WorldWideScience

Sample records for systems leaf wetness

  1. "Breath figures" on leaf surfaces-formation and effects of microscopic leaf wetness.

    Science.gov (United States)

    Burkhardt, Juergen; Hunsche, Mauricio

    2013-01-01

    "Microscopic leaf wetness" means minute amounts of persistent liquid water on leaf surfaces which are invisible to the naked eye. The water is mainly maintained by transpired water vapor condensing onto the leaf surface and to attached leaf surface particles. With an estimated average thickness of less than 1 μm, microscopic leaf wetness is about two orders of magnitude thinner than morning dewfall. The most important physical processes which reduce the saturation vapor pressure and promote condensation are cuticular absorption and the deliquescence of hygroscopic leaf surface particles. Deliquescent salts form highly concentrated solutions. Depending on the type and concentration of the dissolved ions, the physicochemical properties of microscopic leaf wetness can be considerably different from those of pure water. Microscopic leaf wetness can form continuous thin layers on hydrophobic leaf surfaces and in specific cases can act similar to surfactants, enabling a strong potential influence on the foliar exchange of ions. Microscopic leaf wetness can also enhance the dissolution, the emission, and the reaction of specific atmospheric trace gases e.g., ammonia, SO2, or ozone, leading to a strong potential role for microscopic leaf wetness in plant/atmosphere interaction. Due to its difficult detection, there is little knowledge about the occurrence and the properties of microscopic leaf wetness. However, based on the existing evidence and on physicochemical reasoning it can be hypothesized that microscopic leaf wetness occurs on almost any plant worldwide and often permanently, and that it significantly influences the exchange processes of the leaf surface with its neighboring compartments, i.e., the plant interior and the atmosphere. The omission of microscopic water in general leaf wetness concepts has caused far-reaching, misleading conclusions in the past.

  2. Leaf Wetness within a Lily Canopy

    NARCIS (Netherlands)

    Jacobs, A.F.G.; Heusinkveld, B.G.; Klok, E.J.

    2005-01-01

    A wetness duration experiment was carried out within a lily field situated adjacent to coastal dunes in the Netherlands. A within-canopy model was applied to simulate leaf wetness in three layers, with equal leaf area indices, within the canopy. This simulation model is an extension of an existing

  3. ‘Breath figures’ on leaf surfaces – formation and effects of microscopic leaf wetness

    Directory of Open Access Journals (Sweden)

    Jürgen eBurkhardt

    2013-10-01

    Full Text Available ‘Microscopic leaf wetness’ means minute amounts of persistent liquid water on leaf surfaces which are invisible to the naked eye. The water is mainly maintained by transpired water vapor condensing onto the leaf surface and to attached leaf surface particles. With an estimated average thickness of less than 1 µm, microscopic leaf wetness it is about 2 orders of magnitude thinner than morning dewfall. The most important physical processes which reduce the saturation vapor pressure and promote condensation are cuticular absorption and the deliquescence of hygroscopic leaf surface particles. Deliquescent salts form highly concentrated solutions. Depending on the amount and concentration of the dissolved ions, the physicochemical properties of microscopic leaf wetness can be considerably different from those of pure water. Microscopic leaf wetness can form continuous thin layers on hydrophobic leaf surfaces and in specific cases can act similar to surfactants, enabling a strong potential influence on the foliar exchange of ions. Microscopic leaf wetness can also enhance the dissolution, the emission, and the reaction of specific atmospheric trace gases e.g. ammonia, SO2, or ozone, leading to a strong potential role for microscopic leaf wetness in plant/atmosphere interaction. Due to its difficult detection, there is little knowledge about the occurrence and the properties of microscopic leaf wetness. However, based on the existing evidence and on physicochemical reasoning it can be hypothesized that microscopic leaf wetness occurs on almost any plant worldwide and often permanently, and that it significantly influences the exchange processes of the leaf surface with its neighboring compartments, i.e., the plant interior and the atmosphere. The omission of microscopic water in general leaf wetness concepts has caused far-reaching, misleading conclusions in the past.

  4. Leaf wetness distribution within a potato crop

    Science.gov (United States)

    Heusinkveld, B. G.

    2010-07-01

    The Netherlands has a mild maritime climate and therefore the major interest in leaf wetness is associated with foliar plant diseases. During moist micrometeorological conditions (i.e. dew, fog, rain), foliar fungal diseases may develop quickly and thereby destroy a crop quickly. Potato crop monocultures covering several hectares are especially vulnerable to such diseases. Therefore understanding and predicting leaf wetness in potato crops is crucial in crop disease control strategies. A field experiment was carried out in a large homogeneous potato crop in the Netherlands during the growing season of 2008. Two innovative sensor networks were installed as a 3 by 3 grid at 3 heights covering an area of about 2 hectares within two larger potato crops. One crop was located on a sandy soil and one crop on a sandy peat soil. In most cases leaf wetting starts in the top layer and then progresses downward. Leaf drying takes place in the same order after sunrise. A canopy dew simulation model was applied to simulate spatial leaf wetness distribution. The dew model is based on an energy balance model. The model can be run using information on the above-canopy wind speed, air temperature, humidity, net radiation and within canopy air temperature, humidity and soil moisture content and temperature conditions. Rainfall was accounted for by applying an interception model. The results of the dew model agreed well with the leaf wetness sensors if all local conditions were considered. The measurements show that the spatial correlation of leaf wetness decreases downward.

  5. What's So Bad about Being Wet All Over: Investigating Leaf Surface Wetness.

    Science.gov (United States)

    Brewer, Carol A.

    1996-01-01

    Presents investigations of leaf surface wetness that provide ideal opportunities for students to explore the relationships between leaf form and function, to study surface conditions of leaves and plant physiology, and to make predictions about plant adaptation in different environments. Describes simple procedures for exploring questions related…

  6. Leaf Wetness Evaluation Using Artificial Neural Network for Improving Apple Scab Fight

    Directory of Open Access Journals (Sweden)

    Alessandro Stella

    2017-06-01

    Full Text Available Precision agriculture represents a promising technological trend in which governments and local authorities are increasingly investing. In particular, optimising the use of pesticides and having localised models of plant disease are the most important goals for the farmers of the future. The Trentino province in Italy is known as a strong national producer of apples. Apple production has to face many issues, however, among which is apple scab. This disease depends mainly on leaf wetness data typically acquired by fixed sensors. Based on the exploitation of artificial neural networks, this work aims to spatially extend the measurements of such sensors across uncovered areas (areas deprived of sensors. Achieved results have been validated comparing the apple scab risk of the same zone using either real leaf wetness data and estimated data. Thanks to the proposed method, it is possible to get the most relevant parameter of apple scab risk in places where no leaf wetness sensor is available. Moreover, our method permits having a specific risk evaluation of apple scab infection for each orchard, leading to an optimization of the use of chemical pesticides.

  7. Leaf litter decomposition rates increase with rising mean annual temperature in Hawaiian tropical montane wet forests

    Directory of Open Access Journals (Sweden)

    Lori D. Bothwell

    2014-12-01

    Full Text Available Decomposing litter in forest ecosystems supplies nutrients to plants, carbon to heterotrophic soil microorganisms and is a large source of CO2 to the atmosphere. Despite its essential role in carbon and nutrient cycling, the temperature sensitivity of leaf litter decay in tropical forest ecosystems remains poorly resolved, especially in tropical montane wet forests where the warming trend may be amplified compared to tropical wet forests at lower elevations. We quantified leaf litter decomposition rates along a highly constrained 5.2 °C mean annual temperature (MAT gradient in tropical montane wet forests on the Island of Hawaii. Dominant vegetation, substrate type and age, soil moisture, and disturbance history are all nearly constant across this gradient, allowing us to isolate the effect of rising MAT on leaf litter decomposition and nutrient release. Leaf litter decomposition rates were a positive linear function of MAT, causing the residence time of leaf litter on the forest floor to decline by ∼31 days for each 1 °C increase in MAT. Our estimate of the Q10 temperature coefficient for leaf litter decomposition was 2.17, within the commonly reported range for heterotrophic organic matter decomposition (1.5–2.5 across a broad range of ecosystems. The percentage of leaf litter nitrogen (N remaining after six months declined linearly with increasing MAT from ∼88% of initial N at the coolest site to ∼74% at the warmest site. The lack of net N immobilization during all three litter collection periods at all MAT plots indicates that N was not limiting to leaf litter decomposition, regardless of temperature. These results suggest that leaf litter decay in tropical montane wet forests may be more sensitive to rising MAT than in tropical lowland wet forests, and that increased rates of N release from decomposing litter could delay or prevent progressive N limitation to net primary productivity with climate warming.

  8. Response of leaf and whole-tree canopy conductance to wet conditions within a mature premontane tropical forest in Costa Rica

    Science.gov (United States)

    Aparecido, L. M. T.; Miller, G. R.; Cahill, A. T.; Andrews, R.; Moore, G. W.

    2017-12-01

    Tropical water recycling and carbon storage are dependent on canopy-atmosphere dynamics, which are substantially altered when rainfall occurs. However, models only indirectly consider leaf wetness as a driving factor for carbon and water fluxes. To better understand how leaf wetness condition affects stomatal and canopy conductance to water vapor, we tested a set of widely used models for a mature tropical forest of Costa Rica with prolonged periods of wet leaves. We relied on a year of sap flux measurements from 26 trees to estimate transpiration (Ec) and multiple micrometeorological profile measurements from a 40-m tower to be used in the models. Stomatal conductance (gs) models included those proposed by Jones (1992) (gs-J), using shaded and sunlit leaf temperatures, and Monteith and Unsworth (1990) (gs-MU), using air temperature. Canopy conductance (gc) models included those proposed by McNaughton and Jarvis (1983) (gc-MJ) and Penman-Monteith (gc-PM). Between gs and gc, gc had the largest differences within models during dry periods; while estimates were most similar during wet periods. Yet, all gc and gs estimates on wet days were at least as high as on dry days, indicative of their insensitivity to leaf wetness. Shaded leaf gs averaged 26% higher than in sunlit leaves. Additionally, the highly decoupled interface (Ω>0.90) reflected multiple environmental drivers that may influence conductance (e.g. vapor pressure deficit and leaf temperature). This was also seen through large shifts of diurnal peaks of gs and gc (up to 2 hours earlier than Ec) associated with the daily variation of air temperature and net radiation. Overall, this study led to three major insights: 1) gc and gs cannot accurately be predicted under wet conditions without accounting for leaf wetness, 2) even during dry days, low vapor pressure deficits interfere with model accuracy, and 3) intermittent rain during semi-dry and wet days cause large fluctuations in gc and gs estimates. Thus, it

  9. Using a Statistical Approach to Anticipate Leaf Wetness Duration Under Climate Change in France

    Science.gov (United States)

    Huard, F.; Imig, A. F.; Perrin, P.

    2014-12-01

    Leaf wetness plays a major role in the development of fungal plant diseases. Leaf wetness duration (LWD) above a threshold value is determinant for infection and can be seen as a good indicator of impact of climate on infection occurrence and risk. As LWD is not widely measured, several methods, based on physics and empirical approach, have been developed to estimate it from weather data. Many LWD statistical models do exist, but the lack of standard for measurements require reassessments. A new empirical LWD model, called MEDHI (Modèle d'Estimation de la Durée d'Humectation à l'Inra) was developed for french configuration for wetness sensors (angle : 90°, height : 50 cm). This deployment is different from what is usually recommended from constructors or authors in other countries (angle from 10 to 60°, height from 10 to 150 cm…). MEDHI is a decision support system based on hourly climatic conditions at time steps n and n-1 taking account relative humidity, rainfall and previously simulated LWD. Air temperature, relative humidity, wind speed, rain and LWD data from several sensors with 2 configurations were measured during 6 months in Toulouse and Avignon (South West and South East of France) to calibrate MEDHI. A comparison of empirical models : NHRH (RH threshold), DPD (dew point depression), CART (classification and regression tree analysis dependant on RH, wind speed and dew point depression) and MEDHI, using meteorological and LWD measurements obtained during 5 months in Toulouse, showed that the development of this new model MEHDI was definitely better adapted to French conditions. In the context of climate change, MEDHI was used for mapping the evolution of leaf wetness duration in France from 1950 to 2100 with the French regional climate model ALADIN under different Representative Concentration Pathways (RCPs) and using a QM (Quantile-Mapping) statistical downscaling method. Results give information on the spatial distribution of infection risks

  10. Leaf surface wetness and evaporation studies with a β-ray gauge

    International Nuclear Information System (INIS)

    Barthakur, N.N.

    1984-01-01

    Surface wetness duration was measured by a β-ray gauge as a function of wind velocity in the laboratory. The instrument was field-tested as a dewmeter over a wax bean canopy. Diurnal variations of the net count rate through a turgid tobacco leaf measured by a β-ray gauge system corresponded with the stomatal movement. The approximate exponential relationship of the transmission of β-particles with absorber thickness was found acceptable to study rates of evaporation from free water and through pores. The cumulative rate of evaporation of free water varied linearly with time. Three distinct stages of evaporation rates were observed through a porous medium. (author)

  11. Preservation of grass juice and wet leaf protein concentrate for animal feeds

    Directory of Open Access Journals (Sweden)

    Matti Näsi

    1983-09-01

    Full Text Available Formic acid, mixtures of acids (AIV 1, AIV 2 and formalin-acid mixtures (Viher solution, Viher acid were tested as preservatives of juice and wet leaf protein concentrate (LPC obtained from grass, clover and pea. The main criteria used in judging the success of preservation were changes in the protein fraction, fermentation of sugars, and losses of dry matter and true protein during storage. Fermentation of sugars and moulding could be inhibited in plant juices by adding 0.5 % v/w preservative, but proteolysis continued and true protein was degraded in unheated juices. Ensiling losses of pea juice were considerable, 4.0-15.6 % of DM, in all treatments. For wet leaf protein concentrate precipitated by steaming (85°C, good preservation could be obtained with the additives used in silage making applied at a level of 1 % v/w. In these treatments protein breakdown was minimal, because heating eliminated proteolytic enzymes and partly sterilized the LPC product.

  12. Evaluating a tobacco leaf humidification system involving nebulisation

    Directory of Open Access Journals (Sweden)

    Néstor Enrique Cerquera Peña

    2010-05-01

    Full Text Available A tobacco leaf humidifying system involving nebulisation was designned, implemented and evaluated; it had a system for monitoring and recording environmental conditions thereby producing an environment having more homogeneous relative humidity, ensuring better water use, better control of relative humidity and better control in managing cured tobacco leaf moisture content, thereby leading to a consequent improvement in final product quality. 55% to 75% relative humidity and 4 to 6 hour working ranges were obtained to en- sure leaf humidification reached 16% humidity on a wet basis. Two new designs are proposed for the conditioning stage regarding this conditioning chamber’s operational management, based on the results and field observations, which would allow better leaf management, thereby avoiding the risk of losses due to manipulation and over-humidification. This work strengthens research in the field of tobacco pos- tharvest technology, complementing other research projects which have been carried out in Colombia.

  13. Adaptation of a leaf wetness duration model for tomato under Colombian greenhouse conditions

    Directory of Open Access Journals (Sweden)

    Rodrigo Gil

    2015-04-01

    Full Text Available Greenhouse tomato production uses structures that protect crops from extreme environmental conditions; however, the climate inside Colombian greenhouses is often not optimal and crops are susceptible to attack by fungal diseases. The use of simulation models for early warnings of attack by diseases have helped to rationalize the use of chemical pesticides by increasing their efficiency when sprayed at critical times of disease onset. The aim of this study was to calibrate the surface wetness energy balance (SWEB model to estimate the leaf wetness duration (LWD for greenhouse tomatoes in the Alto Ricaurte province (Boyaca. For the validation, the performances of the SWEB model were evaluated by comparing a simulated LWD with records from dielectric leaf wetness sensors. The model adequately represented the phenomenon of free water on the leaves for plants in two greenhouses of Santa Sofia and Sutamarchan. The model simulated an average LWD of 9.9 and 12.1 hours day-1 in Santa Sofia and Sutamarchan, respectively. However, the simulations for the two greenhouses indicated different behaviors, with average differences between the observed and simulated daily number of hours with free water of 0.8 hours for Santa Sofia, while, for Sutamarchan, the difference reached 4 hours. The fraction of correct estimates index indicated the model had the ability to correctly predict 92 and 72% of the hours with a presence or absence of LWD in Santa Sofia and Sutamarchan, respectively. The SWEB model is a useful tool for early warnings for the attack of fungal diseases in greenhouse tomatoes. However, due to the shortcomings of the greenhouse structures used for production, the crops are highly susceptible to attack from these pathogens.

  14. Seasonal patterns of leaf gas exchange and water relations in dry rain forest trees of contrasting leaf phenology.

    Science.gov (United States)

    Choat, Brendan; Ball, Marilyn C; Luly, Jon G; Donnelly, Christine F; Holtum, Joseph A M

    2006-05-01

    Diurnal and seasonal patterns of leaf gas exchange and water relations were examined in tree species of contrasting leaf phenology growing in a seasonally dry tropical rain forest in north-eastern Australia. Two drought-deciduous species, Brachychiton australis (Schott and Endl.) A. Terracc. and Cochlospermum gillivraei Benth., and two evergreen species, Alphitonia excelsa (Fenzal) Benth. and Austromyrtus bidwillii (Benth.) Burret. were studied. The deciduous species had higher specific leaf areas and maximum photosynthetic rates per leaf dry mass in the wet season than the evergreens. During the transition from wet season to dry season, total canopy area was reduced by 70-90% in the deciduous species and stomatal conductance (g(s)) and assimilation rate (A) were markedly lower in the remaining leaves. Deciduous species maintained daytime leaf water potentials (Psi(L)) at close to or above wet season values by a combination of stomatal regulation and reduction in leaf area. Thus, the timing of leaf drop in deciduous species was not associated with large negative values of daytime Psi(L) (greater than -1.6 MPa) or predawn Psi(L) (greater than -1.0 MPa). The deciduous species appeared sensitive to small perturbations in soil and leaf water status that signalled the onset of drought. The evergreen species were less sensitive to the onset of drought and g(s) values were not significantly lower during the transitional period. In the dry season, the evergreen species maintained their canopies despite increasing water-stress; however, unlike Eucalyptus species from northern Australian savannas, A and g(s) were significantly lower than wet season values.

  15. [Seasonal differences in the leaf hydraulic conductance of mature Acacia mangium in response to its leaf water use and photosynthesis].

    Science.gov (United States)

    Zhao, Ping; Sun, Gu-Chou; Ni, Guang-Yan; Zeng, Xiao-Ping

    2013-01-01

    In this study, measurements were made on the leaf water potential (psi1), stomatal conductance (g(s)), transpiration rate, leaf area index, and sapwood area of mature Acacia mangium, aimed to understand the relationships of the leaf hydraulic conductance (K1) with the leaf water use and photosynthetic characteristics of the A. mangium in wet season (May) and dry season (November). The ratio of sapwood area to leaf area (A(sp)/A(cl)) of the larger trees with an average height of 20 m and a diameter at breast height (DBH) of 0.26 m was 8.5% higher than that of the smaller trees with an average height of 14.5 m and a DBH of 0.19 m, suggesting that the larger trees had a higher water flux in their leaf xylem, which facilitated the water use of canopy leaf. The analysis on the vulnerability curve of the xylem showed that when the K1 decreased by 50%, the psi1 in wet season and dry season was -1.41 and -1.55 MPa, respectively, and the vulnerability of the xylem cavitation was higher in dry season than in wet season. The K1 peak value in wet season and dry season was 5.5 and 4.5 mmol x m(-2) x s(-1) x MPa(-1), and the maximum transpiration rate (T(r max)) was 3.6 and 1.8 mmol x m(-2) x s(-1), respectively. Both the K1 and T(r max), were obviously higher in wet season than in dry season. Within a day, the K1 and T(r), fluctuated many times, reflecting the reciprocated cycle of the xylem cavitation and refilling. The leaf stomatal closure occurred when the K1 declined over 50% or the psi1 reached -1.6 MPa. The g(s) would be maintained at a high level till the K1 declined over 50%. The correlation between the hydraulic conductance and photosynthetic rate was more significant in dry season than in wet season. The loss of leaf hydraulic conductance induced by seasonal change could be the causes of the decrease of T(r) and CO2 gas exchange.

  16. Are leaf physiological traits related to leaf water isotopic enrichment in restinga woody species?

    Directory of Open Access Journals (Sweden)

    BRUNO H.P. ROSADO

    2013-09-01

    Full Text Available During plant-transpiration, water molecules having the lighter stable isotopes of oxygen and hydrogen evaporate and diffuse at a faster rate through the stomata than molecules having the heavier isotopes, which cause isotopic enrichment of leaf water. Although previous models have assumed that leaf water is well-mixed and isotopically uniform, non-uniform stomatal closure, promoting different enrichments between cells, and different pools of water within leaves, due to morpho-physiological traits, might lead to inaccuracies in isotopic models predicting leaf water enrichment. We evaluate the role of leaf morpho-physiological traits on leaf water isotopic enrichment in woody species occurring in a coastal vegetation of Brazil known as restinga. Hydrogen and oxygen stable isotope values of soil, plant stem and leaf water and leaf traits were measured in six species from restinga vegetation during a drought and a wet period. Leaf water isotopic enrichment relative to stem water was more homogeneous among species during the drought in contrast to the wet period suggesting convergent responses to deal to temporal heterogeneity in water availability. Average leaf water isotopic enrichment relative to stem water during the drought period was highly correlated with relative apoplastic water content. We discuss this observation in the context of current models of leaf water isotopic enrichment as a function of the Péclet effect. We suggest that future studies should include relative apoplastic water content in isotopic models.

  17. Are leaf physiological traits related to leaf water isotopic enrichment in restinga woody species?

    Science.gov (United States)

    Rosado, Bruno H P; De Mattos, Eduardo A; Sternberg, Leonel Da S L

    2013-09-01

    During plant-transpiration, water molecules having the lighter stable isotopes of oxygen and hydrogen evaporate and diffuse at a faster rate through the stomata than molecules having the heavier isotopes, which cause isotopic enrichment of leaf water. Although previous models have assumed that leaf water is well-mixed and isotopically uniform, non-uniform stomatal closure, promoting different enrichments between cells, and different pools of water within leaves, due to morpho-physiological traits, might lead to inaccuracies in isotopic models predicting leaf water enrichment. We evaluate the role of leaf morpho-physiological traits on leaf water isotopic enrichment in woody species occurring in a coastal vegetation of Brazil known as restinga. Hydrogen and oxygen stable isotope values of soil, plant stem and leaf water and leaf traits were measured in six species from restinga vegetation during a drought and a wet period. Leaf water isotopic enrichment relative to stem water was more homogeneous among species during the drought in contrast to the wet period suggesting convergent responses to deal to temporal heterogeneity in water availability. Average leaf water isotopic enrichment relative to stem water during the drought period was highly correlated with relative apoplastic water content. We discuss this observation in the context of current models of leaf water isotopic enrichment as a function of the Péclet effect. We suggest that future studies should include relative apoplastic water content in isotopic models.

  18. Inhibitory activities of Moringa oleifera leaf extract against α-glucosidase enzyme in vitro

    Science.gov (United States)

    Natsir, H.; Wahab, A. W.; Laga, A.; Arif, A. R.

    2018-03-01

    Alpha-glucosidase is a key enzyme in the final process of breaking carbohydrates into glucose. Inhibition of α-glucosidase affected more absorption of glucose, so it can reduce hyperglycemia condition. The aims of this study is to determine the effectiveness of inhibition wet and dried Moringa oleifera leaf extract through α-glucosidase activity in vitro. The effectiveness study of inhibition on the activity of α-glucosidase enzyme obtained from white glutinous rice (Oryza sativa glutinosa) was carried out using wet and dried kelor leaf extract of 13% (w/v) with 10 mM α-D-glucopyranoside (PNPG) substrate. A positive control used 1% acarbose and substrate without addition of extract was a negative control. Inhibitory activity was measured using spectrophotometers at a wavelength of 400 nm. The result showed that the inhibition activity against α-glucosidase enzyme of dried leaf extract, wet leaf extract and acarbose was 81,39%, 83,94%, and 95,4%, respectively on pH 7,0. The effectiveness inhibition of the wet Moringa leaf extract was greater than the dried leaf extract. The findings suggest that M. oleifera leaf has the potential to be developed as an alternative food therapy for diabetics.

  19. Design considerations for wet flue gas desulfurization systems - wet scrubber hardware issues

    Energy Technology Data Exchange (ETDEWEB)

    Hurwitz, H.

    1994-12-31

    About 20 years ago the first wet flue gas desulfurization systems installed on coal fired utility boilers in the United States were experiencing extreme operating problems. In addition to their failure to achieve the necessary SO{sub 2} removal efficiencies, these FGD systems required a major investment in maintenance, both material and labor, just to remain operational. These first generation systems demonstrated that a lack of understanding of the chemistry and operating conditions of wet flue gas desulfurization can lead to diastrous results. As the air pollution control industry developed, both in the United States and in Japan, a second generation of FGD systems was introduced. These designs incorporated major improvements in both system chemistry control and in the equipment utilized in the process. Indeed, the successful introduction of utility gas desulfurization systems in Germany was possible only through the transfer of the technology improvements developed in the US and in Japan. Today, technology has evolved to a third generation of wet flue gas desulfurication systems and these systems are now offered worldwide through a series of international licensing agreements. The rapid economic growth and development in Asia and the Pacific Rim combined with existing problems in ambient air quality in these same geographic areas, has resulted in the use of advanced air pollution control systems; including flue gas desulfurization both for new utility units and for many retrofit projects. To meet the requirements of the utility industry, FGD systems must meet high standards of reliability, operability and performance. Key components in achieving these objectives are: FGD System reliability/operability/performance; FGD system supplier qualifications; process design; equipment selection. This paper will discuss each of the essential factors with a concentration on the equipment selection and wet scrubber hardware issues.

  20. A critical analysis of one standard and five methods to monitor surface wetness and time-of-wetness

    Science.gov (United States)

    Camuffo, Dario; della Valle, Antonio; Becherini, Francesca

    2018-05-01

    Surface wetness is a synergistic factor to determine atmospheric corrosion, monument weathering, mould growth, sick buildings, etc. However, its detection and monitoring are neither easy nor homogeneous, for a number of factors that may affect readings. Various types of methods and sensors, either commercial or prototypes built in the lab, have been investigated and compared, i.e. the international standard ISO 9223 to evaluate corrosivity after wetness and time-of-wetness; indirect evaluation of wetness, based on the dew point calculated after the output of temperature and relative humidity sensors and direct measurements by means of capacitive wetness sensors, safety sensors, rain sensors (also known as leaf wetness sensors), infrared reflection sensors and fibre optic sensors. A comparison between the different methods is presented, specifying physical principles, forms of wetting to which they are respondent (i.e. condensation, ice melting, splashing drops, percolation and capillary rise), critical factors, use and cost.

  1. Analysis of leaf surfaces using scanning ion conductance microscopy.

    Science.gov (United States)

    Walker, Shaun C; Allen, Stephanie; Bell, Gordon; Roberts, Clive J

    2015-05-01

    Leaf surfaces are highly complex functional systems with well defined chemistry and structure dictating the barrier and transport properties of the leaf cuticle. It is a significant imaging challenge to analyse the very thin and often complex wax-like leaf cuticle morphology in their natural state. Scanning electron microscopy (SEM) and to a lesser extent Atomic force microscopy are techniques that have been used to study the leaf surface but their remains information that is difficult to obtain via these approaches. SEM is able to produce highly detailed and high-resolution images needed to study leaf structures at the submicron level. It typically operates in a vacuum or low pressure environment and as a consequence is generally unable to deal with the in situ analysis of dynamic surface events at submicron scales. Atomic force microscopy also possess the high-resolution imaging required and can follow dynamic events in ambient and liquid environments, but can over exaggerate small features and cannot image most leaf surfaces due to their inherent roughness at the micron scale. Scanning ion conductance microscopy (SICM), which operates in a liquid environment, provides a potential complementary analytical approach able to address these issues and which is yet to be explored for studying leaf surfaces. Here we illustrate the potential of SICM on various leaf surfaces and compare the data to SEM and atomic force microscopy images on the same samples. In achieving successful imaging we also show that SICM can be used to study the wetting of hydrophobic surfaces in situ. This has potentially wider implications than the study of leaves alone as surface wetting phenomena are important in a range of fundamental and applied studies. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  2. Design Aspects of Wet Scrubber System

    International Nuclear Information System (INIS)

    Lee, Hyun-Chul; Bang, Young-suk; Jung, Woo-Young; Lee, Doo-Yong

    2015-01-01

    The water pool in the wet scrubber system has advantage to cope with decay heat based on the thermal hydraulic balance such as condensation and evaporation inside it. This study focuses on the design aspects of the wet scrubber system to estimate the required water pool mass during the mission time and size of the scrubbing tank including inner structures. The design of the wet scrubber system include the estimation of the required water mass during the mission time and sizing of the scrubber vessel to contain the water pool. The condensation due to the inlet steam and evaporation due to the steam and non-condensable gas superheat and decay heat from filtered fission products should be considered to estimate the water mass required to maintain its function during the mission time. On the other hand, the level swelling due to the noncondensable gas is another important design aspect on the sizing of the scrubber vessel and determination of the entry elevation of the filtration components such as the droplet separator or filter. The minimum water level based on the minimum collapsed water level should be higher than the exit of scrubber nozzle

  3. Design Aspects of Wet Scrubber System

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyun-Chul; Bang, Young-suk; Jung, Woo-Young; Lee, Doo-Yong [FNC Technology Co. Ltd., Yongin (Korea, Republic of)

    2015-10-15

    The water pool in the wet scrubber system has advantage to cope with decay heat based on the thermal hydraulic balance such as condensation and evaporation inside it. This study focuses on the design aspects of the wet scrubber system to estimate the required water pool mass during the mission time and size of the scrubbing tank including inner structures. The design of the wet scrubber system include the estimation of the required water mass during the mission time and sizing of the scrubber vessel to contain the water pool. The condensation due to the inlet steam and evaporation due to the steam and non-condensable gas superheat and decay heat from filtered fission products should be considered to estimate the water mass required to maintain its function during the mission time. On the other hand, the level swelling due to the noncondensable gas is another important design aspect on the sizing of the scrubber vessel and determination of the entry elevation of the filtration components such as the droplet separator or filter. The minimum water level based on the minimum collapsed water level should be higher than the exit of scrubber nozzle.

  4. Sap fluxes from different parts of the rootzone modulate xylem ABA concentration during partial rootzone drying and re-wetting.

    Science.gov (United States)

    Pérez-Pérez, J G; Dodd, I C

    2015-04-01

    Previous studies with partial rootzone drying (PRD) irrigation demonstrated that alternating the wet and dry parts of the rootzone (PRD-Alternated) increased leaf xylem ABA concentration ([X-ABA]leaf) compared with maintaining the same wet and dry parts of the rootzone (PRD-Fixed). To determine the relative contributions of different parts of the rootzone to this ABA signal, [X-ABA]leaf of potted, split-root tomato (Solanum lycopersicum) plants was modelled by quantifying the proportional water uptake from different soil compartments, and [X-ABA]leaf responses to the entire pot soil-water content (θpot). Continuously measuring soil-moisture depletion by, or sap fluxes from, different parts of the root system revealed that water uptake rapidly declined (within hours) after withholding water from part of the rootzone, but was rapidly restored (within minutes) upon re-watering. Two hours after re-watering part of the rootzone, [X-ABA]leaf was equally well predicted according to θpot alone and by accounting for the proportional water uptake from different parts of the rootzone. Six hours after re-watering part of the rootzone, water uptake by roots in drying soil was minimal and, instead, occurred mainly from the newly irrigated part of the rootzone, thus [X-ABA]leaf was best predicted by accounting for the proportional water uptake from different parts of the rootzone. Contrary to previous results, alternating the wet and dry parts of the rootzone did not enhance [X-ABA]leaf compared with PRD-Fixed irrigation. Further work is required to establish whether altered root-to-shoot ABA signalling contributes to the improved yields of crops grown with alternate, rather than fixed, PRD. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  5. Leaf morphophysiology of a Neotropical mistletoe is shaped by seasonal patterns of host leaf phenology.

    Science.gov (United States)

    Scalon, Marina Corrêa; Rossatto, Davi Rodrigo; Domingos, Fabricius Maia Chaves Bicalho; Franco, Augusto Cesar

    2016-04-01

    Several mistletoe species are able to grow and reproduce on both deciduous and evergreen hosts, suggesting a degree of plasticity in their ability to cope with differences in intrinsic host functions. The aim of this study was to investigate the influence of host phenology on mistletoe water relations and leaf gas exchange. Mistletoe Passovia ovata parasitizing evergreen (Miconia albicans) hosts and P. ovata parasitizing deciduous (Byrsonima verbascifolia) hosts were sampled in a Neotropical savanna. Photosynthetic parameters, diurnal cycles of stomatal conductance, pre-dawn and midday leaf water potential, and stomatal anatomical traits were measured during the peak of the dry and wet seasons, respectively. P. ovata showed distinct water-use strategies that were dependent on host phenology. For P. ovata parasitizing the deciduous host, water use efficiency (WUE; ratio of photosynthetic rate to transpirational water loss) was 2-fold lower in the dry season than in the wet season; in contrast, WUE was maintained at the same level during the wet and dry seasons in P. ovata parasitizing the evergreen host. Generally, mistletoe and host diurnal cycles of stomatal conductance were linked, although there were clear differences in leaf water potential, with mistletoe showing anisohydric behaviour and the host showing isohydric behaviour. Compared to mistletoes attached to evergreen hosts, those parasitizing deciduous hosts had a 1.4-fold lower stomatal density and 1.2-fold wider stomata on both leaf surfaces, suggesting that the latter suffered less intense drought stress. This is the first study to show morphophysiological differences in the same mistletoe species parasitizing hosts of different phenological groups. Our results provide evidence that phenotypical plasticity (anatomical and physiological) might be essential to favour the use of a greater range of hosts.

  6. Experimental manipulation of leaf litter colonization by aquatic invertebrates in a third order tropical stream.

    Science.gov (United States)

    Uieda, V S; Carvalho, E M

    2015-05-01

    Through a manipulative experiment, the colonization of leaf litter by invertebrates was investigated in two sections of a tropical stream (spatial scale) that differed in function of the canopy cover, one with the presence (closed area) and another without riparian vegetation (open area), during one month of the dry and one of the wet season (temporal scale). The work aimed to verify differences related to four variables: season, canopy cover, leaf type and leaf condition. Litter bags containing arboreal and herbaceous leaves (leaf type variable), non-conditioned and preconditioned (leaf condition variable) were placed at the bottom of the stream in each area (canopy cover variable) and season (dry and wet), and removed after 13-day colonization. The analysis of the remaining litter dry mass per leaf bag emphasizes differences related mainly to seasonality, canopy cover and leaf type, although leaf condition was also important when combined with those three factors. Comparing the abundance of invertebrates per treatment, there was a tendency of high predominance of Chironomidae during the dry season and greater taxa diversity and evenness during the wet season, when the water flow increase could alter the availability of microhabitats for local fauna. Even though canopy cover alone was not a significant source of variation in the abundance of invertebrates, the results showed a tendency of a combined effect of canopy cover with seasonality and leaf condition.

  7. Assimilation of Soil Wetness Index and Leaf Area Index into the ISBA-A-gs land surface model: grassland case study

    Directory of Open Access Journals (Sweden)

    A. L. Barbu

    2011-07-01

    Full Text Available The performance of the joint assimilation in a land surface model of a Soil Wetness Index (SWI product provided by an exponential filter together with Leaf Area Index (LAI is investigated. The data assimilation is evaluated with different setups using the SURFEX modeling platform, for a period of seven years (2001–2007, at the SMOSREX grassland site in southwestern France. The results obtained with a Simplified Extended Kalman Filter demonstrate the effectiveness of a joint data assimilation scheme when both SWI and Leaf Area Index are merged into the ISBA-A-gs land surface model. The assimilation of a retrieved Soil Wetness Index product presents several challenges that are investigated in this study. A significant improvement of around 13 % of the root-zone soil water content is obtained by assimilating dimensionless root-zone SWI data. For comparison, the assimilation of in situ surface soil moisture is considered as well. A lower impact on the root zone is noticed. Under specific conditions, the transfer of the information from the surface to the root zone was found not accurate. Also, our results indicate that the assimilation of in situ LAI data may correct a number of deficiencies in the model, such as low LAI values in the senescence phase by using a seasonal-dependent error definition for background and observations. In order to verify the specification of the errors for SWI and LAI products, a posteriori diagnostics are employed. This approach highlights the importance of the assimilation design on the quality of the analysis. The impact of data assimilation scheme on CO2 fluxes is also quantified by using measurements of net CO2 fluxes gathered at the SMOSREX site from 2005 to 2007. An improvement of about 5 % in terms of rms error is obtained.

  8. Westinghouse containment filtered venting system wet scrubber technology

    International Nuclear Information System (INIS)

    Kristensson, S.; Nilsson, P-O.

    2014-01-01

    Following the Fukushima event Westinghouse has further developed and enhanced its filtered containment venting system (FCVS) product line. The filtration efficiency of the proven FILTRA-MVSS system installed at all Swedish NPPs as well as at the Muhelberg plant in Switzerland has been enhanced and a new wet scrubber design, SVEN (Safety Venting), based on the FILTRA-MVSS tradition, developed. To meet increased filtration requirements for organic iodine these two wet scrubber products have been complemented with a zeolite module. The offering of a select choice of products allows for a better adjustment to the specific constraints and needs of each nuclear power station that is planning for the installation of such a system. The FILTRA-MVSS (MVSS=Multi Venturi Scrubber System) is a wet containment filtered vent system that uses multiple venturies to create an interaction between the vent gases and the scrubber media allowing for removal of aerosols and gaseous iodines in a very efficient manner. The FILTRA-MVSS was originally developed to meet stringent requirements on autonomy and maintained filtration efficiency over a wide range of venting conditions. The system was jointly developed in the late 80's by ABB Atom and ABB Flaekt, today Westinghouse and Alstom. Following installations in Sweden and Switzerland the system was further developed by replacement of the gravel-bed moisture separator with a standard demister and by addition of a set of sintered metal fibre filter cartridges placed after the moisture separator step. The system is today offered as a modular steel tank design to simplify installation at site. To reduce complexity and delivery time Westinghouse has developed an alternative design in which the venturi module is replaced by a submerged metal fibre filter cartridges module. This new wet scrubber design, SVEN (patent pending), provides a flexible, compact, and lower weight system, while still preserving and even enhancing the filtration

  9. Leaf habit and woodiness regulate different leaf economy traits at a given nutrient supply.

    Science.gov (United States)

    Ordoñez, Jenny C; van Bodegom, Peter M; Witte, Jan-Philip M; Bartholomeus, Ruud P; van Dobben, Han F; Aerts, Rien

    2010-11-01

    The large variation in the relationships between environmental factors and plant traits observed in natural communities exemplifies the alternative solutions that plants have developed in response to the same environmental limitations. Qualitative attributes, such as growth form, woodiness, and leaf habit can be used to approximate these alternative solutions. Here, we quantified the extent to which these attributes affect leaf trait values at a given resource supply level, using measured plant traits from 105 different species (254 observations) distributed across 50 sites in mesic to wet plant communities in The Netherlands. For each site, soil total N, soil total P, and water supply estimates were obtained by field measurements and modeling. Effects of growth forms, woodiness, and leaf habit on relations between leaf traits (SLA, specific leaf area; LNC, leaf nitrogen concentration; and LPC, leaf phosphorus concentration) vs. nutrient and water supply were quantified using maximum-likelihood methods and Bonferroni post hoc tests. The qualitative attributes explained 8-23% of the variance within sites in leaf traits vs. soil fertility relationships, and therefore they can potentially be used to make better predictions of global patterns of leaf traits in relation to nutrient supply. However, at a given soil fertility, the strength of the effect of each qualitative attribute was not the same for all leaf traits. These differences may imply a differential regulation of the leaf economy traits at a given nutrient supply, in which SLA and LPC seem to be regulated in accordance to changes in plant size and architecture while LNC seems to be primarily regulated at the leaf level by factors related to leaf longevity.

  10. Modeling temporal and spatial variability of leaf wetness duration in Brazil

    Science.gov (United States)

    Alvares, Clayton Alcarde; de Mattos, Eduardo Moré; Sentelhas, Paulo Cesar; Miranda, Aline Cristina; Stape, José Luiz

    2015-05-01

    Leaf wetness duration (LWD) is recognized as a very important conditioner of crops and forests diseases, but clearly, there is a considerable gap in literature on temporal models for prediction of LWD in broad regions from standard meteorological data. The objective of this study was to develop monthly LWD models based on the relationship between hours of relative humidity (RH) ≥ 90 % and average RH for Brazil and based on these models to characterize the temporal and spatial LWD variability across the country. Two different relative humidity databases, being one in an hourly basis (RHh) and another in a monthly basis (RHm), were used. To elaborate the LWD models, 58 automatic weather stations distributed across the country were selected. Monthly LWD maps for the entire country were prepared, and for that, the RHm from the 358 conventional weather stations were interpolated using geostatistical techniques. RHm and LWD showed sigmoidal relationship with determination coefficient above 0.84 and were highly significant ( p LWD monthly models, a very good performance for all months was obtained, with very high precision with r between 0.92 and 0.96. Regarding the errors, mean error showed a slight tendency of overestimation during February (0.29 h day-1), May (0.31 h day-1), July (0.14 h day-1), and August (0.34 h day-1), whereas for the other months, the tendency was of underestimation like January (-0.27 h day-1) and March (-0.25 h day-1). Even as a first approach, the results presented here represent a great advance in the climatology of LWD for Brazil and will allow the development of studies related to crop and forest diseases control plans.

  11. Temporal dynamics and leaf trait variability in Neotropical dry forests

    Science.gov (United States)

    Hesketh, Michael Sean

    This thesis explores the variability of leaf traits resulting from changes in season, ecosystem successional stage, and site characteristics. In chapter two, I present a review of the use of remote sensing analysis for the evaluation of Neotropical dry forests. Here, I stress the conclusion, drawn from studies on land cover characterization, biodiversity assessment, and evaluation of forest structural characteristics, that addressing temporal variability in spectral properties is an essential element in the monitoring of these ecosystems. Chapter three describes the effect of wet-dry seasonality on spectral classification of tree and liana species. Highly accurate classification (> 80%) was possible using data from either the wet or dry season. However, this accuracy decreased by a factor of ten when data from the wet season was classified using an algorithm trained on the dry, or vice versa. I also address the potential creation of a spectral taxonomy of species, but found that any clustering based on spectral properties resulted in markedly different arrangements in the wet and dry seasons. In chapter 4, I address the variation present in both physical and spectral leaf traits according to changes in forest successional stage at dry forest sites in Mexico and Costa Rica. I found significant differences in leaf traits between successional stages, but more strongly so in Costa Rica. This variability deceased the accuracy of spectral classification of tree species by a factor of four when classifying data using an algorithm trained on a different successional stage. Chapter 5 shows the influence of seasonality and succession on trait variability in Mexico. Differences in leaf traits between successional stages were found to be greater during the dry season, but were sufficient in both seasons to negatively influence spectral classification of tree species. Throughout this thesis, I show clear and unambiguous evidence of the variability of key physical and spectral

  12. Response of vegetation indices to changes in three measures of leaf water stress

    Science.gov (United States)

    Cohen, Warren B.

    1991-01-01

    The responses of vegetation indices to changes in water stress were evaluated in two separate laboratory experiments. In one experiment the normalized difference vegetation index (NDVI), the near-IR to red ratio (near-IR/red), the Infrared Index (II), and the Moisture Stress Index (MSI) were more highly correlated to leaf water potential in lodgepole pine branches than were the Leaf Water Content Index (LWCI), the mid-IR ratio (Mid-IR), or any of the single Thematic Mapper (TM) bands. In the other experiment, these six indices and the TM Tasseled Cap brightness, greenness, and wetness indices responded to changes in leaf relative water content (RWC) differently than they responded to changes in leaf water content (WC) of three plant species, and the responses were dependent on how experimental replicates were pooled. With no pooling, the LWCI was the most highly correlated index to both RWC and WC among replications, followed by the II, MSI, and wetness. Only the LWCI was highly correlated to RWC and WC when replications were pooled within species. With among species pooling the LWCI was the only index highly correlated with RWC, while the II, MSI, Mid-IR, and wetness were most highly correlated with WC.

  13. Light-dependent leaf trait variation in 43 tropical dry forest tree species

    NARCIS (Netherlands)

    Markesteijn, L.; Poorter, L.; Bongers, F.J.J.M.

    2007-01-01

    Our understanding of leaf acclimation in relation to irradiance of fully grown or juvenile trees is mainly based on research involving tropical wet forest species. We studied sun¿shade plasticity of 24 leaf traits of 43 tree species in a Bolivian dry deciduous forest. Sampling was confined to small

  14. ABB wet flue gas desulfurization

    Energy Technology Data Exchange (ETDEWEB)

    Niijhawan, P.

    1994-12-31

    The wet limestone process for flue gas desulfurization (FGD) is outlined. The following topics are discussed: wet flue gas desulfurization, wet FGD characteristics, wet scrubbers, ABB wet FGD experience, wet FGD forced oxidation, advanced limestone FGD systems, key design elements, open spray tower design, spray tower vs. packed tower, important performance parameters, SO{sub 2} removal efficiency, influence by L/G, limestone utilization, wet FGD commercial database, particulate removal efficiencies, materials of construction, nozzle layout, spray nozzles, recycle pumps, mist elimination, horizontal flow demister, mist eliminator washing, reagent preparation system, spray tower FGDS power consumption, flue gas reheat options, byproduct conditioning system, and wet limestone system.

  15. Determination of phosphorus-32 in wet-digested plant leaves by Cerenkov counting

    International Nuclear Information System (INIS)

    Wahid, P.A.; Kamalam, N.V.; Sankar, S.J.

    1985-01-01

    A method of determination of 32 P activity in leaf samples by Cerenkov counting technique is described. The method involves wet digestion of oven-dried leaves with 1:1 nitric-perchloric acid mixture followed by transferring the digest into a scintillation counting vial with distilled water upto a final volume of 20 mL, and determining the activity in a liquid scintillation system. Reproducible count rates can be obtained if the vials are counted after 4h allowing the silica in the digest to settle. (author)

  16. Image quality of digital mammography images produced using wet and dry laser imaging systems

    International Nuclear Information System (INIS)

    Al Khalifah, K.; Brindhaban, A.; AlArfaj, R.; Jassim, O.

    2006-01-01

    Introduction: A study was carried out to compare the quality of digital mammographic images printed or processed by a wet laser imaging system and a dedicated mammographic dry laser imaging system. Material and methods: Digital images of a tissue equivalent breast phantom were obtained using a GE Senographe 2000D digital mammography system and different target/filter combinations of the X-ray tube. These images were printed on films using the Fuji FL-IM D wet laser imaging system and the Kodak DryView 8600 dry laser imaging system. The quality of images was assessed in terms of detectability of microcalcifications and simulated tumour masses by five radiologists. In addition, the contrast index and speed index of the two systems were measured using the step wedge in the phantom. The unpaired, unequal variance t-test was used to test any statistically significant differences. Results: There were no significant (p < 0.05) differences between the images printed using the two systems in terms of microcalcification and tumour mass detectability. The wet system resulted in slightly higher contrast index while the dry system showed significantly higher speed index. Conclusion: Both wet and dry laser imaging systems can produce mammography images of good quality on which 0.2 mm microcalcifications and 2 mm tumour masses can be detected. Dry systems are preferable due to the absence of wet chemical processing and solid or liquid chemical waste. The wet laser imaging systems, however, still represent a useful alternative to dry laser imaging systems for mammography studies

  17. Environmental management system case study: textile wet processes

    Energy Technology Data Exchange (ETDEWEB)

    Nasreldin, A A [Engineering Researches and Industrial Technologies Council, Sudan Academy of Sciences, Khartoum (Sudan)

    2008-10-15

    Textile industry is one of the oldest industries, it started very early in the ancient ages, its grows and improves gradually at the first and then rapidly to satisfy other different need of the mankind, even for luxury purposes, this development caused damage to environment, then its need the treatment. Textile wet processes used significant quantities of water and various kind of chemicals marketed under the name textile auxiliaries, to enhance the appearance of the fabric, serviceability, and durability. The chemical contamination of textile wet processes can be a health risk for the mill workers, consumers and for the environment as well. A number of schemes have been proposed in different countries to control the textile wet processes to create better environment and protect the ecosystem from further degradation, the developing countries need to apply their designed policies from the beginning. A theoretical study for probability of application of environmental management system in textile industry, to prevent or eliminate textile industry pollution that considered as one of the largest polluters in Sudanese environment, especially after the government (industrial ministry) support and facilitate to textile industry development. Applying environmental management system can appreciably reduce the textile industry pollution as founded from the study.(Author)

  18. Environmental management system case study: textile wet processes

    International Nuclear Information System (INIS)

    Nasreldin, A.A.

    2008-10-01

    Textile industry is one of the oldest industries, it started very early in the ancient ages, its grows and improves gradually at the first and then rapidly to satisfy other different need of the mankind, even for luxury purposes, this development caused damage to environment, then its need the treatment. Textile wet processes used significant quantities of water and various kind of chemicals marketed under the name textile auxiliaries, to enhance the appearance of the fabric, serviceability, and durability. The chemical contamination of textile wet processes can be a health risk for the mill workers, consumers and for the environment as well. A number of schemes have been proposed in different countries to control the textile wet processes to create better environment and protect the ecosystem from further degradation, the developing countries need to apply their designed policies from the beginning. A theoretical study for probability of application of environmental management system in textile industry, to prevent or eliminate textile industry pollution that considered as one of the largest polluters in Sudanese environment, especially after the government (industrial ministry) support and facilitate to textile industry development. Applying environmental management system can appreciably reduce the textile industry pollution as founded from the study.(Author)

  19. Do leaf surface characteristics affect Agrobacterium infection in tea

    Indian Academy of Sciences (India)

    The host range specificity of Agrobacterium with five tea cultivars and an unrelated species (Artemisia parviflora) having extreme surface characteristics was evaluated in the present study. The degree of Agrobacterium infection in the five cultivars of tea was affected by leaf wetness, micro-morphology and surface chemistry.

  20. Diagnosing the Role of Transpiration in the Transition from Dry to Wet Season Over the Amazon Using Satellite Observations

    Science.gov (United States)

    Wright, J. S.; Fu, R.; Yin, L.; Chae, J.

    2013-12-01

    Reanalysis data indicates that land surface evapotranspiration plays a key role in determining the timing of wet season onset over the Amazon. Here, we use satellite observations of water vapor and its stable isotopes, carbon dioxide, leaf area index, and precipitation together with reanalysis data to explore the importance of transpiration in initiating the transition from dry season to wet season over the Amazon. The growth of vegetation in this region is primarily limited by the availability of sunlight rather than the availability of soil moisture, so that the increase of solar radiation during the dry season coincides with dramatic increases in leaf area index within forested ecosystems. This period of plant growth is accompanied by uptake of carbon dioxide and enrichment of heavy isotopes in water vapor, particularly near the land surface. Reanalysis data indicate that this pre-wet season enrichment of HDO is accompanied by sharp increases in the surface latent heat flux, which eventually triggers sporadic moist convection. The transport of transpiration-enriched near-surface air by this convection causes a dramatic increase in free-tropospheric HDO in late August and September. September also marks transition points in the annual cycles of leaf area index (maximum) and carbon dioxide (minimum). The increase in convective activity during this period creates convergence, enhancing moisture transport into the region and initiating the wet season.

  1. Using the Normalized Differential Wetness Index to Scale Leaf Area Index, Create Three-Dimensional Classification Maps, and Scale Seasonal Evapotranspiration Depletions in Canopies Along the Middle Rio Grande Riparian CorridorCorridor

    Science.gov (United States)

    McDonnell, D. E.; Cleverly, J. R.; Dahm, C. N.; Coonrod, J. A.

    2005-12-01

    This research creates temporally and spatially explicit data layers of vegetation, leaf area index (LAI), three dimensional (3D) vegetation classification maps, and seasonal evapotranspiration (ET) depletions along the middle Rio Grande riparian corridor. The first part of this work produces two dimensional (2D) classification maps of native and non-native canopy vegetation using temporal patterns and the decision tree classifier in ENVI 4.0 (Research Systems Inc. Boulder, Colorado). The second part of this work correlates the normalized differential wetness index (NDWI) with field measurements of plant area index (PAI), stem area index (SAI), and leaf area index (LAI) using the LAI-2000 Plant Canopy Analyzer (PCA) (LICOR Inc., Lincoln, Nebraska). SAI is measured in winter to capture only branches and stems. PAI is measured during the growing season. Field measurements taken within 10 days of image capture dates provide adequate correlations though the closer the dates the better the correlation. LAI represents the surface area of active green leafy vegetation. NDWI correlates with both PAI and estimated LAI in both Tamarisk chinensis and Populus deltoides ssp. Wislizeni sites better than the more traditional normalized differential vegetation index (NDVI). This study also suggests that winter PCA measurements approximate SAI which should be subtracted from PAI in woody vegetation like T. chinensis and Salix exigua stands. The results show that correcting for leaf geometry by multiplying T. chinensis areas with cylindrical cladophylls by pi and the remaining flat leaf vegetation by two yields the best relationship between NDWI and total LAI. The 2Dclassification maps can be placed on top of relief maps of LAI to produce 3D classification maps. The final part of this research scales ET from four 3D eddy covariance towers located in two T. chinensis and two P. deltoides study sites. ET is regressed with LAI, percent daylight (PD), and average hourly incoming net

  2. Comparison of dosimetric properties of three commercial multi leaf collimator systems

    International Nuclear Information System (INIS)

    Hoever, K.H.; Hesse, B.M.; Haering, P.; Rhein, B.; Bannach, B.; Doll, T.; Doerner, K.J.

    1996-01-01

    Purpose: The dosimetric properties of different designs of multi leaf collimators used for the generation of irregular fields will be measured and compared with each other. Using multi leaf collimators is a practical method of achieving conformal therapy. The use for complex conformal treatment fields to be given in either in static or dynamic mode depends much on the leaf end penumbra and the leaf side penumbra as well as the transmission through the leafs. Penumbra and leakage caused by the leaves therefore are of special interest in this intercomparison. Material and Methods: To investigate the dosimetric properties of three multi leaf collimators of different technical design, measurements have been taken at two different facilities. Until now, comparative measurements have been performed for the following devices. The new Siemens double focusing MLC with 29 opposite leaf pairs, installed at the Mevatron Experimental in the German Cancer Research Center, Heidelberg. The energy used was 15 MV and 6 MV. The Philips quasi-double focusing MLC with 40 opposite leaf pairs, installed at the SL25 in the University Duesseldorf. The leaves move in a plane rather than on a circular arc and have rounded ends to reduce penumbra. The energy used was 25 MV and 6 MV. The Leibinger non-focusing micro-MLC with 40 opposite leaf pairs. This MLC was specially designed for stereotactic irradiation of the brain. The comparative study is to be continued and extended to involve additional devices in the future. Both, the film densitometry and a newly designed ten-bit Beam Imaging System BIS-710 developed by Wellhoefer company were used. The BIS-710 was developed especially for quantitative dose measuring, whereas most of the existing Portal Imaging Systems are used for image display only. The BIS-710 contains a camera for 10-bit digital data output. The size of each of the 512 x 512 detector elements is 0.6 mm x 0.6 mm Results: Measurements taken with the BIS-710 and with film

  3. Description and cost analysis of a deluge dry/wet cooling system.

    Energy Technology Data Exchange (ETDEWEB)

    Wiles, L.E.; Bamberger, J.A.; Braun, D.J.; Braun, D.J.; Faletti, D.W.; Willingham, C.E.

    1978-06-01

    The use of combined dry/wet cooling systems for large base-load power plants offers the potential for significant water savings as compared to evaporatively cooled power plants and significant cost savings in comparison to dry cooled power plants. The results of a detailed engineering and cost study of one type of dry/wet cooling system are described. In the ''deluge'' dry/wet cooling method, a finned-tube heat exchanger is designed to operate in the dry mode up to a given ambient temperature. To avoid the degradation of performance for higher ambient temperatures, water (the delugeate) is distributed over a portion of the heat exchanger surface to enhance the cooling process by evaporation. The deluge system used in this study is termed the HOETERV system. The HOETERV deluge system uses a horizontal-tube, vertical-plate-finned heat exchanger. The delugeate is distributed at the top of the heat exchanger and is allowed to fall by gravity in a thin film on the face of the plate fin. Ammonia is used as the indirect heat transfer medium between the turbine exhaust steam and the ambient air. Steam is condensed by boiling ammonia in a condenser/reboiler. The ammonia is condensed in the heat exchanger by inducing airflow over the plate fins. Various design parameters of the cooling system have been studied to evaluate their impact on the optimum cooling system design and the power-plant/utility-system interface. Annual water availability was the most significant design parameter. Others included site meteorology, heat exchanger configuration and air flow, number and size of towers, fan system design, and turbine operation. It was concluded from this study that the HOETERV deluge system of dry/wet cooling, using ammonia as an intermediate heat transfer medium, offers the potential for significant cost savings compared with all-dry cooling, while achieving substantially reduced water consumption as compared to an evaporatively cooled power plant. (LCL)

  4. PREFACE: Dynamics of wetting Dynamics of wetting

    Science.gov (United States)

    Grest, Gary S.; Oshanin, Gleb; Webb, Edmund B., III

    2009-11-01

    Capillary phenomena associated with fluids wetting other condensed matter phases have drawn great scientific interest for hundreds of years; consider the recent bicentennial celebration of Thomas Young's paper on equilibrium contact angles, describing the geometric shape assumed near a three phase contact line in terms of the relevant surface energies of the constituent phases [1]. Indeed, nearly a century has passed since the seminal papers of Lucas and Washburn, describing dynamics of capillary imbibition [2, 3]. While it is generally appreciated that dynamics of fluid wetting processes are determined by the degree to which a system is out of capillary equilibrium, myriad complications exist that challenge the fundamental understanding of dynamic capillary phenomena. The topic has gathered much interest from recent Nobel laureate Pierre-Gilles de Gennes, who provided a seminal review of relevant dissipation mechanisms for fluid droplets spreading on solid surfaces [4] Although much about the dynamics of wetting has been revealed, much remains to be learned and intrinsic technological and fundamental interest in the topic drives continuing high levels of research activity. This is enabled partly by improved experimental capabilities for resolving wetting processes at increasingly finer temporal, spatial, and chemical resolution. Additionally, dynamic wetting research advances via higher fidelity computational modeling capabilities, which drive more highly refined theory development. The significance of this topic both fundamentally and technologically has resulted in a number of reviews of research activity in wetting dynamics. One recent example addresses the evaluation of existing wetting dynamics theories from an experimentalist's perspective [5]. A Current Opinion issue was recently dedicated to high temperature capillarity, including dynamics of high temperature spreading [6]. New educational tools have recently emerged for providing instruction in wetting

  5. Wet gas sampling

    Energy Technology Data Exchange (ETDEWEB)

    Welker, T.F.

    1997-07-01

    The quality of gas has changed drastically in the past few years. Most gas is wet with hydrocarbons, water, and heavier contaminants that tend to condense if not handled properly. If a gas stream is contaminated with condensables, the sampling of that stream must be done in a manner that will ensure all of the components in the stream are introduced into the sample container as the composite. The sampling and handling of wet gas is extremely difficult under ideal conditions. There are no ideal conditions in the real world. The problems related to offshore operations and other wet gas systems, as well as the transportation of the sample, are additional problems that must be overcome if the analysis is to mean anything to the producer and gatherer. The sampling of wet gas systems is decidedly more difficult than sampling conventional dry gas systems. Wet gas systems were generally going to result in the measurement of one heating value at the inlet of the pipe and a drastic reduction in the heating value of the gas at the outlet end of the system. This is caused by the fallout or accumulation of the heavier products that, at the inlet, may be in the vapor state in the pipeline; hence, the high gravity and high BTU. But, in fact, because of pressure and temperature variances, these liquids condense and form a liquid that is actually running down the pipe as a stream or is accumulated in drips to be blown from the system. (author)

  6. Cross-scale modelling of transpiration from stomata via the leaf boundary layer

    Science.gov (United States)

    Defraeye, Thijs; Derome, Dominique; Verboven, Pieter; Carmeliet, Jan; Nicolai, Bart

    2014-01-01

    Background and Aims Leaf transpiration is a key parameter for understanding land surface–climate interactions, plant stress and plant structure–function relationships. Transpiration takes place at the microscale level, namely via stomata that are distributed discretely over the leaf surface with a very low surface coverage (approx. 0·2–5 %). The present study aims to shed more light on the dependency of the leaf boundary-layer conductance (BLC) on stomatal surface coverage and air speed. Methods An innovative three-dimensional cross-scale modelling approach was applied to investigate convective mass transport from leaves, using computational fluid dynamics. The gap between stomatal and leaf scale was bridged by including all these scales in the same computational model (10−5–10−1 m), which implies explicitly modelling individual stomata. Key Results BLC was strongly dependent on stomatal surface coverage and air speed. Leaf BLC at low surface coverage ratios (CR), typical for stomata, was still relatively high, compared with BLC of a fully wet leaf (hypothetical CR of 100 %). Nevertheless, these conventional BLCs (CR of 100 %), as obtained from experiments or simulations on leaf models, were found to overpredict the convective exchange. In addition, small variations in stomatal CR were found to result in large variations in BLCs. Furthermore, stomata of a certain size exhibited a higher mass transfer rate at lower CRs. Conclusions The proposed cross-scale modelling approach allows us to increase our understanding of transpiration at the sub-leaf level as well as the boundary-layer microclimate in a way currently not feasible experimentally. The influence of stomatal size, aperture and surface density, and also flow-field parameters can be studied using the model, and prospects for further improvement of the model are presented. An important conclusion of the study is that existing measures of conductances (e.g. from artificial leaves) can be

  7. Calibration and quality assurance for rounded leaf-end MLC systems

    International Nuclear Information System (INIS)

    Graves, Maria N.; Thompson, Antoinette V.; Martel, Mary K.; McShan, Daniel L.; Fraass, Benedick A.

    2001-01-01

    Multileaf collimator (MLC) systems are available on most commercial linear accelerators, and many of these MLC systems utilize a design with rounded leaf ends and linear motion of the leaves. In this kind of system, the agreement between the digital MLC position readouts and the light field or radiation field edges must be achieved with software, since the leaves do not move in a focused motion like that used for most collimator jaw systems. In this work we address a number of the calibration and quality assurance issues associated with the acceptance, commissioning, and routine clinical use of this type of MLC system. These issues are particularly important for MLCs used for various types of intensity modulated radiation therapy (IMRT) and small, conformal fields. For rounded leaf end MLCs, it is generally not possible to make both the light and radiation field edges agree with the digital readout, so differences between the two kinds of calibrations are illustrated in this work using one vendor's MLC system. It is increasingly critical that the MLC leaf calibration be very consistent with the radiation field edges, so in this work a methodology for performing accurate radiation field size calibration is discussed. A system external to the vendor's MLC control system is used to correct or handle limitations in the MLC control system. When such a system of corrections is utilized, it is found that the MLC radiation field size can be defined with an accuracy of approximately 0.3 mm, much more accurate than most vendor's specifications for MLC accuracy. Quality assurance testing for such a calibration correction system is also demonstrated

  8. Seasonal differences in leaf-level physiology give lianas a competitive advantage over trees in a tropical seasonal forest.

    Science.gov (United States)

    Cai, Zhi-Quan; Schnitzer, Stefan A; Bongers, Frans

    2009-08-01

    Lianas are an important component of most tropical forests, where they vary in abundance from high in seasonal forests to low in seasonal forests. We tested the hypothesis that the physiological ability of lianas to fix carbon (and thus grow) during seasonal drought may confer a distinct advantage in seasonal tropical forests, which may explain pan-tropical liana distributions. We compared a range of leaf-level physiological attributes of 18 co-occurring liana and 16 tree species during the wet and dry seasons in a tropical seasonal forest in Xishuangbanna, China. We found that, during the wet season, lianas had significantly higher CO(2) assimilation per unit mass (A(mass)), nitrogen concentration (N(mass)), and delta(13)C values, and lower leaf mass per unit area (LMA) than trees, indicating that lianas have higher assimilation rates per unit leaf mass and higher integrated water-use efficiency (WUE), but lower leaf structural investments. Seasonal variation in CO(2) assimilation per unit area (A(area)), phosphorus concentration per unit mass (P(mass)), and photosynthetic N-use efficiency (PNUE), however, was significantly lower in lianas than in trees. For instance, mean tree A(area) decreased by 30.1% from wet to dry season, compared with only 12.8% for lianas. In contrast, from the wet to dry season mean liana delta(13)C increased four times more than tree delta(13)C, with no reduction in PNUE, whereas trees had a significant reduction in PNUE. Lianas had higher A(mass) than trees throughout the year, regardless of season. Collectively, our findings indicate that lianas fix more carbon and use water and nitrogen more efficiently than trees, particularly during seasonal drought, which may confer a competitive advantage to lianas during the dry season, and thus may explain their high relative abundance in seasonal tropical forests.

  9. Wetting in a Colloidal Liquid-Gas System

    Science.gov (United States)

    Wijting, W. K.; Besseling, N. A.; Stuart, M. A.

    2003-05-01

    We present first observations of wetting phenomena in depletion interaction driven, phase separated colloidal dispersions (coated silica cyclohexane-polydimethylsiloxane). The contact angle of the colloidal liquid-gas interface at a solid substrate (coated glass) was determined for a series of compositions. Upon approach to the critical point, a transition occurs from partial to complete wetting.

  10. Wetting in a colloidal liquid-gas system

    OpenAIRE

    Wijting, W.K.; Besseling, N.A.M.; Cohen Stuart, M.A.

    2003-01-01

    We present first observations of wetting phenomena in depletion interaction driven, phase separated colloidal dispersions (coated silica-cyclohexane-polydimethylsiloxane). The contact angle of the colloidal liquid-gas interface at a solid substrate (coated glass) was determined for a series of compositions. Upon approach to the critical point, a transition occurs from partial to complete wetting.

  11. Interface reaction and wetting in the CaF2/Me systems

    International Nuclear Information System (INIS)

    Barzilai, S.; Aizenshtein, M.; Lomberg, M.; Froumin, N.; Frage, N.

    2008-01-01

    Wetting experiments using the sessile drop method were performed in the CaF 2 -Me systems (Me = Cu, Ge, Al, In and Ga). Liquid Cu, Ge, In and Ga, do not wet the CaF 2 substrate and contact angles are significantly higher than 90 deg. No condensed products were found at the metal/ceramic interface. In the CaF 2 /Al system, evidence of an interface interaction was detected and the contact angle is about 92 deg. It was established that the spreading behavior and the values of the apparent contact angle depend on the rate of evaporation of the molten metals, the rate of sublimation of the substrate and on the value of the work of adhesion at the interface. The experimental observations are well accounted for by a thermodynamic analysis of the ternary Ca-Me-F systems

  12. Biophysical control of leaf temperature

    Science.gov (United States)

    Dong, N.; Prentice, I. C.; Wright, I. J.

    2014-12-01

    and air temperature is generally neglected in terrestrial ecosystem and carbon cycle models. This is a significant omission that could lead to an over-estimation of the heat-stress vulnerability of carbon uptake in the wet tropics. Leaf energy balance theory is well established, and should be included in the next generation of models.

  13. IMRT sequencing for a six-bank multi-leaf system

    International Nuclear Information System (INIS)

    Topolnjak, R; Heide, U A van der; Lagendijk, J J W

    2005-01-01

    In this study, we present a sequencer for delivering step-and-shoot IMRT using a six-bank multi-leaf system. Such a system was proposed earlier and combines a high-resolution field-shaping ability with a large field size. It consists of three layers of two opposing leaf banks with 1 cm leaves. The layers are rotated relative to each other at 60 0 . A low-resolution mode of sequencing is achieved by using one layer of leaves as primary MLC, while the other two are used to improve back-up collimation. For high-resolution sequencing, an algorithm is presented that creates segments shaped by all six banks. Compared to a hypothetical mini-MLC with 0.4 cm leaves, a similar performance can be achieved, but a trade-off has to be made between accuracy and the number of segments

  14. Some tests of wet tropospheric calibration for the CASA Uno Global Positioning System experiment

    Science.gov (United States)

    Dixon, T. H.; Wolf, S. Kornreich

    1990-01-01

    Wet tropospheric path delay can be a major error source for Global Positioning System (GPS) geodetic experiments. Strategies for minimizing this error are investigted using data from CASA Uno, the first major GPS experiment in Central and South America, where wet path delays may be both high and variable. Wet path delay calibration using water vapor radiometers (WVRs) and residual delay estimation is compared with strategies where the entire wet path delay is estimated stochastically without prior calibration, using data from a 270-km test baseline in Costa Rica. Both approaches yield centimeter-level baseline repeatability and similar tropospheric estimates, suggesting that WVR calibration is not critical for obtaining high precision results with GPS in the CASA region.

  15. Wetting and interface interactions in the B4C/Al-Me (Me=Cu, Sn) systems

    International Nuclear Information System (INIS)

    Aizenshtein, M.; Froumin, N.; Dariel, M.P.; Frage, N.

    2008-01-01

    The wettability of B 4 C in contact with non-carbide and non-boride forming liquid metals (such as Cu or Sn) has been the subject of several studies. These metals do not wet boron carbide unless a reactive element is added to the melt. The present study is concerned with the addition of Al which completes the series of reactive elements added to the non-wetting metals. While Si represents the elements that form stable carbides and Ti represents the elements that form stable borides, Al belongs to the group of elements that form ternary borocarbides. The wetting experiments in the B 4 C/(Me-Al, Me=Cu, Sn) systems have shown that a ternary product, namely Al 8 B 4 C 7 was formed at the interface and that wetting is governed by the thermodynamic properties of the binary liquid system

  16. Interfacial reactions in the Sb–Sn/(Cu, Ni) systems: Wetting experiments

    International Nuclear Information System (INIS)

    Novakovic, R.; Lanata, T.; Delsante, S.; Borzone, G.

    2012-01-01

    Interfacial reactions in the Sb–Sn/Cu and Sb–Sn/Ni systems have been investigated by means of wetting experiments. The wetting behaviour of two lead-free alloys, namely, Sb 2.5 Sn 97.5 and Sb 14.5 Sn 85.5 (at.%), in contact with Cu and Ni-substrates has been studied in view of possible applications as high-temperature solders in the electronics industry. The contact angle measurements on Cu and Ni plates were performed by using a sessile drop apparatus. The solder/substrate interface was characterised by the SEM-EDS analyses. -- Highlights: ► Sb–Sn alloys are used as high temperature lead-free solders. ► Sb–Sn alloys have good wetting properties on Cu and Ni substrates. ► Interfacial reactions and products are important for joint properties. ► Interfacial reactions/products data can be used to study the phase diagrams.

  17. Allelopathic activity and chemical constituents of walnut (Juglans regia) leaf litter in walnut-winter vegetable agroforestry system.

    Science.gov (United States)

    Wang, Qian; Xu, Zheng; Hu, Tingxing; Rehman, Hafeez Ur; Chen, Hong; Li, Zhongbin; Ding, Bo; Hu, Hongling

    2014-01-01

    Walnut agroforestry systems have many ecological and economic benefits when intercropped with cool-season species. However, decomposing leaf litter is one of the main sources of allelochemicals in such systems. In this study, lettuce (Lactuca sativa var. angustata) was grown in the soil incorporated with walnut leaf litter to assess its allelopathic activity. Lettuce growth and physiological processes were inhibited by walnut leaf litter, especially during early growth stage (1-2 euphylla period) or with large amount of litter addition. The plants treated by small amount of leaf litter recovered their growth afterwards, while the inhibition for 180 g leaf litter persisted until harvest. Twenty-eight compounds were identified in the leaf litter, and several of them were reported to be phytotoxic, which may be responsible for the stress induced by walnut leaf litter. Thus, for highest economic value of vegetables such as lettuce, excessive incorporation of leaf litter should be discouraged.

  18. Wetting and interface phenomena in the B4C/(Cu-B-Si) system

    International Nuclear Information System (INIS)

    Aizenshtein, M.; Froumin, N.; Shapiro-Tsoref, E.; Dariel, M.P.; Frage, N.

    2005-01-01

    The addition of Si to a Cu-B liquid alloy improves wetting of the boron carbide substrate and allows maintaining a flat metal/ceramic interface. Improved wetting is associated with a shift of the boron content in the near surface layer of the substrate towards a higher B/C ratio. The experimental results are consistent with the thermodynamic analysis of the Cu-B-C-Si system

  19. Effects of some growth regulating applications on leaf yield, raw ...

    African Journals Online (AJOL)

    Jane

    2011-06-22

    Jun 22, 2011 ... covering the region of Hadim-Aladağ, 59% of the soil in the region was ... 11.00 g diet fiber, 6.3 g sugar, 9 mg sodium, 363.08 mg calcium, 2.63 g ... Inst. Inc., Canada), and leaf volume was determined by dipping the samples into ... prepared by applying the wet burning method and in these plant extracts, P ...

  20. Effect of solution and leaf surface polarity on droplet spread area and contact angle.

    Science.gov (United States)

    Nairn, Justin J; Forster, W Alison; van Leeuwen, Rebecca M

    2016-03-01

    How much an agrochemical spray droplet spreads on a leaf surface can significantly influence efficacy. This study investigates the effect solution polarity has on droplet spreading on leaf surfaces and whether the relative leaf surface polarity, as quantified using the wetting tension dielectric (WTD) technique, influences the final spread area. Contact angles and spread areas were measured using four probe solutions on 17 species. Probe solution polarity was found to affect the measured spread area and the contact angle of the droplets on non-hairy leaves. Leaf hairs skewed the spread area measurement, preventing investigation of the influence of surface polarity on hairy leaves. WTD-measured leaf surface polarity of non-hairy leaves was found to correlate strongly with the effect of solution polarity on spread area. For non-polar leaf surfaces the spread area decreases with increasing solution polarity, for neutral surfaces polarity has no effect on spread area and for polar leaf surfaces the spread area increases with increasing solution polarity. These results attest to the use of the WTD technique as a means to quantify leaf surface polarity. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  1. Leaf optical system modeled as a stochastic process. [solar radiation interaction with terrestrial vegetation

    Science.gov (United States)

    Tucker, C. J.; Garratt, M. W.

    1977-01-01

    A stochastic leaf radiation model based upon physical and physiological properties of dicot leaves has been developed. The model accurately predicts the absorbed, reflected, and transmitted radiation of normal incidence as a function of wavelength resulting from the leaf-irradiance interaction over the spectral interval of 0.40-2.50 micron. The leaf optical system has been represented as Markov process with a unique transition matrix at each 0.01-micron increment between 0.40 micron and 2.50 micron. Probabilities are calculated at every wavelength interval from leaf thickness, structure, pigment composition, and water content. Simulation results indicate that this approach gives accurate estimations of actual measured values for dicot leaf absorption, reflection, and transmission as a function of wavelength.

  2. Wetting of alkanes on water

    Energy Technology Data Exchange (ETDEWEB)

    Bertrand, E.; Bonn, D.; Meunier, J.; Shahidzadeh, N. [Ecole Normale Superieure, Laboratoire de Physique Statistique, 24 rue Lhomond, 75231, Cedex 05 Paris (France); Broseta, D.; Ragil, K. [Institut Francais du Petrole, 1-4 avenue de Bois Preau, 92852 Rueil-Malmaison Cedex (France); Dobbs, H.; Indekeu, J.O. [Katholieke Universiteit Leuven, Laboratorium voor Vaste-Stoffysica en Magnetisme, B-3001 Leuven (Belgium)

    2002-04-01

    The wetting behavior of oil on water (or brine) has important consequences for the transport properties of oil in water-containing porous reservoirs, and consequently for oil recovery. The equilibrium wetting behavior of model oils composed of pure alkanes or alkane mixtures on brine is reviewed in this paper. Intermediate between the partial wetting state, in which oil lenses coexist on water with a thin film of adsorbed alkane molecules, and the complete wetting state, in which a macroscopically thick oil layer covers the water, these systems display a third, novel wetting state, in which oil lenses coexist with a mesoscopic (a few-nanometers-thick) oil film. The nature and location of the transitions between these wetting regimes depend on oil and brine compositions, temperature and pressure.

  3. Ozone and Botrytis interactions in onion-leaf dieback: open-top chamber studies

    Energy Technology Data Exchange (ETDEWEB)

    Wukasch, R.T.; Hofstra, G.

    1977-09-01

    Paired open-top chambers were used to study interactions between Botrytis spp. and ozone in field-grown onions. Charcoal filters removed 35 to 65% of the ambient ozone, resulting in six-fold reduction of onion leaf dieback and a 28% increase in onion yield compared with unfiltered chambers. Symptoms of leaf injury appeared soon after ozone levels exceeded 294 ..mu..g/m/sup 3/ (0.15 ppm) for 4 hr. Lesions caused by Botrytis were few because no dew formed in the chambers. However, when leaves were wetted with foggers, inoculation with mycelial suspensions of B. sauamosa in late August produced significantly more lesions and leaf dieback in the unfiltered chamber. Botrytis squamosa, B. cinerea, B. allii, and several genera of secondary fungi were isolated from these lesions. Botrytis squamosa was recovered from lesions only, whereas B. cinerea and B. allii were associated more generally with onion leaf tissue regardless of lesions. 25 references, 1 figure, 2 tables.

  4. Analytical modeling of wet compression of gas turbine systems

    International Nuclear Information System (INIS)

    Kim, Kyoung Hoon; Ko, Hyung-Jong; Perez-Blanco, Horacio

    2011-01-01

    Evaporative gas turbine cycles (EvGT) are of importance to the power generation industry because of the potential of enhanced cycle efficiencies with moderate incremental cost. Humidification of the working fluid to result in evaporative cooling during compression is a key operation in these cycles. Previous simulations of this operation were carried out via numerical integration. The present work is aimed at modeling the wet-compression process with approximate analytical solutions instead. A thermodynamic analysis of the simultaneous heat and mass transfer processes that occur during evaporation is presented. The transient behavior of important variables in wet compression such as droplet diameter, droplet mass, gas and droplet temperature, and evaporation rate is investigated. The effects of system parameters on variables such as droplet evaporation time, compressor outlet temperature and input work are also considered. Results from this work exhibit good agreement with those of previous numerical work.

  5. Final report on the safety assessment of AloeAndongensis Extract, Aloe Andongensis Leaf Juice,aloe Arborescens Leaf Extract, Aloe Arborescens Leaf Juice, Aloe Arborescens Leaf Protoplasts, Aloe Barbadensis Flower Extract, Aloe Barbadensis Leaf, Aloe Barbadensis Leaf Extract, Aloe Barbadensis Leaf Juice,aloe Barbadensis Leaf Polysaccharides, Aloe Barbadensis Leaf Water, Aloe Ferox Leaf Extract, Aloe Ferox Leaf Juice, and Aloe Ferox Leaf Juice Extract.

    Science.gov (United States)

    2007-01-01

    Plant materials derived from the Aloe plant are used as cosmetic ingredients, including Aloe Andongensis Extract, Aloe Andongensis Leaf Juice, Aloe Arborescens Leaf Extract, Aloe Arborescens Leaf Juice, Aloe Arborescens Leaf Protoplasts, Aloe Barbadensis Flower Extract, Aloe Barbadensis Leaf, Aloe Barbadensis Leaf Extract, Aloe Barbadensis Leaf Juice, Aloe Barbadensis Leaf Polysaccharides, Aloe Barbadensis Leaf Water, Aloe Ferox Leaf Extract, Aloe Ferox Leaf Juice, and Aloe Ferox Leaf Juice Extract. These ingredients function primarily as skin-conditioning agents and are included in cosmetics only at low concentrations. The Aloe leaf consists of the pericyclic cells, found just below the plant's skin, and the inner central area of the leaf, i.e., the gel, which is used for cosmetic products. The pericyclic cells produce a bitter, yellow latex containing a number of anthraquinones, phototoxic compounds that are also gastrointestinal irritants responsible for cathartic effects. The gel contains polysaccharides, which can be acetylated, partially acetylated, or not acetylated. An industry established limit for anthraquinones in aloe-derived material for nonmedicinal use is 50 ppm or lower. Aloe-derived ingredients are used in a wide variety of cosmetic product types at concentrations of raw material that are 0.1% or less, although can be as high as 20%. The concentration of Aloe in the raw material also may vary from 100% to a low of 0.0005%. Oral administration of various anthraquinone components results in a rise in their blood concentrations, wide systemic distribution, accumulation in the liver and kidneys, and excretion in urine and feces; polysaccharide components are distributed systemically and metabolized into smaller molecules. aloe-derived material has fungicidal, antimicrobial, and antiviral activities, and has been effective in wound healing and infection treatment in animals. Aloe barbadensis (also known as Aloe vera)-derived ingredients were not toxic

  6. Leaf Cutter Ant (Atta cephalotes) Soil Modification and In Situ CO2 Gas Dynamics in a Neotropical Wet Forest

    Science.gov (United States)

    Fernandez Bou, A. S.; Carrasquillo Quintana, O.; Dierick, D.; Harmon, T. C.; Johnson, S.; Schwendenmann, L.; Zelikova, T. J.

    2016-12-01

    The goal of this work is to advance our understanding of soil carbon cycling in highly productive neotropical wet forests. More specifically, we are investigating the influence of leaf cutter ants (LCA) on soil CO2 gas dynamics in primary and secondary forest soils at La Selva Biological Station, Costa Rica. LCA are the dominant herbivore in tropical Americas, responsible for as much as 50% of the total herbivory. Their presence is increasing and their range is expanding because of forest fragmentation and other human impacts. We installed gas sampling wells in LCA (Atta cephalotes) nest and control sites (non-nests in the same soil and forest settings). The experimental design encompassed land cover (primary and secondary forest) and soil type (residual and alluvial). We collected gas samples monthly over an 18-month period. Several of the LCA nests were abandoned during this period. Nevertheless, we continued to sample these sites for LCA legacy effects. In several of the sites, we also installed sensors to continuously monitor soil moisture content, temperature, and CO2 levels. Within the 18-month period we conducted a 2-month field campaign to collect soil and nest vent CO2 efflux data from 3 of the nest-control pairs. Integrating the various data sets, we observed that for most of the sites nest and control soils behaved similarly during the tropical dry season. However, during the wet season gas well CO2 concentrations increased in the control sites while levels in the nests remained at dry season levels. This outcome suggests that ants modify soil gas transport properties (e.g., tortuosity). In situ time series and efflux sampling campaign data corroborated these findings. Abandoned nest CO2 levels were similar to those of the active nests, supporting the notion of a legacy effect from LCA manipulations. For this work, the period of abandonment was relatively short (several months to 1 year maximum), which appears to be insufficient for estimating the

  7. Performance of a multi leaf collimator system for MR-guided radiation therapy.

    Science.gov (United States)

    Cai, Bin; Li, Harold; Yang, Deshan; Rodriguez, Vivian; Curcuru, Austen; Wang, Yuhe; Wen, Jie; Kashani, Rojano; Mutic, Sasa; Green, Olga

    2017-12-01

    The purpose of this study was to investigate and characterize the performance of a Multi Leaf Collimator (MLC) designed for Cobalt-60 based MR-guided radiation therapy system in a 0.35 T magnetic field. The MLC design and unique assembly features in the ViewRay MRIdian system were first reviewed. The RF cage shielding of MLC motor and cables were evaluated using ACR phantoms with real-time imaging and quantified by signal-to-noise ratio. The dosimetric characterizations, including the leaf transmission, leaf penumbra, tongue-and-groove effect, were investigated using radiosensitive films. The output factor of MLC-defined fields was measured with ionization chambers for both symmetric fields from 2.1 × 2.1 cm 2 to 27.3 × 27.3 cm 2 and asymmetric fields from 10.5 × 10.5 cm 2 to 10.5 × 2.0 cm 2 . Multi leaf collimator (MLC) positional accuracy was assessed by delivering either a picket fence (PF) style pattern on radiochromic films with wire-jig phantom or double and triple-rectangular patterns on ArcCheck-MR (Sun Nuclear, Melbourne, FL, USA) with gamma analysis as the pass/fail indicator. Leaf speed tests were performed to assess the capability of full range leaf travel within manufacture's specifications. Multi leaf collimator plan delivery reproducibility was tested by repeatedly delivering both open fields and fields with irregular shaped segments over 1-month period. Comparable SNRs within 4% were observed for MLC moving and stationary plans on vendor-reconstructed images, and the direct k-space reconstructed images showed that the three SNRs are within 1%. The maximum leaf transmission for all three MLCs was less than 0.35% and the average leakage was 0.153 ± 0.006%, 0.151 ± 0.008%, and 0.159 ± 0.015% for head 1, 2, and 3, respectively. Both the leaf edge and leaf end penumbra showed comparable values within 0.05 cm, and the measured values are within 0.1 cm with TPS values. The leaf edge TG effect indicated 10% underdose and the leaf end TG showed a

  8. Leaf Litter Decomposition and Nutrient Dynamics Associated with Common Horticultural Cropland Agroforest Tree Species of Bangladesh

    Directory of Open Access Journals (Sweden)

    Md. Hasanuzzaman

    2014-01-01

    Full Text Available Mangifera indica, Zizyphus jujuba, Litchi chinensis, and Artocarpus heterophyllus are the most common cropland agroforest horticultural tree species of Bangladesh. This study focused on leaf litter decomposition and nutrient (N, P, and K dynamics during the decomposition process. This experiment was conducted for 180 days by using litter bag technique during dry and wet seasons. Mass loss was the highest (49% and 57% for A. heterophyllus and the lowest (25% was found for L. chinensis. The highest initial rates (0.75% and 2.35%/day of decomposition were observed for Z. jujuba and the lowest (0.50% and 0.79%/day for L. chinensis. The highest decay constant was observed for A. heterophyllus (2.14 and 2.34 and the lowest (0.88 and 0.94 for L. chinensis. Leaf litter of all the studied species showed a similar pattern (K > N > P of nutrient release during the decomposition process. Zizyphus jujuba showed comparatively higher return of N, P, and K than others. However, a significant (P<0.05 higher amount of mass loss, rate of decomposition, decay constant, and amount of nutrient return from leaf litter were observed during the wet season.

  9. Joint Leaf chlorophyll and leaf area index retrieval from Landsat data using a regularized model inversion system

    Science.gov (United States)

    Leaf area index (LAI) and leaf chlorophyll (Chl) content represent key biophysical and biochemical controls on water, energy and carbon exchange processes in the terrestrial biosphere. In combination, LAI and leaf Chl content provide critical information on vegetation density, vitality and photosynt...

  10. In vitro growth and leaf anatomy of Cattleya walkeriana (Gardner, 1839 grown in natural ventilation system

    Directory of Open Access Journals (Sweden)

    Adriano Bortolotti da Silva

    2014-12-01

    Full Text Available Natural ventilation system facilitates gaseous exchanges in in vitro plants promoting changes in the leaf tissue, which can be evaluated through the leaf anatomy, and it allows a cultivation closer to the photoautrophic micropropagation. The objective of this work was to evaluate the effects on in vitro growth and on the leaf anatomy of Cattleya walkeriana grown in natural and conventional ventilation system with different concentrations of sucrose (0; 15; 30 and 45 L-1 combined with different cultivation systems (conventional micropropagation and natural ventilation system. The culture medium was composed of MS salts, solidified with 7 g L-1 of agar and pH adjusted to 5.8. Forty milliliters of culture medium were distributed in 250 mL flasks, autoclaved at 120 ºC for 20 minutes. The greater plant growth, as well as the greater thickness of the mesophyll was observed with the use of 20 g L-1 sucrose in natural ventilation system. Plants grown in natural ventilation system showed a thicker leaf mesophyll, which is directly related to photoautotrophic crops. The natural ventilation system induced more elliptical stomata and probably more functional formats.

  11. Strong thermal acclimation of photosynthesis in tropical and temperate wet-forest tree species: the importance of altered Rubisco content.

    Science.gov (United States)

    Scafaro, Andrew P; Xiang, Shuang; Long, Benedict M; Bahar, Nur H A; Weerasinghe, Lasantha K; Creek, Danielle; Evans, John R; Reich, Peter B; Atkin, Owen K

    2017-07-01

    Understanding of the extent of acclimation of light-saturated net photosynthesis (A n ) to temperature (T), and associated underlying mechanisms, remains limited. This is a key knowledge gap given the importance of thermal acclimation for plant functioning, both under current and future higher temperatures, limiting the accuracy and realism of Earth system model (ESM) predictions. Given this, we analysed and modelled T-dependent changes in photosynthetic capacity in 10 wet-forest tree species: six from temperate forests and four from tropical forests. Temperate and tropical species were each acclimated to three daytime growth temperatures (T growth ): temperate - 15, 20 and 25 °C; tropical - 25, 30 and 35 °C. CO 2 response curves of A n were used to model maximal rates of RuBP (ribulose-1,5-bisphosphate) carboxylation (V cmax ) and electron transport (J max ) at each treatment's respective T growth and at a common measurement T (25 °C). SDS-PAGE gels were used to determine abundance of the CO 2 -fixing enzyme, Rubisco. Leaf chlorophyll, nitrogen (N) and mass per unit leaf area (LMA) were also determined. For all species and T growth , A n at current atmospheric CO 2 partial pressure was Rubisco-limited. Across all species, LMA decreased with increasing T growth . Similarly, area-based rates of V cmax at a measurement T of 25 °C (V cmax 25 ) linearly declined with increasing T growth , linked to a concomitant decline in total leaf protein per unit leaf area and Rubisco as a percentage of leaf N. The decline in Rubisco constrained V cmax and A n for leaves developed at higher T growth and resulted in poor predictions of photosynthesis by currently widely used models that do not account for T growth -mediated changes in Rubisco abundance that underpin the thermal acclimation response of photosynthesis in wet-forest tree species. A new model is proposed that accounts for the effect of T growth -mediated declines in V cmax 25 on A n , complementing current

  12. Communities of saprobic fungi on leaf litter of Vismia guianensis in remnants of the Brazilian Atlantic Forest

    Institute of Scientific and Technical Information of China (English)

    Loise Araujo Costa

    2017-01-01

    We examined the mycobiota associated with Vismia guianensis leaf litter in three Atlantic Forest remnants of Brazil's semiarid region.Among the study sites,two remnants were protected forest reserves,whereas the third was influenced by major anthropogenic activities.Eighteen litter samples were collected in wet and dry seasons and were processed by particle filtration technique.A total of 4750 fungal isolates of 142 taxa were identified.Species richness was higher in litter samples collected during wet season.Nonmetric multidimensional scaling multivariate analysis showed differences in the composition of fungal communities among the sampling sites and the seasons.Analysis of similarity showed that the differences were statistically significant (R =0.85;P =0.0001).Our findings revealed that spatial and temporal heterogeneity,and human activities had significant impacts on the saprobic fungi of V.guianensis leaf litter.

  13. A technical assistance on data collection on subdivision of wet-system apparatuses

    International Nuclear Information System (INIS)

    2001-09-01

    In the Ningyo-Toge Environmental Engineering Center, development on subdivision engineering system for abolition of nuclear fuel facilities has been promoted. However, data on subdivision of instruments and apparatuses to be carried out as a part of the abolition was insufficient. Therefore, here was intended to investigate data collections so as to use subdivision of a wet-system apparatuses of the smelting conversion facility begun on June, 2000, as a field of data collection as effectively as possible, on construction of the system rationally supporting abolition of nuclear fuel facility promoted at the Ningyo-Toge Environmental Engineering Center. This subdivision of the wet-system apparatuses of the facility is programmed to carry out the subdivision for two years of 2000 and 2001 fiscal years. Its working procedure is begun from non-polluted matters (electrics, instruments, and utility pipings) at every rooms to carry out appliances using uranium. Here were reported on present states survey of the subdivision, kinds and frequencies of data at the subdivision, data collection manual, and rationalization of data recording method. (G.K.)

  14. Joint leaf chlorophyll content and leaf area index retrieval from Landsat data using a regularized model inversion system (REGFLEC)

    KAUST Repository

    Houborg, Rasmus

    2015-01-19

    Leaf area index (LAI) and leaf chlorophyll content (Chll) represent key biophysical and biochemical controls on water, energy and carbon exchange processes in the terrestrial biosphere. In combination, LAI and Chll provide critical information on vegetation density, vitality and photosynthetic potentials. However, simultaneous retrieval of LAI and Chll from space observations is extremely challenging. Regularization strategies are required to increase the robustness and accuracy of retrieved properties and enable more reliable separation of soil, leaf and canopy parameters. To address these challenges, the REGularized canopy reFLECtance model (REGFLEC) inversion system was refined to incorporate enhanced techniques for exploiting ancillary LAI and temporal information derived from multiple satellite scenes. In this current analysis, REGFLEC is applied to a time-series of Landsat data.A novel aspect of the REGFLEC approach is the fact that no site-specific data are required to calibrate the model, which may be run in a largely automated fashion using information extracted entirely from image-based and other widely available datasets. Validation results, based upon in-situ LAI and Chll observations collected over maize and soybean fields in central Nebraska for the period 2001-2005, demonstrate Chll retrieval with a relative root-mean-square-deviation (RMSD) on the order of 19% (RMSD=8.42μgcm-2). While Chll retrievals were clearly influenced by the version of the leaf optical properties model used (PROSPECT), the application of spatio-temporal regularization constraints was shown to be critical for estimating Chll with sufficient accuracy. REGFLEC also reproduced the dynamics of in-situ measured LAI well (r2 =0.85), but estimates were biased low, particularly over maize (LAI was underestimated by ~36 %). This disparity may be attributed to differences between effective and true LAI caused by significant foliage clumping not being properly accounted for in the canopy

  15. Capillary Phenomena: Investigations in Compressed Bubble Migration, Geometric Wetting, and Blade-Bound Droplet Stability

    Science.gov (United States)

    Blackmore, William Henry

    Capillary flows continue to be important in numerous spacecraft systems where the effective magnitude of the gravity vector is approximately one millionth that of normal Earth gravity. Due to the free fall state of orbiting spacecraft, the effects of capillarity on the fluid systems onboard can dominate the fluid behavior over large length scales. In this research three investigations are pursued where the unique interplay between surface tension forces, wetting characteristics, and system geometry control the fluid behavior, whether in large systems aboard spacecraft, or micro-scale systems on Earth. First, efforts in support of two International Space Station (ISS) experiments are reported. A description of the development of a new NASA ground station at Portland State University is provided along with descriptions of astronaut training activities for the proper operation of four handheld experiments currently in orbit as part of the second iteration of the Capillary Flow Experiments (CFE-2). Concerning the latter, seven more vessels are expected to be launched to the ISS shortly. Analysis of the data alongside numerical simulations shows excellent agreement with theory, and a new intuitive method of viewing critical wetting angles and fluid bulk shift phenomena is offered. Secondly, during the CFE-2 space experiments, unplanned peripheral observations revealed that, on occasion, rapidly compressed air bubbles migrate along paths with vector components common to the residual acceleration onboard the ISS. Unexpectedly however, the migration velocities could be shown to be up to three orders of magnitude greater than the appropriate Stokes flow limit! Likely mechanisms are explored analytically and experimentally while citing prior theoretical works that may have anticipated such phenomena. Once properly understood, compressed bubble migration may be used as an elegant method for phase separation in spacecraft systems or microgravity-based materials manufacturing

  16. Proteomic effects of wet cupping (Al-hijamah).

    Science.gov (United States)

    Almaiman, Amer A

    2018-01-01

    Wet cupping (Al-hijamah) is a therapeutic technique practiced worldwide as a part of the Unani system of medicine. It involves bloodletting from acupoints on a patient's skin to produce a therapeutic outcome. A thorough review of research articles on wet cupping with relevance to proteomics field that are indexed by Google Scholar, PubMed, and/or Science Direct databases was performed. Eight original research articles were summarized in this paper. Overall, wet cupping did not have a significant effect on C-reactive protein, Hsp-27, sister chromatid exchanges, and cell replication index. In contrast, wet cupping was found to produce higher oxygen saturation, eliminate lactate from subcutaneous tissues, remove blood containing higher levels of malondialdehyde and nitric oxide, and produce higher activity of myeloperoxidase. The proteomic effects of wet cupping therapy have not been adequately investigated. Thus, future studies on wet cupping that use systemic and sound protocols to avoid bias should be conducted.

  17. Proteomic effects of wet cupping (Al-hijamah

    Directory of Open Access Journals (Sweden)

    Amer A. Almaiman

    2018-01-01

    Full Text Available Wet cupping (Al-hijamah is a therapeutic technique practiced worldwide as a part of the Unani system of medicine. It involves bloodletting from acupoints on a patient’s skin to produce a therapeutic outcome. A thorough review of research articles on wet cupping with relevance to proteomics field that are indexed by Google Scholar, PubMed, and/or Science Direct databases was performed. Eight original research articles were summarized in this paper. Overall, wet cupping did not have a significant effect on C-reactive protein, Hsp-27, sister chromatid exchanges, and cell replication index. In contrast, wet cupping was found to produce higher oxygen saturation, eliminate lactate from subcutaneous tissues, remove blood containing higher levels of malondialdehyde and nitric oxide, and produce higher activity of myeloperoxidase. The proteomic effects of wet cupping therapy have not been adequately investigated. Thus, future studies on wet cupping that use systemic and sound protocols to avoid bias should be conducted.

  18. Behavior of aircraft antiskid braking systems on dry and wet runway surfaces. A slip-velocity-controlled, pressure-bias-modulated system

    Science.gov (United States)

    Stubbs, S. M.; Tanner, J. A.; Smith, E. G.

    1979-01-01

    The braking and cornering response of a slip velocity controlled, pressure bias modulated aircraft antiskid braking system is investigated. The investigation, conducted on dry and wet runway surfaces, utilized one main gear wheel, brake, and tire assembly of a McDonnell Douglas DC 9 series 10 airplane. The landing gear strut was replaced by a dynamometer. The parameters, which were varied, included the carriage speed, tire loading, yaw angle, tire tread condition, brake system operating pressure, and runway wetness conditions. The effects of each of these parameters on the behavior of the skid control system is presented. Comparisons between data obtained with the skid control system and data obtained from single cycle braking tests without antiskid protection are examined.

  19. Decontamination using the high-pressure wet jet system

    International Nuclear Information System (INIS)

    Brandt, D.

    1985-01-01

    For decontaminating machine components, tools, instruments and scrap in nuclear plants the most varying decontamination procedures are used. At the nuclear power plant Wuergassen a mobile high-pressure wet jet unit, developed by Ernst Schmutz GmbH, was successfully used for the first time in extensive decontamination work. The recycling system integrated in the decontamination unit substantially reduces secondary waste, which is usually produced in large quantities by the dry jet method, and continually extracts the contaminated dirt thus guaranteeing full utilisation of the jet agent while preventing secondary contamination of the components to be treated. (orig.) [de

  20. Mechanisms of wet oxidation by hydrogen peroxide

    International Nuclear Information System (INIS)

    Baxter, R.A.

    1987-08-01

    A research programme is currently under way at BNL and MEL to investigate the possible use of Hydrogen Peroxide with metal ion catalysts as a wet oxidation treatment system for CEGB organic radioactive wastes. The published literature relating to the kinetics and mechanism of oxidation and decomposition reactions of hydrogen peroxide is reviewed and the links with practical waste management by wet oxidation are examined. Alternative wet oxidation systems are described and the similarities to the CEGB research effort are noted. (author)

  1. Global variability in leaf respiration in relation to climate and leaf traits

    Science.gov (United States)

    Atkin, Owen K.

    2015-04-01

    Leaf respiration plays a vital role in regulating ecosystem functioning and the Earth's climate. Because of this, it is imperative that that Earth-system, climate and ecosystem-level models be able to accurately predict variations in rates of leaf respiration. In the field of photosynthesis research, the F/vC/B model has enabled modellers to accurately predict variations in photosynthesis through time and space. By contrast, we lack an equivalent biochemical model to predict variations in leaf respiration. Consequently, we need to rely on phenomenological approaches to model variations in respiration across the Earth's surface. Such approaches require that we develop a thorough understanding of how rates of respiration vary among species and whether global environmental gradients play a role in determining variations in leaf respiration. Dealing with these issues requires that data sets be assembled on rates of leaf respiration in biomes across the Earth's surface. In this talk, I will use a newly-assembled global database on leaf respiration and associated traits (including photosynthesis) to highlight variation in leaf respiration (and the balance between respiration and photosynthesis) across global gradients in growth temperature and aridity.

  2. Engineering and economic evaluation of wet/dry cooling towers for water conservation

    International Nuclear Information System (INIS)

    Hu, M.C.

    1976-11-01

    The results are presented of a design and cost study for wet/dry tower systems used in conjunction with 1000 MWe nuclear power plants to reject waste heat while conserving water. Design and cost information for wet/dry tower systems are presented, and these cooling system alternatives are compared with wet and dry tower systems to determine whether the wet/dry tower concept is an economically viable alternative. The wet/dry cooling tower concept investigated is one which combines physically separated wet towers and dry towers into an operational unit. In designing the wet/dry tower, a dry cooling tower is sized to carry the plant heat load at low ambient temperatures, and a separate wet tower is added to augment the heat rejection of the dry tower at higher ambient temperatures. These wet/dry towers are designed to operate with a conventional low back pressure turbine commercially available today. The component wet and dry towers are state-of-the-art designs. From this study it was concluded that: wet/dry cooling systems can be designed to provide a significant economic advantage over dry cooling yet closely matching the dry tower's ability to conserve water, a wet/dry system which saves as much as 99 percent of the make-up water required by a wet tower can maintain that economic advantage, and therefore, for power plant sites where water is in short supply, wet/dry cooling is the economic choice over dry cooling

  3. Locomotion and attachment of leaf beetle larvae Gastrophysa viridula (Coleoptera, Chrysomelidae)

    OpenAIRE

    Zurek, Daniel B.; Gorb, Stanislav N.; Voigt, Dagmar

    2015-01-01

    While adult green dock leaf beetles Gastrophysa viridula use tarsal adhesive setae to attach to and walk on smooth vertical surfaces and ceilings, larvae apply different devices for similar purposes: pretarsal adhesive pads on thoracic legs and a retractable pygopod at the 10th abdominal segment. Both are soft smooth structures and capable of wet adhesion. We studied attachment ability of different larval instars, considering the relationship between body weight and real contact area between ...

  4. Wet granular matter a truly complex fluid

    CERN Document Server

    Herminghaus, Stephan

    2013-01-01

    This is a monograph written for the young and advanced researcher who is entering the field of wet granular matter and keen to understand the basic physical principles governing this state of soft matter. It treats wet granulates as an instance of a ternary system, consisting of the grains, a primary, and a secondary fluid. After addressing wetting phenomena in general and outlining the basic facts on dry granular systems, a chapter on basic mechanisms and their effects is dedicated to every region of the ternary phase diagram. Effects of grain shape and roughness are considered as well. Rather than addressing engineering aspects such as existing books on this topic do, the book aims to provide a generalized framework suitable for those who want to understand these systems on a more fundamental basis. Readership: For the young and advanced researcher entering the field of wet granular matter.

  5. Sensitivity of leaf size and shape to climate: Global patterns and paleoclimatic applications

    Science.gov (United States)

    Peppe, D.J.; Royer, D.L.; Cariglino, B.; Oliver, S.Y.; Newman, S.; Leight, E.; Enikolopov, G.; Fernandez-Burgos, M.; Herrera, F.; Adams, J.M.; Correa, E.; Currano, E.D.; Erickson, J.M.; Hinojosa, L.F.; Hoganson, J.W.; Iglesias, A.; Jaramillo, C.A.; Johnson, K.R.; Jordan, G.J.; Kraft, N.J.B.; Lovelock, E.C.; Lusk, C.H.; Niinemets, U.; Penuelas, J.; Rapson, G.; Wing, S.L.; Wright, I.J.

    2011-01-01

    Paleobotanists have long used models based on leaf size and shape to reconstruct paleoclimate. However, most models incorporate a single variable or use traits that are not physiologically or functionally linked to climate, limiting their predictive power. Further, they often underestimate paleotemperature relative to other proxies. Here we quantify leaf-climate correlations from 92 globally distributed, climatically diverse sites, and explore potential confounding factors. Multiple linear regression models for mean annual temperature (MAT) and mean annual precipitation (MAP) are developed and applied to nine well-studied fossil floras. We find that leaves in cold climates typically have larger, more numerous teeth, and are more highly dissected. Leaf habit (deciduous vs evergreen), local water availability, and phylogenetic history all affect these relationships. Leaves in wet climates are larger and have fewer, smaller teeth. Our multivariate MAT and MAP models offer moderate improvements in precision over univariate approaches (??4.0 vs 4.8??C for MAT) and strong improvements in accuracy. For example, our provisional MAT estimates for most North American fossil floras are considerably warmer and in better agreement with independent paleoclimate evidence. Our study demonstrates that the inclusion of additional leaf traits that are functionally linked to climate improves paleoclimate reconstructions. This work also illustrates the need for better understanding of the impact of phylogeny and leaf habit on leaf-climate relationships. ?? 2011 The Authors. New Phytologist ?? 2011 New Phytologist Trust.

  6. A simple strategy to realize biomimetic surfaces with controlled anisotropic wetting

    Science.gov (United States)

    Wu, Dong; Chen, Qi-Dai; Yao, Jia; Guan, Yong-Chao; Wang, Jian-Nan; Niu, Li-Gang; Fang, Hong-Hua; Sun, Hong-Bo

    2010-02-01

    The study of anisotropic wetting has become one of the most important research areas in biomimicry. However, realization of controlled anisotropic surfaces remains challenging. Here we investigated anisotropic wetting on grooves with different linewidth, period, and height fabricated by laser interference lithography and found that the anisotropy strongly depended on the height. The anisotropy significantly increased from 9° to 48° when the height was changed from 100 nm to 1.3 μm. This was interpreted by a thermodynamic model as a consequence of the increase of free energy barriers versus the height increase. According to the relationship, controlled anisotropic surfaces were rapidly realized by adjusting the grooves' height that was simply accomplished by changing the resin thickness. Finally, the perpendicular contact angle was further enhanced to 131°±2° by surface modification, which was very close to 135°±3° of a common grass leaf.

  7. Development of extract library from indonesian biodiversity: exploration of antibacterial activity of mangrove bruguiera cylindrica leaf extracts

    Science.gov (United States)

    Audah, K. A.; Amsyir, J.; Almasyhur, F.; Hapsari, A. M.; Sutanto, H.

    2018-03-01

    Antibacterial drugs derived from natural sources play significant roles in the prevention and treatment of bacterial infections since antibiotics have become less effective against many infectious diseases. Mangroves are very potential natural antibacterial sources among great numbers of wild medicinal plants. Bruguiera cylindrica is one of the many mangroves species which spread along Indonesian coastline. The aim of this study was to explore the antibacterial activity of B. cylindrica wet and dried leaf extracts. The wet extracts study was conducted with three different solvents system (water, ethanol, and n-Hexane) against Escherichia coli and Staphylococcus aureus. While, the dried extracts study was conducted with four different solvents system (water, ethanol, chloroform and n-Hexane) against three types of bacteria, Escherichia coli, Staphylococcus epidermidis and Staphylococcus aureus. The study showed that ethanol was the best solvent for extraction of phenolic and flavonoid. Antibacterial actitivity was measured by zone of inhibition which obtained from agar-disk diffusion method. The widest area of zone of inhibition was showed by wet extracts with ethanol against S. aureus and E. coli are 14.30 and 13.30 mm, respectively. While, the zone of inhibition dried extracts with ethanol against S. aureus, S. epidermidis and E. coli are 9.32, 6.59 and 6.20 mm, respectively. In conclusion, both type of extracts showed significant antibacterial activity against gram-positive bacteria as crude extracts.

  8. Inconel alloy 625 clad steel for application in wet scrubber systems

    International Nuclear Information System (INIS)

    Morse, S.L.; Shoemaker, L.E.

    1984-01-01

    Test panels from INCONEL 625 clad plate were successfully installed in two wet flue gas scrubber systems. In one system INCONEL 625 clad plate was located in the roof section of the absorber just ahead of the outlet ducting. The test plates, including weld seams, showed no signs to corrosion after six months of exposure. In the other scrubber test plates located in the outlet duct of an I.D. fan house, in the stack lining, and in the absorber quench area were unattacked after nine months

  9. The Effect of the Addition of Cassava Leaf Extract in The Manufacturing of Wet Noodle on Antioxidant Activity and Fe Content

    OpenAIRE

    - Novelina

    2016-01-01

    Cassava leaf contains vitamin, mineral, fiber, chlorophyll, and calorie. The vitamin which is found in cassava leaf are vitamin A, B1, B2, C, niacin, and also mineral like Fe (Ferrum), Ca (Calcium) and P (Phosphorous). In 100 g of cassava leaf contains 2 mg of Ferrum, this  amount enough to fulfill Ferrum needed by human body. Ferrum plays the important role in a human body to carry the oxygen from lungs to the tissue and to carry the electron in the process of performing energy in the cell. ...

  10. Defined wetting properties of optical surfaces

    Science.gov (United States)

    Felde, Nadja; Coriand, Luisa; Schröder, Sven; Duparré, Angela; Tünnermann, Andreas

    2017-10-01

    Optical surfaces equipped with specific functional properties have attracted increasing importance over the last decades. In the light of cost reduction, hydrophobic self-cleaning behavior is aspired. On the other side, hydrophilic properties are interesting due to their anti-fog effect. It has become well known that such wetting states are significantly affected by the surface morphology. For optical surfaces, however, this fact poses a problem, as surface roughness can induce light scattering. The generation of optical surfaces with specific wetting properties, hence, requires a profound understanding of the relation between the wetting and the structural surface properties. Thus, our work concentrates on a reliable acquisition of roughness data over a wide spatial frequency range as well as on the comprehensive description of the wetting states, which is needed for the establishment of such correlations. We will present our advanced wetting analysis for nanorough optical surfaces, extended by a vibration-based procedure, which is mainly for understanding and tailoring the wetting behavior of various solid-liquid systems in research and industry. Utilizing the relationships between surface roughness and wetting, it will be demonstrated how different wetting states for hydrophobicity and hydrophilicity can be realized on optical surfaces with minimized scatter losses.

  11. Energy and heat balance in wet DCT

    Energy Technology Data Exchange (ETDEWEB)

    Saxena, Viren; Moser, Alexander; Schaefer, Michael; Ritschel, Michael [BorgWarner Drivetrain Engineering GmbH, Ketsch (Germany)

    2012-11-01

    Wet clutch systems are well known for their thermal robustness and versatility in a wide range of automotive applications. Conventional automatics have used them for a long time as torque converter lock-up clutches, shift elements and launch clutches. With the development of DCTs, wet clutch technology has evolved in terms of launch and shift performance, controllability, robustness and efficiency. This paper discusses improvements in the wet clutch and their impact on today's vehicle applications in terms of heat and energy management. Thermal robustness is a crucial aspect for an automatic transmission. In addition to the clutch thermal performance, the influence of transmission oil cooler and oil sump warm-up behavior are discussed. Based on our latest development activities, test results and simulations, we shall discuss the latest friction material enhancement and its impact on DCTs in terms of efficiency and performance. Drag loss is a much-discussed topic during the development of wet clutch systems. This paper discusses in detail the cause and break-up of various energy losses in a wet DCT. Efficient energy management strategies for actuation systems, cooling, and lubrication, clutch apply, and pre-selection in modern power trains with engine start / stop are evaluated based on the latest test and simulation results. Finally, the paper summarizes the performance and efficiency optimized moist clutch system. (orig.)

  12. Efficacy of Moringa oleifera leaf powder as a hand-washing product: a crossover controlled study among healthy volunteers.

    Science.gov (United States)

    Torondel, Belen; Opare, David; Brandberg, Bjorn; Cobb, Emma; Cairncross, Sandy

    2014-02-14

    Moringa oleifera is a plant found in many tropical and subtropical countries. Many different uses and properties have been attributed to this plant, mainly as a nutritional supplement and as a water purifier. Its antibacterial activity against different pathogens has been described in different in vitro settings. However the potential effect of this plant leaf as a hand washing product has never been studied. The aim of this study is to test the efficacy of this product using an in vivo design with healthy volunteers. The hands of fifteen volunteers were artificially contaminated with Escherichia coli. Moringa oleifera leaf powder was tested as a hand washing product and was compared with reference non-medicated liquid soap using a cross over design following an adaptation of the European Committee for Standardization protocol (EN 1499). In a second part of tests, the efficacy of the established amount of Moringa oleifera leaf powder was compared with an inert powder using the same protocol. Application of 2 and 3 g of dried Moringa oleifera leaf powder (mean log10-reduction: 2.44 ± 0.41 and 2.58 ± 0.34, respectively) was significantly less effective than the reference soap (3.00 ± 0.27 and 2.99 ± 0.26, respectively; p Moringa oleifera (2 and 3 g) but using a wet preparation, was also significantly less effective than reference soap (p Moringa oleifera powder in dried or wet preparation (mean log10-reduction: 2.70 ± 0.27 and 2.91 ± 0.11, respectively) compared with reference soap (2.97 ± 0.28). Application of calcium sulphate inert powder was significantly less effective than the 4 g of Moringa oleifera powder (p Moringa oleifera powder in dried and wet application had the same effect as non-medicated soap when used for hand washing. Efficacious and available hand washing products could be useful in developing countries in controlling pathogenic organisms that are transmitted through contaminated hands.

  13. Cellulose nanocomposite films with in situ generated silver nanoparticles using Cassia alata leaf extract as a reducing agent.

    Science.gov (United States)

    Sivaranjana, P; Nagarajan, E R; Rajini, N; Jawaid, M; Rajulu, A Varada

    2017-06-01

    Cotton linters were dissolved in aq. (8% LiOH+15% urea) that was pre-cooled to -12.5°C. Using this solution cellulose gel films were prepared by regeneration method with ethyl alcohol as a coagulant. These wet films were diffused with 10wt% Cassia alata leaf extract that acted as a reducing agent. The leaf extract diffused cellulose wet films were used as the matrix. The wet matrix films were dipped individually in lower concentrated 1-5mM aq.AgNO 3 source solutions in the presence of sunlight and allowed the solutions to react with the diffused leaf extract reducing agent which in situ generated the silver nanoparticles (AgNPs) inside the films as well as in the source solution. The AgNPs formed in the source solution were observed by transmission electron microscope (TEM) and scanning electron microscope (SEM) while those formed in situ the films were observed by SEM and the particle size distribution was determined. The cellulose/AgNP composite films showed good antibacterial activity against Escherichia coli bacteria. These nanocomposite films were also characterized by Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), thermogravimetric analysis (TGA) and tensile tests. At temperatures below 300°C, the thermal stability of the nanocomposite films was lower than that of the matrix due to the catalytic effect of AgNPs. The nanocomposite films also possessed good tensile properties. The ecofriendly cellulose/AgNP composite films with good antibacterial activity and tensile properties can be considered for medical applications like dressing materials. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Wetting, superhydrophobicity, and icephobicity in biomimetic composite materials

    Science.gov (United States)

    Hejazi, Vahid

    Recent developments in nano- and bio-technology require new materials. Among these new classes of materials which have emerged in the recent years are biomimetic materials, which mimic structure and properties of materials found in living nature. There are a large number of biological objects including bacteria, animals and plants with properties of interest for engineers. Among these properties is the ability of the lotus leaf and other natural materials to repel water, which has inspired researchers to prepare similar surfaces. The Lotus effect involving roughness-induced superhydrophobicity is a way to design nonwetting, self-cleaning, omniphobic, icephobic, and antifouling surfaces. The range of actual and potential applications of superhydrophobic surfaces is diverse including optical, building and architecture, textiles, solar panels, lab-on-a-chip, microfluidic devices, and applications requiring antifouling from biological and organic contaminants. In this thesis, in chapter one, we introduce the general concepts and definitions regarding the wetting properties of the surfaces. In chapter two, we develop novel models and conduct experiments on wetting of composite materials. To design sustainable superhydrophobic metal matrix composite (MMC) surfaces, we suggest using hydrophobic reinforcement in the bulk of the material, rather than only at its surface. We experimentally study the wetting properties of graphite-reinforced Al- and Cu-based composites and conclude that the Cu-based MMCs have the potential to be used in the future for the applications where the wear-resistant superhydrophobicity is required. In chapter three, we introduce hydrophobic coating at the surface of concrete materials making them waterproof to prevent material failure, because concretes and ceramics cannot stop water from seeping through them and forming cracks. We create water-repellant concretes with CA close to 160o using superhydrophobic coating. In chapter four, experimental

  15. Wetting front instability in an initially wet unsaturated fracture

    International Nuclear Information System (INIS)

    Nicholl, M.J.; Glass, R.J.; Nguyen, H.A.

    1992-01-01

    Experimental results exploring gravity-driven wetting front instability in a pre-wetted, rough-walled analog fracture are presented. Initial conditions considered include a uniform moisture field wetted to field capacity of the analog fracture and the structured moisture field created by unstable infiltration into an initially dry fracture. As in previous studies performed under dry initial conditions, instability was found to result both at the cessation of stable infiltration and at flux lower than the fracture capacity under gravitational driving force. Individual fingers were faster, narrower, longer, and more numerous than observed under dry initial conditions. Wetting fronts were found to follow existing wetted structure, providing a mechanism for rapid recharge and transport

  16. Wetting front instability in an initially wet unsaturated fracture

    International Nuclear Information System (INIS)

    Nicholl, M.J.; Glass, R.J.; Nguyen, H.A.

    1993-01-01

    Experimental results exploring gravity-driven wetting from instability in a pre-wetted, rough-walled analog fractures such as those at Yucca Mountain are presented. Initial conditions considered include a uniform moisture field wetted to field capacity of the analog fracture and the structured moisture field created by unstable infiltration into an initially dry fracture. As in previous studies performed under dry initial conditions, instability was found to result both at the cessation of stable infiltration and at flux lower than the fracture capacity under gravitational driving force. Individual fingers were faster, narrower, longer, and more numerous than observed under dry initial conditions. Wetting fronts were found to follow existing wetted structure, providing a mechanism for rapid recharge and transport

  17. Wetting in a colloidal liquid-gas system

    NARCIS (Netherlands)

    Wijting, W.K.; Besseling, N.A.M.; Cohen Stuart, M.A.

    2003-01-01

    We present first observations of wetting phenomena in depletion interaction driven, phase separated colloidal dispersions (coated silica-cyclohexane-polydimethylsiloxane). The contact angle of the colloidal liquid-gas interface at a solid substrate (coated glass) was determined for a series of

  18. Description of x-ray-fluorescence (XRF) system for the Wet Scrap Development Laboratory (WSDL)

    International Nuclear Information System (INIS)

    Jedlovec, D.R.

    1981-06-01

    In support of the process control and accountability needs of the Wet Scrap Design Laboratory (WSDL), a technique utilizing X-ray Fluorescence (XRF) to determine actinide concentrations was developed and tested in FY 80, FY 81 at the General Electric Vallecitos Nuclear Center (GE-VNC). XRF analysis of uranium and plutonium solutions representative of those expected from the wet chemical processes of the WSDL was performed. This contract was to develop, test, and demonstrate control system concepts to provide a basis for an Integrated Control System (ICS) for a COPRECAL Conversion Plant. Financial support to the ICS was withdrawn before any x-ray fluorescence plutonium testing and development work could be accomplished. The following XRF testing and operation were performed at GE-VNC in FY 80, FY 81: uranium, plutonium, U/Pu testing completed September 1980; in-line testing completed October 1980; high concentration testing completed October 1980; shipment of XRF system components to W-HEDL accomplished January 1981

  19. Leaf LIMS: A Flexible Laboratory Information Management System with a Synthetic Biology Focus.

    Science.gov (United States)

    Craig, Thomas; Holland, Richard; D'Amore, Rosalinda; Johnson, James R; McCue, Hannah V; West, Anthony; Zulkower, Valentin; Tekotte, Hille; Cai, Yizhi; Swan, Daniel; Davey, Robert P; Hertz-Fowler, Christiane; Hall, Anthony; Caddick, Mark

    2017-12-15

    This paper presents Leaf LIMS, a flexible laboratory information management system (LIMS) designed to address the complexity of synthetic biology workflows. At the project's inception there was a lack of a LIMS designed specifically to address synthetic biology processes, with most systems focused on either next generation sequencing or biobanks and clinical sample handling. Leaf LIMS implements integrated project, item, and laboratory stock tracking, offering complete sample and construct genealogy, materials and lot tracking, and modular assay data capture. Hence, it enables highly configurable task-based workflows and supports data capture from project inception to completion. As such, in addition to it supporting synthetic biology it is ideal for many laboratory environments with multiple projects and users. The system is deployed as a web application through Docker and is provided under a permissive MIT license. It is freely available for download at https://leaflims.github.io .

  20. [Wet work].

    Science.gov (United States)

    Kieć-Swierczyńska, Marta; Chomiczewska, Dorota; Krecisz, Beata

    2010-01-01

    Wet work is one of the most important risk factors of occupational skin diseases. Exposure of hands to the wet environment for more than 2 hours daily, wearing moisture-proof protective gloves for a corresponding period of time or necessity to wash hands frequently lead to the disruption of epidermal stratum corneum, damage to skin barrier function and induction of irritant contact dermatitis. It may also promote penetration of allergens into the skin and increase the risk of sensitization to occupational allergens. Exposure to wet work plays a significant role in occupations, such as hairdressers and barbers, nurses and other health care workers, cleaning staff, food handlers and metalworkers. It is more common among women because many occupations involving wet work are female-dominated. The incidence of wet-work-induced occupational skin diseases can be reduced by taking appropriate preventive measures. These include identification of high-risk groups, education of workers, organization of work enabling to minimize the exposure to wet work, use of personal protective equipment and skin care after work.

  1. Leaf litter decomposition rates increase with rising mean annual temperature in Hawaiian tropical montane wet forests

    Science.gov (United States)

    Lori D. Bothwell; Paul C. Selmants; Christian P. Giardina; Creighton M. Litton

    2014-01-01

    Decomposing litter in forest ecosystems supplies nutrients to plants, carbon to heterotrophic soil microorganisms and is a large source of CO2 to the atmosphere. Despite its essential role in carbon and nutrient cycling, the temperature sensitivityof leaf litter decay in tropical forest ecosystems remains poorly resolved, especially in tropical...

  2. Relationships of leaf dark respiration to leaf nitrogen, specific leaf area and leaf life-span: a test across biomes and functional groups.

    Science.gov (United States)

    Reich, Peter B; Walters, Michael B; Ellsworth, David S; Vose, James M; Volin, John C; Gresham, Charles; Bowman, William D

    1998-05-01

    Based on prior evidence of coordinated multiple leaf trait scaling, we hypothesized that variation among species in leaf dark respiration rate (R d ) should scale with variation in traits such as leaf nitrogen (N), leaf life-span, specific leaf area (SLA), and net photosynthetic capacity (A max ). However, it is not known whether such scaling, if it exists, is similar among disparate biomes and plant functional types. We tested this idea by examining the interspecific relationships between R d measured at a standard temperature and leaf life-span, N, SLA and A max for 69 species from four functional groups (forbs, broad-leafed trees and shrubs, and needle-leafed conifers) in six biomes traversing the Americas: alpine tundra/subalpine forest, Colorado; cold temperate forest/grassland, Wisconsin; cool temperate forest, North Carolina; desert/shrubland, New Mexico; subtropical forest, South Carolina; and tropical rain forest, Amazonas, Venezuela. Area-based R d was positively related to area-based leaf N within functional groups and for all species pooled, but not when comparing among species within any site. At all sites, mass-based R d (R d-mass ) decreased sharply with increasing leaf life-span and was positively related to SLA and mass-based A max and leaf N (leaf N mass ). These intra-biome relationships were similar in shape and slope among sites, where in each case we compared species belonging to different plant functional groups. Significant R d-mass -N mass relationships were observed in all functional groups (pooled across sites), but the relationships differed, with higher R d at any given leaf N in functional groups (such as forbs) with higher SLA and shorter leaf life-span. Regardless of biome or functional group, R d-mass was well predicted by all combinations of leaf life-span, N mass and/or SLA (r 2 ≥ 0.79, P morphological, chemical and metabolic traits.

  3. Lessons from wet gas flow metering systems using differential measurements devices: Testing and flow modelling results

    Energy Technology Data Exchange (ETDEWEB)

    Cazin, J.; Couput, J.P.; Dudezert, C. et al

    2005-07-01

    A significant number of wet gas meters used for high GVF and very high GVF are based on differential pressure measurements. Recent high pressure tests performed on a variety of different DP devices on different flow loops are presented. Application of existing correlations is discussed for several DP devices including Venturi meters. For Venturi meters, deviations vary from 9% when using the Murdock correlation to less than 3 % with physical based models. The use of DP system in a large domain of conditions (Water Liquid Ratio) especially for liquid estimation will require information on the WLR This obviously raises the question of the gas and liquid flow metering accuracy in wet gas meters and highlight needs to understand AP systems behaviour in wet gas flows (annular / mist / annular mist). As an example, experimental results obtained on the influence of liquid film characteristics on a Venturi meter are presented. Visualizations of the film upstream and inside the Venturi meter are shown. They are completed by film characterization. The AP measurements indicate that for a same Lockhart Martinelli parameter, the characteristics of the two phase flow have a major influence on the correlation coefficient. A 1D model is defined and the results are compared with the experiments. These results indicate that the flow regime influences the AP measurements and that a better modelling of the flow phenomena is needed even for allocation purposes. Based on that, lessons and way forward in wet gas metering systems improvement for allocation and well metering are discussed and proposed. (author) (tk)

  4. Leaf-IT: An Android application for measuring leaf area.

    Science.gov (United States)

    Schrader, Julian; Pillar, Giso; Kreft, Holger

    2017-11-01

    The use of plant functional traits has become increasingly popular in ecological studies because plant functional traits help to understand key ecological processes in plant species and communities. This also includes changes in diversity, inter- and intraspecific interactions, and relationships of species at different spatiotemporal scales. Leaf traits are among the most important traits as they describe key dimensions of a plant's life history strategy. Further, leaf area is a key parameter with relevance for other traits such as specific leaf area, which in turn correlates with leaf chemical composition, photosynthetic rate, leaf longevity, and carbon investment. Measuring leaf area usually involves the use of scanners and commercial software and can be difficult under field conditions. We present Leaf-IT, a new smartphone application for measuring leaf area and other trait-related areas. Leaf-IT is free, designed for scientific purposes, and runs on Android 4 or higher. We tested the precision and accuracy using objects with standardized area and compared the area measurements of real leaves with the well-established, commercial software WinFOLIA using the Altman-Bland method. Area measurements of standardized objects show that Leaf-IT measures area with high accuracy and precision. Area measurements with Leaf-IT of real leaves are comparable to those of WinFOLIA. Leaf-IT is an easy-to-use application running on a wide range of smartphones. That increases the portability and use of Leaf-IT and makes it possible to measure leaf area under field conditions typical for remote locations. Its high accuracy and precision are similar to WinFOLIA. Currently, its main limitation is margin detection of damaged leaves or complex leaf morphologies.

  5. Leaf sequencing algorithms for segmented multileaf collimation

    International Nuclear Information System (INIS)

    Kamath, Srijit; Sahni, Sartaj; Li, Jonathan; Palta, Jatinder; Ranka, Sanjay

    2003-01-01

    The delivery of intensity-modulated radiation therapy (IMRT) with a multileaf collimator (MLC) requires the conversion of a radiation fluence map into a leaf sequence file that controls the movement of the MLC during radiation delivery. It is imperative that the fluence map delivered using the leaf sequence file is as close as possible to the fluence map generated by the dose optimization algorithm, while satisfying hardware constraints of the delivery system. Optimization of the leaf sequencing algorithm has been the subject of several recent investigations. In this work, we present a systematic study of the optimization of leaf sequencing algorithms for segmental multileaf collimator beam delivery and provide rigorous mathematical proofs of optimized leaf sequence settings in terms of monitor unit (MU) efficiency under most common leaf movement constraints that include minimum leaf separation constraint and leaf interdigitation constraint. Our analytical analysis shows that leaf sequencing based on unidirectional movement of the MLC leaves is as MU efficient as bidirectional movement of the MLC leaves

  6. Leaf sequencing algorithms for segmented multileaf collimation

    Energy Technology Data Exchange (ETDEWEB)

    Kamath, Srijit [Department of Computer and Information Science and Engineering, University of Florida, Gainesville, FL (United States); Sahni, Sartaj [Department of Computer and Information Science and Engineering, University of Florida, Gainesville, FL (United States); Li, Jonathan [Department of Radiation Oncology, University of Florida, Gainesville, FL (United States); Palta, Jatinder [Department of Radiation Oncology, University of Florida, Gainesville, FL (United States); Ranka, Sanjay [Department of Computer and Information Science and Engineering, University of Florida, Gainesville, FL (United States)

    2003-02-07

    The delivery of intensity-modulated radiation therapy (IMRT) with a multileaf collimator (MLC) requires the conversion of a radiation fluence map into a leaf sequence file that controls the movement of the MLC during radiation delivery. It is imperative that the fluence map delivered using the leaf sequence file is as close as possible to the fluence map generated by the dose optimization algorithm, while satisfying hardware constraints of the delivery system. Optimization of the leaf sequencing algorithm has been the subject of several recent investigations. In this work, we present a systematic study of the optimization of leaf sequencing algorithms for segmental multileaf collimator beam delivery and provide rigorous mathematical proofs of optimized leaf sequence settings in terms of monitor unit (MU) efficiency under most common leaf movement constraints that include minimum leaf separation constraint and leaf interdigitation constraint. Our analytical analysis shows that leaf sequencing based on unidirectional movement of the MLC leaves is as MU efficient as bidirectional movement of the MLC leaves.

  7. Wet-cupping removes oxidants and decreases oxidative stress.

    Science.gov (United States)

    Tagil, Suleyman Murat; Celik, Huseyin Tugrul; Ciftci, Sefa; Kazanci, Fatmanur Hacievliyagil; Arslan, Muzeyyen; Erdamar, Nazan; Kesik, Yunus; Erdamar, Husamettin; Dane, Senol

    2014-12-01

    Wet-cupping therapy is one of the oldest known medical techniques. Although it is widely used in various conditions such as acute\\chronic inflammation, infectious diseases, and immune system disorders, its mechanism of action is not fully known. In this study, we investigated the oxidative status as the first step to elucidate possible mechanisms of action of wet cupping. Wet cupping therapy is implemented to 31 healthy volunteers. Venous blood samples and Wet cupping blood samples were taken concurrently. Serum nitricoxide, malondialdehyde levels and activity of superoxide dismutase and myeloperoxidase were measured spectrophotometrically. Wet cupping blood had higher activity of myeloperoxidase, lower activity of superoxide dismutase, higher levels of malondialdehyde and nitricoxide compared to the venous blood. Wet cupping removes oxidants and decreases oxidative stress. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Development of a catalytic system for gasification of wet biomass

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, D.C.; Sealock, L.J.; Phelps, M.R.; Neuenschwander, G.G.; Hart, T.R. [Pacific Northwest Lab., Richland, WA (United States)

    1993-12-31

    A gasification system is under development at Pacific Northwest Laboratory that can be used with high-moisture biomass feedstocks. The system operates at 350{degrees}C and 205 atm using a liquid water phase as the processing medium. Since a pressurized system is used, the wet biomass can be fed as a slurry to the reactor without drying. Through the development of catalysts, a useful processing system has been produced. This paper includes assessment of processing test results of different catalysts. Reactor system results including batch, bench-scale continuous, and engineering-scale processing results are presented to demonstrate the applicability of this catalytic gasification system to biomass. The system has utility both for direct conversion of biomass to fuel gas or as a wastewater cleanup system for treatment of unconverted biomass from bioconversion processes. By the use of this system high conversions of biomass to fuel gas can be achieved. Medium-Btu is the primary product. Potential exists for recovery/recycle of some of the unreacted inorganic components from the biomass in the aqueous byproduct stream.

  9. Does overshoot in leaf development of ponderosa pine in wet years leads to bark beetle outbreaks on fine-textured soils in drier years?

    Directory of Open Access Journals (Sweden)

    Wendy Peterman

    2014-12-01

    Full Text Available Background Frequent outbreaks of insects and diseases have been recorded in the native forests of western North America during the last few decades, but the distribution of these outbreaks has been far from uniform. In some cases, recent climatic variations may explain some of this spatial variation along with the presence of expansive forests composed of dense, older trees. Forest managers and policy makers would benefit if areas especially prone to disturbance could be recognized so that mitigating actions could be taken. Methods We use two ponderosa pine-dominated sites in western Montana, U.S.A. to apply a modeling approach that couples information acquired via remote sensing, soil surveys, and local weather stations to assess where bark beetle outbreaks might first occur and why. Although there was a general downward trend in precipitation for both sites over the period between 1998 and 2010 (slope = −1.3, R2 = 0.08, interannual variability was high. Some years showed large increases followed by sharp decreases. Both sites had similar topography and fire histories, but bark beetle activity occurred earlier (circa 2000 to 2001 and more severely on one site than on the other. The initial canopy density of the two sites was also similar, with leaf area indices ranging between 1.7-2.0 m2·m−2. We wondered if the difference in bark beetle activity was related to soils that were higher in clay content at site I than at site II. To assess this possibility, we applied a process-based stand growth model (3-PG to analyze the data and evaluate the hypotheses. Results We found that when wet years were followed by drier years, the simulated annual wood production per unit of leaf area, a measure of tree vigor, dropped below a critical threshold on site I but not on site II. Conclusion We concluded that the difference in vulnerability of the two stands to beetle outbreaks can be explained largely by differences in gross photosynthesis

  10. Enamel Wetness Effects on Microshear Bond Strength of Different Bonding Agents (Adhesive Systems): An in vitro Comparative Evaluation Study.

    Science.gov (United States)

    Kulkarni, Girish; Mishra, Vinay K

    2016-05-01

    The purpose of this study was to compare the effect of enamel wetness on microshear bond strength using different adhesive systems. To evaluate microshear bond strength of three bonding agents on dry enamel; to evaluate microshear bond strength of three bonding agents on wet enamel; and to compare microshear bond strength of three different bonding agents on dry and wet enamel. Sixty extracted noncarious human premolars were selected for this study. Flat enamel surfaces of approximately 3 mm were obtained by grinding the buccal surfaces of premolars with water-cooled diamond disks. This study evaluated one etch-and-rinse adhesive system (Single Bond 2) and two self-etching adhesive systems (Clearfil SE Bond and Xeno-V). The specimens were divided into two groups (n = 30). Group I (dry) was air-dried for 30 seconds and in group II (wet) surfaces were blotted with absorbent paper to remove excess water. These groups were further divided into six subgroups (n = 10) according to the adhesives used. The resin composite, Filtek Z 250, was bonded to flat enamel surfaces that had been treated with one of the adhesives, following the manufacturer's instructions. After being stored in water at 37°C for 24 hours, bonded specimens were stressed in universal testing machine (Fig. 3) at a crosshead speed of 1 mm/min. The data were evaluated with one-way and two-way analysis of variance (ANOVA), t-test, and Tukey's Multiple Post hoc tests (a = 0.05). The two-way ANOVA and Tukey's Multiple Post hoc tests showed significant differences among adhesive systems, but wetness did not influence microshear bond strength (p = 0.1762). The one-way ANOVA and t-test showed that the all-in-one adhesive (Xeno-V) was the only material influenced by the presence of water on the enamel surface. Xeno-V showed significantly higher microshear bond strength when the enamel was kept wet. Single Bond 2 adhesive showed significantly higher microshear bond strength as compared with Xeno-V adhesive but no

  11. Thermal dimensioning of wet natural draft cooling systems

    International Nuclear Information System (INIS)

    Bourillot, Claudine.

    1975-01-01

    The conventional models of calculating wet natural draft cooling systems include two different parts. First, the thermal calculation of the dispersion is made either with an ''exact'' method of separating convection and evaporation phenomena and taking account for the steam in exces in the saturated air, or with a ''simplified'' method considering the heat transfer in the whole as resulting of a difference in enthalpies. (The latter is the Merkel theory). Secondly, the draft equation is solved for calculating air flow rate. Values of the mass transfer coefficients and pressure drops of the dispersion being needed for the computation, test bench measurements are made by the designers. As for counter-current cooling systems the models of the dispersion calculation are one-dimensional models not allowing the radial flow and air temperature distributions to be simulated; exchanges inside the rain zone are also neglected. As for crossed-current cooling systems the flow geometry entails a more complicated two-dimensional model to be used for the dispersion. In both cases, the dependence on meteorological factors such as wind, height gradients of temperature, or sunny features are disregarded [fr

  12. Wet microcontact printing (µCP) for micro-reservoir drug delivery systems

    International Nuclear Information System (INIS)

    Lee, Hong-Pyo; Ryu, WonHyoung

    2013-01-01

    When micro-reservoir-type drug delivery systems are fabricated, loading solid drugs in drug reservoirs at microscale is often a non-trivial task. This paper presents a simple and effective solution to load a small amount of drug solution at microscale using ‘wet’ microcontact printing (µCP). In this wet µCP, a liquid solution containing drug molecules (methylene blue and tetracycline HCl) dissolved in a carrier solvent was transferred to a target surface (drug reservoir) by contact printing process. In particular, we have investigated the dependence of the quantity and morphology of transferred drug molecules on the stamp size, concentration, printing times, solvent types and surfactant concentration. It was also found that the repetition of printing using a non-volatile solvent such as polyethylene glycol (PEG) as a drug carrier material actually increased the transferred amount of drug molecules in proportion to the printing times based on asymmetric liquid bridge formation. Utilizing this wet µCP, drug delivery devices containing different quantity of drugs in micro-reservoirs were fabricated and their performance as controlled drug delivery devices was demonstrated. (paper)

  13. Wetting of Water on Graphene

    KAUST Repository

    Bera, Bijoyendra; Shahidzadeh, Noushine; Mishra, Himanshu; Bonn, Daniel

    2016-01-01

    The wetting properties of graphene have proven controversial and difficult to assess. The presence of a graphene layer on top of a substrate does not significantly change the wetting properties of the solid substrate, suggesting that a single graphene layer does not affect the adhesion between the wetting phase and the substrate. However, wetting experiments of water on graphene show contact angles that imply a large amount of adhesion. Here, we investigate the wetting of graphene by measuring the mass of water vapor adsorbing to graphene flakes of different thickness at different relative humidities. Our experiments unambiguously show that the thinnest of graphene flakes do not adsorb water, from which it follows that the contact angle of water on these flakes is ~180o. Thicker flakes of graphene nanopowder, on the other hand, do adsorb water. A calculation of the van der Waals (vdW) interactions that dominate the adsorption in this system confirms that the adhesive interactions between a single atomic layer of graphene and water are so weak that graphene is superhydrophobic. The observations are confirmed in an independent experiment on graphene-coated water droplets that shows that it is impossible to make liquid 'marbles' with molecularly thin graphene.

  14. Wetting of Water on Graphene

    KAUST Repository

    Bera, Bijoyendra

    2016-11-28

    The wetting properties of graphene have proven controversial and difficult to assess. The presence of a graphene layer on top of a substrate does not significantly change the wetting properties of the solid substrate, suggesting that a single graphene layer does not affect the adhesion between the wetting phase and the substrate. However, wetting experiments of water on graphene show contact angles that imply a large amount of adhesion. Here, we investigate the wetting of graphene by measuring the mass of water vapor adsorbing to graphene flakes of different thickness at different relative humidities. Our experiments unambiguously show that the thinnest of graphene flakes do not adsorb water, from which it follows that the contact angle of water on these flakes is ~180o. Thicker flakes of graphene nanopowder, on the other hand, do adsorb water. A calculation of the van der Waals (vdW) interactions that dominate the adsorption in this system confirms that the adhesive interactions between a single atomic layer of graphene and water are so weak that graphene is superhydrophobic. The observations are confirmed in an independent experiment on graphene-coated water droplets that shows that it is impossible to make liquid \\'marbles\\' with molecularly thin graphene.

  15. Rice leaf hydrophobicity and gas films are conferred by a wax synthesis gene (LGF1) and contribute to flood tolerance

    DEFF Research Database (Denmark)

    Kurokawa, Yusuke; Nagai, Keisuke; Hung, Phung Danh

    2018-01-01

    Floods impede gas (O2and CO2) exchange between plants and the environment. A mechanism to enhance plant gas exchange under water comprises gas films on hydrophobic leaves, but the genetic regulation of this mechanism is unknown. We used a rice mutant (dripping wet leaf 7, drp7) which does...... not retain gas films on leaves, and its wild-type (Kinmaze), in gene discovery for this trait. Gene complementation was tested in transgenic lines. Functional properties of leaves as related to gas film retention and underwater photosynthesis were evaluated. Leaf Gas Film 1 (LGF1) was identified as the gene...... determining leaf gas films. LGF1 regulates C30 primary alcohol synthesis, which is necessary for abundant epicuticular wax platelets, leaf hydrophobicity and gas films on submerged leaves. This trait enhanced underwater photosynthesis 8.2-fold and contributes to submergence tolerance. Gene function...

  16. Wetting behavior of liquid Fe-C-Ti alloys on sapphire

    International Nuclear Information System (INIS)

    Gelbstein, M.; Froumin, N.; Frage, N.

    2008-01-01

    Wetting behavior in the (Fe-C-Ti)/sapphire system was studied at 1823 K. The wetting angle between sapphire and Fe-C alloys is higher than 90 deg. (93 deg. and 105 deg. for the alloys with 1.4 and 3.6 at.% C, respectively). The presence of Ti improves the wetting of the iron-carbon alloys, especially for the alloys with carbon content of 3.6 at.%. The addition of 5 at.% Ti to Fe-3.6 at.% C provides a contact angle of about 30 deg., while the same addition to Fe-1.4 at.% C decreases the wetting angle to 70 deg. only. It was established that the wetting in the systems is controlled by the formation of a titanium oxicarbide layer at the interface, which composition and thickness depend on C and Ti contents in the melt. The experimental observations are well accounted for by a thermodynamic analysis of the Fe-Ti-Al-O-C system

  17. Wetting behavior of mixtures of water and nonionic polyoxyethylene alcohol.

    Science.gov (United States)

    Wu, Chih-Kang; Chen, Li-Jen

    2005-07-19

    Five binary water + C4Ej mixtures, water + n-C4E0, water + 2-C4E0, water + iso-C4E0, water + n-C4E1, and water + iso-C4E1, were chosen to perform the surface/interfacial tension measurements over the experimental temperature range from 10 to 85 degrees C at the normal pressure by using a homemade pendent drop/bubble tensiometer. The symbol CiEj is the abbreviation of a nonionic polyoxyethylene alcohol CiH(2i+1)(OCH2CH2)jOH. The wetting behavior of the CiEj-rich phase at the interface separating gas and the aqueous phase is systematically examined according to the wetting coefficient resulting from the experimental data of surface/interfacial tensions measurements. For those systems with a lower critical solution temperature, for example, water + n-C6E2, water + n-C4E1, and water + iso-C4E1, a wetting transition from partial wetting to nonwetting is always observed when the system is brought to close to its lower critical solution temperature. On the other hand, to start with a partial wetting CiEj-rich phase, a wetting transition from partial wetting to complete wetting is always observed when the system is driven to approach its upper critical solution temperature. The effect of hydrophobicity of CiEj on the wetting behavior of the CiEj-rich phase at the interface separating gas and the aqueous phase was carefully investigated by using five sets of mixtures: (1) water + n-C4E0, water + n-C5E0, and water + n-C6E0; (2) water + 2-C4E0 and water + 2-C5E0; (3) water + 2-C4E0 and water + n-C4E0; (4) water + n-C4E1, water + n-C5E1, and water + n-C6E1; (5) water + n-C4E0 and water + n-C4E1. The CiEj-rich phase would tend to drive away from complete wetting (or nonwetting) to partial wetting with an increase in the hydrophobicity of CiEj in the binary water + CiEj system. All the wetting behavior observed in the water + CiEj mixtures is consistent with the prediction of the critical point wetting theory of Cahn.

  18. Model determination and validation for reactive wetting processes

    Energy Technology Data Exchange (ETDEWEB)

    Yost, F.G.; O`Toole, E.J.; Sackinger, P.A. [Sandia National Labs., Albuquerque, NM (United States); Swiler, T.P. [Univ. of New Mexico, Albuquerque, NM (United States). Dept. of Chemical and Nuclear Engineering

    1998-01-01

    It is shown that dissolutive wetting initially yields a metastable equilibrium. A compact model for the kinetics of approach to this metastable state is described. The technique for constructing these kinetics stems from the early work of Onsager and begins with a relationship for the entropy production. From this, a coupled set of nonlinear, ordinary differential equations can be written directly. The equations are solved numerically for the wetted area and compared with experimental data. The model captures many of the subtle complexities of dissolutive wetting such as multiple metastable states. Sessile drop experiments involving a variety of Bi-Sn alloys on solid Bi substrates were performed. Substrates prepared from small and large-grained polycrystals and single crystals were used to measure equilibrium and metastable contact angles and estimate the surface tension and equilibrium contact angle of the solid-liquid interface. The substrates were also used to investigate the coupling of the dissolution and wetting processes and to investigate the effect of substrate grain size on wetting. It was determined that the equilibrium wetting geometry is independent of linear scale and that grain size has little influence on wetting or dissolution in the Bi-Sn system. To investigate the atomic behavior of liquids at interfaces during wetting, the authors simulated wetting in the Ag-Cu system using molecular dynamics with atomic potentials and observed both atomic dynamics and structural correlations of the liquid-solid interface. The authors found that spreading is prompted by interactions between the liquid and the substrate surface that cause the liquid layer in contact with the substrate to take on some of the symmetry of the substrate surface and result in the formation of a liquid monolayer that extends beyond the major part of the liquid droplet.

  19. A six-bank multi-leaf system for high precision shaping of large fields

    International Nuclear Information System (INIS)

    Topolnjak, R; Heide, U A van der; Raaymakers, B W; Kotte, A N T J; Welleweerd, J; Lagendijk, J J W

    2004-01-01

    In this study, we present the design for an alternative MLC system that allows high precision shaping of large fields. The MLC system consists of three layers of two opposing leaf banks. The layers are rotated 60 deg. relative to each other. The leaves in each bank have a standard width of 1 cm projected at the isocentre. Because of the symmetry of the collimator set-up it is expected that collimator rotation will not be required, thus simplifying the construction considerably. A 3D ray tracing computer program was developed in order to simulate the fluence profile for a given collimator and used to optimize the design and investigate its performance. The simulations show that a six-bank collimator will afford field shaping of fields of about 40 cm diameter with a precision comparable to that of existing mini MLCs with a leaf width of 4 mm

  20. A non-destructive method for estimating onion leaf area

    Directory of Open Access Journals (Sweden)

    Córcoles J.I.

    2015-06-01

    Full Text Available Leaf area is one of the most important parameters for characterizing crop growth and development, and its measurement is useful for examining the effects of agronomic management on crop production. It is related to interception of radiation, photosynthesis, biomass accumulation, transpiration and gas exchange in crop canopies. Several direct and indirect methods have been developed for determining leaf area. The aim of this study is to develop an indirect method, based on the use of a mathematical model, to compute leaf area in an onion crop using non-destructive measurements with the condition that the model must be practical and useful as a Decision Support System tool to improve crop management. A field experiment was conducted in a 4.75 ha commercial onion plot irrigated with a centre pivot system in Aguas Nuevas (Albacete, Spain, during the 2010 irrigation season. To determine onion crop leaf area in the laboratory, the crop was sampled on four occasions between 15 June and 15 September. At each sampling event, eight experimental plots of 1 m2 were used and the leaf area for individual leaves was computed using two indirect methods, one based on the use of an automated infrared imaging system, LI-COR-3100C, and the other using a digital scanner EPSON GT-8000, obtaining several images that were processed using Image J v 1.43 software. A total of 1146 leaves were used. Before measuring the leaf area, 25 parameters related to leaf length and width were determined for each leaf. The combined application of principal components analysis and cluster analysis for grouping leaf parameters was used to reduce the number of variables from 25 to 12. The parameter derived from the product of the total leaf length (L and the leaf diameter at a distance of 25% of the total leaf length (A25 gave the best results for estimating leaf area using a simple linear regression model. The model obtained was useful for computing leaf area using a non

  1. Leaf optical properties with explicit description of its biochemical composition: direct and inverse problems

    Energy Technology Data Exchange (ETDEWEB)

    Fourty, T. [INRA, Avignon (France); Baret, F.; Jacquemoud, S.; Schmuck, G.; Verdebout, J.

    1996-05-15

    This study presents a methodology to estimate the leaf biochemical compounds specific absorption coefficients and to use them to predict leaf biochemistry. A wide range of leaves was collected including variations in species and leaf status. All the leaves were dried out. The biochemical composition was measured using classical wet chemistry techniques to determine lignin, cellulose, hemicellulose, starch, and protein contents. Concurrently, leaf reflectance and transmittance were measured with a high spectral resolution spectrophotometer in the 800–2500 nm range with approximately 1 nm spectral resolution and sampling interval. In addition, infinite reflectance achieved by stacking leaves was also measured. The PROSPECT leaf optical properties model was first inverted over a selection of wavebands in the 800–2400 nm domain to provide estimates of the scattering characteristics using leaf reflectance, transmittance, and infinite reflectance data. Then, the model was inverted again over all the wavelengths to estimate the global absorption coefficient, using the previously estimated scattering properties. The global absorption coefficient was eventually explained using the measured biochemical composition by fitting the corresponding specific absorption coefficients after substraction of the measured contribution of the residual structural water absorption. Results show that the derived specific absorption coefficients are quite robustly estimated. Further, they are in good agreement with known absorption features of each biochemical compound. The average contribution of each biochemical compound to leaf absorption feature is also evaluated. Sugar, cellulose, and hemicellulose are the main compounds that contribute to absorption. Results demonstrate the possibility of modeling leaf optical properties of dry leaves with explicit description of leaf biochemistry. Estimates of the detailed biochemical composition obtained by model inversion over the 1300–2400 nm

  2. Modification of a three-dimensional treatment planning system for the use of multi-leaf collimators in conformation radiotherapy

    International Nuclear Information System (INIS)

    Boesecke, R.; Becker, G.; Alandt, K.; Pastyr, O.; Doll, J.; Schlegel, W.; Lorenz, W.J.

    1991-01-01

    The multi-leaf collimator of the DKFZ is designed as a low cost add-on device for conventional linear accelerators for radiotherapy. The technical specification of the computer controlled collimator is briefly described . A major limitation in the use of the wide capabilities of multi-leaf collimators in the clinic is still an appropriate treatment planning system. This paper describes treatment planning and dose calculation techniques for multi-leaf collimators and shows examples where the capabilities of the collimators are used extensively. (author). 18 refs.; 8 figs.; 2 tabs

  3. Concept of CFD model of natural draft wet-cooling tower flow

    Directory of Open Access Journals (Sweden)

    Hyhlík T.

    2014-03-01

    Full Text Available The article deals with the development of CFD model of natural draft wet-cooling tower flow. The physical phenomena taking place within a natural draft wet cooling tower are described by the system of conservation law equations along with additional equations. The heat and mass transfer in the counterflow wet-cooling tower fill are described by model [1] which is based on the system of ordinary differential equations. Utilization of model [1] of the fill allows us to apply commonly measured fill characteristics as shown by [2].The boundary value problem resulting from the fill model is solved separately. The system of conservation law equations is interlinked with the system of ordinary differential equations describing the phenomena occurring in the counterflow wet-cooling tower fill via heat and mass sources and via boundary conditions. The concept of numerical solution is presented for the quasi one dimensional model of natural draft wet-cooling tower flow. The simulation results are shown.

  4. Leaf nutrient resorption, leaf lifespan and the retention of nutrients in seagrass systems

    NARCIS (Netherlands)

    Hemminga, M.A.; Marbà, N.; Stapel, J.

    1999-01-01

    Efficient nutrient resorption from senescing leaves, and extended leaf life spans are important strategies in order to conserve nutrients for plants in general. Despite the fact that seagrasses often grow in oligotrophic waters, these conservation strategies are not strongly developed in seagrasses.

  5. Wet cutting

    Energy Technology Data Exchange (ETDEWEB)

    Hole, B. [IMC Technical Services (United Kingdom)

    1999-08-01

    Continuous miners create dust and methane problems in underground coal mining. Control has usually been achieved using ventilation techniques as experiments with water based suppression have led to flooding and electrical problems. Recent experience in the US has led to renewed interest in wet head systems. This paper describes tests of the Hydraphase system by IMC Technologies. Ventilation around the cutting zone, quenching of hot ignition sources, dust suppression, the surface trial gallery tests, the performance of the cutting bed, and flow of air and methane around the cutting head are reviewed. 1 ref., 2 figs., 2 photos.

  6. Thermo-fluid dynamic analysis of wet compression process

    Energy Technology Data Exchange (ETDEWEB)

    Mohan, Abhay; Kim, Heuy Dong [School of Mechanical Engineering, Andong National University, Andong (Korea, Republic of); Chidambaram, Palani Kumar [FMTRC, Daejoo Machinery Co. Ltd., Daegu (Korea, Republic of); Suryan, Abhilash [Dept. of Mechanical Engineering, College of Engineering Trivandrum, Kerala (India)

    2016-12-15

    Wet compression systems increase the useful power output of a gas turbine by reducing the compressor work through the reduction of air temperature inside the compressor. The actual wet compression process differs from the conventional single phase compression process due to the presence of latent heat component being absorbed by the evaporating water droplets. Thus the wet compression process cannot be assumed isentropic. In the current investigation, the gas-liquid two phase has been modeled as air containing dispersed water droplets inside a simple cylinder-piston system. The piston moves in the axial direction inside the cylinder to achieve wet compression. Effects on the thermodynamic properties such as temperature, pressure and relative humidity are investigated in detail for different parameters such as compression speeds and overspray. An analytical model is derived and the requisite thermodynamic curves are generated. The deviations of generated thermodynamic curves from the dry isentropic curves (PV{sup γ} = constant) are analyzed.

  7. Thermo-fluid dynamic analysis of wet compression process

    International Nuclear Information System (INIS)

    Mohan, Abhay; Kim, Heuy Dong; Chidambaram, Palani Kumar; Suryan, Abhilash

    2016-01-01

    Wet compression systems increase the useful power output of a gas turbine by reducing the compressor work through the reduction of air temperature inside the compressor. The actual wet compression process differs from the conventional single phase compression process due to the presence of latent heat component being absorbed by the evaporating water droplets. Thus the wet compression process cannot be assumed isentropic. In the current investigation, the gas-liquid two phase has been modeled as air containing dispersed water droplets inside a simple cylinder-piston system. The piston moves in the axial direction inside the cylinder to achieve wet compression. Effects on the thermodynamic properties such as temperature, pressure and relative humidity are investigated in detail for different parameters such as compression speeds and overspray. An analytical model is derived and the requisite thermodynamic curves are generated. The deviations of generated thermodynamic curves from the dry isentropic curves (PV γ = constant) are analyzed

  8. Maize YABBY genes drooping leaf1 and drooping leaf2 affect agronomic traits by regulating leaf architecture

    Science.gov (United States)

    Leaf architectural traits, such as length, width and angle, directly influence canopy structure and light penetration, photosynthate production and overall yield. We discovered and characterized a maize (Zea mays) mutant with aberrant leaf architecture we named drooping leaf1 (drl1), as leaf blades ...

  9. Particle-assisted wetting

    International Nuclear Information System (INIS)

    Xu Hui; Yan Feng; Tierno, Pietro; Marczewski, Dawid; Goedel, Werner A

    2005-01-01

    Wetting of a solid surface by a liquid is dramatically impeded if either the solid or the liquid is decorated by particles. Here it is shown that in the case of contact between two liquids the opposite effect may occur; mixtures of a hydrophobic liquid and suitable particles form wetting layers on a water surface though the liquid alone is non-wetting. In these wetting layers, the particles adsorb to, and partially penetrate through, the liquid/air and/or the liquid/water interface. This formation of wetting layers can be explained by the reduction in total interfacial energy due to the replacement of part of the fluid/fluid interfaces by the particles. It is most prominent if the contact angles at the fluid/fluid/particle contact lines are close to 90 0

  10. [Application of quality by design in granulation process for Ginkgo leaf tablet (Ⅲ): process control strategy based on design space].

    Science.gov (United States)

    Cui, Xiang-Long; Xu, Bing; Sun, Fei; Dai, Sheng-Yun; Shi, Xin-Yuan; Qiao, Yan-Jiang

    2017-03-01

    In this paper, under the guidance of quality by design (QbD) concept, the control strategy of the high shear wet granulation process of the ginkgo leaf tablet based on the design space was established to improve the process controllability and product quality consistency. The median granule size (D50) and bulk density (Da) of granules were identified as critical quality attributes (CQAs) and potential critical process parameters (pCPPs) were determined by the failure modes and effect analysis (FMEA). The Plackeet-Burmann experimental design was used to screen pCPPs and the results demonstrated that the binder amount, the wet massing time and the wet mixing impeller speed were critical process parameters (CPPs). The design space of the high shear wet granulation process was developed within pCPPs range based on the Box-Behnken design and quadratic polynomial regression models. ANOVA analysis showed that the P-values of model were less than 0.05 and the values of lack of fit test were more than 0.1, indicating that the relationship between CQAs and CPPs could be well described by the mathematical models. D₅₀ could be controlled within 170 to 500 μm, and the bulk density could be controlled within 0.30 to 0.44 g•cm⁻³ by using any CPPs combination within the scope of design space. Besides, granules produced by process parameters within the design space region could also meet the requirement of tensile strength of the ginkgo leaf tablet.. Copyright© by the Chinese Pharmaceutical Association.

  11. Contact angle and local wetting at contact line.

    Science.gov (United States)

    Li, Ri; Shan, Yanguang

    2012-11-06

    This theoretical study was motivated by recent experiments and theoretical work that had suggested the dependence of the static contact angle on the local wetting at the triple-phase contact line. We revisit this topic because the static contact angle as a local wetting parameter is still not widely understood and clearly known. To further clarify the relationship of the static contact angle with wetting, two approaches are applied to derive a general equation for the static contact angle of a droplet on a composite surface composed of heterogeneous components. A global approach based on the free surface energy of a thermodynamic system containing the droplet and solid surface shows the static contact angle as a function of local surface chemistry and local wetting state at the contact line. A local approach, in which only local forces acting on the contact line are considered, results in the same equation. The fact that the local approach agrees with the global approach further demonstrates the static contact angle as a local wetting parameter. Additionally, the study also suggests that the wetting described by the Wenzel and Cassie equations is also the local wetting of the contact line rather than the global wetting of the droplet.

  12. Dynamics of leaf litter humidity, depth and quantity: two restoration strategies failed to mimic ground microhabitat conditions of a low montane and premontane forest in Costa Rica

    OpenAIRE

    Zaidett Barrientos

    2012-01-01

    Little is known about how restoration strategies affect aspects like leaf litter’s quantity, depth and humidity. I analyzed leaf litter’s quantity, depth and humidity yearly patterns in a primary tropical lower montane wet forest and two restored areas: a 15 year old secondary forest (unassisted restoration) and a 40 year old Cupressus lusitanica plantation (natural understory). The three habitats are located in the Río Macho Forest Reserve, Costa Rica. Twenty litter samples were ...

  13. Effect of moringa (Moringa oleifera leaf supplementation on growth performance and feed utilization of Bocourti's catfish (Pangasius bocourti

    Directory of Open Access Journals (Sweden)

    Kittisak Puycha

    2017-08-01

    Full Text Available The optimal level of dietary moringa leaf was determined on the growth performance, feed utilization, digestibility and serum biochemistry of Bocourti's catfish with mean wet weights of 3.72 ± 0.06 g per fish. Fish were fed with diets containing isonitrogenouse (350 g/kg crude protein and isoenergetic (3000 kcal/kg supplemented with dietary moringa leaf at 0 g/kg fish, 100 g/kg fish, 150 g/kg fish and 200 g/kg fish for 60 d. Fish were hand fed to apparent satiation twice a day. At the end of the experiment, a significant (p  0.05. The study indicated that dietary moringa leaf could be included in the Bocourti's catfish diet at possibly not over 100 g/kg fish without a negative effect on the growth, feed utilization, digestibility and serum biochemistry.

  14. Antidiarrheal Activity of 80% Methanolic Leaf Extract of Justicia schimperiana

    Directory of Open Access Journals (Sweden)

    Belay Mekonnen

    2018-01-01

    Full Text Available Background. Diarrhea is one of the leading causes of preventable death in developing countries and mainly affects children and infants. It has been reported that the leaf of Justicia schimperiana is used as an antidiarrheal agent in Libo Kemekem district, northwest Ethiopia. Method. The 80% methanolic leaf extract of J. schimperiana was evaluated for its activity against castor oil-induced diarrhea, enteropooling, and gastrointestinal motility in mice. Results. Significant reduction (p<0.001 in the total defecation and diarrheal drops was produced by all the test doses of the extract. Percentage inhibition of wet feces was 42.58, 65.07, and 74.96% at 100, 200, and 400 mg/kg doses of the extract, respectively. The extract also significantly inhibited castor oil-induced enteropooling at all test doses. The percent reduction in mean weight of intestinal contents was 66.96, 67.83, and 76.52% at 100, 200, and 400 mg/kg doses of the extract, respectively. The extract significantly reduced gastrointestinal movement of charcoal meal as well at 200 (p<0.01 and 400 mg/kg (p<0.001 doses. Conclusion. In conclusion, the methanolic leaf extract of J. schimperiana has an antidiarrheal activity and this supports the use of this plant in the treatment of diarrhea in the traditional settings.

  15. Wet-air oxidation cleans up black wastewater

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    Sterling Organics produces the analgesic paracetamol (acetaminophen) at its Dudley, England, plant. The wastewater from the batch process contains intermediates such as para-aminophenol (PAP) and byproducts such as thiosulfates, sulfites and sulfides. To stay ahead of increasingly strict environmental legislation, Sterling Organics installed a wet-air oxidation system at the Dudley facility in August 1992. The system is made by Zimpro Environmental Inc. (Rothschild, Wis.). Zimpro's wet-air oxidation system finds a way around the limitations of purely chemical or physical processes. In the process, compressed air at elevated temperature and pressure oxidizes the process intermediates and byproducts and removes the color from the wastewater.

  16. Run don't walk: locomotor performance of geckos on wet substrates.

    Science.gov (United States)

    Stark, Alyssa Y; Ohlemacher, Jocelyn; Knight, Ashley; Niewiarowski, Peter H

    2015-08-01

    The gecko adhesive system has been under particular scrutiny for over a decade, as the field has recently attracted attention for its application to bio-inspired design. However, little is known about how the adhesive system behaves in ecologically relevant conditions. Geckos inhabit a variety of environments, many of which are characterized by high temperature, humidity and rain. The van der Waals-based gecko adhesive system should be particularly challenged by wet substrates because water can disrupt the intimate contact necessary for adhesion. While a few previous studies have focused on the clinging ability of geckos on wet substrates, we tested a dynamic performance characteristic, sprint velocity. To better understand how substrate wettability and running orientation affect locomotor performance of multiple species on wet substrates, we measured average sprint velocity of five species of gecko on substrates that were either hydrophilic or intermediately wetting and oriented either vertically or horizontally. Surprisingly, we found no indication that wet substrates impact average sprint velocity over 1 m, and rather, in some species, sprint velocity was increased on wet substrates rather than reduced. When investigating physical characteristics and behavior that may be associated with running on wet substrates, such as total number of stops, slips and wet toes at the completion of a race, we found that there may be habitat-related differences between some species. Our results show that in general, unlike clinging and walking, geckos running along wet substrates suffer no significant loss in locomotor performance over short distances. © 2015. Published by The Company of Biologists Ltd.

  17. AKTIVITAS ANTIBAKTERI EKSTRAK DAUN SALAM (Syzgium Polyanta DAN DAUN PANDAN (Pandanus Amaryllifolius [Antibacterial Activity Of (Syzygium Polyanta And Amaryllifolius Leaf Extracts

    Directory of Open Access Journals (Sweden)

    Murhadi

    2007-06-01

    Full Text Available The objectives of this research were to study antibacterial activities of syzgium polyanta (“Salam” and Pandanus amaryllifolius (“Pandan” leaf extracts and the effect of wet heating (1000, up to 60 min on their antibacterial activities against staphylococcus aureus, bacillus subtillis, pseudomonas aeruginosa and Escherichia coli. Salam and pandan leaves powder was extracted using hot water (700C, 2 h, ethanol, ethanol/ethylacetate (1:1, v/v, and ethlacetate bt soxhlet (3x8 h separately. Each residue was further extracted using the same solvent by shaker (250 rpm, 24 h. finally filtrates were mixed and evaporated to produce the extract. Salam leaf ethanol extract (yield 11.50% showed highest antibacterial activity especially towards P. aeruginosa (diameter of inhibitor 6.5 mm/mg and B. subtilis (6.3 mm/mg. Pandan leaf erhanol/ethylacetate extract (yield 15.61 % also showed antibacterial activity towards P. aeruginosa (4.25 mm/mg and B. subtilis (3.2 mm/mg. In general, salam leaf extracts showed higher antibacterial activity than pandan leaf extracts. Pandan and salam leaf water extracts had no antibacterial activity. Escerichia coli was more resistant to the extracts compared Staphylococcus aureus, bacillus subtilis, and pseudomonas aeruginosa. Antibacterial activity of salam leaf ethylacetate extract decreased 6.55%, lower than that of pandan leaf ethylacetate extract (18.48% after heating 1000C for 10up to 60 min.

  18. Effect of ethanol-wet-bonding technique on resin–enamel bonds

    Directory of Open Access Journals (Sweden)

    Muhammet Kerim Ayar

    2014-03-01

    Conclusion: The ethanol-wet-bonding technique may increase the bond strength of commercial adhesives to enamel. The chemical composition of the adhesives can affect the bond strength of adhesives when bonding to acid-etched enamel, using the ethanol-wet-bonding technique. Some adhesive systems used in the present study may simultaneously be applied to enamel and dentin using ethanol-wet-bonding. Furthermore, deploying ethanol-wet-bonding for the tested commercial adhesives to enamel can increase the adhesion abilities of these adhesives to enamel.

  19. Pharmacodynamic Study of Interaction of Aqueous Leaf Extract of Psidium Guajava Linn. (Myrtaceae) with Receptor Systems Using Isolated Tissue Preparations.

    Science.gov (United States)

    Mahaseth, R K; Kumar, S; Dutta, Shagun; Sehgal, Ratika; Rajora, Preety; Mathur, Rajani

    2015-01-01

    The present study investigates the interaction of aqueous leaf extract of Psidium guajava with muscarinic, serotonergic and adrenergic receptor system using isolated rat ileum, gastric fundus and trachea, respectively. The concentration-dependent contractile response of aqueous leaf extract of Psidium guajava was parallel and rightward of standard agonists, ACh and 5-HT indicating agonistic activity on muscarinic and serotonergic receptor systems. The inhibition of aqueous leaf extract of Psidium guajava mediated contractions in presence of atropine (10(-7) M) and ketanserin (10(-6) M) confirmed the activity. Relaxant effect of PG (0.2 mg/ml) on carbachol induced pre-contracted rat tracheal chain indicated its agonistic action on adrenergic receptor system. Inhibition (P<0.05) of the action in the presence of propranolol (1 ng/ml) confirmed the activity. It may be concluded that PG possesses agonistic action on muscarinic, serotonergic and adrenergic receptor systems.

  20. Effect of litter, leaf cover and cover of basal internodes of the dominant species Molinia caerulea on seedling recruitment and established vegetation

    Science.gov (United States)

    Janeček, Štěpán; Lepš, Jan

    2005-09-01

    The effects of litter removal, leaf cover of established plants and cover of basal internodes of a dominant species Molinia caerulea on seedling germination and the dynamics of established plants were studied in a field experiment in an oligotrophic wet meadow. Although the negative influence of litter on total seedling number and seedling species composition was non-significant, litter significantly affected the dynamics of the established vegetation and caused inhibition of total leaf cover development. The effects of total leaf cover of established plants on seedling establishment changed during the vegetation season. Whereas the effect of total leaf cover was positive at the start and in the middle of the vegetation season, at the end the total leaf cover negatively affected seedling establishment. Both total leaf cover and cover of basal internodes affected seedling composition. Effects of these two variables were statistically separable suggesting that they are based on different mechanisms. The response of seedling establishment to these factors was species specific and, consequently, our data support the hypothesis that that biotically generated spatial heterogeneity can promote species co-existence through the differentiation of species regeneration niches.

  1. Microscopic diagnosis of the leaf and stem of Piper solmsianum C.DC.

    Science.gov (United States)

    Bertocco, A R P; Migacz, I P; Santos, V L P; Franco, C R C; Silva, R Z; Yunes, R A; Cechinel-Filho, V; Budel, J M

    2017-08-01

    Piper solmsianum C.DC., which is popularly known as pariparoba, is a shrub that measures 1-3 m in height and it inhabits areas with wet tropical soils. The objective of this study was to analyze the leaf and stem anatomy using light microscopy, scanning electron micrographs, and energy-dispersive X-ray spectroscopy in order to provide information for species identification. The anatomical profile showed the following main microscopic markers: hypostomatic leaf; hypodermis layer on both sides; pearl glands; biconvex midrib shape; five collateral vascular bundles in open arc with the central bundle larger than the others; circular stem shape; collateral vascular bundles arranged in two rings; sinuous sclerenchymatic sheath in the pith; secretory idioblasts; and starch grains in the mesophyll, in the ground parenchyma of the midrib, petiole, and in the stem; and six morphotypes of calcium oxalate crystals (styloids, cuneiform, tabular crystal rosettes, cuneiform crystal rosettes, elongated square dipyramids, as well as very elongated square dipyramids). © 2017 Wiley Periodicals, Inc.

  2. EB curable wetting resins for magnetic media coatings

    International Nuclear Information System (INIS)

    Laskin, L.; Ansel, R.E.; Murray, K.P.; Schmid, S.R.

    1984-01-01

    The magnetic media industry is studying means to improve the recording density, durability, product uniformity and production efficiency and to reduce wetting agent migration in the magnetic film. The use of electron beam curable resin binders for magnetic coatings is one of the approaches being studied for this. This paper compares the wetting efficiencies of several electron beam curable systems with a conventional resin and a conventional wetting agent. In this study it has been demonstrated that EB resins can be designed to effect proper magnetic pigment dispersion

  3. Skid resistance determination for pavement management and wet-weather road safety

    Directory of Open Access Journals (Sweden)

    T.F. Fwa

    2017-09-01

    Full Text Available Road accidents during wet weather have been a topic of major concern of road engineers in regions of wet-tropical climate and in other parts of the world during the wet season of the year. Road safety studies indicate that approximately 20% of all road accidents occurred during wet weather, and that the skid resistance of wet pavements have a major influence on the occurrences of wet-weather accidents. Monitoring of wet pavement skid resistance has been an integral part of a typical pavement management system. However, because of the lack of prediction capability of pavement skid resistance under various rainfall intensities, the minimum skid resistance threshold for safe wet-weather driving has been specified by highway agencies based on either engineering judgement or past experience. It is shown in this paper that the single-point minimum skid resistance threshold is inadequate to offer a complete description of the skid resistance performance of the pavement sections in question for effective management of a road network. It is unable to assess the risk involved in an actual wet-weather condition where the pavement surface water-film thickness and vehicle speed are different from standard test conditions. This limitation of the current system of specifying a minimum skid resistance threshold can be overcome by adopting a theoretically sound approach to represent pavement skid resistance under different conditions of water-film thickness and vehicle speed. This paper describes the theoretical basis of the approach and the development of a mechanistically derived three-dimensional finite-element skid resistance simulation model to predict skid resistance. The application of the proposed approach and the skid resistance prediction procedure in pavement management system and wet-weather driving safety assessment is presented.

  4. Mobilization and distribution of lead originating from roof dust and wet deposition in a roof runoff system.

    Science.gov (United States)

    Yu, Jianghua; Yu, Haixia; Huang, Xiaogu

    2015-12-01

    In this research, the mobilization and distribution of lead originating in roof dust and wet deposition were investigated within a roof dust-rooftop-runoff system. The results indicated that lead from roof dust and wet deposition showed different transport dynamics in runoff system and that this process was significantly influenced by the rainfall intensity. Lead present in the roof dust could be easily washed off into the runoff, and nearly 60 % of the total lead content was present in particulate form. Most of the lead from the roof dust was transported during the late period of rainfall; however, the lead concentration was higher for several minutes at the rainfall beginning. Even though some of the lead from wet deposition, simulated with a standard isotope substance, was adsorbed onto adhered roof dust and/or retained on rooftop in runoff system, most of it (50-82 %) remained as dissolved lead in the runoff for rainfall events of varying intensity. Regarding the distribution of lead in the runoff system, the results indicated that it could be carried in the runoff in dissolved and particulate form, be adsorbed to adhered roof dust, or remain on the rooftop because of adsorption to the roof material. Lead from the different sources showed different distribution patterns that were also related to the rainfall intensity. Higher rainfall intensity resulted in a higher proportion of lead in the runoff and a lower proportion of lead remaining on the rooftop.

  5. Mercury Wet Scavenging and Deposition Differences by Precipitation Type.

    Science.gov (United States)

    Kaulfus, Aaron S; Nair, Udaysankar; Holmes, Christopher D; Landing, William M

    2017-03-07

    We analyze the effect of precipitation type on mercury wet deposition using a new database of individual rain events spanning the contiguous United States. Measurements from the Mercury Deposition Network (MDN) containing single rainfall events were identified and classified into six precipitation types. Mercury concentrations in surface precipitation follow a power law of precipitation depth that is modulated by precipitation system morphology. After controlling for precipitation depth, the highest mercury deposition occurs in supercell thunderstorms, with decreasing deposition in disorganized thunderstorms, quasi-linear convective systems (QLCS), extratropical cyclones, light rain, and land-falling tropical cyclones. Convective morphologies (supercells, disorganized, and QLCS) enhance wet deposition by a factor of at least 1.6 relative to nonconvective morphologies. Mercury wet deposition also varies by geographic region and season. After controlling for other factors, we find that mercury wet deposition is greater over high-elevation sites, seasonally during summer, and in convective precipitation.

  6. ENHANCED CONTROL OF MERCURY BY WET FLUE GAS DESULFURIZATION SYSTEMS; FINAL

    International Nuclear Information System (INIS)

    Unknown

    2001-01-01

    The U.S. Department of Energy and EPRI co-funded this project to improve the control of mercury emissions from coal-fired power plants equipped with wet flue gas desulfurization (FGD) systems. The project has investigated catalytic oxidation of vapor-phase elemental mercury to a form that is more effectively captured in wet FGD systems. If successfully developed, the process could be applicable to over 90,000 MW of utility generating capacity with existing FGD systems, and to future FGD installations. Field tests were conducted to determine whether candidate catalyst materials remain active towards mercury oxidation after extended flue gas exposure. Catalyst life will have a large impact on the cost effectiveness of this potential process. A mobile catalyst test unit was used to test the activity of four different catalyst materials for a period of up to six months each at three utility sites. Catalyst testing was completed at the first site, which fires Texas lignite, in December 1998; at the second test site, which fires a Powder River Basin subbituminous coal, in November 1999; and at the third site, which fires a medium- to high-sulfur bituminous coal, in January 2001. Results of testing at each of the three sites were reported in previous technical notes. At Site 1, catalysts were tested only as powders dispersed in sand bed reactors. At Sites 2 and 3, catalysts were tested in two forms, including powders dispersed in sand and in commercially available forms such as extruded pellets and coated honeycomb structures. This final report summarizes and presents results from all three sites, for the various catalyst forms tested. Field testing was supported by laboratory tests to screen catalysts for activity at specific flue gas compositions, to investigate catalyst deactivation mechanisms and methods for regenerating spent catalysts. Laboratory results are also summarized and discussed in this report

  7. Wet steam wetness measurement in a 10 MW steam turbine

    Directory of Open Access Journals (Sweden)

    Kolovratník Michal

    2014-03-01

    Full Text Available The aim of this paper is to introduce a new design of the extinction probes developed for wet steam wetness measurement in steam turbines. This new generation of small sized extinction probes was developed at CTU in Prague. A data processing technique is presented together with yielded examples of the wetness distribution along the last blade of a 10MW steam turbine. The experimental measurement was done in cooperation with Doosan Škoda Power s.r.o.

  8. Erosion corrosion in wet steam

    International Nuclear Information System (INIS)

    Tavast, J.

    1988-03-01

    The effect of different remedies against erosion corrosion in wet steam has been studied in Barsebaeck 1. Accessible steam systems were inspected in 1984, 1985 and 1986. The effect of hydrogen peroxide injection of the transport of corrosion products in the condensate and feed water systems has also been followed through chemical analyses. The most important results of the project are: - Low alloy chromium steels with a chromium content of 1-2% have shown excellent resistance to erosion corrosion in wet steam. - A thermally sprayed coating has shown good resistance to erosion corrosion in wet steam. In a few areas with restricted accessibility minor attacks have been found. A thermally sprayed aluminium oxide coating has given poor results. - Large areas in the moisture separator/reheater and in steam extraction no. 3 have been passivated by injection of 20 ppb hydrogen peroxide to the high pressure steam. In other inspected systems no significant effect was found. Measurements of the wall thickness in steam extraction no. 3 showed a reduced rate of attack. - The injection of 20 ppb hydrogen peroxide has not resulted in any significant reduction of the iron level result is contrary to that of earlier tests. An increase to 40 ppb resulted in a slight decrease of the iron level. - None of the feared disadvantages with hydrogen peroxide injection has been observed. The chromium and cobalt levels did not increase during the injection. Neither did the lifetime of the precoat condensate filters decrease. (author)

  9. Introduction to wetting phenomena

    International Nuclear Information System (INIS)

    Indekeu, J.O.

    1995-01-01

    In these lectures the field of wetting phenomena is introduced from the point of view of statistical physics. The phase transition from partial to complete wetting is discussed and examples of relevant experiments in binary liquid mixtures are given. Cahn's concept of critical-point wetting is examined in detail. Finally, a connection is drawn between wetting near bulk criticality and the universality classes of surface critical phenomena. (author)

  10. Heavy metal dynamics in the soil-leaf-fruit system under intensive apple cultivation

    Directory of Open Access Journals (Sweden)

    Murtić Senad

    2014-01-01

    Full Text Available One of the major problems confronting agricultural production is heavy metal contamination of agricultural soils, which imposes considerable limitations on productivity and leads to great consumer health and safety concerns about the products obtained on these soils. The objective of this study was to evaluate heavy metal dynamics in the soil-leaf-fruit system in an intensive apple cv. 'Idared' planting located in the Municipality of Goražde. Heavy metal contents in the soil samples and plant material were determined by atomic absorption spectrophotometry using a Shimadzu 7000 AA device, according to the instructions specified in the ISO 11047 method. The dynamics of the heavy metals analyzed, excepting zinc, in the soil-leaf-fruit system was characterized by relatively high total levels of heavy metals in the soil and a very low degree of their accumulation in the leaves and in particular the fruits. No fruit sample was found to have toxic levels of any of the heavy metals analyzed. In terms of soil contamination, this suggests the suitability of the study location for safe apple fruit production.

  11. Possible anti-diarrhoeal potential of ethanol leaf extract of Chromolaena odorata in castor oil-induced rats.

    Science.gov (United States)

    Aba, Patrick Emeka; Joshua, Parker Elija; Ezeonuogu, Francis Chimaobi; Ezeja, Maxwell Ikechukwu; Omoja, Valentine Uneojo; Umeakuana, Paschal Ugochukwu

    2015-12-01

    Chromolaena odorata is a plant commonly used traditionally to treat ailments including diarrhoea in Nigeria. The ethanol leaf extract of C. odorata was studied for its anti-diarrhoeal activity using electrolyte test and castor oil-induced diarrhoea rats' models. Acute toxicity effect of the extract was also evaluated. The extract showed a dose-dependent protection against castor oil-induced diarrhoea at the tested doses (200 and 400 mg/kg body weights). The protection offered by pretreatment with 400 mg/kg body weight of the ethanol leaf extract of C. odorata with regards to reductions in the incidences of faecal wetness and rate of defaecations were statistically comparable to that achieved with Lomotil, a known anti-diarrhoeic drug. The result of the electrolyte test showed that the extract pretreated groups had significantly (p<0.05) lower potassium and sodium ions in their intestinal fluid when compared with the diarrhoeic untreated controls. This is well tolerated. The results indicate that the ethanol leaf extract of C. odorata is safe and possesses anti-diarrhoeal activity with electrolyte reabsorption proposed as the possible mechanism of action.

  12. Removal of fine particles in wet flue gas desulfurization system by heterogeneous condensation

    Energy Technology Data Exchange (ETDEWEB)

    Yang, L.J.; Bao, J.J.; Yan, J.P.; Liu, J.H.; Song, S.J.; Fan, F.X. [Southeast University, Nanjing (China). School of Energy & Environment

    2010-01-01

    A novel process to remove fine particles with high efficiency by heterogeneous condensation in a wet flue gas desulfurization (WFGD) system is presented. A supersaturated vapor phase, necessary for condensational growth of fine particles, was achieved in the SO{sub 2} absorption zone and at the top of the wet FGD scrubber by adding steam in the gas inlet and above the scrubbing liquid inlet of the scrubber, respectively. The condensational grown droplets were then removed by the scrubbing liquid and a high-efficiency demister. The results show that the effectiveness of the WFGD system for removal of fine particles is related to the SO{sub 2} absorbent employed. When using CaCO{sub 3} and NH{sub 3} {center_dot} H{sub 2}O to remove SO{sub 2} from flue gas, the fine particle removal efficiencies are lower than those for Na2CO{sub 3} and water, and the morphology and elemental composition of fine particles are changed. This effect can be attributed to the formation of aerosol particles in the limestone and ammonia-based FGD processes. The performance of the WFGD system for removal of fine particles can be significantly improved for both steam addition cases, for which the removal efficiency increases with increasing amount of added steam. A high liquid to gas ratio is beneficial for efficient removal of fine particles by heterogeneous condensation of water vapor.

  13. Solder wetting behavior enhancement via laser-textured surface microcosmic topography

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Haiyan [State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an 710072 (China); Shaanxi Key Laboratory of Friction Welding Technologies, Xi’an 710072 (China); Peng, Jianke [Shaanxi Key Laboratory of Friction Welding Technologies, Xi’an 710072 (China); Fu, Li, E-mail: fuli@nwpu.edu.cn [State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an 710072 (China); Shaanxi Key Laboratory of Friction Welding Technologies, Xi’an 710072 (China); Wang, Xincheng [Shaanxi Key Laboratory of Friction Welding Technologies, Xi’an 710072 (China); Xie, Yan [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China)

    2016-04-15

    Graphical abstract: - Highlights: • The wetting angle of lead free solder on Cu was reduced by surface microstructure. • The wetting form of Sn-Ag-Cu solder on Cu was “non-composite surface”. • The experimental results had a sound fit with the theoretical calculation. - Abstract: In order to reduce or even replace the use of Sn-Pb solder in electronics industry, the laser-textured surface microstructures were used to enhance the wetting behavior of lead free solder during soldering. According to wetting theory and Sn-Ag-Cu lead free solder performance, we calculated and designed four microcosmic structures with the similar shape and different sizes to control the wetting behavior of lead free solder. The micro-structured surfaces with different dimensions were processed on copper plates by fiber femtosecond laser, and the effect of microstructures on wetting behavior was verified experimentally. The results showed that the wetting angle of Sn-Ag-Cu solder on the copper plate with microstructures decreased effectively compared with that on the smooth copper plate. The wetting angles had a sound fit with the theoretical values calculated by wetting model. The novel method provided a feasible route for adjusting the wetting behavior of solders and optimizing solders system.

  14. A better way of representing stem area index in two-big-leaf models: the application and impact on canopy integration of leaf nitrogen content

    Science.gov (United States)

    Chen, M.; Butler, E. E.; Wythers, K. R.; Kattge, J.; Ricciuto, D. M.; Thornton, P. E.; Atkin, O. K.; Flores-Moreno, H.; Reich, P. B.

    2017-12-01

    In order to better estimate the carbon budget of the globe, accurately simulating gross primary productivity (GPP) in earth system models is critical. When upscaling leaf level photosynthesis to the canopy, climate models uses different big-leaf schemes. About half of the state-of-the-art earth system models use a "two-big-leaf" scheme that partitions canopies into direct and diffusively illuminated fractions to reduce high bias of GPP simulated by one-big-leaf models. Some two-big-leaf models, such as ACME (identical in this respect to CLM 4.5) add leaf area index (LAI) and stem area index (SAI) together when calculating canopy radiation transfer. This treatment, however, will result in higher fraction of sunlit leaves. It will also lead to an artificial overestimation of canopy nitrogen content. Here we introduce a new algorithm of simulating SAI in a two-big-leaf model. The new algorithm reduced the sunlit leave fraction of the canopy and conserved the nitrogen content from leaf to canopy level. The lower fraction of sunlit leaves reduced global GPP especially in tropical area. Compared to the default model, for the past 100 years (1909-2009), the averaged global annual GPP is lowered by 4.11 PgC year-1 using this new algorithm.

  15. Haptic perception of wetness

    NARCIS (Netherlands)

    Bergmann Tiest, W.M.; Kosters, N.D.; Kappers, Astrid M.L.; Daanen, H.A.M.

    2012-01-01

    In daily life, people interact with textiles of different degrees of wetness, but little is known about the mechanics of wetness perception. This paper describes an experiment with six conditions regarding haptic discrimination of the wetness of fabrics. Three materials were used: cotton wool,

  16. Effect of Plant Growth Regulators on Leaf Number, Leaf Area and Leaf Dry Matter in Grape

    Directory of Open Access Journals (Sweden)

    Zahoor Ahmad BHAT

    2011-03-01

    Full Text Available Influence of phenylureas (CPPU and brassinosteriod (BR along with GA (gibberellic acid were studied on seedless grape vegetative characteristics like leaf number, leaf area and leaf dry matter. Growth regulators were sprayed on the vines either once (7 days after fruit set or 15 days after fruit set or twice (7+15 days after fruit set. CPPU 2 ppm+BR 0.4 ppm+GA 25 ppm produced maximum number of leaves (18.78 while as untreated vines produced least leaf number (16.22 per shoot. Maximum leaf area (129.70 cm2 and dry matter content (26.51% was obtained with higher CPPU (3 ppm and BR (0.4 ppm combination along with GA 25 ppm. Plant growth regulators whether naturally derived or synthetic are used to improve the productivity and quality of grapes. The relatively high value of grapes justifies more expensive inputs. A relatively small improvement in yield or fruit quality can justify the field application of a very costly product. Application of new generation growth regulators like brassinosteroids and phenylureas like CPPU have been reported to increase the leaf number as well as leaf area and dry matter thereby indirectly influencing the fruit yield and quality in grapes.

  17. Behavior of aircraft antiskid braking systems on dry and wet runway surfaces - A velocity-rate-controlled, pressure-bias-modulated system

    Science.gov (United States)

    Stubbs, S. M.; Tanner, J. A.

    1976-01-01

    During maximum braking the average ratio of drag-force friction coefficient developed by the antiskid system to maximum drag-force friction coefficient available at the tire/runway interface was higher on dry surfaces than on wet surfaces. The gross stopping power generated by the brake system on the dry surface was more than twice that obtained on the wet surfaces. With maximum braking applied, the average ratio of side-force friction coefficient developed by the tire under antiskid control to maximum side-force friction available at the tire/runway interface of a free-rolling yawed tire was shown to decrease with increasing yaw angle. Braking reduced the side-force friction coefficient on a dry surface by 75 percent as the wheel slip ratio was increased to 0.3; on a flooded surface the coefficient dropped to near zero for the same slip ratio. Locked wheel skids were observed when the tire encountered a runway surface transition from dry to flooded, due in part to the response time required for the system to sense abrupt changes in the runway friction; however, the antiskid system quickly responded by reducing brake pressure and cycling normally during the remainder of the run on the flooded surface.

  18. Growth, leaf and stomatal traits of crabwood (Carapa guianensis Aubl. in central Amazonia

    Directory of Open Access Journals (Sweden)

    Miguel Angelo Branco Camargo

    2012-02-01

    Full Text Available Crabwood (Carapa guianensis Aubl. is a fast growing tree species with many uses among Amazonian local communities. The main objective of this study was to assess the effect of seasonal rainfall pattern on growth rates, and seasonal and diurnal changes in leaf gas exchange and leaf water potential (ΨL in crabwood. To assess the effect of rainfall seasonality on growth and physiological leaf traits an experiment was conducted in Manaus, AM (03º 05' 30" S, 59º 59' 35" S. In this experiment, six 6-m tall plants were used to assess photosynthetic traits and ΨL. In a second experiment the effect of growth irradiance on stomatal density (S D, size (S S and leaf thickness was assessed in 0.8-m tall saplings. Stomatal conductance (g s and light-saturated photosynthesis (Amax were higher in the wet season, and between 09:00 and 15:00 h. However, no effect of rainfall seasonality was found on ΨL and potential photosynthesis (CO2-saturated. ΨL declined from -0.3 MPa early in the morning to -0.75 MPa after midday. It increased in the afternoon but did not reach full recovery at sunset. Growth rates of crabwood were high, and similar in both seasons (2 mm month-1. Leaf thickness and S D were 19% and 47% higher in sun than in shade plants, whereas the opposite was true for S S. We conclude that ΨL greatly affects carbon assimilation of crabwood by reducing g s at noon, although this effect is not reflected on growth rates indicating that other factors offset the effect of g s on Amax.

  19. Haptic perception of wetness

    NARCIS (Netherlands)

    Bergmann Tiest, W.M.; Kosters, N.D.; Daanen, H.A.M.; Kappers, A.M.L.

    2011-01-01

    The sensation of wetness is well-known but barely investigated. There are no specific wetness receptors in the skin, but the sensation is mediated by temperature and pressure perception. In our study, we have measured discrimination thresholds for the haptic perception of wetness of three di erent

  20. Haptic perception of wetness

    NARCIS (Netherlands)

    Bergmann Tiest, W.M.; Dolfine Kosters, N.; Daanen, h.a.m.; Kappers, A.M.L.

    2012-01-01

    In daily life, people interact with textiles of different degrees of wetness, but little is known about the me-chanics of wetness perception. This paper describes an experiment with six conditions regarding haptic dis-crimination of the wetness of fabrics. Three materials were used: cotton wool,

  1. Industrious leaf cutter ants and their carbon footprints

    Science.gov (United States)

    Swanson, A. C.; Dierick, D.; Trahan, N. A.; Allen, M. F.; Schwendenmann, L.; Harmon, T. C.; Oberbauer, S. F.; Fernandez Bou, A. S.; Zelikova, T. J.

    2017-12-01

    Leaf cutter ants (LCA) are considered ecosystem engineers in Neotropical forest ecosystems because they alter physical and environmental conditions for other organisms. LCA excavate large underground nests, maintaining intricate tunnels and fungal and waste chambers, and they continuously bring in vast amounts of fresh leaf material. In order to understand their ecosystem-wide impacts, we set out to determine whether their engineering activities fundamentally alter soil structure, soil nutrient pools, and gas fluxes in a wet tropical rainforest in Costa Rica. To directly compare LCA nest to non-nest sites, we utilized embedded sensor arrays with series of soil moisture, CO2, O2, and temperature sensors placed at four soil depths and automated minirhizotrons (AMR) to measure root and hyphal production and turnover. We also collected soils for biogeochemical analyses and measured soil CO2 fluxes and carbon isotope ratios of below-ground CO2 for two years. Our measurements confirmed that LCA alter their soil environment to regulate internal soil CO2 concentrations, moisture, and temperature, increasing O2 concentrations in the process. There were marked differences in soil structure inside nests relative to non-nests and these were associated with increased root and hyphal production and turnover in nests. Soil C, N, P, and their respective degrading enzymes were highly variable among sites and between nests and controls but N and P increased with soil depth and were generally higher in nests than controls. Contrary to our expectations, C mineralization rates were lower in nests but CO2 fluxes were high from nest vents and similar to non-nests elsewhere. At the system scale, LCA appear to fundamentally change the soil environment inside their nests and create spatial heterogeneity in biogeochemical processes and root and hyphal growth, influencing the overall C balance of Neotropical forests.

  2. Studies on Mathematical Models of Wet Adhesion and Lifetime Prediction of Organic Coating/Steel by Grey System Theory.

    Science.gov (United States)

    Meng, Fandi; Liu, Ying; Liu, Li; Li, Ying; Wang, Fuhui

    2017-06-28

    A rapid degradation of wet adhesion is the key factor controlling coating lifetime, for the organic coatings under marine hydrostatic pressure. The mathematical models of wet adhesion have been studied by Grey System Theory (GST). Grey models (GM) (1, 1) of epoxy varnish (EV) coating/steel and epoxy glass flake (EGF) coating/steel have been established, and a lifetime prediction formula has been proposed on the basis of these models. The precision assessments indicate that the established models are accurate, and the prediction formula is capable of making precise lifetime forecasting of the coatings.

  3. Wet snow hazard for power lines: a forecast and alert system applied in Italy

    Directory of Open Access Journals (Sweden)

    P. Bonelli

    2011-09-01

    Full Text Available Wet snow icing accretion on power lines is a real problem in Italy, causing failures on high and medium voltage power supplies during the cold season. The phenomenon is a process in which many large and local scale variables contribute in a complex way and not completely understood. A numerical weather forecast can be used to select areas where wet snow accretion has an high probability of occurring, but a specific accretion model must also be used to estimate the load of an ice sleeve and its hazard. All the information must be carefully selected and shown to the electric grid operator in order to warn him promptly.

    The authors describe a prototype of forecast and alert system, WOLF (Wet snow Overload aLert and Forecast, developed and applied in Italy. The prototype elaborates the output of a numerical weather prediction model, as temperature, precipitation, wind intensity and direction, to determine the areas of potential risk for the power lines. Then an accretion model computes the ice sleeves' load for different conductor diameters. The highest values are selected and displayed on a WEB-GIS application principally devoted to the electric operator, but also to more expert users. Some experimental field campaigns have been conducted to better parameterize the accretion model. Comparisons between real accidents and forecasted icing conditions are presented and discussed.

  4. Wet snow hazard for power lines: a forecast and alert system applied in Italy

    Science.gov (United States)

    Bonelli, P.; Lacavalla, M.; Marcacci, P.; Mariani, G.; Stella, G.

    2011-09-01

    Wet snow icing accretion on power lines is a real problem in Italy, causing failures on high and medium voltage power supplies during the cold season. The phenomenon is a process in which many large and local scale variables contribute in a complex way and not completely understood. A numerical weather forecast can be used to select areas where wet snow accretion has an high probability of occurring, but a specific accretion model must also be used to estimate the load of an ice sleeve and its hazard. All the information must be carefully selected and shown to the electric grid operator in order to warn him promptly. The authors describe a prototype of forecast and alert system, WOLF (Wet snow Overload aLert and Forecast), developed and applied in Italy. The prototype elaborates the output of a numerical weather prediction model, as temperature, precipitation, wind intensity and direction, to determine the areas of potential risk for the power lines. Then an accretion model computes the ice sleeves' load for different conductor diameters. The highest values are selected and displayed on a WEB-GIS application principally devoted to the electric operator, but also to more expert users. Some experimental field campaigns have been conducted to better parameterize the accretion model. Comparisons between real accidents and forecasted icing conditions are presented and discussed.

  5. Selenium Speciation and Management in Wet FGD Systems

    Energy Technology Data Exchange (ETDEWEB)

    Searcy, K; Richardson, M; Blythe, G; Wallschlaeger, D; Chu, P; Dene, C

    2012-02-29

    This report discusses results from bench- and pilot-scale simulation tests conducted to determine the factors that impact selenium speciation and phase partitioning in wet FGD systems. The selenium chemistry in wet FGD systems is highly complex and not completely understood, thus extrapolation and scale-up of these results may be uncertain. Control of operating parameters and application of scrubber additives have successfully demonstrated the avoidance or decrease of selenite oxidation at the bench and pilot scale. Ongoing efforts to improve sample handling methods for selenium speciation measurements are also discussed. Bench-scale scrubber tests explored the impacts of oxidation air rate, trace metals, scrubber additives, and natural limestone on selenium speciation in synthetic and field-generated full-scale FGD liquors. The presence and concentration of redox-active chemical species as well as the oxidation air rate contribute to the oxidation-reduction potential (ORP) conditions in FGD scrubbers. Selenite oxidation to the undesirable selenate form increases with increasing ORP conditions, and decreases with decreasing ORP conditions. Solid-phase manganese [Mn(IV)] appeared to be the significant metal impacting the oxidation of selenite to selenate. Scrubber additives were tested for their ability to inhibit selenite oxidation. Although dibasic acid and other scrubber additives showed promise in early clear liquor (sodium based and without calcium solids) bench-scale tests, these additives did not show strong inhibition of selenite oxidation in tests with higher manganese concentrations and with slurries from full-scale wet FGD systems. In bench-tests with field liquors, addition of ferric chloride at a 250:1 iron-to-selenium mass ratio sorbed all incoming selenite to the solid phase, although addition of ferric salts had no impact on native selenate that already existed in the field slurry liquor sample. As ORP increases, selenite may oxidize to selenate more

  6. Wet-Bulb-Globe Temperature Data Report

    Science.gov (United States)

    2015-03-01

    Hour Min Pressure Dry Nat Wet Globe Dry Nat Wet Globe Dry Nat Wet Globe Wind Cld amt Cld type Obscuration Quest RH Kestrel RH VPSc RH S1 WBGT Q WBGT...Wet Globe Dry Nat Wet Globe Dry Nat Wet Globe Wind Cld amt Cld type Obscuration Quest RH Kestrel RH VPSc RH S1 WBGT Q WBGT K2 WBGT GMT millibars deg F...Dry Nat Wet Globe Dry Nat Wet Globe Wind Cld amt Cld type Obscuration Quest RH Kestrel RH VPSc RH S1 WBGT Q WBGT K2 WBGT GMT millibars deg F deg F deg

  7. Why do leaf-tying caterpillars abandon their leaf ties?

    Directory of Open Access Journals (Sweden)

    Michelle Sliwinski

    2013-09-01

    Full Text Available Leaf-tying caterpillars act as ecosystem engineers by building shelters between overlapping leaves, which are inhabited by other arthropods. Leaf-tiers have been observed to leave their ties and create new shelters (and thus additional microhabitats, but the ecological factors affecting shelter fidelity are poorly known. For this study, we explored the effects of resource limitation and occupant density on shelter fidelity and assessed the consequences of shelter abandonment. We first quantified the area of leaf material required for a caterpillar to fully develop for two of the most common leaf-tiers that feed on white oak, Quercus alba. On average, Psilocorsis spp. caterpillars consumed 21.65 ± 0.67 cm2 leaf material to complete development. We also measured the area of natural leaf ties found in a Maryland forest, to determine the distribution of resources available to caterpillars in situ. Of 158 natural leaf ties examined, 47% were too small to sustain an average Psilocorsis spp. caterpillar for the entirety of its development. We also manipulated caterpillar densities within experimental ties on potted trees to determine the effects of cohabitants on the likelihood of a caterpillar to leave its tie. We placed 1, 2, or 4 caterpillars in ties of a standard size and monitored the caterpillars twice daily to track their movement. In ties with more than one occupant, caterpillars showed a significantly greater propensity to leave their tie, and left sooner and at a faster rate than those in ties as single occupants. To understand the consequences of leaf tie abandonment, we observed caterpillars searching a tree for a site to build a shelter in the field. This is a risky behavior, as 17% of the caterpillars observed died while searching for a shelter site. Caterpillars that successfully built a shelter traveled 110 ± 20 cm and took 28 ± 7 min to find a suitable site to build a shelter. In conclusion, leaf-tying caterpillars must frequently

  8. Characterization of a plant leaf cuticle model wax, phase behaviour of model wax–water systems

    International Nuclear Information System (INIS)

    Fagerström, Anton; Kocherbitov, Vitaly; Westbye, Peter; Bergström, Karin; Mamontova, Varvara; Engblom, Johan

    2013-01-01

    Highlights: • Four individual crystalline phases were discovered in the model wax–water system. • Eutectic melting occurred in both dry and hydrated model wax. • The total transition enthalpy is smaller for the cuticle wax than for the model wax. • Water has a large plasticizing effect on cuticle wax. • The thermotropic transitions of model wax fit in the window of extracted leaf waxes. - Abstract: We investigated the thermotropic phase behaviour of plant leaf intracuticular wax and two representatives of its main components, 1-docosanol (C 22 H 45 OH) and dotriacontane (C 32 H 66 ), in dry and hydrated state. One objective was to obtain a model wax, which can be used to estimate formulations effects on cuticle diffusivity in vitro. The two wax components were chosen based on results from Gas Chromatography coupled to Mass Spectrometry analysis of cuticular wax. The wax was extracted from Clivia Miniata Regel leaves and contained 68% primary alcohols (C 16 –C 32 ) and 16% n-alkanes (C 21 –C 33 ). Differential Scanning Calorimetry, Polarized Light Microscopy and Small- and Wide Angle X-ray Diffraction were used to characterize the cuticular extract and the phase behaviour of the C 22 H 45 OH/C 32 H 66 /H 2 O model system. Four individual crystalline phases were discovered in the model wax–water system and eutectic melting occurred in both dry and hydrated state. The thermotropic transitions of the model wax occur within the broader transition region of the extracted leaf wax

  9. Assimilation of Leaf Area Index and Soil Wetness Index into the ISBA-A-gs land surface model over France

    Science.gov (United States)

    Barbu, A. L.; Calvet, J.-C.; Lafont, S.

    2012-04-01

    The development of a Land Data Assimilation System (LDAS) dedicated to carbon and water cycles is considered as a key aspect for monitoring activities of terrestrial carbon fluxes. It allows the assimilation of biophysical products in order to reduce the bias between the model simulations and the observations and have a positive impact on carbon and water fluxes. This work shows the benefits of data assimilation of Earth observations for the monitoring of vegetation status and carbon fluxes, in the framework of the GEOLAND2 project, co-funded by the European Commission within the GMES initiative in FP7. In this study, the SURFEX modelling platform developed at Meteo-France is used for describing the continental vegetation state, surface fluxes and soil moisture. It consists of the land surface model ISBA-A-gs that simulates photosynthesis and plant growth. The vegetation biomass and Leaf Area Index (LAI) evolve dynamically in response to weather and climate conditions. The ECOCLIMAP database provides detailed information about the land cover at a resolution of 1 km. Over the France domain, the most present ecosystem types are grasslands (32%), C3 crop lands (24%), deciduous forest (20%), bare soil (11%), and C4 crop lands (8%).The model also includes a representation of the soil moisture stress with two different types of drought responses for herbaceous vegetation and forests. A version of the Extended Kalman Filter (EKF) scheme is developed for the joint assimilation of satellite-derived surface soil moisture from ASCAT-25 km product, namely Soil Wetness Index (SWI-01) developed by TU-Wien, and remote sensing LAI product provided by GEOLAND2. The GEOLAND2 LAI product is derived from CYCLOPES V3.1 and MODIS collection 5 data. It is more consistent with an effective LAI for low LAI and close to the actual LAI for high values. The assimilation experiment was conducted across France at a spatial resolution of 8 km. The study period ranges from July 2007 to December

  10. Automated rice leaf disease detection using color image analysis

    Science.gov (United States)

    Pugoy, Reinald Adrian D. L.; Mariano, Vladimir Y.

    2011-06-01

    In rice-related institutions such as the International Rice Research Institute, assessing the health condition of a rice plant through its leaves, which is usually done as a manual eyeball exercise, is important to come up with good nutrient and disease management strategies. In this paper, an automated system that can detect diseases present in a rice leaf using color image analysis is presented. In the system, the outlier region is first obtained from a rice leaf image to be tested using histogram intersection between the test and healthy rice leaf images. Upon obtaining the outlier, it is then subjected to a threshold-based K-means clustering algorithm to group related regions into clusters. Then, these clusters are subjected to further analysis to finally determine the suspected diseases of the rice leaf.

  11. Severity of banana leaf spot in an intercropping system in two cycles of banana Prata Anã

    Directory of Open Access Journals (Sweden)

    Valdeir Dias Gonçalves

    2008-01-01

    Full Text Available Prata Anã is the most planted banana cultivar in northern Minas Gerais, Brazil. It is however susceptible toseveral pathogens. This study was carried out to evaluate the disease severity of banana leaf spot in the Prata Anã cv. in thefirst and second cycle under six different planting systems. The randomized block experimental design was used with sixtreatments and four replications. In an evaluation of the severity of banana leaf spot, no disease symptoms were found onThap Maeo and Caipira. The evolution curve of the disease indicated seasonal effects in the first and second cycles. Theseverity of banana leaf spot was highest soon after the regional rainy period from November to March. A comparison of themeans of the evaluations indicated a reduction in disease severity from the first to the second cycle.

  12. Fabrication of Nanostructured Polymer Surfaces and Characterization of their Wetting Properties

    DEFF Research Database (Denmark)

    Andersen, Nis Korsgaard

    . • Simulations of wetting transitions. • Clean room fabrication of functional surfaces, and production of micro- and nanostructured mold inserts. • Injection molding of micro- and nanostructured polymer parts on a commercial injection molding machine. • Co-invented a patented technique for microstructuring steel...... molds able to produce superhydrophobic polymer parts. The patented microstructuring technique generates microstructures similar to those found on the leaf of the lotus flower, without the overlaying nanostructure. Despite the lack of hierarchical structures, the microstructured surface shows excellent...... structures and the irregular structures produced by the patented microstructuring technique. The second study bridges the gap between silicon structures produced by planar processes in the clean room and the smooth multi-height structures often found in nature. Finally i have demonstrated a novel type...

  13. Dynamics of vacuum-sealed, double-leaf partitions

    Science.gov (United States)

    Kavanaugh, Joshua Stephen

    The goal of this research is to investigate the feasibility and potential effectiveness of using vacuum-sealed, double-leaf partitions for applications in noise control. Substantial work has been done previously on double-leaf partitions where the acoustics of the inner chamber and mechanical vibrations of structural supports are passively and actively controlled. The work presented here is unique in that the proposed system aims to eliminate the need for active acoustic control of transmitted acoustic energy by removing all the air between the two panels of the double partition. Therefore, the only remaining energy paths would be along the boundary and at the points where there are intermediate structural supports connecting the two panels. The eventual goal of the research is to develop a high-loss double-leaf partition that simplifies active control by removing the need for control of the air cavity and channeling all the energy into discrete structural paths. The work presented here is a first step towards the goal of designing a high-loss, actively-controlled double-leaf partition with an air-evacuated inner chamber. One experiment is conducted to investigate the effects of various levels of vacuum on the response of a double-leaf partition whose panels are mechanically coupled only at the boundary. Another experiment is conducted which investigates the effect of changing the stiffness of an intermediate support coupling the two panels of a double-leaf partition in which a vacuum has been applied to the inner cavity. The available equipment was able to maintain a 99% vacuum between the panels. Both experiments are accompanied by analytical models used to investigate the importance of various dynamic parameters. Results show that the vacuum-sealed system shows some potential for increased transmission loss, primarily by the changing the natural frequencies of the double-leaf partition.

  14. Utilization of Cellulose from Pineapple Leaf Fibers as Nanofiller in Polyvinyl Alcohol-Based Film

    Directory of Open Access Journals (Sweden)

    Kendri Wahyuningsih

    2016-08-01

    Full Text Available Cellulose from pineapple leaf fibers as one of the natural polymer which has biodegradable property in a nanometer’s scale, can be formed as a filler in composite of Poly(vinyl Alcohol/PVA is expected to increase the physical, thermal, and barrier properties of composite films similar to conventional plastic. The aim of this study was to examine the effect of fibrillation of cellulose fibers from pineapple leaf fibers using a combined technique of chemical-mechanical treatments, to investigate the reinforcing effect of concentration of nanocellulose fibrils in the polyvinyl alcohol (PVA matrix on physical properties, thermal properties, water vapor transmission rate, light transmittance and morphological with and without addition of glycerol. Nanocellulose was made from cellulose of pineapple leaf fiber using wet milling (Ultra Fine Grinder. The composite film production was carried out by using casting solution method by mixing PVA solution with nanocellulose (10-50% and glycerol (0-1%. The characterization of film covered physical properties (thickness, moisture content and density, thermal properties, permeability (WVTR, light transmittance, morphology, and crystallinity. Nanocellulose from pineapple leaf fibers was produced by Ultra Fine Grinder shows that the size reduction process was accurate. Nanocellulose addition on PVA composite film was affected to increasing the physical, thermal, and barrier properties. Meanwhile, decreasing the percentage of composite film transmittance, thus the transparency decrease (opaque. Water vapor transmission rate (WVTR the film was increased with increasing glycerol concentration, but the physical and thermal properties was decreased.

  15. WASTECOST-Wet - developed for Electric Power Research Institute

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    WASTECOST-Wet specifically addresses liquid processing systems and their impact on solid waste volumes. The WASTECOST-Wet code models the entire liquid processing activity from media descriptions and volume throughput to solid waste volume generated, processing efficiency and disposal costs. WASTECOST gives a detailed economic and performance view of liquid waste processing activities. The code provides users a standardized methodology for calculating and comparing costs and system performance characteristics. Detailed reports are provided showing major costs centers. Performance and cost factors include gallons processed per cubic foot of waste generated, cost per cubic foot of waste generated and cost per gallon processed

  16. PILOT TESTING OF MERCURY OXIDATION CATALYSTS FOR UPSTREAM OF WET FGD SYSTEMS

    International Nuclear Information System (INIS)

    Gary M. Blythe

    2002-01-01

    The objective of this project is to demonstrate at pilot scale the use of solid honeycomb catalysts to promote the oxidation of elemental mercury in the flue gas from coal combustion. The project is being funded by the U.S. DOE National Energy Technology Laboratory under Cooperative Agreement DE-FC26-01NT41185. EPRI, Great River Energy (GRE), and City Public Service (CPS) of San Antonio are project co-funders. URS Group is the prime contractor. The mercury catalytic oxidation process under development uses catalyst materials applied to honeycomb substrates to promote the oxidation of elemental mercury in the flue gas from coal-fired power plants that have wet lime or limestone flue gas desulfurization (FGD) systems. Oxidized mercury is removed in the wet FGD absorbers and co-precipitates in a stable form with the byproducts from the FGD system. The co-precipitated mercury does not appear to adversely affect the disposal or reuse properties of the FGD byproduct. The current project will test previously identified, effective catalyst materials at a larger, pilot scale and in a commercial form, so as to provide engineering data for future full-scale designs. The pilot-scale tests will continue for up to 14 months at each of two sites to provide longer-term catalyst life data. This is the first full reporting period for the subject Cooperative Agreement. During this period, most of the project efforts were related to project initiation and planning. There is no significant technical progress to report for the current period

  17. Incorporating full-scale experience into advanced limestone wet FGD designs

    International Nuclear Information System (INIS)

    Rader, P.C.; Bakke, E.

    1992-01-01

    Utilities choosing flue gas desulfurization as a strategy for compliance with Phase I of the 1990 Clean Air Act Amendments will largely turn to limestone wet scrubbing as the most cost-effective, least-risk option. State-of-the-art single absorber wet scrubbing systems can be designed to achieve: SO 2 removal efficiencies in excess of 95 %, system availabilities in excess of 98%, and byproducts which can be marketed or land filled. As a result of varying fuel characteristics, site considerations, and owner preferences, FGD plants for large central power stations are typically custom-designed. To avoid the risks associated with new, first-of-a-kind technologies, utilities have preferred to purchase FGD systems from suppliers with proven utility experience and reference plants as close as possible to the design envisioned. As the market for FGD systems is regulatory driven, the demand has shifted geographically in response to national environmental policies. Although limestone wet scrubbing has emerged as the overwhelming choice for SO 2 emission control in coal-fired power stations, the technology has evolved and been adapted to suit local and regional technical and economic situations. Global suppliers are able to benefit from experience and technological advances in the world market. With market units in the U.S., Denmark, Italy, Sweden, and Germany active in the design and supply of wet FGD plants, ABB has a unique ability to incorporate knowledge and experience gained throughout the industrialized world to acid rain retrofit projects in the U.S. This paper describes the design of advanced limestone wet scrubbing systems for application to acid rain retrofits. Specifically, the evolution of advanced design concepts from a global experience base is discussed

  18. Computer optimization of dry and wet/dry cooling tower systems for large fossil and nuclear power plants

    International Nuclear Information System (INIS)

    Choi, M.; Glicksman, L.R.

    1979-02-01

    This study determined the cost of dry cooling compared to the conventional cooling methods. Also, the savings by using wet/dry instead of all-dry cooling were determined. A total optimization was performed for power plants with dry cooling tower systems using metal-finned-tube heat exchangers and surface condensers. The optimization minimizes the power production cost. The program optimizes the design of the heat exchanger and its air and water flow rates. In the base case study, the method of replacing lost capacity assumes the use of gas turbines. As a result of using dry cooling towers in an 800 MWe fossil plant, the incremental costs with the use of high back pressure turbine and conventional turbine over all-wet cooling are 11 and 15%, respectively. For a 1200 MWe nuclear plant, these are 22 and 25%, respectively. Since the method of making up lost capacity depends on the situation of a utility, considerable effort has been placed on testing the effects of using different methods of replacing lost capacity at high ambient temperatures by purchased energy. The results indicate that the optimization is very sensitive to the method of making up lost capacity. It is, therefore, important to do an accurate representation of all possible methods of making up capacity loss when optimizating power plants with dry cooling towers. A solution for the problem of losing generation capability by a power plant due to the use of a dry cooling tower is to supplement the dry tower during the hours of peak ambient temperatures by a wet tower. A separate wet/dry cooling tower system with series tower arrangement was considered in this study, and proved to be an economic choice over all-dry cooling where some water is available but supplies are insufficient for a totally evaporative cooling tower

  19. Novel fungal disease in complex leaf-cutting ant societies

    DEFF Research Database (Denmark)

    Hughes, David Peter; Evans, Harry C.; Hywel-Jones, Nigel

    2009-01-01

    1. The leaf-cutting ants practise an advanced system of mycophagy where they grow a fungus as a food source. As a consequence of parasite threats to their crops, they have evolved a system of morphological, behavioural, and chemical defences, particularly against fungal pathogens (mycopathogens). 2....... Specific fungal diseases of the leaf-cutting ants themselves have not been described, possibly because broad spectrum anti-fungal defences against mycopathogens have reduced their susceptibility to entomopathogens. 3. Using morphological and molecular tools, the present study documents three rare infection...... events of Acromyrmex and Atta leaf-cutting ants by Ophiocordyceps fungi, agenus of entomopathogens that is normally highly specific in its host choice. 4. As leaf-cutting ants have been intensively studied, the absence of prior records of Ophiocordyceps suggests that these infections may be a novel event...

  20. System to determine leaf photosynthetic activity by means of 14CO2

    International Nuclear Information System (INIS)

    Fernandez Gonzalez, J.

    1977-01-01

    A method to determine leaf photosynthetic activity is described. 14 CO 2 labeled air is produced from 14 CO 3 Ba and stored in a poliethylene balloon and supplied by means of an automatic dispenser to a perspex chamber inside of which is the leaf. (author) [es

  1. Advance of Wetting Front in Silt Loam Soil

    Directory of Open Access Journals (Sweden)

    Mohamed Mahmood

    2013-04-01

    Full Text Available Under drip irrigation , the plant's root is concentrated inside the wetted bulb (region. Thus, the development of these roots and the plant production are greatly affected by the wetting pattern. Therefore, the wetting pattern of soil under drip irrigation must be taken into consideration in the design of drip irrigation system for both single dripping source or multi-overlapping wetting patterns of dripping water sources.2The aim of this study is to evaluate the effect of initial water content of the soil and spacing between two adjacent dripping sources with different flow rate on the movement of the wetting front.This study included 16 tests for monitoring the advancement of the wetting front with time during and after the water application phase. The water advance and water distribution measurement are carried out for two cases of the soil profile: for the first case with initial volumetric water content of 4.08% and for the second case with initial volumetric water content of 12.24%. Two spacing between the emitter were tested 25cm and 50 cm using application flow rates of 0.606, 1.212, 1.818, and 2.424 cm3 /min/cm to show the combined effect of spacing and flow rate on the performance of two adjacent emitter.The study proposed a method for determining the spacing between the two emitting sources , the water application rate and watering time. The proposed method depends on a wetted zone whose depth is equal to the root zone depth with a values equals to the maximum vertical advance of the wetting front underneath the drip line at time when this depth is equal to the depth of wetting at mid­point between the drip line. the study revealed that both the vertical water advance in soil underneath the emitter and the horizontal advance of the wetting front is larger than those in the case of single emitter.Furthermore, the vertical water advance increases with the decrease spacing between the two drip lines. Also, the horizontal advance of the

  2. Can Leaf Spectroscopy Predict Leaf and Forest Traits Along a Peruvian Tropical Forest Elevation Gradient?

    Science.gov (United States)

    Doughty, Christopher E.; Santos-Andrade, P. E.; Goldsmith, G. R.; Blonder, B.; Shenkin, A.; Bentley, L. P.; Chavana-Bryant, C.; Huaraca-Huasco, W.; Díaz, S.; Salinas, N.; Enquist, B. J.; Martin, R.; Asner, G. P.; Malhi, Y.

    2017-11-01

    High-resolution spectroscopy can be used to measure leaf chemical and structural traits. Such leaf traits are often highly correlated to other traits, such as photosynthesis, through the leaf economics spectrum. We measured VNIR (visible-near infrared) leaf reflectance (400-1,075 nm) of sunlit and shaded leaves in 150 dominant species across ten, 1 ha plots along a 3,300 m elevation gradient in Peru (on 4,284 individual leaves). We used partial least squares (PLS) regression to compare leaf reflectance to chemical traits, such as nitrogen and phosphorus, structural traits, including leaf mass per area (LMA), branch wood density and leaf venation, and "higher-level" traits such as leaf photosynthetic capacity, leaf water repellency, and woody growth rates. Empirical models using leaf reflectance predicted leaf N and LMA (r2 > 30% and %RMSE < 30%), weakly predicted leaf venation, photosynthesis, and branch density (r2 between 10 and 35% and %RMSE between 10% and 65%), and did not predict leaf water repellency or woody growth rates (r2<5%). Prediction of higher-level traits such as photosynthesis and branch density is likely due to these traits correlations with LMA, a trait readily predicted with leaf spectroscopy.

  3. Estimating 3D Leaf and Stem Shape of Nursery Paprika Plants by a Novel Multi-Camera Photography System

    Directory of Open Access Journals (Sweden)

    Yu Zhang

    2016-06-01

    Full Text Available For plant breeding and growth monitoring, accurate measurements of plant structure parameters are very crucial. We have, therefore, developed a high efficiency Multi-Camera Photography (MCP system combining Multi-View Stereovision (MVS with the Structure from Motion (SfM algorithm. In this paper, we measured six variables of nursery paprika plants and investigated the accuracy of 3D models reconstructed from photos taken by four lens types at four different positions. The results demonstrated that error between the estimated and measured values was small, and the root-mean-square errors (RMSE for leaf width/length and stem height/diameter were 1.65 mm (R2 = 0.98 and 0.57 mm (R2 = 0.99, respectively. The accuracies of the 3D model reconstruction of leaf and stem by a 28-mm lens at the first and third camera positions were the highest, and the number of reconstructed fine-scale 3D model shape surfaces of leaf and stem is the most. The results confirmed the practicability of our new method for the reconstruction of fine-scale plant model and accurate estimation of the plant parameters. They also displayed that our system is a good system for capturing high-resolution 3D images of nursery plants with high efficiency.

  4. Estimating 3D Leaf and Stem Shape of Nursery Paprika Plants by a Novel Multi-Camera Photography System

    Science.gov (United States)

    Zhang, Yu; Teng, Poching; Shimizu, Yo; Hosoi, Fumiki; Omasa, Kenji

    2016-01-01

    For plant breeding and growth monitoring, accurate measurements of plant structure parameters are very crucial. We have, therefore, developed a high efficiency Multi-Camera Photography (MCP) system combining Multi-View Stereovision (MVS) with the Structure from Motion (SfM) algorithm. In this paper, we measured six variables of nursery paprika plants and investigated the accuracy of 3D models reconstructed from photos taken by four lens types at four different positions. The results demonstrated that error between the estimated and measured values was small, and the root-mean-square errors (RMSE) for leaf width/length and stem height/diameter were 1.65 mm (R2 = 0.98) and 0.57 mm (R2 = 0.99), respectively. The accuracies of the 3D model reconstruction of leaf and stem by a 28-mm lens at the first and third camera positions were the highest, and the number of reconstructed fine-scale 3D model shape surfaces of leaf and stem is the most. The results confirmed the practicability of our new method for the reconstruction of fine-scale plant model and accurate estimation of the plant parameters. They also displayed that our system is a good system for capturing high-resolution 3D images of nursery plants with high efficiency. PMID:27314348

  5. Leaf size and leaf display of thirty-eight tropical tree species

    NARCIS (Netherlands)

    Poorter, L.; Rozendaal, D.M.A.

    2008-01-01

    Trees forage for light through optimal leaf display. Effective leaf display is determined by metamer traits (i.e., the internode, petiole, and corresponding leaf), and thus these traits strongly co-determine carbon gain and as a result competitive advantage in a light-limited environment. We

  6. Characterization of a plant leaf cuticle model wax, phase behaviour of model wax–water systems

    Energy Technology Data Exchange (ETDEWEB)

    Fagerström, Anton, E-mail: anton.fagerstrom@mah.se [Biomedical Science, Faculty of Health and Society, Malmö University, Malmö (Sweden); Kocherbitov, Vitaly [Biomedical Science, Faculty of Health and Society, Malmö University, Malmö (Sweden); Westbye, Peter; Bergström, Karin [Agro Applications Europe, AkzoNobel Surface Chemistry AB, Stenungsund (Sweden); Mamontova, Varvara [Ecological and Chemical Research, St. Petersburg Scientific Research Center for Ecological Safety, Russian Academy of Sciences, St. Petersburg (Russian Federation); Engblom, Johan [Biomedical Science, Faculty of Health and Society, Malmö University, Malmö (Sweden)

    2013-11-10

    Highlights: • Four individual crystalline phases were discovered in the model wax–water system. • Eutectic melting occurred in both dry and hydrated model wax. • The total transition enthalpy is smaller for the cuticle wax than for the model wax. • Water has a large plasticizing effect on cuticle wax. • The thermotropic transitions of model wax fit in the window of extracted leaf waxes. - Abstract: We investigated the thermotropic phase behaviour of plant leaf intracuticular wax and two representatives of its main components, 1-docosanol (C{sub 22}H{sub 45}OH) and dotriacontane (C{sub 32}H{sub 66}), in dry and hydrated state. One objective was to obtain a model wax, which can be used to estimate formulations effects on cuticle diffusivity in vitro. The two wax components were chosen based on results from Gas Chromatography coupled to Mass Spectrometry analysis of cuticular wax. The wax was extracted from Clivia Miniata Regel leaves and contained 68% primary alcohols (C{sub 16}–C{sub 32}) and 16% n-alkanes (C{sub 21}–C{sub 33}). Differential Scanning Calorimetry, Polarized Light Microscopy and Small- and Wide Angle X-ray Diffraction were used to characterize the cuticular extract and the phase behaviour of the C{sub 22}H{sub 45}OH/C{sub 32}H{sub 66}/H{sub 2}O model system. Four individual crystalline phases were discovered in the model wax–water system and eutectic melting occurred in both dry and hydrated state. The thermotropic transitions of the model wax occur within the broader transition region of the extracted leaf wax.

  7. Translational researches on leaf senescence for enhancing plant productivity and quality.

    Science.gov (United States)

    Guo, Yongfeng; Gan, Su-Sheng

    2014-07-01

    Leaf senescence is a very important trait that limits yield and biomass accumulation of agronomic crops and reduces post-harvest performance and the nutritional value of horticultural crops. Significant advance in physiological and molecular understanding of leaf senescence has made it possible to devise ways of manipulating leaf senescence for agricultural improvement. There are three major strategies in this regard: (i) plant hormone biology-based leaf senescence manipulation technology, the senescence-specific gene promoter-directed IPT system in particular; (ii) leaf senescence-specific transcription factor biology-based technology; and (iii) translation initiation factor biology-based technology. Among the first strategy, the P SAG12 -IPT autoregulatory senescence inhibition system has been widely explored and successfully used in a variety of plant species for manipulating senescence. The vast majority of the related research articles (more than 2000) showed that crops harbouring the autoregulatory system displayed a significant delay in leaf senescence without any abnormalities in growth and development, a marked increase in grain yield and biomass, dramatic improvement in horticultural performance, and/or enhanced tolerance to drought stress. This technology is approaching commercialization. The transcription factor biology-based and translation initiation factor biology-based technologies have also been shown to be very promising and have great potentials for manipulating leaf senescence in crops. Finally, it is speculated that technologies based on the molecular understanding of nutrient recycling during leaf senescence are highly desirable and are expected to be developed in future translational leaf senescence research. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  8. A finger leaf design for dual layer MLCs

    International Nuclear Information System (INIS)

    Cui Weijie; Dai Jianrong

    2010-01-01

    Objective: To introduce a finger leaf design that is applied to dual layer MLCs. Methods: An optimization model was firstly constructed to describe the problem of determining leaf end shapes,and the corresponding problems were then solved by the simplex search method or the simulated annealing technique. Optimal parameters for arc shapes of leaf end projections were obtained, and a comparison was done between optimized MLCs and conventional MLCs in terms of field conformity. The optimization process was based on 634 target fields selected from the patient data base of a treatment planning system. Areas of these fields ranged from 20.0 to 602.7 cm with a mean and its standard deviation of (125.7 ± 0.0) cm 2 . Results: The optimized leaf end shapes projected to the isocenter plane were semicircles. With the finger leaf design, the total area of discrepancy regions between MLC fields and target fields was reduced by 32.3%. Conclusions: The finger leaf design improves the conformity of the MLC shaped fields to the desired target fields. (authors)

  9. Evaluation of Methane from Sisal Leaf Residue and Palash Leaf Litter

    Science.gov (United States)

    Arisutha, S.; Baredar, P.; Deshpande, D. M.; Suresh, S.

    2014-12-01

    The aim of this study is to evaluate methane production from sisal leaf residue and palash leaf litter mixed with different bulky materials such as vegetable market waste, hostel kitchen waste and digested biogas slurry in a laboratory scale anaerobic reactor. The mixture was prepared with 1:1 proportion. Maximum methane content of 320 ml/day was observed in the case of sisal leaf residue mixed with vegetable market waste as the feed. Methane content was minimum (47 ml/day), when palash leaf litter was used as feed. This was due to the increased content of lignin and polyphenol in the feedstock which were of complex structure and did not get degraded directly by microorganisms. Sisal leaf residue mixtures also showed highest content of volatile fatty acids (VFAs) as compared to palash leaf litter mixtures. It was observed that VFA concentration in the digester first increased, reached maximum (when pH was minimum) and then decreased.

  10. Biodiesel production from wet microalgae feedstock using sequential wet extraction/transesterification and direct transesterification processes.

    Science.gov (United States)

    Chen, Ching-Lung; Huang, Chien-Chang; Ho, Kao-Chia; Hsiao, Ping-Xuan; Wu, Meng-Shan; Chang, Jo-Shu

    2015-10-01

    Although producing biodiesel from microalgae seems promising, there is still a lack of technology for the quick and cost-effective conversion of biodiesel from wet microalgae. This study was aimed to develop a novel microalgal biodiesel producing method, consisting of an open system of microwave disruption, partial dewatering (via combination of methanol treatment and low-speed centrifugation), oil extraction, and transesterification without the pre-removal of the co-solvent, using Chlamydomonas sp. JSC4 with 68.7 wt% water content as the feedstock. Direct transesterification with the disrupted wet microalgae was also conducted. The biomass content of the wet microalgae increased to 56.6 and 60.5 wt%, respectively, after microwave disruption and partial dewatering. About 96.2% oil recovery was achieved under the conditions of: extraction temperature, 45°C; hexane/methanol ratio, 3:1; extraction time, 80 min. Transesterification of the extracted oil reached 97.2% conversion within 15 min at 45°C and 6:1 solvent/methanol ratio with simultaneous Chlorophyll removal during the process. Nearly 100% biodiesel conversion was also obtained while conducting direct transesterification of the disrupted oil-bearing microalgal biomass. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Predicting vegetation type through physiological and environmental interactions with leaf traits: evergreen and deciduous forests in an earth system modeling framework.

    Science.gov (United States)

    Weng, Ensheng; Farrior, Caroline E; Dybzinski, Ray; Pacala, Stephen W

    2017-06-01

    Earth system models are incorporating plant trait diversity into their land components to better predict vegetation dynamics in a changing climate. However, extant plant trait distributions will not allow extrapolations to novel community assemblages in future climates, which will require a mechanistic understanding of the trade-offs that determine trait diversity. In this study, we show how physiological trade-offs involving leaf mass per unit area (LMA), leaf lifespan, leaf nitrogen, and leaf respiration may explain the distribution patterns of evergreen and deciduous trees in the temperate and boreal zones based on (1) an evolutionary analysis of a simple mathematical model and (2) simulation experiments of an individual-based dynamic vegetation model (i.e., LM3-PPA). The evolutionary analysis shows that these leaf traits set up a trade-off between carbon- and nitrogen-use efficiency at the scale of individual trees and therefore determine competitively dominant leaf strategies. As soil nitrogen availability increases, the dominant leaf strategy switches from one that is high in nitrogen-use efficiency to one that is high in carbon-use efficiency or, equivalently, from high-LMA/long-lived leaves (i.e., evergreen) to low-LMA/short-lived leaves (i.e., deciduous). In a region of intermediate soil nitrogen availability, the dominant leaf strategy may be either deciduous or evergreen depending on the initial conditions of plant trait abundance (i.e., founder controlled) due to feedbacks of leaf traits on soil nitrogen mineralization through litter quality. Simulated successional patterns by LM3-PPA from the leaf physiological trade-offs are consistent with observed successional dynamics of evergreen and deciduous forests at three sites spanning the temperate to boreal zones. © 2016 John Wiley & Sons Ltd.

  12. What to Do If Your Appliances Are Wet After a Disaster

    Centers for Disease Control (CDC) Podcasts

    2006-08-10

    If your home was flooded, look for signs that your appliances have gotten wet. Throw away wet or flooded appliances to protect from shock and fire.  Created: 8/10/2006 by Emergency Communications System.   Date Released: 7/30/2008.

  13. Are trichomes involved in the biomechanical systems of Cucurbita leaf petioles?

    Science.gov (United States)

    Zajączkowska, Urszula; Kucharski, Stanisław; Guzek, Dominika

    2015-12-01

    Trichomes are involved in petiole movement and likely function as a part of the plant biomechanical system serving as an additional reservoir of hydrostatic pressure. The large, non-glandular trichomes on Cucurbita petioles occur across collenchyma strands. Time-lapse imaging was used to study the leaf reorientation of Cucurbita maxima 'Bambino' plants placed in horizontal position. The experiment comprised four variants of the large non-glandular petiole trichomes: (1) intact, (2) mechanically removed, (3) dehydrated, and (4) intact but with longitudinally injured petioles. Isolated strands of collenchyma with intact epidermis or epidermis mechanically removed from the abaxial and adaxial sides of the petiole were subjected to breaking test. The stiffness of the non-isolated tissue with intact epidermis was measured using the micro-indentation method. Petioles without trichomes did not exhibit tropic response, and the dehydration of trichomes slowed and prevented complete leaf reorientation. Isolated strands of collenchyma showed no correlation between strength values and position on the petiole. However, strands of collenchyma with epidermis exhibited a significantly greater strength regardless of their position on the petiole. The indentation test showed that non-isolated collenchyma is stiffer on the abaxial side of the petiole. Trichomes from the abaxial side of the petiole were larger at their base. The application of the 'tensile triangles method' revealed that these trichomes had a biomechanically optimized shape in comparison to the adaxial side. We conclude that trichomes can be involved in plant biomechanical system and serve as an additional reservoir of hydrostatic pressure that is necessary for maintaining petioles in the prestressed state.

  14. Wet self-cleaning of superhydrophobic microfiber adhesives formed from high density polyethylene.

    Science.gov (United States)

    Lee, Jongho; Fearing, Ronald S

    2012-10-30

    Biologically inspired adhesives developed for switchable and controllable adhesion often require repetitive uses in general, dirty, environments. Superhydrophobic microstructures on the lotus leaf lead to exceptional self-cleaning of dirt particles on nonadhesive surfaces with water droplets. This paper describes the self-cleaning properties of a hard-polymer-based adhesive formed with high-aspect-ratio microfibers from high-density polyethylene (HDPE). The microfiber adhesive shows almost complete wet self-cleaning of dirt particles with water droplets, recovering 98% of the adhesion of the pristine microfiber adhesives. The low contact angle hysteresis indicates that the surface of microfiber adhesives is superhydrophobic. Theoretical and experimental studies reveal a design parameter, length, which can control the adhesion without affecting the superhydrophobicity. The results suggest some properties of biologically inspired adhesives can be controlled independently by adjusting design parameters.

  15. Dry purification of aspirational air in coke-sorting systems with wet slaking of coke

    Energy Technology Data Exchange (ETDEWEB)

    T.F. Trembach; A.G. Klimenko [Giprokoks, the State Institute for the Design of Coke-Industry Enterprises, Kharkov (Ukraine)

    2009-07-15

    Coke transportation after wet slaking is accompanied by the release of dust in the production building and in the surrounding atmosphere. Wet methods are traditionally used to purify very humid air. Giprokoks has developed designs for highly efficient dry dust-removal methods in such conditions.

  16. Wet Gas Airfoil Analyses

    OpenAIRE

    Larsen, Tarjei Thorrud

    2011-01-01

    Subsea wet gas compression renders new possibilities for cost savings and enhanced gas recovery on existing gas wells. Technology like this opens to make traditional offshore processing plants redundant. With new technology, follows new challenges. Multiphase flows is regarded as a complex field of study, and increased knowledge on the fundamental mechanisms regarding wet gas flow is of paramount importance to the efficiency and stability of the wet gas compressor. The scope of this work was ...

  17. Modeled Wet Nitrate Deposition

    Data.gov (United States)

    U.S. Environmental Protection Agency — Modeled data on nitrate wet deposition was obtained from Dr. Jeff Grimm at Penn State Univ. Nitrate wet depostion causes acidification and eutrophication of surface...

  18. Effect of MLC leaf width on the planning and delivery of SMLC IMRT using the CORVUS inverse treatment planning system

    International Nuclear Information System (INIS)

    Burmeister, Jay; McDermott, Patrick N.; Bossenberger, Todd; Ben-Josef, Edgar; Levin, Kenneth; Forman, Jeffrey D.

    2004-01-01

    This study investigates the influence of multileaf collimator (MLC) leaf width on intensity modulated radiation therapy (IMRT) plans delivered via the segmented multileaf collimator (SMLC) technique. IMRT plans were calculated using the Corvus treatment planning system for three brain, three prostate, and three pancreas cases using leaf widths of 0.5 and 1 cm. Resulting differences in plan quality and complexity are presented here. Plans calculated using a 1 cm leaf width were chosen over the 0.5 cm leaf width plans in seven out of nine cases based on clinical judgment. Conversely, optimization results revealed a superior objective function result for the 0.5 cm leaf width plans in seven out of the nine comparisons. The 1 cm leaf width objective function result was superior only for very large target volumes, indicating that expanding the solution space for plan optimization by using narrower leaves may result in a decreased probability of finding the global minimum. In the remaining cases, we can conclude that we are often not utilizing the objective function as proficiently as possible to meet our clinical goals. There was often no apparent clinically significant difference between the two plans, and in such cases the issue becomes one of plan complexity. A comparison of plan complexity revealed that the average 1 cm leaf width plan required roughly 60% fewer segments and over 40% fewer monitor units than required by 0.5 cm leaf width plans. This allows a significant decrease in whole body dose and total treatment time. For very complex IMRT plans, the treatment delivery time may affect the biologically effective dose. A clinically significant improvement in plan quality from using narrower leaves was evident only in cases with very small target volumes or those with concavities that are small with respect to the MLC leaf width. For the remaining cases investigated in this study, there was no clinical advantage to reducing the MLC leaf width from 1 to 0.5 cm. In

  19. Biomimetic fabrication and tunable wetting properties of three-dimensional hierarchical ZnO structures by combining soft lithography templated with lotus leaf and hydrothermal treatments

    OpenAIRE

    Dai, Shuxi; Zhang, Dianbo; Shi, Qing; Han, Xiao; Wang, Shujie; Du, Zuliang

    2013-01-01

    Three-dimensional hierarchical ZnO films with lotus-leaf-like micro/nano structures were successfully fabricated via a biomimetic route combining sol-gel technique, soft lithography and hydrothermal treatments. PDMS mold replicated from a fresh lotus leaf was used to imprint microscale pillar structures directly into a ZnO sol film. Hierarchical ZnO micro/nano structures were subsequently fabricated by a low-temperature hydrothermal growth of secondary ZnO nanorod arrays on the micro-structur...

  20. Visual wetness perception based on image color statistics.

    Science.gov (United States)

    Sawayama, Masataka; Adelson, Edward H; Nishida, Shin'ya

    2017-05-01

    Color vision provides humans and animals with the abilities to discriminate colors based on the wavelength composition of light and to determine the location and identity of objects of interest in cluttered scenes (e.g., ripe fruit among foliage). However, we argue that color vision can inform us about much more than color alone. Since a trichromatic image carries more information about the optical properties of a scene than a monochromatic image does, color can help us recognize complex material qualities. Here we show that human vision uses color statistics of an image for the perception of an ecologically important surface condition (i.e., wetness). Psychophysical experiments showed that overall enhancement of chromatic saturation, combined with a luminance tone change that increases the darkness and glossiness of the image, tended to make dry scenes look wetter. Theoretical analysis along with image analysis of real objects indicated that our image transformation, which we call the wetness enhancing transformation, is consistent with actual optical changes produced by surface wetting. Furthermore, we found that the wetness enhancing transformation operator was more effective for the images with many colors (large hue entropy) than for those with few colors (small hue entropy). The hue entropy may be used to separate surface wetness from other surface states having similar optical properties. While surface wetness and surface color might seem to be independent, there are higher order color statistics that can influence wetness judgments, in accord with the ecological statistics. The present findings indicate that the visual system uses color image statistics in an elegant way to help estimate the complex physical status of a scene.

  1. Tuning and predicting the wetting of nanoengineered material surface

    Science.gov (United States)

    Ramiasa-MacGregor, M.; Mierczynska, A.; Sedev, R.; Vasilev, K.

    2016-02-01

    The wetting of a material can be tuned by changing the roughness on its surface. Recent advances in the field of nanotechnology open exciting opportunities to control macroscopic wetting behaviour. Yet, the benchmark theories used to describe the wettability of macroscopically rough surfaces fail to fully describe the wetting behaviour of systems with topographical features at the nanoscale. To shed light on the events occurring at the nanoscale we have utilised model gradient substrata where surface nanotopography was tailored in a controlled and robust manner. The intrinsic wettability of the coatings was varied from hydrophilic to hydrophobic. The measured water contact angle could not be described by the classical theories. We developed an empirical model that effectively captures the experimental data, and further enables us to predict the wetting of surfaces with nanoscale roughness by considering the physical and chemical properties of the material. The fundamental insights presented here are important for the rational design of advanced materials having tailored surface nanotopography with predictable wettability.The wetting of a material can be tuned by changing the roughness on its surface. Recent advances in the field of nanotechnology open exciting opportunities to control macroscopic wetting behaviour. Yet, the benchmark theories used to describe the wettability of macroscopically rough surfaces fail to fully describe the wetting behaviour of systems with topographical features at the nanoscale. To shed light on the events occurring at the nanoscale we have utilised model gradient substrata where surface nanotopography was tailored in a controlled and robust manner. The intrinsic wettability of the coatings was varied from hydrophilic to hydrophobic. The measured water contact angle could not be described by the classical theories. We developed an empirical model that effectively captures the experimental data, and further enables us to predict the

  2. Eco-friendly and green synthesis of silver nanoparticles using leaf extract of Strychnos potatorum Linn.F. and their bactericidal activities

    OpenAIRE

    Kagithoju, Srikanth; Godishala, Vikram; Nanna, Rama Swamy

    2014-01-01

    Inspired green synthesis of metallic nanoparticles is evolving as an important branch of nanotechnology. Traditionally these are manufactured by wet chemical methods which require toxic and flammable chemicals. We report for the first time an economic and eco-friendly green synthesis of silver nanoparticles using Strychnos potatorum aqueous leaf extract from 3 mM silver nitrate solution. Nanoparticles thus formed are confirmed and characterized by using UV–Vis absorption spectroscopy, SEM and...

  3. Effect of Addition of Moringa Leaf By-Product (Leaf-Waste) on ...

    African Journals Online (AJOL)

    The effects of incorporation of Moringa leaf fibre (a by-product of leaf processing which contains 24% Crude Fibre by dry weight at 0, 5 and 10 % substitution of wheat flour in cookies was investigated. Three products containing wheat flour: Moringa leaf fibre ratios of 100:0, 95:5, and 90:10 respectively were prepared, and a ...

  4. Andreas Acrivos Dissertation Award: Onset of Dynamic Wetting Failure - The Mechanics of High-Speed Fluid Displacement

    Science.gov (United States)

    Vandre, Eric

    2014-11-01

    Dynamic wetting is crucial to processes where a liquid displaces another fluid along a solid surface, such as the deposition of a coating liquid onto a moving substrate. Dynamic wetting fails when process speed exceeds some critical value, leading to incomplete fluid displacement and transient phenomena that impact a variety of applications, such as microfluidic devices, oil-recovery systems, and splashing droplets. Liquid coating processes are particularly sensitive to wetting failure, which can induce air entrainment and other catastrophic coating defects. Despite the industrial incentives for careful control of wetting behavior, the hydrodynamic factors that influence the transition to wetting failure remain poorly understood from empirical and theoretical perspectives. This work investigates the fundamentals of wetting failure in a variety of systems that are relevant to industrial coating flows. A hydrodynamic model is developed where an advancing fluid displaces a receding fluid along a smooth, moving substrate. Numerical solutions predict the onset of wetting failure at a critical substrate speed, which coincides with a turning point in the steady-state solution path for a given set of system parameters. Flow-field analysis reveals a physical mechanism where wetting failure results when capillary forces can no longer support the pressure gradients necessary to steadily displace the receding fluid. Novel experimental systems are used to measure the substrate speeds and meniscus shapes associated with the onset of air entrainment during wetting failure. Using high-speed visualization techniques, air entrainment is identified by the elongation of triangular air films with system-dependent size. Air films become unstable to thickness perturbations and ultimately rupture, leading to the entrainment of air bubbles. Meniscus confinement in a narrow gap between the substrate and a stationary plate is shown to delay air entrainment to higher speeds for a variety of

  5. New advances in wet scrubbing improvement efficiencies

    Energy Technology Data Exchange (ETDEWEB)

    Keen, A.R. [Altech Group, Toronto, ON (Canada)

    2000-07-01

    Wet scrubbing systems are the most versatile and cost efficient of all air pollution abatement technologies. This paper presented System REITHER{sup TM} which is a new generation of venturi scrubber. The advantages of this design are that it is simple and compact, has high removal efficiencies for sub-micron dusts or aerosols and it is flexible to handle any mass flow rate. It also provides high and constant reliability, is easy to control and has the potential to absorb gaseous pollutants. Another advantage is that it can handle corrosive streams through corrosion resistant materials. Innovations in wet scrubbing have made it possible to provide reliable and efficient separation of fine particles, corrosive aerosols and gases. New technology provides industrial engineers with a cost effective option when control air emissions is required. 1 fig.

  6. Simulation of the operation of an industrial wet flue gas desulfurization system

    International Nuclear Information System (INIS)

    Kallinikos, L.E.; Farsari, E.I.; Spartinos, D.N.; Papayannakos, N.G.

    2010-01-01

    In this work the simulation of a wet flue gas desulfurization (FGD) unit with spray tower of a power plant is presented, aiming at an efficient follow-up and the optimization of the FGD system operation. The dynamic model developed to simulate the performance of the system has been validated with operation data collected over a long period of time. All the partaking physical and chemical processes like the limestone dissolution, the crystallization of calcium sulfite and gypsum and the oxidation of sulfite ions have been taken into account for the development of the simulation model while the gas absorption by the liquid droplets was based on the two-film theory. The effect of the mean diameter of the slurry droplets on the performance of the system was examined, as it was used as an index factor of the normal operation of the system. The operation limits of the system were investigated on the basis of the model developed. It is concluded that the model is capable of simulating the system for significantly different SO 2 loads and that the absorption rate of SO 2 is strongly affected by the liquid dispersion in the tower. (author)

  7. Use of wet concrete spraying in building technology of reinforced-concrete fiber slabs according to «Monofant» system

    OpenAIRE

    BUGAYEVSKIY S.

    2016-01-01

    Technology of cementation of reinforced-concrete slabs with non-extractable-liners for the «Monofant» system, using wet concrete spraying is implemented. A compression test for obtained columns made of fiber concrete is carried out.

  8. Electrostatic cloaking of surface structure for dynamic wetting

    Science.gov (United States)

    Shiomi, Junichiro; Nita, Satoshi; Do-Quang, Minh; Wang, Jiayu; Chen, Yu-Chung; Suzuki, Yuji; Amberg, Gustav

    2017-11-01

    Dynamic wetting problems are fundamental to the understanding of the interaction between liquids and solids. Even in a superficially simple experimental situation, such as a droplet spreading over a dry surface, the result may depend not only on the liquid properties but also strongly on the substrate-surface properties; even for macroscopically smooth surfaces, the microscopic geometrical roughness can be important. In addition, as surfaces may often be naturally charged, or electric fields are used to manipulate fluids, electric effects are crucial components that influence wetting phenomena. Here we investigate the interplay between electric forces and surface structures in dynamic wetting. While surface microstructures can significantly hinder the spreading, we find that the electrostatics can ``cloak'' the microstructures, i.e. deactivate the hindering. We identify the physics in terms of reduction in contact-line friction, which makes the dynamic wetting inertial force dominant and insensitive to the substrate properties. This work was financially supported in part by, the Japan Society for the Promotion of Science, Swedish Governmental Agency for Innovation Systems, and the Japan Science and Technology Agency.

  9. Behavior of aircraft antiskid braking systems on dry and wet runway surfaces: Hydromechanically controlled system

    Science.gov (United States)

    Tanner, J. A.; Stubbs, S. M.; Smith, E. G.

    1981-01-01

    The investigation utilized one main gear wheel, brake, and tire assembly of a McDonnell Douglas DC-9 series 10 airplane. The landing-gear strut was replaced by a dynamometer. During maximum braking, average braking behavior indexes based upon brake pressure, brake torque, and drag-force friction coefficient developed by the antiskid system were generally higher on dry surfaces than on wet surfaces. The three braking behavior indexes gave similar results but should not be used interchangeably as a measure of the braking of this antiskid sytem. During the transition from a dry to a flooded surface under heavy braking, the wheel entered into a deep skid but the antiskid system reacted quickly by reducing brake pressure and performed normally during the remainder of the run on the flooded surface. The brake-pressure recovery following transition from a flooded to a dry surface was shown to be a function of the antiskid modulating orifice.

  10. Evaluation of two methods of predicting MLC leaf positions using EPID measurements

    International Nuclear Information System (INIS)

    Parent, Laure; Seco, Joao; Evans, Phil M.; Dance, David R.; Fielding, Andrew

    2006-01-01

    In intensity modulated radiation treatments (IMRT), the position of the field edges and the modulation within the beam are often achieved with a multileaf collimator (MLC). During the MLC calibration process, due to the finite accuracy of leaf position measurements, a systematic error may be introduced to leaf positions. Thereafter leaf positions of the MLC depend on the systematic error introduced on each leaf during MLC calibration and on the accuracy of the leaf position control system (random errors). This study presents and evaluates two methods to predict the systematic errors on the leaf positions introduced during the MLC calibration. The two presented methods are based on a series of electronic portal imaging device (EPID) measurements. A comparison with film measurements showed that the EPID could be used to measure leaf positions without introducing any bias. The first method, referred to as the 'central leaf method', is based on the method currently used at this center for MLC leaf calibration. It mimics the manner in which leaf calibration parameters are specified in the MLC control system and consequently is also used by other centers. The second method, a new method proposed by the authors and referred to as the ''individual leaf method,'' involves the measurement of two positions for each leaf (-5 and +15 cm) and the interpolation and extrapolation from these two points to any other given position. The central leaf method and the individual leaf method predicted leaf positions at prescribed positions of -11, 0, 5, and 10 cm within 2.3 and 1.0 mm, respectively, with a standard deviation (SD) of 0.3 and 0.2 mm, respectively. The individual leaf method provided a better prediction of the leaf positions than the central leaf method. Reproducibility tests for leaf positions of -5 and +15 cm were performed. The reproducibility was within 0.4 mm on the same day and 0.4 mm six weeks later (1 SD). Measurements at gantry angles of 0 deg., 90 deg., and 270 deg

  11. Bio-Inspired Extreme Wetting Surfaces for Biomedical Applications

    Science.gov (United States)

    Shin, Sera; Seo, Jungmok; Han, Heetak; Kang, Subin; Kim, Hyunchul; Lee, Taeyoon

    2016-01-01

    Biological creatures with unique surface wettability have long served as a source of inspiration for scientists and engineers. More specifically, materials exhibiting extreme wetting properties, such as superhydrophilic and superhydrophobic surfaces, have attracted considerable attention because of their potential use in various applications, such as self-cleaning fabrics, anti-fog windows, anti-corrosive coatings, drag-reduction systems, and efficient water transportation. In particular, the engineering of surface wettability by manipulating chemical properties and structure opens emerging biomedical applications ranging from high-throughput cell culture platforms to biomedical devices. This review describes design and fabrication methods for artificial extreme wetting surfaces. Next, we introduce some of the newer and emerging biomedical applications using extreme wetting surfaces. Current challenges and future prospects of the surfaces for potential biomedical applications are also addressed. PMID:28787916

  12. Humidifying system design of PEMFC test platform based on the mixture of dry and wet air

    Directory of Open Access Journals (Sweden)

    Tiancai Ma

    2015-01-01

    Full Text Available Based on the present humidifying system of PEMFC test platform, a novel design based on dry and wet air mixture is proposed. Key parameters are calculated, and test platform is built. Three experiments are implemented to test the performance of proposed design. Results show that the new design can meet the requirements, and realize the quick response and accurate control.

  13. Effects of combination of leaf resources on competition in container mosquito larvae.

    Science.gov (United States)

    Reiskind, M H; Zarrabi, A A; Lounibos, L P

    2012-08-01

    Resource diversity is critical to fitness in many insect species, and may determine the coexistence of competitive species and the function of ecosystems. Plant material provides the nutritional base for numerous aquatic systems, yet the consequences of diversity of plant material have not been studied in aquatic container systems important for the production of mosquitoes. To address how diversity in leaf detritus affects container-inhabiting mosquitoes, we examined how leaf species affect competition between two container inhabiting mosquito larvae, Aedes aegypti and Aedes albopictus, that co-occur in many parts of the world. We tested the hypotheses that leaf species changes the outcome of intra- and interspecific competition between these mosquito species, and that combinations of leaf species affect competition in a manner not predictable based upon the response to each leaf species alone (i.e. the response to leaf combinations is non-additive). We find support for our first hypothesis that leaf species can affect competition, evidence that, in general, leaf combination alters competitive interactions, and no support that leaf combination impacts interspecific competition differently than intraspecific competition. We conclude that combinations of leaves increase mosquito production non-additively such that combinations of leaves act synergistically, in general, and result in higher total yield of adult mosquitoes in most cases, although certain leaf combinations for A. albopictus are antagonistic. We also conclude that leaf diversity does not have a different effect on interspecific competition between A. aegypti and A. albopictus, relative to intraspecific competition for each mosquito.

  14. Validation of the efficacy of a solar-thermal powered autoclave system for off-grid medical instrument wet sterilization.

    Science.gov (United States)

    Kaseman, Tremayne; Boubour, Jean; Schuler, Douglas A

    2012-10-01

    This work describes the efficacy of a solar-thermal powered autoclave used for the wet sterilization of medical instruments in off-grid settings where electrical power is not readily available. Twenty-seven trials of the solar-thermal powered system were run using an unmodified non-electric autoclave loaded with a simulated bundle of medical instruments and biological test agents. Results showed that in 100% of the trials the autoclave achieved temperatures in excess of 121°C for 30 minutes, indicator tape displayed visible reactions to steam sterilization, and biological tests showed that microbial agents had been eliminated, in compliance with the Centers for Disease Control and Prevention requirements for efficacious wet sterilization.

  15. Random Vibration Testing of Advanced Wet Tantalum Capacitors

    Science.gov (United States)

    Teverovsky, Alexander

    2015-01-01

    Advanced wet tantalum capacitors allow for improved performance of power supply systems along with substantial reduction of size and weight of the systems that is especially beneficial for space electronics. Due to launch-related stresses, acceptance testing of all space systems includes random vibration test (RVT). However, many types of advanced wet tantalum capacitors cannot pass consistently RVT at conditions specified in MIL-PRF-39006, which impedes their use in space projects. This requires a closer look at the existing requirements, modes and mechanisms of failures, specifics of test conditions, and acceptance criteria. In this work, different lots of advanced wet tantalum capacitors from four manufacturers have been tested at step stress random vibration conditions while their currents were monitored before, during, and after the testing. It has been shown that the robustness of the parts and their reliability are mostly due to effective self-healing processes and limited current spiking or minor scintillations caused by RVT do not increase the risk of failures during operation. A simple model for scintillations events has been used to simulate current spiking during RVT and optimize test conditions. The significance of scintillations and possible effects of gas generation have been discussed and test acceptance criteria for limited current spiking have been suggested.

  16. Partial to complete wetting transitions in immiscible ternary blends with PLA: the influence of interfacial confinement.

    Science.gov (United States)

    Zolali, Ali M; Favis, Basil D

    2017-04-12

    In this study it is shown that the three different intermediate phases in melt blended ternary PLA/PHBV/PBS, PLA/PBAT/PE and PLA/PE/PBAT systems all demonstrate partial wetting, but have very different wetting behaviors as a function of composition and annealing. The interfacial tension of the various components, their spreading coefficients and the contact angles of the confined partially wet droplets at the interface are examined in detail. A wetting transition from partially wet droplets to a complete layer at the interface is observed for both PHBV and PBAT by increasing the concentration and also by annealing. In contrast, in PLA/PE/PBAT, the partially wet droplets of PE at the interface of PLA/PBAT coalesce and grow in size, but remain partially wet even at a high PE concentration of 20% and after 30 min of quiescent annealing. The dewetting speed of the intermediate phase is found to be the principal factor controlling these wetting transitions. This work shows the significant potential for controlled wetting and structuring in ternary polymer systems.

  17. Effect of nitrogen supply on leaf appearance, leaf growth, leaf nitrogen economy and photosynthetic capacity in maize (Zea mays L.)

    NARCIS (Netherlands)

    Vos, J.; Putten, van der P.E.L.; Birch, C.J.

    2005-01-01

    Leaf area growth and nitrogen concentration per unit leaf area, Na (g m-2 N) are two options plants can use to adapt to nitrogen limitation. Previous work indicated that potato (Solanum tuberosum L.) adapts the size of leaves to maintain Na and photosynthetic capacity per unit leaf area. This paper

  18. The wetting behavior of alkanes on water

    Energy Technology Data Exchange (ETDEWEB)

    Ragil, Karine; Broseta, Daniel; Kalaydjian, Francois [Institut Francais du Petrole, BP 311, 92852 Rueil Malmaison Cedex (France); Bonn, Daniel; Meunier, Jacques [ENS, Laboratoire de Physique Statistique, 24 rue Lhomond, 75231 Paris Cedex 05 (France); Indekeu, Joseph [Katholieke Universiteit Leuven, Laboratorium voor Vaste-Stoffysica en Magnetisme, B-3001 Leuven (Belgium)

    1998-06-06

    This paper presents recent experimental and theoretical results concerning the wetting behavior of n-alkanes on water as a function of thermodynamic conditions (i.e., temperature, pressure, etc.). The transition from lenses to a macroscopically thick film, that takes place when the temperature is increased, occurs for n-alkanes on water in a manner very different from that encountered in other fluid systems. For n-pentane on water, ellipsometric measurements reveal that the growth of the pentane layer to a macroscopically thick film occurs in a continuous manner, for a temperature ({approx}53C) corresponding to a change in the sign of the Hamaker constant. A theoretical approach based on the Cahn-Landau theory, which takes into account long-range (van der Waals) forces, enables us to explain the mechanism of this continuous wetting transition. This transition is preceded (at a lower temperature) by a discontinuous transition from a thin film (of adsorbed molecules) to a thick (but not macroscopically thick) film. The latter transition was not visible for pentane on water (it should occur below the freezing temperature for water), but we expect to observe it for longer alkanes (e.g., hexane) on water. Work is underway to examine the wetting behavior of oil/brine systems more representative of reservoir conditions

  19. SU-F-T-350: Continuous Leaf Optimization (CLO) for IMRT Leaf Sequencing

    Energy Technology Data Exchange (ETDEWEB)

    Long, T; Chen, M; Jiang, S; Lu, W [UT Southwestern Medical Center, Dallas, TX (United States)

    2016-06-15

    Purpose: To study a new step-and-shoot IMRT leaf sequencing model that avoids the two main pitfalls of conventional leaf sequencing: (1) target fluence being stratified into a fixed number of discrete levels and/or (2) aperture leaf positions being restricted to a discrete set of locations. These assumptions induce error into the sequence or reduce the feasible region of potential plans, respectively. Methods: We develop a one-dimensional (single leaf pair) methodology that does not make assumptions (1) or (2) that can be easily extended to a multi-row model. The proposed continuous leaf optimization (CLO) methodology takes in an existing set of apertures and associated intensities, or solution “seed,” and improves the plan without the restrictiveness of 1or (2). It then uses a first-order descent algorithm to converge onto a locally optimal solution. A seed solution can come from models that assume (1) and (2), thus allowing the CLO model to improve upon existing leaf sequencing methodologies. Results: The CLO model was applied to 208 generated target fluence maps in one dimension. In all cases for all tested sequencing strategies, the CLO model made improvements on the starting seed objective function. The CLO model also was able to keep MUs low. Conclusion: The CLO model can improve upon existing leaf sequencing methods by avoiding the restrictions of (1) and (2). By allowing for more flexible leaf positioning, error can be reduced when matching some target fluence. This study lays the foundation for future models and solution methodologies that can incorporate continuous leaf positions explicitly into the IMRT treatment planning model. Supported by Cancer Prevention & Research Institute of Texas (CPRIT) - ID RP150485.

  20. Reading the Leaves: A Comparison of Leaf Rank and Automated Areole Measurement for Quantifying Aspects of Leaf Venation

    Directory of Open Access Journals (Sweden)

    Walton A. Green

    2014-08-01

    Full Text Available The reticulate venation that is characteristic of a dicot leaf has excited interest from systematists for more than a century, and from physiological and developmental botanists for decades. The tools of digital image acquisition and computer image analysis, however, are only now approaching the sophistication needed to quantify aspects of the venation network found in real leaves quickly, easily, accurately, and reliably enough to produce biologically meaningful data. In this paper, we examine 120 leaves distributed across vascular plants (representing 118 genera and 80 families using two approaches: a semiquantitative scoring system called “leaf ranking,” devised by the late Leo Hickey, and an automated image-analysis protocol. In the process of comparing these approaches, we review some methodological issues that arise in trying to quantify a vein network, and discuss the strengths and weaknesses of automatic data collection and human pattern recognition. We conclude that subjective leaf rank provides a relatively consistent, semiquantitative measure of areole size among other variables; that modal areole size is generally consistent across large sections of a leaf lamina; and that both approaches—semiquantitative, subjective scoring; and fully quantitative, automated measurement—have appropriate places in the study of leaf venation.

  1. PREFACE: Wetting: introductory note

    Science.gov (United States)

    Herminghaus, S.

    2005-03-01

    The discovery of wetting as a topic of physical science dates back two hundred years, to one of the many achievements of the eminent British scholar Thomas Young. He suggested a simple equation relating the contact angle between a liquid surface and a solid substrate to the interfacial tensions involved [1], γlg cos θ = γsg - γsl (1) In modern terms, γ denotes the excess free energy per unit area of the interface indicated by its indices, with l, g and s corresponding to the liquid, gas and solid, respectively [2]. After that, wetting seems to have been largely ignored by physicists for a long time. The discovery by Gabriel Lippmann that θ may be tuned over a wide range by electrochemical means [3], and some important papers about modifications of equation~(1) due to substrate inhomogeneities [4,5] are among the rare exceptions. This changed completely during the seventies, when condensed matter physics had become enthusiastic about critical phenomena, and was vividly inspired by the development of the renormalization group by Kenneth Wilson [6]. This had solved the long standing problem of how to treat fluctuations, and to understand the universal values of bulk critical exponents. By inspection of the critical exponents of the quantities involved in equation~(1), John W Cahn discovered what he called critical point wetting: for any liquid, there should be a well-defined transition to complete wetting (i.e., θ = 0) as the critical point of the liquid is approached along the coexistence curve [7]. His paper inspired an enormous amount of further work, and may be legitimately viewed as the entrance of wetting into the realm of modern physics. Most of the publications directly following Cahn's work were theoretical papers which elaborated on wetting in relation to critical phenomena. A vast amount of interesting, and in part quite unexpected, ramifications were discovered, such as the breakdown of universality in thin film systems [8]. Simultaneously, a number

  2. Wet precipitators for sulphuric acid plants

    International Nuclear Information System (INIS)

    Ojanpera, R.O.

    1989-01-01

    Both the service requirements and design construction details have changed considerably in recent years for wet electrostatic precipitators as used for gas cleaning ahead of metallurgical sulphuric acid plants. Increased concern over acid quality has resulted in more emphasis on dust efficiencies compared to collection of acid mist. Also, higher static operating pressures have caused large structural loads on casing and internal components. In this paper these two issues are addressed in the following ways: Recognition that all dusts do not collect similarly. The mechanism by which various dusts collect affect the design of the entire wet gas cleaning system. Use of both traditional and newer materials of construction to accommodate the higher design pressures while still maintaining corrosion resistance

  3. Non-condensible gas fraction predictions using wet and dry bulb temperature measurements

    International Nuclear Information System (INIS)

    Bowman, J.; Griffith, P.

    1983-03-01

    A technique is presented whereby non-condensible gas mass fractions in a closed system can be determined using wet bulb and dry bulb temperature and system pressure measurements. This technique would have application in situations where sampling techniques could not be used. Using an energy balance about the wet bulb wick, and expression is obtained which relates the vapor concentration difference between the wet bulb wick and the free stream to the wet and dry bulb temperature difference and a heat to mass transfer coefficient ratio. This coefficient ratio was examined for forced and natural convection flows. This analysis was verified with forced and natural convection tests over the range of pressure and temperature from 50 to 557 psig and 415 to 576 0 F. All the data could best be fit by the natural convection analysis. This is useful when no information about the flow field is known

  4. Evaluation of some varieties and breeding lines of tomato (Lycopersison sp) against tomato yellow leaf curl disease in the Greater Accra Region (Ghana)

    International Nuclear Information System (INIS)

    Kusi-Adjei, R.

    2011-01-01

    A series of experiments were conducted to evaluate ten (10) tomato varieties and breeding lines against tomato yellow leaf curl virus disease in Ghana. The research was undertaken at the research farm of the Biotechnology and Nuclear Agriculture Research Institute of the Ghana Atomic Energy Commission. Ten tomato varieties and breeding lines were evaluated in the field under natural whitefly inoculation in insect-proof cages. The field trial was done in the dry season from October, 2010 to February, 2011 and wet season from March, 2011 to July, 2011. Plants in the fields and in the cage exhibited varied symptoms such as leaf curling, leaf yellowing and reduced leaf sizes. Assessment of disease incidence and symptom severity using a four point scale (0-4) showed that, in the field there was higher disease incidence in the dry season as compared to the wet season. This was attributed to the higher number of whiteflies in the dry season as demonstrated through a whitefly population survey conducted in the field. Differences among means for disease incidence and whitefly surveys on the ten tomato varieties and breeding lines were statistically significant (p≤ 0.05). Wild Tomato (Solanum pimpinellifollium) and two hybrids, Wosowoso x Wild Tomato and Cherry Red x Wild Tomato exhibited signs of resistance in the field and did not show any symptoms of TYLCV disease symptoms. All the commercial varieties were highly susceptible and showed severe symptoms. Evaluation of fruit yield in the field revealed that the commercial variety Tomato Advanta had the heaviest fruit weight (42 g/ fruit) whilst Wosowoso had the highest total fruit yield (5.74 t/ha) in the wet season. Wild Tomato and the hybrids produced higher number of fruits compared to the commercial varieties. There were highly significant differences in the means of number of fruits, fruit weight (g) and total fruit yield (t/ha) among the ten tomato varieties and breeding lines in both the wet and dry seasons

  5. On the temporal variation of leaf magnetic parameters: seasonal accumulation of leaf-deposited and leaf-encapsulated particles of a roadside tree crown.

    Science.gov (United States)

    Hofman, Jelle; Wuyts, Karen; Van Wittenberghe, Shari; Samson, Roeland

    2014-09-15

    Understanding the accumulation behaviour of atmospheric particles inside tree leaves is of great importance for the interpretation of biomagnetic monitoring results. In this study, we evaluated the temporal variation of the saturation isothermal remanent magnetisation (SIRM) of leaves of a roadside urban Platanus × acerifolia Willd. tree in Antwerp, Belgium. We hereby examined the seasonal development of the total leaf SIRM signal as well as the leaf-encapsulated fraction of the deposited dust, by washing the leaves before biomagnetic analysis. On average 38% of the leaf SIRM signal was exhibited by the leaf-encapsulated particles. Significant correlations were found between the SIRM and the cumulative daily average atmospheric PM10 and PM2.5 measurements. Moreover, a steady increase of the SIRM throughout the in-leaf season was observed endorsing the applicability of biomagnetic monitoring as a proxy for the time-integrated PM exposure of urban tree leaves. Strongest correlations were obtained for the SIRM of the leaf-encapsulated particles which confirms the dynamic nature of the leaf surface-accumulated particles. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Doubly Reentrant Cavities Prevent Catastrophic Wetting Transitions on Intrinsically Wetting Surfaces

    KAUST Repository

    Domingues, Eddy

    2017-06-05

    Omniphobic surfaces, i.e. which repel all known liquids, have proven of value in applications ranging from membrane distillation to underwater drag reduction. A limitation of currently employed omniphobic surfaces is that they rely on perfluorinated coatings, increasing cost and environmental impact, and preventing applications in harsh environments. There is, thus, a keen interest in rendering conventional materials, such as plastics, omniphobic by micro/nano-texturing rather than via chemical make-up, with notable success having been achieved for silica surfaces with doubly reentrant micropillars. However, we found a critical limitation of microtextures comprising of pillars that they undergo catastrophic wetting transitions (apparent contact angles, θr → 0° from θr > 90°) in the presence of localized physical damages/defects or on immersion in wetting liquids. In response, a doubly reentrant cavity microtexture is introduced, which can prevent catastrophic wetting transitions in the presence of localized structural damage/defects or on immersion in wetting liquids. Remarkably, our silica surfaces with doubly reentrant cavities could exhibited apparent contact angles, θr ≈ 135° for mineral oil, where the intrinsic contact angle, θo ≈ 20°. Further, when immersed in mineral oil or water, doubly reentrant microtextures in silica (θo ≈ 40° for water) were not penetrated even after several days of investigation. Thus, microtextures comprising of doubly reentrant cavities might enable applications of conventional materials without chemical modifications, especially in scenarios that are prone to localized damages or immersion in wetting liquids, e.g. hydrodynamic drag reduction and membrane distillation.

  7. Wetting of doped carbon nanotubes by water droplets

    DEFF Research Database (Denmark)

    Kotsalis, E. M.; Demosthenous, E.; Walther, Jens Honore

    2005-01-01

    We study the wetting of doped single- and multi-walled carbon nanotubes by water droplets using molecular dynamics simulations. Chemisorbed hydrogen is considered as a model of surface impurities. We study systems with varying densities of surface impurities and we observe increased wetting......, as compared to the pristine nanotube case, attributed to the surface dipole moment that changes the orientation of the interfacial water. We demonstrate that the nature of the impurity is important as here hydrogen induces the formation of an extended hydrogen bond network between the water molecules...

  8. Effect of Temperature on Wettability and Optimum Wetting Conditions for Maximum Oil Recovery in Carbonate Reservoir System

    DEFF Research Database (Denmark)

    Sohal, Muhammad Adeel Nassar; Thyne, Geoffrey; Søgaard, Erik Gydesen

    2017-01-01

    The additional oil recovery from fractured & oil-wet carbonates by ionically modified water is principally based on changing wettability and often attributed to an improvement in water wetness. The influence of different parameters like dilution of salinity, potential anions, temperature, pressure......, lithology, pH, oil acid and base numbers to improve water wetting has been tested in recovery experiments. In these studies temperature is mainly investigated to observe the reactivity of potential anions (SO42-, PO33-, and BO33-) at different concentrations. But the influence of systematically increasing...... and 100 times. It was observed that as temperature increased the water-wetness decreased for seawater and seawater dilutions, however, the presence of elevated sulfate can somewhat counter this trend as sulfate increased oil wetting....

  9. Effect of Wind on the Relation of Leaf N, P Stoichiometry with Leaf Morphology in Quercus Species

    Directory of Open Access Journals (Sweden)

    Peng Zhang

    2018-02-01

    Full Text Available Leaf nitrogen (N and phosphorus (P stoichiometry correlates closely to leaf morphology, which is strongly impacted by wind at multiple scales. However, it is not clear how leaf N, P stoichiometry and its relationship to leaf morphology changes with wind load. We determined the leaf N and P concentrations and leaf morphology—including specific leaf area (SLA and leaf dissection index (LDI—for eight Quercus species under a simulated wind load for seven months. Leaf N and P concentrations increased significantly under these conditions for Quercus acutissima, Quercus rubra, Quercus texana, and Quercus palustris—which have elliptic leaves—due to their higher N, P requirements and a resultant leaf biomass decrease, which is a tolerance strategy for Quercus species under a wind load. Leaf N:P was relatively stable under wind for all species, which supports stoichiometric homeostasis. Leaf N concentrations showed a positive correlation to SLA, leaf N and P concentrations showed positive correlations to LDI under each wind treatment, and the slope of correlations was not affected by wind, which indicates synchronous variations between leaf stoichiometry and leaf morphology under wind. However, the intercept of correlations was affected by wind, and leaf N and P use efficiency decreased under the wind load, which suggests that the Quercus species changes from “fast investment-return” in the control to “slow investment-return” under windy conditions. These results will be valuable to understanding functional strategies for plants under varying wind loads, especially synchronous variations in leaf traits along a wind gradient.

  10. Impacts from urban water systems on receiving waters - How to account for severe wet-weather events in LCA?

    Science.gov (United States)

    Risch, Eva; Gasperi, Johnny; Gromaire, Marie-Christine; Chebbo, Ghassan; Azimi, Sam; Rocher, Vincent; Roux, Philippe; Rosenbaum, Ralph K; Sinfort, Carole

    2018-01-01

    Sewage systems are a vital part of the urban infrastructure in most cities. They provide drainage, which protects public health, prevents the flooding of property and protects the water environment around urban areas. On some occasions sewers will overflow into the water environment during heavy rain potentially causing unacceptable impacts from releases of untreated sewage into the environment. In typical Life Cycle Assessment (LCA) studies of urban wastewater systems (UWS), average dry-weather conditions are modelled while wet-weather flows from UWS, presenting a high temporal variability, are not currently accounted for. In this context, the loads from several storm events could be important contributors to the impact categories freshwater eutrophication and ecotoxicity. In this study we investigated the contributions of these wet-weather-induced discharges relative to average dry-weather conditions in the life cycle inventory for UWS. In collaboration with the Paris public sanitation service (SIAAP) and Observatory of Urban Pollutants (OPUR) program researchers, this work aimed at identifying and comparing contributing flows from the UWS in the Paris area by a selection of routine wastewater parameters and priority pollutants. This collected data is organized according to archetypal weather days during a reference year. Then, for each archetypal weather day and its associated flows to the receiving river waters (Seine), the parameters of pollutant loads (statistical distribution of concentrations and volumes) were determined. The resulting inventory flows (i.e. the potential loads from the UWS) were used as LCA input data to assess the associated impacts. This allowed investigating the relative importance of episodic wet-weather versus "continuous" dry-weather loads with a probabilistic approach to account for pollutant variability within the urban flows. The analysis at the scale of one year showed that storm events are significant contributors to the impacts

  11. Wetting of cholesteric liquid crystals.

    Science.gov (United States)

    Silvestre, Nuno M; Figueirinhas Pereira, Maria Carolina; Bernardino, Nelson R; Telo da Gama, Margarida M

    2016-02-01

    We investigate theoretically the wetting properties of cholesteric liquid crystals at a planar substrate. If the properties of substrate and of the interface are such that the cholesteric layers are not distorted, the wetting properties are similar to those of a nematic liquid crystal. If, on the other hand, the anchoring conditions force the distortion of the liquid crystal layers the wetting properties are altered, the free cholesteric-isotropic interface is non-planar and there is a layer of topological defects close to the substrate. These deformations can either promote or hinder the wetting of the substrate by a cholesteric, depending on the properties of the cholesteric liquid crystal.

  12. How do leaf veins influence the worldwide leaf economic spectrum? Review and synthesis.

    Science.gov (United States)

    Sack, Lawren; Scoffoni, Christine; John, Grace P; Poorter, Hendrik; Mason, Chase M; Mendez-Alonzo, Rodrigo; Donovan, Lisa A

    2013-10-01

    Leaf vein traits are implicated in the determination of gas exchange rates and plant performance. These traits are increasingly considered as causal factors affecting the 'leaf economic spectrum' (LES), which includes the light-saturated rate of photosynthesis, dark respiration, foliar nitrogen concentration, leaf dry mass per area (LMA) and leaf longevity. This article reviews the support for two contrasting hypotheses regarding a key vein trait, vein length per unit leaf area (VLA). Recently, Blonder et al. (2011, 2013) proposed that vein traits, including VLA, can be described as the 'origin' of the LES by structurally determining LMA and leaf thickness, and thereby vein traits would predict LES traits according to specific equations. Careful re-examination of leaf anatomy, published datasets, and a newly compiled global database for diverse species did not support the 'vein origin' hypothesis, and moreover showed that the apparent power of those equations to predict LES traits arose from circularity. This review provides a 'flux trait network' hypothesis for the effects of vein traits on the LES and on plant performance, based on a synthesis of the previous literature. According to this hypothesis, VLA, while virtually independent of LMA, strongly influences hydraulic conductance, and thus stomatal conductance and photosynthetic rate. We also review (i) the specific physiological roles of VLA; (ii) the role of leaf major veins in influencing LES traits; and (iii) the role of VLA in determining photosynthetic rate per leaf dry mass and plant relative growth rate. A clear understanding of leaf vein traits provides a new perspective on plant function independently of the LES and can enhance the ability to explain and predict whole plant performance under dynamic conditions, with applications towards breeding improved crop varieties.

  13. Inorganic Surface Coating with Fast Wetting-Dewetting Transitions for Liquid Manipulations.

    Science.gov (United States)

    Yang, Yajie; Zhang, Liaoliao; Wang, Jue; Wang, Xinwei; Duan, Libing; Wang, Nan; Xiao, Fajun; Xie, Yanbo; Zhao, Jianlin

    2018-06-06

    Liquid manipulation is a fundamental issue for microfluidics and miniaturized sensors. Fast wetting-state transitions by optical methods have proven being efficient for liquid manipulations by organic surface coatings, however rarely been achieved by using inorganic coatings. Here, we report a fast optical-induced wetting-state transition surface achieved by inorganic coating, enabling tens of second transitions for a wetting-dewetting cycle, shortened from an hour, as typically reported. Here, we demonstrate a gravity-driven microfluidic reactor and switch it to a mixer after a second-step exposure in a minimum of within 80 s of UV exposure. The fast wetting-dewetting transition surfaces enable the fast switchable or erasable smart surfaces for water collection, miniature chemical reaction, or sensing systems by using inorganic surface coatings.

  14. Molecular dynamics simulation of wetting behaviors of Li on W surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Xuegui [College of Materials Science and Engineering, Hunan University, Changsha 410082 (China); Xiao, Shifang [Department of Applied Physics, School of Physics and Electronics, Hunan University, Changsha 410082 (China); Deng, Huiqiu, E-mail: hqdeng@hnu.edu.cn [Department of Applied Physics, School of Physics and Electronics, Hunan University, Changsha 410082 (China); Hu, Wangyu, E-mail: wyuhu@hnu.edu.cn [College of Materials Science and Engineering, Hunan University, Changsha 410082 (China)

    2017-04-15

    A modified analytic embedded atom potential has been developed for the Li-W system. The potential has been fitted to physical quantities derived from density functional theory calculations. It is shown that the new potential is capable of reproducing the solubility of solid solution for Li-W systems. The wetting behaviors between solid tungsten and liquid Li are examined by using molecular dynamics simulations. The MD simulation results for the Li droplet wetting on the W surface illustrated that our MAEAM potential model has a good forecasting ability for the contact angle of liquid Li on W the cleaning surface above the wetting temperature. And the results of Li film dewetting from the W surfaces are consistent with relative experimental results. It is believed that the potential can be used to investigate the surfaces wettability of liquid Li on W substrate. We also simulated the lithium droplet on grooved surface. It is shown that the grooving W surfaces can obviously improve the wetting of liquid Li on W surfaces.

  15. An evolutionary perspective on leaf economics : Phylogenetics of leaf mass per area in vascular plants

    NARCIS (Netherlands)

    Flores, Olivier; Garnier, Eric; Wright, Ian J.; Reich, Peter B.; Pierce, Simon; Diaz, Sandra; Pakeman, Robin J.; Rusch, Graciela M.; Bernard-Verdier, Maud; Testi, Baptiste; Bakker, Jan P.; Bekker, Renee M.; Cerabolini, Bruno E. L.; Ceriani, Roberta M.; Cornu, Guillaume; Cruz, Pablo; Delcamp, Matthieu; Dolezal, Jiri; Eriksson, Ove; Fayolle, Adeline; Freitas, Helena; Golodets, Carly; Gourlet-Fleury, Sylvie; Hodgson, John G.; Brusa, Guido; Kleyer, Michael; Kunzmann, Dieter; Lavorel, Sandra; Papanastasis, Vasilios P.; Perez-Harguindeguy, Natalia; Vendramini, Fernanda; Weiher, Evan

    In plant leaves, resource use follows a trade-off between rapid resource capture and conservative storage. This "worldwide leaf economics spectrum" consists of a suite of intercorrelated leaf traits, among which leaf mass per area, LMA, is one of the most fundamental as it indicates the cost of leaf

  16. Coordination and transport of water and carbohydrates in the coupled soil-root-xylem-phloem leaf system

    Science.gov (United States)

    Katul, Gabriel; Huang, Cheng-Wei

    2017-04-01

    In response to varying environmental conditions, stomatal pores act as biological valves that dynamically adjust their size thereby determining the rate of CO2 assimilation and water loss (i.e., transpiration) to the atmosphere. Although the significance of this biotic control on gas exchange is rarely disputed, representing parsimoniously all the underlying mechanisms responsible for stomatal kinetics remain a subject of some debate. It has been conjectured that stomatal control in seed plants (i.e., angiosperm and gymnosperm) represents a compromise between biochemical demand for CO2 and prevention of excessive water loss. This view has been amended at the whole-plant level, where xylem hydraulics and sucrose transport efficiency in phloem appear to impose additional constraints on gas exchange. If such additional constraints impact stomatal opening and closure, then seed plants may have evolved coordinated photosynthetic-hydraulic-sugar transporting machinery that confers some competitive advantages in fluctuating environmental conditions. Thus, a stomatal optimization model that explicitly considers xylem hydraulics and maximum sucrose transport is developed to explore this coordination in the leaf-xylem-phloem system. The model is then applied to progressive drought conditions. The main findings from the model calculations are that (1) the predicted stomatal conductance from the conventional stomatal optimization theory at the leaf and the newly proposed models converge, suggesting a tight coordination in the leaf-xylem-phloem system; (2) stomatal control is mainly limited by the water supply function of the soil-xylem hydraulic system especially when the water flux through the transpiration stream is significantly larger than water exchange between xylem and phloem; (3) thus, xylem limitation imposed on the supply function can be used to differentiate species with different water use strategy across the spectrum of isohydric to anisohydric behavior.

  17. Wetting phase transition of two segregated Bose–Einstein condensates restricted by a hard wall

    Energy Technology Data Exchange (ETDEWEB)

    Thu, Nguyen Van [Department of Physics, Hanoi Pedagogical University No. 2, Hanoi (Viet Nam); Phat, Tran Huu [Vietnam Atomic Energy Commission, 59 Ly Thuong Kiet, Hanoi (Viet Nam); Song, Pham The, E-mail: thesong80@icloud.com [Tay Bac University, Son La (Viet Nam)

    2016-04-01

    Highlights: • System of two segregated Bose–Einstein condensates limited by a wall is studied. • Double-parabola approximation is applied to Gross–Pitaevskii theory. • Interface tension and wetting phase diagram are established. - Abstract: The wetting phase transition in the system of two segregated Bose–Einstein condensates (BECs) restricted by a hard wall is studied by means of the double-parabola approximation (DPA) applied to the Gross–Pitaevskii (GP) theory. We found the interfacial tension and the wetting phase diagram which depend weakly on the spatial restriction.

  18. Pollution and wet cleaning of separation nozzle systems for enrichment of uranium-235

    International Nuclear Information System (INIS)

    Bacher, W.; Bier, W.; Linder, N.

    1980-06-01

    Operational defects in separation nozzle plants resulting in air leaking into the system may cause permanent pollution of the narrow slits of the separation elements by products of the hydrolysis of UF 6 . The deposits may deteriorate the separation performance of the separation elements to such an extent that their further use for uranium enrichment is no longer feasible. Tests performed on commercial-scale separation element tubes indicated that the deposits can be removed by a wet chemical process effectively enough to restore the full separative power of the elements. The aspects of the technical application of the cleanup process are discussed. (orig.) [de

  19. Easy Leaf Area: Automated digital image analysis for rapid and accurate measurement of leaf area.

    Science.gov (United States)

    Easlon, Hsien Ming; Bloom, Arnold J

    2014-07-01

    Measurement of leaf areas from digital photographs has traditionally required significant user input unless backgrounds are carefully masked. Easy Leaf Area was developed to batch process hundreds of Arabidopsis rosette images in minutes, removing background artifacts and saving results to a spreadsheet-ready CSV file. • Easy Leaf Area uses the color ratios of each pixel to distinguish leaves and calibration areas from their background and compares leaf pixel counts to a red calibration area to eliminate the need for camera distance calculations or manual ruler scale measurement that other software methods typically require. Leaf areas estimated by this software from images taken with a camera phone were more accurate than ImageJ estimates from flatbed scanner images. • Easy Leaf Area provides an easy-to-use method for rapid measurement of leaf area and nondestructive estimation of canopy area from digital images.

  20. Leaf anatomical traits determine the 18O enrichment of leaf water in coastal halophytes

    Science.gov (United States)

    Liang, J.; Lin, G., Sr.; Sternberg, L. O.

    2017-12-01

    Foliar anatomical adaptations to high-salinity environment in mangroves may be recorded by leaf water isotopes. Recent studies observed that a few mangrove species have lower 18O enrichment of leaf water (ΔL) relative to source water than the adjacent terrestrial trees, but what factors actually control this phenomenon is still disputable at present. To resolve this issue, we collected 15 species of true mangrove plants, 14 species of adjacent freshwater trees and 4 species of semi-mangrove plants at five study sites on the southeastern coast of China. Leaf stomatal density and pore size, water content, ΔL and other related leaf physiological traits were determined for the selected leaves of these plants. Our results confirmed that ΔL values of mangroves were generally 3 4 ‰ lower than those of the adjacent freshwater or semi-mangrove species. Higher leaf water per area (LWC) and lower leaf stomatal density (LS) of mangroves played co-dominant roles in lowering ΔL through elongating effective leaf mixing length by about 20%. The Péclet model incorporated by LWC and LS performed well in predicting ΔL. The demonstrated general law between leaf anatomy and ΔL in this paper based on a large pool of species bridges the gap between leaf functional traits and metabolic proxies derived ΔL, which will have considerable potential applications in vegetation succession and reconstruction of paleoclimate research.

  1. 49 CFR 173.159 - Batteries, wet.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Batteries, wet. 173.159 Section 173.159... Batteries, wet. (a) Electric storage batteries, containing electrolyte acid or alkaline corrosive battery fluid (wet batteries), may not be packed with other materials except as provided in paragraphs (g) and...

  2. Microscopic aspects of wetting using classical density functional theory

    Science.gov (United States)

    Yatsyshin, P.; Durán-Olivencia, M.-A.; Kalliadasis, S.

    2018-07-01

    Wetting is a rather efficient mechanism for nucleation of a phase (typically liquid) on the interface between two other phases (typically solid and gas). In many experimentally accessible cases of wetting, the interplay between the substrate structure, and the fluid–fluid and fluid–substrate intermolecular interactions brings about an entire ‘zoo’ of possible fluid configurations, such as liquid films with a thickness of a few nanometers, liquid nanodrops and liquid bridges. These fluid configurations are often associated with phase transitions occurring at the solid–gas interface and at lengths of just several molecular diameters away from the substrate. In this special issue article, we demonstrate how a fully microscopic classical density-functional framework can be applied to the efficient, rational and systematic exploration of the rich phase space of wetting phenomena. We consider a number of model prototype systems such as wetting on a planar wall, a chemically patterned wall and a wedge. Through density-functional computations we demonstrate that for these simply structured substrates the behaviour of the solid–gas interface is already highly complex and non-trivial.

  3. Wetted-region structure in horizontal unsaturated fractures: Water entry through the surrounding porous matrix

    International Nuclear Information System (INIS)

    Glass, R.J.; Norton, D.L.

    1991-01-01

    Small-scale processes that influence wetted structure within the plane of a horizontal fracture as the fracture wets or drains through the matrix are investigated. Our approach integrates both aperture-scale modeling and physical experimentation. Several types of aperture-scale models have been defined and implemented. A series of physical experimental systems that allow us to measure wetted-region structure as a function of system parameters and water pressure head in analogue fractures also have been designed. In our preliminary proof-of-concept experiment, hysteresis is clearly evident in the measured saturation/pressure relation, as is the process of air entrapment, which causes a reduction in the connected areas between blocks and the wetted region available for flow in the plane of the fracture. A percolation threshold where the system is quickly spanned, allowing fluid conduction in the fracture plane, is observed which is analogous to that found in the aperture-scale models. A fractal wetted and entrapped-region structure is suggested by both experiment and modeling. This structure implies that flow tortuosity for both flow in the fracture and for inter-block fluid transfer is a scale-dependent function of pressure head

  4. Future needs for dry or peak shaved dry/wet cooling and significance to nuclear power plants. Final report

    International Nuclear Information System (INIS)

    Clukey, H.V.; McNelly, M.J.; Mitchell, R.C.

    1976-02-01

    U.S. requirements for uncommitted nuclear installations in water scarce areas that might require dry cooling tower systems are minimal through the year 2000 (6 to 23 GWe). In these areas it appears that peak-shaved dry/wet cooling systems are more attractive than all-dry tower cooling unless water costs were to approach the high level of several cents per gallon. The differential cooling system evaluated cost of peak-shaved dry/wet cooling systems above wet towers is typically $20 to $30/kWe for steam turbines; whereas, dry towers can represent an incremental burden of as much as $80/kWe. Gas turbine (Brayton Cycle) systems show similar benefits from an evaporative heat sink to those for steam turbine cycles--lower cooling system evaluated costs for peak-shaved dry/wet cooling systems than for conventional wet towers. These cooling system cost differentials do not reflect total costs for Brayton Cycle gas turbine plants. Together these added costs and uncertainties may substantially exceed the dollar incentives available for development of the Brayton Cycle for power generation needs for water deficient sites

  5. Effects of leaf movement on leaf temperature, transpiration and radiation interception in soybean under water stress conditions

    International Nuclear Information System (INIS)

    Isoda, A.; Wang, P.

    2001-01-01

    Varietal differences in leaf movement were examined in terms of radiation interception, leaf temperature and transpiration under water stressed conditions. Five cultivars (Qindou 7232, Gaofei 16, Dongnong 87 - 138, 8285 - 8 and 8874) were grown in a concrete frame field in Xinjiang, China. Irrigation treatments (irrigation and no irrigation) were made from the flowering to the pod filling stage. A leaflet in the uppermost layer of the canopy was restrained horizontally. Leaf temperatures, transpiration rate (stem sap flow rate of the main stem per unit leaf area) and intercepted radiation of each leaflet were measured. There were greater varietal differences in leaf movement, leaf temperature and transpiration rate. Leaf temperature seemed to be adjusted by leaf movement and transpiration. The extent to which is adjusted by leaf movement and transpiration differed among the cultivars; leaf temperature was influenced mainly by leaf movement for Gaofei 16 and Dongnong 87 - 138, mainly by transpiration for Qindou 7232 and 8874, and by both for 8285 - 8. Intercepted radiation in the upper two layers of the canopy (20 cm from the uppermost) was greater in the irrigated plot, although the mean values of total leaflets of the irrigated plot were not different as compared to the non-irrigated plot. Although paraheliotropic leaf movement decreased radiation interception, it offers some possibilities for the improvement in radiation penetration within a dense canopy. Cumulated amount of transpiration during a day was compared between the restrained-leaf and the non-leaf-restrained plants in 8874. Paraheliotropic leaf movement reduced water loss by 23% in the irrigated and 71% in the non-irrigated plots

  6. Wet vs dry bottom ash handling compared: one plant's experience

    Energy Technology Data Exchange (ETDEWEB)

    Cianci, V. [Magaldi R & D, Salerno (Italy)

    2007-06-15

    A multi-unit coal-fired power station where both dry and wet bottom ash handling systems are employed provides an opportunity for detailed comparison of the two approaches. The study reported in the article was carried out at a plant which has four 314 MWe coal fired units. It was designed for baseload operation and the wet system, coexisting with the dry Magaldi Ash Cooler (MAC) system has high dependability. The design is in fact a hybrid of water impounded hopper system and a submerged chain conveyor (SCC) system for both bottom ash and pyrites handling. Dry ash technology was introduced in 2004. The dry system resulted in water saving of about 258,000 m{sup 3} per year. It also reduces ash disposal costs and increases boiler efficiency due to recovery of much of the heat leaving the boiler. A net thermal power saving of 1316 KWt per MAC system is made. The study also showed that the Superbelt (a steel mesh belt conveyor coupled with overlapping steel plates) applied to dry ash conveying, as in the MAC system, is much more dependable than a chain conveying system, for both wet and dry systems. By 2008 all four units of the plant will be replaced with dry MAC systems. 9 figs., 2 tabs.

  7. Rapid, high-resolution measurement of leaf area and leaf orientation using terrestrial LiDAR scanning data

    International Nuclear Information System (INIS)

    Bailey, Brian N; Mahaffee, Walter F

    2017-01-01

    The rapid evolution of high performance computing technology has allowed for the development of extremely detailed models of the urban and natural environment. Although models can now represent sub-meter-scale variability in environmental geometry, model users are often unable to specify the geometry of real domains at this scale given available measurements. An emerging technology in this field has been the use of terrestrial LiDAR scanning data to rapidly measure the three-dimensional geometry of trees, such as the distribution of leaf area. However, current LiDAR methods suffer from the limitation that they require detailed knowledge of leaf orientation in order to translate projected leaf area into actual leaf area. Common methods for measuring leaf orientation are often tedious or inaccurate, which places constraints on the LiDAR measurement technique. This work presents a new method to simultaneously measure leaf orientation and leaf area within an arbitrarily defined volume using terrestrial LiDAR data. The novelty of the method lies in the direct measurement of the fraction of projected leaf area G from the LiDAR data which is required to relate projected leaf area to total leaf area, and in the new way in which radiation transfer theory is used to calculate leaf area from the LiDAR data. The method was validated by comparing LiDAR-measured leaf area to (1) ‘synthetic’ or computer-generated LiDAR data where the exact area was known, and (2) direct measurements of leaf area in the field using destructive sampling. Overall, agreement between the LiDAR and reference measurements was very good, showing a normalized root-mean-squared-error of about 15% for the synthetic tests, and 13% in the field. (paper)

  8. The new electric powertrain on the 2013 MY Nissan LEAF

    Energy Technology Data Exchange (ETDEWEB)

    Nakada, Naoki; Nakazawa, Shinsuke [Nissan Motor Co., Ltd. (Japan)

    2013-08-01

    The Nissan LEAF was launched in 2010 as the world's first mass-produced electric vehicle. Among its many honours received to date, the Nissan LEAF won the 2011 European Car of the Year (COTY) award, the 2011 World COTY award, the 2011-2012 Japan COTY award and was named in Ward's 10 Best Engines list for 2011, which attest to its high market acclaim. As of 2012, over 46,000 units of the Nissan LEAF are now on the road in some 33 countries worldwide, especially in Japan, the U.S. and Europe. The 2013 model year Nissan LEAF has been announced and released, featuring substantial improvements in all-around performance based on a thoroughgoing analysis of the driving data recorded by the Nissan LEAF in real-world use during the past two years. One of the major changes made to the 2013 model is the adoption of an all-new electric powertrain. The traction motor, inverter and charging unit of this new electric powertrain have all been fully redesigned. Moreover, these high-voltage parts specific to an EV are now assembled into an integrated powertrain that is 30% smaller, 10% lighter and significantly less expensive than the corresponding electric powertrain used on the 2011 model. The driving range of the 2013 Nissan LEAF has also been extended by more than 10% over that of the 2011 model as a result of adopting an improved cooperative regenerative braking system and a heat pump-based air-conditioning system, lightening the vehicle weight, lowering the drag coefficient, and reducing the parasitic loads of the auxiliary units. In addition, the human-machine interface elements, including the navigation system and the instruments have also been improved to enhance the convenience of driving an EV. This paper describes various key technologies featured on the 2013 Nissan LEAF, focusing in particular on the newly developed electric powertrain. (orig.)

  9. Leaf endophyte load influences fungal garden development in leaf-cutting ants

    Directory of Open Access Journals (Sweden)

    Van Bael Sunshine A

    2012-11-01

    Full Text Available Abstract Background Previous work has shown that leaf-cutting ants prefer to cut leaf material with relatively low fungal endophyte content. This preference suggests that fungal endophytes exact a cost on the ants or on the development of their colonies. We hypothesized that endophytes may play a role in their host plants’ defense against leaf-cutting ants. To measure the long-term cost to the ant colony of fungal endophytes in their forage material, we conducted a 20-week laboratory experiment to measure fungal garden development for colonies that foraged on leaves with low or high endophyte content. Results Colony mass and the fungal garden dry mass did not differ significantly between the low and high endophyte feeding treatments. There was, however, a marginally significant trend toward greater mass of fungal garden per ant worker in the low relative to the high endophyte treatment. This trend was driven by differences in the fungal garden mass per worker from the earliest samples, when leaf-cutting ants had been foraging on low or high endophyte leaf material for only 2 weeks. At two weeks of foraging, the mean fungal garden mass per worker was 77% greater for colonies foraging on leaves with low relative to high endophyte loads. Conclusions Our data suggest that the cost of endophyte presence in ant forage material may be greatest to fungal colony development in its earliest stages, when there are few workers available to forage and to clean leaf material. This coincides with a period of high mortality for incipient colonies in the field. We discuss how the endophyte-leaf-cutter ant interaction may parallel constitutive defenses in plants, whereby endophytes reduce the rate of colony development when its risk of mortality is greatest.

  10. Easy Leaf Area: Automated Digital Image Analysis for Rapid and Accurate Measurement of Leaf Area

    Directory of Open Access Journals (Sweden)

    Hsien Ming Easlon

    2014-07-01

    Full Text Available Premise of the study: Measurement of leaf areas from digital photographs has traditionally required significant user input unless backgrounds are carefully masked. Easy Leaf Area was developed to batch process hundreds of Arabidopsis rosette images in minutes, removing background artifacts and saving results to a spreadsheet-ready CSV file. Methods and Results: Easy Leaf Area uses the color ratios of each pixel to distinguish leaves and calibration areas from their background and compares leaf pixel counts to a red calibration area to eliminate the need for camera distance calculations or manual ruler scale measurement that other software methods typically require. Leaf areas estimated by this software from images taken with a camera phone were more accurate than ImageJ estimates from flatbed scanner images. Conclusions: Easy Leaf Area provides an easy-to-use method for rapid measurement of leaf area and nondestructive estimation of canopy area from digital images.

  11. Adult Bed-Wetting: A Concern?

    Science.gov (United States)

    Adult bed-wetting: A concern? My 24-year-old husband has started to wet the bed at ... of Privacy Practices Notice of Nondiscrimination Manage Cookies Advertising Mayo Clinic is a not-for-profit organization ...

  12. Do seasonal changes in light availability influence the inverse leafing phenology of the neotropical dry forest understory shrub Bonellia nervosa (Theophrastaceae?

    Directory of Open Access Journals (Sweden)

    Oscar M Chaves

    2008-03-01

    Full Text Available In tropical dry forests most plants are deciduous during the dry season and flush leaves with the onset of the rains. In Costa Rica, the only species displaying the opposite pattern is Bonellia nervosa. To determine if seasonal changes in light availability are associated with the leaf and reproductive phenology of this species, we monitored leaf production, survival, and life span, as well as flower and fruit production from April 2000 to October 2001 in Santa Rosa National Park. Leaf flushing and flower bud production took place shortly after the autumnal equinox when day length starts to decrease. Leaves began expansion at the end of the wet season, and plants reached 70 % of their maximum leaf area at the beginning of the dry season, maintaining their foliage throughout the entire dry period. Leaf shedding occurred gradually during the first three months of the wet season. Leaf flushing and shedding showed high synchrony, with leaf numbers being related to light availability. Maximum leaf production coincided with peaks in radiation during the middle of the dry season. Decreasing day length induces highly synchronous flower bud emergence in dry forest species, but this is the first study indicating induction of leaf flushing by declining day length. Rev. Biol. Trop. 56 (1: 257-268. Epub 2008 March 31.En los bosques tropicales secos la mayoría de las plantas pierden sus hojas durante la estación seca y las producen con el inicio de las lluvias. En Costa Rica la única especie que muestra el patrón fenológico inverso es Bonellia nervosa. Para determinar si los cambios estacionales en la disponibilidad de luz estaban asociados con la fenología foliar y reproductiva en esta especie, monitoreamos la producción y sobrevivencia de hojas, así como la producción de flores y frutos de abril del 2000 a octubre del 2001 en el Parque Nacional Santa Rosa. La producción de hojas y botones florales ocurrió poco después del equinoccio de oto

  13. Dependence of fluence errors in dynamic IMRT on leaf-positional errors varying with time and leaf number

    International Nuclear Information System (INIS)

    Zygmanski, Piotr; Kung, Jong H.; Jiang, Steve B.; Chin, Lee

    2003-01-01

    ALPO is an Average Leaf Pair Opening (the concept of ALPO was previously introduced by us in Med. Phys. 28, 2220-2226 (2001). Therefore, dose errors associated with RLP errors are larger for fields requiring small leaf gaps. For an N-field IMRT plan, we demonstrate that the total fluence error (if we neglect inhomogeneities and scatter) is proportional to 1/√(N), where N is the number of fields, which slightly reduces the impact of RLP errors of individual fields on the total fluence error. We tested and applied the analytical apparatus in the context of commercial inverse treatment planning systems used in our clinics (Helios TM and BrainScan TM ). We determined the actual distribution of leaf-positional errors by studying MLC controller (Varian Mark II and Brainlab Novalis MLCs) log files created by the controller after each field delivery. The analytically derived relationship between fluence error and RLP errors was confirmed by numerical simulations. The equivalence of relative fluence error to relative dose error was verified by a direct dose calculation. We also experimentally verified the truthfulness of fluences derived from the log file data by comparing them to film data

  14. Automated Leaf Tracking using Multi-view Image Sequences of Maize Plants for Leaf-growth Monitoring

    Science.gov (United States)

    Das Choudhury, S.; Awada, T.; Samal, A.; Stoerger, V.; Bashyam, S.

    2017-12-01

    Extraction of phenotypes with botanical importance by analyzing plant image sequences has the desirable advantages of non-destructive temporal phenotypic measurements of a large number of plants with little or no manual intervention in a relatively short period of time. The health of a plant is best interpreted by the emergence timing and temporal growth of individual leaves. For automated leaf growth monitoring, it is essential to track each leaf throughout the life cycle of the plant. Plants are constantly changing organisms with increasing complexity in architecture due to variations in self-occlusions and phyllotaxy, i.e., arrangements of leaves around the stem. The leaf cross-overs pose challenges to accurately track each leaf using single view image sequence. Thus, we introduce a novel automated leaf tracking algorithm using a graph theoretic approach by multi-view image sequence analysis based on the determination of leaf-tips and leaf-junctions in the 3D space. The basis of the leaf tracking algorithm is: the leaves emerge using bottom-up approach in the case of a maize plant, and the direction of leaf emergence strictly alternates in terms of direction. The algorithm involves labeling of the individual parts of a plant, i.e., leaves and stem, following graphical representation of the plant skeleton, i.e., one-pixel wide connected line obtained from the binary image. The length of the leaf is measured by the number of pixels in the leaf skeleton. To evaluate the performance of the algorithm, a benchmark dataset is indispensable. Thus, we publicly release University of Nebraska-Lincoln Component Plant Phenotyping dataset-2 (UNL-CPPD-2) consisting of images of the 20 maize plants captured by visible light camera of the Lemnatec Scanalyzer 3D high throughout plant phenotyping facility once daily for 60 days from 10 different views. The dataset is aimed to facilitate the development and evaluation of leaf tracking algorithms and their uniform comparisons.

  15. Investigation into the surface of implanted monocrystalline silicon with the aid of wetting angle

    International Nuclear Information System (INIS)

    Lebedeva, N.N.; Bakovets, V.V.; Sedymova, E.A.; Pridachin, N.B.

    1986-01-01

    The dependence of silicon wetting margical angle on its irradiation dose by ions of electrically active and neutral materials is studied. It has been found that the system of immiscible liquids - ether and water can be successfully used for studying the silicon ion implantation effect on its water wetting. Changing of implanted silicon wetting is bound up with the increase of the defects presence level of surface layers. The specimens annealing reestablishes silicon wetting up to parameters characteristic of non irradiated specimens. The most effective annealing region is within the 550-700 deg C range. The implanted silicon wetting by melts at increased temperatures can be employed for studying kinetics and defect annealing mechanism

  16. Leaf Area Index (LAI) in different type of agroforestry systems based on hemispherical photographs in Cidanau Watershed

    Science.gov (United States)

    Nur Khairiah, Rahmi; Setiawan, Yudi; Budi Prasetyo, Lilik; Ayu Permatasari, Prita

    2017-01-01

    Ecological functions of agroforestry systems have perceived benefit to people around Cidanau Watershed, especially in the protection of water quality. The main causes of the problems encountered in the Cidanau Watershed are associated with the human factors, especially encroachment and conversion of forest into farmland. The encroachment has made most forest in Cidanau Watershed become bare land. To preserve the ecological function of agroforestry systems in Cidanau Watershed, monitoring of the condition of the vegetation canopy in agroforestry systems is really needed. High intensity thinning of crown density due to deforestation can change stand leaf area index dramatically. By knowing LAI, we can assess the condition of the vegetation canopy in agroforestry systems. LAI in this research was obtained from Hemispherical Photographs analysis using the threshold method in HemiView Canopy Analysis Software. Our research results indicate that there are six types of agroforestry in Cidanau Watershed i.e. Sengon Agroforestry, Clove Agroforestry, Melinjo Agroforestry, Chocolate Agroforestry, Coffee Agroforestry, and Complex Agroforestry. Several factors potentially contribute to variations in the value of LAI in different types of agroforestry. The simple assumptions about differences ranges of LAI values on six types of agroforestry is closely related to leaf area and plant population density.

  17. Critical wetting of n-alkanes on water; Mouillage critique des alcanes sur l`eau

    Energy Technology Data Exchange (ETDEWEB)

    Ragil, K

    1996-10-18

    This study concerns the wetting properties of n-alkanes on water under thermodynamic equilibrium conditions, a problem that is interesting for the petroleum industry as well as for the fundamental understanding of wetting phenomena. An experimental study using ellipsometry reveals that pentane on water undergoes a continuous or critical wetting transition at a temperature equal to 53.1 deg. C. This is the first experimental observation of such a transition, confirming theoretical predictions made on this subject over ten years. This transition is characterized by a continuous and reversible evolution of the thickness of the film of pentane with temperature from a thick (but finite film) to a macroscopic film. The critical wetting transition occurs when the Hamaker constant of the system, which gives the net interaction between the two interfaces bounding the wetting layer of pentane in terms of the van der Waals forces, changes sign. A theoretical approach based on the Cahn-Landau theory, which takes into account long range forces (van der Waals forces), enables us to explain the mechanism of the critical wetting transition and to show that a first-order wetting transition should precede it. Because of their similar dispersive properties, linear alkanes could all be able to show such a succession of transitions. An ellipsometry study performed on a brine/hexane/vapor system confirms that a discontinuous transition from a thin microscopic film to a thick but finite adsorbed film takes place. THis study demonstrates that the wetting of alkanes on water is determined by subtle interplay between short range and long range forces, which can lead to an intermediary state between partial and complete wetting. (author)

  18. Phoenix's Wet Chemistry Laboratory Units

    Science.gov (United States)

    2008-01-01

    This image shows four Wet Chemistry Laboratory units, part of the Microscopy, Electrochemistry, and Conductivity Analyzer (MECA) instrument on board NASA's Phoenix Mars Lander. This image was taken before Phoenix's launch on August 4, 2007. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  19. Wetting induced by near-surface Ti-enrichment in the CaF2/In-Ti and CaF2/Cu-Ti systems

    International Nuclear Information System (INIS)

    Froumin, N.; Barzilai, S.; Aizenshtein, M.; Lomberg, M.; Frage, N.

    2008-01-01

    This paper is concerned with the wetting of CaF 2 by liquid Cu and In and with the effect of Ti additions to the melt. According to thermodynamic analysis and to the experimental observations, the significantly decreased contact angle following the addition of Ti to the molten metals is not due to the formation of interfacial fluoride phases, in contrast to previously reported results. Ab initio density functional calculations indicate that preferential Ti adsorption takes place at the near CaF 2 surface. It is suggested that the presence of a Ti-enriched liquid, adjacent to the substrate, gives rise, by means of heterogeneous nucleation, to the formation of a thin intermetallic compound layer that stands behind the experimentally observed enhanced wetting. The suggested wetting mechanism is supported by the notable correlation that has been observed between the temperature dependence of the contact angle and the temperature domains, associated with the presence of intermetallic compounds in both Me-Ti (Me = Cu, In) binary systems

  20. LEAF MICROMORPHOMETRY OF Schinus molle L. (ANARCADIACEAE IN DIFFERENT CANOPY HEIGHTS.

    Directory of Open Access Journals (Sweden)

    Marinês Ferreira Pires

    2015-03-01

    Full Text Available Leaf characterization of trees is essential for its identification and use, as well as to understand its relationships with environment. The objective of this work is to study the leaflet anatomy and leaf biometrical characteristics at different canopy heights of Schinus molle plants as a function of its environmental and physiological modifications. Leaves were collected at three different canopy heights: base, middle and upper canopy in a plantation of S. molle. Leaves were used for anatomical and biometrical analysis. For the anatomical analysis, leaves were fixed in FAA and stored in ethanol 70% and further submitted to transversal and paradermical sections. Slides were photomicrographed and image analysis was performed in UTHSCSA-Imagetool. For biometrical analysis leaf area, length, width, dry mass and specific leaf area were evaluated. The leaflets exhibited single layer epidermis, anomocytic and ciclocytic stomata, isobilateral mesophyll, subepidermal parenchyma layer in both adaxial and abaxial faces of epidermis, secretory vessels and lamellar collenchyma in midrib and leaf border. Leaf anatomy modifications occurred in cuticle and mesophyll thickness, vascular system, phloem thickness, and stomatal density in accordance with leaf canopy position. Leaves were smaller and with reduced leaf area at higher canopy positions. S. molle leaf anatomy is different from other species within Schinus genre with modifications under different environmental and physiological modifications promoted by its canopy height.

  1. Experimental and numerical studies on the treatment of wet astronaut trash by forced-convection drying

    Science.gov (United States)

    Arquiza, J. M. R. Apollo; Morrow, Robert; Remiker, Ross; Hunter, Jean B.

    2017-09-01

    During long-term space missions, astronauts generate wet trash, including food containers with uneaten portions, moist hygiene wipes and wet paper towels. This waste produces two problems: the loss of water and the generation of odors and health hazards by microbial growth. These problems are solved by a closed-loop, forced-convection, heat-pump drying system which stops microbial activity by both pasteurization and desiccation, and recovers water in a gravity-independent porous media condensing heat exchanger. A transient, pseudo-homogeneous continuum model for the drying of wet ersatz trash was formulated for this system. The model is based on the conservation equations for energy and moisture applied to the air and solid phases and includes the unique trash characteristic of having both dry and wet solids. Experimentally determined heat and mass transfer coefficients, together with the moisture sorption equilibrium relationship for the wet material are used in the model. The resulting system of differential equations is solved by the finite-volume method as implemented by the commercial software COMSOL. Model simulations agreed well with experimental data under certain conditions. The validated model will be used in the optimization of the entire closed-loop system consisting of fan, air heater, dryer vessel, heat-pump condenser, and heat-recovery modules.

  2. Evaluation of various solvent systems for lipid extraction from wet microalgal biomass and its effects on primary metabolites of lipid-extracted biomass.

    Science.gov (United States)

    Ansari, Faiz Ahmad; Gupta, Sanjay Kumar; Shriwastav, Amritanshu; Guldhe, Abhishek; Rawat, Ismail; Bux, Faizal

    2017-06-01

    Microalgae have tremendous potential to grow rapidly, synthesize, and accumulate lipids, proteins, and carbohydrates. The effects of solvent extraction of lipids on other metabolites such as proteins and carbohydrates in lipid-extracted algal (LEA) biomass are crucial aspects of algal biorefinery approach. An effective and economically feasible algae-based oil industry will depend on the selection of suitable solvent/s for lipid extraction, which has minimal effect on metabolites in lipid-extracted algae. In current study, six solvent systems were employed to extract lipids from dry and wet biomass of Scenedesmus obliquus. To explore the biorefinery concept, dichloromethane/methanol (2:1 v/v) was a suitable solvent for dry biomass; it gave 18.75% lipids (dry cell weight) in whole algal biomass, 32.79% proteins, and 24.73% carbohydrates in LEA biomass. In the case of wet biomass, in order to exploit all three metabolites, isopropanol/hexane (2:1 v/v) is an appropriate solvent system which gave 7.8% lipids (dry cell weight) in whole algal biomass, 20.97% proteins, and 22.87% carbohydrates in LEA biomass. Graphical abstract: Lipid extraction from wet microalgal biomass and biorefianry approach.

  3. Variability of extreme wet events over Malawi

    Directory of Open Access Journals (Sweden)

    Libanda Brigadier

    2017-01-01

    Full Text Available Adverse effects of extreme wet events are well documented by several studies around the world. These effects are exacerbated in developing countries like Malawi that have insufficient risk reduction strategies and capacity to cope with extreme wet weather. Ardent monitoring of the variability of extreme wet events over Malawi is therefore imperative. The use of the Expert Team on Climate Change Detection and Indices (ETCCDI has been recommended by many studies as an effective way of quantifying extreme wet events. In this study, ETCCDI indices were used to examine the number of heavy, very heavy, and extremely heavy rainfall days; daily and five-day maximum rainfall; very wet and extremely wet days; annual wet days and simple daily intensity. The Standard Normal Homogeneity Test (SNHT was employed at 5% significance level before any statistical test was done. Trend analysis was done using the nonparametric Mann-Kendall statistical test. All stations were found to be homogeneous apart from Mimosa. Trend results show high temporal and spatial variability with the only significant results being: increase in daily maximum rainfall (Rx1day over Karonga and Bvumbwe, increase in five-day maximum rainfall (Rx5day over Bvumbwe. Mzimba and Chileka recorded a significant decrease in very wet days (R95p while a significant increase was observed over Thyolo. Chileka was the only station which observed a significant trend (decrease in extremely wet rainfall (R99p. Mzimba was the only station that reported a significant trend (decrease in annual wet-day rainfall total (PRCPTOT and Thyolo was the only station that reported a significant trend (increase in simple daily intensity (SDII. Furthermore, the findings of this study revealed that, during wet years, Malawi is characterised by an anomalous convergence of strong south-easterly and north-easterly winds. This convergence is the main rain bringing mechanism to Malawi.

  4. Measurement for the MLC leaf velocity profile by considering the leaf leakage using a radiographic film

    International Nuclear Information System (INIS)

    Chow, James C L; Grigorov, Grigor N

    2006-01-01

    A method to measure the velocity profile of a multi-leaf collimator (MLC) leaf along its travel range using a radiographic film is reported by considering the intra-leaf leakage. A specific dynamic MLC field with leaves travelling from the field edge to the isocentre line was designed. The field was used to expose a radiographic film, which was then scanned, and the dose profile along the horizontal leaf axis was measured. The velocity at a sampling point on the film can be calculated by considering the horizontal distance between the sampling point and the isocentre line, dose at the sampling point, dose rate of the linear accelerator, the total leaf travel time from the field edge to isocentre line and the pre-measured dose rate of leaf leakage. With the leaf velocities and velocity profiles for all MLC leaves measured routinely, a comprehensive and simple QA for the MLC can be set up to test the consistency of the leaf velocity performance which is essential to the IMRT delivery using a sliding window technique. (note)

  5. Systemic induction of NO-, redox- and cGMP signalling in the pumpkin extrafascicular phloem upon local leaf wounding

    Directory of Open Access Journals (Sweden)

    Frank eGaupels

    2016-02-01

    Full Text Available Cucurbits developed the unique extrafascicular phloem (EFP as a defensive structure against herbivorous animals. Mechanical leaf injury was previously shown to induce a systemic wound response in the EFP of pumpkin (Cucurbita maxima. Here, we demonstrate that the phloem antioxidant system and protein modifications by NO are strongly regulated during this process. Activities of the central antioxidant enzymes dehydroascorbate reductase, glutathione reductase and ascorbate reductase were rapidly down-regulated at 30 min with a second minimum at 24 h after wounding. As a consequence levels of total ascorbate and glutathione also decreased with similar bi-phasic kinetics. These results hint towards a wound-induced shift in the redox status of the EFP. Nitric oxide (NO is another important player in stress-induced redox signalling in plants. Therefore, we analysed NO-dependent protein modifications in the EFP. Six to 48 h after leaf damage total S-nitrosothiol content and protein S-nitrosylation were clearly reduced, which was contrasted by a pronounced increase in protein tyrosine nitration. Collectively, these findings suggest that NO-dependent S-nitrosylation turned into peroxynitrite-mediated protein nitration upon a stress-induced redox shift probably involving the accumulation of reactive oxygen species within the EFP. Using the biotin switch assay and anti-nitrotyrosine antibodies we identified 9 candidate S-nitrosylated and 6 candidate tyrosine-nitrated phloem proteins. The wound-responsive Phloem Protein 16-1 (PP16-1 and Cyclophilin 18 (CYP18 as well as the 26.5 kD isoform of Phloem Protein 2 (PP2 were amenable to both NO modifications and could represent important redox-sensors within the cucurbit EFP. We also found that leaf injury triggered the systemic accumulation of cyclic guanosine monophosphate (cGMP in the EFP and discuss the possible function of this second messenger in systemic NO and redox signalling within the EFP.

  6. Wetting phase permeability in a partially saturated horizontal fracture

    International Nuclear Information System (INIS)

    Nicholl, M.J.; Glass, R.J.

    1994-01-01

    Fractures within geologic media can dominate the hydraulic properties of the system. Therefore, conceptual models used to assess the potential for radio-nuclide migration in unsaturated fractured rock such as that composing Yucca Mountain, Nevada, must be consistent with flow processes in individual fractures. A major obstacle to the understanding and simulation of unsaturated fracture flow is the paucity of physical data on both fracture aperture structure and relative permeability. An experimental procedure is developed for collecting detailed data on aperture and phase structure from a transparent analog fracture. To facilitate understanding of basic processes and provide a basis for development of effective property models, the simplest possible rough-walled fracture is used. Stable phase structures of varying complexity are created within the horizontal analog fracture. Wetting phase permeability is measured under steady-state conditions. A process based model for wetting phase relative permeability is then explored. Contributions of the following processes to reduced wetting phase permeability under unsaturated conditions are considered: reduction in cross-sectional flow area, increased path length, localized flow restriction, and preferential occupation of large apertures by the non-wetting phase

  7. Geometric leaf placement strategies

    International Nuclear Information System (INIS)

    Fenwick, J D; Temple, S W P; Clements, R W; Lawrence, G P; Mayles, H M O; Mayles, W P M

    2004-01-01

    Geometric leaf placement strategies for multileaf collimators (MLCs) typically involve the expansion of the beam's-eye-view contour of a target by a uniform MLC margin, followed by movement of the leaves until some point on each leaf end touches the expanded contour. Film-based dose-distribution measurements have been made to determine appropriate MLC margins-characterized through an index d 90 -for multileaves set using one particular strategy to straight lines lying at various angles to the direction of leaf travel. Simple trigonometric relationships exist between different geometric leaf placement strategies and are used to generalize the results of the film work into d 90 values for several different strategies. Measured d 90 values vary both with angle and leaf placement strategy. A model has been derived that explains and describes quite well the observed variations of d 90 with angle. The d 90 angular variations of the strategies studied differ substantially, and geometric and dosimetric reasoning suggests that the best strategy is the one with the least angular variation. Using this criterion, the best straightforwardly implementable strategy studied is a 'touch circle' approach for which semicircles are imagined to be inscribed within leaf ends, the leaves being moved until the semicircles just touch the expanded target outline

  8. Effects of drought on leaf gas exchange in an eastern broadleaf deciduous forest

    Science.gov (United States)

    Roman, D. T.; Brzostek, E. R.; Dragoni, D.; Rahman, A. F.; Novick, K. A.; Phillips, R.

    2013-12-01

    Understanding plant physiological adaptations to drought is critical for predicting changes in ecosystem productivity that result from climate variability and future climate change. From 2011-2013, southern Indiana experienced a late growing season drought in 2011, a severe early season drought in 2012, and a wet growing season in 2013 characterized by an absence of water stress with frequent precipitation and milder temperatures. The 2012 drought was unique due to the severity and early onset drought conditions (compared to the more frequent late season drought) and was characterized by a Palmer Drought severity index below -4 and precipitation totals from May - July that were 70% less than the long-term (2000 - 2010) mean. During the 2012 drought, an 11% decline in net ecosystem productivity relative to the long-term mean was observed at the AmeriFlux tower in Morgan Monroe State Forest despite a growing season that started ~25 days earlier. Thus, the objective of this study is to evaluate species-specific contributions to the canopy-scale response to inter-annual variability in water stress. We investigated differences between tree species in their response to climate variability using weekly leaf gas exchange and leaf water potential measurements during the growing seasons of 2011-2013. We used this unique dataset, collected at the top of the canopy with a 25 m boom lift, to evaluate changes in leaf water status and maximum assimilation capacity in the drought versus non-drought years. The leaf-level physiology of oak (Quercus) species appears to be less sensitive to drought than other species (tulip poplar [Liriodendron tulipifera], sassafras [Sassafras albidum] and sugar maple [Acer saccharum]). Preliminary data shows mean canopy leaf water potential for oaks was 30.5% more negative in May-July 2012 versus the same time period in 2013. During these same periods the rate of C assimilation in oaks was reduced by only 3%, whereas other species were reduced by

  9. Apparent over-investment in leaf venation relaxes leaf morphological constraints on photosynthesis in arid habitats

    Science.gov (United States)

    de Boer, Hugo; Drake, Paul; Veneklaas, Erik

    2017-04-01

    The close relationship between leaf water status and stomatal conductance implies that the hydraulic architecture of leaves poses an important constraint on transpiration, specifically in arid environments with high evaporative demands. However, it remains uncertain how morphological, hydraulic and photosynthetic traits are coordinated to achieve optimal leaf functioning in arid environments. Critical is that leaf veins supply the mesophyll with water that evaporates when stomata are open to allow CO2 uptake for photosynthesis. Theoretical analyses suggest that water is optimally distributed in the mesophyll when the lateral distance between veins (dx) is equal to the distance from these veins to the epidermis (dy), expressed as dx:dy≈1. Although this theory is supported by observations on many derived angiosperms, we hypothesize that plants in arid environments may reduce dx:dy below unity owing to climate-specific functional adaptations of increased leaf thickness and increased vein density. To test our hypothesis we assembled leaf hydraulic, morphological and photosynthetic traits of 68 species from the Eucalyptus and Corymbia genera (termed eucalypts) along an aridity gradient in southwestern Australia. We inferred the potential gas exchange advantage of reducing dx beyond dy using a model that links leaf morphology and hydraulics to photosynthesis. Our observations reveal that eucalypts in arid environments have thick amphistomatous leaves with high vein densities, resulting in dx:dy ratios that range from 1.6 to 0.15 along the aridity gradient. Our model suggests that as leaves become thicker, the effect of reducing dx beyond dy is to offset the reduction in leaf gas exchange that would result from maintaining dx:dy at unity. This apparent over-investment in leaf venation may be explained from the selective pressure of aridity, under which traits associated with long leaf lifespan, high hydraulic and thermal capacitances, and high potential rates of leaf

  10. Seismic retrofit system for single leaf masonry buildings in Groningen

    NARCIS (Netherlands)

    Türkmen, Ö.S.; Vermeltfoort, A.T.; Martens, D.R.W.

    2016-01-01

    Due to recent seismic activity in the Netherlands, the demand of adequate strengthening and retrofitting techniques increased, especially for single leaf masonry. Two Dutch companies founded in the re-gion have initiated an experimental program to study the applicability of existing stand-alone

  11. Carbohydrate regulation of photosynthesis and respiration from branch girdling in four species of wet tropical rain forest trees.

    Science.gov (United States)

    Asao, Shinichi; Ryan, Michael G

    2015-06-01

    How trees sense source-sink carbon balance remains unclear. One potential mechanism is a feedback from non-structural carbohydrates regulating photosynthesis and removing excess as waste respiration when the balance of photosynthesis against growth and metabolic activity changes. We tested this carbohydrate regulation of photosynthesis and respiration using branch girdling in four tree species in a wet tropical rainforest in Costa Rica. Because girdling severs phloem to stop carbohydrate export while leaving xylem intact to allow photosynthesis, we expected carbohydrates to accumulate in leaves to simulate a carbon imbalance. We varied girdling intensity by removing phloem in increments of one-quarter of the circumference (zero, one--quarter, half, three-quarters, full) and surrounded a target branch with fully girdled ones to create a gradient in leaf carbohydrate content. Light saturated photosynthesis rate was measured in situ, and foliar respiration rate and leaf carbohydrate content were measured after destructive harvest at the end of the treatment. Girdling intensity created no consistent or strong responses in leaf carbohydrates. Glucose and fructose slightly increased in all species by 3.4% per one-quarter girdle, total carbon content and leaf mass per area increased only in one species by 5.4 and 5.5% per one-quarter girdle, and starch did not change. Only full girdling lowered photosynthesis in three of four species by 59-69%, but the decrease in photosynthesis was unrelated to the increase in glucose and fructose content. Girdling did not affect respiration. The results suggest that leaf carbohydrate content remains relatively constant under carbon imbalance, and any changes are unlikely to regulate photosynthesis or respiration. Because girdling also stops the export of hormones and reactive oxygen species, girdling may induce physiological changes unrelated to carbohydrate accumulation and may not be an effective method to study carbohydrate feedback

  12. WET SOLIDS FLOW ENHANCEMENT; SEMIANNUAL

    International Nuclear Information System (INIS)

    Hugo S Caram; Natalie Foster

    1998-01-01

    The strain-stress behavior of a wet granular media was measured using a split Parfitt tensile tester. In all cases the stress increases linearly with distance until the maximum uniaxial tensile stress is reached. The stress then decreases exponentially with distance after this maximum is reached. The linear region indicates that wet solids behave elastically for stresses below the tensile stresses and can store significant elastic energy. The elastic deformation cannot be explained by analyzing the behavior of individual capillary bridges and may require accounting for the deformation of the solids particles. The elastic modulus of the wet granular material remains unexplained

  13. REMR Management System - Coatings for Use on Wet or Damp Steel Surfaces

    National Research Council Canada - National Science Library

    Beitelman, Alfred

    1997-01-01

    .... The surfaces of these structures normally can be blast cleaned to a white metal grade, but condensation and/or water leaking around seals immediately make the surfaces too wet for the application of many coatings...

  14. NARROW LEAF 7 controls leaf shape mediated by auxin in rice

    NARCIS (Netherlands)

    Fujino, Kenji; Matsuda, Yasuyuki; Ozawa, Kenjirou; Nishimura, Takeshi; Koshiba, Tomokazu; Fraaije, Marco W.; Sekiguchi, Hiroshi

    Elucidation of the genetic basis of the control of leaf shape could be of use in the manipulation of crop traits, leading to more stable and increased crop production. To improve our understanding of the process controlling leaf shape, we identified a mutant gene in rice that causes a significant

  15. [Diagnoses of rice nitrogen status based on characteristics of scanning leaf].

    Science.gov (United States)

    Zhu, Jin-Xia; Deng, Jin-Song; Shi, Yuan-Yuan; Chen, Zhu-Lu; Han, Ning; Wang, Ke

    2009-08-01

    In the present research, the scanner was adopted as the digital image sensor, and a new method to diagnose the status of rice based on image processing technology was established. The main results are as follows: (1) According to the analysis of relations between leaf percentage nitrogen contents and color parameter, the sensitive color parameters were abstracted as B, b, b/(r+g), b/r and b/g. The leaf position (vertical spatial variation) effects on leaf chlorophyll contents were investigated, and the third fully expanded leaf was selected as the diagnosis leaf. (2) Field ground data such as ASD were collected simultaneously. Then study on the relationships between scanned leaf color characteristics and hyperspectral was carried out. The results indicated that the diagnosis of nitrogen status based on the scanned color characteristic is able to partly reflect the hyperspectral properties. (3) The leaf color and shape features were intergrated and the model of diagnosing the status of rice was established with calculated at YIQ color system. The distinct accuracy of nitrogen status was as follows: N0: 74.9%; N1 : 52%; N2 : 84.7%; N3 : 75%. The preliminary study showed that the methodology has been proved successful in this study and provides the potential to monitor nitrogen status in a cost-effective and accurate way based on the scanned digital image. Although, some confusion exists, with rapidly increasing resolution of digital platform and development of digital image technology, it will be more convenient for larger farms that can afford to use mechanized systems for site-specific nutrient management. Moreover, deeper theory research and practice experiment should be needed in the future.

  16. The KnownLeaf literature curation system captures knowledge about Arabidopsis leaf growth and development and facilitates integrated data mining

    NARCIS (Netherlands)

    Szakonyi, D.; Landeghem, van S.; Baerenfaller, K.; Baeyens, L.; Blomme, J.; Casanova-Saéz, R.; Bodt, De S.; Esteve-Bruna, D.; Fiorani, F.; Gonzalez, N.; Grønlund, J.; Immink, R.G.H.; Jover-Gil, S.; Kuwabara, A.; Muñoz-Nortes, T.; Dijk, van A.D.J.; Wilson-Sánchez, D.; Buchanan-Wollaston, V.; Angenent, G.C.; Peer, Van de Y.; Inzé, D.; Micol, J.L.; Gruissem, W.; Walsh, S.; Hilson, P.

    2015-01-01

    The information that connects genotypes and phenotypes is essentially embedded in research articles written in natural language. To facilitate access to this knowledge, we constructed a framework for the curation of the scientific literature studying the molecular mechanisms that control leaf growth

  17. [Dynamic Characteristics of Base Cations During Wet Deposition in Evergreen Broad-leaf Forest Ecosystem].

    Science.gov (United States)

    An, Si-wei; Sun, Tao; Ma, Ming; Wang, Ding-yong

    2015-12-01

    Based on field tests and laboratory experiments, effects of precipitation, throughfall, litterfall, and groundwater runoff of the ever-green broad-leaf forest on the dynamic characteristics of base cations in Simian Mountain were investigated from September 2012 to August 2013. The results showed that the rainfall of Simian Mountain was apparently acidic, with average pH of 4.90 and maximum pH of 5.14. The soil and canopies could increase pH of precipitation, with soils having the maximum increment, followed by the forest canopy. Forest canopy only had the function of interception on Na⁺. And precipitation could leach out Ca2⁺, Mg2⁺ and K⁺ of the canopies. Moreover, the degradation of litter was probably the main reason for the increase of base cations concentrations in the surface litter water. The litter water leached Ca2⁺, Mg2⁺ and Na⁺ of the forest soil through downward infiltration. The total retention rates of Ca²⁺, Mg²⁺, Na⁺ and K⁺ were 33.82%, -7.06%, 74.36% and 42.87%, respectively. Ca²⁺, Na⁺, K⁺ were found to be reserved in the forest ecosystem, and the highest interception rate was found for Na⁺.

  18. A Novel Diffuse Fraction-Based Two-Leaf Light Use Efficiency Model: An Application Quantifying Photosynthetic Seasonality across 20 AmeriFlux Flux Tower Sites

    Science.gov (United States)

    Yan, Hao; Wang, Shao-Qiang; Yu, Kai-Liang; Wang, Bin; Yu, Qin; Bohrer, Gil; Billesbach, Dave; Bracho, Rosvel; Rahman, Faiz; Shugart, Herman H.

    2017-10-01

    Diffuse radiation can increase canopy light use efficiency (LUE). This creates the need to differentiate the effects of direct and diffuse radiation when simulating terrestrial gross primary production (GPP). Here, we present a novel GPP model, the diffuse-fraction-based two-leaf model (DTEC), which includes the leaf response to direct and diffuse radiation, and treats maximum LUE for shaded leaves (ɛmsh defined as a power function of the diffuse fraction (Df)) and sunlit leaves (ɛmsu defined as a constant) separately. An Amazonian rainforest site (KM67) was used to calibrate the model by simulating the linear relationship between monthly canopy LUE and Df. This showed a positive response of forest GPP to atmospheric diffuse radiation, and suggested that diffuse radiation was more limiting than global radiation and water availability for Amazon rainforest GPP on a monthly scale. Further evaluation at 20 independent AmeriFlux sites showed that the DTEC model, when driven by monthly meteorological data and MODIS leaf area index (LAI) products, explained 70% of the variability observed in monthly flux tower GPP. This exceeded the 51% accounted for by the MODIS 17A2 big-leaf GPP product. The DTEC model's explicit accounting for the impacts of diffuse radiation and soil water stress along with its parameterization for C4 and C3 plants was responsible for this difference. The evaluation of DTEC at Amazon rainforest sites demonstrated its potential to capture the unique seasonality of higher GPP during the diffuse radiation-dominated wet season. Our results highlight the importance of diffuse radiation in seasonal GPP simulation.Plain Language SummaryAs diffuse radiation can increase canopy light use efficiency (LUE), there is a need to differentiate the effects of direct and diffuse radiation in simulating terrestrial gross primary production (GPP). A novel diffuse-fraction (Df)-based two leaf GPP model (DTEC) developed by this study considers these effects. Evaluation

  19. Are lianas more drought-tolerant than trees? A test for the role of hydraulic architecture and other stem and leaf traits.

    Science.gov (United States)

    van der Sande, Masha T; Poorter, Lourens; Schnitzer, Stefan A; Markesteijn, Lars

    2013-08-01

    Lianas are an important component of neotropical forests, where evidence suggests that they are increasing in abundance and biomass. Lianas are especially abundant in seasonally dry tropical forests, and as such it has been hypothesized that they are better adapted to drought, or that they are at an advantage under the higher light conditions in these forests. However, the physiological and morphological characteristics that allow lianas to capitalize more on seasonal forest conditions compared to trees are poorly understood. Here, we evaluate how saplings of 21 tree and liana species from a seasonal tropical forest in Panama differ in cavitation resistance (P50) and maximum hydraulic conductivity (K(h)), and how saplings of 24 tree and liana species differ in four photosynthetic leaf traits (e.g., maximum assimilation and stomatal conductance) and six morphological leaf and stem traits (e.g., wood density, maximum vessel length, and specific leaf area). At the sapling stage, lianas had a lower cavitation resistance than trees, implying lower drought tolerance, and they tended to have a higher potential hydraulic conductivity. In contrast to studies focusing on adult trees and lianas, we found no clear differences in morphological and photosynthetic traits between the life forms. Possibly, lianas and trees are functionally different at later ontogenetic stages, with lianas having deeper root systems than trees, or experience their main growth advantage during wet periods, when they are less vulnerable to cavitation and can achieve high conductivity. This study shows, however, that the hydraulic characteristics and functional traits that we examined do not explain differences in liana and tree distributions in seasonal forests.

  20. Natural membranes of Hevea brasiliensis latex as delivery system for Casearia sylvestris leaf components

    Directory of Open Access Journals (Sweden)

    Flávio A. Carvalho

    Full Text Available ABSTRACT Natural latex from Hevea brasiliensis (Wild. ex A.Juss Müll.Arg., Euphorbiaceae, showed angiogenic action and Casearia sylvestris Sw., Salicaceae, leaf derivatives presented anti-inflammatory and wound healing activities. Therefore, an association of these effects was interesting for wound healing applications. The aims of this study were the development of membranes of natural latex incorporated with C. sylvestris leaf derivatives (ethanolic extract, diterpene concentrated fraction and casearin J, their chemical and physical characterization, and the evaluation of in vitro skin permeation and retention of C. sylvestris bioactive secondary metabolites (diterpenes and phenolic compounds. The membranes were developed mixing hydroethanolic solutions of C. sylvestris derivatives with latex and drying them in a desiccator. They were characterized by infrared spectroscopy, scanning electron microscopy, water vapor permeability and mechanical resistance assays, demonstrating that all membranes were permeable, resistant and homogeneous in surfaces. The permeation and retention assays demonstrated dermal penetration of phenolic compounds for ethanolic extract membrane and of casearin-like clerodane diterpenes for all membranes, indicating that these membranes have great potential for therapeutical application as a topical system for C. sylvestris components releasing.

  1. Tetra point wetting at the free surface of liquid Ga-Bi

    International Nuclear Information System (INIS)

    Huber, P.; Shpyrko, O.G.; Pershan, P.S.; Ocko, B.M.; Di Masi, E.; Deutsch, M.

    2002-01-01

    A continuous surface wetting transition, pinned to a solid-liquid-liquid-vapor tetra coexistence point, is studied by x-ray reflectivity in liquid Ga-Bi binary alloys. The short-range surface potential is determined from the measured temperature evolution of the wetting film. The thermal fluctuations are shown to be insufficient to induce a noticeable breakdown of mean-field behavior, expected in short-range-interacting systems due to their d u =3 upper critical dimensionality

  2. Organic micropollutants in wet and dry depositions in the Venice Lagoon.

    Science.gov (United States)

    Gambaro, Andrea; Radaelli, Marta; Piazza, Rossano; Stortini, Angela Maria; Contini, Daniele; Belosi, Franco; Zangrando, Roberta; Cescon, Paolo

    2009-08-01

    Atmospheric transport is an important route by which pollutants are conveyed from the continents to both coastal and open sea. The role of aerosol deposition in the transport of polycyclic aromatic hydrocarbons (PAHs), polychlorobiphenyls (PCBs) and polybromodiphenyls ethers (PBDEs) to water and soil systems has been evaluated by measuring their concentrations in wet and dry depositions to the Venice Lagoon. The organic micropollutant flux data indicate that they contribute to the total deposition flux in different ways through wet and dry deposition, showing that the prevalent contribution derives from wet deposition. The fluxes calculated for PBDEs, showed the prevalence of 47, 99, 100 and 183 congeners, both in dry and wet fluxes. With regard to PCBs, the flux of summation operatorPCB for wet deposition is in the same order of magnitude of the diffusive flux at the air-water interface. The PAH fluxes obtained in the present study are similar to those obtained in previous studies on the atmospheric bulk deposition to the Venice Lagoon. The ratios between Phe/Ant and Fl/Py indicate that the pollutants sources are pyrolytic, deriving from combustion fuels.

  3. Adsorption of chlorinated hydrocarbons from aqueous solutions by wetted and non-wetted synthetic sorbents:dynamics

    NARCIS (Netherlands)

    Rexwinkel, G.; Rexwinkel, Glenn; Berkhout, J.T.A.M.; Heesink, Albertus B.M.

    2003-01-01

    In the present investigation the dynamics of the adsorption of several chlorinated hydrocarbons onto wetted and non-wetted synthetic sorbents was studied. A single particle model was developed to describe the adsorption behavior. The values of the mass transfer coefficient, needed to describe the

  4. Evaporation from rain-wetted forest in relation to canopy wetness, canopy cover, and net radiation

    NARCIS (Netherlands)

    Klaassen, W.

    2001-01-01

    Evaporation from wet canopies is commonly calculated using E-PM, the Penman-Monteith equation with zero surface resistance. However, several observations show a lower evaporation from rain-wetted forest. Possible causes for the difference between E-PM and experiments are evaluated to provide rules

  5. Wet storage integrity update

    International Nuclear Information System (INIS)

    Bailey, W.J.; Johnson, A.B. Jr.

    1983-09-01

    This report includes information from various studies performed under the Wet Storage Task of the Spent Fuel Integrity Project of the Commercial Spent Fuel Management (CSFM) Program at Pacific Northwest Laboratory. An overview of recent developments in the technology of wet storage of spent water reactor fuel is presented. Licensee Event Reports pertaining to spent fuel pools and the associated performance of spent fuel and storage components during wet storage are discussed. The current status of fuel that was examined under the CSFM Program is described. Assessments of the effect of boric acid in spent fuel pool water on the corrosion and stress corrosion cracking of stainless steel and the stress corrosion cracking of stainless steel piping containing stagnant water at spent fuel pools are discussed. A list of pertinent publications is included. 84 references, 21 figures, 11 tables

  6. Scaling up stomatal conductance from leaf to canopy using a dual-leaf model for estimating crop evapotranspiration.

    Directory of Open Access Journals (Sweden)

    Risheng Ding

    Full Text Available The dual-source Shuttleworth-Wallace model has been widely used to estimate and partition crop evapotranspiration (λET. Canopy stomatal conductance (Gsc, an essential parameter of the model, is often calculated by scaling up leaf stomatal conductance, considering the canopy as one single leaf in a so-called "big-leaf" model. However, Gsc can be overestimated or underestimated depending on leaf area index level in the big-leaf model, due to a non-linear stomatal response to light. A dual-leaf model, scaling up Gsc from leaf to canopy, was developed in this study. The non-linear stomata-light relationship was incorporated by dividing the canopy into sunlit and shaded fractions and calculating each fraction separately according to absorbed irradiances. The model includes: (1 the absorbed irradiance, determined by separately integrating the sunlit and shaded leaves with consideration of both beam and diffuse radiation; (2 leaf area for the sunlit and shaded fractions; and (3 a leaf conductance model that accounts for the response of stomata to PAR, vapor pressure deficit and available soil water. In contrast to the significant errors of Gsc in the big-leaf model, the predicted Gsc using the dual-leaf model had a high degree of data-model agreement; the slope of the linear regression between daytime predictions and measurements was 1.01 (R2 = 0.98, with RMSE of 0.6120 mm s-1 for four clear-sky days in different growth stages. The estimates of half-hourly λET using the dual-source dual-leaf model (DSDL agreed well with measurements and the error was within 5% during two growing seasons of maize with differing hydrometeorological and management strategies. Moreover, the estimates of soil evaporation using the DSDL model closely matched actual measurements. Our results indicate that the DSDL model can produce more accurate estimation of Gsc and λET, compared to the big-leaf model, and thus is an effective alternative approach for estimating and

  7. Drought-Induced Leaf Proteome Changes in Switchgrass Seedlings

    Directory of Open Access Journals (Sweden)

    Zhujia Ye

    2016-08-01

    Full Text Available Switchgrass (Panicum virgatum is a perennial crop producing deep roots and thus highly tolerant to soil water deficit conditions. However, seedling establishment in the field is very susceptible to prolonged and periodic drought stress. In this study, a “sandwich” system simulating a gradual water deletion process was developed. Switchgrass seedlings were subjected to a 20-day gradual drought treatment process when soil water tension was increased to 0.05 MPa (moderate drought stress and leaf physiological properties had expressed significant alteration. Drought-induced changes in leaf proteomes were identified using the isobaric tags for relative and absolute quantitation (iTRAQ labeling method followed by nano-scale liquid chromatography mass spectrometry (nano-LC-MS/MS analysis. Additionally, total leaf proteins were processed using a combinatorial library of peptide ligands to enrich for lower abundance proteins. Both total proteins and those enriched samples were analyzed to increase the coverage of the quantitative proteomics analysis. A total of 7006 leaf proteins were identified, and 257 (4% of the leaf proteome expressed a significant difference (p < 0.05, fold change <0.6 or >1.7 from the non-treated control to drought-treated conditions. These proteins are involved in the regulation of transcription and translation, cell division, cell wall modification, phyto-hormone metabolism and signaling transduction pathways, and metabolic pathways of carbohydrates, amino acids, and fatty acids. A scheme of abscisic acid (ABA-biosynthesis and ABA responsive signal transduction pathway was reconstructed using these drought-induced significant proteins, showing systemic regulation at protein level to deploy the respective mechanism. Results from this study, in addition to revealing molecular responses to drought stress, provide a large number of proteins (candidate genes that can be employed to improve switchgrass seedling growth and

  8. European wet deposition maps based on measurements

    NARCIS (Netherlands)

    Leeuwen EP van; Erisman JW; Draaijers GPJ; Potma CJM; Pul WAJ van; LLO

    1995-01-01

    To date, wet deposition maps on a European scale have been based on long-range transport model results. For most components wet deposition maps based on measurements are only available on national scales. Wet deposition maps of acidifying components and base cations based on measurements are needed

  9. Wetting and evaporation of binary mixture drops.

    Science.gov (United States)

    Sefiane, Khellil; David, Samuel; Shanahan, Martin E R

    2008-09-11

    Experimental results on the wetting behavior of water, methanol, and binary mixture sessile drops on a smooth, polymer-coated substrate are reported. The wetting behavior of evaporating water/methanol drops was also studied in a water-saturated environment. Drop parameters (contact angle, shape, and volume) were monitored in time. The effects of the initial relative concentrations on subsequent evaporation and wetting dynamics were investigated. Physical mechanisms responsible for the various types of wetting behavior during different stages are proposed and discussed. Competition between evaporation and hydrodynamic flow are evoked. Using an environment saturated with water vapor allowed further exploration of the controlling mechanisms and underlying processes. Wetting stages attributed to differential evaporation of methanol were identified. Methanol, the more volatile component, evaporates predominantly in the initial stage. The data, however, suggest that a small proportion of methanol remained in the drop after the first stage of evaporation. This residual methanol within the drop seems to influence subsequent wetting behavior strongly.

  10. Quantification of wet-work exposure in nurses using a newly developed wet-work exposure monitor

    NARCIS (Netherlands)

    Visser, Maaike J.; Behroozy, Ali; Verberk, Maarten M.; Semple, Sean; Kezic, Sanja

    2011-01-01

    Occupational contact dermatitis (OCD) is an important work-related disease. A major cause of OCD is 'wet work': frequent contact of the skin with water, soap, detergents, or occlusive gloves. The German guidance TRGS 401 recommends that the duration of wet work (including use of occlusive gloves)

  11. Seasonality of Leaf Carbon Isotopic Composition and Leaf Water Isotopic Enrichment in a Mixed Evergreen Forest in Southern California

    Science.gov (United States)

    Santiago, L. S.; Sickman, J. O.; Goulden, M.; DeVan, C.; Pasquini, S. C.; Pivovaroff, A. L.

    2011-12-01

    Leaf carbon isotopic composition and leaf water isotopic enrichment reflect physiological processes and are important for linking local and regional scale processes to global patterns. We investigated how seasonality affects the isotopic composition of bulk leaf carbon, leaf sugar carbon, and leaf water hydrogen under a Mediterranean climate. Leaf and stem samples were collected monthly from four tree species (Calocedrus decurrens, Pinus lambertiana, Pinus ponderosa, and Quercus chrysolepis) at the James San Jacinto Mountain Reserve in southern California. Mean monthly bulk leaf carbon isotopic composition varied from -34.5 % in P. ponderosa to -24.7 % in P. lambertiana and became more depleted in 13C from the spring to the summer. Mean monthly leaf sugar varied from -29.3 % in P. ponderosa to -21.8 % in P. lambertiana and was enriched in 13C during the winter, spring and autumn, but depleted during the mid-summer. Leaf water hydrogen isotopic composition was 28.4 to 68.8 % more enriched in deuterium than source water and this enrichment was greater as seasonal drought progressed. These data indicate that leaf carbon and leaf water hydrogen isotopic composition provide sensitive measures that connect plant physiological processes to short-term climatic variability.

  12. Carbon nanotube fiber spun from wetted ribbon

    Science.gov (United States)

    Zhu, Yuntian T; Arendt, Paul; Zhang, Xiefei; Li, Qingwen; Fu, Lei; Zheng, Lianxi

    2014-04-29

    A fiber of carbon nanotubes was prepared by a wet-spinning method involving drawing carbon nanotubes away from a substantially aligned, supported array of carbon nanotubes to form a ribbon, wetting the ribbon with a liquid, and spinning a fiber from the wetted ribbon. The liquid can be a polymer solution and after forming the fiber, the polymer can be cured. The resulting fiber has a higher tensile strength and higher conductivity compared to dry-spun fibers and to wet-spun fibers prepared by other methods.

  13. Study on creation of an indocalamus leaf flavor

    Directory of Open Access Journals (Sweden)

    Guangyong ZHU

    2015-01-01

    Full Text Available AbstractFlavors represent a small but significant segment of food industry. Sensory characteristics play an important role in the process of consumer acceptance and preference. Indocalamus leaf takes on a pleasant odor and indocalamus leaf flavor can be used in many products. However, indocalamus leaf flavor formula has not been reported. Therefore, developing an indocalamus leaf flavor is of significant interests. Note is a distinct flavor or odor characteristic. This paper concentrates on preparation and creation of indocalamus leaf flavor according to the notes of indocalamus leaf. The notes were obtained by smelling indocalamus leaf, and the results showed that the notes of indocalamus leaf flavor can be classified as: green-leafy note, sweet note, beany note, aldehydic note, waxy note, woody note, roast note, creamy note, and nutty note. According to the notes of indocalamus leaf odor, a typical indocalamus leaf flavor formula was obtained. The indocalamus leaf flavor blended is pleasant, harmonious, and has characteristics of indocalamus leaf odor.

  14. Cysteine-stabilised peptide extract of Morinda lucida (Benth) leaf exhibits antimalarial activity and augments antioxidant defense system in P. berghei-infected mice.

    Science.gov (United States)

    Adebayo, Joseph O; Adewole, Kayode E; Krettli, Antoniana U

    2017-07-31

    Cysteine-stabilised peptides (CSP) are majorly explored for their bioactivities with applications in medicine and agriculture. Morinda lucida leaf is used indigenously for the treatment of malaria; it also contains CSP but the role of CSP in the antimalarial activity of the leaf has not been evaluated. This study was therefore performed to evaluate the antimalarial activity of partially purified cysteine-stabilised peptide extract (PPCPE) of Morinda lucida leaf and its possible augmentation of the antioxidant systems of liver and erythrocytes in murine malaria. PPCPE was prepared from Morinda lucida leaf. The activity of PPCPE was evaluated in vitro against Plasmodium falciparum W2 and its cytotoxicity against a BGM kidney cell line. PPCPE was also evaluated for its antimalarial activity and its effects on selected liver and erythrocyte antioxidant parameters in P. berghei NK65-infected mice. PPCPE was not active against P. falciparum W2 (IC 50 : >50µg/ml) neither was it cytotoxic (MLD 50 : >1000µg/ml). However, PPCPE was active against P. berghei NK65 in vivo, causing 51.52% reduction in parasitaemia at 31.25mg/Kg body weight on day 4 post-inoculation. PPCPE significantly reduced (P activities of glutathione peroxidase, glutathione reductase, superoxide dismutase and catalase in a dose-dependent manner, which was significant (P antimalarial effect and that PPCPE may augment the antioxidant defense system to alleviate the reactive oxygen species-mediated complications of malaria. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  15. Perennial Grass Bioenergy Cropping on Wet Marginal Land

    NARCIS (Netherlands)

    Das, Srabani; Teuffer, Karin; Stoof, Cathelijne R.; Walter, Michael F.; Walter, M.T.; Steenhuis, Tammo S.; Richards, Brian K.

    2018-01-01

    The control of soil moisture, vegetation type, and prior land use on soil health parameters of perennial grass cropping systems on marginal lands is not well known. A fallow wetness-prone marginal site in New York (USA) was converted to perennial grass bioenergy feedstock production. Quadruplicate

  16. Induced mutations for resistance to leaf rust in wheat

    International Nuclear Information System (INIS)

    Borojevic, K.

    1983-01-01

    Problems related to the induction of mutations for disease resistance were investigated under several aspects, using the wheat/leaf rust system. Previously selected mutant lines, tested in M 11 and M 13 , were found to differ with regard to infection type and disease severity from the original varieties. To verify the induced-mutation origin, these mutants were examined further using test crosses with carriers of known genes for leaf rust resistance and electrophoresis. A separate experiment to induce mutations for leaf rust resistance in the wheat varieties Sava, Aurora and Siete Cerros, using gamma rays, fast neutrons and EMS, yielded mutants with different disease reaction in the varieties Sava and Aurora at a frequency of about 1x10 - 3 per M 1 plant progenies. (author)

  17. Energy and exergy analysis of counter flow wet cooling towers

    Directory of Open Access Journals (Sweden)

    Saravanan Mani

    2008-01-01

    Full Text Available Cooling tower is an open system direct contact heat exchanger, where it cools water by both convection and evaporation. In this paper, a mathematical model based on heat and mass transfer principle is developed to find the outlet condition of water and air. The model is solved using iterative method. Energy and exergy analysis infers that inlet air wet bulb temperature is found to be the most important parameter than inlet water temperature and also variation in dead state properties does not affect the performance of wet cooling tower. .

  18. Responses of rubber leaf phenology to climatic variations in Southwest China

    Science.gov (United States)

    Zhai, De-Li; Yu, Haiying; Chen, Si-Chong; Ranjitkar, Sailesh; Xu, Jianchu

    2017-11-01

    The phenology of rubber trees (Hevea brasiliensis) could be influenced by meteorological factors and exhibits significant changes under different geoclimates. In the sub-optimal environment in Xishuangbanna, rubber trees undergo lengthy periods of defoliation and refoliation. The timing of refoliation from budburst to leaf aging could be affected by powdery mildew disease (Oidium heveae), which negatively impacts seed and latex production. Rubber trees are most susceptible to powdery mildew disease at the copper and leaf changing stages. Understanding and predicting leaf phenology of rubber trees are helpful to develop effective means of controlling the disease. This research investigated the effect of several meteorological factors on different leaf phenological stages in a sub-optimal environment for rubber cultivation in Jinghong, Yunnan in Southwest China. Partial least square regression was used to quantify the relationship between meteorological factors and recorded rubber phenologies from 2003 to 2011. Minimum temperature in December was found to be the critical factor for the leaf phenology development of rubber trees. Comparing the delayed effects of minimum temperature, the maximum temperature, diurnal temperature range, and sunshine hours were found to advancing leaf phenologies. A comparatively lower minimum temperature in December would facilitate the advancing of leaf phenologies of rubber trees. Higher levels of precipitation in February delayed the light green and the entire process of leaf aging. Delayed leaf phenology was found to be related to severe rubber powdery mildew disease. These results were used to build predictive models that could be applied to early warning systems of rubber powdery mildew disease.

  19. The dosimetric impact of leaf interdigitation and leaf width on VMAT treatment planning in Pinnacle: comparing Pareto fronts

    International Nuclear Information System (INIS)

    Van Kesteren, Z; Janssen, T M; Damen, E; Van Vliet-Vroegindeweij, C

    2012-01-01

    To evaluate in an objective way the effect of leaf interdigitation and leaf width on volumetric modulated arc therapy plans in Pinnacle. Three multileaf collimators (MLCs) were modeled: two 10 mm leaf width MLCs, with and without interdigitating leafs, and a 5 mm leaf width MLC with interdigitating leafs. Three rectum patients and three prostate patients were used for the planning study. In order to compare treatment techniques in an objective way, a Pareto front comparison was carried out. 200 plans were generated in an automated way, per patient per MLC model, resulting in a total of 3600 plans. From these plans, Pareto-optimal plans were selected which were evaluated for various dosimetric variables. The capability of leaf interdigitation showed little dosimetric impact on the treatment plans, when comparing the 10 mm leaf width MLC with and without leaf interdigitation. When comparing the 10 mm leaf width MLC with the 5 mm leaf width MLC, both with interdigitating leafs, improvement in plan quality was observed. For both patient groups, the integral dose was reduced by 0.6 J for the thin MLC. For the prostate patients, the mean dose to the anal sphincter was reduced by 1.8 Gy and the conformity of the V 95% was reduced by 0.02 using the thin MLC. The V 65% of the rectum was reduced by 0.1% and the dose homogeneity with 1.5%. For rectum patients, the mean dose to the bowel was reduced by 1.4 Gy and the mean dose to the bladder with 0.8 Gy for the thin MLC. The conformity of the V 95% was equivalent for the 10 and 5 mm leaf width MLCs for the rectum patients. We have objectively compared three types of MLCs in a planning study for prostate and rectum patients by analyzing Pareto-optimal plans which were generated in an automated way. Interdigitation of MLC leafs does not generate better plans using the SmartArc algorithm in Pinnacle. Changing the MLC leaf width from 10 to 5 mm generates better treatment plans although the clinical relevance remains to be proven

  20. The dosimetric impact of leaf interdigitation and leaf width on VMAT treatment planning in Pinnacle: comparing Pareto fronts.

    Science.gov (United States)

    van Kesteren, Z; Janssen, T M; Damen, E; van Vliet-Vroegindeweij, C

    2012-05-21

    To evaluate in an objective way the effect of leaf interdigitation and leaf width on volumetric modulated arc therapy plans in Pinnacle. Three multileaf collimators (MLCs) were modeled: two 10 mm leaf width MLCs, with and without interdigitating leafs, and a 5 mm leaf width MLC with interdigitating leafs. Three rectum patients and three prostate patients were used for the planning study. In order to compare treatment techniques in an objective way, a Pareto front comparison was carried out. 200 plans were generated in an automated way, per patient per MLC model, resulting in a total of 3600 plans. From these plans, Pareto-optimal plans were selected which were evaluated for various dosimetric variables. The capability of leaf interdigitation showed little dosimetric impact on the treatment plans, when comparing the 10 mm leaf width MLC with and without leaf interdigitation. When comparing the 10 mm leaf width MLC with the 5 mm leaf width MLC, both with interdigitating leafs, improvement in plan quality was observed. For both patient groups, the integral dose was reduced by 0.6 J for the thin MLC. For the prostate patients, the mean dose to the anal sphincter was reduced by 1.8 Gy and the conformity of the V(95%) was reduced by 0.02 using the thin MLC. The V(65%) of the rectum was reduced by 0.1% and the dose homogeneity with 1.5%. For rectum patients, the mean dose to the bowel was reduced by 1.4 Gy and the mean dose to the bladder with 0.8 Gy for the thin MLC. The conformity of the V(95%) was equivalent for the 10 and 5 mm leaf width MLCs for the rectum patients. We have objectively compared three types of MLCs in a planning study for prostate and rectum patients by analyzing Pareto-optimal plans which were generated in an automated way. Interdigitation of MLC leafs does not generate better plans using the SmartArc algorithm in Pinnacle. Changing the MLC leaf width from 10 to 5 mm generates better treatment plans although the clinical relevance remains

  1. Order of wetting transitions in electrolyte solutions.

    Science.gov (United States)

    Ibagon, Ingrid; Bier, Markus; Dietrich, S

    2014-05-07

    For wetting films in dilute electrolyte solutions close to charged walls we present analytic expressions for their effective interface potentials. The analysis of these expressions renders the conditions under which corresponding wetting transitions can be first- or second-order. Within mean field theory we consider two models, one with short- and one with long-ranged solvent-solvent and solvent-wall interactions. The analytic results reveal in a transparent way that wetting transitions in electrolyte solutions, which occur far away from their critical point (i.e., the bulk correlation length is less than half of the Debye length) are always first-order if the solvent-solvent and solvent-wall interactions are short-ranged. In contrast, wetting transitions close to the bulk critical point of the solvent (i.e., the bulk correlation length is larger than the Debye length) exhibit the same wetting behavior as the pure, i.e., salt-free, solvent. If the salt-free solvent is governed by long-ranged solvent-solvent as well as long-ranged solvent-wall interactions and exhibits critical wetting, adding salt can cause the occurrence of an ion-induced first-order thin-thick transition which precedes the subsequent continuous wetting as for the salt-free solvent.

  2. DIFFERENCES IN LEAF GAS EXCHANGE AND LEAF CHARACTERISTICS BETWEEN TWO ALMOND CULTIVARS

    Directory of Open Access Journals (Sweden)

    George D. Nanos

    2013-12-01

    Full Text Available Leaf chlorophyll content, specific leaf weight (SLW, photosynthetic and transpiration rates, stomatal functioning, water use efficiency and quantum yield were assessed during the kernel filling period for two consecutive years in order to understand tissue-centered physiological profile differences between two commercial almond cultivars, ‘Ferragnès’ and ‘Texas’. Similar SLWs were observed on the studied cultivars; however, chlorophyll content, net photosynthetic and transpiration rates and stomatal functioning demonstrated statistically significant differences. In both cultivars, an overall decline in the examined parameters towards fruit maturation (i.e. end of the summer was recorded. ‘Ferragnès’ leaves were found to be more efficient in leaf photosynthesis related performance during kernel filling, when irrigated sufficiently, in comparison to ‘Texas’ leaves. Low average values of leaf conductance during summer in ‘Texas’ leaves revealed its potential for adaptation in cool climates and increased carbon assimilation therein for high kernel yield.

  3. Long term wet spent nuclear fuel storage

    International Nuclear Information System (INIS)

    1987-04-01

    The meeting showed that there is continuing confidence in the use of wet storage for spent nuclear fuel and that long-term wet storage of fuel clad in zirconium alloys can be readily achieved. The importance of maintaining good water chemistry has been identified. The long-term wet storage behaviour of sensitized stainless steel clad fuel involves, as yet, some uncertainties. However, great reliance will be placed on long-term wet storage of spent fuel into the future. The following topics were treated to some extent: Oxidation of the external surface of fuel clad, rod consolidation, radiation protection, optimum methods of treating spent fuel storage water, physical radiation effects, and the behaviour of spent fuel assemblies of long-term wet storage conditions. A number of papers on national experience are included

  4. Uptake of phosphorus from surfactant solutions by wheat leaves: spreading kinetics, wetted area, and drying time.

    Science.gov (United States)

    Peirce, Courtney A E; Priest, Craig; McBeath, Therese M; McLaughlin, Mike J

    2016-01-07

    The delivery and uptake of nutrients at the surface of plant leaves is an important physicochemical phenomenon that depends on leaf surface morphology and chemistry, fertilizer formulation chemistry (including adjuvant and associated surfactants), wetting dynamics, and many other physical, chemical and biological factors. In this study, the role of spreading dynamics in determining uptake of the macronutrient phosphorus from phosphoric acid fertilizer solution in combination with three different adjuvants was measured in the absence of droplet run-off and splashing. When run-off and splashing losses were zero, spreading and drying rates had a small to negligible effect on the uptake efficiency. The results suggest that uptake may be much less sensitive to the specific choice of adjuvant and long time-scale spreading behaviour than one might intuitively expect.

  5. Estimating leaf functional traits by inversion of PROSPECT: Assessing leaf dry matter content and specific leaf area in mixed mountainous forest

    Science.gov (United States)

    Ali, Abebe Mohammed; Darvishzadeh, Roshanak; Skidmore, Andrew K.; Duren, Iris van; Heiden, Uta; Heurich, Marco

    2016-03-01

    Assessments of ecosystem functioning rely heavily on quantification of vegetation properties. The search is on for methods that produce reliable and accurate baseline information on plant functional traits. In this study, the inversion of the PROSPECT radiative transfer model was used to estimate two functional leaf traits: leaf dry matter content (LDMC) and specific leaf area (SLA). Inversion of PROSPECT usually aims at quantifying its direct input parameters. This is the first time the technique has been used to indirectly model LDMC and SLA. Biophysical parameters of 137 leaf samples were measured in July 2013 in the Bavarian Forest National Park, Germany. Spectra of the leaf samples were measured using an ASD FieldSpec3 equipped with an integrating sphere. PROSPECT was inverted using a look-up table (LUT) approach. The LUTs were generated with and without using prior information. The effect of incorporating prior information on the retrieval accuracy was studied before and after stratifying the samples into broadleaf and conifer categories. The estimated values were evaluated using R2 and normalized root mean square error (nRMSE). Among the retrieved variables the lowest nRMSE (0.0899) was observed for LDMC. For both traits higher R2 values (0.83 for LDMC and 0.89 for SLA) were discovered in the pooled samples. The use of prior information improved accuracy of the retrieved traits. The strong correlation between the estimated traits and the NIR/SWIR region of the electromagnetic spectrum suggests that these leaf traits could be assessed at canopy level by using remotely sensed data.

  6. A Wet Chemistry Laboratory Cell

    Science.gov (United States)

    2008-01-01

    This picture of NASA's Phoenix Mars Lander's Wet Chemistry Laboratory (WCL) cell is labeled with components responsible for mixing Martian soil with water from Earth, adding chemicals and measuring the solution chemistry. WCL is part of the Microscopy, Electrochemistry, and Conductivity Analyzer (MECA) instrument suite on board the Phoenix lander. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  7. Spectral reflectance relationships to leaf water stress

    Science.gov (United States)

    Ripple, William J.

    1986-01-01

    Spectral reflectance data were collected from detached snapbean leaves in the laboratory with a multiband radiometer. Four experiments were designed to study the spectral response resulting from changes in leaf cover, relative water content of leaves, and leaf water potential. Spectral regions included in the analysis were red (630-690 nm), NIR (760-900 nm), and mid-IR (2.08-2.35 microns). The red and mid-IR bands showed sensitivity to changes in both leaf cover and relative water content of leaves. The NIR was only highly sensitive to changes in leaf cover. Results provided evidence that mid-IR reflectance was governed primarily by leaf moisture content, although soil reflectance was an important factor when leaf cover was less than 100 percent. High correlations between leaf water potentials and reflectance were attributed to covariances with relative water content of leaves and leaf cover.

  8. Analysis on Wetting Deformation Properties of Silty Clay

    Directory of Open Access Journals (Sweden)

    Xinrong Liu

    2014-06-01

    Full Text Available Changes in water level that cause deformation and stability problems often occur in foundation pit engineering. Water damage is one of the main problems that will lead to disasters in foundation pit engineering. Research findings with regard to properties of wetting deformation due to water damage can be applied not only in foundation pit engineering, slope engineering, hydraulic engineering, and mining engineering but also in related issues in the field of theoretical research and practice. In this study, the characteristics of silty clay deformation after wetting are examined from the perspective of the effect of wetting on the side wall of foundation pit, and wetting experiments on silty clay of a selected area’s stratum located in Chongqing Municipality are conducted under different confining pressures and stress levels through a multi-function triaxial apparatus. Then, laws of silty clay wetting deformation are obtained, and the relationship between wetting stress level and wetting deformation amount is also figured out. The study reveals that the maximum values of wetting deformation under different confining pressures have appear at a particular stress level; therefore, the related measures should be taken to avoid this deformation in the process of construction.

  9. Comparison of leaf-on and leaf-off ALS data for mapping riparian tree species

    Science.gov (United States)

    Laslier, Marianne; Ba, Antoine; Hubert-Moy, Laurence; Dufour, Simon

    2017-10-01

    Forest species composition is a fundamental indicator of forest study and management. However, describing forest species composition at large scales and of highly diverse populations remains an issue for which remote sensing can provide significant contribution, in particular, Airborne Laser Scanning (ALS) data. Riparian corridors are good examples of highly valuable ecosystems, with high species richness and large surface areas that can be time consuming and expensive to monitor with in situ measurements. Remote sensing could be useful to study them, but few studies have focused on monitoring riparian tree species using ALS data. This study aimed to determine which metrics derived from ALS data are best suited to identify and map riparian tree species. We acquired very high density leaf-on and leaf-off ALS data along the Sélune River (France). In addition, we inventoried eight main riparian deciduous tree species along the study site. After manual segmentation of the inventoried trees, we extracted 68 morphological and structural metrics from both leaf-on and leaf-off ALS point clouds. Some of these metrics were then selected using Sequential Forward Selection (SFS) algorithm. Support Vector Machine (SVM) classification results showed good accuracy with 7 metrics (0.77). Both leaf-on and leafoff metrics were kept as important metrics for distinguishing tree species. Results demonstrate the ability of 3D information derived from high density ALS data to identify riparian tree species using external and internal structural metrics. They also highlight the complementarity of leaf-on and leaf-off Lidar data for distinguishing riparian tree species.

  10. Wetting of heterogeneous substrates. A classical density-functional-theory approach

    Science.gov (United States)

    Yatsyshin, Peter; Parry, Andrew O.; Rascón, Carlos; Duran-Olivencia, Miguel A.; Kalliadasis, Serafim

    2017-11-01

    Wetting is a nucleation of a third phase (liquid) on the interface between two different phases (solid and gas). In many experimentally accessible cases of wetting, the interplay between the substrate structure, and the fluid-fluid and fluid-substrate intermolecular interactions leads to the appearance of a whole ``zoo'' of exciting interface phase transitions, associated with the formation of nano-droplets/bubbles, and thin films. Practical applications of wetting at small scales are numerous and include the design of lab-on-a-chip devices and superhydrophobic surfaces. In this talk, we will use a fully microscopic approach to explore the phase space of a planar wall, decorated with patches of different hydrophobicity, and demonstrate the highly non-trivial behaviour of the liquid-gas interface near the substrate. We will present fluid density profiles, adsorption isotherms and wetting phase diagrams. Our analysis is based on a formulation of statistical mechanics, commonly known as classical density-functional theory. It provides a computationally-friendly and rigorous framework, suitable for probing small-scale physics of classical fluids and other soft-matter systems. EPSRC Grants No. EP/L027186,EP/K503733;ERC Advanced Grant No. 247031.

  11. Specific leaf area estimation from leaf and canopy reflectance through optimization and validation of vegetation indices

    NARCIS (Netherlands)

    Ali, A.M.; Darvishzadeh, R.; Skidmore, A.K.; van Duren, I.C.

    2017-01-01

    Specific leaf area (SLA), which is defined as the leaf area per unit of dry leaf mass is an important component when assessing functional diversity and plays a key role in ecosystem modeling, linking plant carbon and water cycles as well as quantifying plant physiological processes. However, studies

  12. Effect of Three Training Systems on Grapes in a Wet Region of China: Yield, Incidence of Disease and Anthocyanin Compositions of Vitis vinifera cv. Cabernet Sauvignon

    Directory of Open Access Journals (Sweden)

    Mei-Ying Liu

    2015-10-01

    Full Text Available Grapevine training systems determine the suitability for grape varieties in a specific growing region. We evaluated the influence of three training systems, Single Guyot (SG, Spur-pruned Vertical Shoot-Positioned (VSP, and Four-Arm Kniffin (4AK, on the performance of grapes and vines of Vitis vinifera L. cv. Cabernet Sauvignon in the 2012 and 2013 growing seasons in a wet region of central China. 4AK was the most productive system in comparison to SG and VSP. SG and VSP had lower disease infections of leaves and berries, especially in the mid- and final stage of berry ripening. Three training systems had no impact on berry maturity. PLS-DA (Partial Least Squares-Discriminant analysis showed that the relatively dry vintage could well discriminate three training systems, but the wet vintage was not. A wet vintage of 2013 had more accumulation of 3′5′-substituted and acylated anthocyanins, including malvidin-3-O-(6-O-acetyl-glucoside, malvidin-3-O-glucoside, and petunidin-3-O-(cis-6-O-coumaryl-glucoside, etc. With regard to the effect of training systems, 4AK grapes had the lowest concentrations of total anthocyanins and individual anthocyanins, SG and VSP differed according to the different vintages, and showed highest concentration of total individual anthocyanins in 2012 and 2013, respectively. Generally, VSP benefited the most, contributing to significantly highest levels of total individual anthocyanins, and major anthocyanin, including malvidin-3-O-glucoside and malvidin-3-O-(6-O-acetyl-glucoside, and the grapes obtained from VSP presented significantly highest proportion of 3′5′-substituted anthocyanins. With regard to the ratios of 3′5′/3′-substituted, methoxylated/non-methoxylated and acylated/non-acylated anthocyanins, the significantly higher levels were also shown in VSP system. In summary, VSP was the best training system for Cabernet Sauvignon to accumulate relatively stable individual anthocyanins in this wet region of

  13. Effect of Three Training Systems on Grapes in a Wet Region of China: Yield, Incidence of Disease and Anthocyanin Compositions of Vitis vinifera cv. Cabernet Sauvignon.

    Science.gov (United States)

    Liu, Mei-Ying; Chi, Ming; Tang, Yong-Hong; Song, Chang-Zheng; Xi, Zhu-Mei; Zhang, Zhen-Wen

    2015-10-19

    Grapevine training systems determine the suitability for grape varieties in a specific growing region. We evaluated the influence of three training systems, Single Guyot (SG), Spur-pruned Vertical Shoot-Positioned (VSP), and Four-Arm Kniffin (4AK), on the performance of grapes and vines of Vitis vinifera L. cv. Cabernet Sauvignon in the 2012 and 2013 growing seasons in a wet region of central China. 4AK was the most productive system in comparison to SG and VSP. SG and VSP had lower disease infections of leaves and berries, especially in the mid- and final stage of berry ripening. Three training systems had no impact on berry maturity. PLS-DA (Partial Least Squares-Discriminant) analysis showed that the relatively dry vintage could well discriminate three training systems, but the wet vintage was not. A wet vintage of 2013 had more accumulation of 3'5'-substituted and acylated anthocyanins, including malvidin-3-O-(6-O-acetyl)-glucoside, malvidin-3-O-glucoside, and petunidin-3-O-(cis-6-O-coumaryl)-glucoside, etc. With regard to the effect of training systems, 4AK grapes had the lowest concentrations of total anthocyanins and individual anthocyanins, SG and VSP differed according to the different vintages, and showed highest concentration of total individual anthocyanins in 2012 and 2013, respectively. Generally, VSP benefited the most, contributing to significantly highest levels of total individual anthocyanins, and major anthocyanin, including malvidin-3-O-glucoside and malvidin-3-O-(6-O-acetyl)-glucoside, and the grapes obtained from VSP presented significantly highest proportion of 3'5'-substituted anthocyanins. With regard to the ratios of 3'5'/3'-substituted, methoxylated/non-methoxylated and acylated/non-acylated anthocyanins, the significantly higher levels were also shown in VSP system. In summary, VSP was the best training system for Cabernet Sauvignon to accumulate relatively stable individual anthocyanins in this wet region of China and potentially in

  14. Leaf hydraulic conductance declines in coordination with photosynthesis, transpiration and leaf water status as soybean leaves age regardless of soil moisture

    Science.gov (United States)

    Locke, Anna M.; Ort, Donald R.

    2014-01-01

    Photosynthesis requires sufficient water transport through leaves for stomata to remain open as water transpires from the leaf, allowing CO2 to diffuse into the leaf. The leaf water needs of soybean change over time because of large microenvironment changes over their lifespan, as leaves mature in full sun at the top of the canopy and then become progressively shaded by younger leaves developing above. Leaf hydraulic conductance (K leaf), a measure of the leaf’s water transport capacity, can often be linked to changes in microenvironment and transpiration demand. In this study, we tested the hypothesis that K leaf would decline in coordination with transpiration demand as soybean leaves matured and aged. Photosynthesis (A), stomatal conductance (g s) and leaf water potential (Ψleaf) were also measured at various leaf ages with both field- and chamber-grown soybeans to assess transpiration demand. K leaf was found to decrease as soybean leaves aged from maturity to shading to senescence, and this decrease was strongly correlated with midday A. Decreases in K leaf were further correlated with decreases in g s, although the relationship was not as strong as that with A. Separate experiments investigating the response of K leaf to drought demonstrated no acclimation of K leaf to drought conditions to protect against cavitation or loss of g s during drought and confirmed the effect of leaf age in K leaf observed in the field. These results suggest that the decline of leaf hydraulic conductance as leaves age keeps hydraulic supply in balance with demand without K leaf becoming limiting to transpiration water flux. PMID:25281701

  15. Reactive wetting by liquid sodium on thin Au platin

    International Nuclear Information System (INIS)

    Kawaguchi, Munemichi; Hamada, Hirotsugu

    2014-01-01

    For practical use of an under-sodium viewer, the behavior of sodium wetting is investigated by modeling the reactive and non-reactive wetting of metallic-plated steels by liquid sodium to simulate sodium wetting. The non-reactive wetting simulation results showed good agreement with Tanner's law, in which the time dependencies of the droplet radius and contact angle are expressed as R N ∝ t 1/10 and θ∝ t -3/10 , respectively; therefore, the model was considered suitable for the simulation. To simulate reactive wetting, the model of fluid flow induced by the interfacial reaction was incorporated into the simulation of non-reactive wetting. The reactive wetting simulation results, such as the behavior of the precursor liquid film and central droplet, showed good agreement with sodium wetting experiments using thin Au plating at 250°C. An important result of the reactive wetting simulation is that the gradient of the reaction energy at the interface appeared on the new interface around the triple line, and that fluid flow was induced. This interfacial reactivity during sodium wetting of thin Au plating was enhanced by the reaction of sodium and nickel oxide through pinholes in the plating. (author)

  16. Modeling study on axial wetting length of meniscus in vertical rectangular microgrooves

    International Nuclear Information System (INIS)

    Nie, Xuelei; Hu, Xuegong; Tang, Dawei

    2013-01-01

    In this work, the traditional model for predicting axial wetting length of meniscus in vertical microgrooves is introduced firstly. The traditional model may cause inaccurate results in predicting wetting length in vertical microgrooves because of the assumption of round meniscus in cross sections of microgrooves and the way of calculating curvature. In order to develop this model and make it more accurate, a revised micro-PIV system is built to test the meniscus shapes in cross sections of vertical and horizontal microgrooves, and the experimental results prove that the real shapes of meniscus are parabolic other than round. The fitting formulas of meniscus shapes are obtained with software Origin 7.5. Based on experimental results and fitting formulas, the traditional model is revised by changing the way to calculate curvature. In the modified model, the curvature for calculating axial wetting length of meniscus equals average curvature of meniscus in cross section of vertical microgrooves minus the average curvature of meniscus in cross section of horizontal microgrooves. It is proved that the modified model can predict the wetting length in vertical microgrooves better than the original model. The average difference between experiment and modified model is 2.5% while that between experiment and traditional model is 174.2%. The disadvantage of the modified model is that using the new model to predict wetting length needs to know the real shapes of meniscus in vertical and horizontal microgrooves. -- Highlights: ► An experimental system is designed to test the shapes of meniscus in microgrooves. ► The real shapes of meniscus in microgrooves are obtained for first time. ► The shapes of meniscus in microgrooves is compared and analyzed. ► The model for predicting wetting length of meniscus in microgrooves is developed

  17. Experienced materials in wet limestone-gypsum FGD system

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, S. [Mitsubishi Heavy Industry, Hiroshima (Japan). Hiroshima Research and Development Center; Iwashita, K.; Ochi, E.; Higuchi, T. [Mitsubishi heavy Industry, Yokohama (Japan)

    1998-12-31

    This study was made on the corrosion resistivity evaluation method used for material selection in the Wet Limestone-Gypsum FGD system with examples of various process configuration, their corrosion environment, and the materials used in them. The wet limestone-gypsum process FGD plant is broadly divided into two types-ash-separated (dual-loop) process, and ash-mixed (single-loop) process-depending on whether the flue gas is separated from ash before being led into the absorber or led as it is into the absorber mixed with ash. Presently, the single-loop process has become the mainstream process however. The dual -loop process comprises a dedusting tower (quencher) and an absorption tower (absorber). In the quencher ash is removed with sprayed water where most of the HCl, HF etc., and a part of SO{sub x} and NO{sub x} contained in the flue gas are also removed with absorption. On the contrary, in the single-loop process which is configured of only the absorber, the flue gas is introduced into it as it is contained with ash, SO{sub x}, NO{sub x}, HCl, HF etc. The corrosion environment in these plants largely differs depending on the process type and condition. The absorber recirculated liquid has various ion inclusions among which Cl{sup {minus}} promotes pitting corrosion and crevice corrosion while SO{sub 4}{sup 2{minus}} inhibits these corrosions. Both Cl{sup {minus}} and SO{sub 4}{sup 2{minus}} cover an extremely large range between 25 to 100,000 ppm and 564 to 73,600 ppm respectively, and their influence on the corrosion is related to their activity which is decided by Ca{sup 2+}, Mg{sup 2+}, Na{sup +}, NH{sub 4}{sup +}, H{sup +} and liquid temperature. The balance of these ions is decided by the gas composition, limestone composition, make-up water and wastewater mass balance etc., of individual plants. Accordingly, materials of FGD plant are selected on the basis of evaluated results of corrosion resistivity test made under such simulated process conditions of

  18. Pressure Actuated Leaf Seals for Improved Turbine Shaft Sealing

    Science.gov (United States)

    Grondahl, Clayton

    2006-01-01

    This presentation introduces a shaft seal in which leaf seal elements are constructed from slotted shim material formed and layered into a frusto-conical assembly. Limited elastic deflection of seal leaves with increasing system pressure close large startup clearance to a small, non-contacting, steady state running clearance. At shutdown seal elements resiliently retract as differential seal pressure diminishes. Large seal clearance during startup and shutdown provides a mechanism for rub avoidance. Minimum operating clearance improves performance and non-contacting operation promises long seal life. Design features of this seal, sample calculations at differential pressures up to 2400 psid and benefit comparison with brush and labyrinth seals is documented in paper, AIAA 2005 3985, presented at the Advanced Seal Technology session of the Joint Propulsion Conference in Tucson this past July. In this presentation use of bimetallic leaf material will be discussed. Frictional heating of bimetallic leaf seals during a seal rub can relieve the rub condition to some extent with a change in seal shape. Improved leaf seal rub tolerance is expected with bimetallic material.

  19. Partial and Complete Wetting in Ultralow Interfacial Tension Multiphase Blends with Polylactide.

    Science.gov (United States)

    Zolali, Ali M; Favis, Basil D

    2016-12-15

    The control of phase structuring in multiphase blends of polylactide (PLA) with other polymers is a viable approach to promote its broader implementation. In this article, ternary and quaternary blends of PLA with poly(butylene succinate) (PBS), poly(butylene adipate-co-terephthalate) (PBAT), and poly(3-hydroxybutyrate-co-hydroxyvalerate) (PHBV) are prepared by melt blending. The interfacial tensions between components are measured using three different techniques, and a Fourier transform infrared imaging technique is developed for the purpose of unambiguous phase identification. A tricontinuous complete wetting behavior is observed for the ternary 33PLA/33PBS/33PBAT blend before and after quiescent annealing, which correlates closely with spreading theory analysis. In the quaternary PLA/PBS/PBAT/PHBV blend, a concentration-dependent wetting behavior is found. At 10 vol % PBAT, self-assembled partially wet droplets of PBAT are observed at the interface of PBS and PHBV, and they remain stable after quiescent annealing as predicted by spreading theory. In contrast, at 25 vol % PBAT, a quadruple continuous system is observed after mixing, which only transforms to partially wet PBAT droplets after subsequent annealing. These results clearly indicate the potential of composition control during the mixing of multiphase systems to result in a complete change of spreading behavior.

  20. The effect of symbiotic ant colonies on plant growth: a test using an Azteca-Cecropia system.

    Directory of Open Access Journals (Sweden)

    Karla N Oliveira

    Full Text Available In studies of ant-plant mutualisms, the role that ants play in increasing the growth rates of their plant partners is potentially a key beneficial service. In the field, we measured the growth of Cecropia glaziovii saplings and compared individuals that were naturally colonized by Azteca muelleri ants with uncolonized plants in different seasons (wet and dry. We also measured light availability as well as attributes that could be influenced by the presence of Azteca colonies, such as herbivory, leaf nutrients (total nitrogen and δ(15N, and investments in defense (total phenolics and leaf mass per area. We found that colonized plants grew faster than uncolonized plants and experienced a lower level of herbivory in both the wet and dry seasons. Colonized plants had higher nitrogen content than uncolonized plants, although the δ(15N, light environment, total phenolics and leaf mass per area, did not differ between colonized and uncolonized plants. Since colonized and uncolonized plants did not differ in the direct defenses that we evaluated, yet herbivory was lower in colonized plants, we conclude that biotic defenses were the most effective protection against herbivores in our system. This result supports the hypothesis that protection provided by ants is an important factor promoting plant growth. Since C. glaziovii is widely distributed among a variety of forests and ecotones, and since we demonstrated a strong relationship with their ant partners, this system can be useful for comparative studies of ant-plant interactions in different habitats. Also, given this study was carried out near the transition to the subtropics, these results help generalize the geographic distribution of this mutualism and may shed light on the persistence of the interactions in the face of climate change.

  1. Seagrass leaf element content

    NARCIS (Netherlands)

    Vonk, J.A.; Smulders, Fee O.H.; Christianen, Marjolijn J.A.; Govers, Laura L.

    2017-01-01

    Knowledge on the role of seagrass leaf elements and in particular micronutrients and their ranges is limited. We present a global database, consisting of 1126 unique leaf values for ten elements, obtained from literature and unpublished data, spanning 25 different seagrass species from 28 countries.

  2. Estimating leaf area and leaf biomass of open-grown deciduous urban trees

    Science.gov (United States)

    David J. Nowak

    1996-01-01

    Logarithmic regression equations were developed to predict leaf area and leaf biomass for open-grown deciduous urban trees based on stem diameter and crown parameters. Equations based on crown parameters produced more reliable estimates. The equations can be used to help quantify forest structure and functions, particularly in urbanizing and urban/suburban areas.

  3. Prophylactic effect of paw-paw leaf and bitter leaf extracts on the ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-08-18

    Aug 18, 2008 ... (ANOVA) and significant means separated using FLSD = LSD procedure as outlined in Obi (2002). RESULTS AND DISCUSSION. In pre-soaking, paw-paw leaf (PL) extract had no significant effect (P > 0.05) on the disease incidence at. 50% anthesis. Bitter leaf (BL) extract had a high signifi- cant effect (P ...

  4. Protoplast isolation, transient transformation of leaf mesophyll protoplasts and improved Agrobacterium-mediated leaf disc infiltration of Phaseolus vulgaris: tools for rapid gene expression analysis.

    Science.gov (United States)

    Nanjareddy, Kalpana; Arthikala, Manoj-Kumar; Blanco, Lourdes; Arellano, Elizabeth S; Lara, Miguel

    2016-06-24

    Phaseolus vulgaris is one of the most extensively studied model legumes in the world. The P. vulgaris genome sequence is available; therefore, the need for an efficient and rapid transformation system is more imperative than ever. The functional characterization of P. vulgaris genes is impeded chiefly due to the non-amenable nature of Phaseolus sp. to stable genetic transformation. Transient transformation systems are convenient and versatile alternatives for rapid gene functional characterization studies. Hence, the present work focuses on standardizing methodologies for protoplast isolation from multiple tissues and transient transformation protocols for rapid gene expression analysis in the recalcitrant grain legume P. vulgaris. Herein, we provide methodologies for the high-throughput isolation of leaf mesophyll-, flower petal-, hypocotyl-, root- and nodule-derived protoplasts from P. vulgaris. The highly efficient polyethylene glycol-mannitol magnesium (PEG-MMG)-mediated transformation of leaf mesophyll protoplasts was optimized using a GUS reporter gene. We used the P. vulgaris SNF1-related protein kinase 1 (PvSnRK1) gene as proof of concept to demonstrate rapid gene functional analysis. An RT-qPCR analysis of protoplasts that had been transformed with PvSnRK1-RNAi and PvSnRK1-OE vectors showed the significant downregulation and ectopic constitutive expression (overexpression), respectively, of the PvSnRK1 transcript. We also demonstrated an improved transient transformation approach, sonication-assisted Agrobacterium-mediated transformation (SAAT), for the leaf disc infiltration of P. vulgaris. Interestingly, this method resulted in a 90 % transformation efficiency and transformed 60-85 % of the cells in a given area of the leaf surface. The constitutive expression of YFP further confirmed the amenability of the system to gene functional characterization studies. We present simple and efficient methodologies for protoplast isolation from multiple P

  5. Imaging and etching, soft x-ray microscopy on whole wet cells

    International Nuclear Information System (INIS)

    Gilbert, J.R.; Pine, J.

    1993-01-01

    The authors have produced images of whole wet tissue culture cells with the Stony Brook/BNL scanning transmission x-ray microscope (STXM). For fixed cells the authors have taken images at theoretical resolutions of ∼50-75nm, and in practice have measured FWHM of features down to near 100nm, without any exotic image processing. For unfixed (i.e., initially live) cells the authors have imaged with 100nm pixels and measured features down to 250nm. In order to do this the authors have developed, tested and used a wet cell for maintaining fixed or live cells on the STXM stage during imaging. The design of the wet cell and the culture substrates that go with it make the STXM compatible with almost all standard systems for surface adherent tissue culture. The authors will show some new images of whole wet fixed and unfixed cells, with visible sub-micron features. The authors will also report data that helps to characterize the tissue damage due to x-ray absorption during STXM imaging

  6. Two Inexpensive and Non-destructive Techniques to Correct for Smaller-Than-Gasket Leaf Area in Gas Exchange Measurements

    Directory of Open Access Journals (Sweden)

    Andreas M. Savvides

    2018-04-01

    Full Text Available The development of technology, like the widely-used off-the-shelf portable photosynthesis systems, for the quantification of leaf gas exchange rates and chlorophyll fluorescence offered photosynthesis research a massive boost. Gas exchange parameters in such photosynthesis systems are calculated as gas exchange rates per unit leaf area. In small chambers (<10 cm2, the leaf area used by the system for these calculations is actually the internal gasket area (AG, provided that the leaf covers the entire AG. In this study, we present two inexpensive and non-destructive techniques that can be used to easily quantify the enclosed leaf area (AL of plant species with leaves of surface area much smaller than the AG, such as that of cereal crops. The AL of the cereal crop species studied has been measured using a standard image-based approach (iAL and estimated using a leaf width-based approach (wAL. iAL and wAL did not show any significant differences between them in maize, barley, hard and soft wheat. Similar results were obtained when the wAL was tested in comparison with iAL in different positions along the leaf in all species studied. The quantification of AL and the subsequent correction of leaf gas exchange parameters for AL provided a precise quantification of net photosynthesis and stomatal conductance especially with decreasing AL. This study provides two practical, inexpensive and non-destructive solutions to researchers dealing with photosynthesis measurements on small-leaf plant species. The image-based technique can be widely used for quantifying AL in many plant species despite their leaf shape. The leaf width-based technique can be securely used for quantifying AL in cereal crop species such as maize, wheat and barley along the leaf. Both techniques can be used for a wide range of gasket shapes and sizes with minor technique-specific adjustments.

  7. Innovative LIDAR 3D Dynamic Measurement System to estimate fruit-tree leaf area.

    Science.gov (United States)

    Sanz-Cortiella, Ricardo; Llorens-Calveras, Jordi; Escolà, Alexandre; Arnó-Satorra, Jaume; Ribes-Dasi, Manel; Masip-Vilalta, Joan; Camp, Ferran; Gràcia-Aguilá, Felip; Solanelles-Batlle, Francesc; Planas-DeMartí, Santiago; Pallejà-Cabré, Tomàs; Palacin-Roca, Jordi; Gregorio-Lopez, Eduard; Del-Moral-Martínez, Ignacio; Rosell-Polo, Joan R

    2011-01-01

    In this work, a LIDAR-based 3D Dynamic Measurement System is presented and evaluated for the geometric characterization of tree crops. Using this measurement system, trees were scanned from two opposing sides to obtain two three-dimensional point clouds. After registration of the point clouds, a simple and easily obtainable parameter is the number of impacts received by the scanned vegetation. The work in this study is based on the hypothesis of the existence of a linear relationship between the number of impacts of the LIDAR sensor laser beam on the vegetation and the tree leaf area. Tests performed under laboratory conditions using an ornamental tree and, subsequently, in a pear tree orchard demonstrate the correct operation of the measurement system presented in this paper. The results from both the laboratory and field tests confirm the initial hypothesis and the 3D Dynamic Measurement System is validated in field operation. This opens the door to new lines of research centred on the geometric characterization of tree crops in the field of agriculture and, more specifically, in precision fruit growing.

  8. Wet scrubber technology for tritium confinement at ITER

    Energy Technology Data Exchange (ETDEWEB)

    Perevezentsev, A.N., E-mail: alexander.perevezentsev@iter.org [ITER Organization, CS 90 046, 13067 St Paul lez Durance Cedex (France); Andreev, B.M.; Rozenkevich, M.B.; Pak, Yu.S.; Ovcharov, A.V.; Marunich, S.A. [Mendeleev University of Chemical Technology, 125047 Miusskaya Sq. 9, Moscow (Russian Federation)

    2010-12-15

    Operation of the ITER machine with tritium plasma requires tritium confinement systems to protect workers and the environment. Tritium confinement at ITER is based on multistage approach. The final stage provides tritium confinement in building sectors and consists of building's walls as physical barriers and control of sub-atmospheric pressure in those volumes as a dynamic barrier. The dynamic part of the confinement function shall be provided by safety important components that are available all the time when required. Detritiation of air prior to its release to the environment is based on catalytic conversion of tritium containing gaseous species to water vapour followed by their isotopic exchange with liquid water in scrubber column of packed bed type. Wet scrubber technology has been selected because of its advantages over conventional air detritiation technique based on gas drying by water adsorption. The most important design target of system availability was very difficult to meet with conventional water adsorption driers. This paper presents results of experimental trial for validation of wet scrubber technology application in the ITER tritium confinement system and process evaluation using developed simulation computer code.

  9. Leaf chlorophyll constraint on model simulated gross primary productivity in agricultural systems

    KAUST Repository

    Houborg, Rasmus

    2015-05-05

    Leaf chlorophyll content (Chll) may serve as an observational proxy for the maximum rate of carboxylation (Vmax), which describes leaf photosynthetic capacity and represents the single most important control on modeled leaf photosynthesis within most Terrestrial Biosphere Models (TBMs). The parameterization of Vmax is associated with great uncertainty as it can vary significantly between plants and in response to changes in leaf nitrogen (N) availability, plant phenology and environmental conditions. Houborg et al. (2013) outlined a semi-mechanistic relationship between V max 25 (Vmax normalized to 25 °C) and Chll based on inter-linkages between V max 25 , Rubisco enzyme kinetics, N and Chll. Here, these relationships are parameterized for a wider range of important agricultural crops and embedded within the leaf photosynthesis-conductance scheme of the Community Land Model (CLM), bypassing the questionable use of temporally invariant and broadly defined plant functional type (PFT) specific V max 25 values. In this study, the new Chll constrained version of CLM is refined with an updated parameterization scheme for specific application to soybean and maize. The benefit of using in-situ measured and satellite retrieved Chll for constraining model simulations of Gross Primary Productivity (GPP) is evaluated over fields in central Nebraska, U.S.A between 2001 and 2005. Landsat-based Chll time-series records derived from the Regularized Canopy Reflectance model (REGFLEC) are used as forcing to the CLM. Validation of simulated GPP against 15 site-years of flux tower observations demonstrate the utility of Chll as a model constraint, with the coefficient of efficiency increasing from 0.91 to 0.94 and from 0.87 to 0.91 for maize and soybean, respectively. Model performances particularly improve during the late reproductive and senescence stage, where the largest temporal variations in Chll (averaging 35–55 μg cm−2 for maize and 20–35 μg cm−2 for soybean) are

  10. Study of HPLC-DAD characteristic chromatogram of Pyrrosia leaf formula granules

    Directory of Open Access Journals (Sweden)

    Jing HA

    2017-02-01

    Full Text Available The detection method of characteristic chromatogram of Pyrrosia leaf Formula granules by HPLC-DAD is established. The analysis is performed on a Inertsil ODS-2 C18 column(4.6 mm×250 mm,5 μm with a gradient mobile phase of methanol-0.5% formic acid at a flow rate of 1.0 mL/min. The detection wavelength is 265 nm, the column temperature is 30 ℃, and the injection is 10 μL. The Similarity Evaluation System for Chromatographic Fingerprint of TCM (Version 2012A is used for the 10 batches of Pyrrosia leaf formula granules quality assessment, and cluster analysis is obtained based on characteristic peaks in detected samples. Two peaks are confirmed by comparison with the chromatograms of the standard substances. Nine characteristic peaks are found through multipoint revise and the similarity evaluation system. Similarities of 10 batches of Pyrrosia leaf formula granules are all more than 0.85 and the analyzed samples are geographically classified into three classes. The method has good characteristics and specificity of accuracy, reliability, and repeatability, and can be used for the quality control of Pyrrosia leaf formula granules.

  11. Quality control program of multi-leaf collimation based EPID for teams with Rapidarc

    International Nuclear Information System (INIS)

    Pujades Claumarchirant, M. C.; Richart Sancho, J.; Gimeno Olmos, J.; Lliso Valverde, F.; Carmona Mesenguer, V.; Garcia Martinez, M. T.; Palomo Llinares, R.; Ballester Pallares, F.; Perez Calatayud, J.

    2013-01-01

    The objective of this work is to show a collection of different recommendations on the control of quality of collimation multi-leaf system and present the selection of tests based on the electronic imaging device (EPID) portal that have decided to establish in our Center, where in addition to the requirements of quality assurance generic for collimation multi-leaf system quality control methods have been included for RapidArc. (Author)

  12. WETTABILITY AND IMBIBITION: MICROSCOPIC DISTRIBUTION OF WETTING AND ITS CONSEQUENCES AT THE CORE AND FIELD SCALES

    Energy Technology Data Exchange (ETDEWEB)

    Jill S. Buckley; Norman R. Morrow; Chris Palmer; Purnendu K. Dasgupta

    2003-02-01

    The questions of reservoir wettability have been approached in this project from three directions. First, we have studied the properties of crude oils that contribute to wetting alteration in a reservoir. A database of more than 150 different crude oil samples has been established to facilitate examination of the relationships between crude oil chemical and physical properties and their influence on reservoir wetting. In the course of this work an improved SARA analysis technique was developed and major advances were made in understanding asphaltene stability including development of a thermodynamic Asphaltene Solubility Model (ASM) and empirical methods for predicting the onset of instability. The CO-Wet database is a resource that will be used to guide wettability research in the future. The second approach is to study crude oil/brine/rock interactions on smooth surfaces. Contact angle measurements were made under controlled conditions on mica surfaces that had been exposed to many of the oils in the CO-Wet database. With this wealth of data, statistical tests can now be used to examine the relationships between crude oil properties and the tendencies of those oils to alter wetting. Traditionally, contact angles have been used as the primary wetting assessment tool on smooth surfaces. A new technique has been developed using an atomic forces microscope that adds a new dimension to the ability to characterize oil-treated surfaces. Ultimately we aim to understand wetting in porous media, the focus of the third approach taken in this project. Using oils from the CO-Wet database, experimental advances have been made in scaling the rate of imbibition, a sensitive measure of core wetting. Application of the scaling group to mixed-wet systems has been demonstrated for a range of core conditions. Investigations of imbibition in gas/liquid systems provided the motivation for theoretical advances as well. As a result of this project we have many new tools for studying

  13. Allergenic Ingredients in Personal Hygiene Wet Wipes.

    Science.gov (United States)

    Aschenbeck, Kelly A; Warshaw, Erin M

    Wet wipes are a significant allergen source for anogenital allergic contact dermatitis. The aim of the study was to calculate the frequency of potentially allergenic ingredients in personal hygiene wet wipes. Ingredient lists from brand name and generic personal hygiene wet wipes from 4 large retailers were compiled. In the 54 personal hygiene wet wipes evaluated, a total of 132 ingredients were identified (average of 11.9 ingredients per wipe). The most common ingredients were Aloe barbadensis (77.8%), citric acid (77.8%), fragrance (72.2%), sorbic acid derivatives (63.0%), tocopherol derivatives (63.0%), glycerin (59.3%), phenoxyethanol (55.6%), disodium cocoamphodiacetate (53.7%), disodium ethylenediaminetetraacetic acid (EDTA) (42.6%), propylene glycol (42.6%), iodopropynyl butylcarbamate (40.7%), chamomile extracts (38.9%), sodium benzoate (35.2%), bronopol (22.2%), sodium citrate (22.2%), lanolin derivatives (20.4%), parabens (20.4%), polyethylene glycol derivatives (18.5%), disodium phosphate (16.7%), dimethylol dimethyl hydantoin (DMDM) (14.8%), and cocamidopropyl propylene glycol (PG)-dimonium chloride phosphate (11.1%). Of note, methylisothiazolinone (5.6%) was uncommon; methylchloroisothiazolinone was not identified in the personal hygiene wet wipes examined. There are many potential allergens in personal hygiene wet wipes, especially fragrance and preservatives.

  14. Using Leaf Samples to Establish a Library of Tropical Leaf Fingerprints

    Science.gov (United States)

    Ngo, P.; Nguyen, R.; Anderson, C.; Weiss, P.

    2010-12-01

    Variation in leaf chemistry is directly expressed in spectroscopic patterns of tropical canopies. The goal of the Spectranomics project is to explore this variation in the hopes of developing a method to measure tropical forest diversity remotely from airborne or space-bound spectroscopy in the future. We analyzed tomato leaves for various chemical compositions to better understand the Spectranomics approach to quantifying chemical data of tropical species. We also compared our data to standard data in each analysis. Our results allow us to give the tomato leaves a chemical signature in which we are able to use to compare to other leaf samples. Using this process, we are able to create a library of leaf signatures and document the variety of tree species in tropical forests around the world.

  15. Leaf density explains variation in leaf mass per area in rice between cultivars and nitrogen treatments.

    Science.gov (United States)

    Xiong, Dongliang; Wang, Dan; Liu, Xi; Peng, Shaobing; Huang, Jianliang; Li, Yong

    2016-05-01

    Leaf mass per area (LMA) is an important leaf trait; however, correlations between LMA and leaf anatomical features and photosynthesis have not been fully investigated, especially in cereal crops. The objectives of this study were (a) to investigate the correlations between LMA and leaf anatomical traits; and (b) to clarify the response of LMA to nitrogen supply and its effect on photosynthetic nitrogen use efficiency (PNUE). In the present study, 11 rice varieties were pot grown under sufficient nitrogen (SN) conditions, and four selected rice cultivars were grown under low nitrogen (LN) conditions. Leaf anatomical traits, gas exchange and leaf N content were measured. There was large variation in LMA across selected rice varieties. Regression analysis showed that the variation in LMA was more closely related to leaf density (LD) than to leaf thickness (LT). LMA was positively related to the percentage of mesophyll tissue area (%mesophyll), negatively related to the percentage of epidermis tissue area (%epidermis) and unrelated to the percentage of vascular tissue area (%vascular). The response of LMA to N supplementation was dependent on the variety and was also mainly determined by the response of LD to N. Compared with SN, photosynthesis was significantly decreased under LN, while PNUE was increased. The increase in PNUE was more critical in rice cultivars with a higher LMA under SN supply. Leaf density is the major cause of the variation in LMA across rice varieties and N treatments, and an increase in LMA under high N conditions would aggravate the decrease in PNUE. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Changes in the structure and function of northern Alaskan ecosystems when considering variable leaf-out times across groupings of species in a dynamic vegetation model

    Science.gov (United States)

    Euskirchen, E.S.; Carman, T.B.; McGuire, Anthony David

    2013-01-01

    The phenology of arctic ecosystems is driven primarily by abiotic forces, with temperature acting as the main determinant of growing season onset and leaf budburst in the spring. However, while the plant species in arctic ecosystems require differing amounts of accumulated heat for leaf-out, dynamic vegetation models simulated over regional to global scales typically assume some average leaf-out for all of the species within an ecosystem. Here, we make use of air temperature records and observations of spring leaf phenology collected across dominant groupings of species (dwarf birch shrubs, willow shrubs, other deciduous shrubs, grasses, sedges, and forbs) in arctic and boreal ecosystems in Alaska. We then parameterize a dynamic vegetation model based on these data for four types of tundra ecosystems (heath tundra, shrub tundra, wet sedge tundra, and tussock tundra), as well as ecotonal boreal white spruce forest, and perform model simulations for the years 1970 -2100. Over the course of the model simulations, we found changes in ecosystem composition under this new phenology algorithm compared to simulations with the previous phenology algorithm. These changes were the result of the differential timing of leaf-out, as well as the ability for the groupings of species to compete for nitrogen and light availability. Regionally, there were differences in the trends of the carbon pools and fluxes between the new phenology algorithm and the previous phenology algorithm, although these differences depended on the future climate scenario. These findings indicate the importance of leaf phenology data collection by species and across the various ecosystem types within the highly heterogeneous Arctic landscape, and that dynamic vegetation models should consider variation in leaf-out by groupings of species within these ecosystems to make more accurate projections of future plant distributions and carbon cycling in Arctic regions.

  17. 7 CFR 30.2 - Leaf tobacco.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Leaf tobacco. 30.2 Section 30.2 Agriculture... Practices), DEPARTMENT OF AGRICULTURE COMMODITY STANDARDS AND STANDARD CONTAINER REGULATIONS TOBACCO STOCKS AND STANDARDS Classification of Leaf Tobacco Covering Classes, Types and Groups of Grades § 30.2 Leaf...

  18. 7 CFR 29.3035 - Leaf structure.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Leaf structure. 29.3035 Section 29.3035 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Leaf structure. The cell development of a leaf as indicated by its porosity or solidity. (See Elements...

  19. 7 CFR 29.3526 - Leaf scrap.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Leaf scrap. 29.3526 Section 29.3526 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Type 95) § 29.3526 Leaf scrap. A byproduct of unstemmed tobacco Leaf scrap results from handling...

  20. 7 CFR 29.3034 - Leaf scrap.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Leaf scrap. 29.3034 Section 29.3034 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Leaf scrap. A by-product of unstemmed tobacco. Leaf scrap results from handling unstemmed tobacco and...

  1. 7 CFR 29.6022 - Leaf scrap.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Leaf scrap. 29.6022 Section 29.6022 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... INSPECTION Standards Definitions § 29.6022 Leaf scrap. A byproduct of unstemmed tobacco Leaf scrap results...

  2. The relation between wetting and infiltration behaviour in the Al-1010/TiC and Al-2024/TiC Systems

    International Nuclear Information System (INIS)

    Contreras, A.; Lopez, V.H.; Leon, C.A.; Bedolla, E.; Drew, R.A.A.

    2001-01-01

    Wetting and infiltration behavior of TiC by commercial aluminum (Al-1010) and Al-2024 alloy was investigated. Wettability tests were performed on dense TiC substrates (96.8% theoretical density) using a sessile drop technique in the temperature range of 850 to 1000 deg C under vacuum atmosphere. Pressureless melt infiltration of particulate TiC performs (56% theoretical density) was carried out under an inert atmosphere at temperatures ranging from 900 to 1100 deg C. Infiltration profiles were obtained using a thermogravimetric analyzer (TGA), which measured continuously the weight change of the compacts as the liquid alloy infiltrated From the wetting study, it was found that wettability of TiC by liquid Al-1010 was better than Al-2024. A strong temperature dependence was observed. Electron probe microanalysis (EPMA) indicated that aluminum carbide (Al 4 C 3 ) is formed at the interface in both metal/ceramic assemblies. In agreement with the wetting results. Al-1010 exhibited the highest infiltration rate during composite fabrication. The activation energy determined from the slopes of Arrhenius plots for the infiltration rate at the different temperatures was 172 kJ/mol and 179 kJ/mol for the Al-1010/TiC and Al-2024/TiC systems, respectively. Copyright (2000) AD-TECH - International Foundation for the Advancement of Technology Ltd

  3. Infrared remote sensing for canopy temperature in paddy field and relationship between leaf temperature and leaf color

    International Nuclear Information System (INIS)

    Wakiyama, Y.

    2002-01-01

    Infrared remote sensing is used for crop monitoring, for example evaluation of water stress, detection of infected crops and estimation of transpiration and photosynthetic rates. This study was conducted to show another application of remote sensing information. The relationship between rice leaf temperature and chlorophyll content in the leaf blade was investigated by using thermography during the ripening period. The canopy of a rice community fertilized by top dressing was cooler than that not fertilized in a 1999 field experiment. In an experiment using thermocouples to measure leaf temperature, a rice leaf with high chlorophyll content was also cooler than that with a low chlorophyll content. Transpiration resistance and transpiration rate were measured with a porometer. Transpiration rate was higher with increasing chlorophyll content in the leaf blade. Stomatal aperture is related to chlorophyll content in the leaf blade. High degree of stomatal aperture is caused by high chlorophyll content in the leaf blade. As degree of stomatal aperture increases, transpiration rate increases. Therefore the rice leaf got cooler with increasing chlorophyll content in leaf blade. Paddy rice communities with different chlorophyll contents were provided with fertilization of different nitrogen levels on basal and top dressing in a 2000 field experiment. Canopy temperature of the rice community with high chlorophyll content was 0.85°C cooler than that of the rice community with low chlorophyll content. Results of this study revealed that infrared remote sensing could detect difference in chlorophyll contents in rice communities and could be used in fertilizer management in paddy fields. (author)

  4. An analytical approach for optimizing the leaf design of a multi-leaf collimator in a linear accelerator

    International Nuclear Information System (INIS)

    Topolnjak, R; Heide, U A van der

    2008-01-01

    In this study, we present an analytical approach for optimizing the leaf design of a multi-leaf collimator (MLC) in a linear accelerator. Because leaf designs vary between vendors, our goal is to characterize and quantify the effects of different compromises which have to be made between performance parameters. Subsequently, an optimal leaf design for an earlier proposed six-bank MLC which combines a high-resolution field-shaping ability with a large field size is determined. To this end a model of the linac is created that includes the following parameters: the source size, the maximum field size, the distance between source and isocenter, and the leaf's design parameters. First, the optimal radius of the leaf tip was found. This optimum was defined by the requirement that the fluence intensity should fall from 80% of the maximum value to 20% in a minimal distance, defining the width of the fluence penumbra. A second requirement was that this penumbra width should be constant when a leaf moves from one side of the field to the other. The geometric, transmission and total penumbra width (80-20%) were calculated depending on the design parameters. The analytical model is in agreement with Elekta, Varian and Siemens collimator designs. For leaves thinner than 4 cm, the transmission penumbra becomes dominant, and for leaves close to the source the geometric penumbra plays a role. Finally, by choosing the leaf thickness of 3.5 cm, 4 cm and 5 cm from the lowest to the highest bank, respectively, an optimal leaf design for a six-bank MLC is achieved

  5. Hyperbolic projections of siemens 3d-mlc leaf paths

    International Nuclear Information System (INIS)

    Menzies, N.

    2004-01-01

    Full text: The Siemens Primus linear accelerator has the option of being fitted with a multi-leaf collimator (3D-MLC) that is marketed as having 'double focus', to achieve a constant dose penumbra for all leaf settings. This is achieved by moving the leaves through arcs (similar to some conventional collimator jaws), as well as shaping the leaf side-faces as divergent planes from the x-ray source. One consequence of the mechanical design of the 3D-MLC is that as individual leaves are moved, their projections from the light / x-ray source to the treatment plane follow paths that are hyperbolic, as shown in the figure below. (The eccentricity of the hyperbola is a function of leaf number / distance from centre.) The trajectories of the MLC leaves were modelled (in a spreadsheet) using geometrical projections of the MLC leaves to the treatment plane, with construction details provided in Siemens documentation. The results were checked against the image of the leaf in the linac light field. This problem belongs to the class of conic sections in mathematics, where the intersection of a plane with both nappes of a double right circular cone results in a hyperbola. The good agreement between the model and the light field image provided confirmation of the MLC construction details. AS/NZS 4434.1:1996 (reproduced from IEC 976:1989) provides specifications for maximum deviation from orthogonality of adjacent edges, which can be interpreted for MLC collimators to parallelism of the direction of leaf travel and the adjacent collimator edge (e.g. Elekta ATS). However for the Siemens 'double focused' MLC, it is demonstrated that the geometrical construction of the MLC militates against the leaf image being used for this kind of test. It is also demonstrated that at last one commercial treatment planning system models the Siemens leaf trajectories linearly. The clinical significance of the error in this model is shown to be negligible. Copyright (2004) Australasian College of

  6. Transformation of Leaf-like Zinc Dendrite in Oxidation and Reduction Cycle

    International Nuclear Information System (INIS)

    Nakata, Akiyoshi; Murayama, Haruno; Fukuda, Katsutoshi; Yamane, Tomokazu; Arai, Hajime; Hirai, Toshiro; Uchimoto, Yoshiharu; Yamaki, Jun-ichi; Ogumi, Zempachi

    2015-01-01

    Highlights: • Leaf-like zinc dendrites change to leaf-like residual oxides at high oxidation current density (10 mA cm −2 ) whereas it completely dissolves at low oxidation current density (1 mA cm −2 ). • Leaf-like residual oxide products is transformed to zinc deposits with particulate morphology, resulting in good rechargeability. • The residual zinc oxide provides sufficient zincate on its reduction, preventing the diffusion-limited condition that causes leaf-like dendrite formation. - Abstract: Zinc is a promising negative electrode material for aqueous battery systems whereas it shows insufficient rechargeability for use in secondary batteries. It has been reported that leaf-like dendrite deposits are often the origin of cell-failure, however, their nature and behavior on discharge (oxidation) - charge (reduction) cycling have been only poorly understood. Here we investigate the transformation of the leaf-like zinc dendrites using ex-situ scanning electron microscopy, X-ray computational tomography and in-situ X-ray diffraction. It is shown that the leaf-like zinc dendrites obtained under diffusion-limited conditions are nearly completely dissolved at a low oxidation current density of 1 mA cm −2 and cause re-evolution of the zinc dendrites. Oxidation at a high current density of 10 mA cm −2 leads to the formation of leaf-like zinc oxide residual products that result in particulate zinc deposits in the following reduction process, enabling good rechargeability. The reaction behavior of this oxide residue is detailed and discussed for the development of long-life zinc electrodes

  7. Apparent Overinvestment in Leaf Venation Relaxes Leaf Morphological Constraints on Photosynthesis in Arid Habitats1[OPEN

    Science.gov (United States)

    de Boer, Hugo J.; Drake, Paul L.; Wendt, Erin; Price, Charles A.; Schulze, Ernst-Detlef; Turner, Neil C.; Nicolle, Dean

    2016-01-01

    Leaf veins supply the mesophyll with water that evaporates when stomata are open to allow CO2 uptake for photosynthesis. Theoretical analyses suggest that water is optimally distributed in the mesophyll when the lateral distance between veins (dx) is equal to the distance from these veins to the epidermis (dy), expressed as dx:dy ≈ 1. Although this theory is supported by observations of many derived angiosperms, we hypothesize that plants in arid environments may reduce dx:dy below unity owing to climate-specific functional adaptations of increased leaf thickness and increased vein density. To test our hypothesis, we assembled leaf hydraulic, morphological, and photosynthetic traits of 68 species from the Eucalyptus and Corymbia genera (termed eucalypts) along an aridity gradient in southwestern Australia. We inferred the potential gas-exchange advantage of reducing dx beyond dy using a model that links leaf morphology and hydraulics to photosynthesis. Our observations reveal that eucalypts in arid environments have thick amphistomatous leaves with high vein densities, resulting in dx:dy ratios that range from 1.6 to 0.15 along the aridity gradient. Our model suggests that, as leaves become thicker, the effect of reducing dx beyond dy is to offset the reduction in leaf gas exchange that would result from maintaining dx:dy at unity. This apparent overinvestment in leaf venation may be explained from the selective pressure of aridity, under which traits associated with long leaf life span, high hydraulic and thermal capacitances, and high potential rates of leaf water transport confer a competitive advantage. PMID:27784769

  8. Radioprotection of Swiss albino mice by Adhatoda vesica leaf extract

    International Nuclear Information System (INIS)

    Kumar, A.

    2003-01-01

    Full text: The radioprotective role of aqueous extract of Adhatoda vesica leaf extract against radiation induced hematological alterations in peripheral blood of Swiss albino mice was studied at various post-irradiation intervals between 6 hrs to 30 days. Oral administration of Adhatoda vesica leaf extract (800 mg / kg body weight) prior to whole-body irradiation showed a significant protection in terms of survival percentage and hematological parameters. Mice exposed to radiation (8 Gy) without Adhatoda vesica leaf extract pre-treatment exhibited signs of radiation sickness like anorexia, lethargicity, ruffled hairs and diarrhoea and such animals died within 26 days post-irradiation. The dose reduction factor (DRF=1.6) for Adhatoda vesica leaf extract was calculated from LD50/30 values. A significant decline in hematological constituents (RBCs, WBCs, Hb and Hct) was evident till day 15, at later period of observation (day 15 onwards), no animals could survive from control group whereas, in Adhatoda vesica leaf extract pre-treated irradiated group, a gradual recovery was noted in the hematological values. However, these hematological values remained significantly below the normal even till day 30. A significant decrease in GSH was recorded in control animals. Experimental animals showed a significant increase in GSH content (blood as well as liver) with respect to control, but such values remained below normal. A significant increase in TBARS level in liver and serum was evident in control animals. Although, no significant difference was noticed in such levels in normal and Adhatoda vesica leaf extract treated animals. But, a significant decrease was registered in Adhatoda vesica leaf extract pretreated irradiated animals. The results from the present study suggest that Adhatoda vesica leaf extract has radioprotective role in stimulating/protecting the hematopoietic system thereby enhancing the survival and increasing the hematological constituents in peripheral

  9. Characterization saprobic fungi on leaf litter of two species of trees in the Atlantic Forest, Brazil

    Directory of Open Access Journals (Sweden)

    Loise Araujo Costa

    2015-01-01

    Full Text Available AbstractWe investigated the composition and structure of fungal communities associated with leaf litter generated by Clusia nemorosa and Vismia guianensis that belong to phylogenetically-related botanical families and exist together in a remnant of the Atlantic Forest in Bahia, Brazil. Samplings were conducted during wet (June 2011 and dry (January 2013 seasons in Serra da Jibóia. The fungi were isolated using particle filtration and the 1,832 isolates represented 92 taxa. The wet season yielded the largest number of isolates (1,141 and taxa (76 compared with the dry season (641 isolates and 37 taxa. The richness and diversity of fungal species associated with C. nemorosa (64 taxa, Simpson=0.95were higher compared with those of V.guianensis (59 taxa, Simpson =0.90. Analysis of similarity (ANOSIM revealed significant variations in the composition and community structure of fungi isolated from the two plants as a function of seasons. In contrast, nonmetric multidimensional scaling (NMDS analysis show that the seasonality was an important influence on the distribution of fungal species. However, the populations of the saprobic fungal communities were dynamic, and several factors may influence such communities in the Atlantic Forest.

  10. Technical Efficiency of Wet Season Melon Farming

    Directory of Open Access Journals (Sweden)

    Ananti Yekti

    2017-03-01

    Full Text Available Melon is one of high-value horticulture commodity which is cultivated widely in Kulon Progo regency. The nature of agricultural products is heavily dependent on the season, so it causes the prices of agricultural products always fluctuated every time. In wet season the price of agricultural products tends to be more expensive. Melon cultivation in wet season provide an opportunity to earn higher profits than in the dry season. The price of agricultural products tends to be more expensive in wet season, thus melon cultivation in wet season prospectively generate high profits. In order to achieve high profitability, melon farming has to be done efficiently. Objective of this study was to 1 determined the factors that influence melon production in wet season 2 measured technical efficiency of melon farming and 3 identified the factors that influanced technical efficiency. Data collected during April – June 2014. Location determined by multistage cluster sampling. 45 samples of farmers who cultivated melon during wet season obtained based on quota sampling technique. Technical efficiency was measured using Cobb-Douglas Stochastic Frontier. The result reveals that 1 land use, quantity of seed, K fertilizer contributed significantly increasing melon production, while N fertilizer decreased melon production significantly 2 technical efficiency indeces ranged from 0.40 to 0.99, with a mean of  0.77; 3 farmer’s experience gave significant influence to technical efficiency of melon farming in wet season.

  11. 7 CFR 29.6023 - Leaf structure.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Leaf structure. 29.6023 Section 29.6023 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... INSPECTION Standards Definitions § 29.6023 Leaf structure. The cell development of a leaf as indicated by its...

  12. 7 CFR 29.1030 - Leaf structure.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Leaf structure. 29.1030 Section 29.1030 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Type 92) § 29.1030 Leaf structure. The cell development of a leaf as indicated by its porosity. (See...

  13. 7 CFR 29.3527 - Leaf structure.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Leaf structure. 29.3527 Section 29.3527 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Type 95) § 29.3527 Leaf structure. The cell development of a leaf as indicated by its porosity. (See...

  14. Impact of small-scale geometric roughness on wetting behavior.

    Science.gov (United States)

    Kumar, Vaibhaw; Errington, Jeffrey R

    2013-09-24

    We examine the extent to which small-scale geometric substrate roughness influences the wetting behavior of fluids at solid surfaces. Molecular simulation is used to construct roughness wetting diagrams wherein the progression of the contact angle is traced from the Cassie to Wenzel to impregnation regime with increasing substrate strength for a collection of systems with rectangularly shaped grooves. We focus on the evolution of these diagrams as the length scale of the substrate features approaches the size of a fluid molecule. When considering a series of wetting diagrams for substrates with fixed shape and variable feature periodicity, we find that the diagrams progressively shift away from a common curve as the substrate features become smaller than approximately 10 fluid diameters. It is at this length scale that the macroscopic models of Cassie and Wenzel become unreliable. Deviations from the macroscopic models are attributed to the manner in which the effective substrate-fluid interaction strength evolves with periodicity and the important role that confinement effects play for substrates with small periodicities.

  15. Interplay of complete wetting, critical adsorption, and capillary condensation.

    Science.gov (United States)

    Drzewiński, A; Maciołek, A; Barasiński, A; Dietrich, S

    2009-04-01

    The excess adsorption Gamma in two-dimensional Ising strips (infinityxL), subject to identical boundary fields at both one-dimensional surfaces decaying in the orthogonal direction j as -h1j(-p), is studied for various values of p and along various thermodynamic paths below the bulk critical point by means of the density-matrix renormalization-group method. The crossover behavior between the complete-wetting and critical-adsorption regimes, occurring in semi-infinite systems, is strongly influenced by confinement effects. Along isotherms T=const the asymptotic power-law dependences on the external bulk field, which characterize these two regimes, are pre-empted by capillary condensation. Along the pseudo-first-order phase-coexistence line of the strips, which varies with temperature, we find a broad crossover regime in which both the thickness of the wetting film and Gamma increase as functions of the reduced temperature tau but do not follow any power law. Above the wetting temperature the order-parameter profiles are not slablike but exhibit wide interfacial variations and pronounced tails.

  16. Asian Eocene monsoons as revealed by leaf architectural signatures

    Science.gov (United States)

    Spicer, Robert A.; Yang, Jian; Herman, Alexei B.; Kodrul, Tatiana; Maslova, Natalia; Spicer, Teresa E. V.; Aleksandrova, Galina; Jin, Jianhua

    2016-09-01

    The onset and development of the Asian monsoon systems is a topic that has attracted considerable research effort but proxy data limitations, coupled with a diversity of definitions and metrics characterizing monsoon phenomena, have generated much debate. Failure of geological proxies to yield metrics capable of distinguishing between rainfall seasonality induced by migrations of the Inter-tropical Convergence Zone (ITCZ) from that attributable to topographically modified seasonal pressure reversals has frustrated attempts to understand mechanisms underpinning monsoon development and dynamics. Here we circumvent the use of such single climate parameter metrics in favor of detecting directly the distinctive attributes of different monsoon regimes encoded in leaf fossils. Leaf form adapts to the prevailing climate, particularly under the extreme seasonal stresses imposed by monsoons, so it is likely that fossil leaves carry a unique signature of past monsoon regimes. Leaf form trait spectra obtained from fossils from Eocene basins in southern China were compared with those seen in modern leaves growing under known climate regimes. The fossil leaf trait spectra, including those derived from previously published fossil floras from northwestern India, were most similar to those found in vegetation exposed to the modern Indonesia-Australia Monsoon (I-AM), which is largely a product of seasonal migrations of the ITCZ. The presence of this distinctive leaf physiognomic signature suggests that although a monsoon climate existed in Eocene time across southern Asia the characteristics of the modern topographically-enhanced South Asia Monsoon had yet to develop. By the Eocene leaves in South Asia had become well adapted to an I-AM type regime across many taxa and points to the existence of a pervasive monsoon climate prior to the Eocene. No fossil trait spectra typical of exposure to the modern East Asia monsoon were seen, suggesting the effects of this system in southern

  17. The extraction of uranium from wet process phosphoric acid using a liquid surfactant membrane system

    International Nuclear Information System (INIS)

    Dickens, N.; Davies, G.A.

    1984-01-01

    A liquid membrane extraction process is examined for the extraction of uranium from wet process phosphoric acid. Uranium is present in the acid in concentrations up to 100 ppm which in principle makes it ideal for treatment with a membrane process. The membrane system studied is based on extraction using DEHPA-TOPO reagents which are contained within the organic phase of a water in oil emulsion. Formulations of the emulsion membrane system have been studied, the limitations of acid temperature, P 2 O 5 concentration and solid dispersed impurities in the acid have been studied in laboratory batch experiments and in a continuous pilot plant unit capable of treating 5l of concentrated acid per minute. Data from the pilot plant work has been used to develop a flowsheet for a commercial unit based on this process. (author)

  18. Comparison of dwarf bamboos (Indocalamus sp.) leaf parameters to determine relationship between spatial density of plants and total leaf area per plant.

    Science.gov (United States)

    Shi, Pei-Jian; Xu, Qiang; Sandhu, Hardev S; Gielis, Johan; Ding, Yu-Long; Li, Hua-Rong; Dong, Xiao-Bo

    2015-10-01

    The relationship between spatial density and size of plants is an important topic in plant ecology. The self-thinning rule suggests a -3/2 power between average biomass and density or a -1/2 power between stand yield and density. However, the self-thinning rule based on total leaf area per plant and density of plants has been neglected presumably because of the lack of a method that can accurately estimate the total leaf area per plant. We aimed to find the relationship between spatial density of plants and total leaf area per plant. We also attempted to provide a novel model for accurately describing the leaf shape of bamboos. We proposed a simplified Gielis equation with only two parameters to describe the leaf shape of bamboos one model parameter represented the overall ratio of leaf width to leaf length. Using this method, we compared some leaf parameters (leaf shape, number of leaves per plant, ratio of total leaf weight to aboveground weight per plant, and total leaf area per plant) of four bamboo species of genus Indocalamus Nakai (I. pedalis (Keng) P.C. Keng, I. pumilus Q.H. Dai and C.F. Keng, I. barbatus McClure, and I. victorialis P.C. Keng). We also explored the possible correlation between spatial density and total leaf area per plant using log-linear regression. We found that the simplified Gielis equation fit the leaf shape of four bamboo species very well. Although all these four species belonged to the same genus, there were still significant differences in leaf shape. Significant differences also existed in leaf area per plant, ratio of leaf weight to aboveground weight per plant, and leaf length. In addition, we found that the total leaf area per plant decreased with increased spatial density. Therefore, we directly demonstrated the self-thinning rule to improve light interception.

  19. Dynamics of leaf litter humidity, depth and quantity: two restoration strategies failed to mimic ground microhabitat conditions of a low montane and premontane forest in Costa Rica

    Directory of Open Access Journals (Sweden)

    Zaidett Barrientos

    2012-09-01

    Full Text Available Little is known about how restoration strategies affect aspects like leaf litter’s quantity, depth and humidity. I analyzed leaf litter’s quantity, depth and humidity yearly patterns in a primary tropical lower montane wet forest and two restored areas: a 15 year old secondary forest (unassisted restoration and a 40 year old Cupressus lusitanica plantation (natural understory. The three habitats are located in the Río Macho Forest Reserve, Costa Rica. Twenty litter samples were taken every three months (April 2009-April 2010 in each habitat; humidity was measured in 439g samples (average, depth and quantity were measured in five points inside 50x50cm plots. None of the restoration strategies reproduced the primary forest leaf litter humidity, depth and quantity yearly patterns. Primary forest leaf litter humidity was higher and more stable (x=73.2, followed by secondary forest (x=63.3 and cypress plantation (x=52.9 (Kruskall-Wallis=77.93, n=232, p=0.00. In the primary (Kruskal-Wallis=31.63, n=78, p<0.001 and secondary (Kruskal-Wallis=11.79, n=75, p=0.008 forest litter accumulation was higher during April due to strong winds. In the primary forest (Kruskal-wallis=21.83, n=78, p<0.001 and the cypress plantation (Kruskal-wallis=39.99, n=80, p<0.001 leaf litter depth was shallow in October because heavy rains compacted it. Depth patterns were different from quantity patterns and described the leaf litter’s structure in different ecosystems though the year.

  20. Measurement of leaf hydraulic conductance and stomatal conductance and their responses to irradiance and dehydration using the Evaporative Flux Method (EFM).

    Science.gov (United States)

    Sack, Lawren; Scoffoni, Christine

    2012-12-31

    Water is a key resource, and the plant water transport system sets limits on maximum growth and drought tolerance. When plants open their stomata to achieve a high stomatal conductance (gs) to capture CO2 for photosynthesis, water is lost by transpiration(1,2). Water evaporating from the airspaces is replaced from cell walls, in turn drawing water from the xylem of leaf veins, in turn drawing from xylem in the stems and roots. As water is pulled through the system, it experiences hydraulic resistance, creating tension throughout the system and a low leaf water potential (Ψ(leaf)). The leaf itself is a critical bottleneck in the whole plant system, accounting for on average 30% of the plant hydraulic resistance(3). Leaf hydraulic conductance (K(leaf) = 1/ leaf hydraulic resistance) is the ratio of the water flow rate to the water potential gradient across the leaf, and summarizes the behavior of a complex system: water moves through the petiole and through several orders of veins, exits into the bundle sheath and passes through or around mesophyll cells before evaporating into the airspace and being transpired from the stomata. K(leaf) is of strong interest as an important physiological trait to compare species, quantifying the effectiveness of the leaf structure and physiology for water transport, and a key variable to investigate for its relationship to variation in structure (e.g., in leaf venation architecture) and its impacts on photosynthetic gas exchange. Further, K(leaf) responds strongly to the internal and external leaf environment(3). K(leaf) can increase dramatically with irradiance apparently due to changes in the expression and activation of aquaporins, the proteins involved in water transport through membranes(4), and K(leaf) declines strongly during drought, due to cavitation and/or collapse of xylem conduits, and/or loss of permeability in the extra-xylem tissues due to mesophyll and bundle sheath cell shrinkage or aquaporin deactivation(5

  1. Characteristics of wet work in the cleaning industry

    NARCIS (Netherlands)

    Jungbauer, F H W; Van Der Harst, J J; Schuttelaar, M L; Groothoff, J W; Coenraads, P J

    Wet work is the main cause of occupational contact dermatitis in the cleaning industry. Dermatologists and occupational physicians need to base their primary and secondary prevention for workers in the cleaning industry on the characteristics of wet work exposures. We quantified the burden of wet

  2. Operational assimilation of ASCAT surface soil wetness at the Met Office

    Directory of Open Access Journals (Sweden)

    I. Dharssi

    2011-08-01

    Full Text Available Currently, no extensive, near real time, global soil moisture observation network exists. Therefore, the Met Office global soil moisture analysis scheme has instead used observations of screen temperature and humidity. A number of new space-borne remote sensing systems, operating at microwave frequencies, have been developed that provide a more direct retrieval of surface soil moisture. These systems are attractive since they provide global data coverage and the horizontal resolution is similar to weather forecasting models. Several studies show that measurements of normalised backscatter (surface soil wetness from the Advanced Scatterometer (ASCAT on the meteorological operational (MetOp satellite contain good quality information about surface soil moisture. This study describes methods to convert ASCAT surface soil wetness measurements to volumetric surface soil moisture together with bias correction and quality control. A computationally efficient nudging scheme is used to assimilate the ASCAT volumetric surface soil moisture data into the Met Office global soil moisture analysis. This ASCAT nudging scheme works alongside a soil moisture nudging scheme that uses observations of screen temperature and humidity. Trials, using the Met Office global Unified Model, of the ASCAT nudging scheme show a positive impact on forecasts of screen temperature and humidity for the tropics, North America and Australia. A comparison with in-situ soil moisture measurements from the US also indicates that assimilation of ASCAT surface soil wetness improves the soil moisture analysis. Assimilation of ASCAT surface soil wetness measurements became operational during July 2010.

  3. Control of dew and frost formation on leaf by radiative cooling

    International Nuclear Information System (INIS)

    Matsui, T.; Eguchi, H.; Mori, K.

    1981-01-01

    A radiative cooling system was developed to control dew and frost formations and to examine the effect of the radiative cooling on the leaf temperature. The growth chamber was provided with a box which was constructed by using heat insulating materials to minimize the disturbances and to regulate the air current. A cooling coil (cooling surface of 300 cm was equipped at the bottom of the box and manipulated by a refrigerator of 1, 430 kcal hour -1 , and a concave mirror was attached to the ceiling of the box to facilitate the reflection of the radiation from the leaf to the cooling coil. The moisture in air was supplied by flowing the controlled air (0.2 m min -1 ) into the box. The distribution of dew point temperatures was almost uniform horizontally even under vertically slight conversion (downward velocity of 1.3 cm sec -1 ) of the air. The leaf temperature became about 1.0°C lower than the ambient air temperature under the radiative cooling. The dew and the frost were clearly observed on the leaf after the time when the leaf temperature had become lower than the dew point temperature. The dew increased in size in course of time, and the frost varied in shape and in size with the temperatures. Thus, artificial formations of the dew and the frost were made possible by the radiative cooling system developed in this experiment

  4. How do the work environment and work safety differ between the dry and wet kitchen foodservice facilities?

    Science.gov (United States)

    Chang, Hye-Ja; Kim, Jeong-Won; Ju, Se-Young; Go, Eun-Sun

    2012-08-01

    In order to create a worker-friendly environment for institutional foodservice, facilities operating with a dry kitchen system have been recommended. This study was designed to compare the work safety and work environment of foodservice between wet and dry kitchen systems. Data were obtained using questionnaires with a target group of 303 staff at 57 foodservice operations. Dry kitchen facilities were constructed after 2006, which had a higher construction cost and more finishing floors with anti-slip tiles, and in which employees more wore non-slip footwear than wet kitchen (76.7%). The kitchen temperature and muscular pain were the most frequently reported employees' discomfort factors in the two systems, and, in the wet kitchen, "noise of kitchen" was also frequently reported as a discomfort. Dietitian and employees rated the less slippery and slip related incidents in dry kitchens than those of wet kitchen. Fryer area, ware-washing area, and plate waste table were the slippery areas and the causes were different between the functional areas. The risk for current leakage was rated significantly higher in wet kitchens by dietitians. In addition, the ware-washing area was found to be where employees felt the highest risk of electrical shock. Muscular pain (72.2%), arthritis (39.1%), hard-of-hearing (46.6%) and psychological stress (47.0%) were experienced by employees more than once a month, particularly in the wet kitchen. In conclusion, the dry kitchen system was found to be more efficient for food and work safety because of its superior design and well managed practices.

  5. How do the work environment and work safety differ between the dry and wet kitchen foodservice facilities?

    Science.gov (United States)

    Kim, Jeong-Won; Ju, Se-Young; Go, Eun-Sun

    2012-01-01

    In order to create a worker-friendly environment for institutional foodservice, facilities operating with a dry kitchen system have been recommended. This study was designed to compare the work safety and work environment of foodservice between wet and dry kitchen systems. Data were obtained using questionnaires with a target group of 303 staff at 57 foodservice operations. Dry kitchen facilities were constructed after 2006, which had a higher construction cost and more finishing floors with anti-slip tiles, and in which employees more wore non-slip footwear than wet kitchen (76.7%). The kitchen temperature and muscular pain were the most frequently reported employees' discomfort factors in the two systems, and, in the wet kitchen, "noise of kitchen" was also frequently reported as a discomfort. Dietitian and employees rated the less slippery and slip related incidents in dry kitchens than those of wet kitchen. Fryer area, ware-washing area, and plate waste table were the slippery areas and the causes were different between the functional areas. The risk for current leakage was rated significantly higher in wet kitchens by dietitians. In addition, the ware-washing area was found to be where employees felt the highest risk of electrical shock. Muscular pain (72.2%), arthritis (39.1%), hard-of-hearing (46.6%) and psychological stress (47.0%) were experienced by employees more than once a month, particularly in the wet kitchen. In conclusion, the dry kitchen system was found to be more efficient for food and work safety because of its superior design and well managed practices. PMID:22977692

  6. Effect of Abiotic Stresses on the Nondestructive Estimation of Rice Leaf Nitrogen Concentration

    Directory of Open Access Journals (Sweden)

    Stephan M. Haefele

    2010-01-01

    Full Text Available Decision support tools for non-destructive estimation of rice crop nitrogen (N status (e.g., chlorophyll meter [SPAD] or leaf color chart [LCC] are an established technology for improved N management in irrigated systems, but their value in rainfed environments with frequent abiotic stresses remains untested. Therefore, we studied the effect of drought, salinity, phosphorus (P deficiency, and sulfur (S deficiency on leaf N estimates derived from SPAD and LCC measurements in a greenhouse experiment. Linear relations between chlorophyll concentration and leaf N concentration based on dry weight (Ndw between SPAD values adjusted for leaf thickness and Ndw and between LCC scores adjusted for leaf thickness and Ndw could be confirmed for all treatments and varieties used. Leaf spectral reflectance measurements did not show a stress-dependent change in the reflectance pattern, indicating that no specific element of the photosynthetic complex was affected by the stresses and at the stress level applied. We concluded that SPAD and LCC are potentially useful tools for improved N management in moderately unfavorable rice environments. However, calibration for the most common rice varieties in the target region is recommended to increase the precision of the leaf N estimates.

  7. Density-wave fronts on the brink of wet granular condensation

    Science.gov (United States)

    Huang, Kai; Zippelius, Andreas; Sand lab @ University of Bayreuth Team

    2017-11-01

    From sand dunes to Faraday heaping, driven granular matter, i.e., large agglomeration of macroscopic particles, is rich pattern forming system. When a granular material is partially wet (e.g., wet sand on the beach), a different pattern forming scenario arises due to the cohesive particle-particle interactions. Here, we focus on the formation of density-wave fronts in an oscillated wet granular layer undergoing a gas-liquid-like transition. The threshold of the instability is governed by the amplitude of the vertical vibrations. Fronts, which are curved into a spiral shape, propagate coherently along the circular rim of the container with leading edges. They are stable beyond a critical distance from the container center. Based on the measurement of the critical distance and the rotation frequency, we propose a model for the pattern formation by considering the competition between the time scale for the collapse of cohesive particles and that of the energy injection resisting this process. Deutsche Forschungsgemeinschaft (Grant No. HU1939 4-1).

  8. Studies on the wetting properties of plate surfaces used in pulsed extraction columns

    International Nuclear Information System (INIS)

    Tai Derong; Yang Xin; Wang Xinchang

    1991-01-01

    Many factors influence the hydrodynamic characteristics of pulsed column. Of all the factors the surface effect at liquid-liquid interfaces and liquid-solid boundaries may be the most influential factor to the state of droplets. In order to get some understanding of the behaviour of droplets in a pulsed column, the time history of wetting properties of plates under different conditions in 30% TBP (Kerosene) -HNO 3 -UO 2 (NO 3 ) 2 -H 2 O systems was studied. The results show that the hydrophilic wetting behaviour of the plates changes into the hydrophobic and neutral conditions, respectively after they have been exposed to air and put in the 'open system' within about 50 days after contacting with process solutions. For the case where the access of air is prohibited at the upper organic phase boundary by a well fitting cover, or supersonic pulse cleaning is used to the cartridge, the behaviour of the metal surface stays in the original good hydrophilic wetting condition constant with time. The uranium charged liquid systems can conserve hydrophilic behaviour better than the non-charged systems under identical conditions. It is also found that the interfacial tension is unvaried with time for saturated process systems, hence it has no effects on the variation of wettability

  9. Environmental modification of yield and food composition of cowpea and leaf lettuce

    Science.gov (United States)

    Mitchell, Cary A.; Nielsen, Suzanne S.; Bubenheim, David L.

    1990-01-01

    Cowpea (Vigna unguiculata (L.) Walp.) and leaf lettuce (Lactuca sativa L.) are candidate species to provide ligume protein and starch or serve as a salad base for a nutritionally balanced and psychologically satisfying vegetarian diet in the Controlled Ecology Life Support System (CELSS). Various nutritional parameters are reported. Hydroponic leaf lettuce grew best under CO2 enrichment and photosynthetic photon flux (PPF) enhancement. Leaf protein content reached 36 percent with NH4(+) + NO3 nutrition; starch and free sugar content was as high as 7 or 8.4 percent of DW, respectively, for high PPF/CO2 enriched environments.

  10. Cohesion-Induced Stabilization in Stick-Slip Dynamics of Weakly Wet, Sheared Granular Fault Gouge

    Science.gov (United States)

    Dorostkar, Omid; Guyer, Robert A.; Johnson, Paul A.; Marone, Chris; Carmeliet, Jan

    2018-03-01

    We use three-dimensional discrete element calculations to study stick-slip dynamics in a weakly wet granular layer designed to simulate fault gouge. The granular gouge is constituted by 8,000 spherical particles with a polydisperse size distribution. At very low liquid content, liquids impose cohesive and viscous forces on particles. Our simulations show that by increasing the liquid content, friction increases and granular layer shows higher recurrence time between slip events. We also observe that slip events exhibit larger friction drop and layer compaction in wet system compared to dry. We demonstrate that a small volume of liquid induces cohesive forces between wet particles that are responsible for an increase in coordination number leading to a more stable arrangement of particles. This stabilization is evidenced with 2 orders of magnitude lower particle kinetic energy in wet system during stick phase. Similar to previous experimental studies, we observe enhanced frictional strength for wet granular layers. In experiments, the physicochemical processes are believed to be the main reason for such behavior; we show, however, that at low confining stresses, the hydromechanical effects of induced cohesion are sufficient for observed behavior. Our simulations illuminate the role of particle interactions and demonstrate the conditions under which induced cohesion plays a significant role in fault zone processes, including slip initiation, weakening, and failure.

  11. Transcriptional analyses of natural leaf senescence in maize.

    Directory of Open Access Journals (Sweden)

    Wei Yang Zhang

    Full Text Available Leaf senescence is an important biological process that contributes to grain yield in crops. To study the molecular mechanisms underlying natural leaf senescence, we harvested three different developmental ear leaves of maize, mature leaves (ML, early senescent leaves (ESL, and later senescent leaves (LSL, and analyzed transcriptional changes using RNA-sequencing. Three sets of data, ESL vs. ML, LSL vs. ML, and LSL vs. ESL, were compared, respectively. In total, 4,552 genes were identified as differentially expressed. Functional classification placed these genes into 18 categories including protein metabolism, transporters, and signal transduction. At the early stage of leaf senescence, genes involved in aromatic amino acids (AAAs biosynthetic process and transport, cellular polysaccharide biosynthetic process, and the cell wall macromolecule catabolic process, were up-regulated. Whereas, genes involved in amino acid metabolism, transport, apoptosis, and response to stimulus were up-regulated at the late stage of leaf senescence. Further analyses reveals that the transport-related genes at the early stage of leaf senescence potentially take part in enzyme and amino acid transport and the genes upregulated at the late stage are involved in sugar transport, indicating nutrient recycling mainly takes place at the late stage of leaf senescence. Comparison between the data of natural leaf senescence in this study and previously reported data for Arabidopsis implies that the mechanisms of leaf senescence in maize are basically similar to those in Arabidopsis. A comparison of natural and induced leaf senescence in maize was performed. Athough many basic biological processes involved in senescence occur in both types of leaf senescence, 78.07% of differentially expressed genes in natural leaf senescence were not identifiable in induced leaf senescence, suggesting that differences in gene regulatory network may exist between these two leaf senescence

  12. 7 CFR 29.2316 - Wet (W).

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Wet (W). 29.2316 Section 29.2316 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... INSPECTION Standards Official Standard Grades for Virginia Fire-Cured Tobacco (u.s. Type 21) § 29.2316 Wet (W...

  13. 7 CFR 29.3077 - Wet (W).

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Wet (W). 29.3077 Section 29.3077 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Wet (W). Any sound tobacco containing excessive moisture to the extent that it is in an unsafe or...

  14. Advanced methods for the treatment of organic aqueous wastes: wet air oxidation and wet peroxide oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Debellefontaine, Hubert; Chakchouk, Mehrez; Foussard, Jean Noel [Institut National des Sciences Appliquees (INSA), 31 - Toulouse (France). Dept. de Genie des Procedes Industriels; Tissot, Daniel; Striolo, Phillipe [IDE Environnement S.A., Toulouse (France)

    1994-12-31

    There is a growing concern about the problems of wastes elimination. Various oxidation techniques are suited for elimination of organic aqueous wastes, however, because of the environmental drawbacks of incineration, liquid phase oxidation should be preferred. `Wet Air Oxidation` and `Wet Peroxide Oxidation`are alternative processes which are discussed in this paper. 17 refs., 13 figs., 4 tabs.

  15. Advanced methods for the treatment of organic aqueous wastes: wet air oxidation and wet peroxide oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Debellefontaine, Hubert; Chakchouk, Mehrez; Foussard, Jean Noel [Institut National des Sciences Appliquees (INSA), 31 - Toulouse (France). Dept. de Genie des Procedes Industriels; Tissot, Daniel; Striolo, Phillipe [IDE Environnement S.A., Toulouse (France)

    1993-12-31

    There is a growing concern about the problems of wastes elimination. Various oxidation techniques are suited for elimination of organic aqueous wastes, however, because of the environmental drawbacks of incineration, liquid phase oxidation should be preferred. `Wet Air Oxidation` and `Wet Peroxide Oxidation`are alternative processes which are discussed in this paper. 17 refs., 13 figs., 4 tabs.

  16. Spreading of blood drops over dry porous substrate: complete wetting case.

    Science.gov (United States)

    Chao, Tzu Chieh; Arjmandi-Tash, Omid; Das, Diganta B; Starov, Victor M

    2015-05-15

    The process of dried blood spot sampling involves simultaneous spreading and penetration of blood into a porous filter paper with subsequent evaporation and drying. Spreading of small drops of blood, which is a non-Newtonian liquid, over a dry porous layer is investigated from both theoretical and experimental points of view. A system of two differential equations is derived, which describes the time evolution of radii of both the drop base and the wetted region inside the porous medium. The system of equations does not include any fitting parameters. The predicted time evolutions of both radii are compared with experimental data published earlier. For a given power law dependency of viscosity of blood with different hematocrit level, radii of both drop base and wetted region, and contact angle fell on three universal curves if appropriate scales are used with a plot of the dimensionless radii of the drop base and the wetted region inside the porous layer and dynamic contact angle on dimensionless time. The predicted theoretical relationships are three universal curves accounting satisfactorily for the experimental data. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  17. User's manual for the BNW-II optimization code for dry/wet-cooled power plants

    International Nuclear Information System (INIS)

    Braun, D.J.; Bamberger, J.A.; Braun, D.J.; Faletti, D.W.; Wiles, L.E.

    1978-05-01

    The User's Manual describes how to operate BNW-II, a computer code developed by the Pacific Northwest Laboratory (PNL) as a part of its activities under the Department of Energy (DOE) Dry Cooling Enhancement Program. The computer program offers a comprehensive method of evaluating the cost savings potential of dry/wet-cooled heat rejection systems. Going beyond simple ''figure-of-merit'' cooling tower optimization, this method includes such items as the cost of annual replacement capacity, and the optimum split between plant scale-up and replacement capacity, as well as the purchase and operating costs of all major heat rejection components. Hence the BNW-II code is a useful tool for determining potential cost savings of new dry/wet surfaces, new piping, or other components as part of an optimized system for a dry/wet-cooled plant

  18. Wetting behaviour and reactivity between liquid Gd and ZrO2 substrate

    Directory of Open Access Journals (Sweden)

    Turalska P.

    2017-01-01

    Full Text Available The wetting behavior and reactivity between molten pure Gd and polycrystalline 3YSZ substrate (ZrO2 stabilized with 3 wt% of Y2O3were experimentally determined by a sessile drop method using a classical contact heating coupled with drop pushing procedure. The test was performed under an inert flowing gas atmosphere (Ar at two temperatures of 1362°C and 1412°C. Immediately after melting (Tm=1341°C, liquid Gd did not wet the substrate forming a contact angle of θ=141°. The non-wetting to wetting transition (θ < 90° took place after about 110 seconds of interaction and was accompanied by a sudden decrease in the contact angle value to 67°. Further heating of the couple to 1412 °C did not affect wetting (θ=67°±1°. The solidified Gd/3YSZ couple was studied by means of optical microscopy and scanning electron microscopy coupled with X-ray energy dispersive spectroscopy. Structural investigations revealed that the wettability in the Gd/3YSZ system is of a reactive nature associated with the formation of a continuous layer of a wettable reaction product Gd2Zr2O7.

  19. Ozone induced leaf loss and decreased leaf production of European Holly (Ilex aquifolium L.) over multiple seasons

    International Nuclear Information System (INIS)

    Ranford, Jonathan; Reiling, Kevin

    2007-01-01

    European Holly (Ilex aquifolium L.) was used to study the impact of one short (28 day) ozone fumigation episode on leaf production, leaf loss and stomatal conductance (g s ), in order to explore potential longer term effects over 3 growing seasons. Young I. aquifolium plants received an episode of either charcoal-filtered air or charcoal-filtered air with 70 nl l -1 O 3 added for 7 h d -1 over a 28 day period from June 15th 1996, then placed into ambient environment, Stoke-on-Trent, U.K. Data were collected per leaf cohort over the next three growing seasons. Ozone exposure significantly increased leaf loss and stomatal conductance and reduced leaf production over all subsequent seasons. Impact of the initial ozone stress was still detected in leaves that had no direct experimental ozone exposure. This study has shown the potential of ozone to introduce long-term phenological perturbations into ecosystems by influencing productivity over a number of seasons. - Ozone significantly alters Ilex aquifolium leaf production and loss over multiple seasons

  20. 7 CFR 29.2570 - Wet (W).

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Wet (W). 29.2570 Section 29.2570 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing...-Cured Tobacco (u.s. Types 22, 23, and Foreign Type 96) § 29.2570 Wet (W). Any sound tobacco containing...

  1. 7 CFR 29.3567 - Wet (W).

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Wet (W). 29.3567 Section 29.3567 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Type 95) § 29.3567 Wet (W). Any sound tobacco containing excessive moisture to the extent that it is in...

  2. 7 CFR 29.1083 - Wet (W).

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Wet (W). 29.1083 Section 29.1083 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Type 92) § 29.1083 Wet (W). Any sound tobacco containing excessive moisture to the extent that it is in...

  3. Diverse mechanisms of plant resistance to cauliflower mosaic virus revealed by leaf skeleton hybridization.

    Science.gov (United States)

    Melcher, U; Brannan, C M; Gardner, C O; Essenberg, R C

    1992-01-01

    Plants not hosts for cauliflower mosaic virus (CaMV) may prevent systemic CaMV infection by interfering with dissemination of infection through the plant or by preventing viral replication and maturation. Leaf skeleton hybridization allows distinction between these two barriers. The technique assesses the spatial distribution of CaMV in an inoculated leaf by hybridization of a skeleton of the leaf with a CaMV DNA probe. Leaves or leaflets of soybean, cucumber, peanut, tomato, lettuce, spinach, pepper, onion, wheat, maize and barley, inoculated with CaMV DNA or CaMV virions were processed for leaf skeleton hybridization either immediately after inoculation or two weeks thereafter. Autoradiographic images of soybean and cucumber skeletons had many dark spots suggesting that CaMV DNA replication and local spread had occurred. Images of onion leaf skeletons prepared two weeks after inoculation with CaMV DNA had fewer spots. To test whether these spots resulted from CaMV replication, DNA was extracted from inoculated onion leaves and analyzed by electrophoresis, blotting and hybridization. Molecules recovered two weeks after inoculation resembled those inoculated, indicating absence of replication. For the other species, we found no evidence of local spread of CaMV infections. Thus, many plant species resist systemic CaMV infection by preventing replication or local spread of CaMV, while others solely prevent systemic movement of infection.

  4. How does the composition of quasi-stoichiometric titanium diboride affect its wetting by molten Cu and Au?

    International Nuclear Information System (INIS)

    Aizenshtein, M.; Froumin, N.; Barth, P.; Shapiro-Tsoref, E.; Dariel, M.P.; Frage, N.

    2007-01-01

    The poor wetting in non-oxide ceramic/metal (M = Au or Cu) systems is usually attributed to the lack of chemical interaction at the solid/liquid interface. In contrast, sessile drop experiments on two non-stoichiometric titanium diboride substrates (TiB 1.9 and TiB 1.95 ) displayed a surprisingly good wetting. The experimental results are well accounted for by the thermodynamic analysis of the Me-Ti-B systems. According to this analysis, some limited boride dissolution and altering of the substrate composition takes place at the TiB x /Me interface. These changes are more substantial, the stronger the departure from stoichiometry of the initial substrate composition. Minor composition changes are sufficient for improving wetting. Based on the results of the thermodynamic analysis and the wetting experiments, a novel method for the fabrication of Cu infiltrated composites is put forward

  5. Feasible Management of Southern Corn Leaf Blight via Induction of Systemic Resistance by Bacillus cereus C1L in Combination with Reduced Use of Dithiocarbamate Fungicides

    Directory of Open Access Journals (Sweden)

    Yi-Ru Lai

    2016-10-01

    Full Text Available Dithiocarbamate fungicides such as maneb and mancozeb are widely used nonsystemic protectant fungicides to control various plant fungal diseases. Dithiocarbamate fungicides should be frequently applied to achieve optimal efficacy of disease control and avoid either decline in effectiveness or wash-off from leaf surface. Dithiocarbamates are of low resistance risk but have the potential to cause human neurological diseases. The objective of this study was to develop a strategy to effectively control plant disease with reduced use of dithiocarbamtes. Southern corn leaf blight was the model pathosystem for the investigation. When corn plants were drench-treated with Bacillus cereus C1L, a rhizobacterium able to induce systemic resistance in corn plants against southern leaf blight, frequency of spraying dithiocarbamate fungicides could be decreased. The treatment of B. cereus C1L was able to protect maize from southern leaf blight while residues of dithiocarbamates on leaf surface were too low to provide sufficient protection. On the other hand, frequent sprays of mancozeb slightly but significantly reduced growth of corn plants under natural conditions. In contrast, application of B. cereus C1L can significantly promote growth of corn plants whether sprayed with mancozeb or not. Our results provide the information that plant disease can be well controlled by rhizobacteria-mediated induced systemic resistance in combination with reduced but appropriate application of dithiocarbamate fungicides just before a heavy infection period. An appropriate use of rhizobacteria can enhance plant growth and help plants overcome negative effects caused by dithiocarbamates.

  6. Diversity of Platygastridae in Leaf Litter and Understory Layers of Tropical Rainforests of the Western Ghats Biodiversity Hotspot, India.

    Science.gov (United States)

    Manoj, K; Rajesh, T P; Prashanth Ballullaya, U; Meharabi, K M; Shibil, V K; Rajmohana, K; Sinu, Palatty Allesh

    2017-06-01

    Platygastridae is the third largest family of parasitic Hymenoptera in the world. It includes important egg and larval parasitoids of insects and spiders. Therefore, Platygastridae is functionally important in maintaining the stability of tropical rainforests and agroecosystems. Although the diversity of Platygastridae is relatively well-known in agroecosystems, we know little about their diversity in tropical rainforests, and particularly about that of the leaf litter layer. Here, we address the importance of monitoring Platygastridae in tropical rainforests, using data from the relic primary forests of the sacred groves of the Western Ghats. First, we demonstrate that pitfall traps allow us to catch a wide array of representative diversity of Platygastridae of the tropical rainforests, and we establish an efficient collection method to study Platygastridae of leaf litter layer. Second, we demonstrate that the community structure and composition of Platygastridae of the leaf litter layer is different from that seen in the understory of the forests. This indirectly informs us that the Malaise traps capture only a minor subset of the species active in the rainforests. Third, we find that the dry and wet seasons captured dissimilar community of Platygastridae, suggesting that the season might alter the potential host species or host stages. We conclude that monitoring parasitic Hymenoptera in the leaf litter layer of tropical rainforests can provide fresh insights on the species distribution of both the parasitoids and their hosts, and allows us to examine the current state of the tropical rainforests from a functional point of view. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Photoperiod-H1 (Ppd-H1) Controls Leaf Size.

    Science.gov (United States)

    Digel, Benedikt; Tavakol, Elahe; Verderio, Gabriele; Tondelli, Alessandro; Xu, Xin; Cattivelli, Luigi; Rossini, Laura; von Korff, Maria

    2016-09-01

    Leaf size is a major determinant of plant photosynthetic activity and biomass; however, it is poorly understood how leaf size is genetically controlled in cereal crop plants like barley (Hordeum vulgare). We conducted a genome-wide association scan for flowering time, leaf width, and leaf length in a diverse panel of European winter cultivars grown in the field and genotyped with a single-nucleotide polymorphism array. The genome-wide association scan identified PHOTOPERIOD-H1 (Ppd-H1) as a candidate gene underlying the major quantitative trait loci for flowering time and leaf size in the barley population. Microscopic phenotyping of three independent introgression lines confirmed the effect of Ppd-H1 on leaf size. Differences in the duration of leaf growth and consequent variation in leaf cell number were responsible for the leaf size differences between the Ppd-H1 variants. The Ppd-H1-dependent induction of the BARLEY MADS BOX genes BM3 and BM8 in the leaf correlated with reductions in leaf size and leaf number. Our results indicate that leaf size is controlled by the Ppd-H1- and photoperiod-dependent progression of plant development. The coordination of leaf growth with flowering may be part of a reproductive strategy to optimize resource allocation to the developing inflorescences and seeds. © 2016 American Society of Plant Biologists. All rights reserved.

  8. Wetting of refractory metals with copper base alloys

    International Nuclear Information System (INIS)

    Anikeev, E.F.; Kostikov, V.I.; Chepelenko, V.N.; Batov, V.M.

    1978-01-01

    The effect is studied of phosphorus upon the wetting of molybdenum, niobium and tantalum by an alloy of the system copper-silver (10%) as a function of contact time and phosphorus concentration. Experiments have been conducted in vacuum of 5x10 -4 mm Hg at 900 deg C. It is established that the introduction of phosphorus into a copper-silver alloy improves the wetting of molybdenum, niobium and tantalum. Formation of intermetallic compounds on the alloy-refractory metal interface can be avoided by adjusting the time of contact of the solder with molybdenum, niobium and tantalum. As a solder with 2.9% phosphorus spreads well over copper, it is suggested to use said solder for brazing copper and the investigated refractory metals in items intended for service at temperatures of up to 600 deg C

  9. Comparison of Wet and Dry Grinding in Electromagnetic Mill

    Directory of Open Access Journals (Sweden)

    Szymon Ogonowski

    2018-03-01

    Full Text Available Comparison of dry and wet grinding process in an electromagnetic mill is presented in this paper. The research was conducted in a batch copper ore grinding. Batch mode allows for precise parametrization and constant repetitive conditions of the experiments. The following key aspects were tested: processing time, feed size, size of the grinding media, mass of the material and graining media, and density of the pulp. The particles size distribution of the product samples was analyzed in the laboratory after each experiment. The paper discusses the experimental results as well as the concept of dry and wet grinding and classification circuits for the electromagnetic mill. The main points of the discussion are the size reduction effectiveness and power consumption of the entire system.

  10. Regulation and specificity of antifungal metapleural gland secretion in leaf-cutting ants

    DEFF Research Database (Denmark)

    Yek, Sze Huei; Nash, David Richard; Jensen, Annette Bruun

    2012-01-01

    significantly larger for ants challenged with virulent and mild pathogens/weeds than for controls and Escovopsis-challenged ants. We conclude that the MG defence system of leaf-cutting ants has characteristics reminiscent of an additional cuticular immune system, with specific and non-specific components......Ants have paired metapleural glands (MGs) to produce secretions for prophylactic hygiene. These exocrine glands are particularly well developed in leaf-cutting ants, but whether the ants can actively regulate MG secretion is unknown. In a set of controlled experiments using conidia of five fungi...

  11. Bioinspired heterostructured bead-on-string fibers via controlling the wet-assembly of nanoparticles.

    Science.gov (United States)

    Zhao, Lin; Song, Cheng; Zhang, Miaoxin; Zheng, Yongmei

    2014-09-21

    A kind of bioinspired heterostructured bead-on-string fiber (BHBF), composed of poly-(methyl methacrylate) (PMMA) and titanium tetrachloride (TiCl4) hydrolyzed nanoparticles, was prepared via integrating a wet-assembly system, including PMMA electrospinning, fog of nanoparticles and water coalescence at multi-stages. The wet-assembly of BHBF was regulated by the difference in surface energy and Laplace pressure. Especially, BHBF is characteristic of a hydrophilic rough bead for excellent water collection ability.

  12. Dispersant Application during SG Wet Layup at SK Unit 1

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Hyukchul; Lee, Dooho; Sung, Kibang [KHNP Central Institute, Daejeon (Korea, Republic of)

    2014-05-15

    The corrosion products in the feedwater are deposited onto the steam generators (SGs) despite the effort to control them within limit of impurity. This deposit is one of causes for occurrence of SCC (Stress Corrosion Cracking), water level fluctuation and further corrosion of SGs. To minimize corrosion and remove deposit, the nuclear power plants apply high pH to the secondary system and SG chemical cleaning, respectively. But these methods can be costly and carry risks of extended outages or incomplete cleaning. Another method is an on-line dispersant application. The role of dispersant is to make deposit suspended in the SGs. Then, the suspended deposit is discharged to the blowdown system. The iron removal is increased in the blowdown system during the dispersant application. Additional significant benefit in the form of reduced corrosion product transport may be obtained through applying dispersant in the SGs wet lay operational mode. This method helps to reduce the total SGs loading without affecting critical outage activities and with minimal additional effort on the part of the utilities. This study provides the results of the dispersant application trial during the SG wet layup at SK Unit 1. As the PAA concentrations were increased, the corrosion rates of Alloy 690 and SA 106 Gr.B were increased. The corrosion rate of Alloy 690 was 2 times less than that of SA 106 Gr.B at 100 ppm of PAA based on the electrochemical experimental. There were no significant feasibility problems with application of PAA during the SG wet layup. The reasonable estimation of the additional mass removed by the presence of PAA during SGs wet layup is 460 g. The iron removal depended on PAA concentration injected based on the comparative results of the SK Unit 1 and TMI-1. It is expected that injection of PAA into the SG result in a significant decrease in the amount of iron transported to the SGs during the startup.

  13. Human skin wetness perception: psychophysical and neurophysiological bases

    Science.gov (United States)

    Filingeri, Davide; Havenith, George

    2015-01-01

    The ability to perceive thermal changes in the surrounding environment is critical for survival. However, sensing temperature is not the only factor among the cutaneous sensations to contribute to thermoregulatory responses in humans. Sensing skin wetness (i.e. hygrosensation) is also critical both for behavioral and autonomic adaptations. Although much has been done to define the biophysical role of skin wetness in contributing to thermal homeostasis, little is known on the neurophysiological mechanisms underpinning the ability to sense skin wetness. Humans are not provided with skin humidity receptors (i.e., hygroreceptors) and psychophysical studies have identified potential sensory cues (i.e. thermal and mechanosensory) which could contribute to sensing wetness. Recently, a neurophysiological model of human wetness sensitivity has been developed. In helping clarifying the peripheral and central neural mechanisms involved in sensing skin wetness, this model has provided evidence for the existence of a specific human hygrosensation strategy, which is underpinned by perceptual learning via sensory experience. Remarkably, this strategy seems to be shared by other hygroreceptor-lacking animals. However, questions remain on whether these sensory mechanisms are underpinned by specific neuromolecular pathways in humans. Although the first study on human wetness perception dates back to more than 100 years, it is surprising that the neurophysiological bases of such an important sensory feature have only recently started to be unveiled. Hence, to provide an overview of the current knowledge on human hygrosensation, along with potential directions for future research, this review will examine the psychophysical and neurophysiological bases of human skin wetness perception. PMID:27227008

  14. Mobile encapsulation and volume reduction system for wet low-level wastes

    International Nuclear Information System (INIS)

    Buelt, J.L.

    1985-08-01

    This report describes the results of the program entitled ''A Preconceptual Study for a Transportable Vitrification Process''. The objective of the study is to determine the feasibility of a Mobile Encapsulation and Volume Reduction System (MEVS). The report contains design criteria, a preconceptual design of the system, a comparison of disposal costs with other solidification technologies, and an assessment of utility interests in the transportable volume reduction service MEVS can provide. The MEVS design employs the use of a joule-heated glass melter to convert the wet low-level wastes into glass. The process is self-sufficient, requiring no direct facility services or reactor personnel. It is capable of servicing one waste type from a minimum of three reactors. The design was used to prepare capital and operating cost estimates. The capital cost for the MEVS is $4,680,000, which includes all labor necessary for design, engineering, inspection, and licensing. The operating cost of the system for servicing a minimum of three reactors is $1,530,000/y for resins or $2,280,000/y for concentrated liquids. The cost estimates compared favorably to the more common solidification process of cementation. Total MEVS operating costs which include processing, transportation and burial, are $191 to $218/ft 3 waste, whereas quoted costs for cementation and disposal from reactor operators range from $155 to $350/ft 3 . The report concludes with the requirements for additional development, which can be accomplished for less than one sixth of the capital costs. The report also presents the results of an assessment conducted with utility representatives to obtain their expressions of interest in a service of this type

  15. Wetting transitions: A functional renormalization-group approach

    International Nuclear Information System (INIS)

    Fisher, D.S.; Huse, D.A.

    1985-01-01

    A linear functional renormalization group is introduced as a framework in which to treat various wetting transitions of films on substrates. A unified treatment of the wetting transition in three dimensions with short-range interactions is given. The results of Brezin, Halperin, and Leibler in their three different regimes are reproduced along with new results on the multicritical behavior connecting the various regimes. In addition, the critical behavior as the coexistence curve is approached at complete wetting is analyzed. Wetting in the presence of long-range substrate-film interactions that fall off as power laws is also studied. The possible effects of the nonlinear terms in the renormalization group are examined briefly and it appears that they do not alter the critical behavior found using the truncated linear renormalization group

  16. Wind increases leaf water use efficiency.

    Science.gov (United States)

    Schymanski, Stanislaus J; Or, Dani

    2016-07-01

    A widespread perception is that, with increasing wind speed, transpiration from plant leaves increases. However, evidence suggests that increasing wind speed enhances carbon dioxide (CO2 ) uptake while reducing transpiration because of more efficient convective cooling (under high solar radiation loads). We provide theoretical and experimental evidence that leaf water use efficiency (WUE, carbon uptake per water transpired) commonly increases with increasing wind speed, thus improving plants' ability to conserve water during photosynthesis. Our leaf-scale analysis suggests that the observed global decrease in near-surface wind speeds could have reduced WUE at a magnitude similar to the increase in WUE attributed to global rise in atmospheric CO2 concentrations. However, there is indication that the effect of long-term trends in wind speed on leaf gas exchange may be compensated for by the concurrent reduction in mean leaf sizes. These unintuitive feedbacks between wind, leaf size and water use efficiency call for re-evaluation of the role of wind in plant water relations and potential re-interpretation of temporal and geographic trends in leaf sizes. © 2015 The Authors. Plant, Cell & Environment published by John Wiley & Sons Ltd.

  17. Global variability in leaf respiration in relation to climate, plant functional types and leaf traits.

    Science.gov (United States)

    Atkin, Owen K; Bloomfield, Keith J; Reich, Peter B; Tjoelker, Mark G; Asner, Gregory P; Bonal, Damien; Bönisch, Gerhard; Bradford, Matt G; Cernusak, Lucas A; Cosio, Eric G; Creek, Danielle; Crous, Kristine Y; Domingues, Tomas F; Dukes, Jeffrey S; Egerton, John J G; Evans, John R; Farquhar, Graham D; Fyllas, Nikolaos M; Gauthier, Paul P G; Gloor, Emanuel; Gimeno, Teresa E; Griffin, Kevin L; Guerrieri, Rossella; Heskel, Mary A; Huntingford, Chris; Ishida, Françoise Yoko; Kattge, Jens; Lambers, Hans; Liddell, Michael J; Lloyd, Jon; Lusk, Christopher H; Martin, Roberta E; Maksimov, Ayal P; Maximov, Trofim C; Malhi, Yadvinder; Medlyn, Belinda E; Meir, Patrick; Mercado, Lina M; Mirotchnick, Nicholas; Ng, Desmond; Niinemets, Ülo; O'Sullivan, Odhran S; Phillips, Oliver L; Poorter, Lourens; Poot, Pieter; Prentice, I Colin; Salinas, Norma; Rowland, Lucy M; Ryan, Michael G; Sitch, Stephen; Slot, Martijn; Smith, Nicholas G; Turnbull, Matthew H; VanderWel, Mark C; Valladares, Fernando; Veneklaas, Erik J; Weerasinghe, Lasantha K; Wirth, Christian; Wright, Ian J; Wythers, Kirk R; Xiang, Jen; Xiang, Shuang; Zaragoza-Castells, Joana

    2015-04-01

    Leaf dark respiration (Rdark ) is an important yet poorly quantified component of the global carbon cycle. Given this, we analyzed a new global database of Rdark and associated leaf traits. Data for 899 species were compiled from 100 sites (from the Arctic to the tropics). Several woody and nonwoody plant functional types (PFTs) were represented. Mixed-effects models were used to disentangle sources of variation in Rdark . Area-based Rdark at the prevailing average daily growth temperature (T) of each site increased only twofold from the Arctic to the tropics, despite a 20°C increase in growing T (8-28°C). By contrast, Rdark at a standard T (25°C, Rdark (25) ) was threefold higher in the Arctic than in the tropics, and twofold higher at arid than at mesic sites. Species and PFTs at cold sites exhibited higher Rdark (25) at a given photosynthetic capacity (Vcmax (25) ) or leaf nitrogen concentration ([N]) than species at warmer sites. Rdark (25) values at any given Vcmax (25) or [N] were higher in herbs than in woody plants. The results highlight variation in Rdark among species and across global gradients in T and aridity. In addition to their ecological significance, the results provide a framework for improving representation of Rdark in terrestrial biosphere models (TBMs) and associated land-surface components of Earth system models (ESMs). © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  18. Wetting of B4C, TiC and graphite substrates by molten Mg

    International Nuclear Information System (INIS)

    Zhang Dan; Shen Ping; Shi Laixin; Jiang Qichuan

    2011-01-01

    Highlights: → The wettability of TiC, B4C and C by molten Mg was determined using an improved sessile drop method. → A new method to evaluate the wetting behavior coupled with evaporation and reaction was proposed. → The bonding characteristics in the Mg/B4C, Mg/TiC and Mg/graphite systems were evaluated. - Abstract: The isotherm wetting of B 4 C, TiC and graphite substrates by molten Mg was studied in a flowing Ar atmosphere at 973-1173 K using an improved sessile drop method. The initial contact angles are in the ranges of 95-87 deg., 74-60 deg. and 142-124 deg., respectively, moderately depending on the temperature. All the systems are non-reactive in nature; however, the presence of impurity of free boron at the B 4 C surface gave rise to the chemical reaction with molten Mg and thus promoted the wettability to a certain degree. A new method was proposed to evaluate the wetting behavior coupled with evaporation and chemical reaction. Furthermore, based on the comparison of the work of adhesion and cohesion, the bonding in the Mg/B 4 C and Mg/TiC systems is presumably mainly chemical while that in the Mg/graphite system is physical.

  19. Nonlocality and short-range wetting phenomena.

    Science.gov (United States)

    Parry, A O; Romero-Enrique, J M; Lazarides, A

    2004-08-20

    We propose a nonlocal interfacial model for 3D short-range wetting at planar and nonplanar walls. The model is characterized by a binding-potential functional depending only on the bulk Ornstein-Zernike correlation function, which arises from different classes of tubelike fluctuations that connect the interface and the substrate. The theory provides a physical explanation for the origin of the effective position-dependent stiffness and binding potential in approximate local theories and also obeys the necessary classical wedge covariance relationship between wetting and wedge filling. Renormalization group and computer simulation studies reveal the strong nonperturbative influence of nonlocality at critical wetting, throwing light on long-standing theoretical problems regarding the order of the phase transition.

  20. Nonlocality and Short-Range Wetting Phenomena

    Science.gov (United States)

    Parry, A. O.; Romero-Enrique, J. M.; Lazarides, A.

    2004-08-01

    We propose a nonlocal interfacial model for 3D short-range wetting at planar and nonplanar walls. The model is characterized by a binding-potential functional depending only on the bulk Ornstein-Zernike correlation function, which arises from different classes of tubelike fluctuations that connect the interface and the substrate. The theory provides a physical explanation for the origin of the effective position-dependent stiffness and binding potential in approximate local theories and also obeys the necessary classical wedge covariance relationship between wetting and wedge filling. Renormalization group and computer simulation studies reveal the strong nonperturbative influence of nonlocality at critical wetting, throwing light on long-standing theoretical problems regarding the order of the phase transition.

  1. Impact of leaf motion constraints on IMAT plan quality, deliver accuracy, and efficiency

    International Nuclear Information System (INIS)

    Chen Fan; Rao Min; Ye Jinsong; Shepard, David M.; Cao Daliang

    2011-01-01

    Purpose: Intensity modulated arc therapy (IMAT) is a radiation therapy delivery technique that combines the efficiency of arc based delivery with the dose painting capabilities of intensity modulated radiation therapy (IMRT). A key challenge in developing robust inverse planning solutions for IMAT is the need to account for the connectivity of the beam shapes as the gantry rotates from one beam angle to the next. To overcome this challenge, inverse planning solutions typically impose a leaf motion constraint that defines the maximum distance a multileaf collimator (MLC) leaf can travel between adjacent control points. The leaf motion constraint ensures the deliverability of the optimized plan, but it also impacts the plan quality, the delivery accuracy, and the delivery efficiency. In this work, the authors have studied leaf motion constraints in detail and have developed recommendations for optimizing the balance between plan quality and delivery efficiency. Methods: Two steps were used to generate optimized IMAT treatment plans. The first was the direct machine parameter optimization (DMPO) inverse planning module in the Pinnacle 3 planning system. Then, a home-grown arc sequencer was applied to convert the optimized intensity maps into deliverable IMAT arcs. IMAT leaf motion constraints were imposed using limits of between 1 and 30 mm/deg. Dose distributions were calculated using the convolution/superposition algorithm in the Pinnacle 3 planning system. The IMAT plan dose calculation accuracy was examined using a finer sampling calculation and the quality assurance verification. All plans were delivered on an Elekta Synergy with an 80-leaf MLC and were verified using an IBA MatriXX 2D ion chamber array inserted in a MultiCube solid water phantom. Results: The use of a more restrictive leaf motion constraint (less than 1-2 mm/deg) results in inferior plan quality. A less restrictive leaf motion constraint (greater than 5 mm/deg) results in improved plan quality

  2. SU-F-T-527: A Novel Dynamic Multileaf Collimator Leaf-Sequencing Algorithm in Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Jing, J; Lin, H [Hefei University of Technology, Hefei, Anhui (China); Chow, J [Princess Margaret Cancer Centre, Toronto, ON (Canada)

    2016-06-15

    Purpose: A novel leaf-sequencing algorithm is developed for generating arbitrary beam intensity profiles in discrete levels using dynamic multileaf collimator (MLC). The efficiency of this dynamic MLC leaf-sequencing method was evaluated using external beam treatment plans delivered by intensity modulated radiation therapy technique. Methods: To qualify and validate this algorithm, integral test for the beam segment of MLC generated by the CORVUS treatment planning system was performed with clinical intensity map experiments. The treatment plans were optimized and the fluence maps for all photon beams were determined. This algorithm started with the algebraic expression for the area under the beam profile. The coefficients in the expression can be transformed into the specifications for the leaf-setting sequence. The leaf optimization procedure was then applied and analyzed for clinical relevant intensity profiles in cancer treatment. Results: The macrophysical effect of this method can be described by volumetric plan evaluation tools such as dose-volume histograms (DVHs). The DVH results are in good agreement compared to those from the CORVUS treatment planning system. Conclusion: We developed a dynamic MLC method to examine the stability of leaf speed including effects of acceleration and deceleration of leaf motion in order to make sure the stability of leaf speed did not affect the intensity profile generated. It was found that the mechanical requirements were better satisfied using this method. The Project is sponsored by the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry.

  3. SU-F-T-527: A Novel Dynamic Multileaf Collimator Leaf-Sequencing Algorithm in Radiation Therapy

    International Nuclear Information System (INIS)

    Jing, J; Lin, H; Chow, J

    2016-01-01

    Purpose: A novel leaf-sequencing algorithm is developed for generating arbitrary beam intensity profiles in discrete levels using dynamic multileaf collimator (MLC). The efficiency of this dynamic MLC leaf-sequencing method was evaluated using external beam treatment plans delivered by intensity modulated radiation therapy technique. Methods: To qualify and validate this algorithm, integral test for the beam segment of MLC generated by the CORVUS treatment planning system was performed with clinical intensity map experiments. The treatment plans were optimized and the fluence maps for all photon beams were determined. This algorithm started with the algebraic expression for the area under the beam profile. The coefficients in the expression can be transformed into the specifications for the leaf-setting sequence. The leaf optimization procedure was then applied and analyzed for clinical relevant intensity profiles in cancer treatment. Results: The macrophysical effect of this method can be described by volumetric plan evaluation tools such as dose-volume histograms (DVHs). The DVH results are in good agreement compared to those from the CORVUS treatment planning system. Conclusion: We developed a dynamic MLC method to examine the stability of leaf speed including effects of acceleration and deceleration of leaf motion in order to make sure the stability of leaf speed did not affect the intensity profile generated. It was found that the mechanical requirements were better satisfied using this method. The Project is sponsored by the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry.

  4. Relating Stomatal Conductance to Leaf Functional Traits.

    Science.gov (United States)

    Kröber, Wenzel; Plath, Isa; Heklau, Heike; Bruelheide, Helge

    2015-10-12

    Leaf functional traits are important because they reflect physiological functions, such as transpiration and carbon assimilation. In particular, morphological leaf traits have the potential to summarize plants strategies in terms of water use efficiency, growth pattern and nutrient use. The leaf economics spectrum (LES) is a recognized framework in functional plant ecology and reflects a gradient of increasing specific leaf area (SLA), leaf nitrogen, phosphorus and cation content, and decreasing leaf dry matter content (LDMC) and carbon nitrogen ratio (CN). The LES describes different strategies ranging from that of short-lived leaves with high photosynthetic capacity per leaf mass to long-lived leaves with low mass-based carbon assimilation rates. However, traits that are not included in the LES might provide additional information on the species' physiology, such as those related to stomatal control. Protocols are presented for a wide range of leaf functional traits, including traits of the LES, but also traits that are independent of the LES. In particular, a new method is introduced that relates the plants' regulatory behavior in stomatal conductance to vapor pressure deficit. The resulting parameters of stomatal regulation can then be compared to the LES and other plant functional traits. The results show that functional leaf traits of the LES were also valid predictors for the parameters of stomatal regulation. For example, leaf carbon concentration was positively related to the vapor pressure deficit (vpd) at the point of inflection and the maximum of the conductance-vpd curve. However, traits that are not included in the LES added information in explaining parameters of stomatal control: the vpd at the point of inflection of the conductance-vpd curve was lower for species with higher stomatal density and higher stomatal index. Overall, stomata and vein traits were more powerful predictors for explaining stomatal regulation than traits used in the LES.

  5. Dynamic Wetting Behavior of Vibrated Droplets on a Micropillared Surface

    Directory of Open Access Journals (Sweden)

    Zhi-hai Jia

    2016-01-01

    Full Text Available The dynamical wetting behavior has been observed under vertical vibration of a water droplet placed on a micropillared surface. The wetting transition takes place under the different processes. In compression process, the droplet is transited from Cassie state to Wenzel state. The droplet undergoes a Wenzel-Cassie wetting transition in restoring process and the droplet bounces off from the surface in bouncing process. Meanwhile, the wetting and dewetting models during vibration are proposed. The wetting transition is confirmed by the model calculation. This study has potential to be used to control the wetting state.

  6. 7 CFR 30.31 - Classification of leaf tobacco.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Classification of leaf tobacco. 30.31 Section 30.31... REGULATIONS TOBACCO STOCKS AND STANDARDS Classification of Leaf Tobacco Covering Classes, Types and Groups of Grades § 30.31 Classification of leaf tobacco. For the purpose of this classification leaf tobacco shall...

  7. Solving the Controversy on the Wetting Transparency of Graphene.

    Science.gov (United States)

    Kim, Donggyu; Pugno, Nicola M; Buehler, Markus J; Ryu, Seunghwa

    2015-10-26

    Since its discovery, the wetting transparency of graphene, the transmission of the substrate wetting property over graphene coating, has gained significant attention due to its versatility for potential applications. Yet, there have been debates on the interpretation and validity of the wetting transparency. Here, we present a theory taking two previously disregarded factors into account and elucidate the origin of the partial wetting transparency. We show that the liquid bulk modulus is crucial to accurately calculate the van der Waals interactions between the liquid and the surface, and that various wetting states on rough surfaces must be considered to understand a wide range of contact angle measurements that cannot be fitted with a theory considering the flat surface. In addition, we reveal that the wetting characteristic of the substrate almost vanishes when covered by any coating as thick as graphene double layers. Our findings reveal a more complete picture of the wetting transparency of graphene as well as other atomically thin coatings, and can be applied to study various surface engineering problems requiring wettability-tuning.

  8. Possible Roles of Strigolactones during Leaf Senescence

    Directory of Open Access Journals (Sweden)

    Yusuke Yamada

    2015-09-01

    Full Text Available Leaf senescence is a complicated developmental process that involves degenerative changes and nutrient recycling. The progress of leaf senescence is controlled by various environmental cues and plant hormones, including ethylene, jasmonic acid, salicylic acid, abscisic acid, cytokinins, and strigolactones. The production of strigolactones is induced in response to nitrogen and phosphorous deficiency. Strigolactones also accelerate leaf senescence and regulate shoot branching and root architecture. Leaf senescence is actively promoted in a nutrient-poor soil environment, and nutrients are transported from old leaves to young tissues and seeds. Strigolactones might act as important signals in response to nutrient levels in the rhizosphere. In this review, we discuss the possible roles of strigolactones during leaf senescence.

  9. Investigations of metal leaching from mobile phone parts using TCLP and WET methods.

    Science.gov (United States)

    Yadav, Satyamanyu; Yadav, Sudesh

    2014-11-01

    Metal leaching from landfills containing end-of-life or otherwise discarded mobile phones poses a threat to the environment as well as public health. In the present study, the metal toxicity of printed wire boards (PWBs), plastics, liquid crystal displays (LCDs) and batteries of mobile phones was assessed using the Toxicity Characteristics Leaching Procedures (TCLP) and the Waste Extraction Test (WET). The PWBs failed TCLP for Pb and Se, and WET for Pb and Zn. In WET, the two PWB samples for Pb and Zn and the battery samples for Co and Cu failed the test. Furthermore, the PWBS for Ni and the battery samples for Ni and Co failed the WET in their TCLP leachates. Both, Ni and Co are the regulatory metals in only WET and not covered under TCLP. These observations indicate that the TCLP seems to be a more aggressive test than the WET for the metal leaching from the mobile phone parts. The compositional variations, nature of leaching solution (acetate in TCLP and citrate in WET) and the redox conditions in the leaching solution of the PWBs resulted in different order of metals with respect to their amounts of leaching from PWBs in TCLP (Fe > Pb > Zn > Ni > Co > Cu) and WET (Zn > Fe > Ni > Pb > Cu). The metal leaching also varied with the make, manufacturing year and part of the mobile phone tested. PWBs, plastics and batteries should be treated as hazardous waste. Metal leaching, particularly of Se and Pb, from mobile phones can be harmful to the environment and human health. Therefore, a scientifically sound and environmentally safe handling and disposal management system needs to be evolved for the mobile phone disposal. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Cotton leaf curl Burewala virus with intact or mutant transcriptional activator proteins: complexity of cotton leaf curl disease.

    Science.gov (United States)

    Kumar, Jitendra; Gunapati, Samatha; Alok, Anshu; Lalit, Adarsh; Gadre, Rekha; Sharma, Naresh C; Roy, Joy K; Singh, Sudhir P

    2015-05-01

    Cotton leaf curl disease (CLCuD) is a serious disease of cotton on the Indian subcontinent. In the present study, three cotton leaf curl viruses, cotton leaf curl Burewala virus (CLCuBuV), cotton leaf curl Kokhran virus (CLCuKoV) and cotton leaf curl Multan virus (CLCuMV), and their associated satellites, cotton leaf curl Multan betasatellite (CLCuMB) and cotton leaf curl Multan alphasatellite (CLCuMA), were detected. CLCuBuV with either intact (CLCuBuV-1) or mutant (CLCuBuV-2) transcriptional activator protein (TrAP) were detected in different plants. Agroinoculation with CLCuBuV-1 or CLCuBuV-2 together with CLCuMB and CLCuMA, resulted in typical leaf curling and stunting of tobacco plants. Inoculation with CLCuKoV or an isolate of CLCuMV (CLCuMV-2), together with CLCuMB and CLCuMA, induced severe leaf curling, while the other isolate of CLCuMV (CLCuMV-1), which was recombinant in origin, showed mild leaf curling in tobacco. To investigate the effect of intact or mutant TrAP and also the recombination events, CLCuBuV-1, CLCuBuV-2, CLCuMV-1 or CLCuMV-2 together with the satellites (CLCuMA and CLCuMB) were transferred to cotton via whitefly-mediated transmission. Cotton plants containing CLCuBuV-1, CLCuBuV-2 or CLCuMV-2 together with satellites showed curling and stunting, whereas the plants having CLCuMV-1 and the satellites showed only mild and indistinguishable symptoms. CLCuBuV-1 (intact TrAP) showed severe symptoms in comparison to CLCuBuV-2 (mutant TrAP). The present study reveals that two types of CLCuBuV, one with an intact TrAP and the other with a mutant TrAP, exist in natural infection of cotton in India. Additionally, CLCuMuV-1, which has a recombinant origin, induces mild symptoms in comparison to the other CLCuMV isolates.

  11. Titan LEAF: A Sky Rover Granting Targeted Access to Titan's Lakes and Plains

    Science.gov (United States)

    Ross, Floyd; Lee, Greg; Sokol, Daniel; Goldman, Benjamin; Bolisay, Linden

    2016-10-01

    Northrop Grumman, in collaboration with L'Garde Inc. and Global Aerospace Corporation (GAC), has been developing the Titan Lifting Entry Atmospheric Flight (T-LEAF) sky rover to roam the atmosphere and observe at close quarters the lakes and plains of Titan. T-LEAF also supports surface exploration and science by providing precision delivery of in situ instruments to the surface.T-LEAF is a maneuverable, buoyant air vehicle. Its aerodynamic shape provides its maneuverability, and its internal helium envelope reduces propulsion power requirements and also the risk of crashing. Because of these features, T-LEAF is not restricted to following prevailing wind patterns. This freedom of mobility allows it be commanded to follow the shorelines of Titan's methane lakes, for example, or to target very specific surface locations.T-LEAF utilizes a variable power propulsion system, from high power at ~200W to low power at ~50W. High power mode uses the propellers and control surfaces for additional mobility and maneuverability. It also allows the vehicle to hover over specific locations for long duration surface observations. Low power mode utilizes GAC's Titan Winged Aerobot (TWA) concept, currently being developed with NASA funding, which achieves guided flight without the use of propellers or control surfaces. Although slower than high powered flight, this mode grants increased power to science instruments while still maintaining control over direction of travel.Additionally, T-LEAF is its own entry vehicle, with its leading edges protected by flexible thermal protection system (f-TPS) materials already being tested by NASA's Hypersonic Inflatable Aerodynamic Decelerator (HIAD) group. This f-TPS technology allows T-LEAF to inflate in space, like HIAD, and then enter the atmosphere fully deployed. This approach accommodates entry velocities from as low as ~1.8 km/s if entering from Titan orbit, up to ~6 km/s if entering directly from Saturn orbit, like the Huygens probe

  12. Assimilating Remote Sensing Observations of Leaf Area Index and Soil Moisture for Wheat Yield Estimates: An Observing System Simulation Experiment

    Science.gov (United States)

    Nearing, Grey S.; Crow, Wade T.; Thorp, Kelly R.; Moran, Mary S.; Reichle, Rolf H.; Gupta, Hoshin V.

    2012-01-01

    Observing system simulation experiments were used to investigate ensemble Bayesian state updating data assimilation of observations of leaf area index (LAI) and soil moisture (theta) for the purpose of improving single-season wheat yield estimates with the Decision Support System for Agrotechnology Transfer (DSSAT) CropSim-Ceres model. Assimilation was conducted in an energy-limited environment and a water-limited environment. Modeling uncertainty was prescribed to weather inputs, soil parameters and initial conditions, and cultivar parameters and through perturbations to model state transition equations. The ensemble Kalman filter and the sequential importance resampling filter were tested for the ability to attenuate effects of these types of uncertainty on yield estimates. LAI and theta observations were synthesized according to characteristics of existing remote sensing data, and effects of observation error were tested. Results indicate that the potential for assimilation to improve end-of-season yield estimates is low. Limitations are due to a lack of root zone soil moisture information, error in LAI observations, and a lack of correlation between leaf and grain growth.

  13. Wetting properties of liquid lithium on lithium compounds

    Energy Technology Data Exchange (ETDEWEB)

    Krat, S.A., E-mail: stepan.krat@gmail.com [Center for Plasma Material Interactions, Department of Nuclear, Plasma, and Radiological Engineering, University Illinois at Urbana-Champaign, Urbana (United States); National Research Nuclear University MEPhI, Moscow (Russian Federation); Popkov, A.S. [Center for Plasma Material Interactions, Department of Nuclear, Plasma, and Radiological Engineering, University Illinois at Urbana-Champaign, Urbana (United States); National Research Nuclear University MEPhI, Moscow (Russian Federation); Gasparyan, Yu. M.; Pisarev, A.A. [National Research Nuclear University MEPhI, Moscow (Russian Federation); Fiflis, Peter; Szott, Matthew; Christenson, Michael; Kalathiparambil, Kishor; Ruzic, David N. [Center for Plasma Material Interactions, Department of Nuclear, Plasma, and Radiological Engineering, University Illinois at Urbana-Champaign, Urbana (United States)

    2017-04-15

    Highlights: • Contact angles of liquid lithium and Li{sub 3}N, Li{sub 2}O, Li{sub 2}CO{sub 3} were measured. • Liquid lithium wets lithium compounds at relatively low temperatures: Li{sub 3}N at 257 °C, Li{sub 2}O at 259 °C, Li{sub 2}CO{sub 3} at 323 °C. • Li wets Li{sub 2}O and Li{sub 3}N better than previously measured fusion-relevant materials (W, Mo, Ta, TZM, stainless steel). • Li wets Li{sub 2}CO{sub 3} better than most previously measured fusion-relevant materials (W, Mo, Ta). - Abstract: Liquid metal plasma facing components (LMPFC) have shown a potential to supplant solid plasma facing components materials in the high heat flux regions of magnetic confinement fusion reactors due to the reduction or elimination of concerns over melting, wall damage, and erosion. To design a workable LMPFC, one must understand how liquid metal interacts with solid underlying structures. Wetting is an important factor in such interaction, several designs of LMPFC require liquid metal to wet the underlying solid structures. The wetting of lithium compounds (lithium nitride, oxide, and carbonate) by 200 °C liquid lithium at various surface temperature from 230 to 330 °C was studied by means of contact angle measurements. Wetting temperatures, defined as the temperature above which the contact angle is less than 90°, were measured. The wetting temperature was 257 °C for nitride, 259 °C for oxide, and 323 °C for carbonate. Surface tensions of solid lithium compounds were calculated from the contact angle measurements.

  14. Wetting-dewetting films: the role of structural forces.

    Science.gov (United States)

    Nikolov, Alex; Wasan, Darsh

    2014-04-01

    The liquid wetting and dewetting of solids are ubiquitous phenomena that occur in everyday life. Understanding the nature of these phenomena is beneficial for research and technological applications. However, despite their importance, the phenomena are still not well understood because of the nature of the substrate's surface energy non-ideality and dynamics. This paper illustrates the mechanisms and applications of liquid wetting and dewetting on hydrophilic and hydrophobic substrates. We discuss the classical understanding and application of wetting and film stability criteria based on the Frumkin-Derjaguin disjoining pressure model. The roles of the film critical thickness and capillary pressure on the film instability based on the disjoining pressure isotherm are elucidated, as are the criteria for stable and unstable wet films. We consider the film area in the model for the film stability and the applicable experiments. This paper also addresses the two classic film instability mechanisms for suspended liquid films based on the conditions of the free energy criteria originally proposed by de Vries (nucleation hole formation) and Vrij-Scheludko (capillary waves vs. van der Waals forces) that were later adapted to explain dewetting. We include a discussion of the mechanisms of nanofilm wetting and dewetting on a solid substrate based on nanoparticles' tendency to form a 2D layer and 2D inlayer in the film under the wetting film's surface confinement. We also present our view on the future of wetting-dewetting modeling and its applications in developing emerging technologies. We believe the review and analysis presented here will benefit the current and future understanding of the wetting-dewetting phenomena, as well as aid in the development of novel products and technologies. © 2013.

  15. Wet gas compression. Experimental investigation of the aerodynamics within a centrifugal compressor exposed to wet gas

    Energy Technology Data Exchange (ETDEWEB)

    Gruener, Trond Gammelsaeter

    2012-07-01

    The demand for more efficient oil and gas production requires improved technology to increase production rates and enhance profitable operation. The centrifugal compressor is the key elements in the compression system. Preliminary studies of wet gas compressor concepts have demonstrated the benefits of wet gas boosting. An open-loop test facility was designed for single-stage wet gas compressor testing. Experimental investigators have been performed to reveal the impact of liquid on the aerodynamics of centrifugal compressor. The investigation consisted of two test campaigns with different impeller/diffuser configurations. Atmospheric air and water were used as experimental fluids. The two configurations showed a different pressure ratio characteristics when liquid as present. The results from test campaign A demonstrated a pronounced pressure ratio decrease at high flow and a minor pressure ration increase pressure ratio with reducing gas mass fraction (GMF). The deviation in pressure ratio characteristic for the two test campaigns was attributed to the volute operating characteristic. Both impeller/diffuser configurations demonstrated a reduction in maximum volume flow with decreasing GMF. The impeller pressure ratio was related to the diffuser and/or the volute performance). Air and water are preferable experimental fluids for safety reasons and because a less extensive facility design is required. An evaluation of the air/water tests versus hydrocarbon tests was performed in order to reveal whether the results were representative. Air/water tests at atmospheric conditions reproduced the general performance trend of hydrocarbon wet gas compressor tests with an analogous impeller at high pressures. Aerodynamic instability limits the operating range because of feasible severe damage of the compressor and adverse influence on the performance. It is essential to establish the surge margin at different operating conditions. A delayed instability inception was

  16. Leaf development and demography explain photosynthetic seasonality in Amazon evergreen forests

    Science.gov (United States)

    Wu, Jin; Albert, Lauren; Lopes, Aline; Restrepo-Coupe, Natalia; Hayek, Matthew; Wiedemann, Kenia T.; Guan, Kaiyu; Stark, Scott C.; Christoffersen, Bradley; Prohaska, Neill; Tavares, Julia V.; Marostica, Suelen; Kobayashi, Hideki; Ferreira, Maurocio L.; Campos, Kleber Silva; da Silva, Rodrigo; Brando, Paulo M.; Dye, Dennis G.; Huxman, Travis E.; Huete, Alfredo; Nelson, Bruce; Saleska, Scott

    2016-01-01

    In evergreen tropical forests, the extent, magnitude, and controls on photosynthetic seasonality are poorly resolved and inadequately represented in Earth system models. Combining camera observations with ecosystem carbon dioxide fluxes at forests across rainfall gradients in Amazônia, we show that aggregate canopy phenology, not seasonality of climate drivers, is the primary cause of photosynthetic seasonality in these forests. Specifically, synchronization of new leaf growth with dry season litterfall shifts canopy composition toward younger, more light-use efficient leaves, explaining large seasonal increases (~27%) in ecosystem photosynthesis. Coordinated leaf development and demography thus reconcile seemingly disparate observations at different scales and indicate that accounting for leaf-level phenology is critical for accurately simulating ecosystem-scale responses to climate change.

  17. The plant leaf movement analyzer (PALMA): a simple tool for the analysis of periodic cotyledon and leaf movement in Arabidopsis thaliana.

    Science.gov (United States)

    Wagner, Lucas; Schmal, Christoph; Staiger, Dorothee; Danisman, Selahattin

    2017-01-01

    The analysis of circadian leaf movement rhythms is a simple yet effective method to study effects of treatments or gene mutations on the circadian clock of plants. Currently, leaf movements are analysed using time lapse photography and subsequent bioinformatics analyses of leaf movements. Programs that are used for this purpose either are able to perform one function (i.e. leaf tip detection or rhythm analysis) or their function is limited to specific computational environments. We developed a leaf movement analysis tool-PALMA-that works in command line and combines image extraction with rhythm analysis using Fast Fourier transformation and non-linear least squares fitting. We validated PALMA in both simulated time series and in experiments using the known short period mutant sensitivity to red light reduced 1 ( srr1 - 1 ). We compared PALMA with two established leaf movement analysis tools and found it to perform equally well. Finally, we tested the effect of reduced iron conditions on the leaf movement rhythms of wild type plants. Here, we found that PALMA successfully detected period lengthening under reduced iron conditions. PALMA correctly estimated the period of both simulated and real-life leaf movement experiments. As a platform-independent console-program that unites both functions needed for the analysis of circadian leaf movements it is a valid alternative to existing leaf movement analysis tools.

  18. Effects of foaming and antifoaming agents on the performance of a wet flue gas desulfurization pilot plant

    DEFF Research Database (Denmark)

    Qin, Siqiang; Hansen, Brian Brun; Kiil, Søren

    2014-01-01

    Foaming is a common phenomenon in industrial processes, including wet flue gas desulfurization (FGD) plants. A systemic investigation of the influence of two foaming agents, sodium dodecyl sulphate (SDS) and egg white albumin (protein), and two commercial antifoams on a wet FGD pilot plant...

  19. Effects of nitrogen application rate and leaf age on the distribution pattern of leaf SPAD readings in the rice canopy.

    Directory of Open Access Journals (Sweden)

    Hu Yang

    Full Text Available A Soil-Plant Analysis Development (SPAD chlorophyll meter can be used as a simple tool for evaluating N concentration of the leaf and investigating the combined effects of nitrogen rate and leaf age on N distribution. We conducted experiments in a paddy field over two consecutive years (2008-2009 using rice plants treated with six different N application levels. N distribution pattern was determined by SPAD readings based on the temporal dynamics of N concentrations in individual leaves. At 62 days after transplantation (DAT in 2008 and DAT 60 in 2009, leaf SPAD readings increased from the upper to lower in the rice canopy that received N levels of 150 to 375 kg ha(-1The differences in SPAD readings between the upper and lower leaf were larger under higher N application rates. However, as plants grew, this atypical distribution of SPAD readings in canopy leaf quickly reversed to the general order. In addition, temporal dynamics of the leaf SPAD readings (N concentrations were fitted to a piecewise function. In our model, changes in leaf SPAD readings were divided into three stages: growth, functioning, and senescence periods. The leaf growth period lasted approximately 6 days, and cumulative growing days were not affected by N application rates. The leaf functioning period was represented with a relatively stable SPAD reading related to N application rate, and cumulative growing days were extended with increasing N application rates. A quadratic equation was utilized to describe the relationship between SPAD readings and leaf age during the leaf senescence period. The rate of decrease in SPAD readings increased with the age of leaves, but the rate was slowed by N application. As leaves in the lower canopy were physiologically older than leaves in the upper canopy, the rate of decrease in SPAD readings was faster in the lower leaves.

  20. Occurrence of barley leaf disease and control strategies in Denmark

    DEFF Research Database (Denmark)

    Jørgensen, Lise Nistrup; Ørum, Jens Erik; Heick, Thies Marten

    Barley (Hordeum vulgare) is one of the major crops in Denmark and of special importance for malting and for pig feed. In 2016, the crop was grown covering a total area of 700,000 ha; approximately 25% of arable area in Denmark. To ensure high yield of around 60 dt ha-1, disease-tolerant cultivars...... have proven to be quite effective against all leaf diseases, aside from brown rust and mildew. Denmark has a national record system for pesticide usages. All farmers upload their fungicide use by crop, creating a good basis for assessing the differences in use pattern across different regions...... and fungicide treatments are required. Each year, barley cultivars are assessed for susceptibility towards leaf diseases in national observation plots. The most predominant fungal leaf diseases in Denmark are barley scald (Rhynchosporium secalis), net blotch (Pyrenophora teres), brown rust (Puccinia hordei...

  1. A hairy-leaf gene, BLANKET LEAF, of wild Oryza nivara increases photosynthetic water use efficiency in rice.

    Science.gov (United States)

    Hamaoka, Norimitsu; Yasui, Hideshi; Yamagata, Yoshiyuki; Inoue, Yoko; Furuya, Naruto; Araki, Takuya; Ueno, Osamu; Yoshimura, Atsushi

    2017-12-01

    High water use efficiency is essential to water-saving cropping. Morphological traits that affect photosynthetic water use efficiency are not well known. We examined whether leaf hairiness improves photosynthetic water use efficiency in rice. A chromosome segment introgression line (IL-hairy) of wild Oryza nivara (Acc. IRGC105715) with the genetic background of Oryza sativa cultivar 'IR24' had high leaf pubescence (hair). The leaf hairs developed along small vascular bundles. Linkage analysis in BC 5 F 2 and F 3 populations showed that the trait was governed by a single gene, designated BLANKET LEAF (BKL), on chromosome 6. IL-hairy plants had a warmer leaf surface in sunlight, probably due to increased boundary layer resistance. They had a lower transpiration rate under moderate and high light intensities, resulting in higher photosynthetic water use efficiency. Introgression of BKL on chromosome 6 from O. nivara improved photosynthetic water use efficiency in the genetic background of IR24.

  2. Phenotypic plasticity and local adaptation in leaf ecophysiological traits of 13 contrasting cork oak populations under different water availabilities.

    Science.gov (United States)

    Ramírez-Valiente, Jose Alberto; Sánchez-Gómez, David; Aranda, Ismael; Valladares, Fernando

    2010-05-01

    Plants distributed across a wide range of environmental conditions are submitted to differential selective pressures. Long-term selection can lead to the development of adaptations to the local environment, generating ecotypic differentiation. Additionally, plant species can cope with this environmental variability by phenotypic plasticity. In this study, we examine the importance of both processes in coping with environmental heterogeneity in the Mediterranean sclerophyllous cork oak Quercus suber. For this purpose, we measured growth and key functional traits at the leaf level in 9-year-old plants across 2 years of contrasting precipitation (2005 and 2006) in a common garden. Plants were grown from acorns originated from 13 populations spanning a wide range of climates along the distribution range of the species. The traits measured were: leaf size (LS), specific leaf area (SLA), carbon isotope discrimination (Delta(13)C) and leaf nitrogen content per unit mass (N(mass)). Inter-population differences in LS, SLA and Delta(13)C were found. These differences were associated with rainfall and temperature at the sites of origin, suggesting local adaptation in response to diverging climates. Additionally, SLA and LS exhibited positive responses to the increase in annual rainfall. Year effect explained 28% of the total phenotypic variance in LS and 2.7% in SLA. There was a significant genotype x environment interaction for shoot growth and a phenotypic correlation between the difference in shoot growth among years and the annual mean temperature at origin. This suggests that populations originating from warm sites can benefit more from wet conditions than populations from cool sites. Finally, we investigated the relationships between functional traits and aboveground growth by several regression models. Our results showed that plants with lower SLA presented larger aboveground growth in a dry year and plants with larger leaf sizes displayed larger growth rates in both

  3. Wetting Behavior of Calcium Ferrite Slags on Cristobalite Substrates

    Science.gov (United States)

    Yang, Mingrui; Lv, Xuewei; Wei, Ruirui; Xu, Jian; Bai, Chenguang

    2018-03-01

    Calcium ferrite (CF) is a significant intermediate adhesive phase in high-basicity sinters. The wettability between calcium ferrite (CF) and gangue plays an important role in the assimilation process. The wettability of CF-based slags, in which a constant amount (2 mass pct.) of Al2O3, MgO, SiO2, and TiO2 was added, on solid SiO2 (cristobalite) substrates at 1523 K (1250 °C) was investigated. The interfacial microstructure and spreading mechanisms were discussed for each sample. All the tested slag samples exhibited good wettability on the SiO2 substrate. The initial apparent contact angles were in the range of 20 to 50 deg, while the final apparent contact angles were 5 deg. The wetting process could be divided into three stages on the basis of the change in diameter, namely the "linear spreading" stage, "spreading rate reduction" stage, and "wetting equilibrium" stage. It was found that the CF-SiO2 wetting system exhibits dissolutive wetting and the dissolution of SiO2 into slag influences its spreading process. The spreading rate increases with a decrease in the ratio of viscosity to interfacial tension, which is a result of the addition of Al2O3, MgO, SiO2, and TiO2. After cooling, a deep corrosion pit was formed in the substrate and a diffusion layer was generated in front of the residual slag zone; further, some SiO2 and Fe2O3 solid solutions precipitated in the slag.

  4. Leaf area index from litter collection: impact of specific leaf area variability within a beech stand

    Energy Technology Data Exchange (ETDEWEB)

    Bouriaud, O. [Inst. National de la Recherche Agronomique, Centre de Recherches Forestieres de Nancy, Champenoux (France); Soudani, K. [Univ. Paris-Sud XI, Dept. d' Ecophysiologie Vegetale, Lab. Ecologie Systematique et Evolution, Orsay Cedex (France); Breda, N. [Inst. National de la Recherche Agronomique, Centre de Recherches Forestieres de Nancy, Champenoux (France)

    2003-06-01

    Litter fall collection is a direct method widely used to estimate leaf area index (LAI) in broad-leaved forest stands. Indirect measurements using radiation transmittance and gap fraction theory are often compared and calibrated against litter fall, which is considered as a reference method, but few studies address the question of litter specific leaf area (SLA) measurement and variability. SLA (leaf area per unit of dry weight, m{sup 2}{center_dot}g{sup -1}) is used to convert dry leaf litter biomass (g .m{sup -}2) into leaf area per ground unit area (m{sup 2}{center_dot}m{sup -2}). We paid special attention to this parameter in two young beech stands (dense and thinned) in northeastern France. The variability of both canopy (closure, LAI) and site conditions (soil properties, vegetation) was investigated as potential contributing factors to beech SLA variability. A systematic description of soil and floristic composition was performed and three types of soil were identified. Ellenberg's indicator values were averaged for each plot to assess nitrogen soil content. SLA of beech litter was measured three times during the fall in 23 plots in the stands (40 ha). Litter was collected bimonthly in square-shaped traps (0.5 m{sup 2}) and dried. Before drying, 30 leaves per plot and for each date were sampled, and leaf length, width, and area were measured with the help of a LI-COR areameter. SLA was calculated as the ratio of cumulated leaf area to total dry weight of the 30 leaves. Leaves characteristics per plot were averaged for the three dates of litter collection. Plant area index (PAI), estimated using the LAI-2000 plant canopy analyser and considering only the upper three rings, ranged from 2.9 to 8.1. Specific leaf area of beech litter was also highly different from one plot to the other, ranging from 150 to 320 cm{sup 2}{center_dot}g{sup -1}. Nevertheless, no relationship was found between SLA and stand canopy closure or PAI On the contrary, a significant

  5. Leaf area index from litter collection: impact of specific leaf area variability within a beech stand

    International Nuclear Information System (INIS)

    Bouriaud, O.; Soudani, K.; Breda, N.

    2003-01-01

    Litter fall collection is a direct method widely used to estimate leaf area index (LAI) in broad-leaved forest stands. Indirect measurements using radiation transmittance and gap fraction theory are often compared and calibrated against litter fall, which is considered as a reference method, but few studies address the question of litter specific leaf area (SLA) measurement and variability. SLA (leaf area per unit of dry weight, m 2 ·g -1 ) is used to convert dry leaf litter biomass (g .m - 2) into leaf area per ground unit area (m 2 ·m -2 ). We paid special attention to this parameter in two young beech stands (dense and thinned) in northeastern France. The variability of both canopy (closure, LAI) and site conditions (soil properties, vegetation) was investigated as potential contributing factors to beech SLA variability. A systematic description of soil and floristic composition was performed and three types of soil were identified. Ellenberg's indicator values were averaged for each plot to assess nitrogen soil content. SLA of beech litter was measured three times during the fall in 23 plots in the stands (40 ha). Litter was collected bimonthly in square-shaped traps (0.5 m 2 ) and dried. Before drying, 30 leaves per plot and for each date were sampled, and leaf length, width, and area were measured with the help of a LI-COR areameter. SLA was calculated as the ratio of cumulated leaf area to total dry weight of the 30 leaves. Leaves characteristics per plot were averaged for the three dates of litter collection. Plant area index (PAI), estimated using the LAI-2000 plant canopy analyser and considering only the upper three rings, ranged from 2.9 to 8.1. Specific leaf area of beech litter was also highly different from one plot to the other, ranging from 150 to 320 cm 2 ·g -1 . Nevertheless, no relationship was found between SLA and stand canopy closure or PAI On the contrary, a significant relationship between SLA and soil properties was observed. Both SLA

  6. Effect of Dentin Wetness on the Bond Strength of Universal Adhesives

    Directory of Open Access Journals (Sweden)

    An-Na Choi

    2017-10-01

    Full Text Available The effects of dentin wetness on the bond strength and adhesive interface morphology of universal adhesives have been investigated using micro-tensile bond strength (μTBS testing and confocal laser scanning microscopy (CLSM. Seventy-two human third molars were wet ground to expose flat dentin surfaces. They were divided into three groups according to the air-drying time of the dentin surfaces: 0 (without air drying, 5, and 10 s. The dentin surfaces were then treated with three universal adhesives: G-Premio Bond, Single Bond Universal, and All-Bond Universal in self-etch or etch-and-rinse mode. After composite build up, a μTBS test was performed. One additional tooth was prepared for each group by staining the adhesives with 0.01 wt % of Rhodamine B fluorescent dye for CLSM analysis. The data were analyzed statistically using ANOVA and Tukey’s post hoc tests (α = 0.05. Two-way ANOVA showed significant differences among the adhesive systems and dentin moisture conditions. An interaction effect was also observed (p < 0.05. One-way ANOVA showed that All-Bond Universal was the only material influenced by the wetness of the dentin surfaces. Wetness of the dentin surface is a factor influencing the micro-tensile bond strength of universal adhesives.

  7. WetLab-2: Providing Quantitative PCR Capabilities on ISS

    Science.gov (United States)

    Parra, Macarena; Jung, Jimmy Kar Chuen; Almeida, Eduardo; Boone, Travis David; Schonfeld, Julie; Tran, Luan Hoang

    2015-01-01

    The objective of NASA Ames Research Centers WetLab-2 Project is to place on the ISS a system capable of conducting gene expression analysis via quantitative real-time PCR (qRT-PCR) of biological specimens sampled or cultured on orbit. The WetLab-2 system is capable of processing sample types ranging from microbial cultures to animal tissues dissected on-orbit. The project has developed a RNA preparation module that can lyse cells and extract RNA of sufficient quality and quantity for use as templates in qRT-PCR reactions. Our protocol has the advantage that it uses non-toxic chemicals, alcohols or other organics. The resulting RNA is transferred into a pipette and then dispensed into reaction tubes that contain all lyophilized reagents needed to perform qRT-PCR reactions. These reaction tubes are mounted on rotors to centrifuge the liquid to the reaction window of the tube using a cordless drill. System operations require simple and limited crew actions including syringe pushes, valve turns and pipette dispenses. The resulting process takes less than 30 min to have tubes ready for loading into the qRT-PCR unit.The project has selected a Commercial-Off-The-Shelf (COTS) qRT-PCR unit, the Cepheid SmartCycler, that will fly in its COTS configuration. The SmartCycler has a number of advantages including modular design (16 independent PCR modules), low power consumption, rapid thermal ramp times and four-color detection. The ability to detect up to four fluorescent channels will enable multiplex assays that can be used to normalize for RNA concentration and integrity, and to study multiple genes of interest in each module. The WetLab-2 system will have the capability to downlink data from the ISS to the ground after a completed run and to uplink new programs. The ability to conduct qRT-PCR on-orbit eliminates the confounding effects on gene expression of reentry stresses and shock acting on live cells and organisms or the concern of RNA degradation of fixed samples. The

  8. Effect of nitrogen supply on leaf growth, leaf nitrogen economy and photosynthetic capacity in potato

    NARCIS (Netherlands)

    Vos, J.; Putten, van der P.E.L.

    1998-01-01

    Literature reports show little effect of nitrogen supply on radiation use efficiency in potato and in other dicotyledonous C3 species. This paper tests the hypothesis that potato reduces leaf size rather than leaf nitrogen concentration and photosynthetic capacity when nitrogen is in short supply.

  9. Stomatal and pavement cell density linked to leaf internal CO2 concentration.

    Science.gov (United States)

    Santrůček, Jiří; Vráblová, Martina; Simková, Marie; Hronková, Marie; Drtinová, Martina; Květoň, Jiří; Vrábl, Daniel; Kubásek, Jiří; Macková, Jana; Wiesnerová, Dana; Neuwithová, Jitka; Schreiber, Lukas

    2014-08-01

    Stomatal density (SD) generally decreases with rising atmospheric CO2 concentration, Ca. However, SD is also affected by light, air humidity and drought, all under systemic signalling from older leaves. This makes our understanding of how Ca controls SD incomplete. This study tested the hypotheses that SD is affected by the internal CO2 concentration of the leaf, Ci, rather than Ca, and that cotyledons, as the first plant assimilation organs, lack the systemic signal. Sunflower (Helianthus annuus), beech (Fagus sylvatica), arabidopsis (Arabidopsis thaliana) and garden cress (Lepidium sativum) were grown under contrasting environmental conditions that affected Ci while Ca was kept constant. The SD, pavement cell density (PCD) and stomatal index (SI) responses to Ci in cotyledons and the first leaves of garden cress were compared. (13)C abundance (δ(13)C) in leaf dry matter was used to estimate the effective Ci during leaf development. The SD was estimated from leaf imprints. SD correlated negatively with Ci in leaves of all four species and under three different treatments (irradiance, abscisic acid and osmotic stress). PCD in arabidopsis and garden cress responded similarly, so that SI was largely unaffected. However, SD and PCD of cotyledons were insensitive to Ci, indicating an essential role for systemic signalling. It is proposed that Ci or a Ci-linked factor plays an important role in modulating SD and PCD during epidermis development and leaf expansion. The absence of a Ci-SD relationship in the cotyledons of garden cress indicates the key role of lower-insertion CO2 assimilation organs in signal perception and its long-distance transport. © The Author 2014. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Verification of wet blasting decontamination technology

    International Nuclear Information System (INIS)

    Matsubara, Sachito; Murayama, Kazunari; Yoshida, Hirohisa; Igei, Shigemitsu; Izumida, Tatsuo

    2013-01-01

    Macoho Co., Ltd. participated in the projects of 'Decontamination Verification Test FY 2011 by the Ministry of the Environment' and 'Decontamination Verification Test FY 2011 by the Cabinet Office.' And we tested verification to use a wet blasting technology for decontamination of rubble and roads contaminated by the accident of Fukushima Daiichi Nuclear Power Plant of the Tokyo Electric Power Company. As a results of the verification test, the wet blasting decontamination technology showed that a decontamination rate became 60-80% for concrete paving, interlocking, dense-grated asphalt pavement when applied to the decontamination of the road. When it was applied to rubble decontamination, a decontamination rate was 50-60% for gravel and approximately 90% for concrete and wood. It was thought that Cs-134 and Cs-137 attached to the fine sludge scraped off from a decontamination object and the sludge was found to be separated from abrasives by wet cyclene classification: the activity concentration of the abrasives is 1/30 or less than the sludge. The result shows that the abrasives can be reused without problems when the wet blasting decontamination technology is used. (author)

  11. Leaf extraction and analysis framework graphical user interface: segmenting and analyzing the structure of leaf veins and areoles.

    Science.gov (United States)

    Price, Charles A; Symonova, Olga; Mileyko, Yuriy; Hilley, Troy; Weitz, Joshua S

    2011-01-01

    Interest in the structure and function of physical biological networks has spurred the development of a number of theoretical models that predict optimal network structures across a broad array of taxonomic groups, from mammals to plants. In many cases, direct tests of predicted network structure are impossible given the lack of suitable empirical methods to quantify physical network geometry with sufficient scope and resolution. There is a long history of empirical methods to quantify the network structure of plants, from roots, to xylem networks in shoots and within leaves. However, with few exceptions, current methods emphasize the analysis of portions of, rather than entire networks. Here, we introduce the Leaf Extraction and Analysis Framework Graphical User Interface (LEAF GUI), a user-assisted software tool that facilitates improved empirical understanding of leaf network structure. LEAF GUI takes images of leaves where veins have been enhanced relative to the background, and following a series of interactive thresholding and cleaning steps, returns a suite of statistics and information on the structure of leaf venation networks and areoles. Metrics include the dimensions, position, and connectivity of all network veins, and the dimensions, shape, and position of the areoles they surround. Available for free download, the LEAF GUI software promises to facilitate improved understanding of the adaptive and ecological significance of leaf vein network structure.

  12. Leaf Area Estimation Models for Ginger ( Zingibere officinale Rosc ...

    African Journals Online (AJOL)

    The study was carried out to develop leaf area estimation models for three cultivars (37/79, 38/79 and 180/73) and four accessions (29/86, 30/86, 47/86 and 52/86) of ginger. Significant variations were observed among the tested genotypes in leaf length (L), leaf width (W) and actual leaf area (ALA). Leaf area was highly ...

  13. Comparison of multi- and hyperspectral imaging data of leaf rust infected wheat plants

    Science.gov (United States)

    Franke, Jonas; Menz, Gunter; Oerke, Erich-Christian; Rascher, Uwe

    2005-10-01

    In the context of precision agriculture, several recent studies have focused on detecting crop stress caused by pathogenic fungi. For this purpose, several sensor systems have been used to develop in-field-detection systems or to test possible applications of remote sensing. The objective of this research was to evaluate the potential of different sensor systems for multitemporal monitoring of leaf rust (puccinia recondita) infected wheat crops, with the aim of early detection of infected stands. A comparison between a hyperspectral (120 spectral bands) and a multispectral (3 spectral bands) imaging system shows the benefits and limitations of each approach. Reflectance data of leaf rust infected and fungicide treated control wheat stand boxes (1sqm each) were collected before and until 17 days after inoculation. Plants were grown under controlled conditions in the greenhouse and measurements were taken under consistent illumination conditions. The results of mixture tuned matched filtering analysis showed the suitability of hyperspectral data for early discrimination of leaf rust infected wheat crops due to their higher spectral sensitivity. Five days after inoculation leaf rust infected leaves were detected, although only slight visual symptoms appeared. A clear discrimination between infected and control stands was possible. Multispectral data showed a higher sensitivity to external factors like illumination conditions, causing poor classification accuracy. Nevertheless, if these factors could get under control, even multispectral data may serve a good indicator for infection severity.

  14. Sheep fed with banana leaf hay reduce ruminal protozoa population.

    Science.gov (United States)

    Freitas, Cláudio Eduardo Silva; Duarte, Eduardo Robson; Alves, Dorismar David; Martinele, Isabel; D'Agosto, Marta; Cedrola, Franciane; de Moura Freitas, Angélica Alves; Dos Santos Soares, Franklin Delano; Beltran, Makenzi

    2017-04-01

    A ciliate protozoa suppression can reduce methane production increasing the energy efficiency utilization by ruminants. The physicochemical characteristics of rumen fluid and the profile of the rumen protozoa populations were evaluated for sheep fed banana leaf hay in replacement of the Cynodon dactylon cv. vaqueiro hay. A total of 30 male sheep were raised in intensive system during 15 days of adaptation and 63 days of experimental period. The animals were distributed in a completely randomized design that included six replicates of five treatments with replacement levels (0, 25, 50, 75, and 100%) of the grass vaquero for the banana leaf hay. Samples of fluid were collected directly from the rumen with sterile catheters. Color, odor, viscosity, and the methylene blue reduction potential (MBRP) were evaluated and pH estimated using a digital potentiometer. After decimal dilutions, counts of genus protozoa were performed in Sedgewick Rafter chambers. The averages of pH, MBRP, color, odor, and viscosity were not influenced by the inclusion of the banana leaf hay. However, the total number of protozoa and Entodinium spp. population significantly decreased at 75 and 100% inclusions of banana leaf hay as roughage.

  15. Productivity of Roselle/cowpea intercropping system in a semi-arid ...

    African Journals Online (AJOL)

    The effects of three planting densities (27,700; 37,000 and 55,500 plants ha-1) of roselle grown sole or intercropped with cowpea were investigated in two field trials in the 1997 and 1998 wet seasons at Sokoto. The leaf area index (LAI) of roselle was highest with the highest roselle planting density in the sole or ...

  16. DEM Study of Wet Cohesive Particles in the Presence of Liquid Bridges in a Gas Fluidized Bed

    Directory of Open Access Journals (Sweden)

    Yurong He

    2014-01-01

    Full Text Available A modified discrete element method (DEM was constructed by compositing an additional liquid-bridge module into the traditional soft-sphere interaction model. Simulations of particles with and without liquid bridges are conducted in a bubbling fluidized bed. The geometry of the simulated bed is the same as the one in Müller’s experiment (Müller et al., 2008. A comparison between the dry and the wet particular systems is carried out on the bubble behavior, the bed fluctuation, and the mixing process. The bubble in the dry system possesses a regular round shape and falling of scattered particles exists while the bubble boundary of the wet particles becomes rough with branches of agglomerates stretching into it. The mixing of the dry system is quicker than that of the wet system. Several interparticle liquid contents are applied in this work to find their influence on the kinetic characteristic of the wet particle flow. With an increase of liquid content, the mixing process costs more time to be completed. Symmetrical profiles of the velocity and granular temperature are found for two low liquid contents (0.001% and 0.01%, while it is antisymmetrical for the highest liquid content (0.1%.

  17. A Global Data Set of Leaf Photosynthetic Rates, Leaf N and P, and Specific Leaf Area

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: This global data set of photosynthetic rates and leaf nutrient traits was compiled from a comprehensive literature review. It includes estimates of Vcmax...

  18. A Global Data Set of Leaf Photosynthetic Rates, Leaf N and P, and Specific Leaf Area

    Data.gov (United States)

    National Aeronautics and Space Administration — This global data set of photosynthetic rates and leaf nutrient traits was compiled from a comprehensive literature review. It includes estimates of Vcmax (maximum...

  19. Does investment in leaf defenses drive changes in leaf economic strategy? A focus on whole-plant ontogeny.

    Science.gov (United States)

    Mason, Chase M; Donovan, Lisa A

    2015-04-01

    Leaf defenses have long been studied in the context of plant growth rate, resource availability, and optimal investment theory. Likewise, one of the central modern paradigms of plant ecophysiology, the leaf economics spectrum (LES), has been extensively studied in the context of these factors across ecological scales ranging from global species data sets to temporal shifts within individuals. Despite strong physiological links between LES strategy and leaf defenses in structure, function, and resource investment, the relationship between these trait classes has not been well explored. This study investigates the relationship between leaf defenses and LES strategy across whole-plant ontogeny in three diverse Helianthus species known to exhibit dramatic ontogenetic shifts in LES strategy, focusing primarily on physical and quantitative chemical defenses. Plants were grown under controlled environmental conditions and sampled for LES and defense traits at four ontogenetic stages. Defenses were found to shift strongly with ontogeny, and to correlate strongly with LES strategy. More advanced ontogenetic stages with more conservative LES strategy leaves had higher tannin activity and toughness in all species, and higher leaf dry matter content in two of three species. Modeling results in two species support the conclusion that changes in defenses drive changes in LES strategy through ontogeny, and in one species that changes in defenses and LES strategy are likely independently driven by ontogeny. Results of this study support the hypothesis that leaf-level allocation to defenses might be an important determinant of leaf economic traits, where high investment in defenses drives a conservative LES strategy.

  20. Nuclear turbine efficiency improvement by wet steam study

    International Nuclear Information System (INIS)

    Nishikawa, Tsuyoshi; Morson, A.; Markytan, R.

    2000-01-01

    Most of the turbine used at the nuclear power plant are operated at environment of wet steam, which composes of a big factor of its inner loss in comparison with those of the thermal power plant. If an analytical method predictable on behavior of the wet steam is established, it could be upgraded efficiency of the turbine and also reliability against corrosion formed by moisture. This study, therefore, aims at understanding of physical property of the wet steam flow scarcely known at present, development of an optimum turbine cascade design tool reflected by the property, development of a turbine cascade design reducible of steam loss due to wet steam by using the tool, and development on a method of removing moisture in the turbine to its outer portion. For the tool, a new three dimensional flow numerical analysis is necessary to be developed, to aim at accurately and numerically understanding of the behavior of wet steam. As this study is in advancing now, by using a turbine cascade optimized on the wet steam flow and a developed moisture removing apparatus, about 0.6 % of upgrading in turbine efficiency can be predicted in comparison with that of the advanced aero-cascade of the GE Corporation. (G.K.)

  1. Development of Wet Noodles Based on Cassava Flour

    Directory of Open Access Journals (Sweden)

    Akhmad Z. Abidin

    2013-04-01

    Full Text Available Cassava is one of Indonesia’s original commodities and contains good nutrition and has high productivity and a relatively low price. Cassava flour has a high potential as a substitute for imported wheat flour that is widely used in noodle production. The main purpose of this research was to develop wet noodles from cassava flour that can compete with wet noodles from wheat flour. The research consisted of experiments with several variations of composition and production method for producing cassava flour-based wet noodles. The best result was then examined for its nutritional value, economical value, and market response, and also a comparison was made between the prepared wet noodles and the standard noodles made from wheat flour. The analysis was based on five characteristics: taste, texture, chewiness, aroma, and appearance. Relations between these characteristics with composition, materials used, and methods applied are discussed. The developed cassava flour-based wet noodle meets physical, nutritional, and economical standards. Raw materials of the noodle were cassava flour and a wheat flour composite with a 5:1 ratio, egg, gluten, soda-ash, water, and vegetable oil, while the process was completed in multiple stages. Market response showed that the cassava flour-based wet noodles were 80% similar to wheat-flour noodles.

  2. A new remote optical wetness sensor and its applications

    NARCIS (Netherlands)

    Heusinkveld, B.G.; Berkowicz, S.M.; Jacobs, A.F.G.; Hillen, W.C.A.M.; Holtslag, A.A.M.

    2008-01-01

    An optical wetness sensor (OWS) was developed for continuous surface wetness measurements. The sensor is an all-weather instrument that does not interfere with the surface wetting and drying process and is unaffected by solar radiation. It is equipped with its own light source with which it can scan

  3. Wetting Transition and Line Tension of Oil on Water

    Science.gov (United States)

    Matsubara, H.; Aratono, M.

    Wetting has attracted wide attention in the field of applied chemistry because of its crucial importance in industrial operations such as coating, painting, and lubrication. Here, we summarize our fundamental understandings of surfactant-assisted wetting transitions which we have found and studied for the last ten years. The difference between the surfactant-assisted wetting transitions and existing ones is discussed. Moreover, the relation between wetting transitions and the stability of the three-phase contact line is examined in terms of the line tension of oil lenses.

  4. Development of a Catalytic Wet Air Oxidation Method to Produce Feedstock Gases from Waste Polymers

    Science.gov (United States)

    Kulis, Michael J.; Guerrero-Medina, Karen J.; Hepp, Aloysius F.

    2012-01-01

    Given the high cost of space launch, the repurposing of biological and plastic wastes to reduce the need for logistical support during long distance and long duration space missions has long been recognized as a high priority. Described in this paper are the preliminary efforts to develop a wet air oxidation system in order to produce fuels from waste polymers. Preliminary results of partial oxidation in near supercritical water conditions are presented. Inherent corrosion and salt precipitation are discussed as system design issues for a thorough assessment of a second generation wet air oxidation system. This work is currently being supported by the In-Situ Resource Utilization Project.

  5. Characterization of wet aggregate stability of soils by ¹H-NMR relaxometry.

    Science.gov (United States)

    Buchmann, C; Meyer, M; Schaumann, G E

    2015-09-01

    For the assessment of soil structural stability against hydraulic stress, wet sieving or constant head permeability tests are typically used but rather limited in their intrinsic information value. The multiple applications of several tests is the only possibility to assess important processes and mechanisms during soil aggregate breakdown, e.g. the influences of soil fragment release or differential swelling on the porous systems of soils or soil aggregate columns. Consequently, the development of new techniques for a faster and more detailed wet aggregate stability assessment is required. (1)H nuclear magnetic resonance relaxometry ((1)H-NMR relaxometry) might provide these requirements because it has already been successfully applied on soils. We evaluated the potential of (1)H-NMR relaxometry for the assessment of wet aggregate stability of soils, with more detailed information on occurring mechanisms at the same time. Therefore, we conducted single wet sieving and constant head permeability tests on untreated and 1% polyacrylic acid-treated soil aggregates of different textures and organic matter contents, subsequently measured by (1)H-NMR relaxometry after percolation. The stability of the soil aggregates were mainly depending on their organic matter contents and the type of aggregate stabilization, whereby additional effects of clay swelling on the measured wet aggregate stability were identified by the transverse relaxation time (T2) distributions. Regression analyses showed that only the percentage of water stable aggregates could be determined accurately from percolated soil aggregate columns by (1)H-NMR relaxometry measurements. (1)H-NMR relaxometry seems a promising technique for wet aggregate stability measurements but should be further developed for nonpercolated aggregate columns and real soil samples. Copyright © 2014 John Wiley & Sons, Ltd.

  6. Influence of Vegetation Structure on Lidar-derived Canopy Height and Fractional Cover in Forested Riparian Buffers During Leaf-Off and Leaf-On Conditions

    Science.gov (United States)

    Wasser, Leah; Day, Rick; Chasmer, Laura; Taylor, Alan

    2013-01-01

    Estimates of canopy height (H) and fractional canopy cover (FC) derived from lidar data collected during leaf-on and leaf-off conditions are compared with field measurements from 80 forested riparian buffer plots. The purpose is to determine if existing lidar data flown in leaf-off conditions for applications such as terrain mapping can effectively estimate forested riparian buffer H and FC within a range of riparian vegetation types. Results illustrate that: 1) leaf-off and leaf-on lidar percentile estimates are similar to measured heights in all plots except those dominated by deciduous compound-leaved trees where lidar underestimates H during leaf off periods; 2) canopy height models (CHMs) underestimate H by a larger margin compared to percentile methods and are influenced by vegetation type (conifer needle, deciduous simple leaf or deciduous compound leaf) and canopy height variability, 3) lidar estimates of FC are within 10% of plot measurements during leaf-on periods, but are underestimated during leaf-off periods except in mixed and conifer plots; and 4) depth of laser pulse penetration lower in the canopy is more variable compared to top of the canopy penetration which may influence within canopy vegetation structure estimates. This study demonstrates that leaf-off lidar data can be used to estimate forested riparian buffer canopy height within diverse vegetation conditions and fractional canopy cover within mixed and conifer forests when leaf-on lidar data are not available. PMID:23382966

  7. Leaf structural characteristics are less important than leaf chemical properties in determining the response of leaf mass per area and photosynthesis of Eucalyptus saligna to industrial-age changes in [CO2] and temperature.

    Science.gov (United States)

    Xu, Cheng-Yuan; Salih, Anya; Ghannoum, Oula; Tissue, David T

    2012-10-01

    The rise in atmospheric [CO(2)] is associated with increasing air temperature. However, studies on plant responses to interactive effects of [CO(2)] and temperature are limited, particularly for leaf structural attributes. In this study, Eucalyptus saligna plants were grown in sun-lit glasshouses differing in [CO(2)] (290, 400, and 650 µmol mol(-1)) and temperature (26 °C and 30 °C). Leaf anatomy and chloroplast parameters were assessed with three-dimensional confocal microscopy, and the interactive effects of [CO(2)] and temperature were quantified. The relative influence of leaf structural attributes and chemical properties on the variation of leaf mass per area (LMA) and photosynthesis within these climate regimes was also determined. Leaf thickness and mesophyll size increased in higher [CO(2)] but decreased at the warmer temperature; no treatment interaction was observed. In pre-industrial [CO(2)], warming reduced chloroplast diameter without altering chloroplast number per cell, but the opposite pattern (reduced chloroplast number per cell and unchanged chloroplast diameter) was observed in both current and projected [CO(2)]. The variation of LMA was primarily explained by total non-structural carbohydrate (TNC) concentration rather than leaf thickness. Leaf photosynthetic capacity (light- and [CO(2)]-saturated rate at 28 °C) and light-saturated photosynthesis (under growth [CO(2)] and temperature) were primarily determined by leaf nitrogen contents, while secondarily affected by chloroplast gas exchange surface area and chloroplast number per cell, respectively. In conclusion, leaf structural attributes are less important than TNC and nitrogen in affecting LMA and photosynthesis responses to the studied climate regimes, indicating that leaf structural attributes have limited capacity to adjust these functional traits in a changing climate.

  8. An assessment of the skid resistance effect on traffic safety under wet-pavement conditions.

    Science.gov (United States)

    Pardillo Mayora, José M; Jurado Piña, Rafael

    2009-07-01

    Pavement-tire friction provides the grip that is required for maintaining vehicle control and for stopping in emergency situations. Statistically significant negative correlations of skid resistance values and wet-pavement accident rates have been found in previous research. Skid resistance measured with SCRIM and crash data from over 1750km of two-lane rural roads in the Spanish National Road System were analyzed to determine the influence of pavement conditions on safety and to assess the effects of improving pavement friction on safety. Both wet- and dry-pavement crash rates presented a decreasing trend as skid resistance values increased. Thresholds in SCRIM coefficient values associated with significant decreases in wet-pavement crash rates were determined. Pavement friction improvement schemes were found to yield significant reductions in wet-pavement crash rates averaging 68%. The results confirm the importance of maintaining adequate levels of pavement friction to safeguard traffic safety as well as the potential of pavement friction improvement schemes to achieve significant crash reductions.

  9. Assessment of Toxicity Profile of Lasianthera Africana Leaf ...

    African Journals Online (AJOL)

    ALICE

    2015-04-15

    Apr 15, 2015 ... intraperitoneal, intravenous or intramuscular routes of .... Effect of oral administration of doses of Lasianthera africana leaf extract on body weight of normal rat ... drinking water and treated with metformin (anti-diabetic drug) at a dose level ... glucometer (One Touch Ultra 2 Blood Glucose Monitoring System,.

  10. An application of plot-scale NDVI in predicting carbon dioxide exchange and leaf area index in heterogeneous subarctic tundra

    Energy Technology Data Exchange (ETDEWEB)

    Dagg, J.; Lafleur, P.

    2010-07-01

    This paper reported on a study that examined the flow of carbon into and out of tundra ecosystems. It is necessary to accurately predict carbon dioxide (CO{sub 2}) exchange in the Tundra because of the impacts of climate change on carbon stored in permafrost. Understanding the relationships between the normalized difference vegetation index (NDVI) and vegetation and CO{sub 2} exchange may explain how small-scale variation in vegetation community extends to remotely sensed estimates of landscape characteristics. In this study, CO{sub 2} fluxes were measured with a portable chamber in a range of Tundra vegetation communities. Biomass and leaf area were measured with destructive harvest, and NDVI was obtained using a hand-held infrared camera. There was a weak correlation between NDVI and leaf area index in some vegetation communities, but a significant correlation between NDVI and biomass, including mosses. NDVI was found to be strongly related to photosynthetic activity and net CO{sub 2} uptake in all vegetation groups. However, NDVI related to ecosystem respiration only in wet sedge. It was concluded that at plot scale, the ability of NDVI to predict ecosystem properties and CO{sub 2} exchange in heterogeneous Tundra vegetation is variable.

  11. An application of plot-scale NDVI in predicting carbon dioxide exchange and leaf area index in heterogeneous subarctic tundra

    International Nuclear Information System (INIS)

    Dagg, J.; Lafleur, P.

    2010-01-01

    This paper reported on a study that examined the flow of carbon into and out of tundra ecosystems. It is necessary to accurately predict carbon dioxide (CO 2 ) exchange in the Tundra because of the impacts of climate change on carbon stored in permafrost. Understanding the relationships between the normalized difference vegetation index (NDVI) and vegetation and CO 2 exchange may explain how small-scale variation in vegetation community extends to remotely sensed estimates of landscape characteristics. In this study, CO 2 fluxes were measured with a portable chamber in a range of Tundra vegetation communities. Biomass and leaf area were measured with destructive harvest, and NDVI was obtained using a hand-held infrared camera. There was a weak correlation between NDVI and leaf area index in some vegetation communities, but a significant correlation between NDVI and biomass, including mosses. NDVI was found to be strongly related to photosynthetic activity and net CO 2 uptake in all vegetation groups. However, NDVI related to ecosystem respiration only in wet sedge. It was concluded that at plot scale, the ability of NDVI to predict ecosystem properties and CO 2 exchange in heterogeneous Tundra vegetation is variable.

  12. Surfactant-induced deposit structures in relation to the biological efficacy of glyphosate on easy- and difficult-to-wet weed species.

    Science.gov (United States)

    Kraemer, Thorsten; Hunsche, Mauricio; Noga, Georg

    2009-08-01

    Typical active ingredient (AI) residue patterns are formed during droplet drying on plant surfaces owing to the interaction of spray solution characteristics and leaf micromorphology. Currently, comparatively little is known about the influence of AI deposit patterns within a spray droplet residue area on the penetration and biological efficacy of glyphosate. A scanning electron microscope with energy dispersive X-ray microanalysis has been used to characterise residue patterns and to quantify the area ultimately covered by glyphosate within the droplet spread area. The easy-to-wet weed species Stellaria media L. and Viola arvensis L., as well as the difficult-to-wet Chenopodium album L. and Setaria viridis L., differing in their surface micromorphology, have been used. Rapeseed oil ethoxylates (RSO 5 or RSO 60) were added to glyphosate solutions to provide different droplet spread areas. Addition of RSO 5 enhanced droplet spread area more than RSO 60, and both caused distinct glyphosate residue patterns. The biological efficacy of treatment solutions showed no significant correlation with the area ultimately covered by glyphosate. The results have implications on herbicide uptake models. This study shows that droplet spread area does not correspond to the area ultimately covered by glyphosate, and that the latter does not affect glyphosate phytotoxicity.

  13. Penetration of UV-A, UV-B, blue, and red light into leaf tissues of pecan measured by a fiber optic microprobe system

    Science.gov (United States)

    Qi, Yadong; Bai, Shuju; Vogelmann, Thomas C.; Heisler, Gordon M.

    2003-11-01

    The depth of light penetration from the adaxial surfaces of the mature leaves of pecan (Carya illinoensis) was measured using a fiber optic microprobe system at four wavelengths: UV-B (310nm), UV-A (360 nm), blue light (430nm), and red light (680nm). The average thickness of the leaf adaxial epidermal layer was 15um and the total leaf thickness was 219um. The patterns of the light attenuation by the leaf tissues exhibited strong wavelength dependence. The leaf adaxial epidermal layer was chiefly responsible for absorbing the UV-A UV-B radiation. About 98% of 310 nm light was steeply attenuated within the first 5 um of the adaxial epidermis; thus, very little UV-B radiation was transmitted to the mesophyll tissues where contain photosynthetically sensitive sites. The adaxial epidermis also attenuated 96% of the UV-A radiation. In contrast, the blue and red light penetrated much deeper and was gradually attenutated by the leaves. The mesophyll tissues attenuated 17% of the blue light and 42% of the red light, which were available for photosynthesis use. Since the epidermal layer absorbed nearly all UV-B light, it acted as an effective filter screening out the harmful radiation and protecting photosynthetically sensitive tissues from the UV-B damage. Therefore, the epidermal function of the UV-B screening effectiveness can be regarded as one of the UV-B protection mechanisms in pecan.

  14. Curvature controlled wetting in two dimensions

    DEFF Research Database (Denmark)

    Gil, Tamir; Mikheev, Lev V.

    1995-01-01

    . As the radius of the substrate r0→∞, the leading effect of the curvature is adding the Laplace pressure ΠL∝r0-1 to the pressure balance in the film. At temperatures and pressures under which the wetting is complete in planar geometry, Laplace pressure suppresses divergence of the mean thickness of the wetting...... term reduces the thickness by the amount proportional to r0-1/3...

  15. Wetting characteristics of 3-dimensional nanostructured fractal surfaces

    Science.gov (United States)

    Davis, Ethan; Liu, Ying; Jiang, Lijia; Lu, Yongfeng; Ndao, Sidy

    2017-01-01

    This article reports the fabrication and wetting characteristics of 3-dimensional nanostructured fractal surfaces (3DNFS). Three distinct 3DNFS surfaces, namely cubic, Romanesco broccoli, and sphereflake were fabricated using two-photon direct laser writing. Contact angle measurements were performed on the multiscale fractal surfaces to characterize their wetting properties. Average contact angles ranged from 66.8° for the smooth control surface to 0° for one of the fractal surfaces. The change in wetting behavior was attributed to modification of the interfacial surface properties due to the inclusion of 3-dimensional hierarchical fractal nanostructures. However, this behavior does not exactly obey existing surface wetting models in the literature. Potential applications for these types of surfaces in physical and biological sciences are also discussed.

  16. Effect of wetting-drying cycles on soil desiccation cracking behaviour

    Directory of Open Access Journals (Sweden)

    Tang Chao-Sheng

    2016-01-01

    Full Text Available Better understanding the desiccation cracking process is essential in analysing drought effects on soil hydraulic and mechanical properties through consideration of the atmosphere-ground interaction. Laboratory tests were conducted to investigate the consequence of wetting-drying cycles on the initiation and propagation characteristics of desiccation cracks on soil surface. Initially saturated slurry specimens were prepared and subjected to five subsequent wetting-drying cycles. Image processing technique was employed to quantitatively analyze the morphology characteristics of crack patterns formed during each drying path. The results show that the desiccation cracking behaviour of soil is significantly affected by the wetting-drying cycles. Before the third wetting-drying cycle is reached, the surface crack ratio and the average crack width increases while the average clod area decreases with increasing the number of wetting-drying cycles. The number of intersections and crack segments per unit area reaches the peak values after the second wetting-drying cycle. After the third wetting-drying cycle is reached, the effect of increasing wetting-drying cycles on crack patterns is insignificant. Moreover, it is observed that the applied wetting-drying cycles are accompanied by a continual reconstruction of soil structure. The initial homogenous slurry structure is completely replaced with aggregated structure after the third cycles, and a significant increase in the inter-aggregate porosity can be observed.

  17. Water wizards : reshaping wet nature and society

    NARCIS (Netherlands)

    Vleuten, van der E.B.A.; Disco, C.

    2004-01-01

    The article investigates how humans ‘networked’ wet nature and how this affected the shaping of Dutch society. First, it takes a grand view of Dutch history and describes how wet network building intertwined with the shaping of the Dutch landscape, its economy and its polity. Second, it investigates

  18. Wet water glass production plant

    Directory of Open Access Journals (Sweden)

    Stanković Mirjana S.

    2003-01-01

    Full Text Available The IGPC Engineering Department designed basic projects for a wet hydrate dissolution plant, using technology developed in the IGPC laboratories. Several projects were completed: technological, machine, electrical, automation. On the basis of these projects, a production plant of a capacity of 75,000 t/y was manufactured, at "Zeolite Mira", Mira (VE, Italy, in 1997. and 1998, increasing detergent zeolite production, from 50,000 to 100,000 t/y. Several goals were realized by designing a wet hydrate dissolution plant. The main goal was increasing the detergent zeolite production. The technological cycle of NaOH was closed, and no effluents emitted, and there is no pollution (except for the filter cake. The wet water glass production process is fully automatized, and the product has uniform quality. The production process can be controlled manually, which is necessary during start - up, and repairs. By installing additional process equipment (centrifugal pumps and heat exchangers technological bottlenecks were overcome, and by adjusting the operation of autoclaves, and water glass filters and also by optimizing the capacities of process equipment.

  19. Can I Stop Myself From Having a Wet Dream? (For Teens)

    Science.gov (United States)

    ... Can I Stop Myself From Having a Wet Dream? KidsHealth / For Teens / Can I Stop Myself From Having a Wet Dream? Print Can I stop myself from having a wet dream? – Tom* You really can't stop wet dreams, ...

  20. Measurement and analysis of the re-wetting front velocity during quench cooling of hot horizontal tubes

    Energy Technology Data Exchange (ETDEWEB)

    Takrouri, Kifah, E-mail: takroukj@mcmaster.ca [Department of Engineering Physics, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7 (Canada); Luxat, John, E-mail: luxatj@mcmaster.ca [Department of Engineering Physics, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7 (Canada); Hamed, Mohamed [Thermal Processing Laboratory (TPL), Department of Mechanical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7 (Canada)

    2017-01-15

    Highlights: • Two phase flow & re-wetting front velocity were studied for quench of hot tubes. • The velocity decreased as temperature difference between tube and coolant decreased. • Increasing surface curvature was found to decrease the re-wetting front velocity. • Increasing tube thermal conductivity decreased the velocity. • Correlations were developed to predict the front velocity. - Abstract: When a liquid is put into contact with a hot dry surface, there exists a maximum temperature called the re-wetting temperature below which the liquid is in actual contact with the surface. Re-wetting occurs after destabilization of a vapor film that exists between the hot surface and the liquid. If re-wetting is established at a location on the hot surface, a wet patch appears at that location and starts to spread to cover and cool the entire surface. The outer edge of the wet patch is called the re-wetting front and can proceed only if the surface ahead of it cools down to the re-wetting temperature. Study of re-wetting heat transfer is very important in nuclear reactor safety for limiting the extent of core damage during the early stages of severe accidents after loss of coolant accidents LOCA and is essential for predicting the rate at which the coolant cools an overheated core. One of the important parameters in re-wetting cooling is the velocity at which the re-wetting front moves on the surface. In this study, experimental tests were carried out to investigate the re-wetting front velocity on hot horizontal cylindrical tubes being cooled by a vertical rectangular water multi-jet system. Effects of initial surface temperature in the range 400–740 °C, water subcooling in the range 15–80 °C and jet velocity in the range 0.17–1.43 m/s on the re-wetting front velocity were investigated. The two-phase flow behavior was observed by using a high-speed camera. The re-wetting front velocity was found to increase by increasing water subcooling, decreasing

  1. Explicit nonlinear finite element geometric analysis of parabolic leaf springs under various loads.

    Science.gov (United States)

    Kong, Y S; Omar, M Z; Chua, L B; Abdullah, S

    2013-01-01

    This study describes the effects of bounce, brake, and roll behavior of a bus toward its leaf spring suspension systems. Parabolic leaf springs are designed based on vertical deflection and stress; however, loads are practically derived from various modes especially under harsh road drives or emergency braking. Parabolic leaf springs must sustain these loads without failing to ensure bus and passenger safety. In this study, the explicit nonlinear dynamic finite element (FE) method is implemented because of the complexity of experimental testing A series of load cases; namely, vertical push, wind-up, and suspension roll are introduced for the simulations. The vertical stiffness of the parabolic leaf springs is related to the vehicle load-carrying capability, whereas the wind-up stiffness is associated with vehicle braking. The roll stiffness of the parabolic leaf springs is correlated with the vehicle roll stability. To obtain a better bus performance, two new parabolic leaf spring designs are proposed and simulated. The stress level during the loadings is observed and compared with its design limit. Results indicate that the newly designed high vertical stiffness parabolic spring provides the bus a greater roll stability and a lower stress value compared with the original design. Bus safety and stability is promoted, as well as the load carrying capability.

  2. Explicit Nonlinear Finite Element Geometric Analysis of Parabolic Leaf Springs under Various Loads

    Directory of Open Access Journals (Sweden)

    Y. S. Kong

    2013-01-01

    Full Text Available This study describes the effects of bounce, brake, and roll behavior of a bus toward its leaf spring suspension systems. Parabolic leaf springs are designed based on vertical deflection and stress; however, loads are practically derived from various modes especially under harsh road drives or emergency braking. Parabolic leaf springs must sustain these loads without failing to ensure bus and passenger safety. In this study, the explicit nonlinear dynamic finite element (FE method is implemented because of the complexity of experimental testing A series of load cases; namely, vertical push, wind-up, and suspension roll are introduced for the simulations. The vertical stiffness of the parabolic leaf springs is related to the vehicle load-carrying capability, whereas the wind-up stiffness is associated with vehicle braking. The roll stiffness of the parabolic leaf springs is correlated with the vehicle roll stability. To obtain a better bus performance, two new parabolic leaf spring designs are proposed and simulated. The stress level during the loadings is observed and compared with its design limit. Results indicate that the newly designed high vertical stiffness parabolic spring provides the bus a greater roll stability and a lower stress value compared with the original design. Bus safety and stability is promoted, as well as the load carrying capability.

  3. Flow boiling heat transfer on nanowire-coated surfaces with highly wetting liquid

    International Nuclear Information System (INIS)

    Shin, Sangwoo; Choi, Geehong; Kim, Beom Seok; Cho, Hyung Hee

    2014-01-01

    Owing to the recent advances in nanotechnology, one significant progress in energy technology is increased cooling ability. It has recently been shown that nanowires can improve pool boiling heat transfer due to the unique features such as enhanced wetting and enlarged nucleation sites. Applying such nanowires on a flow boiling, which is another major class of boiling phenomenon that is associated with forced convection, is yet immature and scarce despite its importance in various applications such as liquid cooling of energy, electronics and refrigeration systems. Here, we investigate flow boiling heat transfer on surfaces that are coated with SiNWs (silicon nanowires). Also, we use highly-wetting dielectric liquid, FC-72, as a working fluid. An interesting wetting behavior is observed where the presence of SiNWs reduces wetting and wicking that in turn leads to significant decrease of CHF (critical heat flux) compared to the plain surface, which opposes the current consensus. Also, the effects of nanowire length and Reynolds number on the boiling heat transfer are shown to be highly nonmonotonic. We attempt to explain such an unusual behavior on the basis of wetting, nucleation and forced convection, and we show that such factors are highly coupled in a way that lead to unusual behavior. - Highlights: • Observation of suppressed wettability in the presence of surface roughness (nanowires). • Significant reduction of critical heat flux in the presence of nanowires. • Nonmonotonic behavior of heat transfer coefficient vs. nanowire length and Reynolds number

  4. Leaf and root glucosinolate profiles of Chinese cabbage (Brassica rapa ssp. pekinensis) as a systemic response to methyl jasmonate and salicylic acid elicitation.

    Science.gov (United States)

    Zang, Yun-xiang; Ge, Jia-li; Huang, Ling-hui; Gao, Fei; Lv, Xi-shan; Zheng, Wei-wei; Hong, Seung-beom; Zhu, Zhu-jun

    2015-08-01

    Glucosinolates (GSs) are an important group of defensive phytochemicals mainly found in Brassicaceae. Plant hormones jasmonic acid (JA) and salicylic acid (SA) are major regulators of plant response to pathogen attack. However, there is little information about the interactive effect of both elicitors on inducing GS biosynthesis in Chinese cabbage (Brassica rapa ssp. pekinensis). In this study, we applied different concentrations of methyl jasmonate (MeJA) and/or SA onto the leaf and root of Chinese cabbage to investigate the time-course interactive profiles of GSs. Regardless of the site of the elicitation and the concentrations of the elicitors, the roots accumulated much more GSs and were more sensitive and more rapidly responsive to the elicitors than leaves. Irrespective of the elicitation site, MeJA had a greater inducing and longer lasting effect on GS accumulation than SA. All three components of indole GS (IGS) were detected along with aliphatic and aromatic GSs. However, IGS was a major component of total GSs that accumulated rapidly in both root and leaf tissues in response to MeJA and SA elicitation. Neoglucobrassicin (neoGBC) did not respond to SA but to MeJA in leaf tissue, while it responded to both SA and MeJA in root tissue. Conversion of glucobrassicin (GBC) to neoGBC occurred at a steady rate over 3 d of elicitation. Increased accumulation of 4-methoxy glucobrassicin (4-MGBC) occurred only in the root irrespective of the type of elicitors and the site of elicitation. Thus, accumulation of IGS is a major metabolic hallmark of SA- and MeJA-mediated systemic response systems. SA exerted an antagonistic effect on the MeJA-induced root GSs irrespective of the site of elicitation. However, SA showed synergistic and antagonistic effects on the MeJA-induced leaf GSs when roots and leaves are elicitated for 3 d, respectively.

  5. Leaf structural traits of tropical woody species resistant to cement dust.

    Science.gov (United States)

    Siqueira-Silva, Advanio Inácio; Pereira, Eduardo Gusmão; Modolo, Luzia Valentina; Paiva, Elder Antonio Sousa

    2016-08-01

    Cement industries located nearby limestone outcrops in Brazil have contributed to the coating of cement dust over native plant species. However, little is known about the extent of the response of tropical woody plants to such environmental pollutant particularly during the first stages of plant development and establishment. This work focused on the investigation of possible alterations in leaf structural and ultrastructural traits of 5-month-old Guazuma ulmifolia Lam. (Malvaceae), 6-month-old Myracrodruon urundeuva Allemão (Anacardiaceae), and 9-month-old Trichilia hirta L. (Meliaceae) challenged superficially with cement dust during new leaf development. Leaf surface of plants, the soil or both (leaf plus soil), were treated (or not) for 60 days, under controlled conditions, with cement dust at 2.5 or 5.0 mg cm(-2). After exposure, no significant structural changes were observed in plant leaves. Also, no plant death was recorded by the end of the experiment. There was also some evidence of localized leaf necrosis in G. ulmifolia and T. hirta, leaf curling in M. urundeuva and T. hirta, and bulges formation on epidermal surface of T. hirta, after cement dust contact with plant shoots. All species studied exhibited stomata obliteration while T. hirta, in particular, presented early leaf abscission, changes in cellular relief, and organization and content of midrib cells. No significant ultrastructural alterations were detected under the experimental conditions studied. Indeed, mesophyll cells presented plastids with intact membrane systems. The high plant survival rates, together with mild morphoanatomic traits alterations in leaves, indicate that G. ulmifolia is more resistant to cement dust pollutant, followed by M. urundeuva and T. hirta. Thus, the three plant species are promising for being used to revegetate areas impacted by cement industries activities.

  6. The Nissan LEAF electric powertrain

    Energy Technology Data Exchange (ETDEWEB)

    Nakazawa, Shinsuke [Nissan Motor Co., Ltd. (Japan)

    2011-07-01

    The need for CO{sub 2} reduction as a countermeasure to global warming, and to move away from our dependence on fossil fuels as a countermeasure to energy security are urgent issues. One of the ultimate goals to achieving these targets is to develop a 'Zero emission car' such as an electric vehicle or a fuel cell vehicle, along with the manufacturing of clean energy. Nissan have developed a new powertrain for the electric vehicle, and have installed it in the Nissan LEAF. Sales of the Nissan LEAF started in North America, Europe and Japan in 2010, with plans to sell it globally by 2012. In order to achieve an improved driving range, power performance and drivability performance, Nissan have adapted a high efficiency synchronous motor, a water-cooled inverter, and reducer. Moreover, the Nissan LEAF has the capability of a 3.3kW AC charge and a 50kW DC quick charge. This presentation will introduce the features of the electric powertrain adopted for Nissan LEAF. (orig.)

  7. Modeling canopy-level productivity: is the "big-leaf" simplification acceptable?

    Science.gov (United States)

    Sprintsin, M.; Chen, J. M.

    2009-05-01

    The "big-leaf" approach to calculating the carbon balance of plant canopies assumes that canopy carbon fluxes have the same relative responses to the environment as any single unshaded leaf in the upper canopy. Widely used light use efficiency models are essentially simplified versions of the big-leaf model. Despite its wide acceptance, subsequent developments in the modeling of leaf photosynthesis and measurements of canopy physiology have brought into question the assumptions behind this approach showing that big leaf approximation is inadequate for simulating canopy photosynthesis because of the additional leaf internal control on carbon assimilation and because of the non-linear response of photosynthesis on leaf nitrogen and absorbed light, and changes in leaf microenvironment with canopy depth. To avoid this problem a sunlit/shaded leaf separation approach, within which the vegetation is treated as two big leaves under different illumination conditions, is gradually replacing the "big-leaf" strategy, for applications at local and regional scales. Such separation is now widely accepted as a more accurate and physiologically based approach for modeling canopy photosynthesis. Here we compare both strategies for Gross Primary Production (GPP) modeling using the Boreal Ecosystem Productivity Simulator (BEPS) at local (tower footprint) scale for different land cover types spread over North America: two broadleaf forests (Harvard, Massachusetts and Missouri Ozark, Missouri); two coniferous forests (Howland, Maine and Old Black Spruce, Saskatchewan); Lost Creek shrubland site (Wisconsin) and Mer Bleue petland (Ontario). BEPS calculates carbon fixation by scaling Farquhar's leaf biochemical model up to canopy level with stomatal conductance estimated by a modified version of the Ball-Woodrow-Berry model. The "big-leaf" approach was parameterized using derived leaf level parameters scaled up to canopy level by means of Leaf Area Index. The influence of sunlit

  8. Baby leaf lettuce germplasm enhancement: developing diverse populations with resistance to bacterial leaf spot caused by Xanthomonas campestris pv. vitians

    Science.gov (United States)

    Baby leaf lettuce cultivars with resistance to bacterial leaf spot (BLS) caused by Xanthomonas campestris pv. vitians (Xcv) are needed to reduce crop losses. The objectives of this research were to assess the genetic diversity for BLS resistance in baby leaf lettuce cultivars and to select early gen...

  9. Mercury removal in utility wet scrubber using a chelating agent

    Science.gov (United States)

    Amrhein, Gerald T.

    2001-01-01

    A method for capturing and reducing the mercury content of an industrial flue gas such as that produced in the combustion of a fossil fuel or solid waste adds a chelating agent, such as ethylenediaminetetraacetic acid (EDTA) or other similar compounds like HEDTA, DTPA and/or NTA, to the flue gas being scrubbed in a wet scrubber used in the industrial process. The chelating agent prevents the reduction of oxidized mercury to elemental mercury, thereby increasing the mercury removal efficiency of the wet scrubber. Exemplary tests on inlet and outlet mercury concentration in an industrial flue gas were performed without and with EDTA addition. Without EDTA, mercury removal totaled 42%. With EDTA, mercury removal increased to 71%. The invention may be readily adapted to known wet scrubber systems and it specifically provides for the removal of unwanted mercury both by supplying S.sup.2- ions to convert Hg.sup.2+ ions into mercuric sulfide (HgS) and by supplying a chelating agent to sequester other ions, including but not limited to Fe.sup.2+ ions, which could otherwise induce the unwanted reduction of Hg.sup.2+ to the form, Hg.sup.0.

  10. Leaf turgor loss point is correlated with drought tolerance and leaf carbon economics traits.

    Science.gov (United States)

    Zhu, Shi-Dan; Chen, Ya-Jun; Ye, Qing; He, Peng-Cheng; Liu, Hui; Li, Rong-Hua; Fu, Pei-Li; Jiang, Guo-Feng; Cao, Kun-Fang

    2018-05-01

    Leaf turgor loss point (πtlp) indicates the capacity of a plant to maintain cell turgor pressure during dehydration, which has been proven to be strongly predictive of the plant response to drought. In this study, we compiled a data set of πtlp for 1752 woody plant individuals belonging to 389 species from nine major woody biomes in China, along with reduced sample size of hydraulic and leaf carbon economics data. We aimed to investigate the variation of πtlp across biomes varying in water availability. We also tested two hypotheses: (i) πtlp predicts leaf hydraulic safety margins and (ii) it is correlated with leaf carbon economics traits. Our results showed that there was a positive relationship between πtlp and aridity index: biomes from humid regions had less negative values than those from arid regions. This supports the idea that πtlp may reflect drought tolerance at the scale of woody biomes. As expected, πtlp was significantly positively correlated with leaf hydraulic safety margins that varied significantly across biomes, indicating that this trait may be useful in modelling changes of forest components in response to increasing drought. Moreover, πtlp was correlated with a suite of coordinated hydraulic and economics traits; therefore, it can be used to predict the position of a given species along the 'fast-slow' whole-plant economics spectrum. This study expands our understanding of the biological significance of πtlp not only in drought tolerance, but also in the plant economics spectrum.

  11. The importance of leaf BRDF in forest canopy bidirectional reflectance : a case study using simulated canopy architecture and PBRT ray tracing

    NARCIS (Netherlands)

    Biliourios, D.; Van der Zande, D.; Verstraeten, W.W.; Stuckens, J.; Muys, B.; Dutre, Ph.; Coppin, P.

    2013-01-01

    Two Fagus sylvatica L. stands with different Leaf Area Index and similar planophile Leaf Angle Distribution were created with L-systems based plant growth software and rendered using both Lambertian and Bousquet’s model leaf Bidirectional Reflectance Distribution Function (BRDF) assumption. During

  12. Wet Snow Mapping in Southern Ontario with Sentinel-1A Observations

    Science.gov (United States)

    Chen, H.; Kelly, R. E. J.

    2017-12-01

    Wet snow is defined as snow with liquid water present in an ice-water mix. It is can be an indicator for the onset of the snowmelt period. Knowledge about the extent of wet snow area can be of great importance for the monitoring of seasonal snowmelt runoff with climate-induced changes in snowmelt duration having implications for operational hydrological and ecological applications. Spaceborne microwave remote sensing has been used to observe seasonal snow under all-weather conditions. Active microwave observations of snow at C-band are sensitive to wet snow due to the high dielectric contrast with non-wet snow surfaces and synthetic aperture radar (SAR) is now openly available to identify and map the wet snow areas globally at relatively fine spatial resolutions ( 100m). In this study, a semi-automated workflow is developed from the change detection method of Nagler et al. (2016) using multi-temporal Sentinel-1A (S1A) dual-polarization observations of Southern Ontario. Weather station data and visible-infrared satellite observations are used to refine the wet snow area estimates. Wet snow information from National Operational Hydrologic Remote Sensing Center (NOHRSC) is used to compare with the S1A estimates. A time series of wet snow maps shows the variations in backscatter from wet snow on a pixel basis. Different land cover types in Southern Ontario are assessed with respect to their impacts on wet snow estimates. While forests and complex land surfaces can impact the ability to map wet snow, the approach taken is robust and illustrates the strong sensitivity of the approach to wet snow backscattering characteristics. The results indicate the feasibility of the change detection method on non-mountainous large areas and address the usefulness of Sentinel-1A data for wet snow mapping.

  13. Engineering resistance against Tomato yellow leaf curl virus via the CRISPR/Cas9 system in tomato

    KAUST Repository

    Mahfouz, Magdy M.

    2017-12-22

    CRISPR/Cas systems confer molecular immunity against phages and conjugative plasmids in prokaryotes. Recently, CRISPR/Cas9 systems have been used to confer interference against eukaryotic viruses. Here, we engineered Nicotiana benthamiana and tomato (Solanum lycopersicum) plants with the CRISPR/Cas9 system to confer immunity against the Tomato yellow leaf curl virus (TYLCV). Targeting the TYLCV genome with Cas9-single guide RNA at the sequences encoding the coat protein (CP) or replicase (Rep) resulted in efficient virus interference, as evidenced by low accumulation of the TYLCV DNA genome in the transgenic plants. The CRISPR/Cas9-based immunity remained active across multiple generations in the N. benthamiana and tomato plants. Together, our results confirmed the efficiency of the CRISPR/Cas9 system for stable engineering of TYLCV resistance in N. benthamiana and tomato, and opens the possibilities of engineering virus resistance against single and multiple infectious viruses in other crops.

  14. Wetting layer effect on impurity-related electronic properties of different (In,Ga)N QD-shapes

    Science.gov (United States)

    El Ghazi, Haddou; Jorio, Anouar; Zorkani, Izeddine; Feddi, El Mustapha; El Mouchtachi, Ahmed

    2018-05-01

    In this paper, we have investigated the electronic properties of (In,Ga)N/GaN coupled wetting layer-quantum dot system using the numerical approach. The finite element method code is used to solve the Schrödinger equation, in the presence of the impurity. In our model, parallelepiped-shape, circular and square based-pyramidal and their wetting layers embedded in GaN matrix were considered. Based on the single band parabolic and the effective mass approximations, the envelop function and its corresponding energy eigenvalue are obtained assuming a finite potential barrier. Our results reveal that: (1) the wetting layer has a great influence on the electronic properties especially for a small quantum dot and acts in the opposite sense of the geometrical confinement, (2) a wetting layer-dependent critical QD-size is obtained limiting two different behaviors and (3) its effect is strongly-dependent on the quantum dot-shape.

  15. 7 CFR 29.3528 - Leaf surface.

    Science.gov (United States)

    2010-01-01

    ... INSPECTION Standards Official Standard Grades for Dark Air-Cured Tobacco (u.s. Types 35, 36, 37 and Foreign Type 95) § 29.3528 Leaf surface. The roughness or smoothness of the web or lamina of a tobacco leaf...

  16. User's manual for the BNW-II optimization code for dry/wet-cooled power plants

    Energy Technology Data Exchange (ETDEWEB)

    Braun, D.J.; Bamberger, J.A.; Braun, D.J.; Faletti, D.W.; Wiles, L.E.

    1978-05-01

    The User's Manual describes how to operate BNW-II, a computer code developed by the Pacific Northwest Laboratory (PNL) as a part of its activities under the Department of Energy (DOE) Dry Cooling Enhancement Program. The computer program offers a comprehensive method of evaluating the cost savings potential of dry/wet-cooled heat rejection systems. Going beyond simple ''figure-of-merit'' cooling tower optimization, this method includes such items as the cost of annual replacement capacity, and the optimum split between plant scale-up and replacement capacity, as well as the purchase and operating costs of all major heat rejection components. Hence the BNW-II code is a useful tool for determining potential cost savings of new dry/wet surfaces, new piping, or other components as part of an optimized system for a dry/wet-cooled plant.

  17. WetA bridges cellular and chemical development in Aspergillus flavus.

    Directory of Open Access Journals (Sweden)

    Ming-Yueh Wu

    Full Text Available Bridging cellular reproduction and survival is essential for all life forms. Aspergillus fungi primarily reproduce by forming asexual spores called conidia, whose formation and maturation is governed by the central genetic regulatory circuit BrlA→AbaA→WetA. Here, we report that WetA is a multi-functional regulator that couples spore differentiation and survival, and governs proper chemical development in Aspergillus flavus. The deletion of wetA results in the formation of conidia with defective cell walls and no intra-cellular trehalose, leading to reduced stress tolerance, a rapid loss of viability, and disintegration of spores. WetA is also required for normal vegetative growth, hyphal branching, and production of aflatoxins. Targeted and genome-wide expression analyses reveal that WetA exerts feedback control of brlA and that 5,700 genes show altered mRNA levels in the mutant conidia. Functional category analyses of differentially expressed genes in ΔwetA RNA-seq data indicate that WetA contributes to spore integrity and maturity by properly regulating the metabolic pathways of trehalose, chitin, α-(1,3-glucan, β-(1,3-glucan, melanin, hydrophobins, and secondary metabolism more generally. Moreover, 160 genes predicted to encode transcription factors are differentially expressed by the absence of wetA, suggesting that WetA may play a global regulatory role in conidial development. Collectively, we present a comprehensive model for developmental control that bridges spore differentiation and survival in A. flavus.

  18. Three Years of Experience of Wet Gas Allocation on Canyon Express

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Aditya; Hall, James; Letton, Winsor

    2005-07-01

    In September 2002, production was begun from the three fields that together form the Canyon Express System- King's Peak, Aconcagua, and Camden Hills. The 9 wells from these fields are connected to a pair of 12-inch flow lines carrying the commingled wet gas a distance of approximately 92 kilometers back to the Canyon Station platform for processing. At the 21st NSFMW in October 2003, an initial report was given on the status of Wet Gas Allocation for the Canyon Express project. As discussed in that paper, dual-differential, subsea wet gas meters were chosen for the task of allocating gas and liquids back to individual wells. However, since the gas from all three fields was very dry (Lockhart-Martinelli parameter less than 0.01) and because the operating pressures were quite high (250 bar), application of the dual-differential function of the meters yielded errors in both liquid and gas flow rates. Furthermore, as these problems were being uncovered, scale was beginning to collect inside some of the meters. Taken together, these problems produced system imbalances as great as 20%. To address the problems, one of the individual flow metering elements within each wet gas meter was chosen as the allocation meter, operating as a single-phase gas meter. After three years of operation of the Canyon Express Project, considerable experience has been accumulated. Since at the time it held the record for deep water hydrocarbon production, application of the technologies discussed here were challenging and required considerable flexibility. It is believed that the Canyon Express experiences will benefit future deep water flow metering projects. The knowledge acquired thus far is surveyed and summarized. The emphasis is on the technical aspects. (tk)

  19. Damage Features of Altered Rock Subjected to Drying-Wetting Cycles

    Directory of Open Access Journals (Sweden)

    Zhe Qin

    2018-01-01

    Full Text Available An abandoned open pit was used as a tailing pond for a concentrating mill, with the height of the water surface subject to cyclic fluctuation. The effects of drying and wetting cycles on the mechanical parameters of pit rock were tested. Interactions of the hydrochemical environment, due to the dissolution of tailings, and drying and wetting cycles caused degradation of mechanical properties in the rock. It was found that uniaxial compressive strength and elastic modulus decreased as the number of dry/wet cycles increased. The quantitative relationship between the mechanical parameters and the number of dry/wet cycles was indicated by an exponential function. In addition to uniaxial testing, cohesion and the internal friction angle were determined through triaxial testing. The shear strength index deteriorated under the drying and wetting cycles. The hydrochemical environment also negatively affected the mechanical parameters. Potential effects between drying and wetting cycles and slope displacement were analyzed by on-site monitoring. The results show that the displacement increased because of the drying and wetting cycles, which may lead to sudden failure of the slope.

  20. The multidimensional causal factors of 'wet litter' in chicken-meat production.

    Science.gov (United States)

    Dunlop, Mark W; Moss, Amy F; Groves, Peter J; Wilkinson, Stuart J; Stuetz, Richard M; Selle, Peter H

    2016-08-15

    The problem of 'wet litter', which occurs primarily in grow-out sheds for meat chickens (broilers), has been recognised for nearly a century. Nevertheless, it is an increasingly important problem in contemporary chicken-meat production as wet litter and associated conditions, especially footpad dermatitis, have developed into tangible welfare issues. This is only compounded by the market demand for chicken paws and compromised bird performance. This review considers the multidimensional causal factors of wet litter. While many causal factors can be listed it is evident that the critical ones could be described as micro-environmental factors and chief amongst them is proper management of drinking systems and adequate shed ventilation. Thus, this review focuses on these environmental factors and pays less attention to issues stemming from health and nutrition. Clearly, there are times when related avian health issues of coccidiosis and necrotic enteritis cannot be overlooked and the development of efficacious vaccines for the latter disease would be advantageous. Presently, the inclusion of phytate-degrading enzymes in meat chicken diets is routine and, therefore, the implication that exogenous phytases may contribute to wet litter is given consideration. Opinion is somewhat divided as how best to counter the problem of wet litter as some see education and extension as being more beneficial than furthering research efforts. However, it may prove instructive to assess the practice of whole grain feeding in relation to litter quality and the incidence of footpad dermatitis. Additional research could investigate the relationships between dietary concentrations of key minerals and the application of exogenous enzymes with litter quality. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.

  1. Biogenic volatile organic compound emissions from a lowland tropical wet forest in Costa Rica

    Energy Technology Data Exchange (ETDEWEB)

    Geron, C. [United States Environmental Protection Agency, Research Triangle Park, NC (United States). National Risk Management Research Lab.; Guenther, A.; Greenberg, J. [National Center for Atmospheric Research, Boulder, CO (United States); Loescher, H.W. [University of Florida, Gainesville, FL (United States). School of Forest Resources and Conservation; Clark, D. [University of Missouri-St. Louis, MS (United States). Dept. of Biology; Baker, B. [South Dakota School of Mines and Technology, Rapid City, SD (United States)

    2002-08-01

    Twenty common plant species were screened for emissions of biogenic volatile organic compounds (BVOCs) at a lowland tropical wet forest site in Costa Rica. Ten of the species examined emitted substantial quantities of isoprene. These species accounted for 35-50% of the total basal area of old-growth forest on the major edaphic site types, indicating that a high proportion of the canopy leaf area is a source of isoprene. A limited number of canopy-level BVOC flux measurements were also collected by relaxed eddy accumulation (REA). These measurements verify that the forest canopy in this region is indeed a significant source of isoprene. In addition, REA fluxes of methanol and especially acetone were also significant, exceeding model estimates and warranting future investigation at this site. Leaf monoterpene emissions were non-detectable or very low from the species surveyed, and ambient concentrations and REA fluxes likewise were very low. Although the isoprene emission rates reported here are largely consistent with phylogenetic relations found in other studies (at the family, genus, and species levels), two species in the family Mimosaceae, a group previously found to consist largely of non-isoprene emitters, emitted significant quantities of isoprene. One of these, Pentaclethra macroloba (Willd.) Kuntze, is by far the most abundant canopy tree species in the forests of this area, composing 30-40% of the total basal area. The other, Zygia longifolia (Humb. and Bonpl.) Britton and Rose is a common riparian species. Our results suggest that the source strength of BVOCs is important not only to tropical atmospheric chemistry, but also may be important in determining net ecosystem carbon exchange.(author)

  2. Obtaining weather data for input to crop disease-warning systems: leaf wetness duration as a case study Obtenção de dados meteorológicos para sistemas de alerta fitossanitário: o caso da duração do período de molhamento foliar

    Directory of Open Access Journals (Sweden)

    Mark L. Gleason

    2008-12-01

    Full Text Available Disease-warning systems are decision support tools designed to help growers determine when to apply control measures to suppress crop diseases. Weather data are nearly ubiquitous inputs to warning systems. This contribution reviews ways in which weather data are gathered for use as inputs to disease-warning systems, and the associated logistical challenges. Grower-operated weather monitoring is contrasted with obtaining data from networks of weather stations, and the advantages and disadvantages of measuring vs. estimating weather data are discussed. Special emphasis is given to leaf wetness duration (LWD, not only because LWD data are inputs to many disease-warning systems but also because accurate data are uniquely challenging to obtain. It is concluded that there is no single " best" method to acquire weather data for use in disease-warning systems; instead, local, regional, and national circumstances are likely to influence which strategy is most successful.Os sistemas de alerta fitossanitário são ferramentas de suporte à decisão desenvolvidos para ajudar os agricultures a determinar o melhor momento da aplicação das medidas de controle para combater as doenças de plantas. As variáveis meteorológicas são dados de entrada quase que obrigatórios desses sistemas. Este trabalho apresenta uma revisão sobre os meios pelos quais as variáveis meteorológicas são coletadas para serem usadas como dados de entrada em sistemas de alerta fitossanitário e sobre os desafios associados à logística de obtenção desses dados. Essa revisão compara o monitoramento meteorológico ao nível do produtor, nas propriedades agrícolas, com aquele feito ao nível de redes de estações meteorológicas, assim como discute as vantagens e desvantagens entre medir e estimar tais variáveis meteorológicas. Especial ênfase é dada à duração do período de molhamento foliar (DPM, não somente pela sua importância como dado de entrada em diversos

  3. Non-destructive measurement of soybean leaf thickness via X-ray computed tomography allows the study of diel leaf growth rhythms in the third dimension.

    Science.gov (United States)

    Pfeifer, Johannes; Mielewczik, Michael; Friedli, Michael; Kirchgessner, Norbert; Walter, Achim

    2018-01-01

    Present-day high-resolution leaf growth measurements provide exciting insights into diel (24-h) leaf growth rhythms and their control by the circadian clock, which match photosynthesis with oscillating environmental conditions. However, these methods are based on measurements of leaf area or elongation and neglect diel changes of leaf thickness. In contrast, the influence of various environmental stress factors to which leaves are exposed to during growth on the final leaf thickness has been studied extensively. Yet, these studies cannot elucidate how variation in leaf area and thickness are simultaneously regulated and influenced on smaller time scales. Only few methods are available to measure the thickness of young, growing leaves non-destructively. Therefore, we evaluated X-ray computed tomography to simultaneously and non-invasively record diel changes and growth of leaf thickness and area. Using conventional imaging and X-ray computed tomography leaf area, thickness and volume growth of young soybean leaves were simultaneously and non-destructively monitored at three cardinal time points during night and day for a period of 80 h under non-stressful growth conditions. Reference thickness measurements on paperboards were in good agreement to CT measurements. Comparison of CT with leaf mass data further proved the consistency of our method. Exploratory analysis showed that measurements were accurate enough for recording and analyzing relative diel changes of leaf thickness, which were considerably different to those of leaf area. Relative growth rates of leaf area were consistently positive and highest during 'nights', while diel changes in thickness fluctuated more and were temporarily negative, particularly during 'evenings'. The method is suitable for non-invasive, accurate monitoring of diel variation in leaf volume. Moreover, our results indicate that diel rhythms of leaf area and thickness show some similarity but are not tightly coupled. These

  4. What Is a Leaf? An Online Tutorial and Tests

    Science.gov (United States)

    Burrows, Geoffrey

    2008-01-01

    A leaf is a fundamental unit in botany and understanding what constitutes a leaf is fundamental to many plant science activities. My observations and subsequent testing indicated that many students could not confidently and consistently recognise a leaf from a leaflet, or recognise basic leaf arrangements and the various types of compound or…

  5. Mixing systems for wet and dry plumes and cleaning equipment for the heat exchangers of the dry section. Two indispensible components of an effective and safe hybrid cooling tower

    International Nuclear Information System (INIS)

    Alt, W.

    1990-01-01

    At first glance, the hybrid cooling tower seems to be an ingenious combination of the well known components of an evaporative cooling tower and a dry cooling tower. The calculation of the air mass flows for both the wet and dry sections required to achieve an invisible plume does not represent an unsolvable problem to the engineer experienced in thermodynamics. The same also applies to the dimensioning of the heat exchangers and cooling fills. The hybrid cooling tower requires a well designed mixing system in order to ideally mix, the dry plume into the wet plume. If the cooling tower proves its efficiency during commissioning it is important that the ratio of the performance of the wet section to that of the dry section be maintained also in the long term. The performance of the fill in a wet cooling tower is consistently stable. Dirt deposits can form very quickly on the inner and outer surfaces of the heat exchangers of the dry section. In this case the thermal resistance increases rapidly. The respective performance of the wet and dry sections is then no longer balanced and the invisibility of the plume is no longer assured. This can be avoided by providing appropriate cleaning equipment

  6. Computer controlled multi-leaf conformation radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, T [Tokyo Metropolitan Komagome Hospital (Japan); Inamura, K

    1981-10-01

    A conformation radiotherapy system with 5-split collimators of which openings can be controlled symmetrically by computerized techniques during rotational irradiation by a linear accelerator has been developed. Outline of the system performance and its clinical applications are described as follows. 1. Profile of the system: The hardware is composed of three parts, namely, the multi-split collimator, the electronic data processor, and the interface between those two parts. 1) The multi-leaf collimator is composed of 5 pairs (10 leaves) diaphragms. It can be mounted to the X-ray head of a linear accelerator when used, and can be dismounted after its use. 2) The electronic data processor sends control signal to the collimator according to the 5-leaf target volume data which can be stored into a minifloppy disc through the curve digitizer previously. This part is composed of a) dedicated micro processor, b) I/O expansion unit, c) color CRT display with key board, d) dual mini-floppy disc unit, e) curve digitizer and f) digital plotter for recording and verification of resulted accuracy. 2. Performance of the system: 1) Maximum field size: 15 cm x 15 cm at isocenter. 2) Maximum elongation ratio of the target volume: 3 : 1 when the longer diameter is 15 cm. 3) Control accuracy: Within +-3 mm deviation from planned beam focus at isocenter. 3. Clinical application: The method of treatment planning and clinical advantages of this irradiation method are explained by raising clinical experiences such as treating brain tumor and rectal cancer.

  7. Computer controlled multi-leaf conformation radiotherapy

    International Nuclear Information System (INIS)

    Matsuda, Tadayoshi; Inamura, Kiyonari.

    1981-01-01

    A conformation radiotherapy system with 5-split collimators of which openings can be controlled symmetrically by computerized techniques during rotational irradiation by a linear accelerator has been developed. Outline of the system performance and its clinical applications are described as follows. 1. Profile of the system: The hardware is composed of three parts, namely, the multi-split collimator, the electronic data processor, and the interface between those two parts. 1) The multi-leaf collimator is composed of 5 pairs (10 leaves) diaphragms. It can be mounted to the X-ray head of a linear accelerator when used, and can be dismounted after its use. 2) The electronic data processor sends control signal to the collimator according to the 5-leaf target volume data which can be stored into a minifloppy disc through the curve digitizer previously. This part is composed of a) dedicated micro processor, b) I/O expansion unit, c) color CRT display with key board, d) dual mini-floppy disc unit, e) curve digitizer and f) digital plotter for recording and verification of resulted accuracy. 2. Performance of the system: 1) Maximum field size: 15 cm x 15 cm at isocenter. 2) Maximum elongation ratio of the target volume: 3 : 1 when the longer diameter is 15 cm. 3) Control accuracy: Within +-3 mm deviation from planned beam focus at isocenter. 3. Clinical application: The method of treatment planning and clinical advantages of this irradiation method are explained by raising clinical experiences such as treating brain tumor and rectal cancer. (author)

  8. Incorporating multi-leaf collimator leaf sequencing into iterative IMRT optimization

    International Nuclear Information System (INIS)

    Siebers, Jeffrey V.; Lauterbach, Marc; Keall, Paul J.; Mohan, Radhe

    2002-01-01

    Intensity modulated radiation therapy (IMRT) treatment planning typically considers beam optimization and beam delivery as separate tasks. Following optimization, a multi-leaf collimator (MLC) or other beam delivery device is used to generate fluence patterns for patient treatment delivery. Due to limitations and characteristics of the MLC, the deliverable intensity distributions often differ from those produced by the optimizer, leading to differences between the delivered and the optimized doses. Objective function parameters are then adjusted empirically, and the plan is reoptimized to achieve a desired deliverable dose distribution. The resulting plan, though usually acceptable, may not be the best achievable. A method has been developed to incorporate the MLC restrictions into the optimization process. Our in-house IMRT system has been modified to include the calculation of the deliverable intensity into the optimizer. In this process, prior to dose calculation, the MLC leaf sequencer is used to convert intensities to dynamic MLC sequences, from which the deliverable intensities are then determined. All other optimization steps remain the same. To evaluate the effectiveness of deliverable-based optimization, 17 patient cases have been studied. Compared with standard optimization plus conversion to deliverable beams, deliverable-based optimization results show improved isodose coverage and a reduced dose to critical structures. Deliverable-based optimization results are close to the original nondeliverable optimization results, suggesting that IMRT can overcome the MLC limitations by adjusting individual beamlets. The use of deliverable-based optimization may reduce the need for empirical adjustment of objective function parameters and reoptimization of a plan to achieve desired results

  9. Eco-friendly and green synthesis of silver nanoparticles using leaf extract of Strychnos potatorum Linn.F. and their bactericidal activities.

    Science.gov (United States)

    Kagithoju, Srikanth; Godishala, Vikram; Nanna, Rama Swamy

    2015-10-01

    Inspired green synthesis of metallic nanoparticles is evolving as an important branch of nanotechnology. Traditionally these are manufactured by wet chemical methods which require toxic and flammable chemicals. We report for the first time an economic and eco-friendly green synthesis of silver nanoparticles using Strychnos potatorum aqueous leaf extract from 3 mM silver nitrate solution. Nanoparticles thus formed are confirmed and characterized by using UV-Vis absorption spectroscopy, SEM and XRD measurements. The XRD and SEM analysis showed the average particle size of nanoparticles as 28 nm as well as revealed their (mixed, i.e., cubic and hexagonal) structure. Further, these green synthesized nanoparticles showed bactericidal activity against multidrug-resistant human pathogenic bacteria.

  10. Modeling the leaf angle dynamics in rice plant.

    Directory of Open Access Journals (Sweden)

    Yonghui Zhang

    Full Text Available The leaf angle between stem and sheath (SSA is an important rice morphological trait. The objective of this study was to develop and validate a dynamic SSA model under different nitrogen (N rates for selected rice cultivars. The time-course data of SSA were collected in three years, and a dynamic SSA model was developed for different main stem leaf ranks under different N rates for two selected rice cultivars. SSA increased with tiller age. The SSA of the same leaf rank increased with increase in N rate. The maximum SSA increased with leaf rank from the first to the third leaf, then decreased from the third to the final leaf. The relationship between the maximum SSA and leaf rank on main stem could be described with a linear piecewise function. The change of SSA with thermal time (TT was described by a logistic equation. A variety parameter (the maximum SSA of the 3rd leaf on main stem and a nitrogen factor were introduced to quantify the effect of cultivar and N rate on SSA. The model was validated against data collected from both pot and field experiments. The relative root mean square error (RRMSE was 11.56% and 14.05%, respectively. The resulting models could be used for virtual rice plant modeling and plant-type design.

  11. Screening Study of Leaf Terpene Concentration of 75 Borneo Rainforest Plant Species: Relationships with Leaf Elemental Concentrations and Morphology

    Directory of Open Access Journals (Sweden)

    Jordi Sardans

    2015-01-01

    Full Text Available Terpenes confer advantage in plant protection against abiotic stresses such as heat and drought and biotic stresses such as herbivore and pathogen attack. We conducted a screening of leaf mono- and sesquiterpene concentrations in 75 common woody plant species in the rainforest of Danum Valley (Borneo. Terpene compounds were found in 73 out of the 75 analysed species. Similar or lower proportions have been reported in other parts of the world. To our knowledge, this study reports for the first time the foliar concentration of mono- and/or sesquiterpene for 71 species and 39 genera not previously analyzed. Altogether 80 terpene compounds were determined across the species, and out of these only linalool oxide and (E- g -bisabolene had phylogenetic signal. A significant negative relationship between leaf monoterpene concentration and leaf length was observed, but leaf mono- and sesquitepene concentration were not related to any other leaf morphological trait nor to leaf elemental composition. Functions such as temperature protection, radiation protection or signaling and communication could underlie the high frequency of terpene-containing species of this tropical ecosystem which has multiple and very diverse interactions among multiple species.

  12. Acute and Subchronic Toxicity of Self Nanoemulsifying Drug Delivery Systems (SNEDDS) from Chloroform Bay Leaf Extract (Eugenia Polyantha W.) with Palm Kernel Oil as A Carrier

    Science.gov (United States)

    Prihapsara, F.; Mufidah; Artanti, A. N.; Harini, M.

    2018-03-01

    The present study was aimed to study the acute and subchronic toxicity of Self Nanoemulsifying Drug Delivery Systems (SNEDDS) from chloroform bay leaf extract with Palm Kernel Oil as carrier. In acute toxicity test, five groups of rat (n=5/groups) were orally treated with Self Nanoemulsifying Drug Delivery Systems (SNEDDS) from chloroform bay leaf extract with doses at 48, 240, 1200 and 6000 mg/kg/day respectively, then the median lethal dose LD50, advers effect and mortality were recorded up to 14 days. Meanwhile, in subchronic toxicity study, 4 groups of rats (n=6/group) received by orally treatment of SNEDDS from chloroform bay leaf extract with doses at 91.75; 183.5; 367 mg/kg/day respectively for 28 days, and biochemical, hematological and histopatological change in tissue such as liver, kidney, and pancreatic were determined. The result show that LD50 is 1045.44 mg/kg. Although histopathological examination of most of the organs exhibited no structural changes, some moderate damage was observed in high‑ dose group animals (367 mg/kg/day). The high dose of SNEDDS extract has shown mild signs of toxicity on organ function test.

  13. Differences in forage-acquisition and fungal enzyme activity contribute to niche segregation in Panamanian leaf-cutting ants.

    Directory of Open Access Journals (Sweden)

    Pepijn W Kooij

    Full Text Available The genera Atta and Acromyrmex are often grouped as leaf-cutting ants for pest management assessments and ecological surveys, although their mature colony sizes and foraging niches may differ substantially. Few studies have addressed such interspecific differences at the same site, which prompted us to conduct a comparative study across six sympatric leaf-cutting ant species in Central Panama. We show that foraging rates during the transition between dry and wet season differ about 60 fold between genera, but are relatively constant across species within genera. These differences appear to match overall differences in colony size, especially when Atta workers that return to their nests without leaves are assumed to carry liquid food. We confirm that Panamanian Atta specialize primarily on tree-leaves whereas Acromyrmex focus on collecting flowers and herbal leaves and that species within genera are similar in these overall foraging strategies. Species within genera tended to be spaced out over the three habitat categories that we distinguished (forest, forest edge, open grassland, but each of these habitats normally had only a single predominant Atta and Acromyrmex species. We measured activities of twelve fungus garden decomposition enzymes, belonging to the amylases, cellulases, hemicellulases, pectinases and proteinases, and show that average enzyme activity per unit of fungal mass in Atta gardens is lower than in Acromyrmex gardens. Expression profiles of fungal enzymes in Atta also appeared to be more specialized than in Acromyrmex, possibly reflecting variation in forage material. Our results suggest that species- and genus-level identities of leaf-cutting ants and habitat-specific foraging profiles may give predictable differences in the expression of fungal genes coding for decomposition enzymes.

  14. Measurement of Leaf Mass and Leaf Area of Oaks In A Mediterranean-climate Region For Biogenic Emission Estimation

    Science.gov (United States)

    Karlik, J.

    Given the key role played by biogenic volatile organic compounds (BVOC) in tro- pospheric chemistry and regional air quality, it is critical to generate accurate BVOC emission inventories. Because several oak species have high BVOC emission rates, and oak trees are often of large stature with corresponding large leaf masses, oaks may be the most important genus of woody plants for BVOC emissions modeling in the natural landscapes of Mediterranean-climate regions. In California, BVOC emis- sions from oaks may mix with anthropogenic emissions from urban areas, leading to elevated levels of ozone. Data for leaf mass and leaf area for a stand of native blue oaks (Quercus douglasii) were obtained through harvest and leaf removal from 14 trees lo- cated in the Sierra Nevada foothills of central California. Trees ranged in height from 4.2 to 9.9 m, with trunk diameters at breast height of 14 to 85 cm. Mean leaf mass density was 730 g m-2 for the trees and had an overall value of 310 g m-2 for the site. Consideration of the surrounding grassland devoid of trees resulted in a value of about 150 g m-2, less than half of reported values for eastern U.S. oak woodlands, but close to a reported value for oaks found in St. Quercio, Italy. The mean value for leaf area index (LAI) for the trees at this site was 4.4 m2 m-2. LAI for the site was 1.8 m2 m-2, but this value was appropriate for the oak grove only; including the surrounding open grassland resulted in an overall LAI value of 0.9 m2 m-2 or less. A volumetric method worked well for estimating the leaf mass of the oak trees. Among allometric relationships investigated, trunk circumference, mean crown radius, and crown projec- tion were well correlated with leaf mass. Estimated emission of isoprene (mg C m-2 h-1) for the site based these leaf mass data and experimentally determined emission rate was similar to that reported for a Mediterranean oak woodland in France.

  15. Reconstruction of high resolution MLC leaf positions using a low resolution detector for accurate 3D dose reconstruction in IMRT

    NARCIS (Netherlands)

    Visser, R; Godart, J; Wauben, D J L; Langendijk, J A; Van't Veld, A A; Korevaar, E W

    2016-01-01

    In pre-treatment dose verification, low resolution detector systems are unable to identify shifts of individual leafs of high resolution multi leaf collimator (MLC) systems from detected changes in the dose deposition. The goal of this study was to introduce an alternative approach (the shutter

  16. Multileaf collimator leaf position verification and analysis for adaptive radiation therapy using a video-optical method

    Science.gov (United States)

    Sethna, Sohrab B.

    External beam radiation therapy is commonly used to eliminate and control cancerous tumors. High-energy beams are shaped to match the patient's specific tumor volume, whereby maximizing radiation dose to malignant cells and limiting dose to normal tissue. A multileaf collimator (MLC) consisting of multiple pairs of tungsten leaves is used to conform the radiation beam to the desired treatment field. Advanced treatment methods utilize dynamic MLC settings to conform to multiple treatment fields and provide intensity modulated radiation therapy (IMRT). Future methods would further increase conformity by actively tracking tumor motion caused by patient cardiac and respiratory motion. Leaf position quality assurance for a dynamic MLC is critical as variation between the planned and actual leaf positions could induce significant errors in radiation dose. The goal of this research project is to prototype a video-optical quality assurance system for MLC leaf positions. The system captures light-field images of MLC leaf sequences during dynamic therapy. Image acquisition and analysis software was developed to determine leaf edge positions. The mean absolute difference between QA prototype predicted and caliper measured leaf positions was found to be 0.6 mm with an uncertainty of +/- 0.3 mm. Maximum errors in predicted positions were below 1.0 mm for static fields. The prototype served as a proof of concept for quality assurance of future tumor tracking methods. Specifically, a lung tumor phantom was created to mimic a lung tumor's motion from respiration. The lung tumor video images were superimposed on MLC field video images for visualization and analysis. The toolbox is capable of displaying leaf position, leaf velocity, tumor position, and determining errors between planned and actual treatment fields for dynamic radiation therapy.

  17. Leaf-jams - A new and unique leaf deposit in the ephemeral Hoanib River, NW Namibia: Origin and plant taphonomic implications

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, Christa-Ch. [University of Vienna, Department of Palaeontology, Palaeobotany Studies Group, Althanstrasse 14, 1090, Vienna (Austria); Rice, A. Hugh N. [University of Vienna, Department of Geodynamics and Sedimentology, Althanstrasse 14, 1090, Vienna (Austria)

    2010-08-01

    This paper documents a previously unrecorded type of leaf deposit, comprising essentially monospecific linear accumulations of Colophospermum mopane leaves on a point bar of the ephemeral Hoanib River, NW Namibia. In these 'leaf-jams', leaf laminae stand on edge, orientated more-or-less normal to bedding. Leaf-jams, which formed upstream of cobbles, clumps of grass and sticks wedged against the former two, were orientated subparallel to the adjacent meandering river-bed, such that over the 40 m of their occurrence, their mean azimuth changed by 59 anticlockwise downstream. The longest leaf-jam was 50 cm and contained approximately 500 leaves, as well as grass culms, twigs (C. mopane, Tamarix usneoides and unidentified) and medium- to fine-grained sand and silt. Individual leaf-jams were partially buried in the point bar sediments up to a depth of 3 cm. Leaf-jam formation occurred in the austral summer of 2006, during the waning stage of a major flood caused by anomalous tropical to extra-tropical storms. Their monospecifity is due to the overwhelming preponderance of the zonal taxon C. mopane in the catchment area, although the Khowarib Gorge contains a quite diverse azonal plant association due to the presence of a permanent water-seep. During leaf-jam formation, the water depth was less than the height of the cobbles (0.1 m), with stream flow-rates competent to transport medium-grained sand (velocity estimated at 0.5 m s{sup -} {sup 1}). Leaves must have been partially or fully waterlogged to inhibit buoyancy forces tending to lift them out of the developing leaf-jams, which propagated upstream in a manner comparable to longitudinal bars in a braided river. If fossilised, such deposits would probably lead to a very biased interpretation of the composition of the surrounding flora; the correct interpretation would be the one least favoured by palaeobotanists. (author)

  18. Chromosome-damaging effect of betel leaf.

    Science.gov (United States)

    Sadasivan, G; Rani, G; Kumari, C K

    1978-05-01

    The chewing of betel leaf with other ingredients is a widespread addiction in India. The chromosome damaging effect was studied in human leukocyte cultures. There was an increase in the frequency of chromatid aberrations when the leaf extract was added to cultures.

  19. Immobilization of wet solid wastes at nuclear power plants

    International Nuclear Information System (INIS)

    Neilson, R.M. Jr.

    1977-01-01

    Wet solid wastes are classified into four basic types: spent resins, filter sludges, evaporator concentrates, and miscellaneous liquids. Although the immobilization of wet solid wastes is primarily concerned with the incorporation of the waste with a solidification agent, there are a number of other discrete operations or subsystems involved in the treatment of these wastes that may affect the immobilized waste product. The immobilization process may be broken down into five basic operations: waste collection, waste pretreatment, solidification agent handling, mixing/packaging, and waste package handling. The properties of the waste forms that are ultimately shipped from the reactor site are primarily influenced by the methods utilized during the waste collection, waste pretreatment and mixing/packaging operations. The mixing/packaging (solidification) operation is perhaps the most important stage of the immobilization process. The basic solidification agent types are: absorbants, hydraulic cement, urea-formaldehyde, bitumen, and other polymer systems

  20. Wet periods in northeastern Brazil over the past 210 kyr linked to distant climate anomalies.

    Science.gov (United States)

    Wang, Xianfeng; Auler, Augusto S; Edwards, R Lawrence; Cheng, Hai; Cristalli, Patricia S; Smart, Peter L; Richards, David A; Shen, Chuan-Chou

    2004-12-09

    The tropics are the main source of the atmosphere's sensible and latent heat, and water vapour, and are therefore important for reconstructions of past climate. But long, accurately dated records of southern tropical palaeoclimate, which would allow the establishment of climatic connections to distant regions, have not been available. Here we present a 210,000-year (210-kyr) record of wet periods in tropical northeastern Brazil--a region that is currently semi-arid. The record is obtained from speleothems and travertine deposits that are accurately dated using the U/Th method. We find wet periods that are synchronous with periods of weak East Asian summer monsoons, cold periods in Greenland, Heinrich events in the North Atlantic and periods of decreased river runoff to the Cariaco basin. We infer that the wet periods may be explained with a southward displacement of the Intertropical Convergence Zone. This widespread synchroneity of climate anomalies suggests a relatively rapid global reorganization of the ocean-atmosphere system. We conclude that the wet periods probably affected rainforest distribution, as plant fossils show that forest expansion occurred during these intermittent wet intervals, and opened a forest corridor between the Amazonian and Atlantic rainforests.