WorldWideScience

Sample records for systems manual nuclear

  1. NJOY nuclear data processing system: user's manual

    International Nuclear Information System (INIS)

    MacFarlane, R.E.; Barrett, R.J.; Muir, D.W.; Boicourt, R.M.

    1978-12-01

    The NJOY nuclear data processing system is a comprehensive computer code package for producing cross sections for neutron and photon transport calculations from ENDF/B-IV and -V evaluated nuclear data. This user's manual provides a concise description of the code, input instructions, sample problems, and installation instructions. 1 figure, 3 tables

  2. Next Generation Nuclear Plant System Requirements Manual

    International Nuclear Information System (INIS)

    Not Listed

    2008-01-01

    System Requirements Manual for the NGNP Project. The Energy Policy Act of 2005 (H.R. 6; EPAct), which was signed into law by President George W. Bush in August 2005, required the Secretary of the U.S. Department of Energy (DOE) to establish a project to be known as the Next Generation Nuclear Plant (NGNP) Project. According to the EPAct, the NGNP Project shall consist of the research, development, design, construction, and operation of a prototype plant (to be referred to herein as the NGNP) that (1) includes a nuclear reactor based on the research and development (R and D) activities supported by the Generation IV Nuclear Energy Systems initiative, and (2) shall be used to generate electricity, to produce hydrogen, or to both generate electricity and produce hydrogen. The NGNP Project supports both the national need to develop safe, clean, economical nuclear energy and the Nuclear Hydrogen Initiative (NHI), which has the goal of establishing greenhouse-gas-free technologies for the production of hydrogen. The DOE has selected the helium-cooled High Temperature Gas-Cooled Reactor (HTGR) as the reactor concept to be used for the NGNP because it is the only near-term Generation IV concept that has the capability to provide process heat at high-enough temperatures for highly efficient production of hydrogen. The EPAct also names the Idaho National Laboratory (INL), the DOE's lead national laboratory for nuclear energy research, as the site for the prototype NGNP

  3. The users manual and concepts of nuclear materials accounting system

    International Nuclear Information System (INIS)

    Lee, Byung Du; Jeon, In

    1996-03-01

    This report is to describe the concepts, operation status and user's manuals of nuclear materials accounting system which was developed to not only make out, report and manage the IAEA accounting reports but also maintain the accounting information. Therefore, facility operator could effectively make use of the accounting system without a special training by using this report. 3 tabs., 15 figs., (Author) .new

  4. The development of nuclear material accountability system - software user's manual

    International Nuclear Information System (INIS)

    Byeon, Kee Hoh; Kim, Ho Dong; Song, Dae Yong; Ko, Won Il; Hong, Jong Sook; Lee, Byung Doo

    1999-07-01

    We have developed the near-real time nuclear material accountability system, named by DMAS, for DUPIC Test Facility in the basis of the survey of DUPIC process and activities for the accountability of the system, and the review of the rules and regulations related to the nuclear material accounting. Our system adopts the structure and technologies used in COREMAS which was developed by LANL. This technical report illustrates the system structure and program usage as a user manual for DMAS. (author). 56 tabs., 1 fig

  5. Nuclear medicine resources manual

    International Nuclear Information System (INIS)

    2006-02-01

    Over the past decade many IAEA programmes have significantly enhanced the capabilities of numerous Member States in the field of nuclear medicine. Functional imaging using nuclear medicine procedures has become an indispensable tool for the diagnosis, treatment planning and management of patients. However, due to the heterogeneous growth and development of nuclear medicine in the IAEA's Member States, the operating standards of practice vary considerably from country to country and region to region. This publication is the result of the work of over 30 international professionals who have assisted the IAEA in the process of standardization and harmonization. This manual sets out the prerequisites for the establishment of a nuclear medicine service, including basic infrastructure, suitable premises, reliable supply of electricity, maintenance of a steady temperature, dust exclusion for gamma cameras and radiopharmacy dispensaries. It offers clear guidance on human resources and training needs for medical doctors, technologists, radiopharmaceutical scientists, physicists and specialist nurses in the practice of nuclear medicine. The manual describes the requirements for safe preparation and quality control of radiopharmaceuticals. In addition, it contains essential requirements for maintenance of facilities and instruments, for radiation hygiene and for optimization of nuclear medicine operational performance with the use of working clinical protocols. The result is a comprehensive guide at an international level that contains practical suggestions based on the experience of professionals around the globe. This publication will be of interest to nuclear medicine physicians, radiologists, medical educationalists, diagnostic centre managers, medical physicists, medical technologists, radiopharmacists, specialist nurses, clinical scientists and those engaged in quality assurance and control systems in public health in both developed and developing countries

  6. Nuclear material operations manual

    International Nuclear Information System (INIS)

    Tyler, R.P.

    1981-02-01

    This manual provides a concise and comprehensive documentation of the operating procedures currently practiced at Sandia National Laboratories with regard to the management, control, and accountability of nuclear materials. The manual is divided into chapters which are devoted to the separate functions performed in nuclear material operations-management, control, accountability, and safeguards, and the final two chapters comprise a document which is also issued separately to provide a summary of the information and operating procedures relevant to custodians and users of radioactive and nuclear materials. The manual also contains samples of the forms utilized in carrying out nuclear material activities. To enhance the clarity of presentation, operating procedures are presented in the form of playscripts in which the responsible organizations and necessary actions are clearly delineated in a chronological fashion from the initiation of a transaction to its completion

  7. Nuclear material operations manuals

    International Nuclear Information System (INIS)

    Tyler, R.P.

    1979-06-01

    This manual is intended to provide a concise and comprehensive documentation of the operating procedures currently practiced at Sandia Laboratories with regard to the management, control, and accountability of radioactive and nuclear materials. The manual is divided into chapters which are devoted to the separate functions performed in nuclear material operations-management, control, accountability, and safeguards, and the final two chapters comprise a document which is also issued separately to provide a summary of the information and operating procedures relevant to custodians and users of radioactive and nuclear materials. The manual also contains samples of the forms utilized in carrying out nuclear material activities. To enhance the clarity of presentation, operating procedures are presented in the form of playscripts in which the responsible organizations and necessary actions are clearly delineated in a chronological fashion from the initiation of a transaction to its completion

  8. Nuclear material operations manual

    International Nuclear Information System (INIS)

    Tyler, R.P.; Gassman, L.D.

    1978-04-01

    This manual is intended to provide a concise and comprehensive documentation of the operating procedures currently practiced at Sandia Laboratories with regard to the management, control, and accountability of radioactive and nuclear materials. The manual is divided into chapters which are devoted to the separate functions performed in nuclear material operations--management, control, accountability, and safeguards, and the final two chapters comprise a document which is also issued separately to provide a summary of the information and operating procedures relevant to custodians and users of radioactive and nuclear materials. The manual also contains samples of the forms utilized in carrying out nuclear material activities. To enhance the clarity of presentation, operating procedures are presented in the form of ''play-scripts'' in which the responsible organizations and necessary actions are clearly delineated in a chronological fashion from the initiation of a transaction to its completion

  9. EDAS-manual. SATAN - system to analyze tremendous amounts of nuclear data. Vol. 2

    International Nuclear Information System (INIS)

    Goeringer, H.; Gralla, S.; Malzacher, P.; Richter, M.; Schall, D.; Winkelmann, K.

    1988-09-01

    The system to analyze tremendous amounts of nuclear data (SATAN) shows different steps of a special experiment data evaluation called 'Linearisation'. The report contains the EDAS-manual with EDAS-command, TSO-command, macro and procedure. Syntax and usage of EDAS macros are explained. (DG)

  10. EXFOR Systems Manual Nuclear reaction Data Exchange Format

    International Nuclear Information System (INIS)

    McLane, V.

    2000-01-01

    EXFOR is an exchange format designed to allow transmission of nuclear reaction data between the members of the Nuclear Data Centers Network. This document has been written for use by the members of the Network and includes matters of procedure and protocol, as well as detailed rules for the compilation of data. Users may prefer to consult EXFOR Basics' for a brief description of the format

  11. EXFOR SYSTEMS MANUAL NUCLEAR REACTION DATA EXCHANGE FORMAT.

    Energy Technology Data Exchange (ETDEWEB)

    MCLANE,V.; NUCLEAR DATA CENTER NETWORK

    2000-05-19

    EXFOR is an exchange format designed to allow transmission of nuclear reaction data between the members of the Nuclear Data Centers Network. This document has been written for use by the members of the Network and includes matters of procedure and protocol, as well as detailed rules for the compilation of data. Users may prefer to consult EXFOR Basics' for a brief description of the format.

  12. Nuclear electronics laboratory manual

    International Nuclear Information System (INIS)

    1984-05-01

    The Nuclear Electronics Laboratory Manual is a joint product of several electronics experts who have been associated with IAEA activity in this field for many years. The manual does not include experiments of a basic nature, such as characteristics of different active electronics components. It starts by introducing small electronics blocks, employing one or more active components. The most demanding exercises instruct a student in the design and construction of complete circuits, as used in commercial nuclear instruments. It is expected that a student who completes all the experiments in the manual should be in a position to design nuclear electronics units and also to understand the functions of advanced commercial instruments which need to be repaired or maintained. The future tasks of nuclear electronics engineers will be increasingly oriented towards designing and building the interfaces between a nuclear experiment and a computer. The manual pays tribute to this development by introducing a number of experiments which illustrate the principles and the technology of interfacing

  13. EXFOR systems manual: Nuclear reaction data exchange format

    International Nuclear Information System (INIS)

    McLane, V.

    1996-07-01

    This document describes EXFOR, the exchange format designed to allow transmission of nuclear reaction data between the members of the Nuclear Data Centers Network. In addition to storing the data and its bibliographic information, experimental information, including source of uncertainties, is also compiled. The status and history of the data set is also included, e.g., the source of the data, any updates which have been made, and correlations to other data sets. The exchange format, as outlined, is designed to allow a large variety of numerical data tables with explanatory and bibliographic information to be transmitted in an easily machine-readable format (for checking and indicating possible errors) and a format that can be read by personnel (for passing judgment on and correcting any errors indicated by the machine)

  14. The development of nuclear material accountability system - software user's manual

    Energy Technology Data Exchange (ETDEWEB)

    Byeon, Kee Hoh; Kim, Ho Dong; Song, Dae Yong; Ko, Won Il; Hong, Jong Sook; Lee, Byung Doo

    1999-07-01

    We have developed the near-real time nuclear material accountability system, named by DMAS, for DUPIC Test Facility in the basis of the survey of DUPIC process and activities for the accountability of the system, and the review of the rules and regulations related to the nuclear material accounting. Our system adopts the structure and technologies used in COREMAS which was developed by LANL. This technical report illustrates the system structure and program usage as a user manual for DMAS. (author). 56 tabs., 1 fig.

  15. WSPEEDI-II system user's manual for a nuclear or radiological emergency

    International Nuclear Information System (INIS)

    Nakanishi, Chika; Sato, Sohei; Muto, Shigeo; Furuno, Akiko; Terada, Hiroaki; Nagai, Haruyasu

    2011-03-01

    Nuclear Emergency Assistance and Training Center (NEAT) has developed the response system to evaluate the radiological consequences of an accident on a nuclear power plant or nuclear weapons testing around Japan and to support prediction of radioactive material distributions by using an atmospheric dispersion model on the framework of the Response Assistance Network (RANET) which is established by the International Atomic Energy Agency (IAEA). For the enhancement of assistance capability to external organizations at a nuclear or radiological emergency, NEAT will introduce a computer-based emergency response system, 'Worldwide version of System for Prediction of Environmental Emergency Dose Information: WSPEEDI 2nd version (WSPEEDI-II)' developed by Division of Environmental and Radiation Sciences. This manual covers the overview of the system and configuration parameters as the basic knowledge needed for operating the systems. (author)

  16. Nuclear power plant control room crew task analysis database: SEEK system. Users manual

    International Nuclear Information System (INIS)

    Burgy, D.; Schroeder, L.

    1984-05-01

    The Crew Task Analysis SEEK Users Manual was prepared for the Office of Nuclear Regulatory Research of the US Nuclear Regulatory Commission. It is designed for use with the existing computerized Control Room Crew Task Analysis Database. The SEEK system consists of a PR1ME computer with its associated peripherals and software augmented by General Physics Corporation SEEK database management software. The SEEK software programs provide the Crew Task Database user with rapid access to any number of records desired. The software uses English-like sentences to allow the user to construct logical sorts and outputs of the task data. Given the multiple-associative nature of the database, users can directly access the data at the plant, operating sequence, task or element level - or any combination of these levels. A complete description of the crew task data contained in the database is presented in NUREG/CR-3371, Task Analysis of Nuclear Power Plant Control Room Crews (Volumes 1 and 2)

  17. Program Management System manual

    International Nuclear Information System (INIS)

    1986-01-01

    The Program Management System (PMS), as detailed in this manual, consists of all the plans, policies, procedure, systems, and processes that, taken together, serve as a mechanism for managing the various subprograms and program elements in a cohesive, cost-effective manner. The PMS is consistent with the requirements of the Nuclear Waste Policy Act of 1982 and the ''Mission Plan for the Civilian Radioactive Waste Management Program'' (DOE/RW-0005). It is based on, but goes beyond, the Department of Energy (DOE) management policies and procedures applicable to all DOE programs by adapting these directives to the specific needs of the Civilian Radioactive Waste Management program. This PMS Manual describes the hierarchy of plans required to develop and maintain the cost, schedule, and technical baselines at the various organizational levels of the Civilian Radioactive Waste Management Program. It also establishes the management policies and procedures used in the implementation of the Program. These include requirements for internal reports, data, and other information; systems engineering management; regulatory compliance; safety; quality assurance; and institutional affairs. Although expanded versions of many of these plans, policies, and procedures are found in separate documents, they are an integral part of this manual. The PMS provides the basis for the effective management that is needed to ensure that the Civilian Radioactive Waste Management Program fulfills the mandate of the Nuclear Waste Policy Act of 1982. 5 figs., 2 tabs

  18. Nuclear medicine. 1 part. Manual

    International Nuclear Information System (INIS)

    Shlygina, O.E.; Borisenko, A.R.

    2006-01-01

    Current manual is urged to give wide-scale readers a submission on a key principles and methods of nuclear medicine, and it opportunities and restrictions in diagnostics and treatment of different diseases. Nuclear medicine is differing first of all by combination of diverse knowledge fields: special knowledge of a doctor, knowledge of physical processes bases, related with radiation, grounds of radiopharmaceutics, dosimetry. In the base of the book the 5th edition of 'Nuclear medicine' manual in 2 parts of German authors - Schicha, G.; Schober, O. is applied. In the book publishing the stuff of the Institute of Nuclear Physics of the National Nuclear Center of Republic of Kazakhstan has been worked. Modifications undergo practically all chapters: especially the second one, forth and sixth was enlarged. The 1 part of the book was published due to support of IAEA within the Technical cooperation project 'Implementation of Nuclear Medicine and Biophysics Center' (KAZ/6/007). The manual second part - devoted to applications of nuclear medicine methods for diagnostics and treatment - will be published in 2007

  19. Program management system manual

    International Nuclear Information System (INIS)

    1989-08-01

    OCRWM has developed a program management system (PMS) to assist in organizing, planning, directing and controlling the Civilian Radioactive Waste Management Program. A well defined management system is necessary because: (1) the Program is a complex technical undertaking with a large number of participants, (2) the disposal and storage facilities to be developed by the Program must be licensed by the Nuclear Regulatory Commission (NRC) and hence are subject to rigorous quality assurance (QA) requirements, (3) the legislation mandating the Program creates a dichotomy between demanding schedules of performance and a requirement for close and continuous consultation and cooperation with external entities, (4) the various elements of the Program must be managed as parts of an integrated waste management system, (5) the Program has an estimated total system life cycle cost of over $30 billion, and (6) the Program has a unique fiduciary responsibility to the owners and generators of the nuclear waste for controlling costs and minimizing the user fees paid into the Nuclear Waste Fund. This PMS Manual is designed and structured to facilitate strong, effective Program management by providing policies and requirements for organizing, planning, directing and controlling the major Program functions

  20. Quality manual. Nuclear Regulatory Authority of the Slovak Republic

    International Nuclear Information System (INIS)

    2006-03-01

    This quality manual of the Nuclear Regulatory Authority of the Slovak Republic (UJD) is presented. Basic characteristics of the UJD, Quality manual operative control, and Quality management system (QMS) are described. Management responsibility, Processes realization, Measurement, analysis (assessment) and improvement of the quality management system, Cancellation provision as well as abbreviations used in the Quality Manual are presented.

  1. Nuclear science references coding manual

    International Nuclear Information System (INIS)

    Ramavataram, S.; Dunford, C.L.

    1996-08-01

    This manual is intended as a guide to Nuclear Science References (NSR) compilers. The basic conventions followed at the National Nuclear Data Center (NNDC), which are compatible with the maintenance and updating of and retrieval from the Nuclear Science References (NSR) file, are outlined. In Section H, the structure of the NSR file such as the valid record identifiers, record contents, text fields as well as the major TOPICS for which are prepared are enumerated. Relevant comments regarding a new entry into the NSR file, assignment of , generation of and linkage characteristics are also given in Section II. In Section III, a brief definition of the Keyword abstract is given followed by specific examples; for each TOPIC, the criteria for inclusion of an article as an entry into the NSR file as well as coding procedures are described. Authors preparing Keyword abstracts either to be published in a Journal (e.g., Nucl. Phys. A) or to be sent directly to NNDC (e.g., Phys. Rev. C) should follow the illustrations in Section III. The scope of the literature covered at the NNDC, the categorization into Primary and Secondary sources, etc., is discussed in Section IV. Useful information regarding permitted character sets, recommended abbreviations, etc., is given under Section V as Appendices

  2. Nuclear structure references coding manual

    International Nuclear Information System (INIS)

    Ramavataram, S.; Dunford, C.L.

    1984-02-01

    This manual is intended as a guide to Nuclear Structure References (NSR) compilers. The basic conventions followed at the National Nuclear Data Center (NNDC), which are compatible with the maintenance and updating of and retrieval from the Nuclear Structure References (NSR) file, are outlined. The structure of the NSR file such as the valid record identifiers, record contents, text fields as well as the major topics for which [KEYWORDS] are prepared are ennumerated. Relevant comments regarding a new entry into the NSR file, assignment of [KEYNO ], generation of [SELECTRS] and linkage characteristics are also given. A brief definition of the Keyword abstract is given followed by specific examples; for each TOPIC, the criteria for inclusion of an article as an entry into the NSR file as well as coding procedures are described. Authors submitting articles to Journals which require Keyword abstracts should follow the illustrations. The scope of the literature covered at NNDC, the categorization into Primary and Secondary sources, etc. is discussed. Useful information regarding permitted character sets, recommended abbreviations, etc. is given

  3. INPRO Methodology for Sustainability Assessment of Nuclear Energy Systems: Environmental Impact of Stressors. INPRO Manual

    International Nuclear Information System (INIS)

    2016-01-01

    This publication provides guidance on assessing of sustainability of a nuclear energy system (NES) in the area of environmental impact of stressors. The INPRO methodology is a comprehensive tool for the assessment of sustainability of an NES. Basic principles, user requirements and criteria have been defined in different areas of INPRO methodology. These include economics, infrastructure, waste management, proliferation resistance, environmental impact of stressors, environmental impact from depletion of resources, and safety of nuclear reactors and fuel cycle facilities. The ultimate goal of the application of the INPRO methodology is to check whether the assessed NES fulfils all the criteria, and hence the user requirements and basic principles, and therefore presents a system for a Member State that is sustainable in the long term

  4. Empire-3.2 Malta. Modular System for Nuclear Reaction Calculations and Nuclear Data Evaluation. User's Manual

    International Nuclear Information System (INIS)

    Herman, M.; Capote, R.; Sin, M.

    2013-08-01

    EMPIRE is a modular system of nuclear reaction codes, comprising various nuclear models, and designed for calculations over a broad range of energies and incident particles. The system can be used for theoretical investigations of nuclear reactions as well as for nuclear data evaluation work. Photons, nucleons, deuterons, tritons, helions ( 3 He), α's, and light or heavy ions can be selected as projectiles. The energy range starts just above the resonance region in the case of a neutron projectile, and extends up to few hundred MeV for heavy ion induced reactions. The code accounts for the major nuclear reaction models, such as optical model, Coupled Channels and DWBA (ECIS06 and OPTMAN), Multi-step Direct (ORION + TRISTAN), NVWY Multi-step Compound, exciton model (PCROSS), hybrid Monte Carlo simulation (DDHMS), and the full featured Hauser-Feshbach model including width fluctuations and the optical model for fission. Heavy ion fusion cross section can be calculated within the simplified coupled channels approach (CCFUS). A comprehensive library of input parameters based on the RIPL-3 library covers nuclear masses, optical model parameters, ground state deformations, discrete levels and decay schemes, level densities, fission barriers, and γ-ray strength functions. Effects of the dynamic deformation of a fast rotating nucleus can be taken into account in the calculations (BARFIT, MOMFIT). The results can be converted into the ENDF-6 format using the accompanying EMPEND code. Modules of the ENDF Utility Codes and the ENDF Pre-Processing codes are applied for ENDF file verification. The package contains the full EXFOR library of experimental data in computational format C4 that are automatically retrieved during the calculations. EMPIRE contains the resonance module that retrieves data from the electronic version of the Atlas of Neutron Resonances by Mughabghab (not provided with the EMPIRE distribution), to produce resonance section and related covariances for the

  5. SNAP operating system reference manual

    International Nuclear Information System (INIS)

    Sabuda, J.D.; Polito, J.; Walker, J.L.; Grant, F.H. III.

    1982-03-01

    The SNAP Operating System (SOS) is a FORTRAN 77 program which provides assistance to the safeguards analyst who uses the Safeguards Automated Facility Evaluation (SAFE) and the Safeguards Network Analysis Procedure (SNAP) techniques. Features offered by SOS are a data base system for storing a library of SNAP applications, computer graphics representation of SNAP models, a computer graphics editor to develop and modify SNAP models, a SAFE-to-SNAP interface, automatic generation of SNAP input data, and a computer graphic post-processor for SNAP. The SOS Reference Manual provides detailed application information concerning SOS as well as a detailed discussion of all SOS components and their associated command input formats. SOS was developed for the US Nuclear Regulatory Commission's Office of Nuclear Regulatory Research and the US Naval Surface Weapons Center by Pritsker and Associates, Inc., under contract to Sandia National Laboratories

  6. Quality manual for Laboratories of the Nuclear Materials Characterization Division

    International Nuclear Information System (INIS)

    Sabato, S.F.

    1991-05-01

    This publication presents the first Quality Manual for the Laboratories at the Nuclear Materials Characterization Division. The Manual describes the laboratories, its organization structure, fields of activities, personnel records, equipments, maintenance and calibration. The main aspects concerning quality assurance in the analysis were discussed. The whole system of receiving, identifying and processing analysis of the samples is shown. Since there are many information to be contained in several subjects of the Quality Manual, there were produced separate documents that are cross referenced in the manual. (author)

  7. EXFOR systems manual: Nuclear reaction data exchange format. Revision 97/1

    International Nuclear Information System (INIS)

    McLane, V.

    1997-07-01

    This document describes EXFOR, the exchange format designed to allow transmission of nuclear reaction data between the members of the Nuclear Data Center Network. In addition to storing the data and its' bibliographic information, experimental information, including source of uncertainties, is also compiled. The status and history of the data set is also included, e.g., the source of the data, any updates which have been made, and correlations to other data sets. EXFOR is designed for flexibility rather than optimization of data processing in order to meet the diverse needs of the nuclear reaction data centers. The exchange format should not be confused with a center-to-user format. Although users may obtain data from the centers in the EXFOR format, other center-to-user formats have been developed to meet the needs of the users within each center's own sphere of responsibility. The exchange format, as outlined, is designed to allow a large variety of numerical data tables with explanatory and bibliographic information to be transmitted in an easily machine-readable format (for checking and indicating possible errors) and a format that can be read by personnel (for passing judgment on and correcting any errors indicated by the machine)

  8. Nuclear forensics support. Reference manual

    International Nuclear Information System (INIS)

    2006-01-01

    Illicit trafficking of nuclear and other radioactive material has been an issue of concern since the first seizures in the early 1990s. By the end of 2004 Member States had confirmed 540 cases, while about another 500 remain unconfirmed. Most of the confirmed cases have a criminal dimension, even if they were not for known terrorist purposes. The attacks of September 2001 in the USA dramatically emphasized the requirement for the enhanced control and security of nuclear and other radioactive material. In response to a resolution by the IAEA General Conference in September 2002 the IAEA has adopted an integrated approach to protection against nuclear terrorism. This brings together IAEA activities concerned with the physical protection of nuclear material and nuclear installations, nuclear material accountancy, detection and response to illicit nuclear trafficking, the security and safety of radioactive sources, emergency response measures - including pre-emergency measures in Member States and at the IAEA - and the promotion of State adherence to relevant international instruments. States have the responsibility for combating illicit trafficking and the inadvertent movements of radioactive material. The IAEA cooperates with Member States and other international organizations in joint efforts to prevent incidents of illicit trafficking and inadvertent movements and to harmonize policies and measures by providing relevant advice through a range of technical assistance and documents. In this context, the IAEA issued a group of three technical documents, co-sponsored by the World Customs Organization, Europol and Interpol, on the inadvertent movement and illicit trafficking of radioactive material. The first is Prevention of the Inadvertent Movement and Illicit Trafficking of Radioactive Material (IAEA-TECDOC-1311), the second is called Detection of Radioactive Material at Borders (IAEA-TECDOC-1312) and the third is Response to Events Involving the Inadvertent Movement

  9. Study of developing nuclear fabrication facility's integrated emergency response manual

    International Nuclear Information System (INIS)

    Kim, Taeh Yeong; Cho, Nam Chan; Han, Seung Hoon; Moon, Jong Han; Lee, Jin Hang; Min, Guem Young; Han, Ji Ah

    2016-01-01

    Public begin to pay attention to emergency management. Thus, public's consensus on having high level of emergency management system up to advanced country's is reached. In this social atmosphere, manual is considered as key factor to prevent accident or secure business continuity. Therefore, we first define possible crisis at KEPCO Nuclear Fuel (hereinafter KNF) and also make a 'Reaction List' for each crisis situation at the view of information-design. To achieve it, we analyze several country's crisis response manual and then derive component, indicate duties and roles at the information-design point of view. From this, we suggested guideline to make 'Integrated emergency response manual(IERM)'. The manual we used before have following few problems; difficult to applicate at the site, difficult to deliver information. To complement these problems, we searched manual elements from the view of information-design. As a result, we develop administrative manual. Although, this manual could be thought as fragmentary manual because it confined specific several agency/organization and disaster type

  10. Spent Nuclear Fuel Project Cold Vacuum Drying Facility Operations Manual

    International Nuclear Information System (INIS)

    IRWIN, J.J.

    1999-01-01

    This document provides the Operations Manual for the Cold Vacuum Drying Facility (CVDF). The Manual was developed in conjunction with HNF-553, Spent Nuclear Fuel Project Final Safety Analysis Report Annex B--Cold Vacuum Drying Facility. The HNF-SD-SNF-DRD-002, 1999, (Cold Vacuum Drying Facility Design Requirements), Rev. 4. and the CVDF Final Design Report. The Operations Manual contains general descriptions of all the process, safety and facility systems in the CVDF, a general CVD operations sequence and references to the CVDF System Design Descriptions (SDDs). This manual has been developed for the SNFP Operations Organization and shall be updated, expanded, and revised in accordance with future design, construction and startup phases of the CVDF until the CVDF final ORR is approved

  11. HVAC system operation manual of IMEF

    International Nuclear Information System (INIS)

    Baek, Sang Yeol; Park, Dae Kyu; Ahn, Sang Bok; Ju, Yong Sun.

    1997-06-01

    This manual is operation procedures of the IMEF(Irradiated Material Examination Facility) HVAC(Heating, Ventilation and Air Conditioning) System. General operation procedures and test method of the IMEF HVAC system are described. The manual is as follows; 1. HVAC system operation manual 2. HVAC system management guide 3. HVAC system maintenance manual 4. HVAC system air velocity and flowrate measurement manual 5. HVAC system HEPA filter leak test manual 6. HVAC system charcoal filter leak test manual 7. HVAC system HEPA and charcoal filter exchange manual. (author). 8 tabs

  12. EXFOR systems manual

    International Nuclear Information System (INIS)

    McLane, Victoria

    2000-01-01

    EXFOR is the exchange format for the transmission of experimental nuclear reaction data between national and international nuclear data centers for the benefit of nuclear data users in all countries. This report contains the agreed coding rules and format. The present version is identical to the report BNL-NCS-63330 (April 2000) except for very few minor corrections introduced by IAEA-NDS. (author)

  13. Nuclear electronics laboratory manual 1989 edition

    International Nuclear Information System (INIS)

    1989-10-01

    This manual is a joint product of several electronics experts who have been associated with IAEA activity in this field for many years. It is based on the experience of conducting twenty-three training courses on nuclear electronics. Compared with the first edition, published 1984, this edition contains many new experiments, mainly on the advanced technical level. The total number of experiments and special projects is 58. Tabs and figs

  14. ISE System Development Methodology Manual

    Energy Technology Data Exchange (ETDEWEB)

    Hayhoe, G.F.

    1992-02-17

    The Information Systems Engineering (ISE) System Development Methodology Manual (SDM) is a framework of life cycle management guidelines that provide ISE personnel with direction, organization, consistency, and improved communication when developing and maintaining systems. These guide-lines were designed to allow ISE to build and deliver Total Quality products, and to meet the goals and requirements of the US Department of Energy (DOE), Westinghouse Savannah River Company, and Westinghouse Electric Corporation.

  15. Quality management for nuclear power plant operation: A manual

    International Nuclear Information System (INIS)

    1990-01-01

    The experience from well operated nuclear power plants shows that achievement of safe, reliable and economic performance is closely related to a strong commitment and involvement by the management personnel. A system of controls is necessary to ensure that satisfactory quality in operation is achieved and maintained over the long term. The key to achieving and assuring quality lies in the ability of management to define performance objectives and to ensure that significant safety and reliability problems are prevented or detected early and resolved. This Manual has been developed by the IAEA to assist plant managers in fulfilling their responsibility with regard to the control and direction of quality and of quality assurance activities in nuclear power plant operation. It emphasizes quality objectives for nuclear power plant operation and indicates the way in which a quality system based on quality assurance principles as established in the IAEA NUSS documents can be used by managers to accomplish these objectives. Since the Manual is mainly directed at management personnel, it is presented in the form of short highlighted practices complemented by typical examples of forms and procedures. Since not all the activities under the heading of quality in operation could be covered in a single document, the activities selected for this Manual comprise those where it was felt that practical advice is generally needed. A pragmatic document useful for direct application by plant managers was the envisaged objective

  16. Computerized operation manual (COM) of nuclear power plants

    International Nuclear Information System (INIS)

    Szegi, Z.

    1985-01-01

    This paper is to be presented at the International Seminar on Diagnoses of and Response to Abnormal Occurrences at Nuclear Power Plants organized by the International Atomic Energy Agency. The topic of presentation is the Computerized Operational Manual. This system supports the operator at disturbance situations by displaying quickly and unambiguously the operational instructions and the relevant information without mistakes. By the computerized manual the operator can determine the instruction-subsystem which reflects the real state of the power unit. From this point the system guides the operator on how to drive the unit to another determined state by providing the operational instructions at any time. A data bank is also included which contains information concerning rules restricting on maintenance and repair. The system will be realized at Paks NPP. (author)

  17. A manual of nuclear medicine procedures

    International Nuclear Information System (INIS)

    Das, B.K.; Noreen Norfaraheen Lee Abdullah

    2012-01-01

    Nuclear medicine is a fast growing specialty. The procedures provide quantitative parameters of organ functions required for modern practice of medicine. With the development of new machines and increased application of computer software, the procedures are under continuous change. Some procedures have become outdated or redundant while new methods have been introduced to enhance the quality of information obtained from a particular application. Although there are a few books published abroad to inform doctors and technical staff about the procedures, a comprehensive source to give quick information about how different test are performed, particularly the new developments and the expected outcome both in normal and abnormal cases has been a long felt need. The physician ordering a Nuclear Medicine test also needs to know what patient preparations are required for optimal results, how to satisfy the queries of the patient particularly in respect of radiation exposure which sometimes can be a major concern of the patient. This manual has been prepared not only to describe technical details of various procedures that are currently practiced in Nuclear Medicine, but also to provide quick information for the doctors and health care personnel on how to inform the patients about the investigation for which they are being referred and how to interpret the results. Since there is no such comprehensive book published yet in Asia including South-East Asia, it is likely to be in great demand in the region. All students of Master Degree, M.D., DRM, DMRIT, M.Sc. (Nuclear Medicine) and technologists already working in various diagnostic centers will likely buy this book. General practitioners and specialists who refer patients for different radioisotope investigations may find this book useful for quick reference. (author)

  18. Guidance for the application of an assessment methodology for innovative nuclear energy systems. INPRO manual - Physical protection. Vol. 6 of the final report of phase 1 of the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO)

    International Nuclear Information System (INIS)

    2008-11-01

    The International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) was initiated in the year 2000, based on a resolution of the IAEA General Conference (GC(44)/RES/21). The main objectives of INPRO are (1) to help to ensure that nuclear energy is available to contribute in fulfilling energy needs in the 21st century in a sustainable manner, (2) to bring together both technology holders and technology users to consider jointly the international and national actions required to achieve desired innovations in nuclear reactors and fuel cycles; and (3) to create a forum to involve all relevant stakeholders that will have an impact on, draw from, and complement the activities of existing institutions, as well as ongoing initiatives at the national and international level. This document follows the guidelines of the INPRO report M ethodology for the assessment of innovative nuclear reactors and fuel cycles, Report of Phase 1B (first part) of the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) , IAEA-TECDOC-1434 (2004), together with its previous report G uidance for the evaluation for innovative nuclear reactors and fuel cycles, Report of Phase 1A of the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO), IAEATECDOC-1362 (2003). This INPRO manual is comprised of an overview volume and eight additional volumes covering the areas of economics (Volume 2), infrastructure (Volume 3), waste management (Volume 4), proliferation resistance (Volume 5), physical protection (Volume 6), environment (Volume 7), safety of reactors (Volume 8), and safety of nuclear fuel cycle facilities (Volume 9). The INPRO Manual for the area of physical protection (Volume 6) provides guidance to the assessor of an INS (innovative nuclear energy system) under a physical protection regime in a country that is planning to install a nuclear power program (or maintaining or enlarging an existing one), and describes the application of the

  19. Nuclear Plant Analyzer: Installation manual. Volume 1

    International Nuclear Information System (INIS)

    Snider, D.M.; Wagner, K.L.; Grush, W.H.; Jones, K.R.

    1995-01-01

    This report contains the installation instructions for the Nuclear Plant Analyzer (NPA) System. The NPA System consists of the Computer Visual System (CVS) program, the NPA libraries, the associated utility programs. The NPA was developed at the Idaho National Engineering Laboratory under the sponsorship of the US Nuclear Regulatory Commission to provide a highly flexible graphical user interface for displaying the results of these analysis codes. The NPA also provides the user with a convenient means of interactively controlling the host program through user-defined pop-up menus. The NPA was designed to serve primarily as an analysis tool. After a brief introduction to the Computer Visual System and the NPA, an analyst can quickly create a simple picture or set of pictures to aide in the study of a particular phenomenon. These pictures can range from simple collections of square boxes and straight lines to complex representations of emergency response information displays

  20. Procedures manual for the Evaluated Nuclear Structure Data File

    International Nuclear Information System (INIS)

    Bhat, M.R.

    1987-10-01

    This manual is a collection of various notes, memoranda and instructions on procedures for the evaluation of data in the Evaluated Nuclear Structure Data File (ENSDF). They were distributed at different times over the past few years to the evaluators of nuclear structure data and some of them were not readily avaialble. Hence, they have been collected in this manual for ease of reference by the evaluators of the international Nuclear Structure and Decay Data (NSDD) network contribute mass-chains to the ENSDF. Some new articles were written specifically for this manual and others are reivsions of earlier versions

  1. Manual control of unstable systems

    Science.gov (United States)

    Allen, R. W.; Hogue, J. R.; Parseghian, Z.

    1986-01-01

    Under certain operational regimes and failure modes, air and ground vehicles can present the human operator with a dynamically unstable or divergent control task. Research conducted over the last two decades has explored the ability of the human operator to control unstable systems under a variety of circumstances. Past research is reviewed and human operator control capabilities are summarized. A current example of automobile directional control under rear brake lockup conditions is also reviewed. A control system model analysis of the driver's steering control task is summarized, based on a generic driver/vehicle model presented at last year's Annual Manual. Results from closed course braking tests are presented that confirm the difficulty the average driver has in controlling the unstable directional dynamics arising from rear wheel lockup.

  2. Nuclear Computerized Library for Assessing Reactor Reliability (NUCLARR): Data manual

    International Nuclear Information System (INIS)

    Gilbert, B.G.; Reece, W.J.; Gertman, D.I.; Gilmore, W.E.; Galyean, W.J.

    1990-12-01

    The Nuclear Computerized Library for Assessing Reactor Reliability (NUCLARR) is an automated data base management system for processing and storing human error probability and hardware component failure data. The NUCLARR system software resides on an IBM (or compatible) personal computer. NUCLARR can furnish the end user with data inputs for both human and hardware reliability analysis in support of a variety of risk assessment activities. The NUCLARR system is documented is a five-volume series of reports. Volume V: Data Manual provides a hard-copy representation of all data and related information available within the NUCLARR system software. This document is organized in three sections. Part 1 is the summary description, which presents an overview of the NUCLARR system and data processing procedures. Part 2 contains all data and information relevant to the human error probability (HEP) data side of NUCLARR. Data and information for the hardware component failure data (HCFD) side are presented in Part 3. 7 refs

  3. Nuclear Computerized Library for Assessing Reactor Reliability (NUCLARR): Data manual

    International Nuclear Information System (INIS)

    Gilbert, B.G.; Reece, W.J.; Gertman, D.I.; Gilmore, W.E.; Galyean, W.J.

    1990-12-01

    The Nuclear Computerized Library for Assessing Reactor Reliability (NUCLARR) is an automated data base management system for processing and storing human error probability and hardware component failure data. The NUCLARR system software resides on an IBM (or compatible) personal computer. NUCLARR can furnish the end user with data inputs for both human and hardware reliability analysis in support of a variety of risk assessment activities. The NUCLARR system is documented in a five-volume series of reports. Volume V: Data Manual provides a hard-copy representation of all data and related information available within the NUCLARR system software. This document is organized in three sections. Part 1 is the summary description, which presents an overview of the NUCLARR system and data processing procedures. Part 2 contains all data and information relevant to the human error probability (HEP) side of NUCLARR. Data and information for the hardware component failure data (HCFD) side are presented in Part 3. 7 refs., 1 fig

  4. Extract from IAEA's Resources Manual in Nuclear Medicine - Part 2. - Human Resources Development

    International Nuclear Information System (INIS)

    2003-01-01

    The Nuclear Medicine Section of the International Atomic Energy Agency is now engaged in finalizing a reference manual in nuclear medicine, entitled, 'Resources Manual in Nuclear Medicine'. Several renowned professionals from all over the world, from virtually all fields of nuclear medicine have contributed to this manual. The World Journal of Nuclear Medicine will publish a series of extracts from this manual as previews. This is the second extract from the Resources Manual, Part-2 of the chapter on Human Resources Development. (author)

  5. The design of operating procedures manuals for nuclear power plants

    International Nuclear Information System (INIS)

    Bohr, E.; Preuss, W.; Reinartz, G.; Thau, G.

    1977-03-01

    This report describes the findings of a research on the desirable design of operating procedures manuals for nuclear power plants. The work was supported by a grant of the Federal Department of the Interior. Information was acquired from different sources. Interviews and discussions on manual design were carried out with manual users in nuclear power plants. Moreover, tasks carried out using procedures were either observed or, alternatively, the manner of using procedures was elicited by interviews. In addition, manual writers, managers from manufacturers and utilities, nuclear experts, and individuals involved in manual specification activities were interviewed. A major source of information has been the pertinent scientific and technical findings scattered in the literature on topics such as instructional technology, engineering psychology, psycholinguistics, and typography. A comprehensive bibliography is included. General rules are established on designing instructional material for use on the job, aiming at increasing their legability, comprehensibility, and suitability to guide human performance. The application of these rules to the design of individual operating procedures is demonstrated. Recommendations are given on the design, layout, development and implementation of manuals. (orig.) [de

  6. Manual for a Volunteer Services System.

    Science.gov (United States)

    Helgerson, Linda; And Others

    This manual presents guidelines for planning, monitoring, and controlling the development and operation of volunteer assistance programs. The materials included address questions related to both the process of establishing a volunteer program and the administration of a volunteer management system. The manual is not intended to provide a blueprint…

  7. Manually controlled neutron-activation system

    International Nuclear Information System (INIS)

    Johns, R.A.; Carothers, G.A.

    1982-01-01

    A manually controlled neutron activation system, the Manual Reactor Activation System, was designed and built and has been operating at one of the Savannah River Plant's production reactors. With this system, samples can be irradiated for up to 24 hours and pneumatically transferred to a shielded repository for decay until their activity is low enough for them to be handled at a radiobench. The Manual Reactor Activation System was built to provide neutron activation of solid waste forms for the Alternative Waste Forms Leach Testing Program. Neutron activation of the bulk sample prior to leaching permits sensitive multielement radiometric analyses of the leachates

  8. Manual on quality assurance for computer software related to the safety of nuclear power plants

    International Nuclear Information System (INIS)

    1988-01-01

    The objective of the Manual is to provide guidance in the assurance of quality of specification, design, maintenance and use of computer software related to items and activities important to safety (hereinafter referred to as safety related) in nuclear power plants. This guidance is consistent with, and supplements, the requirements and recommendations of Quality Assurance for Safety in Nuclear Power Plants: A Code of Practice, 50-C-QA, and related Safety Guides on quality assurance for nuclear power plants. Annex A identifies the IAEA documents referenced in the Manual. The Manual is intended to be of use to all those who, in any way, are involved with software for safety related applications for nuclear power plants, including auditors who may be called upon to audit management systems and product software. Figs

  9. Revision of the protective action guides manual for nuclear incidents

    International Nuclear Information System (INIS)

    DeCair, S.; MacKinney, J.

    2007-01-01

    EPA's 1992 Manual of Protective Action Guides and Protective Actions for Nuclear Incidents, referred to as the PAG Manual, is a radiological emergency planning and response tool for emergency management officials at the Federal, state, tribal, and local levels. A Protective Action Guide is defined as, the projected dose to reference man, or other defined individual, from a release of radioactive material at which a specific protective action to reduce or avoid that dose is recommended'. The updated version of the PAG Manual accomplishes these key objectives: applying the existing 1992 protective action guides and protective actions to new radiological and nuclear scenarios of concern; updating the dosimetry basis; lowering the recommended dose for administration of stable iodine; providing new guidance concerning consumption of drinking water during or after a radiological emergency; updating the dosimetry basis for all derived levels, and, adding guidance for dealing with long-term site restoration following a major radiological release. (author)

  10. Study of developing nuclear fabrication facility's integrated emergency response manual

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Taeh Yeong; Cho, Nam Chan; Han, Seung Hoon; Moon, Jong Han; Lee, Jin Hang [KEPCO, Daejeon (Korea, Republic of); Min, Guem Young; Han, Ji Ah [Dongguk Univ., Daejeon (Korea, Republic of)

    2016-05-15

    Public begin to pay attention to emergency management. Thus, public's consensus on having high level of emergency management system up to advanced country's is reached. In this social atmosphere, manual is considered as key factor to prevent accident or secure business continuity. Therefore, we first define possible crisis at KEPCO Nuclear Fuel (hereinafter KNF) and also make a 'Reaction List' for each crisis situation at the view of information-design. To achieve it, we analyze several country's crisis response manual and then derive component, indicate duties and roles at the information-design point of view. From this, we suggested guideline to make 'Integrated emergency response manual(IERM)'. The manual we used before have following few problems; difficult to applicate at the site, difficult to deliver information. To complement these problems, we searched manual elements from the view of information-design. As a result, we develop administrative manual. Although, this manual could be thought as fragmentary manual because it confined specific several agency/organization and disaster type.

  11. Spent Nuclear Fuel (SNF) Cold Vacuum Drying (CVD) Facility Operations Manual; FINAL

    International Nuclear Information System (INIS)

    IRWIN, J.J.

    1999-01-01

    This document provides the Operations Manual for the Cold Vacuum Drying Facility (CVDF). The Manual was developed in conjunction with HNF-553, Spent Nuclear Fuel Project Final Safety Analysis Report Annex B-Cold Vacuum Drying Facility. The HNF-SD-SNF-DRD-002, 1999, Cold Vacuum Drying Facility Design Requirements, Rev. 4, and the CVDF Final Design Report. The Operations Manual contains general descriptions of all the process, safety and facility systems in the CVDF, a general CVD operations sequence and references to the CVDF System Design Descriptions (SDDs). This manual has been developed for the SNFP Operations Organization and shall be updated, expanded, and revised in accordance with future design, construction and startup phases of the CVDF until the CVDF final ORR is approved

  12. Spent Nuclear Fuel (SNF) Cold Vacuum Drying (CVD) Facility Operations Manual

    Energy Technology Data Exchange (ETDEWEB)

    IRWIN, J.J.

    1999-07-02

    This document provides the Operations Manual for the Cold Vacuum Drying Facility (CVDF). The Manual was developed in conjunction with HNF-553, Spent Nuclear Fuel Project Final Safety Analysis Report Annex B--Cold Vacuum Drying Facility. The HNF-SD-SNF-DRD-002, 1999, Cold Vacuum Drying Facility Design Requirements, Rev. 4, and the CVDF Final Design Report. The Operations Manual contains general descriptions of all the process, safety and facility systems in the CVDF, a general CVD operations sequence and references to the CVDF System Design Descriptions (SDDs). This manual has been developed for the SNFP Operations Organization and shall be updated, expanded, and revised in accordance with future design, construction and startup phases of the CVDF until the CVDF final ORR is approved.

  13. Manual fire fighting tactics at Nuclear Power Plant

    International Nuclear Information System (INIS)

    Jee, Moon Hak; Moon, Chan Kook

    2012-01-01

    The general requirements of fire protection at nuclear power plant (NPP) are fire protection program, fire hazard analysis, and fire prevention features. In addition, specific fire protection requirements such as water supplies, fire detection, fire protection of safe related equipment, and safe shutdown capabilities must be provided. Particularly, manual fire fighting is required as specific requirements with the provisions to secure manual fire suppression, fire brigade and its training, and administrative controls for manual fire fighting. If a fire is alarmed and confirmed to be a real fire, the fire brigade must take manual fire fighting activities as requested at fire protection program. According to the present requirements in itself, there is not any specific manual fire fighting ways or practical strategies. In general, fire zones or compartments at NPPs are built in a confined condition. In theory, the fire condition will change from a combustible-controlled fire to a ventilation-governing fire with the time duration. In case of pool fire with the abundant oxygen and flammable liquid, it can take just a few minutes for the flash-over to occur. For the well-confined fire zone, it will change from a flame fire to a smoldering state before the entrance door is opened by the fire brigade. In this context, the manual fire fighting activities must be based on a quantitative analysis and a fire risk evaluation. At this paper, it was suggested that the fire zones at NPPs should be grouped on the inherent functions and fire characteristics. Based on the fire risk characteristics and the fire zone grouping, the manual fire fighting tactics are suggested as an advanced fire fighting solution

  14. Quality assurance manual for the development of digital systems

    International Nuclear Information System (INIS)

    Lee, Cheol Kwon; Kwon, Kee Choon; You, Young Eun; Kim, Kwan Hyun; Park, Jung Woo; Park, Chan Seok

    2001-12-01

    A digital safety system is being developed by three companies under the Korea Nuclear I and C System R and D Program. This Quality Assurance Manual (QAM) is written to ensure the safety and reliability of the system and to meet the regulatory requirements associated with quality assurance. This QAM describes eighteen elements of quality assurance criteria required for the development of the system, which are coincident with the criteria specified in Nuclear Energy Laws and Enforcement Regulations of Nuclear Energy Laws and 10CFR50 Appendix B. This QAM is submitted to the regulatory body with other documents related to the quality assurance activities performed during the system development. And its safety, validity and fulfillment are reviewed and audited in the review process of topical report of the digital safety system

  15. Colloid transport code-nuclear user's manual

    International Nuclear Information System (INIS)

    Jain, R.

    1992-01-01

    This report describes the CTCN computer code, designed to solve the equations of transient colloidal transport of radionuclides in porous and fractured media. This Fortran 77 package solves systems of coupled nonlinear differential equations with a wide range of boundary conditions. The package uses the Method of Lines technique with a special section which forms finite-difference discretizations in up to four spatial dimensions to automatically convert the system into a set of ordinary differential equations. The CTCN code then solves these equations using a robust, efficient ODE solver. Thus CTCN can be used to solve population balance equations along with the usual transport equations to model colloid transport processes or as a general problem solver to treat up to four-dimensional differential systems

  16. Nuclear criticality safety. Chapter 0530 of AEC manual

    International Nuclear Information System (INIS)

    2006-01-01

    The programme objectives of this chapter of the U.S. Atomic Energy Commission manual on nuclear criticality safety are to protect the health and safety of the public and of the government and contractor personnel working in plants that handle fissionable material and to protect public and private property from the consequences of a criticality accident occurring in AEC-owned plants and other AEC-contracted activities involving fissionable materials

  17. INES: The International Nuclear Event Scale user's manual

    International Nuclear Information System (INIS)

    1992-09-01

    The revised and extended addition of the International Nuclear Event Scale is presented. The manual is comprised of four parts. Part 1 contains a summary of the basis of the scale and of the procedure to be used for rating events. Part 2 contains the detailed guidance required to rate events in terms of off-site and on-site impact. These two parts are applicable to all nuclear facilities. Parts 3 and 4 contain the detailed guidance required to rate events in terms of defence in depth for reactors and other facilities, respectively. 5 figs, 2 tabs

  18. RHCV Telescope System Operations Manual

    Science.gov (United States)

    2018-01-05

    KRISTOFFER A. SMITH-RODRIGUEZ, LTCOL, USAF Chief, Warfighter Interface Division Airman Systems Directorate This report is published in the...other system components via ASCOM protocols. 1. Start the MaxImDL application using the desktop shortcut (a) Start Observatory dialog, (b...the desktop shortcut (a) Select “Connect Telescope” from Startup menu in Telescope tab (b) Select “Look Up” icon on ribbon menu at the top right of

  19. Spent nuclear fuel project cold vacuum drying facility operations manual

    International Nuclear Information System (INIS)

    IRWIN, J.J.

    1999-01-01

    This document provides the Operations Manual for the Cold Vacuum Drying Facility (CVDF). The Manual was developed in conjunction with HNF-SD-SNF-SAR-002, Safety Analysis Report for the Cold Vacuum Drying Facility, Phase 2, Supporting Installation of Processing Systems (Garvin 1998) and, the HNF-SD-SNF-DRD-002, 1997, Cold Vacuum Drying Facility Design Requirements, Rev. 3a. The Operations Manual contains general descriptions of all the process, safety and facility systems in the CVDF, a general CVD operations sequence, and has been developed for the SNFP Operations Organization and shall be updated, expanded, and revised in accordance with future design, construction and startup phases of the CVDF until the CVDF final ORR is approved

  20. Airport Information Retrieval System (AIRS) System Support Manual

    Science.gov (United States)

    1973-01-01

    This handbook is a support manual for prototype air traffic flow control automation system developed for the FAA's Systems Command Center. The system is implemented on a time-sharing computer and is designed to provide airport traffic load prediction...

  1. Quality assurance program manual for nuclear power plants. Volume I. Policies

    International Nuclear Information System (INIS)

    1976-01-01

    The Consumers Power Company Quality Assurance Program Manual for Nuclear Power Plants consists of policies and procedures which comply with current NRC regulatory requirements and industry codes and standards in effect during the design, procurement, construction, testing, operation, refueling, maintenance, repair and modification activities associated with nuclear power plants. Specific NRC and industry documents that contain the requirements, including the issue dates in effect, are identified in each nuclear power plant's Safety Analysis Report. The requirements established by these documents form the basis for the Consumer Power Quality Assurance Program, which is implemented to control those structures, systems, components and operational safety actions listed in each nuclear power plant's Quality List (Q-List). As additional and revised requirements are issued by the NRC and professional organizations involved in nuclear activities, they will be reviewed for their impact on this manual, and changes will be made where considered necessary. CP Co 1--Consumers Power Company QA Program Topical Report is Volume I of this manual and contains Quality Assurance Program Policies applicable during all phases of nuclear power plant design, construction and operation

  2. Hanford Environmental Information System (HEIS) user's manual

    International Nuclear Information System (INIS)

    1991-10-01

    The Hanford Environmental Information System (HEIS) is a consolidated set of automated resources that effectively manage the data gathered during environmental monitoring and restoration of the Hanford Site. The HEIS includes an integrated database that provides consistent and current data to all users and promotes sharing of data by the entire user community. Data stored in the HEIS are collected under several regulatory programs. Currently these include the Comprehensive Environmental Response, Compensation and Liability Act of 1980 (CERCLA); the Resource Conservation and Recovery Act of 1976 (RCRA); and the Ground-Water Environmental Surveillance Project, managed by the Pacific Northwest Laboratory. The HEIS is an information system with an inclusive database. The manual, the HEIS User's Manual, describes the facilities available to the scientist, engineer, or manager who uses the system for environmental monitoring, assessment, and restoration planning; and to the regulator who is responsible for reviewing Hanford Site operations against regulatory requirements and guidelines

  3. Electronic manual of the nuclear characteristics analysis code-set for FBR

    International Nuclear Information System (INIS)

    Makino, Tohru

    2001-03-01

    Reactor Physics Gr., System Engineering Technology Division, O-arai Engineering Center has consolidated the nuclear design database to improve analytical methods and prediction accuracy for large fast breeder cores such as demonstration or commercial FBRs from the previous research. The up-to-date information about usage of the nuclear characteristics analysis code-set was compiled as a part of the improvement of basic design data base for FBR core. The outlines of the electronic manual are as follows; (1) The electronic manual includes explanations of following codes: JOINT : Code Interface Program. SLAROM, CASUP : Effective Cross Section Calculation Code. CITATION-FBR : Diffusion Analysis Code. PERKY : Perturbative Diffusion Analysis Code. SNPERT, SNPERT-3D : Perturbative Transport Analysis Code. SAGEP, SAGEP-3D : Sensitivity Coefficient Calculation Code. NSHEX : Transport Analysis Code using Nodal Method. ABLE : Cross Section Adjustment Calculation Code. ACCEPT : Predicting Accuracy Evaluation Code. (2) The electronic manual is described using HTML file format and PDF file for easy maintenance, updating and for easy referring through JNC Intranet. User can refer manual pages by usual Web browser software without any special setup. (3) Many of manual pages include link-tags to jump to related pages. String search is available in both HTML and PDF documents. (4) User can download source code, sample input data and shell script files to carry out each analysis from download page of each code (JNC inside only). (5) Usage of the electronic manual and maintenance/updating process are described in this report and it makes possible to enroll new code or new information in the electronic manual. Since the information has been taken into account about modifications and error fixings, added to each code after the last consolidation in 1994, the electronic manual would cover most recent status of the nuclear characteristics analysis code-set. One of other advantages of use

  4. Spent Nuclear Fuel (SNF) Project Cold Vacuum Drying (CVD) Facility Operations Manual

    Energy Technology Data Exchange (ETDEWEB)

    IRWIN, J.J.

    2000-02-03

    This document provides the Operations Manual for the Cold Vacuum Drying Facility (CVDF). The Manual was developed in conjunction with HNF-SD-SNF-SAR-002, Safety Analysis Report for the Cold Vacuum Drying Facility, Phase 2, Supporting Installation of the Processing Systems (Garvin 1998) and, the HNF-SD-SNF-DRD-002, 1997, Cold Vacuum Drying Facility Design Requirements, Rev. 3a. The Operations Manual contains general descriptions of all the process, safety and facility systems in the CVDF, a general CVD operations sequence, and has been developed for the spent nuclear fuel project (SNFP) Operations Organization and shall be updated, expanded, and revised in accordance with future design, construction and startup phases of the CVDF until the CVDF final ORR is approved.

  5. Spent Nuclear Fuel (SNF) Project Cold Vacuum Drying (CVD) Facility Operations Manual

    International Nuclear Information System (INIS)

    IRWIN, J.J.

    2000-01-01

    This document provides the Operations Manual for the Cold Vacuum Drying Facility (CVDF). The Manual was developed in conjunction with HNF-SD-SNF-SAR-002, Safety Analysis Report for the Cold Vacuum Drying Facility, Phase 2, Supporting Installation of the Processing Systems (Garvin 1998) and, the HNF-SD-SNF-DRD-002, 1997, Cold Vacuum Drying Facility Design Requirements, Rev. 3a. The Operations Manual contains general descriptions of all the process, safety and facility systems in the CVDF, a general CVD operations sequence, and has been developed for the spent nuclear fuel project (SNFP) Operations Organization and shall be updated, expanded, and revised in accordance with future design, construction and startup phases of the CVDF until the CVDF final ORR is approved

  6. Manual versus computerized filing system in nuclear medicine - a regression. A simple but effectiv system for patient calling in in-vivo diagnosis

    International Nuclear Information System (INIS)

    Spitz, J.

    1985-01-01

    A patient-filing and calling system is described which uses colour-coded data carriers and a special board. The system proved to be useful for stock display and handling of labelled activity ready for injection in patients. (orig.) [de

  7. Guidance for the application of an assessment methodology for innovative nuclear energy systems. INPRO manual - Infrastructure. Vol. 3 of the final report of phase 1 of the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO)

    International Nuclear Information System (INIS)

    2008-11-01

    The International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) was initiated in the year 2000, based on a resolution of the IAEA General Conference (GC(44)/RES/21). The main objectives of INPRO are (1) to help to ensure that nuclear energy is available to contribute in fulfilling energy needs in the 21st century in a sustainable manner, (2) to bring together both technology holders and technology users to consider jointly the international and national actions required to achieve desired innovations in nuclear reactors and fuel cycles; and (3) to create a forum to involve all relevant stakeholders that will have an impact on, draw from, and complement the activities of existing institutions, as well as ongoing initiatives at the national and international level. The INPRO manual is comprised of an overview volume and eight additional volumes covering the areas of economics (Volume 2), infrastructure (Volume 3, outlined here), waste management (Volume 4), proliferation resistance (Volume 5), physical protection (Volume 6), environment (Volume 7), safety of reactors (Volume 8), and safety of nuclear fuel cycle facilities (Volume 9). Within INPRO, the term infrastructure can be defined as the collection of capabilities of institutions involved in a nuclear power program in a given country that are necessary for the successful deployment (or enlargement) and operation of an INS, including legal and institutional, industrial and economic, and socio-political features. Within INPRO, the definition of an INS includes activities and facilities (i.e. components) at both the front end of the fuel cycle (e.g., mining, enrichment, fuel fabrication) and the back end (e.g., reprocessing, storage, and repository) (Section 4.2.1 of Volume 1 of the INPRO manual. Consequently, within INPRO, such facilities are not considered to be a part of the INPRO area of infrastructure, albeit that they influence the size of the necessary infrastructure required in a given

  8. RELAP4/MOD5: a computer program for transient thermal-hydraulic analysis of nuclear reactors and related systems. User's manual. Volume II. Program implementation

    International Nuclear Information System (INIS)

    1976-06-01

    A discussion is presented of the use of the RELAP4/MOD5 computer program in simulating the thermal-hydraulic behavior of light-water reactor systems when subjected to postulated transients such as a LOCA, pump failure, or nuclear excursion. The volume is divided into main sections which cover: (1) program description, (2) input data, (3) problem initialization, (4) user guidelines, (5) output discussion, (6) source program description, (7) implementation requirements, (8) data files, (9) description of PLOTR4M, (10) description of STH20, (11) summary flowchart, (12) sample problems, (13) problem definition, and (14) problem input

  9. 21 CFR 892.5650 - Manual radionuclide applicator system.

    Science.gov (United States)

    2010-04-01

    ... system. (a) Identification. A manual radionuclide applicator system is a manually operated device... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Manual radionuclide applicator system. 892.5650.... This generic type of device may include patient and equipment supports, component parts, treatment...

  10. Combating illicit trafficking in nuclear and other radioactive material. Technical guidance. Reference manual. (Chinese Edition)

    International Nuclear Information System (INIS)

    2012-01-01

    This publication is intended for individuals and organizations that may be called upon to deal with the detection of and response to criminal or unauthorized acts involving nuclear or other radioactive material. It will also be useful for legislators, law enforcement agencies, government officials, technical experts, lawyers, diplomats and users of nuclear technology. This manual emphasizes the international initiatives for improving the security of nuclear and other radioactive material. However, it is recognized that effective measures for controlling the transfer of equipment, non-nuclear material, technology or information that may assist in the development of nuclear explosive devices, improvised nuclear devices (INDs) or other radiological dispersal devices (RDDs) are important elements of an effective nuclear security system. In addition, issues of personal integrity, inspection and investigative procedures are not discussed in this manual, all of which are essential elements for an effective overall security system. The manual considers a variety of elements that are recognized as being essential for dealing with incidents of criminal or unauthorized acts involving nuclear and other radioactive material. Depending on conditions in a specific State, including its legal and governmental infrastructure, some of the measures discussed will need to be adapted to suit that State's circumstances. However, much of the material can be applied directly in the context of other national programmes. This manual is divided into four main parts. Section 2 discusses the threat posed by criminal or unauthorized acts involving nuclear and other radioactive material, as well as the policy and legal bases underlying the international effort to restrain such activities. Sections 3 and 4 summarize the major international undertakings in the field. Sections 5-8 provide some basic technical information on radiation, radioactive material, the health consequences of radiation

  11. Guidance for the application of an assessment methodology for Innovative Nuclear Energy Systems. INPRO manual - Economics. Vol. 2 of the final report of phase 1 of the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO)

    International Nuclear Information System (INIS)

    2008-11-01

    The International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) was initiated in the year 2000, based on a resolution of the IAEA General Conference (GC(44)/RES/21). The main objectives of INPRO are (1) to help to ensure that nuclear energy is available to contribute in fulfilling energy needs in the 21st century in a sustainable manner, (2) to bring together both technology holders and technology users to consider jointly the international and national actions required to achieve desired innovations in nuclear reactors and fuel cycles; and (3) to create a forum to involve all relevant stakeholders that will have an impact on, draw from, and complement the activities of existing institutions, as well as ongoing initiatives at the national and international level. This publication elaborates on the guidance given in the INPRO report 'Methodology for the assessment of innovative nuclear reactors and fuel cycles', IAEA-TECDOC-1434 (2004), and the previous INPRO report 'Guidance for the evaluation for innovative nuclear reactors and fuel cycles', IAEA-TECDOC-1362 (2003) in the area of economics. The information presented in Volume 1 of the INPRO manual should be considered to be an integral part of this volume and the user should be familiar with that information. The goal of the INPRO Manual for the area of economics (Volume 2) is to provide guidance for performing an INPRO assessment, as described in Volume 1 of the INPRO manual, in the area of economics. The manual is not intended to provide guidance on how to design an INS to meet the INPRO requirements in the area of economics: rather, the focus is on the assessment method and the evaluation of the INPRO criteria in the area of economics. The INPRO assessor, i.e. the individual or group of individuals carrying out the assessment, is assumed to be knowledgeable in the area of economics and financial analysis. The INPRO assessment will either confirm that the INPRO economic criteria are fulfilled

  12. Clean Lead Facility Inventory System user's manual

    International Nuclear Information System (INIS)

    Garcia, J.F.

    1994-12-01

    The purpose of this user's manual is to provide instruction and guidance needed to enter and maintain inventory information for the Clean Lead Facility (CLF), PER-612. Individuals responsible for maintaining and using the system should study and understand the information provided. The user's manual describes how to properly use and maintain the CLF Inventory System. Annual, quarterly, monthly, and current inventory reports may be printed from the Inventory System for reporting purposes. Profile reports of each shipment of lead may also be printed for verification and documentation of lead transactions. The CLF Inventory System was designed on Microsoft Access version 2.0. Similar inventory systems are in use at the Idaho National Engineering Laboratory (INEL) to facilitate site-wide compilations of mixed waste data. The CLF Inventory System was designed for inventorying the clean or non-radioactive contaminated lead stored at the CLF. This data, along with the mixed waste data, will be compiled into the Idaho Mixed Waste Information (IMWI) system for reporting to the Department of Energy Idaho Office, Department of Energy Headquarters, and/or the State of Idaho

  13. The International Nuclear Event Scale (INES) user's manual. 2001 edition

    International Nuclear Information System (INIS)

    2001-12-01

    The International Nuclear Event Scale (INES) was introduced in March 1990 jointly by the International Atomic Energy Agency (IAEA) and the Nuclear Energy Agency of the Organisation for Economic Co-operation and Development (OECD/NEA). Its primary purpose is to facilitate communication and understanding between the nuclear community, the media and the public on the safety significance of events occurring at nuclear installations. The scale was refined in 1992 in the light of experience gained and extended to be applicable to any event associated with radioactive material and/or radiation, including the transport of radioactive materials.This edition of the INES User's Manual incorporates experience gained from applying the 1992 version of the scale and the document entitled 'Clarification of Issues Raised'. As such, it replaces those earlier publications. It does not amend the technical basis of the INES rating procedure but is expected to facilitate the task of those who are required to rate the safety significance of events using the INES scale. The INES communication network currently receives and disseminates event information to the INES National Officers of 60 Member States on special Event Rating Forms which represent official information on the events, including the rating. The INES communication process has led each participating country to set up an internal network which ensures that all events are promptly communicated and rated whenever they have to be reported outside or inside the country. The IAEA provides training services on the use of INES on request

  14. INES - The International Nuclear Event Scale. User's manual

    International Nuclear Information System (INIS)

    2005-01-01

    The International Nuclear Event Scale (INES) was introduced in March 1990 jointly by the International Atomic Energy Agency (IAEA) and the Nuclear Energy Agency of the Organisation for Economic Co-operation and Development (OECD/NEA). Its primary purpose is to facilitate communication and understanding between the nuclear community, the media and the public on the safety significance of events occurring at nuclear installations. The scale was refined in 1992 in the light of experience gained and extended to be applicable to any event associated with radioactive material and/or radiation, including the transport of radioactive materials. This edition of the INES User's Manual incorporates experience gained from applying the 1992 version of the scale and the document entitled 'Clarification of Issues Raised'. As such, it replaces those earlier publications. It does not amend the technical basis of the INES rating procedure but is expected to facilitate the task of those who are required to rate the safety significance of events using the INES scale. The INES communication network currently receives and disseminates event information to the INES National Officers of 60 Member States on special Event Rating Forms which represent official information on the events, including the rating. The INES communication process has led each participating country to set up an internal network which ensures that all events are promptly communicated and rated whenever they have to be reported outside or inside the country. The IAEA provides training services on the use of INES on request

  15. The International Nuclear Event Scale (INES) user's manual. 2001 edition

    International Nuclear Information System (INIS)

    2001-02-01

    The International Nuclear Event Scale (INES) was introduced in March 1990 jointly by the International Atomic Energy Agency (IAEA) and the Nuclear Energy Agency of the Organisation for Economic Co-operation and Development (OECD/NEA). Its primary purpose is to facilitate communication and understanding between the nuclear community, the media and the public on the safety significance of events occurring at nuclear installations. The scale was refined in 1992 in the light of experience gained and extended to be applicable to any event associated with radioactive material and/or radiation, including the transport of radioactive materials.This edition of the INES User's Manual incorporates experience gained from applying the 1992 version of the scale and the document entitled ''Clarification of Issues Raised''. As such, it replaces those earlier publications. It does not amend the technical basis of the INES rating procedure but is expected to facilitate the task of those who are required to rate the safety significance of events using the INES scale. The INES communication network currently receives and disseminates event information to the INES National Officers of 60 Member States on special Event Rating Forms which represent official information on the events, including the rating. The INES communication process has led each participating country to set up an internal network which ensures that all events are promptly communicated and rated whenever they have to be reported outside or inside the country. The IAEA provides training services on the use of INES on request

  16. Data collection system. Volume 1, Overview and operators manual; Volume 2, Maintenance manual; Appendices

    Energy Technology Data Exchange (ETDEWEB)

    Caudell, R.B.; Bauder, M.E.; Boyer, W.B.; French, R.E.; Isidoro, R.J.; Kaestner, P.C.; Perkins, W.G.

    1993-09-01

    Sandia National Laboratories (SNL) Instrumentation Development Department was tasked by the Defense Nuclear Agency (DNA) to record data on Tektronix RTD720 Digitizers on the HUNTERS TROPHY field test conducted at the Nevada Test Site (NTS) on September 18, 1992. This report contains a overview and description of the computer hardware and software that was used to acquire, reduce, and display the data. The document is divided into two volumes: an overview and operators manual (Volume 1) and a maintenance manual (Volume 2).

  17. Guidance for the application of an assessment methodology for innovative nuclear energy systems. INPRO manual - Proliferation resistance. Vol. 5 of the final report of phase 1 of the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO)

    International Nuclear Information System (INIS)

    2008-11-01

    The International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) was initiated in the year 2000, based on a resolution of the IAEA General Conference (GC(44)/RES/21). The main objectives of INPRO are (1) to help to ensure that nuclear energy is available to contribute in fulfilling energy needs in the 21st century in a sustainable manner, (2) to bring together both technology holders and technology users to consider jointly the international and national actions required to achieve desired innovations in nuclear reactors and fuel cycles; and (3) to create a forum to involve all relevant stakeholders that will have an impact on, draw from, and complement the activities of existing institutions, as well as ongoing initiatives at the national and international level. The INPRO manual is comprised of an overview volume (No. 1), and eight additional volumes covering the areas of economics (Volume 2), infrastructure (Volume 3), waste management (Volume 4), proliferation resistance (laid out in this report) (Volume 5), physical protection (Volume 6), environment (Volume 7), safety of nuclear reactors (Volume 8), and safety of nuclear fuel cycle facilities (Volume 9). This volume of the INPRO manual is based on the results of an INPRO study on proliferation resistance of the DUPIC fuel cycle performed by the Republic of Korea during 2005 and 2006, recommendations from IAEA consultancy meetings, and on a special service agreement with G. Pshakin (Russian Federation). The INPRO Manual starts with an introduction in Chapter 1. In Chapter 2, the necessary information is described to perform an INPRO assessment in the area of proliferation resistance. Explanatory notes on the INPRO basic principles (BP) and user requirements (UR) in the area of proliferation resistance, are reproduced in Chapter 3 to provide context for the assessor; additionally, background of each criterion (CR) and a corresponding procedure is described how to perform an INPRO assessment. The

  18. Guidance for the application of an assessment methodology for innovative nuclear energy systems. INPRO manual - Waste management. Vol. 4 of the final report of phase 1 of the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO)

    International Nuclear Information System (INIS)

    2008-11-01

    The International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) was initiated in the year 2000, based on a resolution of the IAEA General Conference (GC(44)/RES/21). The main objectives of INPRO are (1) to help to ensure that nuclear energy is available to contribute in fulfilling energy needs in the 21st century in a sustainable manner, (2) to bring together both technology holders and technology users to consider jointly the international and national actions required to achieve desired innovations in nuclear reactors and fuel cycles; and (3) to create a forum to involve all relevant stakeholders that will have an impact on, draw from, and complement the activities of existing institutions, as well as ongoing initiatives at the national and international level. The INPRO manual is comprised of an overview volume (No. 1), and eight additional volumes covering the areas of economics (Volume 2), infrastructure (Volume 3), waste management (Volume 4), proliferation resistance (laid out in this report) (Volume 5), physical protection (Volume 6), environment (Volume 7), safety of nuclear reactors (Volume 8), and safety of nuclear fuel cycle facilities (Volume 9). This volume of the INPRO manual is based on the results of an INPRO study on proliferation resistance of the DUPIC fuel cycle performed by the Republic of Korea during 2005 and 2006, recommendations from IAEA consultancy meetings, and on a special service agreement with G. Pshakin (Russian Federation). The INPRO Manual starts with an introduction in Chapter 1. In Chapter 2, the necessary information is described to perform an INPRO assessment in the area of proliferation resistance. Explanatory notes on the INPRO basic principles (BP) and user requirements (UR) in the area of proliferation resistance, are reproduced in Chapter 3 to provide context for the assessor; additionally, background of each criterion (CR) and a corresponding procedure is described how to perform an INPRO assessment. The

  19. Guidance for the application of an assessment methodology for innovative nuclear energy systems. INPRO manual - Environment. Vol. 7 of the final report of phase 1 of the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO)

    International Nuclear Information System (INIS)

    2008-11-01

    The International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) was initiated in the year 2000, based on a resolution of the IAEA General Conference (GC(44)/RES/21). The main objectives of INPRO are (1) to help to ensure that nuclear energy is available to contribute in fulfilling energy needs in the 21st century in a sustainable manner, (2) to bring together both technology holders and technology users to consider jointly the international and national actions required to achieve desired innovations in nuclear reactors and fuel cycles; and (3) to create a forum to involve all relevant stakeholders that will have an impact on, draw from, and complement the activities of existing institutions, as well as ongoing initiatives at the national and international level. The INPRO manual is comprised of an overview volume (No. 1), and eight additional volumes covering the areas of economics (Volume 2), infrastructure (Volume 3), waste management (Volume 4), proliferation resistance (Volume 5), physical protection (Volume 6), environment (laid out in this volume) (Volume 7), safety of nuclear reactors (Volume 8), and safety of nuclear fuel cycle facilities (Volume 9). This volume should provide guidance to the assessor of an INS that is planned (or maintained or enlarged), describing how to apply the INPRO methodology in the area of environment. It follows the guidelines of the INPRO report 'Methodology for the assessment of innovative nuclear reactors and fuel cycles', together with its previous report 'Guidance for the evaluation for innovative nuclear reactors and fuel cycles'. The INPRO Manual starts with an introduction in Chapter 1. In Chapter 2 an overview is presented what kind of information must be available to an INPRO assessor to perform his environmental assessment. In Chapter 3 the background of the INPRO environmental basic principle BP1, the corresponding user requirements (UR) and criteria (CR) consisting of indicators (IN) and acceptance

  20. Hazardous Solvent Substitution Data System reference manual

    International Nuclear Information System (INIS)

    Branham-Haar, K.A.; Twitchell, K.E.

    1993-07-01

    Concern for the environment, in addition to Federal regulation, mandate the replacement of hazardous solvents with safer cleaning agents. Manufacturers are working to produce these replacement solvents. As these products are developed, potential users need to be informed of their availability. To promote the use of these new products instead of traditional solvents, the Idaho National Engineering Laboratory (INEL) has developed the Hazardous Solvent Substitution Data System (HSSDS). The HSSDS provides a comprehensive system of information on alternatives to hazardous solvents and related subjects, and it makes that information available to solvent users, industrial hygienists, and process engineers. The HSSDS uses TOPIC reg-sign, a text retrieval system produced by Verity, Inc., to allow a user to search for information on a particular subject. TOPIC reg-sign produces a listing of the retrieved documents and allows the use to examine the documents individually and to use the information contained in them. This reference manual does not replace the comprehensive TOPIC reg-sign user documentation (available from Verity, Inc.), or the HSSDS Tutorial (available from the INEL). The purpose of this reference manual is to provide enough instruction on TOPIC reg-sign so the user may begin accessing the data contained in the HSSDS

  1. Quality assurance program manual for nuclear power plants. Volume I. Policies

    International Nuclear Information System (INIS)

    1975-01-01

    Policies and procedures are presented which comply with current NRC regulatory requirements and industry codes and standards in effect during the design, procurement, construction, testing, operation, refueling, maintenance, repair and modification activities associated with nuclear power plants. Specific NRC and industry documents that contain the requirements, including the issue dates in effect, are identified in each nuclear power plant's Safety Analysis Report. The requirements established by these documents form the basis for the Consumers Power Quality Assurance Program, which is implemented to control those structures, systems, components and operational safety actions listed in each nuclear power plant's Quality List (Q-List). As additional and revised requirements are issued by the NRC and professional organizations involved in nuclear activities, they will be reviewed for their impact on this manual, and changes will be made where considered necessary

  2. Feedwater control system in nuclear power plants

    International Nuclear Information System (INIS)

    Masuyama, Hideo.

    1981-01-01

    Purpose: To enable switching operation for feedwater systems in a short time and with no fluctuations in the reactor water level by increasing or decreasing the flow rate in the feedwater systems during automatic operation by the amount of the fluctuations in the flow rate in the feedwater system during manual operation. Constitution: In a BWR type nuclear power plant having a plurality of feedwater systems to a nuclear reactor, a feedwater control system is constituted with a reactor water level controller, a M/A switcher for switching either of automatic flow rate demand signals or manual flow rate set signals from the reactor level controller to apply flow rate demand signals for each of the feedwater systems, a calculation device for calculating the flow rate set signals in the feedwater systems during manual operation and an adder for subtracting the flow rate set signals in the manual feedwater system calculated in the calculating device from the automatic flow rate demand signals for the feedwater systems during automatic operation. This enables rapid switching for the feedwater systems with no fluctuations in the reactor water level by increasing or decreasing the flow rate in the feedwater systems during automatic operation by the amount of fluctuations in the flow rate in the feedwater systems during manual operation and compensating the effects in upon manual and automatic switching by the M/A switcher. (Seki, T.)

  3. RELAP4/MOD5: a computer program for transient thermal-hydraulic analysis of nuclear reactors and related systems. User's manual. Volume II. Program implementation

    International Nuclear Information System (INIS)

    1976-09-01

    This portion of the RELAP4/MOD5 User's Manual presents the details of setting up and entering the reactor model to be evaluated. The input card format and arrangement is presented in depth, including not only cards for data but also those for editing and restarting. Problem initalization including pressure distribution and energy balance is discussed. A section entitled ''User Guidelines'' is included to provide modeling recommendations, analysis and verification techniques, and computational difficulty resolution. The section is concluded with a discussion of the computer output form and format

  4. Preparation of radiological effluent technical specifications for nuclear power plants. a guidance manual for users of standard technical specifications

    International Nuclear Information System (INIS)

    Boegli, J.S.; Bellamy, R.R.; Britz, W.L.; Waterfield, R.L.

    1978-10-01

    The purpose of this manual is to describe methods found acceptable to the staff of the U.S. Nuclear Regulatory Commission (NRC) for the calculation of certain key values required in the preparation of proposed radiological effluent Technical Specifications using the Standard Technical Specifications for light-water-cooled nuclear power plants. This manual also provides guidance to applicants for operating licenses for nuclear power plants in the preparation of proposed radiological effluent Technical Specifications or in preparing requests for changes to existing radiological effluent Technical Specifications for operating licenses. The manual additionally describes current staff positions on the methodology for estimating radiation exposure due to the release of radioactive materials in effluents and on the administrative control of radioactive waste treatment systems

  5. Development of an in vitro laboratory manual for nuclear medicine technology students

    International Nuclear Information System (INIS)

    Meyers, A.

    1989-01-01

    This study evaluated existing in vitro education materials in qualitative and quantitative parameters that currently exist to educate potential clinicians of nationally accredited nuclear medicine programs. A review of over 300 articles, texts, and manuals pertaining to in vitro nuclear medicine procedures clearly demonstrated that no in vitro laboratory manual for undergraduate students presently exited. Every nuclear medicine program director in the United States was surveyed. They were asked for their overall philosophy in terms of developing an in vitro manual and requested to evaluate the significant of 22 general principles/concepts and 34 specific laboratory testing procedures. From the response to the survey, an in vitro nuclear medicine manual was created and appended to the study. The manual consists of lecture and study material, chapter reviews, and laboratory assignments and exercises

  6. Manual of functions, assignments, and responsibilities for nuclear safety: Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    1994-10-15

    The FAR Manual is a convenient easy-to-use collection of the functions, assignments, and responsibilities (FARs) of DOE nuclear safety personnel. Current DOE directives, including Orders, Secretary of Energy Notices, and other assorted policy memoranda, are the source of this information and form the basis of the FAR Manual. Today, the majority of FARs for DOE personnel are contained in DOE`s nuclear safety Orders. As these Orders are converted to rules in the Code of Federal Regulations, the FAR Manual will become the sole source for information relating to the functions, assignments, responsibilities of DOE nuclear safety personnel. The FAR Manual identifies DOE directives that relate to nuclear safety and the specific DOE personnel who are responsible for implementing them. The manual includes only FARs that have been extracted from active directives that have been approved in accordance with the procedures contained in DOE Order 1321.1B.

  7. Uranium concentration monitor manual: 2300 system

    International Nuclear Information System (INIS)

    Russo, P.A.; Sprinkle, J.K. Jr.; Stephens, M.M.

    1985-04-01

    This manual describes the design, operation, and procedures for measurement control for the automated uranium concentration monitor on the 2300 solvent extraction system at the Oak Ridge Y-12 Plant. The nonintrusive monitor provides a near-real time readout of uranium concentration at two locations simultaneously in the solvent extraction system for process monitoring and control. Detectors installed at the top of the extraction column and at the bottom of the backwash column acquire spectra of gamma rays from the solvent extraction solutions in the columns. Pulse-height analysis of these spectra gives the concentration of uranium in the organic product of the extraction column and in the aqueous product of the solvent extraction system. The visual readouts of concentrations for process monitoring are updated every 2 min for both detection systems. Simultaneously, the concentration results are shipped to a remote computer that has been installed by Y-12 to demonstrate automatic control of the solvent extraction system based on input of near-real time process operation information. 8 refs., 13 figs., 4 tabs

  8. Explosives Classifications Tracking System User Manual

    Energy Technology Data Exchange (ETDEWEB)

    Genoni, R.P.

    1993-10-01

    The Explosives Classification Tracking System (ECTS) presents information and data for U.S. Department of Energy (DOE) explosives classifications of interest to EM-561, Transportation Management Division, other DOE facilities, and contractors. It is intended to be useful to the scientist, engineer, and transportation professional, who needs to classify or transport explosives. This release of the ECTS reflects upgrading of the software which provides the user with an environment that makes comprehensive retrieval of explosives related information quick and easy. Quarterly updates will be provided to the ECTS throughout its development in FY 1993 and thereafter. The ECTS is a stand alone, single user system that contains unclassified, publicly available information, and administrative information (contractor names, product descriptions, transmittal dates, EX-Numbers, etc.) information from many sources for non-decisional engineering and shipping activities. The data is the most up-to-date and accurate available to the knowledge of the system developer. The system is designed to permit easy revision and updating as new information and data become available. These, additions and corrections are welcomed by the developer. This user manual is intended to help the user install, understand, and operate the system so that the desired information may be readily obtained, reviewed, and reported.

  9. Nuclear systems

    CERN Document Server

    Todreas, Neil E

    2011-01-01

    Principal Characteristics of Power ReactorsIntroductionPower CyclesPrimary Coolant SystemsReactor CoresFuel AssembliesAdvanced Water- and Gas-Cooled Reactors (Generation III And III+)Advanced Thermal and Fast Neutron Spectrum Reactors (Generation IV)ReferencesProblemsThermal Design Principles and ApplicationIntroductionOverall Plant Characteristics Influenced by Thermal Hydraulic ConsiderationsEnergy Production and Transfer ParametersThermal Design LimitsThermal Design MarginFigures of Merit for Core Thermal PerformanceThe Inverted Fuel ArrayThe Equivalent Annulus ApproximationReferencesProble

  10. SAFEPAQ-II. User manual[Nuclear data

    Energy Technology Data Exchange (ETDEWEB)

    Forrest, R.A

    2001-03-01

    SAFEPAQ-II is the new software tool that has been developed to enable efficient production of the EAF nuclear data libraries that are required as input to the FISPACT activation code. It forms part of the European Activation System (EASY), and replaces SAFEPAQ and SYMPAL that were used previously. It enables all the nuclear data to be stored in relational databases (Access) and by using an interactive user interface allows the data to be viewed, modified, validated and then produced in the required EAF format as text files. It is written in Visual Basic and runs under the Windows NT4 and 98 operating systems. The Windows operating system has the great advantage of portability and SAFEPAQ-II has been successfully installed at two external sites for use by UKAEA's international collaborators. It has been used in the production of the EAF-2001 data libraries. (author)

  11. Assessment of Deafblind Access to Manual Language Systems (ADAMLS)

    Science.gov (United States)

    Blaha, Robbie; Carlson, Brad

    2007-01-01

    This document presents the Assessment of Deafblind Access to Manual Language Systems (ADAMLS), a resource for educational teams who are responsible for developing appropriate adaptations and strategies for children who are deafblind who are candidates for learning manual language systems. The assessment tool should be used for all children with a…

  12. Safety manual for civil engineering and building works of nuclear power plants

    International Nuclear Information System (INIS)

    1988-01-01

    This manual lays down the various important considerations that go into safe design of civil structures for nuclear power plants. This manual identifies the design approach, quality assurance requirements and acceptance criteria that need to be observed to assure safety. Considerations on civil design having bearing on safety, during decommissioning are also indicated. (original). 37 refs., tabs

  13. Manual on quality assurance for the survey, evaluation and confirmation of nuclear power plant sites

    International Nuclear Information System (INIS)

    1987-04-01

    The present Manual on Quality Assurance for the Survey, Evaluation and Confirmation of Nuclear Power Plant Sites contains supporting material and illustrates examples for implementing the requirements contained in the Code of Practice on Quality Assurance for Safety in Nuclear Power Plants to the activities of survey, evaluation and confirmation of nuclear power plant sites. At the same time the Code of Practice for Safety in Nuclear Power Plant Siting, and Safety Guides in the siting series contain requirements and recommendations to implement a quality assurance programme in selected activities of the siting process. This manual is intended to provide guidance and illustrate examples on this implementation. During preparation and reviews of this Manual it was found out that the methodology of implementation of the quality assurance programme in siting activities is still under development. For these reasons it was considered appropriate to publish this Manual as a temporary publication for trial use

  14. RELAP4/MOD5: a computer program for transient thermal-hydraulic analysis of nuclear reactors and related systems. User's manual. Supplement 1, RELAP4/MOD5, Update 2

    International Nuclear Information System (INIS)

    Bruch, C.G.

    1976-08-01

    RELAP4/MOD5, Update 1 was released to the Nuclear Regulatory Commission in January 1976. Six months of extensive use of Update 1 has led to the identification and correction of a number of errors in the code, as well as some logic changes, additional Evaluation Model (EM) checks, and one model revision. These changes have culminated in the release of an improved code identified as RELAP4/MOD5, Update 2. The RELAP4/MOD5 interim User's Manual (Interim Report SRD-113-76) reflected the Update 1 version of the code. The purpose of the supplement presented is to update the Interim User's Manual for use with RELAP4/MOD5, Update 2. Major differences between Updates 1 and 2 and the checkout of Update 2 are discussed. The final version of the User's Manual will be written in accordance with Update 2 and will be published as ANCR-NUREG 1335 during September 1976. Annotation of the existing three volumes of the User's Manual to cross-reference this Supplement is recommended

  15. Nuclear information access system

    International Nuclear Information System (INIS)

    Ham, C. H.; Yang, M. H.; Yoon, S. W.

    1998-01-01

    The energy supply in the countries, which have abundant energy resources, may not be affected by accepting the assertion of anti-nuclear and environment groups. Anti-nuclear movements in the countries which have little energy resources may cause serious problem in securing energy supply. Especially, it is distinct in Korea because she heavily depends on nuclear energy in electricity supply(nuclear share in total electricity supply is about 40%).The cause of social trouble surrounding nuclear energy is being involved with various circumstances. However, it is very important that we are not aware of the importance of information access and prepared for such a situation from the early stage of nuclear energy's development. In those matter, this paper analyzes the contents of nuclear information access system in France and Japan which have dynamic nuclear development program and presents the direction of the nuclear access regime through comparing Korean status and referring to progresses of the regime

  16. Manual of use and accounting of radioactive material and procedures of radiological protection for nuclear medicine

    International Nuclear Information System (INIS)

    Chavez, Miguel

    1997-03-01

    This manual of use and accounting of material radioactive and procedures of radiological safety tries to facilitate workings of protection of material radioactive in services of medicine nuclear, during diagnosis (examinations with x-rays, or those that are made in nuclear medicine), or during the processing of diseases, mainly of the carcinomas (x-ray)

  17. EVALUATED NUCLEAR STRUCTURE DATA FILE. A MANUAL FOR PREPARATION OF DATA SETS

    International Nuclear Information System (INIS)

    TULI, J.K.

    2001-01-01

    This manual describes the organization and structure of the Evaluated Nuclear Structure Data File (ENSDF). This computer-based file is maintained by the National Nuclear Data Center (NNDC) at Brookhaven National Laboratory for the international Nuclear Structure and Decay Data Network. For every mass number (presently, A ≤ 293), the Evaluated Nuclear Structure Data File (ENSDF) contains evaluated structure information. For masses A ≥ 44, this information is published in the Nuclear Data Sheets; for A < 44, ENSDF is based on compilations published in the journal Nuclear Physics. The information in ENSDF is updated by mass chain or by nuclide with a varying cycle time dependent on the availability of new information

  18. Manual on maintenance of systems and components important to safety

    International Nuclear Information System (INIS)

    1986-01-01

    The Manual should serve as guidance at the plant management level for the maintenance of systems and components important to safety. It includes a detailed description of management systems, administrative controls and procedures. The Annexes contain examples of documents and practices adopted by Operating Organizations of some Member States. It is not the intention of this Manual to address the technical problem of how to maintain a particular component but rather to cover the programmatic aspects of maintenance. It also contains some aspects of surveillance and verification activities. The Manual makes only general statements about radiation protection provisions in connection with maintenance; detailed guidance can be found in other IAEA documents

  19. Tank waste remediation system process engineering instruction manual

    International Nuclear Information System (INIS)

    ADAMS, M.R.

    1998-01-01

    The purpose of the Tank Waste Remediation System (TWRS) Process Engineering Instruction Manual is to provide guidance and direction to TWRS Process Engineering staff regarding conduct of business. The objective is to establish a disciplined and consistent approach to business such that the work processes within TWRS Process Engineering are safe, high quality, disciplined, efficient, and consistent with Lockheed Martin Hanford Corporation Policies and Procedures. The sections within this manual are of two types: for compliance and for guidance. For compliance sections are intended to be followed per-the-letter until such time as they are formally changed per Section 2.0 of this manual. For guidance sections are intended to be used by the staff for guidance in the conduct of work where technical judgment and discernment are required. The guidance sections shall also be changed per Section 2.0 of this manual. The required header for each manual section is illustrated in Section 2.0, Manual Change Control procedure. It is intended that this manual be used as a training and indoctrination resource for employees of the TWRS Process Engineering organization. The manual shall be required reading for all TWRS Process Engineering staff, matrixed, and subcontracted employees

  20. Intelligent Automated Nuclear Fuel Pellet Inspection System

    International Nuclear Information System (INIS)

    Keyvan, S.

    1999-01-01

    At the present time, nuclear pellet inspection is performed manually using naked eyes for judgment and decisionmaking on accepting or rejecting pellets. This current practice of pellet inspection is tedious and subject to inconsistencies and error. Furthermore, unnecessary re-fabrication of pellets is costly and the presence of low quality pellets in a fuel assembly is unacceptable. To improve the quality control in nuclear fuel fabrication plants, an automated pellet inspection system based on advanced techniques is needed. Such a system addresses the following concerns of the current manual inspection method: (1) the reliability of inspection due to typical human errors, (2) radiation exposure to the workers, and (3) speed of inspection and its economical impact. The goal of this research is to develop an automated nuclear fuel pellet inspection system which is based on pellet video (photographic) images and uses artificial intelligence techniques

  1. Manual for THOR-AirPAS - air pollution assessment system

    DEFF Research Database (Denmark)

    Jensen, Steen Solvang; Ketzel, Matthias; Brandt, Jørgen

    The report provides an outline of the THOR-AirPAS - air pollution assessment system and a brief manual for getting started with the air quality models and input data included in THOR-AirPAS.......The report provides an outline of the THOR-AirPAS - air pollution assessment system and a brief manual for getting started with the air quality models and input data included in THOR-AirPAS....

  2. Computer Security at Nuclear Facilities. Reference Manual (Arabic Edition)

    International Nuclear Information System (INIS)

    2011-01-01

    The possibility that nuclear or other radioactive material could be used for malicious purposes cannot be ruled out in the current global situation. States have responded to this risk by engaging in a collective commitment to strengthen the protection and control of such material and to respond effectively to nuclear security events. States have agreed to strengthen existing instruments and have established new international legal instruments to enhance nuclear security worldwide. Nuclear security is fundamental in the management of nuclear technologies and in applications where nuclear or other radioactive material is used or transported. Through its Nuclear Security Programme, the IAEA supports States to establish, maintain and sustain an effective nuclear security regime. The IAEA has adopted a comprehensive approach to nuclear security. This recognizes that an effective national nuclear security regime builds on: the implementation of relevant international legal instruments; information protection; physical protection; material accounting and control; detection of and response to trafficking in such material; national response plans; and contingency measures. With its Nuclear Security Series, the IAEA aims to assist States in implementing and sustaining such a regime in a coherent and integrated manner. The IAEA Nuclear Security Series comprises Nuclear Security Fundamentals, which include objectives and essential elements of a State's nuclear security regime; Recommendations; Implementing Guides; and Technical Guidance. Each State carries the full responsibility for nuclear security, specifically: to provide for the security of nuclear and other radioactive material and associated facilities and activities; to ensure the security of such material in use, storage or in transport; to combat illicit trafficking and the inadvertent movement of such material; and to be prepared to respond to a nuclear security event. This publication is in the Technical Guidance

  3. Computer Security at Nuclear Facilities. Reference Manual (Russian Edition)

    International Nuclear Information System (INIS)

    2012-01-01

    The possibility that nuclear or other radioactive material could be used for malicious purposes cannot be ruled out in the current global situation. States have responded to this risk by engaging in a collective commitment to strengthen the protection and control of such material and to respond effectively to nuclear security events. States have agreed to strengthen existing instruments and have established new international legal instruments to enhance nuclear security worldwide. Nuclear security is fundamental in the management of nuclear technologies and in applications where nuclear or other radioactive material is used or transported. Through its Nuclear Security Programme, the IAEA supports States to establish, maintain and sustain an effective nuclear security regime. The IAEA has adopted a comprehensive approach to nuclear security. This recognizes that an effective national nuclear security regime builds on: the implementation of relevant international legal instruments; information protection; physical protection; material accounting and control; detection of and response to trafficking in such material; national response plans; and contingency measures. With its Nuclear Security Series, the IAEA aims to assist States in implementing and sustaining such a regime in a coherent and integrated manner. The IAEA Nuclear Security Series comprises Nuclear Security Fundamentals, which include objectives and essential elements of a State's nuclear security regime; Recommendations; Implementing Guides; and Technical Guidance. Each State carries the full responsibility for nuclear security, specifically: to provide for the security of nuclear and other radioactive material and associated facilities and activities; to ensure the security of such material in use, storage or in transport; to combat illicit trafficking and the inadvertent movement of such material; and to be prepared to respond to a nuclear security event. This publication is in the Technical Guidance

  4. Computer Security at Nuclear Facilities. Reference Manual (Chinese Edition)

    International Nuclear Information System (INIS)

    2012-01-01

    The possibility that nuclear or other radioactive material could be used for malicious purposes cannot be ruled out in the current global situation. States have responded to this risk by engaging in a collective commitment to strengthen the protection and control of such material and to respond effectively to nuclear security events. States have agreed to strengthen existing instruments and have established new international legal instruments to enhance nuclear security worldwide. Nuclear security is fundamental in the management of nuclear technologies and in applications where nuclear or other radioactive material is used or transported. Through its Nuclear Security Programme, the IAEA supports States to establish, maintain and sustain an effective nuclear security regime. The IAEA has adopted a comprehensive approach to nuclear security. This recognizes that an effective national nuclear security regime builds on: the implementation of relevant international legal instruments; information protection; physical protection; material accounting and control; detection of and response to trafficking in such material; national response plans; and contingency measures. With its Nuclear Security Series, the IAEA aims to assist States in implementing and sustaining such a regime in a coherent and integrated manner. The IAEA Nuclear Security Series comprises Nuclear Security Fundamentals, which include objectives and essential elements of a State's nuclear security regime; Recommendations; Implementing Guides; and Technical Guidance. Each State carries the full responsibility for nuclear security, specifically: to provide for the security of nuclear and other radioactive material and associated facilities and activities; to ensure the security of such material in use, storage or in transport; to combat illicit trafficking and the inadvertent movement of such material; and to be prepared to respond to a nuclear security event. This publication is in the Technical Guidance

  5. Nuclear computerized library for assessing reactor reliability (NUCLARR): Data manual: Part 1, Summary description

    International Nuclear Information System (INIS)

    Gertman, D.I.; Gilbert, B.G.; Gilmore, W.E.; Galyean, W.J.

    1988-06-01

    This volume of a five-volume series summarizes those data currently resident in the first release of the Nuclear Computerized Library for Assessing Reactor Reliability (NUCLARR) data base. The raw human error probability (HEP) and hardware component failure data (HCFD) contained herein are accompanied by a glossary of terms and the HEP and hardware taxonomies used to structure the data. Instructions are presented on how the user may navigate through the NUCLARR data management system to find anchor values to assist in solving risk-related problems. Volume V: Data Manual will be updated on a periodic basis so that risk analysis without access to a computer may have access to the largest NUCLARR data. This document Part 1 of Volume 5 introduces aspects of the NUCLARR data base management system and prepares the reader for reviewing data in other Parts of Volume 5

  6. Remote inspection system for nuclear power plants

    International Nuclear Information System (INIS)

    Inagaki, K.; Fujii, M.; Doi, A.; Harima, T.

    1977-01-01

    A remote inspection system for nuclear power plants was constructed based on an analysis of inspections performed by an operator on patrol. This system consists of an operator's console and a remote station. The remote station, equipped with five kinds of sensors, is steered along the inspection route by a photoelectric guiding system or may be manually controlled from an operator's console in a main control room. Signals for control and inspection data are multiplexed and transmitted through a coaxial cable

  7. Future nuclear systems technology

    International Nuclear Information System (INIS)

    Brooks, H.

    1979-01-01

    Five directions can be identified for evolution of nuclear systems, possibly a sixth. These are, first, and perhaps most important, toward a means of extending fissile resources through improvement of the efficiency of their use; second, improvements in nuclear safety; third, reduction in the environmental impacts of nuclear electric power generation, particularly water requirements; fourth, improvements in proliferation resistance of the nuclear fuel cycle; and fifth, improvements in economics. And added in a sixth, and somewhat more speculative direction, the use of nuclear power for purposes other than the direct generation of electricity

  8. Guidance for the application of an assessment methodology for innovative nuclear energy systems. INPRO manual - Safety of nuclear fuel cycle facilities. Vol. 9 of the final report of phase 1 of the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO)

    International Nuclear Information System (INIS)

    2008-11-01

    The International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) was initiated in the year 2000, based on a resolution of the IAEA General Conference (GC(44)/RES/21). The main objectives of INPRO are (1) to help to ensure that nuclear energy is available to contribute in fulfilling energy needs in the 21st century in a sustainable manner, (2) to bring together both technology holders and technology users to consider jointly the international and national actions required to achieve desired innovations in nuclear reactors and fuel cycles; and (3) to create a forum to involve all relevant stakeholders that will have an impact on, draw from, and complement the activities of existing institutions, as well as ongoing initiatives at the national and international level. The INPRO manual is comprised of an overview volume (No. 1), and eight additional volumes covering the areas of economics (Volume 2), infrastructure (Volume 3), waste management (Volume 4), proliferation resistance (Volume 5), physical protection (Volume 6), environment (Volume 7), safety of nuclear reactors (Volume 8), and safety of nuclear fuel cycle facilities (laid out in this report) (Volume 9).This report elaborates on the guidance given in the INPRO report 'Methodology for the assessment of innovative nuclear reactors and fuel cycles', IAEA-TECDOC-1434, and the previous INPRO report 'Guidance for the evaluation for innovative nuclear reactors and fuel cycles', IAEA-TECDOC-1362 (2003), in the area of safety of nuclear reactors. The present version of this manual deals with safety issues related to design and operation of mining, milling, refining, conversion, enrichment, fuel fabrication, fuel storage and fuel reprocessing facilities. The INPRO Manual starts with an introduction in Chapter 1. Chapter 2 sets out the necessary input for an INPRO assessment of the safety of an innovative nuclear fuel cycle facility. This includes information on the design for the plant and the safety

  9. PRIS-STATISTICS: Power Reactor Information System Statistical Reports. User's Manual

    International Nuclear Information System (INIS)

    2013-01-01

    The IAEA developed the Power Reactor Information System (PRIS)-Statistics application to assist PRIS end users with generating statistical reports from PRIS data. Statistical reports provide an overview of the status, specification and performance results of every nuclear power reactor in the world. This user's manual was prepared to facilitate the use of the PRIS-Statistics application and to provide guidelines and detailed information for each report in the application. Statistical reports support analyses of nuclear power development and strategies, and the evaluation of nuclear power plant performance. The PRIS database can be used for comprehensive trend analyses and benchmarking against best performers and industrial standards.

  10. Fluor Hanford Nuclear Material Stabilization Project Welding Manual

    International Nuclear Information System (INIS)

    BERKEY, J.R.

    2000-01-01

    The purpose of this section of the welding manual is to: (1) Provide a general description of the major responsibilities of the organizations involved with welding. (2) Provide general guidance concerning the application of codes related to welding. This manual contains requirements for welding for all Fluor Hanford (FH) welding operators working on the W460 Project, in the Plutonium Finishing Plant (PFP) at the U. S. Department of Energy (DOE) Hanford facilities. These procedures and any additional requirements for these joining processes can be used by all FH welding operators that are qualified. The Welding Procedure Specifications (WPS) found in this document were established from Procedure Qualification Records (PQR) qualified by FH specifically for the W460 Project. PQRs are permanent records of the initial testing and qualification program and are used to backup, and support, the WPS. The identification numbers of the supporting PQR(s) are recorded on each WPS. All PQRs are permanently stored under the supervision of the Fluor Hanford Welding Engineer (FHWE). New PQRs and WPSs will continue to be developed as necessary. The qualification of welders, welding operators and welding procedures will be performed for FH under supervision and concurrent of the FHWE. All new welding procedures to be entered in this manual or welder personnel to be added to the welder qualification database, shall be approved by the FHWE

  11. Manual for IRS Coding. Joint IAEA/NEA International Reporting System for Operating Experience

    International Nuclear Information System (INIS)

    2011-01-01

    The International Reporting System for Operating Experience (IRS) is jointly operated by the International Atomic Energy Agency (IAEA) and the Nuclear Energy Agency of the Organisation for Economic Co-operation and Development (OECD/NEA). In early 2010, the IAEA and OECD/NEA jointly issued the IRS Guidelines, which described the reporting system and process and gave users the necessary elements to enable them to produce IRS reports to a high standard of quality while retaining the effectiveness of the system expected by all Member States operating nuclear power plants. The purpose of the present Manual for IRS Coding is to provide supplementary guidance specifically on the coding element of IRS reports to ensure uniform coding of events that are reported through IRS. This Coding Manual does not supersede the IRS Guidelines, but rather, supports users and preparers in achieving a consistent and high level of quality in their IRS reports. Consistency and high quality in the IRS reports allow stakeholders to search and retrieve specific event information with ease. In addition, well-structured reports also enhance the efficient management of the IRS database. This Coding Manual will give specific guidance on the application of each section of the IRS codes, with examples where necessary, of when and how these codes are to be applied. As this reporting system is owned by the Member States, this manual has been developed and approved by the IRS National Coordinators with the assistance of the IAEA and NEA secretariats

  12. INES: The International Nuclear Event Scale. User's manual

    International Nuclear Information System (INIS)

    1990-08-01

    The International Nuclear Event Scale (INES) is being introduced for a trial period, the primary purpose being to facilitate communication between the nuclear community, the media and the public on such events. The scale runs from zero, for events with no safety significance, to seven for a major accident. The scale has been circulated to Member States of the International Atomic Energy Agency (IAEA) and the Nuclear Energy Agency of the Organisation for Economic Co-operation and Development and it is presently anticipated that the trial period will last until late 1991. Provision has been made for the scale to be refined thereafter in the light of experience. It is designed as an important tool in providing prompt, clear and consistent information on nuclear events wherever and whenever they may occur. 2 figs, 2 tabs

  13. Nuclear and related techniques in parasitology: A laboratory manual

    Energy Technology Data Exchange (ETDEWEB)

    Hayunga, E.G.; Stek, M. Jr. (eds.)

    1986-01-01

    The course, entitled ''Atomic Energy Applications in Parasitology'', was offered by the Division of Tropical Public Health, Department of Preventive Medicine, and Biometrics, Uniformed Services University of the Health Sciences, Bethesda, Maryland. It was an intensive 3-week endeavor during which students attended lectures and acquired practical hands-on experience with the most recent laboratory tools. The course began with an exhaustive introduction to radiation physics, then encompassed a variety of practical applications including irradiation attenuation, radioisotope labeling, tracer techniques and radioimmunoassays. This laboratory manual was written by the faculty in an attempt to document the learning experience of the training course and to provide a detailed description of state-of-the-art technology with up-to-date references. Clearly, the manual has value as a historical document. However, the chapters were written with the explicit intention that they be useful to future investigators who wish to apply these methods to their particular research problem.

  14. Nuclear forensics support. Technical guidance. Reference manual (Chinese Edition)

    International Nuclear Information System (INIS)

    2012-01-01

    Illicit trafficking of nuclear and other radioactive material has been an issue of concern since the first seizures in the early 1990s. By the end of 2004 Member States had confirmed 540 cases, while about another 500 remain unconfirmed. Most of the confirmed cases have a criminal dimension, even if they were not for known terrorist purposes. The attacks of September 2001 in the USA dramatically emphasized the requirement for the enhanced control and security of nuclear and other radioactive material. In response to a resolution by the IAEA General Conference in September 2002 the IAEA has adopted an integrated approach to protection against nuclear terrorism. This brings together IAEA activities concerned with the physical protection of nuclear material and nuclear installations, nuclear material accountancy, detection and response to illicit nuclear trafficking, the security and safety of radioactive sources, emergency response measures - including pre-emergency measures in Member States and at the IAEA - and the promotion of State adherence to relevant international instruments. States have the responsibility for combating illicit trafficking and the inadvertent movements of radioactive material. The IAEA cooperates with Member States and other international organizations in joint efforts to prevent incidents of illicit trafficking and inadvertent movements and to harmonize policies and measures by providing relevant advice through a range of technical assistance and documents. In this context, the IAEA issued a group of three technical documents, co-sponsored by the World Customs Organization, Europol and Interpol, on the inadvertent movement and illicit trafficking of radioactive material. The first is Prevention of the Inadvertent Movement and Illicit Trafficking of Radioactive Material (IAEA-TECDOC-1311), the second is called Detection of Radioactive Material at Borders (IAEA-TECDOC-1312) and the third is Response to Events Involving the Inadvertent Movement

  15. Mobile nuclear power systems

    International Nuclear Information System (INIS)

    Andersson, B.

    1988-11-01

    This report is meant to present a general survey of the mobile nuclear power systems and not a detailed review of their technical accomplishments. It is based in published material mainly up to 1987. Mobile nuclear power systems are of two fundamentally different kinds: nuclear reactors and isotopic generators. In the reactors the energy comes from nuclear fission and in the isotopic generators from the radioactive decay of suitable isotopes. The reactors are primarily used as power sourves on board nuclear submarines and other warships but have also been used in the space and in remote places. Their thermal power has ranged from 30 kWth (in a satellite) to 175 MWth (on board an aircraft carrier). Isotopic generators are suitable only for small power demands and have been used on board satellites and spaceprobes, automatic weatherstations, lighthouses and marine installations for navigation and observation. (author)

  16. National Waste Terminal Storage Program, planning and control system manual

    International Nuclear Information System (INIS)

    1976-09-01

    This manual contains a brief description of the NWTS program in order to define the environment within which the system must function; an overview of the system, and the concepts and techniques that were utilized in its development; and OWI implementation on the NWTS Program

  17. Sandia National Laboratories, California Environmental Management System program manual.

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L.

    2013-04-01

    The Sandia National Laboratories, California (SNL/CA) Environmental Management System (EMS) Program Manual documents the elements of the site EMS Program. The SNL/CA EMS Program conforms to the International Standard on Environmental Management Systems, ISO 14001:2004 and Department of Energy (DOE) Order 436.1.

  18. SNL/CA Environmental Management System Program Manual.

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L.

    2005-09-01

    The Sandia National Laboratories, California (SNL/CA) Environmental Management System (EMS) Program Manual documents the elements of the site EMS Program. The SNL/CA EMS Program was developed in accordance with Department of Energy (DOE) Order 450.1 and incorporates the elements of the International Standard on Environmental Management Systems, ISO 14001.

  19. Sandia National Laboratories, California Environmental Management System program manual

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L.

    2014-04-01

    The Sandia National Laboratories, California (SNL/CA) Environmental Management System (EMS) Program Manual documents the elements of the site EMS Program. The SNL/CA EMS Program conforms to the International Standard on Environmental Management Systems, ISO 14001:2004 and Department of Energy (DOE) Order 436.1.

  20. MULTIPLE PROJECTIONS SYSTEM (MPS) - USER'S MANUAL VERSION 1.0

    Science.gov (United States)

    The report is a user's manual for version 1.0 of the Multiple Projections Systems (MPS), a computer system that can perform "what if" scenario analysis and report the final results (i.e., Rate of Further Progress - ROP - inventories) to EPA (i.e., the Aerometric Information Retri...

  1. Operation and maintenance manual for data acquisition system of MIDAS

    International Nuclear Information System (INIS)

    Lee, D. Y.; Park, W. M.; Kim, J. T.; Euh, D. J.

    2001-09-01

    This report describes an operation and maintenance manual of the data acquisition system and the data processing system for the DVI performance evaluation facility, MIDAS. The data acquisition system is implemented with VXI based system of Kinetic Systems TM , and the data processing PC. This report presents the configuration method and operation procedure for the operator. The modification procedure and method for functional extension and performance modification are also included for the future demand

  2. Nuclear propulsion systems engineering

    International Nuclear Information System (INIS)

    Madsen, W.W.; Neuman, J.E.: Van Haaften, D.H.

    1992-01-01

    The Nuclear Energy for Rocket Vehicle Application (NERVA) program of the 1960's and early 1970's was dramatically successful, with no major failures during the entire testing program. This success was due in large part to the successful development of a systems engineering process. Systems engineering, properly implemented, involves all aspects of the system design and operation, and leads to optimization of theentire system: cost, schedule, performance, safety, reliability, function, requirements, etc. The process must be incorporated from the very first and continued to project completion. This paper will discuss major aspects of the NERVA systems engineering effort, and consider the implications for current nuclear propulsion efforts

  3. Nuclear Energy Infrastructure Database Description and User’s Manual

    Energy Technology Data Exchange (ETDEWEB)

    Heidrich, Brenden [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-11-01

    In 2014, the Deputy Assistant Secretary for Science and Technology Innovation initiated the Nuclear Energy (NE)–Infrastructure Management Project by tasking the Nuclear Science User Facilities, formerly the Advanced Test Reactor National Scientific User Facility, to create a searchable and interactive database of all pertinent NE-supported and -related infrastructure. This database, known as the Nuclear Energy Infrastructure Database (NEID), is used for analyses to establish needs, redundancies, efficiencies, distributions, etc., to best understand the utility of NE’s infrastructure and inform the content of infrastructure calls. The Nuclear Science User Facilities developed the database by utilizing data and policy direction from a variety of reports from the U.S. Department of Energy, the National Research Council, the International Atomic Energy Agency, and various other federal and civilian resources. The NEID currently contains data on 802 research and development instruments housed in 377 facilities at 84 institutions in the United States and abroad. The effort to maintain and expand the database is ongoing. Detailed information on many facilities must be gathered from associated institutions and added to complete the database. The data must be validated and kept current to capture facility and instrumentation status as well as to cover new acquisitions and retirements. This document provides a short tutorial on the navigation of the NEID web portal at NSUF-Infrastructure.INL.gov.

  4. NNS computing facility manual P-17 Neutron and Nuclear Science

    International Nuclear Information System (INIS)

    Hoeberling, M.; Nelson, R.O.

    1993-11-01

    This document describes basic policies and provides information and examples on using the computing resources provided by P-17, the Neutron and Nuclear Science (NNS) group. Information on user accounts, getting help, network access, electronic mail, disk drives, tape drives, printers, batch processing software, XSYS hints, PC networking hints, and Mac networking hints is given

  5. Root Cause Analysis Following an Event at a Nuclear Installation: Reference Manual

    International Nuclear Information System (INIS)

    2015-01-01

    Following an event at a nuclear installation, it is important to determine accurately its root causes so that effective corrective actions can be implemented. As stated in IAEA Safety Standards Series No. SF-1, Fundamental Safety Principles: “Processes must be put in place for the feedback and analysis of operating experience”. If this process is completed effectively, the probability of a similar event occurring is significantly reduced. Guidance on how to establish and implement such a process is given in IAEA Safety Standards Series No. NS-G-2.11, A System for the Feedback of Experience from Events in Nuclear Installations. To cater for the diverse nature of operating experience events, several different root cause analysis (RCA) methodologies and techniques have been developed for effective investigation and analysis. An event here is understood as any unanticipated sequence of occurrences that results in, or potentially results in, consequences to plant operation and safety. RCA is not a topic uniquely relevant to event investigators: knowledge of the concepts enhances the learning characteristics of the whole organization. This knowledge also makes a positive contribution to nuclear safety and helps to foster a culture of preventing event occurrence. This publication allows organizations to deepen their knowledge of these methodologies and techniques and also provides new organizations with a broad overview of the RCA process. It is the outcome of a coordinated effort involving the participation of experts from nuclear organizations, the energy industry and research centres in several Member States. This publication also complements IAEA Services Series No. 10, PROSPER Guidelines: Guidelines for Peer Review and for Plant Self- Assessment of Operational Experience Feedback Process, and is intended to form part of a suite of publications developing the principles set forth in these guidelines. In addition to the information and description of RCA

  6. Root Cause Analysis Following an Event at a Nuclear Installation: Reference Manual. Companion CD

    International Nuclear Information System (INIS)

    2015-01-01

    Following an event at a nuclear installation, it is important to determine accurately its root causes so that effective corrective actions can be implemented. As stated in IAEA Safety Standards Series No. SF-1, Fundamental Safety Principles: “Processes must be put in place for the feedback and analysis of operating experience”. If this process is completed effectively, the probability of a similar event occurring is significantly reduced. Guidance on how to establish and implement such a process is given in IAEA Safety Standards Series No. NS-G-2.11, A System for the Feedback of Experience from Events in Nuclear Installations. To cater for the diverse nature of operating experience events, several different root cause analysis (RCA) methodologies and techniques have been developed for effective investigation and analysis. An event here is understood as any unanticipated sequence of occurrences that results in, or potentially results in, consequences to plant operation and safety. RCA is not a topic uniquely relevant to event investigators: knowledge of the concepts enhances the learning characteristics of the whole organization. This knowledge also makes a positive contribution to nuclear safety and helps to foster a culture of preventing event occurrence. This publication allows organizations to deepen their knowledge of these methodologies and techniques and also provides new organizations with a broad overview of the RCA process. It is the outcome of a coordinated effort involving the participation of experts from nuclear organizations, the energy industry and research centres in several Member States. This publication also complements IAEA Services Series No. 10, PROSPER Guidelines: Guidelines for Peer Review and for Plant Self- Assessment of Operational Experience Feedback Process, and is intended to form part of a suite of publications developing the principles set forth in these guidelines. In addition to the information and description of RCA

  7. HDM/PASCAL Verification System User's Manual

    Science.gov (United States)

    Hare, D.

    1983-01-01

    The HDM/Pascal verification system is a tool for proving the correctness of programs written in PASCAL and specified in the Hierarchical Development Methodology (HDM). This document assumes an understanding of PASCAL, HDM, program verification, and the STP system. The steps toward verification which this tool provides are parsing programs and specifications, checking the static semantics, and generating verification conditions. Some support functions are provided such as maintaining a data base, status management, and editing. The system runs under the TOPS-20 and TENEX operating systems and is written in INTERLISP. However, no knowledge is assumed of these operating systems or of INTERLISP. The system requires three executable files, HDMVCG, PARSE, and STP. Optionally, the editor EMACS should be on the system in order for the editor to work. The file HDMVCG is invoked to run the system. The files PARSE and STP are used as lower forks to perform the functions of parsing and proving.

  8. Material control system simulator program reference manual

    Energy Technology Data Exchange (ETDEWEB)

    Hollstien, R.B.

    1978-01-24

    A description is presented of a Material Control System Simulator (MCSS) program for determination of material accounting uncertainty and system response to particular adversary action sequences that constitute plausible material diversion attempts. The program is intended for use in situations where randomness, uncertainty, or interaction of adversary actions and material control system components make it difficult to assess safeguards effectiveness against particular material diversion attempts. Although MCSS may be used independently in the design or analysis of material handling and processing systems, it has been tailored toward the determination of material accountability and the response of material control systems to adversary action sequences.

  9. Material control system simulator program reference manual

    International Nuclear Information System (INIS)

    Hollstien, R.B.

    1978-01-01

    A description is presented of a Material Control System Simulator (MCSS) program for determination of material accounting uncertainty and system response to particular adversary action sequences that constitute plausible material diversion attempts. The program is intended for use in situations where randomness, uncertainty, or interaction of adversary actions and material control system components make it difficult to assess safeguards effectiveness against particular material diversion attempts. Although MCSS may be used independently in the design or analysis of material handling and processing systems, it has been tailored toward the determination of material accountability and the response of material control systems to adversary action sequences

  10. Nuclear imaging system

    International Nuclear Information System (INIS)

    Barrett, H.H.; Horrigan, F.A.

    1975-01-01

    This invention relates to a nuclear imaging system for mapping the source of high energy nuclear particles from a living organ which has selectively absorbed a radioactive compound by spatially coding the energy from the source in a Fresnel pattern on a detector and decoding the detector output to prouce an image of the source. The coding is produced by a Fresnel zone plate interposed between the nuclear energy source and the detector whose position is adjustable with respect to the detector to focus the slices of the nuclear source on the detector. By adjusting the zone plate to a plurality of positions, data from a plurality of cross-sectional slices are produced from which a three-dimensional image of the nuclear source may be obtained. (Patent Office Record)

  11. Surface Moisture Measurement System Operation and Maintenance Manual

    International Nuclear Information System (INIS)

    Ritter, G.A.; Pearce, K.L.; Stokes, T.L.

    1995-12-01

    This operations and maintenance manual addresses deployment, equipment and field hazards, operating instructions, calibration verification, removal, maintenance, and other pertinent information necessary to safely operate and store the Surface Moisture Measurement System (SMMS) and Liquid Observation Well Moisture Measurement System (LOWMMS). These systems were developed primarily in support of Tank Waste Remediation System (TWRS) Safety Programs for moisture measurement in organic and ferrocyanide watch list tanks

  12. Management Information System Project. Data Processors Manual to the Program Oriented Accounting System: The Budgetary Process.

    Science.gov (United States)

    Foley, Walter; Harr, Gordon

    The purpose of this manual is to serve the needs of a data processing facility in the operation of a management information system (MIS). Included in the manual are system flowcharts, job control language, and system documentation. The system has been field tested and operates under IBM System 360/Model 65-05-MVT-HASP. The programing language is…

  13. XTAL system of crystallographic programs: programmer's manual

    International Nuclear Information System (INIS)

    Hall, S.R.; Stewart, J.M.; Norden, A.P.; Munn, R.J.; Freer, S.T.

    1980-02-01

    This document establishes the basis for collaborative writing of transportable computer programs for x-ray crystallography. The concepts and general-purpose utility subroutines described here can be readily adapted to other scientific calculations. The complete system of crystallographic programs and subroutines is called XTAL and replaces the XRAY (6,7,8) system of programs. The coding language for the XTAL system is RATMAC (5). The XTAL system of programs contains routines for controlling execution of application programs. In this sense it forms a suboperating system that presents the same computational environment to the user and programmer irrespective of the operating system in use at a particular installation. These control routines replace all FORTRAN I/O code, supply character reading and writing, supply binary file reading and writing, serve as a support library for applications programs, and provide for interprogram communication

  14. Manual on usage of the Nuclear Reaction Data File (NRDF)

    International Nuclear Information System (INIS)

    1984-10-01

    In the computer in the Institute for Nuclear Study, University of Tokyo, there is set up a Nuclear Reaction Data File (NRDF) which has been built in Hokkaido University. While the data base is growing year after year, its trial usage is for the purpose of joint utilization by educational institutions. In section 1, examples of the retrieval are presented to have the user familiarize with NRDF. In section 2, the terms used in retrieval are given in table. Then, in section 3, as a summary of the examples, structure of the retrieval commands is explained. In section 4, for the retrieval results on a CRT, cautions in reading are given. Finally, in section 5, general cautions in usage of NRDF are given. (Mori, K.)

  15. Material control system simulator user's manual

    International Nuclear Information System (INIS)

    Hollstien, R.B.

    1978-01-01

    This report describes the use of a Material Control System Simulator (MCSS) program for determination of material accounting uncertainty and system response to particular adversary action sequences that constitute plausible material diversion attempts. The program is intended for use in situations where randomness, uncertainty, or interaction of adversary actions and material control system components make it difficult to assess safeguards effectiveness against particular material diversion attempts

  16. NASA work unit system file maintenance manual

    Science.gov (United States)

    1972-01-01

    The NASA Work Unit System is a management information system for research tasks (i.e., work units) performed under NASA grants and contracts. It supplies profiles on research efforts and statistics on fund distribution. The file maintenance operator can add, delete and change records at a remote terminal or can submit punched cards to the computer room for batch update. The system is designed for file maintenance by a person with little or no knowledge of data processing techniques.

  17. NDS EXFOR Manual

    International Nuclear Information System (INIS)

    Lemmel, H.D.

    1979-06-01

    This manual contains the coding rules and formats and NDS internal compilation rules for the exchange format (EXFOR) for the transmission of nuclear reaction data between national and international nuclear data centres, and for the data storage and retrieval system of the IAEA Nuclear Data Section

  18. Nuclear structure data file. A manual for preparation of data sets

    International Nuclear Information System (INIS)

    Ewbank, W.B.; Schmorak, M.R.; Bertrand, F.E.; Feliciano, M.; Horen, D.J.

    1975-06-01

    The Nuclear Data Project at ORNL is building a computer-based file of nuclear structure data, which is intended for use by both basic and applied users. For every nucleus, the Nuclear Structure Data File contains evaluated nuclear structure information. This manual describes a standard input format for nuclear structure data. The format is sufficiently structured that bulk data can be entered efficiently. At the same time, the structure is open-ended and can accommodate most measured or deduced quantities that yield nuclear structure information. Computer programs have been developed at the Data Project to perform consistency checking and routine calculations. Programs are also used for preparing level scheme drawings. (U.S.)

  19. Infrastructure Management Information System User Manual

    Science.gov (United States)

    1998-10-01

    This publication describes and explains the user interface for the Infrastructure Management Information System (IMIS). The IMIS is designed to answer questions regarding public water supply, wastewater treatment, and census information. This publica...

  20. Cuerpo de Paz Manual de Sistema de Programacion y Capacitacion (Peace Corps Programming and Training System Manual): T0063.

    Science.gov (United States)

    Peace Corps, Washington, DC.

    This Spanish version of the Peace Corps Programming and Training System Manual is designed to help field staff members of the Peace Corps train volunteers. Its task descriptions, guidelines, examples, and definitions are intended to be practical and informative rather than restrictive. The manual is divided into six major sections: (1)…

  1. Manually operated small envelope scanner system

    Energy Technology Data Exchange (ETDEWEB)

    Sword, Charles Keith

    2017-04-18

    A scanner system and method for acquisition of position-based ultrasonic inspection data are described. The scanner system includes an inspection probe and a first non-contact linear encoder having a first sensor and a first scale to track inspection probe position. The first sensor is positioned to maintain a continuous non-contact interface between the first sensor and the first scale and to maintain a continuous alignment of the first sensor with the inspection probe. The scanner system may be used to acquire two-dimensional inspection probe position data by including a second non-contact linear encoder having a second sensor and a second scale, the second sensor positioned to maintain a continuous non-contact interface between the second sensor and the second scale and to maintain a continuous alignment of the second sensor with the first sensor.

  2. The JOSHUA (J80) system programmer`s manual

    Energy Technology Data Exchange (ETDEWEB)

    Smetana, A.O.; McCort, J.T.; Westmoreland, B.W.

    1993-08-01

    The JOSHUA system routines (JS routines) can be used to manage a JOSHUA data base and execute JOSHUA modules on VAX/VMS and IBM/MVS computer systems. This manual provides instructions for using the JS routines and information about the internal data structures and logic used by the routines. It is intended for use primarily by JOSHUA systems programmers, however, advanced applications programmers may also find it useful. The JS routines are, as far as possible, written in ANSI FORTRAN 77 so that they are easily maintainable and easily portable to different computer systems. Nevertheless, the JOSHUA system provides features that are not available in ANSI FORTRAN 77, notably dynamic module execution and a data base of named, variable length, unformatted records, so some parts of the routines are coded in nonstandard FORTRAN or assembler (as a last resort). In most cases, the nonstandard sections of code are different for each computer system. To make it easy for programmers using the JS routines to avoid naming conflicts, the JS routines and common block all have six character names that begin with the characters {open_quotes}JS.{close_quotes} Before using this manual, one should be familiar with the JOSHUA system as described in {open_quotes}The JOSHUA Users` Manual,{close_quotes} ANSI FORTRAN 77, and at least one of the computer systems for which the JS routines have been implemented.

  3. BISON Theory Manual The Equations behind Nuclear Fuel Analysis

    International Nuclear Information System (INIS)

    Hales, J. D.; Williamson, R. L.; Novascone, S. R.; Pastore, G.; Spencer, B. W.; Stafford, D. S.; Gamble, K. A.; Perez, D. M.; Liu, W.

    2016-01-01

    BISON is a finite element-based nuclear fuel performance code applicable to a variety of fuel forms including light water reactor fuel rods, TRISO particle fuel, and metallic rod and plate fuel. It solves the fully-coupled equations of thermomechanics and species diffusion, for either 2D axisymmetric or 3D geometries. Fuel models are included to describe temperature and burnup dependent thermal properties, fission product swelling, densification, thermal and irradiation creep, fracture, and fission gas production and release. Plasticity, irradiation growth, and thermal and irradiation creep models are implemented for clad materials. Models are also available to simulate gap heat transfer, mechanical contact, and the evolution of the gap/plenum pressure with plenum volume, gas temperature, and fission gas addition. BISON is based on the MOOSE framework and can therefore efficiently solve problems using standard workstations or very large high-performance computers. This document describes the theoretical and numerical foundations of BISON.

  4. BISON Theory Manual The Equations behind Nuclear Fuel Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Hales, J. D. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Williamson, R. L. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Novascone, S. R. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Pastore, G. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Spencer, B. W. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Stafford, D. S. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Gamble, K. A. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Perez, D. M. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Liu, W. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-09-01

    BISON is a finite element-based nuclear fuel performance code applicable to a variety of fuel forms including light water reactor fuel rods, TRISO particle fuel, and metallic rod and plate fuel. It solves the fully-coupled equations of thermomechanics and species diffusion, for either 2D axisymmetric or 3D geometries. Fuel models are included to describe temperature and burnup dependent thermal properties, fission product swelling, densification, thermal and irradiation creep, fracture, and fission gas production and release. Plasticity, irradiation growth, and thermal and irradiation creep models are implemented for clad materials. Models are also available to simulate gap heat transfer, mechanical contact, and the evolution of the gap/plenum pressure with plenum volume, gas temperature, and fission gas addition. BISON is based on the MOOSE framework and can therefore efficiently solve problems using standard workstations or very large high-performance computers. This document describes the theoretical and numerical foundations of BISON.

  5. Guidance for the application of an assessment methodology for innovative nuclear energy systems. INPRO manual - Overview of the methodology. Vol. 1 of 9 of the final report of phase 1 of the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) including a CD-ROM comprising all volumes

    International Nuclear Information System (INIS)

    2008-11-01

    The International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) was initiated in the year 2000, based on a resolution of the IAEA General Conference (GC(44)/RES/21). The main objectives of INPRO are (1) to help to ensure that nuclear energy is available to contribute in fulfilling energy needs in the 21st century in a sustainable manner, (2) to bring together both technology holders and technology users to consider jointly the international and national actions required to achieve desired innovations in nuclear reactors and fuel cycles; and (3) to create a forum to involve all relevant stakeholders that will have an impact on, draw from, and complement the activities of existing institutions, as well as ongoing initiatives at the national and international level. This document follows the guidelines of the INPRO report 'Methodology for the assessment of innovative nuclear reactors and fuel cycles, Report of Phase 1B (first part) of the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO)', IAEA-TECDOC-1434 (2004), together with its previous report Guidance for the evaluation for innovative nuclear reactors and fuel cycles, Report of Phase 1A of the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO), IAEA-TECDOC-1362 (2003). This INPRO manual is comprised of an overview volume (laid out in this report), and eight additional volumes (available on a CD-ROM attached to the inside back cover of this report) covering the areas of economics (Volume 2), infrastructure (Volume 3), waste management (Volume 4), proliferation resistance (Volume 5), physical protection (Volume 6), environment (Volume 7), safety of reactors (Volume 8), and safety of nuclear fuel cycle facilities (Volume 9). The overview volume sets out the philosophy of INPRO and a general discussion of the INPRO methodology. This overview volume discusses the relationship of INPRO with the UN concept of sustainability to demonstrate how the

  6. Solvent Handbook Database System user's manual

    International Nuclear Information System (INIS)

    1993-03-01

    Industrial solvents and cleaners are used in maintenance facilities to remove wax, grease, oil, carbon, machining fluids, solder fluxes, mold release, and various other contaminants from parts, and to prepare the surface of various metals. However, because of growing environmental and worker-safety concerns, government regulations have already excluded the use of some chemicals and have restricted the use of halogenated hydrocarbons because they affect the ozone layer and may cause cancer. The Solvent Handbook Database System lets you view information on solvents and cleaners, including test results on cleaning performance, air emissions, recycling and recovery, corrosion, and non-metals compatibility. Company and product safety information is also available

  7. Nuclear Systems Kilopower Overview

    Science.gov (United States)

    Palac, Don; Gibson, Marc; Mason, Lee; Houts, Michael; McClure, Patrick; Robinson, Ross

    2016-01-01

    The Nuclear Systems Kilopower Project was initiated by NASAs Space Technology Mission Directorate Game Changing Development Program in fiscal year 2015 to demonstrate subsystem-level technology readiness of small space fission power in a relevant environment (Technology Readiness Level 5) for space science and human exploration power needs. The Nuclear Systems Kilopower Project consists of two elements. The primary element is the Kilopower Prototype Test, also called the Kilopower Reactor Using Stirling Technology(KRUSTY) Test. This element consists of the development and testing of a fission ground technology demonstrator of a 1 kWe fission power system. A 1 kWe system matches requirements for some robotic precursor exploration systems and future potential deep space science missions, and also allows a nuclear ground technology demonstration in existing nuclear test facilities at low cost. The second element, the Mars Kilopower Scalability Study, consists of the analysis and design of a scaled-up version of the 1 kWe reference concept to 10 kWe for Mars surface power projected requirements, and validation of the applicability of the KRUSTY experiment to key technology challenges for a 10 kWe system. If successful, these two elements will lead to initiation of planning for a technology demonstration of a 10 kWe fission power capability for Mars surface outpost power.

  8. SNL/CA Environmental Management System Program Manual.

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L.

    2007-04-01

    The Sandia National Laboratories, California (SNL/CA) Environmental Management System (EMS) Program Manual documents the elements of the site EMS Program. The SNL/CA EMS Program conforms to the International Standard on Environmental Management Systems, ISO 14001:2004. Elements of the ISO standard overlap with those of Department of Energy (DOE) Order 450.1, thus SNL/CA's EMS program also meets the DOE requirements.

  9. 46 CFR 112.01-5 - Manual emergency lighting and power system.

    Science.gov (United States)

    2010-10-01

    ... EMERGENCY LIGHTING AND POWER SYSTEMS Definitions of Emergency Lighting and Power Systems § 112.01-5 Manual emergency lighting and power system. A manual emergency lighting and power system is one in which a single... 46 Shipping 4 2010-10-01 2010-10-01 false Manual emergency lighting and power system. 112.01-5...

  10. Reliable control system for nuclear power plant

    International Nuclear Information System (INIS)

    Okamoto, Tetsuo; Miyazaki, Shiro

    1980-01-01

    The System 1100 for nuclear power plants is the measuring and control system which utilizes the features of the System 1100 for electric power market in addition to the results of nuclear instrumentation with EBS-ZN series, and it has the following features. The maintenance and inspection in operation are easy. The construction of control loops is made flexibly by the combination of modules. The construction of multi-variable control system using mainly feed forward control is easy. Such functions as the automatic switching of control modes can be included. The switching of manual and automatic operations is easy, and if some trouble occurred in a module, the manual operation can be made. The aseismatic ability is improved by rigid structure cubicles. Nonflammable materials are used for wires, multi-core cables, paints and printed boards. The anti-noise characteristics are improved, and the reliability is high. The policy of developing the System 1100 for nuclear power plants, the type approval tests on modules and units and the type approval test on the system are described. The items of the system type approval test were standard performance test, earthquake test, noise isolation test, temperature and humidity test, and drift test. The aseismatic cubicle showed good endurance in its vibration test. (Kako, I.)

  11. Integration of a browser based operator manual in the system environment of a process computer system

    International Nuclear Information System (INIS)

    Weber, Andreas; Erfle, Robert; Feinkohl, Dirk

    2012-01-01

    The integration of a browser based operator manual in the system environment of a process computer system is an optimization of the operating procedure in the control room and a safety enhancement due to faster and error-free access to the manual contents. Several requirements by the authorities have to be fulfilled: the operating manual has to be available as hard copy, the format has to be true to original, protection against manipulation has to be provided, the manual content of the browser-based version and the hard copy have to identical, and the display presentation has to be consistent with ergonomic principals. The integration of the on-line manual in the surveillance process computer system provides the operator with the relevant comments to the surveillance signal. The described integration of the on-line manual is an optimization of the operator's everyday job with respect to ergonomics and safety (human performance).

  12. Pilot program: NRC severe reactor accident incident response training manual: US Nuclear Regulatory Commission response

    International Nuclear Information System (INIS)

    Sakenas, C.A.; McKenna, T.J.; Perkins, K.; Miller, C.W.; Hively, L.M.; Sharpe, R.W.; Giitter, J.G.; Watkins, R.M.

    1987-02-01

    This pilot training manual has been written to fill the need for a general text on NRC response to reactor accidents. The manual is intended to be the foundation for a course for all NRC response personnel. US Nuclear Regulatory Commission Response is the fifth in a series of volumes that collectively summarize the US Nuclear Regulatory Commission (NRC) emergency response during severe power reactor accidents and provide necessary background information. This volume describes NRC response modes, organizations, and official positions; roles of other federal agencies are also described briefly. Each volume serves, respectively, as the text for a course of instruction in a series of courses for NRC response personnel. These materials do not provide guidance or license requirements for NRC licensees. Each volume is accompanied by an appendix of slides that can be used to present this material. The slides are called out in the text

  13. Colloid transport code-nuclear user`s manual

    Energy Technology Data Exchange (ETDEWEB)

    Jain, R. [New Mexico Univ., Albuquerque, NM (United States)

    1992-04-03

    This report describes the CTCN computer code, designed to solve the equations of transient colloidal transport of radionuclides in porous and fractured media. This Fortran 77 package solves systems of coupled nonlinear differential equations with a wide range of boundary conditions. The package uses the Method of Lines technique with a special section which forms finite-difference discretizations in up to four spatial dimensions to automatically convert the system into a set of ordinary differential equations. The CTCN code then solves these equations using a robust, efficient ODE solver. Thus CTCN can be used to solve population balance equations along with the usual transport equations to model colloid transport processes or as a general problem solver to treat up to four-dimensional differential systems.

  14. The International Nuclear Event Scale (INES) user's manual. 2001 edition; La escala internacional de sucesos nucleares (INES) manual del usuario. Edicion de 2001

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-12-01

    The International Nuclear Event Scale (INES) was introduced in March 1990 jointly by the International Atomic Energy Agency (IAEA) and the Nuclear Energy Agency of the Organisation for Economic Co-operation and Development (OECD/NEA). Its primary purpose is to facilitate communication and understanding between the nuclear community, the media and the public on the safety significance of events occurring at nuclear installations. The scale was refined in 1992 in the light of experience gained and extended to be applicable to any event associated with radioactive material and/or radiation, including the transport of radioactive materials.This edition of the INES User's Manual incorporates experience gained from applying the 1992 version of the scale and the document entitled 'Clarification of Issues Raised'. As such, it replaces those earlier publications. It does not amend the technical basis of the INES rating procedure but is expected to facilitate the task of those who are required to rate the safety significance of events using the INES scale. The INES communication network currently receives and disseminates event information to the INES National Officers of 60 Member States on special Event Rating Forms which represent official information on the events, including the rating. The INES communication process has led each participating country to set up an internal network which ensures that all events are promptly communicated and rated whenever they have to be reported outside or inside the country. The IAEA provides training services on the use of INES on request.

  15. Laboratory training manual on the use of nuclear techniques in pesticide research

    International Nuclear Information System (INIS)

    1983-01-01

    This is a laboratory training manual on the use of nuclear techniques, and in particular radioisotopes in pesticide research. It is designed to give the scientists involved in pesticide research the basic terms and principles for understanding ionizing radiation: detection and measurement its hazards and safety measures, and some of the more common applications. Laboratory exercises representing the types of experiments that are valuable in pesticide research programmes and field tests which demonstrate the use of radiolabelled pesticides are included

  16. Performance evaluation recommendations and manuals of nuclear power plants outdoor significant civil structures earthquake resistance

    International Nuclear Information System (INIS)

    2005-06-01

    Performance evaluation recommendations and manuals of nuclear power plants outdoor significant civil structures earthquake resistance have been updated in June 2005 by the Japan Society of Civil Engineers. Based on experimental and analytical considerations on the recommendations of May 2002, analytical seismic models of soils for underground structures, effects of vertical motions on time-history dynamic analysis and shear fracture of reinforced concretes by cyclic loadings have been evaluated and incorporated in new recommendations. (T. Tanaka)

  17. Manual on nuclear gauges. Incorporating: Applications guide, procedures guide, basics guide

    International Nuclear Information System (INIS)

    1996-01-01

    This publication is part of practical radiation safety manual series for different fields of application aimed primarily at persons handling radiation sources on a daily routine basis, which could at same time be used by the competent authorities, supporting their efforts in the radiation protection training of workers or medical assistance personnel or helping on-site management to set up local radiation protection rules. It is dedicated to nuclear gauges: their application and procedures guides

  18. Nuclear fuel preheating system

    International Nuclear Information System (INIS)

    Andrea, C.

    1975-01-01

    A nuclear reactor new fuel handling system which conveys new fuel from a fuel preparation room into the reactor containment boundary is described. The handling system is provided with a fuel preheating station which is adaptd to heat the new fuel to reactor refueling temperatures in such a way that the fuel is heated from the top down so that fuel element cladding failure due to thermal expansions is avoided. (U.S.)

  19. Workshop on nuclear structure and decay data: Theory and evaluation manual - Pt. 2

    International Nuclear Information System (INIS)

    Nichols, A.L.; McLaughlin, P.K.; p.mclaughlin@iaea.org

    2004-11-01

    A two-week Workshop on Nuclear Structure and Decay Data: Theory and Evaluation was organized and administrated by the IAEA Nuclear Data Section, and hosted at the Abdus Salam International Centre for Theoretical Physics (ICTP) in Trieste, Italy from 17 to 28 November 2003. The aims and contents of this workshop are summarized, along with the agenda, list of participants, comments and recommendations. Workshop materials are also included that are freely available on CD-ROM (all relevant PowerPoint presentations and manuals along with appropriate computer codes). (author)

  20. Workshop on nuclear structure and decay data: Theory and evaluation manual - Pt. 1

    International Nuclear Information System (INIS)

    Nichols, A.L.; McLaughlin, P.K.; p.mclaughlin@iaea.org

    2004-11-01

    A two-week Workshop on Nuclear Structure and Decay Data: Theory and Evaluation was organized and administrated by the IAEA Nuclear Data Section, and hosted at the Abdus Salam International Centre for Theoretical Physics (ICTP) in Trieste, Italy from 17 to 28 November 2003. The aims and contents of this workshop are summarized, along with the agenda, list of participants, comments and recommendations. Workshop materials are also included that are freely available on CD-ROM (all relevant PowerPoint presentations and manuals along with appropriate computer codes). (author)

  1. PLEXFIN a computer model for the economic assessment of nuclear power plant life extension. User's manual

    International Nuclear Information System (INIS)

    2007-01-01

    The IAEA developed PLEXFIN, a computer model analysis tool aimed to assist decision makers in the assessment of the economic viability of a nuclear power plant life/licence extension. This user's manual was produced to facilitate the application of the PLEXFIN computer model. It is widely accepted in the industry that the operational life of a nuclear power plant is not limited to a pre-determined number of years, sometimes established on non-technical grounds, but by the capability of the plant to comply with the nuclear safety and technical requirements in a cost effective manner. The decision to extend the license/life of a nuclear power plant involves a number of political, technical and economic issues. The economic viability is a cornerstone of the decision-making process. In a liberalized electricity market, the economics to justify a nuclear power plant life/license extension decision requires a more complex evaluation. This user's manual was elaborated in the framework of the IAEA's programmes on Continuous process improvement of NPP operating performance, and on Models for analysis and capacity building for sustainable energy development, with the support of four consultants meetings

  2. A manual of recommended practices for hydrogen energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Hoagland, W.; Leach, S. [W. Hoagland and Associates, Boulder, CO (United States)

    1997-12-31

    Technologies for the production, distribution, and use of hydrogen are rapidly maturing and the number and size of demonstration programs designed to showcase emerging hydrogen energy systems is expanding. The success of these programs is key to hydrogen commercialization. Currently there is no comprehensive set of widely-accepted codes or standards covering the installation and operation of hydrogen energy systems. This lack of codes or standards is a major obstacle to future hydrogen demonstrations in obtaining the requisite licenses, permits, insurance, and public acceptance. In a project begun in late 1996 to address this problem, W. Hoagland and Associates has been developing a Manual of Recommended Practices for Hydrogen Systems intended to serve as an interim document for the design and operation of hydrogen demonstration projects. It will also serve as a starting point for some of the needed standard-setting processes. The Manual will include design guidelines for hydrogen procedures, case studies of experience at existing hydrogen demonstration projects, a bibliography of information sources, and a compilation of suppliers of hydrogen equipment and hardware. Following extensive professional review, final publication will occur later in 1997. The primary goal is to develop a draft document in the shortest possible time frame. To accomplish this, the input and guidance of technology developers, industrial organizations, government R and D and regulatory organizations and others will be sought to define the organization and content of the draft Manual, gather and evaluate available information, develop a draft document, coordinate reviews and revisions, and develop recommendations for publication, distribution, and update of the final document. The workshop, Development of a Manual of Recommended Practices for Hydrogen Energy Systems, conducted on March 11, 1997 in Alexandria, Virginia, was a first step.

  3. 22 CFR 308.10 - Security of records systems-manual and automated.

    Science.gov (United States)

    2010-04-01

    ... 22 Foreign Relations 2 2010-04-01 2010-04-01 true Security of records systems-manual and automated... Security of records systems—manual and automated. The head of the agency has the responsibility of... destruction of manual and automatic record systems. These security safeguards shall apply to all systems in...

  4. RELAP4/MOD5: a computer program for transient thermal-hydraulic analysis of nuclear reactors and related systems. User's manual. Volume I. RELAP4/MOD5 description. [PWR and BWR

    Energy Technology Data Exchange (ETDEWEB)

    1976-09-01

    RELAP4 is a computer program written in FORTRAN IV for the digital computer analysis of nuclear reactors and related systems. It is primarily applied in the study of system transient response to postulated perturbations such as coolant loop rupture, circulation pump failure, power excursions, etc. The program was written to be used for water-cooled (PWR and BWR) reactors and can be used for scale models such as LOFT and SEMISCALE. Additional versatility extends its usefulness to related applications, such as ice condenser and containment subcompartment analysis. Specific options are available for reflood (FLOOD) analysis and for the NRC Evaluation Model.

  5. Energy management information systems - planning manual and tool

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    An Energy Management Information System (EMIS) provides relevant information that makes energy, performance visible to various levels of an organization, enabling individuals and departments to plan, make decisions and take effective action to manage energy. This manual has two objectives: 1. To enable companies to conduct EMIS audits and prepare EMIS implementation plans; 2. To provide companies with the tools to prepare a financial business case for EMIS implementation. This manual consists of four parts: 1. EMIS Audit is theoretical and provides the methodology to be used by outside or in-house engineers and consultants to do a thorough EMIS Audit. 2. Implementation Plan is to help industry do the work themselves. 3. Appendices is to help the user develop an EMIS Audit, gather data and score their company, prepare a conceptual and detailed design, as well as a business and financial plan for implementation.

  6. Nuclear reactor monitoring system

    International Nuclear Information System (INIS)

    Drummond, C.N.; Bybee, R.T.; Mason, F.L.; Worsham, H.J.

    1976-01-01

    The invention pertains to an improved monitoring system for the neutron flux in a nuclear reactor. It is proposed to combine neutron flux detectors, a thermoelement, and a background radiation detector in one measuring unit. The spatial arrangement of these elements is fixed with great exactness; they are enclosed by an elastic cover and are brought into position in the reactor with the aid of a bent tube. The arrangement has a low failure rate and is easy to maintain. (HP) [de

  7. Nuclear reactor shutdown system

    International Nuclear Information System (INIS)

    Mangus, J.D.; Cooper, M.H.

    1982-01-01

    An improved nuclear reactor shutdown system is described comprising a temperature sensitive device connected to control the electric power supply to a magnetic latch holding a body of a neutron absorbing material. The temperature sensitive device is exposed to the reactor coolant so that when the reactor coolant temperature rises above a specific level, the temperature sensitive device will cause deenergization of the magnetic latch to allow the body of neutron absorbing material to enter the reactor core. (author)

  8. Wireless online position monitoring of manual valve types for plant configuration management in nuclear power plants

    International Nuclear Information System (INIS)

    Agarwal, Vivek; Buttles, John W.; Beaty, Lawrence H.; Naser, Joseph; Hallbert, Bruce P.

    2016-01-01

    In the current competitive energy market, the nuclear industry is committed to lower the operations and maintenance cost; increase productivity and efficiency while maintaining safe and reliable operation. The present operating model of nuclear power plants is dependent on large technical staffs that put the nuclear industry at long-term economic disadvantage. Technology can play a key role in nuclear power plant configuration management in offsetting labor costs by automating manually performed plant activities. The technology being developed, tested, and demonstrated in this paper will enable the continued safe operation of today’s fleet of light water reactors by providing the technical means to monitor components in plants today that are only routinely monitored through manual activities. The wireless enabled valve position indicators that are the subject of this paper are able to provide a valid position indication available continuously, rather than only periodically. As a result, a real-time (online) availability of valve positions using an affordable technologies are vital to plant configuration when compared with long-term labor rates, and provide information that can be used for a variety of plant engineering, maintenance, and management applications.

  9. Computerized low-level waste assay system operation manual

    International Nuclear Information System (INIS)

    Jones, D.F.; Cowder, L.R.; Martin, E.R.

    1976-01-01

    An operation and maintenance manual for the computerized low-level waste box counter is presented, which describes routine assay techniques as well as theory of operation treated in sufficient depth so that an experienced assayist can make nonroutine assays. In addition, complete system schematics are included, along with a complete circuit description to facilitate not only maintenance and troubleshooting, but also reproduction of the instrument if desired. Complete software system descriptions are included so far as calculational algorithms are concerned, although detailed instruction listings would have to be obtained from Group R-1 at LASL in order to make machine-language code changes

  10. A user's manual for managing database system of tensile property

    International Nuclear Information System (INIS)

    Ryu, Woo Seok; Park, S. J.; Kim, D. H.; Jun, I.

    2003-06-01

    This manual is written for the management and maintenance of the tensile database system for managing the tensile property test data. The data base constructed the data produced from tensile property test can increase the application of test results. Also, we can get easily the basic data from database when we prepare the new experiment and can produce better result by compare the previous data. To develop the database we must analyze and design carefully application and after that, we can offer the best quality to customers various requirements. The tensile database system was developed by internet method using Java, PL/SQL, JSP(Java Server Pages) tool

  11. Nuclear reactor safety system

    International Nuclear Information System (INIS)

    Ball, R.M.; Roberts, R.C.

    1983-01-01

    The invention provides a safety system for a nuclear reactor which uses a parallel combination of computer type look-up tables each of which receives data on a particular parameter (from transducers located in the reactor system) and each of which produces the functional counterpart of that particular parameter. The various functional counterparts are then added together to form a control signal for shutting down the reactor. The functional counterparts are developed by analysis of experimental thermal and hydraulic data, which are used to form expressions that define safe conditions

  12. Nuclear reactor safety systems

    International Nuclear Information System (INIS)

    Ball, R.M.; Roberts, R.C.

    1980-01-01

    A safety system for shutting down a nuclear reactor under overload conditions is described. The system includes a series of parallel-connected computer memory type look-up tables each of which receives data on a particular reactor parameter and in each of which a precalculated functional value for that parameter is stored indicative of the percentage of maximum reactor load that the parameter contributes. The various functional values corresponding to the actual measured parameters are added together to provide a control signal used to shut down the reactor under overload conditions. (U.K.)

  13. Time warp operating system version 2.7 internals manual

    Science.gov (United States)

    1992-01-01

    The Time Warp Operating System (TWOS) is an implementation of the Time Warp synchronization method proposed by David Jefferson. In addition, it serves as an actual platform for running discrete event simulations. The code comprising TWOS can be divided into several different sections. TWOS typically relies on an existing operating system to furnish some very basic services. This existing operating system is referred to as the Base OS. The existing operating system varies depending on the hardware TWOS is running on. It is Unix on the Sun workstations, Chrysalis or Mach on the Butterfly, and Mercury on the Mark 3 Hypercube. The base OS could be an entirely new operating system, written to meet the special needs of TWOS, but, to this point, existing systems have been used instead. The base OS's used for TWOS on various platforms are not discussed in detail in this manual, as they are well covered in their own manuals. Appendix G discusses the interface between one such OS, Mach, and TWOS.

  14. Modernizing computerized nuclear material accounting systems

    International Nuclear Information System (INIS)

    Erkkila, B.H.; Claborn, J.

    1995-01-01

    DOE Orders and draft orders for nuclear material control and accountability address a complete material control and accountability (MC and A) program for all DOE contractors processing, using, or storing nuclear materials. A critical element of an MC and A program is the accounting system used to track and record all inventories of nuclear material and movements of materials in those inventories. Most DOE facilities use computerized accounting systems to facilitate the task of accounting for all their inventory of nuclear materials. Many facilities still use a mixture of a manual paper system with a computerized system. Also, facilities may use multiple systems to support information needed for MC and A. For real-time accounting it is desirable to implement a single integrated data base management system for a variety of users. In addition to accountability needs, waste management, material management, and production operations must be supported. Information in these systems can also support criticality safety and other safety issues. Modern networked microcomputers provide extensive processing and reporting capabilities that single mainframe computer systems struggle with. This paper describes an approach being developed at Los Alamos to address these problems

  15. Nuclear power system

    International Nuclear Information System (INIS)

    Yampolsky, J.S.; Cavallaro, L.; Paulovich, K.F.; Schleicher, R.W.

    1989-01-01

    This patent describes an inherently safe modular nuclear power system for producing electrical power at acceptable efficiency levels using working fluids at relatively low temperatures and pressures. The system comprising: a reactor module for heating a first fluid; a heat exchanger module for transferring heat from the first fluid to a second fluid; a first piping system effecting flow of the first fluid in a first fluid circuit successively through the reactor module and the heat exchanger module; a power conversion module comprising a turbogenerator driven by the second fluid, and means for cooling the second fluid upon emergence thereof from the turbogenerator; a second piping system comprising means for effecting flow of the second fluid in a second fluid circuit successively through the heat exchanger module and the power conversion module; and a plurality of pits for receiving the modules

  16. Can pulsed xenon ultraviolet light systems disinfect aerobic bacteria in the absence of manual disinfection?

    Science.gov (United States)

    Jinadatha, Chetan; Villamaria, Frank C; Ganachari-Mallappa, Nagaraja; Brown, Donna S; Liao, I-Chia; Stock, Eileen M; Copeland, Laurel A; Zeber, John E

    2015-04-01

    Whereas pulsed xenon-based ultraviolet light no-touch disinfection systems are being increasingly used for room disinfection after patient discharge with manual cleaning, their effectiveness in the absence of manual disinfection has not been previously evaluated. Our study indicates that pulsed xenon-based ultraviolet light systems effectively reduce aerobic bacteria in the absence of manual disinfection. These data are important for hospitals planning to adopt this technology as adjunct to routine manual disinfection. Published by Elsevier Inc.

  17. Nuclear criticality information system

    International Nuclear Information System (INIS)

    Koponen, B.L.; Hampel, V.E.

    1981-01-01

    The nuclear criticality safety program at LLNL began in the 1950's with a critical measurements program which produced benchmark data until the late 1960's. This same time period saw the rapid development of computer technology useful for both computer modeling of fissile systems and for computer-aided management and display of the computational benchmark data. Database management grew in importance as the amount of information increased and as experimental programs were terminated. Within the criticality safety program at LLNL we began at that time to develop a computer library of benchmark data for validation of computer codes and cross sections. As part of this effort, we prepared a computer-based bibliography of criticality measurements on relatively simple systems. However, it is only now that some of these computer-based resources can be made available to the nuclear criticality safety community at large. This technology transfer is being accomplished by the DOE Technology Information System (TIS), a dedicated, advanced information system. The NCIS database is described

  18. Operator's Manual for SHEBA Powered Tether Balloon System

    Science.gov (United States)

    Lappen, Cara-Lyn; Randall, David A.

    1998-01-01

    The Surface Heat and Energy Budget of the Arctic (SHEBA) was an intensive field project which took place in the Arctic Ocean from October 1997 through October 1998. Its purpose was to measure as many facets of the Arctic environment as possible so that we would be able to better understand the interaction between the ice, atmosphere, and ocean and their interactions with global climate. One aspect of the atmospheric field component was launching tethered balloons to monitor the profiles of temperature, wind, pressure, and humidity, as well as examine the vertical structure of cloud droplet sizes and distributions. The tethered balloon that we used was one specially designed for use in freezing climates by SPEC Corporation in Boulder, Colorado. A special winch that was able to withstand Arctic temperature and weather became necessary when the testing of simple winch systems used in warmer climates failed under these extreme conditions. The purpose of this manual is to acquaint any new user to the powered tethered balloon system deployed at the The Surface Heat and Energy Budget of the Arctic (SHEBA ice camp. It includes a description of the preparations necessary to get ready for a launch, the mechanics of the actual launch, and an account of the proper procedure for taking down the equipment when finished. It will also include tips on how to minimize potential equipment failures, some trouble shooting, and some safety ideas. This manual is designed so that new operators can use the system with minimal previous training. At the end of this manual, the reader will find a quick checklist.

  19. BEACON/MOD: a computer program for thermal-hydraulic analysis of nuclear reactor containments - user's manual

    International Nuclear Information System (INIS)

    Broadus, C.R.; Doyle, R.J.; James, S.W.; Lime, J.F.; Mings, W.J.

    1980-04-01

    The BEACON code is a best-estimate, advanced containment code designed to perform a best-estimate analysis of the flow of a mixture of air, water, and steam in a nuclear reactor containment system under loss-of-coolant accident conditions. The code can simulate two-component, two-phase fluid flow in complex geometries using a combination of two-dimensional, one-dimensional, and lumped-parameter representations for the various parts of the system. The current version of BEACON, which is designated BEACON/MOD3, contains mass and heat transfer models for wall film and wall conduction. It is suitable for the evaluation of short-term transients in dry-containment systems. This manual describes the models employed in BEACON/MOD3 and specifies code implementation requirements. It provides application information for input data preparation and for output data interpretation

  20. Nuclear reactor sealing system

    International Nuclear Information System (INIS)

    McEdwards, J.A.

    1983-01-01

    A liquid metal-cooled nuclear reactor sealing system is disclosed. The nuclear reactor includes a vessel sealed at its upper end by a closure head. The closure head comprises at least two components, one of which is rotatable; and the two components define an annulus therebetween. The sealing system includes at least a first and second inflatable seal disposed in series in an upper portion of the annulus. The system further includes a dip seal extending into a body of insulation located adjacent a bottom portion of the closure head. The dip seal comprises a trough formed by a lower portion of one of the components, and a seal blade pendently supported from the other component and extending downwardly into the trough. A body of liquid metal is contained in the trough which submerges a portion of the seal blade. The seal blade is provided with at least one aperture located above the body of liquid metal for providing fluid communication between the annulus intermediate the dip seal and the inflatable seals, and a body of cover gas located inside the vessel. There also is provided means for introducing a purge gas into the annulus intermediate the inflatable seals and the seal blade. The purge gas is introduced in an amount sufficient to substantially reduce diffusion of radioactive cover gas or sodium vapor up to the inflatable seals. The purge gas mixes with the cover gas in the reactor vessel where it can be withdrawn from the vessel for treatment and recycle to the vessel

  1. The nuclear reactor systems

    International Nuclear Information System (INIS)

    Bacher, P.

    2008-01-01

    This paper describes the various nuclear reactor systems, starting with the Generation II, then the present development of the Generation III and the stakes and challenges of the future Generation IV. Some have found appropriate to oppose reactor systems or generations one to another, especially by minimizing the enhancements of generation III compared to generation II or by expecting the earth from generation IV (meaning that generation III is already obsolete). In the first part of the document (chapter 2), some keys are given to the reader to develop its proper opinion. Chapter 3 describes more precisely the various reactor systems and generations. Chapter 4 discusses the large industrial manoeuvres around the generation III, and the last chapter gives some economical references, taking into account, for the various means of power generation, the impediments linked to climate protection

  2. Laboratory training manual on the use of nuclear techniques in animal parasitology

    International Nuclear Information System (INIS)

    1982-01-01

    The Manual is designed for specialist training in the use of nuclear techniques in animal parasitology. The theoretical part contains a general introduction to experimental work in this field. Laboratory exercises are divided into Basic Exercises (17) and Applied Exercises (25) oriented to research in the immunology and pathogenesis of host-parasite interactions using radioisotopic methods and to disease management through the use of radiation-attenuated vaccines. The closing part contains a number of practical guidelines and data for work with radioisotopes in general and for the use of radioisotopic methods in animal parasitology

  3. User's manual for the reactor burnup system, REBUS

    International Nuclear Information System (INIS)

    Olson, A.P.; Regis, J.P.; Meneley, D.A.; Hoover, L.J.

    1972-01-01

    A user's manual for the REBUS System (REactor BUrnup System) is presented. Its primary purpose is to provide sufficient information about the REBUS capability to the user to ensure its efficient utilization. The current REBUS System either solves for the infinite time (equilibrium) operating conditions of a recycle system under fixed conditions, or solves for operating conditions during a single time step (non-equilibrium). The capability of studying various in-reactor fuel management and ex-reactor fuel management schemes has been included. REBUS has been operated with one- and two-dimensional diffusion theory neutronics solutions up to the present time. The model was specifically designed for extension to other neutronics models such as three-dimensional diffusion or transport theory and direct or synthesis solutions

  4. User's manual of JT-60 experimental data analysis system

    International Nuclear Information System (INIS)

    Hirayama, Takashi; Morishima, Soichi; Yoshioka, Yuji

    2010-02-01

    In the Japan Atomic Energy Agency Naka Fusion Institute, a lot of experiments have been conducted by using the large tokamak device JT-60 aiming to realize fusion power plant. In order to optimize the JT-60 experiment and to investigate complex characteristics of plasma, JT-60 experimental data analysis system was developed and used for collecting, referring and analyzing the JT-60 experimental data. Main components of the system are a data analysis server and a database server for the analyses and accumulation of the experimental data respectively. Other peripheral devices of the system are magnetic disk units, NAS (Network Attached Storage) device, and a backup tape drive. This is a user's manual of the JT-60 experimental data analysis system. (author)

  5. Importance of the documentation of the manual of quality and procedures handbook in the nuclear technology center

    International Nuclear Information System (INIS)

    Domech More, J.; Bolanos Hernandez, R.; Quitero Rosello, R.; Fernandez Rondon, M.; Milian Lorenzo, D.; Rodriguez Gual, M.

    1997-01-01

    In the present work is presented the methodology used for the elaboration of manual of quality of the Nuclear Technology Center and the technical Procedures Handbook for the execution of Preliminary Safety report of the Juragua Nuclear Power Plant, as well as the importance that has this documentation for the work of the center

  6. Manual of program operation for data analysis from radiometer system

    International Nuclear Information System (INIS)

    Silva Mello, L.A.R. da; Migliora, C.G.S.

    1987-12-01

    This manual describes how to use the software to retrieve and analyse data from radiometer systems and raingauges used in the 12 GHz PROPAGATION MEASUREMENTS/CANADA - TELEBRAS COOPERATION PROGRAM. The data retrieval and analisys is being carried out by CETUC, as part of the activities of the project Simulacao de Enlaces Satelite (SES). The software for these tasks has been supplied by the Canadian Research Centre (CRC), together with the measurement equipment. The two following sections describe the use of the data retrieval routines and the data analysis routines of program ATTEN. Also, a quick reference guide for commands that can be used when a microcomputer is local or remotely connected to a radiometer indoor unit is included as a last section. A more detailed description of these commands, their objectives and cautions that should de taken when using them can be found in the manual ''12 GHz Propagation Measurements System - Volume 1 - Dual Slope Radiometer and Data Aquisition System'', supplied by Diversitel Communications Inc. (author) [pt

  7. Operations manual for the megachannel gamma-ray coincidence system

    International Nuclear Information System (INIS)

    Ruhter, W.

    1977-01-01

    To aid in the study of nuclear structures, a megachannel pulse-height coincidence analysis system on a PDP-8 computer was constructed. The system digitizes the energies of coincident gamma-rays and stores the resultant information on a moving-head disk. The system uses a minicomputer to sort and store gamma-gamma coincident information on line. The megachannel system and how to use it are described

  8. Manual on quality assurance for installation and commissioning of instrumentation, control and electrical equipment in nuclear power plants

    International Nuclear Information System (INIS)

    1989-01-01

    The present Manual on Quality Assurance (QA) for Installation and Commissioning of Instrumentation, Control and Electrical (ICE) Equipment of Nuclear Power Plants contains supporting material and illustrative examples for implementing basic requirements of the quality assurance programme in procurement, receiving, installation and commissioning of this equipment. The Manual on Quality Assurance for Installation and Commissioning of ICE Equipment is designed to supplement and be consistent with the Guidebook as well as with the IAEA Code and Safety Guides on Quality Assurance. It is intended for the use of managerial staff and QA personnel of nuclear power plant owners or the organizations respectively responsible for the legal, technical, administrative and financial aspects of a nuclear power plant. The information provided in the Manual will also be useful to the inspection staff of the regulatory organization in the planning and performance of regulatory inspections at nuclear power plants

  9. Guidance Manual for preparing Nuclear and Radiological Emergency Preparedness and Response Plan

    Energy Technology Data Exchange (ETDEWEB)

    Muhammed, Kabiru [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Jeong, Seung-Young [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2014-10-15

    The Nuclear and Radiological Emergency Preparedness and Response Plan(NREPRP) describes the capabilities, responsibilities and authorities of government agencies and a conceptual basis for integrating the activities of these agencies to protect public health and safety. The NREPRP addresses issues related to actual or perceived radiation hazard requiring a national response in order to: i. Provide co-ordination of a response involving multi-jurisdictions or significant national responsibilities; or ii. Provide national support to state and local governments. The objective of this research is to establish Guidance Manual for preparing a timely, organized and coordinated emergency response plan for Authorities/agencies to promptly and adequately determine and take actions to protect members of the public and emergency workers. The manual will not provide sufficient details for an adequate response. This level of details is contained in standard operating procedures that are being developed based on the plan developed. Base on the data obtain from integrated planning levels and responsibility sharing, the legal document of major government agencies participating in NREPRP form the legal basis for the response plan. Also the following documents should be some international legal binding documents. Base on the international safety requirement and some countries well developed NREPRP, we have drafted a guidance manual for new comer countries for easy development of their countries NREPRP. Also we have taken in to consideration lessons learn from most accident especially Fukushima accident.

  10. Guidance Manual for preparing Nuclear and Radiological Emergency Preparedness and Response Plan

    International Nuclear Information System (INIS)

    Muhammed, Kabiru; Jeong, Seung-Young

    2014-01-01

    The Nuclear and Radiological Emergency Preparedness and Response Plan(NREPRP) describes the capabilities, responsibilities and authorities of government agencies and a conceptual basis for integrating the activities of these agencies to protect public health and safety. The NREPRP addresses issues related to actual or perceived radiation hazard requiring a national response in order to: i. Provide co-ordination of a response involving multi-jurisdictions or significant national responsibilities; or ii. Provide national support to state and local governments. The objective of this research is to establish Guidance Manual for preparing a timely, organized and coordinated emergency response plan for Authorities/agencies to promptly and adequately determine and take actions to protect members of the public and emergency workers. The manual will not provide sufficient details for an adequate response. This level of details is contained in standard operating procedures that are being developed based on the plan developed. Base on the data obtain from integrated planning levels and responsibility sharing, the legal document of major government agencies participating in NREPRP form the legal basis for the response plan. Also the following documents should be some international legal binding documents. Base on the international safety requirement and some countries well developed NREPRP, we have drafted a guidance manual for new comer countries for easy development of their countries NREPRP. Also we have taken in to consideration lessons learn from most accident especially Fukushima accident

  11. Nuclear reactor refueling system

    International Nuclear Information System (INIS)

    Wade, E.E.

    1978-01-01

    A system for transferring fuel assemblies between a nuclear reactor core and a fuel storage area while the fuel assembies remain completely submerged in a continuous body of coolant is described. The system comprises an in-vessel fuel transfer machine located inside the reactor vessel and an ex-vessel fuel transfer machine located in a fuel storage tank. The in-vessel fuel transfer machine comprises two independently rotatable frames with a pivotable fuel transfer apparatus disposed on the lower rotatable frame. The ex-vessel fuel transfer machine comprises one frame with a pivotable fuel transfer apparatus disposed thereon. The pivotable apparatuses are capable of being aligned with each other to transfer a fuel assembly between the reactor vessel and fuel storage tank while the fuel assembly remains completely submerged in a continuous body of coolant. 9 claims, 7 figures

  12. Automated Transportation Management System (ATMS) user's manual. Revision 1

    International Nuclear Information System (INIS)

    Smith, P.D.

    1994-01-01

    The Automated Transportation Management System (ATMS) Software User Guide (SUG) constitutes the user procedures for the ATMS System. Information in this document will be used by the user to operate the automated system. It is intended to be used as a reference manual to guide and direct the user(s) through the ATMS software product and its environment. The objectives of ATMS are as follows: to better support the Procurement function with freight rate information; to free Transportation Logistics personnel from routine activities such as the auditing and input of freight billing information; to comply with Headquarters Department of Energy-Inspector General (DOE-IG) audit findings to automate transportation management functions; to reduce the keying of data into the Shipment Mobility Accountability Collection (SMAC) database; and to provide automation for the preparing of Bill of Lading, Declaration of Dangerous Goods, Emergency Response Guide and shipping Labels using HM181 Retrieval of hazardous material table text information

  13. Activity Management System user reference manual. Revision 1

    International Nuclear Information System (INIS)

    Gates, T.A.; Burdick, M.B.

    1994-01-01

    The Activity Management System (AMS) was developed in response to the need for a simple-to-use, low-cost, user interface system for collecting and logging Hanford Waste Vitrification Plant Project (HWVP) activities. This system needed to run on user workstations and provide common user access to a database stored on a local network file server. Most important, users wanted a system that provided a management tool that supported their individual process for completing activities. Existing system treated the performer as a tool of the system. All AMS data is maintained in encrypted format. Users can feel confident that any activities they have entered into the database are private and that, as the originator, they retain sole control over who can see them. Once entered into the AMS database, the activities cannot be accessed by anyone other than the originator, the designated agent, or by authorized viewers who have been explicitly granted the right to look at specific activities by the originator. This user guide is intended to assist new AMS users in learning how to use the application and, after the initial learning process, will serve as an ongoing reference for experienced users in performing infrequently used functions. Online help screens provide reference to some of the key information in this manual. Additional help screens, encompassing all the applicable material in this manual, will be incorporated into future AMS revisions. A third, and most important, source of help is the AMS administrator(s). This guide describes the initial production version of AMS, which has been designated Revision 1.0

  14. INES: The International Nuclear and Radiological Event Scale User's Manual. 2008 Edition (Spanish Edition)

    International Nuclear Information System (INIS)

    2010-11-01

    INES, the International Nuclear and Radiological Event Scale, was developed in 1990 by experts convened by the IAEA and the OECD Nuclear Energy Agency with the aim of communicating the safety significance of events. This edition of the INES User?s Manual is designed to facilitate the task of those who are required to rate the safety significance of events using the scale. It includes additional guidance and clarifications, and provides examples and comments on the continued use of INES. With this new edition, it is anticipated that INES will be widely used by Member States and become the worldwide scale for putting into proper perspective the safety significance of any event associated with the transport, storage and use of radioactive material and radiation sources, whether or not the event occurs at a facility.

  15. INES: The International Nuclear and Radiological Event Scale User's Manual. 2008 Edition (Chinese Edition)

    International Nuclear Information System (INIS)

    2012-01-01

    INES, the International Nuclear and Radiological Event Scale, was developed in 1990 by experts convened by the IAEA and the OECD Nuclear Energy Agency with the aim of communicating the safety significance of events. This edition of the INES User's Manual is designed to facilitate the task of those who are required to rate the safety significance of events using the scale. It includes additional guidance and clarifications, and provides examples and comments on the continued use of INES. With this new edition, it is anticipated that INES will be widely used by Member States and become the worldwide scale for putting into proper perspective the safety significance of any event associated with the transport, storage and use of radioactive material and radiation sources, whether or not the event occurs at a facility.

  16. Nuclear fuel cycle system analysis

    International Nuclear Information System (INIS)

    Ko, W. I.; Kwon, E. H.; Kim, S. G.; Park, B. H.; Song, K. C.; Song, D. Y.; Lee, H. H.; Chang, H. L.; Jeong, C. J.

    2012-04-01

    The nuclear fuel cycle system analysis method has been designed and established for an integrated nuclear fuel cycle system assessment by analyzing various methodologies. The economics, PR(Proliferation Resistance) and environmental impact evaluation of the fuel cycle system were performed using improved DB, and finally the best fuel cycle option which is applicable in Korea was derived. In addition, this research is helped to increase the national credibility and transparency for PR with developing and fulfilling PR enhancement program. The detailed contents of the work are as follows: 1)Establish and improve the DB for nuclear fuel cycle system analysis 2)Development of the analysis model for nuclear fuel cycle 3)Preliminary study for nuclear fuel cycle analysis 4)Development of overall evaluation model of nuclear fuel cycle system 5)Overall evaluation of nuclear fuel cycle system 6)Evaluate the PR for nuclear fuel cycle system and derive the enhancement method 7)Derive and fulfill of nuclear transparency enhancement method The optimum fuel cycle option which is economical and applicable to domestic situation was derived in this research. It would be a basis for establishment of the long-term strategy for nuclear fuel cycle. This work contributes for guaranteeing the technical, economical validity of the optimal fuel cycle option. Deriving and fulfillment of the method for enhancing nuclear transparency will also contribute to renewing the ROK-U.S Atomic Energy Agreement in 2014

  17. Safety handling manual for high dose rate remote afterloading system

    International Nuclear Information System (INIS)

    1999-01-01

    This manual is mainly for safety handling of 192 Ir-RALS (remote afterloading system) of high dose rate and followings were presented: Procedure and document format for the RALS therapy and for handling of its radiation source with the purpose of prevention of human errors and unexpected accidents, Procedure for preventing errors occurring in the treatment schedule and operation, and Procedure and format necessary for newly introducing the system into a facility. Consistency was intended in the description with the quality assurance guideline for therapy with small sealed radiation sources made by JASTRO (Japan Society for Therapeutic Radiology and Oncology). Use of the old type 60 Co-RALS was pointed out to be a serious problem remained and its safety handling procedure was also presented. (K.H.)

  18. Design manual of the wind power system; Furyoku hatsuden system no sekkei manual

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    For the purpose of contributing to the promotion/introduction of the wind power generation in Japan, systematical arrangement was made on items, standards/related laws, etc. to be considered upon designing the wind power system, further describing design examples of the standard system (case study). Out of the items necessary for the design, as to the investigation, arranged were matters and methods to be field-surveyed such as the site situation, surroundings, radio wave hindrance, noise hindrance, measurement, geology, etc. Concerning the determination of sizes of wind turbines to be introduced, procedures for setting sizes of wind turbines suitable for the places proposed for the installation were described. In the design, the knacks were summed up of designing wind power generation facilities, electric equipment, electric works, civil engineering, and measuring instrument. As to the working plan, indicated were the points to be taken notice of in the plan and the standard working process. Also shown were the evaluation method of economic efficiency, etc. In addition, the paper includes the related laws, system design examples, and the data attached. 10 refs., 13 figs., 59 tabs.

  19. Extracts from IAEA's Resources Manual in Nuclear Medicine. Part-3: Establishing Nuclear Medicine Services

    International Nuclear Information System (INIS)

    2003-01-01

    In the past, consideration was given to the categories of nuclear medicine ranging from simple imaging or in-vitro laboratories, to more complex departments performing a full range of in-vitro and in-vivo procedures that are also involved in advanced clinical services, training programmes, research and development. In developing countries, nuclear medicine historically has often been an offshoot of pathology, radiology or radiotherapy services. These origins are currently changing as less radioimmunoassay is performed and fully-fledged, independent departments of nuclear medicine are being set up. The trend appears to be that all assays (radioassay or ELISA) are done in a biochemistry laboratory whereas nuclear medicine departments are involved largely in diagnostic procedures, radionuclide therapy and non-imaging in-vitro tests. The level of nuclear medicine services is categorized according to three levels of need: Level 1: Only one gamma camera is needed for imaging purposes. The radiopharmaceutical supply, physics and radiation protection services are contracted outside the centre. Other requirements include a receptionist and general secretarial assistance. A single imaging room connected to a shared reporting room should be sufficient, with a staff of one nuclear medicine physician and one technologist, with back-up. This level is appropriate for a small private practice. Level 2: This is suitable for a general hospital where there are multiple imaging rooms where in-vitro and other non-imaging studies would generally be performed as well as radionuclide therapy. Level 3: his is appropriate for an academic institution where there is a need for a comprehensive clinical nuclear medicine service, human resource development and research programmes. Radionuclide therapy for in-patients and outpatients is provided

  20. NDS EXFOR manual

    International Nuclear Information System (INIS)

    Lemmel, H.D.

    1996-01-01

    EXFOR is the agreed exchange format for the transmission of nuclear reaction data between national and international nuclear data centers for the benefit of nuclear data users in all countries. The IAEA Nuclear Data Section uses the EXFOR system not only for the center-to-center data exchange but also as its data storage and retrieval system. This NDS EXFOR MANUAL therefore contains the agreed EXFOR coding rules and format, supplemented by NDS internal compilation rules. The EXFOR system and the EXFOR nuclear data library with several million data records originate from the cooperation of an increasing number of data centers whose names and addresses can be found inside the Manual. Their contributions and cooperative efforts are gratefully acknowledged. (author)

  1. NDS EXFOR manual

    International Nuclear Information System (INIS)

    Lemmel, H.D.

    1985-08-01

    EXFOR is the agreed exchange format for the transmission of nuclear reaction data between national and international nuclear data centers for the benefit of nuclear data users in all countries. The IAEA Nuclear Data Section uses the EXFOR system not only for the center-to-center data exchange but also as its data storage and retrieval system. This NDS EXFOR MANUAL therefore contains the agreed EXFOR coding rules and format, supplemented by NDS internal compilation rules. The EXFOR system and the EXFOR nuclear data library with several million data records originate from the cooperation of an increasing number of data centers whose names and addresses can be found inside the Manual. Their contributions and cooperative efforts are gratefully acknowledged. (author)

  2. Naturalistic driving observations of manual and visual-manual interactions with navigation systems and mobile phones while driving.

    NARCIS (Netherlands)

    Christoph, M. Nes, N. van & Knapper, A.

    2014-01-01

    This paper discusses a naturalistic driving study on the use of mobile phones and navigation systems while driving. Manual interactions with these devices while driving can cause distraction from the driving task and reduce traffic safety. In this study 21 subjects were observed for 5 weeks. Their

  3. Nuclear reactor trip system

    International Nuclear Information System (INIS)

    Cook, B.M.

    1982-01-01

    Each parameter of the processes of a nuclear reactor and components operatively associated with it is monitored by a set of four like sensors. A trip system normally operates on a ''two out four'' configuration; i.e., to trip the reactor it is necessary that at least two sensors of a set sense an off-normal parameter. This assumes that all sensors are in normal operating condition. However, when a sensor is in test or is subject to maintenance or is defective or disabled, the ''two out of four''configuration would be reduced to a ''one out of three'' configuration because the affected sensor is taken out of service. This would expose the system to the possibility that a single sensor failure, which may be spurious, will cause a trip of the reactor. To prevent this, it is necessary that the affected sensor be bypassed. If only one sensor is bypassed, the system operates on a ''two out of three'' configuration. With two sensors bypassed, the sensing of an off-normal parameter by a third sensor trips the reactor. The by-pass circuit also disables the circuit coupling the by-passed sensor to the trip circuit. (author)

  4. Nuclear system vaporization

    International Nuclear Information System (INIS)

    Bougault, R.; Brou, R.; Colin, J.; Cussol, D.; Durand, D.; Le Brun, C.; Lecolley, J.F.; Lopez, O.; Louvel, M.; Nakagawa, T.; Peter, J.; Regimbart, R.; Steckmeyer, J.C.; Tamain, B.; Vient, E.; Yuasa-Nakagawa, K.; Wieloch, A.

    1998-01-01

    A particular case of the hot nuclei de-excitation is the total nuclear dislocation into light particles (n, p, d, t, 3 He and α). Such events were first observed at bombarding energies lower than 100 MeV/nucleon due to high detection performances of the INDRA multidetector. The light system Ar + Ni was studied at several bombarding energies ranging from 32 to 95 MeV/nucleon. The events associated to a total vaporization of the system occur above the energy threshold of ∼ 50 MeV/nucleon. A study of the form of these events shows that we have essentially two sources. The excitation energy of these sources may be determined by means of the kinematic properties of their de-excitation products. A preliminary study results in excitation energy values of the order 10 - 14 MeV/nucleon. The theoretical calculation based on a statistical model modified to take into account high excitation energies and excited levels in the lightest nuclei predicts that the vaporization of the two partner nuclei in the Ar + Ni system takes place when the excitation energy exceeds 12 MeV/nucleon what is qualitatively in agreement with the values deduced from calorimetric analysis

  5. Nuclear medicine imaging system

    Science.gov (United States)

    Bennett, Gerald W.; Brill, A. Bertrand; Bizais, Yves J. C.; Rowe, R. Wanda; Zubal, I. George

    1986-01-01

    A nuclear medicine imaging system having two large field of view scintillation cameras mounted on a rotatable gantry and being movable diametrically toward or away from each other is disclosed. In addition, each camera may be rotated about an axis perpendicular to the diameter of the gantry. The movement of the cameras allows the system to be used for a variety of studies, including positron annihilation, and conventional single photon emission, as well as static orthogonal dual multi-pinhole tomography. In orthogonal dual multi-pinhole tomography, each camera is fitted with a seven pinhole collimator to provide seven views from slightly different perspectives. By using two cameras at an angle to each other, improved sensitivity and depth resolution is achieved. The computer system and interface acquires and stores a broad range of information in list mode, including patient physiological data, energy data over the full range detected by the cameras, and the camera position. The list mode acquisition permits the study of attenuation as a result of Compton scatter, as well as studies involving the isolation and correlation of energy with a range of physiological conditions.

  6. PRIS-WEDAS. User’s Manual to the Web Enabled Data Acquisition System for PRIS

    International Nuclear Information System (INIS)

    2015-01-01

    The user manual for the Web Enabled Data Acquisition System (WEDAS), a system that supports the Power Reactor Information System (PRIS), provides instructions, guidelines and detailed definitions for each of the data items required for PRIS. The purpose of this manual is to ensure PRIS performance data are collected consistently and that the required quality of data collection is ensured. This PRIS-WEDAS user’s manual replaces reporting instructions published in the IAEA Technical Reports Series No. 428

  7. Nuclear data information system for nuclear materials

    International Nuclear Information System (INIS)

    Fujita, Mitsutane; Noda, Tetsuji; Utsumi, Misako

    1996-01-01

    The conceptual system for nuclear material design is considered and some trials on WWW server with functions of the easily accessible simulation of nuclear reactions are introduced. Moreover, as an example of the simulation on the system using nuclear data, transmutation calculation was made for candidate first wall materials such as 9Cr-2W steel, V-5Cr-5Ti and SiC in SUS316/Li 2 O/H 2 O(SUS), 9Cr-2W/Li 2 O/H 2 O(RAF), V alloy/Li/Be(V), and SiC/Li 2 ZrO 3 /He(SiC) blanket/shield systems based on ITER design model. Neutron spectrum varies with different blanket/shield compositions. The flux of low energy neutrons decreases in order of V< SiC< RAF< SUS blanket/shield systems. Fair amounts of W depletion in 9Cr-2W steel and the increase of Cr content in V-5Cr-5Ti were predicted in SUS or RAF systems. Concentration change in W and Cr is estimated to be suppressed if Li coolant is used in place of water. Helium and hydrogen production are not strongly affected by the different blanket/shield compositions. (author)

  8. A manual low background alpha beta counting system

    Energy Technology Data Exchange (ETDEWEB)

    Levison, S; German, U; Peled, O; Turgeman, S; Vangrovitz, U; Tirosh, D; Piestum, S; Assido, H [Israel Atomic Energy Commission, Beersheba (Israel). Nuclear Research Center-Negev

    1996-12-01

    An Alpha and Beta counting system consisting of a micro controller-based electronic unit and detectors assembly was developed. The radiation detection unit consists of two proportional detectors (a main detector and a cosmic-ray guard detector) which can be easily disassembled for decontamination or repair. The detectors are mounted in a manual operating sample changer shielded by 5 cm of lead. Simplicity of maintenance and functional operation were taken into consideration in the design. The electronic unit supplies the high voltage and enables the operational functions including controls anti alarms. Calculations of net cpm of Alpha and Beta counting are displayed and can be printed. RS-232 communication option enables connection to a computer and operation of more sophisticated programs for calculations and data storage in the future (authors).

  9. A manual low background alpha beta counting system

    International Nuclear Information System (INIS)

    Levison, S.; German, U.; Peled, O.; Turgeman, S.; Vangrovitz, U.; Tirosh, D.; Piestum, S.; Assido, H.

    1996-01-01

    An Alpha and Beta counting system consisting of a micro controller-based electronic unit and detectors assembly was developed. The radiation detection unit consists of two proportional detectors (a main detector and a cosmic-ray guard detector) which can be easily disassembled for decontamination or repair. The detectors are mounted in a manual operating sample changer shielded by 5 cm of lead. Simplicity of maintenance and functional operation were taken into consideration in the design. The electronic unit supplies the high voltage and enables the operational functions including controls anti alarms. Calculations of net cpm of Alpha and Beta counting are displayed and can be printed. RS-232 communication option enables connection to a computer and operation of more sophisticated programs for calculations and data storage in the future (authors)

  10. Manual of a suite of computer codes, EXPRESS (EXact PREparedness Supporting System)

    International Nuclear Information System (INIS)

    Chino, Masamichi

    1992-06-01

    The emergency response supporting system EXPRESS (EXact PREparedness Supporting System) is constructed in JAERI for low cost engineering work stations under the UNIX operation. The purpose of this system is real-time predictions of affected areas due to radioactivities discharged into atmosphere from nuclear facilities. The computational models in EXPRESS are the mass-consistent wind field model EXPRESS-I and the particle dispersion model EXPRESS-II for atmospheric dispersions. In order to attain the quick response even when the codes are used in a small-scale computer, a high-speed iteration method MILUCR (Modified Incomplete Linear Unitary Conjugate Residual) is applied to EXPRESS-I and kernel density method is to EXPRESS-II. This manual describes the model configurations, code structures, related files, namelists and sample outputs of EXPRESS-I and -II. (author)

  11. Thermionic nuclear reactor systems

    International Nuclear Information System (INIS)

    Kennel, E.B.

    1986-01-01

    Thermionic nuclear reactors can be expected to be candidate space power supplies for power demands ranging from about ten kilowatts to several megawatts. The conventional ''ignited mode'' thermionic fuel element (TFE) is the basis for most reactor designs to date. Laboratory converters have been built and tested with efficiencies in the range of 7-12% for over 10,000 hours. Even longer lifetimes are projected. More advanced capabilities are potentially achievable in other modes of operation, such as the self-pulsed or unignited diode. Coupled with modest improvements in fuel and emitter material performance, the efficiency of an advanced thermionic conversion system can be extended to the 15-20% range. Advanced thermionic power systems are expected to be compatible with other advanced features such as: (1) Intrinsic subcritically under accident conditions, ensuring 100% safety upon launch abort; (2) Intrinsic low radiation levels during reactor shutdown, allowing manned servicing and/or rendezvous; (3) DC to DC power conditioning using lightweight power MOSFETS; and (4) AC output using pulsed converters

  12. Technical specifications manual for the MARK-1 pulsed ionizing radiation detection system

    International Nuclear Information System (INIS)

    Lawrence, R.S.; Harker, Y.D.; Jones, J.L.; Hoggan, J.M.

    1993-03-01

    The MARK-1 detection system was developed by the Idaho National Engineering Laboratory for the US Department of Energy Office of Arms Control and Nonproliferation. The completely portable system was designed for the detection and analysis of intense photon emissions from pulsed ionizing radiation sources. This manual presents the technical design specifications for the MARK-1 detection system and was written primarily to assist the support or service technician in the service, calibration, and repair of the system. The manual presents the general detection system theory, the MARK-1 component design specifications, the acquisition and control software, the data processing sequence, and the system calibration procedure. A second manual entitled: Volume 2: Operations Manual for the MARK-1 Pulsed Ionizing Radiation Detection System (USDOE Report WINCO-1108, September 1992) provides a general operational description of the MARK-1 detection system. The Operations Manual was written primarily to assist the field operator in system operations and analysis of the data

  13. Technical specifications manual for the MARK-1 pulsed ionizing radiation detection system. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence, R.S.; Harker, Y.D.; Jones, J.L.; Hoggan, J.M.

    1993-03-01

    The MARK-1 detection system was developed by the Idaho National Engineering Laboratory for the US Department of Energy Office of Arms Control and Nonproliferation. The completely portable system was designed for the detection and analysis of intense photon emissions from pulsed ionizing radiation sources. This manual presents the technical design specifications for the MARK-1 detection system and was written primarily to assist the support or service technician in the service, calibration, and repair of the system. The manual presents the general detection system theory, the MARK-1 component design specifications, the acquisition and control software, the data processing sequence, and the system calibration procedure. A second manual entitled: Volume 2: Operations Manual for the MARK-1 Pulsed Ionizing Radiation Detection System (USDOE Report WINCO-1108, September 1992) provides a general operational description of the MARK-1 detection system. The Operations Manual was written primarily to assist the field operator in system operations and analysis of the data.

  14. Wisconsin System for Instructional Management: Teachers' Manual for the Unified System. Practical Paper No. 18.

    Science.gov (United States)

    Bozeman, William C.; And Others

    Individualized instruction including continuous progress education and team teaching requires a complexity of organizational structure dissimilar to that of traditional schools. In such systems, teachers must maintain extensive and complex student record systems. This teachers' manual provides an example of a computerized record system developed…

  15. Nuclear power plant diagnostic system

    International Nuclear Information System (INIS)

    Prokop, K.; Volavy, J.

    1982-01-01

    Basic information is presented on diagnostic systems used at nuclear power plants with PWR reactors. They include systems used at the Novovoronezh nuclear power plant in the USSR, at the Nord power plant in the GDR, the system developed at the Hungarian VEIKI institute, the system used at the V-1 nuclear power plant at Jaslovske Bohunice in Czechoslovakia and systems of the Rockwell International company used in US nuclear power plants. These diagnostic systems are basically founded on monitoring vibrations and noise, loose parts, pressure pulsations, neutron noise, coolant leaks and acoustic emissions. The Rockwell International system represents a complex unit whose advantage is the on-line evaluation of signals which gives certain instructions for the given situation directly to the operator. The other described systems process signals using similar methods. Digitized signals only serve off-line computer analyses. (Z.M.)

  16. Assessments of nuclear systems

    International Nuclear Information System (INIS)

    Ekholm, R.

    1978-01-01

    Assessments of competing energy systems are gaining increased importance as a means for an optimal choice of energy source for each specific major application considering the growing energy needs and the shortage of supply. However it is important to make sure that the assessments reflect scientific facts rather than private interests. If this is not achieved, scientists will lose credibility and one will lose the basis for political decisions. It is concluded that to accomplish the globally justified needs for thousands of nuclear reactors soon after the year 2000 and to save a maximum of lives with a minimum of environmental impact, emphasis must be put on low energy costs and on a good fuel and capital resource utilization. This goal can be best accomplished by expendient introduction of the fast breeders and of promising advanced reactors. The gas cooled breeder and the high temperature reactor have outstanding short and long terms merits on this respect, but are not enjoying the financial support that they deserve. (UK)

  17. CAISSE (Computer Aided Information System on Solar Energy) technical manual

    Energy Technology Data Exchange (ETDEWEB)

    Cantelon, P E; Beinhauer, F W

    1979-01-01

    The Computer Aided Information System on Solar Energy (CAISSE) was developed to provide the general public with information on solar energy and its potential uses and costs for domestic consumption. CAISSE is an interactive computing system which illustrates solar heating concepts through the use of 35 mm slides, text displays on a screen and a printed report. The user communicates with the computer by responding to questions about his home and heating requirements through a touch sensitive screen. The CAISSE system contains a solar heating simulation model which calculates the heating load capable of being supplied by a solar heating system and uses this information to illustrate installation costs, fuel savings and a 20 year life-cycle analysis of cost and benefits. The system contains several sets of radiation and weather data for Canada and USA. The selection of one of four collector models is based upon the requirements input during the computer session. Optimistic and pessimistic fuel cost forecasts are made for oil, natural gas, electricity, or propane; and the forecasted fuel cost is made the basis of the life cycle cost evaluation for the solar heating application chosen. This manual is organized so that each section describes one major aspect of the use of solar energy systems to provide energy for domestic consumption. The sources of data and technical information and the method of incorporating them into the CAISSE display system are described in the same order as the computer processing. Each section concludes with a list of future developments that could be included to make CAISSE outputs more regionally specific and more useful to designers. 19 refs., 1 tab.

  18. Standard Hydrogen Monitoring System-C operation and maintenance manual

    International Nuclear Information System (INIS)

    Schneider, T.C.

    1997-01-01

    The primary function of the SHMS-C is to monitor specifically for hydrogen in the waste tank vapor space which may also contain (but not be limited to) unknown quantities of air, nitrous oxide (N 2 O), ammonia (NH 3 ), water vapor, carbon dioxide (CO 2 ), carbon monoxide (CO) and other gaseous constituents. An electronically controlled grab sampler has replaced the manually operated sample system that was used in the original SHMS enclosure. Samples can now be operator or automatically initiated. Automatic initiation occurs based on the high hydrogen alarm level. Once a sample is obtained it is removed from the sampler and transported to a laboratory for analysis. This system is used to identify other gaseous constituents which are not measured by the hydrogen monitor. The design does not include any remote data acquisition or remote data logging equipment but provides a 4--20 mA dc process signals, and discrete alarm contacts, that can be utilized for remote data logging and alarming when desired. The SHMS-C arrangement consists of design modifications (piping, valves, filters, supports) to the SHMS-B arrangement necessary for the installation of a dual column gas chromatograph and associated sample and calibration gas lines. The gas chromatograph will provide real time, analytical quality, specific hydrogen measurements in low and medium range concentrations. The system is designed to sample process gases that are classified by NEC code as Class 1, Division 1, Group B

  19. EXPOSURE ANALYSIS MODELING SYSTEM (EXAMS): USER MANUAL AND SYSTEM DOCUMENTATION

    Science.gov (United States)

    The Exposure Analysis Modeling System, first published in 1982 (EPA-600/3-82-023), provides interactive computer software for formulating aquatic ecosystem models and rapidly evaluating the fate, transport, and exposure concentrations of synthetic organic chemicals - pesticides, ...

  20. Scottish Nuclear's information systems strategy

    International Nuclear Information System (INIS)

    Inglis, P.

    1991-01-01

    Scottish Nuclear, the company which has owned and operated Scotland's nuclear power generating capacity since privatization, inherited a substantial amount of computer hardware and software from its predecessor, the South of Scotland Electricity Board. Each of the two power stations, Torness and Hunterston, were using Digital Vax clusters as the Scottish Nuclear company was formed. This had a major influence on the information systems strategy which has subsequently been adopted. (UK)

  1. Innovative nuclear energy systems roadmap

    International Nuclear Information System (INIS)

    2007-12-01

    Developing nuclear energy that is sustainable, safe, has little waste by-product, and cannot be proliferated is an extremely vital and pressing issue. To resolve the four issues through free thinking and overall vision, research activities of 'innovative nuclear energy systems' and 'innovative separation and transmutation' started as a unique 21st Century COE Program for nuclear energy called the Innovative Nuclear Energy Systems for Sustainable Development of the World, COE-INES. 'Innovative nuclear energy systems' include research on CANDLE burn-up reactors, lead-cooled fast reactors and using nuclear energy in heat energy. 'Innovative separation and transmutation' include research on using chemical microchips to efficiently separate TRU waste to MA, burning or destroying waste products, or transmuting plutonium and other nuclear materials. Research on 'nuclear technology and society' and 'education' was also added in order for nuclear energy to be accepted into society. COE-INES was a five-year program ending in 2007. But some activities should be continued and this roadmap detailed them as a rough guide focusing inventions and discoveries. This technology roadmap was created for social acceptance and should be flexible to respond to changing times and conditions. (T. Tanaka)

  2. Nuclear Computerized Library for Assessing Reactor Reliability (NUCLARR): Data manual. Part 3: Hardware component failure data; Volume 5, Revision 4

    International Nuclear Information System (INIS)

    Reece, W.J.; Gilbert, B.G.; Richards, R.E.

    1994-09-01

    This data manual contains a hard copy of the information in the Nuclear Computerized Library for Assessing Reactor Reliability (NUCLARR) Version 3.5 database, which is sponsored by the US Nuclear Regulatory Commission. NUCLARR was designed as a tool for risk analysis. Many of the nuclear reactors in the US and several outside the US are represented in the NUCLARR database. NUCLARR includes both human error probability estimates for workers at the plants and hardware failure data for nuclear reactor equipment. Aggregations of these data yield valuable reliability estimates for probabilistic risk assessments and human reliability analyses. The data manual is organized to permit manual searches of the information if the computerized version is not available. Originally, the manual was published in three parts. In this revision the introductory material located in the original Part 1 has been incorporated into the text of Parts 2 and 3. The user can now find introductory material either in the original Part 1, or in Parts 2 and 3 as revised. Part 2 contains the human error probability data, and Part 3, the hardware component reliability data

  3. Manual signs as augmentative and alternative communication system. Review article

    Directory of Open Access Journals (Sweden)

    Fàtima Vega Llobera

    2014-06-01

    Full Text Available There is a long tradition of scientific evidence about using hand signals simultaneously with oral language to promote the development of communication and language in children with or without disabilities. This article aims to review and analyze intervention work focused on the use of manual signs as augmentative communication system (AAC in hearing participants. Several criteria were used to narrow the search, selection, coding and synthesis of the 50 original scientific papers have finally been part of the review. The included studies were edited from 1970 to the present, at a national and international level and were published in English and Spanish. The bibliographic compilation was performed through searches by keyword in bibliographic databases, with the help of search engines (Google Scholar and through secondary searches. From each of the scientific articles the following data was extracted: year of the study, the country of origin, the characteristics of the participants, the design and the methodology and the obtained results. This information has been analyzed and compared. The results of the study highlight that, despite the diversity in results, the signing use as augmentative communication system is effective to improve language development, receptive and expressive level.

  4. Retrofitting Trojan Nuclear Plant's spent resin transfer system

    International Nuclear Information System (INIS)

    Pierce, R.E.

    1979-01-01

    The spent resin slurry transport system at the Trojan Nuclear Plant operated by Portland General Electric Company is one of the most advanced systems of its type in the nuclear industry today. The new system affords the plant's operators safe remote sonic indication for spent resin and cover water levels, manual remote dewatering and watering capability to establish desirable resin-to-water volumetric ratios, reliable non-mechanical resin agitation utilizing fixed spargers, and controllable process flow utilizing a variable speed recessed impeller pump

  5. Dairy Analytics and Nutrient Analysis (DANA) Prototype System User Manual

    Energy Technology Data Exchange (ETDEWEB)

    Sam Alessi; Dennis Keiser

    2012-10-01

    This document is a user manual for the Dairy Analytics and Nutrient Analysis (DANA) model. DANA provides an analysis of dairy anaerobic digestion technology and allows users to calculate biogas production, co-product valuation, capital costs, expenses, revenue and financial metrics, for user customizable scenarios, dairy and digester types. The model provides results for three anaerobic digester types; Covered Lagoons, Modified Plug Flow, and Complete Mix, and three main energy production technologies; electricity generation, renewable natural gas generation, and compressed natural gas generation. Additional options include different dairy types, bedding types, backend treatment type as well as numerous production, and economic parameters. DANA’s goal is to extend the National Market Value of Anaerobic Digester Products analysis (informa economics, 2012; Innovation Center, 2011) to include a greater and more flexible set of regional digester scenarios and to provide a modular framework for creation of a tool to support farmer and investor needs. Users can set up scenarios from combinations of existing parameters or add new parameters, run the model and view a variety of reports, charts and tables that are automatically produced and delivered over the web interface. DANA is based in the INL’s analysis architecture entitled Generalized Environment for Modeling Systems (GEMS) , which offers extensive collaboration, analysis, and integration opportunities and greatly speeds the ability construct highly scalable web delivered user-oriented decision tools. DANA’s approach uses server-based data processing and web-based user interfaces, rather a client-based spreadsheet approach. This offers a number of benefits over the client-based approach. Server processing and storage can scale up to handle a very large number of scenarios, so that analysis of county, even field level, across the whole U.S., can be performed. Server based databases allow dairy and digester

  6. AutoBayes Program Synthesis System Users Manual

    Science.gov (United States)

    Schumann, Johann; Jafari, Hamed; Pressburger, Tom; Denney, Ewen; Buntine, Wray; Fischer, Bernd

    2008-01-01

    Program synthesis is the systematic, automatic construction of efficient executable code from high-level declarative specifications. AutoBayes is a fully automatic program synthesis system for the statistical data analysis domain; in particular, it solves parameter estimation problems. It has seen many successful applications at NASA and is currently being used, for example, to analyze simulation results for Orion. The input to AutoBayes is a concise description of a data analysis problem composed of a parameterized statistical model and a goal that is a probability term involving parameters and input data. The output is optimized and fully documented C/C++ code computing the values for those parameters that maximize the probability term. AutoBayes can solve many subproblems symbolically rather than having to rely on numeric approximation algorithms, thus yielding effective, efficient, and compact code. Statistical analysis is faster and more reliable, because effort can be focused on model development and validation rather than manual development of solution algorithms and code.

  7. Nuclear Medicine National Headquarter System

    Data.gov (United States)

    Department of Veterans Affairs — The Nuclear Medicine National HQ System database is a series of MS Excel spreadsheets and Access Database Tables by fiscal year. They consist of information from all...

  8. Application of condition-based HRA method for a manual actuation of the safety features in a nuclear power Plant

    International Nuclear Information System (INIS)

    Kang, Hyun Gook; Jang, Seung-Cheol

    2006-01-01

    A practical approach to develop a more realistic fault-tree model with a consideration of various conditions endured by a human operator is proposed. In safety-critical systems, the generation failure of an actuation signal is caused by the concurrent failures of the automated systems and an operator action. These two sources of safety signals are complicatedly correlated. The failures of sensors or automated systems will cause a lack of necessary information for a human operator and result in error-forcing contexts such as the loss of corresponding alarms and indications. It is well known that the error-forcing contexts largely affect the operator's performance. An automated system which consists of multiple processing channels and complex components is also affected by the availability of the sensors. This paper proposes a condition-based human reliability assessment (CBHRA) method in order to address these complicated conditions in a practical way. We apply the CBHRA method to the manual actuation of the safety features such as a reactor trip and auxiliary feedwater actuation in Korean Standard Nuclear Power Plants. Even the human error probability of each given condition is simply assumed, the application results prove that the CBHRA effectively accommodates the complicated error-forcing contexts into the fault trees

  9. Nuclear power plants documentation system

    International Nuclear Information System (INIS)

    Schwartz, E.L.

    1991-01-01

    Since the amount of documents (type and quantity) necessary for the entire design of a NPP is very large, this implies that an overall and detailed identification, filling and retrieval system shall be implemented. This is even more applicable to the FINAL QUALITY DOCUMENTATION of the plant, as stipulated by IAEA Safety Codes and related guides. For such a purpose it was developed a DOCUMENTATION MANUAL, which describes in detail the before mentioned documentation system. Here we present the expected goals and results which we have to reach for Angra 2 and 3 Project. (author)

  10. Utilization technique of 'radiation management manual in medical field (2012).' What should be learnt from the Fukushima nuclear accident

    International Nuclear Information System (INIS)

    Kikuchi, Toru

    2014-01-01

    From the abstract of contents of the 'Radiation management manual in medical field (2012),' the utilization technique of the manual is introduced. Introduced items are as follows: (1) Exposure management; exposure management for radiation medical workers, patients, and citizens in the medical field, and exposure management for radiation workers and citizens involved in the emergency work related to the Fukushima nuclear accident, (2) Health management; health management for radiation medical workers, (3) Radiation education: Education/training for radiation medical workers, and radiation education for health care workers, (4) Accident and emergency measures; emergency actions involved in the radiation accidents and radiation medicine at medical facilities

  11. Nuclear reactor insulation and preheat system

    International Nuclear Information System (INIS)

    Wampole, N.C.

    1978-01-01

    An insulation and preheat system is disclosed for preselected components of a fluid cooled nuclear reactor. A gas tight barrier or compartment of thermal insulation surrounds the selected components and includes devices to heat the internal atmosphere of the ocmpartment. An external surface of the compartment of enclosure is cooled, such as by a circulating fluid. The heating devices provide for preheating of the components, as well as maintenance of a temperature sufficient to ensure that the reactor coolant fluid will not solidify during shutdown. The external cooling limits the heat transferred to other plant structures, such as supporting concrete and steel. The barrier is spaced far enough from the surrounded components so as to allow access for remote or manual inspection, maintenance, and repair

  12. Nuclear fusion system

    International Nuclear Information System (INIS)

    Dow, W.G.

    1981-01-01

    The invention pertains to the method and apparatus for the confining of a stream of fusible positive ions at values of density and high average kinetic energy, primarily of tightly looping motions, to produce nuclear fusion at a useful rate; more or less intimately mixed with the fusible ions will be lowerenergy electrons at about equal density, introduced solely for the purpose of neutralizing the positive space charge of the ions

  13. Nuclear system test simulator

    International Nuclear Information System (INIS)

    Sawyer, S.D.; Hill, W.D.; Wilson, P.A.; Steiner, W.M.

    1987-01-01

    A transportable test simulator is described for a nuclear power plant. The nuclear power plant includes a control panel, a reactor having actuated rods for moving into and out of a reactor for causing the plant to operate, and a control rod network extending between the control panel and the reactor rods. The network serially transmits command words between the panel and rods, and has connecting interfaces at preselected points remote from the control panel between the control panel and rods. The test simulator comprises: a test simulator input for transport to and connection into the network at at least one interface for receiving the serial command words from the network. Each serial command includes an identifier portion and a command portion; means for processing interior of the simulator for the serial command words for identifying that portion of the power plant designated in the identifier portion and processing the word responsive to the command portion of the word after the identification; means for generating a response word responsive to the command portion; and output means for sending and transmitting the response word to the nuclear power plant at the interface whereby the control panel responds to the response word

  14. BEACON/MOD2A: a computer program for subcompartment analysis of nuclear reactor containment. A user's manual

    International Nuclear Information System (INIS)

    Wells, R.A.

    1979-03-01

    The BEACON code is a Best Estimate Advanced Containment code which being developed by EG and G, Idaho, Inc., at the Idaho National Engineering Laboratory. The program is designed to perform a best estimate analysis of the flow of a mixture of air, water, and steam in a nuclear reactor containment system under loss-of-coolant accident conditions. The code can simulate two-component, two-phase fluid flow in complex geometries using a combination of two-dimensional, one-dimensional, and lumped-parameter representations for the various parts of the system. The current version of BEACON, which is designated BEACON/MOD2A, contains mass and heat transfer models for wall film and for wall conduction. It is suitable for the evaluation of short term transients in PWR dry containment systems. This manual describes the models employed in BEACON/MOD2A and specifies code implementation requirements. It provides application information for input data preparation and for output data interpretation

  15. INES: The International Nuclear and Radiological Event Scale User's Manual. 2008 Edition

    International Nuclear Information System (INIS)

    2009-05-01

    The International Nuclear and Radiological Event Scale is used for promptly and consistently communicating to the public the safety significance of events associated with sources of radiation. It covers a wide spectrum of practices, including industrial use such as radiography, use of radiation sources in hospitals, activities at nuclear facilities, and the transport of radioactive material. By putting events from all these practices into a proper perspective, use of INES can facilitate a common understanding between the technical community, the media and the public. The scale was developed in 1990 by international experts convened by the IAEA and the OECD Nuclear Energy Agency (OECD/NEA). It originally reflected the experience gained from the use of similar scales in France and Japan as well as consideration of possible scales in several countries. Since then, the IAEA has managed its development in cooperation with the OECD/NEA and with the support of more than 60 designated National Officers who officially represent the INES member States in the biennial technical meeting of INES. Initially the scale was applied to classify events at nuclear power plants, and then was extended and adapted to enable it to be applied to all installations associated with the civil nuclear industry. More recently, it has been extended and adapted further to meet the growing need for communication of the significance of all events associated with the transport, storage and use of radioactive material and radiation sources. This revised manual brings together the guidance for all uses into a single document. Events are classified on the scale at seven levels: Levels 4-7 are termed 'accidents' and Levels 1-3 'incidents'. Events without safety significance are classified as 'Below Scale/Level 0'. Events that have no safety relevance with respect to radiation or nuclear safety are not classified on the scale. For communication of events to the public, a distinct phrase has been

  16. Sandia National Laboratories, California Environmental Management System Program Manual.

    Energy Technology Data Exchange (ETDEWEB)

    2009-04-01

    The Sandia National Laboratories, California (SNL/CA) Environmental Management System (EMS) Program Manual documents the elements of the site EMS Program. The SNL/CA EMS Program conforms to the International Standard on Environmental Management Systems, ISO 14001:2004 and Department of Energy (DOE) Order 450.1. Sandia National Laboratories, California (SNL/CA) has maintained functional environmental programs to assist with regulatory compliance for more than 30 years. During 2005, these existing programs were rolled into a formal environmental management system (EMS) that expands beyond the traditional compliance focus to managing and improving environmental performance and stewardship practices for all site activities. An EMS is a set of inter-related elements that represent a continuing cycle of planning, implementing, evaluating, and improving processes and actions undertaken to achieve environmental policy and goals. The SNL/CA EMS Program conforms to the International Standard for Environmental Management Systems, ISO 14001:2004 (ISO 2004). The site received ISO 14001 certification in September 2006. SNL/CA's EMS Program is applicable to the Sandia, Livermore site only. Although SNL/CA operates as one organizational division of the overall Sandia National Laboratories, the EMS Program is site-specific, with site-specific objectives and targets. SNL/CA (Division 8000) benefits from the organizational structure as it provides corporate level policies, procedures, and standards, and established processes that connect to and support elements of the SNL/CA EMS Program. Additionally, SNL/CA's EMS Program benefits from two corporate functional programs (Facilities Energy Management and Fleet Services Environmental programs) that maintain responsibility for energy management and fleet services for all Sandia locations. Each EMS element is further enhanced with site-specific processes and standards. Division 8000 has several groups operating at Sandia

  17. Sandia National Laboratories, California Environmental Management System program manual.

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L.

    2012-03-01

    The Sandia National Laboratories, California (SNL/CA) Environmental Management System (EMS) Program Manual documents the elements of the site EMS Program. The SNL/CA EMS Program conforms to the International Standard on Environmental Management Systems, ISO 14001:2004and Department of Energy (DOE) Order 436.1. Sandia National Laboratories, California (SNL/CA) has maintained functional environmental programs to assist with regulatory compliance for more than 30 years. During 2005, these existing programs were rolled into a formal environmental management system (EMS) that expands beyond the traditional compliance focus to managing and improving environmental performance and stewardship practices for all site activities. An EMS is a set of inter-related elements that represent a continuing cycle of planning, implementing, evaluating, and improving processes and actions undertaken to achieve environmental policy and goals. The SNL/CA EMS Program conforms to the International Standard for Environmental Management Systems, ISO 14001:2004 (ISO 2004). The site first received ISO 14001 certification in September 2006 and recertification in 2009. SNL/CA's EMS Program is applicable to the Sandia, Livermore site only. Although SNL/CA operates as one organizational division of the overall Sandia National Laboratories, the EMS Program is site-specific, with site-specific objectives and targets. SNL/CA (Division 8000) benefits from the organizational structure as it provides corporate level policies, procedures, and standards, and established processes that connect to and support elements of the SNL/CA EMS Program. Additionally, SNL/CA's EMS Program benefits from two corporate functional programs (Facilities Energy and Water Resource Management and Fleet Services programs) that maintain responsibility for energy management and fleet services for all Sandia locations. Each EMS element is further enhanced with site-specific processes and standards. Division 8000 has

  18. Sandia National Laboratories, California Environmental Management System Program Manual.

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L.

    2011-04-01

    The Sandia National Laboratories, California (SNL/CA) Environmental Management System (EMS) Program Manual documents the elements of the site EMS Program. The SNL/CA EMS Program conforms to the International Standard on Environmental Management Systems, ISO 14001:2004and Department of Energy (DOE) Order 450.1. Sandia National Laboratories, California (SNL/CA) has maintained functional environmental programs to assist with regulatory compliance for more than 30 years. During 2005, these existing programs were rolled into a formal environmental management system (EMS) that expands beyond the traditional compliance focus to managing and improving environmental performance and stewardship practices for all site activities. An EMS is a set of inter-related elements that represent a continuing cycle of planning, implementing, evaluating, and improving processes and actions undertaken to achieve environmental policy and goals. The SNL/CA EMS Program conforms to the International Standard for Environmental Management Systems, ISO 14001:2004 (ISO 2004). The site received ISO 14001 certification in September 2006. SNL/CA's EMS Program is applicable to the Sandia, Livermore site only. Although SNL/CA operates as one organizational division of the overall Sandia National Laboratories, the EMS Program is site-specific, with site-specific objectives and targets. SNL/CA (Division 8000) benefits from the organizational structure as it provides corporate level policies, procedures, and standards, and established processes that connect to and support elements of the SNL/CA EMS Program. Additionally, SNL/CA's EMS Program benefits from two corporate functional programs (Facilities Energy Management and Fleet Services programs) that maintain responsibility for energy management and fleet services for all Sandia locations. Each EMS element is further enhanced with site-specific processes and standards. Division 8000 has several groups operating at Sandia National Laboratories

  19. Physical habitat simulation system reference manual: version II

    Science.gov (United States)

    Milhous, Robert T.; Updike, Marlys A.; Schneider, Diane M.

    1989-01-01

    stream system basis. Such analysis is outside the scope of this manual, which concentrates on simulation of physical habitat based on depth, velocity, and a channel index. The results form PHABSIM can be used alone or by using a series of habitat time series programs that have been developed to generate monthly or daily habitat time series from the Weighted Usable Area versus streamflow table resulting from the habitat simulation programs and streamflow time series data. Monthly and daily streamflow time series may be obtained from USGS gages near the study site or as the output of river system management models.

  20. Nuclear database management systems

    International Nuclear Information System (INIS)

    Stone, C.; Sutton, R.

    1996-01-01

    The authors are developing software tools for accessing and visualizing nuclear data. MacNuclide was the first software application produced by their group. This application incorporates novel database management and visualization tools into an intuitive interface. The nuclide chart is used to access properties and to display results of searches. Selecting a nuclide in the chart displays a level scheme with tables of basic, radioactive decay, and other properties. All level schemes are interactive, allowing the user to modify the display, move between nuclides, and display entire daughter decay chains

  1. WASTES: Wastes system transportation and economic simulation: Version 2, Programmer's reference manual

    International Nuclear Information System (INIS)

    Buxbaum, M.E.; Shay, M.R.

    1986-11-01

    The WASTES Version II (WASTES II) Programmer's Reference Manual was written to document code development activities performed under the Monitored Retrievable Storage (MRS) Program at Pacific Northwest Laboratory (PNL). The manual will also serve as a valuable tool for programmers involved in maintenance of and updates to the WASTES II code. The intended audience for this manual are experienced FORTRAN programmers who have only a limited knowledge of nuclear reactor operation, the nuclear fuel cycle, or nuclear waste management practices. It is assumed that the readers of this manual have previously reviewed the WASTES II Users Guide published as PNL Report 5714. The WASTES II code is written in FORTRAN 77 as an extension to the SLAM commercial simulation package. The model is predominately a FORTRAN based model that makes extensive use of the SLAM file maintenance and time management routines. This manual documents the general manner in which the code is constructed and the interactions between SLAM and the WASTES subroutines. The functionality of each of the major WASTES subroutines is illustrated with ''block flow'' diagrams. The basic function of each of these subroutines, the algorithms used in them, and a discussion of items of particular note in the subroutine are reviewed in this manual. The items of note may include an assumption, a coding practice that particularly applies to a subroutine, or sections of the code that are particularly intricate or whose mastery may be difficult. The appendices to the manual provide extensive detail on the use of arrays, subroutines, included common blocks, parameters, variables, and files

  2. The operation and maintenance manual

    International Nuclear Information System (INIS)

    Klein, W.; Krotil, H.; Stoll, A.

    1975-01-01

    The Operating Manual is one of many technical documents which the nuclear power plant operator needs for ensuring safe operation. For the operating staff, however, there is only one document, namely the Operating Manual. It contains, appropriately arranged, the necessary system and other diagrams, drawings, lists, licensing documents and similar material, which are necessary for understanding the design, for testing, for obtaining the operating licence and for the operation of individual systems and of the entire plant. (orig./RW) [de

  3. Nuclear management in manual small incision cataract surgery by snare technique

    Directory of Open Access Journals (Sweden)

    Bhattacharya Debasish

    2009-01-01

    Full Text Available Manual small incision cataract surgery has evolved into a popular method of cataract surgery in India. However, in supra hard cataract, bringing out the whole nucleus through the sclerocorneal flap valve incision becomes difficult. A bigger incision required in such cataracts loses its value action, as the internal incision and corneal valve slips beyond the limbus into sclera. Struggling with the supra hard cataracts through a regular small incision. Phacofracture in the anterior chamber becomes a useful option in these cases. In the snare technique, a stainless steel wire loop when lassoed around the nucleus in the anterior chamber constricts from the equator, easily dividing the hardest of the nuclei into two halves. The wire loop constricts in a controlled way when the second cannula of snare is pulled. The divided halves can easily be brought out by serrated crocodile forceps. This nuclear management can be safely performed through a smaller sclerocorneal flap valve incision where the corneal valve action is retained within the limbus without sutures, and the endothelium or the incision is not disturbed. However, the technique requires space in the anterior chamber to maneuver the wire loop and anterior chamber depth more than 2.5 mm is recommended. Much evidence to this wonderful technique is not available in literature, as its popularity grew through live surgical workshops and small interactive conferences.

  4. New Nuclear Emergency Prognosis system in Korea

    Science.gov (United States)

    Lee, Hyun-Ha; Jeong, Seung-Young; Park, Sang-Hyun; Lee, Kwan-Hee

    2016-04-01

    This paper reviews the status of assessment and prognosis system for nuclear emergency response in Korea, especially atmospheric dispersion model. The Korea Institute of Nuclear Safety (KINS) performs the regulation and radiological emergency preparedness of the nuclear facilities and radiation utilizations. Also, KINS has set up the "Radiological Emergency Technical Advisory Plan" and the associated procedures such as an emergency response manual in consideration of the IAEA Safety Standards GS-R-2, GS-G-2.0, and GS-G-2.1. The Radiological Emergency Technical Advisory Center (RETAC) organized in an emergency situation provides the technical advice on radiological emergency response. The "Atomic Computerized Technical Advisory System for nuclear emergency" (AtomCARE) has been developed to implement assessment and prognosis by RETAC. KINS developed Accident Dose Assessment and Monitoring (ADAMO) system in 2015 to reflect the lessons learned from Fukushima accident. It incorporates (1) the dose assessment on the entire Korean peninsula, Asia region, and global region, (2) multi-units accident assessment (3) applying new methodology of dose rate assessment and the source term estimation with inverse modeling, (4) dose assessment and monitoring with the environmental measurements result. The ADAMO is the renovated version of current FADAS of AtomCARE. The ADAMO increases the accuracy of the radioactive material dispersion with applying the LDAPS(Local Data Assimilation Prediction System, Spatial resolution: 1.5 km) and RDAPS(Regional Data Assimilation Prediction System, Spatial resolution: 12km) of weather prediction data, and performing the data assimilation of automatic weather system (AWS) data from Korea Meteorological Administration (KMA) and data from the weather observation tower at NPP site. The prediction model of the radiological material dispersion is based on the set of the Lagrangian Particle model and Lagrangian Puff model. The dose estimation methodology

  5. HORECA. Hoger onderwijs reactor elementary core analysis system. User's manual

    International Nuclear Information System (INIS)

    Battum, E. van; Serov, I.V.

    1993-07-01

    HORECA is developed at IRI Delft for quick analysis of power distribution, burnup and safety for the HOR. It can be used for the manual search of a better loading of the reactor. HORECA is based on the Penn State Fuel Management Package and uses the MCRAC code included in this package as a calculation engine. (orig./HP)

  6. User's manual for the Graphical Constituent Loading Analysis System (GCLAS)

    Science.gov (United States)

    Koltun, G.F.; Eberle, Michael; Gray, J.R.; Glysson, G.D.

    2006-01-01

    This manual describes the Graphical Constituent Loading Analysis System (GCLAS), an interactive cross-platform program for computing the mass (load) and average concentration of a constituent that is transported in stream water over a period of time. GCLAS computes loads as a function of an equal-interval streamflow time series and an equal- or unequal-interval time series of constituent concentrations. The constituent-concentration time series may be composed of measured concentrations or a combination of measured and estimated concentrations. GCLAS is not intended for use in situations where concentration data (or an appropriate surrogate) are collected infrequently or where an appreciable amount of the concentration values are censored. It is assumed that the constituent-concentration time series used by GCLAS adequately represents the true time-varying concentration. Commonly, measured constituent concentrations are collected at a frequency that is less than ideal (from a load-computation standpoint), so estimated concentrations must be inserted in the time series to better approximate the expected chemograph. GCLAS provides tools to facilitate estimation and entry of instantaneous concentrations for that purpose. Water-quality samples collected for load computation frequently are collected in a single vertical or at single point in a stream cross section. Several factors, some of which may vary as a function of time and (or) streamflow, can affect whether the sample concentrations are representative of the mean concentration in the cross section. GCLAS provides tools to aid the analyst in assessing whether concentrations in samples collected in a single vertical or at single point in a stream cross section exhibit systematic bias with respect to the mean concentrations. In cases where bias is evident, the analyst can construct coefficient relations in GCLAS to reduce or eliminate the observed bias. GCLAS can export load and concentration data in formats

  7. Spent Fuel Test - Climax data acquisition system operations manual

    International Nuclear Information System (INIS)

    Nyholm, R.A.

    1983-01-01

    The Spent Fuel Test-Climax (SFT-C) is a test of the retrievable, deep geologic storage of commercially generated, spent nuclear reactor fuel in granite rock. Eleven spent fuel assemblies, together with 6 electrical simulators and 20 guard heaters, are emplaced 420 m below the surface in the Climax granite at the US Department of Energy Nevada Test Site. On June 2, 1978, Lawrence Livermore National Laboratory (LLNL) secured funding for the SFT-C, and completed spent fuel emplacement May 28, 1980. The multi-year duration test is located in a remote area and is unattended much of the time. An extensive array of radiological safety and geotechnical instrumentation is deployed to monitor the test performance. A dual minicomputer-based data acquisition system (DAS) collects and processes data from more than 900 analog instruments. This report documents the software element of the LLNL developed SFT-C Data Acquisition System. It defines the operating system and hardware interface configurations, the special applications software and data structures, and support software

  8. SOKRATOR manual. Format of the recommended nuclear data library for reactor calculations

    International Nuclear Information System (INIS)

    Kolesov, V.E.; Nikolaev, M.N.

    1977-08-01

    The formats represent a generalization and extension of the English formats ''Parker, K., the Aldermaston Nuclear Data Library as at May 1963''. (AWRE 0-70/63, September 1963). An important feature of the formats proposed here is the introduction of a special classification of the information according to the type of representation. This makes the system of nuclear data storage more flexible and allows the capabilities of modern computers to be more fully utilized. This complete format description of the SOKRATOR library (Soviet Library of Evaluated Nuclear Data) is a translation from Russian original and its supplement. The document will help the user of SOKRATOR files to understand the physics definitions and coding conventions for the various types of numerical data

  9. A computer code to estimate accidental fire and radioactive airborne releases in nuclear fuel cycle facilities: User's manual for FIRIN

    International Nuclear Information System (INIS)

    Chan, M.K.; Ballinger, M.Y.; Owczarski, P.C.

    1989-02-01

    This manual describes the technical bases and use of the computer code FIRIN. This code was developed to estimate the source term release of smoke and radioactive particles from potential fires in nuclear fuel cycle facilities. FIRIN is a product of a broader study, Fuel Cycle Accident Analysis, which Pacific Northwest Laboratory conducted for the US Nuclear Regulatory Commission. The technical bases of FIRIN consist of a nonradioactive fire source term model, compartment effects modeling, and radioactive source term models. These three elements interact with each other in the code affecting the course of the fire. This report also serves as a complete FIRIN user's manual. Included are the FIRIN code description with methods/algorithms of calculation and subroutines, code operating instructions with input requirements, and output descriptions. 40 refs., 5 figs., 31 tabs

  10. Nuclear power systems: Their safety

    International Nuclear Information System (INIS)

    Myers, L.C.

    1993-01-01

    Mankind utilizes energy in many forms and from a variety of sources. Canada is one of a growing number of countries which have chosen to embrace nuclear-electric generation as a component of their energy systems. As of August 1992 there were 433 power reactors operating in 35 countries and accounting for more than 15% of the world's production of electricity. In 1992, thirteen countries derived at least 25% of their electricity from nuclear units, with France leading at nearly 70%. In the same year, Canada produced about 16% of its electricity from nuclear units. Some 68 power reactors are under construction in 16 countries, enough to expand present generating capacity by close to 20%. No human endeavour carries the guarantee of perfect safety and the question of whether or not nuclear-electric generation represents an 'acceptable' risk to society has long been vigorously debated. Until the events of late April 1986, nuclear safety had indeed been an issue for discussion, for some concern, but not for alarm. The accident at the Chernobyl reactor in the USSR has irrevocably changed all that. This disaster brought the matter of nuclear safety back into the public mind in a dramatic fashion. This paper discusses the issue of safety in complex energy systems and provides brief accounts of some of the most serious reactor accidents which have occurred to date. (author). 7 refs

  11. An accountancy system for nuclear materials control in research centres

    International Nuclear Information System (INIS)

    Buttler, R.; Bueker, H.; Vallee, J.

    1979-01-01

    The Nuclear Accountancy and Control System (NACS) was developed at KFA Juelich in accordance with the requirements of the Non-Proliferation Treaty. The main features are (1) recording of nuclear material in inventory items. These are combined to form batches wherever suitable; (2) extrapolation of accounting data as a replacement for detailed measurement of inventory items data. Recording and control of nuclear material are carried out on two levels with access to a common data bank. The lower level deals with nuclear materials handling plus internal management while on the upper level there is a central control point which is responsible for nuclear safeguarding within the entire research centre. By keeping the organizational and technical infrastructure it was possible to develop a system which is both economical and operator-oriented. In this system the emphasis of nuclear safeguarding is placed on the acquisition of the nuclear material inventory. As much consideration has been given to the interests of the various operational levels and organizational units as to internal and national regulations. Since it is part of the safeguarding and control system, access to the NACS must be restricted to a limited number of users only. Furthermore, it must include facilities for manual control in the form of records. Authorization for access must correspond with the various tasks of different user groups. All necessary data are acquired decentrally in the organizational units and entered via a terminal. It is available to the user groups on both levels through a central data bank. To meet all requirements, the NACS has been designed as an integrated, computer-assisted information system for the automated processing of extensive and multi-level nuclear materials data. As part of the preventive measures entailed with nuclear safeguarding, the accountancy system enables the operator of a nuclear plant to furnish proof of non-diversion of nuclear material. (author)

  12. Computer systems and nuclear industry

    International Nuclear Information System (INIS)

    Nkaoua, Th.; Poizat, F.; Augueres, M.J.

    1999-01-01

    This article deals with computer systems in nuclear industry. In most nuclear facilities it is necessary to handle a great deal of data and of actions in order to help plant operator to drive, to control physical processes and to assure the safety. The designing of reactors requires reliable computer codes able to simulate neutronic or mechanical or thermo-hydraulic behaviours. Calculations and simulations play an important role in safety analysis. In each of these domains, computer systems have progressively appeared as efficient tools to challenge and master complexity. (A.C.)

  13. Instruction manual for operating the Sensys System for temporary traffic counts

    Science.gov (United States)

    2010-01-01

    This instruction manual provides information and the procedures for using the Sensys System, which was initially designed to operate in a server controlled network, for temporary traffic counts. The instructions will allow the user to fully understan...

  14. Safety assessment of a robotic system handling nuclear material

    International Nuclear Information System (INIS)

    Atcitty, C.B.; Robinson, D.G.

    1996-01-01

    This paper outlines the use of a Failure Modes and Effects Analysis for the safety assessment of a robotic system being developed at Sandia National Laboratories. The robotic system, The Weigh and Leak Check System, is to replace a manual process at the Department of Energy facility at Pantex by which nuclear material is inspected for weight and leakage. Failure Modes and Effects Analyses were completed for the robotics process to ensure that safety goals for the system had been meet. These analyses showed that the risks to people and the internal and external environment were acceptable

  15. User's manual of SECOM2: a computer code for seismic system reliability analysis

    International Nuclear Information System (INIS)

    Uchiyama, Tomoaki; Oikawa, Tetsukuni; Kondo, Masaaki; Tamura, Kazuo

    2002-03-01

    This report is the user's manual of seismic system reliability analysis code SECOM2 (Seismic Core Melt Frequency Evaluation Code Ver.2) developed at the Japan Atomic Energy Research Institute for systems reliability analysis, which is one of the tasks of seismic probabilistic safety assessment (PSA) of nuclear power plants (NPPs). The SECOM2 code has many functions such as: Calculation of component failure probabilities based on the response factor method, Extraction of minimal cut sets (MCSs), Calculation of conditional system failure probabilities for given seismic motion levels at the site of an NPP, Calculation of accident sequence frequencies and the core damage frequency (CDF) with use of the seismic hazard curve, Importance analysis using various indicators, Uncertainty analysis, Calculation of the CDF taking into account the effect of the correlations of responses and capacities of components, and Efficient sensitivity analysis by changing parameters on responses and capacities of components. These analyses require the fault tree (FT) representing the occurrence condition of the system failures and core damage, information about response and capacity of components and seismic hazard curve for the NPP site as inputs. This report presents the models and methods applied in the SECOM2 code and how to use those functions. (author)

  16. Computer program user's manual for FIREFINDER digital topographic data verification library dubbing system

    Science.gov (United States)

    Ceres, M.; Heselton, L. R., III

    1981-11-01

    This manual describes the computer programs for the FIREFINDER Digital Topographic Data Verification-Library-Dubbing System (FFDTDVLDS), and will assist in the maintenance of these programs. The manual contains detailed flow diagrams and associated descriptions for each computer program routine and subroutine. Complete computer program listings are also included. This information should be used when changes are made in the computer programs. The operating system has been designed to minimize operator intervention.

  17. Advanced nuclear systems. Review study

    International Nuclear Information System (INIS)

    Liebert, Wolfgang; Glaser, Alexander; Pistner, Christoph; Baehr, Roland; Hahn, Lothar

    1999-04-01

    The task of this review study is to from provide an overview of the developments in the field of the various advanced nuclear systems, and to create the basis for more comprehensive studies of technology assessment. In an overview the concepts for advanced nuclear systems pursued worldwide are subdivided into eight subgroups. A coarse examination raster (set pattern) is developed to enable a detailed examination of the selected systems. In addition to a focus on enhanced safety features, further aspects are also taken into consideration, like the lowering of the proliferation risk, the enhancement of the economic competitiveness of the facilities and new usage possibilities (for instance concerning the relaxation of the waste disposal problem or the usage of alternative fuels to uranium). The question about the expected time span for realization and the discussion about the obstacles on the way to a commercially usable reactor also play a substantial role as well as disposal requirements as far as they can be presently recognized. In the central chapter of this study, the documentation of the representatively selected concepts is evaluated as well as existing technology assessment studies and expert opinions. In a few cases where this appears to be necessary, according technical literature, further policy advisory reports, expert statements as well as other relevant sources are taken into account. Contradictions, different assessments and dissents in the literature as well as a few unsettled questions are thus indicated. The potential of advanced nuclear systems with respect to economical and societal as well as environmental objectives cannot exclusively be measured by the corresponding intrinsic or in comparison remarkable technical improvements. The acceptability of novel or improved systems in nuclear technology will have to be judged by their convincing solutions for the crucial questions of safety, nuclear waste and risk of proliferation of nuclear weapons

  18. Code manual for CONTAIN 2.0: A computer code for nuclear reactor containment analysis

    Energy Technology Data Exchange (ETDEWEB)

    Murata, K.K.; Williams, D.C.; Griffith, R.O.; Gido, R.G.; Tadios, E.L.; Davis, F.J.; Martinez, G.M.; Washington, K.E. [Sandia National Labs., Albuquerque, NM (United States); Tills, J. [J. Tills and Associates, Inc., Sandia Park, NM (United States)

    1997-12-01

    The CONTAIN 2.0 computer code is an integrated analysis tool used for predicting the physical conditions, chemical compositions, and distributions of radiological materials inside a containment building following the release of material from the primary system in a light-water reactor accident. It can also predict the source term to the environment. CONTAIN 2.0 is intended to replace the earlier CONTAIN 1.12, which was released in 1991. The purpose of this Code Manual is to provide full documentation of the features and models in CONTAIN 2.0. Besides complete descriptions of the models, this Code Manual provides a complete description of the input and output from the code. CONTAIN 2.0 is a highly flexible and modular code that can run problems that are either quite simple or highly complex. An important aspect of CONTAIN is that the interactions among thermal-hydraulic phenomena, aerosol behavior, and fission product behavior are taken into account. The code includes atmospheric models for steam/air thermodynamics, intercell flows, condensation/evaporation on structures and aerosols, aerosol behavior, and gas combustion. It also includes models for reactor cavity phenomena such as core-concrete interactions and coolant pool boiling. Heat conduction in structures, fission product decay and transport, radioactive decay heating, and the thermal-hydraulic and fission product decontamination effects of engineered safety features are also modeled. To the extent possible, the best available models for severe accident phenomena have been incorporated into CONTAIN, but it is intrinsic to the nature of accident analysis that significant uncertainty exists regarding numerous phenomena. In those cases, sensitivity studies can be performed with CONTAIN by means of user-specified input parameters. Thus, the code can be viewed as a tool designed to assist the knowledge reactor safety analyst in evaluating the consequences of specific modeling assumptions.

  19. Code manual for CONTAIN 2.0: A computer code for nuclear reactor containment analysis

    International Nuclear Information System (INIS)

    Murata, K.K.; Williams, D.C.; Griffith, R.O.; Gido, R.G.; Tadios, E.L.; Davis, F.J.; Martinez, G.M.; Washington, K.E.; Tills, J.

    1997-12-01

    The CONTAIN 2.0 computer code is an integrated analysis tool used for predicting the physical conditions, chemical compositions, and distributions of radiological materials inside a containment building following the release of material from the primary system in a light-water reactor accident. It can also predict the source term to the environment. CONTAIN 2.0 is intended to replace the earlier CONTAIN 1.12, which was released in 1991. The purpose of this Code Manual is to provide full documentation of the features and models in CONTAIN 2.0. Besides complete descriptions of the models, this Code Manual provides a complete description of the input and output from the code. CONTAIN 2.0 is a highly flexible and modular code that can run problems that are either quite simple or highly complex. An important aspect of CONTAIN is that the interactions among thermal-hydraulic phenomena, aerosol behavior, and fission product behavior are taken into account. The code includes atmospheric models for steam/air thermodynamics, intercell flows, condensation/evaporation on structures and aerosols, aerosol behavior, and gas combustion. It also includes models for reactor cavity phenomena such as core-concrete interactions and coolant pool boiling. Heat conduction in structures, fission product decay and transport, radioactive decay heating, and the thermal-hydraulic and fission product decontamination effects of engineered safety features are also modeled. To the extent possible, the best available models for severe accident phenomena have been incorporated into CONTAIN, but it is intrinsic to the nature of accident analysis that significant uncertainty exists regarding numerous phenomena. In those cases, sensitivity studies can be performed with CONTAIN by means of user-specified input parameters. Thus, the code can be viewed as a tool designed to assist the knowledge reactor safety analyst in evaluating the consequences of specific modeling assumptions

  20. Information retrieval system of nuclear power plant database (PPD) user's guide

    International Nuclear Information System (INIS)

    Izumi, Fumio; Horikami, Kunihiko; Kobayashi, Kensuke.

    1990-12-01

    A nuclear power plant database (PPD) and its retrieval system have been developed. The database involves a large number of safety design data of nuclear power plants, operating and planned in Japan. The information stored in the database can be retrieved at high speed, whenever they are needed, by use of the retrieval system. The report is a user's manual of the system to access the database utilizing a display unit of the JAERI computer network system. (author)

  1. Manual Therapy

    OpenAIRE

    Hakgüder, Aral; Kokino, Siranuş

    2002-01-01

    Manual therapy has been used in the treatment of pain and dysfunction of spinal and peripheral joints for more than a hundred years. Manual medicine includes manipulation, mobilization, and postisometric relaxation techniques. The aim of manual therapy is to enhance restricted movement caused by blockage of joints keeping postural balance, restore function and maintain optimal body mechanics. Anatomic, biomechanical, and neurophysiological evaluations of the leucomotor system is essential for...

  2. CANDU nuclear power system

    International Nuclear Information System (INIS)

    1981-01-01

    This report provides a summary of the components that make up a CANDU reactor. Major emphasis is placed on the CANDU 600 MW(e) design. The reasons for CANDU's performance and the inherent safety of the system are also discussed

  3. CONPAS 1.0 (CONtainment Performance Analysis System). User's manual

    International Nuclear Information System (INIS)

    Ahn, Kwang Il; Jin, Young Ho

    1996-04-01

    CONPAS (CONtainment Performance Analysis System) is a verified computer code package to integrate the numerical, graphical, and results-operation aspects of Level 2 probabilistic safety assessments (PSA) for nuclear power plants automatically under a PC window environment. Compared with the existing DOS-based computer codes for Level 2 PSA, the most important merit of the window-based computer code is that user can easily describe and quantify the accident progression models, and manipulate the resultant outputs in a variety of ways. As a main logic for accident progression analysis, CONPAS employs a concept of the small containment phenomenological event tree (CPET) helpful to trace out visually individual accident progressions and of the large supporting event tree (LSET) for its detailed quantification. For the integrated analysis of Level 2 PSA, the code utilizes four distinct, but closely related modules; (1) ET Editor for construction of several event tree models describing the accident progressions, (2) Computer for quantification of the constructed event trees and graphical display of the resultant outputs, (3) Text Editor for preparation of input decks for quanification and utilization of calculational results, and (4) Mechanistic Code Plotter for utilization of results obtained from severe accident analysis codes. Compared with other existing computer codes for Level 2 PSA, the CONPAS code provides several advanced features: computational aspects including systematic uncertainty analysis, importance analysis, sensitivity analysis and data interpretation, reporting aspects including tabling and graphic as well as user-friend interface. 10 refs. (Author) .new

  4. Nuclear excited power generation system

    International Nuclear Information System (INIS)

    Parker, R.Z.; Cox, J.D.

    1989-01-01

    A power generation system is described, comprising: a gaseous core nuclear reactor; means for passing helium through the reactor, the helium being excited and forming alpha particles by high frequency radiation from the core of the gaseous core nuclear reactor; a reaction chamber; means for coupling chlorine and hydrogen to the reaction chamber, the helium and alpha particles energizing the chlorine and hydrogen to form a high temperature, high pressure hydrogen chloride plasma; means for converting the plasma to electromechanical energy; means for coupling the helium back to the gaseous core nuclear reactor; and means for disassociating the hydrogen chloride to form molecular hydrogen and chlorine, to be coupled back to the reaction chamber in a closed loop. The patent also describes a power generation system comprising: a gaseous core nuclear reactor; means for passing hydrogen through the reactor, the hydrogen being excited by high frequency radiation from the core; means for coupling chlorine to a reaction chamber, the hydrogen energizing the chlorine in the chamber to form a high temperature, high pressure hydrogen chloride plasma; means for converting the plasma to electromechanical energy; means for disassociating the hydrogen chloride to form molecular hydrogen and chlorine, and means for coupling the hydrogen back to the gaseous core nuclear reactor in a closed loop

  5. INIS - International Nuclear Information System

    International Nuclear Information System (INIS)

    1995-01-01

    The paper presents International Nuclear Information System (INIS): history of its development; INIS support products (INIS Reference Series, Friendly Inputting of Bibliographic Records software); INIS output products (INIS Atomindex, magnetic tapes, online service, database on CD-ROM, microfiche service); INIS philosophy; input of INIS database by subject areas; and examples of INIS input

  6. Recent space nuclear power systems

    International Nuclear Information System (INIS)

    Takizuka, Takakazu; Yasuda, Hideshi; Hishida, Makoto

    1991-01-01

    For the advance of mankind into the space, the power sources of large output are indispensable, and it has been considered that atomic energy is promising as compared with solar energy and others. Accordingly in USA and USSR, the development of the nuclear power generation systems for space use has been carried out since considerable years ago. In this report, the general features of space nuclear reactors are shown, and by taking the system for the SP-100 project being carried out in USA as the example, the contents of the recent design regarding the safety as an important factor are discussed. Moreover, as the examples of utilizing space nuclear reactors, the concepts of the power source for the base on the moon, the sources of propulsive power for the rockets used for Mars exploration and others, the remote power transmission system by laser in the space and so on are explained. In September, 1988, the launching of a space shuttle of USA was resumed, and the Jupiter explorer 'Galileo' and the space telescope 'Hubble' were successfully launched. The space station 'Mir' of USSR has been used since February, 1986. The history of the development of the nuclear power generation systems for space use is described. (K.I.)

  7. Nuclear reactor safety system

    International Nuclear Information System (INIS)

    Sato, Takashi.

    1979-01-01

    Purpose: To allow sufficient removal of radioactive substance released in the reactor containment shell upon loss of coolants accidents thus to sufficiently decrease the exposure dose to human body. Constitution: A clean-up system is provided downstream of a heat exchanger and it is branched into a pipeway to be connected to a spray nozzle and further connected by way of a valve to a reactor container. After the end of sudden transient changes upon loss of coolants accidents, the pool water stored in the pressure suppression chamber is purified in the clean-up system and then sprayed in the dry-well by way of a spray nozzle. The sprayed water dissolves to remove water soluble radioactive substances floating in the dry-well and then returns to the pressure suppression chamber. Since radioactive substances in the dry-well can thus removed rapidly and effectively and the pool water can be reused, public hazard can also be decreased. (Horiuchi, T.)

  8. Supervision and atuomatic control of robotics systems in nuclear environments

    International Nuclear Information System (INIS)

    Benner, J.; Leinemann, K.

    1992-01-01

    The paper describes new developments in controlling remote handling systems for nuclear applications. The main emphasis is to use robotic equipment and methods for reaching a high degree of system autonomy. A remote handling workstation concept is described, supporting various stages of mission planning and supervision by means of suited geometrical, procedural and functional models. The presented control system enables easy switching between semi-autonomous and manual task execution and sensor data integration. Some experimental results of a prototypic implementation are also described

  9. Supervision and automatic control of robotic systems in nuclear environments

    International Nuclear Information System (INIS)

    Benner, J.; Leinemann, K.

    1992-01-01

    This paper describes new developments in controlling remote handling systems for nuclear applications. The main emphasis is to use robotic equipment and methods for reaching a high degree of system autonomy. A remote handling workstation concept is described, supporting various stages of mission planning and supervision by means of suited geometrical, procedural and functional models. The presented control system enables easy switching between semi-autonomous and manual task execution and sensor data integration. Some experimental results of a prototypic implementation are also described

  10. Expert systems and nuclear safety

    International Nuclear Information System (INIS)

    Beltracchi, L.

    1990-01-01

    The US Nuclear Regulatory Commission (NRC) and the Electric Power Research Institute have initiated a broad-based exploration of means to evaluate the potential applications of expert systems in the nuclear industry. This exploratory effort will assess the use of expert systems to augment the diagnostic and decision-making capabilities of personnel with the goal of enhancing productivity, reliability, and performance. The initial research effort is the development and documentation of guidelines for verifying and validating (V and V) expert systems. An initial application of expert systems in the nuclear industry is to aid operations and maintenance personnel in decision-making tasks. The scope of the decision aiding covers all types of cognitive behavior consisting of skill, rule, and knowledge-based behavior. For example, procedure trackers were designed and tested to support rule-based behavior. Further, these systems automate many of the tedious, error-prone human monitoring tasks, thereby reducing the potential for human error. The paper version of the procedure contains the knowledge base and the rules and thus serves as the basis of the design verification of the procedure tracker. Person-in-the-loop tests serve as the basis for the validation of a procedure tracker. When conducting validation tests, it is important to ascertain that the human retains the locus of control in the use of the expert system

  11. Nuclear systems of level measurement

    International Nuclear Information System (INIS)

    Lara, A.J.; Cabrera, M.J.

    1992-01-01

    In the industry there are processes in which is necessary to maintain the products level controlled which are handled for their transformation. The majority of such processes and by the operation conditions, they do not admit measure systems of level of invasive type then the application of nuclear techniques for level measurement results a big aid in these cases, since all the system installation is situated beyond frontiers of vessels that contain the product for measuring. In the Department of Nuclear Technology Applications of Mexican Petroleum Institute was developed a level measurement system by gamma rays transmission which operates in the Low Density Polyethylene plant of Petrochemical Complex Escolin at Poza Rica, Veracruz, Mexico. (Author)

  12. Nuclear power plant annunciator systems

    International Nuclear Information System (INIS)

    Rankin, W.L.

    1983-08-01

    Analyses of nuclear power plant annunciator systems have uncovered a variety of problems. Many of these problems stem from the fact that the underlying philosophy of annunciator systems have never been elucidated so as to impact the initial annunciator system design. This research determined that the basic philosophy of an annunciator system should be to minimize the potential for system and process deviations to develop into significant hazards. In order to do this the annunciator system should alert the operators to the fact that a system or process deviation exists, inform the operators as to the priority and nature of the deviation, guide the operators' initial responses to the deviation, and confirm whether operators responses corrected the deviation. Annunciator design features were analyzed to determine to what degree they helped the system meet the functional criteria, the priority for implementing specific design features, and the cost and ease of implementing specific design features

  13. Quality Manual

    Science.gov (United States)

    Koch, Michael

    The quality manual is the “heart” of every management system related to quality. Quality assurance in analytical laboratories is most frequently linked with ISO/IEC 17025, which lists the standard requirements for a quality manual. In this chapter examples are used to demonstrate, how these requirements can be met. But, certainly, there are many other ways to do this.

  14. Integrated Reliability and Risk Analysis System (IRRAS), Version 2.5: Reference manual

    International Nuclear Information System (INIS)

    Russell, K.D.; McKay, M.K.; Sattison, M.B.; Skinner, N.L.; Wood, S.T.; Rasmuson, D.M.

    1991-03-01

    The Integrated Reliability and Risk Analysis System (IRRAS) is a state-of-the-art, microcomputer-based probabilistic risk assessment (PRA) model development and analysis tool to address key nuclear plant safety issues. IRRAS is an integrated software tool that gives the user the ability to create and analyze fault trees and accident sequences using a microcomputer. This program provides functions that range from graphical fault tree construction to cut set generation and quantification. Version 1.0 of the IRRAS program was released in February of 1987. Since that time, many user comments and enhancements have been incorporated into the program providing a much more powerful and user-friendly system. This version has been designated IRRAS 2.5 and is the subject of this Reference Manual. Version 2.5 of IRRAS provides the same capabilities as Version 1.0 and adds a relational data base facility for managing the data, improved functionality, and improved algorithm performance. 7 refs., 348 figs

  15. Nuclear incident monitor criticality alarm instrument for the Savannah River Site: Technical manual

    International Nuclear Information System (INIS)

    Jenkins, J.B.

    1996-01-01

    The Savannah River Site is a Department of Energy facility. The facility stores, processes, and works with fissionable material at a number of locations. Technical standards and US Department of Energy orders, require these locations to be monitored by criticality alarm systems under certain circumstances. The Savannah River Site calls such instruments Nuclear Incident Monitors or NIMs. The Sole purpose of the Nuclear Incident Monitor is to provide an immediate evacuation signal in the case of an accidental criticality in order to minimize personnel exposure to radiation. The new unit is the third generation Nuclear Incident Monitor at the Savannah River Site. The second generation unit was developed in 1979. It was designed to eliminate vacuum-tube circuits, and was the first solid state NIM at SRS. The major design objectives of the second generation NIM were to improve reliability and reduce maintenance costs. Ten prototype units have been built and tested. This report describes the design of the new NIM and the testing that took place to verify its acceptability

  16. Nuclear technology databases and information network systems

    International Nuclear Information System (INIS)

    Iwata, Shuichi; Kikuchi, Yasuyuki; Minakuchi, Satoshi

    1993-01-01

    This paper describes the databases related to nuclear (science) technology, and information network. Following contents are collected in this paper: the database developed by JAERI, ENERGY NET, ATOM NET, NUCLEN nuclear information database, INIS, NUclear Code Information Service (NUCLIS), Social Application of Nuclear Technology Accumulation project (SANTA), Nuclear Information Database/Communication System (NICS), reactor materials database, radiation effects database, NucNet European nuclear information database, reactor dismantling database. (J.P.N.)

  17. Emerging nuclear energy systems and nuclear weapon proliferation

    International Nuclear Information System (INIS)

    Gsponer, A.; Sahin, S.; Jasani, B.

    1983-01-01

    Generally when considering problems of proliferation of nuclear weapons, discussions are focused on horizontal proliferation. However, the emerging nuclear energy systems currently have an impact mainly on vertical proliferation. The paper indicates that technologies connected with emerging nuclear energy systems, such as fusion reactors and accelerators, enhance the knowledge of thermonuclear weapon physics and will enable production of military useful nuclear materials (including some rare elements). At present such technologies are enhancing the arsenal of the nuclear weapon states. But one should not forget the future implications for horizontal proliferation of nuclear weapons as some of the techniques will in the near future be within the technological and economic capabilities of non-nuclear weapon states. Some of these systems are not under any international control. (orig.) [de

  18. A training manual for event history data management using Health and Demographic Surveillance System data.

    Science.gov (United States)

    Bocquier, Philippe; Ginsburg, Carren; Herbst, Kobus; Sankoh, Osman; Collinson, Mark A

    2017-06-26

    The objective of this research note is to introduce a training manual for event history data management. The manual provides a first comprehensive guide to longitudinal Health and Demographic Surveillance System (HDSS) data management that allows for a step-by-step description of the process of structuring and preparing a dataset for the calculation of demographic rates and event history analysis. The research note provides some background information on the INDEPTH Network, and the iShare data repository and describes the need for a manual to guide users as to how to correctly handle HDSS datasets. The approach outlined in the manual is flexible and can be applied to other longitudinal data sources. It facilitates the development of standardised longitudinal data management and harmonization of datasets to produce a comparative set of results.

  19. Risk and safety analysis of nuclear systems

    National Research Council Canada - National Science Library

    Lee, John C; McCormick, Norman J

    2011-01-01

    ...), and failure modes of systems. All of this material is general enough that it could be used in non-nuclear applications, although there is an emphasis placed on the analysis of nuclear systems...

  20. US Army Nuclear Burst Detection System (NBDS)

    International Nuclear Information System (INIS)

    Glaser, R.F.

    1980-07-01

    The Nuclear Burst Detection System (NBDS) was developed to meet the Army requirements of an unattended, automatic nuclear burst reporting system. It provides pertinent data for battlefield commanders on a timely basis with high reliability

  1. A system design for the nuclear material accounting reports control based on the intra-net

    International Nuclear Information System (INIS)

    Jeon, I.; Park, S. J.; Min, K. S.

    2003-01-01

    The 34 nuclear facilities, including the nuclear power plants, were on operating in Korea and the Technology Center for Nuclear Control(TCNC) has been submit the nuclear material accounting reports to the government and IAEA. At the start point of this work, all reports were controlled via manually and at now, they were controlled based on the client/server system. The fast progress of the computer and internet communication changes the environment of computing from disk operating system to web based system using internet. So, a new system to access the safeguards information and nuclear material accounting system more convenient was needed. In this thesis, a safeguards information control system including the nuclear material accounting reports at the state level based on the web was designed. The oracle RDBMS (Relational Data Base Management System) was adopted for data base management. And all users can access this program via inter-net using their own computer

  2. For establishment on nuclear disaster prevention system

    International Nuclear Information System (INIS)

    Anon.

    2000-01-01

    For increasing requirement of peoples for review of nuclear disaster countermeasure at a chance of the JCO critical accident, the Japanese Government newly established the 'Special Measure Act on Nuclear Disaster Countermeasure', which was enacted on July 16, 2000. The nuclear business relatives such as electric power company and so forth established the Business program on nuclear disaster prevention in nuclear business relatives' after their consultation with local communities at their construction, under their co-operation. Simultaneously, the electric power industry field decided to intend to provide some sufficient countermeasures to incidental formation of nuclear accident such as start of the Co-operative agreement on nuclear disaster prevention among the nuclear business relatives' and so forth. Here were described on nuclear safety and disaster prevention, nuclear disaster prevention systems at the electric power industry field, abstract on 'Business program on nuclear disaster prevention in nuclear business relatives', preparation of technical assistance system for nuclear disaster prevention, executive methods and subjects on nuclear disaster prevention at construction areas, recent business on nuclear disaster prevention at the Nuclear Technical Center, and subjects on establishment of nuclear disaster prevention system. (G.K.)

  3. Nuclear maintenance and management system

    International Nuclear Information System (INIS)

    Yamaji, Yoshihiro; Abe, Norihiko

    2000-01-01

    The Mitsubishi Electric Co., Ltd. has developed to introduce various computer systems for desk-top business assistance in a power plant such as system isolation assisting system, operation parameter management system, and so on under aiming at business effectiveness since these ten and some years. Recently, by further elapsed years of the plants when required for further cost reduction and together with change of business environment represented by preparation of individual personal computer, further effectiveness, preparation of the business environment, and upgrading of maintenance in power plant business have been required. Among such background, she has carried out various proposals and developments on construction of a maintenance and management system integrated the business assistant know-hows and the plant know-hows both accumulated previously. They are composed of three main points on rationalization of business management and document management in the further effectiveness, preparation of business environment, TBM maintenance, introduction of CBM maintenance and introduction of maintenance assistance in upgrading of maintenance. Here was introduced on system concepts aiming at the further effectiveness of the nuclear power plant business, preparation of business environment, upgrading of maintenance and maintenance, and so on, at a background of environment around maintenance business in the nuclear power plants (cost-down, highly elapsed year of the plant, change of business environment). (G.K)

  4. 100-N technical manual. Volume 2A: Systems descriptions

    Energy Technology Data Exchange (ETDEWEB)

    1963-12-31

    This report contains engineering drawings for the control room, reactor monitoring systems, and reactor control systems for the N reactor. Each console in the control room is detailed. Other systems discussed are: stack air monitoring system, charging machine control systems, and heating and ventilation control systems. A N reactor plant glossary is included.

  5. NCIS - a Nuclear Criticality Information System (overview)

    International Nuclear Information System (INIS)

    Koponen, B.L.; Hampel, V.E.

    1983-07-01

    A Nuclear Criticality Information System (NCIS) is being established at the Lawrence Livermore National Laboratory (LLNL) in order to serve personnel responsible for safe storage, transport, and handling of fissile materials and those concerned with the evaluation and analysis of nuclear, critical experiments. Public concern for nuclear safety provides the incentive for improved access to nuclear safety information

  6. Tubular wells perforation manual for investigation and training of Guarani Aquifer System

    International Nuclear Information System (INIS)

    2007-01-01

    The Environmental protection and sustainable development of the Aquifer Guarani System project is a initiative by Argentina, Brasil, Paraguay y Uruguay with the aim to raise the knowledge, legal and institutional sustainable management from 2003-2008 period. The Guarani consortium integrated by Tahal Engineers Ltda.(Israel), SEINCO SRL. (Uruguay), Hidrocontrol S:A:(Paraguay), Arcadis Hidroambiente S.A. (Argentina) have shown in Tubular wells perforation for investigation and training of Guarani Aquifer System manual their first product. This Manual includes technical especifications focused in Guarani Aquifer System harmessing building

  7. Composting of tobacco plant waste by manual turning and forced aeration system

    OpenAIRE

    Nonglak Saithep

    2009-01-01

    The efficiency of tobacco plant waste composting, by the manual turning and the forced aeration system, was compared. Tobacco plant waste, cow manure, urea fertiliser, and a compost inoculum mixture at a 100:10:0.2:0.01 ratio respectively, with 60% (w/v) moisture content, were set up in piling forms. The piles of the manual turning system were provided with turning aeration by hand at intervals of 7 days during the composting process. For the forced aeration system, each pile was aerated by a...

  8. Study of nuclear computer code maintenance and management system

    International Nuclear Information System (INIS)

    Ryu, Chang Mo; Kim, Yeon Seung; Eom, Heung Seop; Lee, Jong Bok; Kim, Ho Joon; Choi, Young Gil; Kim, Ko Ryeo

    1989-01-01

    Software maintenance is one of the most important problems since late 1970's.We wish to develop a nuclear computer code system to maintenance and manage KAERI's nuclear software. As a part of this system, we have developed three code management programs for use on CYBER and PC systems. They are used in systematic management of computer code in KAERI. The first program is embodied on the CYBER system to rapidly provide information on nuclear codes to the users. The second and the third programs were embodied on the PC system for the code manager and for the management of data in korean language, respectively. In the requirement analysis, we defined each code, magnetic tape, manual and abstract information data. In the conceptual design, we designed retrieval, update, and output functions. In the implementation design, we described the technical considerations of database programs, utilities, and directions for the use of databases. As a result of this research, we compiled the status of nuclear computer codes which belonged KAERI until September, 1988. Thus, by using these three database programs, we could provide the nuclear computer code information to the users more rapidly. (Author)

  9. Administrative Reorganization, Modification And Enlargement The Personal Plant And The Functions Manual Of The Documentation Center And Nuclear Information Of The Institute Of Nuclear Matters

    International Nuclear Information System (INIS)

    De Escobar, Cecilia

    1991-01-01

    This document is a project of administrative reorganization, modification and amplification of the personal plant and the functions manual of of the Center of Documentation and Nuclear Information of the IAN. The methodology used to develop this work was constituted by an analysis of the statutes and objectives of the institution. A study of the objectives that the CDIN of the flowchart of the IAN should complete. Interview with the Boss of the CDIN to define necessities as soon as administrative organization, modification of the plant of personal and of the manual of functions of the Center, interview the officials of the Documentation Center, tending efficiently to gather information on the current conditions of work and their proposals for the benefit of the more services. Surveys of the Center users to diagnose like they are come lending the services and their recommendations for the improvement of the same ones

  10. Composting of tobacco plant waste by manual turning and forced aeration system

    Directory of Open Access Journals (Sweden)

    Nonglak Saithep

    2009-05-01

    Full Text Available The efficiency of tobacco plant waste composting, by the manual turning and the forced aeration system, was compared. Tobacco plant waste, cow manure, urea fertiliser, and a compost inoculum mixture at a 100:10:0.2:0.01 ratio respectively, with 60% (w/v moisture content, were set up in piling forms. The piles of the manual turning system were provided with turning aeration by hand at intervals of 7 days during the composting process. For the forced aeration system, each pile was aerated by a 3-HP air pump with a flow rate of 19 litres min-1 for 15 minutes every morning and evening. The completely randomised design of turned and force-aerated piles was performed in triplicate. The composting activity of both systems during the composting period was measured by several parameters: temperature, pH, moisture content, C/N ratio, growth of microorganisms, cellulase activity, and nicotine degradation in the set-up piles. Both systems had similar temperature, pH, and moisture content conditions in the piles during the composting process. However, the forced aeration system was more advantageous for the growth of mesophilic and thermophilic microorganisms, for cellulase activity from cellulase-producing microorganisms, and for nicotine degradation, when compared to the manual turning system. In conclusion, the forced aeration system was more efficient than the manual turning system in composting and is a viable alternative method for the composting process.

  11. The influence of image setting on intracranial translucency measurement by manual and semi-automated system.

    Science.gov (United States)

    Zhen, Li; Yang, Xin; Ting, Yuen Ha; Chen, Min; Leung, Tak Yeung

    2013-09-01

    To investigate the agreement between manual and semi-automated system and the effect of different image settings on intracranial translucency (IT) measurement. A prospective study was conducted on 55 women carrying singleton pregnancy who attended first trimester Down syndrome screening. IT was measured both manually and by semi-automated system at the same default image setting. The IT measurements were then repeated with the post-processing changes in the image setting one at a time. The difference in IT measurements between the altered and the original images were assessed. Intracranial translucency was successfully measured on 55 images both manually and by semi-automated method. There was strong agreement in IT measurements between the two methods with a mean difference (manual minus semi-automated) of 0.011 mm (95% confidence interval--0.052 mm-0.094 mm). There were statistically significant variations in both manual and semi-automated IT measurement after changing the Gain and the Contrast. The greatest changes occurred when the Contrast was reduced to 1 (IT reduced by 0.591 mm in semi-automated; 0.565 mm in manual), followed by when the Gain was increased to 15 (IT reduced by 0.424 mm in semi-automated; 0.524 mm in manual). The image settings may affect IT identification and measurement. Increased Gain and reduced Contrast are the most influential factors and may cause under-measurement of IT. © 2013 John Wiley & Sons, Ltd.

  12. Laboratory training manual on the use of nuclear techniques in animal nutrition

    International Nuclear Information System (INIS)

    1985-01-01

    This Manual is planned to introduce the basic principles of work with radiotracers in a logical order. Each principle is then illustrated by means of practical exercises, which are described in detail so that students can perform them with little tutorial supervision

  13. Laboratory training manual on the use of nuclear techniques in animal research

    International Nuclear Information System (INIS)

    1979-01-01

    The manual is designed to give the animal science researcher the basic terms and principles necessary for understanding radiation, its detection and measurement, its associated hazards, and some of the more common applications. Basic laboratory exercises to illustrate this purpose are included

  14. Establishment of nuclear data system

    International Nuclear Information System (INIS)

    Chang, Jong Hwa; Kim, J. D.; Oh, S. Y.; Lee, Y. O.; Gil, C. S.; Cho, Y. S.

    1997-01-01

    Fission fragment data have been collected and added to the existing nuclear database system. A computer program was written for generating on-line graphs of energy-dependent neutron reaction cross section. This program deals with about 300 major nuclides and serves on the internet. As a part of nuclear data evaluation works, the covariance data for neutron cross section of structural nuclides were evaluated. Also the elastic and inelastic cross sections were evaluated by using ABAREX and EGNASH2 code. In the field of nuclear data processing, a cross section library for TWODANT code for liquid metal reactor was generated and validated against Russian and French critical reactors. The resonance data for Pu-242 in CASMO-3 library were updated. In addition, continuous-energy libraries for MCNP were generated from ENDF/B-VI.2, JEF-2.2 and JENDL-3.2. These libraries were validated against the results from a series of critical experiments at HANARO. (author). 87 refs., 29 tabs., 23 figs

  15. Nuclear material control systems for nuclear power plants

    International Nuclear Information System (INIS)

    1975-06-01

    Paragraph 70.51(c) of 10 CFR Part 70 requires each licensee who is authorized to possess at any one time special nuclear material in a quantity exceeding one effective kilogram to establish, maintain, and follow written material control and accounting procedures that are sufficient to enable the licensee to account for the special nuclear material in his possession under license. While other paragraphs and sections of Part 70 provide specific requirements for nuclear material control systems for fuel cycle plants, such detailed requirements are not included for nuclear power reactors. This guide identifies elements acceptable to the NRC staff for a nuclear material control system for nuclear power reactors. (U.S.)

  16. Nuclear material statistical accountancy system

    International Nuclear Information System (INIS)

    Argentest, F.; Casilli, T.; Franklin, M.

    1979-01-01

    The statistical accountancy system developed at JRC Ispra is refered as 'NUMSAS', ie Nuclear Material Statistical Accountancy System. The principal feature of NUMSAS is that in addition to an ordinary material balance calcultation, NUMSAS can calculate an estimate of the standard deviation of the measurement error accumulated in the material balance calculation. The purpose of the report is to describe in detail, the statistical model on wich the standard deviation calculation is based; the computational formula which is used by NUMSAS in calculating the standard deviation and the information about nuclear material measurements and the plant measurement system which are required as data for NUMSAS. The material balance records require processing and interpretation before the material balance calculation is begun. The material balance calculation is the last of four phases of data processing undertaken by NUMSAS. Each of these phases is implemented by a different computer program. The activities which are carried out in each phase can be summarised as follows; the pre-processing phase; the selection and up-date phase; the transformation phase, and the computation phase

  17. Hanford Environmental Information System (HEIS) Operator`s Manual. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Schreck, R.I.

    1991-10-01

    The Hanford Environmental Information System (HEIS) is a consolidated set of automated resources that effectively manage the data gathered during environmental monitoring and restoration of the Hanford Site. The HEIS includes an integrated database that provides consistent and current data to all users and promotes sharing of data by the entire user community. This manual describes the facilities available to the operational user who is responsible for data entry, processing, scheduling, reporting, and quality assurance. A companion manual, the HEIS User`s Manual, describes the facilities available-to the scientist, engineer, or manager who uses the system for environmental monitoring, assessment, and restoration planning; and to the regulator who is responsible for reviewing Hanford Site operations against regulatory requirements and guidelines.

  18. INIS - International Nuclear Information System

    International Nuclear Information System (INIS)

    Nevyjel, A.

    1983-10-01

    The International Nuclear Information System is operated by the IAEA in close cooperation with its participating countries. Each country is responsible for the acquisition of the literature published within its boundaries. These data are collected by the INIS secretariat in Vienna and the resulting comprehensive data base is available for all member states. On behalf of Austrian Federal Chancellor's Office the Austrian Research Centre Seibersdorf operates the Austrian INIS-Center, which offers information services in form of retrospective searches and current awareness services. (Author) [de

  19. Supersymmetry for nuclear cluster systems

    International Nuclear Information System (INIS)

    Levai, G.; Cseh, J.; Van Isacker, P.

    2001-01-01

    A supersymmetry scheme is proposed for nuclear cluster systems. The bosonic sector of the superalgebra describes the relative motion of the clusters, while its fermionic sector is associated with their internal structure. An example of core+α configurations is discussed in which the core is a p-shell nucleus and the underlying superalgebra is U(4/12). The α-cluster states of the nuclei 20 Ne and 19 F are analysed and correlations between their spectra, electric quadrupole transitions, and one-nucleon transfer reactions are interpreted in terms of U(4/12) supersymmetry. (author)

  20. Acquisition and Development of System Command (SYSCOM) Technical Manuals

    National Research Council Canada - National Science Library

    2003-01-01

    ... (NAVSEA) and Space and Naval Warfare Systems Command (SPAWAR). TMs are the primary information source for technical training, installation, operation, testing, maintenance, and repair associated with NAVSEA/SPAWAR systems or equipment...

  1. Radon-daughter chamber instrumentation system reference manual

    International Nuclear Information System (INIS)

    Showalter, R.; Johnson, L.

    1985-01-01

    The radon-daughter chamber instrumentation system collects environmental data from the radon-daughter chamber. These data are then recorded on a Tandberg system tape cartridge and transmitted to the HP-1000 computer for processing. Generators which inject radon and condensation nuclei into the chamber are also included with the instrumentation system

  2. Nuclear detection systems in traffic

    International Nuclear Information System (INIS)

    Farkas, T.; Pernicka, L.; Svec, A.

    2005-01-01

    Illicit trafficking in nuclear materials (nuclear criminality) has become a problem, due to the circulation of a high number of radioactive sources caused by the changes of the organisational infrastructures to supervise these material within the successor states of the former Soviet Union. Aim of this paper is to point out the technical requirements and the practicability of an useful monitoring system at preselected traffic check points (railway and highway border crossings, industrial sites entry gates, international airports). The ITRAP lab test was designed to work as strict benchmark to qualify border monitoring systems 67 with very low false alarm rates, in addition the minimum sensitivity to give an alarm has been defined for fix-installed systems, pocket type and hand held instruments. For the neutron tests a special prepared Californium source ( 252 Cf) was used to simulate the weapons plutonium. The source is shielded against gamma radiation, use a moderator and provides the required neutron rate of 20000 n/s at 2 rn distance. To test the false alarm rate (rate of false positive ) the same test facility , under the same background conditions, was used but without a radioactive test source. The ITRAP lab tests for the fix-installed systems started at May 1998 and first results were given in September 1998. Only 2 of 14 fix-installed monitoring systems could fulfil the minimum requirement for neutron detection. 7 of 14 fix-installed monitoring systems (50%) passed the ITRAP lab test. The analytical method developed and used for certification of installed radiation monitors in the Slovak Institute of Metrology consists in measurement of radiation activity of selected radionuclide in defined conditions. (authors)

  3. Nuclear Systems (NS): Technology Demonstration Unit (TDU)

    Data.gov (United States)

    National Aeronautics and Space Administration — The Nuclear Systems Project demonstrates nuclear power technology readiness to support the goals of NASA's Space Technology Mission Directorate. To this end, the...

  4. Material control system simulator user's manual

    Energy Technology Data Exchange (ETDEWEB)

    Hollstien, R.B.

    1978-01-24

    This report describes the use of a Material Control System Simulator (MCSS) program for determination of material accounting uncertainty and system response to particular adversary action sequences that constitute plausible material diversion attempts. The program is intended for use in situations where randomness, uncertainty, or interaction of adversary actions and material control system components make it difficult to assess safeguards effectiveness against particular material diversion attempts.

  5. WAM-E user's manual

    International Nuclear Information System (INIS)

    Rayes, L.G.; Riley, J.E.

    1986-07-01

    The WAM-E series of mainframe computer codes have been developed to efficiently analyze the large binary models (e.g., fault trees) used to represent the logic relationships within and between the systems of a nuclear power plant or other large, multisystem entity. These codes have found wide application in reliability and safety studies of nuclear power plant systems. There are now nine codes in the WAM-E series, with six (WAMBAM/WAMTAP, WAMCUT, WAMCUT-II, WAMFM, WAMMRG, and SPASM) classified as Type A Production codes and the other three (WAMFTP, WAMTOP, and WAMCONV) classified as Research codes. This document serves as a combined User's Guide, Programmer's Manual, and Theory Reference for the codes, with emphasis on the Production codes. To that end, the manual is divided into four parts: Part I, Introduction; Part II, Theory and Numerics; Part III, WAM-E User's Guide; and Part IV, WAMMRG Programmer's Manual

  6. Design manual. [High temperature heat pump for heat recovery system

    Energy Technology Data Exchange (ETDEWEB)

    Burch, T.E.; Chancellor, P.D.; Dyer, D.F.; Maples, G.

    1980-01-01

    The design and performance of a waste heat recovery system which utilizes a high temperature heat pump and which is intended for use in those industries incorporating indirect drying processes are described. It is estimated that use of this heat recovery system in the paper, pulp, and textile industries in the US could save 3.9 x 10/sup 14/ Btu/yr. Information is included on over all and component design for the heat pump system, comparison of prime movers for powering the compressor, control equipment, and system economics. (LCL)

  7. Operators manual for a computer controlled impedance measurement system

    Science.gov (United States)

    Gordon, J.

    1987-02-01

    Operating instructions of a computer controlled impedance measurement system based in Hewlett Packard instrumentation are given. Hardware details, program listings, flowcharts and a practical application are included.

  8. 4+ Dimensional nuclear systems engineering

    International Nuclear Information System (INIS)

    Suh, Kune Y.

    2009-01-01

    Nuclear power plants (NPPs) require massive quantity of data during the design, construction, operation, maintenance and decommissioning stages because of their special features like size, cost, radioactivity, and so forth. The system engineering thus calls for a fully integrated way of managing the information flow spanning their life cycle. This paper proposes digital systems engineering anchored in three dimensional (3D) computer aided design (CAD) models. The signature in the proposal lies with the four plus dimensional (4 + D) Technology TM , a critical know how for digital management. ESSE (Engineering Super Simulation Emulation) features a 4 + D Technology TM for nuclear energy systems engineering. The technology proposed in the 3D space and time plus cost coordinates, i.e. 4 + D, is the backbone of digital engineering in the nuclear systems design and management. Dased on an integrated 3D configuration management system, ESSE consists of solutions JANUS (Junctional Analysis Neodynamic Unit SoftPower), EURUS (Engineering Utilities Research Unit SoftPower), NOTUS (Neosystemic Optimization Technical Unit SoftPower), VENUS (Virtual Engineering Neocybernetic Unit SoftPower) and INUUS (Informative Neographic Utilities Unit SoftPower). NOTUS contributes to reducing the construction cost of the NPPs by optimizing the component manufacturing procedure and the plant construction process. Planning and scheduling construction projects can thus benefit greatly by integrating traditional management techniques with digital process simulation visualization. The 3D visualization of construction processes and the resulting products intrinsically afford most of the advantages realized by incorporating a purely schedule level detail based the 4 + D system. Problems with equipment positioning and manpower congestion in certain areas can be visualized prior to the actual operation, thus preventing accidents and safety problems such as collision between two machines and losses in

  9. Composite type nuclear power system

    International Nuclear Information System (INIS)

    Nakamoto, Koichiro.

    1993-01-01

    The present invention realizes a high thermal efficiency by heating steams at the exit of a steam generator of a nuclear power plant to high temperature by a thermal super-heating boiler. That is, a thermal superheating boiler is disposed between the steam generator and a turbogenerator to heat steams from the steam generator and supply them to the turbogenerator. In this case, it may be possible that feedwater superheating boiler pipelines to the steam generator are caused to pass through the thermal superheating boiler so that they also have a performance of heating feedwater. If the system of the present invention is used, it is possible to conduct base load operation by nuclear power and a load following operation by controlling the thermal superheating boiler. Further, a hydrogen producing performance is applied to the thermal superheating boiler to produce hydrogen when electric power load is lowered. An internally sustaining type operation method can be conducted of burning hydrogen by the superheating boiler upon increased electric power load. As a result, a power generation system which has an excellent economical property and can easily cope with the load following operation can be attained. (I.S.)

  10. Laboratory training manual on the use of nuclear and associated techniques in pesticide research

    International Nuclear Information System (INIS)

    1991-01-01

    Most laboratories studying pesticide metabolism or other aspects of pesticides use isotope techniques. This manual is aimed at scientists who use or intended to use radioisotopes in pesticide research. It contains a theoretical introduction on the properties of radionuclides and radiation, a description of radioactivity measuring instruments, guidelines for radiation protection and general recommendations on experimental design and performance. A large part of the manual is devoted to laboratory exercises in which detailed protocols for applications of isotope techniques in pesticide research are presented. These are intended to demonstrate concepts or denote representative means of conducting particular types of experiment, and it is hoped that the information gained through the performance of the exercises will serve as a basis for modifications to suit other specialized needs. 36 figs

  11. Advanced nuclear systems in comparison

    International Nuclear Information System (INIS)

    Brogli, R.; Foskolos, K.; Goetzmann, C.; Kroeger, W.; Stanculescu, A.; Wydler, P.

    1996-09-01

    This study aims at a comparison of future reactor concepts, paying particular attention to aspects of safety, of the fuel cycle, the economics, the experience-base and the state of development. Representative examples of typical development lines, that could possibly be 'of interest' within a time horizon of 50 years were selected for comparison. This can be divided into three phases: - Phase I includes the next 10 years and will be characterised mainly by evolutionary developments of light water reactors (LWR) of large size; representative: EPR, - Phase II: i.e. the time between 2005 and 2020 approximately, encompasses the forecasted doubling of today's world-wide installed nuclear capacity; along with evolutionary reactors, innovative systems like AP600, PIUS, MHTGR, EFR will emerge, - Phase III covers the time between 2020 and 2050 and is characterised by the issue of sufficient fissile material resources; novel fast reactor systems including hybrid systems can, thus, become available; representatives: IFR, EA, ITER (the latter being). The evaluated concepts foresee partly different fuel cycles. Fission reactors can be operated in principle on the basis of either a Uranium-Plutonium-cycle or a Thorium-Uranium-cycle, while combinations of these cycles among them or with other reactor concepts than proposed are possible. With today's nuclear park (comprising mainly LWRs), the world-wide plutonium excess increases annually by about 100 t. Besides strategies based on reprocessing like: - recycling in thermal and fast reactors with mixed oxide fuels, - plutonium 'burning' in reactors with novel fuels without uranium or in 'hybrid' systems, allowing a reduction of this excess, direct disposal of spent fuel elements including their plutonium content ('one-through') is being considered. (author) figs., tabs., 32 refs

  12. Manual editing of automatically recorded data in an anesthesia information management system.

    Science.gov (United States)

    Wax, David B; Beilin, Yaakov; Hossain, Sabera; Lin, Hung-Mo; Reich, David L

    2008-11-01

    Anesthesia information management systems allow automatic recording of physiologic and anesthetic data. The authors investigated the prevalence of such data modification in an academic medical center. The authors queried their anesthesia information management system database of anesthetics performed in 2006 and tabulated the counts of data points for automatically recorded physiologic and anesthetic parameters as well as the subset of those data that were manually invalidated by clinicians (both with and without alternate values manually appended). Patient, practitioner, data source, and timing characteristics of recorded values were also extracted to determine their associations with editing of various parameters in the anesthesia information management system record. A total of 29,491 cases were analyzed, 19% of which had one or more data points manually invalidated. Among 58 attending anesthesiologists, each invalidated data in a median of 7% of their cases when working as a sole practitioner. A minority of invalidated values were manually appended with alternate values. Pulse rate, blood pressure, and pulse oximetry were the most commonly invalidated parameters. Data invalidation usually resulted in a decrease in parameter variance. Factors independently associated with invalidation included extreme physiologic values, American Society of Anesthesiologists physical status classification, emergency status, timing (phase of the procedure/anesthetic), presence of an intraarterial catheter, resident or certified registered nurse anesthetist involvement, and procedure duration. Editing of physiologic data automatically recorded in an anesthesia information management system is a common practice and results in decreased variability of intraoperative data. Further investigation may clarify the reasons for and consequences of this behavior.

  13. Manual and automatic locomotion scoring systems in dairy cows: A review

    NARCIS (Netherlands)

    Schlageter-Tello, A.; Bokkers, E.A.M.; Groot Koerkamp, P.W.G.; Hertem, van T.; Viazzi, S.; Romanini Bites, E.; Halachmi, I.; Bahr, C.; Berckmans, D.; Lokhorst, K.

    2014-01-01

    The objective of this review was to describe, compare and evaluate agreement, reliability, and validity of manual and automatic locomotion scoring systems (MLSSs and ALSSs, respectively) used in dairy cattle lameness research. There are many different types of MLSSs and ALSSs. Twenty-five MLSSs were

  14. Information Resources; A Searcher's Manual. MOREL Regional Information System for Educators.

    Science.gov (United States)

    Grimes, George; Doyle, James

    This document is one of a series describing the background, functions, and utilization of the Regional Information System (RIS) developed by the Michigan-Ohio Regional Educational Laboratory (MOREL). The purpose of this manual is to detail a procedure for performing a productive search of information resources which can satisfy the informational…

  15. Image-guided system versus manual marking for toric intraocular lens alignment in cataract surgery

    NARCIS (Netherlands)

    Webers, V.S.C.; Bauer, N.J.C.; Visser, N.; Berendschot, T.T.J.M.; van den Biggelaar, F.J.H.M.; Nuijts, R.M.M.A.

    2017-01-01

    Purpose To compare the accuracy of toric intraocular lens (IOL) alignment using the Verion Image-Guided System versus a conventional manual ink-marking procedure. Setting University Eye Clinic Maastricht, Maastricht, the Netherlands. Design Prospective randomized clinical trial. Methods Eyes with

  16. Manual for SFR R and D and Technology Monitoring System Administrator

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dong Uk; Lee, Yong Bum; Won, Byung Chool; Kim, Young In; Hahn, Do Hee

    2008-05-15

    This report is a administrator manual on R and D and technology monitoring system that is applicable for managing the generation IV sodium-cooled fast reactor development. First of all, enterprise project management solution is introduced and then enterprise resources and data creation method are described. Also it made a description of project web assess design, data management method etc.

  17. Module type plant system dynamics analysis code (MSG-COPD). Code manual

    International Nuclear Information System (INIS)

    Sakai, Takaaki

    2002-11-01

    MSG-COPD is a module type plant system dynamics analysis code which involves a multi-dimensional thermal-hydraulics calculation module to analyze pool type of fast breeder reactors. Explanations of each module and the methods for the input data are described in this code manual. (author)

  18. STATE ACID RAIN RESEARCH AND SCREENING SYSTEM - VERSION 1.0 USER'S MANUAL

    Science.gov (United States)

    The report is a user's manual that describes Version 1.0 of EPA's STate Acid Rain Research and Screening System (STARRSS), developed to assist utility regulatory commissions in reviewing utility acid rain compliance plans. It is a screening tool that is based on scenario analysis...

  19. Manual for SFR R and D and Technology Monitoring System Administrator

    International Nuclear Information System (INIS)

    Lee, Dong Uk; Lee, Yong Bum; Won, Byung Chool; Kim, Young In; Hahn, Do Hee

    2008-05-01

    This report is a administrator manual on R and D and technology monitoring system that is applicable for managing the generation IV sodium-cooled fast reactor development. First of all, enterprise project management solution is introduced and then enterprise resources and data creation method are described. Also it made a description of project web assess design, data management method etc

  20. Standard Hydrogen Monitoring System-D operation and maintenance manual

    International Nuclear Information System (INIS)

    Schneider, T.C.

    1997-01-01

    The purpose of this document is to provide information for the operation and maintenance of the Standard Hydrogen Monitoring System-D (SHMS-D) used in the 200E and 200W area tank farms on the Hanford Site. This provides information specific to the mechanical operation of the system and is not intended to take the place of a Plant Operating Procedure. However, it does provide more information on the system than a Plant Operating Procedure. The intent here is that the system is started up by a technician or engineer who has completed tank farms training course No. 351405, and then the only actions performed by Operations will be routine log taking. If any problems not addressed by the operating procedure are encountered with the unit, engineering should be contacted

  1. Standard hydrogen monitoring system - E operation and maintenance manual

    International Nuclear Information System (INIS)

    Schneider, T.C.

    1997-01-01

    The purpose of this document is to provide information for the operation and maintenance of the Standard Hydrogen Monitoring System- E (SHMS-E) used in the 200E and 20OW area tank farms on the Hanford Site. This provides information specific to the mechanical operation of the system and is not intended to take the place of a Plant Operating Procedure. However, it does provide more information on the system than a Plant Operating Procedure. The intent here is that the system is started up by a technician or engineer who has completed tank farms training course for SHMS, and then the only actions performed by Operations will be routine log taking. If any problems not addressed by the operating procedure are encountered with the unit, engineering should be contacted

  2. User's manual of a support system for human reliability analysis

    International Nuclear Information System (INIS)

    Yokobayashi, Masao; Tamura, Kazuo.

    1995-10-01

    Many kinds of human reliability analysis (HRA) methods have been developed. However, users are required to be skillful so as to use them, and also required complicated works such as drawing event tree (ET) and calculation of uncertainty bounds. Moreover, each method is not so complete that only one method of them is not enough to evaluate human reliability. Therefore, a personal computer (PC) based support system for HRA has been developed to execute HRA practically and efficiently. The system consists of two methods, namely, simple method and detailed one. The former uses ASEP that is a simplified THERP-technique, and combined method of OAT and HRA-ET/DeBDA is used for the latter. Users can select a suitable method for their purpose. Human error probability (HEP) data were collected and a database of them was built to use for the support system. This paper describes outline of the HRA methods, support functions and user's guide of the system. (author)

  3. SDDOT'S enhanced pavement management system : visual distress survey manual [2017

    Science.gov (United States)

    2017-05-11

    In 1993, the South Dakota Department of Transportation initiated the Research Project SD93-14, Enhancement of South Dakotas Pavement Management System. As the Research Project progressed, it was determined that to better evaluate the condition of ...

  4. Nuclear reactor power supply system

    International Nuclear Information System (INIS)

    Cook, B.M.

    1982-01-01

    The redundant signals from the sensor assemblies measuring the process parameters of a nuclear reactor power supply are transmitted each in its turn to a protection system which operates to actuate the protection apparatus for signals indicating off-process conditions. Each sensor assembly includes a number of like sensors measuring the same parameters. The sets of process signals derived from the sensor assemblies are each in its turn transmitted from the protection system to the control system which impresses control signals on the reactor or its components to counteract the tendency for conditions to drift off-normal status requiring operation of the protection system. A parameter signal selector prevents a parameter signal which differs from the other parameter signals of the set by more than twice the allowable variation from passing to the control system. Test signals are periodically impressed by a test unit on a selected pair of a selection unit and control channels. This arrangement eliminates the possibility that a single component failure which may be spurious will cause an inadvertent trip of the reactor during test. (author)

  5. Recirculation system for nuclear reactors

    International Nuclear Information System (INIS)

    Braun, H. E.; Dollard, W. J.; Tower, S. N.

    1980-01-01

    A recirculation system for use in pressurized water nuclear reactors to increase the output temperature of the reactor coolant, thereby achieving a significant improvement in plant efficiency without exceeding current core design limits. A portion of the hot outlet coolant is recirculated to the inlets of the peripheral fuel assemblies which operate at relatively low power levels. The outlet temperature from these peripheral fuel assemblies is increased to a temperature above that of the average core outlet. The recirculation system uses external pumps and introduces the hot recirculation coolant to the free space between the core barrel and the core baffle, where it flows downward and inward to the inlets of the peripheral fuel assemblies. In the unlikely event of a loss of coolant accident, the recirculation system flow path through the free space and to the inlets of the fuel assemblies is utilized for the injection of emergency coolant to the lower vessel and core. During emergency coolant injection, the emergency coolant is prevented from bypassing the core through the recirculation system by check valves inserted into the recirculation system piping

  6. SIDA - System for importation distribution and acquisition of radioisotope - User manual

    International Nuclear Information System (INIS)

    1991-01-01

    The SIDA manual (system for importation, distribution and acquisition of radioisotopes) is presented. The SIDA is a system of consult and update to control importation and distribution of radioisotopes in the country. It allows to accompany processes from importation requirement to distribution of radioisotopes, executing the accountancy of I-125, which is distributed for several interprises. The system was developed in CLIPPER87 using DBASE III PLUS data base management. (M.C.K.)

  7. Evaluated Nuclear Structure data file: a manual for preparation of data sets

    International Nuclear Information System (INIS)

    Ewbank, W.B.; Schmorak, M.R.

    1978-02-01

    A standard input format for nuclear structure data is described. The format is sufficiently structured that bulk data can be entered efficiently. At the same time, the structure is open-ended and can accommodate most measured or deduced quantities that yield nuclear structure information

  8. Standard hydrogen monitoring system-B operation and maintenance manual

    International Nuclear Information System (INIS)

    Bender, R.M.

    1995-01-01

    The purpose of this document is to provide information for the operation and maintenance of the Standards Hydrogen Monitoring System-B (SHMS-B) used in the 200E and 200W area tank farms on the Hanford site. This provides information specific to the mechanical operation of the system and is not intended to take the place of a Plant Operating Procedure. The primary function of the SHMS-B is to monitor specifically for hydrogen in the waste tank vapor space which may also contain unknown quantities of other gaseous constituents

  9. Flexible Receiver Radiation Detection System (FRRDS) Users Manual

    International Nuclear Information System (INIS)

    Troyer, G.L.

    1996-01-01

    The Flexible Receiver Radiation Detection System (FRRDS) comprises a control computer, a remote data acquisition subsystem, and three hyperpure germanium gamma radiation detectors. The scope of this document is the description of various steps for the orderly start-up, use, and shutdown of the FRRDS. Only those items necessary for these oprations are included. This document is a companion to WHC-SD-W151-UM-002, 'Operating Instructions for the 42 Inch Flexible Receiver,' WHC-SD-W151-UM-003, 'Operating Instructions for the 4-6 Inch Flexible Receiver,' and the vendor supplied system users guide (Ref. 6)

  10. Fieldable Nuclear Material Identification System

    International Nuclear Information System (INIS)

    Radle, James E.; Archer, Daniel E.; Carter, Robert J.; Mullens, James Allen; Mihalczo, John T.; Britton, Charles L. Jr.; Lind, Randall F.; Wright, Michael C.

    2010-01-01

    The Fieldable Nuclear Material Identification System (FNMIS), funded by the NA-241 Office of Dismantlement and Transparency, provides information to determine the material attributes and identity of heavily shielded nuclear objects. This information will provide future treaty participants with verifiable information required by the treaty regime. The neutron interrogation technology uses a combination of information from induced fission neutron radiation and transmitted neutron imaging information to provide high confidence that the shielded item is consistent with the host's declaration. The combination of material identification information and the shape and configuration of the item are very difficult to spoof. When used at various points in the warhead dismantlement sequence, the information complimented by tags and seals can be used to track subassembly and piece part information as the disassembly occurs. The neutron transmission imaging has been developed during the last seven years and the signature analysis over the last several decades. The FNMIS is the culmination of the effort to put the technology in a usable configuration for potential treaty verification purposes.

  11. New generation nuclear microprobe systems

    International Nuclear Information System (INIS)

    Jamieson, David N.

    2001-01-01

    Over the past 20 years, the minimum probe size for nuclear microscopy has stayed around 1 μm with only a few groups reporting a sub-micron probe size around 0.5 μm. No breakthroughs in nuclear microprobe design have been forthcoming to produce dramatic improvements in spatial resolution. The difficulties of breaking the constraints that are preventing reduction of the probe size have been well recognised in the past. Over the past 5 years it has become clear that some of these constraints may not be as limiting as first thought. For example, chromatic aberration clearly is not as significant as implied from first-order ion optics calculations. This paper reviews the constraints in view of the increased understanding of the past 5 years and looks at several new approaches, presently being evaluated in Melbourne and elsewhere, on how to make progress. These approaches include modified RF ion sources for improved beam brightness and exploitation of relaxed constraints on some lens aberrations allowing the use of high demagnification probe forming lens systems

  12. MARS code manual volume I: code structure, system models, and solution methods

    International Nuclear Information System (INIS)

    Chung, Bub Dong; Kim, Kyung Doo; Bae, Sung Won; Jeong, Jae Jun; Lee, Seung Wook; Hwang, Moon Kyu; Yoon, Churl

    2010-02-01

    Korea Advanced Energy Research Institute (KAERI) conceived and started the development of MARS code with the main objective of producing a state-of-the-art realistic thermal hydraulic systems analysis code with multi-dimensional analysis capability. MARS achieves this objective by very tightly integrating the one dimensional RELAP5/MOD3 with the multi-dimensional COBRA-TF codes. The method of integration of the two codes is based on the dynamic link library techniques, and the system pressure equation matrices of both codes are implicitly integrated and solved simultaneously. In addition, the Equation-Of-State (EOS) for the light water was unified by replacing the EOS of COBRA-TF by that of the RELAP5. This theory manual provides a complete list of overall information of code structure and major function of MARS including code architecture, hydrodynamic model, heat structure, trip / control system and point reactor kinetics model. Therefore, this report would be very useful for the code users. The overall structure of the manual is modeled on the structure of the RELAP5 and as such the layout of the manual is very similar to that of the RELAP. This similitude to RELAP5 input is intentional as this input scheme will allow minimum modification between the inputs of RELAP5 and MARS3.1. MARS3.1 development team would like to express its appreciation to the RELAP5 Development Team and the USNRC for making this manual possible

  13. Remote system for counting of nuclear pulses

    International Nuclear Information System (INIS)

    Nieves V, J.A.; Garcia H, J.M.; Aguilar B, M.A.

    1999-01-01

    In this work, it is describe technically the remote system for counting of nuclear pulses, an integral system of the project radiological monitoring in a petroleum distillation tower. The system acquires the counting of incident nuclear particles in a nuclear detector which process this information and send it in serial form, using the RS-485 toward a remote receiver, which can be a Personal computer or any other device capable to interpret the communication protocol. (Author)

  14. The Army Communications Objectives Measurement System (ACOMS) Users’ Manual

    Science.gov (United States)

    1988-07-01

    and analysis system to support Army (1) assessments of advertising program effectiveness; (2) assessments of advertising strategy efficiencies; (3...advertising program effectiveness in a timely fashion; 2 (2) To support Army assessments of advertising strategy in an integrated framework; and (3...ACOMS data to assess the Army’s advertising strategy . ACOMS was designed to be used to examine the extent to which the Army’s intended messages are

  15. Computer Directed Training System (CDTS), User’s Manual

    Science.gov (United States)

    1983-07-01

    lessons, together with an estimate of the time required for completion. a. BSCOl0. This lesson in BASIC ( Beginners All Purpose Symbolic Instruction Code...A2-8 FIGURESj Figure A2-1. Training Systems Manager and Training Monitors Responsibility Flowchart ...training at the site. Therefore, the TSM must be knowledgeable in the various tasks required. Figure A2-1 illustrates the position in the flowchart . These

  16. Standard manual reprocessing of angiographic systems in the hybrid OR

    Directory of Open Access Journals (Sweden)

    Buhl Sebastian

    2017-09-01

    Full Text Available A current FDA guidance demands the validation of cleaning and disinfecting protocols even for non-sterile medical devices. The aim of this work is to clarify whether this is already possible using the guidance itself as well as the German DIN EN ISO 17664. An angiography system (Artis Zeego / Pheno - Siemens was selected as a test object for the validation of a cleaning and disinfection protocol for medical devices in a hybrid operating room. In pilot study prior to the trial, critical points of the system were evaluated by means of questionnaires to clinical users (OTA, surgical technicians. An initial assessment of the in-house cleaning protocols used in the hospitals was done by using a fluorescence assay. The microbiological examination took place subsequently by contact plates and swabbing to determine the amount and type of germs on the surfaces of the system. These experiments were done at three different clinical sites. It was found that there was a significant germ count on several surfaces of the product even after in-house cleaning and disinfection (C&D. After application of an enhanced C&D plan, these germs could be greatly reduced at all verified sites. In addition, it could be shown that DIN EN ISO 17664 can in principle be applied to non-sterile medical products.

  17. European nuclear data studies for fast systems

    International Nuclear Information System (INIS)

    Rullhusen, P.; Hambsch, F.-J.; Mondelaers, W.; Plompen, A.J.M.; Schillebeeckx, P.

    2010-01-01

    Nuclear data needs for fast systems are highlighted and the following projects are described: Joint European research projects: MUSE Experiments for Sub-critical Neutronics Validation; High- and Intermediate Energy Nuclear Data for ADS (HINDAS); and the Time-Of-Flight facility for Nuclear Data Measurements for ADS (n T OF N D A DS); European Research Programme for the Transmutation of High Level Nuclear Waste in an Accelerator Driven System (EUROTRANS-NUDATRA); and CANDIDE; Programmes for transnational access to experimental facilities in Europe: European Facilities for Nuclear Data Measurements (EFNUDAT); Neutron Data Measurements at IRMM (NUDAME); European facility for innovative reactor and transmutation neutron data (EUFRAT) (P.A.)

  18. Integrated nuclear and radiation protection systems

    International Nuclear Information System (INIS)

    Oprea, I.; Oprea, M.; Stoica, V.; Cerga, V.; Pirvu, V.; Badea, E.

    1993-01-01

    A multifunctional radiation monitoring equipment, flexible and capable to meet virtually environmental radiation monitoring, activity measurement and computational requirements, for nuclear laboratories has been designed. It can be used as a radiation protection system, for radionuclide measurement in isotope laboratories, nuclear technology, health physics and nuclear medicine, nuclear power stations and nuclear industry. The equipment is able to measure, transmit and record gamma dose rate and isotope activities. Other parameters and functions are optionally available, such as: self-contained alarm level, system self-test, dose integrator, syringe volume calculation for a given dose corrected for decay, calibration factor, 99 Mo assays performing and background subtraction

  19. Comparison of Inoculation with the InoqulA and WASP Automated Systems with Manual Inoculation

    Science.gov (United States)

    Croxatto, Antony; Dijkstra, Klaas; Prod'hom, Guy

    2015-01-01

    The quality of sample inoculation is critical for achieving an optimal yield of discrete colonies in both monomicrobial and polymicrobial samples to perform identification and antibiotic susceptibility testing. Consequently, we compared the performance between the InoqulA (BD Kiestra), the WASP (Copan), and manual inoculation methods. Defined mono- and polymicrobial samples of 4 bacterial species and cloudy urine specimens were inoculated on chromogenic agar by the InoqulA, the WASP, and manual methods. Images taken with ImagA (BD Kiestra) were analyzed with the VisionLab version 3.43 image analysis software to assess the quality of growth and to prevent subjective interpretation of the data. A 3- to 10-fold higher yield of discrete colonies was observed following automated inoculation with both the InoqulA and WASP systems than that with manual inoculation. The difference in performance between automated and manual inoculation was mainly observed at concentrations of >106 bacteria/ml. Inoculation with the InoqulA system allowed us to obtain significantly more discrete colonies than the WASP system at concentrations of >107 bacteria/ml. However, the level of difference observed was bacterial species dependent. Discrete colonies of bacteria present in 100- to 1,000-fold lower concentrations than the most concentrated populations in defined polymicrobial samples were not reproducibly recovered, even with the automated systems. The analysis of cloudy urine specimens showed that InoqulA inoculation provided a statistically significantly higher number of discrete colonies than that with WASP and manual inoculation. Consequently, the automated InoqulA inoculation greatly decreased the requirement for bacterial subculture and thus resulted in a significant reduction in the time to results, laboratory workload, and laboratory costs. PMID:25972424

  20. Nuclear power project management information system

    International Nuclear Information System (INIS)

    Zou Lailong; Zhang Peng; Xiao Ziyan; Chun Zengjun; Huang Futong

    2001-01-01

    Project Management Information System is an important infrastructure facility for the construction and operation of Nuclear Power Station. Based on the practice of Lingao nuclear power project management information system (NPMIS), the author describes the NPMIS design goals, system architecture and software functionality, points out the outline issues during the development and deployment of NPMIS

  1. Nuclear data evaluation method and evaluation system

    International Nuclear Information System (INIS)

    Liu Tingjin

    1995-01-01

    The evaluation methods and Nuclear Data Evaluation System have been developed in China. A new version of the system has been established on Micro-VAX2 computer, which is supported by IAEA under the technology assistance program. The flow chart of Chinese Nuclear Data Evaluation System is shown out. For last ten years, the main efforts have been put on the double differential cross section, covariance data and evaluated data library validation. The developed evaluation method and Chinese Nuclear Data Evaluation System have been widely used at CNDC and in Chinese Nuclear Data Network for CENDL. (1 tab., 15 figs.)

  2. Automated accounting systems for nuclear materials

    International Nuclear Information System (INIS)

    Erkkila, B.

    1994-01-01

    History of the development of nuclear materials accounting systems in USA and their purposes are considered. Many present accounting systems are based on mainframe computers with multiple terminal access. Problems of future improvement accounting systems are discussed

  3. Establishment of nuclear data evaluation system (I)

    International Nuclear Information System (INIS)

    Chang, Jong Hwa; Lee, Chang Kun; Kim, Jeong Do; Kim, Young Sik; Kim, Young Jin; Kim, Hyung Guk; Kil, Chung Sup; Kim, Kang Suk

    1994-08-01

    Nuclear data is fundamental data for development of new type of nuclear, upgrade of nuclear fuel, treatment of radwaste, research on fusion reactor, radioisotope usage, and nuclear medical therapy. Nuclear data is produced with experiments. However rack of experimental data for thousands of nuclides and various reaction types makes it essential to do statistical evaluation and theoretical interpolation. This study is intended to join international cooperation after establishing domestic basis for nuclear data evaluation work. This project is the first year of five year plan to do followings: 1) Establishment of database system to collect experimental data, 2) Setup of computer assistance system for evaluation work, 3) Verification of established system by test evaluation of selected nuclide reaction. The system has a collection of mass data of nuclides, computer codes for test evaluation of total cross section of 0-16 and collection of EXFOR format data for 0-16. This system will be improved continuously on next years. (Author)

  4. 11-th International conference Nuclear power safety and nuclear education - 2009. Abstracts. Part 1. Session: Safety of nuclear technology; Innovative nuclear systems and fuel cycle; Nuclear knowledge management

    International Nuclear Information System (INIS)

    2009-01-01

    The book includes abstracts of the 11-th International conference Nuclear power safety and nuclear education - 2009 (29 Sep - 2 Oct, 2009, Obninsk). Problems of safety of nuclear technology are discussed, innovative nuclear systems and fuel cycles are treated. Abstracts on professional education for nuclear power and industry are presented. Nuclear knowledge management are discussed

  5. NUFACTS-nuclear fuel cycle activity simulator: reference manual. Final report

    International Nuclear Information System (INIS)

    Triplett, M.B.; Waddell, J.D.; Breese, T.A.

    1978-01-01

    The Nuclear Fuel Cycle Activity Simulator (NUFACTS) is a package of FORTRAN subroutines which facilitate the simulation of a diversity of nuclear power growth scenarios. An approach to modeling the nuclear fuel cycle has been developed that is highly adaptive and capable of addressing a variety of problems. Being a simulation model rather than an optimization model, NUFACTS mimics the events and processes that are characteristic of the nuclear fuel cycle. This approach enables the model user to grasp the modeling approach rather quickly. Within this report descriptions of the model and its components are provided with several emphases. First, a discussion of modeling approach and basic assumptions is provided. Next, instructions are provided for generating data, inputting the data properly, and running the code. Finally, detailed descriptions of individual program element are given as an aid to modifying and extending the present capabilities

  6. Total system for manufacture of nuclear vessels by computer: VECTRON

    International Nuclear Information System (INIS)

    Inagawa, Jin; Ueno, Osamu; Hanai, Yoshiharu; Ohkawa, Isao; Washizu, Hideyuki

    1980-01-01

    VECTRON (Vessel Engineering by Computer Tool and Rapid Operating for the N/C System) is a CAM (Computer Aided Manufacturing) system that has been developed to produce high quality and highly accurate vessels for nuclear power plants and other industrial plants. Outputs of this system are design drawings, manufacturing information and magnetic tapes of the N/C marking machine for vessel shell plates including their attachments. And it can also output information at each stage of designing, marking, cutting, forming and assembling by treating the vessels in three dimensions and by using data filing systems and plotting program for general use. The data filing systems consist of functional and manufacturing data of each part of vessels. This system not only realizes a change from manual work to computer work, but also leads us to improve production engineering and production jigs for safety and high quality. At present, VECTRON is being applied to the manufacture of the shell plates of primary containment vessels in the Kashiwazaki-Kariwa Nuclear Power Station Unit 1 (K-1) and the Fukushima Daini Nuclear Power Station Unit 3 (2F-3), to realize increased productivity. (author)

  7. The integrated manual and automatic control of complex flight systems

    Science.gov (United States)

    Schmidt, David K.

    1991-01-01

    Research dealt with the general area of optimal flight control synthesis for manned flight vehicles. The work was generic; no specific vehicle was the focus of study. However, the class of vehicles generally considered were those for which high authority, multivariable control systems might be considered, for the purpose of stabilization and the achievement of optimal handling characteristics. Within this scope, the topics of study included several optimal control synthesis techniques, control-theoretic modeling of the human operator in flight control tasks, and the development of possible handling qualities metrics and/or measures of merit. Basic contributions were made in all these topics, including human operator (pilot) models for multi-loop tasks, optimal output feedback flight control synthesis techniques; experimental validations of the methods developed, and fundamental modeling studies of the air-to-air tracking and flared landing tasks.

  8. Separations systems data base: a users' manual. Revision I

    International Nuclear Information System (INIS)

    Roddy, J.W.; McDowell, W.J.

    1981-01-01

    A separations systems data base (SEPSYS), designed specifically for the retrieval of information needed in chemical separations problems (i.e., how to perform a given separation under given conditions), is described. Included are descriptions of the basic methods of searching and retrieving information from the data base, the procedure for entering records into the data base, a listing of additional references concerning the computer information process, and an example of a typical record. The initial entries are concerned primarily with liquid-liquid extraction and liquid-solid ion exchange methods for metal ions and salts; however, the data base is constructed so that almost any separation process can be accommodated. Each record is indexed with information provided under the following fields: author; title; publication source; data of publication; organization sponsoring the work; brief abstract of the work; abstract number if the work has been so referenced, and/or abstractors initials; type of separation system used (e.g., flotation); specific or generic name of the separation agent used (e.g., acetylacetone); list of substances separated (e.g., gold, copper); qualitative description of the supporting medium or matrix containing the substances before separation (e.g., nitrate); type of literature where the record was printed (e.g., book); and type of information that the article contains. Each of these fields may be searched independently of the others (or in combination), and the last six fields contain specific key words that are listed in the report. Definitions are provided for the 36 information terms

  9. The OCaml system release 4.04: Documentation and user's manual

    OpenAIRE

    Leroy, Xavier; Doligez, Damien; Frisch, Alain; Garrigue, Jacques; Rémy, Didier; Vouillon, Jérôme

    2016-01-01

    This manual documents the release 4.04 of the OCaml system. It is organized as follows. Part I, "An introduction to OCaml", gives an overview of the language. Part II, "The OCaml language", is the reference description of the language. Part III, "The OCaml tools", documents the compilers, toplevel system, and programming utilities. Part IV, "The OCaml library", describes the modules provided in the standard library.

  10. The OCaml system release 4.02: Documentation and user's manual

    OpenAIRE

    Leroy, Xavier; Doligez, Damien; Frisch, Alain; Garrigue, Jacques; Rémy, Didier; Vouillon, Jérôme

    2014-01-01

    This manual documents the release 4.02 of the OCaml system. It is organized as follows. Part I, "An introduction to OCaml", gives an overview of the language. Part II, "The OCaml language", is the reference description of the language. Part III, "The OCaml tools", documents the compilers, toplevel system, and programming utilities. Part IV, "The OCaml library", describes the modules provided in the standard library.

  11. The OCaml system release 4.06: Documentation and user's manual

    OpenAIRE

    Leroy , Xavier; Doligez , Damien; Frisch , Alain; Garrigue , Jacques; Rémy , Didier; Vouillon , Jérôme

    2017-01-01

    This manual documents the release 4.06 of the OCaml system. It is organized as follows. Part I, "An introduction to OCaml", gives an overview of the language. Part II, "The OCaml language", is the reference description of the language. Part III, "The OCaml tools", documents the compilers, toplevel system, and programming utilities. Part IV, "The OCaml library", describes the modules provided in the standard library.

  12. Vault Safety and Inventory System users manual, PRIME 2350. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Downey, N.J.

    1994-12-14

    This revision is issued to request review of the attached document: VSIS User Manual, PRIME 2350, which provides user information for the operation of the VSIS (Vault Safety and Inventory System). It describes operational aspects of Prime 2350 minicomputer and vault data acquisition equipment. It also describes the User`s Main Menu and menu functions, including REPORTS. Also, system procedures for the Prime 2350 minicomputer are covered.

  13. Vault Safety and Inventory System users manual, PRIME 2350. Revision 1

    International Nuclear Information System (INIS)

    Downey, N.J.

    1994-01-01

    This revision is issued to request review of the attached document: VSIS User Manual, PRIME 2350, which provides user information for the operation of the VSIS (Vault Safety and Inventory System). It describes operational aspects of Prime 2350 minicomputer and vault data acquisition equipment. It also describes the User's Main Menu and menu functions, including REPORTS. Also, system procedures for the Prime 2350 minicomputer are covered

  14. An overview of review guidelines for HDL programmable devices in nuclear safety systems

    International Nuclear Information System (INIS)

    Komanduri, Raghavan; Srivani, L.; Thirugnana Murthy, D.

    2013-01-01

    HDL programmable devices viz. CPLDs and FPGAs are increasingly being used to implement digital designs in the I and C systems performing safety functions of nuclear power plants. Synthesizable RTL descriptions manually written in HDLs are the first step in developing industry standard large scale digital designs. The reliability of the implementation is determined by the methodologies followed by the designer during development. Very few guidelines on HPD design practices, specific to nuclear industry are available. This paper presents an overview of the existing guidelines such as IEC 62566 and U.S. NRC's 'Review guidelines for FPGAs in nuclear power plant safety systems'. (author)

  15. Physical fitness training reference manual for security force personnel at fuel cycle facilities possessing formula quantities of special nuclear materials

    International Nuclear Information System (INIS)

    Arzino, P.A.; Caplan, C.S.; Goold, R.E.

    1991-09-01

    The recommendations contained throughout this NUREG are being provided to the Nuclear Regulatory Commission (NRC) as a reference manual which can be used by licensee management as they develop a program plan for the safe participation of guards, Tactical Response Team members (TRTs), and all other armed response personnel in physical fitness training and in physical performance standards testing. The information provided in this NUREG will help licensees to determine if guards, TRTs, and other armed response personnel can effectively perform their normal and emergency duties without undue hazard to themselves, to fellow employees, to the plant site, and to the general public. The recommendations in this NUREG are similar in part to those contained within the Department of Energy (DOE) Medical and Fitness Implementation Guide which was published in March 1991. The guidelines contained in this NUREG are not requirements, and compliance is not required. 25 refs

  16. Physical fitness training reference manual for security force personnel at fuel cycle facilities possessing formula quantities of special nuclear materials

    Energy Technology Data Exchange (ETDEWEB)

    Arzino, P.A.; Caplan, C.S.; Goold, R.E. (California State Univ., Hayward, CA (United States). Foundation)

    1991-09-01

    The recommendations contained throughout this NUREG are being provided to the Nuclear Regulatory Commission (NRC) as a reference manual which can be used by licensee management as they develop a program plan for the safe participation of guards, Tactical Response Team members (TRTs), and all other armed response personnel in physical fitness training and in physical performance standards testing. The information provided in this NUREG will help licensees to determine if guards, TRTs, and other armed response personnel can effectively perform their normal and emergency duties without undue hazard to themselves, to fellow employees, to the plant site, and to the general public. The recommendations in this NUREG are similar in part to those contained within the Department of Energy (DOE) Medical and Fitness Implementation Guide which was published in March 1991. The guidelines contained in this NUREG are not requirements, and compliance is not required. 25 refs.

  17. System cost model user's manual, version 1.2

    International Nuclear Information System (INIS)

    Shropshire, D.

    1995-06-01

    The System Cost Model (SCM) was developed by Lockheed Martin Idaho Technologies in Idaho Falls, Idaho and MK-Environmental Services in San Francisco, California to support the Baseline Environmental Management Report sensitivity analysis for the U.S. Department of Energy (DOE). The SCM serves the needs of the entire DOE complex for treatment, storage, and disposal (TSD) of mixed low-level, low-level, and transuranic waste. The model can be used to evaluate total complex costs based on various configuration options or to evaluate site-specific options. The site-specific cost estimates are based on generic assumptions such as waste loads and densities, treatment processing schemes, existing facilities capacities and functions, storage and disposal requirements, schedules, and cost factors. The SCM allows customization of the data for detailed site-specific estimates. There are approximately forty TSD module designs that have been further customized to account for design differences for nonalpha, alpha, remote-handled, and transuranic wastes. The SCM generates cost profiles based on the model default parameters or customized user-defined input and also generates costs for transporting waste from generators to TSD sites

  18. Integrated dynamic landscape analysis and modeling system (IDLAMS) : installation manual.

    Energy Technology Data Exchange (ETDEWEB)

    Li, Z.; Majerus, K. A.; Sundell, R. C.; Sydelko, P. J.; Vogt, M. C.

    1999-02-24

    The Integrated Dynamic Landscape Analysis and Modeling System (IDLAMS) is a prototype, integrated land management technology developed through a joint effort between Argonne National Laboratory (ANL) and the US Army Corps of Engineers Construction Engineering Research Laboratories (USACERL). Dr. Ronald C. Sundell, Ms. Pamela J. Sydelko, and Ms. Kimberly A. Majerus were the principal investigators (PIs) for this project. Dr. Zhian Li was the primary software developer. Dr. Jeffrey M. Keisler, Mr. Christopher M. Klaus, and Mr. Michael C. Vogt developed the decision analysis component of this project. It was developed with funding support from the Strategic Environmental Research and Development Program (SERDP), a land/environmental stewardship research program with participation from the US Department of Defense (DoD), the US Department of Energy (DOE), and the US Environmental Protection Agency (EPA). IDLAMS predicts land conditions (e.g., vegetation, wildlife habitats, and erosion status) by simulating changes in military land ecosystems for given training intensities and land management practices. It can be used by military land managers to help predict the future ecological condition for a given land use based on land management scenarios of various levels of training intensity. It also can be used as a tool to help land managers compare different land management practices and further determine a set of land management activities and prescriptions that best suit the needs of a specific military installation.

  19. Systems Analysis Programs for Hands-on Integrated Reliability Evaluations (SAPHIRE), Version 5.0. Volume 5, Systems Analysis and Risk Assessment (SARA) tutorial manual

    International Nuclear Information System (INIS)

    Sattison, M.B.; Russell, K.D.; Skinner, N.L.

    1994-07-01

    The Systems Analysis Programs for Hands-on Integrated Reliability Evaluations (SAPHIRE) refers to a set of several microcomputer programs that were developed to create and analyze probabilistic risk assessments (PRAs) primarily for nuclear power plants. This volume is the tutorial manual for the Systems Analysis and Risk Assessment (SARA) System Version 5.0, a microcomputer-based system used to analyze the safety issues of a open-quotes familyclose quotes [i.e., a power plant, a manufacturing facility, any facility on which a probabilistic risk assessment (PRA) might be performed]. A series of lessons is provided that guides the user through some basic steps common to most analyses performed with SARA. The example problems presented in the lessons build on one another, and in combination, lead the user through all aspects of SARA sensitivity analysis capabilities

  20. Spent Nuclear Fuel (SNF) Project Cold Vacuum Drying (CVD) Facility Operations Manual

    International Nuclear Information System (INIS)

    IRWIN, J.J.

    2000-01-01

    The mission of the Spent Nuclear Fuel (SNF) Project Cold Vacuum Drying Facility (CVDF) is to achieve the earliest possible removal of free water from Multi-Canister Overpacks (MCOs). The MCOs contain metallic uranium SNF that have been removed from the 100K Area fuel storage water basins (i.e., the K East and K West Basins) at the US. Department of Energy Hanford Site in Southeastern Washington state. Removal of free water is necessary to halt water-induced corrosion of exposed uranium surfaces and to allow the MCOs and their SNF payloads to be safely transported to the Hanford Site 200 East Area and stored within the SNF Project Canister Storage Building (CSB). The CVDF is located within a few hundred yards of the basins, southwest of the 165KW Power Control Building and the 105KW Reactor Building. The site area required for the facility and vehicle circulation is approximately 2 acres. Access and egress is provided by the main entrance to the 100K inner area using existing roadways. The CVDF will remove free. water from the MCOs to reduce the potential for continued fuel-water corrosion reactions. The cold vacuum drying process involves the draining of bulk water from the MCO and subsequent vacuum drying. The MCO will be evacuated to a pressure of 8 torr or less and backfilled with an inert gas (helium). The MCO will be sealed, leak tested, and then transported to the CSB within a sealed shipping cask. (The MCO remains within the same shipping Cask from the time it enters the basin to receive its SNF payload until it is removed from the Cask by the CSB MCO handling machine.) The CVDF subproject acquired the required process systems, supporting equipment, and facilities. The cold vacuum drying operations result in an MCO containing dried fuel that is prepared for shipment to the CSB by the Cask transportation system. The CVDF subproject also provides equipment to dispose of solid wastes generated by the cold vacuum drying process and transfer process water removed

  1. Preinspection of nuclear power plant systems

    International Nuclear Information System (INIS)

    1975-01-01

    The general plans of the systems affecting the safety of the nuclear power plants are accepted by the Institute of Radiation Protection (IRP) on the basis of the preinspection of the systems. This is the prerequisite of the preinspection of the structures and components belonging to these systems. Exceptionally, when separately agreed, the IRP may perform the preinspection of a separate structure or component, although the preinspection documentation of the whole system, e.g. the nuclear heat generating system, has not been accepted. This guide applies to the nuclear power plant systems that have been defined to be preinspected in the classification document accepted by the IRP

  2. Design and control of electromagnetic clutch actuation system for automated manual transmission

    Science.gov (United States)

    Ranjan, Ashish; Prasanth, S.; Cherian, Fenin; Baskar, P.

    2017-11-01

    There is a growing interest towards Automatic Transmission in India as it provides better comfort and drivability. But the high cost of this system is limiting itself to be successful in the Indian markets. Due to this, Automated Manual Transmission (AMT) is considered which provides a better solution towards automation as it enhances the drivability and fuel consumption characteristics of a manual transmission at lower costs. However, torque lag and comfort are major issues with AMT which can be addressed by reducing the shift time. In this paper we describe an Electromagnetic Linear Clutch Actuator as a replacement to current electrohydraulic and electromechanical actuator. A control system for the actuator is presented and a clutch engagement strategy is also implemented which reduces the engagement time to 0.78 seconds while reducing jerk and torque lag. The actuator and control system is simulated on a MATLAB Simulink and agreeable results have been obtained.

  3. User’s manual to update the National Wildlife Refuge System Water Quality Information System (WQIS)

    Science.gov (United States)

    Chojnacki, Kimberly A.; Vishy, Chad J.; Hinck, Jo Ellen; Finger, Susan E.; Higgins, Michael J.; Kilbride, Kevin

    2013-01-01

    National Wildlife Refuges may have impaired water quality resulting from historic and current land uses, upstream sources, and aerial pollutant deposition. National Wildlife Refuge staff have limited time available to identify and evaluate potential water quality issues. As a result, water quality–related issues may not be resolved until a problem has already arisen. The National Wildlife Refuge System Water Quality Information System (WQIS) is a relational database developed for use by U.S. Fish and Wildlife Service staff to identify existing water quality issues on refuges in the United States. The WQIS database relies on a geospatial overlay analysis of data layers for ownership, streams and water quality. The WQIS provides summary statistics of 303(d) impaired waters and total maximum daily loads for the National Wildlife Refuge System at the national, regional, and refuge level. The WQIS allows U.S. Fish and Wildlife Service staff to be proactive in addressing water quality issues by identifying and understanding the current extent and nature of 303(d) impaired waters and subsequent total maximum daily loads. Water quality data are updated bi-annually, making it necessary to refresh the WQIS to maintain up-to-date information. This manual outlines the steps necessary to update the data and reports in the WQIS.

  4. User Manual for the AZ-101 Data Acquisition System (AS-101 DAS)

    Energy Technology Data Exchange (ETDEWEB)

    BRAYTON, D.D.

    2000-02-17

    User manual for the TK AZ-101 Waste Retrieval System Data Acquisition System. The purpose of this document is to describe use of the AZ-101 Data Acquisition System (AZ-101 DAS). The AZ-101 DAS is provided to fulfill the requirements for data collection and monitoring as defined in Letters of Instruction (LOI) from Numatec Hanford Corporation (NHC) to Fluor Federal Services (FFS). For a complete description of the system, including design, please refer to the AZ-101 DAS System Description document, RPP-5572.

  5. User Manual for the AZ-101 Data Acquisition System (AS-101 DAS)

    International Nuclear Information System (INIS)

    BRAYTON, D.D.

    2000-01-01

    User manual for the TK AZ-101 Waste Retrieval System Data Acquisition System. The purpose of this document is to describe use of the AZ-101 Data Acquisition System (AZ-101 DAS). The AZ-101 DAS is provided to fulfill the requirements for data collection and monitoring as defined in Letters of Instruction (LOI) from Numatec Hanford Corporation (NHC) to Fluor Federal Services (FFS). For a complete description of the system, including design, please refer to the AZ-101 DAS System Description document, RPP-5572

  6. Nuclear energy in Canada: the CANDU system

    International Nuclear Information System (INIS)

    Robertson, J.A.L.

    1979-10-01

    Nuclear electricity in Canada is generated by CANDU nuclear power stations. The CANDU reactor - a unique Canadian design - is fuelled by natural uranium and moderated by heavy water. The system has consistently outperformed other comparable nuclear power systems in the western world, and has an outstanding record of reliability, safety and economy. As a source of energy it provides the opportunity for decreasing our dependence on dwindling supplies of conventional fossil fuels. (auth)

  7. TOSHIBA CAE system for nuclear power plant

    International Nuclear Information System (INIS)

    Machiba, Hiroshi; Sasaki, Norio

    1990-01-01

    TOSHIBA aims to secure safety, increase reliability and improve efficiency through the engineering for nuclear power plant using Computer Aided Engineering (CAE). TOSHIBA CAE system for nuclear power plant consists of numbers of sub-systems which had been integrated centering around the Nuclear Power Plant Engineering Data Base (PDBMS) and covers all stage of engineering for nuclear power plant from project management, design, manufacturing, construction to operating plant service and preventive maintenance as it were 'Plant Life-Cycle CAE System'. In recent years, TOSHIBA has been devoting to extend the system for integrated intelligent CAE system with state-of-the-art computer technologies such as computer graphics and artificial intelligence. This paper shows the outline of CAE system for nuclear power plant in TOSHIBA. (author)

  8. Nuclear Space Power Systems Materials Requirements

    International Nuclear Information System (INIS)

    Buckman, R.W. Jr.

    2004-01-01

    High specific energy is required for space nuclear power systems. This generally means high operating temperatures and the only alloy class of materials available for construction of such systems are the refractory metals niobium, tantalum, molybdenum and tungsten. The refractory metals in the past have been the construction materials selected for nuclear space power systems. The objective of this paper will be to review the past history and requirements for space nuclear power systems from the early 1960's through the SP-100 program. Also presented will be the past and present status of refractory metal alloy technology and what will be needed to support the next advanced nuclear space power system. The next generation of advanced nuclear space power systems can benefit from the review of this past experience. Because of a decline in the refractory metal industry in the United States, ready availability of specific refractory metal alloys is limited

  9. Effectiveness of an automatic manual wheelchair braking system in the prevention of falls.

    Science.gov (United States)

    Martorello, Laura; Swanson, Edward

    2006-01-01

    The purpose of this study was to evaluate the effectiveness of an automatic manual wheelchair braking system in the reduction of falls for patients at high risk of falls while transferring to and from a manual wheelchair. The study design was a normative survey carried out through the use of a written questionnaire sent to 60 skilled nursing facilities to collect data from the medical charts, which identified patients at high risk for falls who used an automatic wheelchair braking system. The facilities participating in the study identified a frequency of falls of high-risk patients while transferring to and from the wheelchair ranging from 2 to 10 per year, with a median fall rate per facility of 4 falls. One year after the installation of the automatic wheelchair braking system, participating facilities demonstrated a reduction of zero to three falls during transfers by high-risk patients, with a median fall rate of zero falls. This represents a statistically significant reduction of 78% in the fall rate of high-risk patients while transferring to and from the wheelchair, t (18) = 6.39, p braking system for manual wheelchairs was installed. The application of the automatic braking system allows clients, families/caregivers, and facility personnel an increased safety factor for the reduction of falls from the wheelchair.

  10. A proposed power assisted system of manual wheelchair based on universal design for eldery

    Science.gov (United States)

    Susmartini, Susy; Pryadhitama, Ilham; Herdiman, Lobes; Wahyufitriani, Cindy

    2017-11-01

    Difficulties in walking is high percentage case in the limitations mobility of the elderly. An assisted technology commonly used to help the elderly who have walking difficulty is a manual wheelchair. However, the elderly frequently experiences difficulties in operating manual wheelchair due to gradually degradation of their physical condition. Preliminary study results showed that the average grip strength of the hands of seven elderly subjects was 13.8 ± 6.96 kg and the value is relatively weak. In addition, the mean maximum speed of 7 elderly subjects when doing to round the wheelchair is 0.6 ± 0.2m / s. This value is only 56.4% compared with an average speed of 20-23-year age group (8 males), which is 1.1 ± 0.1 m / s. This shows that the elderly who have walking difficulty have low grip strength and speed in operating a wheelchair. On the other hand, manual wheelchairs suffer an inadequate technology solution to solve the problem. Therefore, an assistive technology is proposed to create mobility aid to accommodate the elderly needs. One approach used is Universal Design. This paper proposes a system of intervention in the manual wheelchair through the 7 principles of Universal Design approach. The preliminary principle has not been able to accommodate the needs of the elderly will become a reference in the proposed design of this study.

  11. Knowledge-based full-automatic control system for a nuclear ship reactor

    International Nuclear Information System (INIS)

    Shimazaki, J.; Nakazawa, T.; Yabuuchi, N.

    2000-01-01

    Plant operations aboard nuclear ships require quick judgements and actions due to changing marine conditions such as wind, waves and currents. Furthermore, additional human support is not available for nuclear ship operation at sea, so advanced automatic operations are necessary to reduce the number of operators required finally. Therefore, an advanced automatic operating system has been developed based on operational knowledge of nuclear ship 'Mutsu' plant. The advanced automatic operating system includes both the automatic operation system and the operator-support system which assists operators in completing actions during plant accidents, anomaly diagnosis and plant supervision. These system are largely being developed using artificial intelligent techniques such as neural network, fuzzy logic and knowledge-based expert. The automatic operation system is fundamentally based upon application of an operator's knowledge of both normal (start-up to rated power level) and abnormal (after scram) operations. Comparing plant behaviors from start-up to power level by the automatic operation with by 'Mutsu' manual operation, stable automatic operation was obtained almost same as manual operation within all operating limits. The abnormal automatic system was for hard work of manual operations after scram or LOCA accidents. An integrating system with the normal and the abnormal automatic systems are being developed for interacting smoothly both systems. (author)

  12. Laboratory training manual on the use of nuclear techniques in insect research and control. 3. ed.

    International Nuclear Information System (INIS)

    1992-01-01

    Isotopes are commonly used in agricultural research in developed countries, but because of a lack of both training and equipment isotopic techniques are not frequently used in developing countries. This manual has been prepared with the aim of helping entomologists and others responsible for the control of insects in developing countries become familiar with the potential uses of isotopes and radiation in solving some of their research and insect control problems. After chapters dealing with radiation safety, the general properties of radiation and isotopes (especially those used by entomologists), and radiation detection and assay of radioactivity, two further chapters discuss applications to entomological problems and the sterile insect technique. Numerous case studies are described, and the final chapter also includes a description of eight laboratory exercises to investigate the effects of gamma irradiation and chemosterilants on insects. Refs, figs and tabs

  13. Nuclear Computerized Library for Assessing Reactor Reliability (NUCLARR): Data manual. Part 2: Human error probability (HEP) data; Volume 5, Revision 4

    Energy Technology Data Exchange (ETDEWEB)

    Reece, W.J.; Gilbert, B.G.; Richards, R.E. [EG and G Idaho, Inc., Idaho Falls, ID (United States)

    1994-09-01

    This data manual contains a hard copy of the information in the Nuclear Computerized Library for Assessing Reactor Reliability (NUCLARR) Version 3.5 database, which is sponsored by the US Nuclear Regulatory Commission. NUCLARR was designed as a tool for risk analysis. Many of the nuclear reactors in the US and several outside the US are represented in the NUCLARR database. NUCLARR includes both human error probability estimates for workers at the plants and hardware failure data for nuclear reactor equipment. Aggregations of these data yield valuable reliability estimates for probabilistic risk assessments and human reliability analyses. The data manual is organized to permit manual searches of the information if the computerized version is not available. Originally, the manual was published in three parts. In this revision the introductory material located in the original Part 1 has been incorporated into the text of Parts 2 and 3. The user can now find introductory material either in the original Part 1, or in Parts 2 and 3 as revised. Part 2 contains the human error probability data, and Part 3, the hardware component reliability data.

  14. Nuclear Computerized Library for Assessing Reactor Reliability (NUCLARR): Data manual. Part 2: Human error probability (HEP) data; Volume 5, Revision 4

    International Nuclear Information System (INIS)

    Reece, W.J.; Gilbert, B.G.; Richards, R.E.

    1994-09-01

    This data manual contains a hard copy of the information in the Nuclear Computerized Library for Assessing Reactor Reliability (NUCLARR) Version 3.5 database, which is sponsored by the US Nuclear Regulatory Commission. NUCLARR was designed as a tool for risk analysis. Many of the nuclear reactors in the US and several outside the US are represented in the NUCLARR database. NUCLARR includes both human error probability estimates for workers at the plants and hardware failure data for nuclear reactor equipment. Aggregations of these data yield valuable reliability estimates for probabilistic risk assessments and human reliability analyses. The data manual is organized to permit manual searches of the information if the computerized version is not available. Originally, the manual was published in three parts. In this revision the introductory material located in the original Part 1 has been incorporated into the text of Parts 2 and 3. The user can now find introductory material either in the original Part 1, or in Parts 2 and 3 as revised. Part 2 contains the human error probability data, and Part 3, the hardware component reliability data

  15. Nuclear Computerized Library for Assessing Reactor Reliability (NUCLARR): Data manual, Part 2: Human Error Probability (HEP) Data. Volume 5, Revision 4

    International Nuclear Information System (INIS)

    Reece, W.J.; Gilbert, B.G.; Richards, R.E.

    1994-09-01

    This data manual contains a hard copy of the information in the Nuclear Computerized Library for Assessing Reactor Reliability (NUCLARR) Version 3.5 database, which is sponsored by the US Nuclear Regulatory Commission. NUCLARR was designed as a tool for risk analysis. Many of the nuclear reactors in the US and several outside the US are represented in the NUCLARR database. NUCLARR includes both human error probability estimates for workers at the plants and hardware failure data for nuclear reactor equipment. Aggregations of these data yield valuable reliability estimates for probabilistic risk assessments and human reliability analyses. The data manual is organized to permit manual searches of the information if the computerized version is not available. Originally, the manual was published in three parts. In this revision the introductory material located in the original Part 1 has been incorporated into the text of Parts 2 and 3. The user can now find introductory material either in the original Part 1, or in Parts 2 and 3 as revised. Part 2 contains the human error probability data, and Part 3, the hardware component reliability data

  16. International Nuclear Information System in Malaysia

    International Nuclear Information System (INIS)

    Samsurdin Ahamad

    1984-01-01

    Practice of the International Nuclear Information System (INIS) in Malaysia is reviewed. The Nuclear Energy Unit, a participating representative of Malaysia, holds the responsibilities of disseminating information through this system. Its available services relevant to the aims of INIS are discussed

  17. Containments for consolidated nuclear steam systems

    International Nuclear Information System (INIS)

    Jabsen, F.S.

    1978-01-01

    A containment system for a consolidated nuclear steam system incorporating a nuclear core, steam generator and reactor coolant pumps within a single pressure vessel is described which is designed to provide radiation shielding and pressure suppression. Design details, including those for the dry well and wet well of the containment, are given. (UK)

  18. Operation and maintenance manual for septic holding tank system for project W-519, two double-wide construction support trailers

    International Nuclear Information System (INIS)

    MORTIMER, C.S.

    1999-01-01

    This manual was prepared to provide detailed information for the operation and maintenance of the sanitary wastewater holding system. It sets forth system operation and maintenance as well as failure response procedures

  19. Automation system for optical counting of nuclear tracks

    Energy Technology Data Exchange (ETDEWEB)

    Boulyga, S.F.; Boulyga, E.G.; Lomonosova, E.M.; Zhuk, I.V

    1999-06-01

    An automation system consisting of the microscope, video camera and Pentium PC with frame recorder was created. The system provides counting of nuclear tracks on the SSNTD surface with a resolution of 752 x 582 points, determination of the surface area and main axis of the track. The pattern recognition program was developed for operation in Windows 3.1 (or higher) ensuring a convenient interface with the user. In a comparison of the results on automatic track counting with the more accurate hand mode it was shown that the program enables the tracks to be detected even on images with a rather high noise level. It ensures a high accuracy of track counting being comparable with the accuracy of manual counting for densities of tracks in the range of up to 2{center_dot}10{sup 5} tracks/cm{sup 2}. The automatic system was applied in the experimental investigation of uranium and transuranium elements.

  20. Automation system for optical counting of nuclear tracks

    International Nuclear Information System (INIS)

    Boulyga, S.F.; Boulyga, E.G.; Lomonosova, E.M.; Zhuk, I.V.

    1999-01-01

    An automation system consisting of the microscope, video camera and Pentium PC with frame recorder was created. The system provides counting of nuclear tracks on the SSNTD surface with a resolution of 752 x 582 points, determination of the surface area and main axis of the track. The pattern recognition program was developed for operation in Windows 3.1 (or higher) ensuring a convenient interface with the user. In a comparison of the results on automatic track counting with the more accurate hand mode it was shown that the program enables the tracks to be detected even on images with a rather high noise level. It ensures a high accuracy of track counting being comparable with the accuracy of manual counting for densities of tracks in the range of up to 2·10 5 tracks/cm 2 . The automatic system was applied in the experimental investigation of uranium and transuranium elements

  1. Automation system for optical counting of nuclear tracks

    CERN Document Server

    Boulyga, S F; Lomonosova, E M; Zhuk, I V

    1999-01-01

    An automation system consisting of the microscope, video camera and Pentium PC with frame recorder was created. The system provides counting of nuclear tracks on the SSNTD surface with a resolution of 752 x 582 points, determination of the surface area and main axis of the track. The pattern recognition program was developed for operation in Windows 3.1 (or higher) ensuring a convenient interface with the user. In a comparison of the results on automatic track counting with the more accurate hand mode it was shown that the program enables the tracks to be detected even on images with a rather high noise level. It ensures a high accuracy of track counting being comparable with the accuracy of manual counting for densities of tracks in the range of up to 2 centre dot 10 sup 5 tracks/cm sup 2. The automatic system was applied in the experimental investigation of uranium and transuranium elements.

  2. Croatian National System of Nuclear Materials Control

    International Nuclear Information System (INIS)

    Biscan, R.

    1998-01-01

    In the process of economic and technological development of Croatia by using or introducing nuclear power or in the case of international co-operation in the field of peaceful nuclear activities, including international exchange of nuclear material, Croatia should establish and implement National System of Nuclear Materials Control. Croatian National System of accounting for and control of all nuclear material will be subjected to safeguards under requirements of Agreement and Additional Protocol between the Republic of Croatia and the International Atomic Energy Agency (IAEA) for the Application of Safeguards in Connection with the Treaty on the Non-Proliferation of Nuclear Weapons (NPT). The decision by NPT parties at the 1995 NPT Review and Extension Conference to endorse the Fullscope IAEA Safeguards Standard (FSS) as a necessary precondition of nuclear supply means that states are obliged to ensure that the recipient country has a FSS agreement in place before any nuclear transfer can take place (Ref. 1). The FSS standard of nuclear supply is a central element of the Nuclear Suppliers Group (NSG) Guidelines which the NSG adopted in 1992 and should be applied to members and non-members of the NSG. The FSS standard of nuclear supply in general allows for NPT parties or countries which have undertaken the same obligations through other treaty arrangements, to receive favourable treatment in nuclear supply arrangements. However, the Iraqi experience demonstrate that trade in nuclear and dual-use items, if not properly monitored, can contribute to a nuclear weapons program in countries acting contrary to their non-proliferation obligation. Multilateral nuclear export control mechanisms, including the FSS supply standard, provide the basis for co-ordination and standardisation of export control measures. (author)

  3. Nuclear Energy Infrastructure Database Description and User's Manual

    International Nuclear Information System (INIS)

    Heidrich, Brenden

    2015-01-01

    In 2014, the Deputy Assistant Secretary for Science and Technology Innovation initiated the Nuclear Energy (NE)–Infrastructure Management Project by tasking the Nuclear Science User Facilities, formerly the Advanced Test Reactor National Scientific User Facility, to create a searchable and interactive database of all pertinent NE-supported and -related infrastructure. This database, known as the Nuclear Energy Infrastructure Database (NEID), is used for analyses to establish needs, redundancies, efficiencies, distributions, etc., to best understand the utility of NE's infrastructure and inform the content of infrastructure calls. The Nuclear Science User Facilities developed the database by utilizing data and policy direction from a variety of reports from the U.S. Department of Energy, the National Research Council, the International Atomic Energy Agency, and various other federal and civilian resources. The NEID currently contains data on 802 research and development instruments housed in 377 facilities at 84 institutions in the United States and abroad. The effort to maintain and expand the database is ongoing. Detailed information on many facilities must be gathered from associated institutions and added to complete the database. The data must be validated and kept current to capture facility and instrumentation status as well as to cover new acquisitions and retirements. This document provides a short tutorial on the navigation of the NEID web portal at NSUF-Infrastructure.INL.gov.

  4. Manual on nuclear gauges. Incorporating: Applications guide, procedures guide, basics guide

    International Nuclear Information System (INIS)

    1992-01-01

    In addition to a basic guide to the principles of production of ionizing radiation and to the methods of radiation protection and dosimetry, this booklet considers the procedures that should be employed when using nuclear gauges. Applications for such gauges are described and radiation protection procedures discussed

  5. SPEDAC Pro for DOS. Format conversion of spectral data from nuclear experiments. User's manual

    International Nuclear Information System (INIS)

    1996-01-01

    SPEDAC Pro for DOS is a software package that allows you to convert spectral data from nuclear experiments (e.g. X-ray, gamma ray, and Moessbauer spectroscopy) from one format to another. It runs on IBM compatible PCs under Dos 3.1 or higher. SPEDAC Pro has been developed under the auspices of the IAEA Physics Section

  6. GRACE manual

    International Nuclear Information System (INIS)

    Ishikawa, T.; Kawabata, S.; Shimizu, Y.; Kaneko, T.; Kato, K.; Tanaka, H.

    1993-02-01

    This manual is composed of three kinds of objects, theoretical background for calculating the cross section of elementary process, usage and technical details of the GRACE system. Throughout this manual we take the tree level process e + e - → W + W - γ as an example, including the e ± -scalar boson interactions. The real FORTRAN source code for this process is attached in the relevant sections as well as the results of calculation, which might be a great help for understanding the practical use of the system. (J.P.N.)

  7. Renewable Electric Plant Information System user interface manual: Paradox 7 Runtime for Windows

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-11-01

    The Renewable Electric Plant Information System (REPiS) is a comprehensive database with detailed information on grid-connected renewable electric plants in the US. The current version, REPiS3 beta, was developed in Paradox for Windows. The user interface (UI) was developed to facilitate easy access to information in the database, without the need to have, or know how to use, Paradox for Windows. The UI is designed to provide quick responses to commonly requested sorts of the database. A quick perusal of this manual will familiarize one with the functions of the UI and will make use of the system easier. There are six parts to this manual: (1) Quick Start: Instructions for Users Familiar with Database Applications; (2) Getting Started: The Installation Process; (3) Choosing the Appropriate Report; (4) Using the User Interface; (5) Troubleshooting; (6) Appendices A and B.

  8. Emission of Biophotons and Adjustable Sounds by the Fascial System: Review and Reflections for Manual Therapy.

    Science.gov (United States)

    Bordoni, Bruno; Marelli, Fabiola; Morabito, Bruno; Sacconi, Beatrice

    2018-01-01

    Every body structure is wrapped in connective tissue or fascia, creating a structural continuity that gives form and function to every tissue and organ. The fascial tissue is uniformly distributed throughout the body, enveloping, interacting with and permeating blood vessels, nerves, viscera, meninges, bones and muscles, creating various layers at different depths and forming a tridimensional metabolic and mechanical matrix. This article reviews the literature on the emission of biophotons and adjustable sounds by the fascial system, because these biological changes could be a means of local and systemic cellular communication and become another assessment tool for manual (therapy) practitioners. This is the first article that discusses these topics in a single text, attempting to bring such information into an area of application that is beneficial to osteopaths, chiropractors, and manual therapists.

  9. User's manual of self learning gas puffing system for plasma density control

    International Nuclear Information System (INIS)

    Tanahashi, S.

    1989-04-01

    Pre-programmed gas puffing is often used to get adequet plasma density wave forms in the pulse operating devices for fusion experiments. This method has a defect that preset values have to be adjusted manually in accordance with changes of out gassing rate in successive shots. In order to remove this defect, a self learning system has been developed so as to keep the plasma density close to a given reference waveform. After a few succesive shots, it accomplishes self learning and is ready to keep up with a gradual change of the wall condition. This manual gives the usage of the system and the program list written in BASIC and ASSEMBLER languages. (author)

  10. Administrative Reorganization, Modification And Enlargement The Personal Plant And The Functions Manual Of The Documentation Center And Nuclear Information Of The Institute Of Nuclear Matters; Reorganizacion administrativa, Modificacion y Amipliacion de la planta de personal y del Manual de Funciones del Centro de Documentacion e Informacion Nuclear del Instituto de Asuntos Nucleares

    Energy Technology Data Exchange (ETDEWEB)

    De Escobar, Cecilia

    1991-07-01

    This document is a project of administrative reorganization, modification and amplification of the personal plant and the functions manual of of the Center of Documentation and Nuclear Information of the IAN. The methodology used to develop this work was constituted by an analysis of the statutes and objectives of the institution. A study of the objectives that the CDIN of the flowchart of the IAN should complete. Interview with the Boss of the CDIN to define necessities as soon as administrative organization, modification of the plant of personal and of the manual of functions of the Center, interview the officials of the Documentation Center, tending efficiently to gather information on the current conditions of work and their proposals for the benefit of the more services. Surveys of the Center users to diagnose like they are come lending the services and their recommendations for the improvement of the same ones.

  11. Experience with Nuclear Medicine Information System

    Directory of Open Access Journals (Sweden)

    Bilge Volkan-Salanci

    2012-12-01

    Full Text Available Objective: Radiology information system (RIS is basically evolved for the need of radiologists and ignores the vital steps needed for a proper work flow of Nuclear Medicine Department. Moreover, CT/MRI oriented classical PACS systems are far from satisfying Nuclear Physicians like storing dynamic data for reprocessing and quantitative analysis of colored images. Our purpose was to develop a workflow based Nuclear Medicine Information System (NMIS that fulfills the needs of Nuclear Medicine Department and its integration to hospital PACS system. Material and Methods: Workflow in NMIS uses HL7 (health level seven and steps include, patient scheduling and retrieving information from HIS (hospital information system, radiopharmacy, acquisition, digital reporting and approval of the reports using Nuclear Medicine specific diagnostic codes. Images and dynamic data from cameras of are sent to and retrieved from PACS system (Corttex© for reprocessing and quantitative analysis. Results: NMIS has additional functions to the RIS such as radiopharmaceutical management program which includes stock recording of both radioactive and non-radioactive substances, calculation of the radiopharmaceutical dose for individual patient according to body weight and maximum permissible activity, and calculation of radioactivity left per unit volume for each radionuclide according their half lives. Patient scheduling and gamma camera patient work list settings were arranged according to specific Nuclear Medicine procedures. Nuclear Medicine images and reports can be retrieved and viewed from HIS. Conclusion: NMIS provides functionality to standard RIS and PACS system according to the needs of Nuclear Medicine. (MIRT 2012;21:97-102

  12. Image-guided system versus manual marking for toric intraocular lens alignment in cataract surgery.

    Science.gov (United States)

    Webers, Valentijn S C; Bauer, Noel J C; Visser, Nienke; Berendschot, Tos T J M; van den Biggelaar, Frank J H M; Nuijts, Rudy M M A

    2017-06-01

    To compare the accuracy of toric intraocular lens (IOL) alignment using the Verion Image-Guided System versus a conventional manual ink-marking procedure. University Eye Clinic Maastricht, Maastricht, the Netherlands. Prospective randomized clinical trial. Eyes with regular corneal astigmatism of at least 1.25 diopters (D) that required cataract surgery and toric IOL implantation (Acrysof SN6AT3-T9) were randomly assigned to the image-guided group or the manual-marking group. The primary outcome was the alignment of the toric IOL based on preoperative images and images taken immediately after surgery. Secondary outcome measures were residual astigmatism, uncorrected distance visual acuity (UDVA), and complications. The study enrolled 36 eyes (24 patients). The mean toric IOL misalignment was significantly less in the image-guided group than in the manual group 1 hour (1.3 degrees ± 1.6 [SD] versus 2.8 ± 1.8 degrees; P = .02) and 3 months (1.7 ± 1.5 degrees versus 3.1 ± 2.1 degrees; P image-guided group and manual group, respectively (P > .05). The mean UDVA was 0.03 ± 0.10 logarithm of minimum angle of resolution (logMAR) and 0.04 ± 0.09 logMAR, respectively (both P > .05). No intraoperative complications occurred during any surgery. The IOL misalignment was significantly less with digital marking than with manual marking; this did not result in a better UDVA or lower residual refractive astigmatism. Copyright © 2017 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  13. Manual for subject analysis

    International Nuclear Information System (INIS)

    2002-01-01

    This document is one in a series of publications known as the ETDE/INIS Joint Reference Series and also constitutes a part of the ETDE Procedures Manual. It presents the rules, guidelines and procedures to be adopted by centers submitting input to the International Nuclear Information System (INIS) or the Energy Technology Data Exchange (ETDE). It is a manual for the subject analysis part of input preparation, meaning the selection, subject classification, abstracting and subject indexing of relevant publications, and is to be used in conjunction with the Thesauruses, Subject Categories documents and the documents providing guidelines for the preparation of abstracts. The concept and structure of the new manual are intended to describe in a logical and efficient sequence all the steps comprising the subject analysis of documents to be reported to INIS or ETDE. The manual includes new chapters on preparatory analysis, subject classification, abstracting and subject indexing, as well as rules, guidelines, procedures, examples and a special chapter on guidelines and examples for subject analysis in particular subject fields. (g.t.; a.n.)

  14. A philosophy for space nuclear systems safety

    International Nuclear Information System (INIS)

    Marshall, A.C.

    1992-01-01

    The unique requirements and contraints of space nuclear systems require careful consideration in the development of a safety policy. The Nuclear Safety Policy Working Group (NSPWG) for the Space Exploration Initiative has proposed a hierarchical approach with safety policy at the top of the hierarchy. This policy allows safety requirements to be tailored to specific applications while still providing reassurance to regulators and the general public that the necessary measures have been taken to assure safe application of space nuclear systems. The safety policy used by the NSPWG is recommended for all space nuclear programs and missions

  15. Transportation Routing Analysis Geographic Information System (TRAGIS) User's Manual

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, PE

    2003-09-18

    The Transportation Routing Analysis Geographic Information System (TRAGIS) model is used to calculate highway, rail, or waterway routes within the United States. TRAGIS is a client-server application with the user interface and map data files residing on the user's personal computer and the routing engine and network data files on a network server. The user's manual provides documentation on installation and the use of the many features of the model.

  16. The manual of a computer software 'FBR Plant Planning Design Prototype System'

    International Nuclear Information System (INIS)

    2003-10-01

    This is a manual of a computer software 'FBR Plant Planning Design Prototype System', which enables users to conduct case studies of deviated FBR design concepts based on 'MONJU'. The calculations simply proceed as the user clicks displayed buttons, therefore step-by-step explanation is supposed not be necessary. The following pages introduce only particular features of this software, i.e, each interactive screens, functions of buttons and consequences after clicks, and the quitting procedure. (author)

  17. Development of nuclear material accountancy control system

    International Nuclear Information System (INIS)

    Hirosawa, Naonori; Kashima, Sadamitsu; Akiba, Mitsunori

    1992-01-01

    PNC is developing a wide area of nuclear fuel cycle. Therefore, much nuclear material with a various form exists at each facility in the Works, and the controls of the inventory changes and the physical inventories of nuclear material are important. Nuclear material accountancy is a basic measure in safeguards system based on Non-Proliferation Treaty (NPT). In the light of such importance of material accountancy, the data base of nuclear material control and the material accountancy report system for all facilities has been developed by using the computer. By this system, accountancy report to STA is being presented certainly and timely. Property management and rapid corresponding to various inquiries can be carried out by the data base system which has free item searching procedure. (author)

  18. Introductory user's manual for the US Nuclear Regulatory Commission Reactor Safety Research Data Bank

    International Nuclear Information System (INIS)

    Scofield, N.R.; Hardy, H.A.; Laats, E.T.

    1983-02-01

    The United States Nuclear Regulatory Commission (NRC) has established the NRC/Division of Accident Evaluation (DAE) Data Bank Program to collect, store, and make available data from the many domestic and foreign water safety research programs. Local direction of the program is provided by E G and G Idaho, Inc., prime contractor for the Department of Energy (DOE) at the Idaho National Engineering Laboratory (INEL). The NRC/DAE Data Bank Program provides a central computer storage mechanism and access software for data that is to be used by code development and assessment groups in meeting the code and correlation needs of the nuclear industry. The administrative portion of the program provides data entry, documentation, training, and advisory services to users and the NRC. The NRC/DAE Data Bank and the capabilities of the data access software are described

  19. Introductory user's manual for the US Nuclear Regulatory Commission Reactor Safety Research Data Bank. Revision 3

    International Nuclear Information System (INIS)

    Hardy, H.A.; Laats, E.T.

    1985-03-01

    The United States Nuclear Regulatory Commission (USNRC) has established the NRC/Division of Accident Evaluation (DAE) Data Bank Program to collect, store, and make available data from the many domestic and foreign water reactor safety research programs. Local direction of the program is provided by EG and G Idaho, Inc., prime contractor for the Department of Energy (DOE) at the Idaho National Engineering Laboratory (INEL). The NRC/DAE Data Bank Program provides a central computer storage mechanism and access software for data to be used by code development and assessment groups in meeting the code correlation needs of the nuclear industry. The administrative portion of the program provides data entry, documentation, training, and advisory services to users and the USNRC. The NRC/DAE Data Bank and the capabilities of the data access software are described in this document

  20. Future development of nuclear energy systems

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Nuclear energy development in Japan has passed about 30 years, and reaches to a step to supply about 35 % of total electric power demand. However, together with globalization of economic and technical development, its future progressing method is required for its new efforts. Among such conditions, when considering a state of future type nuclear energy application, its contribution to further environmental conservation and international cooperation is essential, and it is required for adoption to such requirement how it is made an energy source with excellent economics.The Research Committee on 'Engineering Design on Nuclear Energy Systems' established under recognition in 1998 has been carried out some discussions on present and future status of nuclear energy development. And so forth under participation of outer specialists. Here were summarized on two year's committee actions containing them and viewpoints of nuclear industries, popularization of nuclear system technology, and so forth. (G.K.)

  1. Nuclear fuel element leak detection system

    International Nuclear Information System (INIS)

    John, C.D. Jr.

    1978-01-01

    Disclosed is a leak detection system integral with a wall of a building used to fabricate nuclear fuel elements for detecting radiation leakage from the nuclear fuel elements as the fuel elements exit the building. The leak detecting system comprises a shielded compartment constructed to withstand environmental hazards extending into a similarly constructed building and having sealed doors on both ends along with leak detecting apparatus connected to the compartment. The leak detecting system provides a system for removing a nuclear fuel element from its fabrication building while testing for radiation leaks in the fuel element

  2. The effect of bedding system selected by manual muscle testing on sleep-related cardiovascular functions.

    Science.gov (United States)

    Kuo, Terry B J; Li, Jia-Yi; Lai, Chun-Ting; Huang, Yu-Chun; Hsu, Ya-Chuan; Yang, Cheryl C H

    2013-01-01

    Different types of mattresses affect sleep quality and waking muscle power. Whether manual muscle testing (MMT) predicts the cardiovascular effects of the bedding system was explored using ten healthy young men. For each participant, two bedding systems, one inducing the strongest limb muscle force (strong bedding system) and the other inducing the weakest limb force (weak bedding system), were identified using MMT. Each bedding system, in total five mattresses and eight pillows of different firmness, was used for two continuous weeks at the participant's home in a random and double-blind sequence. A sleep log, a questionnaire, and a polysomnography were used to differentiate the two bedding systems. Heart rate variability and arterial pressure variability analyses showed that the strong bedding system resulted in decreased cardiovascular sympathetic modulation, increased cardiac vagal activity, and increased baroreceptor reflex sensitivity during sleep as compared to the weak bedding system. Different bedding systems have distinct cardiovascular effects during sleep that can be predicted by MMT.

  3. Concept of an immersive assistance system with augmented reality for the support of manual activities in radioactive production environments

    International Nuclear Information System (INIS)

    Eursch, Andreas A.

    2010-01-01

    The thesis on an immersive assistance system concept with augmented reality for the support of manual activities in radioactive production environments covers the following topics: analysis of the situation: production and use of radioactive materials, problem analysis of the work in the production facilities, necessity of manual activities, automation, prediction in hot cells; status of research and development; assistance system concept, immersive camera system; augmented reality support in hot cells; economic evaluation and generalization.

  4. Integrated engineering system for nuclear facilities building

    International Nuclear Information System (INIS)

    Tomura, H.; Miyamoto, A.; Futami, F.; Yasuda, S.; Ohtomo, T.

    1995-01-01

    In the construction of buildings for nuclear facilities in Japan, construction companies are generally in charge of the building engineering work, coordinating with plant engineering. An integrated system for buildings (PROMOTE: PROductive MOdeling system for Total nuclear Engineering) described here is a building engineering system including the entire life cycle of buildings for nuclear facilities. A Three-dimensional (3D) building model (PRO-model) is to be in the core of the system (PROMOTE). Data sharing in the PROMOTE is also done with plant engineering systems. By providing these basic technical foundations, PROMOTE is oriented toward offering rational, highquality engineering for the projects. The aim of the system is to provide a technical foundation in building engineering. This paper discusses the characteristics of buildings for nuclear facilities and the outline of the PROMOTE. (author)

  5. Study on HVAC system in nuclear facility

    International Nuclear Information System (INIS)

    Baeg, S. Y.; Song, W. S.; Oh, Y. O.; Ju, Y. S.; Hong, K. P.

    2003-01-01

    Heating, Ventilation and Air Conditioning (HVAC) system in nuclear facility should be equipped and constructed more stable and allowable than that in common facility. The purpose of HVAC system is the maintenance of optimum working environment, the protection of worker against a contaminated air and the prevention of atmospheric contamination due to an outward ventilation, etc.. The basic scheme of a safety operation of nuclear facility is to prevent the atmospheric contamination even in low level. The adaptability of HVAC system which is in operation. In this study, the design requirements of HVAC system in nuclear facility and the HVAC systems in foreign countries are reviewed, and the results can be utilized in the design of HVAC system in nuclear facility

  6. Reference Manual for the System Advisor Model's Wind Power Performance Model

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, J.; Jorgenson, J.; Gilman, P.; Ferguson, T.

    2014-08-01

    This manual describes the National Renewable Energy Laboratory's System Advisor Model (SAM) wind power performance model. The model calculates the hourly electrical output of a single wind turbine or of a wind farm. The wind power performance model requires information about the wind resource, wind turbine specifications, wind farm layout (if applicable), and costs. In SAM, the performance model can be coupled to one of the financial models to calculate economic metrics for residential, commercial, or utility-scale wind projects. This manual describes the algorithms used by the wind power performance model, which is available in the SAM user interface and as part of the SAM Simulation Core (SSC) library, and is intended to supplement the user documentation that comes with the software.

  7. Quantitative X ray analysis system. User's manual and guide to X ray fluorescence technique

    International Nuclear Information System (INIS)

    2009-01-01

    This guide covers trimmed and re-arranged version 3.6 of the Quantitative X ray Analysis System (QXAS) software package that includes the most frequently used methods of quantitative analysis. QXAS is a comprehensive quantitative analysis package that has been developed by the IAEA through research and technical contracts. Additional development has also been carried out in the IAEA Laboratories in Seibersdorf where QXAS was extensively tested. New in this version of the manual are the descriptions of the Voigt-profile peak fitting, the backscatter fundamental parameters' and emission-transmission methods of chemical composition analysis, an expanded chapter on the X ray fluorescence physics, and completely revised and increased number of practical examples of utilization of the QXAS software package. The analytical data accompanying this manual were collected in the IAEA Seibersdorf Laboratories in the years 2006/2007

  8. Long-term monitoring of soil gas fluxes with closed chambers using automated and manual systems

    Energy Technology Data Exchange (ETDEWEB)

    Scott, A.; Crichton, I.; Ball, B.C.

    1999-10-01

    The authors describe two gas sample collection techniques, each of which is used in conjunction with custom made automated or manually operated closed chambers. The automated system allows automatic collection of gas samples for simultaneous analysis of multiple trace gas efflux from soils, permitting long-term monitoring. Since the manual system is cheaper to produce, it can be replicated more than the automated and used to estimate spatial variability of soil fluxes. The automated chamber covers a soil area of 0.5 m{sup 2} and has a motor driven lid that remains operational throughout a range of weather conditions. Both systems use gas-tight containers of robust metal construction, which give good sample retention, thereby allowing long-term storage and convenience of transport from remote locations. The containers in the automated system are filled by pumping gas from the closed chamber via a multiway rotary valve. Stored samples from both systems are analyzed simultaneously for N{sub 2}O and CO{sub 2} using automated injection into laboratory-based gas chromatographs. The use of both collection systems is illustrated by results from a field experiment on sewage sludge disposal to land where N{sub 2}O fluxes were high. The automated gas sampling system permitted quantification of the marked temporal variability of concurrent N{sub 2}O and CO{sub 2} fluxes and allowed improved estimation of cumulative fluxes. The automated measurement approach yielded higher estimates of cumulative flux because integration of manual point-in-time observations missed a number of transient high-flux events.

  9. Integration of a browser based operator manual in the system environment of a process computer system; Integration eines browserbasierten Betriebshandbuchs in die Systemumgebung einer Prozessrechneranlage

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Andreas [Westinghouse Electric Germany GmbH (Germany); Erfle, Robert [DOSCO GmbH, Heidelberg (Germany); Feinkohl, Dirk [E.ON Kernkraft GmbH (Germany). Kernkraftwerk Unterweser

    2012-11-01

    The integration of a browser based operator manual in the system environment of a process computer system is an optimization of the operating procedure in the control room and a safety enhancement due to faster and error-free access to the manual contents. Several requirements by the authorities have to be fulfilled: the operating manual has to be available as hard copy, the format has to be true to original, protection against manipulation has to be provided, the manual content of the browser-based version and the hard copy have to identical, and the display presentation has to be consistent with ergonomic principals. The integration of the on-line manual in the surveillance process computer system provides the operator with the relevant comments to the surveillance signal. The described integration of the on-line manual is an optimization of the operator's everyday job with respect to ergonomics and safety (human performance).

  10. Semiclassical description of hot nuclear systems

    International Nuclear Information System (INIS)

    Brack, M.

    1984-01-01

    We present semiclassical density variational calculations for highly excited nuclear systems. We employ the newly derived functionals tau[rho] and sigma[rho] of the extended Thomas-Fermi (ETF) model, generalized to finite temperatures. Excellent agreement is reached with Hartree-Fock (HF) results. We also calculated the fission barrier of 240 Pu as a function of the nuclear temperature

  11. Public concerns and alternative nuclear power systems

    International Nuclear Information System (INIS)

    Mayo, L.H.

    1980-02-01

    The basic task undertaken in this study was to assess the relative public acceptability of three general types of nuclear power systems as alternatives to the existing Light Water Reactor (LWR) system. Concerns registered toward nuclear power constituted the basic data for this assessment. The primary measure adopted for determining the significance of concerns was the degree of difficulty posed by the concern to the nuclear power decisional structure in the establishment and maintenance of norms to control risks or to advance intended energy objectives. Alleviations or exacerbations of concern resulting from particular attributes of alternative systems were measured from an LWR baseline

  12. Transactions of the fifth symposium on space nuclear power systems

    Energy Technology Data Exchange (ETDEWEB)

    El-Genk, M.S.; Hoover, M.D. (eds.)

    1988-01-01

    This paper contains the presented papers at the fourth symposium on space nuclear power systems. Topics of these paper include: space nuclear missions and applications, reactors and shielding, nuclear electric and nuclear propulsion, high-temperature materials, instrumentation and control, energy conversion and storage, space nuclear fuels, thermal management, nuclear safety, simulation and modeling, and multimegawatt system concepts. (LSP)

  13. Transactions of the fourth symposium on space nuclear power systems

    Energy Technology Data Exchange (ETDEWEB)

    El-Genk, M.S.; Hoover, M.D. (eds.)

    1987-01-01

    This paper contains the presented papers at the fourth symposium on space nuclear power systems. Topics of these papers include: space nuclear missions and applications, reactors and shielding, nuclear electric and nuclear propulsion, refractory alloys and high-temperature materials, instrumentation and control, energy conversion and storage, space nuclear fuels, thermal management, nuclear safety, simulation and modeling, and multimegawatt system concepts. (LSP)

  14. Thermodynamics of nuclear power systems

    International Nuclear Information System (INIS)

    Anno, J.

    1983-01-01

    The conversion of nuclear energy to useful work follows essentially the same course as the conversion of thermal energy from fossil fuel to work. The thermal energy released in the reactor core is first transferred to the primary coolant which then generally transfers its heat to a secondary fluid. The secondary fluid serves as the working fluid in a heat engine. In this chapter the authors briefly examine the thermodynamic principles governing the operation of such engines, the major thermodynamic cycles used, and their application to nuclear power plants

  15. Thermodynamics of nuclear power systems

    International Nuclear Information System (INIS)

    Anno, J.

    1977-01-01

    The conversion of nuclear energy to useful work follows essentially the same course as the conversion of thermal energy from fossil fuel to work. The thermal energy released in the reactor core is first transferred to the primary coolant which then generally transfers its heat to a secondary fluid. The secondary fluid serves as the working fluid in a heat engine. The author briefly examines the thermodynamic principles governing the operation of such engines, the major thermodynamic cycles used, and their application to nuclear power plants. (Auth.)

  16. System for detecting nuclear explosions

    International Nuclear Information System (INIS)

    Rawls, L.E.

    1978-01-01

    Apparatus for detecting underground nuclear explosions is described that is comprised of an antenna located in the dielectric substance of a deep waveguide in the earth and adapted to detect low frequency electromagnetic waves generated by a nuclear explosion, the deep waveguide comprising the high conductivity upper sedimentary layers of the earth, the dielectric basement rock, and a high conductivity layer of basement rock due to the increased temperature thereof at great depths, and means for receiving the electromagnetic waves detected by said antenna means

  17. A user's manual for the database management system of impact property

    International Nuclear Information System (INIS)

    Ryu, Woo Seok; Park, S. J.; Kong, W. S.; Jun, I.

    2003-06-01

    This manual is written for the management and maintenance of the impact database system for managing the impact property test data. The data base constructed the data produced from impact property test can increase the application of test results. Also, we can get easily the basic data from database when we prepare the new experiment and can produce better result by compare the previous data. To develop the database we must analyze and design carefully application and after that, we can offer the best quality to customers various requirements. The impact database system was developed by internet method using jsp(Java Server pages) tool

  18. FURNACE; a toroidal geometry neutronic program system method description and users manual

    International Nuclear Information System (INIS)

    Verschuur, K.A.

    1984-12-01

    The FURNACE program system performs neutronic and photonic calculations in 3D toroidal geometry for application to fusion reactors. The geometry description is quite general, allowing any torus cross section and any neutron source density distribution for the plasma, as well as simple parametric representations of circular, elliptic and D-shaped tori and plasmas. The numerical method is based on an approximate transport model that produces results with sufficient accuracy for reactor-design purposes, at acceptable calculational costs. A short description is given of the numerical method, and a user manual for the programs of the system: FURNACE, ANISN-PT, LIBRA, TAPEMA and DRAWER is presented

  19. A nuclear power plant system engineering workstation

    International Nuclear Information System (INIS)

    Mason, J.H.; Crosby, J.W.

    1989-01-01

    System engineers offer an approach for effective technical support for operation and maintenance of nuclear power plants. System engineer groups are being set up by most utilities in the United States. Institute of Nuclear Power operations (INPO) and U.S. Nuclear Regulatory Commission (NRC) have endorsed the concept. The INPO Good Practice and a survey of system engineer programs in the southeastern United States provide descriptions of system engineering programs. The purpose of this paper is to describe a process for developing a design for a department-level information network of workstations for system engineering groups. The process includes the following: (1) application of a formal information engineering methodology, (2) analysis of system engineer functions and activities; (3) use of Electric Power Research Institute (EPRI) Plant Information Network (PIN) data; (4) application of the Information Engineering Workbench. The resulting design for this system engineer workstation can provide a reference for design of plant-specific systems

  20. Introductory user's manual for the US Nuclear Regulatory Commission Reactor Safety Research Data Bank

    International Nuclear Information System (INIS)

    Scofield, N.R.; Hardy, H.A.; Laats, E.T.

    1984-03-01

    The United States NRC has established the NRC/Division of Accident Evaluation (DAE) Data Bank Program to collect, store, and make available data from the many domestic and foreign water reactor safety research programs. Local direction of the program is provided by EG and G Idaho, Inc., prime contractor for the Department of Energy (DOE) at the Idaho National Engineering Laboratory (INEL). The NRC/DAE Data Bank Program provides a central computer storage mechanism and access software for data that is to be used by code development and assessment groups in meeting the code and correlation needs of the nuclear industry. The administrative portion of the program provides data entry, documentation, training, and advisory services to users and the NRC. The NRC/DAE Data Bank and the capabilities of the data access software are described in this document

  1. Qualification of Manual Phased Array Ultrasonic Techniques for Pipe Weld Inspection in Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Poirier, J.; Hayes, P.; Vicat, F. [GE Inspection Technologies (United States)

    2011-07-01

    Phasor XS can be used for piping weld inspection in any facilities that use EPRI procedures (example: nuclear power plant in Usa, Japan, ...). Whole pipe range is inspected with 5 probes and 6 wedges: 4 1-dimensional probe for sound wave scanning (different frequency, different apertures); 1 dual matrix probe for LW scanning; there are 3 types of wedges optimized for weld inspection. Weld is scanned in 'Raster Scan', maximum range from 35 up to 80 degrees. Probe selection is defined in the procedure according to pipe diameter, pipe thickness and type of access (single or dual side). We have to note that datasets for dual matrix probe are provided with the procedure because this kind of probe cannot be programmed inside Phasor XS

  2. International Nuclear Information System 25 years

    International Nuclear Information System (INIS)

    Behrens, H.; Prinz, H.

    1996-01-01

    In May 1970, the first information was published in the International Nuclear Information System (Inis). This makes Inis the first system in the world to establish a decentralized international database. In creating Inis, the International Atomic Energy Agency wanted to promote the exchange of information about the peaceful uses of nuclear energy among its members. References to the nuclear literature were to be compiled in the most complete way possible. The number of IAEA member countries participating in Inis has increased from an original 38 to 90, that of international organizations, from 12 to 17. The database holds more than 1.8 million documentation units; stocks grow by some 75,000 units annually. The German literature about nuclear research and nuclear technology is collected, evaluated and entered into Inis by the Fachinformationszentrum Karlsruhe. (orig.) [de

  3. Software Quality Assurance for Nuclear Safety Systems

    International Nuclear Information System (INIS)

    Sparkman, D R; Lagdon, R

    2004-01-01

    The US Department of Energy has undertaken an initiative to improve the quality of software used to design and operate their nuclear facilities across the United States. One aspect of this initiative is to revise or create new directives and guides associated with quality practices for the safety software in its nuclear facilities. Safety software includes the safety structures, systems, and components software and firmware, support software and design and analysis software used to ensure the safety of the facility. DOE nuclear facilities are unique when compared to commercial nuclear or other industrial activities in terms of the types and quantities of hazards that must be controlled to protect workers, public and the environment. Because of these differences, DOE must develop an approach to software quality assurance that ensures appropriate risk mitigation by developing a framework of requirements that accomplishes the following goals: (sm b ullet) Ensures the software processes developed to address nuclear safety in design, operation, construction and maintenance of its facilities are safe (sm b ullet) Considers the larger system that uses the software and its impacts (sm b ullet) Ensures that the software failures do not create unsafe conditions Software designers for nuclear systems and processes must reduce risks in software applications by incorporating processes that recognize, detect, and mitigate software failure in safety related systems. It must also ensure that fail safe modes and component testing are incorporated into software design. For nuclear facilities, the consideration of risk is not necessarily sufficient to ensure safety. Systematic evaluation, independent verification and system safety analysis must be considered for software design, implementation, and operation. The software industry primarily uses risk analysis to determine the appropriate level of rigor applied to software practices. This risk-based approach distinguishes safety

  4. Proliferation resistance assessment of nuclear systems

    International Nuclear Information System (INIS)

    1978-09-01

    The paper focuses on examining the degree to which nuclear systems could be used to acquire nuclear weapons material. It establishes a framework for proliferation resistance assessment and illustrates its applicability through an analysis of reference systems for once-through cycles, breeder cycles and thermal recycle. On a more tentative basis, the approach is applied to various alternative technical and institutional measures. This paper was also submitted to Working Groups 5 and 8

  5. Nuclear legislation system and nuclear program outlook in Thailand

    International Nuclear Information System (INIS)

    Charoensri, Apisara; Morev, Mikhail N.; Imazu, Hidenori; Kosako, Toshiso; Iimoto, Takeshi

    2009-01-01

    In Thailand, radioactive materials are widely used for the industry, medicine, research and development fields. Reported here are background and recent developments in the national nuclear legislation system, including regulation of radiation safety and current status of nuclear program in Thailand. Under the Atomic Energy for Peace Act, the Thai Atomic Energy Commission (Thai AEC) is authorized to approve regulations respecting, the conversion, enrichment, processing, reprocessing, possession, import, export, use, packaging, transport, management and storage of nuclear materials. The most recent developments are related to the New Ministerial Regulation on Licensing Requirements Procedures and Nuclear Material, By-Product or Atomic Energy Processing B. E 2550 (A. D. 2007) issued under the Atomic Energy for Peace Act, B. E. 2504 (A. D. 1961). Currently, the Thai Cabinet is discussing the draft new Atomic Energy for Peace Act which is to revise the Act. The draft Act is to sets forth criteria for protecting individuals, society and the environment from radiation hazards with the perspective for anticipated nuclear power sector development in Thailand. (author)

  6. System design for safe robotic handling of nuclear materials

    International Nuclear Information System (INIS)

    Drotning, W.; Wapman, W.; Fahrenholtz, J.; Kimberly, H.; Kuhlmann, J.

    1996-01-01

    Robotic systems are being developed by the Intelligent Systems and Robotics Center at Sandia National Laboratories to perform automated handling tasks with radioactive nuclear materials. These systems will reduce the occupational radiation exposure to workers by automating operations which are currently performed manually. Because the robotic systems will handle material that is both hazardous and valuable, the safety of the operations is of utmost importance; assurance must be given that personnel will not be harmed and that the materials and environment will be protected. These safety requirements are met by designing safety features into the system using a layered approach. Several levels of mechanical, electrical and software safety prevent unsafe conditions from generating a hazard, and bring the system to a safe state should an unexpected situation arise. The system safety features include the use of industrial robot standards, commercial robot systems, commercial and custom tooling, mechanical safety interlocks, advanced sensor systems, control and configuration checks, and redundant control schemes. The effectiveness of the safety features in satisfying the safety requirements is verified using a Failure Modes and Effects Analysis. This technique can point out areas of weakness in the safety design as well as areas where unnecessary redundancy may reduce the system reliability

  7. Why nuclear geostorage systems for petroleum?

    Energy Technology Data Exchange (ETDEWEB)

    Harst, L van der; Knutson, C F [CER Geonuclear Corporation, Las Vegas, Nevada (United States)

    1970-05-15

    The objective of any kind of storage system in general is to act as a buffer between cyclical changes in supply and demand of the stored commodities. Since the advent of nuclear explosives engineering the possibility of constructing large-scale underground storage systems by means of contained nuclear explosions, for which the name nuclear geostorage has been coined, should be regarded as a valid alternative to the conventional storage systems currently in existence. Limiting this discussion to systems for storing crude oil, various options are available. The choice of any particular storage method depends, of course, on the circumstances surrounding each particular storage requirement; however, in many cases and for a variety of reasons, nuclear geostorage can be preferable to conventional solutions. Economic considerations are clearly among the most important ones. In this respect an increase in storage capacity will tend to favor the nuclear approach. Besides the economics, however, other considerations are important and may in some cases swing the balance in favor of nuclear geostorage plants, for instance: safety and strategic values, aesthetics, ease of access, lack of suitable tank farm space or lack of suitable geologic conditions for natural reservoirs. It should be borne in mind that the decision to use the nuclear approach to solve a storage problem can only be taken after satisfactory evaluation of the geological and geographical characteristics of the site, and when the technical, safety, political, and public relations factors can be handled adequately. (author)

  8. Why nuclear geostorage systems for petroleum?

    International Nuclear Information System (INIS)

    Harst, L. van der; Knutson, C.F.

    1970-01-01

    The objective of any kind of storage system in general is to act as a buffer between cyclical changes in supply and demand of the stored commodities. Since the advent of nuclear explosives engineering the possibility of constructing large-scale underground storage systems by means of contained nuclear explosions, for which the name nuclear geostorage has been coined, should be regarded as a valid alternative to the conventional storage systems currently in existence. Limiting this discussion to systems for storing crude oil, various options are available. The choice of any particular storage method depends, of course, on the circumstances surrounding each particular storage requirement; however, in many cases and for a variety of reasons, nuclear geostorage can be preferable to conventional solutions. Economic considerations are clearly among the most important ones. In this respect an increase in storage capacity will tend to favor the nuclear approach. Besides the economics, however, other considerations are important and may in some cases swing the balance in favor of nuclear geostorage plants, for instance: safety and strategic values, aesthetics, ease of access, lack of suitable tank farm space or lack of suitable geologic conditions for natural reservoirs. It should be borne in mind that the decision to use the nuclear approach to solve a storage problem can only be taken after satisfactory evaluation of the geological and geographical characteristics of the site, and when the technical, safety, political, and public relations factors can be handled adequately. (author)

  9. Users manual for an expert system (HSPEXP) for calibration of the hydrological simulation program; Fortran

    Science.gov (United States)

    Lumb, A.M.; McCammon, R.B.; Kittle, J.L.

    1994-01-01

    Expert system software was developed to assist less experienced modelers with calibration of a watershed model and to facilitate the interaction between the modeler and the modeling process not provided by mathematical optimization. A prototype was developed with artificial intelligence software tools, a knowledge engineer, and two domain experts. The manual procedures used by the domain experts were identified and the prototype was then coded by the knowledge engineer. The expert system consists of a set of hierarchical rules designed to guide the calibration of the model through a systematic evaluation of model parameters. When the prototype was completed and tested, it was rewritten for portability and operational use and was named HSPEXP. The watershed model Hydrological Simulation Program--Fortran (HSPF) is used in the expert system. This report is the users manual for HSPEXP and contains a discussion of the concepts and detailed steps and examples for using the software. The system has been tested on watersheds in the States of Washington and Maryland, and the system correctly identified the model parameters to be adjusted and the adjustments led to improved calibration.

  10. Remote nuclear green pellet processing system

    International Nuclear Information System (INIS)

    Cellier, Francis.

    1980-01-01

    An automated system for manufacturing nuclear fuel pellets for use in nuclear fuel elements of nuclear power reactors is described. The system comprises process components arranged vertically but not directly under each other within a single enclosure. The vertical-lateral arrangement provides for gravity flow of the product from one component to the next and for removal of each component without interference with the other components. The single enclosure eliminates time consuming transfer between separate enclosures of each component while providing three-sided access to the component through glove ports. (auth)

  11. Comparison of Battery-Powered and Manual Bone Biopsy Systems for Core Needle Biopsy of Sclerotic Bone Lesions.

    Science.gov (United States)

    Cohen, Micah G; McMahon, Colm J; Kung, Justin W; Wu, Jim S

    2016-05-01

    The purpose of this study was to compare manual and battery-powered bone biopsy systems for diagnostic yield and procedural factors during core needle biopsy of sclerotic bone lesions. A total of 155 consecutive CT-guided core needle biopsies of sclerotic bone lesions were performed at one institution from January 2006 to November 2014. Before March 2012, lesions were biopsied with manual bone drill systems. After March 2012, most biopsies were performed with a battery-powered system and either noncoaxial or coaxial biopsy needles. Diagnostic yield, crush artifact, CT procedure time, procedure radiation dose, conscious sedation dose, and complications were compared between the manual and battery-powered core needle biopsy systems by Fisher exact test and t test. One-way ANOVA was used for subgroup analysis of the two battery-powered systems for procedure time and radiation dose. The diagnostic yield for all sclerotic lesions was 60.0% (93/155) and was significantly higher with the battery-powered system (73.0% [27/37]) than with the manual systems (55.9% [66/118]) (p = 0.047). There was no significant difference between the two systems in terms of crush artifact, procedure time, radiation dose, conscious sedation administered, or complications. In subgroup analysis, the coaxial battery-powered biopsies had shorter procedure times (p = 0.01) and lower radiation doses (p = 0.002) than the coaxial manual systems, but the noncoaxial battery-powered biopsies had longer average procedure times and higher radiation doses than the coaxial manual systems. In biopsy of sclerotic bone lesions, use of a battery-powered bone drill system improves diagnostic yield over use of a manual system.

  12. Process information systems in nuclear reprocessing

    International Nuclear Information System (INIS)

    Jaeschke, A.; Keller, H.; Orth, H.

    1987-01-01

    On a production management level, a process information system in a nuclear reprocessing plant (NRP) has to fulfill conventional operating functions and functions for nuclear material surveillance (safeguards). Based on today's state of the art of on-line process control technology, the progress in hardware and software technology allows to introduce more process-specific intelligence into process information systems. Exemplified by an expert-system-aided laboratory management system as component of a NRP process information system, the paper demonstrates that these technologies can be applied already. (DG) [de

  13. quality assurance systems in nuclear fuel procurement and manufacturing

    International Nuclear Information System (INIS)

    Can, S.

    1997-01-01

    Quality is the totality of features and characteristics of a product or service that bear on its ability to satisfy stated or implied needs. Quality control is activities and techniques used to fulfill the requirements of quality. Quality assurance is a system and its main components are requirements. QA program, organization and responsibilities, design and verification, material and its control, manufacturing and process control, inspections, audits and documents: manuals, specifications, instructions. Quality assurance systems are largely based on ISO 9000 series of the International Standards Organization. ISO 9000 series has been adopted and published by Turkish Standards Institute as TS-ISO 9000. International Atomic Energy Agency also published a guide (50-SG-QA11) ''Quality Assurance in the Procurement, Design and Manufacture of Nuclear Fuel Assemblies'' in the safety guide series. In this study the role of quality control in quality assurance systems, inspection and test plans and acceptance and nonconformance quality levels will be explained in relation to nuclear fuel production. Examples of applications in quality assurance systems based on ISO 9000 will be given

  14. Advanced physical protection systems for nuclear materials

    International Nuclear Information System (INIS)

    Jones, O.E.

    1975-10-01

    Because of the increasing incidence of terrorism, there is growing concern that nuclear materials and facilities need improved physical protection against theft, diversion, or sabotage. Physical protection systems for facilities or transportation which have balanced effectiveness include information systems, access denial systems, adequate and timely response, recovery capability, and use denial methods for despoiling special nuclear materials (SNM). The role of these elements in reducing societal risk is described; however, it is noted that, similar to nuclear war, the absolute risks of nuclear theft and sabotage are basically unquantifiable. Sandia Laboratories has a major Energy Research and Development Administration (ERDA) role in developing advanced physical protection systems for improving the security of both SNM and facilities. These activities are surveyed. A computer simulation model is being developed to assess the cost-effectiveness of alternative physical protection systems under various levels of threat. Improved physical protection equipment such as perimeter and interior alarms, secure portals, and fixed and remotely-activated barriers is being developed and tested. In addition, complete prototype protection systems are being developed for representative nuclear facilities. An example is shown for a plutonium storage vault. The ERDA safe-secure transportation system for highway shipments of all significant quantities of government-owned SNM is described. Adversary simulation as a tool for testing and evaluating physical protection systems is discussed. A list of measures is given for assessing overall physical protection system performance. (auth)

  15. Advanced physical protection systems for nuclear materials

    International Nuclear Information System (INIS)

    Jones, O.E.

    1976-01-01

    Because of the increasing incidence of terrorism, there is growing concern that nuclear materials and facilities need improved physical protection against theft, diversion, or sabotage. Physical protection systems for facilities or transportation which have balanced effectiveness include information systems, access denial systems, adequate and timely response, recovery capability, and use denial methods for despoiling special nuclear materials (SNM). The role of these elements in reducing societal risk is described; however, it is noted that, similar to nuclear war, the absolute risks of nuclear theft and sabotage are basically unquantifiable. Sandia Laboratories has a major US Energy Research and Development Administration (ERDA) role in developing advanced physical protection systems for improving the security of both SNM and facilities. These activities are surveyed in this paper. A computer simulation model is being developed to assess the cost-effectiveness of alternative physical protection systems under various levels of threat. Improved physical protection equipment such as perimeter and interior alarms, secure portals, and fixed and remotely activated barriers is being developed and tested. In addition, complete prototype protection systems are being developed for representative nuclear facilities. An example is shown for a plutonium storage vault. The ERDA safe-secure transportation system for highway shipments of all significant quantities of government-owned SNM is described. Adversary simulation as a tool for testing and evaluating physical protection systems is discussed. Finally, a list of measures is given for assessing overall physical protection system performance. (author)

  16. Understanding Nuclear Safety Culture: A Systemic Approach

    International Nuclear Information System (INIS)

    Afghan, A.N.

    2016-01-01

    The Fukushima accident was a systemic failure (Report by Director General IAEA on the Fukushima Daiichi Accident). Systemic failure is a failure at system level unlike the currently understood notion which regards it as the failure of component and equipment. Systemic failures are due to the interdependence, complexity and unpredictability within systems and that is why these systems are called complex adaptive systems (CAS), in which “attractors” play an important role. If we want to understand the systemic failures we need to understand CAS and the role of these attractors. The intent of this paper is to identify some typical attractors (including stakeholders) and their role within complex adaptive system. Attractors can be stakeholders, individuals, processes, rules and regulations, SOPs etc., towards which other agents and individuals are attracted. This paper will try to identify attractors in nuclear safety culture and influence of their assumptions on safety culture behavior by taking examples from nuclear industry in Pakistan. For example, if the nuclear regulator is an attractor within nuclear safety culture CAS then how basic assumptions of nuclear plant operators and shift in-charges about “regulator” affect their own safety behavior?

  17. Structural materials for innovative nuclear systems (SMINS)

    International Nuclear Information System (INIS)

    2008-01-01

    Structural materials research is a field of growing relevance in the nuclear sector, especially for the different innovative reactor systems being developed within the Generation IV International Forum (GIF), for critical and subcritical transmutation systems, and of interest to the Global Nuclear Energy Partnership (GNEP). Under the auspices of the NEA Nuclear Science Committee (NSC) the Workshop on Structural Materials for Innovative Nuclear Systems (SMINS) was organised in collaboration with the Forschungszentrum Karlsruhe in Germany. The objectives of the workshop were to exchange information on structural materials research issues and to discuss ongoing programmes, both experimental and in the field of advanced modelling. These proceedings include the papers and the poster session materials presented at the workshop, representing the international state of the art in this domain. (author)

  18. The Nuclear Criticality Information System: An update

    International Nuclear Information System (INIS)

    Koponen, B.L.

    1991-07-01

    The US Department of Energy's Nuclear Criticality Information System (NCIS) has served the criticality community for the past ten years with publications and with an online information system. NCIS provides a mean for widely distributed nuclear criticality specialists to communicate and work together instantly. Users of the system may receive assistance from all members of the NCIS community, which provides a much broader base of support than is available at any single site. When unified by NCIS, these diverse specialists provide a resource that has proven to be very useful in the safe handling of fissile material. NCIS also is a source of current nuclear criticality safety information; the rapid access of such up-to-date information on the handling of fissile materials outside of nuclear reactors is international in scope, extending beyond political and geographical boundaries

  19. Nuclear plant requirements during power system restoration

    International Nuclear Information System (INIS)

    Adamski, G.; Jenkins, R.; Gill, P.

    1995-01-01

    This paper is one of a series presented on behalf of the System Operation Subcommittee with the intent of focusing industry attention on power system restoration issues. This paper discusses a number of nuclear power plant requirements that require special attention during power system restoration

  20. Dosimetry systems in nuclear power stations

    International Nuclear Information System (INIS)

    Weidmann, U.

    1992-01-01

    In the following paper the necessity of the use of electronic dosimetry systems in nuclear power stations is presented, also encompassing the tasks which this type of systems has to fulfill. Based on examples the construction principles and the application possibilities of a PC supported system are described. 5 figs

  1. System survivability in nuclear and space environments

    International Nuclear Information System (INIS)

    Rudie, N.J.

    1987-01-01

    Space systems must operate in the hostile natural environment of space. In the event of a war, these systems may also be exposed to the radiation environments created by the explosions of nuclear warheads. The effects of these environments on a space system and hardening techniques are discussed in the paper

  2. The protection system to Brazilian Nuclear Program

    International Nuclear Information System (INIS)

    Andreuzza, Mario Giussepp Santezzi Bertottelli

    1997-01-01

    The Sistema de Protecao ao Programa Nuclear Brasileiro-SIPRON (Protection System to Brazilian Nuclear Program) was established in 1980. It is intended to accomplish in only one system, all the actions related to security and protection for Nuclear Facilities in Brazil. The author presents in detail the protection system SIPRON, describing the system structure and organization, the functions and obligations of the system involved main organizations, as well as, the system operation and behaviour during an postulated occurrence of a nuclear emergency. It is also described an Exercise that happened in June of 1997 at the Nuclear Power Plant (NPP) Angra I, after two simulated tests in December of 1996 and April of 1997. The NPP Angra I Emergency Plan Exercise was a good opportunity to test the SIPRON structure and preparedness program. It was verified, included by International Atomic Energy Agency observers, the system involved organizations effectiveness and the procedures efficacy to protect the public and the environmental. Finally, it is shown the SIPRON activities of routine, the system obstacles and the expected future performances. (author)

  3. Manual on the selection of appropriate quality assurance programmes for items and services of a nuclear power plant

    International Nuclear Information System (INIS)

    1984-02-01

    This manual provides guidance and illustrative examples for devising a system by which applicable quality assurance activities may be selected and applied to items and services in conformance with the requirements of the Code and the guidance of SG-QA 1. The selective application system described herein contains the following elements: (1) Classification of items and services; (2) Grading of quality assurance activities; (3) Correlation of applicable quality assurance activities with items and services; (4) Adaptation of selected quality assurance activities to the unique needs of the items or services; (5) Specifying of applicable quality assurance activities in bid specifications or in a contract. This selective application system is intended to be used by plant systems designers in the classifying of items (structures, components and materials) and related services; and by the organizations designing, manufacturing, installing and operating items or performing support services for such items in the specifying of applicable quality assurance activities that are to be implemented. The parts of the system should be developed to the degree and sophistication necessary for the particular needs of the project or organization. There are many methods and techniques that may be used effectively and those of one organization may not suit the purposes of another organization. It is important that the methodology of the system is developed with sufficient instructions documented to guide its consistent and disciplined execution

  4. Embedding librarianship in learning management systems a how-to-do-it manual for librarians

    CERN Document Server

    Tumbleson, Beth E

    2014-01-01

    Information literacy instruction is best when it is integrated into actual research, and in higher education that means embedding librarianship into the learning management system (LMS). This new How-To-Do-It Manual is geared towards academic librarians already working with classes in an LMS as well as those considering how to begin a pilot. Tumbleson and Burke, who surveyed 280 librarians for information on related activities, also use their own first-hand experience implementing an embedded librarianship program at their university to offer guidance and encouragement.

  5. The Montana Rivers Information System: Edit/entry program user`s manual

    Energy Technology Data Exchange (ETDEWEB)

    1992-07-01

    The Montana Rivers Information System (MRIS) was initiated to assess the state`s fish, wildlife, and recreation value; and natural cultural and geologic features. The MRIS is now a set of data bases containing part of the information in the Natural Heritage Program natural features and threatened and endangered species data bases. The purpose of this User`s Manual is to: (1) describe to the user how to maintain the MRIS database of their choice by updating, changing, deleting, and adding records using the edit/entry programs; and (2) provide to the user all information and instructions necessary to complete data entry into the MRIS databases.

  6. GRESS [Gradient Enhanced Software System] Version 0.0 user's manual

    International Nuclear Information System (INIS)

    Horwedel, J.E.; Worley, B.A.; Oblow, E.M.; Pin, F.G.; Wright, R.Q.

    1988-10-01

    The primary objective of this manual is to provide a description of the Gradient Enhanced Software System (GRESS) and to explain how to use GRESS to enhance FORTRAN 77 models for gradient calculation. The use of the Extended Arithmetic Processor (EXAP) as the precompiler for GRESS is presented. A complete description of how to enhance a source code for forward propagation of derivatives using the calculus chain rule is provided. On option, EXAP can be used to generate derivatives and store them on a direct access device for subsequent solution of the numerical adjoint equations. Programming information is also provided to aid in the installation and maintenance of the software

  7. Space nuclear power systems, Part 2

    International Nuclear Information System (INIS)

    El-Genk, M.S.; Hoover, M.D.

    1992-01-01

    This volume, number two of three, contains the reviewed and edited papers were being presented at the Ninth Symposium in Albuquerque, New Mexico, 12--16 January 1992. The objective of the symposium, and hence these volumes, is to summarize the state of knowledge in the area of space nuclear power and propulsion and to provide a forum at which the most recent findings and important new developments can be presented and discussed. Topics included is this volume are: reactor and power systems control; thermionic energy conversion; space missions and power needs; key issues in nuclear and propulsion; nuclear thermal propulsion; manufacturing and processing; thermal management; space nuclear safety; and nuclear testing and production facilities

  8. Performance analysis of nuclear materials accounting systems

    International Nuclear Information System (INIS)

    Cobb, D.D.; Shipley, J.P.

    1979-01-01

    Techniques for analyzing the level of performance of nuclear materials accounting systems in terms of the four performance measures, total amount of loss, loss-detection time, loss-detection probability, and false-alarm probability, are presented. These techniques are especially useful for analyzing the expected performance of near-real-time (dynamic) accounting systems. A conservative estimate of system performance is provided by the CUSUM (cumulative summation of materials balances) test. Graphical displays, called performance surfaces, are developed as convenient tools for representing systems performance, and examples from a recent safeguards study of a nuclear fuels reprocessing plant are given. 6 refs

  9. 78 FR 38739 - Special Nuclear Material Control and Accounting Systems for Nuclear Power Plants

    Science.gov (United States)

    2013-06-27

    ... Systems for Nuclear Power Plants AGENCY: Nuclear Regulatory Commission. ACTION: Regulatory guide; issuance... Guide (RG) 5.29, ``Special Nuclear Material Control and Accounting Systems for Nuclear Power Plants... material control and accounting. This guide applies to all nuclear power plants. ADDRESSES: Please refer to...

  10. Nuclear technologies for local energy systems

    International Nuclear Information System (INIS)

    McDonnell, F.N.; Lynch, G.F.

    1990-03-01

    If nuclear energy is to realize its full potential as a safe and cost-effective alternative to fossil fuels, applications beyond those that are currently being serviced by large, central nuclear power stations must be identified and appropriate reactors developed. The Canadian program on reactor systems for local energy supply is at the forefront of these developments. This program emphasizes design simplicity, low power density and fuel rating, reliance on natural processes, passive systems, and reduced reliance on operator action. The first product, the SLOWPOKE Energy System, is a 10 MW heat source specifically designed to provide hot water to satisfy the needs of local heating systems for building complexes, institutions and municipal district heating systems. A demonstration heating reactor has been constructed at the Whiteshell Nuclear Research Establishment in Manitoba and has been undergoing an extensive test program since first operation in 1987 July. Based on the knowledge learned from the design, construction, licensing and operational testing of this facility, the design of the 10 MW commercial-size unit is well advanced, and Atomic Energy of Canada Limited is prepared to commit the construction of the first commercial unit. Although the technical demonstration of the concept is important, it is recognized that another crucial element is the public and regulatory acceptance of small nuclear systems in urban areas. The decision by a community to commit the construction of a SLOWPOKE Energy System brings to a sharp focus the current public apprehension about nuclear technologies

  11. Operation and management manual of JT-60 experimental data analysis system

    International Nuclear Information System (INIS)

    Hirayama, Takashi; Morishima, Soichi

    2014-03-01

    In the Japan Atomic Energy Agency Naka Fusion Institute, a lot of experiments have been conducted by using the large tokamak device JT-60 aiming to realize fusion power plant. In order to optimize the JT-60 experiment and to investigate complex characteristics of plasma, JT-60 experimental data analysis system was developed and used for collecting, referring and analyzing the JT-60 experimental data. Main components of the system are a data analysis server and a database server for the analyses and accumulation of the experimental data respectively. Other peripheral devices of the system are magnetic disk units, NAS (Network Attached Storage) device, and a backup tape drive. This is an operation and management manual the JT-60 experimental data analysis system. (author)

  12. Nuclear engine system simulation (NESS) program update

    International Nuclear Information System (INIS)

    Scheil, C.M.; Pelaccio, D.G.; Petrosky, L.J.

    1993-01-01

    The second phase of development of a Nuclear Thermal Propulsion (NTP) engine system design analysis code has been completed. The standalone, versatile Nuclear Engine System Simulation (NESS) code provides an accurate, detailed assessment of engine system operating performance, weight, and sizes. The critical information is required to support ongoing and future engine system and stage design study efforts. This recent development effort included incorporation of an updated solid-core nuclear thermal reactor model that yields a reduced core weight and higher fuel power density when compared to a NERVA type reactor. NESS can now analyze expander, gas generator, and bleed cycles, along with multi-redundant propellant pump feed systems. Performance and weight of efficient multi-stage axial turbopump can now be determined, in addition to the traditional centrifugal pump

  13. Nuclear power reactors and hydrogen storage systems

    International Nuclear Information System (INIS)

    Ibrahim Aly Mahmoud El Osery.

    1980-01-01

    Among conclusions and results come by, a nuclear-electric-hydrogen integrated power system was suggested as a way to prevent the energy crisis. It was shown that the hydrogen power system using nuclear power as a leading energy resource would hold an advantage in the current international situation as well as for the long-term future. Results reported provide designers of integrated nuclear-electric-hydrogen systems with computation models and routines which will allow them to explore the optimal solution in coupling power reactors to hydrogen producing systems, taking into account the specific characters of hydrogen storage systems. The models were meant for average computers of a type easily available in developing countries. (author)

  14. World Integrated Nuclear Evaluation System: Model documentation

    International Nuclear Information System (INIS)

    1991-12-01

    The World Integrated Nuclear Evaluation System (WINES) is an aggregate demand-based partial equilibrium model used by the Energy Information Administration (EIA) to project long-term domestic and international nuclear energy requirements. WINES follows a top-down approach in which economic growth rates, delivered energy demand growth rates, and electricity demand are projected successively to ultimately forecast total nuclear generation and nuclear capacity. WINES could be potentially used to produce forecasts for any country or region in the world. Presently, WINES is being used to generate long-term forecasts for the United States, and for all countries with commercial nuclear programs in the world, excluding countries located in centrally planned economic areas. Projections for the United States are developed for the period from 2010 through 2030, and for other countries for the period starting in 2000 or 2005 (depending on the country) through 2010. EIA uses a pipeline approach to project nuclear capacity for the period between 1990 and the starting year for which the WINES model is used. This approach involves a detailed accounting of existing nuclear generating units and units under construction, their capacities, their actual or estimated time of completion, and the estimated date of retirements. Further detail on this approach can be found in Appendix B of Commercial Nuclear Power 1991: Prospects for the United States and the World

  15. Systems Analysis Programs for Hands-on Integrated Reliability Evaluations (SAPHIRE), Version 5.0: Integrated Reliability and Risk Analysis System (IRRAS) reference manual. Volume 2

    International Nuclear Information System (INIS)

    Russell, K.D.; Kvarfordt, K.J.; Skinner, N.L.; Wood, S.T.; Rasmuson, D.M.

    1994-07-01

    The Systems Analysis Programs for Hands-on Integrated Reliability Evaluations (SAPHIRE) refers to a set of several microcomputer programs that were developed to create and analyze probabilistic risk assessments (PRAs), primarily for nuclear power plants. The Integrated Reliability and Risk Analysis System (IRRAS) is a state-of-the-art, microcomputer-based probabilistic risk assessment (PRA) model development and analysis tool to address key nuclear plant safety issues. IRRAS is an integrated software tool that gives the use the ability to create and analyze fault trees and accident sequences using a microcomputer. This program provides functions that range from graphical fault tree construction to cut set generation and quantification to report generation. Version 1.0 of the IRRAS program was released in February of 1987. Since then, many user comments and enhancements have been incorporated into the program providing a much more powerful and user-friendly system. This version has been designated IRRAS 5.0 and is the subject of this Reference Manual. Version 5.0 of IRRAS provides the same capabilities as earlier versions and ads the ability to perform location transformations, seismic analysis, and provides enhancements to the user interface as well as improved algorithm performance. Additionally, version 5.0 contains new alphanumeric fault tree and event used for event tree rules, recovery rules, and end state partitioning

  16. Control system security in nuclear power plant

    International Nuclear Information System (INIS)

    Li Jianghai; Huang Xiaojin

    2012-01-01

    The digitalization and networking of control systems in nuclear power plants has brought significant improvements in system control, operation and maintenance. However, the highly digitalized control system also introduces additional security vulnerabilities. Moreover, the replacement of conventional proprietary systems with common protocols, software and devices makes these vulnerabilities easy to be exploited. Through the interaction between control systems and the physical world, security issues in control systems impose high risks on health, safety and environment. These security issues may even cause damages of critical infrastructures and threaten national security. The importance of control system security by reviewing several control system security incidents that happened in nuclear power plants was showed in recent years. Several key difficulties in addressing these security issues were described. Finally, existing researches on control system security and propose several promising research directions were reviewed. (authors)

  17. Quality assurance system in nuclear engineering

    International Nuclear Information System (INIS)

    Adams, H.W.; Hoensch, V.

    1985-01-01

    Due to the close connection between the German Atomic Energy Law and the nuclear control regulations, quality systems in nuclear engineering have taken on a special form. Quality assurance systems as a stipulated organisation of structure and procedure to assure quality have implications for the organisation of the electric supply company at the planning, erection and commissioning stage and for the organisation of the nuclear power station facility. To supervise the application and effectiveness of the stipulated organisation of structure and procedure internally and externally among contractors, special organisation units have been set up at the plant suppliers, manufactures, electric supply companies and nuclear power station facilities, which in the electric supply field go by the name of Quality Assurance Supervision. (orig.) [de

  18. Chemistry management system for nuclear power plants

    International Nuclear Information System (INIS)

    Nagasawa, Katsumi; Maeda, Katsuji

    1998-01-01

    Recently, the chemistry management in the nuclear power plants has been changing from the problem solution to the predictive diagnosis and maintenance. It is important to maintain the integrity of plant operation by an adequate chemistry control. For these reasons, many plant operation data and chemistry analysis data should be collected and treated effectively to evaluate chemistry condition of the nuclear power plants. When some indications of chemistry anomalies occur, quick and effective root cause evaluation and countermeasures should be required. The chemistry management system has been developed as to provide sophisticate chemistry management in the nuclear power plants. This paper introduces the concept and functions of the chemistry management system for the nuclear power plants. (author)

  19. The Nuclear Fuel Cycle Information System

    International Nuclear Information System (INIS)

    1987-02-01

    The Nuclear Fuel Cycle Information System (NFCIS) is an international directory of civilian nuclear fuel cycle facilities. Its purpose is to identify existing and planned nuclear fuel cycle facilities throughout the world and to indicate their main parameters. It includes information on facilities for uranium ore processing, refining, conversion and enrichment, for fuel fabrication, away-from-reactor storage of spent fuel and reprocessing, and for the production of zirconium metal and Zircaloy tubing. NFCIS currently covers 271 facilities in 32 countries and includes 171 references

  20. Establishment of nuclear business management system

    International Nuclear Information System (INIS)

    Ahn, Jong Hwan; Cho, Suk Hong; Oh, Du Sub; Kim, Sung Ki; Choi, Young Lok; Kim, Hwa Sup; Jun, Sang Jin; Yoon, Hyung Mo; Park, Jae Hong; Song, Tae Gil

    1991-01-01

    For the formulation of the technology development strategies the nuclear core technology, environmental analysis has been performed in four aspects: ecological environment, energy economy, nuclear policy and R and D environment. After analyzing the environment and identifying the opportunities and threats from the environment, the strategies on individual and organizational level have been developed for both of the short-term and long-term periods. For the betterment of nuclear business management, the management information system, management by objective and the mechanism for the enhancement of negotiation power in the international agreement have been studied. (Author)

  1. Development of nuclear plant Operation Management System

    Energy Technology Data Exchange (ETDEWEB)

    Koide, I.; Okada, T.; Ishida, K. [Chubu Electric Power Co. Inc., Nagoya (Japan)

    1998-09-01

    Recently it has become more important to detect a change in operational characteristics and to take appropriate corrective actions before it deteriorates to an incident in nuclear power plants. Therefore, aiming at earlier detection of a tendency change, swifter corrective actions and more effective application of operational data, we have developed Operation Management System which automatically acquires, accumulates and observes operational data of Hamaoka Nuclear Power Station through cycles. (author)

  2. Development of nuclear plant Operation Management System

    International Nuclear Information System (INIS)

    Koide, I.; Okada, T.; Ishida, K.

    1998-01-01

    Recently it has become more important to detect a change in operational characteristics and to take appropriate corrective actions before it deteriorates to an incident in nuclear power plants. Therefore, aiming at earlier detection of a tendency change, swifter corrective actions and more effective application of operational data, we have developed Operation Management System which automatically acquires, accumulates and observes operational data of Hamaoka Nuclear Power Station through cycles. (author)

  3. Improvement of management systems for nuclear facilities

    International Nuclear Information System (INIS)

    2005-01-01

    The area of Quality Management/ Quality Assurance has been changed dramatically over the past years. The nuclear facilities moved from the 'traditional' Quality Assurance approach towards Quality Management Systems, and later a new concept of Integrated Management Systems was introduced. The IAEA is developing a new set of Standards on Integrated Management Systems, which will replace the current 50-C-Q/SG-Q1-Q14 Code. The new set of document will require the integration of all management areas into one coherent management system. The new set of standards on Management Systems promotes the concept of the Integrated Management Systems. Based on new set a big number of documents are under preparation. These documents will address the current issues in the management systems area, e.g. Management of Change, Continuous Improvement, Self-assessment, and Attributes of effective management, etc. Currently NPES is providing a number of TC projects and Extra Budgetary Programmes to assist Member States in this area. The new Standards on Management Systems will be published in 2006. A number of Regulatory bodies already indicated that they would take the new Management System Standards as a basis for the national regulation. This fact will motivate a considerable change in the management of nuclear utilities, requiring a new approach. This activity is suitable for all IAEA Members States with large or limited nuclear capabilities. The service is directed to provide assistance for the management of all organizations carrying on or regulating nuclear activities and facilities

  4. Implications of inherent safe nuclear power system

    International Nuclear Information System (INIS)

    Song, Yo-Taik

    1987-01-01

    The safety of present day nuclear power reactors and research reactors depends on a combination of design features of passive and active systems, and the alert judgement of their operators. A few inherently safe designs of nuclear reactors for power plants are currently under development. In these designs, the passive systems are emphasized, and the active systems are minimized. Also efforts are made to eliminate the potential for human failures that initiate the series of accidents. If a major system fails in these designs, the core is flooded automatically with coolants that flow by gravity, not by mechanical pumps or electromagnetic actuators. Depending on the choice of the coolants--water, liquid metal and helium gas--there are three principal types of inherently safe reactors. In this paper, these inherently safe reactor designs are reviewed and their implications are discussed. Further, future perspectives of their acceptance by nuclear industries are discussed. (author)

  5. NCIS: a nuclear criticality information system

    International Nuclear Information System (INIS)

    Koponen, B.L.; Hampel, V.E.

    1984-01-01

    The NCIS is one of the developments carried out to meet the requirements in the field of criticality safety information. Its primary goal is to enhance nuclear criticality safety by dissemination of data, standards, and training material. This paper presents the ''NCIS'' progess since 1950: computer-searching, database management, nuclear critical experiments bibliography. American Nuclear Society transactions criticality safety publications compilation, edition of a personnel directory representing over 140 organizations located in 16 countries and showing a wide range of specialists involved in the field of nuclear criticality safety. The NCIS uses the information management and communication resources of TIS (Technology Information System): automated access procedures; creation of program-dependent information systems; communications. The NCIS is still in a growing, formative stage; it has concentrated first on collecting and organizing the nuclear criticality literature; nuclear critical data, calculational tools, standards, and training materials will follow. Finally the planned and contemplated resources are dealt with: expansion of bibliographic compilations; news database; fundamental criticality safety reference; criticality benchmarck database; user community; training resources; related resources; criticality accident database; dynamic databook; dynamic textbook; expert knowledge system; and, extraction of intelligence

  6. Nuclear plant data systems - some emerging directions

    International Nuclear Information System (INIS)

    Johnson, R.D.; Humphress, G.B.; McCullough, L.D.; Tashjian, B.M.

    1983-01-01

    Significant changes have occurred in recent years in the nuclear power industry to accentuate the need for data systems to support information flow and decision making. Economic conditions resulting in rapid inflation and larger investments in new and existing plants and the need to plan further ahead are primary factors. Government policies concerning environmental control, as well as minimizing risk to the public through increased nuclear safety regulations on operating plants are additional factors. The impact of computer technology on plant data systems, evolution of corporate and plant infrastructures, future plant data, system designs and benefits, and decision making capabilities and data usage support are discussed. (U.K.)

  7. Intelligent operation system for nuclear power plants

    International Nuclear Information System (INIS)

    Morioka, Toshihiko; Fukumoto, Akira; Suto, Osamu; Naito, Norio.

    1987-01-01

    Nuclear power plants consist of many systems and are operated by skillful operators with plenty of knowledge and experience of nuclear plants. Recently, plant automation or computerized operator support systems have come to be utilized, but the synthetic judgment of plant operation and management remains as human roles. Toshiba is of the opinion that the activities (planning, operation and maintenance) should be integrated, and man-machine interface should be human-friendly. We have begun to develop the intelligent operation system aiming at reducing the operator's role within the fundamental judgment through the use of artificial intelligence. (author)

  8. Manually-Operated Crate Dismantlement System for Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Laffitte, John; Lagos, Leo; Morales, Miguel

    2002-01-01

    Los Alamos National Laboratory currently possesses between 500 and 800 fiberglass-reinforced plywood crates that contain hazardous materials that need to be decontaminated. To access the hazardous material, a system is needed to dismantle the crate. Currently, crates are dismantled by workers using hand-held tools. This technique has numerous disadvantages. One disadvantage is that it is difficult for a worker to hold the tool for an extended period of time in the awkward angles and positions necessary to fully size-reduce the crate. Other disadvantages of using hand tools include managing power cords and vacuum hoses, which become entangled or can act as tripping hazards. In order to improve the crate opening and size-reduction task, Florida International University's Hemispheric Center for Environmental Technology (HCET) is developing a manually operated crate dismantlement system. This versatile system is expected to greatly increase worker efficiency while decreasing fatigue and the possibility of accidents. (authors)

  9. Simulation model for wind energy storage systems. Volume II. Operation manual. [SIMWEST code

    Energy Technology Data Exchange (ETDEWEB)

    Warren, A.W.; Edsinger, R.W.; Burroughs, J.D.

    1977-08-01

    The effort developed a comprehensive computer program for the modeling of wind energy/storage systems utilizing any combination of five types of storage (pumped hydro, battery, thermal, flywheel and pneumatic). An acronym for the program is SIMWEST (Simulation Model for Wind Energy Storage). The level of detail of SIMWEST is consistent with a role of evaluating the economic feasibility as well as the general performance of wind energy systems. The software package consists of two basic programs and a library of system, environmental, and load components. Volume II, the SIMWEST operation manual, describes the usage of the SIMWEST program, the design of the library components, and a number of simple example simulations intended to familiarize the user with the program's operation. Volume II also contains a listing of each SIMWEST library subroutine.

  10. Program user's manual: cryogen system for the analysis for the Mirror Fusion Test Facility

    International Nuclear Information System (INIS)

    1979-04-01

    The Mirror Fusion Test Facility being designed and constructed at the Lawrence Livermore Laboratory requires a liquid helium liquefaction, storage, distribution, and recovery system and a liquid nitrogen storage and distribution system. To provide a powerful analytical tool to aid in the design evolution of this system through hardware, a thermodynamic fluid flow model was developed. This model allows the Lawrence Livermore Laboratory to verify that the design meets desired goals and to play what if games during the design evolution. For example, what if the helium flow rate is changed in the magnet liquid helium flow loop; how does this affect the temperature, fluid quality, and pressure. This manual provides all the information required to run all or portions of this program as desired. In addition, the program is constructed in a modular fashion so changes or modifications can be made easily to keep up with the evolving design

  11. Effectiveness of experimental system in children’s mastering of main manual motor skills

    Directory of Open Access Journals (Sweden)

    L. L. Galamandjuk

    2015-07-01

    Full Text Available Purpose: determine effectiveness of simulated system of pre-school age children motor functioning’s preventive development for mastering of main movements for manual skills. Material: in the research five years’ children (control group n=150 and experimental group n=120 participated. Results: it was determined that transition from uncomfortable to comfortable for a child conditions of exercises’ fulfillment facilitates quicker formation of required motor program. It is connected with the fact that, independent on orientation of manual motor asymmetry progressing of semi-spheres’ interaction takes place. This interaction is an important condition of increasing of child functioning’s effectiveness in different aspects. Achievement of such result was also facilitated by physical exercises, which children practiced at home. Functioning of physical culture instructor and kindergarten teachers was also important: they formed parents’ conscious position concerning importance of such trainings; recommended effective means and methods. Conclusions: application of the offered system ensures much better result than traditional approach to this problem. It is one of keys to prevention of negative tendencies in development of pre-school age children.

  12. Managing bottlenecks in manual automobile assembly systems using discrete event simulation

    Directory of Open Access Journals (Sweden)

    Dewa, M.

    2013-08-01

    Full Text Available Batch model lines are quite handy when the demand for each product is moderate. However, they are characterised by high work-in-progress inventories, lost production time when changing over models, and reduced flexibility when it comes to altering production rates as product demand changes. On the other hand, mixed model lines can offer reduced work-in-progress inventory and increased flexibility. The object of this paper is to illustrate that a manual automobile assembling system can be optimised through managing bottlenecks by ensuring high workstation utilisation, reducing queue lengths before stations and reducing station downtime. A case study from the automobile industry is used for data collection. A model is developed through the use of simulation software. The model is then verified and validated before a detailed bottleneck analysis is conducted. An operational strategy is then proposed for optimal bottleneck management. Although the paper focuses on improving automobile assembly systems in batch mode, the methodology can also be applied in single model manual and automated production lines.

  13. ENDF-6 Formats Manual. Data Formats and Procedures for the Evaluated Nuclear Data File ENDF/B-VI and ENDF/B-VII

    International Nuclear Information System (INIS)

    Herman, M.

    2009-01-01

    In December 2006, the Cross Section Evaluation Working Group (CSEWG) of the United States released the new ENDF/B-VII.0 library. This represented considerable achievement as it was the 1st major release since 1990 when ENDF/B-VI has been made publicly available. The two libraries have been released in the same format, ENDF-6, which has been originally developed for the ENDF/B-VI library. In the early stage of work on the VII-th generation of the library CSEWG made important decision to use the same formats. This decision was adopted even though it was argued that it would be timely to modernize the formats and several interesting ideas were proposed. After careful deliberation CSEWG concluded that actual implementation would require considerable resources needed to modify processing codes and to guarantee high quality of the files processed by these codes. In view of this the idea of format modernization has been postponed and ENDF-6 format was adopted for the new ENDF/B-VII library. In several other areas related to ENDF we made our best to move beyond established tradition and achieve maximum modernization. Thus, the 'Big Paper' on ENDF/B-VII.0 has been published, also in December 2006, as the Special Issue of Nuclear Data Sheets 107 (1996) 2931-3060. The new web retrieval and plotting system for ENDF-6 formatted data, Sigma, was developed by the NNDC and released in 2007. Extensive paper has been published on the advanced tool for nuclear reaction data evaluation, EMPIRE, in 2007. This effort was complemented with release of updated set of ENDF checking codes in 2009. As the final item on this list, major revision of ENDF-6 Formats Manual was made. This work started in 2006 and came to fruition in 2009 as documented in the present report.

  14. ENDF-6 Formats Manual Data Formats and Procedures for the Evaluated Nuclear Data File ENDF/B-VI and ENDF/B-VII

    Energy Technology Data Exchange (ETDEWEB)

    Herman, M.; Members of the Cross Sections Evaluation Working Group

    2009-06-01

    In December 2006, the Cross Section Evaluation Working Group (CSEWG) of the United States released the new ENDF/B-VII.0 library. This represented considerable achievement as it was the 1st major release since 1990 when ENDF/B-VI has been made publicly available. The two libraries have been released in the same format, ENDF-6, which has been originally developed for the ENDF/B-VI library. In the early stage of work on the VII-th generation of the library CSEWG made important decision to use the same formats. This decision was adopted even though it was argued that it would be timely to modernize the formats and several interesting ideas were proposed. After careful deliberation CSEWG concluded that actual implementation would require considerable resources needed to modify processing codes and to guarantee high quality of the files processed by these codes. In view of this the idea of format modernization has been postponed and ENDF-6 format was adopted for the new ENDF/B-VII library. In several other areas related to ENDF we made our best to move beyond established tradition and achieve maximum modernization. Thus, the 'Big Paper' on ENDF/B-VII.0 has been published, also in December 2006, as the Special Issue of Nuclear Data Sheets 107 (1996) 2931-3060. The new web retrieval and plotting system for ENDF-6 formatted data, Sigma, was developed by the NNDC and released in 2007. Extensive paper has been published on the advanced tool for nuclear reaction data evaluation, EMPIRE, in 2007. This effort was complemented with release of updated set of ENDF checking codes in 2009. As the final item on this list, major revision of ENDF-6 Formats Manual was made. This work started in 2006 and came to fruition in 2009 as documented in the present report.

  15. Digital instrumentation system for nuclear research reactors

    International Nuclear Information System (INIS)

    Aghina, Mauricio A.C.; Carvalho, Paulo Vitor R.

    2002-01-01

    This work describes a proposal for a system of nuclear instrumentation and safety totally digital for the Argonauta Reactor. The system divides in the subsystems: channel of pulses, channel of current, conventional instrumentation and safety system. The connection of the subsystems is made through redundant double local net, using the protocol modbus/rtu. So much the channel of pulses, the current channel and safety's system use modules operating in triple redundancy. (author)

  16. The Nuclear Employee Data System (NEDS)

    International Nuclear Information System (INIS)

    Elliott, J.M.

    1985-01-01

    The Nuclear Employee Data System (NEDS) is a centralized, dedicated, computer-based information management system designed to provide participating utilities with information that allows them to grant unescorted access to transient workers. The ability to access security-related information on individuals is one of the most important features of the NEDS. This paper discusses the sponsorship, management, system development activities, and system configuration and provides a cost/benefit ratio

  17. PLCs for nuclear fire control system

    International Nuclear Information System (INIS)

    McArthur, Neil

    1990-01-01

    The new Thermal Oxide Reprocessing Plant (THORP) at British Nuclear Fuel's Sellafield site is a very large and complex system. This article describes the computerized control system used for fire damage control in the two main production areas, the head end and the chemical separation segments. Over one thousand fire dampers are controlled by an interlinking system of small computers linked to a main system in the central control room. The choice of hardware and software is also described. (UK)

  18. Surveillance system for nuclear power plants

    International Nuclear Information System (INIS)

    Mizeracki, M.T.

    1981-01-01

    This paper describes an integrated surveillance system for nuclear power plant application. The author explores an expanded role for closed circuit television, with remotely located cameras and infrared scanners as the basic elements. The video system, integrated with voice communication, can enhance the safe and efficient operation of the plant, by improving the operator's knowledge of plant conditions. 7 refs

  19. System for assembling nuclear fuel elements

    International Nuclear Information System (INIS)

    1980-01-01

    An automatic system is described for assembling nuclear fuel elements, in particular those employing mixed oxide fuels. The system includes a sealing mechanism which allows movement during the assembling of the fuel element along the assembly stations without excessive release of contaminants. (U.K.)

  20. Nuclear civil liability international system. Evolution prospects

    International Nuclear Information System (INIS)

    Reyners, P.

    1996-01-01

    This paper sets out the necessity of a special system of international conventions in the scope of nuclear civil liability. Then the main principles of the conventions in Paris and Vienna are described. Recently, works have been carried out in order to improve and modernize the civil liability system. (TEC). 4 tabs

  1. Space nuclear power systems for extraterrestrial basing

    International Nuclear Information System (INIS)

    Lance, J.R.; Chi, J.W.H.

    1989-01-01

    Previous studies of nuclear and non-nuclear power systems for lunar bases are compared with recent studies by others. Power levels from tens of kW e for early base operation up to 2000 kW e for a self-sustaining base with a Closed Environment Life Support System (CELSS) are considered. Permanent lunar or Martian bases will require the use of multiple nuclear units connected to loads with a power transmission and distribution system analogous to earth-based electric utility systems. A methodology used for such systems is applied to the lunar base system to examine the effects of adding 100 kW e SP-100 class and/or larger nuclear units when a reliability criterion is imposed. The results show that resource and logistic burdens can be reduced by using 1000 kW e units early in the base growth scenario without compromising system reliability. Therefore, both technologies being developed in two current programs (SP-100 and NERVA Derivative Reactor (NDR) technology for space power) can be used effectively for extraterrestrial base power systems. Recent developments in NDR design that result in major reductions in reactor mass are also described. (author)

  2. Programmed system for nuclear power plant protection

    International Nuclear Information System (INIS)

    Jover, Pierre.

    1980-06-01

    The progress in the field of microprocessors and large scale integration circuits, have incited to introduce this new technologies into nuclear power plant protection system. The hardware and software design principles are briefly listed; then, a quad-redundant protection system for 1300 MWe PWR, developed in France is described [fr

  3. Accuracy of manual entry of drug administration data into an anesthesia information management system.

    Science.gov (United States)

    Avidan, Alexander; Dotan, Koren; Weissman, Charles; Cohen, Matan J; Levin, Phillip D

    2014-11-01

    Data on drug administration are entered manually into anesthesia information management systems (AIMS). This study examined whether these data are accurate regarding drug name, dose administered, and time of administration, and whether the stage of anesthesia influences data accuracy. Real-time observational data on drug administration during elective operations were compared with computerized information on drug administration entered by anesthesiologists. A trained observer (K.D.) performed the observations. Data were collected during 57 operations which included 596 separate occasions of drug administration by 22 anesthesiologists. No AIMS records were found for 90 (15.1%) occasions of drug administration (omissions), while there were 11 (1.8%) AIMS records where drug administration was not observed. The AIMS and observer data matched for drug name on 495 of 596 (83.1%) occasions, for dose on 439 of 495 (92.5%) occasions, and for time on 476 of 495 (96.2%) occasions. Amongst the 90 omitted records, 34 (37.8%) were for vasoactive drugs with 24 (27.7%) for small doses of hypnotics. Omissions occurred mostly during maintenance: 50 of 153 (24.6%), followed by induction: 30 of 325 (9.2%) and emergence: 10 of 57 (17.5%) (P < 0.001). Time and dose inaccuracies occurred mainly during induction, followed by maintenance and emergence; time inaccuracies were 7/325 (8.3%), 10/203 (4.9%), and 0/57 (0%), respectively (P = 0.07), and dose inaccuracies were 15/325 (4.6%), 3/203 (1.5%), and 1/57 (1.7%), respectively (P = 0.11). The range of accuracy varies when anesthesiologists manually enter drug administration data into an AIMS. Charting omissions represent the largest cause of inaccuracy, principally by omissions of records for vasopressors and small doses of hypnotic drugs. Manually entered drug administration data are not without errors. Accuracy of entering drug administration data remains the responsibility of the anesthesiologist.

  4. Manual Ability Classification System (MACS: reliability between therapists and parents in Brazil

    Directory of Open Access Journals (Sweden)

    Daniela B. R. Silva

    2015-02-01

    Full Text Available BACKGROUND: The Manual Ability Classification System (MACS has been widely used to describe the manual ability of children with cerebral palsy (CP; however its reliability has not been verified in Brazil. OBJECTIVE: To establish the inter- and intra-rater reliability of the Portuguese-Brazil version of the MACS by comparing the classifications given by therapists and parents of children with CP. METHOD: Data were obtained from 90 children with CP between the ages of 4 and 18 years, who were treated at the neurology and rehabilitation clinics of a Brazilian hospital. Therapists (an occupational therapist and a student classified manual ability (MACS through direct observation and information provided by parents. Therapists and parents used the Portuguese-Brazil version of the MACS. Intra- and inter-rater reliability was obtained using unweighted Kappa coefficient (k and intra-class correlation coefficient (ICC. The Chi-square test was used to identify the predominance of disagreements in the classification of parents and therapists. RESULTS: An almost perfect agreement resulted among therapists [K=0.90 (95% CI 0.83-0.97; ICC=0.97 (95%CI 0.96-0.98], as well as with intra-rater (therapists, with Kappa ranging between 0.83 and 0.95 and ICC between 0.96 and 0.99 for the evaluator with more and less experience in rehabilitation, respectively. The agreement between therapists and parents was fair [K=0.36 (95% CI 0.22-0.50; ICC=0.79 (95% CI 0.70-0.86]. CONCLUSIONS: The Portuguese version of the MACS is a reliable instrument to be used jointly by parents and therapists.

  5. Building a medical system for nuclear facilities

    International Nuclear Information System (INIS)

    Maeda, Mitsuya

    2016-01-01

    To build a medical system for nuclear facilities, I explained what kinds of actions were performed with the TEPCO Fukushima Daiichi Nuclear Power Plant Accident and what kinds of actions are going to be performed in the future. We examined the health and medical care of the emergency workers in nuclear facilities including TEPCO Fukushima Daiichi Nuclear Power Plant from 2014 to 2015 in the Ministry of Health, Labour and Welfare (MHLW). We carried out a detailed hearing from stakeholders of electric companies and medical institutions about the medical system in nuclear facilities carrying out urgent activities. It has been said that the electric company is responsible to maintain the medical system for affected workers in nuclear facilities. However, TEPCO could not find the medical staff, such as doctors, by their own effort at the TEPCO Fukushima Daiichi Nuclear Power Plant Accident. The network of doctors familiar with emergency medical care support dispatched the medical staff after July of 2011. The stakeholders indicated that the following six tasks must be resolved: (1) the fact that no electric company performs the action of bringing up medical staff who can be dispatched into nuclear facilities in emergencies in 2015; (2) bringing up personnel in charge of radiation management and logistics other than the medical staff, such as doctors; (3) cooperation with the community medicine system given the light and shade by nuclear facilities; (4) performing training for the many concurrent wounded based on the scenario of a severe accident; (5) indicating both the condition of the contract and the guarantee of status that is appropriate for dispatched medical staffs; and (6) clarifying the organization of the network of stakeholders. The stakeholders showed the future directionality as follows: (1) To recruit the medical staff expected to be dispatched into nuclear facilities, (2) to carry out the discussion and conveyance training to strengthen cooperation with

  6. Comparison of manual versus semiautomatic milk recording systems in dairy goats.

    Science.gov (United States)

    Ait-Saidi, A; Caja, G; Carné, S; Salama, A A K; Ghirardi, J J

    2008-04-01

    A total of 24 Murciano-Granadina dairy goats in early-midlactation were used to compare the labor time and data collection efficiency of using manual (M) vs. semiautomated (SA) systems for milk recording. Goats were milked once daily in a 2 x 12 parallel platform, with 6 milking units on each side. The M system used visual identification (ID) by large plastic ear tags, on-paper data recording, and data manually uploaded to a computer. The SA system used electronic ID, automatic ID, manual data recording on reader keyboard, and automatic data uploading to computer by Bluetooth connection. Data were collected for groups of 2 x 12 goats for 15 test days of each system during a period of 70 d. Time data were converted to a decimal scale. No difference in milk recording time between M and SA (1.32 +/- 0.03 and 1.34 +/- 0.03 min/goat, respectively) was observed. Time needed for transferring data to the computer was greater for M when compared with SA (0.20 +/- 0.01 and 0.05 +/- 0.01 min/goat). Overall milk recording time was greater in M than in SA (1.52 +/- 0.04 vs. 1.39 +/- 0.04 min/goat), the latter decreasing with operator training. Time for transferring milk recording data to the computer was 4.81 +/- 0.34 and 1.09 +/- 0.10 min for M and SA groups of 24 goats, respectively, but only increased by 0.19 min in SA for each additional 24 goats. No difference in errors of data acquisition was detected between M and SA systems during milk recording (0.6%), but an additional 1.1% error was found in the M system during data uploading. Predicted differences between M and SA increased with the number of goats processed on the test-day. Reduction in labor time cost ranged from euro0.5 to 12.9 (US$0.7 to 17.4) per milk recording, according to number of goats from 24 to 480 goats and accounted for 40% of the electronic ID costs. In conclusion, electronic ID was more efficient for labor costs and resulted in fewer data errors, the benefit being greater with trained operators and

  7. Radiation protection in nuclear facilities. The Caise environmental surveillance system

    International Nuclear Information System (INIS)

    Witt, H. de; Voelz, E.

    1995-01-01

    The Computer Aided Surveillance System for the Environment of Nuclear Installations (Caise) has been designed for permanent surveillance of the environment of nuclear installations under normal operating conditions and for unusual events on the basis of radiological and meteorological measured data. In normal operation, the data measured on line are fed to the system by way of a defined interface, while off-line data can be entered manually in the dialog mode. Subsequently, the measured data are stored, filed away, and secured. Short-time dispersion factors can be calculated permanently in the on-line mode, while the off-line mode allows short-term and long-term dispersions to be calculated for randomly selectable periods of time under the General Administrative Rule of Sec. 45 of the German Radiation Protection Ordinance. The corresponding dose distributions in the environment of the plant can be determined next. Under conditions of increased emissions (accidents, failures), Caise assists in quick decision-making by its capacity for real-time dispersion calculations including current on-line and off-line emission sample measurements. In this way, the contributions by various different exposure pathways to the calculated dose can be determined more accurately. (orig.) [de

  8. Transportation security personnel training manual

    International Nuclear Information System (INIS)

    1978-11-01

    Objective of this manual is to train security personnel to protect special nuclear materials and nuclear facilities against theft and sabotage as required by 10 CFR Part 73. This volume contains the introduction and rationale

  9. Radiation monitor system for nuclear power plants

    International Nuclear Information System (INIS)

    Wu Bingzhe; Guo Shusheng

    1990-12-01

    The system has 8 kinds of radiation monitors and 2 stage microcomputers designed for processing the data from each monitor, storaging the information, printing out and displaying on the colour CRT. The function of the system includes high-value alarm, warm alarm and failure alarm, so called t hree-level alarms . Two functions of the alarms are the threshold alarm and the tendency alarm, so that this system is an intelligency system. This system has high reliability and very wide range when LOCA accident takes place. It is aseismic and immune to industrial interference. The system can meet IEC-761-1 standard and is of nuclear safety 3rd class. Also the following monitors were designed: 133 Xe monitor, 131 I monitor, low-level liquid monitor and high radiation γ area monitor. The system can meet the requirements of nuclear power plants

  10. High speed imaging system for nuclear diagnostics

    International Nuclear Information System (INIS)

    Eyer, H.H.

    1976-01-01

    A high speed imaging system based on state-of-the-art photosensor arrays has been designed for use in nuclear diagnostics. The system is comprised of a front-end rapid-scan solid-state camera, a high speed digitizer, and a PCM line driver in a downhole package and a memory buffer system in a uphole trailer. The downhole camera takes a ''snapshot'' of a nuclear device created flux stream, digitizes the image and transmits it to the uphole memory system before being destroyed. The memory system performs two functions: it retains the data for local display and processing by a microprocessor, and it buffers the data for retransmission at slower rates to the LLL computational facility (NADS). The impetus for such a system as well as its operation are discussed. Also discussed are new systems under development which incorporate higher data rates and more resolution

  11. High speed imaging system for nuclear diagnostics

    International Nuclear Information System (INIS)

    Eyer, H.H.

    1976-01-01

    A high speed imaging system based on state-of-the-art photosensor arrays has been designed for use in nuclear diagnostics. The system is comprised of a front-end rapid-scan solid-state camera, a high speed digitizer, and a PCM line driver in a downhole package and a memory buffer system in an uphole trailer. The downhole camera takes a ''snapshot'' of a nuclear device created flux stream, digitizes the image and transmits it to the uphole memory system before being destroyed. The memory system performs two functions: it retains the data for local display and processing by a microprocessor, and it buffers the data for retransmission at slower rates to the LLL computational facility (NADS). The impetus for such a system as well as its operation is discussed. Also discussed are new systems under development which incorporate higher data rates and more resolution

  12. Operator support system for nuclear power plants

    International Nuclear Information System (INIS)

    Mori, Nobuyuki; Tai, Ichiro; Sudo, Osamu; Naito, Norio.

    1987-01-01

    The nuclear power generation in Japan maintains the high capacity factor, and its proportion taken in the total generated electric power exceeded 1/4, thus it has become the indispensable energy source. Recently moreover, the nuclear power plants which are harmonious with operators and easy to operate are demanded. For realizing this, the technical development such as the heightening of operation watching performance, the adoption of automation, and the improvement of various man-machine systems for reducing the burden of operators has been advanced by utilizing electronic techniques. In this paper, the trend of the man-machine systems in nuclear power plants, the positioning of operation support system, the support in the aspects of information, action and knowledge, the example of a new central control board, the operation support system using a computer, an operation support expert system and the problems hereafter are described. As the development of the man-machine system in nuclear power plants, the upgrading from a present new central control board system PODIA through A-PODIA, in which the operational function to deal with various phenomena arising in plants and safety control function are added, to 1-PODIA, in which knowledge engineering technology is adopted, is expected. (Kako, I.)

  13. Nuclear instrumentation for the industrial measuring systems

    International Nuclear Information System (INIS)

    Normand, S.

    2010-01-01

    This work deals with nuclear instrumentation and its application to industry, power plant fuel reprocessing plant and finally with homeland security. The first part concerns the reactor instrumentation, in-core and ex-core measurement system. Ionization Uranium fission chamber will be introduced with their acquisition system especially Campbell mode system. Some progress have been done on regarding sensors failure foresee. The second part of this work deals with reprocessing plant and associated instrumentation for nuclear waste management. Proportional counters techniques will be discussed, especially Helium-3 counter, and new development on electronic concept for reprocessing nuclear waste plant (one electronic for multipurpose acquisition system). For nuclear safety and security for human and homeland will be introduce. First we will explain a new particular approach on operational dosimetric measurement and secondly, we will show new kind of organic scintillator material and associated electronics. Signal treatment with real time treatment is embedded, in order to make neutron gamma discrimination possible even in solid organic scintillator. Finally, the conclusion will point out future, with most trends in research and development on nuclear instrumentation for next years. (author) [fr

  14. Energy accounting in nuclear power systems

    International Nuclear Information System (INIS)

    Symonds, J.L.; Essam, P.; Stocks, K.

    1976-01-01

    Energy analysis is a systematic way of tracing and accounting for the flows of energy through an industrial system and apportioning a quantity of the primary energy input to each of the goods and services sent out. The application of energy accounting to nuclear power stations and their growth in generating systems is discussed. Misunderstandings arising from discrepancies and weaknesses in some published simple analyses of hypothetical growth situations are outlined. Results of a more complex energy flow analysis are used to demonstrate that current nuclear energy programs are running at an energy profit. Large fossil fuel savings will occur in a real electrical grid system under anticipated nuclear power growth rates. These savings will give a new dimension in planning the use of fossil energy resources which will still be needed for transport and industrial processes, such as steelmaking, for some time to come. (author)

  15. Energy accounting in nuclear power systems

    International Nuclear Information System (INIS)

    Symonds, J.L.; Essam, P.; Stocks, K.

    1975-10-01

    Energy analysis is a systematic way of tracing and accounting for the flows of energy through an industrial system and apportioning a quantity of the primary energy input of the goods and services sent out. The application of energy accounting to nuclear power stations and their growth in generating systems is discussed. Misunderstandings arising from discrepancies and weaknesses in some published simple analyses of hypothetical growth situations are outlined. Results of a more complex energy flow analysis are used to demonstrate that current nuclear energy programs are running at an energy profit. Large fossil fuel savings will occur in a real electrical grid system under anticipated nuclear power growth rates. These savings will give a new dimension in planning the use of fossil energy resources which will still be needed for transport and industrial processes, such as steel-making, for some time to come. (author)

  16. International Nuclear Information System (INIS)

    International Nuclear Information System (INIS)

    1987-01-01

    Depicts the nature and operations of the first truly international, decentralized and computerized information processing and dissemination system, INIS. The products of the system, consisting of various literature indexes issued in both printed form and on magnetic tapes are described and their utility to scientists is demonstrated

  17. Inventory estimation for nuclear fuel reprocessing systems

    International Nuclear Information System (INIS)

    Beyerlein, A.L.; Geldard, J.F.

    1987-01-01

    The accuracy of nuclear material accounting methods for nuclear fuel reprocessing facilities is limited by nuclear material inventory variations in the solvent extraction contactors, which affect the separation and purification of uranium and plutonium. Since in-line methods for measuring contactor inventory are not available, simple inventory estimation models are being developed for mixer-settler contactors operating at steady state with a view toward improving the accuracy of nuclear material accounting methods for reprocessing facilities. The authors investigated the following items: (1) improvements in the utility of the inventory estimation models, (2) extension of improvements to inventory estimation for transient nonsteady-state conditions during, for example, process upset or throughput variations, and (3) development of simple inventory estimation models for reprocessing systems using pulsed columns

  18. Synergetics of nuclear breeding systems

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, C W

    1979-01-01

    A methodology for describing fissile fuel production and fertile fuel utilization is provided, based on lumped reactor physics parameters, the establishment of symbiotic relationships between breeders and converters, and the use of material stockpile inventories. The system is taken to consist of a general breeder reactor coupled to a fission converter reactor and fuel reprocessing-fabrication plant. The consumption of electricity by the reactors and processing plant as well as the production by the system is explicitly included. The synergetics of fast-fission breeders, symbiotic fusion, hybrid fusion and spallation breeders are then investigated. The fissile and fertile inventories and power output are calculated over the system lifetime for a specific breeder power. The effects on the system inventories of varying breeder thermal power are also examined. No single breeder system is shown to consistently outperform the others.

  19. International nuclear information system (INIS) at ANSTO

    International Nuclear Information System (INIS)

    Huxlin, M.

    2002-01-01

    Full text: INIS is the world-leading information system in the field of nuclear science and technology. It is operated by the International Atomic Energy Agency (IAEA) in collaboration with 103 Member States and 19 international organisations. It contains over 2 million bibliographic references (1970-present) and a unique collection of scientific and technical reports, conference papers, dissertations, patents and others documents, known as the g rey literature . ANSTO hosts the Australian INIS Centre, which is responsible for the collection and processing of the Australian material for inclusion in the database as well as dissemination of INIS output products in Australia. Through its participation in INIS Australia gains access to the result of billions of dollars of nuclear-related R and D from around the world, and promote nuclear scientific and technical developments in Australia to the international science community. A particular case is presented, which illustrates how INIS could be used to evaluate the research effort in nuclear science and technology. Citation analysis, usually based on journals indexed by Institute for Scientific Information, measures the impact of the research or rather the usefulness of research to other scientists doing related work. However, a bibliometric analysis of this kind will not be representative of the whole research effort in the field of nuclear science and technology where a relatively high proportion of the output (45%) is captured in the non-journal literature. Publication counts based upon all publications indexed in the INIS database, enables us to obtain statistics and scientific indicators regarding the overall research effort, trends and gaps within this particular field. Average productivity counts and time series analysis (1976-2000) give a glimpse into the Australia's performance in the sub-fields of Nuclear Chemistry, Nuclear Physics, Materials Science and Nuclear Medicine. It shows that Australia's share of

  20. Nuclear reactor system for ABWR

    International Nuclear Information System (INIS)

    Miyano, Hiroshi; Kitagawa, Koji

    1997-01-01

    Various tests and measurements were performed during the pre-operational test run of Unit No. 6 of The Tokyo Electric Power Co., Inc.'s Kashiwazaki-Kariwa Nuclear Power Station, the first advanced boiling water reactor (ABWR) unit in the world, and the design and performance adequacy of the ABWR were confirmed. The realization of the ABWR in Japan took about 20 years. It was decided that technologies for the reactor internal pump (RIP) and the fine-motion control rod drive (FMCRD), which had been applied in Europe, would be incorporated in the ABWR aiming at simplification of its structure and operation. These main components were evaluated, modified and verified in consideration of the unique Japanese environment, such as seismic conditions, through a joint study program with Japanese utilities as well as an improvement and standardization program in cooperation with the government. In addition to incorporating RIP and FMCRD technologies, the ABWR also has improved features in terms of the design of the reactor pressure vessel and internals, as well as automated servicing equipment for the RIP, FMCRD, and primary containment vessel. (author)