO)

  9. The NASA Earth Research-2 (ER-2) Aircraft: A Flying Laboratory for Earth Science Studies

    Navarro, Robert


    The National Aeronautics and Space Administration Dryden Flight Research Center, Edwards, California, has two Lockheed Martin Corporation (Bethesda, Maryland) Earth Research-2 (ER2) aircraft that serve as high-altitude and long-range flying laboratories. The ER-2 aircraft has been successfully utilized to conduct scientific studies of stratospheric and tropospheric chemistry, land-use mapping, disaster assessment, preliminary testing and calibration and validation of satellite sensors. The research missions for the ER-2 aircraft are planned, implemented, and managed by the Dryden Flight Research Center Science Mission Directorate. Maintenance and instrument payload integration is conducted by Dryden personnel. The ER-2 aircraft provides experimenters with a wide array of payload accommodations areas with suitable environment control with required electrical and mechanical interfaces. Missions may be flown out of Dryden or from remote bases worldwide, according to research requirements. The NASA ER-2 aircraft is utilized by a variety of customers, including U.S. Government agencies, civilian organizations, universities, and state governments. The combination of the ER-2 aircraft s range, endurance, altitude, payload power, payload volume and payload weight capabilities complemented by a trained maintenance and operations team provides an excellent and unique platform system to the science community and other customers.

  10. Small Engine Technology (SET) Task 24 Business and Regional Aircraft System Studies

    Lieber, Lysbeth


    This final report has been prepared by Honeywell Engines & Systems, Phoenix, Arizona, a unit of Honeywell International Inc., documenting work performed during the period June 1999 through December 1999 for the National Aeronautics and Space Administration (NASA) Glenn Research Center, Cleveland, Ohio, under the Small Engine Technology (SET) Program, Contract No. NAS3-27483, Task Order 24, Business and Regional Aircraft System Studies. The work performed under SET Task 24 consisted of evaluating the noise reduction benefits compared to the baseline noise levels of representative 1992 technology aircraft, obtained by applying different combinations of noise reduction technologies to five business and regional aircraft configurations. This report focuses on the selection of the aircraft configurations and noise reduction technologies, the prediction of noise levels for those aircraft, and the comparison of the noise levels with those of the baseline aircraft.

  11. Case Study: Test Results of a Tool and Method for In-Flight, Adaptive Control System Verification on a NASA F-15 Flight Research Aircraft

    Jacklin, Stephen A.; Schumann, Johann; Guenther, Kurt; Bosworth, John


    Adaptive control technologies that incorporate learning algorithms have been proposed to enable autonomous flight control and to maintain vehicle performance in the face of unknown, changing, or poorly defined operating environments [1-2]. At the present time, however, it is unknown how adaptive algorithms can be routinely verified, validated, and certified for use in safety-critical applications. Rigorous methods for adaptive software verification end validation must be developed to ensure that. the control software functions as required and is highly safe and reliable. A large gap appears to exist between the point at which control system designers feel the verification process is complete, and when FAA certification officials agree it is complete. Certification of adaptive flight control software verification is complicated by the use of learning algorithms (e.g., neural networks) and degrees of system non-determinism. Of course, analytical efforts must be made in the verification process to place guarantees on learning algorithm stability, rate of convergence, and convergence accuracy. However, to satisfy FAA certification requirements, it must be demonstrated that the adaptive flight control system is also able to fail and still allow the aircraft to be flown safely or to land, while at the same time providing a means of crew notification of the (impending) failure. It was for this purpose that the NASA Ames Confidence Tool was developed [3]. This paper presents the Confidence Tool as a means of providing in-flight software assurance monitoring of an adaptive flight control system. The paper will present the data obtained from flight testing the tool on a specially modified F-15 aircraft designed to simulate loss of flight control faces.

  12. Adaptive and Online Health Monitoring System for Autonomous Aircraft

    Mokhtar, Maizura; Zapatel-Bayo, Sergio Z.; Hussein, Saed; Howe, Joe M.


    Good situation awareness is one of the key attributes required to maintain safe flight, especially for an Unmanned Aerial System (UAS). Good situation awareness can be achieved by incorporating an Adaptive Health Monitoring System (AHMS) to the aircraft. The AHMS monitors the flight outcome or flight behaviours of the aircraft based on its external environmental conditions and the behaviour of its internal systems. The AHMS does this by associating a health value to the aircraft's behaviour b...

  13. Unmanned aircraft system bridge inspection demonstration project phase II final report.


    An Unmanned Aircraft System (UAS) is defined by the Federal Aviation Administration (FAA) as an aircraft operated without the possibility of direct human intervention from within the aircraft. Unmanned aircraft are familiarly referred to as drones, a...

  14. Systems Analysis Developed for All-Electric Aircraft Propulsion

    Kohout, Lisa L.


    There is a growing interest in the use of fuel cells as a power source for all-electric aircraft propulsion as a means to substantially reduce or eliminate environmentally harmful emissions. Among the technologies under consideration for these concepts are advanced proton exchange membrane (PEM) and solid oxide fuel cells (SOFCs), alternative fuels and fuel processing, and fuel storage. A multidisciplinary effort is underway at the NASA Glenn Research Center to develop and evaluate concepts for revolutionary, nontraditional fuel cell power and propulsion systems for aircraft applications. As part of this effort, system studies are being conducted to identify concepts with high payoff potential and associated technology areas for further development. To support this effort, a suite of component models was developed to estimate the mass, volume, and performance for a given system architecture. These models include a hydrogen-air PEM fuel cell; an SOFC; balance-of-plant components (compressor, humidifier, separator, and heat exchangers); compressed gas, cryogenic, and liquid fuel storage tanks; and gas turbine/generator models for hybrid system applications. First-order feasibility studies were completed for an all-electric personal air vehicle utilizing a fuel-cell-powered propulsion system. A representative aircraft with an internal combustion engine was chosen as a baseline to provide key parameters to the study, including engine power and subsystem mass, fuel storage volume and mass, and aircraft range. The engine, fuel tank, and associated ancillaries were then replaced with a fuel cell subsystem. Various configurations were considered including a PEM fuel cell with liquid hydrogen storage, a direct methanol PEM fuel cell, and a direct internal reforming SOFC/turbine hybrid system using liquid methane fuel. Each configuration was compared with the baseline case on a mass and range basis.

  15. Design Of Vertical Take-Off And Landing VTOL Aircraft System

    Win Ko Ko Oo


    Full Text Available Vertical Take Off and Landing Vehicles VTOL are the ones which can take off and land from the same place without need of long runway. This paper presents the design and implementation of tricopter mode and aircraft mode for VTOL aircraft system. Firstly the aircraft design is considered for VTOL mode. And then the mathematical model of the VTOL aircraft is applied to test stability. In this research the KK 2.1 flight controller is used for VTOL mode and aircraft mode. The first part is to develop the VTOL mode and the next part is the transition of VTOL mode to aircraft mode. This paper gives brief idea about numerous types of VTOLs and their advantages over traditional aircraftsand insight to various types of tricopter and evaluates their configurations.

  16. Optimal Geometric Deployment of a Ground Based Pseudolite Navigation System to Track a Landing Aircraft

    Crawford, Matthew P


    .... This testing is especially necessary for precise tasks such as landing an aircraft. Currently, research is being conducted into using a pseudolite-based reference system to use as a truth model for the GPS jamming test...

  17. Development of Cursor-on-Target Control for Semi-Autonomous Unmanned Aircraft Systems

    Crouse, Joshua D


    .... The goal of this research is to develop a preliminary Cursor-on-Target control system to enable the operator to guide the unmanned aircraft with minimal workload during high task phases of flight...

  18. Aircraft Electric/Hybrid-Electric Power and Propulsion Workshop Perspective of the V/STOL Aircraft Systems Tech Committee

    Hange, Craig E.


    This presentation will be given at the AIAA Electric Hybrid-Electric Power Propulsion Workshop on July 29, 2016. The workshop is being held so the AIAA can determine how it can support the introduction of electric aircraft into the aerospace industry. This presentation will address the needs of the community within the industry that advocates the use of powered-lift as important new technologies for future aircraft and air transportation systems. As the current chairman of the VSTOL Aircraft Systems Technical Committee, I will be presenting generalized descriptions of the past research in developing powered-lift and generalized observations on how electric and hybrid-electric propulsion may provide advances in the powered-lift field.

  19. X-36 Tailless Fighter Agility Research Aircraft on lakebed during high-speed taxi tests


    The NASA/McDonnell Douglas Corporation (MDC) X-36 Tailless Fighter Agility Research Aircraft undergoes high-speed taxi tests on Rogers Dry Lake at NASA Dryden Flight Research Center, Edwards, California, on October 17, 1996. The aircraft was tested at speeds up to 85 knots. Normal takeoff speed would be 110 knots. The NASA/Boeing X-36 Tailless Fighter Agility Research Aircraft program successfully demonstrated the tailless fighter design using advanced technologies to improve the maneuverability and survivability of possible future fighter aircraft. The program met or exceeded all project goals. For 31 flights during 1997 at the Dryden Flight Research Center, Edwards, California, the project team examined the aircraft's agility at low speed / high angles of attack and at high speed / low angles of attack. The aircraft's speed envelope reached up to 206 knots (234 mph). This aircraft was very stable and maneuverable. It handled very well. The X-36 vehicle was designed to fly without the traditional tail surfaces common on most aircraft. Instead, a canard forward of the wing was used as well as split ailerons and an advanced thrust-vectoring nozzle for directional control. The X-36 was unstable in both pitch and yaw axes, so an advanced, single-channel digital fly-by-wire control system (developed with some commercially available components) was put in place to stabilize the aircraft. Using a video camera mounted in the nose of the aircraft and an onboard microphone, the X-36 was remotely controlled by a pilot in a ground station virtual cockpit. A standard fighter-type head-up display (HUD) and a moving-map representation of the vehicle's position within the range in which it flew provided excellent situational awareness for the pilot. This pilot-in-the-loop approach eliminated the need for expensive and complex autonomous flight control systems and the risks associated with their inability to deal with unknown or unforeseen phenomena in flight. Fully fueled the X

  20. Unmanned Aircraft Systems (UAS) Integration in the National Airspace System (NAS) Project FY16 Annual Review

    Grindle, Laurie; Hackenberg, Davis


    This presentation gives insight into the research activities and efforts being executed in order to integrate unmanned aircraft systems into the national airspace system. This briefing is to inform others of the UAS-NAS FY16 progress and future directions.

  1. Small Aircraft Transportation System Higher Volume Operations Concept

    Abbott, Terence S.; Consiglio, Maria C.; Baxley, Brian T.; Williams, Daniel M.; Jones, Kenneth M.; Adams, Catherine A.


    This document defines the Small Aircraft Transportation System (SATS) Higher Volume Operations concept. The general philosophy underlying this concept is the establishment of a newly defined area of flight operations called a Self-Controlled Area (SCA). Within the SCA, pilots would take responsibility for separation assurance between their aircraft and other similarly equipped aircraft. This document also provides details for a number of off-nominal and emergency procedures which address situations that could be expected to occur in a future SCA. The details for this operational concept along with a description of candidate aircraft systems to support this concept are provided.

  2. Development of fuel cell systems for aircraft applications based on synthetic fuels

    Pasel, J.; Samsun, R.C.; Doell, C.; Peters, R.; Stolten, D. [Forschungszentrum Juelich GmbH (Germany)


    At present, in the aviation sector considerable scientific project work deals with the development of fuel cell systems based on synthetic fuels to be integrated in future aircraft. The benefits of fuel cell systems in aircraft are various. They offer the possibility to simplify the aircraft layout. Important systems, i.e. the gas turbine powered auxiliary power unit (APU) for electricity supply, the fuel tank inserting system and the water tank, can be substituted by one single system, the fuel cell system. Additionally, the energy demand for ice protection can be covered assisted by fuel cell systems. These measures reduce the consumption of jet fuel, increase aircraft efficiency and allow the operation at low emissions. Additionally, the costs for aircraft related investments, for aircraft maintenance and operation can be reduced. On the background of regular discussions about environmental concerns (global warming) of kerosene Jet A-1 and its availability, which might be restricted in a few years, the aircraft industry is keen to employ synthetic, sulfur-free fuels such as Fischer-Tropsch fuels. These comprise Bio-To-Liquid and Gas-To-Liquid fuels. Within this field of research the Institute of Energy Research (IEF-3) in Juelich develops complete and compact fuel cell systems based on the autothermal reforming of these kinds of fuels in cooperation with industry. This paper reports about this work. (orig.)

  3. Assessing exposure to cosmic radiation aboard aircraft: the SIEVERT system

    Bottolier-Depois, J.F.; Clairand, I.; Blanchard, P.; Dessarps, P.; Lantos, P.


    Full text: The study of naturally-occurring radiation and its associated risk is one of the preoccupations of bodies responsible for radiation protection. Cosmic particle flux is significantly higher on board aircraft that at ground level. Furthermore, its intensity depends on solar activity and eruptions. Due to their professional activity, flight crews and frequent flyers may receive an annual dose of some milliSieverts. This is why the European directive adopted in 1996 requires the aircraft operators to assess the dose and to inform their flight crews about the risk. The effective dose is to be estimated using various experimental and calculation means. In France, the computerized system for flight assessment of exposure to cosmic radiation in air transport (SIEVERT) is delivered to airlines for assisting them in the application of the European directive. This dose assessment tool was developed by the French General Directorate of Civil Aviation (DGAC) and partners: the Institute for Radiation Protection and Nuclear Safety (IRSN), the Paris Observatory and the French Institute for Polar Research - PaulEmile Victor (IPEV). This professional service is available since more than two years on an Internet server accessible to companies with a public section. The system provides doses that consider the routes flown by aircraft. Various results obtained are presented: experimental validation, in particular for the ground level event model (large solar eruption), and statistics on routes and personal doses. (author)

  4. Assessing exposure to cosmic radiation aboard aircraft: the Sievert system

    Bottollier-Depois, J.F.; Biau, A.; Clairand, I.; Saint-Lo, D.; Valero, M.; Blanchard, P.; Dessarps, P.; Lantos, P.


    The study of naturally-occurring radiation and its associated risk is one of the preoccupations of bodies responsible for radiation protection. Cosmic particle flux is significantly higher on board aircraft that at ground level. Furthermore, its intensity depends on solar activity and eruptions. Due to their professional activity, flight crews and frequent flyers may receive an annual dose of some milli-sieverts. This is why the European directive adopted in 1996 requires the aircraft operators to assess the dose and to inform their flight crews about the risk. The effective dose is to be estimated using various experimental and calculation means. In France, the computerized system for flight assessment of exposure to cosmic radiation in air transport (SIEVERT) is delivered to airlines for assisting them in the application of the European directive. This dose assessment tool was developed by the French General Directorate of Civil Aviation (DGAC) and partners: the Institute for Radiation Protection and Nuclear Safety (IRSN), the Paris Observatory and the French Institute for Polar Research - Paul-Emile Victor (IPEV). This professional service is available on an Internet server accessible to companies with a public section. The system provides doses that consider the routes flown by aircraft Various results obtained are presented. (authors)

  5. An Indispensable Ingredient: Flight Research and Aircraft Design

    Gorn, Michael H.


    Flight research-the art of flying actual vehicles in the atmosphere in order to collect data about their behavior-has played a historic and decisive role in the design of aircraft. Naturally, wind tunnel experiments, computational fluid dynamics, and mathematical analyses all informed the judgments of the individuals who conceived of new aircraft. But flight research has offered moments of realization found in no other method. Engineer Dale Reed and research pilot Milt Thompson experienced one such epiphany on March 1, 1963, at the National Aeronautics and Space Administration s Dryden Flight Research Center in Edwards, California. On that date, Thompson sat in the cockpit of a small, simple, gumdrop-shaped aircraft known as the M2-F1, lashed by a long towline to a late-model Pontiac Catalina. As the Pontiac raced across Rogers Dry Lake, it eventually gained enough speed to make the M2-F1 airborne. Thompson braced himself for the world s first flight in a vehicle of its kind, called a lifting body because of its high lift-to-drag ratio. Reed later recounted what he saw:

  6. Correction of static pressure on a research aircraft in accelerated flight using differential pressure measurements

    A. R. Rodi


    Full Text Available A method is described that estimates the error in the static pressure measurement on an aircraft from differential pressure measurements on the hemispherical surface of a Rosemount model 858AJ air velocity probe mounted on a boom ahead of the aircraft. The theoretical predictions for how the pressure should vary over the surface of the hemisphere, involving an unknown sensitivity parameter, leads to a set of equations that can be solved for the unknowns – angle of attack, angle of sideslip, dynamic pressure and the error in static pressure – if the sensitivity factor can be determined. The sensitivity factor was determined on the University of Wyoming King Air research aircraft by comparisons with the error measured with a carefully designed sonde towed on connecting tubing behind the aircraft – a trailing cone – and the result was shown to have a precision of about ±10 Pa over a wide range of conditions, including various altitudes, power settings, and gear and flap extensions. Under accelerated flight conditions, geometric altitude data from a combined Global Navigation Satellite System (GNSS and inertial measurement unit (IMU system are used to estimate acceleration effects on the error, and the algorithm is shown to predict corrections to a precision of better than ±20 Pa under those conditions. Some limiting factors affecting the precision of static pressure measurement on a research aircraft are discussed.

  7. FY 1998 Report on technical results. Part 1 of 2. Research and development of supersonic transportation aircraft propulsion systems (Development of methane-fueled aircraft engines); 1998 nendo choonsoku yusokiyo suishin system no kenkyu kaihatsu seika hokokusho. 1/2. Methane nenryo kokukiyo engine no kaihatsu



    The research and development project is conducted for (1) ramjet systems, (2) high-performance turbojet systems, (3) instrumentation/control systems and (4) total systems, in order to develop methane-fueled supersonic transportation aircraft engines. For the item (1), the ram combustor for the target engine is designed to evaluate its performance, and the shock-position within the dummy intake is successfully controlled by the variable exhaust nozzle. For the item (2), the R and D efforts are directed to the fans and low-pressure turbines, the former covering the studies on the single-stage elements for the fans of high flow rate, and the elements for the 2-stage, high-efficiency, high-load fans. For the item (3), the R and D efforts are directed to the electronic control systems and electro-optical measurement systems, the latter including development of the improved optical positioning and rotational sensors operating at high temperature of 350 degrees C. For the item (4), the R and D efforts are directed to intake nozzles as the total system component, noise reduction technology, and cooling and new material application technologies. (NEDO)

  8. A hybrid electrical power system for aircraft application.

    Lee, C. H.; Chin, C. Y.


    Possible improvements to present aircraft electrical power systems for use in future advanced types of aircraft have been investigated. The conventional power system is examined, the characteristics of electric loads are reviewed, and various methods of power generation and distribution are appraised. It is shown that a hybrid system, with variable-frequency generation and high-voltage dc distribution, could overcome some of the limitations of the conventional system.

  9. Numerical and classical analysis of V/STOL aircraft using selected propulsion systems

    Wilson, S. B., III; Kidwell, G. H., Jr.; Christiansen, R. S.


    The development needed for the evolution of selected V/STOL research vehicles into optimized antisubmarine warfare (ASW) aircraft configurations, using numerical procedures and traditional analytical methods, has been examined. Three propulsion systems, which represent state-of-the-art development aimed at solving the thrust-vectoring and attitude-control problems of V/STOL aircraft, are analyzed. The use of NASA computer programs for aircraft synthesis (ACSYNT), and for optimizing configurations (COMMIN), coupled with contractor-supplied propulsion system data provides for accurate performance prediction of the selected ASW configurations. Particular emphasis on the transition phase between the research vehicle and the optimized configuration demonstrates the strengths and weaknesses of using generic research aircraft instead of building prototypes to demonstrate new technology

  10. European Commission research on aircraft impacts in the atmosphere

    Amanatidis, G T; Angeletti, G [European Commission (CEC), Brussels (Belgium)


    Aircraft engines release in the troposphere and lower stratosphere a number of chemical compounds (NO{sub x}, CO{sub 2}, CO, H{sub 2}O, hydrocarbons, sulphur, soot, etc.) which could potentially affect the ozone layer and the climate through chemical, dynamical and radiative changes. The global amount of gases and particles emitted by current subsonic and projected supersonic aircraft fleets can be estimated, but significant uncertainties remain about the fate of these emissions in the atmosphere. The European efforts concerning these potential atmospheric impacts of aircraft emissions are conducted by the Environment and Climate Research Programme of the European Commission (EC) as well as by national programmes of the Member States of the European Union (EU). The European research activities in this field, are described, divided for practical reasons in two periods. The first includes activities supported under the 3. Framework Programme for R and D activities which covered the period from 1992 up to 1996, while the second period has started in early 1996 and is supported under the 4. Framework Programme. (R.P.) 6 refs.

  11. European Commission research on aircraft impacts in the atmosphere

    Amanatidis, G.T.; Angeletti, G. [European Commission (CEC), Brussels (Belgium)


    Aircraft engines release in the troposphere and lower stratosphere a number of chemical compounds (NO{sub x}, CO{sub 2}, CO, H{sub 2}O, hydrocarbons, sulphur, soot, etc.) which could potentially affect the ozone layer and the climate through chemical, dynamical and radiative changes. The global amount of gases and particles emitted by current subsonic and projected supersonic aircraft fleets can be estimated, but significant uncertainties remain about the fate of these emissions in the atmosphere. The European efforts concerning these potential atmospheric impacts of aircraft emissions are conducted by the Environment and Climate Research Programme of the European Commission (EC) as well as by national programmes of the Member States of the European Union (EU). The European research activities in this field, are described, divided for practical reasons in two periods. The first includes activities supported under the 3. Framework Programme for R and D activities which covered the period from 1992 up to 1996, while the second period has started in early 1996 and is supported under the 4. Framework Programme. (R.P.) 6 refs.

  12. Plotting the Flight Envelope of an Unmanned Aircraft System Air Vehicle

    Glīzde Nikolajs


    Full Text Available The research is focused on the development of an Unmanned Aircraft System. One of the design process steps in the preliminary design phase is the calculation of the flight envelope for the Unmanned Aircraft System air vehicle. The results obtained will be used in the further design process. A flight envelope determines the minimum requirements for the object in Certification Specifications. The present situation does not impose any Certification Specification requirements for the class of the Unmanned Aircraft System under the development of the general European Union trend defined in the road map for the implementation of the Unmanned Aircraft System. However, operation in common European Aerospace imposes the necessity for regulations for micro class systems as well.

  13. V/STOL tilt rotor aircraft study. Volume 6: Preliminary design of a composite wing for tilt rotor research aircraft

    Soule, V. A.; Badri-Nath, Y.


    The results of a study of the use of composite materials in the wing of a tilt rotor aircraft are presented. An all-metal tilt rotor aircraft was first defined to provide a basis for comparing composite with metal structure. A configuration study was then done in which the wing of the metal aircraft was replaced with composite wings of varying chord and thickness ratio. The results of this study defined the design and performance benefits obtainable with composite materials. Based on these results the aircraft was resized with a composite wing to extend the weight savings to other parts of the aircraft. A wing design was then selected for detailed structural analysis. A development plan including costs and schedules to develop this wing and incorporate it into a proposed flight research tilt rotor vehicle has been devised.

  14. Modern trends of aircraft fly-by-wire systems

    С. С. Юцкевич


    Full Text Available Specifics of civil aviation modern transport aircraft fly-by-wire control systems are described. A comparison of the systems-level hardware and software, expressed through modes of guidance, provision of aircraft Airbus A-320, Boeing B-777, Tupolev Tu-214, Sukhoi Superjet SSJ-100 are carried out. The possibility of transition from mechanical control wiring to control through fly-by-wire system in the backup channel is shown.

  15. Windhover Unmanned Aircraft Systems (UAS) Software Ecosystem, Phase II

    National Aeronautics and Space Administration — The safety of Unmanned Aircraft Systems (UAS) flights is currently the responsibility of the pilot who is required to keep the vehicle within their line of sight...

  16. Diagnosing Faults in Electrical Power Systems of Spacecraft and Aircraft

    National Aeronautics and Space Administration — Electrical power systems play a critical role in spacecraft and aircraft, and they exhibit a rich variety of failure modes. This paper discusses electrical power...

  17. Core Flight Software for Unmanned Aircraft Systems, Phase I

    National Aeronautics and Space Administration — Use of Unmanned Aircraft Systems (UAS) is increasing worldwide, but multiple technical barriers restrict the greater use of UASs. The safe operation of UASs in the...

  18. Aircraft Nodal Data Acquisition System (ANDAS), Phase II

    National Aeronautics and Space Administration — Development of an Aircraft Nodal Data Acquisition System (ANDAS) based upon the short haul Zigbee networking standard is proposed. It employs a very thin (135 um)...

  19. Advanced fuel system technology for utilizing broadened property aircraft fuels

    Reck, G. M.


    Possible changes in fuel properties are identified based on current trends and projections. The effect of those changes with respect to the aircraft fuel system are examined and some technological approaches to utilizing those fuels are described.

  20. Water Supply Systems For Aircraft Fire And Rescue Protection


    This Advisory Circular (AC) provides guidance for the selection : of a water source and standards for the design of a distribution system to : support aircraft rescue and fire fighting (ARFF) service operations on : airports.

  1. Light transport and general aviation aircraft icing research requirements

    Breeze, R. K.; Clark, G. M.


    A short term and a long term icing research and technology program plan was drafted for NASA LeRC based on 33 separate research items. The specific items listed resulted from a comprehensive literature search, organized and assisted by a computer management file and an industry/Government agency survey. Assessment of the current facilities and icing technology was accomplished by presenting summaries of ice sensitive components and protection methods; and assessments of penalty evaluation, the experimental data base, ice accretion prediction methods, research facilities, new protection methods, ice protection requirements, and icing instrumentation. The intent of the research plan was to determine what icing research NASA LeRC must do or sponsor to ultimately provide for increased utilization and safety of light transport and general aviation aircraft.

  2. Inerting Aircraft Fuel Systems Using Exhaust Gases

    Hehemann, David G.


    Our purpose in this proposal was to determine the feasibility of using carbon dioxide, possibly obtained from aircraft exhaust gases as a substance to inert the fuel contained in fuel tanks aboard aircraft. To do this, we decided to look at the effects carbon dioxide has upon commercial Jet-A aircraft fuel. In particular, we looked at the solubility of CO2 in Jet-A fuel, the pumpability of CO2-saturated Jet-A fuel, the flashpoint of Jet-A fuel under various mixtures of air and CO2, the static outgassing of CO2-Saturated Jet-A fuel and the dynamic outgassing of Jet-A fuel during pumping of Jet-A fuel.



    Full Text Available The flight subset control is required during the aviation equipment test flights. In order to achieve this objective the complex consisting of strap down inertial navigation system (SINS and user equipment of satellite navigation systems (SNS can be used. Such combination needs to be used for error correction in positioning which is accumulated in SINS with time. This article shows the research results of the inertial navigation system (INS model. The results of the position- ing error calculation for various INS classes are given. Each of the examined INS has a different accumulated error for the same time lag. The methods of combining information of INS and SRNS are covered. The results obtained can be applied for upgrading the aircraft flight and navigation complexes. In particular, they can allow to continuously determine speed, coordinates, angular situation and repositioning rate of change of axes of the instrument frame.

  4. Advanced energy systems (APU) for large commercial aircraft

    Westenberger, A.; Bleil, J.; Arendt, M. [Airbus Deutschland GmbH, Hamburg (Germany)


    The intention of using a highly integrated component using on fuel cell technology installed on board of large commercial passenger aircraft for the generation of onboard power for the systems demand during an entire aircraft mission was subject of several studies. The results of these studies have been based on the simulation of the whole system in the context of an aircraft system environment. In front of the work stood the analyses of different fuel cell technologies and the analyses of the aircraft system environment. Today onboard power is provided on ground by an APU and in flight by the main engines. In order to compare fuel cell technology with the today's usual gas turbine operational characteristics have been analysed. A second analysis was devoted to the system demand for typical aircraft categories. The MEA system concept was supposed in all cases. The favourable concept represented an aircraft propelled by conventional engines with starter generator units, providing AC electrical power, covering in total proximately half of the power demand and a component based on fuel cell technology. This component provided electrical DC power, clean potable water, thermal energy at 180 degrees Celsius and nitrogen enriched air for fire suppression and fire extinguishing agent. In opposite of a usual gas turbine based APU, this new unit was operated as the primary power system. (orig.)

  5. Unmanned Aircraft Systems for Logistics Applications


    supply stock levels at acceptable risk by employing a mix of “ jingle air” (Mi-8 helicopters and small, fixed-wing aircraft flown by contractor air...crews), “ jingle trucks” (locally contracted trucks), and “green air” (U.S. Army aviation, typically CH-47s, though not exclu- sively) to move materiel

  6. Small Aircraft Transportation System, Higher Volume Operations Concept: Normal Operations

    Abbott, Terence S.; Jones, Kenneth M.; Consiglio, Maria C.; Williams, Daniel M.; Adams, Catherine A.


    This document defines the Small Aircraft Transportation System (SATS), Higher Volume Operations (HVO) concept for normal conditions. In this concept, a block of airspace would be established around designated non-towered, non-radar airports during periods of poor weather. Within this new airspace, pilots would take responsibility for separation assurance between their aircraft and other similarly equipped aircraft. Using onboard equipment and procedures, they would then approach and land at the airport. Departures would be handled in a similar fashion. The details for this operational concept are provided in this document.

  7. Civil aircraft side-facing seat research summary.


    The Federal Aviation Administration (FAA) has standards and regulations that are intended to protect aircraft : occupants in the event of a crash. However, side-facing seats were not specifically addressed when aircraft seat : dynamic test standards ...

  8. Enhancing Combat Survivability of Existing Unmanned Aircraft Systems


    1 With efforts underway to develop rules integrating UAS’s into the National Airspace System, and...realizing that Federal Aviation Administration rule -making authority applied only to "aircraft," the term Remotely Operated Aircraft (ROA) was coined in... [10] Peter La Franchi , “US study recommends self-protection for UAVs”, Flight International, 7

  9. Neural network application to aircraft control system design

    Troudet, Terry; Garg, Sanjay; Merrill, Walter C.


    The feasibility of using artificial neural network as control systems for modern, complex aerospace vehicles is investigated via an example aircraft control design study. The problem considered is that of designing a controller for an integrated airframe/propulsion longitudinal dynamics model of a modern fighter aircraft to provide independent control of pitch rate and airspeed responses to pilot command inputs. An explicit model following controller using H infinity control design techniques is first designed to gain insight into the control problem as well as to provide a baseline for evaluation of the neurocontroller. Using the model of the desired dynamics as a command generator, a multilayer feedforward neural network is trained to control the vehicle model within the physical limitations of the actuator dynamics. This is achieved by minimizing an objective function which is a weighted sum of tracking errors and control input commands and rates. To gain insight in the neurocontrol, linearized representations of the nonlinear neurocontroller are analyzed along a commanded trajectory. Linear robustness analysis tools are then applied to the linearized neurocontroller models and to the baseline H infinity based controller. Future areas of research identified to enhance the practical applicability of neural networks to flight control design.

  10. Neural network application to aircraft control system design

    Troudet, Terry; Garg, Sanjay; Merrill, Walter C.


    The feasibility of using artificial neural networks as control systems for modern, complex aerospace vehicles is investigated via an example aircraft control design study. The problem considered is that of designing a controller for an integrated airframe/propulsion longitudinal dynamics model of a modern fighter aircraft to provide independent control of pitch rate and airspeed responses to pilot command inputs. An explicit model following controller using H infinity control design techniques is first designed to gain insight into the control problem as well as to provide a baseline for evaluation of the neurocontroller. Using the model of the desired dynamics as a command generator, a multilayer feedforward neural network is trained to control the vehicle model within the physical limitations of the actuator dynamics. This is achieved by minimizing an objective function which is a weighted sum of tracking errors and control input commands and rates. To gain insight in the neurocontrol, linearized representations of the nonlinear neurocontroller are analyzed along a commanded trajectory. Linear robustness analysis tools are then applied to the linearized neurocontroller models and to the baseline H infinity based controller. Future areas of research are identified to enhance the practical applicability of neural networks to flight control design.

  11. Human systems integration in remotely piloted aircraft operations.

    Tvaryanas, Anthony P


    The role of humans in remotely piloted aircraft (RPAs) is qualitatively different from manned aviation, lessening the applicability of aerospace medicine human factors knowledge derived from traditional cockpits. Aerospace medicine practitioners should expect to be challenged in addressing RPA crewmember performance. Human systems integration (HSI) provides a model for explaining human performance as a function of the domains of: human factors engineering; personnel; training; manpower; environment, safety, and occupational health (ESOH); habitability; and survivability. RPA crewmember performance is being particularly impacted by issues involving the domains of human factors engineering, personnel, training, manpower, ESOH, and habitability. Specific HSI challenges include: 1) changes in large RPA operator selection and training; 2) human factors engineering deficiencies in current RPA ground control station design and their impact on human error including considerations pertaining to multi-aircraft control; and 3) the combined impact of manpower shortfalls, shiftwork-related fatigue, and degraded crewmember effectiveness. Limited experience and available research makes it difficult to qualitatively or quantitatively predict the collective impact of these issues on RPA crewmember performance. Attending to HSI will be critical for the success of current and future RPA crewmembers. Aerospace medicine practitioners working with RPA crewmembers should gain first-hand knowledge of their task environment while the larger aerospace medicine community needs to address the limited information available on RPA-related aerospace medicine human factors. In the meantime, aeromedical decisions will need to be made based on what is known about other aerospace occupations, realizing this knowledge may have only partial applicability.

  12. Advanced Oxygen Systems for Aircraft (Systemes d’Oxygene Avances)


    Oxygen Generating System (NAOGS), SAM-TR-80-12, Brooks AFB TX 78235, 1980. 11. Horch TC, Miller RL, Bomar JB, Tedor JB, Holden RD, Ikels KG, and...sieve oxygen generation sys- tem. Data from Horch et al (15). cabin altitude. The minimum and maximum oxygen concen- tration lines depict AV-8A Aircraft; Naval Air Test Center Report No. SY-136R-81, 1981. 15. Horch TC, Miller RL, Bomar JB Jr, Tedor JB, Holden RD, Ikels KG, and

  13. Mathematical Modeling of the Braking System of Wheeled Mainline Aircraft

    I. S. Shumilov


    Full Text Available The braking system of the landing gear wheels of a mainline aircraft has to meet mandatory requirements laid out in the Aviation Regulations AP-25 (Para 25.735. «Brakes and brake systems". These requirements are essential when creating the landing gear wheel brake control system (WBCS and are used as main initial data in its mathematical modeling. The WBCS is one of the most important systems to ensure the safe completion of the flight. It is a complex of devices, i.e. units (hydraulic, electrical, and mechanical, connected through piping, wiring, mechanical constraints. This complex should allow optimizing the braking process when a large number of parameters change. The most important of them are the following: runway friction coefficient (RFC, lifting force, weight and of the aircraft, etc. The main structural elements involved in braking the aircraft are: aircraft wheels with pneumatics (air tires and brake discs, WBCS, and cooling system of gear wheels when braking.To consider the aircraft deceleration on the landing run is of essence at the stage of design, development, and improvement of brakes and braking systems. Based on analysis of equation of the aircraft motion and energy balance can be determined energy loading and its basic design parameters, braking distances and braking time.As practice and analysis of energy loading show, they (brake + wheel absorb the aircraftpossessed kinetic energy at the start of braking as much as 60-70%, 70-80%, and 80-90%, respectively, under normal increased, and emergency operating conditions. The paper presents a procedure for the rapid calculation of energy loading of the brake wheel.Currently, the mainline aircrafts use mainly electrohydraulic brake systems in which there are the main, backup, and emergency-parking brake systems. All channels are equipped with automatic anti-skid systems. Their presence in the emergency (the third reserve channel significantly improves the reliability and safety of

  14. Developing a Formal Specification for the Mission Systems of a Maritime Surveillance Aircraft

    Petrucci, Laure; Billington, Jonathan; Kristensen, Lars Michael


    The mission system of an aircraft is a complex real-time distributed system consisting of a mission control computer, different kinds of devices interconnected by a number of serial data buses. The complexity and real-time requirements of mission systems have motivated research into the applicati...... system with Coloured Petri Nets and analysed the model using state spaces. Here, we describe how this model was refined and modified to obtain a Coloured Petri Net model for the AP-3C Orion maritime surveillance aircraft....

  15. Advanced Fiber Optic-Based Sensing Technology for Unmanned Aircraft Systems

    Richards, Lance; Parker, Allen R.; Piazza, Anthony; Ko, William L.; Chan, Patrick; Bakalyar, John


    This presentation provides an overview of fiber optic sensing technology development activities performed at NASA Dryden in support of Unmanned Aircraft Systems. Examples of current and previous work are presented in the following categories: algorithm development, system development, instrumentation installation, ground R&D, and flight testing. Examples of current research and development activities are provided.

  16. Development and Flight Testing of a Neural Network Based Flight Control System on the NF-15B Aircraft

    Bomben, Craig R.; Smolka, James W.; Bosworth, John T.; Silliams-Hayes, Peggy S.; Burken, John J.; Larson, Richard R.; Buschbacher, Mark J.; Maliska, Heather A.


    The Intelligent Flight Control System (IFCS) project at the NASA Dryden Flight Research Center, Edwards AFB, CA, has been investigating the use of neural network based adaptive control on a unique NF-15B test aircraft. The IFCS neural network is a software processor that stores measured aircraft response information to dynamically alter flight control gains. In 2006, the neural network was engaged and allowed to learn in real time to dynamically alter the aircraft handling qualities characteristics in the presence of actual aerodynamic failure conditions injected into the aircraft through the flight control system. The use of neural network and similar adaptive technologies in the design of highly fault and damage tolerant flight control systems shows promise in making future aircraft far more survivable than current technology allows. This paper will present the results of the IFCS flight test program conducted at the NASA Dryden Flight Research Center in 2006, with emphasis on challenges encountered and lessons learned.

  17. Preliminary Design of Aerial Spraying System for Microlight Aircraft

    Omar, Zamri; Idris, Nurfazliawati; Rahim, M. Zulafif


    Undoubtedly agricultural is an important sector because it provides essential nutrients for human, and consequently is among the biggest sector for economic growth worldwide. It is crucial to ensure crops production is protected from any plant diseases and pests. Thus aerial spraying system on crops is developed to facilitate farmers to for crops pests control and it is very effective spraying method especially for large and hilly crop areas. However, the use of large aircraft for aerial spaying has a relatively high operational cost. Therefore, microlight aircraft is proposed to be used for crops aerial spraying works for several good reasons. In this paper, a preliminary design of aerial spraying system for microlight aircraft is proposed. Engineering design methodology is adopted in the development of the aerial sprayer and steps involved design are discussed thoroughly. A preliminary design for the microlight to be attached with an aerial spraying system is proposed.


    Blessing D. Ogunvoul


    Full Text Available This article is devoted to studying of fault diagnosis of an aircraft control surfaces using fault models to identify specific causes. Such failures as jamming, vibration, extreme run out and performance decrease are covered.It is proved that in case of an actuator failure or flight control structural damage, the aircraft performance decreases significantly. Commercial aircraft frequently appear in the areas of military conflicts and terrorist activity, where the risk of shooting attack is high, for example in Syria, Iraq, South Sudan etc. Accordingly, it is necessary to create and assess the fault model to identify the flight control failures.The research results demonstrate that the adequate fault model is the first step towards the managing the challenges of loss of aircraft controllability. This model is also an element of adaptive failure-resistant management model.The research considers the relationship between the parameters of an i th state of a control surface and its angular rate, also parameters classification associated with specific control surfaces in order to avoid conflict/inconsistency in the determination of a faulty control surface and its condition.The results of the method obtained in this article can be used in the design of an aircraft automated control system for timely identification of fault/failure of a specific control surface, that would contribute to an effective role aimed at increasing the survivability of an aircraft and increasing the acceptable level of safety due to loss of control.

  19. Study of advanced fuel system concepts for commercial aircraft

    Coffinberry, G. A.


    An analytical study was performed in order to assess relative performance and economic factors involved with alternative advanced fuel systems for future commercial aircraft operating with broadened property fuels. The DC-10-30 wide-body tri-jet aircraft and the CF6-8OX engine were used as a baseline design for the study. Three advanced systems were considered and were specifically aimed at addressing freezing point, thermal stability and lubricity fuel properties. Actual DC-10-30 routes and flight profiles were simulated by computer modeling and resulted in prediction of aircraft and engine fuel system temperatures during a nominal flight and during statistical one-day-per-year cold and hot flights. Emergency conditions were also evaluated. Fuel consumption and weight and power extraction results were obtained. An economic analysis was performed for new aircraft and systems. Advanced system means for fuel tank heating included fuel recirculation loops using engine lube heat and generator heat. Environmental control system bleed air heat was used for tank heating in a water recirculation loop. The results showed that fundamentally all of the three advanced systems are feasible but vary in their degree of compatibility with broadened-property fuel.

  20. Systems and Methods for Collaboratively Controlling at Least One Aircraft

    Estkowski, Regina I. (Inventor)


    An unmanned vehicle management system includes an unmanned aircraft system (UAS) control station controlling one or more unmanned vehicles (UV), a collaborative routing system, and a communication network connecting the UAS and the collaborative routing system. The collaborative routing system being configured to receive flight parameters from an operator of the UAS control station and, based on the received flight parameters, automatically present the UAS control station with flight plan options to enable the operator to operate the UV in a defined airspace.

  1. Electromagnetic launch systems for civil aircraft assisted take-off

    Bertola Luca


    Full Text Available This paper considers the feasibility of different technologies for an electromagnetic launcher to assist civil aircraft take-off. This method is investigated to reduce the power required from the engines during initial acceleration. Assisted launch has the potential of reducing the required runway length, reducing noise near airports and improving overall aircraft efficiency through reducing engine thrust requirements. The research compares two possible linear motor topologies which may be efficaciously used for this application. The comparison is made on results from both analytical and finite element analysis (FEA.

  2. Defining the Ecological Coefficient of Performance for an Aircraft Propulsion System

    Şöhret, Yasin


    The aircraft industry, along with other industries, is considered responsible these days regarding environmental issues. Therefore, the performance evaluation of aircraft propulsion systems should be conducted with respect to environmental and ecological considerations. The current paper aims to present the ecological coefficient of performance calculation methodology for aircraft propulsion systems. The ecological coefficient performance is a widely-preferred performance indicator of numerous energy conversion systems. On the basis of thermodynamic laws, the methodology used to determine the ecological coefficient of performance for an aircraft propulsion system is parametrically explained and illustrated in this paper for the first time. For a better understanding, to begin with, the exergy analysis of a turbojet engine is described in detail. Following this, the outputs of the analysis are employed to define the ecological coefficient of performance for a turbojet engine. At the end of the study, the ecological coefficient of performance is evaluated parametrically and discussed depending on selected engine design parameters and performance measures. The author asserts the ecological coefficient of performance to be a beneficial indicator for researchers interested in aircraft propulsion system design and related topics.

  3. Unmanned Aircraft Systems (UAS) Integration in the National Airspace System (NAS) Project KDP-C Review

    Grindle, Laurie; Sakahara, Robert; Hackenberg, Davis; Johnson, William


    The topics discussed are the UAS-NAS project life-cycle and ARMD thrust flow down, as well as the UAS environments and how we operate in those environments. NASA's Armstrong Flight Research Center at Edwards, CA, is leading a project designed to help integrate unmanned air vehicles into the world around us. The Unmanned Aircraft Systems Integration in the National Airspace System project, or UAS in the NAS, will contribute capabilities designed to reduce technical barriers related to safety and operational challenges associated with enabling routine UAS access to the NAS. The project falls under the Integrated Systems Research Program office managed at NASA Headquarters by the agency's Aeronautics Research Mission Directorate. NASA's four aeronautics research centers - Armstrong, Ames Research Center, Langley Research Center, and Glenn Research Center - are part of the technology development project. With the use and diversity of unmanned aircraft growing rapidly, new uses for these vehicles are constantly being considered. Unmanned aircraft promise new ways of increasing efficiency, reducing costs, enhancing safety and saving lives 460265main_ED10-0132-16_full.jpg Unmanned aircraft systems such as NASA's Global Hawks (above) and Predator B named Ikhana (below), along with numerous other unmanned aircraft systems large and small, are the prime focus of the UAS in the NAS effort to integrate them into the national airspace. Credits: NASA Photos 710580main_ED07-0243-37_full.jpg The UAS in the NAS project envisions performance-based routine access to all segments of the national airspace for all unmanned aircraft system classes, once all safety-related and technical barriers are overcome. The project will provide critical data to such key stakeholders and customers as the Federal Aviation Administration and RTCA Special Committee 203 (formerly the Radio Technical Commission for Aeronautics) by conducting integrated, relevant system-level tests to adequately address

  4. Evaluating the Impact of Unrestricted Operation of Unmanned Aircraft Systems in the National Airspace System

    National Aeronautics and Space Administration — Unmanned aircraft systems (UAS) can be used for scientific, emergency management, and defense missions, among others. The existing federal air regulations,...

  5. An artificial intelligence-based structural health monitoring system for aging aircraft

    Grady, Joseph E.; Tang, Stanley S.; Chen, K. L.


    To reduce operating expenses, airlines are now using the existing fleets of commercial aircraft well beyond their originally anticipated service lives. The repair and maintenance of these 'aging aircraft' has therefore become a critical safety issue, both to the airlines and the Federal Aviation Administration. This paper presents the results of an innovative research program to develop a structural monitoring system that will be used to evaluate the integrity of in-service aerospace structural components. Currently in the final phase of its development, this monitoring system will indicate when repair or maintenance of a damaged structural component is necessary.

  6. Meeting of Experts on NASA's Unmanned Aircraft System (UAS) Integration in the National Airspace Systems (NAS) Project

    Wolfe, Jean; Bauer, Jeff; Bixby, C.J.; Lauderdale, Todd; Shively, Jay; Griner, James; Hayhurst, Kelly


    Topics discussed include: Aeronautics Research Mission Directorate Integrated Systems Research Program (ISRP) and UAS Integration in the NAS Project; UAS Integration into the NAS Project; Separation Assurance and Collision Avoidance; Pilot Aircraft Interface Objectives/Rationale; Communication; Certification; and Integrated Tests and Evaluations.

  7. Aircraft Engine Noise Research and Testing at the NASA Glenn Research Center

    Elliott, Dave


    The presentation will begin with a brief introduction to the NASA Glenn Research Center as well as an overview of how aircraft engine noise research fits within the organization. Some of the NASA programs and projects with noise content will be covered along with the associated goals of aircraft noise reduction. Topics covered within the noise research being presented will include noise prediction versus experimental results, along with engine fan, jet, and core noise. Details of the acoustic research conducted at NASA Glenn will include the test facilities available, recent test hardware, and data acquisition and analysis methods. Lastly some of the actual noise reduction methods investigated along with their results will be shown.

  8. Ikhana: Unmanned Aircraft System Western States Fire Missions. Monographs in Aerospace History, Number 44

    Merlin, Peter W.


    In 2006, NASA Dryden Flight Research Center, Edwards, Calif., obtained a civil version of the General Atomics MQ-9 unmanned aircraft system and modified it for research purposes. Proposed missions included support of Earth science research, development of advanced aeronautical technology, and improving the utility of unmanned aerial systems in general. The project team named the aircraft Ikhana a Native American Choctaw word meaning intelligent, conscious, or aware in order to best represent NASA research goals. Building on experience with these and other unmanned aircraft, NASA scientists developed plans to use the Ikhana for a series of missions to map wildfires in the western United States and supply the resulting data to firefighters in near-real time. A team at NASA Ames Research Center, Mountain View, Calif., developed a multispectral scanner that was key to the success of what became known as the Western States Fire Missions. Carried out by team members from NASA, the U.S. Department of Agriculture Forest Service, National Interagency Fire Center, National Oceanic and Atmospheric Administration, Federal Aviation Administration, and General Atomics Aeronautical Systems Inc., these flights represented an historic achievement in the field of unmanned aircraft technology.

  9. Enabling Use of Unmanned Aircraft Systems for Arctic Environmental Monitoring

    Storvold, Rune; la Cour-Harbo, Anders; Mulac, Brenda

    , technical and logistical challenges facing scientists intending to use UAS in their arctic work. Future planned campaigns and science goals under the Coordinated Investigation of Climate-Cryosphere Interactions (CICCI) umbrella will be outlined. A new AMAP report on conducting safe UAS operations......, poor resolution, and the complicated surface of snow and ice. Measurements made from manned aircraft are also limited because of range and endurance, as well as the danger and costs presented by operating manned aircraft in harsh and remote environments like the Arctic. Unmanned aircraft systems (UAS...... on the environment. Operating UAS present unique challenges and it is necessary to understand and overcome those challenges. Based on the recommendations put forth by the Arctic scientists, the Arctic Council created a UAS Expert Group under the Arctic Monitoring and Assessment Program (AMAP) to help address...

  10. [Micron]ADS-B Detect and Avoid Flight Tests on Phantom 4 Unmanned Aircraft System

    Arteaga, Ricardo; Dandachy, Mike; Truong, Hong; Aruljothi, Arun; Vedantam, Mihir; Epperson, Kraettli; McCartney, Reed


    Researchers at the National Aeronautics and Space Administration Armstrong Flight Research Center in Edwards, California and Vigilant Aerospace Systems collaborated for the flight-test demonstration of an Automatic Dependent Surveillance-Broadcast based collision avoidance technology on a small unmanned aircraft system equipped with the uAvionix Automatic Dependent Surveillance-Broadcast transponder. The purpose of the testing was to demonstrate that National Aeronautics and Space Administration / Vigilant software and algorithms, commercialized as the FlightHorizon UAS"TM", are compatible with uAvionix hardware systems and the DJI Phantom 4 small unmanned aircraft system. The testing and demonstrations were necessary for both parties to further develop and certify the technology in three key areas: flights beyond visual line of sight, collision avoidance, and autonomous operations. The National Aeronautics and Space Administration and Vigilant Aerospace Systems have developed and successfully flight-tested an Automatic Dependent Surveillance-Broadcast Detect and Avoid system on the Phantom 4 small unmanned aircraft system. The Automatic Dependent Surveillance-Broadcast Detect and Avoid system architecture is especially suited for small unmanned aircraft systems because it integrates: 1) miniaturized Automatic Dependent Surveillance-Broadcast hardware; 2) radio data-link communications; 3) software algorithms for real-time Automatic Dependent Surveillance-Broadcast data integration, conflict detection, and alerting; and 4) a synthetic vision display using a fully-integrated National Aeronautics and Space Administration geobrowser for three dimensional graphical representations for ownship and air traffic situational awareness. The flight-test objectives were to evaluate the performance of Automatic Dependent Surveillance-Broadcast Detect and Avoid collision avoidance technology as installed on two small unmanned aircraft systems. In December 2016, four flight tests

  11. Sizing Analysis for Aircraft Utilizing Hybrid-Electric Propulsion Systems


    world, the paragon of animals -William Shakespeare I would not have made it this far without the love and support of my parents. Their work-ethic...xiii  I.  Introduction ...Condition 1 SIZING ANALYSIS FOR AIRCRAFT UTILIZING HYBRID- ELECTRIC PROPULSION SYSTEMS I. Introduction 1. Background Physically

  12. Experiences with an integrated management system for aircraft maintenance

    Huber, U.


    For 20 years, SWISSAIR has employed an integrated information system for aircraft maintenance. To date, a wide range of functions has been set up in their own development. For the future SWISSAIR is increasingly basing on the use of SAP/standard software packages. 10 figs

  13. Aircraft Weather Mitigation for the Next Generation Air Transportation System

    Stough, H. Paul, III


    Atmospheric effects on aviation are described by Mahapatra (1999) as including (1) atmospheric phenomena involving air motion - wind shear and turbulence; (2) hydrometeorological phenomena - rain, snow and hail; (3) aircraft icing; (4) low visibility; and (5) atmospheric electrical phenomena. Aircraft Weather Mitigation includes aircraft systems (e.g. airframe, propulsion, avionics, controls) that can be enacted (by a pilot, automation or hybrid systems) to suppress and/or prepare for the effects of encountered or unavoidable weather or to facilitate a crew operational decision-making process relative to weather. Aircraft weather mitigation can be thought of as a continuum (Figure 1) with the need to avoid all adverse weather at one extreme and the ability to safely operate in all weather conditions at the other extreme. Realistic aircraft capabilities fall somewhere between these two extremes. The capabilities of small general aviation aircraft would be expected to fall closer to the "Avoid All Adverse Weather" point, and the capabilities of large commercial jet transports would fall closer to the "Operate in All Weather Conditions" point. The ability to safely operate in adverse weather conditions is dependent upon the pilot s capabilities (training, total experience and recent experience), the airspace in which the operation is taking place (terrain, navigational aids, traffic separation), the capabilities of the airport (approach guidance, runway and taxiway lighting, availability of air traffic control), as well as the capabilities of the airplane. The level of mitigation may vary depending upon the type of adverse weather. For example, a small general aviation airplane may be equipped to operate "in the clouds" without outside visual references, but not be equipped to prevent airframe ice that could be accreted in those clouds.

  14. Hydrant refueling system as an optimisation of aircraft refuelling

    Martin HROMÁDKA


    Full Text Available At large international airports, aircraft can be refuelled either by fuel trucks or using dedicated underground pipeline systems. The latter, hydrant refuelling, is considered to be an optimal fuelling method as it increases safety, shortens the aircraft turnaround time and cuts the overall costs. However, at smaller airports, implementation of this system can lead to high investment costs. Thus, the paper discusses the airport size from which this system may be efficient to implement. Various definitions of term “airport size” are assessed. Based on data collection, the hydrant system model is created within the paper. As a result, methodology for assessing the suitability of hydrant system implementation is set. This methodology can be used at every airport using three simple inputs.

  15. Investigations into the triggered lightning response of the F106B thunderstorm research aircraft

    Rudolph, Terence H.; Perala, Rodney A.; Mckenna, Paul M.; Parker, Steven L.


    An investigation has been conducted into the lightning characteristics of the NASA F106B thunderstorm research aircraft. The investigation includes analysis of measured data from the aircraft in the time and frequency domains. Linear and nonlinear computer modelling has also been performed. In addition, new computer tools have been developed, including a new enhanced nonlinear air breakdown model, and a subgrid model useful for analyzing fine details of the aircraft's geometry. Comparison of measured and calculated electromagnetic responses of the aircraft to a triggered lightning environment are presented.

  16. Tiltrotor research aircraft composite blade repairs: Lessons learned

    Espinosa, Paul S.; Groepler, David R.


    The XV-15, N703NA Tiltrotor Research Aircraft located at the NASA Ames Research Center, Moffett Field, California, currently uses a set of composite rotor blades of complex shape known as the advanced technology blades (ATBs). The main structural element of the blades is a D-spar constructed of unidirectional, angled fiberglass/graphite, with the aft fairing portion of the blades constructed of a fiberglass cross-ply skin bonded to a Nomex honeycomb core. The blade tip is a removable laminate shell that fits over the outboard section of the spar structure, which contains a cavity to retain balance weights. Two types of tip shells are used for research. One is highly twisted (more than a conventional helicopter blade) and has a hollow core constructed of a thin Nomex-honeycomb-and-fiberglass-skin sandwich; the other is untwisted with a solid Nomex honeycomb core and a fiberglass cross-ply skin. During initial flight testing of the blades, a number of problems in the composite structure were encountered. These problems included debonding between the fiberglass skin and the honeycomb core, failure of the honeycomb core, failures in fiberglass splices, cracks in fiberglass blocks, misalignment of mated composite parts, and failures of retention of metal fasteners. Substantial time was spent in identifying and repairing these problems. Discussed here are the types of problems encountered, the inspection procedures used to identify each problem, the repairs performed on the damaged or flawed areas, the level of criticality of the problems, and the monitoring of repaired areas. It is hoped that this discussion will help designers, analysts, and experimenters in the future as the use of composites becomes more prevalent.

  17. Tiltrotor Research Aircraft composite blade repairs - Lessons learned

    Espinosa, Paul S.; Groepler, David R.


    The XV-15, N703NA Tiltrotor Research Aircraft located at the NASA Ames Research Center, Moffett Field, California, currently uses a set of composite rotor blades of complex shape known as the advanced technology blades (ATBs). The main structural element of the blades is a D-spar constructed of unidirectional, angled fiberglass/graphite, with the aft fairing portion of the blades constructed of a fiberglass cross-ply skin bonded to a Nomex honeycomb core. The blade tip is a removable laminate shell that fits over the outboard section of the spar structure, which contains a cavity to retain balance weights. Two types of tip shells are used for research. One is highly twisted (more than a conventional helicopter blade) and has a hollow core constructed of a thin Nomex-honeycomb-and-fiberglass-skin sandwich; the other is untwisted with a solid Nomex honeycomb core and a fiberglass cross-ply skin. During initial flight testing of the blades, a number of problems in the composite structure were encountered. These problems included debonding between the fiberglass skin and the honeycomb core, failure of the honeycomb core, failures in fiberglass splices, cracks in fiberglass blocks, misalignment of mated composite parts, and failures of retention of metal fasteners. Substantial time was spent in identifying and repairing these problems. Discussed here are the types of problems encountered, the inspection procedures used to identify each problem, the repairs performed on the damaged or flawed areas, the level of criticality of the problems, and the monitoring of repaired areas. It is hoped that this discussion will help designers, analysts, and experimenters in the future as the use of composites becomes more prevalent.

  18. Survey of aircraft electrical power systems

    Lee, C. H.; Brandner, J. J.


    Areas investigated include: (1) load analysis; (2) power distribution, conversion techniques and generation; (3) design criteria and performance capabilities of hydraulic and pneumatic systems; (4) system control and protection methods; (5) component and heat transfer systems cooling; and (6) electrical system reliability.

  19. Application of the Remotely Piloted Aircraft (RPA) 'MASC' in Atmospheric Boundary Layer Research

    Wildmann, Norman; Bange, Jens


    The remotely piloted aircraft (RPA) MASC (Multipurpose Airborne Sensor Carrier) was developed at the University of Tübingen in cooperation with the University of Stuttgart, University of Applied Sciences Ostwestfalen-Lippe and 'ROKE-Modelle'. Its purpose is the investigation of thermodynamic processes in the atmospheric boundary layer (ABL), including observations of temperature, humidity and wind profiles, as well as the measurement of turbulent heat, moisture and momentum fluxes. The aircraft is electrically powered, has a maximum wingspan of 3.40 m and a total weight of 5-8 kg, depending on battery- and payload. The standard meteorological payload consists of temperature sensors, a humidity sensor, a flow probe, an inertial measurement unit and a GNSS. In normal operation, the aircraft is automatically controlled by the ROCS (Research Onboard Computer System) autopilot to be able to fly predefined paths at constant altitude and airspeed. Since 2010 the system has been tested and improved intensively. In September 2012 first comparative tests could successfully be performed at the Lindenberg observatory of Germany's National Meteorological Service (DWD). In 2013, several campaigns were done with the system, including fundamental boundary layer research, wind energy meteorology and assistive measurements to aerosol investigations. The results of a series of morning transition experiments in summer 2013 will be presented to demonstrate the capabilities of the measurement system. On several convective days between May and September, vertical soundings were done to record the evolution of the ABL in the early morning, from about one hour after sunrise, until noon. In between the soundings, flight legs of up to 1 km length were performed to measure turbulent statistics and fluxes at a constant altitude. With the help of surface flux measurements of a sonic anemometer, methods of similarity theory could be applied to the RPA flux measurements to compare them to

  20. FY 1995 annual report on research and development of propulsion systems for supersonic transport aircraft. Pt. 1. Research and development of methane-fueled engines for aircraft; 1995 nendo choonsoku yusokiyo suishin system no kenkyu kaihatsu seika hokokusho. 1. Methane nenryo kokukiyo engine no kaihatsu



    Described herein are the R and D results of FY 1995 for ramjet, high-performance turbojet, control/measurement and total systems. For R and D of the ramjet system, the combined component test is conducted, using a dummy intake which simulates the flow pattern downstream of the intake throat, ram combustor and variable exhaust nozzle. The first free jet test is successfully conducted at a combustor exit temperature of 1900 degrees C. For R and D of the high-performance turbojet components, the experimental researches are conducted on fan components, a combustor, and high-performance, variable, low-pressure turbine. For R and D of the control/measurement system, the system developed is improved by incorporating a dual redundant FADEC. The engine test produces good results. For R and D of the total system, the R and D efforts are made for the intake, nozzle, noise reduction, cooling and application of new materials, and combined cycle engine. (NEDO)

  1. Formal Methods in Air Traffic Management: The Case of Unmanned Aircraft Systems

    Munoz, Cesar A.


    As the technological and operational capabilities of unmanned aircraft systems (UAS) continue to grow, so too does the need to introduce these systems into civil airspace. Unmanned Aircraft Systems Integration in the National Airspace System is a NASA research project that addresses the integration of civil UAS into non-segregated airspace operations. One of the major challenges of this integration is the lack of an onboard pilot to comply with the legal requirement that pilots see and avoid other aircraft. The need to provide an equivalent to this requirement for UAS has motivated the development of a detect and avoid (DAA) capability to provide the appropriate situational awareness and maneuver guidance in avoiding and remaining well clear of traffic aircraft. Formal methods has played a fundamental role in the development of this capability. This talk reports on the formal methods work conducted under NASA's Safe Autonomous System Operations project in support of the development of DAA for UAS. This work includes specification of low-level and high-level functional requirements, formal verification of algorithms, and rigorous validation of software implementations. The talk also discusses technical challenges in formal methods research in the context of the development and safety analysis of advanced air traffic management concepts.

  2. Integration of Predictive Display and Aircraft Flight Control System

    Efremov A.V.


    Full Text Available The synthesis of predictive display information and direct lift control system are considered for the path control tracking tasks (in particular landing task. The both solutions are based on pilot-vehicle system analysis and requirements to provide the highest accuracy and lowest pilot workload. The investigation was carried out for cases with and without time delay in aircraft dynamics. The efficiency of the both ways for the flying qualities improvement and their integration is tested by ground based simulation.

  3. 40 CFR 141.804 - Aircraft water system operations and maintenance plan.


    ...) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Aircraft Drinking Water Rule... must include the following requirements for procedures for disinfection and flushing of aircraft water system. (i) The air carrier must conduct disinfection and flushing of the aircraft water system in...

  4. Staffing for Unmanned Aircraft Systems (UAS) Operations


    should be enlisted or officer). Rather, an illustrative model was designed to remove emotion and cultural bias from this discussion and enable an...maintenance and intelligence support personnel associated with UAS operations and the impact associated with the rapid maturation of technology on...implications associated with this maturation of technology are not addressed in this paper; however, further research is recommended. Figure 1. DoD UAS

  5. Semi-automatic aircraft control system

    Gilson, Richard D. (Inventor)


    A flight control type system which provides a tactile readout to the hand of a pilot for directing elevator control during both approach to flare-out and departure maneuvers. For altitudes above flare-out, the system sums the instantaneous coefficient of lift signals of a lift transducer with a generated signal representing ideal coefficient of lift for approach to flare-out, i.e., a value of about 30% below stall. Error signals resulting from the summation are read out by the noted tactile device. Below flare altitude, an altitude responsive variation is summed with the signal representing ideal coefficient of lift to provide error signal readout.

  6. The Small Aircraft Transportation System (SATS), Higher Volume Operations (HVO) Off-Nominal Operations

    Baxley, B.; Williams, D.; Consiglio, M.; Conway, S.; Adams, C.; Abbott, T.


    The ability to conduct concurrent, multiple aircraft operations in poor weather, at virtually any airport, offers an important opportunity for a significant increase in the rate of flight operations, a major improvement in passenger convenience, and the potential to foster growth of charter operations at small airports. The Small Aircraft Transportation System, (SATS) Higher Volume Operations (HVO) concept is designed to increase traffic flow at any of the 3400 nonradar, non-towered airports in the United States where operations are currently restricted to one-in/one-out procedural separation during Instrument Meteorological Conditions (IMC). The concept's key feature is pilots maintain their own separation from other aircraft using procedures, aircraft flight data sent via air-to-air datalink, cockpit displays, and on-board software. This is done within the Self-Controlled Area (SCA), an area of flight operations established during poor visibility or low ceilings around an airport without Air Traffic Control (ATC) services. The research described in this paper expands the HVO concept to include most off-nominal situations that could be expected to occur in a future SATS environment. The situations were categorized into routine off-nominal operations, procedural deviations, equipment malfunctions, and aircraft emergencies. The combination of normal and off-nominal HVO procedures provides evidence for an operational concept that is safe, requires little ground infrastructure, and enables concurrent flight operations in poor weather.

  7. Simulation of Aircraft Sortie Generation Under an Autonomic Logistics System


    Lockheed Martin and the Joint Program Office are developing a new autonomic logistics system for the multibillion F-35 Lightning Joint Strike (United Kingdom, Italy, the Netherlands, Turkey, Canada, Australia, Denmark, and Norway). Lockheed Martin is the primary aircraft contractor...Accountability Office, 2014). Lockheed Martin , the prime contractor of the F-35 project, describes ALIS in its official website as: “ALIS serves as

  8. Hierarchical Discrete Event Supervisory Control of Aircraft Propulsion Systems

    Yasar, Murat; Tolani, Devendra; Ray, Asok; Shah, Neerav; Litt, Jonathan S.


    This paper presents a hierarchical application of Discrete Event Supervisory (DES) control theory for intelligent decision and control of a twin-engine aircraft propulsion system. A dual layer hierarchical DES controller is designed to supervise and coordinate the operation of two engines of the propulsion system. The two engines are individually controlled to achieve enhanced performance and reliability, necessary for fulfilling the mission objectives. Each engine is operated under a continuously varying control system that maintains the specified performance and a local discrete-event supervisor for condition monitoring and life extending control. A global upper level DES controller is designed for load balancing and overall health management of the propulsion system.

  9. Aircraft Abnormal Conditions Detection, Identification, and Evaluation Using Innate and Adaptive Immune Systems Interaction

    Al Azzawi, Dia

    Abnormal flight conditions play a major role in aircraft accidents frequently causing loss of control. To ensure aircraft operation safety in all situations, intelligent system monitoring and adaptation must rely on accurately detecting the presence of abnormal conditions as soon as they take place, identifying their root cause(s), estimating their nature and severity, and predicting their impact on the flight envelope. Due to the complexity and multidimensionality of the aircraft system under abnormal conditions, these requirements are extremely difficult to satisfy using existing analytical and/or statistical approaches. Moreover, current methodologies have addressed only isolated classes of abnormal conditions and a reduced number of aircraft dynamic parameters within a limited region of the flight envelope. This research effort aims at developing an integrated and comprehensive framework for the aircraft abnormal conditions detection, identification, and evaluation based on the artificial immune systems paradigm, which has the capability to address the complexity and multidimensionality issues related to aircraft systems. Within the proposed framework, a novel algorithm was developed for the abnormal conditions detection problem and extended to the abnormal conditions identification and evaluation. The algorithm and its extensions were inspired from the functionality of the biological dendritic cells (an important part of the innate immune system) and their interaction with the different components of the adaptive immune system. Immunity-based methodologies for re-assessing the flight envelope at post-failure and predicting the impact of the abnormal conditions on the performance and handling qualities are also proposed and investigated in this study. The generality of the approach makes it applicable to any system. Data for artificial immune system development were collected from flight tests of a supersonic research aircraft within a motion-based flight

  10. Scientific Research Program for Power, Energy, and Thermal Technologies. Task Order 0002: Power, Thermal and Control Technologies and Processes Experimental Research. Subtask: Laboratory Test Set-up to Evaluate Electromechanical Actuation Systems for Aircraft Flight Control


    hydraulic pumps generated hydraulic pressure which, in turn, powered the actuator which would move the flight control surface to the desired position...aircraft surface controls. Figure 2 - Electro- hydrostatic Actuator and an Electro-mechanical Actuator [7] In order to have a to have a flat surface for the measurement device to measure position. This method was used in order to eliminate any displacement due to slop

  11. On the safety of aircraft systems: A case study

    Martinez-Guridi, G.; Hall, R.E.; Fullwood, R.R.


    An airplane is a highly engineered system incorporating control- and feedback-loops which often, and realistically, are non-linear because the equations describing such feedback contain products of state variables, trigonometric or square-root functions, or other types of non-linear terms. The feedback provided by the pilot (crew) of the airplane also is typically non-linear because it has the same mathematical characteristics. An airplane is designed with systems to prevent and mitigate undesired events. If an undesired triggering event occurs, an accident may process in different ways depending on the effectiveness of such systems. In addition, the progression of some accidents requires that the operating crew take corrective action(s), which may modify the configuration of some systems. The safety assessment of an aircraft system typically is carried out using ARP (Aerospace Recommended Practice) 4761 (SAE, 1995) methods, such as Fault Tree Analysis (FTA) and Failure Mode and Effects Analysis (FMEA). Such methods may be called static because they model an aircraft system on its nominal configuration during a mission time, but they do not incorporate the action(s) taken by the operating crew, nor the dynamic behavior (non-linearities) of the system (airplane) as a function of time. Probabilistic Safety Assessment (PSA), also known as Probabilistic Risk Assessment (PRA), has been applied to highly engineered systems, such as aircraft and nuclear power plants. PSA encompasses a wide variety of methods, including event tree analysis (ETA), FTA, and common-cause analysis, among others. PSA should not be confused with ARP 4761`s proposed PSSA (Preliminary System Safety Assessment); as its name implies, PSSA is a preliminary assessment at the system level consisting of FTA and FMEA.

  12. Unmanned Aircraft Systems (UAS) Sensor and Targeting


    Identify an uncoiled garden hose lying on the ground. 8.2 Identify specific type of truck crop being grown (e.g., tomatoes, peppers, lettuce ). 8.2... lettuce ). (NIIRS 8.2) Detect scoring of poppy bulbs. (NIIRS 8.5) Detect tubing (approximately 1-inch diameter) for drip irrigation systems. (NIIR5 8.5...trial can be presented as a time history for each axis. A sample is shown in Figures C.1-3 and C.1-4. TOP 07-1-003 27 July 2010 C-2

  13. Exploratory Research to Demonstrate the Feasibility of Conducting Crew Coordination Training in the OH-58 Aircraft

    Zeller, J


    This document provides the results of exploratory research to demonstrate the feasibility of conducting crew coordination training in the OH-58 aircraft, using the Army's Aircrew Coordination Exportable Training Course...

  14. System Design for Transitional Aircraft Support

    John P.T. Mo


    Full Text Available The Australian Defence Force and industry are undergoing significant changes in the way they work together in capability enhancement programs. There are capability gaps in maintaining and supporting current obligations during major asset acquisition, which has migrated into the front line of Royal Air Force Fighter Groups as a new capability. This paper examines a steady state support solution and argues that in order to interchange from one support solution to a new architecture there must be a period for transition, which may need its own interim business model and operational service. A preliminary study of several existing support solutions reveals the generic elements that need to be parameterized and traced through the support system architecture trajectory.

  15. ASKA STOL research aircraft flight tests and evaluation. STOL jikkenki Asuka'' no hiko shiken kekka

    Kuriyama, M; Inoue, T; Tobinaga, Y; Tsuji, H [Kawasaki Heavy Industries, Ltd., Tokyo (Japan)


    The present report evaluated the powered high-lift device (PHLD) distance of upper surface blowing (USB) system, basing the materialization of short distance take-off and landing (STOL) performance, one of the main flight test purposes by the Aska'', quiet STOL research aircraft, which evaluation was then added with reporting its flight test result to cover several topics. As prototypical, a C-1 tactical transport aircraft produced by Kawasaki Heavy Industries was modified to the aska'' together with the following change in design for the STOL flight test: Adoption was made of a PHLD of USB system where the wing surface was mounted with four turbofan jet engines thereon. Application was made of a boundary layer control (BLC) to the main wing leading edge and aileron. Mounting was made of a stability and control augmentation system (SCAS) using a triple system digital computer. Fitting was made of a vortex generator for the prevention from peeling by jet exhaust. As a result of flight test, the recorded distance was confirmed to be 1580ft in landing and 1670ft in take-off. 5 refs., 15 figs., 2 tabs.

  16. Fire deaths in aircraft without the crashworthy fuel system.

    Springate, C S; McMeekin, R R; Ruehle, C J


    Cases reported to the Armed Forces Institute of Pathology were examined for occupants of helicopters without the crashworthy fuel system (CWFS) who survived crashes but died as a result of postcrash fires. There were 16 fire deaths in the 9 such accidents which occurred between January 1976 and April 1984. All of these victims would have survived if there had been no postcrash fire. Partial body destruction by fire probably prevented inclusion of many other cases. The dramatic reduction in fire deaths and injuries due to installation of the CWFS in Army helicopters is discussed. The author concludes that fire deaths and injuries in aircraft accidents could almost be eliminated by fitting current and future aircraft with the CWFS.

  17. Fuel characteristics pertinent to the design of aircraft fuel systems

    Barnett, Henry C; Hibbard, R R


    Because of the importance of fuel properties in design of aircraft fuel systems the present report has been prepared to provide information on the characteristics of current jet fuels. In addition to information on fuel properties, discussions are presented on fuel specifications, the variations among fuels supplied under a given specification, fuel composition, and the pertinence of fuel composition and physical properties to fuel system design. In some instances the influence of variables such as pressure and temperature on physical properties is indicated. References are cited to provide fuel system designers with sources of information containing more detail than is practicable in the present report.

  18. Dynamics of aircraft antiskid braking systems. [conducted at the Langley aircraft landing loads and traction facility

    Tanner, J. A.; Stubbs, S. M.; Dreher, R. C.; Smith, E. G.


    A computer study was performed to assess the accuracy of three brake pressure-torque mathematical models. The investigation utilized one main gear wheel, brake, and tire assembly of a McDonnell Douglas DC-9 series 10 airplane. The investigation indicates that the performance of aircraft antiskid braking systems is strongly influenced by tire characteristics, dynamic response of the antiskid control valve, and pressure-torque response of the brake. The computer study employed an average torque error criterion to assess the accuracy of the models. The results indicate that a variable nonlinear spring with hysteresis memory function models the pressure-torque response of the brake more accurately than currently used models.

  19. RF emission-based health monitoring for hybrid and/or all electric aircraft distributed propulsion systems, Phase I

    National Aeronautics and Space Administration — Future aircraft propulsion is destined to be electric. All electric aircraft propulsion systems promise significant improvements in energy efficiency,...

  20. Portable Integrated Wireless Device Threat Assessment to Aircraft Radio Systems

    Salud, Maria Theresa P.; Williams, Reuben A. (Technical Monitor)


    An assessment was conducted on multiple wireless local area network (WLAN) devices using the three wireless standards for spurious radiated emissions to determine their threat to aircraft radio navigation systems. The measurement process, data and analysis are provided for devices tested using IEEE 802.11a, IEEE 802.11b, and Bluetooth as well as data from portable laptops/tablet PCs and PDAs (grouping known as PEDs). A comparison was made between wireless LAN devices and portable electronic devices. Spurious radiated emissions were investigated in the radio frequency bands for the following aircraft systems: Instrument Landing System Localizer and Glideslope, Very High Frequency (VHF) Communication, VHF Omnidirectional Range, Traffic Collision Avoidance System, Air Traffic Control Radar Beacon System, Microwave Landing System and Global Positioning System. Since several of the contiguous navigation systems were grouped under one encompassing measurement frequency band, there were five measurement frequency bands where spurious radiated emissions data were collected for the PEDs and WLAN devices. The report also provides a comparison between emissions data and regulatory emission limit.

  1. Nuclear Bi-Brayton system for aircraft propulsion

    Pierce, B.L.


    Recent studies have shown the desirability of new system concept for nuclear aircraft propulsion utilizing the Bi-Brayton system concept, permits coupling of a gas cooled reactor to the power transmission and conversion system in a manner such as to fulfill the safety criteria while eliminating the need for a high temperature intermediate heat exchanger or shaft penetrations of the containment vessel. This system has been shown to minimize the component development required and to allow reduction in total propulsion system weight. This paper presents a description of the system concept and the results of the definition and evaluation studies to date. Parametric and reference system definition studies have been performed. The closed-cycle Bi-Brayton system and component configurations and weight estimates have been derived. Parametric evaluation and cycle variation studies have been performed and interpreted. 7 refs

  2. Research on Full-polarization Bistatic Scattering Characteristics of Aircraft

    Ai Xiaofeng


    Full Text Available Whole space polarimetric bistatic scattering data of full-size aircraft targets were calculated via the mature electromagnetic calculation software. The fluctuation statistics characteristic of the polarimetric bistatic Radar Cross-Section (RCS was carried out. It was found that the statistical properties of the four polarimetric types (HH, HV, VH, VV of polarimetric bistatic RCSs are nearly the same, while the monostatic main and cross polarization RCSs statistical properties were quite different from each other. The characteristics of the distribution statistic for the monostatic and bistatic polarization ratio were carried out. Moreover, it was found that the cross-main polarization ratios were quite different, while the main polarization ratios were similar. The statistical results provide a theoretical reference for fully polarimetric bistatic radar aircraft target detection experiments.

  3. Optical wireless networked-systems: applications to aircrafts

    Kavehrad, Mohsen; Fadlullah, Jarir


    This paper focuses on leveraging the progress in semiconductor technologies to facilitate production of efficient light-based in-flight entertainment (IFE), distributed sensing, navigation and control systems. We demonstrate the ease of configuring "engineered pipes" using cheap lenses, etc. to achieve simple linear transmission capacity growth. Investigation of energy-efficient, miniaturized transceivers will create a wireless medium, for both inter and intra aircrafts, providing enhanced security, and improved quality-of-service for communications links in greater harmony with onboard systems. The applications will seamlessly inter-connect multiple intelligent devices in a network that is deployable for aircrafts navigation systems, onboard sensors and entertainment data delivery systems, and high-definition audio-visual broadcasting systems. Recent experimental results on a high-capacity infrared (808 nm) system are presented. The light source can be applied in a hybrid package along with a visible lighting LED for both lighting and communications. Also, we present a pragmatic combination of light communications through "Spotlighting" and existing onboard power-lines. It is demonstrated in details that a high-capacity IFE visible light system communicating over existing power-lines (VLC/PLC) may lead to savings in many areas through reduction of size, weight and energy consumption. This paper addresses the challenges of integrating optimized optical devices in the variety of environments described above, and presents mitigation and tailoring approaches for a multi-purpose optical network.

  4. Flight Research into Simple Adaptive Control on the NASA FAST Aircraft

    Hanson, Curtis E.


    A series of simple adaptive controllers with varying levels of complexity were designed, implemented and flight tested on the NASA Full-Scale Advanced Systems Testbed (FAST) aircraft. Lessons learned from the development and flight testing are presented.


    Boris V. Zhmurov


    Full Text Available The process of designing aviation electrical power systems (EPS is related to the need to fulfill a number of requirements of normative and technical documents and to conduct a large number of calculations. Experience has shown that it is not possible to obtain reliable initial data on the nature and magnitude of electricity consumption by electricity receivers (end users at the early stages of design. The composition of the electric power receivers and the power consumption of electricity during the design process are repeatedly changed. This leads to the need to repeatedly perform tasks related to the synthesis of primary and secondary systems of generation and calculation.The desire to improve the efficiency of EPS led to the emergence of new standardized types of electrical energy - 270 V DC and 380 V three-phase AC of stable and unstable frequency. It follows that it is possible to implement a rather large number of options for EPS structures, and there may be several secondary EPS or, in general, EPS of a third or higher level.The lack of ready-made aviation energy converters implies the impossibility of using ready-made components, and the development of specific devices should be coordinated with the development of EPS. In this case, one of the results of EPS design will be a set of requirements for the devices and units of the EPS projected.In any case, the design process for EPS aircraft requires a lot of iterations that take into account the change in both the raw data and the constraints on the EPS elements and the design process itself.The traditional approach to the design of EPS aircraft, assuming the knowledge of the designer of dozens of GOSTs (State All-Union standards and OSTs (All-Union standarts regulating the design stages of EPS, as well as the existence of standard EPS structures, from which a specific choice is made, is practically impossible at present. The only way to consciously approach the problem of designing EPS

  6. Analysis of Small Aircraft as a Transportation System

    Dollyhigh, Samuel M.; Yackovetsky, Robert E. (Technical Monitor)


    An analysis was conducted to examine the market viability of small aircraft as a transportation mode in competition with automobile and scheduled commercial air travel by estimating the pool of users that would potentially switch to on-demand air travel due to cost/time savings. The basis for the analysis model was the Integrated Air Transportation System Evaluation Tool (IATSET) which was developed under contract to NASA by the Logistics Management Institute. IATSET is a macroeconomic model that predicts at a National level the mode choice between automobile, scheduled air, and on-demand air travel based on the value of a travelers time and monetary cost of the trip. A number of modifications are detailed to the original IATSET to better model the changing small aircraft environment. The potential trip market was modeled for the Eclipse 500 operated as a corporate jet and as an air taxi for the business travel market. The Cirrus 20R and a $80K single engine piston aircraft (based on automobile manufacturing technology) are evaluated in the pleasure and personal business travel market.


    J. B. Stoll


    Full Text Available This paper looks at some of the unmanned aircraft systems (UAS options and deals with a magnetometer sensor system which might be of interest in conducting rapid near surface geophysical measurements. Few of the traditional airborne geophysical sensors are now capable of being miniaturized to sizes and payload within mini UAS limits (e.g. airborne magnetics, gamma ray spectrometer. Here the deployment of a fluxgate magnetometer mounted on an UAS is presented demonstrating its capability of detecting metallic materials that are buried in the soil. The effectiveness in finding ferrous objects (e.g. UXO, landslides is demonstrated in two case studies.

  8. Micro- and nano-NDE systems for aircraft: great things in small packages

    Malas, James C.; Kropas-Hughes, Claudia V.; Blackshire, James L.; Moran, Thomas; Peeler, Deborah; Frazier, W. G.; Parker, Danny


    Recent advancements in small, microscopic NDE sensor technologies will revolutionize how aircraft maintenance is done, and will significantly improve the reliability and airworthiness of current and future aircraft systems. A variety of micro/nano systems and concepts are being developed that will enable whole new capabilities for detecting and tracking structural integrity damage. For aging aircraft systems, the impact of micro-NDE sensor technologies will be felt immediately, with dramatic reductions in labor for maintenance, and extended useable life of critical components being two of the primary benefits. For the fleet management of future aircraft systems, a comprehensive evaluation and tracking of vehicle health throughout its entire life cycle will be needed. Indeed, micro/nano NDE systems will be instrumental in realizing this futuristic vision. Several major challenges will need to be addressed, however, before micro- and nano-NDE systems can effectively be implemented, and this will require interdisciplinary research approaches, and a systematic engineering integration of the new technologies into real systems. Future research will need to emphasize systems engineering approaches for designing materials and structures with in-situ inspection and prognostic capabilities. Recent advances in 1) embedded / add-on micro-sensors, 2) computer modeling of nondestructive evaluation responses, and 3) wireless communications are important steps toward this goal, and will ultimately provide previously unimagined opportunities for realizing whole new integrated vehicle health monitoring capabilities. The future use of micro/nano NDE technologies as vehicle health monitoring tools will have profound implications, and will provide a revolutionary way of doing NDE in the near and distant future.

  9. Preliminary Validation of the Small Aircraft Transportation System Higher Volume Operations (SATS HVO) Concept

    Williams, Daniel; Consiglio, Maria; Murdoch, Jennifer; Adams, Catherine


    This document provides a preliminary validation of the Small Aircraft Transportation System (SATS) Higher Volume Operations (HVO) concept for normal conditions. Initial results reveal that the concept provides reduced air traffic delays when compared to current operations without increasing pilot workload. Characteristic to the SATS HVO concept is the establishment of a newly defined area of flight operations called a Self-Controlled Area (SCA) which would be activated by air traffic control (ATC) around designated non-towered, non-radar airports. During periods of poor visibility, SATS pilots would take responsibility for separation assurance between their aircraft and other similarly equipped aircraft in the SCA. Using onboard equipment and simple instrument flight procedures, they would then be better able to approach and land at the airport or depart from it. This concept would also require a new, ground-based automation system, typically located at the airport that would provide appropriate sequencing information to the arriving aircraft. Further validation of the SATS HVO concept is required and is the subject of ongoing research and subsequent publications.

  10. Subsonic Ultra Green Aircraft Research. Phase II - Volume I; Truss Braced Wing Design Exploration

    Bradley, Marty K.; Droney, Christopher K.; Allen, Timothy J.


    This report summarizes the Truss Braced Wing (TBW) work accomplished by the Boeing Subsonic Ultra Green Aircraft Research (SUGAR) team, consisting of Boeing Research and Technology, Boeing Commercial Airplanes, General Electric, Georgia Tech, Virginia Tech, NextGen Aeronautics, and Microcraft. A multi-disciplinary optimization (MDO) environment defined the geometry that was further refined for the updated SUGAR High TBW configuration. Airfoil shapes were tested in the NASA TCT facility, and an aeroelastic model was tested in the NASA TDT facility. Flutter suppression was successfully demonstrated using control laws derived from test system ID data and analysis models. Aeroelastic impacts for the TBW design are manageable and smaller than assumed in Phase I. Flutter analysis of TBW designs need to include pre-load and large displacement non-linear effects to obtain a reasonable match to test data. With the updated performance and sizing, fuel burn and energy use is reduced by 54% compared to the SUGAR Free current technology Baseline (Goal 60%). Use of the unducted fan version of the engine reduces fuel burn and energy by 56% compared to the Baseline. Technology development roadmaps were updated, and an airport compatibility analysis established feasibility of a folding wing aircraft at existing airports.


    I. D. Dashkov


    Full Text Available The article discusses issues related to determining the technical states of aircraft functional systems (FS. Mathematical formulas are given for expressing the relationship between the main parameters characterizing the model.


    Svitlana Pavlova


    Full Text Available Purpose: The present work is devoted to improving of flight safety in civil aviation by creating and implementing a new system of resolution of dynamic conflict of aircrafts. The developed system is aimed at ensuring a guaranteed level of safety when resolution of rarefied conflict situations of aircraft in real-time. Methods: The proposed system is based on a new method of conflict resolution of aircraft on the basis of the theory of invariance. Results: The development of the system of conflict resolution of aircraft in real time and the implementation of the respective algorithms such control will ensure effective prevention of dangerous approaches. Discussion: The system is implemented as single unified equipment using satellite and radar navigation systems that will ensure the positioning of aircraft in real time. Provided that the system should be installed on all aircraft and integrated on board to properly ensure its functionality and interact with navigation systems.

  13. Quiet STOL research aircraft development program. Teisoon STOL jikkenki kitai kaihatsu sogo hokokusho


    The airframe development program of the quiet STOL research aircraft (ASKA) promoted by National Aerospace Laboratory, Japan is reported in detail. ASKA was developed based on a C-1 medium-sized troop and freight transport aircraft for the Air Self-Defence Force, and four turbofan- jet engines were substituted for two previous engines. Its first flight was conducted successfully on Oct. 28, 1985 after 8 year development from 1977 to 1985. The ASKA was developed separately on its airframe, engine and flight, and this report includes every related matter to its airframe. The promotion system, budget and executive system are reported in the second chapter, and the design requirements, safety standard and basic design in the third chapter. Several related tests such as wind tunnel test and flight simulation test are reported in the 4th chapter, and the structure and equipment of ASKA are outlined in the final chapter. The appendix includes the line-up of and discussions in the technical committee, the list of newly developed functional parts, the list of design reports and the list of related tests. 50 refs., 8 figs., 23 tabs.

  14. Simulator Evaluation of Simplified Propulsion-Only Emergency Flight Control Systems on Transport Aircraft

    Burcham, Frank W., Jr.; Kaneshige, John; Bull, John; Maine, Trindel A.


    With the advent of digital engine control systems, considering the use of engine thrust for emergency flight control has become feasible. Many incidents have occurred in which engine thrust supplemented or replaced normal aircraft flight controls. In most of these cases, a crash has resulted, and more than 1100 lives have been lost. The NASA Dryden Flight Research Center has developed a propulsion-controlled aircraft (PCA) system in which computer-controlled engine thrust provides emergency flight control capability. Using this PCA system, an F-15 and an MD-11 airplane have been landed without using any flight controls. In simulations, C-17, B-757, and B-747 PCA systems have also been evaluated successfully. These tests used full-authority digital electronic control systems on the engines. Developing simpler PCA systems that can operate without full-authority engine control, thus allowing PCA technology to be installed on less capable airplanes or at lower cost, is also a desire. Studies have examined simplified ?PCA Ultralite? concepts in which thrust control is provided using an autothrottle system supplemented by manual differential throttle control. Some of these concepts have worked well. The PCA Ultralite study results are presented for simulation tests of MD-11, B-757, C-17, and B-747 aircraft.

  15. BLM Unmanned Aircraft Systems (UAS) Resource Management Operations

    Hatfield, M. C.; Breen, A. L.; Thurau, R.


    The Department of the Interior Bureau of Land Management is funding research at the University of Alaska Fairbanks to study Unmanned Aircraft Systems (UAS) Resource Management Operations. In August 2015, the team conducted flight research at UAF's Toolik Field Station (TFS). The purpose was to determine the most efficient use of small UAS to collect low-altitude airborne digital stereo images, process the stereo imagery into close-range photogrammetry products, and integrate derived imagery products into the BLM's National Assessment, Inventory and Monitoring (AIM) Strategy. The AIM Strategy assists managers in answering questions of land resources at all organizational levels and develop management policy at regional and national levels. In Alaska, the BLM began to implement its AIM strategy in the National Petroleum Reserve-Alaska (NPR-A) in 2012. The primary goals of AIM-monitoring at the NPR-A are to implement an ecological baseline to monitor ecological trends, and to develop a monitoring network to understand the efficacy of management decisions. The long-term AIM strategy also complements other ongoing NPR-A monitoring processes, collects multi-use and multi-temporal data, and supports understanding of ecosystem management strategies in order to implement defensible natural resource management policy. The campaign measured vegetation types found in the NPR-A, using UAF's TFS location as a convenient proxy. The vehicle selected was the ACUASI Ptarmigan, a small hexacopter (based on DJI S800 airframe and 3DR autopilot) capable of carrying a 1.5 kg payload for 15 min for close-range environmental monitoring missions. The payload was a stereo camera system consisting of Sony NEX7's with various lens configurations (16/20/24/35 mm). A total of 77 flights were conducted over a 4 ½ day period, with 1.5 TB of data collected. Mission variables included camera height, UAS speed, transect overlaps, and camera lenses/settings. Invaluable knowledge was gained as to

  16. Conceptual Design of a Small Hybrid Unmanned Aircraft System

    Umberto Papa


    Full Text Available UAS (Unmanned Aircraft System technologies are today extremely required in various fields of interest, from military to civil (search and rescue, environmental surveillance and monitoring, and entertainment. Besides safety and legislative issues, the main obstacle to civilian applications of UAS systems is the short time of flight (endurance, which depends on the equipped power system (battery pack and the flight mission (low/high speed or altitude. Long flight duration is fundamental, especially with tasks that require hovering capability (e.g., river flow monitoring, earthquakes, devastated areas, city traffic monitoring, and archeological sites inspection. This work presents the conceptual design of a Hybrid Unmanned Aircraft System (HUAS, merging a commercial off-the-shelf quadrotor and a balloon in order to obtain a good compromise between endurance and weight. The mathematical models for weights estimation and balloon static performance analysis are presented, together with experimental results in different testing scenarios and complex environments, which show 50% improvement of the flight duration.

  17. Air Traffic Controller Acceptability of Unmanned Aircraft System Detect-and-Avoid Thresholds

    Mueller, Eric R.; Isaacson, Douglas R.; Stevens, Derek


    A human-in-the-loop experiment was conducted with 15 retired air traffic controllers to investigate two research questions: (a) what procedures are appropriate for the use of unmanned aircraft system (UAS) detect-and-avoid systems, and (b) how long in advance of a predicted close encounter should pilots request or execute a separation maneuver. The controller participants managed a busy Oakland air route traffic control sector with mixed commercial/general aviation and manned/UAS traffic, providing separation services, miles-in-trail restrictions and issuing traffic advisories. Controllers filled out post-scenario and post-simulation questionnaires, and metrics were collected on the acceptability of procedural options and temporal thresholds. The states of aircraft were also recorded when controllers issued traffic advisories. Subjective feedback indicated a strong preference for pilots to request maneuvers to remain well clear from intruder aircraft rather than deviate from their IFR clearance. Controllers also reported that maneuvering at 120 seconds until closest point of approach (CPA) was too early; maneuvers executed with less than 90 seconds until CPA were more acceptable. The magnitudes of the requested maneuvers were frequently judged to be too large, indicating a possible discrepancy between the quantitative UAS well clear standard and the one employed subjectively by manned pilots. The ranges between pairs of aircraft and the times to CPA at which traffic advisories were issued were used to construct empirical probability distributions of those metrics. Given these distributions, we propose that UAS pilots wait until an intruder aircraft is approximately 80 seconds to CPA or 6 nmi away before requesting a maneuver, and maneuver immediately if the intruder is within 60 seconds and 4 nmi. These thresholds should make the use of UAS detect and avoid systems compatible with current airspace procedures and controller expectations.

  18. System for indicating fuel-efficient aircraft altitude

    Gary, B. L. (Inventor)


    A method and apparatus are provided for indicating the altitude at which an aircraft should fly so the W/d ratio (weight of the aircraft divided by the density of air) more closely approaches the optimum W/d for the aircraft. A passive microwave radiometer on the aircraft is directed at different angles with respect to the horizon to determine the air temperature, and therefore the density of the air, at different altitudes. The weight of the aircraft is known. The altitude of the aircraft is changed to fly the aircraft at an altitude at which is W/d ratio more closely approaches the optimum W/d ratio for that aircraft.

  19. Unmanned Aircraft Systems: The Road to Effective Integration

    Petrock, Christopher T; Huizenga, Thomas D


    ...) sharing airspace with manned assets. There have been at least two recent collisions between unmanned and rotary-wing aircraft at lower altitudes in Iraq, as well as numerous near misses with fixed-wing aircraft at higher altitudes...

  20. Selected Aircraft Throttle Controller With Support Of Fuzzy Expert Inference System

    Żurek Józef


    Full Text Available The paper describes Zlin 143Lsi aircraft engine work parameters control support method – hourly fuel flow as a main factor under consideration. The method concerns project of aircraft throttle control support system with use of fuzzy logic (fuzzy inference. The primary purpose of the system is aircraft performance optimization, reducing flight cost at the same time and support proper aircraft engine maintenance. Matlab Software and Fuzzy Logic Toolbox were used in the project. Work of the system is presented with use of twenty test samples, five of them are presented graphically. In addition, system control surface, included in the paper, supports system all work range analysis.

  1. Advanced Propulsion System Studies for General Aviation Aircraft

    Eisenberg, Joseph D. (Technical Monitor); German, Jon


    This final report addresses the following topics: Market Impact Analysis (1) assessment of general aviation, including commuter/regional, aircraft market impact due to incorporation of advanced technology propulsion system on acquisition and operating costs, job creation and/or manpower demand, and future fleet size; (2) selecting an aircraft and engine for the study by focusing on the next generation 19-passenger commuter and the Williams International FJ44 turbofan engine growth. Propulsion System Analysis Conducted mission analysis studies and engine cycle analysis to define a new commuter mission and required engine performance, define acquisition and operating costs and, select engine configuration and initiated preliminary design for hardware modifications required. Propulsion System Benefits (1) assessed and defined engine emissions improvements, (2) assessed and defined noise reduction potential and, (3) conducted a cost analysis impact study. Review of Relevant NASA Programs Conducted literature searches using NERAC and NASA RECON services for related technology in the emissions and acoustics area. Preliminary Technology Development Plans Defined plan to incorporate technology improvements for an FJ44-2 growth engine in performance, emissions, and noise suppression.

  2. Nonparametric method for failures detection and localization in the actuating subsystem of aircraft control system

    Karpenko, S. S.; Zybin, E. Yu; Kosyanchuk, V. V.


    In this paper we design a nonparametric method for failures detection and localization in the aircraft control system that uses the measurements of the control signals and the aircraft states only. It doesn’t require a priori information of the aircraft model parameters, training or statistical calculations, and is based on algebraic solvability conditions for the aircraft model identification problem. This makes it possible to significantly increase the efficiency of detection and localization problem solution by completely eliminating errors, associated with aircraft model uncertainties.

  3. Gravity-Dependent Combustion and Fluids Research - From Drop Towers to Aircraft to the ISS

    Urban, David L.; Singh, Bhim S.; Kohl, Fred J.


    Driven by the need for knowledge related to the low-gravity environment behavior of fluids in liquid fuels management, thermal control systems and fire safety for spacecraft, NASA embarked on a decades long research program to understand, accommodate and utilize the relevant phenomena. Beginning in the 1950s, and continuing through to today, drop towers and aircraft were used to conduct an ever broadening and increasingly sophisticated suite of experiments designed to elucidate the underlying gravity-dependent physics that drive these processes. But the drop towers and aircraft afford only short time periods of continuous low gravity. Some of the earliest rocket test flights and manned space missions hosted longer duration experiments. The relatively longer duration low-g times available on the space shuttle during the 1980s and 1990s enabled many specialized experiments that provided unique data for a wide range of science and engineering disciplines. Indeed, a number of STS-based Spacelab missions were dedicated solely to basic and applied microgravity research in the biological, life and physical sciences. Between 1980 and 2000, NASA implemented a vigorous Microgravity Science Program wherein combustion science and fluid physics were major components. The current era of space stations from the MIR to the International Space Station have opened up a broad range of opportunities and facilities that are now available to support both applied research for technologies that will help to enable the future exploration missions and for a continuation of the non-exploration basic research that began over fifty years ago. The ISS-based facilities of particular value to the fluid physics and combustion/fire safety communities are the Fluids and Combustion Facility Combustion Integrated Rack and the Fluids Integrated Rack.

  4. Evaluation of Mobile Phone Interference With Aircraft GPS Navigation Systems

    Pace, Scott; Oria, A. J.; Guckian, Paul; Nguyen, Truong X.


    This report compiles and analyzes tests that were conducted to measure cell phone spurious emissions in the Global Positioning System (GPS) radio frequency band that could affect the navigation system of an aircraft. The cell phone in question had, as reported to the FAA (Federal Aviation Administration), caused interference to several GPS receivers on-board a small single engine aircraft despite being compliant with data filed at the time with the FCC by the manufacturer. NASA (National Aeronautics and Space Administration) and industry tests show that while there is an emission in the 1575 MHz GPS band due to a specific combination of amplifier output impedance and load impedance that induces instability in the power amplifier, these spurious emissions (i.e., not the intentional transmit signal) are similar to those measured on non-intentionally transmitting devices such as, for example, laptop computers. Additional testing on a wide sample of different commercial cell phones did not result in any emission in the 1575 MHz GPS Band above the noise floor of the measurement receiver.

  5. Automatic braking system modification for the Advanced Transport Operating Systems (ATOPS) Transportation Systems Research Vehicle (TSRV)

    Coogan, J. J.


    Modifications were designed for the B-737-100 Research Aircraft autobrake system hardware of the Advanced Transport Operating Systems (ATOPS) Program at Langley Research Center. These modifications will allow the on-board flight control computer to control the aircraft deceleration after landing to a continuously variable level for the purpose of executing automatic high speed turn-offs from the runway. A bread board version of the proposed modifications was built and tested in simulated stopping conditions. Test results, for various aircraft weights, turnoff speed, winds, and runway conditions show that the turnoff speeds are achieved generally with errors less than 1 ft/sec.


    Stanislav Alexandrovich Krotov


    Full Text Available The key steps of aircraft essential parameters and events monitoring during its operation are considered in the arti- cle. Conditions for specific risk monitoring are also presented.The notion of fail-safe feature of aircraft functional systems is analysed, and the necessity of continuous process of safety flight level estimate is shown. The method of quantitative assessment of key events and risks probabilities with the use of modern software is proposed. This method contains 5 basic stages: The monitoring parameters setting - this stage is initial and begins with the consideration of organization safety cul- ture, the main purposes and problems determination, the basic parameters and characteristics forming which are to be monitored. The event monitoring in operation - on this stage continuous process of key events searching and monitoring which are a thing of importance within the framework of the established problems takes place. This process is closely relat- ed to parameters monitoring set on the first stage. The event and risk estimate - this stage begins directly after the event has been discovered. The estimate pro- cess is as long as it is required to identify the event gravity. It also contains the preliminary risk estimate for using in priori- tization of initial expanded estimate and in the working out of plan for activities realization. The working out of plan for activities - on this stage correction data is determined that will make changes to aero- technics working out, operation, maintenance and to staff training directly in linkage to the problem event identified earlier. The activity carrying-out - the realization of actions according to the activity plan. This stage concludes priori- tization, planning and problem carrying-out. The dependence set between the probability of failure situations and the degree of their danger is shown. The key factors which are subject to be estimated while aircraft operating and which aim with

  7. Lightweight, Efficient Power Converters for Advanced Turboelectric Aircraft Propulsion Systems, Phase I

    National Aeronautics and Space Administration — NASA is investigating advanced turboelectric aircraft propulsion systems that utilize superconducting motors to drive a number of distributed turbofans. In an...

  8. Initial Study of An Effective Fast-Time Simulation Platform for Unmanned Aircraft System Traffic Management

    Xue, Min; Rios, Joseph


    Small Unmanned Aerial Vehicles (sUAVs), typically 55 lbs and below, are envisioned to play a major role in surveilling critical assets, collecting important information, and delivering goods. Large scale small UAV operations are expected to happen in low altitude airspace in the near future. Many static and dynamic constraints exist in low altitude airspace because of manned aircraft or helicopter activities, various wind conditions, restricted airspace, terrain and man-made buildings, and conflict-avoidance among sUAVs. High sensitivity and high maneuverability are unique characteristics of sUAVs that bring challenges to effective system evaluations and mandate such a simulation platform different from existing simulations that were built for manned air traffic system and large unmanned fixed aircraft. NASA's Unmanned aircraft system Traffic Management (UTM) research initiative focuses on enabling safe and efficient sUAV operations in the future. In order to help define requirements and policies for a safe and efficient UTM system to accommodate a large amount of sUAV operations, it is necessary to develop a fast-time simulation platform that can effectively evaluate requirements, policies, and concepts in a close-to-reality environment. This work analyzed the impacts of some key factors including aforementioned sUAV's characteristics and demonstrated the importance of these factors in a successful UTM fast-time simulation platform.

  9. Application of modern control design methodology to oblique wing research aircraft

    Vincent, James H.


    A Linear Quadratic Regulator synthesis technique was used to design an explicit model following control system for the Oblique Wing Research Aircraft (OWRA). The forward path model (Maneuver Command Generator) was designed to incorporate the desired flying qualities and response decoupling. The LQR synthesis was based on the use of generalized controls, and it was structured to provide a proportional/integral error regulator with feedforward compensation. An unexpected consequence of this design approach was the ability to decouple the control synthesis into separate longitudinal and lateral directional designs. Longitudinal and lateral directional control laws were generated for each of the nine design flight conditions, and gain scheduling requirements were addressed. A fully coupled 6 degree of freedom open loop model of the OWRA along with the longitudinal and lateral directional control laws was used to assess the closed loop performance of the design. Evaluations were performed for each of the nine design flight conditions.

  10. Integration of structural health monitoring solutions onto commercial aircraft via the Federal Aviation Administration structural health monitoring research program

    Swindell, Paul; Doyle, Jon; Roach, Dennis


    The Federal Aviation Administration (FAA) started a research program in structural health monitoring (SHM) in 2011. The program's goal was to understand the technical gaps of implementing SHM on commercial aircraft and the potential effects on FAA regulations and guidance. The program evolved into a demonstration program consisting of a team from Sandia National Labs Airworthiness Assurance NDI Center (AANC), the Boeing Corporation, Delta Air Lines, Structural Monitoring Systems (SMS), Anodyne Electronics Manufacturing Corp (AEM) and the FAA. This paper will discuss the program from the selection of the inspection problem, the SHM system (Comparative Vacuum Monitoring-CVM) that was selected as the inspection solution and the testing completed to provide sufficient data to gain the first approved use of an SHM system for routine maintenance on commercial US aircraft.

  11. Preliminary Correlations for Remotely Piloted Aircraft Systems Sizing

    Álvaro Gómez-Rodríguez


    Full Text Available The field of Remotely Piloted Aircraft Systems (RPAS is currently undergoing a noteworthy expansion. The diverse types of missions that these aircraft can accomplish, both in military and civil environments, have motivated an increase of interest in their study and applications. The methods chosen to develop this study are based on the statistical analysis of a database including numerous models of RPAS and the estimation of different correlations in order to develop a design method for rapid sizing of H-tail RPAS. Organizing the information of the database according to relevant characteristics, information relative to the state-of-the-art design tendencies can be extracted, which can serve to take decisions relative to the aerodynamic configuration or the power plant in the first phases of the design project. Furthermore, employing statistical correlations estimated from the database, a design method for rapid-sizing of H-tail RPAS has been conducted, which will be focused on the sizing of the wing and tail surfaces. The resulting method has been tested by applying it to an example case so as to validate the proposed procedure.




  13. Polar Research with Unmanned Aircraft and Tethered Balloons

    Ivey, M [Sandia National Laboratories; Petty, R [U.S. Department of Energy; Desilets, D [Sandia National Laboratories; Verlinde, J; Ellingson, R [Florida State University


    The Arctic is experiencing rapid climate change, with nearly double the rate of surface warming observed elsewhere on the planet. While various positive feedback mechanisms have been suggested, the reasons for Arctic amplification are not well understood, nor are the impacts to the global carbon cycle well quantified. Additionally, there are uncertainties associated with the complex interactions between Earth’s surface and the atmosphere. Elucidating the causes and consequences of Arctic warming is one of the many goals of the Climate and Environmental Sciences Division (CESD) of the U.S. Department of Energy’s (DOE) Biological and Environmental Research (BER) program, and is part of the larger CESD initiative to develop a robust predictive understanding of Earth’s climate system.

  14. Evaluation of an improved air distribution system for aircraft cabin

    Pang, Liping; Xu, Jie; Fang, Lei


    An improved air distribution system for aircraft cabin was proposed in this paper. Personalized outlets were introduced and placed at the bottom of the baggage hold. Its ratio of fresh air to recirculation air and the conditioned temperature of different types of inlets were also designed carefully...... to meet the goals of high air quality, thermal comfort and energy saving. Some experiments were conducted to evaluate and compare its performances with two other systems. First the Flow Visualization with Green Laser (FVGL) technology was used to analyze the air flow. The top-in-side bottom-out pattern...... may have the disadvantages of an indirect path to deliver fresh air to passengers, a low fresh air utilization ratio and the potential to widely spreading airborne infectious diseases. The bottom-in-top-out pattern can overcome these disadvantages very well, but it also faces the stratification...

  15. The use of Unmanned Aircraft Systems (UAS in combat operations

    Tomasz GUGAŁA


    Full Text Available In this publication has been presented selected aspects of the wide spectrum of Unmanned Aircraft Systems (UAS/UAV adaptation within the military structures. With regard to many years of experience of the author within the national and NATO Integrated Air Defence Command and Control System, the objective paper is also related to the Airspace Management (ASM in the light of present and future use of UAS in this environment. Wider and wider application of UAS in many areas of human life as well as in military and civilian services is forcing to take the definite steps in connection with elaboration of “New Concept of Polish Airspace Management in Context of UAS Development”, what is currently under consideration of the author. The respective publication is simultaneously the specific trial for inspiration of the civilian society to take an initiative heading for implementation of UAS out of military service.

  16. Subsonic Ultra Green Aircraft Research Phase II: N+4 Advanced Concept Development

    Bradley, Marty K.; Droney, Christopher K.


    This final report documents the work of the Boeing Subsonic Ultra Green Aircraft Research (SUGAR) team on Task 1 of the Phase II effort. The team consisted of Boeing Research and Technology, Boeing Commercial Airplanes, General Electric, and Georgia Tech. Using a quantitative workshop process, the following technologies, appropriate to aircraft operational in the N+4 2040 timeframe, were identified: Liquefied Natural Gas (LNG), Hydrogen, fuel cell hybrids, battery electric hybrids, Low Energy Nuclear (LENR), boundary layer ingestion propulsion (BLI), unducted fans and advanced propellers, and combinations. Technology development plans were developed.

  17. A survey of autonomous vision-based See and Avoid for Unmanned Aircraft Systems

    Mcfadyen, Aaron; Mejias, Luis


    This paper provides a comprehensive review of the vision-based See and Avoid problem for unmanned aircraft. The unique problem environment and associated constraints are detailed, followed by an in-depth analysis of visual sensing limitations. In light of such detection and estimation constraints, relevant human, aircraft and robot collision avoidance concepts are then compared from a decision and control perspective. Remarks on system evaluation and certification are also included to provide a holistic review approach. The intention of this work is to clarify common misconceptions, realistically bound feasible design expectations and offer new research directions. It is hoped that this paper will help us to unify design efforts across the aerospace and robotics communities.

  18. Rotary Balance Wind Tunnel Testing for the FASER Flight Research Aircraft

    Denham, Casey; Owens, D. Bruce


    Flight dynamics research was conducted to collect and analyze rotary balance wind tunnel test data in order to improve the aerodynamic simulation and modeling of a low-cost small unmanned aircraft called FASER (Free-flying Aircraft for Sub-scale Experimental Research). The impetus for using FASER was to provide risk and cost reduction for flight testing of more expensive aircraft and assist in the improvement of wind tunnel and flight test techniques, and control laws. The FASER research aircraft has the benefit of allowing wind tunnel and flight tests to be conducted on the same model, improving correlation between wind tunnel, flight, and simulation data. Prior wind tunnel tests include a static force and moment test, including power effects, and a roll and yaw damping forced oscillation test. Rotary balance testing allows for the calculation of aircraft rotary derivatives and the prediction of steady-state spins. The rotary balance wind tunnel test was conducted in the NASA Langley Research Center (LaRC) 20-Foot Vertical Spin Tunnel (VST). Rotary balance testing includes runs for a set of given angular rotation rates at a range of angles of attack and sideslip angles in order to fully characterize the aircraft rotary dynamics. Tests were performed at angles of attack from 0 to 50 degrees, sideslip angles of -5 to 10 degrees, and non-dimensional spin rates from -0.5 to 0.5. The effects of pro-spin elevator and rudder deflection and pro- and anti-spin elevator, rudder, and aileron deflection were examined. The data are presented to illustrate the functional dependence of the forces and moments on angle of attack, sideslip angle, and angular rate for the rotary contributions to the forces and moments. Further investigation is necessary to fully characterize the control effectors. The data were also used with a steady state spin prediction tool that did not predict an equilibrium spin mode.

  19. Evaluation of Forest Health Conditions using Unmanned Aircraft Systems (UAS)

    Hatfield, M. C.; Heutte, T. M.


    US Forest Service Alaska Region Forest Health Protection (FHP) and University of Alaska Fairbanks, Alaska Center for Unmanned Aircraft Systems Integration (ACUASI) are evaluating capability of Unmanned Aerial Systems (UAS) to monitor forest health conditions in Alaska's Interior Region. In July 2016, the team deployed UAS at locations in the Tanana Valley near Fairbanks in order to familiarize FHP staff with capabilities of UAS for evaluating insect and disease damage. While many potential uses of UAS to evaluate and monitor forest health can be envisioned, this project focused on use of a small UAS for rapid assessment of insect and disease damage. Traditional ground-based methods are limited by distance from ground to canopy and inaccessibility of forest stands due to terrain conditions. Observation from fixed-wing aircraft provide a broad overview of conditions but are limited by minimum safe flying altitude (500' AGL) and aircraft speed ( 100 mph). UAS may provide a crucial bridge to fill in gaps between ground and airborne methods, and offer significant cost savings and greater flexibility over helicopter-based observations. Previous uses of UAS for forest health monitoring are limited - this project focuses on optimizing choice of vehicle, sensors, resolution and area scanned from different altitudes, and use of visual spectrum vs NIR image collection. The vehicle selected was the ACUASI Ptarmigan, a small hexacopter (based on DJI S800 airframe and 3DR autopilot) capable of carrying a 1.5 kg payload for 15 min for close-range environmental monitoring missions. Sites were chosen for conditions favorable to UAS operation and presence of forest insect and disease agents including spruce broom rust, aspen leaf miner, birch leaf roller, and willow leafblotch miner. A total of 29 flights were conducted with 9000+ images collected. Mission variables included camera height, UAS speed, and medium- (Sony NEX-7) vs low-resolution (GoPro Hero) cameras. Invaluable

  20. Integrated Network of Optimizations for Aircraft Systems, Phase I

    National Aeronautics and Space Administration — Aircraft design is a complex process requiring interactions and exchange of information among multiple disciplines such as aerodynamics, strength, fatigue, controls,...

  1. Model Updating in Online Aircraft Prognosis Systems, Phase I

    National Aeronautics and Space Administration — Diagnostic and prognostic algorithms for many aircraft subsystems are steadily maturing. Unfortunately there is little experience integrating these technologies into...

  2. Point-to-Point! Validation of the Small Aircraft Transportation System Higher Volume Operations Concept

    Williams, Daniel M.


    Described is the research process that NASA researchers used to validate the Small Aircraft Transportation System (SATS) Higher Volume Operations (HVO) concept. The four phase building-block validation and verification process included multiple elements ranging from formal analysis of HVO procedures to flight test, to full-system architecture prototype that was successfully shown to the public at the June 2005 SATS Technical Demonstration in Danville, VA. Presented are significant results of each of the four research phases that extend early results presented at ICAS 2004. HVO study results have been incorporated into the development of the Next Generation Air Transportation System (NGATS) vision and offer a validated concept to provide a significant portion of the 3X capacity improvement sought after in the United States National Airspace System (NAS).

  3. Fuel property effects on Navy aircraft fuel systems

    Moses, C. A.


    Problems of ensuring compatibility of Navy aircraft with fuels that may be different than the fuels for which the equipment was designed and qualified are discussed. To avoid expensive requalification of all the engines and airframe fuel systems, methodologies to qualify future fuels by using bench-scale and component testing are being sought. Fuel blends with increasing JP5-type aromatic concentration were seen to produce less volume swell than an equivalent aromatic concentration in the reference fuel. Futhermore, blends with naphthenes, decalin, tetralin, and naphthalenes do not deviate significantly from the correlation line of aromatic blends, Similar results are found with tensile strenth and elongation. Other elastomers, sealants, and adhesives are also being tested.

  4. Fail-safe system for activity cooled supersonic and hypersonic aircraft. [using liquid hydrogen fuel

    Jones, R. A.; Braswell, D. O.; Richie, C. B.


    A fail-safe-system concept was studied as an alternative to a redundant active cooling system for supersonic and hypersonic aircraft which use the heat sink of liquid-hydrogen fuel for cooling the aircraft structure. This concept consists of an abort maneuver by the aircraft and a passive thermal protection system (TPS) for the aircraft skin. The abort manuever provides a low-heat-load descent from normal cruise speed to a lower speed at which cooling is unnecessary, and the passive TPS allows the aircraft skin to absorb the abort heat load without exceeding critical skin temperature. On the basis of results obtained, it appears that this fail-safe-system concept warrants further consideration, inasmuch as a fail-safe system could possibly replace a redundant active cooling system with no increase in weight and would offer other potential advantages.

  5. Effect of power system technology and mission requirements on high altitude long endurance aircraft

    Colozza, Anthony J.


    An analysis was performed to determine how various power system components and mission requirements affect the sizing of a solar powered long endurance aircraft. The aircraft power system consists of photovoltaic cells and a regenerative fuel cell. Various characteristics of these components, such as PV cell type, PV cell mass, PV cell efficiency, fuel cell efficiency, and fuel cell specific mass, were varied to determine what effect they had on the aircraft sizing for a given mission. Mission parameters, such as time of year, flight altitude, flight latitude, and payload mass and power, were also altered to determine how mission constraints affect the aircraft sizing. An aircraft analysis method which determines the aircraft configuration, aspect ratio, wing area, and total mass, for maximum endurance or minimum required power based on the stated power system and mission parameters is presented. The results indicate that, for the power system, the greatest benefit can be gained by increasing the fuel cell specific energy. Mission requirements also substantially affect the aircraft size. By limiting the time of year the aircraft is required to fly at high northern or southern latitudes, a significant reduction in aircraft size or increase in payload capacity can be achieved.

  6. Mountain Search and Rescue with Remotely Piloted Aircraft Systems

    Silvagni, Mario; Tonoli, Andrea; Zenerino, Enrico; Chiaberge, Marcello


    Remotely Piloted Aircraft Systems (RPAS) also known as Unmanned Aerial Systems (UAS) are nowadays becoming more and more popular in several applications. Even though a complete regulation is not yet available all over the world, researches, tests and some real case applications are wide spreading. These technologies can bring many benefits also to the mountain operations especially in emergencies and harsh environmental conditions, such as Search and Rescue (SAR) and avalanche rescue missions. In fact, during last decade, the number of people practicing winter sports in backcountry environment is increased and one of the greatest hazards for recreationists and professionals are avalanches. Often these accidents have severe consequences leading, mostly, to asphyxia-related death, which is confirmed by the hard drop of survival probability after ten minutes from the burying. Therefore, it is essential to minimize the time of burial. Modern avalanche beacon (ARTVA) interface guides the rescuer during the search phase reducing its time. Even if modern avalanche beacons are valid and reliable, the seeking range influences the rescue time. Furthermore, the environment and morphologic conditions of avalanches usually complicates the rescues. The recursive methodology of this kind of searching offers the opportunity to use automatic device like drones (RPAS). These systems allow performing all the required tasks autonomously, with high accuracy and without exposing the rescuers to additional risks due to secondary avalanches. The availability of highly integrated electronics and subsystems specifically meant for the applications, better batteries, miniaturized payload and, in general, affordable prices, has led to the availability of small RPAS with very good performances that can give interesting application opportunities in unconventional environments. The present work is one of the outcome from the experience made by the authors in RPAS fields and in Mechatronics

  7. Integrating Multiple Autonomous Underwater Vessels, Surface Vessels and Aircraft into Oceanographic Research Vessel Operations

    McGillivary, P. A.; Borges de Sousa, J.; Martins, R.; Rajan, K.


    Autonomous platforms are increasingly used as components of Integrated Ocean Observing Systems and oceanographic research cruises. Systems deployed can include gliders or propeller-driven autonomous underwater vessels (AUVs), autonomous surface vessels (ASVs), and unmanned aircraft systems (UAS). Prior field campaigns have demonstrated successful communication, sensor data fusion and visualization for studies using gliders and AUVs. However, additional requirements exist for incorporating ASVs and UASs into ship operations. For these systems to be optimally integrated into research vessel data management and operational planning systems involves addressing three key issues: real-time field data availability, platform coordination, and data archiving for later analysis. A fleet of AUVs, ASVs and UAS deployed from a research vessel is best operated as a system integrated with the ship, provided communications among them can be sustained. For this purpose, Disruptive Tolerant Networking (DTN) software protocols for operation in communication-challenged environments help ensure reliable high-bandwidth communications. Additionally, system components need to have considerable onboard autonomy, namely adaptive sampling capabilities using their own onboard sensor data stream analysis. We discuss Oceanographic Decision Support System (ODSS) software currently used for situational awareness and planning onshore, and in the near future event detection and response will be coordinated among multiple vehicles. Results from recent field studies from oceanographic research vessels using AUVs, ASVs and UAS, including the Rapid Environmental Picture (REP-12) cruise, are presented describing methods and results for use of multi-vehicle communication and deliberative control networks, adaptive sampling with single and multiple platforms, issues relating to data management and archiving, and finally challenges that remain in addressing these technological issues. Significantly, the

  8. A Review of Current and Prospective Factors for Classification of Civil Unmanned Aircraft Systems

    Hayhurst, Kelly J.; Maddalon, Jeffrey M.; Morris, A. Terry; Neogi, Natasha; Verstynen, Harry A.


    While progress is being made on integrating unmanned aircraft systems (UAS) into our national airspace on a broad scale, much work remains to establish appropriate certification standards and operational procedures, particularly with respect to routine commercial operations. This paper summarizes research to examine the extent to which today's civil aircraft taxonomy applies to UAS, and, if needed, how that taxonomy could be amended to better cover different UAS designs and operations. Factors that shape the current taxonomy, as defined in the Federal Aviation Regulations, were assessed for applicability to UAS, potential incompatibilities were identified, and additional factors were proposed that might be useful for an updated aircraft taxonomy intended to cover UAS. The results suggest the possibility of constructing new groups in the taxonomy for UAS under a restricted category that share common airworthiness standards. Establishing distinct groups for UAS and associated standards that enable low risk operations for compensation or hire could be a timely step toward full integration. Such a step would allow the civil aviation industry and regulators to gain valuable experience with UAS while carefully controlling access and potential harm to the aviation system as a whole.

  9. Trajectory Management of the Unmanned Aircraft System (UAS in Emergency Situation

    Andrzej Majka


    Full Text Available Unmanned aircraft must be characterized by a level of safety, similar to that of manned aircraft, when performing flights over densely populated areas. Dangerous situations or emergencies are frequently connected with the necessity to change the profiles and parameters of a flight as well as the flight plans. The aim of this work is to present the methods used to determine an Unmanned Aircraft System’s (UAS flight profile after a dangerous situation or emergency occurs. The analysis was limited to the possibility of an engine system emergency and further flight continuing along a trajectory of which the shape depends on the type of the emergency. The suggested method also enables the determination of an optimal flying trajectory, based on the territory of a special protection zone (for example, large populated areas, in the case of an emergency that would disable continuation of the performed task. The method used in this work allows researchers, in a simplified way, to solve a variation task using the Ritz–Galerkin method, consisting of an approximate solution of the boundary value problem to determine the optimal flight path. The worked out method can become an element of the on-board system supporting UAS flight control.

  10. Static Measurements on HTS Coils of Fully Superconducting AC Electric Machines for Aircraft Electric Propulsion System

    Choi, Benjamin B.; Hunker, Keith R.; Hartwig, Jason; Brown, Gerald V.


    The NASA Glenn Research Center (GRC) has been developing the high efficiency and high-power density superconducting (SC) electric machines in full support of electrified aircraft propulsion (EAP) systems for a future electric aircraft. A SC coil test rig has been designed and built to perform static and AC measurements on BSCCO, (RE)BCO, and YBCO high temperature superconducting (HTS) wire and coils at liquid nitrogen (LN2) temperature. In this paper, DC measurements on five SC coil configurations of various geometry in zero external magnetic field are measured to develop good measurement technique and to determine the critical current (Ic) and the sharpness (n value) of the super-to-normal transition. Also, standard procedures for coil design, fabrication, coil mounting, micro-volt measurement, cryogenic testing, current control, and data acquisition technique were established. Experimentally measured critical currents are compared with theoretical predicted values based on an electric-field criterion (Ec). Data here are essential to quantify the SC electric machine operation limits where the SC begins to exhibit non-zero resistance. All test data will be utilized to assess the feasibility of using HTS coils for the fully superconducting AC electric machine development for an aircraft electric propulsion system.

  11. Superconducting and conventional electromagnetic launch system for civil aircraft assisted take-off

    Bertola, Luca; Cox, Thomas; Wheeler, Patrick; Garvey, Seamus D.


    This paper compares three possible linear motor topologies for an electromagnetic launch system to assist civil aircraft take-off. Assisted launch of civil aircraft has the potential of reducing the required runway length, reducing noise and emissions near airports and improving overall aircraft efficiency through reducing engine thrust requirements. A comparison is made of practical designs of a linear induction motor, a linear permanent magnet synchronous motor and a superconducting linear ...

  12. Application of a modified complementary filtering technique for increased aircraft control system frequency bandwidth in high vibration environment

    Garren, J. F., Jr.; Niessen, F. R.; Abbott, T. S.; Yenni, K. R.


    A modified complementary filtering technique for estimating aircraft roll rate was developed and flown in a research helicopter to determine whether higher gains could be achieved. Use of this technique did, in fact, permit a substantial increase in system frequency bandwidth because, in comparison with first-order filtering, it reduced both noise amplification and control limit-cycle tendencies.

  13. Tropical cyclones-Pacific Asian Research Campaign for Improvement of Intensity estimations/forecasts (T-PARCII): A research plan of typhoon aircraft observations in Japan

    Tsuboki, Kazuhisa


    Typhoons are the most devastating weather system occurring in the western North Pacific and the South China Sea. Violent wind and heavy rainfall associated with a typhoon cause huge disaster in East Asia including Japan. In 2013, Supertyphoon Haiyan struck the Philippines caused a very high storm surge and more than 7000 people were killed. In 2015, two typhoons approached the main islands of Japan and severe flood occurred in the northern Kanto region. Typhoons are still the largest cause of natural disaster in East Asia. Moreover, many researches have projected increase of typhoon intensity with the climate change. This suggests that a typhoon risk is increasing in East Asia. However, the historical data of typhoon include large uncertainty. In particular, intensity data of the most intense typhoon category have larger error after the US aircraft reconnaissance of typhoon was terminated in 1987.The main objective of the present study is improvements of typhoon intensity estimations and of forecasts of intensity and track. We will perform aircraft observation of typhoon and the observed data are assimilated to numerical models to improve intensity estimation. Using radars and balloons, observations of thermodynamical and cloud-microphysical processes of typhoons will be also performed to improve physical processes of numerical model. In typhoon seasons (mostly in August and September), we will perform aircraft observations of typhoons. Using dropsondes from the aircraft, temperature, humidity, pressure, and wind are measured in surroundings of the typhoon inner core region. The dropsonde data are assimilated to a cloud-resolving model which has been developed in Nagoya University and named the Cloud Resolving Storm Simulator (CReSS). Then, more accurate estimations and forecasts of the typhoon intensity will be made as well as typhoon tracks. Furthermore, we will utilize a ground-based balloon with microscope camera, X-band precipitation radar, Ka-band cloud radar

  14. Understanding electrostatic charge behaviour in aircraft fuel systems

    Ogilvy, Jill A.; Hooker, Phil; Bennett, Darrell


    This paper presents work on the simulation of electrostatic charge build-up and decay in aircraft fuel systems. A model (EC-Flow) has been developed by BAE Systems under contract to Airbus, to allow the user to assess the effects of changes in design or in refuel conditions. Some of the principles behind the model are outlined. The model allows for a range of system components, including metallic and non-metallic pipes, valves, filters, junctions, bends and orifices. A purpose-built experimental rig was built at the Health and Safety Laboratory in Buxton, UK, to provide comparison data. The rig comprises a fuel delivery system, a test section where different components may be introduced into the system, and a Faraday Pail for measuring generated charge. Diagnostics include wall currents, charge densities and pressure losses. This paper shows sample results from the fitting of model predictions to measurement data and shows how analysis may be used to explain some of the observed trends.

  15. Calibration and Quality Assurance of Flux Observations from a Small Research Aircraft

    Vellinga, O.S.; Dobosy, R.J.; Dumas, E.J.; Beniamino, G.; Elbers, J.A.; Hutjes, R.W.A.


    Small environmental research aircraft (ERA) are becoming more common for detailed studies of air–surface interactions. The Sky Arrow 650 ERA, used by multiple groups, is designed to minimize the complexity of high-precision airborne turbulent wind measurement. Its relative wind probe, of a nine-port

  16. Report to NASA Committee on Aircraft Operating Problems Relative to Aviation Safety Engineering and Research Activities


    The following report highlights some of the work accomplished by the Aviation Safety Engineering and Research Division of the Flight Safety Foundations since the last report to the NASA Committee on Aircraft Operating Problems on 22 May 1963. The information presented is in summary form. Additional details may be provided upon request of the reports themselves may be obtained from AvSER.

  17. Unmanned Aircraft Systems Detect and Avoid System: End-to-End Verification and Validation Simulation Study of Minimum Operations Performance Standards for Integrating Unmanned Aircraft into the National Airspace System

    Ghatas, Rania W.; Jack, Devin P.; Tsakpinis, Dimitrios; Sturdy, James L.; Vincent, Michael J.; Hoffler, Keith D.; Myer, Robert R.; DeHaven, Anna M.


    As Unmanned Aircraft Systems (UAS) make their way to mainstream aviation operations within the National Airspace System (NAS), research efforts are underway to develop a safe and effective environment for their integration into the NAS. Detect and Avoid (DAA) systems are required to account for the lack of "eyes in the sky" due to having no human on-board the aircraft. The technique, results, and lessons learned from a detailed End-to-End Verification and Validation (E2-V2) simulation study of a DAA system representative of RTCA SC-228's proposed Phase I DAA Minimum Operational Performance Standards (MOPS), based on specific test vectors and encounter cases, will be presented in this paper.

  18. The Aircraft Morphing Program

    Wlezien, R. W.; Horner, G. C.; McGowan, A. R.; Padula, S. L.; Scott, M. A.; Silcox, R. J.; Simpson, J. O.


    In the last decade smart technologies have become enablers that cut across traditional boundaries in materials science and engineering. Here we define smart to mean embedded actuation, sensing, and control logic in a tightly coupled feedback loop. While multiple successes have been achieved in the laboratory, we have yet to see the general applicability of smart devices to real aircraft systems. The NASA Aircraft Morphing program is an attempt to couple research across a wide range of disciplines to integrate smart technologies into high payoff aircraft applications. The program bridges research in seven individual disciplines and combines the effort into activities in three primary program thrusts. System studies are used to assess the highest- payoff program objectives, and specific research activities are defined to address the technologies required for development of smart aircraft systems. In this paper we address the overall program goals and programmatic structure, and discuss the challenges associated with bringing the technologies to fruition.

  19. Aircraft Alerting Systems Criteria Study. Volume 1. Collation and Analysis of Aircraft Alerting Systems Data


    ott the.747-Vas opi the 7,37 beca’ws the � has foiiy paralkA.hydrauliu syst~et~s,’wfiereas %the 737 has only two patallel systems. is hefalue f wo...8217.. . -" "" - - - - - OLICTRICAL 2 2 13 2 10 1 EMERGENCY EQUIPMENT 1 1 1 1 - - , PIM PROTECTION 1 3 2 g 2 FLIGHT CONTROLS 2 2F,3 6 2 PLIGHT INITRUMINTATION a 2 a 4 1 1 1

  20. Human Performance Considerations for Remotely Piloted Aircraft Systems (RPAS)

    Shively, R. Jay; Hobbs, Alan; Lyall, Beth; Rorie, Conrad


    Successful integration of Remotely Piloted Aircraft Systems (RPAS) into civil airspace will not only require solutions to technical challenges, but will also require that the design and operation of RPAS take into account human limitations and capabilities. Human factors can affect overall system performance whenever the system relies on people to interact with another element of the system. Four types of broad interactions can be described. These are (1) interactions between people and hardware, such as controls and displays; (2) human use of procedures and documentation; (3) impact of the task environment, including lighting, noise and monotony; and lastly, (4) interactions between operational personnel, including communication and coordination. In addition to the human factors that have been identified for conventional aviation, RPAS operations introduce a set of unique human challenges. The purpose of document is to raise human factors issues for consideration by workgroups of the ICAO RPAS panel as they work to develop guidance material and additions to ICAO annexes. It is anticipated that the content of this document will be revised and updated as the work of the panel progresses.

  1. Aircraft anti-ice system: Evaluation of system performance with a new time dependent mathematical model

    Zilio, Claudio; Patricelli, Luca


    The anti-ice systems are critical for airplane safety, but are also strongly affecting the fuel consumption of the aircraft. A complete model of this system allows the designers to investigate all possible combination of external parameters and improve the design of current anti-ice systems. The dynamic model of an anti-ice system is presented and the results of the model are validated thanks to a series of experimental tests. The model has been used to analyze the behavior of an anti-ice system at extreme high bleed air temperature which are typical of new generation aircraft engines. An innovative architecture for anti-ice system is studied and the benefits on aircraft fuel consumption for a standard day mission are shown. -- Highlights: • A detailed mathematical model of an anti-ice valves has been created. • Experimental results confirm the goodness of the developed model. • Instability of the valves has been studied. • A new architecture for the anti-ice systems is proposed and the impacts on the aircraft fuel consumption are analyzed

  2. A compact, fast UV photometer for measurement of ozone from research aircraft

    R. S. Gao


    Full Text Available In situ measurements of atmospheric ozone (O3 are performed routinely from many research aircraft platforms. The most common technique depends on the strong absorption of ultraviolet (UV light by ozone. As atmospheric science advances to the widespread use of unmanned aircraft systems (UASs, there is an increasing requirement for minimizing instrument space, weight, and power while maintaining instrument accuracy, precision and time response. The design and use of a new, dual-beam, UV photometer instrument for in situ O3 measurements is described. A polarization optical-isolator configuration is utilized to fold the UV beam inside the absorption cells, yielding a 60-cm absorption length with a 30-cm cell. The instrument has a fast sampling rate (2 Hz at <200 hPa, 1 Hz at 200–500 hPa, and 0.5 Hz at ≥ 500 hPa, high accuracy (3% excluding operation in the 300–450 hPa range, where the accuracy may be degraded to about 5%, and excellent precision (1.1 × 1010 O3 molecules cm−3 at 2 Hz, which corresponds to 3.0 ppb at 200 K and 100 hPa, or 0.41 ppb at 273 K and 1013 hPa. The size (36 l, weight (18 kg, and power (50–200 W make the instrument suitable for many UASs and other airborne platforms. Inlet and exhaust configurations are also described for ambient sampling in the troposphere and lower stratosphere (1000–50 hPa that control the sample flow rate to maximize time response while minimizing loss of precision due to induced turbulence in the sample cell. In-flight and laboratory intercomparisons with existing O3 instruments show that measurement accuracy is maintained in flight.

  3. Research and development of turbofan engine for supersonic aircraft. Choonsokukiyo turbofan engine no kenkyu kaihatsu

    Yashima, S [Ishikawajima-Harima Heavy Industries Co. Ltd., Tokyo (Japan)


    This paper described the researched results of the demonstrator of a turbofan engine for supersonic aircraft (IHI-17). A turbofan engine with an afterburner was experimentally fabricated and various engine tests have been carried out since 1988. Although the engine size is small, the fighter engine specifications were applied to its design and the prior or simultaneous research on each component was carried out. As a result, the system integration technique by which an engine was assembled by integrating each component could be established. New materials and new manufacturing techniques such as turbine blades of single crystal, turbine disks of powder metallurgy and deep chemical milling for a duct were developed to use for the long term engine test and the prospect to commercialization could be obtained. The following techniques have been established and the results satisfying target specifications could be achieved: the three dimensional aerodynamic design of compressor and turbine, the adoption of air blast fuel atomizer to suppress the smoke generation, an afterburner of spray bar system and the mounting type FADEC (full authority digital electronic control) to control the engine with the afterburner. 4 refs., 15 figs., 4 tabs.

  4. Scientific Research Program for Power, Energy, and Thermal Technologies. Task Order 0001: Energy, Power, and Thermal Technologies and Processes Experimental Research. Subtask: Thermal Management of Electromechanical Actuation System for Aircraft Primary Flight Control Surfaces


    Computer FHPCP Flexible Heat Pipe Cold Plate HPEAS High Performance Electric Actuation System HPU Hydraulic Power Unit HSM Hydraulic Service...provide improved thermal paths and phase change materials offer energy storage. Loop heat pipes (LHP’s) and Flexible Heat Pipe Cold Plates (FHPCP’s...flows upward due to density difference through centrally located vapor channels called risers and then condenses on the colder surface associated

  5. Flight testing a propulsion-controlled aircraft emergency flight control system on an F-15 airplane

    Burcham, F. W., Jr.; Burken, John; Maine, Trindel A.


    Flight tests of a propulsion-controlled aircraft (PCA) system on an F-15 airplane have been conducted at the NASA Dryden Flight Research Center. The airplane was flown with all flight control surfaces locked both in the manual throttles-only mode and in an augmented system mode. In the latter mode, pilot thumbwheel commands and aircraft feedback parameters were used to position the throttles. Flight evaluation results showed that the PCA system can be used to land an airplane that has suffered a major flight control system failure safely. The PCA system was used to recover the F-15 airplane from a severe upset condition, descend, and land. Pilots from NASA, U.S. Air Force, U.S. Navy, and McDonnell Douglas Aerospace evaluated the PCA system and were favorably impressed with its capability. Manual throttles-only approaches were unsuccessful. This paper describes the PCA system operation and testing. It also presents flight test results and pilot comments.

  6. Advanced electrical power system technology for the all electric aircraft

    Finke, R. C.; Sundberg, G. R.


    The application of advanced electric power system technology to an all electric airplane results in an estimated reduction of the total takeoff gross weight of over 23,000 pounds for a large airplane. This will result in a 5 to 10 percent reduction in direct operating costs (DOC). Critical to this savings is the basic electrical power system component technology. These advanced electrical power components will provide a solid foundation for the materials, devices, circuits, and subsystems needed to satisfy the unique requirements of advanced all electric aircraft power systems. The program for the development of advanced electrical power component technology is described. The program is divided into five generic areas: semiconductor devices (transistors, thyristors, and diodes); conductors (materials and transmission lines); dielectrics; magnetic devices; and load management devices. Examples of progress in each of the five areas are discussed. Bipolar power transistors up to 1000 V at 100 A with a gain of 10 and a 0.5 microsec rise and fall time are presented. A class of semiconductor devices with a possibility of switching up to 100 kV is described. Solid state power controllers for load management at 120 to 1000 V and power levels to 25 kW were developed along with a 25 kW, 20 kHz transformer weighing only 3.2 kg. Previously announced in STAR as N83-24764

  7. COCAP: a carbon dioxide analyser for small unmanned aircraft systems

    Kunz, Martin; Lavric, Jost V.; Gerbig, Christoph; Tans, Pieter; Neff, Don; Hummelgård, Christine; Martin, Hans; Rödjegård, Henrik; Wrenger, Burkhard; Heimann, Martin


    Unmanned aircraft systems (UASs) could provide a cost-effective way to close gaps in the observation of the carbon cycle, provided that small yet accurate analysers are available. We have developed a COmpact Carbon dioxide analyser for Airborne Platforms (COCAP). The accuracy of COCAP's carbon dioxide (CO2) measurements is ensured by calibration in an environmental chamber, regular calibration in the field and by chemical drying of sampled air. In addition, the package contains a lightweight thermal stabilisation system that reduces the influence of ambient temperature changes on the CO2 sensor by 2 orders of magnitude. During validation of COCAP's CO2 measurements in simulated and real flights we found a measurement error of 1.2 µmol mol-1 or better with no indication of bias. COCAP is a self-contained package that has proven well suited for the operation on board small UASs. Besides carbon dioxide dry air mole fraction it also measures air temperature, humidity and pressure. We describe the measurement system and our calibration strategy in detail to support others in tapping the potential of UASs for atmospheric trace gas measurements.

  8. Advanced electrical power system technology for the all electric aircraft

    Finke, R. C.; Sundberg, G. R.


    The application of advanced electric power system technology to an all electric airplane results in an estimated reduction of the total takeoff gross weight of over 23,000 pounds for a large airplane. This will result in a 5 to 10 percent reduction in direct operating costs (DOC). Critical to this savings is the basic electrical power system component technology. These advanced electrical power components will provide a solid foundation for the materials, devices, circuits, and subsystems needed to satisfy the unique requirements of advanced all electric aircraft power systems. The program for the development of advanced electrical power component technology is described. The program is divided into five generic areas: semiconductor devices (transistors, thyristors, and diodes); conductors (materials and transmission lines); dielectrics; magnetic devices; and load management devices. Examples of progress in each of the five areas are discussed. Bipolar power transistors up to 1000 V at 100 A with a gain of 10 and a 0.5 microsec rise and fall time are presented. A class of semiconductor devices with a possibility of switching up to 100 kV is described. Solid state power controllers for load management at 120 to 1000 V and power levels to 25 kW were developed along with a 25 kW, 20 kHz transformer weighing only 3.2 kg.

  9. Implementation of unmanned aircraft systems by the U.S. Geological Survey

    Cress, J.J.; Sloan, J.L.; Hutt, M.E.


    The U.S. Geological Survey (USGS) Unmanned Aircraft Systems (UAS) Project Office is leading the implementation of UAS technology in anticipation of transforming the research methods and management techniques employed across the Department of the Interior. UAS technology is being made available to monitor environmental conditions, analyse the impacts of climate change, respond to natural hazards, understand landscape change rates and consequences, conduct wildlife inventories and support related land management missions. USGS is teaming with the Department of the Interior Aviation Management Directorate (AMD) to lead the safe and cost-effective adoption of UAS technology by the Department of the Interior Agencies and USGS scientists.

  10. Analyses of Aircraft Responses to Atmospheric Turbulence

    Van Staveren, W.H.J.J.


    The response of aircraft to stochastic atmospheric turbulence plays an important role in aircraft-design (load calculations), Flight Control System (FCS) design and flight-simulation (handling qualities research and pilot training). In order to simulate these aircraft responses, an accurate

  11. STOL terminal area operating systems (aircraft and onboard avionics, ATC, navigation aids)

    Burrous, C.; Erzberger, H.; Johnson, N.; Neuman, F.


    Operational procedures and systems onboard the STOL aircraft which are required to enable the aircraft to perform acceptably in restricted airspace in all types of atmospheric conditions and weather are discussed. Results of simulation and flight investigations to establish operational criteria are presented.

  12. The Use of In-service Passenger Aircraft for Measuring Atmospheric Composition on a Global Scale : the European Research Infrastructure IAGOS

    Blot, R.; Nedelec, P.; Petetin, H.; Thouret, V.; Cohen, Y.


    The In-Service Aircraft for a Global Observing System (IAGOS; is an European Research Infrastructure that provides cost-effective global atmospheric composition measurements at high resolution using commercial passenger aircraft. It is the continuation of the MOZAIC (1994-2014) and the CARIBIC (since 1997) programs that has provided a unique scientific database using 6 aircraft operated by European airlines over two decades. Thanks to growing interests of several international Airlines to contribute to the academic climate research, the IAGOS aircraft fleet (started in 2011), with the IAGOS-CORE basic instrumentation, has expanded to 9 Airbus A340/A330 aircraft up to now. Here, we present this IAGOS-CORE instrumentation that continuously sample carbon monoxide, ozone, water vapor and cloud droplets. We focus on carbon monoxide and ozone measurements which are performed by optimized, but well known, methods such as UV absorption and IR correlation. We describe the data processing/validation and the data quality control. With already more than 20 and 15 years of continuous ozone and carbon monoxide measurements, respectively, the IAGOS/MOZAIC data are particularly suitable for climatologies and trends. Also, since commercial aircraft are daily operated, the near-real time IAGOS-CORE data are also used to observe pollution plumes and to validate air-quality models as well as satellite products.

  13. Optimal Sizing of a Photovoltaic-Hydrogen Power System for HALE Aircraft by means of Particle Swarm Optimization

    Victor M. Sanchez


    Full Text Available Over the last decade there has been a growing interest in the research of feasibility to use high altitude long endurance (HALE aircrafts in order to provide mobile communications. The use of HALEs for telecommunication networks has the potential to deliver a wide range of communication services (from high-quality voice to high-definition videos, as well as high-data-rate wireless channels cost effectively. One of the main challenges of this technology is to design its power supply system, which must provide the enough energy for long time flights in a reliable way. In this paper a photovoltaic/hydrogen system is proposed as power system for a HALE aircraft due its high power density characteristic. In order to obtain the optimal sizing for photovoltaic/hydrogen system a particle swarm optimizer (PSO is used. As a case study, theoretical design of the photovoltaic/hydrogen power system for three different HALE aircrafts located at 18° latitude is presented. At this latitude, the range of solar radiation intensity was from 310 to 450 Wh/sq·m/day. The results obtained show that the photovoltaic/hydrogen systems calculated by PSO can operate during one year with efficacies ranging between 45.82% and 47.81%. The obtained sizing result ensures that the photovoltaic/hydrogen system supplies adequate energy for HALE aircrafts.

  14. Experimental study of an aircraft fuel tank inerting system

    Cai Yan


    Full Text Available In this work, a simulated aircraft fuel tank inerting system has been successfully established based on a model tank. Experiments were conducted to investigate the influences of different operating parameters on the inerting effectiveness of the system, including flow rate of the inert gas (nitrogen-enriched air, inert gas concentration, fuel load of the tank and different inerting approaches. The experimental results show that under the same operating conditions, the time span of a complete inerting process decreased as the flow rate of inert gas was increased; the time span using the inert gas with 5% oxygen concentration was much longer than that using pure nitrogen; when the fuel tank was inerted using the ullage washing approach, the time span increased as the fuel load was decreased; the ullage washing approach showed the best inerting performance when the time span of a complete inerting process was the evaluation criterion, but when the decrease of dissolved oxygen concentration in the fuel was also considered to characterize the inerting effectiveness, the approach of ullage washing and fuel scrubbing at the same time was the most effective.

  15. Immunity-based detection, identification, and evaluation of aircraft sub-system failures

    Moncayo, Hever Y.

    This thesis describes the design, development, and flight-simulation testing of an integrated Artificial Immune System (AIS) for detection, identification, and evaluation of a wide variety of sensor, actuator, propulsion, and structural failures/damages including the prediction of the achievable states and other limitations on performance and handling qualities. The AIS scheme achieves high detection rate and low number of false alarms for all the failure categories considered. Data collected using a motion-based flight simulator are used to define the self for an extended sub-region of the flight envelope. The NASA IFCS F-15 research aircraft model is used and represents a supersonic fighter which include model following adaptive control laws based on non-linear dynamic inversion and artificial neural network augmentation. The flight simulation tests are designed to analyze and demonstrate the performance of the immunity-based aircraft failure detection, identification and evaluation (FDIE) scheme. A general robustness analysis is also presented by determining the achievable limits for a desired performance in the presence of atmospheric perturbations. For the purpose of this work, the integrated AIS scheme is implemented based on three main components. The first component performs the detection when one of the considered failures is present in the system. The second component consists in the identification of the failure category and the classification according to the failed element. During the third phase a general evaluation of the failure is performed with the estimation of the magnitude/severity of the failure and the prediction of its effect on reducing the flight envelope of the aircraft system. Solutions and alternatives to specific design issues of the AIS scheme, such as data clustering and empty space optimization, data fusion and duplication removal, definition of features, dimensionality reduction, and selection of cluster/detector shape are also

  16. Aircraft Fatigue - with Particular Emphasis on Australian Operations and Research.


    its research on the fatigue behaviour of full-scale alluminium -alloy structures by undertaking a major investigation using surplus wings from North...on the corrosion fatigue of Taper-Lok bolted joints in D6AC steel. In March 1973 the RAAF finally took delivery of its first F-IliC, and among the...development of multiple defects, corrosion /stress corrosion , detvrirrat- ion of bonded joints, undetected cracks or damage, inadquate repairs 2r untested

  17. Subsonic Ultra Green Aircraft Research: Phase II- Volume III-Truss Braced Wing Aeroelastic Test Report

    Bradley, Marty K.; Allen, Timothy J.; Droney, Christopher


    This Test Report summarizes the Truss Braced Wing (TBW) Aeroelastic Test (Task 3.1) work accomplished by the Boeing Subsonic Ultra Green Aircraft Research (SUGAR) team, which includes the time period of February 2012 through June 2014. The team consisted of Boeing Research and Technology, Boeing Commercial Airplanes, Virginia Tech, and NextGen Aeronautics. The model was fabricated by NextGen Aeronautics and designed to meet dynamically scaled requirements from the sized full scale TBW FEM. The test of the dynamically scaled SUGAR TBW half model was broken up into open loop testing in December 2013 and closed loop testing from January 2014 to April 2014. Results showed the flutter mechanism to primarily be a coalescence of 2nd bending mode and 1st torsion mode around 10 Hz, as predicted by analysis. Results also showed significant change in flutter speed as angle of attack was varied. This nonlinear behavior can be explained by including preload and large displacement changes to the structural stiffness and mass matrices in the flutter analysis. Control laws derived from both test system ID and FEM19 state space models were successful in suppressing flutter. The control laws were robust and suppressed flutter for a variety of Mach, dynamic pressures, and angle of attacks investigated.

  18. Hiawatha Aircraft Anti-Collision System, Phase II

    National Aeronautics and Space Administration — For Small Unmanned Aerial Vehicles (SUAVs), the FAA mandate to equip all aircraft with ADS-B Out transmitters by 1 January 2020 to support NextGen goals presents...

  19. Thermal Management System for Superconducting Aircraft, Phase I

    National Aeronautics and Space Administration — Aircraft powered by hydrogen power plants or gas turbines driving electric generators connected to distributed electric motors for propulsion have the potential to...

  20. Hiawatha Aircraft Anti-Collision System, Phase I

    National Aeronautics and Space Administration — For SUAVs, the FAA mandate to equip all aircraft with ADS-B Out transmitters by 1 January 2020 to support NextGen goals presents both logistical and mission security...

  1. Multi-spectrum-based enhanced synthetic vision system for aircraft DVE operations

    Kashyap, Sudesh K.; Naidu, V. P. S.; Shanthakumar, N.


    This paper focus on R&D being carried out at CSIR-NAL on Enhanced Synthetic Vision System (ESVS) for Indian regional transport aircraft to enhance all weather operational capabilities with safety and pilot Situation Awareness (SA) improvements. Flight simulator has been developed to study ESVS related technologies and to develop ESVS operational concepts for all weather approach and landing and to provide quantitative and qualitative information that could be used to develop criteria for all-weather approach and landing at regional airports in India. Enhanced Vision System (EVS) hardware prototype with long wave Infrared sensor and low light CMOS camera is used to carry out few field trials on ground vehicle at airport runway at different visibility conditions. Data acquisition and playback system has been developed to capture EVS sensor data (image) in time synch with test vehicle inertial navigation data during EVS field experiments and to playback the experimental data on ESVS flight simulator for ESVS research and concept studies. Efforts are on to conduct EVS flight experiments on CSIR-NAL research aircraft HANSA in Degraded Visual Environment (DVE).

  2. A low cost maritime control aircraft-ship-weapons system. [antiship missile defense

    Fluk, H.


    It is pointed out that the long-range antiship standoff missile is emerging as the foremost threat on the seas. Delivered by high speed bombers, surface ships, and submarines, a missile attack can be mounted against selected targets from any point on the compass. An investigation is conducted regarding the configuration of a system which could most efficiently identify and destroy standoff threats before they launch their weapons. It is found that by using ships for carrying and launching missiles, and employing aircraft with a powerful radar only for search and missile directing operations, aircraft cost and weight can be greatly reduced. The employment of V/STOL aircraft in preference to other types of aircraft makes it possible to use ships of smaller size for carrying the aircraft. However, in order to obtain an all-weather operational capability for the system, ships are selected which are still big enough to display the required stability in heavy seas.

  3. Current Research in Aircraft Tire Design and Performance

    Tanner, J. A.; Mccarthy, J. L.; Clark, S. K.


    A review of the tire research programs which address the various needs identified by landing gear designers and airplane users is presented. The experimental programs are designed to increase tire tread lifetimes, relate static and dynamic tire properties, establish the tire hydroplaning spin up speed, study gear response to tire failures, and define tire temperature profiles during taxi, braking, and cornering operations. The analytical programs are aimed at providing insights into the mechanisms of heat generation in rolling tires and developing the tools necessary to streamline the tire design process and to aid in the analysis of landing gear problems.

  4. Commercial Aircraft Airframe Fuel Systems Survey and Analysis.


    Type of Report end Period Covered Ag Sponsorin ncy Na.e and Address FINAL REPORT U.S. DEPARTMENT OF TRANSPORTATION October, 1980 - June, 1982 FEDERAL...Philadelphia, Pennsylvania Weybridge, Surry England KT130SF Mr. Roy Riseley Mr. William Miles de Havilland Aircraft Cessna Aircraft Company Garratt Blvd. Wallace...Guido F. Pesotti Mr. Frank C. Davis Technical Director Engineering Specialist Empresa Brasileira Aeronautica, S.A. Garrett Turbine Engine Company

  5. Health and usage monitoring system for the small aircraft composite structure

    Růžička, Milan; Dvořák, Milan; Schmidová, Nikola; Šašek, Ladislav; Štěpánek, Martin


    This paper is focused on the design of the health and usage monitoring system (HUMS) of the composite ultra-light aircrafts. A multichannel measuring system was developed and installed for recording of the long-term operational measurements of the UL airplane. Many fiber Bragg grating sensors were implemented into the composite aircraft structure, mainly in the glue joints. More than ten other analog functions and signals of the aircraft is monitored and can be correlated together. Changing of the FBG sensors responses in monitored places and their correlations, comparing with the calibration and recalibration procedures during a monitored life may indicate damage (eg. in bonded joints) and complements the HUMS system.

  6. Fielding a structural health monitoring system on legacy military aircraft: A business perspective

    Bos, Marcel J. [Dept. of Gas Turbines and Structural Integrity, National Aerospace Laboratory NLR, Amsterdam (Netherlands)


    An important trend in the sustainment of military aircraft is the transition from preventative maintenance to condition based maintenance (CBM). For CBM, it is essential that the actual system condition can be measured and the measured condition can be reliably extrapolated to a convenient moment in the future in order to facilitate the planning process while maintaining flight safety. Much research effort is currently being made for the development of technologies that enable CBM, including structural health monitoring (SHM) systems. Great progress has already been made in sensors, sensor networks, data acquisition, models and algorithms, data fusion/mining techniques, etc. However, the transition of these technologies into service is very slow. This is because business cases are difficult to define and the certification of the SHM systems is very challenging. This paper describes a possibility for fielding a SHM system on legacy military aircraft with a minimum amount of certification issues and with a good prospect of a positive return on investment. For appropriate areas in the airframe the application of SHM will reconcile the fail-safety and slow crack growth damage tolerance approaches that can be used for safeguarding the continuing airworthiness of these areas, combining the benefits of both approaches and eliminating the drawbacks.

  7. Fielding a structural health monitoring system on legacy military aircraft: A business perspective

    Bos, Marcel J.


    An important trend in the sustainment of military aircraft is the transition from preventative maintenance to condition based maintenance (CBM). For CBM, it is essential that the actual system condition can be measured and the measured condition can be reliably extrapolated to a convenient moment in the future in order to facilitate the planning process while maintaining flight safety. Much research effort is currently being made for the development of technologies that enable CBM, including structural health monitoring (SHM) systems. Great progress has already been made in sensors, sensor networks, data acquisition, models and algorithms, data fusion/mining techniques, etc. However, the transition of these technologies into service is very slow. This is because business cases are difficult to define and the certification of the SHM systems is very challenging. This paper describes a possibility for fielding a SHM system on legacy military aircraft with a minimum amount of certification issues and with a good prospect of a positive return on investment. For appropriate areas in the airframe the application of SHM will reconcile the fail-safety and slow crack growth damage tolerance approaches that can be used for safeguarding the continuing airworthiness of these areas, combining the benefits of both approaches and eliminating the drawbacks

  8. Design, Specification, and Synthesis of Aircraft Electric Power Systems Control Logic

    Xu, Huan

    Cyber-physical systems integrate computation, networking, and physical processes. Substantial research challenges exist in the design and verification of such large-scale, distributed sensing, actuation, and control systems. Rapidly improving technology and recent advances in control theory, networked systems, and computer science give us the opportunity to drastically improve our approach to integrated flow of information and cooperative behavior. Current systems rely on text-based specifications and manual design. Using new technology advances, we can create easier, more efficient, and cheaper ways of developing these control systems. This thesis will focus on design considerations for system topologies, ways to formally and automatically specify requirements, and methods to synthesize reactive control protocols, all within the context of an aircraft electric power system as a representative application area. This thesis consists of three complementary parts: synthesis, specification, and design. The first section focuses on the synthesis of central and distributed reactive controllers for an aircraft elec- tric power system. This approach incorporates methodologies from computer science and control. The resulting controllers are correct by construction with respect to system requirements, which are formulated using the specification language of linear temporal logic (LTL). The second section addresses how to formally specify requirements and introduces a domain-specific language for electric power systems. A software tool automatically converts high-level requirements into LTL and synthesizes a controller. The final sections focus on design space exploration. A design methodology is proposed that uses mixed-integer linear programming to obtain candidate topologies, which are then used to synthesize controllers. The discrete-time control logic is then verified in real-time by two methods: hardware and simulation. Finally, the problem of partial observability and

  9. Evaluation of Unmanned Aircraft Systems (UAS) for Weather and Climate using the Multi-testbed approach

    Baker, B.; Lee, T.; Buban, M.; Dumas, E. J.


    Evaluation of Unmanned Aircraft Systems (UAS) for Weather and Climate using the Multi-testbed approachC. Bruce Baker1, Ed Dumas1,2, Temple Lee1,2, Michael Buban1,21NOAA ARL, Atmospheric Turbulence and Diffusion Division, Oak Ridge, TN2Oak Ridge Associated Universities, Oak Ridge, TN The development of a small Unmanned Aerial System (sUAS) testbeds that can be used to validate, integrate, calibrate and evaluate new technology and sensors for routine boundary layer research, validation of operational weather models, improvement of model parameterizations, and recording observations within high-impact storms is important for understanding the importance and impact of using sUAS's routinely as a new observing platform. The goal of the multi-testbed approach is to build a robust set of protocols to assess the cost and operational feasibility of unmanned observations for routine applications using various combinations of sUAS aircraft and sensors in different locations and field experiments. All of these observational testbeds serve different community needs, but they also use a diverse suite of methodologies for calibration and evaluation of different sensors and platforms for severe weather and boundary layer research. The primary focus will be to evaluate meteorological sensor payloads to measure thermodynamic parameters and define surface characteristics with visible, IR, and multi-spectral cameras. This evaluation will lead to recommendations for sensor payloads for VTOL and fixed-wing sUAS.

  10. NASA Unmanned Aircraft (UA) Control and Non-Payload Communication (CNPC) System Waveform Trade Studies

    Chavez, Carlos; Hammel, Bruce; Hammel, Allan; Moore, John R.


    Unmanned Aircraft Systems (UAS) represent a new capability that will provide a variety of services in the government (public) and commercial (civil) aviation sectors. The growth of this potential industry has not yet been realized due to the lack of a common understanding of what is required to safely operate UAS in the National Airspace System (NAS). To address this deficiency, NASA has established a project called UAS Integration in the NAS (UAS in the NAS), under the Integrated Systems Research Program (ISRP) of the Aeronautics Research Mission Directorate (ARMD). This project provides an opportunity to transition concepts, technology, algorithms, and knowledge to the Federal Aviation Administration (FAA) and other stakeholders to help them define the requirements, regulations, and issues for routine UAS access to the NAS. The safe, routine, and efficient integration of UAS into the NAS requires new radio frequency (RF) spectrum allocations and a new data communications system which is both secure and scalable with increasing UAS traffic without adversely impacting the Air Traffic Control (ATC) communication system. These data communications, referred to as Control and Non-Payload Communications (CNPC), whose purpose is to exchange information between the unmanned aircraft and the ground control station to ensure safe, reliable, and effective unmanned aircraft flight operation. A Communications Subproject within the UAS in the NAS Project has been established to address issues related to CNPC development, certification and fielding. The focus of the Communications Subproject is on validating and allocating new RF spectrum and data link communications to enable civil UAS integration into the NAS. The goal is to validate secure, robust data links within the allocated frequency spectrum for UAS. A vision, architectural concepts, and seed requirements for the future commercial UAS CNPC system have been developed by RTCA Special Committee 203 (SC-203) in the process

  11. Synthetic Vision System Commercial Aircraft Flight Deck Display Technologies for Unusual Attitude Recovery

    Prinzel, Lawrence J., III; Ellis, Kyle E.; Arthur, Jarvis J.; Nicholas, Stephanie N.; Kiggins, Daniel


    A Commercial Aviation Safety Team (CAST) study of 18 worldwide loss-of-control accidents and incidents determined that the lack of external visual references was associated with a flight crew's loss of attitude awareness or energy state awareness in 17 of these events. Therefore, CAST recommended development and implementation of virtual day-Visual Meteorological Condition (VMC) display systems, such as synthetic vision systems, which can promote flight crew attitude awareness similar to a day-VMC environment. This paper describes the results of a high-fidelity, large transport aircraft simulation experiment that evaluated virtual day-VMC displays and a "background attitude indicator" concept as an aid to pilots in recovery from unusual attitudes. Twelve commercial airline pilots performed multiple unusual attitude recoveries and both quantitative and qualitative dependent measures were collected. Experimental results and future research directions under this CAST initiative and the NASA "Technologies for Airplane State Awareness" research project are described.

  12. Unmanned Aerial Aircraft Systems for transportation engineering: Current practice and future challenges

    Emmanouil N. Barmpounakis


    Full Text Available Acquiring and processing video streams from static cameras has been proposed as one of the most efficient tools for visualizing and gathering traffic information. With the latest advances in technology and visual media, combined with the increased needs in dealing with congestion more effectively and directly, the use of Unmanned Aerial Aircraft Systems (UAS has emerged in the field of traffic engineering. In this paper, we review studies and applications that incorporate UAS in transportation research and practice with the aim to set the grounds from the proper understanding and implementation of UAS related surveillance systems in transportation and traffic engineering. The studies reviewed are categorized in different transportation engineering areas. Additional significant applications from other research fields are also referenced to identify other promising applications. Finally, issues and emerging challenges in both a conceptual and methodological level are revealed and discussed.

  13. Unmanned Aircraft Systems (UAS) Traffic Management (UTM) National Campaign II

    Aweiss, Arwa S.; Owens, Brandon D.; Rios, Joseph L.; Homola, Jeffrey R.; Mohlenbrink, Christoph P.


    The Unmanned Aircraft System (UAS) Traffic Management (UTM) effort at NASA aims to enable access to low-altitude airspace for small UAS. This goal is being pursued partly through partnerships that NASA has developed with the UAS stakeholder community, the FAA, other government agencies, and the designated FAA UAS Test Sites. By partnering with the FAA UAS Test Sites, NASA's UTM project has performed a geographically diverse, simultaneous set of UAS operations at locations in six states. The demonstrations used an architecture that was developed by NASA in partnership with the FAA to safely coordinate such operations. These demonstrations-the second or 'Technical Capability Level (TCL 2)' National Campaign of UTM testing-was performed from May 15 through June 9, 2017. Multiple UAS operations occurred during the testing at sites located in Alaska, Nevada, Texas, North Dakota, Virginia, and New York with multiple organizations serving as UAS Service Suppliers and/or UAS Operators per the specifications provided by NASA. By engaging various members of the UAS community in development and operational roles, this campaign provided initial validation of different aspects of the UTM concept including: UAS Service Supplier technologies and procedures; geofencing technologies/conformance monitoring; ground-based surveillance/sense and avoid; airborne sense and avoid; communication, navigation, surveillance; and human factors related to UTM data creation and display. Additionally, measures of performance were defined and calculated from the flight data to establish quantitative bases for comparing flight test activities and to provide potential metrics that might be routinely monitored in future operational UTM systems.

  14. Flight assessment of a large supersonic drone aircraft for research use

    Eckstrom, C. V.; Peele, E. L.


    An assessment is made of the capabilities of the BQM-34E supersonic drone aircraft as a test bed research vehicle. This assessment is made based on a flight conducted for the purpose of obtaining flight test measurements of wing loads at various maneuver flight conditions. Flight plan preparation, flight simulation, and conduct of the flight test are discussed along with a presentation of the test data obtained and an evaluation of how closely the flight test followed the test plan.

  15. Nonparametric method for failures diagnosis in the actuating subsystem of aircraft control system

    Terentev, M. N.; Karpenko, S. S.; Zybin, E. Yu; Kosyanchuk, V. V.


    In this paper we design a nonparametric method for failures diagnosis in the aircraft control system that uses the measurements of the control signals and the aircraft states only. It doesn’t require a priori information of the aircraft model parameters, training or statistical calculations, and is based on analytical nonparametric one-step-ahead state prediction approach. This makes it possible to predict the behavior of unidentified and failure dynamic systems, to weaken the requirements to control signals, and to reduce the diagnostic time and problem complexity.

  16. Experimental Study of Turbine Fuel Thermal Stability in an Aircraft Fuel System Simulator

    Vranos, A.; Marteney, P. J.


    The thermal stability of aircraft gas turbines fuels was investigated. The objectives were: (1) to design and build an aircraft fuel system simulator; (2) to establish criteria for quantitative assessment of fuel thermal degradation; and (3) to measure the thermal degradation of Jet A and an alternative fuel. Accordingly, an aircraft fuel system simulator was built and the coking tendencies of Jet A and a model alternative fuel (No. 2 heating oil) were measured over a range of temperatures, pressures, flows, and fuel inlet conditions.


    Mr. Dmitrii G. Kolykhalov


    Full Text Available Тhis article is devoted to the gas-liquid systems of the aircraft and their structural and technological analysis. The paper shows the characteristics of pipelines, considers the types of working fluids and gases and covers the range of perceived internal pressures. The paper presents the classification of pipelines of flying vehicles from the point of view of their working conditions, taking into account the perceived internal pressure. The article also shows the classification scheme of major groups and types of pipe connections and fittings. The article focuses on the scheme of permanent joints made with soldering and welding, as well as the split of mobile and fixed joints of different types. The authors study the combined connections. The authors have also developed classification schemes of aircraft piping systems that depend on the system pressure. A classification scheme of piping connections, depending on the method of connection, mobility, presence of seals is singled out. The research is ilustrated with examples of compounds of different types.

  18. Non-Parametric, Closed-Loop Testing of Autonomy in Unmanned Aircraft Systems, Phase I

    National Aeronautics and Space Administration — The proposed Phase I program aims to develop new methods to support safety testing for integration of Unmanned Aircraft Systems into the National Airspace (NAS) with...

  19. Aircraft Command Control Communications and Navigation Systems, AFSC 2A4X3, OSSN: 2308


    1. Survey Coverage: The Aircraft Command Control Communications and Navigation Systems career ladder was surveyed to provide current job and task data for use in updating career ladder documents and training programs...

  20. Aircraft Fuel Systems, AFSC 2A6X4, OSSN 2317


    The Air Force Specialty Code (AFSC) 2A6X4, Aircraft Fuel Systems, career ladder was surveyed to obtain occupational data for use in evaluating and revising current career ladder documents and training programs...

  1. Development of Novel, Optically-Based Instrumentation for Aircraft System Testing and Control, Phase I

    National Aeronautics and Space Administration — We propose to develop a compact, robust, optically-based sensor for making temperature and multi-species concentration measurements in aircraft system ground and...

  2. Unmanned Aircraft Systems Minimum Operations Performance Standards End-to-End Verification and Validation (E2-V2) Simulation

    Ghatas, Rania W.; Jack, Devin P.; Tsakpinis, Dimitrios; Vincent, Michael J.; Sturdy, James L.; Munoz, Cesar A.; Hoffler, Keith D.; Dutle, Aaron M.; Myer, Robert R.; Dehaven, Anna M.; hide


    As Unmanned Aircraft Systems (UAS) make their way to mainstream aviation operations within the National Airspace System (NAS), research efforts are underway to develop a safe and effective environment for their integration into the NAS. Detect and Avoid (DAA) systems are required to account for the lack of "eyes in the sky" due to having no human on-board the aircraft. The current NAS relies on pilot's vigilance and judgement to remain Well Clear (CFR 14 91.113) of other aircraft. RTCA SC-228 has defined DAA Well Clear (DAAWC) to provide a quantified Well Clear volume to allow systems to be designed and measured against. Extended research efforts have been conducted to understand and quantify system requirements needed to support a UAS pilot's ability to remain well clear of other aircraft. The efforts have included developing and testing sensor, algorithm, alerting, and display requirements. More recently, sensor uncertainty and uncertainty mitigation strategies have been evaluated. This paper discusses results and lessons learned from an End-to-End Verification and Validation (E2-V2) simulation study of a DAA system representative of RTCA SC-228's proposed Phase I DAA Minimum Operational Performance Standards (MOPS). NASA Langley Research Center (LaRC) was called upon to develop a system that evaluates a specific set of encounters, in a variety of geometries, with end-to-end DAA functionality including the use of sensor and tracker models, a sensor uncertainty mitigation model, DAA algorithmic guidance in both vertical and horizontal maneuvering, and a pilot model which maneuvers the ownship aircraft to remain well clear from intruder aircraft, having received collective input from the previous modules of the system. LaRC developed a functioning batch simulation and added a sensor/tracker model from the Federal Aviation Administration (FAA) William J. Hughes Technical Center, an in-house developed sensor uncertainty mitigation strategy, and implemented a pilot

  3. Preliminary design study of advanced composite blade and hub and nonmechanical control system for the tilt-rotor aircraft. Volume 1: Engineering studies

    Alexander, H. R.; Smith, K. E.; Mcveigh, M. A.; Dixon, P. G.; Mcmanus, B. L.


    Composite structures technology is applied in a preliminary design study of advanced technology blades and hubs for the XV-15 tilt rotor research demonstrator aircraft. Significant improvements in XV-15 hover and cruise performance are available using blades designed for compatibility with the existing aircraft, i.e., blade installation would not require modification of the airframe, hub or upper controls. Provision of a low risk nonmechanical control system was also studied, and a development specification is given.

  4. Automatic non-destructive system for quality assurance of welded elements in the aircraft industry

    Chady, Tomasz; Waszczuk, Paweł; Szydłowski, Michał; Szwagiel, Mariusz


    Flaws that might be a result of the welding process have to be detected, in order to assure high quality thus reliability of elements exploited in aircraft industry. Currently the inspection stage is conducted manually by a qualified workforce. There are no commercially available systems that could support or replace humans in the flaw detection process. In this paper authors present a novel non-destructive system developed for quality assurance purposes of welded elements utilized in the aircraft industry.

  5. RQ-21A Blackjack Small Tactical Unmanned Aircraft System (STUAS): Initial Operational Test and Evaluation Report


    Evaluation Report June 2015 This report on the RQ-21A Blackjack Small Tactical Unmanned Aircraft System fulfills the provisions of Title 10...suitability of the RQ-21A Blackjack Small Tactical Unmanned Aircraft System (STUAS) during Initial Operational Test and Evaluation (IOT&E). The Navy’s...66.9 percent). The average service life of the propulsion modules was 48.9 hours, which does not meet the manufacturer’s stated 100-hour

  6. Design of a powered elevator control system. [powered elevator system for modified C-8A aircraft for STOL operation

    Glende, W. L. B.


    The design, fabrication and flight testing of a powered elevator system for the Augmentor Wing Jet STOL Research Aircraft (AWJSRA or Mod C-8A) are discussed. The system replaces a manual spring tab elevator control system that was unsatisfactory in the STOL flight regime. Pitch control in the AWJSRA is by means of a single elevator control surface. The elevator is used for both maneuver and trim control as the stabilizer is fixed. A fully powered, irreversible flight control system powered by dual hydraulic sources was designed. The existing control columns and single mechanical cable system of the AWJSRA have been retained as has been the basic elevator surface, except that the elevator spring tab is modified into a geared balance tab. The control surface is directly actuated by a dual tandem moving body actuator. Control signals are transmitted from the elevator aft quadrant to the actuator by a linkage system that includes a limited authority series servo actuator.

  7. Study of fuel systems for LH2-fueled subsonic transport aircraft, volume 1

    Brewer, G. D.; Morris, R. E.; Davis, G. W.; Versaw, E. F.; Cunnington, G. R., Jr.; Riple, J. C.; Baerst, C. F.; Garmong, G.


    Several engine concepts examined to determine a preferred design which most effectively exploits the characteristics of hydrogen fuel in aircraft tanks received major emphasis. Many candidate designs of tank structure and cryogenic insulation systems were evaluated. Designs of all major elements of the aircraft fuel system including pumps, lines, valves, regulators, and heat exchangers received attention. Selected designs of boost pumps to be mounted in the LH2 tanks, and of a high pressure pump to be mounted on the engine were defined. A final design of LH2-fueled transport aircraft was established which incorporates a preferred design of fuel system. That aircraft was then compared with a conventionally fueled counterpart designed to equivalent technology standards.

  8. Effect of broadened-specification fuels on aircraft engines and fuel systems

    Rudey, R. A.


    A wide variety of studies on the potential effects of broadened-specification fuels on future aircraft engines and fuel systems are summarized. The compositions and characteristics of aircraft fuels that may be derived from current and future crude-oil sources are described, and the most critical properties that may affect aircraft engines and fuel systems are identified and discussed. The problems that are most likely to be encountered because of changes in selected fuel properties are described; and the related effects on engine performance, component durability and maintenance, and aircraft fuel-system performance are discussed. The ability of current technology to accept possible future fuel-specification changes is discussed, and selected technological advances that can reduce the severity of the potential problems are illustrated.

  9. Systems engineering research

    Sahraoui , Abd-El-Kader; Buede , Dennis ,; Sage , Andrew ,


    International audience; In this paper, we propose selected research topics that are believed central to progress and growth in the application of systems engineering (SE). As a professional activity, and as an intellectual activity, systems engineering has strong links to such associated disciplines as decision analysis, operation research, project management, quality management, and systems design. When focussing on systems engineering research, we should distinguish between subjects that ar...

  10. Steps Towards Scalable and Modularized Flight Software for Unmanned Aircraft Systems

    Johann C. Dauer


    Full Text Available Unmanned aircraft (UA applications impose a variety of computing tasks on the on-board computer system. From a research perspective, it is often more convenient to evaluate algorithms on bigger aircraft as they are capable of lifting heavier loads and thus more powerful computational units. On the other hand, smaller systems are often less expensive and operation is less restricted in many countries. This paper thus presents a conceptual design for flight software that can be evaluated on the UA of convenient size. The integration effort required to transfer the algorithm to different sized UA is significantly reduced. This scalability is achieved by using exchangeable payload modules and a flexible process distribution on different processing units. The presented approach is discussed using the example of the flight software of a 14 kg unmanned helicopter and an equivalent of 1.5 kg. The proof of concept is shown by means of flight performance in a hardware-in-the-loop simulation.

  11. Initial virtual flight test for a dynamically similar aircraft model with control augmentation system

    Linliang Guo


    Full Text Available To satisfy the validation requirements of flight control law for advanced aircraft, a wind tunnel based virtual flight testing has been implemented in a low speed wind tunnel. A 3-degree-of-freedom gimbal, ventrally installed in the model, was used in conjunction with an actively controlled dynamically similar model of aircraft, which was equipped with the inertial measurement unit, attitude and heading reference system, embedded computer and servo-actuators. The model, which could be rotated around its center of gravity freely by the aerodynamic moments, together with the flow field, operator and real time control system made up the closed-loop testing circuit. The model is statically unstable in longitudinal direction, and it can fly stably in wind tunnel with the function of control augmentation of the flight control laws. The experimental results indicate that the model responds well to the operator’s instructions. The response of the model in the tests shows reasonable agreement with the simulation results. The difference of response of angle of attack is less than 0.5°. The effect of stability augmentation and attitude control law was validated in the test, meanwhile the feasibility of virtual flight test technique treated as preliminary evaluation tool for advanced flight vehicle configuration research was also verified.

  12. Integral Transportation Systems in Military Transport Aircraft Supply

    Dražen Kovačević


    Full Text Available Supply of goods, equipment and soldiers by militwy transportaircraft can serve as a support to airborne landing operation,support to encircled forces, and support to forces leadinga gue1rilla war. Transport aircraft are designed in such a wayas to be able to cany containers, pallets, most of land vehiclesand helicopters. Militwy transport aircraft can be grouped intothose that were originally designed for military transp01t andthose that are modified civilian aircraft and helicopters. Supplypallets can be wooden, metal, can be airdropped in "taxiing","low-flight", and can also be fitted with a parachute or"retrorocket" for reducing the ground impact. Pallets canamong other things carry liquids, heavy combat and ca1rier vehicles,artillery and rocket weapons and valious containers.Pallets are usually pe1manently deformed at ground impact.Nowadays, high precision of airdrop has been achieved. Containersare used to carry various equipment, food, fue~ weapons,ammunition etc. It is to be expected that the containers,wmoured combat and other vehicles will be redesigned so asto provide more efficient transport and fast a!Tangement ofhigh-mobility units, whereas the form of the future militarytransport aircraft will not undergo substantial changes. By adjustingand standardising the transporlation vehicles, integraltransportation means and cwgo, the overall combat efficiencywill be increased, the a~rangement time especially shortenedand the air supply safety increased.

  13. Investigation of Practical Flight Envelope Protection Systems for Small Aircraft

    Falkena, W.; Borst, C.; Mulder, J.A.


    Personal air transportation utilizing small aircraft is a market that is expected to grow significantly in the future. For this segment, “stick and rudder” related accidents should be mitigated to guide this process in a safe manner. Instead of downscaling advanced and expensive fly-by-wire

  14. Investigation of Practical Flight Control Systems for Small Aircraft

    Falkena, W.


    Personal air transportation utilizing small aircraft is a market that is expected to grow significantly in the near future. However, seventy times more accidents occur in this segment as compared with the commercial aviation sector. The majority of these accidents is related to handling and control

  15. Gust factor based on research aircraft measurements: A new methodology applied to the Arctic marine boundary layer

    Suomi, Irene; Lüpkes, Christof; Hartmann, Jörg


    There is as yet no standard methodology for measuring wind gusts from a moving platform. To address this, we have developed a method to derive gusts from research aircraft data. First we evaluated four different approaches, including Taylor's hypothesis of frozen turbulence, to derive the gust...... in unstable conditions (R2=0.52). The mean errors for all methods were low, from -0.02 to 0.05, indicating that wind gust factors can indeed be measured from research aircraft. Moreover, we showed that aircraft can provide gust measurements within the whole boundary layer, if horizontal legs are flown...

  16. Design and evaluation of aircraft heat source systems for use with high-freezing point fuels

    Pasion, A. J.


    The objectives were the design, performance and economic analyses of practical aircraft fuel heating systems that would permit the use of high freezing-point fuels on long-range aircraft. Two hypothetical hydrocarbon fuels with freezing points of -29 C and -18 C were used to represent the variation from current day jet fuels. A Boeing 747-200 with JT9D-7/7A engines was used as the baseline aircraft. A 9300 Km mission was used as the mission length from which the heat requirements to maintain the fuel above its freezing point was based.

  17. A novel integrated self-powered brake system for more electric aircraft

    Yaoxing SHANG


    Full Text Available Traditional hydraulic brake systems require a complex system of pipelines between an aircraft engine driven pump (EDP and brake actuators, which increases the weight of the aircraft and may even cause serious vibration and leakage problems. In order to improve the reliability and safety of more electric aircraft (MEA, this paper proposes a new integrated self-powered brake system (ISBS for MEA. It uses a hydraulic pump geared to the main wheel to recover a small part of the kinetic energy of a landing aircraft. The recovered energy then serves as the hydraulic power supply for brake actuators. It does not require additional hydraulic source, thus removing the pipelines between an EDP and brake actuators. In addition, its self-powered characteristic makes it possible to brake as usual even in an emergency situation when the airborne power is lost. This paper introduces the working principle of the ISBS and presents a prototype. The mathematical models of a taxiing aircraft and the ISBS are established. A feedback linearization control algorithm is designed to fulfill the anti-skid control. Simulations are carried out to verify the feasibility of the ISBS, and experiments are conducted on a ground inertia brake test bench. The ISBS presents a good performance and provides a new potential solution in the field of brake systems for MEA. Keywords: Hydraulic, Feedback linearization control, More electric aircraft, Novel brake system, Self-powered

  18. Analysis of Hybrid-Electric Propulsion System Designs for Small Unmanned Aircraft Systems


    small EM to provide extra power during acceleration and recharge during deceleration through regenerative braking . Power assist systems are similar...climbing (Fig. 4).18 Like automotive hybrids, the aircraft utilizes a form of regenerative braking by charging its battery pack through propeller...desirable.”5 The inherent risks of all three ISR mission categories lead towards small UAS being the best option in many cases to meet the military’s

  19. Unmanned Carrier-Based Aircraft System: Debate over Systems Role Led to Focus on Aerial Refueling


    Unmanned Carrier-Based Aircraft System: Debate over System’s Role Led to Focus on Aerial Refueling Prior to February 2016, the Navy had planned to...Background In a May 2015 report, we found that the intended mission and required capabilities of UCLASS were under review as there was debate ...environments, or largely strike with limited surveillance capability operating in highly contested environments.2 This debate delayed the expected

  20. Applying reliability analysis to design electric power systems for More-electric aircraft

    Zhang, Baozhu

    The More-Electric Aircraft (MEA) is a type of aircraft that replaces conventional hydraulic and pneumatic systems with electrically powered components. These changes have significantly challenged the aircraft electric power system design. This thesis investigates how reliability analysis can be applied to automatically generate system topologies for the MEA electric power system. We first use a traditional method of reliability block diagrams to analyze the reliability level on different system topologies. We next propose a new methodology in which system topologies, constrained by a set reliability level, are automatically generated. The path-set method is used for analysis. Finally, we interface these sets of system topologies with control synthesis tools to automatically create correct-by-construction control logic for the electric power system.

  1. Remotely Piloted Aircraft Systems and a Wireless Sensors Network for Radiological Accidents

    A. Reyes-Muñoz


    Full Text Available In critical radiological situations, the real time information that we could get from the disaster area becomes of great importance. However, communication systems could be affected after a radiological accident. The proposed network in this research consists of distributed sensors in charge of collecting radiological data and ground vehicles that are sent to the nuclear plant at the moment of the accident to sense environmental and radiological information. Afterwards, data would be analyzed in the control center. Collected data by sensors and ground vehicles would be delivered to a control center using Remotely Piloted Aircraft Systems (RPAS as a message carrier. We analyze the pairwise contacts, as well as visiting times, data collection, capacity of the links, size of the transmission window of the sensors, and so forth. All this calculus was made analytically and compared via network simulations.

  2. Multi-channel, passive, short-range anti-aircraft defence system

    Gapiński, Daniel; Krzysztofik, Izabela; Koruba, Zbigniew


    The paper presents a novel method for tracking several air targets simultaneously. The developed concept concerns a multi-channel, passive, short-range anti-aircraft defence system based on the programmed selection of air targets and an algorithm of simultaneous synchronisation of several modified optical scanning seekers. The above system is supposed to facilitate simultaneous firing of several self-guided infrared rocket missiles at many different air targets. From the available information, it appears that, currently, there are no passive self-guided seekers that fulfil such tasks. This paper contains theoretical discussions and simulations of simultaneous detection and tracking of many air targets by mutually integrated seekers of several rocket missiles. The results of computer simulation research have been presented in a graphical form.

  3. A survey on electromagnetic interferences on aircraft avionics systems and a GSM on board system overview

    Vinto, Natale; Tropea, Mauro; Fazio, Peppino; Voznak, Miroslav


    Recent years have been characterized by an increase in the air traffic. More attention over micro-economic and macroeconomic indexes would be strategic to gather and enhance the safety of a flight and customer needing, for communicating by wireless handhelds on-board aircrafts. Thus, European Telecommunications Standards Institute (ETSI) proposed a GSM On Board (GSMOBA) system as a possible solution, allowing mobile terminals to communicate through GSM system on aircraft, avoiding electromagnetic interferences with radio components aboard. The main issues are directly related with interferences that could spring-out when mobile terminals attempt to connect to ground BTS, from the airplane. This kind of system is able to resolve the problem in terms of conformance of Effective Isotropic Radiated Power (EIRP) limits, defined outside the aircraft, by using an On board BTS (OBTS) and modeling the relevant key RF parameters on the air. The main purpose of this work is to illustrate the state-of-the-art of literature and previous studies about the problem, giving also a good detail of technical and normative references.

  4. Development of a flight data acquisition system for small unmanned aircraft

    Hood, Scott

    Current developments surrounding the use of unmanned aerial vehicles have produced a need for a high quality data acquisition platform developed specifically a research environment. This work was undertaken to produce such a system that is low cost, extensible, and better supports fixed wing research through the inclusion of a custom vane based air data probe capable of measuring airspeed, angle of attack, and angle of sideslip. This was accomplished by starting with the open source Pixhawk system as the core and then modifying the device firmware and adding sensors to suit the needs of current aerospace research at OSU. An overview of each component of the system is presented, as well as a description of various firmware modifications to the stock Pixhawk system. Tests were then performed on all of the major sensors using bench testing, wind tunnel analysis, and flight maneuvers to determine the final performance of each part of the system. This research shows that all of the critical sensors on the data acquisition platform produce data acceptable for flight research. The accelerometer has been shown to have an overall tolerance of +/-0.0545 m/s², with +/-0.223 deg/s for the gyroscopic sensor, +/-1.32 hPa for the barometric sensor, +/-0.318 m/s for the airspeed sensor, +/-1.65 °C for the outside air temperature sensor, and +/-0.00115 V for the analog to digital converter. The stock calibration curve for the airspeed sensor was determined to be correct to within +/-0.5 in H2O through wind tunnel testing, and an experimental step input analysis on the flow direction vanes showed that worst case steady state error and time to damp are acceptable for the system. Power spectral density and spectral coherence analysis of flight data was used to show that the custom air data probe is capable of following the flight dynamics of a given aircraft to within a 10 percent tolerance across a range of frequencies. Finally, general performance of the system was proven using

  5. Optimal Sizing of a Photovoltaic-Hydrogen Power System for HALE Aircraft by means of Particle Swarm Optimization

    Victor M. Sanchez; Romeli Barbosa; J. C. Cruz; F. Chan; J. Hernandez


    Over the last decade there has been a growing interest in the research of feasibility to use high altitude long endurance (HALE) aircrafts in order to provide mobile communications. The use of HALEs for telecommunication networks has the potential to deliver a wide range of communication services (from high-quality voice to high-definition videos, as well as high-data-rate wireless channels) cost effectively. One of the main challenges of this technology is to design its power supply system, ...

  6. Management Information Systems Research.

    Research on management information systems is illusive in many respects. Part of the basic research problem in MIS stems from the absence of standard...decision making. But the transition from these results to the realization of ’satisfactory’ management information systems remains difficult indeed. The...paper discusses several aspects of research on management information systems and reviews a selection of efforts that appear significant for future progress. (Author)

  7. Achievement report for fiscal 2000 on research and development of environment compatible next generation supersonic propulsion system. 1/2. Research and development of environment compatible next generation supersonic aircraft engine; 2000 nendo kankyo tekigogata jisedai choonsoku suishin system no kenkyu kaihatsu seika hokokusho. 1/2. Kankyo tekigogata jisedai choonsokukiyo engine kaihatsu



    This paper describes the achievements in fiscal 2000 in development of an environment compatible next generation supersonic aircraft engine. In reducing noise, discussions were given on noise absorbing materials, jet mixer ejector nozzles, and fans. In order to reduce NOx emission, studies were performed mainly on stable combustion of an HTCE combustor. Reasonability of the AI control was verified by using simulations of a combustor model. Design was made on a fuel AI control system required to avoid such unstable combustion as backfire and spontaneous ignition. A CMC liner for an innovative heat resistant combustor was discussed. In the CO2 emission suppressing technologies, studies were performed on technologies to apply to large structures such three-dimensional fiber reinforced materials as MMC, CMC and TiAl. In developing damage tolerating design technologies for the advanced heat resistant material structures, studies were made on application to turbine structures of micro-structural stabilization for an extended period of time, heat insulation/oxidation resistant coating, micro and macro organization control and crack propagation analysis. The paper also describes an overall demonstration studies on technologies for very fine cooling of pseudo microporous structure, discrete control for CO2 reduction, an environment compatible engine systems and engines. (NEDO)

  8. Modeling and Simulation of Power Distribution System in More Electric Aircraft

    Zhangang Yang


    Full Text Available The More Electric Aircraft concept is a fast-developing trend in modern aircraft industry. With this new concept, the performance of the aircraft can be further optimized and meanwhile the operating and maintenance cost will be decreased effectively. In order to optimize the power system integrity and have the ability to investigate the performance of the overall system in any possible situations, one accurate simulation model of the aircraft power system will be very helpful and necessary. This paper mainly introduces a method to build a simulation model for the power distribution system, which is based on detailed component models. The power distribution system model consists of power generation unit, transformer rectifier unit, DC-DC converter unit, and DC-AC inverter unit. In order to optimize the performance of the power distribution system and improve the quality of the distributed power, a feedback control network is designed based on the characteristics of the power distribution system. The simulation result indicates that this new simulation model is well designed and it works accurately. Moreover, steady state performance and transient state performance of the model can fulfill the requirements of aircraft power distribution system in the realistic application.

  9. Partners in Freedom: Contributions of the Langley Research Center to U.S. Military Aircraft of the 1990's

    Chambers, Joseph R.


    Established in 1917 as the nation#s first civil aeronautics research laboratory under the National Advisory Commit-tee for Aeronautics (NACA), Langley was a small laboratory that solved the problems of flight for military and civil aviation. Throughout history, Langley has maintained a working partnership with the Department of Defense, U.S. industry, universities, and other government agencies to support the defense of the nation with research. During World War II, Langley directed virtually all of its workforce and facilities to research for military aircraft. Following the war, a balanced program of military and civil projects was undertaken. In some instances Langley research from one aircraft program helped solve a problem in another. At the conclusion of some programs, Langley obtained the research models for additional tests to learn more about previously unknown phenomena. The data also proved useful in later developmental programs. Many of the military aircraft in the U.S. inventory as of late 1999 were over 20 years old. Langley activities that contributed to the development of some of these aircraft began over 50 years prior. This publication documents the role, from early concept stages to problem solving for fleet aircraft, that Langley played in the military aircraft fleet of the United States for the 1990's.

  10. Building Toward an Unmanned Aircraft System Training Strategy


    and fly at altitudes higher than commercial airlines do. They file instrument flight rules flight plans. However, BAMS-D and Triton do not...incorporate sense-and-avoid technology, and conflicts can exist with visual flight rules aircraft in the airspace. Airspace issues exist at some Navy training...MODS, Washington, DC, February 2011, p. 1 of 10. 164 Peter La Franchi , “Directory: Unmanned Air Vehicles,” Flight International, June 21st, 2005, p. 56

  11. Application of Powered High Lift Systems to STOL Aircraft Design.


    century by da Vinci, an English - man named Sir George Cayley first attempted to integrate the features of the helicopter and the airplane. In 1843 his...horizontal flight Jun 1959 WEIGHT: 6500 LBS ENGINES: (1) SNECMA ATAR 101 E.V. Turbojet of 8155 lbs thrust LAYOUT: See Fig. 21 COMMENTS: SNECMA was engaged...34 ATAR VOLANT" test vehicle fitted with an annular wing to permit transition to horizontal flight. The aircraft was controlled from a tilting ejec- tion

  12. Small Unmanned Aircraft Systems Integration into the National Airspace System Visual-Line-of-Sight Human-in-the-Loop Experiment

    Trujillo, Anna C.; Ghatas, Rania W.; Mcadaragh, Raymon; Burdette, Daniel W.; Comstock, James R.; Hempley, Lucas E.; Fan, Hui


    As part of the Unmanned Aircraft Systems (UAS) in the National Airspace System (NAS) project, research on integrating small UAS (sUAS) into the NAS was underway by a human-systems integration (HSI) team at the NASA Langley Research Center. Minimal to no research has been conducted on the safe, effective, and efficient manner in which to integrate these aircraft into the NAS. sUAS are defined as aircraft weighing 55 pounds or less. The objective of this human system integration team was to build a UAS Ground Control Station (GCS) and to develop a research test-bed and database that provides data, proof of concept, and human factors guidelines for GCS operations in the NAS. The objectives of this experiment were to evaluate the effectiveness and safety of flying sUAS in Class D and Class G airspace utilizing manual control inputs and voice radio communications between the pilot, mission control, and air traffic control. The design of the experiment included three sets of GCS display configurations, in addition to a hand-held control unit. The three different display configurations were VLOS, VLOS + Primary Flight Display (PFD), and VLOS + PFD + Moving Map (Map). Test subject pilots had better situation awareness of their vehicle position, altitude, airspeed, location over the ground, and mission track using the Map display configuration. This configuration allowed the pilots to complete the mission objectives with less workload, at the expense of having better situation awareness of other aircraft. The subjects were better able to see other aircraft when using the VLOS display configuration. However, their mission performance, as well as their ability to aviate and navigate, was reduced compared to runs that included the PFD and Map displays.

  13. Small Aircraft Transportation System, Higher Volume Operations Concept: Off-Nominal Operations

    Abbott, Terence S.; Consiglio, Maria C.; Baxley, Brian T.; Williams, Daniel M.; Conway, Sheila R.


    This document expands the Small Aircraft Transportation System, (SATS) Higher Volume Operations (HVO) concept to include off-nominal conditions. The general philosophy underlying the HVO concept is the establishment of a newly defined area of flight operations called a Self-Controlled Area (SCA). During periods of poor weather, a block of airspace would be established around designated non-towered, non-radar airports. Aircraft flying enroute to a SATS airport would be on a standard instrument flight rules flight clearance with Air Traffic Control providing separation services. Within the SCA, pilots would take responsibility for separation assurance between their aircraft and other similarly equipped aircraft. Previous work developed the procedures for normal HVO operations. This document provides details for off-nominal and emergency procedures for situations that could be expected to occur in a future SCA.

  14. Unmanned Aircraft Systems Traffic Management (UTM) Safely Enabling UAS Operations in Low-Altitude Airspace

    Kopardekar, Parimal H.


    Unmanned Aircraft System (UAS) Traffic Management (UTM) Enabling Civilian Low-Altitude Airspace and Unmanned Aircraft System Operations What is the problem? Many beneficial civilian applications of UAS have been proposed, from goods delivery and infrastructure surveillance, to search and rescue, and agricultural monitoring. Currently, there is no established infrastructure to enable and safely manage the widespread use of low-altitude airspace and UAS operations, regardless of the type of UAS. A UAS traffic management (UTM) system for low-altitude airspace may be needed, perhaps leveraging concepts from the system of roads, lanes, stop signs, rules and lights that govern vehicles on the ground today, whether the vehicles are driven by humans or are automated. What system technologies is NASA exploring? Building on its legacy of work in air traffic management for crewed aircraft, NASA is researching prototype technologies for a UAS Traffic Management (UTM) system that could develop airspace integration requirements for enabling safe, efficient low-altitude operations. While incorporating lessons learned from the today's well-established air traffic management system, which was a response that grew out of a mid-air collision over the Grand Canyon in the early days of commercial aviation, the UTM system would enable safe and efficient low-altitude airspace operations by providing services such as airspace design, corridors, dynamic geofencing, severe weather and wind avoidance, congestion management, terrain avoidance, route planning and re-routing, separation management, sequencing and spacing, and contingency management. One of the attributes of the UTM system is that it would not require human operators to monitor every vehicle continuously. The system could provide to human managers the data to make strategic decisions related to initiation, continuation, and termination of airspace operations. This approach would ensure that only authenticated UAS could operate

  15. A Modular Aero-Propulsion System Simulation of a Large Commercial Aircraft Engine

    DeCastro, Jonathan A.; Litt, Jonathan S.; Frederick, Dean K.


    A simulation of a commercial engine has been developed in a graphical environment to meet the increasing need across the controls and health management community for a common research and development platform. This paper describes the Commercial Modular Aero Propulsion System Simulation (C-MAPSS), which is representative of a 90,000-lb thrust class two spool, high bypass ratio commercial turbofan engine. A control law resembling the state-of-the-art on board modern aircraft engines is included, consisting of a fan-speed control loop supplemented by relevant engine limit protection regulator loops. The objective of this paper is to provide a top-down overview of the complete engine simulation package.

  16. Amphibious Aircraft

    National Aeronautics and Space Administration — A brief self composed research article on Amphibious Aircrafts discussing their use, origin and modern day applications along with their advantages and disadvantages...

  17. Additional Development and Systems Analyses of Pneumatic Technology for High Speed Civil Transport Aircraft

    Englar, Robert J.; Willie, F. Scott; Lee, Warren J.


    In the Task I portion of this NASA research grant, configuration development and experimental investigations have been conducted on a series of pneumatic high-lift and control surface devices applied to a generic High Speed Civil Transport (HSCT) model configuration to determine their potential for improved aerodynamic performance, plus stability and control of higher performance aircraft. These investigations were intended to optimize pneumatic lift and drag performance; provide adequate control and longitudinal stability; reduce separation flowfields at high angle of attack; increase takeoff/climbout lift-to-drag ratios; and reduce system complexity and weight. Experimental aerodynamic evaluations were performed on a semi-span HSCT generic model with improved fuselage fineness ratio and with interchangeable plain flaps, blown flaps, pneumatic Circulation Control Wing (CCW) high-lift configurations, plain and blown canards, a novel Circulation Control (CC) cylinder blown canard, and a clean cruise wing for reference. Conventional tail power was also investigated for longitudinal trim capability. Also evaluated was unsteady pulsed blowing of the wing high-lift system to determine if reduced pulsed mass flow rates and blowing requirements could be made to yield the same lift as that resulting from steady-state blowing. Depending on the pulsing frequency applied, reduced mass flow rates were indeed found able to provide lift augmentation at lesser blowing values than for the steady conditions. Significant improvements in the aerodynamic characteristics leading to improved performance and stability/control were identified, and the various components were compared to evaluate the pneumatic potential of each. Aerodynamic results were provided to the Georgia Tech Aerospace System Design Lab. to conduct the companion system analyses and feasibility study (Task 2) of theses concepts applied to an operational advanced HSCT aircraft. Results and conclusions from these

  18. Preliminary design study of advanced composite blade and hub and nonmechanical control system for the tilt-rotor aircraft. Volume 2: Project planning data


    Project planning data for a rotor and control system procurement and testing program for modifications to the XV-15 tilt-rotor research demonstrator aircraft is presented. The design, fabrication, and installation of advanced composite blades compatible with the existing hub, an advanced composite hub, and a nonmechanical control system are required.

  19. High Assurance Control of Cyber-Physical Systems with Application to Unmanned Aircraft Systems

    Kwon, Cheolhyeon

    With recent progress in the networked embedded control technology, cyber attacks have become one of the major threats to Cyber-Physical Systems (CPSs) due to their close integration of physical processes, computational resources, and communication capabilities. While CPSs have various applications in both military and civilian uses, their on-board automation and communication afford significant advantages over a system without such abilities, but these benefits come at the cost of possible vulnerability to cyber attacks. Traditionally, most cyber security studies in CPSs are mainly based on the computer security perspective, focusing on issues such as the trustworthiness of data flow, without rigorously considering the system's physical processes such as real-time dynamic behaviors. While computer security components are key elements in the hardware/software layer, these methods alone are not sufficient for diagnosing the healthiness of the CPSs' physical behavior. In seeking to address this problem, this research work proposes a control theoretic perspective approach which can accurately represent the interactions between the physical behavior and the logical behavior (computing resources) of the CPS. Then a controls domain aspect is explored extending beyond just the logical process of the CPS to include the underlying physical behavior. This approach will allow the CPS whose physical operations are robust/resilient to the damage caused by cyber attacks, successfully complementing the existing CPS security architecture. It is important to note that traditional fault-tolerant/robust control methods could not be directly applicable to achieve resiliency against malicious cyber attacks which can be designed sophisticatedly to spoof the security/safety monitoring system (note this is different from common faults). Thus, security issues at this layer require different risk management to detect cyber attacks and mitigate their impact within the context of a unified

  20. U.S. Geological Survey Unmanned Aircraft Systems (UAS) Roadmap 2014

    Cress, Jill J.; Hutt, Michael E.; Sloan, Jeff L.; Bauer, Mark A.; Feller, Mark R.; Goplen, Susan E.


    The U.S. Department of the Interior (DOI) is responsible for protecting the natural resources and heritage contained on almost 20 percent of the land in the United States. This responsibility requires acquisition of remotely sensed data throughout vast lands, including areas that are remote and potentially dangerous to access. One promising new technology for data collection is unmanned aircraft systems (UAS), which may be better suited (achieving superior science, safety, and savings) than traditional methods. UAS, regardless of their size, have the same operational components: aircraft, payloads, communications unit, and operator control unit. The aircraft is the platform that flies and carries any required payloads. For Department of the Interior missions these payloads will be either a sensor or set of sensors that can acquire the specific type of remotely sensed data that is needed. The aircraft will also carry the payload that is responsible for transmitting live airborne video images, compass headings, and location information to the operator control unit. The communications unit, which transfers information between the aircraft and the operator control unit, consists of the hardware and software required to establish both uplink and downlink communications. Finally, the operator control unit both controls and monitors the aircraft and can be operated either by a pilot on the ground or autonomously.

  1. More electric aircraft starter-generator system with utilization of hybrid modulated model predictive control

    Yoeh, Seang Shen; Yang, Tao; Tarisciotti, Luca; Hill, Christopher Ian; Bozhko, Serhiy


    The current trend for future aircraft is the adoption of the More Electric Aircraft (MEA) concept. The electrical based starter-generator (S/G) system is one of the core ideas from the MEA concept. The PI based control scheme has been investigated in various papers for the permanent magnet based S/G system. Different control schemes are to be considered to improve the control performance of the S/G system. A type of non-linear control called Model Predictive Control (MPC) is considered for it...

  2. Analysis of the Hybrid Power System for High-Altitude Unmanned Aircraft

    Kangwen Sun


    Full Text Available The application of single solar array on high-altitude unmanned aircraft will waste energy because of its low conversion efficiency. Furthermore, since its energy utilization is limited, the surface temperature of solar array will rise to 70°C due to the waste solar energy, thus reducing the electrical performance of the solar array. In order to reuse the energy converted into heat by solar array, a hybrid power system is presented in this paper. In the hybrid power system, a new electricity-generating method is adopted to spread the photovoltaic cell on the wing surface and arrange photothermal power in the wing box section. Because the temperature on the back of photovoltaic cell is high, it can be used as the high-temperature heat source. The lower wing surface can be a low-temperature cold source. A high-altitude unmanned aircraft was used to analyze the performances of pure solar-powered aircraft and hybrid powered aircraft. The analysis result showed that the hybrid system could reduce the area of wing by 19% and that high-altitude unmanned aircraft with a 35 m or less wingspan could raise the utilization rate of solar energy per unit area after adopting the hybrid power system.

  3. Closed-Loop System Identification Experience for Flight Control Law and Flying Qualities Evaluation of a High Performance Fighter Aircraft

    Murphy, Patrick C.


    This paper highlights some of the results and issues associated with estimating models to evaluate control law design methods and design criteria for advanced high performance aircraft. Experimental fighter aircraft such as the NASA High Alpha Research Vehicle (HARV) have the capability to maneuver at very high angles of attack where nonlinear aerodynamics often predominate. HARV is an experimental F/A-18, configured with thrust vectoring and conformal actuated nose strakes. Identifying closed-loop models for this type of aircraft can be made difficult by nonlinearities and high-order characteristics of the system. In this paper only lateral-directional axes are considered since the lateral-directional control law was specifically designed to produce classical airplane responses normally expected with low-order, rigid-body systems. Evaluation of the control design methodology was made using low-order equivalent systems determined from flight and simulation. This allowed comparison of the closed-loop rigid-body dynamics achieved in flight with that designed in simulation. In flight, the On Board Excitation System was used to apply optimal inputs to lateral stick and pedals at five angles of attack: 5, 20, 30, 45, and 60 degrees. Data analysis and closed-loop model identification were done using frequency domain maximum likelihood. The structure of the identified models was a linear state-space model reflecting classical 4th-order airplane dynamics. Input time delays associated with the high-order controller and aircraft system were accounted for in data preprocessing. A comparison of flight estimated models with small perturbation linear design models highlighted nonlinearities in the system and indicated that the estimated closed-loop rigid-body dynamics were sensitive to input amplitudes at 20 and 30 degrees angle of attack.


    A. A. Sima


    Full Text Available This paper gives an overview of the new COmpact hyperSpectral Imaging (COSI system recently developed at the Flemish Institute for Technological Research (VITO, Belgium and suitable for remotely piloted aircraft systems. A hyperspectral dataset captured from a multirotor platform over a strawberry field is presented and explored in order to assess spectral bands co-registration quality. Thanks to application of line based interference filters deposited directly on the detector wafer the COSI camera is compact and lightweight (total mass of 500g, and captures 72 narrow (FWHM: 5nm to 10 nm bands in the spectral range of 600-900 nm. Covering the region of red edge (680 nm to 730 nm allows for deriving plant chlorophyll content, biomass and hydric status indicators, making the camera suitable for agriculture purposes. Additionally to the orthorectified hypercube digital terrain model can be derived enabling various analyses requiring object height, e.g. plant height in vegetation growth monitoring. Geometric data quality assessment proves that the COSI camera and the dedicated data processing chain are capable to deliver very high resolution data (centimetre level where spectral information can be correctly derived. Obtained results are comparable or better than results reported in similar studies for an alternative system based on the Fabry–Pérot interferometer.

  5. Subsonic Ultra Green Aircraft Research: Phase 2. Volume 2; Hybrid Electric Design Exploration

    Bradley, Marty K.; Droney, Christopher K.


    This report summarizes the hybrid electric concept design, analysis, and modeling work accomplished by the Boeing Subsonic Ultra Green Aircraft Research (SUGAR) team, consisting of Boeing Research and Technology, Boeing Commercial Airplanes, General Electric, and Georgia Tech.Performance and sizing tasks were conducted for hybrid electric versions of a conventional tube-and-wing aircraft and a hybrid wing body. The high wing Truss Braced Wing (TBW) SUGAR Volt was updated based on results from the TBW work (documented separately) and new engine performance models. Energy cost and acoustic analyses were conducted and technology roadmaps were updated for hybrid electric and battery technology. NOx emissions were calculated for landing and takeoff (LTO) and cruise. NPSS models were developed for hybrid electric components and tested using an integrated analysis of superconducting and non-superconducting hybrid electric engines. The hybrid electric SUGAR Volt was shown to produce significant emissions and fuel burn reductions beyond those achieved by the conventionally powered SUGAR High and was able to meet the NASA goals for fuel burn. Total energy utilization was not decreased but reduced energy cost can be achieved for some scenarios. The team was not able to identify a technology development path to meet NASA's noise goals

  6. In-flight Fault Detection and Isolation in Aircraft Flight Control Systems

    Azam, Mohammad; Pattipati, Krishna; Allanach, Jeffrey; Poll, Scott; Patterson-Hine, Ann


    In this paper we consider the problem of test design for real-time fault detection and isolation (FDI) in the flight control system of fixed-wing aircraft. We focus on the faults that are manifested in the control surface elements (e.g., aileron, elevator, rudder and stabilizer) of an aircraft. For demonstration purposes, we restrict our focus on the faults belonging to nine basic fault classes. The diagnostic tests are performed on the features extracted from fifty monitored system parameters. The proposed tests are able to uniquely isolate each of the faults at almost all severity levels. A neural network-based flight control simulator, FLTZ(Registered TradeMark), is used for the simulation of various faults in fixed-wing aircraft flight control systems for the purpose of FDI.

  7. A Concurrent Distributed System for Aircraft Tactical Decision Generation

    McManus, John W.


    A research program investigating the use of artificial intelligence (AI) techniques to aid in the development of a Tactical Decision Generator (TDG) for Within Visual Range (WVR) air combat engagements is discussed. The application of AI programming and problem solving methods in the development and implementation of a concurrent version of the Computerized Logic For Air-to-Air Warfare Simulations (CLAWS) program, a second generation TDG, is presented. Concurrent computing environments and programming approaches are discussed and the design and performance of a prototype concurrent TDG system are presented.

  8. Aircraft noise prediction program theoretical manual: Rotorcraft System Noise Prediction System (ROTONET), part 4

    Weir, Donald S.; Jumper, Stephen J.; Burley, Casey L.; Golub, Robert A.


    This document describes the theoretical methods used in the rotorcraft noise prediction system (ROTONET), which is a part of the NASA Aircraft Noise Prediction Program (ANOPP). The ANOPP code consists of an executive, database manager, and prediction modules for jet engine, propeller, and rotor noise. The ROTONET subsystem contains modules for the prediction of rotor airloads and performance with momentum theory and prescribed wake aerodynamics, rotor tone noise with compact chordwise and full-surface solutions to the Ffowcs-Williams-Hawkings equations, semiempirical airfoil broadband noise, and turbulence ingestion broadband noise. Flight dynamics, atmosphere propagation, and noise metric calculations are covered in NASA TM-83199, Parts 1, 2, and 3.

  9. 41 CFR 102-33.195 - Do we need an automated system to account for aircraft costs?


    ... for the Cost of Government Aircraft § 102-33.195 Do we need an automated system to account for... automated system to account for aircraft costs by collecting the cost data elements required by the Federal... through FAIRS, but are not required to have an automated system (see §§ 102-33.435 and 102-33.440 for the...

  10. 78 FR 20168 - Twenty Fourth Meeting: RTCA Special Committee 203, Unmanned Aircraft Systems


    ... Washington, DC, on March 28, 2013. Paige Williams, Management Analyst, NextGen, Business Operations Group... Introductions Review Meeting Agenda Review/Approval of Twenty Third Plenary Meeting Summary Leadership Update... for Unmanned Aircraft Systems and Minimum Aviation System Performance Standards Other Business Adjourn...

  11. Total aircraft flight-control system - Balanced open- and closed-loop control with dynamic trim maps

    Smith, G. A.; Meyer, G.


    The availability of the airborne digital computer has made possible a Total Aircraft Flight Control System (TAFCOS) that uses virtually the complete nonlinear propulsive and aerodynamic data for the aircraft to construct dynamic trim maps that represent an inversion of the aircraft model. The trim maps, in series with the aircraft, provide essentially a linear feed-forward path. Basically, open-loop trajectory control is employed with only a small perturbation feedback signal required to compensate for inaccuracy in the aircraft model and for external disturbances. Simulation results for application to an automatic carrier-landing system are presented. Flight-test results for a STOL aircraft operating automatically over a major portion of its flight regime are presented. The concept promises a more rapid and straightforward design from aerodynamic principles, particularly for highly nonlinear configurations, and requires substantially less digital computer capacity than conventional automatic flight-control system designs.

  12. The Small Aircraft Transportation System for America: A Case in Public Infrastructure Change

    Bowen, Brent D.


    The National Aeronautics and Space Administration (NASA), U.S. Department of Transportation, Federal Aviation Administration, industry stakeholders, and academia, have joined forces to pursue the NASA National General Aviation Roadmap leading to a Small Aircraft Transportation System (SATS). This strategic undertaking has a 25-year goal to bring next-generation technologies and improve travel between remote communities and transportation centers in urban areas by utilizing the nation's 5,400 public-use general aviation airports. To facilitate this initiative, a comprehensive upgrade of public infrastructure must be planned, coordinated, and implemented within the framework of the national air transportation system. The Nebraska NASA EPSCoR Program has proposed to deliver research support in key public infrastructure areas in coordination with the General Aviation Program Office at the NASA Langley Research Center. Ultimately, SATS may permit tripling aviation system throughput capacity by tapping the underutilized general aviation facilities to achieve the national goal of doorstep-to-destination travel at four times the speed of highways for the nation's suburban, rural, and remote communities.

  13. Applying Required Navigation Performance Concept for Traffic Management of Small Unmanned Aircraft Systems

    Jung, Jaewoo; D'Souza, Sarah N.; Johnson, Marcus A.; Ishihara, Abraham K.; Modi, Hemil C.; Nikaido, Ben; Hasseeb, Hashmatullah


    In anticipation of a rapid increase in the number of civil Unmanned Aircraft System(UAS) operations, NASA is researching prototype technologies for a UAS Traffic Management (UTM) system that will investigate airspace integration requirements for enabling safe, efficient low-altitude operations. One aspect a UTM system must consider is the correlation between UAS operations (such as vehicles, operation areas and durations), UAS performance requirements, and the risk to people and property in the operational area. This paper investigates the potential application of the International Civil Aviation Organizations (ICAO) Required Navigation Performance (RNP) concept to relate operational risk with trajectory conformance requirements. The approach is to first define a method to quantify operational risk and then define the RNP level requirement as a function of the operational risk. Greater operational risk corresponds to more accurate RNP level, or smaller tolerable Total System Error (TSE). Data from 19 small UAS flights are used to develop and validate a formula that defines this relationship. An approach to assessing UAS-RNP conformance capability using vehicle modeling and wind field simulation is developed to investigate how this formula may be applied in a future UTM system. The results indicate the modeled vehicles flight path is robust to the simulated wind variation, and it can meet RNP level requirements calculated by the formula. The results also indicate how vehicle-modeling fidelity may be improved to adequately verify assessed RNP level.

  14. Numerical study of influence of biofuels on the combustion characteristics and performance of aircraft engine system

    Zhou, Li; Liu, Zeng-wen; Wang, Zhan-xue


    The atomization and combustion flowfield of the combustion chamber with swirl-nozzle were simulated using different biofuels; the thermodynamic cycle of the aircraft engine system were also analyzed, influences of biofuels on the combustion characteristics and performance of aircraft engine system were explored. Results show that viscosity and caloric value are key factors affecting the atomization and combustion characteristics of biofuels, and then dominate the distribution of the temperature and NO concentration. Due to the characteristic of low viscosity and low caloric value for biofuels adopted, the biofuels accumulate near the head of combustion chamber, and the corresponding NO emission is lower than that it has for conventional kerosene. When biofuels with low caloric value are used under the operation condition which is same as the condition for the conventional kerosene, lower turbine inlet temperature, lower thrust and higher specific fuel consumption would be achieved for the aircraft engine. - Highlights: • Influences of biofuels properties on combustion characteristic are explored. • Effects of biofuels on cycle parameters of aircraft engine are discussed. • Viscosity and caloric value are key factors affecting combustion of biofuels. • NO emission becomes lower when biofuels with low caloric value is adopted. • The performance of aircraft engine becomes worse for biofuels with low caloric value.

  15. Analysis and design of insulation systems for LH2-fueled aircraft

    Cunnington, G. R., Jr.


    An analytical program was conducted to evaluate the performance of 15 potential insulations for the fuel tanks of a subsonic LH2-fueled transport aircraft intended for airline service in the 1990-1995 time period. As a result, two candidate insulation systems are proposed for subsonic transport aircraft applications. Both candidates are judged to be the optimum available and should meet the design requirements. However, because of the long-life cyclic nature of the application and the cost sensitivity of airline operations, an experimental tank/insulation development or proof-of-concept program is recommended. This program should be carried out with a nearly full-scale system which would be subjected to the cyclic thermal and mechanical inputs anticipated in aircraft service.

  16. Analysis of technology requirements and potential demand for general aviation avionics systems in the 1980's. [technology assessment and technological forecasting of the aircraft industry

    Cohn, D. M.; Kayser, J. H.; Senko, G. M.; Glenn, D. R.


    The trend for the increasing need for aircraft-in-general as a major source of transportation in the United States is presented (military and commercial aircraft are excluded). Social, political, and economic factors that affect the aircraft industry are considered, and cost estimates are given. Aircraft equipment and navigation systems are discussed.

  17. Analysis of Radar and ADS-B Influences on Aircraft Detect and Avoid (DAA Systems

    William Semke


    Full Text Available Detect and Avoid (DAA systems are complex communication and locational technologies comprising multiple independent components. DAA technologies support communications between ground-based and space-based operations with aircraft. Both manned and unmanned aircraft systems (UAS rely on DAA communication and location technologies for safe flight operations. We examined the occurrence and duration of communication losses between radar and automatic dependent surveillance–broadcast (ADS-B systems with aircraft operating in proximate airspace using data collected during actual flight operations. Our objectives were to identify the number and duration of communication losses for both radar and ADS-B systems that occurred within a discrete time period. We also investigated whether other unique communication behavior and anomalies were occurring, such as reported elevation deviations. We found that loss of communication with both radar and ADS-B systems does occur, with variation in the length of communication losses. We also discovered that other unexpected behaviors were occurring with communications. Although our data were gathered from manned aircraft, there are also implications for UAS that are operating within active airspaces. We are unaware of any previously published work on occurrence and duration of communication losses between radar and ADS-B systems.

  18. Decomposition with thermoeconomic isolation applied to the optimal synthesis/design and operation of an advanced tactical aircraft system

    Rancruel, Diego F.; Spakovsky, Michael R. von


    A decomposition methodology based on the concept of 'thermoeconomic isolation' and applied to the synthesis/design and operational optimization of an advanced tactical fighter aircraft is the focus of this paper. The total system is composed of six sub-systems of which five participate with degrees of freedom (493) in the optimization. They are the propulsion sub-system (PS), the environmental control sub-system (ECS), the fuel loop subsystem (FLS), the vapor compression and Polyalphaolefin (PAO) loops sub-system (VC/PAOS), and the airframe sub-system (AFS). The sixth subsystem comprises the expendable and permanent payloads as well as the equipment group. For each of the first five, detailed thermodynamic, geometric, physical, and aerodynamic models at both design and off-design were formulated and implemented. The most promising set of aircraft sub-system and system configurations were then determined based on both an energy integration and aerodynamic performance analysis at each stage of the mission (including the transient ones). Conceptual, time, and physical decomposition were subsequently applied to the synthesis/design and operational optimization of these aircraft configurations as well as to the highly dynamic process of heat generation and dissipation internal to the subsystems. The physical decomposition strategy used (i.e. Iterative Local-Global Optimization-ILGO) is the first to successfully closely approach the theoretical condition of 'thermoeconomic isolation' when applied to highly complex, highly dynamic non-linear systems. Developed at our Center for Energy Systems research, it has been effectively applied to a number of complex stationary and transportation applications

  19. Decomposition with thermoeconomic isolation applied to the optimal synthesis/design and operation of an advanced tactical aircraft system

    Rancruel, Diego F. [Center for Energy Systems Research, Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060 (United States); Spakovsky, Michael R. von [Center for Energy Systems Research, Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060 (United States)]. E-mail:


    A decomposition methodology based on the concept of 'thermoeconomic isolation' and applied to the synthesis/design and operational optimization of an advanced tactical fighter aircraft is the focus of this paper. The total system is composed of six sub-systems of which five participate with degrees of freedom (493) in the optimization. They are the propulsion sub-system (PS), the environmental control sub-system (ECS), the fuel loop subsystem (FLS), the vapor compression and Polyalphaolefin (PAO) loops sub-system (VC/PAOS), and the airframe sub-system (AFS). The sixth subsystem comprises the expendable and permanent payloads as well as the equipment group. For each of the first five, detailed thermodynamic, geometric, physical, and aerodynamic models at both design and off-design were formulated and implemented. The most promising set of aircraft sub-system and system configurations were then determined based on both an energy integration and aerodynamic performance analysis at each stage of the mission (including the transient ones). Conceptual, time, and physical decomposition were subsequently applied to the synthesis/design and operational optimization of these aircraft configurations as well as to the highly dynamic process of heat generation and dissipation internal to the subsystems. The physical decomposition strategy used (i.e. Iterative Local-Global Optimization-ILGO) is the first to successfully closely approach the theoretical condition of 'thermoeconomic isolation' when applied to highly complex, highly dynamic non-linear systems. Developed at our Center for Energy Systems research, it has been effectively applied to a number of complex stationary and transportation applications.

  20. Multiaperture Optical System Research.


    pp. 179-185 (1965). 6. Welford, W. T. and Winston , R., The Optics of Nonimaging Concentrators , P. 3, Academic Press, New York (1978). 7. Schneider, R...Welford and Winston investigated it was a possible concentrator for solar energy. They came up with the "ideal concentrator ", which has walls shaped...MULTIAPZRTURE OPTICAL SYSTEM RESEARCH ." Office of Naval Research Contract Number N00014-85-C-0862 . FINAL REPORT by RTS LABORATORIES, INC. 1663

  1. Unmanned Aircraft Systems for Emergency Management: A Guide for Policy Makers and Practitioners


    75 Figure 8. New Mexico State University Approved COA ................................ 76 Figure 9. Decision Tree ...APPENDIX B. UNMANNED AIRCRAFT SYSTEMS DECISION TREE .......... 107 LIST OF REFERENCES...maritime border, which is patrolled in collaboration with the U.S. Coast Guard (USCG).66 Between 2011 and 2014, the UASs operated by the CBP logged over

  2. Aircraft Fuel, Hydraulic and Pneumatic Systems (Course Outlines), Aviation Mechanics 3 (Air Frame): 9067.01.

    Dade County Public Schools, Miami, FL.

    This document presents an outline for a 135-hour course designed to familiarize the student with the operation, inspection, and repair of aircraft fuel, hydraulic, and pneumatic systems. It is designed to help the trainee master the knowledge and skills necessary to become an aviation airframe mechanic. The aviation airframe maintenance technician…

  3. 78 FR 59974 - Centennial Challenges 2014 Unmanned Aircraft Systems (UAS) Airspace Operations Challenge (AOC)


    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION Centennial Challenges 2014 Unmanned Aircraft Systems... wish to compete may now register. Centennial Challenges is a program of prize competitions to stimulate...: For general information on the NASA Centennial Challenges Program please visit...

  4. Active gust load alleviation system for flexible aircraft: Mixed feedforward/feedback approach

    Alam, Mushfiqul; Hromcik, Martin; Hanis, Tomas


    Lightweight flexible blended-wing-body (BWB) aircraft concept seems as a highly promising configuration for future high capacity airliners which suffers from reduced stiffness for disturbance loads such as gusts. A robust feedforward gust load alleviation system (GLAS) was developed to alleviate ...

  5. Pivoting output unit control systems activated by jacks. [for controlling aircraft flaps

    Belliere, P.


    An invention to be used for controlling aircraft flaps is described. It is applicable to control systems with two coaxial output units which pivot simultaneously with respect to two fixed units and which are activated by two opposed, straight coaxial jacks.

  6. 78 FR 18932 - Public Meeting: Unmanned Aircraft Systems Test Site Program; Privacy Approach


    ... discussion about which privacy issues are raised by UAS operations and how law, public policy, and the...-0061] Public Meeting: Unmanned Aircraft Systems Test Site Program; Privacy Approach AGENCY: Federal... a public engagement session on Wednesday, April 3, 2013, on the proposed privacy policy approach for...

  7. Cirrus Airframe Parachute System and Odds of a Fatal Accident in Cirrus Aircraft Crashes.

    Alaziz, Mustafa; Stolfi, Adrienne; Olson, Dean M


    General aviation (GA) accidents have continued to demonstrate high fatality rates. Recently, ballistic parachute recovery systems (BPRS) have been introduced as a safety feature in some GA aircraft. This study evaluates the effectiveness and associated factors of the Cirrus Airframe Parachute System (CAPS) at reducing the odds of a fatal accident in Cirrus aircraft crashes. Publicly available Cirrus aircraft crash reports were obtained from the National Transportation Safety Board (NTSB) database for the period of January 1, 2001-December 31, 2016. Accident metrics were evaluated through univariate and multivariate analyses regarding odds of a fatal accident and use of the parachute system. Included in the study were 268 accidents. For CAPS nondeployed accidents, 82 of 211 (38.9%) were fatal as compared to 8 of 57 (14.0%) for CAPS deployed accidents. After controlling for all other factors, the adjusted odds ratio for a fatal accident when CAPS was not deployed was 13.1. The substantial increased odds of a fatal accident when CAPS was not deployed demonstrated the effectiveness of CAPS at providing protection of occupants during an accident. Injuries were shifted from fatal to serious or minor with the use of CAPS and postcrash fires were significantly reduced. These results suggest that BPRS could play a significant role in the next major advance in improving GA accident survival.Alaziz M, Stolfi A, Olson DM. Cirrus Airframe Parachute System and odds of a fatal accident in Cirrus aircraft crashes. Aerosp Med Hum Perform. 2017; 88(6):556-564.

  8. CFD Study of an Annular-Ducted Fan Lift System for VTOL Aircraft

    Yun Jiang


    Full Text Available The present study aimed at assessing a novel annular-ducted fan lift system for VTOL aircraft through computational fluid dynamics (CFD simulations. The power and lift efficiency of the lift fan system in hover mode, the lift and drag in transition mode, the drag and flight speed of the aircraft in cruise mode and the pneumatic coupling of the tip turbine and jet exhaust were studied. The results show that the annular-ducted fan lift system can have higher lift efficiency compared to the rotor of the Apache helicopter; the smooth transition from vertical takeoff to cruise flight needs some extra forward thrust to overcome a low peak of drag; the aircraft with the lift fan system enclosed during cruise flight theoretically may fly faster than helicopters and tiltrotors based on aerodynamic drag prediction, due to the elimination of rotor drag and compressibility effects on the rotor blade tips; and pneumatic coupling of the tip turbine and jet exhaust of a 300 m/s velocity can provide enough moment to spin the lift fan. The CFD results provide insight for future experimental study of the annular-ducted lift fan VTOL aircraft.

  9. A fuselage/tank structure study for actively cooled hypersonic cruise vehicles, summary. [aircraft design of aircraft fuel systems

    Pirrello, C. J.; Baker, A. H.; Stone, J. E.


    A detailed analytical study was made to investigate the effects of fuselage cross section (circular and elliptical) and the structural arrangement (integral and nonintegral tanks) on aircraft performance. The vehicle was a 200 passenger, liquid hydrogen fueled Mach 6 transport designed to meet a range goal of 9.26 Mn (5000 NM). A variety of trade studies were conducted in the area of configuration arrangement, structural design, and active cooling design in order to maximize the performance of each of three point design aircraft: (1) circular wing-body with nonintegral tanks, (2) circular wing-body with integral tanks and (3) elliptical blended wing-body with integral tanks. Aircraft range and weight were used as the basis for comparison. The resulting design and performance characteristics show that the blended body integral tank aircraft weights the least and has the greatest range capability, however, producibility and maintainability factors favor nonintegral tank concepts.

  10. U.S. Geological Survey Emerging Applications of Unmanned Aircraft Systems

    Hutt, M. E.


    In anticipation of transforming the research methods and resource management techniques employed across the Department of the Interior, the U.S. Geological Survey (USGS) Unmanned Aircraft Systems (UAS) Project Office is conducting missions using small UAS- sUAS platforms (technology in support of scientific, resource and land management missions. UAS technology is currently being used by USGS and our partners to monitor environmental conditions, analyze the impacts of climate change, respond to natural hazards, understand landscape change rates and consequences, conduct wildlife inventories and support related land management and law enforcement missions. Our ultimate goal is to support informed decision making by creating the opportunity, via UAS technology, to gain access to an increased level of persistent monitoring of earth surface processes (forest health conditions, wildfires, earthquake zones, invasive species, etc.) in areas that have been logistically difficult, cost prohibitive or technically impossible to obtain consistent, reliable, timely information. USGS is teaming with the Department of the Interior Aviation Management Directorate to ensure the safe and cost effective adoption of UAS technology. While the USGS is concentrating on operating sUAS, the immense value of increased flight time and more robust sensor capabilities available on larger platforms cannot be ignored. We are partnering with several groups including the Department of Homeland Security, National Aeronautics and Space Administration, Department of Defense, and National Oceanic and Atmospheric Administration for access to data collected from their fleet of high altitude, long endurance (HALE) UAS. The HALE systems include state of the art sensors including Electro-Optical, Thermal Infrared and Synthetic Aperture Radar (SAR). The data being collected by High Altitude, Long Endurance (HALE) systems is can be routinely shared in near real time at several DOI- USGS locations. Analysis

  11. DoD Can Save Millions by Using Energy Efficient Centralized Aircraft Support Systems.


    recommends that the Secretary of the Air Force: -- Reevaluate the decision not to install centralized systems at tactical bases. If the systems can be...discontinue using the aircraft’s onboard auxillary power units. These units consume tremendous amounts of jet fuel in providing cabin air-conditioning...requirements. Each command has been asked to analyze its bases to determine if centralized systems should be installed. Although a final decision has not

  12. Lift/cruise fan V/STOL technology aircraft design definition study. Volume 2: Propulsion transmission system design

    Obrien, W. J.


    Two types of lift/cruise fan technology aircraft were conceptually designed. One aircraft used turbotip fans pneumatically interconnected to three gas generators, and the other aircraft used variable pitch fans mechanically interconnected to three turboshaft engines. The components of each propulsion transmission system were analyzed and designed to the depth necessary to determine areas of risk, development methods, performance, weights and costs. The types of materials and manufacturing processes were identified to show that the designs followed a low cost approach. The lift/cruise fan thrust vectoring hoods, which are applicable to either aircraft configuration, were also evaluated to assure a low cost/low risk approach.

  13. A novel Generalized State-Space Averaging (GSSA) model for advanced aircraft electric power systems

    Ebrahimi, Hadi; El-Kishky, Hassan


    Highlights: • A study model is developed for aircraft electric power systems. • A novel GSSA model is developed for the interconnected power grid. • The system’s dynamics are characterized under various conditions. • The averaged results are compared and verified with the actual model. • The obtained measured values are validated with available aircraft standards. - Abstract: The growing complexity of Advanced Aircraft Electric Power Systems (AAEPS) has made conventional state-space averaging models inadequate for systems analysis and characterization. This paper presents a novel Generalized State-Space Averaging (GSSA) model for the system analysis, control and characterization of AAEPS. The primary objective of this paper is to introduce a mathematically elegant and computationally simple model to copy the AAEPS behavior at the critical nodes of the electric grid. Also, to reduce some or all of the drawbacks (complexity, cost, simulation time…, etc) associated with sensor-based monitoring and computer aided design software simulations popularly used for AAEPS characterization. It is shown in this paper that the GSSA approach overcomes the limitations of the conventional state-space averaging method, which fails to predict the behavior of AC signals in a circuit analysis. Unlike conventional averaging method, the GSSA model presented in this paper includes both DC and AC components. This would capture the key dynamic and steady-state characteristics of the aircraft electric systems. The developed model is then examined for the aircraft system’s visualization and accuracy of computation under different loading scenarios. Through several case studies, the applicability and effectiveness of the GSSA method is verified by comparing to the actual real-time simulation model obtained from Powersim 9 (PSIM9) software environment. The simulations results represent voltage, current and load power at the major nodes of the AAEPS. It has been demonstrated that

  14. Effects of cosmic radiation on devices and embedded systems in aircrafts

    Prado, Adriane C.M.; Federico, Claudio A.; Pereira Junior, Evaldo C.F.; Goncalez, Odair L., E-mail:, E-mail:, E-mail:, E-mail: [Instituto de Estudos Avancados (IEAV/DCTA), Sao Jose dos Campos, SP (Brazil)


    Modern avionics systems use new electronic technologies devices that, due to their high degree of sophistication and miniaturization, are more susceptible to the effects of ionizing radiation, particularly the effect called 'Single Event Effect' (SEE) produced by neutron. Studies regarding the effects of radiation on electronic systems for space applications, such as satellites and orbital stations, have already been in progress for several years. However, tolerance requirements and specific studies, focusing on testing dedicated to avionics, have caused concern and gained importance in the last decade as a result of the accidents attributed to SEE in aircraft. Due to the development of a higher ceiling, an increase in airflow and a greater autonomy of certain aircrafts, the problem regarding the control of ionizing radiation dose received by the pilots, the crew and sensitive equipment became important in the areas of occupational health, radiation protection and flight safety. This paper presents an overview of the effects of ionizing radiation on devices and embedded systems in aircrafts, identifying and classifying these effects in relation to their potential risks in each device class. The assessment of these effects in avionics is a very important and emerging issue nowadays, which is being discussed by groups of the international scientific community; however, in South America, groups working in this area are still unknown. Consequently, this work is a great contribution and significantly valuable to the area of aeronautical engineering and flight safety associated to the effects of radiation on electronic components embedded in aircraft. (author)

  15. Effects of cosmic radiation on devices and embedded systems in aircrafts

    Prado, Adriane C.M.; Federico, Claudio A.; Pereira Junior, Evaldo C.F.; Goncalez, Odair L.


    Modern avionics systems use new electronic technologies devices that, due to their high degree of sophistication and miniaturization, are more susceptible to the effects of ionizing radiation, particularly the effect called 'Single Event Effect' (SEE) produced by neutron. Studies regarding the effects of radiation on electronic systems for space applications, such as satellites and orbital stations, have already been in progress for several years. However, tolerance requirements and specific studies, focusing on testing dedicated to avionics, have caused concern and gained importance in the last decade as a result of the accidents attributed to SEE in aircraft. Due to the development of a higher ceiling, an increase in airflow and a greater autonomy of certain aircrafts, the problem regarding the control of ionizing radiation dose received by the pilots, the crew and sensitive equipment became important in the areas of occupational health, radiation protection and flight safety. This paper presents an overview of the effects of ionizing radiation on devices and embedded systems in aircrafts, identifying and classifying these effects in relation to their potential risks in each device class. The assessment of these effects in avionics is a very important and emerging issue nowadays, which is being discussed by groups of the international scientific community; however, in South America, groups working in this area are still unknown. Consequently, this work is a great contribution and significantly valuable to the area of aeronautical engineering and flight safety associated to the effects of radiation on electronic components embedded in aircraft. (author)

  16. Research on AO/FO batch management technology in aircraft production

    Yin Haijun


    Full Text Available Based on the analysis of the characteristics and significance of AO/FO in the process of aircraft production, this paper analyzes the format rules of AO/FO batch management from the perspective of technology realization, and details the AO/FO The change of the query and the change status tracking, introduces the AO/FO single-stand status display in the batch management, increases the structure definition of the attribute table in the batch management, and designs the relevant algorithm to store and calculate the batch information. Finally, based on the above theory support AO/FO batch management system successfully used in the production of a machine.

  17. System Identification Methods for Aircraft Flight Control Development and Validation


    System-identification methods compose a mathematical model, or series of models, : from measurements of inputs and outputs of dynamic systems. This paper : discusses the use of frequency-domain system-identification methods for the : development and ...

  18. Aircraft Capability Management

    Mumaw, Randy; Feary, Mike


    This presentation presents an overview of work performed at NASA Ames Research Center in 2017. The work concerns the analysis of current aircraft system management displays, and the initial development of an interface for providing information about aircraft system status. The new interface proposes a shift away from current aircraft system alerting interfaces that report the status of physical components, and towards displaying the implications of degradations on mission capability. The proposed interface describes these component failures in terms of operational consequences of aircraft system degradations. The research activity was an effort to examine the utility of different representations of complex systems and operating environments to support real-time decision making of off-nominal situations. A specific focus was to develop representations that provide better integrated information to allow pilots to more easily reason about the operational consequences of the off-nominal situations. The work is also seen as a pathway to autonomy, as information is integrated and understood in a form that automated responses could be developed for the off-nominal situations in the future.

  19. NASA/USRA high altitude research aircraft. Gryphon: Soar like an eagle with the roar of a lion

    Rivera, Jose; Nunes, Anne; Mcray, Mike; Wong, Walter; Ong, Audrey; Coble, Scott


    At the equator, the ozone layer ranges from 65,000 to 130,000+ feet. This is beyond the capabilities of the ER-2, which is NASA's current high altitude reconnaissance aircraft. The Universities Space Research Association, in cooperation with NASA, is sponsoring an undergraduate program which is geared to designing an aircraft that can study the ozoned layer at the equator. This aircraft must be able to satisfy four mission profiles. Mission one is a polar mission which ranges from Chile to the South Pole and back to Chile, a total range of 6000 n. mi. at 100,000 feet with a 2500 lb. payload. The second mission is also a polar mission with a decreased altitude of 70,000 feet and an increased payload of 4000 lb. For the third mission, the aircraft will take-off at NASA Ames, cruise at 100,000 feet carrying a 2500 lb. payload, and land in Puerto Montt, Chile. The final mission requires the aircraft to take-off at NASA Ames, cruise at 100,000 feet with a 1000 lb. payload, make an excursion to 120,000 feet, and land at Howard AFB, Panama. All three missions require that a subsonic Mach number be maintained due to constraints imposed by the air sampling equipment. The aircraft need not be manned for all four missions. Three aircraft configurations were determined to be the most suitable for meeting the above requirements. The performance of each configuration is analyzed to investigate the feasibility of the project requirements. In the event that a requirement can not be obtained within the given constraints, recommendations for proposal modifications are given.

  20. Advanced Distributed Simulation Technology Advanced Rotary Wing Aircraft. System/Segment Specification. Volume 1. Simulation System Module


    overhead water sprinklers in enclosed personnel areas not already protected by existing facility fire suppression systems. Sprinkler systems shall not...facilitate future changes and updates to remain current with the application aircraft. 3.4.4 Availabilit . The ARWA SS shall be designed and constructed to

  1. Digital System e-Prognostics for Critical Aircraft Computer Systems, Phase I

    National Aeronautics and Space Administration — Impact Technologies, in cooperation with Raytheon, proposes to develop and demonstrate an innovative prognostics approach for aircraft digital electronics. The...

  2. Definition and analytical evaluation of a power management system for tilt-rotor aircraft

    Morris, J. J.; Alexander, H. R.


    The paper reviews the special design criteria which apply to power management in a tilt-rotor aircraft. These include the need for accurate and fast control of rpm and thrust, while accounting for the dynamic interactions between rotor systems caused by cross-shafting and aircraft lateral/directional response. The power management system is also required to provide acceptable high speed sensitivity to longitudinal turbulence. It is shown that the criteria can best be met using a single governor adjusting the collective pitch by an amount proportional to a combination of the average rpm and the integral of the average rpm of the two rotors. This system is evaluated and compared with other candidate systems in hover and cruise flight.

  3. Production Support Flight Control Computers: Research Capability for F/A-18 Aircraft at Dryden Flight Research Center

    Carter, John F.


    NASA Dryden Flight Research Center (DFRC) is working with the United States Navy to complete ground testing and initiate flight testing of a modified set of F/A-18 flight control computers. The Production Support Flight Control Computers (PSFCC) can give any fleet F/A-18 airplane an in-flight, pilot-selectable research control law capability. NASA DFRC can efficiently flight test the PSFCC for the following four reasons: (1) Six F/A-18 chase aircraft are available which could be used with the PSFCC; (2) An F/A-18 processor-in-the-loop simulation exists for validation testing; (3) The expertise has been developed in programming the research processor in the PSFCC; and (4) A well-defined process has been established for clearing flight control research projects for flight. This report presents a functional description of the PSFCC. Descriptions of the NASA DFRC facilities, PSFCC verification and validation process, and planned PSFCC projects are also provided.

  4. Computational modelling of an Organic Rankine Cycle (ORC waste heat recovery system for an aircraft engine

    Saadon S.


    Full Text Available Escalating fuel prices and carbon dioxide emission are causing new interest in methods to increase the thrust force of an aircraft engine with limitation of fuel consumption. One viable means is the conversion of exhaust engine waste heat to a more useful form of energy or to be used in the aircraft environmental system. A one-dimensional analysis method has been proposed for the organic Rankine cycle (ORC waste heat recovery system for turbofan engine in this paper. The paper contains two main parts: validation of the numerical model and a performance prediction of turbofan engine integrated to an ORC system. The cycle is compared with industrial waste heat recovery system from Hangzhou Chinen Steam Turbine Power CO., Ltd. The results show that thrust specific fuel consumption (TSFC of the turbofan engine reach lowest value at 0.91 lbm/lbf.h for 7000 lbf of thrust force. When the system installation weight is applied, the system results in a 2.0% reduction in fuel burn. Hence implementation of ORC system for waste heat recovery to an aircraft engine can bring a great potential to the aviation industry.


    I. I. Zavyalik; V. S. Oleshko; V. M. Samoylenko; E. V. Fetisov


    The article describes the developed modeling system in MATLAB Simulink which allows to simulate, explore and pre- dict the technical condition of the units of the aircraft gas turbine engine fuel system depending on aviation fuel quality changes.

  6. Requirements to micro-unmanned aircraft systems in civil protection and environmental monitoring

    Fischer-Stabel, Peter; Hardt, Christopher [Univ. of Applied Sciences Trier, Birkenfeld (Germany). Dept. of Environmental Planning


    Especially in application fields such as environmental monitoring or in the field of information and operations management with technical or natural disasters, increased demands on communication and sensor technology to micro unmanned aircraft systems (UAS) are given. These are currently covered by the system manufacturers, however inadequately. The use case of wildlife monitoring with micro UAS comes with some special requirements and problems, addressed in this paper. (orig.)

  7. Studies for determining the optimum propulsion system characteristics for use in a long range transport aircraft

    Brines, G. L.


    A comprehensive evaluation of propulsion systems for the next generation of near-sonic long range transport aircraft indicates that socially responsive noise and emission goals can be achieved within the probable limits of acceptable airplane performance and economics. Technology advances needed in the 1975-1985 time period to support the development of these propulsion systems are identified and discussed. The single most significant result is the low noise, high performance potential of a low tip speed, spaced, two-stage fan.

  8. Unlocking the potential of small unmanned aircraft systems (sUAS) for Earth observation

    Hugenholtz, C.; Riddell, K.; Barchyn, T. E.


    Small unmanned aircraft systems (sUAS, cost, and flexibility for scientists, and provides new opportunities to match the scale of sUAS data to the scale of the geophysical phenomenon under investigation. Although a mechanism is in place to make sUAS available to researchers and other non-military users through the US Federal Aviation Administration's Modernization and Reform Act of 2012 (FAAMRA), there are many regulatory hurdles before they are fully accepted and integrated into the National Airspace System. In this talk we will provide a brief overview of the regulatory landscape for sUAS, both in the USA and in Canada, where sUAS regulations are more flexible. We critically outline potential advantages and disadvantages of sUAS for EO applications under current and potential regulations. We find advantages: relatively low cost, potentially high temporal resolution, rapidly improving technology, and operational flexibility. We also find disadvantages: limited temporal and spatial extent, limited accuracy assessment and methodological development, and an immature regulatory landscape. From a case study we show an example of the accuracy of a photogrammetrically-derived digital terrain map (DTM) from sUAS imagery. We also compare the sUAS DTM to a LiDAR DTM. Our results suggest that sUAS-acquired imagery may provide a low-cost, rapid, and flexible alternative to airborne LiDAR. Overall, we are encouraged about the potential of sUAS for geophysical measurements; however, understanding and compliance with regulations is paramount to ensure that research is conducted legally and responsibly. Because UAS are new outside of military operations, we hope researchers will proceed carefully to ensure this great scientific opportunity remains a long term tool.

  9. Solar Powered Aircraft, Photovoltaic Array/Battery System Tabletop Demonstration: Design and Operation Manual

    Colozza, Anthony J.; Scheiman, David A.; Bailey, Sheila (Technical Monitor)


    A system was constructed to demonstrate the power system operation of a solar powered aircraft. The system consists of a photovoltaic (PV) array, a charge controller, a battery, an electric motor and propeller. The system collects energy from the PV array and either utilizes this energy to operate an electric motor or stores it in a rechargeable battery for future use. The system has a control panel which displays the output of the array and battery as well as the total current going to the electric motor. The control panel also has a means for adjusting the output to the motor to control its speed. The entire system is regulated around 12 VDC.

  10. Design and Evaluation of a Wireless Sensor Network Based Aircraft Strength Testing System

    Wu, Jian; Yuan, Shenfang; Zhou, Genyuan; Ji, Sai; Wang, Zilong; Wang, Yang


    The verification of aerospace structures, including full-scale fatigue and static test programs, is essential for structure strength design and evaluation. However, the current overall ground strength testing systems employ a large number of wires for communication among sensors and data acquisition facilities. The centralized data processing makes test programs lack efficiency and intelligence. Wireless sensor network (WSN) technology might be expected to address the limitations of cable-based aeronautical ground testing systems. This paper presents a wireless sensor network based aircraft strength testing (AST) system design and its evaluation on a real aircraft specimen. In this paper, a miniature, high-precision, and shock-proof wireless sensor node is designed for multi-channel strain gauge signal conditioning and monitoring. A cluster-star network topology protocol and application layer interface are designed in detail. To verify the functionality of the designed wireless sensor network for strength testing capability, a multi-point WSN based AST system is developed for static testing of a real aircraft undercarriage. Based on the designed wireless sensor nodes, the wireless sensor network is deployed to gather, process, and transmit strain gauge signals and monitor results under different static test loads. This paper shows the efficiency of the wireless sensor network based AST system, compared to a conventional AST system. PMID:22408521

  11. Design and evaluation of a wireless sensor network based aircraft strength testing system.

    Wu, Jian; Yuan, Shenfang; Zhou, Genyuan; Ji, Sai; Wang, Zilong; Wang, Yang


    The verification of aerospace structures, including full-scale fatigue and static test programs, is essential for structure strength design and evaluation. However, the current overall ground strength testing systems employ a large number of wires for communication among sensors and data acquisition facilities. The centralized data processing makes test programs lack efficiency and intelligence. Wireless sensor network (WSN) technology might be expected to address the limitations of cable-based aeronautical ground testing systems. This paper presents a wireless sensor network based aircraft strength testing (AST) system design and its evaluation on a real aircraft specimen. In this paper, a miniature, high-precision, and shock-proof wireless sensor node is designed for multi-channel strain gauge signal conditioning and monitoring. A cluster-star network topology protocol and application layer interface are designed in detail. To verify the functionality of the designed wireless sensor network for strength testing capability, a multi-point WSN based AST system is developed for static testing of a real aircraft undercarriage. Based on the designed wireless sensor nodes, the wireless sensor network is deployed to gather, process, and transmit strain gauge signals and monitor results under different static test loads. This paper shows the efficiency of the wireless sensor network based AST system, compared to a conventional AST system.

  12. Corrosion Protection of Al Alloys for Aircraft by Coatings With Advanced Properties and Enhanced Performance

    Bierwagen, Gordon; Croll, Stuart; Webster, Dean; Tallman, Dennis; Huo, Qun; Allahar, Brian; Su, Quan; Bonitz, Verena; Fernando, Dilhan; Wang, Duhua


    The report presents research that addresses research performed at NDSU for environmentally compliant corrosion protection in coatings systems of greatly extended lifetimes for present and future aircraft...

  13. Modelling of the automatic stabilization system of the aircraft course by a fuzzy logic method

    Mamonova, T.; Syryamkin, V.; Vasilyeva, T.


    The problem of the present paper concerns the development of a fuzzy model of the system of an aircraft course stabilization. In this work modelling of the aircraft course stabilization system with the application of fuzzy logic is specified. Thus the authors have used the data taken for an ordinary passenger plane. As a result of the study the stabilization system models were realised in the environment of Matlab package Simulink on the basis of the PID-regulator and fuzzy logic. The authors of the paper have shown that the use of the method of artificial intelligence allows reducing the time of regulation to 1, which is 50 times faster than the time when standard receptions of the management theory are used. This fact demonstrates a positive influence of the use of fuzzy regulation.

  14. Study of advanced fuel system concepts for commercial aircraft and engines

    Versaw, E. F.; Brewer, G. D.; Byers, W. D.; Fogg, H. W.; Hanks, D. E.; Chirivella, J.


    The impact on a commercial transport aircraft of using fuels which have relaxed property limits relative to current commercial jet fuel was assessed. The methodology of the study is outlined, fuel properties are discussed, and the effect of the relaxation of fuel properties analyzed. Advanced fuel system component designs that permit the satisfactory use of fuel with the candidate relaxed properties in the subject aircraft are described. The two fuel properties considered in detail are freezing point and thermal stability. Three candidate fuel system concepts were selected and evaluated in terms of performance, cost, weight, safety, and maintainability. A fuel system that incorporates insulation and electrical heating elements on fuel tank lower surfaces was found to be most cost effective for the long term.


    Alexei A. Margun


    Full Text Available The paper deals with the problem of control system synthesis for multi rotational UAV equipped with robotics arm. Control algorithm is proposed based on the method of feedback linearization and synthesis of proportional-differential controller with the real time computation of the inertia tensor and center of mass changes and compensation of the reactive torque generated by the dynamics of the manipulator. Quadrocopter with attached articulated manipulator is selected as a model of the control object. Systems of equations describing the behavior of considered dynamical system are obtained according to the Newton and Euler-Lagrange laws. Expressions are offered, defining the inertia tensor and the position of the system center of mass depending on the current position of the manipulator, and the torque acting on the quadrocopter from the manipulator. Feedback linearization with arm influence compensation on quadrocopter is applied for the resulting nonlinear coupled system. As a result, robot dynamics equations have been converted to a linear stationary system. Converted system control is achieved by a proportional-differential controller. Examined system simulation is done with control method described in the paper and the classical method based on a proportional-differential controller. Simulation results confirm the effectiveness of the proposed approach and demonstrate that the proposed approach provides higher accuracy of the tracking error, than control method by means of proportional-differential regulator.

  16. Overview: Small Aircraft Transportation System Airborne Remote Sensing Fuel Droplet Evaporation

    Bowen, Brent (Editor); Holmes, Bruce; Gogos, George; Narayanan, Ram; Smith, Russell; Woods, Sara


    , Codes, and Strategic Enterprises. During the first year of funding, Nebraska established open and frequent lines of communication with university affairs officers and other key personnel at all NASA Centers and Enterprises, and facilitated the development of collaborations between and among junior faculty in the state and NASA researchers. As a result, Nebraska initiated a major research cluster, the Small Aircraft Transportation System Nebraska Implementation Template.

  17. Planetary Science from NASA's WB-57 Canberra High Altitude Research Aircraft During the Great American Eclipse of 2017

    Tsang, C.; Caspi, A.; DeForest, C. E.; Durda, D. D.; Steffl, A.; Lewis, J.; Wiseman, J.; Collier, J.; Mallini, C.; Propp, T.; Warner, J.


    The Great American Eclipse of 2017 provided an excellent opportunity for heliophysics research on the solar corona and dynamics that encompassed a large number of research groups and projects, including projects flown in the air and in space. Two NASA WB-57F Canberra high altitude research aircraft were launched from NASA's Johnson Space Center, Ellington Field into the eclipse path. At an altitude of 50,000ft, and outfitted with visible and near-infrared cameras, these aircraft provided increased duration of observations during eclipse totality, and much sharper images than possible on the ground. Although the primary mission goal was to study heliophysics, planetary science was also conducted to observe the planet Mercury and to search for Vulcanoids. Mercury is extremely challenging to study from Earth. The 2017 eclipse provided a rare opportunity to observe Mercury under ideal astronomical conditions. Only a handful of near-IR thermal images of Mercury exist, but IR images provide critical surface property (composition, albedo, porosity) information, essential to interpreting lower resolution IR spectra. Critically, no thermal image of Mercury currently exists. By observing the nightside surface during the 2017 Great American Eclipse, we aimed to measure the diurnal temperature as a function of local time (longitude) and attempted to deduce the surface thermal inertia integrated down to a few-cm depth below the surface. Vulcanoids are a hypothesized family of asteroids left over from the formation of the solar system, in the dynamically stable orbits between the Sun and Mercury at 15-45 Rs (4-12° solar elongation). Close proximity to the Sun, plus their small theoretical sizes, make Vulcanoid searches rare and difficult. The 2017 eclipse was a rare opportunity to search for Vulcanoids. If discovered these unique, highly refractory and primordial bodies would have a significant impact on our understanding of solar system formation. Only a handful of deep

  18. Assessment System for Aircraft Noise (ASAN) Citation Database. Volume 1


    kills "). Most researchers would take an opposing position on the given research topic. 2 Some elements of the publication are con-r ,ersial 14 4. Report... Mockingbirds Mojarras Molas Moles Mollusca ...Robins ...Sialia ...Turdus Ol.02.2l.09.OO.OO ... Catbirds ... Mimidae -. Mockingbirds ... Thrashers 01.02.21:1.0.00. ... Motacillidae

  19. Application of Unmanned Aircraft Systems (UAS) for phenotypic mapping of white spruce genotypes along environmental gradients

    D'Odorico, P.; Wong, C. Y.; Besik, A.; Earon, E.; Isabel, N.; Ensminger, I.


    Rapid climate change is expected to cause a mismatch between locally adapted tree populations and the optimal climatic conditions to which they have adapted. Plant breeding and reforestation programs will increasingly need to rely on high-throughput precision phenotyping tools for the selection of genotypes with increased drought and stress tolerance. In this work, we present the possibilities offered by Unmanned Aircraft Systems (UAS) carrying optical sensors to monitor and assess differences in performance among white spruce genotypes. While high-throughput precision phenotyping using UAS has gained traction in agronomic crop research during the last few years, to our knowledge it is still at its infancy in forestry applications. UAS surveys were performed at different times during the growing season over large white spruce common garden experiments established by the Canadian Forest Service at four different sites, each characterized by 2000 clonally replicated genotypes. Sites are distributed over a latitudinal gradient, in Ontario and Quebec, Canada. The UAS payload consisted of a custom-bands multispectral sensor acquiring radiation at wavelength at which the reflectance spectrum of vegetation is known to capture physiological change under disturbance and stress. Ground based tree-top spectral reflectances and leaf level functional traits were also acquired for validation purposes parallel to UAS surveys. We will discuss the potential and the challenges of using optical sensors on UAS to infer genotypic variation in tree response to stress events and show how spectral data can function as the link between large-scale phenotype and genotype data.

  20. Insect detection and nitrogen management for irrigated potatoes using remote sensing from small unmanned aircraft systems

    Hunt, E. Raymond; Rondon, Silvia I.; Hamm, Philip B.; Turner, Robert W.; Bruce, Alan E.; Brungardt, Josh J.


    Remote sensing with small unmanned aircraft systems (sUAS) has potential applications in agriculture because low flight altitudes allow image acquisition at very high spatial resolution. We set up experiments at the Oregon State University Hermiston Agricultural Research and Extension Center with different platforms and sensors to assess advantages and disadvantages of sUAS for precision farming. In 2013, we conducted an experiment with 4 levels of N fertilizer, and followed the changes in the normalized difference vegetation index (NDVI) over time. In late June, there were no differences in chlorophyll content or leaf area index (LAI) among the 3 higher application rates. Consistent with the field data, only plots with the lowest rate of applied N were distinguished by low NDVI. In early August, N deficiency was determined by NDVI, but it was too late to mitigate losses in potato yield and quality. Populations of the Colorado potato beetle (CPB) may rapidly increase, devouring the shoots, thus early detection and treatment could prevent yield losses. In 2014, we conducted an experiment with 4 levels of CPB infestation. Over one day, damage from CPB in some plots increased from 0 to 19%. A visual ranking of damage was not correlated with the total number of CPB or treatment. Plot-scale vegetation indices were not correlated with damage, although the damaged area determined by object-based feature extraction was highly correlated. Methods based on object-based image analysis of sUAS data have potential for early detection and reduced cost.

  1. A learning flight control system for the F8-DFBW aircraft. [Digital Fly-By-Wire

    Montgomery, R. C.; Mekel, R.; Nachmias, S.


    This report contains a complete description of a learning control system designed for the F8-DFBW aircraft. The system is parameter-adaptive with the additional feature that it 'learns' the variation of the control system gains needed over the flight envelope. It, thus, generates and modifies its gain schedule when suitable data are available. The report emphasizes the novel learning features of the system: the forms of representation of the flight envelope and the process by which identified parameters are used to modify the gain schedule. It contains data taken during piloted real-time 6 degree-of-freedom simulations that were used to develop and evaluate the system.

  2. Aircraft Dynamic Load Alleviation Using Smart Actuation System

    Appa, K


    .... This concept can also be applied to flutter suppression of any lifting surfaces. This active control algorithm can be implemented and operated independently of the primary flight control systems to avoid interference...

  3. 77 FR 14319 - Unmanned Aircraft System Test Sites


    ... their numbers and uses are growing dramatically. In the United States alone, approximately 50 companies... crisis situations. They currently range in size from wingspans of six inches to over 240 feet; and can... and climatic diversity; (B) Take into consideration the location of ground infrastructure and research...

  4. A Turbo-Brayton Cryocooler for Aircraft Superconducting Systems, Phase II

    National Aeronautics and Space Administration — Hybrid turboelectric aircraft with gas turbines driving electric generators connected to electric propulsion motors have the potential to transform the aircraft...

  5. A New Cryocooler for MgB2 Superconducting Systems in Turboelectric Aircraft, Phase II

    National Aeronautics and Space Administration — Turboelectric aircraft with gas turbines driving electric generators connected to electric propulsion motors have the potential to transform the aircraft design...

  6. A New Cryocooler for MgB2 Superconducting Systems in Turboelectric Aircraft, Phase I

    National Aeronautics and Space Administration — Turboelectric aircraft with gas turbines driving electric generators connected to electric propulsion motors have the potential to transform the aircraft design...

  7. Method and System for Dynamic Automated Corrections to Weather Avoidance Routes for Aircraft in En Route Airspace

    McNally, B. David (Inventor); Erzberger, Heinz (Inventor); Sheth, Kapil (Inventor)


    A dynamic weather route system automatically analyzes routes for in-flight aircraft flying in convective weather regions and attempts to find more time and fuel efficient reroutes around current and predicted weather cells. The dynamic weather route system continuously analyzes all flights and provides reroute advisories that are dynamically updated in real time while the aircraft are in flight. The dynamic weather route system includes a graphical user interface that allows users to visualize, evaluate, modify if necessary, and implement proposed reroutes.

  8. Propulsion controlled aircraft computer

    Cogan, Bruce R. (Inventor)


    A low-cost, easily retrofit Propulsion Controlled Aircraft (PCA) system for use on a wide range of commercial and military aircraft consists of an propulsion controlled aircraft computer that reads in aircraft data including aircraft state, pilot commands and other related data, calculates aircraft throttle position for a given maneuver commanded by the pilot, and then displays both current and calculated throttle position on a cockpit display to show the pilot where to move throttles to achieve the commanded maneuver, or is automatically sent digitally to command the engines directly.

  9. Performance of an aircraft tire under cyclic braking and of a currently operational antiskid braking system

    Tanner, J. A.


    An experimental investigation was conducted to study the performance of an aircraft tire under cyclic braking conditions and to study the performance of a currently operational aircraft antiskid braking system. Dry, damp, and flooded runway surface conditions were used in the investigation. The results indicated that under cyclic braking conditions the braking and cornering-force friction coefficients may be influenced by fluctuations in the vertical load, flexibility in the wheel support, and the spring coupling between the wheel and the tire-pavement interface. The cornering capability was shown to be negligible at wheel slip ratios well below a locked-wheel skid under all test surface conditions. The maximum available brake-force friction coefficient was shown to be dependent upon the runway surface condition, upon velocity, and, for wet runways, upon tire differences. Moderate reductions in vertical load and brake system pressure did not significantly affect the overall wet-runway performance of the tire.

  10. Aircraft Cabin Environmental Quality Sensors

    Gundel, Lara; Kirchstetter, Thomas; Spears, Michael; Sullivan, Douglas


    The Indoor Environment Department at Lawrence Berkeley National Laboratory (LBNL) teamed with seven universities to participate in a Federal Aviation Administration (FAA) Center of Excellence (COE) for research on environmental quality in aircraft. This report describes research performed at LBNL on selecting and evaluating sensors for monitoring environmental quality in aircraft cabins, as part of Project 7 of the FAA's COE for Airliner Cabin Environmental Research (ACER)1 effort. This part of Project 7 links to the ozone, pesticide, and incident projects for data collection and monitoring and is a component of a broader research effort on sensors by ACER. Results from UCB and LBNL's concurrent research on ozone (ACER Project 1) are found in Weschler et al., 2007; Bhangar et al. 2008; Coleman et al., 2008 and Strom-Tejsen et al., 2008. LBNL's research on pesticides (ACER Project 2) in airliner cabins is described in Maddalena and McKone (2008). This report focused on the sensors needed for normal contaminants and conditions in aircraft. The results are intended to complement and coordinate with results from other ACER members who concentrated primarily on (a) sensors for chemical and biological pollutants that might be released intentionally in aircraft; (b) integration of sensor systems; and (c) optimal location of sensors within aircraft. The parameters and sensors were selected primarily to satisfy routine monitoring needs for contaminants and conditions that commonly occur in aircraft. However, such sensor systems can also be incorporated into research programs on environmental quality in aircraft cabins.

  11. Framework for systems engineering research

    Erasmus, L


    Full Text Available In this paper a framework is proposed to perform systems engineering research within South Africa. It is proposed that within the reference of the National Research Foundation (NRF) classification of research, systems engineering is a Field...

  12. Packaged Capacitive Pressure Sensor System for Aircraft Engine Health Monitoring

    Scardelletti, Maximilian C.; Zorman, Christian A.


    This paper describes the development of a packaged silicon carbide (SiC) based MEMS pressure sensor system designed specifically for a conventional turbofan engine. The electronic circuit is based on a Clapp-type oscillator that incorporates a 6H-SiC MESFET, a SiCN MEMS capacitive pressure sensor, titanate MIM capacitors, wirewound inductors, and thick film resistors. The pressure sensor serves as the capacitor in the LC tank circuit, thereby linking pressure to the resonant frequency of the oscillator. The oscillator and DC bias circuitry were fabricated on an alumina substrate and secured inside a metal housing. The packaged sensing system reliably operates at 0 to 350 psi and 25 to 540C. The system has a pressure sensitivity of 6.8 x 10E-2 MHzpsi. The packaged system shows negligible difference in frequency response between 25 and 400C. The fully packaged sensor passed standard benchtop acceptance tests and was evaluated on a flight-worthy engine.

  13. Experimental research on photocatalytic oxidation air purification technology applied to aircraft cabins

    Sun, Yuexia; Fang, Lei; Wyon, David Peter


    The experiment presented in this report was performed in a simulated aircraft cabin to evaluate the air cleaning effects of two air purification devices that used photocatalytic oxidation (PCO) technology. Objective physical, chemical and physiological measurements and subjective human assessment...

  14. A New Approach to Modeling the Cost of Ownership for Aircraft Systems.


    expensive airborne missiles (e.g., Maverick, SRAM ) are funded in separate program elements of their own. If an aircraft system generates requirements for...PNTS b-I p,y,b,u EIR -u p9Y RTOK (FH/MO)QPA pUF PREPGNp ( - DCR) ) BUE b pp PGEN~)~1b-I ~ SER. = SEt. SEF j J,y j CIDM - CIDMP + CIDME + CIDMEI

  15. Fuzzy energy management for hybrid fuel cell/battery systems for more electric aircraft

    Corcau, Jenica-Ileana; Dinca, Liviu; Grigorie, Teodor Lucian; Tudosie, Alexandru-Nicolae


    In this paper is presented the simulation and analysis of a Fuzzy Energy Management for Hybrid Fuel cell/Battery Systems used for More Electric Aircraft. The fuel cell hybrid system contains of fuel cell, lithium-ion batteries along with associated dc to dc boost converters. In this configuration the battery has a dc to dc converter, because it is an active in the system. The energy management scheme includes the rule based fuzzy logic strategy. This scheme has a faster response to load change and is more robust to measurement imprecisions. Simulation will be provided using Matlab/Simulink based models. Simulation results are given to show the overall system performance.

  16. Method of Choosing the Information Technology System Supporting Management of the Military Aircraft Operation

    Barszcz Piotr


    Full Text Available The paper presents a method of choosing the information technology system, the task of which is to support the management process of the military aircraft operation. The proposed method is based on surveys conducted among direct users of IT systems used in aviation of the Polish Armed Forces. The analysis of results of the surveys was conducted using statistical methods. The paper was completed with practical conclusions related to further usefulness of the individual information technology systems. In the future, they can be extremely useful in the process of selecting the best solutions and integration of the information technology systems

  17. Methods of validating the Advanced Diagnosis and Warning system for aircraft ICing Environments (ADWICE)

    Rosczyk, S.; Hauf, T.; Leifeld, C.


    In-flight icing is one of the most hazardous problems in aviation. It was determined as contributing factor in more than 800 incidents worldwide. And though the meteorological factors of airframe icing become more and more transparent, they have to be integrated into the Federal Aviation Administration's (FAA) certification rules first. Therefore best way to enhance aviational safety is to know the areas of dangerous icing conditions in order to prevent flying in them. For this reason the German Weather Service (DWD), the Institute for Atmospheric Physics at the German Aerospace Centre (DLR) and the Institute of Meteorology and Climatology (ImuK) of the University of Hanover started developingADWICE - theAdvanced Diagnosis and Warning system for aircraft ICing Environments - in 1998. This algorithm is based on the DWDLocal Model (LM) forecast of temperature and humidity, in fusion with radar and synop and, coming soon, satellite data. It gives an every-hour nowcast of icing severity and type - divided into four categories: freezing rain, convective, stratiform and general - for the middle European area. A first validation of ADWICE took place in 1999 with observational data from an in-flight icing campaign during EURICE in 1997. The momentary validation deals with a broader database. As first step the output from ADWICE is compared to observations from pilots (PIREPs) to get a statistic of the probability of detecting icing and either no-icing conditions within the last icing-seasons. There were good results of this method with the AmericanIntegrated Icing Diagnostic Algorithm (IIDA). A problem though is the small number of PIREPs from Europe in comparison to the US. So a temporary campaign of pilots (including Lufthansa and Aerolloyd) collecting cloud and icing information every few miles is intended to solve this unpleasant situation. Another source of data are the measurements of theFalcon - a DLR research aircraft carrying an icing sensor. In addition to that

  18. Remotely piloted aircraft systems as a rhinoceros anti-poaching tool in Africa.

    Margarita Mulero-Pázmány

    Full Text Available Over the last years there has been a massive increase in rhinoceros poaching incidents, with more than two individuals killed per day in South Africa in the first months of 2013. Immediate actions are needed to preserve current populations and the agents involved in their protection are demanding new technologies to increase their efficiency in the field. We assessed the use of remotely piloted aircraft systems (RPAS to monitor for poaching activities. We performed 20 flights with 3 types of cameras: visual photo, HD video and thermal video, to test the ability of the systems to detect (a rhinoceros, (b people acting as poachers and (c to do fence surveillance. The study area consisted of several large game farms in KwaZulu-Natal province, South Africa. The targets were better detected at the lowest altitudes, but to operate the plane safely and in a discreet way, altitudes between 100 and 180 m were the most convenient. Open areas facilitated target detection, while forest habitats complicated it. Detectability using visual cameras was higher at morning and midday, but the thermal camera provided the best images in the morning and at night. Considering not only the technical capabilities of the systems but also the poacherś modus operandi and the current control methods, we propose RPAS usage as a tool for surveillance of sensitive areas, for supporting field anti-poaching operations, as a deterrent tool for poachers and as a complementary method for rhinoceros ecology research. Here, we demonstrate that low cost RPAS can be useful for rhinoceros stakeholders for field control procedures. There are, however, important practical limitations that should be considered for their successful and realistic integration in the anti-poaching battle.

  19. Potential of Multi-Winglet Systems to Improve Aircraft Performance

    Berens, Martin


    Gegenstand der vorliegenden Arbeit ist die Untersuchung des Potenzials von Multi-Winglet Konfigurationen zur Leistungssteigerung von Flugzeugen. Multi-Winglet Systeme sind aus der Vogelwelt bekannt. Die offensichtliche Diskrepanz zwischen dem Erfolg der Multi-Winglet Konfiguration in der Natur sowie dem theoretisch großen Potenzial zur Verringerung des induzierten Widerstands und der damit verbundenen Abschwächung der Intensität der Nachlaufwirbel auf der einen und den gleichzeitig mäßigen Er...

  20. Fitting modular reconnaissance systems into modern high-performance aircraft

    Stroot, Jacquelyn R.; Pingel, Leslie L.


    The installation of the Advanced Tactical Air Reconnaissance System (ATARS) in the F/A-18D(RC) presented a complex set of design challenges. At the time of the F/A-18D(RC) ATARS option exercise, the design and development of the ATARS subsystems and the parameters of the F/A-18D(RC) were essentially fixed. ATARS is to be installed in the gun bay of the F/A-18D(RC), taking up no additional room, nor adding any more weight than what was removed. The F/A-18D(RC) installation solution required innovations in mounting, cooling, and fit techniques, which made constant trade study essential. The successful installation in the F/A-18D(RC) is the result of coupling fundamental design engineering with brainstorming and nonstandard approaches to every situation. ATARS is sponsored by the Aeronautical Systems Division, Wright-Patterson AFB, Ohio. The F/A-18D(RC) installation is being funded to the Air Force by the Naval Air Systems Command, Washington, D.C.

  1. Fault tolerant attitude control for small unmanned aircraft systems equipped with an airflow sensor array.

    Shen, H; Xu, Y; Dickinson, B T


    Inspired by sensing strategies observed in birds and bats, a new attitude control concept of directly using real-time pressure and shear stresses has recently been studied. It was shown that with an array of onboard airflow sensors, small unmanned aircraft systems can promptly respond to airflow changes and improve flight performances. In this paper, a mapping function is proposed to compute aerodynamic moments from the real-time pressure and shear data in a practical and computationally tractable formulation. Since many microscale airflow sensors are embedded on the small unmanned aircraft system surface, it is highly possible that certain sensors may fail. Here, an adaptive control system is developed that is robust to sensor failure as well as other numerical mismatches in calculating real-time aerodynamic moments. The advantages of the proposed method are shown in the following simulation cases: (i) feedback pressure and wall shear data from a distributed array of 45 airflow sensors; (ii) 50% failure of the symmetrically distributed airflow sensor array; and (iii) failure of all the airflow sensors on one wing. It is shown that even if 50% of the airflow sensors have failures, the aircraft is still stable and able to track the attitude commands.

  2. Real-Time Risk Assessment Framework for Unmanned Aircraft System (UAS) Traffic Management (UTM)

    Ancel, Ersin; Capristan, Francisco M.; Foster, John V.; Condotta, Ryan


    The new Federal Aviation Administration (FAA) Small Unmanned Aircraft rule (Part 107) marks the first national regulations for commercial operation of small unmanned aircraft systems (sUAS) under 55 pounds within the National Airspace System (NAS). Although sUAS flights may not be performed beyond visual line-of-sight or over non- participant structures and people, safety of sUAS operations must still be maintained and tracked at all times. Moreover, future safety-critical operation of sUAS (e.g., for package delivery) are already being conceived and tested. NASA's Unmanned Aircraft System Trac Management (UTM) concept aims to facilitate the safe use of low-altitude airspace for sUAS operations. This paper introduces the UTM Risk Assessment Framework (URAF) which was developed to provide real-time safety evaluation and tracking capability within the UTM concept. The URAF uses Bayesian Belief Networks (BBNs) to propagate off -nominal condition probabilities based on real-time component failure indicators. This information is then used to assess the risk to people on the ground by calculating the potential impact area and the effects of the impact. The visual representation of the expected area of impact and the nominal risk level can assist operators and controllers with dynamic trajectory planning and execution. The URAF was applied to a case study to illustrate the concept.

  3. Impact of future fuel properties on aircraft engines and fuel systems

    Rudey, R. A.; Grobman, J. S.


    From current projections of the availability of high-quality petroleum crude oils, it is becoming increasingly apparent that the specifications for hydrocarbon jet fuels may have to be modified. The problems that are most likely to be encountered as a result of these modifications relate to engine performance, component durability and maintenance, and aircraft fuel-system performance. The effect on engine performance will be associated with changes in specific fuel consumption, ignition at relight limits, at exhaust emissions. Durability and maintenance will be affected by increases in combustor liner temperatures, carbon deposition, gum formation in fuel nozzles, and erosion and corrosion of turbine blades and vanes. Aircraft fuel-system performance will be affected by increased deposits in fuel-system heat exchangers and changes in the pumpability and flowability of the fuel. The severity of the potential problems is described in terms of the fuel characteristics most likely to change in the future. Recent data that evaluate the ability of current-technology aircraft to accept fuel specification changes are presented, and selected technological advances that can reduce the severity of the problems are described and discussed.

  4. An Empirical Study of Overlapping Rotor Interference for a Small Unmanned Aircraft Propulsion System

    Mantas Brazinskas


    Full Text Available The majority of research into full-sized helicopter overlapping propulsion systems involves co-axial setups (fully overlapped. Partially overlapping rotor setups (tandem, multirotor have received less attention, and empirical data produced over the years is limited. The increase in demand for compact small unmanned aircraft has exposed the need for empirical investigations of overlapping propulsion systems at a small scale (Reynolds Number < 250,000. Rotor-to-rotor interference at the static state in various overlapping propulsion system configurations was empirically measured using off the shelf T-Motor 16 inch × 5.4 inch rotors. A purpose-built test rig was manufactured allowing various overlapping rotor configurations to be tested. First, single rotor data was gathered, then performance measurements were taken at different thrust and tip speeds on a range of overlap configurations. The studies were conducted in a system torque balance mode. Overlapping rotor performance was compared to an isolated dual rotor propulsion system revealing interference factors which were compared to the momentum theory. Tests revealed that in the co-axial torque-balanced propulsion system the upper rotor outperforms the lower rotor at axial separation ratios between 0.05 and 0.85. Additionally, in the same region, thrust sharing between the two rotors changed by 21%; the upper rotor produced more thrust than the lower rotor at all times. Peak performance was recorded as a 22% efficiency loss when the axial separation ratio was greater than 0.25. The performance of a co-axial torque-balanced system reached a 27% efficiency loss when the axial separation ratio was equal to 0.05. The co-axial system swirl recovery effect was recorded to have a 4% efficiency gain in the axial separation ratio region between 0.05 and 0.85. The smallest efficiency loss (3% was recorded when the rotor separation ratio was between 0.95 and 1 (axial separation ratio was kept at 0

  5. Optimality study of a gust alleviation system for light wing-loading STOL aircraft

    Komoda, M.


    An analytical study was made of an optimal gust alleviation system that employs a vertical gust sensor mounted forward of an aircraft's center of gravity. Frequency domain optimization techniques were employed to synthesize the optimal filters that process the corrective signals to the flaps and elevator actuators. Special attention was given to evaluating the effectiveness of lead time, that is, the time by which relative wind sensor information should lead the actual encounter of the gust. The resulting filter is expressed as an implicit function of the prescribed control cost. A numerical example for a light wing loading STOL aircraft is included in which the optimal trade-off between performance and control cost is systematically studied.

  6. Preliminary analysis of aircraft fuel systems for use with broadened specification jet fuels

    Pasion, A. J.; Thomas, I.


    An analytical study was conducted on the use of broadened specification hydrocarbon fuels in present day aircraft. A short range Boeing 727 mission and three long range Boeing 747 missions were used as basis of calculation for one-day-per-year extreme values of fuel loading, airport ambient and altitude ambient temperatures with various seasonal and climatic conditions. Four hypothetical fuels were selected; two high-vapor-pressure fuels with 35 kPa and 70 kPa RVP and two high-freezing-point fuels with -29 C and -18 C freezing points. In-flight fuel temperatures were predicted by Boeing's aircraft fuel tank thermal analyzer computer program. Boil-off rates were calculated for the high vapor pressure fuels and heating/insulation requirements for the high freezing point fuels were established. Possible minor and major heating system modifications were investigated with respect to heat output, performance and economic penalties for the high freezing point fuels.

  7. Automatic Flight Control System Design of Level Change Mode for a Large Aircraft

    Huajun Gong


    Full Text Available The level change mode is an essential part of large civil aircraft automatic flight control systems. In cruise, with the decrease of the plane's weight caused by fuel consumption and the influence of bad weather, such as thunderstorms, the level change mode is required to solve this problem. This work establishes a nonlinear model of large aircraft, takes level changed from 9500m to 10100m as an example to design control laws for the level change mode in cruise. The classical engineering method is used to design longitudinal and lateral control laws synthetically. The flight qualities are considered in the design process. Simulation results indicate the control laws can meet design requirements and have a good anti-gust performance.


    SOARE Liviu


    Full Text Available This paper presents the concept of a de-icing system on the ground, semi-automatic, intended to replace existing traditional solutions. A specific classification of ice protection systems based on action mode criterion is proposed. A characterization of functional aspects characteristic for this classification is given and discussed. This work contains full details of the appearance and the functionality of chemical deicing system, designed for applications in light aircraft. The software used for modeling is 3D Studio Max.

  9. Redundant actuator development study. [flight control systems for supersonic transport aircraft

    Ryder, D. R.


    Current and past supersonic transport configurations are reviewed to assess redundancy requirements for future airplane control systems. Secondary actuators used in stability augmentation systems will probably be the most critical actuator application and require the highest level of redundancy. Two methods of actuator redundancy mechanization have been recommended for further study. Math models of the recommended systems have been developed for use in future computer simulations. A long range plan has been formulated for actuator hardware development and testing in conjunction with the NASA Flight Simulator for Advanced Aircraft.

  10. Aircraft Carriers

    Nødskov, Kim; Kværnø, Ole

    as their purchases of aircraft carrier systems, makes it more than likely that the country is preparing such an acquisition. China has territorial disputes in the South China Sea over the Spratly Islands and is also worried about the security of its sea lines of communications, by which China transports the majority......, submarines, aircraft and helicopters, is not likely to be fully operational and war-capable until 2020, given the fact that China is starting from a clean sheet of paper. The United States of America (USA), the United Kingdom (UK), Russia and India are currently building or have made decisions to build new...

  11. Radio Tracking Fish with Small Unmanned Aircraft Systems (sUAS).

    Dahlgren, R. P.; Anderson, K. R.; Hanson, L.; Pinsker, E. A.; Jonsson, J.; Chapman, D. C.; Witten, D. M.; O'Connor, K. A.


    Tracking radio tagged fish by boat or on foot in riverine systems is difficult and time consuming, particularly in large braided island complexes, shallow wetlands, and rocky reaches. Invasive Asian carp are commonly found in these hard to reach areas, but their near-surface feeding behavior makes radio tracking possible. To identify new methods of fish tracking that could same time and money, this study tested the feasibility of tracking Asian carp with Small Unmanned Aerial Systems (sUAS) in areas generally inaccessible to traditional tracking equipment. The U.S. Geological Survey worked with NanoElectromagnetics LLC and WWR Development to create and integrate a lightweight custom radio receiver, directional antenna, and accompanying software into a sUAS platform. The receiver includes independent GPS, software defined radio, and compass. The NASA Ames Research Center (ARC) completed payload integration, electromagnetic-interference and airworthiness testing, and provided a DJI Matrice 600 sUAS for this study. Additionally, ARC provided subject matter experts, airworthiness and flight readiness evaluation, and flight test facilities during preparation; and a pilot, range safety officer, and aircraft engineer during field deployment. Results demonstrate that this custom sUAS and sensor combination can detect radio tags at 100m above ground level and at horizontal ranges of 100m and 300m, with operators in either onshore or offshore locations. With this combination of sUAS and radio receiver, fish can be tracked in areas previously inaccessible and during flooding, providing new insights into riverine fish movement and habitat utilization.

  12. Commercial Aircraft Protection

    Ehst, David A. [Argonne National Lab. (ANL), Argonne, IL (United States)


    This report summarizes the results of theoretical research performed during 3 years of P371 Project implementation. In results of such research a new scientific conceptual technology of quasi-passive individual infrared protection of heat-generating objects – Spatial Displacement of Thermal Image (SDTI technology) was developed. Theoretical substantiation and description of working processes of civil aircraft individual IR-protection system were conducted. The mathematical models and methodology were presented, there were obtained the analytical dependencies which allow performing theoretical research of the affect of intentionally arranged dynamic field of the artificial thermal interferences with variable contrast onto main parameters of optic-electronic tracking and homing systems.

  13. Hyper-X Research Vehicle - Artist Concept Mounted on Pegasus Rocket Attached to B-52 Launch Aircraft


    This artist's concept depicts the Hyper-X research vehicle riding on a booster rocket prior to being launched by the Dryden Flight Research Center's B-52 at about 40,000 feet. The X-43A was developed to flight test a dual-mode ramjet/scramjet propulsion system at speeds from Mach 7 up to Mach 10 (7 to 10 times the speed of sound, which varies with temperature and altitude). Hyper-X, the flight vehicle for which is designated as X-43A, is an experimental flight-research program seeking to demonstrate airframe-integrated, 'air-breathing' engine technologies that promise to increase payload capacity for future vehicles, including hypersonic aircraft (faster than Mach 5) and reusable space launchers. This multiyear program is currently underway at NASA Dryden Flight Research Center, Edwards, California. The Hyper-X schedule calls for its first flight later this year (2000). Hyper-X is a joint program, with Dryden sharing responsibility with NASA's Langley Research Center, Hampton, Virginia. Dryden's primary role is to fly three unpiloted X-43A research vehicles to validate engine technologies and hypersonic design tools as well as the hypersonic test facility at Langley. Langley manages the program and leads the technology development effort. The Hyper-X Program seeks to significantly expand the speed boundaries of air-breathing propulsion by being the first aircraft to demonstrate an airframe-integrated, scramjet-powered free flight. Scramjets (supersonic-combustion ramjets) are ramjet engines in which the airflow through the whole engine remains supersonic. Scramjet technology is challenging because only limited testing can be performed in ground facilities. Long duration, full-scale testing requires flight research. Scramjet engines are air-breathing, capturing their oxygen from the atmosphere. Current spacecraft, such as the Space Shuttle, are rocket powered, so they must carry both fuel and oxygen for propulsion. Scramjet technology-based vehicles need to carry

  14. Research report for fiscal 1998. Development of advanced surface processing technology for methane-fueled aircraft engine members (Laser-aided advanced processing system technology); 1998 nendo chosa hokokusho. Methane nenryo kokukiyo engine buzai no kodo hyomen kako gijutsu kaihatsu (Laser oyo senshin kako system gijutsu)



    For the research and development of erosion-resistant abradable materials for the methane-fueled aircraft engine front section, a laser-aided surface reform technology was developed for Ti alloys and the like. In relation with the article 'Intermetallic Compound Coating Formation Technology,' an NiTi sprayed coating containing excess Ni solid solution was found to be quite high in resistance to erosion, and similar to Ti-6Al-4V in resistance to oxidation at 300 degrees C. Furthermore, an MCrAlY erosion-resistant coating was formed capable of resisting oxidation at temperatures higher than 1000 degrees C. In relation with the article 'Spraying Phenomenon Evaluation Technology,' studies were made of combustion synthesis reaction during plasma spraying and of the prediction of flight trajectories of different powders, for which optical fiber dichroic temperature measuring, 2-dimensional imaging, and LDV (laser Doppler velocimetry) were applied in combination. Concerning the spraying of intermetallic compound coatings, a temperature rise occurred when heating by laser was performed simultaneously with the laser-induced combustion synthesis reaction. In relation with the article 'Technology of Multiple Spraying on Curved Substrate,' it was found that the gas cooled method works effectively when spraying an erosion-resistant coating onto a thin Ti alloy made turbine blade. (NEDO)

  15. A study to define the research and technology requirements for advanced turbo/propfan transport aircraft

    Goldsmith, I. M.


    The feasibility of the propfan relative to the turbofan is summarized, using the Douglas DC-9 Super 80 (DS-8000) as the actual operational base aircraft. The 155 passenger economy class aircraft (31,775 lb 14,413 kg payload), cruise Mach at 0.80 at 31,000 ft (8,450 m) initial altitude, and an operational capability in 1985 was considered. Three propfan arrangements, wing mounted, conventional horizontal tail aft mounted, and aft fuselage pylon mounted are selected for comparison with the DC-9 Super 80 P&WA JT8D-209 turbofan powered aircraft. The configuration feasibility, aerodynamics, propulsion, structural loads, structural dynamics, sonic fatigue, acoustics, weight maintainability, performance, rough order of magnitude economics, and airline coordination are examined. The effects of alternate cruise Mach number, mission stage lengths, and propfan design characteristics are considered. Recommendations for further study, ground testing, and flight testing are included.

  16. Federal Aviation Administration (FAA airworthiness certification for ceramic matrix composite components in civil aircraft systems

    Gonczy Stephen T.


    Full Text Available Ceramic matrix composites (CMCs are being designed and developed for engine and exhaust components in commercial aviation, because they offer higher temperature capabilities, weight savings, and improved durability compared to metals. The United States Federal Aviation Administration (FAA issues and enforces regulations and minimum standards covering the safe manufacture, operation, and maintenance of civil aircraft. As new materials, these ceramic composite components will have to meet the certification regulations of the FAA for “airworthiness”. The FAA certification process is defined in the Federal Aviation Regulations (Title 14 of the Code of Federal Regulations, FAA policy statements, orders, advisory circulars, technical standard orders, and FAA airworthiness directives. These regulations and documents provide the fundamental requirements and guidelines for design, testing, manufacture, quality assurance, registration, operation, inspection, maintenance, and repair of aircraft systems and parts. For metallic parts in aircraft, the FAA certification and compliance process is well-established for type and airworthiness certification, using ASTM and SAE standards, the MMPDS data handbook, and FAA advisory circulars. In a similar manner for polymer matrix composites (PMC, the PMC industry and the FAA have jointly developed and are refining parallel guidelines for polymer matrix composites (PMCs, using guidance in FAA circulars and the CMH-17 PMC handbook. These documents discuss design methods and codes, material testing, property data development, life/durability assessment, production processes, QA procedures, inspection methods, operational limits, and repairs for PMCs. For ceramic composites, the FAA and the CMC and aerospace community are working together (primarily through the CMH-17 CMC handbook to define and codify key design, production, and regulatory issues that have to be addressed in the certification of CMC components in

  17. Application of Output Predictive Algorithmic Control to a Terrain Following Aircraft System.


    non-linear regime the results from an optimal control solution may be questionable. 15 -**—• - •*- "•—"".’" CHAPTER 3 Output Prpdirl- ivf ...strongly influenced by two other factors as well - the sample time T and the least-squares cost function Q. unlike the deadbeat control law of of aircraft control systems since these methods offer tremendous insight into the dynamic behavior of the system at relatively low cost . However

  18. Design of a fuel-efficient guidance system for a STOL aircraft

    Mclean, J. D.; Erzberger, H.


    In the predictive mode, the system synthesizes a horizontal path from an initial aircraft position and heading to a desired final position and heading and then synthesizes a fuel-efficient speed-altitude profile along the path. In the track mode, the synthesized trajectory is reconstructed and tracked automatically. An analytical basis for the design of the system is presented and a description of the airborne computer implementation is given. A detailed discussion of the software, which should be helpful to those who use the actual software developed for these tests, is also provided.

  19. Sensors of a Beechcraft C90 Aircraft for Extension of Data Acquisition System

    Elena BALMUS


    Full Text Available In-flight data acquisition is a key point in the aircraft design process. For the control of a simulated prototype using the control surfaces, state variables such as acceleration, pitch rate for longitudinal motion, and roll rate or slideslip angle for lateral-directional motion are commonly defined as control variables. The purpose of this paper is to evaluate the risk of in -flight laboratory modification through extension of data acquisition system for collection of additional data related to pilot command input and the reaction of the system.

  20. Fiscal 1975 Sunshine Project research report. General research on hydrogen energy subsystems and their peripheral technologies (Research on hydrogen engine for aircraft); 1975 nendo suiso riyo subsystem no sogoteki kento to shuhen gijutsu ni kansuru kenkyu seika hokokusho. Kokukiyo suiso engine ni kansuru chosa



    This report summarizes the research results on (1) the prospect of an aviation system based on hydrogen energy, (2) the total system of aircraft based on hydrogen energy, and (3) the performance, structure and specifications of airplanes and engines using synthetic fuel such as hydrogen. In (1), study was made on air transport energy, and prediction was made on the demand of liquid hydrogen assuming conversion of petroleum fuel into hydrogen fuel in the future. In (2), the supply system of liquid hydrogen is essential in conversion of current aircraft fuel into liquid hydrogen. Such supply system over the world is also necessary in conversion into liquid hydrogen for both domestic and international airlines. In (3), in order to discuss the feasibility of liquid hydrogen fuel aircraft, the merit of such aircraft as compared with current aircraft using JP fuel, and whether designing a new airframe or modifying existing airframes, study was made conceptually on the size and capacity of airframe by statistical treatment and analysis of previous conceptual designs. (NEDO)

  1. Qualitative Research of AZ31 Magnesium Alloy Aircraft Brackets Produced by a New Forging Method

    Dziubińska A.


    Full Text Available The paper reports a selection of numerical and experimental results of a new closed-die forging method for producing AZ31 magnesium alloy aircraft brackets with one rib. The numerical modelling of the new forming process was performed by the finite element method.The distributions of stresses, strains, temperature and forces were examined. The numerical results confirmed that the forgings produced by the new forming method are correct. For this reason, the new forming process was verified experimentally. The experimental results showed good agreement with the numerical results. The produced forgings of AZ31 magnesium alloy aircraft brackets with one rib were then subjected to qualitative tests.

  2. Analytical research on impacting load of aircraft crashing upon moveable concrete target

    Zhu, Tong; Ou, Zhuocheng; Duan, Zhuoping; Huang, Fenglei


    The impact load of an aircraft impact upon moveable concrete target was analyzed in this paper by both theoretical and numerical methods. The aircraft was simplified as a one dimensional pole and stress-wave theory was used to deduce the new formula. Furthermore, aiming to compare with previous experimental data, a numerical calculation based on the new formula had been carried out which showed good agreement with the experimental data. The approach, a new formula with particular numerical method, can predict not only the impact load but also the deviation between moveable and static concrete target.

  3. Acoustic Characterization and Prediction of Representative, Small-Scale Rotary-Wing Unmanned Aircraft System Components

    Zawodny, Nikolas S.; Boyd, D. Douglas, Jr.; Burley, Casey L.


    In this study, hover performance and acoustic measurements are taken on two different isolated rotors representative of small-scale rotary-wing unmanned aircraft systems (UAS) for a range of rotation rates. Each rotor system consists of two fixed-pitch blades powered by a brushless motor. For nearly the same thrust condition, significant differences in overall sound pressure level (OASPL), up to 8 dB, and directivity were observed between the two rotor systems. Differences are shown to be in part attributed to different rotor tip speeds, along with increased broadband and motor noise levels. In addition to acoustic measurements, aeroacoustic predictions were implemented in order to better understand the noise content of the rotor systems. Numerical aerodynamic predictions were computed using the unsteady Reynoldsaveraged Navier Stokes code OVERFLOW2 on one of the isolated rotors, while analytical predictions were computed using the Propeller Analysis System of the Aircraft NOise Prediction Program (ANOPP-PAS) on the two rotor configurations. Preliminary semi-empirical frequency domain broadband noise predictions were also carried out based on airfoil self-noise theory in a rotational reference frame. The prediction techniques further supported trends identified in the experimental data analysis. The brushless motors were observed to be important noise contributors and warrant further investigation. It is believed that UAS acoustic prediction capabilities must consider both rotor and motor components as part of a combined noise-generating system.

  4. Achievement report for fiscal 2000 on research and development of environment compatible next generation supersonic propulsion system. 2/2. Development of environment compatible next generation supersonic aircraft engine; 2000 nendo kankyo tekigogata jisedai choonsoku suishin system no kenkyu kaihatsu seika hokokusho. 2/2. Kankyo tekigogata jisedai choonsokukiyo engine kaihatsu



    This paper describes the achievements in fiscal 2000 in development of an environment compatible next generation supersonic aircraft engine. Development is performed, as part of CO2 emission suppressing technology development, on technologies for application to fan and compressor of metal matrix composites (MMC) having high specific strength useful to reduce engine weight, and brisk structures. Discussions were given on the spraying method for ring manufacturing, mono-tape method, and preliminary test method for fan aerodynamic performance verification. In order to reduce engine weight and fuel consumption, enhancement is required on the turbine inlet temperature and engine efficiency, whereas studies were made on mono-crystalline heat resistant alloy TMS-75 developed in Japan for application to the turbine structure. Studies were continued on castability, heat-treated structure control, mechanical properties, heat resistance and heat oxidation resistance. For the purpose of contributing to reduction of cooling air, improvement of fuel consumption, and CO2 reduction by providing turbine blades with high cooling performance structure, studies were given on the transpiration cooling structure to multiply the layers of mono-crystalline materials having high mechanical strength and durability to realize a structure artificially close to porous materials. The discrete control system was also discussed to improve the fuel consumption. (NEDO)

  5. Vertical Sampling Scales for Atmospheric Boundary Layer Measurements from Small Unmanned Aircraft Systems (sUAS

    Benjamin L. Hemingway


    Full Text Available The lowest portion of the Earth’s atmosphere, known as the atmospheric boundary layer (ABL, plays an important role in the formation of weather events. Simple meteorological measurements collected from within the ABL, such as temperature, pressure, humidity, and wind velocity, are key to understanding the exchange of energy within this region, but conventional surveillance techniques such as towers, radar, weather balloons, and satellites do not provide adequate spatial and/or temporal coverage for monitoring weather events. Small unmanned aircraft, or aerial, systems (sUAS provide a versatile, dynamic platform for atmospheric sensing that can provide higher spatio-temporal sampling frequencies than available through most satellite sensing methods. They are also able to sense portions of the atmosphere that cannot be measured from ground-based radar, weather stations, or weather balloons and have the potential to fill gaps in atmospheric sampling. However, research on the vertical sampling scales for collecting atmospheric measurements from sUAS and the variabilities of these scales across atmospheric phenomena (e.g., temperature and humidity is needed. The objective of this study is to use variogram analysis, a common geostatistical technique, to determine optimal spatial sampling scales for two atmospheric variables (temperature and relative humidity captured from sUAS. Results show that vertical sampling scales of approximately 3 m for temperature and 1.5–2 m for relative humidity were sufficient to capture the spatial structure of these phenomena under the conditions tested. Future work is needed to model these scales across the entire ABL as well as under variable conditions.

  6. Small transport aircraft technology

    Williams, L. J.


    Information on commuter airline trends and aircraft developments is provided to upgrade the preliminary findings of a NASA-formed small transport aircraft technology (STAT) team, established to determine whether the agency's research and development programs could help commuter aircraft manufacturers solve technical problems related to passenger acceptance and use of 19- to 50-passenger aircraft. The results and conclusions of the full set of completed STAT studies are presented. These studies were performed by five airplane manufacturers, five engine manufacturers, and two propeller manufacturers. Those portions of NASA's overall aeronautics research and development programs which are applicable to commuter aircraft design are summarized. Areas of technology that might beneficially be expanded or initiated to aid the US commuter aircraft manufacturers in the evolution of improved aircraft for the market are suggested.

  7. Setup of an interface for operation of IAGOS (In-service Aircraft Global Observing System) CORE instruments onboard the IAGOS CARIBIC platform.

    Bundke, Ulrich; Berg, Marcel; Franke, Harald; Zahn, Andreas; Boenisch, Harald; Perim de Faria, Julia; Berkes, Florian; Petzold, Andreas


    The European Research Infrastructure IAGOS (In-service Aircraft for a Global Observing System; responds to the increasing requests for long-term, routine in-situ observational data by using commercial passenger aircraft as measurement platforms. The infrastructure is built from two complementary approaches: The "CORE" component comprises the implementation and operation of autonomous instruments installed on up to 20 long-range aircraft of international airlines for continuous measurements of important reactive gases and greenhouse gases, as well as aerosol particles, dust and cloud particles. The fully automated instruments are designed for operation aboard the aircraft in unattended mode for several months and the data are transmitted automatically. The complementary "CARIBIC" component consists of the monthly deployment of a cargo container equipped with instrumentation for a larger suite of components. The CARIBIC container has equipment for measuring ozone, carbon monoxide, nitrogen oxides, water vapor and airborne particles. Furthermore the container is equipped with a system for collecting air samples. These air samples are analyzed in the laboratory. For each sample measurements for more than 40 trace gases including CFC's prohibited by the Montreal protocol, and all greenhouse gases are performed. The Interface described in this work is designed to host one of IAGOS CORE (Package2) instruments. Available are: P2a, P2b, measuring { NO_y} and {NO_x} em P2c, measuring the aerosol size-distribution (0.25

  8. U.S. Army Unmanned Aircraft Systems (UAS) - A Historical Perspective to Identifying and Understanding Stakeholder Relationships


    U.S. Army (USA) to train Nike anti-aircraft missile crews and others through the 1970s. Mach 2 UAV targets consisted of several prototypes such as...manufacturers with the largest share of the global UAS market include General Atomics (20.4 percent), Northrop Grumman (18.9 percent), Boeing (1.5... mix of both manned and unmanned aircraft systems. By combining advanced sensors, tactical RSTA, MUM teaming of UAS, attack and reconnaissance

  9. Lyapunov-based control of limit cycle oscillations in uncertain aircraft systems

    Bialy, Brendan

    Store-induced limit cycle oscillations (LCO) affect several fighter aircraft and is expected to remain an issue for next generation fighters. LCO arises from the interaction of aerodynamic and structural forces, however the primary contributor to the phenomenon is still unclear. The practical concerns regarding this phenomenon include whether or not ordnance can be safely released and the ability of the aircrew to perform mission-related tasks while in an LCO condition. The focus of this dissertation is the development of control strategies to suppress LCO in aircraft systems. The first contribution of this work (Chapter 2) is the development of a controller consisting of a continuous Robust Integral of the Sign of the Error (RISE) feedback term with a neural network (NN) feedforward term to suppress LCO behavior in an uncertain airfoil system. The second contribution of this work (Chapter 3) is the extension of the development in Chapter 2 to include actuator saturation. Suppression of LCO behavior is achieved through the implementation of an auxiliary error system that features hyperbolic functions and a saturated RISE feedback control structure. Due to the lack of clarity regarding the driving mechanism behind LCO, common practice in literature and in Chapters 2 and 3 is to replicate the symptoms of LCO by including nonlinearities in the wing structure, typically a nonlinear torsional stiffness. To improve the accuracy of the system model a partial differential equation (PDE) model of a flexible wing is derived (see Appendix F) using Hamilton's principle. Chapters 4 and 5 are focused on developing boundary control strategies for regulating the bending and twisting deformations of the derived model. The contribution of Chapter 4 is the construction of a backstepping-based boundary control strategy for a linear PDE model of an aircraft wing. The backstepping-based strategy transforms the original system to a exponentially stable system. A Lyapunov-based stability

  10. Intelligent Materials Used in Hydraulic, Fuel, and Rudder Control Systems of Aircrafts

    D. B. Chernov


    Full Text Available The device is really intelligent, only if it is capable to respond to changing external conditions. The devices, which "feel" the external environment and can change their characteristics, have many advantages compared to the conventional devices: they are more efficient, wear out more slowly, and have lower operating costs.The scope of smart products is truly infinite. Alloys with memory effect also apply to intellectual content. Natural piezoelectric crystals such as silicon dioxide (intellectual material have been known for over a hundred years. They have greater stiffness and can be used at high operating frequencies. Due to the direct piezoelectric effect, they have been successfully used as a strain gage. Later came artificial ceramic piezoelectric materials; they are used as mechanical transducers. Thus, an inverse piezoelectric effect is usually used. It consists in the change of dimensions when an electric field is applied. Control of intellectual structure can be provided by heat fluxes, electromagnetic, hydraulic or piezoelectric forces and through application of electro-rheological, and magneto-rheological fluids. The article examines the intellectual materials and technologies that are already in place or will find its application in aviation hydraulic and fuel systems and control systems of rudders (CSR of aircrafts in the near future.The paper considers in detail the shape memory effect alloys (SMEA as "intelligent" materials. Actuators made from SMEA have a number of advantages: high working power; large recoverable deformation; different types of strain (tensile, compressive, bending and torsional; most specific value of the work per unit mass. All the SMEA advantages may be well used for the so-called thermo-mechanical connections (TMС of pipelines where SMEA drawbacks in this application, practically, do not affect the quality of TMC. In aircraft engineering the TMC were first used in hydraulic systems of the aircraft TU204

  11. A Survey of Intelligent Control and Health Management Technologies for Aircraft Propulsion Systems

    Litt, Jonathan S.; Simon, Donald L.; Garg, Sanjay; Guo, Ten-Heui; Mercer, Carolyn; Behbahani, Alireza; Bajwa, Anupa; Jensen, Daniel T.


    Intelligent Control and Health Management technology for aircraft propulsion systems is much more developed in the laboratory than in practice. With a renewed emphasis on reducing engine life cycle costs, improving fuel efficiency, increasing durability and life, etc., driven by various government programs, there is a strong push to move these technologies out of the laboratory and onto the engine. This paper describes the existing state of engine control and on-board health management, and surveys some specific technologies under development that will enable an aircraft propulsion system to operate in an intelligent way--defined as self-diagnostic, self-prognostic, self-optimizing, and mission adaptable. These technologies offer the potential for creating extremely safe, highly reliable systems. The technologies will help to enable a level of performance that far exceeds that of today s propulsion systems in terms of reduction of harmful emissions, maximization of fuel efficiency, and minimization of noise, while improving system affordability and safety. Technologies that are discussed include various aspects of propulsion control, diagnostics, prognostics, and their integration. The paper focuses on the improvements that can be achieved through innovative software and algorithms. It concentrates on those areas that do not require significant advances in sensors and actuators to make them achievable, while acknowledging the additional benefit that can be realized when those technologies become available. The paper also discusses issues associated with the introduction of some of the technologies.

  12. An under-aisle air distribution system facilitating humidification of commercial aircraft cabins

    Zhang, Tengfei; Yin, Shi; Wang, Shugang [School of Civil and Hydraulic Engineering, Dalian University of Technology (DUT), 2 Linggong Road, Dalian 116024 (China)


    Air environment in aircraft cabins has long been criticized especially for the dryness of the air within. Low moisture content in cabins is known to be responsible for headache, tiredness and many other non-specific symptoms. In addition, current widely used air distribution systems on airplanes dilute internally generated pollutants by promoting air mixing and thus impose risks of infectious airborne disease transmission. To boost air humidity level while simultaneously restricting air mixing, this investigation uses a validated computational fluid dynamics (CFD) program to design a new under-aisle air distribution system for wide-body aircraft cabins. The new system supplies fully outside, dry air at low momentum through a narrow channel passage along both side cabin walls to middle height of the cabin just beneath the stowage bins, while simultaneously humidified air is supplied through both perforated under aisles. By comparing with the current mixing air distribution system in terms of distribution of relative humidity, CO{sub 2} concentration, velocity, temperature and draught risk, the new system is found being able to improve the relative humidity from the existent 10% to the new level of 20% and lessen the inhaled CO{sub 2} concentration by 30%, without causing moisture condensation on cabin interior and inducing draught risks for passengers. The water consumption rate in air humidification is only around 0.05 kg/h per person, which should be affordable by airliners. (author)

  13. Arctic Atmospheric Measurements Using Manned and Unmanned Aircraft, Tethered Balloons, and Ground-Based Systems at U.S. DOE ARM Facilities on the North Slope Of Alaska

    Ivey, M.; Dexheimer, D.; Roesler, E. L.; Hillman, B. R.; Hardesty, J. O.


    The U.S. Department of Energy (DOE) provides scientific infrastructure and data to the international Arctic research community via research sites located on the North Slope of Alaska and an open data archive maintained by the ARM program. In 2016, DOE continued investments in improvements to facilities and infrastructure at Oliktok Point Alaska to support operations of ground-based facilities and unmanned aerial systems for science missions in the Arctic. The Third ARM Mobile Facility, AMF3, now deployed at Oliktok Point, was further expanded in 2016. Tethered instrumented balloons were used at Oliktok to make measurements of clouds in the boundary layer including mixed-phase clouds and to compare measurements with those from the ground and from unmanned aircraft operating in the airspace above AMF3. The ARM facility at Oliktok Point includes Special Use Airspace. A Restricted Area, R-2204, is located at Oliktok Point. Roughly 4 miles in diameter, it facilitates operations of tethered balloons and unmanned aircraft. R-2204 and a new Warning Area north of Oliktok, W-220, are managed by Sandia National Laboratories for DOE Office of Science/BER. These Special Use Airspaces have been successfully used to launch and operate unmanned aircraft over the Arctic Ocean and in international airspace north of Oliktok Point.A steady progression towards routine operations of unmanned aircraft and tethered balloon systems continues at Oliktok. Small unmanned aircraft (DataHawks) and tethered balloons were successfully flown at Oliktok starting in June of 2016. This poster will discuss how principal investigators may apply for use of these Special Use Airspaces, acquire data from the Third ARM Mobile Facility, or bring their own instrumentation for deployment at Oliktok Point, Alaska.

  14. Experimental research on photocatalytic oxidation air purification technology applied to aircraft cabins

    Sun, Yuexia; Fang, Lei; Wyon, David P.


    The experiment presented in this report was performed in a simulated aircraft cabin to evalu-ate the air cleaning effects of two air purification devices using Photocatalytic Oxidation (PCO) technology. Objective physical, chemical and physiological measurements and subjec-tive human assessments ...

  15. Design Considerations for the Electrical Power Supply of Future Civil Aircraft with Active High-Lift Systems

    J.-K. Mueller


    Full Text Available Active high-lift systems of future civil aircraft allow noise reduction and the use of shorter runways. Powering high-lift systems electrically have a strong impact on the design requirements for the electrical power supply of the aircraft. The active high-lift system of the reference aircraft design considered in this paper consists of a flexible leading-edge device together with a combination of boundary-layer suction and Coanda-jet blowing. Electrically driven compressors distributed along the aircraft wings provide the required mass flow of pressurized air. Their additional loads significantly increase the electric power demand during take-off and landing, which is commonly provided by electric generators attached to the aircraft engines. The focus of the present study is a feasibility assessment of alternative electric power supply concepts to unburden or eliminate the generator coupled to the aircraft engine. For this purpose, two different concepts using either fuel cells or batteries are outlined and evaluated in terms of weight, efficiency, and technology availability. The most promising, but least developed alternative to the engine-powered electric generator is the usage of fuel cells. The advantages are high power density and short refueling time, compared to the battery storage concept.

  16. Evaluation of Unmanned Aircraft System (UAS) to Monitor Forest Health Conditions in Alaska

    Webley, P. W.; Hatfield, M. C.; Heutte, T. M.; Winton, L. M.


    US Forest Service Alaska Region Forest Health Protection (FHP) and University of Alaska Fairbanks (UAF), Alaska Center for Unmanned Aircraft Systems Integration (ACUASI) are evaluating the capability of Unmanned Aerial Systems (UAS, "drone" informally) to monitor forest health conditions in Alaska's Interior Region. On July 17-20 2017, FHP and ACUASI deployed two different UAS at permanent forest inventory plots managed by the UAF programs Bonanza Creek Long Term Ecological Research (LTER) and Cooperative Alaska Forest Inventory (CAFI). The purpose of the mission was to explore capabilities of UAS for evaluating aspen tree mortality at inaccessible locations and at a scale and precision not generally achievable with currently used ground- or air-based methods. Drawing from experience gained during the initial 2016 campaign, this year emphasized the efficient use of UAS to accomplish practical field research in a variety of realistic situations. The vehicles selected for this years' effort included the DJI Matrice quadcopter with the Zenmuse-X3 camera to quickly capture initial video of the site and tree conditions; followed by the ING Responder (single rotor electric helicopter based on the Gaui X7 airframe) outfitted with a Nikon D810 camera to collect high-resolution stills suitable for construction of orthomosaic models. A total of 12 flights were conducted over the campaign, with two full days dedicated to the Delta Junction Gerstle River Intermediate (GRI) sites and the remaining day at the Bonanza Creek site. In addition to demonstrating the ability of UAS to operate safely and effectively in various canopy conditions, the effort also validated the ability of teams to deliver UAS and scientific payloads into challenging terrain using all-terrain vehicles (ATV) and foot traffic. Analysis of data from the campaign is underway. Because the permanent plots have been recently evaluated it is known that nearly all aspen mortality is caused by an aggressive canker

  17. NASA research in aeropropulsion

    Stewart, W.L.; Weber, R.J.


    Future advances in aircraft propulsion systems will be aided by the research performed by NASA and its contractors. This paper gives selected examples of recent accomplishments and current activities relevant to the principal classes of civil and military aircraft. Some instances of new emerging technologies with potential high impact on further progress are discussed. NASA research described includes noise abatement and fuel economy measures for commercial subsonic, supersonic, commuter, and general aviation aircraft, aircraft engines of the jet, turboprop, diesel and rotary types, VTOL, X-wing rotocraft, helicopters, and ''stealth'' aircraft. Applications to military aircraft are also discussed.

  18. Supercharging system behavior for high altitude operation of an aircraft 2-stroke Diesel engine

    Carlucci, Antonio Paolo; Ficarella, Antonio; Laforgia, Domenico; Renna, Alessandro


    Highlights: • Different supercharging architectures have been compared for an aircraft 2T engine. • The supercharging architectures are compared to minimize the fuel consumption. • The architecture with the highest conversion efficiency was determined. - Abstract: Different studies on both 2- and 4-stroke engines have shown how the choice of different supercharging architectures can influence engine performance. Among them, architectures coupling one turbocharger with a mechanical compressor or two turbochargers are found to be the most performing in terms of engine output power and efficiency. However, defining the best supercharging architecture for aircraft 2-stroke engines is a quite complex task because the supercharging system as well as the ambient conditions influence the engine performance/efficiency. This is due to the close interaction between supercharging, trapping, scavenging and combustion processes. The aim of the present work is the comparison between different architectures (single turbocharger, double turbocharger, single turbocharger combined with a mechanical compressor, single turbocharger with an electrically-assisted turbocharger, with intercooler or aftercooler) designed to supercharge an aircraft 2-stroke Diesel engine for general aviation and unmanned aerial vehicles characterized by a very high altitude operation and long fuel distance. A 1D model of the engine purposely designed has been used to compare the performance of the different supercharging systems in terms of power, fuel consumption, and their effect on trapping and scavenging efficiency at different altitudes. The analysis shows that the engine target power is reached by a 2 turbochargers architecture; in this way, in fact, the cylinder filling, and consequently the engine performance, are maximized. Moreover, it is shown that the performance of a 2 turbochargers architecture performance can be further improved connecting electrically and not mechanically the low


    A. M. Bronnikov


    Full Text Available The avionics concept of the maintenance-free on-board equipment implies the absence of necessity to maintain onboard systems between scheduled maintenance, preserving the required operational and technical characteristics; it should be achieved by automatic diagnosis of the technical condition and the application of active means of ensuring a failsafe design, allowing to change the structure of the system to maintain its functions in case of failure. It is supposed that such equipment will reduce substantially and in the limit eliminate traditional maintenance of aircraft between scheduled maintenance, ensuring maximum readiness for use, along with improving safety. The paper proposes a methodology for evaluating the efficiency of maintenance-free between scheduled maintenance aircraft system with homogeneous redundancy. The excessive redundant elements allow the system to accumulate failures which are repaired during the routine maintenance. If the number of failures of any reserve is approaching a critical value, the recovery of the on-board system (elimination of all failures is carried out between scheduled maintenance by conducting rescue and recovery operations. It is believed that service work leads to the elimination of all failures and completely updates the on-board system. The process of system operational status changes is described with the discrete-continuous model in the flight time. The average losses in the sorties and the average cost of operation are used as integrated efficiency indicators of system operation. For example, the evaluation of the operation efficiency of formalized on-board system with homogeneous redundancy demonstrates the efficiency of the proposed methodology and the possibility of its use while analyzing the efficiency of the maintenance-free operation equipment between scheduled periods. As well as a comparative analysis of maintenance-free operation efficiency of the on-board system with excessive

  20. Multi-Phase Modular Drive System: A Case Study in Electrical Aircraft Applications

    Charles Onambele


    Full Text Available In this article, an advanced multiphase modular power drive prototype is developed for More Electric Aircraft (MEA. The proposed drive is designed to supply a multi-phase permanent magnet (PM motor rating 120 kW with 24 slots and 11 pole pairs. The power converter of the drive system is based on Silicon Carbide Metal Oxide Semiconductor Field-Effect Transistor (SiC MOSFET technology to operate at high voltage, high frequency and low reverse recovery current. Firstly, an experimental characterization test is performed for the selected SiC power module in harsh conditions to evaluate the switching energy losses. Secondly, a finite element thermal analysis based on Ansys-Icepak is accomplished to validate the selected cooling system for the power converter. Thirdly, a co-simulation model is developed using Matlab-Simulink and LTspice® to evaluate the SiC power module impact on the performance of a multiphase drive system at different operating conditions. The results obtained show that the dynamic performance and efficiency of the power drive are significantly improved, which makes the proposed system an excellent candidate for future aircraft applications.

  1. Advanced piloted aircraft flight control system design methodology. Volume 1: Knowledge base

    Mcruer, Duane T.; Myers, Thomas T.


    The development of a comprehensive and electric methodology for conceptual and preliminary design of flight control systems is presented and illustrated. The methodology is focused on the design stages starting with the layout of system requirements and ending when some viable competing system architectures (feedback control structures) are defined. The approach is centered on the human pilot and the aircraft as both the sources of, and the keys to the solution of, many flight control problems. The methodology relies heavily on computational procedures which are highly interactive with the design engineer. To maximize effectiveness, these techniques, as selected and modified to be used together in the methodology, form a cadre of computational tools specifically tailored for integrated flight control system preliminary design purposes. While theory and associated computational means are an important aspect of the design methodology, the lore, knowledge and experience elements, which guide and govern applications are critical features. This material is presented as summary tables, outlines, recipes, empirical data, lists, etc., which encapsulate a great deal of expert knowledge. Much of this is presented in topical knowledge summaries which are attached as Supplements. The composite of the supplements and the main body elements constitutes a first cut at a a Mark 1 Knowledge Base for manned-aircraft flight control.

  2. Aircraft Instrument, Fire Protection, Warning, Communication, Navigation and Cabin Atmosphere Control System (Course Outline), Aviation Mechanics 3 (Air Frame): 9067.04.

    Dade County Public Schools, Miami, FL.

    This document presents an outline for a 135-hour course designed to familiarize the student with manipulative skills and theoretical knowledge concerning aircraft instrument systems like major flight and engine instruments; fire protection and fire fighting systems; warning systems and navigation systems; aircraft cabin control systems, such as…

  3. A third-party casualty risk model for unmanned aircraft system operations

    Melnyk, Richard; Schrage, Daniel; Volovoi, Vitali; Jimenez, Hernando


    Unmanned Aircraft System (UAS) integration into the National Airspace System (NAS) is an important goal of many members of the Aerospace community including stakeholders such as the military, law enforcement and potential civil users of UAS. However, integration efforts have remained relatively limited due to safety concerns. Due to the nature of UAS, safety predictions must look beyond the system itself and take the operating environment into account. A framework that can link UAS reliability and physical characteristics to the effects on the bystander population is required. This study proposes using a Target Level of Safety approach and an event tree format, populated with data from existing studies that share characteristics of UAS crashes to enable casualty prediction for UAS operations. - Highlights: • A framework for predicting bystander casualties caused by UAS mishaps. • A method to facilitate UAS integration by linking system reliability to system safety. • A tool to help develop UAS certification standards

  4. System Analyses of Pneumatic Technology for High Speed Civil Transport Aircraft

    Mavris, Dimitri N.; Tai, Jimmy C.; Kirby, Michelle M.; Roth, Bryce A.


    The primary aspiration of this study was to objectively assess the feasibility of the application of a low speed pneumatic technology, in particular Circulation Control (CC) to an HSCT concept. Circulation Control has been chosen as an enabling technology to be applied on a generic High Speed Civil Transport (HSCT). This technology has been proven for various subsonic vehicles including flight tests on a Navy A-6 and computational application on a Boeing 737. Yet, CC has not been widely accepted for general commercial fixed-wing use but its potential has been extensively investigated for decades in wind tunnels across the globe for application to rotorcraft. More recently, an experimental investigation was performed at Georgia Tech Research Institute (GTRI) with application to an HSCT-type configuration. The data from those experiments was to be applied to a full-scale vehicle to assess the impact from a system level point of view. Hence, this study attempted to quantitatively assess the impact of this technology to an HSCT. The study objective was achieved in three primary steps: 1) Defining the need for CC technology; 2) Wind tunnel data reduction; 3) Detailed takeoff/landing performance assessment. Defining the need for the CC technology application to an HSCT encompassed a preliminary system level analysis. This was accomplished through the utilization of recent developments in modern aircraft design theory at Aerospace Systems Design Laboratory (ASDL). These developments include the creation of techniques and methods needed for the identification of technical feasibility show stoppers. These techniques and methods allow the designer to rapidly assess a design space and disciplinary metric enhancements to enlarge or improve the design space. The takeoff and landing field lengths were identified as the concept "show-stoppers". Once the need for CC was established, the actual application of data and trends was assessed. This assessment entailed a reduction of the

  5. An Electronic Workshop on the Performance Seeking Control and Propulsion Controlled Aircraft Results of the F-15 Highly Integrated Digital Electronic Control Flight Research Program

    Powers, Sheryll Goecke (Compiler)


    Flight research for the F-15 HIDEC (Highly Integrated Digital Electronic Control) program was completed at NASA Dryden Flight Research Center in the fall of 1993. The flight research conducted during the last two years of the HIDEC program included two principal experiments: (1) performance seeking control (PSC), an adaptive, real-time, on-board optimization of engine, inlet, and horizontal tail position on the F-15; and (2) propulsion controlled aircraft (PCA), an augmented flight control system developed for landings as well as up-and-away flight that used only engine thrust (flight controls locked) for flight control. In September 1994, the background details and results of the PSC and PCA experiments were presented in an electronic workshop, accessible through the Dryden World Wide Web ( and as a compact disk.

  6. The Combined Effects of Aircraft and Road Traffic Noise and Aircraft and Railway Noise on Noise Annoyance—An Analysis in the Context of the Joint Research Initiative NORAH

    Jördis Wothge


    Full Text Available The Noise Related Annoyance Cognition and Health (NORAH research initiative is one of the most extensive studies on the physiological and psychological long-term effects of transportation noise in Europe. It includes research on the quality of life and annoyance as well as cardiovascular effects, sleep disturbance, breast cancer, blood pressure, depression and the cognitive development of children. Within the realm of the annoyance module of the study approximately 10,000 residents of the Rhine-Main district were surveyed on the combined effects of transportation noise. This included combined noise from aircraft and road traffic noise (N = 4905, or aircraft and railway noise (N = 4777. Results show that judgment of the total noise annoyance of participants was strongly determined by the sound source which was judged as more annoying (in this case aircraft noise. To a lesser extent, the average sound pressure level of the two present sources was also of relevance.

  7. Velocity-Aided Attitude Estimation for Helicopter Aircraft Using Microelectromechanical System Inertial-Measurement Units

    Sang Cheol Lee


    Full Text Available This paper presents an algorithm for velocity-aided attitude estimation for helicopter aircraft using a microelectromechanical system inertial-measurement unit. In general, high- performance gyroscopes are used for estimating the attitude of a helicopter, but this type of sensor is very expensive. When designing a cost-effective attitude system, attitude can be estimated by fusing a low cost accelerometer and a gyro, but the disadvantage of this method is its relatively low accuracy. The accelerometer output includes a component that occurs primarily as the aircraft turns, as well as the gravitational acceleration. When estimating attitude, the accelerometer measurement terms other than gravitational ones can be considered as disturbances. Therefore, errors increase in accordance with the flight dynamics. The proposed algorithm is designed for using velocity as an aid for high accuracy at low cost. It effectively eliminates the disturbances of accelerometer measurements using the airspeed. The algorithm was verified using helicopter experimental data. The algorithm performance was confirmed through a comparison with an attitude estimate obtained from an attitude heading reference system based on a high accuracy optic gyro, which was employed as core attitude equipment in the helicopter.

  8. Computerized systems analysis and optimization of aircraft engine performance, weight, and life cycle costs

    Fishbach, L. H.


    The computational techniques utilized to determine the optimum propulsion systems for future aircraft applications and to identify system tradeoffs and technology requirements are described. The characteristics and use of the following computer codes are discussed: (1) NNEP - a very general cycle analysis code that can assemble an arbitrary matrix fans, turbines, ducts, shafts, etc., into a complete gas turbine engine and compute on- and off-design thermodynamic performance; (2) WATE - a preliminary design procedure for calculating engine weight using the component characteristics determined by NNEP; (3) POD DRG - a table look-up program to calculate wave and friction drag of nacelles; (4) LIFCYC - a computer code developed to calculate life cycle costs of engines based on the output from WATE; and (5) INSTAL - a computer code developed to calculate installation effects, inlet performance and inlet weight. Examples are given to illustrate how these computer techniques can be applied to analyze and optimize propulsion system fuel consumption, weight, and cost for representative types of aircraft and missions.

  9. Hydrogen Fuel System Design Trades for High-Altitude Long-Endurance Remotely- Operated Aircraft

    Millis, Marc G.; Tornabene, Robert T.; Jurns, John M.; Guynn, Mark D.; Tomsik, Thomas M.; VanOverbeke, Thomas J.


    Preliminary design trades are presented for liquid hydrogen fuel systems for remotely-operated, high-altitude aircraft that accommodate three different propulsion options: internal combustion engines, and electric motors powered by either polymer electrolyte membrane fuel cells or solid oxide fuel cells. Mission goal is sustained cruise at 60,000 ft altitude, with duration-aloft a key parameter. The subject aircraft specifies an engine power of 143 to 148 hp, gross liftoff weight of 9270 to 9450 lb, payload of 440 lb, and a hydrogen fuel capacity of 2650 to 2755 lb stored in two spherical tanks (8.5 ft inside diameter), each with a dry mass goal of 316 lb. Hydrogen schematics for all three propulsion options are provided. Each employs vacuum-jacketed tanks with multilayer insulation, augmented with a helium pressurant system, and using electric motor driven hydrogen pumps. The most significant schematic differences involve the heat exchangers and hydrogen reclamation equipment. Heat balances indicate that mission durations of 10 to 16 days appear achievable. The dry mass for the hydrogen system is estimated to be 1900 lb, including 645 lb for each tank. This tank mass is roughly twice that of the advanced tanks assumed in the initial conceptual vehicle. Control strategies are not addressed, nor are procedures for filling and draining the tanks.

  10. Design and development of a unit element microstrip antenna for aircraft collision avoidance system

    De, Debajit; Sahu, Prasanna Kumar


    Aircraft/traffic alert and collision avoidance system (ACAS/TCAS) is an airborne system which is designed to provide the service as a last defense equipment for avoiding mid-air collisions between the aircraft. In the existing system, four monopole stub-elements are used as ACAS directional antenna and one blade type element is used as ACAS omnidirectional antenna. The existing ACAS antenna has some drawbacks such as low gain, large beamwidth, frequency and beam tuning/scanning issues etc. Antenna issues like unwanted signals reception may create difficulties to identify the possible threats. In this paper, the focus is on the design and development of a unit element microstrip antenna which can be used for ACAS application and to overcome the possible limitations associated with the existing techniques. Two proposed antenna models are presented here, which are single feed and dual feed microstrip dual patch slotted antenna. These are designed and simulated in CST Microwave Studio tool. The performance and other antenna characteristics have been explored from the simulation results followed by the antenna fabrication and measurement. A good reflection coefficient, Voltage Standing Wave Ratio (VSWR), narrow beamwidth, perfect directional radiation pattern, high gain and directivity make this proposed antenna a good candidate for this application.

  11. Velocity-Aided Attitude Estimation for Helicopter Aircraft Using Microelectromechanical System Inertial-Measurement Units

    Lee, Sang Cheol; Hong, Sung Kyung


    This paper presents an algorithm for velocity-aided attitude estimation for helicopter aircraft using a microelectromechanical system inertial-measurement unit. In general, high- performance gyroscopes are used for estimating the attitude of a helicopter, but this type of sensor is very expensive. When designing a cost-effective attitude system, attitude can be estimated by fusing a low cost accelerometer and a gyro, but the disadvantage of this method is its relatively low accuracy. The accelerometer output includes a component that occurs primarily as the aircraft turns, as well as the gravitational acceleration. When estimating attitude, the accelerometer measurement terms other than gravitational ones can be considered as disturbances. Therefore, errors increase in accordance with the flight dynamics. The proposed algorithm is designed for using velocity as an aid for high accuracy at low cost. It effectively eliminates the disturbances of accelerometer measurements using the airspeed. The algorithm was verified using helicopter experimental data. The algorithm performance was confirmed through a comparison with an attitude estimate obtained from an attitude heading reference system based on a high accuracy optic gyro, which was employed as core attitude equipment in the helicopter. PMID:27973429

  12. Innovative Materials for Aircraft Morphing

    Simpson, J. O.; Wise, S. A.; Bryant, R. G.; Cano, R. J.; Gates, T. S.; Hinkley, J. A.; Rogowski, R. S.; Whitley, K. S.


    Reported herein is an overview of the research being conducted within the Materials Division at NASA Langley Research Center on the development of smart material technologies for advanced airframe systems. The research is a part of the Aircraft Morphing Program which is a new six-year research program to develop smart components for self-adaptive airframe systems. The fundamental areas of materials research within the program are computational materials; advanced piezoelectric materials; advanced fiber optic sensing techniques; and fabrication of integrated composite structures. This paper presents a portion of the ongoing research in each of these areas of materials research.

  13. Correlated Encounter Model for Cooperative Aircraft in the National Airspace System; Version 2.0


    aircraft was in communication with and therefore advised by ATC which would impact the anticipated behavior of the flight: • Discrete Code: The aircraft is...receiving ATC services. This includes aircraft flying under Instrument Flight Rules ( IFR ) and aircraft flying under Visual flight rules (VFR) but...improves the accuracy of the en- counters by ensuring that smoothing, rounding, and interpolation errors do not strongly impact the targeted data in the

  14. New Methodology for Optimal Flight Control using Differential Evolution Algorithms applied on the Cessna Citation X Business Aircraft – Part 2. Validation on Aircraft Research Flight Level D Simulator

    Yamina BOUGHARI


    Full Text Available In this paper the Cessna Citation X clearance criteria were evaluated for a new Flight Controller. The Flight Control Law were optimized and designed for the Cessna Citation X flight envelope by combining the Deferential Evolution algorithm, the Linear Quadratic Regulator method, and the Proportional Integral controller during a previous research presented in part 1. The optimal controllers were used to reach satisfactory aircraft’s dynamic and safe flight operations with respect to the augmentation systems’ handling qualities, and design requirements. Furthermore the number of controllers used to control the aircraft in its flight envelope was optimized using the Linear Fractional Representations features. To validate the controller over the whole aircraft flight envelope, the linear stability, eigenvalue, and handling qualities criteria in addition of the nonlinear analysis criteria were investigated during this research to assess the business aircraft for flight control clearance and certification. The optimized gains provide a very good stability margins as the eigenvalue analysis shows that the aircraft has a high stability, and a very good flying qualities of the linear aircraft models are ensured in its entire flight envelope, its robustness is demonstrated with respect to uncertainties due to its mass and center of gravity variations.

  15. Insulation systems for liquid methane fuel tanks for supersonic cruise aircraft

    Brady, H. F.; Delduca, D.


    Two insulation systems for tanks containing liquid methane in supersonic cruise-type aircraft were designed and tested after an extensive materials investigation. One system is an external insulation and the other is an internal wet-type insulation system. Tank volume was maximized by making the tank shape approach a rectangular parallelopiped. One tank was designed to use the external insulation and the other tank to use the internal insulation. Performance of the external insulation system was evaluated on a full-scale tank under the temperature environment of -320 F to 700 F and ambient pressures of ground-level atmospheric to 1 psia. Problems with installing the internal insulation on the test tank prevented full-scale evaluation of performance; however, small-scale testing verified thermal conductivity, temperature capability, and installed density.

  16. On Integrating Unmanned Aircraft Systems into the National Airspace System Issues, Challenges, Operational Restrictions, Certification, and Recommendations

    Dalamagkidis, Konstantinos; Piegl, Les A


    This book presents, in a comprehensive way, current unmanned aviation regulation, airworthiness certification, special aircraft categories, pilot certification, federal aviation requirements, operation rules, airspace classes and regulation development models. It discusses unmanned aircraft systems levels of safety derived mathematically based on the corresponding levels for manned aviation. It provides an overview of the history and current status of UAS airworthiness and operational regulation worldwide. Existing regulations have been developed considering the need for a complete regulatory framework for UAS. It focuses on UAS safety assessment and functional requirements, achieved in terms of defining an “Equivalent Level of Safety”, or ELOS, with that of manned aviation, specifying what the ELOS requirement entails for UAS regulations. To accomplish this, the safety performance of manned aviation is first evaluated, followed by a novel model to derive reliability requirements for achieving target lev...

  17. Ice nucleating particles over the Eastern Mediterranean measured at ground and by unmanned aircraft systems

    Weber, Daniel; Schrod, Jann; Drücke, Jaqueline; Keleshis, Christos; Pikridas, Michael; Ebert, Martin; Cvetkovic, Bojan; Nickovic, Slobodan; Baars, Holger; Marinou, Eleni; Vrekoussis, Mihalis; Sciare, Jean; Mihalopoulos, Nikos; Curtius, Joachim; Bingemer, Heinz G.


    During the intensive INUIT-BACCHUS-ACTRIS field campaign focusing on aerosols, clouds and ice nucleation in the Eastern Mediterranean in April 2016, we have measured the abundance of ice nucleating particles (INP) in the lower troposphere both with unmanned aircraft systems (UAS) as well as from the ground. Aerosol samples were collected by miniaturized electrostatic precipitators onboard the UAS and were analyzed immediately after collection on site in the ice nucleus counter FRIDGE for INP active at -20˚ C to -30˚ C in the deposition/condensation mode (INPD). Immersion freezing INP (INPI) were sampled on membrane filters and were analysed in aqueous extracts by the drop freezing method on the cold stage of FRIDGE. Ground samples were collected at the Cyprus Atmospheric Observatory (CAO) in Agia Marina Xyliatou (Latitude; 35˚ 2' 8" N; Longitude: 33˚ 3' 26" E; Altitude: 532 m a.s.l.). During the one-month campaign, we encountered a series of Saharan dust plumes that traveled at several kilometers altitude. Here we present INP data from 42 individual flights, together with OPC aerosol number concentrations, backscatter and depolarization retrievals from the Polly-XT Raman Lidar, dust concentrations derived by the dust transport model DREAM (Dust Regional Atmospheric Model), and results from scanning electron microscopy. The effect of the dust plumes is reflected by the coincidence of INP with the particulate mass (PM), the Lidar retrievals and the predicted dust mass of the model. This suggests that mineral dust or a constituent related to dust was a major contributor to the ice nucleating properties of the aerosol. Peak concentrations of above 100 INP std.l-1 were measured at -30˚ C. The INPD concentration in elevated plumes was on average a factor of 10 higher than at ground level. The INPI concentration at ground also agreed with PM levels and exceeded the ground-based INPD concentration by more than one order of magnitude. Since desert dust is transported

  18. Technology assessment on a hydrogen fueled aircraft system; 1980 nendo suiso nenryo kokuki system ni kansuru technology assissment



    This paper describes technology assessment on a hydrogen fueled aircraft system. Indispensable as technological assignments are structuring different safety systems including prevention of leakage and ignition, not to speak of developing an airframe structure that considers cryogenic and brittle nature of liquefied hydrogen. Operation related industries would be subjected to increased burdens, such as purchase and servicing of new implements and materials, but the liquefied hydrogen industry will have a chance of growing largely with wide repercussions. In the environmental aspect, the aircraft will have less CO and SOx emission in exhaust gas and lower noise than the conventional jet aircraft. Technological problems to be solved in the development include the safety of fuel tanks, safety assurance measures, and liquefied hydrogen of the required amount to be supplied easily and at low cost. To meet these requirements, noticeable progress is demanded in hydrogen manufacturing technologies. What is also required is explosion-proof safety that does not have to require crews to take special considerations in take-off and landing, not to speak of during flight. This also applies to fuel feeding and servicing on the ground. Considerations must be given that rise in operation cost should not be excessive. (NEDO)

  19. Research on Radar Micro-Doppler Feature Parameter Estimation of Propeller Aircraft

    He, Zhihua; Tao, Feixiang; Duan, Jia; Luo, Jingsheng


    The micro-motion modulation effect of the rotated propellers to radar echo can be a steady feature for aircraft target recognition. Thus, micro-Doppler feature parameter estimation is a key to accurate target recognition. In this paper, the radar echo of rotated propellers is modelled and simulated. Based on which, the distribution characteristics of the micro-motion modulation energy in time, frequency and time-frequency domain are analyzed. The micro-motion modulation energy produced by the scattering points of rotating propellers is accumulated using the Inverse-Radon (I-Radon) transform, which can be used to accomplish the estimation of micro-modulation parameter. Finally, it is proved that the proposed parameter estimation method is effective with measured data. The micro-motion parameters of aircraft can be used as the features of radar target recognition.

  20. Flight demonstration of aircraft fuselage and bulkhead monitoring using optical fiber distributed sensing system

    Wada, Daichi; Igawa, Hirotaka; Tamayama, Masato; Kasai, Tokio; Arizono, Hitoshi; Murayama, Hideaki; Shiotsubo, Katsuya


    We have developed an optical fiber distributed sensing system based on optical frequency domain reflectometry (OFDR) that uses long-length fiber Bragg gratings (FBGs). This technique obtains strain data not as a point data from an FBG but as a distributed profile within the FBG. This system can measure the strain distribution profile with an adjustable high spatial resolution of the mm or sub-mm order in real-time. In this study, we applied this OFDR-FBG technique to a flying test bed that is a mid-sized jet passenger aircraft. We conducted flight tests and monitored the structural responses of a fuselage stringer and the bulkhead of the flying test bed during flights. The strain distribution variations were successfully monitored for various events including taxiing, takeoff, landing and several other maneuvers. The monitoring was effective not only for measuring the strain amplitude applied to the individual structural parts but also for understanding the characteristics of the structural responses in accordance with the flight maneuvers. We studied the correlations between various maneuvers and strains to explore the relationship between the operation and condition of aircraft.

  1. Lidar and aircraft studies of deep Cirrus systems from the 1986 FIRE IFO

    Sassen, Kenneth; Heymsfield, Andrew J.; Knight, Nancy C.


    Several NCAR King Air flight missions were conducted during the Wisconsin FIRE IFO experiment in support of the University of Utah polarization lidar observations of deep cirrus cloud systems at the Wausau ground site. Data collected from four cirrus systems are included in this analysis, including those of 22 and 28 October, and 1 and 2 November. Lidar data were generally obtained at 2 min intervals in the zenith direction over observation periods that ranged from approximately 4 to 10 h, bracketing the aircraft missions. The data were processed to yield height-time (HTI) displays of lidar linear depolarization ratio sigma and relative range-normalized return power P. King Air operations consisted of a combination of rapid profiling and Lagrangian spiral descents and stacked racetrack patterns in the vicinity of the field site. From the spiral descents are constructed vertical profiles of ice particle concentration N(sub i) and ice mass content IWC derived from PMS 2-D probe imagery and, when detected, FSSP cloud droplet concentration N(sub W) and liquid water content, LWC. Aircraft flight leg data are presented for the vertical velocity W and the same ice and water cloud content parameters. In addition, aerosol particle concentrations obtained with the ASAS probe are examined, and photographs of ice particles collected in-situ on oil-coated slides are presented to illustrate ice particle habit.

  2. Large Aircraft Robotic Paint Stripping (LARPS) system and the high pressure water process

    See, David W.; Hofacker, Scott A.; Stone, M. Anthony; Harbaugh, Darcy


    The aircraft maintenance industry is beset by new Environmental Protection Agency (EPA) guidelines on air emissions, Occupational Safety and Health Administration (OSHA) standards, dwindling labor markets, Federal Aviation Administration (FAA) safety guidelines, and increased operating costs. In light of these factors, the USAF's Wright Laboratory Manufacturing Technology Directorate and the Aircraft Division of the Oklahoma City Air Logistics Center initiated a MANTECH/REPTECH effort to automate an alternate paint removal method and eliminate the current manual methylene chloride chemical stripping methods. This paper presents some of the background and history of the LARPS program, describes the LARPS system, documents the projected operational flow, quantifies some of the projected system benefits and describes the High Pressure Water Stripping Process. Certification of an alternative paint removal method to replace the current chemical process is being performed in two phases: Process Optimization and Process Validation. This paper also presents the results of the Process Optimization for metal substrates. Data on the coating removal rate, residual stresses, surface roughness, preliminary process envelopes, and technical plans for process Validation Testing will be discussed.

  3. Expert Systems Research.

    Duda, Richard O.; Shortliffe, Edward H.


    Discusses a class of artificial intelligence computer programs (often called "expert systems" because they address problems normally thought to require human specialists for their solution) intended to serve as consultants for decision making. Also discusses accomplishments (including information systematization in medical diagnosis and…

  4. Power Systems Advanced Research

    California Institute of Technology


    In the 17 quarters of the project, we have accomplished the following milestones - first, construction of the three multiwavelength laser scattering machines for different light scattering study purposes; second, build up of simulation software package for simulation of field and laboratory particulates matters data; third, carried out field online test on exhaust from combustion engines with our laser scatter system. This report gives a summary of the results and achievements during the project's 16 quarters period. During the 16 quarters of this project, we constructed three multiwavelength scattering instruments for PM2.5 particulates. We build up a simulation software package that could automate the simulation of light scattering for different combinations of particulate matters. At the field test site with our partner, Alturdyne, Inc., we collected light scattering data for a small gas turbine engine. We also included the experimental data feedback function to the simulation software to match simulation with real field data. The PM scattering instruments developed in this project involve the development of some core hardware technologies, including fast gated CCD system, accurately triggered Passively Q-Switched diode pumped lasers, and multiwavelength beam combination system. To calibrate the scattering results for liquid samples, we also developed the calibration system which includes liquid PM generator and size sorting instrument, i.e. MOUDI. In this report, we give the concise summary report on each of these subsystems development results.

  5. Research on Introspective Systems.


    UaaaAUQited. L 84 09 1 - --4 MiholslGenesrethes taen over primay reponsiblit for the contract, but IDr. Edwww Shariffe rea ininv~olved a@00 -,, veta or OW...rening". ComupuI ’FUIUI.~ Iunorv - Univrsiyftanforallfornia, Februay 1084 e E.H. ShorWhWfe Seminr an Knowledge Systems The Universt of Utah, Salt Lake

  6. Analysis of a topping-cycle, aircraft, gas-turbine-engine system which uses cryogenic fuel

    Turney, G. E.; Fishbach, L. H.


    A topping-cycle aircraft engine system which uses a cryogenic fuel was investigated. This system consists of a main turboshaft engine that is mechanically coupled (by cross-shafting) to a topping loop, which augments the shaft power output of the system. The thermodynamic performance of the topping-cycle engine was analyzed and compared with that of a reference (conventional) turboshaft engine. For the cycle operating conditions selected, the performance of the topping-cycle engine in terms of brake specific fuel consumption (bsfc) was determined to be about 12 percent better than that of the reference turboshaft engine. Engine weights were estimated for both the topping-cycle engine and the reference turboshaft engine. These estimates were based on a common shaft power output for each engine. Results indicate that the weight of the topping-cycle engine is comparable with that of the reference turboshaft engine.

  7. NPP post-accident monitoring system based on unmanned aircraft vehicle:concept, design principles

    Sachenko, A.A.; Kochan, V.V.; Kharchenko, V.S.; Yanovskij, M.Eh.; Yastrebenetskij, M.A.; Fesenko, G.V.


    The paper presents a concept of designing the post-accident system for monitoring the equipment and territory of nuclear power plant after a severe accident based on unmanned aircraft vehicle (UAVs). Wired power and communications networks are found out as the most vulnerable ones during the accident monitoring, and informativity, reliability and veracity are recognized as system basic parameters. It is proposed to equip measurement and control modules with backup wireless communication channels and deploy the repeaters network based on UAVs to ensure the informativity. Modules possess the backup power battery, and repeaters appear in the appropriate places after the accident to provide the survivability. Moreover, an optimization of UAVs' location is proposed according to the minimum energy consumption criterion. To ensure the veracity, it is expected to design the noise-immune protocol for message exchange and archiving and self-diagnostics of all system components

  8. Cooperative Route Planning for Multiple Aircraft in a Semifree ATC System

    Yi Yang


    Full Text Available This paper presents the Semifree Flight theory used in a civil air traffic control (ATC system to improve the capability of the traditional Free Flight mode. The progressiveness and hidden defects of the “Free Flight” model in civil aviation are analysed, and the Semifree Flight ATC system mode is introduced. Moreover, this paper presents the collaborative route planning method, which is the most important method used in the Semifree Flight ATC system. This collaborative route planning method can plan routes for each aircraft (either in flight or just before achieving flight in real time, and the routes can satisfy all the safety constraints. The final numerical simulations verify the correctness and practicability of the Semifree Flight theory and the collaborative route planning method.

  9. Towards an Improved Pilot-Vehicle Interface for Highly Automated Aircraft: Evaluation of the Haptic Flight Control System

    Schutte, Paul; Goodrich, Kenneth; Williams, Ralph


    The control automation and interaction paradigm (e.g., manual, autopilot, flight management system) used on virtually all large highly automated aircraft has long been an exemplar of breakdowns in human factors and human-centered design. An alternative paradigm is the Haptic Flight Control System (HFCS) that is part of NASA Langley Research Center s Naturalistic Flight Deck Concept. The HFCS uses only stick and throttle for easily and intuitively controlling the actual flight of the aircraft without losing any of the efficiency and operational benefits of the current paradigm. Initial prototypes of the HFCS are being evaluated and this paper describes one such evaluation. In this evaluation we examined claims regarding improved situation awareness, appropriate workload, graceful degradation, and improved pilot acceptance. Twenty-four instrument-rated pilots were instructed to plan and fly four different flights in a fictitious airspace using a moderate fidelity desktop simulation. Three different flight control paradigms were tested: Manual control, Full Automation control, and a simplified version of the HFCS. Dependent variables included both subjective (questionnaire) and objective (SAGAT) measures of situation awareness, workload (NASA-TLX), secondary task performance, time to recognize automation failures, and pilot preference (questionnaire). The results showed a statistically significant advantage for the HFCS in a number of measures. Results that were not statistically significant still favored the HFCS. The results suggest that the HFCS does offer an attractive and viable alternative to the tactical components of today s FMS/autopilot control system. The paper describes further studies that are planned to continue to evaluate the HFCS.

  10. Government financial support for civil aircraft research, technology and development in four European countries and the United States

    Chandler, B.; Golaszewski, R.; Patten, C.; Rudman, B.; Scott, R.


    Data on the levels of government financial support for civil aircraft airframe and engine (CAAE) research and technology (R&T) in the United States and Europe (United Kingdom, West Germany, France and The Netherlands) and means of comparing these levels are provided. Data are presented for the years 1974-1977. European R&T expenditure data were obtained through visits to each of the four European countries, to the Washington office of the European Communities, and by a search of applicable literature. CAAE R&T expenditure data for the United States were obtained from NASA and Federal Aviation Administration (FAA).

  11. In-flight measurements of aircraft propeller deformation by means of an autarkic fast rotating imaging system

    Stasicki, Boleslaw; Boden, Fritz


    The non-intrusive in-flight measurement of the deformation and pitch of the aircraft propeller is a demanding task. The idea of an imaging system integrated and rotating with the aircraft propeller has been presented on the 30th International Congress on High-Speed Imaging and Photonics (ICHSIP30) in 2012. Since then this system has been constructed and tested in the laboratory as well as on the real aircraft. In this paper we outline the principle of Image Pattern Correlation Technique (IPCT) based on Digital Image Correlation (DIC) and describe the construction of a dedicated autarkic 3D camera system placed on the investigated propeller and rotating at its full speed. Furthermore, the results of the first ground and in-flight tests are shown and discussed. This development has been found by the European Commission within the 7th frame project AIM2 (contract no. 266107).


    Stanislav Vladimirovich Daletskiy


    Full Text Available The aircraft maintenance is realized by a rapid sequence of maintenance organizational and technical states, its re- search and analysis are carried out by statistical methods. The maintenance process concludes aircraft technical states con- nected with the objective patterns of technical qualities changes of the aircraft as a maintenance object and organizational states which determine the subjective organization and planning process of aircraft using. The objective maintenance pro- cess is realized in Maintenance and Repair System which does not include maintenance organization and planning and is a set of related elements: aircraft, Maintenance and Repair measures, executors and documentation that sets rules of their interaction for maintaining of the aircraft reliability and readiness for flight. The aircraft organizational and technical states are considered, their characteristics and heuristic estimates of connection in knots and arcs of graphs and of aircraft organi- zational states during regular maintenance and at technical state failure are given. It is shown that in real conditions of air- craft maintenance, planned aircraft technical state control and maintenance control through it, is only defined by Mainte- nance and Repair conditions at a given Maintenance and Repair type and form structures, and correspondingly by setting principles of Maintenance and Repair work types to the execution, due to maintenance, by aircraft and all its units mainte- nance and reconstruction strategies. The realization of planned Maintenance and Repair process determines the one of the constant maintenance component. The proposed graphical models allow to reveal quantitative correlations between graph knots to improve maintenance processes by statistical research methods, what reduces manning, timetable and expenses for providing safe civil aviation aircraft maintenance.

  13. Commercial multicopter unmanned aircraft system as a tool for early stage forest survey after wind damage

    Mokros, Martin; Vybostok, Jozef; Merganic, Jan; Tomastik, Julian; Cernava, Juraj


    In recent years unmanned aircraft systems (UAS) are objects of research in many areas. This trend can be seen also in forest research where researchers are focusing on height, diameter and tree crown measurements, monitoring of forest fire, forest gaps and health condition. Our research is focusing on the use of UAS for detecting areas disturbed by wind and deriving the volume of fallen trees for management purposes. This information is crucial after the wind damage happened. We used DJI Phantom 2 Vision+ and acquired the imagery of one forest stand (5.7 ha). The UAS is a quadcopter "all in one" solution. It has a built-in camera with gimbal and a remote controller. The camera is controlled through the application (android/ios). The built-in camera has an image resolution of 4384×3288 (14 megapixels). We have placed five crosses within the plot to be able to georeference the point cloud from UAS. Their positions were measured by Topcon Hiper GGD survey-grade GNSS receiver. We measured the border of damaged area by four different GNSS devices - GeoExplorer 6000, Trimble Nomad, Garmin GPSMAP 60 CSx and by smartphone Sony Xperia X. To process images from UAS we used Agisoft Photoscan Professional, while ArcGIS 10.2 was used to calculate and compare the areas . From the UAS point cloud we calculated DTM and DSM and deducted them. The areas where the difference was close to zero (-0.2 to 0.2) were signed as potentially wind damage areas. Then we filtered the areas that were not signed correctly (for example routes). The calculated area from UAS was 2.66 ha, GeoExplorer 6000 was 2.20 ha, Nomad was 2.06 ha, Garmin was 2.21 ha and from Xperia was the area 2.24 ha. The differences between UAS and GPS devices vary from 0.42 ha to 0.6 ha. The differences were mostly caused by inability to detect small spots of fallen trees on UAS data. These small spots are difficult to measure by GPS devices because the signal is very poor under tree crowns and also it is difficult to find


    I. I. Zavyalik


    Full Text Available The article describes the developed modeling system in MATLAB Simulink which allows to simulate, explore and pre- dict the technical condition of the units of the aircraft gas turbine engine fuel system depending on aviation fuel quality changes.

  15. Validation of Safety-Critical Systems for Aircraft Loss-of-Control Prevention and Recovery

    Belcastro, Christine M.


    Validation of technologies developed for loss of control (LOC) prevention and recovery poses significant challenges. Aircraft LOC can result from a wide spectrum of hazards, often occurring in combination, which cannot be fully replicated during evaluation. Technologies developed for LOC prevention and recovery must therefore be effective under a wide variety of hazardous and uncertain conditions, and the validation framework must provide some measure of assurance that the new vehicle safety technologies do no harm (i.e., that they themselves do not introduce new safety risks). This paper summarizes a proposed validation framework for safety-critical systems, provides an overview of validation methods and tools developed by NASA to date within the Vehicle Systems Safety Project, and develops a preliminary set of test scenarios for the validation of technologies for LOC prevention and recovery

  16. Development of satellite position location system for aircraft and boat distress beacons

    Kahle, D. R.


    An international satellite system for the detection and location of distress beacons carried on aircraft and vessels is in its technical checkout phase. User demonstration and evaluation (D&E) will start in early 1983 and continue for two years. The D&E phase and a subsequent transition period will form the basis for improved search and rescue operations for the 1980's and beyond. The system, called COSPAS/SARSAT, has international participation involving the U.S., Canada, and France as SARSAT members and joint participation with the Soviet Union's COSPAS Project. Norway and the U.K. have recently joined as investigators. Average position location error of the satellite aided processing is expected to be from 10-20KM for the existing 121.5/243 MHz distress beacons and from 2-5KM for experimental beacons transmitting in the 406 MHz band.

  17. Review article: the use of remotely piloted aircraft systems (RPASs) for natural hazards monitoring and management

    Giordan, Daniele; Hayakawa, Yuichi; Nex, Francesco; Remondino, Fabio; Tarolli, Paolo


    The number of scientific studies that consider possible applications of remotely piloted aircraft systems (RPASs) for the management of natural hazards effects and the identification of occurred damages strongly increased in the last decade. Nowadays, in the scientific community, the use of these systems is not a novelty, but a deeper analysis of the literature shows a lack of codified complex methodologies that can be used not only for scientific experiments but also for normal codified emergency operations. RPASs can acquire on-demand ultra-high-resolution images that can be used for the identification of active processes such as landslides or volcanic activities but can also define the effects of earthquakes, wildfires and floods. In this paper, we present a review of published literature that describes experimental methodologies developed for the study and monitoring of natural hazards.

  18. Progress in Protective Coatings for Aircraft Gas Turbines: A Review of NASA Sponsored Research

    Merutka, J. P.


    Problems associated with protective coatings for advanced aircraft gas turbines are reviewed. Metallic coatings for preventing titanium fires in compressors are identified. Coatings for turbine section are also considered, Ductile aluminide coatings for protecting internal turbine-blade cooling passage surface are also identified. Composite modified external overlay MCrAlY coatings deposited by low-pressure plasma spraying are found to be better in surface protection capability than vapor deposited MCrAlY coatings. Thermal barrier coating (TBC), studies are presented. The design of a turbine airfoil is integrated with a TBC, and computer-aided manufacturing technology is applied.

  19. A Grounded Theory Study of Aircraft Maintenance Technician Decision-Making

    Norcross, Robert

    Aircraft maintenance technician decision-making and actions have resulted in aircraft system errors causing aircraft incidents and accidents. Aircraft accident investigators and researchers examined the factors that influence aircraft maintenance technician errors and categorized the types of errors in an attempt to prevent similar occurrences. New aircraft technology introduced to improve aviation safety and efficiency incur failures that have no information contained in the aircraft maintenance manuals. According to the Federal Aviation Administration, aircraft maintenance technicians must use only approved aircraft maintenance documents to repair, modify, and service aircraft. This qualitative research used a grounded theory approach to explore the decision-making processes and actions taken by aircraft maintenance technicians when confronted with an aircraft problem not contained in the aircraft maintenance manuals. The target population for the research was Federal Aviation Administration licensed aircraft and power plant mechanics from across the United States. Nonprobability purposeful sampling was used to obtain aircraft maintenance technicians with the experience sought in the study problem. The sample population recruitment yielded 19 participants for eight focus group sessions to obtain opinions, perceptions, and experiences related to the study problem. All data collected was entered into the Atlas ti qualitative analysis software. The emergence of Aircraft Maintenance Technician decision-making themes regarding Aircraft Maintenance Manual content, Aircraft Maintenance Technician experience, and legal implications of not following Aircraft Maintenance Manuals surfaced. Conclusions from this study suggest Aircraft Maintenance Technician decision-making were influenced by experience, gaps in the Aircraft Maintenance Manuals, reliance on others, realizing the impact of decisions concerning aircraft airworthiness, management pressures, and legal concerns


    Turner, D.


    In this study, we assess two push broom hyperspectral sensors as carried by small (10-15 kg) multi-rotor Unmanned Aircraft Systems (UAS). We used a Headwall Photonics micro-Hyperspec push broom sensor with 324 spectral bands (4-5 nm FWHM) and a Headwall Photonics nano-Hyperspec sensor with 270 spectral bands (6 nm FWHM) both in the VNIR spectral range (400-1000 nm). A gimbal was used to stabilise the sensors in relation to the aircraft flight dynamics, and for the micro-Hyperspec a tightly coupled dual frequency Global Navigation Satellite System (GNSS) receiver, an Inertial Measurement Unit (IMU), and Machine Vision Camera (MVC) were used for attitude and position determination. For the nano-Hyperspec, a navigation grade GNSS system and IMU provided position and attitude data. This study presents the geometric results of one flight over a grass oval on which a dense Ground Control Point (GCP) network was deployed. The aim being to ascertain the geometric accuracy achievable with the system. Using the PARGE software package (ReSe - Remote Sensing Applications) we ortho-rectify the push broom hyperspectral image strips and then quantify the accuracy of the ortho-rectification by using the GCPs as check points. The orientation (roll, pitch, and yaw) of the sensor is measured by the IMU. Alternatively imagery from a MVC running at 15 Hz, with accurate camera position data can be processed with Structure from Motion (SfM) software to obtain an estimated camera orientation. In this study, we look at which of these data sources will yield a flight strip with the highest geometric accuracy.

  1. Research on Human-Error Factors of Civil Aircraft Pilots Based On Grey Relational Analysis

    Guo Yundong


    Full Text Available In consideration of the situation that civil aviation accidents involve many human-error factors and show the features of typical grey systems, an index system of civil aviation accident human-error factors is built using human factor analysis and classification system model. With the data of accidents happened worldwide between 2008 and 2011, the correlation between human-error factors can be analyzed quantitatively using the method of grey relational analysis. Research results show that the order of main factors affecting pilot human-error factors is preconditions for unsafe acts, unsafe supervision, organization and unsafe acts. The factor related most closely with second-level indexes and pilot human-error factors is the physical/mental limitations of pilots, followed by supervisory violations. The relevancy between the first-level indexes and the corresponding second-level indexes and the relevancy between second-level indexes can also be analyzed quantitatively.

  2. An Expert System Interfaced with a Database System to Perform Troubleshooting of Aircraft Carrier Piping Systems


    interval of four feet, and are numbered sequentially bow to stem. * "wing tank" is a tank or void, outboard of the holding bulkhead, away from the center...system and DBMS simultaneously with a multi-processor, allowing queries to the DBMS without terminating the expert system. This method was judged...RECIRC). eductor -strip("Y"):- ask _ques _read_ans(OVBD,"ovbd dis open"),ovbd dis-open(OVBD). eductor-strip("N"):- ask_ques read_ans( LINEUP , "strip lineup

  3. Flight Flutter Testing of Rotary Wing Aircraft Using a Control System Oscillation Technique

    Yen, J. G.; Viswanathan, S.; Matthys, C. G.


    A flight flutter testing technique is described in which the rotor controls are oscillated by series actuators to excite the rotor and airframe modes of interest, which are then allowed to decay. The moving block technique is then used to determine the damped frequency and damping variation with rotor speed. The method proved useful for tracking the stability of relatively well damped modes. The results of recently completed flight tests of an experimental soft-in-plane rotor are used to illustrate the technique. Included is a discussion of the application of this technique to investigation of the propeller whirl flutter stability characteristics of the NASA/Army XV-15 VTOL tilt rotor research aircraft.

  4. Night vision imaging systems design, integration, and verification in military fighter aircraft

    Sabatini, Roberto; Richardson, Mark A.; Cantiello, Maurizio; Toscano, Mario; Fiorini, Pietro; Jia, Huamin; Zammit-Mangion, David


    This paper describes the developmental and testing activities conducted by the Italian Air Force Official Test Centre (RSV) in collaboration with Alenia Aerospace, Litton Precision Products and Cranfiled University, in order to confer the Night Vision Imaging Systems (NVIS) capability to the Italian TORNADO IDS (Interdiction and Strike) and ECR (Electronic Combat and Reconnaissance) aircraft. The activities consisted of various Design, Development, Test and Evaluation (DDT&E) activities, including Night Vision Goggles (NVG) integration, cockpit instruments and external lighting modifications, as well as various ground test sessions and a total of eighteen flight test sorties. RSV and Litton Precision Products were responsible of coordinating and conducting the installation activities of the internal and external lights. Particularly, an iterative process was established, allowing an in-site rapid correction of the major deficiencies encountered during the ground and flight test sessions. Both single-ship (day/night) and formation (night) flights were performed, shared between the Test Crews involved in the activities, allowing for a redundant examination of the various test items by all participants. An innovative test matrix was developed and implemented by RSV for assessing the operational suitability and effectiveness of the various modifications implemented. Also important was definition of test criteria for Pilot and Weapon Systems Officer (WSO) workload assessment during the accomplishment of various operational tasks during NVG missions. Furthermore, the specific technical and operational elements required for evaluating the modified helmets were identified, allowing an exhaustive comparative evaluation of the two proposed solutions (i.e., HGU-55P and HGU-55G modified helmets). The results of the activities were very satisfactory. The initial compatibility problems encountered were progressively mitigated by incorporating modifications both in the front and

  5. Exploration of the Trade Space Between Unmanned Aircraft Systems Descent Maneuver Performance and Sense-and-Avoid System Performance Requirements

    Jack, Devin P.; Hoffler, Keith D.; Johnson, Sally C.


    A need exists to safely integrate Unmanned Aircraft Systems (UAS) into the United States' National Airspace System. Replacing manned aircraft's see-and-avoid capability in the absence of an onboard pilot is one of the key challenges associated with safe integration. Sense-and-avoid (SAA) systems will have to achieve yet-to-be-determined required separation distances for a wide range of encounters. They will also need to account for the maneuver performance of the UAS they are paired with. The work described in this paper is aimed at developing an understanding of the trade space between UAS maneuver performance and SAA system performance requirements, focusing on a descent avoidance maneuver. An assessment of current manned and unmanned aircraft performance was used to establish potential UAS performance test matrix bounds. Then, near-term UAS integration work was used to narrow down the scope. A simulator was developed with sufficient fidelity to assess SAA system performance requirements. The simulator generates closest-point-of-approach (CPA) data from the wide range of UAS performance models maneuvering against a single intruder with various encounter geometries. Initial attempts to model the results made it clear that developing maneuver performance groups is required. Discussion of the performance groups developed and how to know in which group an aircraft belongs for a given flight condition and encounter is included. The groups are airplane, flight condition, and encounter specific, rather than airplane-only specific. Results and methodology for developing UAS maneuver performance requirements are presented for a descent avoidance maneuver. Results for the descent maneuver indicate that a minimum specific excess power magnitude can assure a minimum CPA for a given time-to-go prediction. However, smaller amounts of specific excess power may achieve or exceed the same CPA if the UAS has sufficient speed to trade for altitude. The results of this study will

  6. Automatic control study of the icing research tunnel refrigeration system

    Kieffer, Arthur W.; Soeder, Ronald H.


    The Icing Research Tunnel (IRT) at the NASA Lewis Research Center is a subsonic, closed-return atmospheric tunnel. The tunnel includes a heat exchanger and a refrigeration plant to achieve the desired air temperature and a spray system to generate the type of icing conditions that would be encountered by aircraft. At the present time, the tunnel air temperature is controlled by manual adjustment of freon refrigerant flow control valves. An upgrade of this facility calls for these control valves to be adjusted by an automatic controller. The digital computer simulation of the IRT refrigeration plant and the automatic controller that was used in the simulation are discussed.

  7. Assembly and Initial Analysis of a Database of the Characteristics of Fixed-Wing Unmanned Aircraft Systems


    directly (e.g. on their websites or in brochures ) or, in its absence, by Jane’s All the World’s Aircraft: Unmanned [15], as the data it provides is...Proposer Information Pamphlet (PIP) for Defense Advanced Research Projects Agency (DARPA) Defense Sciences Office (DSO) Nano Air Vehicle (NAV

  8. Interactive aircraft cabin testbed for stress-free air travel system experiment: an innovative concurrent design approach

    Tan, C.F.; Chen, W.; Rauterberg, G.W.M.


    In this paper, a study of the concurrent engineering design for the environmental friendly low cost aircraft cabin simulator is presented. The study describes the used of concurrent design technique in the design activity. The simulator is a testbed that was designed and built for research on

  9. Multi-level virtual prototyping of electromechanical actuation system for more electric aircraft

    Jian FU


    Full Text Available Electromechanical actuators (EMAs are becoming increasingly attractive in the field of more electric aircraft because of their outstanding benefits, which include reduced fuel burn and maintenance cost, enhanced system flexibility, and improved management of fault detection and isolation. However, electromechanical actuation raises specific issues when being used for safety-critical aerospace applications like flight controls: huge reflected inertia to load, jamming-type failure, and increase of backlash with service due to wear and local dissipation of heat losses for thermal balance. This study proposes an incremental approach for virtual prototyping of EMAs. It is driven by a model-based system engineering process in order to enable simulation-aided design. Best practices supported by Bond graph formalism are suggested to develop a model’s structure efficiently and to make the model ready for use (or extension by addressing the above mentioned issues. Physical effects are progressively introduced, and the realism of lumped-parameter models is increased step-by-step. In particular, multi-level component models are architected to ensure continuity between engineering activities. The models are implemented in the AMESim simulation environment, and simulation responses are given to illustrate how they can be used for preliminary sizing, control design, thermal balance verification, and faults to failure analysis. The proposed best practices intend to provide engineers with fast, reusable, and efficient means to assess performance virtually and enhance maturity, performance, and robustness. Keywords: Bond graph, Electromechanical actuator, Flight control, Model-based system engineering, More electric aircraft, Power-by-wire

  10. Unmanned Aircraft Systems (UAS) Integration in the National Airspace System (NAS) Project: KDP-A for Phase 2 Minimum Operational Performance Standards

    Grindle, Laurie; Hackenberg, Davis L.


    UAS Integration in the NAS Project has: a) Developed Technical Challenges that are crucial to UAS integration, aligned with NASA's Strategic Plan and Thrusts, and support FAA standards development. b) Demonstrated rigorous project management processes through the execution of previous phases. c) Defined Partnership Plans. d) Established path to KDP-C. Request approval of Technical Challenges, execution of partnerships and plans, and execution of near-term FY17 activities. There is an increasing need to fly UAS in the NAS to perform missions of vital importance to National Security and Defense, Emergency Management, and Science. There is also an emerging need to enable commercial applications such as cargo transport (e.g. FedEx). Unencumbered NAS Access for Civil/Commercial UAS. Provide research findings, utilizing simulation and flight tests, to support the development and validation of DAA and C2 technologies necessary for integrating Unmanned Aircraft Systems into the National Airspace System.

  11. Personnel Selection Influences on Remotely Piloted Aircraft Human-System Integration.

    Carretta, Thomas R; King, Raymond E


    Human-system integration (HSI) is a complex process used to design and develop systems that integrate human capabilities and limitations in an effective and affordable manner. Effective HSI incorporates several domains, including manpower, personnel and training, human factors, environment, safety, occupational health, habitability, survivability, logistics, intelligence, mobility, and command and control. To achieve effective HSI, the relationships among these domains must be considered. Although this integrated approach is well documented, there are many instances where it is not followed. Human factors engineers typically focus on system design with little attention to the skills, abilities, and other characteristics needed by human operators. When problems with fielded systems occur, additional training of personnel is developed and conducted. Personnel selection is seldom considered during the HSI process. Complex systems such as aviation require careful selection of the individuals who will interact with the system. Personnel selection is a two-stage process involving select-in and select-out procedures. Select-in procedures determine which candidates have the aptitude to profit from training and represent the best investment. Select-out procedures focus on medical qualification and determine who should not enter training for medical reasons. The current paper discusses the role of personnel selection in the HSI process in the context of remotely piloted aircraft systems.

  12. Economic effects of propulsion system technology on existing and future transport aircraft

    Sallee, G. P.


    The results of an airline study of the economic effects of propulsion system technology on current and future transport aircraft are presented. This report represents the results of a detailed study of propulsion system operating economics. The study has four major parts: (1) a detailed analysis of current propulsion system maintenance with respect to the material and labor costs encountered versus years in service and the design characteristics of the major elements of the propulsion system of the B707, b727, and B747. (2) an analysis of the economic impact of a future representative 1979 propulsion system is presented with emphasis on depreciation of investment, fuel costs and maintenance costs developed on the basis of the analysis of the historical trends observed. (3) recommendations concerning improved methods of forecasting the maintenance cost of future propulsion systems are presented. A detailed method based on the summation of the projected labor and material repair costs for each major engine module and its installation along with a shorter form suitable for quick, less detailed analysis are presented, and (4) recommendations concerning areas where additional technology is needed to improve the economics of future commercial propulsion systems are presented along with the suggested economic benefits available from such advanced technology efforts.


    Vladimir Michailovich Vetoshkin


    Full Text Available The development of new and modernization of existing aviation equipment specimens of different classes are ac- companied and completed by the complex process of ground and flight tests. This phase of aviation equipment life cycle is implemented by means of organizational and technical systems - running centers. The latter include various proving grounds, measuring complex and systems, aircraft, ships, security and flight control offices, information processing laborato- ries and many other elements. The system analysis results of development challenges of the automated control systems of aviation equipment tests operations are presented. The automated control systems are in essence an automated data bank. The key role of development of flight tests automated control system in the process of creation of the automated control sys- tems of aviation equipment tests operations is substantiated. The way of the mobile modular measuring complexes integra- tion and the need for national methodologies and technological standards for database systems design concepts are grounded. Database system, as a central element in this scheme, provides collection, storing and updating of values of the elements described above in pace and the required frequency of the controlled object state monitoring. It is database system that pro- vides the supervisory unit with actual data corresponding to specific moments of time, which concern the state processes, assessments of the progress and results of flight experiments, creating the necessary environment for aviation equipment managing and testing as a whole. The basis for development of subsystems of automated control systems of aviation equip- ment tests operations are conceptual design processes of the respective database system, the implementation effectiveness of which largely determines the level of success and ability to develop the systems being created. Introduced conclusions and suggestions can be used in the

  14. The Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS mission: design, execution, and first results

    D. J. Jacob


    Full Text Available The NASA Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS mission was conducted in two 3-week deployments based in Alaska (April 2008 and western Canada (June–July 2008. Its goal was to better understand the factors driving current changes in Arctic atmospheric composition and climate, including (1 influx of mid-latitude pollution, (2 boreal forest fires, (3 aerosol radiative forcing, and (4 chemical processes. The June–July deployment was preceded by one week of flights over California (ARCTAS-CARB focused on (1 improving state emission inventories for greenhouse gases and aerosols, (2 providing observations to test and improve models of ozone and aerosol pollution. ARCTAS involved three aircraft: a DC-8 with a detailed chemical payload, a P-3 with an extensive aerosol and radiometric payload, and a B-200 with aerosol remote sensing instrumentation. The aircraft data augmented satellite observations of Arctic atmospheric composition, in particular from the NASA A-Train. The spring phase (ARCTAS-A revealed pervasive Asian pollution throughout the Arctic as well as significant European pollution below 2 km. Unusually large Siberian fires in April 2008 caused high concentrations of carbonaceous aerosols and also affected ozone. Satellite observations of BrO column hotspots were found not to be related to Arctic boundary layer events but instead to tropopause depressions, suggesting the presence of elevated inorganic bromine (5–10 pptv in the lower stratosphere. Fresh fire plumes from Canada and California sampled during the summer phase (ARCTAS-B indicated low NOx emission factors from the fires, rapid conversion of NOx to PAN, no significant secondary aerosol production, and no significant ozone enhancements except when mixed with urban pollution.

  15. Unmanned Vanguard: Leveraging The Operational Effectiveness Of The Israeli Unmanned Aircraft System Program


    The ACGS is capable of controlling multiple aircraft simultaneously similar to the USAF multiple aircraft control ( MAC ) GCS used with the offers a big improvement on workload for the pilots and allows them to focus on their mission and payloads versus flying the aircraft. Its...July 2010). 19 “Attack of the Drones,” The Economist , 3 September 2009, (accessed 8 Apr 2012). 20 Owen

  16. Research and Application on Civil Aircraft Ground Flotation%民用飞机地面漂浮性分析研究及应用

    房务官; 魏小辉; 宋晓晨; 吴卜圣


    民用飞机地面漂浮性是评估飞机-机场相容性的一个重要指标,其直接影响到飞机设计参数选择以及地面适应性的优劣.在总体概念设计阶段就必须对飞机的漂浮性能进行分析评估,从而选择恰当的飞机参数.对民用飞机在刚性道面和柔性道面上漂浮性分析方法做了简要说明,并针对国际民用航空组织所推广使用的ACN/PCN(飞机分类号/机场分类号)方法进行了详细分析研究,在此基础上,开发出了飞机地面漂浮性分析软件.通过直接输入飞机相关参数可以快速准确地计算出飞机分类号ACN值.可以有效地对飞机地面漂浮性进行评估和优化,从而解决了用手工方式评估飞机地面漂浮性时的繁琐及不准确,并降低了对从事飞机地面漂浮性计算的人员要求.%Civil aircraft ground flotation is an important evaluation indicator of aircraft- airport compatibility , which affects the aircraft design parameters selection and the pros and cons of the ground adaptability directly. In the general conceptual design stage, the analysis and evaluation of the aircraft flotation must be done to select the appropriate parameters of the aircraft. This paper briefly describes the analysis methods of civil aircraft floating in the rigid pavement and flexible pavement, and carried out a detailed analysis and research for the ACN / PCN,the aircraft and airport's class number method,that is promoted by International Civil Aviation Organization and developed a aircraft ground flotation analysis software on that base. Inputting the relevant aircraft parameters directly, it can calculate the value the class number of aircraft, ACN, quickly and accurately. The software can effectively evaluate and optimize aircraft ground flotation , thus solve the problem of the complication and inaccuracy caused by evaluating the aircraft ground flotation by hand. In addition,it also reduces the demand for the personnel engaged in it.

  17. Magnesium Diboride Superconducting Coils for Electric Propulsion Systems for Large Aircraft, Phase II

    National Aeronautics and Space Administration — The recent development of magnesium diboride superconducting wires makes possible the potential to have much lighter weight superconducting coils for heavy aircraft...

  18. Utilizing High Fidelity Simulations in Multidisciplinary Optimization of Aircraft Systems, Phase I

    National Aeronautics and Space Administration — Aircraft design is a complex process requiring interactions and exchange of information among multiple disciplines such as aerodynamics, strength, fatigue, controls,...


    Honorata ROMAŃSKA


    Full Text Available The evaluation of the effects of transport collision often takes the form of ground reconnaissance. Undoubtedly, remotely piloted aircraft systems (RPAS can support and help the police, firefighters, security agents and paramedics in the event of a transport collision. Although there is a scarce amount of literature concerning the use of RPAS in crisis management, it is important to pay more attention to the benefits of this technology. The article describes the danger of collisions, as well as discusses the possibility of using RPAS, their functionality and potential utility. Sensors installed on RPAS can rapidly identify the place of the accident, the number of casualties, the type of damaged vehicles or the type of contamination.

  20. CAD system of design and engineering provision of die forming of compressor blades for aircraft engines

    Khaimovich, I. N.


    The articles provides the calculation algorithms for blank design and die forming fitting to produce the compressor blades for aircraft engines. The design system proposed in the article allows generating drafts of trimming and reducing dies automatically, leading to significant reduction of work preparation time. The detailed analysis of the blade structural elements features was carried out, the taken limitations and technological solutions allowed forming generalized algorithms of forming parting stamp face over the entire circuit of the engraving for different configurations of die forgings. The author worked out the algorithms and programs to calculate three dimensional point locations describing the configuration of die cavity. As a result the author obtained the generic mathematical model of final die block in the form of three-dimensional array of base points. This model is the base for creation of engineering documentation of technological equipment and means of its control.

  1. First Report of Using Portable Unmanned Aircraft Systems (Drones) for Search and Rescue.

    Van Tilburg, Christopher


    Unmanned aircraft systems (UAS), colloquially called drones, are used commonly for military, government, and civilian purposes, including both commercial and consumer applications. During a search and rescue mission in Oregon, a UAS was used to confirm a fatality in a slot canyon; this eliminated the need for a dangerous rappel at night by rescue personnel. A second search mission in Oregon used several UAS to clear terrain. This allowed search of areas that were not accessible or were difficult to clear by ground personnel. UAS with cameras may be useful for searching, observing, and documenting missions. It is possible that UAS might be useful for delivering equipment in difficult areas and in communication. Copyright © 2017. Published by Elsevier Inc.

  2. Development of a low cost unmanned aircraft system for atmospheric carbon dioxide leak detection

    Mitchell, Taylor Austin

    Carbon sequestration, the storage of carbon dioxide gas underground, has the potential to reduce global warming by removing a greenhouse gas from the atmosphere. These storage sites, however, must first be monitored to detect if carbon dioxide is leaking back out to the atmosphere. As an alternative to traditional large ground-based sensor networks to monitor CO2 levels for leaks, unmanned aircraft offer the potential to perform in-situ atmospheric leak detection over large areas for a fraction of the cost. This project developed a proof-of-concept sensor system to map relative carbon dioxide levels to detect potential leaks. The sensor system included a Sensair K-30 FR CO2 sensor, GPS, and altimeter connected an Arduino microcontroller which logged data to an onboard SD card. Ground tests were performed to verify and calibrate the system including wind tunnel tests to determine the optimal configuration of the system for the quickest response time (4-8 seconds based upon flowrate). Tests were then conducted over a controlled release of CO 2 in addition to over controlled rangeland fires which released carbon dioxide over a large area as would be expected from a carbon sequestration source. 3D maps of carbon dioxide were developed from the system telemetry that clearly illustrated increased CO2 levels from the fires. These tests demonstrated the system's ability to detect increased carbon dioxide concentrations in the atmosphere.

  3. A piloted evaluation of an oblique-wing research aircraft motion simulation with decoupling control laws

    Kempel, Robert W.; Mcneill, Walter E.; Gilyard, Glenn B.; Maine, Trindel A.


    The NASA Ames Research Center developed an oblique-wing research plane from NASA's digital fly-by-wire airplane. Oblique-wing airplanes show large cross-coupling in control and dynamic behavior which is not present on conventional symmetric airplanes and must be compensated for to obtain acceptable handling qualities. The large vertical motion simulator at NASA Ames-Moffett was used in the piloted evaluation of a proposed flight control system designed to provide decoupled handling qualities. Five discrete flight conditions were evaluated ranging from low altitude subsonic Mach numbers to moderate altitude supersonic Mach numbers. The flight control system was effective in generally decoupling the airplane. However, all participating pilots objected to the high levels of lateral acceleration encountered in pitch maneuvers. In addition, the pilots were more critical of left turns (in the direction of the trailing wingtip when skewed) than they were of right turns due to the tendency to be rolled into the left turns and out of the right turns. Asymmetric side force as a function of angle of attack was the primary cause of lateral acceleration in pitch. Along with the lateral acceleration in pitch, variation of rolling and yawing moments as functions of angle of attack caused the tendency to roll into left turns and out of right turns.

  4. The 3D Mesonet Concept: Extending Networked Surface Meteorological Tower Observations Through Unmanned Aircraft Systems

    Chilson, P. B.; Fiebrich, C. A.; Huck, R.; Grimsley, J.; Salazar-Cerreno, J.; Carson, K.; Jacob, J.


    Fixed monitoring sites, such as those in the US National Weather Service Automated Surface Observing System (ASOS) and the Oklahoma Mesonet provide valuable, high temporal resolution information about the atmosphere to forecasters and the general public. The Oklahoma Mesonet is comprised of a network of 120 surface sites providing a wide array of atmospheric measurements up to a height of 10 m with an update time of five minutes. The deployment of small unmanned aircraft to collect in-situ vertical measurements of the atmospheric state in conjunction with surface conditions has potential to significantly expand weather observation capabilities. This concept can enhance the safety of individuals and support commerce through improved observations and short-term forecasts of the weather and other environmental variables in the lower atmosphere. We report on a concept of adding the capability of collecting vertical atmospheric measurements (profiles) through the use of unmanned aerial systems (UAS) at remote Oklahoma sites deemed suitable for this application. While there are a number of other technologies currently available that can provide measurements of one or a few variables, the proposed UAS concept will be expandable and modular to accommodate several different sensor packages and provide accurate in-situ measurements in virtually all weather conditions. Such a system would facilitate off-site maintenance and calibration and would provide the ability to add new sensors as they are developed or as new requirements are identified. The small UAS must be capable of accommodating the weight of all sensor packages and have lighting, communication, and aircraft avoidance systems necessary to meet existing or future FAA regulations. The system must be able to operate unattended, which necessitates the inclusion of risk mitigation measures such as a detect and avoid radar and the ability to transmit and receive transponder signals. Moreover, the system should be able to

  5. A remotely piloted aircraft system in major incident management: concept and pilot, feasibility study.

    Abrahamsen, Håkon B


    Major incidents are complex, dynamic and bewildering task environments characterised by simultaneous, rapidly changing events, uncertainty and ill-structured problems. Efficient management, communication, decision-making and allocation of scarce medical resources at the chaotic scene of a major incident is challenging and often relies on sparse information and data. Communication and information sharing is primarily voice-to-voice through phone or radio on specified radio frequencies. Visual cues are abundant and difficult to communicate between teams and team members that are not co-located. The aim was to assess the concept and feasibility of using a remotely piloted aircraft (RPA) system to support remote sensing in simulated major incident exercises. We carried out an experimental, pilot feasibility study. A custom-made, remotely controlled, multirotor unmanned aerial vehicle with vertical take-off and landing was equipped with digital colour- and thermal imaging cameras, a laser beam, a mechanical gripper arm and an avalanche transceiver. We collected data in five simulated exercises: 1) mass casualty traffic accident, 2) mountain rescue, 3) avalanche with buried victims, 4) fisherman through thin ice and 5) search for casualties in the dark. The unmanned aerial vehicle was remotely controlled, with high precision, in close proximity to air space obstacles at very low levels without compromising work on the ground. Payload capacity and tolerance to wind and turbulence were limited. Aerial video, shot from different altitudes, and remote aerial avalanche beacon search were streamed wirelessly in real time to a monitor at a ground base. Electromagnetic interference disturbed signal reception in the ground monitor. A small remotely piloted aircraft can be used as an effective tool carrier, although limited by its payload capacity, wind speed and flight endurance. Remote sensing using already existing remotely piloted aircraft technology in pre

  6. Evaluation of pollutant emissions in North China Plain using aircraft measurements from the Air Chemistry Research In Asia (ARIAs) campaign

    He, H.; Ren, X.; Li, Z.; Dickerson, R. R.


    The North China Plain (NCP) is one of the most populated and polluted regions on Earth. With rapid economic development in past decades, air pollution including heavy atmospheric aerosol loadings became severe in this region, leading to environmental and climate problems. An aircraft campaign, Air Chemistry Research In Asia (ARIAs), was conducted in spring 2016 (in parallel to KORUS-AQ) to understand air quality in the NCP and transport of air pollutants from this area. Measurements of trace gases such as O3, CO, and SO2 and aerosol optical properties were analyzed to investigate the anthropogenic emissions in the NCP. Both high-efficiency combustion such as from automobiles and modern power plants as well as low-efficiency combustion such as from biomass burnings were identified. Transformations of primary pollutants and formation of secondary pollutants were simulated using the EPA CMAQ v5.2 model. The global HTAP-EDGAR v4.2 emission inventory of year 2010 was processed with SMOKE v4.5 to drive CMAQ. Modeling results were evaluated with aircraft observations to improve our knowledge of anthropogenic emissions and transport. We also used satellite observations including OMI SO2/NO2 and MODIS AOD to evaluate the model performance in the NCP. Through the comparison, we estimated the changes in emissions of major anthropogenic pollutants from 2010 to 2016. Sensitivity experiments with improved emission inventory were conducted to better investigate the air pollution in the NCP.

  7. Development of the System of Innovation: the Establishment of the Aircraft Industry in the Central Administrative Region (SP.

    Fernando Bueno de Oliveira


    Full Text Available The article intends to show the establishment of the aircraft industry in the Central Administrative Region (SP, in the last seven years, which introduced a new element in the economical structure of the region. Based on the innovation systemic approach , the objective is to identify and characterize the investments related to the aircraft industry segment carried out in the region and to identify the potentialities of the new production geographical axle and aircraft's maintenance for a dynamic setorial insertion, given by the capacity of integration to innovation system related to the aircraft industry. Some qualitative information was obtained from primary (questionnaires and secondary sources. For the analysis, all the information was organized taking into consideration the most important aspects of the innovation activities according to the Oslo Manual. Technology and efficient staff are the strategic factors to this type of industry. Based on these requirements, they have potentialities in the Central Administrative Region (CAR for a possible insertion in the innovation system: (i the favorable institutional environment concerning the education system, availability and training of human qualified resources, which demonstrated fast structuring capacity seeking to attend a new demand that appeared in the region; (ii Technology & Science infrastructure.

  8. Development and testing of improved polyimide actuator rod seals at higher temperatures for use in advanced aircraft hydraulic systems

    Robinson, E. D.; Waterman, A. W.; Nelson, W. G.


    Polyimide second stage rod seals were evaluated to determine their suitability for application in advanced aircraft systems. The configurations of the seals are described. The conditions of the life cycle tests are provided. It was determined that external rod seal leakage was within prescribed limits and that the seals showed no signs of structural degradation.


    T. V. Gras’Ko


    Full Text Available The paper describes choosing and substantiating the control laws, forming the appearance the automatic control system for regulated high temperature main combustion chamber of maneuverable aircraft multimode gas turbine engine aimed at sustainable and effective functioning of main combustion chamber within a broad operation range.

  10. Airfoil optimization for morphing aircraft

    Namgoong, Howoong

    Continuous variation of the aircraft wing shape to improve aerodynamic performance over a wide range of flight conditions is one of the objectives of morphing aircraft design efforts. This is being pursued because of the development of new materials and actuation systems that might allow this shape change. The main purpose of this research is to establish appropriate problem formulations and optimization strategies to design an airfoil for morphing aircraft that include the energy required for shape change. A morphing aircraft can deform its wing shape, so the aircraft wing has different optimum shapes as the flight condition changes. The actuation energy needed for moving the airfoil surface is modeled and used as another design objective. Several multi-objective approaches are applied to a low-speed, incompressible flow problem and to a problem involving low-speed and transonic flow. The resulting solutions provide the best tradeoff between low drag, high energy and higher drag, low energy sets of airfoil shapes. From this range of solutions, design decisions can be made about how much energy is needed to achieve a desired aerodynamic performance. Additionally, an approach to model aerodynamic work, which would be more realistic and may allow using pressure on the airfoil to assist a morphing shape change, was formulated and used as part of the energy objective. These results suggest that it may be possible to design a morphing airfoil that exploits the airflow to reduce actuator energy.

  11. Potential for integrated optical circuits in advanced aircraft with fiber optic control and monitoring systems

    Baumbick, Robert J.


    Fiber optic technology is expected to be used in future advanced weapons platforms as well as commercial aerospace applications. Fiber optic waveguides will be used to transmit noise free high speed data between a multitude of computers as well as audio and video information to the flight crew. Passive optical sensors connected to control computers with optical fiber interconnects will serve both control and monitoring functions. Implementation of fiber optic technology has already begun. Both the military and NASA have several programs in place. A cooperative program called FOCSI (Fiber Optic Control System Integration) between NASA Lewis and the NAVY to build environmentally test and flight demonstrate sensor systems for propul sion and flight control systems is currently underway. Integrated Optical Circuits (IOC''s) are also being given serious consideration for use in advanced aircraft sys tems. IOC''s will result in miniaturization and localization of components to gener ate detect optical signals and process them for use by the control computers. In some complex systems IOC''s may be required to perform calculations optically if the technology is ready replacing some of the electronic systems used today. IOC''s are attractive because they will result in rugged components capable of withstanding severe environments in advanced aerospace vehicles. Manufacturing technology devel oped for microelectronic integrated circuits applied to IOC''s will result in cost effective manufacturing. This paper reviews the current FOCSI program and describes the role of IOC''s in FOCSI applications.




    The activities of the Advanced Gas Turbine Systems Research (AGTSR) program for this reporting period are described in this quarterly report. The report is divided into discussions of Membership, Administration, Technology Transfer (Workshop/Education), Research and Miscellaneous Related Activity. Items worthy of note are presented in extended bullet format following the appropriate heading.




    The activities of the Advanced Gas Turbine Systems Research (AGTSR) program for this reporting period are described in this quarterly report. The report is divided into discussions of Membership, Administration, Technology Transfer (Workshop/Education), Research and Miscellaneous Related Activity. Items worthy of note are presented in extended bullet format following the appropriate heading.

  14. A Large Hemi-Anechoic Enclosure for Community-Compatible Aeroacoustic Testing of Aircraft Propulsion Systems

    Cooper, Beth A.


    A large hemi-anechoic (absorptive walls and acoustically hard floor) noise control enclosure has been erected around a complex of test stands at the NASA Lewis Research Center in Cleveland, Ohio. This new state-of-the-art Aeroacoustic Propulsion Laboratory (APL) provides an all-weather, semisecure test environment while limiting noise to acceptable levels in surrounding residential neighborhoods. The 39.6 m (130 ft) diameter geodesic dome structure houses the new Nozzle Aeroacoustic Test Rig (NATR), an ejector-powered M = 0.3 free jet facility for acoustic testing of supersonic aircraft exhaust nozzles and turbomachinery. A multi-axis, force-measuring Powered Lift Facility (PLF) stand for testing of Short Takeoff Vertical Landing (STOVL) vehicles is also located within the dome. The design of the Aeroacoustic Propulsion Laboratory efficiently accomodates the research functions of two separate test rigs, one of which (NATR) requires a specialized environment for taking acoustic measurements. Absorptive fiberglass wedge treatment on the interior surface of the dome provides a hemi-anechoic interior environment for obtaining the accurate acoustic measurements required to meet research program goals. The APL is the first known geodesic dome structure to incorporate transmission-loss properties as well as interior absorption into a free-standing, community-compatible, hemi-anechoic test facility.

  15. Simulation model for the Boeing 720B aircraft-flight control system in continuous flight.


    A mathematical model of the Boeing 720B aircraft and autopilot has been derived. The model is representative of the 720B aircraft for continuous flight within a flight envelope defined by a Mach number of .4 at 20,000 feet altitude in a cruise config...

  16. The Enforcer Aircraft Program: A Lower-Cost Alternative Weapon System.


    armoured striking forces. NATO’s air forces then, sns the optimum aircraft(s) to maximize the damage to the enemy while minimizing the cost to...the reascns Congress kept the Enforcer program alive was their inclination to support the underdog , an underdog with persuasiveness and tenacity. To

  17. An Automated System to Quantify Convectively induced Aircraft encounters with Turbulence over Europe and North Atlantic

    Meneguz, Elena; Turp, Debi; Wells, Helen


    It is well known that encounters with moderate or severe turbulence can lead to passenger injuries and incur high costs for airlines from compensation and litigation. As one of two World Area Forecast Centres (WAFCs), the Met Office has responsibility for forecasting en-route weather hazards worldwide for aviation above a height of 10,000 ft. Observations from commercial aircraft provide a basis for gaining a better understanding of turbulence and for improving turbulence forecasts through verification. However there is currently a lack of information regarding the possible cause of the observed turbulence, or whether the turbulence occurred within cloud. Such information would be invaluable for the development of forecasting techniques for particular types of turbulence and for forecast verification. Of all the possible sources of turbulence, convective activity is believed to be a major cause of turbulence. Its relative importance over the Europe and North Atlantic area has not been yet quantified in a systematic way: in this study, a new approach is developed to automate identification of turbulent encounters in the proximity of convective clouds. Observations of convection are provided from two independent sources: a surface based lightning network and satellite imagery. Lightning observations are taken from the Met Office Arrival Time Detections network (ATDnet). ATDnet has been designed to identify cloud-to-ground flashes over Europe but also detects (a smaller fraction of) strikes over the North Atlantic. Meteosat Second Generation (MSG) satellite products are used to identify convective clouds by applying a brightness temperature filtering technique. The morphological features of cold cloud tops are also investigated. The system is run for all in situ turbulence reports received from airlines for a total of 12 months during summer 2013 and 2014 for the domain of interest. Results of this preliminary short term climatological study show significant intra

  18. Real-time unmanned aircraft systems surveillance video mosaicking using GPU

    Camargo, Aldo; Anderson, Kyle; Wang, Yi; Schultz, Richard R.; Fevig, Ronald A.


    Digital video mosaicking from Unmanned Aircraft Systems (UAS) is being used for many military and civilian applications, including surveillance, target recognition, border protection, forest fire monitoring, traffic control on highways, monitoring of transmission lines, among others. Additionally, NASA is using digital video mosaicking to explore the moon and planets such as Mars. In order to compute a "good" mosaic from video captured by a UAS, the algorithm must deal with motion blur, frame-to-frame jitter associated with an imperfectly stabilized platform, perspective changes as the camera tilts in flight, as well as a number of other factors. The most suitable algorithms use SIFT (Scale-Invariant Feature Transform) to detect the features consistent between video frames. Utilizing these features, the next step is to estimate the homography between two consecutives video frames, perform warping to properly register the image data, and finally blend the video frames resulting in a seamless video mosaick. All this processing takes a great deal of resources of resources from the CPU, so it is almost impossible to compute a real time video mosaic on a single processor. Modern graphics processing units (GPUs) offer computational performance that far exceeds current CPU technology, allowing for real-time operation. This paper presents the development of a GPU-accelerated digital video mosaicking implementation and compares it with CPU performance. Our tests are based on two sets of real video captured by a small UAS aircraft; one video comes from Infrared (IR) and Electro-Optical (EO) cameras. Our results show that we can obtain a speed-up of more than 50 times using GPU technology, so real-time operation at a video capture of 30 frames per second is feasible.


    Alexander A. Itskovich


    Full Text Available The concept of the aviation enterprise as a unified system of processes and projects of the aircraft airworthiness maintenance (AAM is presented. The relevance of project management tools usage, including the transport branch, is noted; the examples of successful implementation of the development projects at domestic enterprises manufacturing aircraft engines are given. A scheme for the classification of the AAM projects and processes, reflecting their interrelationship, is proposed. The operational activity of the enterprise is a combination of its business processes. The company selects plans and implements the relevant projects for the business processes optimization. At the same time, the projects themselves are the objects of management based on standardized processes. The processes of project management and the main processes of the enterprise are also interrelated and can be objects included in the unified regulations of its units. Increasing the efficiency of operational processes and processes of the aviation enterprise management is the goal of development projects, which are divided into investment projects and organizational changes projects.Limitation of organizational and financial resources of the company requires the identification and systematization of all projects and processes, while the application of project management standards allows to analyze the opportunities and to determine the sequence of their implementation. The importance of accumulating experience of completed projects is shown; the results can become typical methods for planning, organizing the implementation and monitoring of AAM projects. Specific forms of the project management standards implementation for AN-124-100 constructive modification project in LLC Volga-Dnepr Airlines are demonstrated: the control events plan and the project team formation.

  20. Unmanned Aircraft Systems (UAS) Integration in the National Airspace System (NAS) Project: Terminal Operations HITL 1B Primary Results

    Rorie, Conrad; Monk, Kevin; Roberts, Zach; Brandt, Summer


    This presentation provides an overview of the primary results from the Unmanned Aircraft Systems (UAS) Integration in the National Airspace System (NAS) Project's second Terminal Operations human-in-the-loop simulation. This talk covers the background of this follow-on experiment, which includes an overview of the first Terminal Operations HITL performed by the project. The primary results include a look at the number and durations of detect and avoid (DAA) alerts issued by the two DAA systems under test. It also includes response time metrics and metrics on the ability of the pilot-in-command (PIC) to maintain sufficient separation. Additional interoperability metrics are included to illustrate how pilots interact with the tower controller. Implications and conclusions are covered at the end.