WorldWideScience

Sample records for system-on-a-chip pulse radar

  1. Feasibility Study and Design of a Wearable System-on-a-Chip Pulse Radar for Contactless Cardiopulmonary Monitoring

    Directory of Open Access Journals (Sweden)

    Domenico Zito

    2008-01-01

    Full Text Available A new system-on-a-chip radar sensor for next-generation wearable wireless interface applied to the human health care and safeguard is presented. The system overview is provided and the feasibility study of the radar sensor is presented. In detail, the overall system consists of a radar sensor for detecting the heart and breath rates and a low-power IEEE 802.15.4 ZigBee radio interface, which provides a wireless data link with remote data acquisition and control units. In particular, the pulse radar exploits 3.1–10.6 GHz ultra-wideband signals which allow a significant reduction of the transceiver complexity and then of its power consumption. The operating principle of the radar for the cardiopulmonary monitoring is highlighted and the results of the system analysis are reported. Moreover, the results obtained from the building-blocks design, the channel measurement, and the ultra-wideband antenna realization are reported.

  2. Wearable system-on-a-chip UWB radar for health care and its application to the safety improvement of emergency operators.

    Science.gov (United States)

    Zito, Domenico; Pepe, Domenico; Neri, Bruno; De Rossi, Danilo; Lanatà, Antonio; Tognetti, Alessandro; Scilingo, Enzo Pasquale

    2007-01-01

    A new wearable system-on-a-chip UWB radar for health care systems is presented. The idea and its applications to the safety improvement of emergency operators are discussed. The system consists of a wearable wireless interface including a fully integrated UWB radar for the detection of the heart beat and breath rates, and a IEEE 802.15.4 ZigBee radio interface. The principle of operation of the UWB radar for the monitoring of the heart wall is explained hereinafter. The results obtained by the feasibility study regarding its implementation on a modern standard silicon technology (CMOS 90 nm) are reported, demonstrating (at simulation level) the effectiveness of such an approach and enabling the standard silicon technology for new generations of wireless sensors for heath care and safeguard wearable systems.

  3. Pulse Doppler radar

    CERN Document Server

    Alabaster, Clive

    2012-01-01

    This book is a practitioner's guide to all aspects of pulse Doppler radar. It concentrates on airborne military radar systems since they are the most used, most complex, and most interesting of the pulse Doppler radars; however, ground-based and non-military systems are also included. It covers the fundamental science, signal processing, hardware issues, systems design and case studies of typical systems. It will be a useful resource for engineers of all types (hardware, software and systems), academics, post-graduate students, scientists in radar and radar electronic warfare sectors and milit

  4. Synchronization of Integrated Systems on a Chip

    Directory of Open Access Journals (Sweden)

    González-Díaz O.

    2012-04-01

    Full Text Available In the present paper, the non-conventional interconnected and coupled ring oscillators approach working as clock distribution networks to synchronize electronic systems on a chip (SoC is proposed. Typical CMOS (Complementary Metal-Oxide Semiconductor N-well 0.35 µm Austria Micro Systems process parameters were used for conventional and non-conventional clock distribution nets design and simulation. Experimental results from local and global clock distribution networks fabricated using a CMOS 0.35 µm process show that the use of interconnected rings arrays, as globally asynchronous locally synchronous (GALS clock distribution networks, represent an appropriate approach due to good performance regarding scalability, low clock-skew, high-speed, faults tolerant and robust under process variations, regularity, and modularity.

  5. Analysis of Minimal LDPC Decoder System on a Chip Implementation

    Directory of Open Access Journals (Sweden)

    T. Palenik

    2015-09-01

    Full Text Available This paper presents a practical method of potential replacement of several different Quasi-Cyclic Low-Density Parity-Check (QC-LDPC codes with one, with the intention of saving as much memory as required to implement the LDPC encoder and decoder in a memory-constrained System on a Chip (SoC. The presented method requires only a very small modification of the existing encoder and decoder, making it suitable for utilization in a Software Defined Radio (SDR platform. Besides the analysis of the effects of necessary variable-node value fixation during the Belief Propagation (BP decoding algorithm, practical standard-defined code parameters are scrutinized in order to evaluate the feasibility of the proposed LDPC setup simplification. Finally, the error performance of the modified system structure is evaluated and compared with the original system structure by means of simulation.

  6. Ultra-Low Power Extreme Environment Capable Avionics System-on-a-Chip

    Data.gov (United States)

    National Aeronautics and Space Administration — Develop ultra-low-power, wide-temperature (-150° C to +250 ° C), digital System-on-a-Chip (SOC) ASIC technology in a high resolution, inherently rad-hard IBM...

  7. Integrated HIFU Drive System on a Chip for CMUT-Based Catheter Ablation System.

    Science.gov (United States)

    Farhanieh, Omid; Sahafi, Ali; Bardhan Roy, Rupak; Ergun, Arif Sanli; Bozkurt, Ayhan

    2017-06-01

    Conventional High Intensity Focused Ultrasound (HIFU) is a therapeutic modality which is extracorporeally administered. In applications where a relatively small HIFU lesion is required, an intravascular HIFU probe can be deployed to the ablation site. In this paper, we demonstrate the design and implementation a fully integrated HIFU drive system on a chip to be placed on a 6 Fr catheter probe. An 8-element capacitive micromachined ultrasound transducer (CMUT) ring array of 2 mm diameter has been used as the ultrasound source. The driver chip is fabricated in 0.35 μm AMS high-voltage CMOS technology and comprises eight continuous-wave (CW) high-voltage CMUT drivers (10.9 ns and 9.4 ns rise and fall times at 20 V pp output into a 15 pF), an eight-channel digital beamformer (8-12 MHz output frequency with 11.25 ° phase accuracy) and a phase locked loop with an integrated VCO as a tunable clock source (128-192 MHz). The chip occupies 1.85 × 1.8 mm 2 area including input and output (I/O) pads. When the transducer array is immersed in sunflower oil and driven by the IC with eight 20 V pp CW pulses at 10 MHz, real-time thermal images of the HIFU beam indicate that the focal temperature rises by 16.8  ° C in 11 seconds. Each HV driver consumes around 67 mW of power when driving the CMUT array at 10 MHz, which adds up to 560 mW for the whole chip. FEM based analysis reveals that the outer surface temperature of the catheter is expected to remain below the 42  ° C tissue damage limit during therapy.

  8. Short-range self-pulsed optical radar

    Science.gov (United States)

    Berdahl, C. M.

    1981-01-01

    Laser for radar device is retriggered when previous laser pulse is reflected from target. Target range R is computed from number of pulses triggered per time interval. Radar accurately measures distances up to 500 meters; it is useful for determining surface shape of relfectors in large, high-gain, highly directional antennas and for other short-range surveying.

  9. Various Effects of Embedded Intrapulse Communications on Pulsed Radar

    Science.gov (United States)

    2017-06-01

    instance a Hamming pulse shape for the radar signal or a raised cosine pulse shape for the communications signal, are possible, but using a rectangular...Processes. Waltham, MA: Aca- demic Press, 2012, ch. 10. [8] N. Levanon, Radar Principles. New York , NY: John Wiley & Sons, Inc., 1988. [9] S. M. Kay

  10. A computer controlled pulse penerator for an ST Radar System ...

    African Journals Online (AJOL)

    A computer controlled pulse genarator for an ST radar system is described. It uses a highly flexible software and a hardware with a small IC count, making the system compact and highly programmable. The parameters of the signals of the pulse generator are initially entered from the keyboard. The computer then generates ...

  11. Synthetic aperture radar imaging simulator for pulse envelope evaluation

    Science.gov (United States)

    Balster, Eric J.; Scarpino, Frank A.; Kordik, Andrew M.; Hill, Kerry L.

    2017-10-01

    A simulator for spotlight synthetic aperture radar (SAR) image formation is presented. The simulator produces radar returns from a virtual radar positioned at an arbitrary distance and altitude. The radar returns are produced from a source image, where the return is a weighted summation of linear frequency-modulated (LFM) pulse signals delayed by the distance of each pixel in the image to the radar. The imagery is resampled into polar format to ensure consistent range profiles to the position of the radar. The SAR simulator provides a capability enabling the objective analysis of formed SAR imagery, comparing it to an original source image. This capability allows for analysis of various SAR signal processing techniques previously determined by impulse response function (IPF) analysis. The results suggest that IPF analysis provides results that may not be directly related to formed SAR image quality. Instead, the SAR simulator uses image quality metrics, such as peak signal-to-noise ratio (PSNR) and structured similarity index (SSIM), for formed SAR image quality analysis. To showcase the capability of the SAR simulator, it is used to investigate the performance of various envelopes applied to LFM pulses. A power-raised cosine window with a power p=0.35 and roll-off factor of β=0.15 is shown to maximize the quality of the formed SAR images by improving PSNR by 0.84 dB and SSIM by 0.06 from images formed utilizing a rectangular pulse, on average.

  12. a computer controlled pulse generator for an st radar system

    African Journals Online (AJOL)

    an ~T radar system is described. It uses a highly flexible software and a hardware with a small. IC count, making the system compact and highly programmable. The parameters of the signals of the pulse generator are initially entered from the keyboard. The computer then generates one period of the set of signals in a ...

  13. Bi-alphabetic pulse compression radar signal design

    Indian Academy of Sciences (India)

    Bi-alphabetic pulse compression radar signal design. I A PASHA1, P S MOHARIR2 AND N SUDARSHAN RAO3. 1Shadan College of Engineering & Technology, Hyderabad 500 008, India. 2National Geophysical Research Institute, Hyderabad 500 007, India. 3Department of Electrical Communication Engineering, ...

  14. A Novel Subnanosecond Monocycle Pulse Generator for UWB Radar Applications

    Directory of Open Access Journals (Sweden)

    Xinfan Xia

    2014-01-01

    Full Text Available A novel ultra-wideband (UWB monocycle pulse generator with good performance is designed and demonstrated in this paper. It contains a power supply circuit, a pulse drive circuit, a unique pulse forming circuit, and a novel monopolar-to-monocycle pulse transition circuit. The drive circuit employs wideband bipolar junction transistors (BJTs and linear power amplifier transistor to produce a high amplitude drive pulse, and the pulse forming circuit uses the transition characteristics of step recovery diode (SRD effectively to produce a negative narrow pulse. At last, the monocycle pulse forming circuit utilizes a novel inductance L short-circuited stub to generate the monocycle pulse directly. Measurement results show that the waveform of the generated monocycle pulses is over 76 V in peak-to-peak amplitude and 3.2 ns in pulse full-width. These characteristics of the monocycle pulse are advantageous for obtaining long detection range and high resolution, when it is applied to ultra-wideband radar applications.

  15. Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip.

    Science.gov (United States)

    Atabaki, Amir H; Moazeni, Sajjad; Pavanello, Fabio; Gevorgyan, Hayk; Notaros, Jelena; Alloatti, Luca; Wade, Mark T; Sun, Chen; Kruger, Seth A; Meng, Huaiyu; Al Qubaisi, Kenaish; Wang, Imbert; Zhang, Bohan; Khilo, Anatol; Baiocco, Christopher V; Popović, Miloš A; Stojanović, Vladimir M; Ram, Rajeev J

    2018-04-01

    Electronic and photonic technologies have transformed our lives-from computing and mobile devices, to information technology and the internet. Our future demands in these fields require innovation in each technology separately, but also depend on our ability to harness their complementary physics through integrated solutions 1,2 . This goal is hindered by the fact that most silicon nanotechnologies-which enable our processors, computer memory, communications chips and image sensors-rely on bulk silicon substrates, a cost-effective solution with an abundant supply chain, but with substantial limitations for the integration of photonic functions. Here we introduce photonics into bulk silicon complementary metal-oxide-semiconductor (CMOS) chips using a layer of polycrystalline silicon deposited on silicon oxide (glass) islands fabricated alongside transistors. We use this single deposited layer to realize optical waveguides and resonators, high-speed optical modulators and sensitive avalanche photodetectors. We integrated this photonic platform with a 65-nanometre-transistor bulk CMOS process technology inside a 300-millimetre-diameter-wafer microelectronics foundry. We then implemented integrated high-speed optical transceivers in this platform that operate at ten gigabits per second, composed of millions of transistors, and arrayed on a single optical bus for wavelength division multiplexing, to address the demand for high-bandwidth optical interconnects in data centres and high-performance computing 3,4 . By decoupling the formation of photonic devices from that of transistors, this integration approach can achieve many of the goals of multi-chip solutions 5 , but with the performance, complexity and scalability of 'systems on a chip' 1,6-8 . As transistors smaller than ten nanometres across become commercially available 9 , and as new nanotechnologies emerge 10,11 , this approach could provide a way to integrate photonics with state-of-the-art nanoelectronics.

  16. Ultra-wideband short-pulse radar with range accuracy for short range detection

    Energy Technology Data Exchange (ETDEWEB)

    Rodenbeck, Christopher T; Pankonin, Jeffrey; Heintzleman, Richard E; Kinzie, Nicola Jean; Popovic, Zorana P

    2014-10-07

    An ultra-wideband (UWB) radar transmitter apparatus comprises a pulse generator configured to produce from a sinusoidal input signal a pulsed output signal having a series of baseband pulses with a first pulse repetition frequency (PRF). The pulse generator includes a plurality of components that each have a nonlinear electrical reactance. A signal converter is coupled to the pulse generator and configured to convert the pulsed output signal into a pulsed radar transmit signal having a series of radar transmit pulses with a second PRF that is less than the first PRF.

  17. System-on-a-Chip Based Nano Star Tracker and Its Real-Time Image Processing Approach

    OpenAIRE

    Wei, Minsong; Bao, Jingyu; Xing, Fei; Liu, Zengyi; Sun, Ting; You, Zheng

    2016-01-01

    The star tracker is one of the most accurate components for satellite attitude determination. With the development of the nano star tracker, it is compatible for application on small satellites. However, the drawback in dynamic property of nano star tracker has limited its extensive applications. The principal objective of this study is to introduce a system-on-a-chip (SOC) based nano star tracker with enhanced dynamic property. A morphology based image processing approach was realized based ...

  18. Preliminary Radiation Testing of a State-of-the-Art Commercial 14nm CMOS Processor - System-on-a-Chip

    Science.gov (United States)

    Szabo, Carl M., Jr.; Duncan, Adam; LaBel, Kenneth A.; Kay, Matt; Bruner, Pat; Krzesniak, Mike; Dong, Lei

    2015-01-01

    Hardness assurance test results of Intel state-of-the-art 14nm Broadwell U-series processor System-on-a-Chip (SoC) for total dose are presented, along with first-look exploratory results from trials at a medical proton facility. Test method builds upon previous efforts by utilizing commercial laptop motherboards and software stress applications as opposed to more traditional automated test equipment (ATE).

  19. Preliminary Radiation Testing of a State-of-the-Art Commercial 14nm CMOS Processor/System-on-a-Chip

    Science.gov (United States)

    Szabo, Carl M., Jr.; Duncan, Adam; LaBel, Kenneth A.; Kay, Matt; Bruner, Pat; Krzesniak, Mike; Dong, Lei

    2015-01-01

    Hardness assurance test results of Intel state-of-the-art 14nm “Broadwell” U-series processor / System-on-a-Chip (SoC) for total ionizing dose (TID) are presented, along with exploratory results from trials at a medical proton facility. Test method builds upon previous efforts [1] by utilizing commercial laptop motherboards and software stress applications as opposed to more traditional automated test equipment (ATE).

  20. Inferring radar mode changes from elementary pulse features using Fuzzy ARTMAP classification

    CSIR Research Space (South Africa)

    Potgieter, PF

    2007-11-01

    Full Text Available A method for radar mode inference using Fuzzy ARTMAP classification is presented. In this method elementary radar parameters, Pulse Width (PW) and Pulse Repetition Interval (PRI) originating from a radar operating in a certain mode is input to a...

  1. Forensic Application of FM-CW and Pulse Radar

    Energy Technology Data Exchange (ETDEWEB)

    S. K. Koppenjan; R. S. Freeland; M. L. Miller; R. E. Yoder

    2003-01-01

    Ground-penetrating radar (GPR) technology has supplied vital assistance in criminal investigations. However, law enforcement personnel desire further developments such that the technology is rapidly deployable, and that it provides both a simple user interface and sophisticated target identification. To assist in the development of target identification algorithms, our efforts involve gathering background GPR data for the various site conditions and circumstances that often typify clandestine burials. For this study, forensic anthropologists established shallow-grave plots at The University of Tennessee Anthropological Research Facility (ARF) that are specific to GPR research. These plots contain donated human cadavers lying in various configurations and depths, surrounded by assorted construction material and backfill debris. We scanned the plots using two GPR technologies: (1) a multi-frequency synthetic-aperture FM-CW radar (200-700 MHz) (GPR-X) developed by the U.S. Department of Energy's (DOE) Special Technologies Laboratory (STL), Bechtel Nevada (Koppenjan et al., 2000), and (2) a commercial pulse radar (SIR-20) manufactured by Geophysical Survey Systems, Inc. (400 and 900 MHz)(GSSI). The sweep-frequency data show the large biological mass decomposing within the torso as encircled ''hot spots.'' The 400-MHz pulse radar exhibit major horizontal reflectors above the body, with shadow reflectors (horizontal multiples) occurring beneath the body at 60 cm depth. The 400-MHz antenna was able to discern the grave walls and folded tarp covering the lower body. Under these moist, clay-rich conditions, the 900-MHz antenna was able to penetrate slightly beyond 30 cm beneath the concrete layer. However, neither system was able to penetrate beyond a one meter depth in the moist, clay-rich soil (fine, mixed, thermic Typic Paleudalf). Example scans from each system are provided, along with a discussion of the survey protocol and general performance.

  2. Improving Compression Ratio, Area overhead, and Test Application Time in System-on-a-Chip Test Data Compression/Decompression

    OpenAIRE

    Gonciari, Paul Theo; Al-Hashimi, Bashir; Nicolici, Nicola

    2002-01-01

    This paper proposes a new test data compression/decompression method for systems-on-a-chip. The method is based on analyzing the factors that influence test parameters: compression ratio, area overhead and test application time. To improve compression ratio, the new method is based on a Variable-length Input Huffman Coding (VIHC), which fully exploits the type and length of the patterns, as well as a novel mapping and reordering algorithm proposed in a pre-processing step. The new VIHC algori...

  3. Radar pulse compression and high resolution sea reflectivity

    Science.gov (United States)

    Nathanson, F. E.

    1972-01-01

    The state-of-the-art in radar pulse compression as it applies to spacecraft altimetry is summarized. It is illustrated how in the next few years vertical resolutions to 0.5 to 2.0 ft. can be obtained with relative accuracies of 5 to 10% of these values if the nature of the sea surface is known. Data are also given that show when high accuracy is desired, second order effects such as the asymmetries in the sea surface reflectivity may be taken into account.

  4. Wake Vortex Tracking Using a 35 GHz Pulsed Doppler Radar

    Science.gov (United States)

    Neece, Robert T.; Britt, Charles L.; White, Joseph H.; Mudukutore, Ashok; Nguyen, Chi; Hooper, Bill

    2005-01-01

    A 35 GHz, pulsed-Doppler radar system has been designed and assembled for wake vortex detection and tracking in low visibility conditions. Aircraft wake vortices continue to be an important factor in determining safe following distances or spacings for aircraft in the terminal area. Currently, under instrument meteorological conditions (IMC), aircraft adhere to conservative, fixed following-distance guidelines based primarily on aircraft weight classifications. When ambient conditions are such that vortices will either drift or dissipate, leaving the flight corridor clear, the prescribed spacings are unnecessarily long and result in decreased airport throughput. There is a potential for significant airport efficiency improvement, if a system can be employed to aid regulators and pilots in setting safe and efficient following distances based on airport conditions. The National Aeronautics and Space Administration (NASA), the Federal Aviation Agency, and Volpe National Transportation Systems Center have promoted and worked to develop systems that would increase airport capacity and provide for safe reductions in aircraft separation. The NASA Aircraft Vortex Spacing System (AVOSS), a wake vortex spacing system that can provide dynamic adjustment of spacings based on real-time airport weather conditions, has demonstrated that Lidar systems can be successfully used to detect and track vortices in clear air conditions. To fill the need for detection capability in low-visibility conditions, a 35 GHz, pulsed-Doppler radar system is being investigated for use as a complimentary, low-visibility sensor for wake vortices. The radar sensor provides spatial and temporal information similar to that provided by Lidar, but under weather conditions that a Lidar cannot penetrate. Currently, we are analyzing the radar design based upon the data and experience gained during the wake vortex Lidar deployment with AVOSS at Dallas/Fort Worth International Airport. As part of this study

  5. Open borders for system-on-a-chip buses: A wire format for connecting large physics controls

    Directory of Open Access Journals (Sweden)

    M. Kreider

    2012-08-01

    Full Text Available System-on-a-chip (SoC bus systems are typically confined on-chip and rely on higher level components to communicate with the outside world. The idea behind the EtherBone (EB protocol is to extend the reach of the SoC bus to remote field-programmable gate arrays or processors. The EtherBone core implementation connects a Wishbone (WB Ver. 4 Bus via a Gigabit Ethernet based network link to remote peripheral devices. EB acts as a transparent interconnect module towards attached WB Bus devices. EB was developed in the scope of the WhiteRabbit Timing Project at CERN and GSI/FAIR. WhiteRabbit will make use of EB as a means to issue commands to its timing nodes and control connected accelerator hardware.

  6. Pulse compression radar reflectometry for density measurements on fusion plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Costley, A.; Prentice, R. [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking; Laviron, C. [Compagnie Generale des Matieres Nucleaires (COGEMA), 78 - Velizy-Villacoublay (France); Prentice, R. [Toulouse-3 Univ., 31 (France). Centre d`Etude Spatiale des Rayonnements

    1994-07-01

    On tokamaks and other toroidal machines, reflectometry is a very rapidly developing technique for density profile measurements, particularly near the edge. Its principle relies on the total reflection of an electromagnetic wave at a cutoff layer, where the critical density is reached and the local refractive index goes to zero. With the new fast frequency synthesizers now available, a method based on pulse compression radar is proposed for plasma reflectometry, overcoming the limitations of the previous reflectometry methods. The measurement can be made on a time-scale which is effectively very short relatively to the plasma fluctuations, and the very high reproducibility and stability of the source allows an absolute calibration of the waveguides to be made, which corrects for the effects of the parasitic reflections. 2 refs., 5 figs.

  7. The pulse-pair algorithm as a robust estimator of turbulent weather spectral parameters using airborne pulse Doppler radar

    Science.gov (United States)

    Baxa, Ernest G., Jr.; Lee, Jonggil

    1991-01-01

    The pulse pair method for spectrum parameter estimation is commonly used in pulse Doppler weather radar signal processing since it is economical to implement and can be shown to be a maximum likelihood estimator. With the use of airborne weather radar for windshear detection, the turbulent weather and strong ground clutter return spectrum differs from that assumed in its derivation, so the performance robustness of the pulse pair technique must be understood. Here, the effect of radar system pulse to pulse phase jitter and signal spectrum skew on the pulse pair algorithm performance is discussed. Phase jitter effect may be significant when the weather return signal to clutter ratio is very low and clutter rejection filtering is attempted. The analysis can be used to develop design specifications for airborne radar system phase stability. It is also shown that the weather return spectrum skew can cause a significant bias in the pulse pair mean windspeed estimates, and that the poly pulse pair algorithm can reduce this bias. It is suggested that use of a spectrum mode estimator may be more appropriate in characterizing the windspeed within a radar range resolution cell for detection of hazardous windspeed gradients.

  8. Hough Radar Detectors in Conditions of Intensive Pulse Jamming

    Directory of Open Access Journals (Sweden)

    Christo A. KABAKCHIEV

    2005-08-01

    Full Text Available We study in the present paper the radar, which can be considered as a part of a multi-sensor data fusion system. To improve the quality of the detection process, a detailed statistical analysis is performed and several detection algorithms are presented. These algorithms can be divided into two groups – conventional and ones using Hough transform. The benefits in the average detection threshold gained by Hough transform application are expressed as signal-to-noise ratio. The aim of this paper is to present and summarize the results described in other contributions and to consider some new ones. We assume that the target echo signal fluctuates according to Swerling models (Swerling I, II, III, the randomly arriving impulse interference is with a Poisson distribution of the probability for appearance and the amplitudes are with a Rayleigh distribution. The profits (losses are determined as a statistical estimation by means of the probability characteristics of both types of detectors, obtained in Matlab. The achieved results show that Hough transform is very effective in conditions of intensive pulse jamming.

  9. Orthogonal on-off control of radar pulses for the suppression of mutual interference

    Science.gov (United States)

    Kim, Yong Cheol

    1998-10-01

    Intelligent vehicles of the future will be guided by radars and other sensors to avoid obstacles. When multiple vehicles move simultaneously in autonomous navigational mode, mutual interference among car radars becomes a serious problem. An obstacle is illuminated with electromagnetic pulses from several radars. The signal at a radar receiver is actually a mixture of the self-reflection and the reflection of interfering pulses emitted by others. When standardized pulse- type radars are employed on vehicles for obstacle avoidance and so self-pulse and interfering pulses have identical pulse repetition interval, this SI (synchronous Interference) is very difficult to separate from the true reflection. We present a method of suppressing such a synchronous interference. By controlling the pulse emission of a radar in a binary orthogonal ON, OFF pattern, the true self-reflection can be separated from the false one. Two range maps are generated, TRM (true-reflection map) and SIM (synchronous- interference map). TRM is updated for every ON interval and SIM is updated for every OFF interval of the self-radar. SIM represents the SI of interfering radars while TRM keeps a record of a mixture of the true self-reflection and SI. Hence the true obstacles can be identified by the set subtraction operation. The performance of the proposed method is compared with that of the conventional M of N method. Bayesian analysis shows that the probability of false alarm is improved by order of 103 to approximately 106 while the deterioration in the probability of detection is negligible.

  10. Fpga based L-band pulse doppler radar design and implementation

    Science.gov (United States)

    Savci, Kubilay

    As its name implies RADAR (Radio Detection and Ranging) is an electromagnetic sensor used for detection and locating targets from their return signals. Radar systems propagate electromagnetic energy, from the antenna which is in part intercepted by an object. Objects reradiate a portion of energy which is captured by the radar receiver. The received signal is then processed for information extraction. Radar systems are widely used for surveillance, air security, navigation, weather hazard detection, as well as remote sensing applications. In this work, an FPGA based L-band Pulse Doppler radar prototype, which is used for target detection, localization and velocity calculation has been built and a general-purpose Pulse Doppler radar processor has been developed. This radar is a ground based stationary monopulse radar, which transmits a short pulse with a certain pulse repetition frequency (PRF). Return signals from the target are processed and information about their location and velocity is extracted. Discrete components are used for the transmitter and receiver chain. The hardware solution is based on Xilinx Virtex-6 ML605 FPGA board, responsible for the control of the radar system and the digital signal processing of the received signal, which involves Constant False Alarm Rate (CFAR) detection and Pulse Doppler processing. The algorithm is implemented in MATLAB/SIMULINK using the Xilinx System Generator for DSP tool. The field programmable gate arrays (FPGA) implementation of the radar system provides the flexibility of changing parameters such as the PRF and pulse length therefore it can be used with different radar configurations as well. A VHDL design has been developed for 1Gbit Ethernet connection to transfer digitized return signal and detection results to PC. An A-Scope software has been developed with C# programming language to display time domain radar signals and detection results on PC. Data are processed both in FPGA chip and on PC. FPGA uses fixed

  11. Hierarchical classification of dynamically varying radar pulse repetition interval modulation patterns.

    Science.gov (United States)

    Kauppi, Jukka-Pekka; Martikainen, Kalle; Ruotsalainen, Ulla

    2010-12-01

    The central purpose of passive signal intercept receivers is to perform automatic categorization of unknown radar signals. Currently, there is an urgent need to develop intelligent classification algorithms for these devices due to emerging complexity of radar waveforms. Especially multifunction radars (MFRs) capable of performing several simultaneous tasks by utilizing complex, dynamically varying scheduled waveforms are a major challenge for automatic pattern classification systems. To assist recognition of complex radar emissions in modern intercept receivers, we have developed a novel method to recognize dynamically varying pulse repetition interval (PRI) modulation patterns emitted by MFRs. We use robust feature extraction and classifier design techniques to assist recognition in unpredictable real-world signal environments. We classify received pulse trains hierarchically which allows unambiguous detection of the subpatterns using a sliding window. Accuracy, robustness and reliability of the technique are demonstrated with extensive simulations using both static and dynamically varying PRI modulation patterns. Copyright © 2010 Elsevier Ltd. All rights reserved.

  12. Quantitative Gait Measurement With Pulse-Doppler Radar for Passive In-Home Gait Assessment

    Science.gov (United States)

    Skubic, Marjorie; Rantz, Marilyn; Cuddihy, Paul E.

    2014-01-01

    In this paper, we propose a pulse-Doppler radar system for in-home gait assessment of older adults. A methodology has been developed to extract gait parameters including walking speed and step time using Doppler radar. The gait parameters have been validated with a Vicon motion capture system in the lab with 13 participants and 158 test runs. The study revealed that for an optimal step recognition and walking speed estimation, a dual radar set up with one radar placed at foot level and the other at torso level is necessary. An excellent absolute agreement with intraclass correlation coefficients of 0.97 was found for step time estimation with the foot level radar. For walking speed, although both radars show excellent consistency they all have a system offset compared to the ground truth due to walking direction with respect to the radar beam. The torso level radar has a better performance (9% offset on average) in the speed estimation compared to the foot level radar (13%–18% offset). Quantitative analysis has been performed to compute the angles causing the systematic error. These lab results demonstrate the capability of the system to be used as a daily gait assessment tool in home environments, useful for fall risk assessment and other health care applications. The system is currently being tested in an unstructured home environment. PMID:24771566

  13. Design and Characteristic Analysis of Multicarrier Chaotic Phase Coded Radar Pulse Train Signal

    OpenAIRE

    Huang, Qiongdan; Li, Yong; Zeng, Yaoping; Fu, Yinjuan

    2014-01-01

    By introducing phase code into multicarrier orthogonal frequency division multiplex signal, the multicarrier phase coded (MCPC) radar signal possesses a good spectrum utilization rate and can achieve a good combination of narrowband and wideband processing. Radar pulse train signal not only reserves the high range resolution of monopulse signal, but also has the same velocity resolution performance as continuous wave signal does. In this study, we use the chaotic biphase code generated by Che...

  14. FPGA based hardware optimized implementation of signal processing system for LFM pulsed radar

    Science.gov (United States)

    Azim, Noor ul; Jun, Wang

    2016-11-01

    Signal processing is one of the main parts of any radar system. Different signal processing algorithms are used to extract information about different parameters like range, speed, direction etc, of a target in the field of radar communication. This paper presents LFM (Linear Frequency Modulation) pulsed radar signal processing algorithms which are used to improve target detection, range resolution and to estimate the speed of a target. Firstly, these algorithms are simulated in MATLAB to verify the concept and theory. After the conceptual verification in MATLAB, the simulation is converted into implementation on hardware using Xilinx FPGA. Chosen FPGA is Xilinx Virtex-6 (XC6LVX75T). For hardware implementation pipeline optimization is adopted and also other factors are considered for resources optimization in the process of implementation. Focusing algorithms in this work for improving target detection, range resolution and speed estimation are hardware optimized fast convolution processing based pulse compression and pulse Doppler processing.

  15. A statistical survey of dayside pulsed ionospheric flows as seen by the CUTLASS Finland HF radar

    Directory of Open Access Journals (Sweden)

    K. A. McWilliams

    2000-04-01

    Full Text Available Nearly two years of 2-min resolution data and 7- to 21-s resolution data from the CUTLASS Finland HF radar have undergone Fourier analysis in order to study statistically the occurrence rates and repetition frequencies of pulsed ionospheric flows in the noon-sector high-latitude ionosphere. Pulsed ionospheric flow bursts are believed to be the ionospheric footprint of newly reconnected geomagnetic field lines, which occur during episodes of magnetic flux transfer to the terrestrial magnetosphere - flux transfer events or FTEs. The distribution of pulsed ionospheric flows were found to be well grouped in the radar field of view, and to be in the vicinity of the radar signature of the cusp footprint. Two thirds of the pulsed ionospheric flow intervals included in the statistical study occurred when the interplanetary magnetic field had a southward component, supporting the hypothesis that pulsed ionospheric flows are a reconnection-related phenomenon. The occurrence rate of the pulsed ionospheric flow fluctuation period was independent of the radar scan mode. The statistical results obtained from the radar data are compared to occurrence rates and repetition frequencies of FTEs derived from spacecraft data near the magnetopause reconnection region, and to ground-based optical measurements of poleward moving auroral forms. The distributions obtained by the various instruments in different regions of the magnetosphere were remarkably similar. The radar, therefore, appears to give an unbiased sample of magnetopause activity in its routine observations of the cusp footprint.Key words: Magnetospheric physics (magnetosphere-ionosphere interactions; plasma convection; solar wind-magnetosphere interactions

  16. Doublet Pulse Coherent Laser Radar for Tracking of Resident Space Objects

    Science.gov (United States)

    2014-09-01

    the ability to predict drag and solar radiation pressure effects on the RSOs accurately. While precise ranging to an RSO using radar or singlet pulse...awareness, and sub-millimeter range tracking of RSOs for solar physics, general relativity, precision navigation. Exo-SPEAR ladar is based on an...consists of a coherent, doublet pulse lidar, a Kalman filter target tracker , and a feedback control system. The system has been thoroughly tested in

  17. Pulse compression radar reflectometry to measure electron density in plasma with parasitic reflections.

    Science.gov (United States)

    Li, Bin; Li, Hong; Chen, Zhipeng; Luo, Chen; Wang, Huihui; Geng, Song; Feng, Lei; Liu, Qiuyan; Liu, Wandong

    2008-07-01

    Pulse compression radar reflectometry is used to obtain electron density profile in plasma with parasitic reflections in this article. The pulse compression radar relies on the relation between the temporal width of a pulse and the frequency bandwidth of this pulse: Deltat proportional, variant1Deltaf. So a set of sweep-frequency microwaves within a bandwidth Deltaf can be introduced sequentially into the plasma to obtain the same information as the one obtained by a real pulse. By applying a Fourier transform to the data of reflectivity array in the frequency domain, the temporal response in the time domain is obtained. The limitation of the parasitic reflections on measurement can be eliminated from the temporal response by the method of time gate. This is a prominent advantage when this method is compared to the traditional reflectometry. For this method, an appropriate compromise between the spatial resolution and the electron density resolution is important. Experimental results show that the profile obtained from pulse compression radar reflectometry is similar to that from a double Langmuir probe.

  18. The ten-channel pulsed radar reflectometer at the TEXTOR-94 tokamak

    NARCIS (Netherlands)

    van Gorkom, J. C.; van de Pol, M.J.; Donne, A. J. H.

    2001-01-01

    A new ten-channel pulsed radar reflectometer has been taken into operation at the Torus Experiment for Technology Oriented Research-94. The system will be used simultaneously as a density profile and as a density fluctuation diagnostic. Ten density layers from 0.4 x 10(19) to 4 x 10(19) m(-3) can be

  19. The effect of mode scrambling on pulsed radar reflectometry applied to high shear devices

    NARCIS (Netherlands)

    Donne, A. J. H.; de M. Baar,; Cavazzana, R.

    1997-01-01

    In this article the effect of mode scrambling on the operation of pulsed radar reflectometers working in the ordinary polarization mode on devices with a high magnetic shear is studied. Mode scrambling occurs when the magnetic field changes considerably on length and/or time scales which are similar

  20. Design and Characteristic Analysis of Multicarrier Chaotic Phase Coded Radar Pulse Train Signal

    Directory of Open Access Journals (Sweden)

    Qiongdan Huang

    2014-01-01

    Full Text Available By introducing phase code into multicarrier orthogonal frequency division multiplex signal, the multicarrier phase coded (MCPC radar signal possesses a good spectrum utilization rate and can achieve a good combination of narrowband and wideband processing. Radar pulse train signal not only reserves the high range resolution of monopulse signal, but also has the same velocity resolution performance as continuous wave signal does. In this study, we use the chaotic biphase code generated by Chebyshev mapping to conduct a phase modulation on MCPC pulse train so as to design two different types of multicarrier chaotic phase coded pulse train signal. The ambiguity functions of the two pulse train signals are compared with that of P4 code MCPC pulse train. In addition, we analyze the influences of subcarrier number, phase-modulated bit number, and period number on the pulse train’s autocorrelation performance. The low probability of intercept (LPI performance of the two signals is also discussed. Simulation results show that the designed pulse train signals have a thumbtack ambiguity function, a periodic autocorrelation side lobe lower than P4 code MCPC pulse train, and excellent LPI performance, as well as the feature of waveform diversity.

  1. Respiration and heartbeat monitoring using a distributed pulsed MIMO radar.

    Science.gov (United States)

    Walterscheid, Ingo; Smith, Graeme E

    2017-07-01

    This paper addresses non-contact monitoring of physiological signals induced by respiration and heartbeat. To detect the tiny physiological movements of the chest or other parts of the torso, a Mulitple-Input Multiple-Output (MIMO) radar is used. The spatially distributed transmitters and receivers are able to detect the chest surface movements of one or multiple persons in a room. Due to several bistatic measurements at the same time a robust detection and measuring of the breathing and heartbeat rate is possible. Using an appropriate geometrical configuration of the sensors even a localization of the person is feasible.

  2. An FPGA Based Implementation of a CFAR Processor Applied to a Pulse-Compression Radar System

    Directory of Open Access Journals (Sweden)

    S.Simić

    2014-04-01

    Full Text Available A hardware architecture that implements a CFAR processor including six variants of the CFAR algorithm based on linear and nonlinear operations for radar applications is presented. Since some implemented CFAR algorithms require sorting the input samples, the two sorting solutions are investigated. The first one is iterative, and it is suitable when incoming data clock is several times less than sorting clock. The second sorter is very fast by exploiting a high degree of parallelism. The architecture is on-line reconfigurable both in terms of CFAR method and in terms of the number of reference and guard cells. The architecture was developed for coherent radar with pulse compression. Besides dealing with surface clutter and multiple target situations, such radar detector is often faced with high side-lobes at the compression filter output when strong target presents in his sight. The results of implementing the architecture on a Field Programmable Gate Array (FPGA are presented and discussed.

  3. Radar Signals with Pulse Compression Analysis in Matlab

    OpenAIRE

    Trnčíková, Veronika

    2013-01-01

    Tato práce se zabývá vlivem vnitropulsní modulace na funkci neurčitosti. Funkce neurčitosti nám udává rozlišovací schopnost systému v dálce a Dopplerově kmitočtu. Práce se skládá z obecného popisu základů radiolokace, jednotlivých modulací a vlastního řešení v programu MATLAB s využitím řídkých matic. V textu jsou obsaženy grafy funkcí neurčitosti pro jednotlivé modulace, vytvořené v MATLABu This thesis is dedicated to pulse modulation influence to the ambiguity function. The ambiguity fun...

  4. Addressing On-Chip Power Converstion and Dissipation Issues in Many-Core System-on-a-Chip Based on Conventional Silicon and Emerging Nanotechnologies

    Science.gov (United States)

    Ashenafi, Emeshaw

    Integrated circuits (ICs) are moving towards system-on-a-chip (SOC) designs. SOC allows various small and large electronic systems to be implemented in a single chip. This approach enables the miniaturization of design blocks that leads to high density transistor integration, faster response time, and lower fabrication costs. To reap the benefits of SOC and uphold the miniaturization of transistors, innovative power delivery and power dissipation management schemes are paramount. This dissertation focuses on on-chip integration of power delivery systems and managing power dissipation to increase the lifetime of energy storage elements. We explore this problem from two different angels: On-chip voltage regulators and power gating techniques. On-chip voltage regulators reduce parasitic effects, and allow faster and efficient power delivery for microprocessors. Power gating techniques, on the other hand, reduce the power loss incurred by circuit blocks during standby mode. Power dissipation (Ptotal = Pstatic and Pdynamic) in a complementary metal-oxide semiconductor (CMOS) circuit comes from two sources: static and dynamic. A quadratic dependency on the dynamic switching power and a more than linear dependency on static power as a form of gate leakage (subthreshold current) exist. To reduce dynamic power loss, the supply power should be reduced. A significant reduction in power dissipation occurs when portions of a microprocessor operate at a lower voltage level. This reduction in supply voltage is achieved via voltage regulators or converters. Voltage regulators are used to provide a stable power supply to the microprocessor. The conventional off-chip switching voltage regulator contains a passive floating inductor, which is difficult to be implemented inside the chip due to excessive power dissipation and parasitic effects. Additionally, the inductor takes a very large chip area while hampering the scaling process. These limitations make passive inductor based on

  5. An Improved Clutter Suppression Method for Weather Radars Using Multiple Pulse Repetition Time Technique

    Directory of Open Access Journals (Sweden)

    Yingjie Yu

    2017-01-01

    Full Text Available This paper describes the implementation of an improved clutter suppression method for the multiple pulse repetition time (PRT technique based on simulated radar data. The suppression method is constructed using maximum likelihood methodology in time domain and is called parametric time domain method (PTDM. The procedure relies on the assumption that precipitation and clutter signal spectra follow a Gaussian functional form. The multiple interleaved pulse repetition frequencies (PRFs that are used in this work are set to four PRFs (952, 833, 667, and 513 Hz. Based on radar simulation, it is shown that the new method can provide accurate retrieval of Doppler velocity even in the case of strong clutter contamination. The obtained velocity is nearly unbiased for all the range of Nyquist velocity interval. Also, the performance of the method is illustrated on simulated radar data for plan position indicator (PPI scan. Compared with staggered 2-PRT transmission schemes with PTDM, the proposed method presents better estimation accuracy under certain clutter situations.

  6. Enhancement of Cross-Borehole Pulse Radar Signature on a Partially Water-Filled Tunnel

    Directory of Open Access Journals (Sweden)

    Ji-Hyun Jung

    2014-01-01

    Full Text Available Cross-borehole pulse radar has been employed to detect a deeply located empty tunnel. In this paper, effects of underground water collected in the bottom of an empty tunnel on cross-borehole pulse radar signatures are analyzed numerically. B-scan images, stacks of received pulses, are calculated by applying the finite-difference time-domain (FDTD method for 6 different heights of water from the bottom to the half height inside an empty tunnel. The most important features of an empty tunnel, the fastest time of peak (TOP and time of arrival (TOA extracted from the B-scan images, are slowed considerably depending on the increased height of water inside the tunnel. To compensate the weak TOP like that of an empty tunnel, a relation curve is formulated only utilizing measurable parameters of the fastest TOP and the fastest TOA. Then, a unified curve including the effects of two granites with the low and high dielectric properties is derived to cover widely varied dielectric properties of underground rocks. Based on the fastest TOP of an empty tunnel, the average difference between the fastest TOP of an empty tunnel and that of a partially water-filled tunnel decreases from 22.92% to 2.59% after enhancement.

  7. Microphysiological Human Brain and Neural Systems-on-a-Chip: Potential Alternatives to Small Animal Models and Emerging Platforms for Drug Discovery and Personalized Medicine.

    Science.gov (United States)

    Haring, Alexander P; Sontheimer, Harald; Johnson, Blake N

    2017-06-01

    Translational challenges associated with reductionist modeling approaches, as well as ethical concerns and economic implications of small animal testing, drive the need for developing microphysiological neural systems for modeling human neurological diseases, disorders, and injuries. Here, we provide a comprehensive review of microphysiological brain and neural systems-on-a-chip (NSCs) for modeling higher order trajectories in the human nervous system. Societal, economic, and national security impacts of neurological diseases, disorders, and injuries are highlighted to identify critical NSC application spaces. Hierarchical design and manufacturing of NSCs are discussed with distinction for surface- and bulk-based systems. Three broad NSC classes are identified and reviewed: microfluidic NSCs, compartmentalized NSCs, and hydrogel NSCs. Emerging areas and future directions are highlighted, including the application of 3D printing to design and manufacturing of next-generation NSCs, the use of stem cells for constructing patient-specific NSCs, and the application of human NSCs to 'personalized neurology'. Technical hurdles and remaining challenges are discussed. This review identifies the state-of-the-art design methodologies, manufacturing approaches, and performance capabilities of NSCs. This work suggests NSCs appear poised to revolutionize the modeling of human neurological diseases, disorders, and injuries.

  8. Interpretation of measured data and the resolution analysis of the RTP 4-channel pulsed radar

    International Nuclear Information System (INIS)

    Pavlo, P.

    1993-01-01

    The resolution of a 4-channel pulsed radar being built at Rijnhuisen for the RTP tokamak is analyzed. The achievable resolution mainly depends on the accuracy of the time-of-flight measurements and the number of sampling frequencies; since the technological solution and the configuration have already been set, emphasis is put on interpretation of the measured data (the inversion problem) and minimization of the overall error. For this purpose, a specific neural network - the Multi Layer Perceptron (MLP) - has successfully been applied. Central density in the range of 0.2-0.6 x 10 20 m -3 was considered, i.e., one above the critical density for all four frequencies but not so high as to restrict the measurements to just the edge of the plasma. By balancing the inversion error and the time measurement error, for a wide class of density profiles the overall error in estimating the reflection point position of between 0.72 cm (for the lowest frequency) and 0.52 cm (for the highest frequency) root mean square was obtained, assuming an RMS error of 70 ps in the time of flight measurements. This is probably much better than what could be obtained by the Abel transform. Moreover, mapping with the MLP is considerably faster, and it should be considered for routine multichannel pulsed radar data processing. (author) 2 tabs., 4 figs., 6 refs

  9. Use of dispersive effects for density profile reconstruction from pulse radar reflectometry measurements alone

    International Nuclear Information System (INIS)

    Hacquin, S.; Heuraux, S.; Colin, M.; Leclert, G.

    2000-01-01

    Reflectometry deduces the density profiles from the time of flight measurements for different frequencies of the probing wave. Pulse radar reflectometry allows the time of flight measurements at only a few discrete frequencies (typically 10 frequencies), which can lead to bad profile reconstruction. In order to improve the profile determination, it is proposed to use a dispersive effect of higher order, namely the pulse broadening. It is shown that usual methods of profile reconstruction are then improved. Particular attention is paid to the initialization problem, which is crucial in O-mode reflectometry. Initialization methods that use only reflectometry measurements have been developed. The sensitivity of each method to the measurement errors is discussed. Errors due to density fluctuations have been investigated numerically. For density fluctuations with moderate amplitude, the time of flight can be significantly modified whereas the pulse broadening is mostly unchanged. It is shown that, even with significant errors (10% on the time of flight, up to 40% on the pulse broadening) the profile initialization can be improved by using both time of flight and optimal length. The density profile is then reconstructed with an acceptable accuracy. (author)

  10. Monitoring of railway embankment settlement with fiber-optic pulsed time-of-flight radar.

    Science.gov (United States)

    Kilpelä, Ari; Lyöri, Veijo; Duan, Guoyong

    2012-12-01

    This paper deals with a fiber-optic pulsed time-of-flight (PTOF) laser radar used for monitoring the settlement of a railway embankment. The operating principle is based on evaluating the changes in the lengths of the fiber-optic cables embedded in the embankment by measuring the time separation of the optical pulses reflected from both ends of the sensor fiber. The advantage of this method is that it integrates the elongation of the whole sensor, and many sensor fibers can be connected in series. In a field test, seven polyurethane-coated optical cables were installed in a railway embankment and used as 20-m long sensors. The optical timing pulses were created using specially polished optical connectors. The measured precision was 0.28 ps, which corresponds 1.8 μstrain elongation using a 20 m long sensor fiber, using an averaged value of 10,000 pulses for a single measurement value. The averaged elongation value of all sensors was used for cancelling out the effect of temperature variation on the elongation value of each individual sensor. The functionality of the method was tested by digging away a 7.5 m long and approximately 18 mm high section of sand below one sensor. It was measured as a +3 mm change in the length of the sensor fiber, which matched well with the theoretically calculated elongation value, 2.9 mm. The sensor type proved to be strong but flexible enough for this type of use.

  11. Micro motion jamming identification based on random pulse repetition interval compressed sensing radar

    Science.gov (United States)

    Sui, Jinping; Liu, Zhen; Li, Xiang; Wei, Xizhang; Liao, Dongping

    2017-07-01

    Random Pulse Repetition Interval Compressed Sensing Radar (RPRICSR) has superiorities on target detection, unambiguous velocity measurement as well as anti-velocity jamming for its signal randomness. However, RPRICSR cannot detect the micro motion targets effectively under the presence of micro motion false targets within present echo processing methods. This paper firstly combined Short Sparse Recovery (SSR) method with RPRI signal under the frame of Compressed Sensing. Then the fact that echo signals of true and false micro motion targets are sparse in different dictionaries are utilized to separate the true and false micro motion targets based on a union dictionary. The proposed method is proved to be effective compared to the traditional signal processing methods of RPRICSR according to the simulation results.

  12. Designing clutter rejection filters with complex coefficients for airborne pulsed Doppler weather radar

    Science.gov (United States)

    Jamora, Dennis A.

    1993-01-01

    Ground clutter interference is a major problem for airborne pulse Doppler radar operating at low altitudes in a look-down mode. With Doppler zero set at the aircraft ground speed, ground clutter rejection filtering is typically accomplished using a high-pass filter with real valued coefficients and a stopband notch centered at zero Doppler. Clutter spectra from the NASA Wind Shear Flight Experiments of l991-1992 show that the dominant clutter mode can be located away from zero Doppler, particularly at short ranges dominated by sidelobe returns. Use of digital notch filters with complex valued coefficients so that the stopband notch can be located at any Doppler frequency is investigated. Several clutter mode tracking algorithms are considered to estimate the Doppler frequency location of the dominant clutter mode. From the examination of night data, when a dominant clutter mode away from zero Doppler is present, complex filtering is able to significantly increase clutter rejection over use of a notch filter centered at zero Doppler.

  13. An overview of avalanche photodiodes and pulsed lasers as they are used in 3D laser radar type applications

    Science.gov (United States)

    Dion, Bruno; Bertone, Nick

    2004-08-01

    This paper will examine how Avalanche Photodiodes (APD) and Infrared Pulsed lasers (PL) are used and optimized to provide the "intelligence" to smart weapons. The basics of APD's and PL will be covered and the principle "time of flight ranging" which is the underlining principle of 3D laser radar will be illustrated. The time of flight principle is used for range finding, lidar, 3D laser radar and speed measurements - this information can then be used to provide intelligence to the smart weapon. Examples of such systems are discussed and illustrated, for example: Cluster bombs, Proximity fuses, and how laser range finding systems can be incorporated with GPS to produce effective and lethal weapons. The APD's that are discussed include silicon APD's for cost effective weapons, and 1550nm APDs for eye-safe systems. An overview of the different PL's will be outlined, but the focus will be on 905nm laser pulsars for cost effective laser weapons.

  14. Antenna Parts and Waveguide Transmission Line of Short Pulse Radar System Design

    Directory of Open Access Journals (Sweden)

    M. E. Golubcov

    2014-01-01

    Full Text Available The main point of this research was работы являлось to create a stand to explore the application of short pulse radio signals in radar. The stand consists of antenna and waveguide elements. Each element out to guarantee operation in X-band with 10 percent working bank and 5 percent instantaneous bandwidth and the power output gotta be 1.5 kW. The form of the antenna beam patten need to be similar to cosecant pattern Side-lobe level need to be less than -25 dB. Background level got to be at least -30 dB. Wave friction, which is radiated from the antenna aperture, got to simultaneous formed in a space.As the most easily realizing variant of such antenna cutting parabolic mirror antenna with offset irradiator was chosen. The irradiator phase centre is shifted from the focal point of the paraboloid to form a cosecant pattern. Method of physical optics is used for the analysis of antennas. Calculating pattern of horn irradiator and mirror antenna which were met the requirements was received. The construction choice was limited by the preproduction possibilities, mass and dimensions. Mirror antenna consists of skeleton framing with mirroring elements which are fixing on it. Mirroring plane is multiplex and consists off rectangular planes made by hydroforming method. Antenna was tested and adjusted at the antenna darkroom after fabricating. The results were meted requirements.Besides the mirror antenna and the horn antenna waveguide elements, waveguide bends and rotating joints were calculated, manufactured and researched. All calculations included the manufacturers tolerances, technological corner R etc. As the construction base of rotating joint coaxial waveguide was chosen. The decision on the one hand: let keep the axial symmetry of excited wave at rotating part of the waveguide, on the other hand there’s no necessary to apply resonant rings, which are plug into dielectric beads for the transition from rotating ring part to

  15. High-depth-resolution 3-dimensional radar-imaging system based on a few-cycle W-band photonic millimeter-wave pulse generator.

    Science.gov (United States)

    Tseng, Tzu-Fang; Wun, Jhih-Min; Chen, Wei; Peng, Sui-Wei; Shi, Jin-Wei; Sun, Chi-Kuang

    2013-06-17

    We demonstrate that a near-single-cycle photonic millimeter-wave short-pulse generator at W-band is capable to provide high spatial resolution three-dimensional (3-D) radar imaging. A preliminary study indicates that 3-D radar images with a state-of-the-art ranging resolution of around 1.2 cm at the W-band can be achieved.

  16. Recalculation of an artificially released avalanche with SAMOS and validation with measurements from a pulsed Doppler radar

    Directory of Open Access Journals (Sweden)

    R. Sailer

    2002-01-01

    Full Text Available A joint experiment was carried out on 10 February 1999 by the Swiss Federal Institute for Snow and Avalanche Research (SFISAR and the Austrian Institute for Avalanche and Torrent Research (AIATR, of the Federal Office and Re-search Centre for Forests, BFW to measure forces and velocities at the full scale experimental site CRÊTA BESSE in VALLÉE DE LA SIONNE, Canton du Valais, Switzerland. A huge avalanche could be released artificially, which permitted extensive investigations (dynamic measurements, im-provement of measurement systems, simulation model verification, design of protective measures, etc.. The results of the velocity measurements from the dual frequency pulsed Doppler avalanche radar of the AIATR and the recalculation with the numerical simulation model SAMOS are explained in this paper.

  17. Green pulsed lidar-radar emitter based on a multipass frequency-shifting external cavity.

    Science.gov (United States)

    Zhang, Haiyang; Brunel, Marc; Romanelli, Marco; Vallet, Marc

    2016-04-01

    This paper investigates the radio frequency (RF) up-conversion properties of a frequency-shifting external cavity on a laser beam. We consider an infrared passively Q-switched pulsed laser whose intensity modulation results from the multiple round-trips in the external cavity, which contains a frequency shifter. The output beam undergoes optical second-harmonic generation necessary to reach the green wavelength. We model the pulse train using a rate-equation model to simulate the laser pulses, together with a time-delayed interference calculation taking both the diffraction efficiency and the Gaussian beam propagation into account. The predictions are verified experimentally using a diode-pumped Nd:YAG laser passively Q-switched by Cr4+:YAG whose pulse train makes multiple round-trips in a mode-matched external cavity containing an acousto-optic frequency shifter driven at 85 MHz. Second-harmonic generation is realized in a KTP crystal, yielding RF-modulated pulses at 532 nm with a modulation contrast of almost 100%. RF harmonics up to the 6th order (1.020 GHz) are observed in the green output pulses. Such a RF-modulated green laser may find applications in underwater detection and ranging.

  18. Analysis of the computational requirements of a pulse-doppler radar signal processor

    CSIR Research Space (South Africa)

    Broich, R

    2012-05-01

    Full Text Available H z to 10 GH z Fig. 1. Radar signal processor (RSP) flow of operations purpose computer architectures [3]. An abstract machine, in which only memory reads, writes, additions and multiplica- tions are considered to be significant operations..., is chosen for the model of computation. For each algorithm, a pseudo-code listing is used to find an expression for the required number of additions/subtractions, multiplications/divisions, as well as memory reads and writes. Based on the parameters...

  19. Reconfigurable System-on-a-Chip

    Czech Academy of Sciences Publication Activity Database

    Matoušek, Rudolf; Daněk, Martin; Pohl, Zdeněk; Bartosinski, Roman; Honzík, Petr

    2005-01-01

    Roč. 5, č. 2 (2005), s. 1-3 R&D Projects: GA AV ČR 1ET400750406; GA AV ČR 1QS108040510; GA AV ČR 1ET400750408 Institutional research plan: CEZ:AV0Z10750506 Keywords : FPGA * dynamic reconfiguratio * system -on-chip Subject RIV: JC - Computer Hardware ; Software

  20. An Adaptive Clutter Suppression Technique for Moving Target Detector in Pulse Doppler Radar

    Directory of Open Access Journals (Sweden)

    A. Mandal

    2014-04-01

    Full Text Available An adaptive system performs the processing by using an architecture having time-varying parameters on the received signals which accompanies with clutters. In this paper, an adaptive moving target detector has been designed to meet the challenges of target detection amidst various levels of clutter environments. The approach has been used that is able to overcome the inherent limitations of conventional systems (e.g. Moving Target Indicator, Fast Fourier Transform etc. having predefined coefficients. In this purpose an optimal design of transversal filter is being proposed along with various weight selection Maps to improve probability of detection in ground based surveillance radar. A modified LMS algorithm based adaptive FIR filter has been implemented utilizing modular CORDIC unit as a main processing element for filtering as well as weight updatation to suppress clutter of various intensity. Extensive MATLAB simulations have been done using various levels of clutter input to show the effectiveness of adaptive moving target detector (AMTD.

  1. Doublet Pulse Coherent Laser Radar for Tracking of Resident Space Objects

    Science.gov (United States)

    Prasad, Narasimha S.; Rudd, Van; Shald, Scott; Sandford, Stephen; Dimarcantonio, Albert

    2014-01-01

    In this paper, the development of a long range ladar system known as ExoSPEAR at NASA Langley Research Center for tracking rapidly moving resident space objects is discussed. Based on 100 W, nanosecond class, near-IR laser, this ladar system with coherent detection technique is currently being investigated for short dwell time measurements of resident space objects (RSOs) in LEO and beyond for space surveillance applications. This unique ladar architecture is configured using a continuously agile doublet-pulse waveform scheme coupled to a closed-loop tracking and control loop approach to simultaneously achieve mm class range precision and mm/s velocity precision and hence obtain unprecedented track accuracies. Salient features of the design architecture followed by performance modeling and engagement simulations illustrating the dependence of range and velocity precision in LEO orbits on ladar parameters are presented. Estimated limits on detectable optical cross sections of RSOs in LEO orbits are discussed.

  2. Radar techniques using array antennas

    CERN Document Server

    Wirth, Wulf-Dieter

    2013-01-01

    Radar Techniques Using Array Antennas is a thorough introduction to the possibilities of radar technology based on electronic steerable and active array antennas. Topics covered include array signal processing, array calibration, adaptive digital beamforming, adaptive monopulse, superresolution, pulse compression, sequential detection, target detection with long pulse series, space-time adaptive processing (STAP), moving target detection using synthetic aperture radar (SAR), target imaging, energy management and system parameter relations. The discussed methods are confirmed by simulation stud

  3. Radar transponder operation with compensation for distortion due to amplitude modulation

    Science.gov (United States)

    Ormesher, Richard C [Albuquerque, NM; Tise, Bertice L [Albuquerque, NM; Axline, Jr., Robert M.

    2011-01-04

    In radar transponder operation, a variably delayed gating signal is used to gate a received radar pulse and thereby produce a corresponding gated radar pulse for transmission back to the source of the received radar pulse. This compensates for signal distortion due to amplitude modulation on the retransmitted pulse.

  4. Phased-array radars

    Science.gov (United States)

    Brookner, E.

    1985-02-01

    The operating principles, technology, and applications of phased-array radars are reviewed and illustrated with diagrams and photographs. Consideration is given to the antenna elements, circuitry for time delays, phase shifters, pulse coding and compression, and hybrid radars combining phased arrays with lenses to alter the beam characteristics. The capabilities and typical hardware of phased arrays are shown using the US military systems COBRA DANE and PAVE PAWS as examples.

  5. Signal processing in noise waveform radar

    CERN Document Server

    Kulpa, Krzysztof

    2013-01-01

    This book is devoted to the emerging technology of noise waveform radar and its signal processing aspects. It is a new kind of radar, which use noise-like waveform to illuminate the target. The book includes an introduction to basic radar theory, starting from classical pulse radar, signal compression, and wave radar. The book then discusses the properties, difficulties and potential of noise radar systems, primarily for low-power and short-range civil applications. The contribution of modern signal processing techniques to making noise radar practical are emphasized, and application examples

  6. Fmcw Mmw Radar For Automotive Longitudinal Control

    OpenAIRE

    David, William

    1997-01-01

    This report presents information on millimeter wave (MMW) radar for automotive longitudinal control. It addresses the fundamental capabilities and limitations of millimeter waves for ranging and contrasts their operation with that of conventional microwave radar. The report analyzes pulsed and FMCW radar configurations, and provides detailed treatment of FMCW radar operating at MMW frequency, its advantages and disadvantages as they relate to range and velocity measurements.

  7. CMOS active pixel sensor type imaging system on a chip

    Science.gov (United States)

    Fossum, Eric R. (Inventor); Nixon, Robert (Inventor)

    2011-01-01

    A single chip camera which includes an .[.intergrated.]. .Iadd.integrated .Iaddend.image acquisition portion and control portion and which has double sampling/noise reduction capabilities thereon. Part of the .[.intergrated.]. .Iadd.integrated .Iaddend.structure reduces the noise that is picked up during imaging.

  8. Micromachined Systems-on-a-Chip: Infrastructure, Technology and Applications

    Energy Technology Data Exchange (ETDEWEB)

    Allen, J. J.; Krygowski, T. W.; Miller, S. L.; Montague, S.; Rodgers, M. S.; Schriner, H.; Smith, J. H.; Sniegowski, J. J.

    1998-10-09

    A review is made of the infrastructure, technology and capabilities of Sandia National Laboratories for the development of micromechanical systems that have potential space applications. By incorporating advanced fabrication processes, such as chemical mechanical polishing, and several mechanical polysilicon levels, the range' of rrticromechanical systems that can be fabricated in these technologies is virtually limitless. Representative applications include a micro- engine driven mirror, and a micromachined lock. Using a novel integrated MEM!YCMOS technology, a six degree-of-freedom accelerometer/gyroscope system has been designed by researchers at U.C. Berkeley and fabricated on the same silicon chip as the CMOS control circuits to produce an integrated micro-navigational unit.

  9. System on a chip with MPEG-4 capability

    Science.gov (United States)

    Yassa, Fathy; Schonfeld, Dan

    2002-12-01

    Current products supporting video communication applications rely on existing computer architectures. RISC processors have been used successfully in numerous applications over several decades. DSP processors have become ubiquitous in signal processing and communication applications. Real-time applications such as speech processing in cellular telephony rely extensively on the computational power of these processors. Video processors designed to implement the computationally intensive codec operations have also been used to address the high demands of video communication applications (e.g., cable set-top boxes and DVDs). This paper presents an overview of a system-on-chip (SOC) architecture used for real-time video in wireless communication applications. The SOC specifications answer to the system requirements imposed by the application environment. A CAM-based video processor is used to accelerate data intensive video compression tasks such as motion estimations and filtering. Other components are dedicated to system level data processing and audio processing. A rich set of I/Os allows the SOC to communicate with other system components such as baseband and memory subsystems.

  10. Design of systems on a chip design and test

    CERN Document Server

    Reis, Ricardo; Jess, Jochen AG

    2007-01-01

    Addresses the design challenges associated with generations of the semiconductor technology. This book includes contributions on three different, but complementary axes: core design, computer-aided design tools and test methods. A collection of chapters deal with the heterogeneity aspect of core designs.

  11. Measurement of electromagnetic fields generated by air traffic control radar systems with spectrum analysers.

    Science.gov (United States)

    Barellini, A; Bogi, L; Licitra, G; Silvi, A M; Zari, A

    2009-12-01

    Air traffic control (ATC) primary radars are 'classical' radars that use echoes of radiofrequency (RF) pulses from aircraft to determine their position. High-power RF pulses radiated from radar antennas may produce high electromagnetic field levels in the surrounding area. Measurement of electromagnetic fields produced by RF-pulsed radar by means of a swept-tuned spectrum analyser are investigated here. Measurements have been carried out both in the laboratory and in situ on signals generated by an ATC primary radar.

  12. Quantum radar

    CERN Document Server

    Lanzagorta, Marco

    2011-01-01

    This book offers a concise review of quantum radar theory. Our approach is pedagogical, making emphasis on the physics behind the operation of a hypothetical quantum radar. We concentrate our discussion on the two major models proposed to date: interferometric quantum radar and quantum illumination. In addition, this book offers some new results, including an analytical study of quantum interferometry in the X-band radar region with a variety of atmospheric conditions, a derivation of a quantum radar equation, and a discussion of quantum radar jamming.This book assumes the reader is familiar w

  13. CAMEX-4 2ND GENERATION PRECIPITATION RADAR V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The Second Generation Precipitation Radar (PR-2) is a dual-frequency, Doppler, dual-polarization radar system that includes digital, real-time pulse compression,...

  14. Radar Chart

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Radar Chart collection is an archived product of summarized radar data. The geographic coverage is the 48 contiguous states of the United States. These hourly...

  15. Meteor detection on ST (MST) radars

    International Nuclear Information System (INIS)

    Avery, S.K.

    1987-01-01

    The ability to detect radar echoes from backscatter due to turbulent irregularities of the radio refractive index in the clear atmosphere has lead to an increasing number of established mesosphere - stratosphere - troposphere (MST or ST) radars. Humidity and temperature variations are responsible for the echo in the troposphere and stratosphere and turbulence acting on electron density gradients provides the echo in the mesosphere. The MST radar and its smaller version, the ST radar, are pulsed Doppler radars operating in the VHF - UHF frequency range. These echoes can be used to determine upper atmosphere winds at little extra cost to the ST radar configuration. In addition, the meteor echoes can supplement mesospheric data from an MST radar. The detection techniques required on the ST radar for delineating meteor echo returns are described

  16. Radar equations for modern radar

    CERN Document Server

    Barton, David K

    2012-01-01

    Based on the classic Radar Range-Performance Analysis from 1980, this practical volume extends that work to ensure applicability of radar equations to the design and analysis of modern radars. This unique book helps you identify what information on the radar and its environment is needed to predict detection range. Moreover, it provides equations and data to improve the accuracy of range calculations. You find detailed information on propagation effects, methods of range calculation in environments that include clutter, jamming and thermal noise, as well as loss factors that reduce radar perfo

  17. Radar research at the University of Kansas

    Science.gov (United States)

    Blunt, Shannon D.; Allen, Christopher; Arnold, Emily; Hale, Richard; Hui, Rongqing; Keshmiri, Shahriar; Leuschen, Carlton; Li, Jilu; Paden, John; Rodriguez-Morales, Fernando; Salandrino, Alessandro; Stiles, James

    2017-05-01

    Radar research has been synonymous with the University of Kansas (KU) for over half a century. As part of this special session organized to highlight significant radar programs in academia, this paper surveys recent and ongoing work at KU. This work encompasses a wide breadth of sensing applications including the remote sensing of ice sheets, autonomous navigation methods for unmanned aerial vehicles (UAVs), novel laser radar capabilities, detection of highenergy cosmic rays using bistatic radar, different forms of waveform diversity such as MIMO radar and pulse agility, and various radar-embedded communication methods. The results of these efforts impact our understanding of the changing nature of the environment, address the proliferation of unmanned systems in the US airspace, realize new sensing modalities enabled by the joint consideration of electromagnetics and signal processing, and greater facilitate radar operation in an increasingly congested and contested spectrum.

  18. The evaluation of satellite-borne weather radar system designs using real ground-based radar data

    Science.gov (United States)

    Dobson, E. B.; Kalshoven, J. E., Jr.

    1977-01-01

    The paper presents method of evaluating proposed satellite radar systems using real radar data, and discusses methods of displaying the results which will hopefully facilitate easy comparison of systems. A single pencil beam pulsed radar system is considered while the precipitation data base comes from six rain days observed by SPANDAR. The many additional factors that must be considered in the radar equation such as attenuation and scattering (Mie and Rayleigh) are discussed along with some indication where possible errors lie.

  19. Radar Doppler Processing with Nonuniform Sampling.

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-07-01

    Conventional signal processing to estimate radar Doppler frequency often assumes uniform pulse/sample spacing. This is for the convenience of t he processing. More recent performance enhancements in processor capability allow optimally processing nonuniform pulse/sample spacing, thereby overcoming some of the baggage that attends uniform sampling, such as Doppler ambiguity and SNR losses due to sidelobe control measures.

  20. Weather Radar Stations

    Data.gov (United States)

    Department of Homeland Security — These data represent Next-Generation Radar (NEXRAD) and Terminal Doppler Weather Radar (TDWR) weather radar stations within the US. The NEXRAD radar stations are...

  1. Fly eye radar or micro-radar sensor technology

    Science.gov (United States)

    Molchanov, Pavlo; Asmolova, Olga

    2014-05-01

    To compensate for its eye's inability to point its eye at a target, the fly's eye consists of multiple angularly spaced sensors giving the fly the wide-area visual coverage it needs to detect and avoid the threats around him. Based on a similar concept a revolutionary new micro-radar sensor technology is proposed for detecting and tracking ground and/or airborne low profile low altitude targets in harsh urban environments. Distributed along a border or around a protected object (military facility and buildings, camp, stadium) small size, low power unattended radar sensors can be used for target detection and tracking, threat warning, pre-shot sniper protection and provides effective support for homeland security. In addition it can provide 3D recognition and targets classification due to its use of five orders more pulses than any scanning radar to each space point, by using few points of view, diversity signals and intelligent processing. The application of an array of directional antennas eliminates the need for a mechanical scanning antenna or phase processor. It radically decreases radar size and increases bearing accuracy several folds. The proposed micro-radar sensors can be easy connected to one or several operators by point-to-point invisible protected communication. The directional antennas have higher gain, can be multi-frequency and connected to a multi-functional network. Fly eye micro-radars are inexpensive, can be expendable and will reduce cost of defense.

  2. Bistatic radar

    CERN Document Server

    Willis, Nick

    2004-01-01

    Annotation his book is a major extension of a chapter on bistatic radar written by the author for the Radar Handbook, 2nd edition, edited by Merrill Skolnik. It provides a history of bistatic systems that points out to potential designers the applications that have worked and the dead-ends not worth pursuing. The text reviews the basic concepts and definitions, and explains the mathematical development of relationships, such as geometry, Ovals of Cassini, dynamic range, isorange and isodoppler contours, target doppler, and clutter doppler spread.Key Features * All development and analysis are

  3. Measurement of electromagnetic fields generated by air traffic control radar systems with spectrum analysers

    International Nuclear Information System (INIS)

    Barellini, A.; Bogi, L.; Licitra, G.; Silvi, A. M.; Zari, A.

    2009-01-01

    Air traffic control (ATC) primary radars are 'classical' radars that use echoes of radiofrequency (RF) pulses from aircraft to determine their position. High-power RF pulses radiated from radar antennas may produce high electromagnetic field levels in the surrounding area. Measurement of electromagnetic fields produced by RF-pulsed radar by means of a swept-tuned spectrum analyser are investigated here. Measurements have been carried out both in the laboratory and in situ on signals generated by an ATC primary radar. (authors)

  4. Stepped-frequency radar sensors theory, analysis and design

    CERN Document Server

    Nguyen, Cam

    2016-01-01

    This book presents the theory, analysis and design of microwave stepped-frequency radar sensors. Stepped-frequency radar sensors are attractive for various sensing applications that require fine resolution. The book consists of five chapters. The first chapter describes the fundamentals of radar sensors including applications followed by a review of ultra-wideband pulsed, frequency-modulated continuous-wave (FMCW), and stepped-frequency radar sensors. The second chapter discusses a general analysis of radar sensors including wave propagation in media and scattering on targets, as well as the radar equation. The third chapter addresses the analysis of stepped-frequency radar sensors including their principles and design parameters. Chapter 4 presents the development of two stepped-frequency radar sensors at microwave and millimeter-wave frequencies based on microwave integrated circuits (MICs), microwave monolithic integrated circuits (MMICs) and printed-circuit antennas, and discusses their signal processing....

  5. Meteor observation by the Kyoto meteor radar

    International Nuclear Information System (INIS)

    Kato, S.; Tsuda, T.

    1987-01-01

    The Kyoto Meteor Radar is a monostatic coherent pulsed Doppler radar operating on the frequency of 31.57 MH. The system is computer controlled and uses radio interferometry for echo height determination. The antenna, an improvement, can be directed either to the north or the east. The system has been continuously collecting data on winds at meteor heights by radar observation. The meteor echo rate was also measured, the echo rate distribution with height and the daily variation in height integrated echo rate are discussed. Investigations of atmospheric tides are being pursued by cooperative observations. A novel approach to the study of gravity waves was attempted using the meteor radar which is able to detect the horizontal propagation of the waves by observing the changing phase through the region illuminated by the radar

  6. Radar channel balancing with commutation

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin Walter

    2014-02-01

    When multiple channels are employed in a pulse-Doppler radar, achieving and maintaining balance between the channels is problematic. In some circumstances the channels may be commutated to achieve adequate balance. Commutation is the switching, trading, toggling, or multiplexing of the channels between signal paths. Commutation allows modulating the imbalance energy away from the balanced energy in Doppler, where it can be mitigated with filtering.

  7. Social Radar

    Science.gov (United States)

    2012-01-01

    development and exploration of courses of action. Recent events suggest the great potential of social media as an important input for this 21st century...unrestricted data domain consisting of open source English and foreign language data of varying types, including social media  Engineering to process and...Ideology identification in multiple languages  Emotion analysis of social media for instability monitoring Social Radar RTA HFM-201/RSM

  8. Multitones’ Performance for Ultra Wideband Software Defined Radar

    OpenAIRE

    Kernec, Julien Le; Romain, Olivier

    2015-01-01

    This chapter proposes and tests an approach for an unbiased study of radar waveforms’ performances. Through an empirical performance analysis, the performances of Chirp and Multitones are compared with both simulations and measurements. An ultra wideband software defined radar prototype was designed and the prototype has performances comparable to the state of the art in software defined radar. The study looks at peak-to-mean-envelope power ratio, spectrum efficiency, and pulse compression as...

  9. Effect of DRFM phase responsext on the doppler spectrum of a coherent radar: critical implications and possible mitigation techniques

    CSIR Research Space (South Africa)

    Herselman, PL

    2006-02-01

    Full Text Available In this research, the critical implications of the phase response of a Digital Radio Frequency Memory (DRFM) based repeater system on the Doppler spectrum of a modern, coherently processing radar system (for example pulsed Doppler radar...

  10. Advances in bistatic radar

    CERN Document Server

    Willis, Nick

    2007-01-01

    Advances in Bistatic Radar updates and extends bistatic and multistatic radar developments since publication of Willis' Bistatic Radar in 1991. New and recently declassified military applications are documented. Civil applications are detailed including commercial and scientific systems. Leading radar engineers provide expertise to each of these applications. Advances in Bistatic Radar consists of two major sections: Bistatic/Multistatic Radar Systems and Bistatic Clutter and Signal Processing. Starting with a history update, the first section documents the early and now declassified military

  11. Tropical Rainfall Measuring Mission (TRMM) project. VI - Spacecraft, scientific instruments, and launching rocket. Part 4 - TRMM rain radar

    Science.gov (United States)

    Meneghini, Robert; Atlas, David; Awaka, Jun; Okamoto, Ken'ichi; Ihara, Toshio; Nakamura, Kenji; Kozu, Toshiaki; Manabe, Takeshi

    1990-01-01

    The basic system parameters for the Tropical Rainfall Measuring Mission (TRMM) radar system are frequency, beamwidth, scan angle, resolution, number of independent samples, pulse repetition frequency, data rate, and so on. These parameters were chosen to satisfy NASA's mission requirements. Six candidates for the TRMM rain radar were studied. The study considered three major competitive items: (1) a pulse-compression radar vs. a conventional radar; (2) an active-array radar with a solid state power amplifier vs. a passive-array radar with a traveling-wave-tube amplifier; and (3) antenna types (planar-array antenna vs. cylindrical parabolic antenna). Basic system parameters such as radar sensitivities, power consumption, weight, and size of these six types are described. Trade-off studies of these cases show that the non-pulse-compression active-array radar with a planar array is considered to be the most suitable candidate for the TRMM rain radar at 13.8 GHz.

  12. Radar cross section measurements using terahertz waves

    DEFF Research Database (Denmark)

    Iwaszczuk, Krzysztof; Heiselberg, Henning; Jepsen, Peter Uhd

    2010-01-01

    Radar cross sections at terahertz frequencies are measured on scale models of aircrafts. A time domain broadband THz system generates freely propagating THz pulses measured with sub-picosecond time resolution. The THz radiation is generated using fs laser pulses by optical rectification in a lith......Radar cross sections at terahertz frequencies are measured on scale models of aircrafts. A time domain broadband THz system generates freely propagating THz pulses measured with sub-picosecond time resolution. The THz radiation is generated using fs laser pulses by optical rectification...... in a lithium niobate crystal with application of the tilted wave front method, resulting in high electric field THz pulses with a broad band spectrum from 100 GHz up to 4 THz. The corresponding wave lengths are two orders of magnitude smaller than normal radars and we therefore use scale models of size 5-10 cm...... in order to measure realistic radar cross sections. RCS polar and azimuthal angle plots of F-16 and F-35 are presented....

  13. Fiber extended ultra-wideband radar for breath tracking through 10 cm concrete

    DEFF Research Database (Denmark)

    Suhr, Lau Frejstrup; Tafur Monroy, Idelfonso; Vegas Olmos, Juan José

    2016-01-01

    This article presents an Ultra-Wideband (UWB) radar with a 20 km NZ-DSF extension on the transmitter side. The radar is based on telecom class signal generation, antennas, and a recording module operating at 20 Gsa/s. The radar is transmitting a pulse covering the frequencies from 3.4 to 9.9 GHz...

  14. A compact nanosecond pulse modulator

    Science.gov (United States)

    Sha, Jizhang; Xue, Jianchao; Qiang, Bohan

    Two circuits of nanosecond pulse modulator which generate two different width rectangular pulses respectively are described. The basic configuration of the modulator is the Marx circuit, in which avalanche transistors are used as switching devices. In order to obtain the rectangular pulses a pulse-forming network (PFN) is introduced and fitted into the Marx. A multi-parallel arrangement of the Marx is used to satisfy the broad pulse requirement. Experiments have shown that the two different width rectangular pulses which have 130 V amplitudes and 30 and 200 ns widths respectively can be obtained at a 50 ohms load. The two pulses have steep front edges (3.6 ns and 10 ns respectively) and flat tops with less than + or - 5 percent ripples. Therefore, the modulator can meet the requirements of the nanosecond pulse radar.

  15. Smoothing Motion Estimates for Radar Motion Compensation.

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-07-01

    Simple motion models for complex motion environments are often not adequate for keeping radar data coherent. Eve n perfect motion samples appli ed to imperfect models may lead to interim calculations e xhibiting errors that lead to degraded processing results. Herein we discuss a specific i ssue involving calculating motion for groups of pulses, with measurements only available at pulse-group boundaries. - 4 - Acknowledgements This report was funded by General A tomics Aeronautical Systems, Inc. (GA-ASI) Mission Systems under Cooperative Re search and Development Agre ement (CRADA) SC08/01749 between Sandia National Laboratories and GA-ASI. General Atomics Aeronautical Systems, Inc. (GA-ASI), an affilia te of privately-held General Atomics, is a leading manufacturer of Remotely Piloted Aircraft (RPA) systems, radars, and electro-optic and rel ated mission systems, includin g the Predator(r)/Gray Eagle(r)-series and Lynx(r) Multi-mode Radar.

  16. Detecting and mitigating wind turbine clutter for airspace radar systems.

    Science.gov (United States)

    Wang, Wen-Qin

    2013-01-01

    It is well recognized that a wind turbine has a large radar cross-section (RCS) and, due to the movement of the blades, the wind turbine will generate a Doppler frequency shift. This scattering behavior may cause severe interferences on existing radar systems including static ground-based radars and spaceborne or airborne radars. To resolve this problem, efficient techniques or algorithms should be developed to mitigate the effects of wind farms on radars. Herein, one transponder-based mitigation technique is presented. The transponder is not a new concept, which has been proposed for calibrating high-resolution imaging radars. It modulates the radar signal in a manner that the retransmitted signals can be separated from the scene echoes. As wind farms often occupy only a small area, mitigation processing in the whole radar operation will be redundant and cost inefficient. Hence, this paper uses a transponder to determine whether the radar is impacted by the wind farms. If so, the effects of wind farms are then mitigated with subsequent Kalman filtering or plot target extraction algorithms. Taking airborne synthetic aperture radar (SAR) and pulse Doppler radar as the examples, this paper provides the corresponding system configuration and processing algorithms. The effectiveness of the mitigation technique is validated by numerical simulation results.

  17. Airborne Differential Doppler Weather Radar

    Science.gov (United States)

    Meneghini, R.; Bidwell, S.; Liao, L.; Rincon, R.; Heymsfield, G.; Hildebrand, Peter H. (Technical Monitor)

    2001-01-01

    The Precipitation Radar aboard the Tropical Rain Measuring Mission (TRMM) Satellite has shown the potential for spaceborne sensing of snow and rain by means of an incoherent pulsed radar operating at 13.8 GHz. The primary advantage of radar relative to passive instruments arises from the fact that the radar can image the 3-dimensional structure of storms. As a consequence, the radar data can be used to determine the vertical rain structure, rain type (convective/stratiform) effective storm height, and location of the melting layer. The radar, moreover, can be used to detect snow and improve the estimation of rain rate over land. To move toward spaceborne weather radars that can be deployed routinely as part of an instrument set consisting of passive and active sensors will require the development of less expensive, lighter-weight radars that consume less power. At the same time, the addition of a second frequency and an upgrade to Doppler capability are features that are needed to retrieve information on the characteristics of the drop size distribution, vertical air motion and storm dynamics. One approach to the problem is to use a single broad-band transmitter-receiver and antenna where two narrow-band frequencies are spaced apart by 5% to 10% of the center frequency. Use of Ka-band frequencies (26.5 GHz - 40 GHz) affords two advantages: adequate spatial resolution can be attained with a relatively small antenna and the differential reflectivity and mean Doppler signals are directly related to the median mass diameter of the snow and raindrop size distributions. The differential mean Doppler signal has the additional property that this quantity depends only on that part of the radial speed of the hydrometeors that is drop-size dependent. In principle, the mean and differential mean Doppler from a near-nadir viewing radar can be used to retrieve vertical air motion as well as the total mean radial velocity. In the paper, we present theoretical calculations for the

  18. Ultra-short pulse generator

    Science.gov (United States)

    McEwan, T.E.

    1993-12-28

    An inexpensive pulse generating circuit is disclosed that generates ultra-short, 200 picosecond, and high voltage 100 kW, pulses suitable for wideband radar and other wideband applications. The circuit implements a nonlinear transmission line with series inductors and variable capacitors coupled to ground made from reverse biased diodes to sharpen and increase the amplitude of a high-voltage power MOSFET driver input pulse until it causes non-destructive transit time breakdown in a final avalanche shock wave diode, which increases and sharpens the pulse even more. 5 figures.

  19. Ultra-short pulse generator

    Science.gov (United States)

    McEwan, Thomas E.

    1993-01-01

    An inexpensive pulse generating circuit is disclosed that generates ultra-short, 200 picosecond, and high voltage 100 kW, pulses suitable for wideband radar and other wideband applications. The circuit implements a nonlinear transmission line with series inductors and variable capacitors coupled to ground made from reverse biased diodes to sharpen and increase the amplitude of a high-voltage power MOSFET driver input pulse until it causes non-destructive transit time breakdown in a final avalanche shockwave diode, which increases and sharpens the pulse even more.

  20. Joint synthetic aperture radar plus ground moving target indicator from single-channel radar using compressive sensing

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Douglas; Hallquist, Aaron; Anderson, Hyrum

    2017-10-17

    The various embodiments presented herein relate to utilizing an operational single-channel radar to collect and process synthetic aperture radar (SAR) and ground moving target indicator (GMTI) imagery from a same set of radar returns. In an embodiment, data is collected by randomly staggering a slow-time pulse repetition interval (PRI) over a SAR aperture such that a number of transmitted pulses in the SAR aperture is preserved with respect to standard SAR, but many of the pulses are spaced very closely enabling movers (e.g., targets) to be resolved, wherein a relative velocity of the movers places them outside of the SAR ground patch. The various embodiments of image reconstruction can be based on compressed sensing inversion from undersampled data, which can be solved efficiently using such techniques as Bregman iteration. The various embodiments enable high-quality SAR reconstruction, and high-quality GMTI reconstruction from the same set of radar returns.

  1. Radar systems for a polar mission, volume 1

    Science.gov (United States)

    Moore, R. K.; Claassen, J. P.; Erickson, R. L.; Fong, R. K. T.; Komen, M. J.; Mccauley, J.; Mcmillan, S. B.; Parashar, S. K.

    1977-01-01

    The application of synthetic aperture radar (SAR) in monitoring and managing earth resources is examined. Synthetic aperture radars form a class of side-looking airborne radar, often referred to as coherent SLAR, which permits fine-resolution radar imagery to be generated at long operating ranges by the use of signal processing techniques. By orienting the antenna beam orthogonal to the motion of the spacecraft carrying the radar, a one-dimensional imagery ray system is converted into a two-dimensional or terrain imaging system. The radar's ability to distinguish - or resolve - closely spaced transverse objects is determined by the length of the pulse. The transmitter components receivers, and the mixer are described in details.

  2. The proposed flatland radar

    Science.gov (United States)

    Green, J. L.; Gage, K. S.; Vanzandt, T. E.; Nastrom, G. D.

    1986-01-01

    A flexible very high frequency (VHF) stratosphere-troposphere (ST) radar configured for meteorological research is to be constructed near Urbana, Illinois. Measurement of small vertical velocities associated with synoptic-scale meteorology can be performed. A large Doppler microwave radar (CHILL) is located a few km from the site of the proposed ST radar. Since the microwave radar can measure the location and velocity of hydrometeors and the VHF ST radar can measure clear (or cloudy) air velocities, simultaneous observations by these two radars of stratiform or convective weather systems would provide valuable meteorological information.

  3. Adaptive radar resource management

    CERN Document Server

    Moo, Peter

    2015-01-01

    Radar Resource Management (RRM) is vital for optimizing the performance of modern phased array radars, which are the primary sensor for aircraft, ships, and land platforms. Adaptive Radar Resource Management gives an introduction to radar resource management (RRM), presenting a clear overview of different approaches and techniques, making it very suitable for radar practitioners and researchers in industry and universities. Coverage includes: RRM's role in optimizing the performance of modern phased array radars The advantages of adaptivity in implementing RRMThe role that modelling and

  4. Radar and ARPA manual

    CERN Document Server

    Bole, A G

    2013-01-01

    Radar and ARPA Manual focuses on the theoretical and practical aspects of electronic navigation. The manual first discusses basic radar principles, including principles of range and bearing measurements and picture orientation and presentation. The text then looks at the operational principles of radar systems. Function of units; aerial, receiver, and display principles; transmitter principles; and sitting of units on board ships are discussed. The book also describes target detection, Automatic Radar Plotting Aids (ARPA), and operational controls of radar systems, and then discusses radar plo

  5. A High Efficiency 400W GaN Amplifier for X-Band Radar Remote Sensing Using >50 VDC FETs, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — An efficient 400W amplifier for pulse spaceborne radar active remote sensing applications at X-Band will be investigated. Current X-band radar transmitters use TWT...

  6. Novel radar techniques and applications

    CERN Document Server

    Klemm, Richard; Lombardo, Pierfrancesco; Nickel, Ulrich

    2017-01-01

    Novel Radar Techniques and Applications presents the state-of-the-art in advanced radar, with emphasis on ongoing novel research and development and contributions from an international team of leading radar experts. This volume covers: Real aperture array radar; Imaging radar and Passive and multistatic radar.

  7. Principles of modern radar systems

    CERN Document Server

    Carpentier, Michel H

    1988-01-01

    Introduction to random functions ; signal and noise : the ideal receiver ; performance of radar systems equipped with ideal receivers ; analysis of the operating principles of some types of radar ; behavior of real targets, fluctuation of targets ; angle measurement using radar ; data processing of radar information, radar coverage ; applications to electronic scanning antennas to radar ; introduction to Hilbert spaces.

  8. Weather Radar Impact Zones

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data represent an inventory of the national impacts of wind turbine interference with NEXRAD radar stations. This inventory was developed by the NOAA Radar...

  9. Radar Weather Observation

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Radar Weather Observation is a set of archived historical manuscripts stored on microfiche. The primary source of these radar weather observations manuscript records...

  10. Noise Radar Technology Basics

    National Research Council Canada - National Science Library

    Thayaparan, T; Wernik, C

    2006-01-01

    .... In this report, the basic theory of noise radar design is treated. The theory supports the use of noise waveforms for radar detection and imaging in such applications as covert military surveillance and reconnaissance...

  11. Network radar countermeasure systems integrating radar and radar countermeasures

    CERN Document Server

    Jiang, Qiuxi

    2016-01-01

    This is the very first book to present the network radar countermeasure system. It explains in detail the systematic concept of combining radar and radar countermeasures from the perspective of the information acquisition of target location, the optimization of the reconnaissance and detection, the integrated attack of the signals and facilities, and technological and legal developments concerning the networked system. It achieves the integration of the initiative and passivity, detection and jamming. The book explains how the system locates targets, completes target identification, tracks targets and compiles the data.

  12. Understanding radar systems

    CERN Document Server

    Kingsley, Simon

    1999-01-01

    What is radar? What systems are currently in use? How do they work? This book provides engineers and scientists with answers to these critical questions, focusing on actual radar systems in use today. It is a perfect resource for those just entering the field, or as a quick refresher for experienced practitioners. The book leads readers through the specialized language and calculations that comprise the complex world of radar engineering as seen in dozens of state-of-the-art radar systems. An easy to read, wide ranging guide to the world of modern radar systems.

  13. Laser radar IV; Proceedings of the Meeting, Orlando, FL, Mar. 29, 30, 1989

    Science.gov (United States)

    Becherer, Richard J.

    1989-09-01

    Various papers on laser radars are presented. Individual topics considered include: frequency chirp of a low-pressure hybrid TE CO2 laser, design of a high-power isotopic CO2 laser amplifier, monolithic beam steering for large aperture laser radar, laser radar receiver using a Digicon detector, all-solid-state CO2 laser driver, noise in an acoustooptic-modulated laser source, laser signature prediction using the Value computer program, laser radar acquisition and tracking, concept of a moving target indicator search ladar, system design philosophy for laser radar wavelength determination, imaging three-frequency CO2 laser radar, backscatter-modulation semiconductor laser radar, three-dimensional imaging using a single laser pulse, design and manufacture of a high-resolution laser radar scanner, calculations of vibrational signatures for coherent ladar, coherent subaperture ultraviolet imagery, and range-Doppler resolution degradation associated with amplitude distortion.

  14. Transponder-aided joint calibration and synchronization compensation for distributed radar systems.

    Science.gov (United States)

    Wang, Wen-Qin

    2015-01-01

    High-precision radiometric calibration and synchronization compensation must be provided for distributed radar system due to separate transmitters and receivers. This paper proposes a transponder-aided joint radiometric calibration, motion compensation and synchronization for distributed radar remote sensing. As the transponder signal can be separated from the normal radar returns, it is used to calibrate the distributed radar for radiometry. Meanwhile, the distributed radar motion compensation and synchronization compensation algorithms are presented by utilizing the transponder signals. This method requires no hardware modifications to both the normal radar transmitter and receiver and no change to the operating pulse repetition frequency (PRF). The distributed radar radiometric calibration and synchronization compensation require only one transponder, but the motion compensation requires six transponders because there are six independent variables in the distributed radar geometry. Furthermore, a maximum likelihood method is used to estimate the transponder signal parameters. The proposed methods are verified by simulation results.

  15. Modern Radar Techniques for Geophysical Applications: Two Examples

    Science.gov (United States)

    Arokiasamy, B. J.; Bianchi, C.; Sciacca, U.; Tutone, G.; Zirizzotti, A.; Zuccheretti, E.

    2005-01-01

    The last decade of the evolution of radar was heavily influenced by the rapid increase in the information processing capabilities. Advances in solid state radio HF devices, digital technology, computing architectures and software offered the designers to develop very efficient radars. In designing modern radars the emphasis goes towards the simplification of the system hardware, reduction of overall power, which is compensated by coding and real time signal processing techniques. Radars are commonly employed in geophysical radio soundings like probing the ionosphere; stratosphere-mesosphere measurement, weather forecast, GPR and radio-glaciology etc. In the laboratorio di Geofisica Ambientale of the Istituto Nazionale di Geofisica e Vulcanologia (INGV), Rome, Italy, we developed two pulse compression radars. The first is a HF radar called AIS-INGV; Advanced Ionospheric Sounder designed both for the purpose of research and for routine service of the HF radio wave propagation forecast. The second is a VHF radar called GLACIORADAR, which will be substituting the high power envelope radar used by the Italian Glaciological group. This will be employed in studying the sub glacial structures of Antarctica, giving information about layering, the bed rock and sub glacial lakes if present. These are low power radars, which heavily rely on advanced hardware and powerful real time signal processing. Additional information is included in the original extended abstract.

  16. Doppler Processing with Ultra-Wideband (UWB) Radar Revisited

    Science.gov (United States)

    2018-01-01

    Doppler processing in radar systems using ultra-wideband (UWB) waveforms. In light of more recent research in this area, we demonstrate that exact...Doppler frequency B – pulse bandwidth v – radial velocity of the target c – speed of light ρ – variable representing the Fourier pair of range (R...Typically, Doppler processing in radar consists of creating range-Doppler (R/D) maps—these are 2-D reflectivity maps of the scene under investigation by the

  17. Bayesian detection of radar interference in radio astronomy

    Science.gov (United States)

    Jeffs, Brian D.; Lazarte, Weizhen; Fisher, J. Richard

    2006-06-01

    L-Band observations at the Green Bank Telescope (GBT) and other radio observatories are often made in frequency bands allocated to aviation pulsed radar transmissions. It is possible to mitigate radar contamination of the astronomical signal by time blanking data containing these pulses. However, even when strong direct path pulses and nearby fixed clutter echoes are removed there are still undetected weaker aircraft echoes present which can corrupt the data. In a previous paper we presented an algorithm to improve real-time echo blanking by forming a Kalman filter tracker to follow the path of a sequence of echoes observed on successive radar antenna sweeps. The tracker builds a history which can be used to predict the location of upcoming echoes. We now present details of a new Bayesian detection algorithm which uses this prediction information to enable more sensitive weak pulse acquisition. The developed track information is used to form a spatial prior probability distribution for the presence of the next echoes. Regions with higher probability are processed with a lower detection threshold to pull out low level pulses without increasing the overall probability of false alarm detection. The ultimate result is more complete removal, by blanking the detected pulse, of radar corruption in astronomical observations.

  18. Operation of a Radar Altimeter over the Greenland Ice Sheet

    Science.gov (United States)

    Grund, Matthew D.

    1996-01-01

    This thesis presents documentation for the Advanced Application Flight Experiment (AAFE) pulse compression radar altimeter and its role in the NASA Multisensor Airborne Altimetry Experiment over Greenland in 1993. The AAFE Altimeter is a Ku-band microwave radar which has demonstrated 14 centimeter range precision in operation over arctic ice. Recent repairs and improvements were required to make the Greenland missions possible. Transmitter, receiver and software modifications, as well as the integration of a GPS receiver are thoroughly documented. Procedures for installation, and operation of the radar are described. Finally, suggestions are made for further system improvements.

  19. Efficiency of static core turn-off in a system-on-a-chip with variation

    Science.gov (United States)

    Cher, Chen-Yong; Coteus, Paul W; Gara, Alan; Kursun, Eren; Paulsen, David P; Schuelke, Brian A; Sheets, II, John E; Tian, Shurong

    2013-10-29

    A processor-implemented method for improving efficiency of a static core turn-off in a multi-core processor with variation, the method comprising: conducting via a simulation a turn-off analysis of the multi-core processor at the multi-core processor's design stage, wherein the turn-off analysis of the multi-core processor at the multi-core processor's design stage includes a first output corresponding to a first multi-core processor core to turn off; conducting a turn-off analysis of the multi-core processor at the multi-core processor's testing stage, wherein the turn-off analysis of the multi-core processor at the multi-core processor's testing stage includes a second output corresponding to a second multi-core processor core to turn off; comparing the first output and the second output to determine if the first output is referring to the same core to turn off as the second output; outputting a third output corresponding to the first multi-core processor core if the first output and the second output are both referring to the same core to turn off.

  20. Electronics Miniaturization with a System-on-a-Chip for Power Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The first year objective of this multi-year project is to develop a plan to assemble the common, essential monitoring and control functions required by spacecraft...

  1. 3D-TV Rendering on a Multiprocessor System on a Chip

    NARCIS (Netherlands)

    Van Eijndhoven, J.T.J.; Li, X.

    2006-01-01

    This thesis focuses on the issue of mapping 3D-TV rendering applications to a multiprocessor platform. The target platform aims to address tomorrow's multi-media consumer market. The prototype chip, called Wasabi, contains a set of TriMedia processors that communicate viaa shared memory, fast

  2. Advanced system on a chip microelectronics for spacecraft and science instruments

    Science.gov (United States)

    Paschalidis, Nikolaos P.

    2003-01-01

    The explosive growth of the modern microelectronics field opens new horizons for the development of new lightweight, low power, and smart spacecraft and science instrumentation systems in the new millennium explorations. Although this growth is mostly driven by the commercial need for low power, portable and computationally intensive products, the applicability is obvious in the space sector. The additional difficulties needed to be overcome for applicability in space include radiation hardness for total ionizing dose and single event effects (SEE), and reliability. Additionally, this new capability introduces a whole new philosophy of design and R&D, with strong implications in organizational and inter-agency program management. One key component specifically developed towards low power, small size, highly autonomous spacecraft systems, is the smart sensor remote input/output (TRIO) chip. TRIO can interface to 32 transducers with current sources/sinks and voltage sensing. It includes front-end analog signal processing, a 10-bit ADC, memory, and standard serial and parallel I/Os. These functions are very useful for spacecraft and subsystems health and status monitoring, and control actions. The key contributions of the TRIO are feasibility of modular architectures, elimination of several miles of wire harnessing, and power savings by orders of magnitude. TRIO freely operates from a single power supply 2.5- 5.5 V with power dissipation UV spectrographs, magnetometers, laser rangefinding instruments, etc. Common measurements that apply to many of these instruments are precise time interval measurement and high resolution read-out of solid state detectors. A precise time interval measurement chip was specially developed that achieves ˜100 ps (×10 improvement) time resolution at a power dissipation ˜20 mW (×50 improvement), dead time ˜1.5 μs (×20 improvement), and chip die size 5 mm×5 mm versus two 20 cm×20 cm doubled sided boards. This device is selected as a key enabling technology for several NASA particle, delay line imaging, and laser range finding instruments onboard (NASA Image, Messenger, etc. missions). Another device with universal application is radiation energy read-out from solid state detectors. Multi-channel low-power and end-to-end sensor input—digital output is key for the new generation instruments. The readout channel comprises of a Charge Sensitive Preamplifier with a target sensitivity of ˜1 KeV FWHM at 20 pf detector capacitance, a Shaper Amplifier with programmable time constant/gain, and an ADC. The read-out chip together with the precise time interval chip comprises the essential elements of a common particle spectroscopy instrument. To mention some more applications fast-signal acquisition—and digitization is a very useful function for a category of instrument such as mass spectroscopy and profile laser rangefinding. The single chip approach includes a high bandwidth preamplifier, fast sampling ˜5 ns, analog memory ˜10K locations, 12-bit ADC and serial/parallel I/Os. The wealth of the applications proves the advanced microelectronics field as a key enabling technology for the new millennium space exploration.

  3. Multi-Level Micromachined Systems-on-a-Chip: Technology and Applications

    Energy Technology Data Exchange (ETDEWEB)

    Allen, J.J.; Krygowski, T.W.; Miller, S.L.; Montague, S.; Rodgers, M.S.; Smith, J.H.; Sniegowski, J.J.

    1998-10-27

    Researchers at Sandia have recently designed and built several research prototypes, which demonstrate that truly complex mechanical systems can now be realized in a surface micromachined technology. These MicroElectro- Mechanical Systems (MEMS) include advanced actuators, torque multiplying gear tmins, rack and pinion assemblies, positionable mirrors, and mechanical discriminators. All of tile mechanical components are batch fabricated on a single chip of silicon using the infrastructure origimdly developed to support today's highly reliabk; and robust microelectronics industry. Sand ia is also developing the technology 10 integrate microelectronic circuits onto the s,ime piece of silicon that is used to fabricate the MEMS devices. This significantly increases sensitivity and reliability, while fhrther reducing package size and fabrication costs. A review of the MEMS technology and capabilities available at Sandia National Laboratories is presented.

  4. A low-power digital frequency divider for system-on-a-chip applications

    KAUST Repository

    Omran, Hesham

    2011-08-01

    In this paper, an idea for a new frequency divider architecture is proposed. The divider is based on a coarse-fine architecture. The coarse block operates at a low frequency to save power consumption and it selectively enables the fine block which operates at the high input frequency. The proposed divider has the advantages of synchronous divider, but with lower power consumption and higher operation speed. The design can achieve a wide division range with a minor effect on power consumption and speed. The architecture was implemented on a complex programmable logic device (CPLD) to verify its operation. Experimental measurements validate system operation with power reduction greater than 40%. © 2011 IEEE.

  5. Phased-array radar for airborne systems

    Science.gov (United States)

    Tahim, Raghbir S.; Foshee, James J.; Chang, Kai

    2003-09-01

    Phased array antenna systems, which support high pulse rates and high transmit power, are well suited for radar and large-scale surveillance. Sensors and communication systems can function as the eyes and ears for ballistic missile defense applications, providing early warning of attack, target detection and identification, target tracking, and countermeasure decision. In such applications, active array radar systems that contain solid-state transmitter sources and low-noise preamplifiers for transmission and reception are preferred over the conventional radar antennas, because the phased array radar offers the advantages of power management and efficiency, reliability, signal reception, beam steering target detection. The current phased array radar designs are very large, complex and expensive and less efficient because of high RF losses in the phase control circuits used for beam scan. Several thousands of phase shifters and drivers may be required for a single system thus making the system very complex and expensive. This paper describes the phased array radar system based on high power T/R modules, wide-band radiating planar antenna elements and very low loss wide-band phase control circuits (requiring reduced power levels) for beam scan. The phase shifter design is based on micro-strip feed lines perturbed by the proximity of voltage controlled piezoelectric transducer (PET). Measured results have shown an added insertion loss of less than 1 dB for a phase shift of 450 degrees from 2 to 20 GHz. The new wideband phased array radar design provides significant reduction in size cost and weight. Compared to the conventional phased array systems, the cost saving is more than 15 to 1.

  6. Phased-array radar design application of radar fundamentals

    CERN Document Server

    Jeffrey, Thomas

    2009-01-01

    Phased-Array Radar Design is a text-reference designed for electrical engineering graduate students in colleges and universities as well as for corporate in-house training programs for radar design engineers, especially systems engineers and analysts who would like to gain hands-on, practical knowledge and skills in radar design fundamentals, advanced radar concepts, trade-offs for radar design and radar performance analysis.

  7. Ultrashort-pulse reflectometry (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Domier, C.W.; Luhmann, N.C. Jr. (Department of Applied Science, University of California at Davis, Davis, California 95616 (United States)); Chou, A.E.; Zhang, W. (Department of Electrical Engineering, University of California at Los Angeles, Los Angeles, California 90024 (United States)); Romanowsky, A.J. (Department of Astronomy, Harvard University, Cambridge, Massachusetts 02138 (United States))

    1995-01-01

    Time-of-flight radar diagnostics are envisaged as having great potential for determining electron density profiles in next generation tokamaks such as TPX and ITER. Ultrashort-pulse radar reflectometry is a promising new time-of-flight diagnostic capable of making instantaneous density profile determination utilizing a single source and a single set of measurements. A proof-of-principle eight channel system has been constructed for use on the CCT tokamak at UCLA, and has undergone extensive testing in the laboratory.

  8. Doppler radar physiological sensing

    CERN Document Server

    Lubecke, Victor M; Droitcour, Amy D; Park, Byung-Kwon; Singh, Aditya

    2016-01-01

    Presents a comprehensive description of the theory and practical implementation of Doppler radar-based physiological monitoring. This book includes an overview of current physiological monitoring techniques and explains the fundamental technology used in remote non-contact monitoring methods. Basic radio wave propagation and radar principles are introduced along with the fundamentals of physiological motion and measurement. Specific design and implementation considerations for physiological monitoring radar systems are then discussed in detail. The authors address current research and commercial development of Doppler radar based physiological monitoring for healthcare and other applications.

  9. Radar Signature Calculation Facility

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: The calculation, analysis, and visualization of the spatially extended radar signatures of complex objects such as ships in a sea multipath environment and...

  10. Radar Plan Position Indicator Scope

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Radar Plan Position Indicator Scope is the collection of weather radar imagery for the period prior to the beginning of the Next Generation Radar (NEXRAD) system...

  11. Preliminary results of new 50 MHz doppler radar experiment at Syowa Station

    OpenAIRE

    Ogawa,Tadahiko; Igarashi,Kiyoshi; Ose,Masami; Kuratani,Yasukazu; Fujii,Ryoichi; Hirasawa,Takeo

    1983-01-01

    A 50 MHz doppler radar newly installed at Syowa Station in 1982 is characterized by the narrow antenna beams (4°in the horizontal plane) in two different directions (approximately geomagnetic and geographic south), the three operation modes (spectrum, double-pulse and meteor mode) and the minicomputer for both real time data processing and radar control. This paper aims to check up many functions given to the radar system by presenting some preliminary results obtained at a very early stage o...

  12. MPD model for radar echo signal of hypersonic targets

    Directory of Open Access Journals (Sweden)

    Xu Xuefei

    2014-08-01

    Full Text Available The stop-and-go (SAG model is typically used for echo signal received by the radar using linear frequency modulation pulse compression. In this study, the authors demonstrate that this model is not applicable to hypersonic targets. Instead of SAG model, they present a more realistic echo signal model (moving-in-pulse duration (MPD for hypersonic targets. Following that, they evaluate the performances of pulse compression under the SAG and MPD models by theoretical analysis and simulations. They found that the pulse compression gain has an increase of 3 dB by using the MPD model compared with the SAG model in typical cases.

  13. Combined radar and telemetry system

    Energy Technology Data Exchange (ETDEWEB)

    Rodenbeck, Christopher T.; Young, Derek; Chou, Tina; Hsieh, Lung-Hwa; Conover, Kurt; Heintzleman, Richard

    2017-08-01

    A combined radar and telemetry system is described. The combined radar and telemetry system includes a processing unit that executes instructions, where the instructions define a radar waveform and a telemetry waveform. The processor outputs a digital baseband signal based upon the instructions, where the digital baseband signal is based upon the radar waveform and the telemetry waveform. A radar and telemetry circuit transmits, simultaneously, a radar signal and telemetry signal based upon the digital baseband signal.

  14. Advances in the testing and evaluation of airborne radar through realtime simulation of synthetic clutter

    CSIR Research Space (South Africa)

    Strydom, JJ

    2011-11-01

    Full Text Available Clutter Simulation ? CSIR 2011 Slide 20 From: G. Morris and L. Harkness, Airborne Pulsed Doppler Radar Synthetic Clutter Simulation Recorded Data Airborne Range Doppler map ? CSIR 2011 Slide 21 Data from: Synthetic Clutter Simulation Building...

  15. Ultra-Wideband, Short Pulse Electromagnetics 9

    CERN Document Server

    Rachidi, Farhad; Kaelin, Armin; Sabath, Frank; UWB SP 9

    2010-01-01

    Ultra-wideband (UWB), short-pulse (SP) electromagnetics are now being used for an increasingly wide variety of applications, including collision avoidance radar, concealed object detection, and communications. Notable progress in UWB and SP technologies has been achieved by investigations of their theoretical bases and improvements in solid-state manufacturing, computers, and digitizers. UWB radar systems are also being used for mine clearing, oil pipeline inspections, archeology, geology, and electronic effects testing. Ultra-wideband Short-Pulse Electromagnetics 9 presents selected papers of deep technical content and high scientific quality from the UWB-SP9 Conference, which was held from July 21-25, 2008, in Lausanne, Switzerland. The wide-ranging coverage includes contributions on electromagnetic theory, time-domain computational techniques, modeling, antennas, pulsed-power, UWB interactions, radar systems, UWB communications, and broadband systems and components. This book serves as a state-of-the-art r...

  16. Bistatic High Frequency Radar Ocean Surface Cross Section for an FMCW Source with an Antenna on a Floating Platform

    Directory of Open Access Journals (Sweden)

    Yue Ma

    2016-01-01

    Full Text Available The first- and second-order bistatic high frequency radar cross sections of the ocean surface with an antenna on a floating platform are derived for a frequency-modulated continuous wave (FMCW source. Based on previous work, the derivation begins with the general bistatic electric field in the frequency domain for the case of a floating antenna. Demodulation and range transformation are used to obtain the range information, distinguishing the process from that used for a pulsed radar. After Fourier-transforming the autocorrelation and comparing the result with the radar range equation, the radar cross sections are derived. The new first- and second-order antenna-motion-incorporated bistatic radar cross section models for an FMCW source are simulated and compared with those for a pulsed source. Results show that, for the same radar operating parameters, the first-order radar cross section for the FMCW waveform is a little lower than that for a pulsed source. The second-order radar cross section for the FMCW waveform reduces to that for the pulsed waveform when the scattering patch limit approaches infinity. The effect of platform motion on the radar cross sections for an FMCW waveform is investigated for a variety of sea states and operating frequencies and, in general, is found to be similar to that for a pulsed waveform.

  17. Java Radar Analysis Tool

    Science.gov (United States)

    Zaczek, Mariusz P.

    2005-01-01

    Java Radar Analysis Tool (JRAT) is a computer program for analyzing two-dimensional (2D) scatter plots derived from radar returns showing pieces of the disintegrating Space Shuttle Columbia. JRAT can also be applied to similar plots representing radar returns showing aviation accidents, and to scatter plots in general. The 2D scatter plots include overhead map views and side altitude views. The superposition of points in these views makes searching difficult. JRAT enables three-dimensional (3D) viewing: by use of a mouse and keyboard, the user can rotate to any desired viewing angle. The 3D view can include overlaid trajectories and search footprints to enhance situational awareness in searching for pieces. JRAT also enables playback: time-tagged radar-return data can be displayed in time order and an animated 3D model can be moved through the scene to show the locations of the Columbia (or other vehicle) at the times of the corresponding radar events. The combination of overlays and playback enables the user to correlate a radar return with a position of the vehicle to determine whether the return is valid. JRAT can optionally filter single radar returns, enabling the user to selectively hide or highlight a desired radar return.

  18. Determination of radar MTF

    Energy Technology Data Exchange (ETDEWEB)

    Chambers, D. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    The ultimate goal of the Current Meter Array (CMA) is to be able to compare the current patterns detected with the array with radar images of the water surface. The internal wave current patterns modulate the waves on the water surface giving a detectable modulation of the radar cross-section (RCS). The function relating the RCS modulations to the current patterns is the Modulation Transfer Function (MTF). By comparing radar images directly with co-located CMA measurements the MTF can be determined. In this talk radar images and CMA measurements from a recent experiment at Loch Linnhe, Scotland, will be used to make the first direct determination of MTF for an X and S band radar at low grazing angles. The technical problems associated with comparing radar images to CMA data will be explained and the solution method discussed. The results suggest the both current and strain rate contribute equally to the radar modulation for X band. For S band, the strain rate contributes more than the current. The magnitude of the MTF and the RCS modulations are consistent with previous estimates when the wind is blowing perpendicular to the radar look direction.

  19. MWR, Meteor Wind Radars

    Science.gov (United States)

    Roper, R. G.

    1984-01-01

    The requirements of a state of the art meteor wind radar, and acceptable comprises in the interests of economy, are detailed. Design consideration of some existing and proposed radars are discussed. The need for international cooperation in mesopause level wind measurement, such as that being fostered by the MAP GLOBMET (Global Meteor Observations System) project, is emphasized.

  20. Quantum synthetic aperture radar

    Science.gov (United States)

    Lanzagorta, Marco; Jitrik, Oliverio; Uhlmann, Jeffrey; Venegas-Andraca, Salvador E.

    2017-05-01

    Synthetic aperture radar (SAR) uses sensor motion to generate finer spatial resolution of a given target area. In this paper we explore the theoretical potential of quantum synthetic aperture quantum radar (QSAR). We provide theoretical analysis and simulation results which suggest that QSAR can provide improved detection performance over classical SAR in the high-noise low-brightness regime.

  1. Aspects of Radar Polarimetry

    OpenAIRE

    LÜNEBURG, Ernst

    2002-01-01

    This contribution is a tutorial introduction to the phenomenological theory of radar polarimetry for the coherent scatter case emphasizing monostatic backscattering and forward scattering (transmission). Characteristic similarities and differences between radar polarimetry and optical polarimetry and the role of linear and antilinear operators (time-reversal) are pointed out and typical polarimetric invariants are identified.

  2. Equatorial MU Radar project

    Science.gov (United States)

    Yamamoto, Mamoru; Hashiguchi, H.; Tsuda, Toshitaka; Yamamoto, Masayuki

    Research Institute for Sustainable Humanosphere, Kyoto University (RISH) has been studying the atmosphere by using radars. The first big facility was the MU (Middle and Upper atmosphere) radar installed in Shiga, Japan in 1984. This is one of the most powerful and multi-functional radar, and is successful of revealing importance of atmospheric waves for the dynamical vertical coupling processes. The next big radar was the Equatorial Atmosphere Radar (EAR) installed at Kototabang, West Sumatra, Indonesia in 2001. The EAR was operated under close collaboration with LAPAN (Indonesia National Institute for Aeronautics and Space), and conducted the long-term continuous observations of the equatorial atmosphere/ionosphere for more than 10 years. The MU radar and the EAR are both utilized for inter-university and international collaborative research program for long time. National Institute for Polar Research (NIPR) joined EISCAT Scientific Association together with Nagoya University, and developed the PANSY radar at Syowa base in Antarctica as a joint project with University of Tokyo. These are the efforts of radar study of the atmosphere/ionosphere in the polar region. Now we can find that Japan holds a global network of big atmospheric/ionospheric radars. The EAR has the limitation of lower sensitivity compared with the other big radars shown above. RISH now proposes a plan of Equatorial MU Radar (EMU) that is to establish the MU-radar class radar next to the EAR. The EMU will have an active phased array antenna with the 163m diameter and 1055 cross-element Yagis. Total output power of the EMU will be more than 500kW. The EMU can detect turbulent echoes from the mesosphere (60-80km). In the ionosphere incoherent-scatter observations of plasma density, drift, and temperature would be possible. Multi-channel receivers will realize radar-imaging observations. The EMU is one of the key facilities in the project "Study of coupling processes in the solar-terrestrial system

  3. Advantages of Electromagnetic Interferometry Applied to Ground-Penetrating Radar : Non-Destructive Inspection and Characterization of the Subsurface Without Transmitting Anything

    NARCIS (Netherlands)

    Feld, R.

    2017-01-01

    Ground-penetrating radar (GPR) is a non-destructive method that images the subsurface using radar. A transmitter generates a radar pulse. This signal propagates into the ground where it reflects against subsurface heterogeneities, and travels back to the surface. A receiver records the reflected

  4. Spaceborne weather radar

    Science.gov (United States)

    Meneghini, Robert; Kozu, Toshiaki

    1990-01-01

    The present work on the development status of spaceborne weather radar systems and services discusses radar instrument complementarities, the current forms of equations for the characterization of such aspects of weather radar performance as surface and mirror-image returns, polarimetry, and Doppler considerations, and such essential factors in spaceborne weather radar design as frequency selection, scanning modes, and the application of SAR to rain detection. Attention is then given to radar signal absorption by the various atmospheric gases, rain drop size distribution and wind velocity determinations, and the characteristics of clouds, as well as the range of available estimation methods for backscattering, single- and dual-wavelength attenuation, and polarimetric and climatological characteristics.

  5. Intelligent radar data processing

    Science.gov (United States)

    Holzbaur, Ulrich D.

    The application of artificial intelligence principles to the processing of radar signals is considered theoretically. The main capabilities required are learning and adaptation in a changing environment, processing and modeling information (especially dynamics and uncertainty), and decision-making based on all available information (taking its reliability into account). For the application to combat-aircraft radar systems, the tasks include the combination of data from different types of sensors, reacting to electronic counter-countermeasures, evaluation of how much data should be acquired (energy and radiation management), control of the radar, tracking, and identification. Also discussed are related uses such as monitoring the avionics systems, supporting pilot decisions with respect to the radar system, and general applications in radar-system R&D.

  6. Principles of modern radar radar applications

    CERN Document Server

    Scheer, James A

    2013-01-01

    Principles of Modern Radar: Radar Applications is the third of the three-volume seriesof what was originally designed to be accomplished in one volume. As the final volumeof the set, it finishes the original vision of a complete yet bounded reference for radartechnology. This volume describes fifteen different system applications or class ofapplications in more detail than can be found in Volumes I or II.As different as the applications described, there is a difference in how these topicsare treated by the authors. Whereas in Volumes I and II there is strict adherence tochapter format and leve

  7. Pulse Generator

    Science.gov (United States)

    Greer, Lawrence (Inventor)

    2017-01-01

    An apparatus and a computer-implemented method for generating pulses synchronized to a rising edge of a tachometer signal from rotating machinery are disclosed. For example, in one embodiment, a pulse state machine may be configured to generate a plurality of pulses, and a period state machine may be configured to determine a period for each of the plurality of pulses.

  8. High accuracy 3-D laser radar

    DEFF Research Database (Denmark)

    Busck, Jens; Heiselberg, Henning

    2004-01-01

    We have developed a mono-static staring 3-D laser radar based on gated viewing with range accuracy below 1 m at 10 m and 1 cm at 100. We use a high sensitivity, fast, intensified CCD camera, and a Nd:Yag passively Q-switched 32.4 kHz pulsed green laser at 532 nm. The CCD has 752x582 pixels. Camera...... shutter is controlled in steps of 100 ps. Camera delay is controlled in steps of 100 ps. Each laser pulse triggers the camera delay and shutter. A 3-D image is constructed from a sequence of 50-100 2-D reflectivity images, where each frame integrates about 700 laser pulses on the CCD. In 50 Hz video mode...

  9. A High Efficiency 1kWatt GaN amplifier for P-Band pulsed applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — An improved efficiency amplifier for high power pulse applications at P-Band will be investigated that will support space based RADAR systems. Current P-Band pulsed...

  10. A High Efficiency 1kWatt GaN Amplifier for P-Band Pulsed Applications, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — An improved efficiency amplifier for high power pulse applications at P-Band will be investigated that will support space based RADAR systems. Current P-Band pulsed...

  11. Novel radar techniques and applications

    CERN Document Server

    Klemm, Richard; Koch, Wolfgang

    2017-01-01

    Novel Radar Techniques and Applications presents the state-of-the-art in advanced radar, with emphasis on ongoing novel research and development and contributions from an international team of leading radar experts. This volume covers: Waveform diversity and cognitive radar and Target tracking and data fusion.

  12. Radar and electronic navigation

    CERN Document Server

    Sonnenberg, G J

    2013-01-01

    Radar and Electronic Navigation, Sixth Edition discusses radar in marine navigation, underwater navigational aids, direction finding, the Decca navigator system, and the Omega system. The book also describes the Loran system for position fixing, the navy navigation satellite system, and the global positioning system (GPS). It reviews the principles, operation, presentations, specifications, and uses of radar. It also describes GPS, a real time position-fixing system in three dimensions (longitude, latitude, altitude), plus velocity information with Universal Time Coordinated (UTC). It is accur

  13. Radar cross section

    CERN Document Server

    Knott, Gene; Tuley, Michael

    2004-01-01

    This is the second edition of the first and foremost book on this subject for self-study, training, and course work. Radar cross section (RCS) is a comparison of two radar signal strengths. One is the strength of the radar beam sweeping over a target, the other is the strength of the reflected echo sensed by the receiver. This book shows how the RCS ?gauge? can be predicted for theoretical objects and how it can be measured for real targets. Predicting RCS is not easy, even for simple objects like spheres or cylinders, but this book explains the two ?exact? forms of theory so well that even a

  14. A Processing Technique for OFDM-Modulated Wideband Radar Signals

    NARCIS (Netherlands)

    Tigrek, R.F.

    2010-01-01

    The orthogonal frequency division multiplexing (OFDM) is a multicarrier spread-spectrum technique which finds wide-spread use in communications. The OFDM pulse compression method that utilizes an OFDM communication signal for radar tasks has been developed and reported in this dissertation. Using

  15. Radar interference blanking in radio astronomy using a Kalman tracker

    Science.gov (United States)

    Dong, W.; Jeffs, B. D.; Fisher, J. R.

    2005-06-01

    Radio astronomical observations of highly Doppler shifted spectral lines of neutral hydrogen and the hydroxyl molecule must often be made at frequencies allocated to pulsed air surveillance radar in the 1215-1350 MHz frequency range. The Green Bank telescope (GBT) and many other observatories must deal with these terrestrial signals. Even when strong radar fixed clutter echoes are removed, there are still weaker aircraft echoes present which can corrupt the data. We present an algorithm which improves aircraft echo blanking using a Kalman filter tracker to follow the path of a sequence of echoes observed on successive radar antenna sweeps. Aircraft tracks can be used to predict regions (in bearing and range) for the next expected echoes, even before they are detected. These data can then be blanked in real time without waiting for the pulse peak to arrive. Additionally, we briefly suggest an approach for a new Bayesian algorithm which combines tracker and pulse detector operations to enable more sensitive weak pulse detection. Examples are presented for Kalman tracking and radar transmission blanking using real observations at the GBT.

  16. An Online Multisensor Data Fusion Framework for Radar Emitter Classification

    Directory of Open Access Journals (Sweden)

    Dongqing Zhou

    2016-01-01

    Full Text Available Radar emitter classification is a special application of data clustering for classifying unknown radar emitters in airborne electronic support system. In this paper, a novel online multisensor data fusion framework is proposed for radar emitter classification under the background of network centric warfare. The framework is composed of local processing and multisensor fusion processing, from which the rough and precise classification results are obtained, respectively. What is more, the proposed algorithm does not need prior knowledge and training process; it can dynamically update the number of the clusters and the cluster centers when new pulses arrive. At last, the experimental results show that the proposed framework is an efficacious way to solve radar emitter classification problem in networked warfare.

  17. Fiber extended ultra-wideband radar for breath tracking through 10 cm concrete

    DEFF Research Database (Denmark)

    Suhr, Lau Frejstrup; Tafur Monroy, Idelfonso; Vegas Olmos, Juan José

    2016-01-01

    This article presents an Ultra-Wideband (UWB) radar with a 20 km NZ-DSF extension on the transmitter side. The radar is based on telecom class signal generation, antennas, and a recording module operating at 20 Gsa/s. The radar is transmitting a pulse covering the frequencies from 3.4 to 9.9 GHz....... The radar system was able to track the breathing of a human through a 10 cm concrete obstacle. The frequency output was verified through the use of a metal pendulum with a fixed oscillation period...

  18. Space radar image of New York City

    Science.gov (United States)

    1995-01-01

    This radar image of the New York city metropolitan area. The island of Manhattan appears in the center of the image. The green-colored rectangle on Manhattan is Central Park. This image was acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/ X-SAR) aboard the space shuttle Endeavour on October 10, 1994. North is toward the upper right. The area shown is 75.0 kilometers by 48.8 kilometers (46.5 miles by 30.2 miles). The image is centered at 40.7 degrees north latitude and 73.8 degrees west longitude. In general, light blue areas correspond to dense urban development, green areas to moderately vegetated zones and black areas to bodies of water. The Hudson River is the black strip that runs from the left edge to the upper right corner of the image. It separates New Jersey, in the upper left of the image, from New York. The Atlantic Ocean is at the bottom of the image where two barrier islands along the southern shore of Long Island are also visible. John F. Kennedy International Airport is visible above these islands. Long Island Sound, separating Long Island from Connecticut, is the dark area right of the center of the image. Many bridges are visible in the image, including the Verrazano Narrows, George Washington and Brooklyn bridges. The radar illumination is from the left of the image; this causes some urban zones to appear red because the streets are at a perpendicular angle to the radar pulse. The colors in this image were obtained using the following radar channels: red represents the L-band (horizontally transmitted and received); green represents the L-band (horizontally transmitted, vertically received); blue represents the C-band (horizontally transmitted, vertically received). Radar images like this one could be used as a tool for city planners and resource managers to map and monitor land use patterns. The radar imaging systems can clearly detect the variety of landscapes in the area, as well as the density of urban

  19. Apodization of spurs in radar receivers using multi-channel processing

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin W.; Bickel, Douglas L.

    2017-11-21

    The various technologies presented herein relate to identification and mitigation of spurious energies or signals (aka "spurs") in radar imaging. Spurious energy in received radar data can be a consequence of non-ideal component and circuit behavior. Such behavior can result from I/Q imbalance, nonlinear component behavior, additive interference (e.g. cross-talk, etc.), etc. The manifestation of the spurious energy in a radar image (e.g., a range-Doppler map) can be influenced by appropriate pulse-to-pulse phase modulation. Comparing multiple images which have been processed using the same data but of different signal paths and modulations enables identification of undesired spurs, with subsequent cropping or apodization of the undesired spurs from a radar image. Spurs can be identified by comparison with a threshold energy. Removal of an undesired spur enables enhanced identification of true targets in a radar image.

  20. Multispectral imaging radar

    Science.gov (United States)

    Porcello, L. J.; Rendleman, R. A.

    1972-01-01

    A side-looking radar, installed in a C-46 aircraft, was modified to provide it with an initial multispectral imaging capability. The radar is capable of radiating at either of two wavelengths, these being approximately 3 cm and 30 cm, with either horizontal or vertical polarization on each wavelength. Both the horizontally- and vertically-polarized components of the reflected signal can be observed for each wavelength/polarization transmitter configuration. At present, two-wavelength observation of a terrain region can be accomplished within the same day, but not with truly simultaneous observation on both wavelengths. A multiplex circuit to permit this simultaneous observation has been designed. A brief description of the modified radar system and its operating parameters is presented. Emphasis is then placed on initial flight test data and preliminary interpretation. Some considerations pertinent to the calibration of such radars are presented in passing.

  1. Cognitive Nonlinear Radar

    Science.gov (United States)

    2013-01-01

    filter, Bayesian decision theory, Generalized Likelihood Ratio Test (GLRT), and constant false alarm rate ( CFAR ) processing (31). Once the...Abbreviations, and Acronyms CFAR constant false alarm rate CNR cognitive nonlinear radar EM electromagnetic FCC Federal Communications Comission

  2. Telescience Data Collection Radar

    National Research Council Canada - National Science Library

    Beckner, Frederick

    2000-01-01

    Report developed under SBIR contract for topic AF99-258. The feasibility of developing a telescience data collection radar to reduce the cost of gathering aircraft signature data for noncooperative identification programs is investigated...

  3. Imaging Radar Polarimetry

    Science.gov (United States)

    vanZyl, J. J.; Zebker, H. A.

    1993-01-01

    In this paper, we review the state of the art in imaging radar polarimetry, examine current developments in sensor technology and implementation for recording polarimetric measurements, and describe techniques and areas of application for the new remote sensing data.

  4. Wind Profiling Radar

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Clutter present in radar return signals as used for wind profiling is substantially removed by carrying out a Daubechies wavelet transformation on a time series of...

  5. Feature Extraction in Radar Target Classification

    Directory of Open Access Journals (Sweden)

    Z. Kus

    1999-09-01

    Full Text Available This paper presents experimental results of extracting features in the Radar Target Classification process using the J frequency band pulse radar. The feature extraction is based on frequency analysis methods, the discrete-time Fourier Transform (DFT and Multiple Signal Characterisation (MUSIC, based on the detection of Doppler effect. The analysis has turned to the preference of DFT with implemented Hanning windowing function. We assumed to classify targets-vehicles into two classes, the wheeled vehicle and tracked vehicle. The results show that it is possible to classify them only while moving. The feature of the class results from a movement of moving parts of the vehicle. However, we have not found any feature to classify the wheeled and tracked vehicles while non-moving, although their engines are on.

  6. Phase coded, micro-power impulse radar motion sensor

    International Nuclear Information System (INIS)

    McEwan, T.E.

    1996-01-01

    A motion sensing, micro-power impulse radar MIR impresses on the transmitted signal, or the received pulse timing signal, one or more frequencies lower than the pulse repetition frequency, that become intermediate frequencies in a ''IF homodyne'' receiver. Thus, many advantages of classical RF receivers can be thereby be realized with ultra-wide band radar. The sensor includes a transmitter which transmits a sequence of electromagnetic pulses in response to a transmit timing signal at a nominal pulse repetition frequency. A receiver samples echoes of the sequence of electromagnetic pulses from objects within the field with controlled timing, in response to a receive timing signal, and generates a sample signal in response to the samples. A timing circuit supplies the transmit timing signal to the transmitter and supplies the receive timing signal to the receiver. The relative timing of the transmit timing signal and the receive timing signal is modulated between a first relative delay and a second relative delay at an intermediate frequency, causing the receiver to sample the echoes such that the time between transmissions of pulses in the sequence and samples by the receiver is modulated at the intermediate frequency. Modulation may be executed by modulating the pulse repetition frequency which drives the transmitter, by modulating the delay circuitry which controls the relative timing of the sample strobe, or by modulating amplitude of the transmitted pulses. The electromagnetic pulses will have a nominal center frequency related to pulse width, and the first relative delay and the second relative delay between which the timing signals are modulated, differ by less than the nominal pulse width, and preferably by about one-quarter wavelength at the nominal center frequency of the transmitted pulses. 5 figs

  7. Detection of hydrocarbons in sandy sediments analyzing velocity and amplitude of electromagnetic pulses (GPR-Ground Penetrating Radar); Deteccao de hidrocarbonetos em sedimentos arenosos analisando velocidade e amplitude dos pulsos eletromagneticos (GPR)

    Energy Technology Data Exchange (ETDEWEB)

    Dourado, Tiago C.; Botelho, Marco A.B. [Universidade Federal da Bahia (UFBA), Salvador, BA (Brazil). Centro de Pesquisa em Geofisica e Geologia; Machado, Sandro L.; Amparo, Nelson S. [Universidade Federal da Bahia (UFBA), Salvador, BA (Brazil). Lab. de Geotecnia Ambiental - GeoAmb

    2004-07-01

    We estimate a hydrocarbon saturation of sandy soils on the basis of the velocity and amplitude of GPR (Ground Penetrating Radar) electromagnetic signals. We acquire CMP (Common Mid Point) data on a tank filled with clean sand. The tank, which has dimensions 1,0 m x 0,7 m x 0,7 m, has filled with water and diesel oil. The velocity decreases from 15 cm/ns for 3% water saturation to 5 cm/ns for 24% water saturation. The presence of hydrocarbon only causes small velocity variations, from 13 cm/ns to 15 cm/ns in the first case. We also investigate the AVO (amplitude variations with offset) of a dry sand/water-saturated sand interface and compare the results to those of the oil-saturated sand/water-saturated sand interface. These results are further compared to the Fresnel equations after the estimation of the reflection coefficient from the reflection hyperbole. The agreement is excellent, and the methodology can be usual to evaluate the type of saturating fluid and the corresponding saturating level. Future experiments will involve the detection and modeling of the critical and Brewster angles to obtain additional information. (author)

  8. Microwave and Pulsed Power

    Energy Technology Data Exchange (ETDEWEB)

    Freytag, E.K.

    1993-03-01

    The goals of the Microwave and Pulsed Power thrust area are to identify realizable research and development efforts and to conduct high-quality research in those pulse power and microwave technologies that support existing and emerging programmatic requirements at Lawrence Livermore National Laboratory (LLNL). Our main objective is to work on nationally important problems while enhancing our basic understanding of enabling technologies such as component design and testing, compact systems packaging, exploratory physics experiments, and advanced systems integration and performance. During FY-92, we concentrated our research efforts on the six project areas described in this report. (1) We are investigating the superior electronic and thermal properties of diamond that may make it an ideal material for a high-power, solid-state switch. (2) We are studying the feasibility of using advanced Ground Penetrating Imaging Radar technology for reliable non-destructive evaluation of bridges and other high-value concrete structures. These studies include conceptual designs, modeling, experimental verifications, and image reconstruction of simulated radar data. (3) We are exploring the efficiency of pulsed plasma processing techniques used for the removal of NO{sub x} from various effluent sources. (4) We have finished the investigation of the properties of a magnetically delayed low-pressure gas switch, which was designed here at LLNL. (5) We are applying statistical electromagnetic theory techniques to help assess microwave effects on electronic subsystems, by using a mode stirred chamber as our measurement tool. (6) We are investigating the generation of perfluoroisobutylene (PFIB) in proposed CFC replacement fluids when they are subjected to high electrical stresses and breakdown environments.

  9. CAMEX-4 TOGA RADAR V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The TOGA radar dataset consists of browse and radar data collected from the TOGA radar during the CAMEX-4 experiment. TOGA is a C-band linear polarized doppler radar...

  10. PULSE GENERATOR

    Science.gov (United States)

    Roeschke, C.W.

    1957-09-24

    An improvement in pulse generators is described by which there are produced pulses of a duration from about 1 to 10 microseconds with a truly flat top and extremely rapid rise and fall. The pulses are produced by triggering from a separate input or by modifying the current to operate as a free-running pulse generator. In its broad aspect, the disclosed pulse generator comprises a first tube with an anode capacitor and grid circuit which controls the firing; a second tube series connected in the cathode circuit of the first tube such that discharge of the first tube places a voltage across it as the leading edge of the desired pulse; and an integrator circuit from the plate across the grid of the second tube to control the discharge time of the second tube, determining the pulse length.

  11. Experiment for buried pipes by stepped FM-CW radar; Step shiki FM-CW radar ni yoru maisetsukan tansa jikken

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, K.; Ito, M. [Kawasaki Geological Engineering, Co. Ltd., Tokyo (Japan); Tanabe, K. [Central Research Institute of Electric Power Industry, Tokyo (Japan)

    1997-05-27

    The underground radar exploration is adopted to surveys of cavity under the road and buried pipes since the result of high resolution is obtained. However, the explorative depth of the radar is shallow, 2-3m in soil basement, and its applicable field has been limited. The continuous wave radar (FM-CW radar) was devised to get deeper explorative depth, but has been used for the geological structure survey such as the fault survey since it is lower in resolution as compared with the pulse radar. Therefore, to make use of characteristics of the continuous wave radar and enhance resolution in the shallow part, an experiment on buried pipes was conducted for the purpose of assessing and improving the FM-CW radar. In this processing, the wave form treatment used in the reflection method seismic survey was adopted for the radar survey. There are some problems, but it is effective to adopt the same algorithm to that used in the seismic survey to the radar exploration. The explorative depth was discussed from the damping rate of electromagnetic waves and dynamic range of facilities of the experimental site, and 7m was obtained. 5 figs., 1 tab.

  12. X-Band to W-Band Doppler Radar Using Reconfigurable RF T/R MMIC Series, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — TLC demonstrated a high performance remote Doppler Radar adjustable X-band to W-band transceiver chip that can perform well as a FMCW, super-heterodyne or pulse...

  13. Feasibility analysis of WDM links for radar applications

    Directory of Open Access Journals (Sweden)

    D. Meena

    2015-03-01

    Full Text Available Active phased array antennas enhances the performance of modern radars by using multiple low power transmit/receive modules in place of a high power transmitter in conventional radars. Fully distributed phased array radars demand the distribution of various signals in radio frequency (RF and digital domain for real time operation. This is normally achieved through complex and bulky coaxial distribution networks. In this work, we intend to tap the inherent advantages of fiber links with wavelength division multiplexed (WDM technology and a feasibility study to adapt these links for radar applications is carried out. This is done by analysing various parameters like amplitude, delay, frequency and phase variation response of various radar waveforms over WDM links. This also includes performance evaluation of non-linear frequency modulation (NLFM signals, known for better signal to noise ratio (SNR to specific side lobe levels. NLFM waveforms are further analysed using pulse compression (PC technique. Link evaluation is also carried out using a standard simulation environment and is then experimentally verified with other waveforms like RF continuous wave (CW, pulsed RF and digital signals. Synchronization signals are generated from this variable duty cycle digital signals during real time radar operation. During evaluation of digital signals, variable transient effects for different duty cycles are observed from an amplifier configuration. A suppression method is proposed to eliminate this transient effects. Further, the link delay response is investigated using different lengths of fiber spools. It can be inferred from the experimental results that WDM links are capable of handling various signals significant to radar applications.

  14. Radar for tracer particles

    Science.gov (United States)

    Ott, Felix; Herminghaus, Stephan; Huang, Kai

    2017-05-01

    We introduce a radar system capable of tracking a 5 mm spherical target continuously in three dimensions. The 10 GHz (X-band) radar system has a transmission power of 1 W and operates in the near field of the horn antennae. By comparing the phase shift of the electromagnetic wave traveling through the free space with an IQ-mixer, we obtain the relative movement of the target with respect to the antennae. From the azimuth and inclination angles of the receiving antennae obtained in the calibration, we reconstruct the target trajectory in a three-dimensional Cartesian system. Finally, we test the tracking algorithm with target moving in circular as well as in pendulum motions and discuss the capability of the radar system.

  15. Radar Scan Methods in Modern Multifunctional Radars

    Directory of Open Access Journals (Sweden)

    V. N. Skosyrev

    2014-01-01

    Full Text Available Considered urgent task of organizing the review space in modern multifunctional radar systems shall review the space in a wide range of elevation angles from minus 5 to 60-80 degrees and 360 degrees azimuth. MfRLS this type should provide an overview of the zone for a limited time (2-3 sec, detecting a wide range of subtle high and low-flying targets. The latter circumstance requires the organization to select targets against the background of reflections from the underlying surface and local objects (MP. When providing an overview of the space taken into account the need to increase not only the noise immunity, and survivability.Two variants of the review of space in the elevation plane in the solid-state AESA radar. In the first case the overview space narrow beam by one beam. In the second - the transfer of DNA is formed, covering the whole sector of responsibility in elevation and at the reception beam is formed in spetsvychislitele (CB as a result of the signal processing of digitized after emitters antenna web. The estimations of the parameters specific to the multifunction radar SAM air and missile defense. It is shown that in a number of practically important cases, preference should be given clearly one of the methods described review of space.The functional scheme with AESA radar for both variants of the review. Necessary to analyze their differences. Contains the problem of increasing the cost of MfRLS with digital beamforming DNA with increasing bandwidth probing signal being processed.Noted drawbacks of MfRLS with digital beamforming beam. Including: reduced accuracy of the coordinates at low elevation angles, the complexity of the organization of thermal regime of the solid element base using quasi-continuous signal with a low duty cycle. Shows their fundamentally unavoidable in the steppe and desert areas with uneven terrain (Kazakhstan, China, the Middle East.It is shown that for MfRLS working in strong clutter, more preferably

  16. Reconfigurable signal processor designs for advanced digital array radar systems

    Science.gov (United States)

    Suarez, Hernan; Zhang, Yan (Rockee); Yu, Xining

    2017-05-01

    The new challenges originated from Digital Array Radar (DAR) demands a new generation of reconfigurable backend processor in the system. The new FPGA devices can support much higher speed, more bandwidth and processing capabilities for the need of digital Line Replaceable Unit (LRU). This study focuses on using the latest Altera and Xilinx devices in an adaptive beamforming processor. The field reprogrammable RF devices from Analog Devices are used as analog front end transceivers. Different from other existing Software-Defined Radio transceivers on the market, this processor is designed for distributed adaptive beamforming in a networked environment. The following aspects of the novel radar processor will be presented: (1) A new system-on-chip architecture based on Altera's devices and adaptive processing module, especially for the adaptive beamforming and pulse compression, will be introduced, (2) Successful implementation of generation 2 serial RapidIO data links on FPGA, which supports VITA-49 radio packet format for large distributed DAR processing. (3) Demonstration of the feasibility and capabilities of the processor in a Micro-TCA based, SRIO switching backplane to support multichannel beamforming in real-time. (4) Application of this processor in ongoing radar system development projects, including OU's dual-polarized digital array radar, the planned new cylindrical array radars, and future airborne radars.

  17. Comet Radar Explorer

    Science.gov (United States)

    Asphaug, Erik; CORE Science Team

    2010-10-01

    Comet Radar Explorer (CORE) is a low cost mission that uses sounding radar to image the 3D internal structure of the nucleus of Jupiter-family comet (JFC) Tempel 2. Believed to originate in the Kuiper Belt, JFCs are among the most primitive bodies in the inner solar system. CORE operates a 5 and 15 MHz Radar Reflection Imager from close orbit about the nucleus of Tempel 2, obtaining a dense network of echoes that are used to map its interior dielectric contrasts to high resolution (ង m) and resolve the dielectric constants to  m throughout the 16x8x9 km nucleus. The resulting clear images of internal structure and composition reveal how the nucleus was formed and how it has evolved. Radiometric tracking of the spacecraft orbit results in an interior mass distribution that constrains the radar-based models of interior composition. High-resolution visible and infrared color images provide the surface and exterior boundary conditions for interior models and hypotheses. They present the geology and morphology of the nucleus surface at meter-scales, and also the time-evolving activity, structure and composition of the inner coma. By making deep connections from interior to exterior, the data CORE provides will answer fundamental questions about the earliest stages of planetesimal evolution and planet formation, and lay the foundation for a comet nucleus sample return mission. CORE is led by Prof. Erik Asphaug of the University of California, Santa Cruz and is managed by JPL. It benefits from key scientific and payload contributions by ASI and CNES. The international science team has been assembled on the basis of their key involvement in past and ongoing missions to comets, and in Mars radar missions, and for their expertise in radar data analysis.

  18. Ground penetrating radar

    CERN Document Server

    Daniels, David J

    2004-01-01

    Ground-penetrating radar has come to public attention in recent criminal investigations, but has actually been a developing and maturing remote sensing field for some time. In the light of recent expansion of the technique to a wide range of applications, the need for an up-to-date reference has become pressing. This fully revised and expanded edition of the best-selling Surface-Penetrating Radar (IEE, 1996) presents, for the non-specialist user or engineer, all the key elements of this technique, which span several disciplines including electromagnetics, geophysics and signal processing. The

  19. Spaceborne Imaging Radar Symposium

    Science.gov (United States)

    Elachi, C.

    1983-01-01

    An overview of the present state of the art in the different scientific and technological fields related to spaceborne imaging radars was presented. The data acquired with the SEASAT SAR (1978) and Shuttle Imaging Radar, SIR-A (1981) clearly demonstrated the important emphasis in the 80's is going to be on in-depth research investigations conducted with the more flexible and sophisticated SIR series instruments and on long term monitoring of geophysical phenomena conducted from free-flying platforms such as ERS-1 and RADARSAT.

  20. Systems and Methods for Radar Data Communication

    Science.gov (United States)

    Bunch, Brian (Inventor); Szeto, Roland (Inventor); Miller, Brad (Inventor)

    2013-01-01

    A radar information processing system is operable to process high bandwidth radar information received from a radar system into low bandwidth radar information that may be communicated to a low bandwidth connection coupled to an electronic flight bag (EFB). An exemplary embodiment receives radar information from a radar system, the radar information communicated from the radar system at a first bandwidth; processes the received radar information into processed radar information, the processed radar information configured for communication over a connection operable at a second bandwidth, the second bandwidth lower than the first bandwidth; and communicates the radar information from a radar system, the radar information communicated from the radar system at a first bandwidth.

  1. Use of radars to monitor stream discharge by noncontact methods

    Science.gov (United States)

    Costa, J.E.; Cheng, R.T.; Haeni, F.P.; Melcher, N.; Spicer, K.R.; Hayes, E.; Plant, W.; Hayes, K.; Teague, C.; Barrick, D.

    2006-01-01

    Conventional measurements of river flows are costly, time‐consuming, and frequently dangerous. This report evaluates the use of a continuous wave microwave radar, a monostatic UHF Doppler radar, a pulsed Doppler microwave radar, and a ground‐penetrating radar to measure river flows continuously over long periods and without touching the water with any instruments. The experiments duplicate the flow records from conventional stream gauging stations on the San Joaquin River in California and the Cowlitz River in Washington. The purpose of the experiments was to directly measure the parameters necessary to compute flow: surface velocity (converted to mean velocity) and cross‐sectional area, thereby avoiding the uncertainty, complexity, and cost of maintaining rating curves. River channel cross sections were measured by ground‐penetrating radar suspended above the river. River surface water velocity was obtained by Bragg scattering of microwave and UHF Doppler radars, and the surface velocity data were converted to mean velocity on the basis of detailed velocity profiles measured by current meters and hydroacoustic instruments. Experiments using these radars to acquire a continuous record of flow were conducted for 4 weeks on the San Joaquin River and for 16 weeks on the Cowlitz River. At the San Joaquin River the radar noncontact measurements produced discharges more than 20% higher than the other independent measurements in the early part of the experiment. After the first 3 days, the noncontact radar discharge measurements were within 5% of the rating values. On the Cowlitz River at Castle Rock, correlation coefficients between the USGS stream gauging station rating curve discharge and discharge computed from three different Doppler radar systems and GPR data over the 16 week experiment were 0.883, 0.969, and 0.992. Noncontact radar results were within a few percent of discharge values obtained by gauging station, current meter, and hydroacoustic methods

  2. Status Of Imaging Radar Polarimetry

    Science.gov (United States)

    Van Zyl, Jakob J.; Zebker, Howard A.

    1991-01-01

    Report pulls together information on imaging radar polarimetry from a variety of sources. Topics include theory, equipment, and experimental data. Reviews state of the art, examines current applicable developments in radar equipment, describes recording and processing of radar polarimetric measurements, and discusses interpretation and application of resulting polarimetric images.

  3. Real-time windowing in imaging radar using FPGA technique

    Science.gov (United States)

    Ponomaryov, Volodymyr I.; Escamilla-Hernandez, Enrique

    2005-02-01

    The imaging radar uses the high frequency electromagnetic waves reflected from different objects for estimating of its parameters. Pulse compression is a standard signal processing technique used to minimize the peak transmission power and to maximize SNR, and to get a better resolution. Usually the pulse compression can be achieved using a matched filter. The level of the side-lobes in the imaging radar can be reduced using the special weighting function processing. There are very known different weighting functions: Hamming, Hanning, Blackman, Chebyshev, Blackman-Harris, Kaiser-Bessel, etc., widely used in the signal processing applications. Field Programmable Gate Arrays (FPGAs) offers great benefits like instantaneous implementation, dynamic reconfiguration, design, and field programmability. This reconfiguration makes FPGAs a better solution over custom-made integrated circuits. This work aims at demonstrating a reasonably flexible implementation of FM-linear signal and pulse compression using Matlab, Simulink, and System Generator. Employing FPGA and mentioned software we have proposed the pulse compression design on FPGA using classical and novel windows technique to reduce the side-lobes level. This permits increasing the detection ability of the small or nearly placed targets in imaging radar. The advantage of FPGA that can do parallelism in real time processing permits to realize the proposed algorithms. The paper also presents the experimental results of proposed windowing procedure in the marine radar with such the parameters: signal is linear FM (Chirp); frequency deviation DF is 9.375MHz; the pulse width T is 3.2μs taps number in the matched filter is 800 taps; sampling frequency 253.125*106 MHz. It has been realized the reducing of side-lobes levels in real time permitting better resolution of the small targets.

  4. Compressive CFAR Radar Processing

    NARCIS (Netherlands)

    Anitori, L.; Rossum, W.L. van; Otten, M.P.G.; Maleki, A.; Baraniuk, R.

    2013-01-01

    In this paper we investigate the performance of a combined Compressive Sensing (CS) Constant False Alarm Rate (CFAR) radar processor under different interference scenarios using both the Cell Averaging (CA) and Order Statistic (OS) CFAR detectors. Using the properties of the Complex Approximate

  5. Compressive CFAR radar detection

    NARCIS (Netherlands)

    Anitori, L.; Otten, M.P.G.; Rossum, W.L. van; Maleki, A.; Baraniuk, R.

    2012-01-01

    In this paper we develop the first Compressive Sensing (CS) adaptive radar detector. We propose three novel architectures and demonstrate how a classical Constant False Alarm Rate (CFAR) detector can be combined with ℓ1-norm minimization. Using asymptotic arguments and the Complex Approximate

  6. Metamaterial for Radar Frequencies

    Science.gov (United States)

    2012-09-01

    capacitive coupling with adjacent patches, as shown in Figure 3. The via provides inductance to ground. Figure 3. (a) Planar LH distributed periodic...After [20]). The capacitance in the structure balances out the inductance present when the cylinder is placed in a square array. The metallic... RADAR FREQUENCIES by Szu Hau Tan September 2012 Thesis Advisor: David C. Jenn Second Reader: James Calusdian

  7. The average impulse response of a rough surface and its applications. [in radar altimetry

    Science.gov (United States)

    Brown, G. S.

    1977-01-01

    This paper is concerned with the theoretical model for short pulse scattering from a statistically random planar surface with particular application to current state of the art radar altimetry. A short review of the assumptions inherent in the convolutional model is presented. Simplified expressions are obtained for both the impulse response and the average backscattered power for near normal incidence under the assumptions common to satellite radar altimetry systems. In particular, it is shown that the conventional two-dimensional surface integration can be reduced to a closed form solution. Two applications of these results are presented relative to radar altimetry, namely, radar antenna pointing angle determination and altitude bias correction for pointing angle and surface roughness effects. It is also shown that these results have direct application to the analysis of the two frequency system proposed by Weissman, and a possible combined long pulse altimeter and two frequency system is suggested.

  8. Pulse Oximetry

    Science.gov (United States)

    ... American Thoracic Society www. thoracic. org American Thoracic Society PATIENT EDUCATION | INFORMATION SERIES How accurate is the pulse oximeter? The ... patient. co. uk/ doctor/ Pulse- Oximetry. htm This ... service of the American Thoracic Society. The content is for educational purposes only. It ...

  9. Ground Penetrating Radar Technologies in Ukraine

    Science.gov (United States)

    Pochanin, Gennadiy P.; Masalov, Sergey A.

    2014-05-01

    Transient electromagnetic fields are of great interest in Ukraine. The following topics are studied by research teams, with high-level achievements all over the world: (i) Ultra-Wide Band/Short-pulse radar techniques (IRE and LLC "Transient Technologies", for more information please visit http://applied.ire.kharkov.ua/radar%20systems_their%20components%20and%20relevant%20technologies_e.html and http://viy.ua); (ii) Ground Penetrating Radar (GPR) with stepped frequency sounding signals (IRE); (iii) Continuous-Wave (CW) radar with phase-shift keying signals (IRE); and (iv) Radio-wave interference investigation (Scientific and Technical Centre of The Subsurface Investigation, http://geophysics.ua). GPR applications are mainly in search works, for example GPR is often used to search for treasures. It is also used to identify leaks and diffusion of petroleum in soil, in storage areas, as well as for fault location of pipelines. Furthermore, GPR is used for the localization of underground utilities and for diagnostics of the technical state of hydro dams. Deeper GPR probing was performed to identify landslides in Crimea. Rescue radar with CW signal was designed in IRE to search for living people trapped under the rubble of collapsed buildings. The fourth version of this radar has been recently created, showing higher stability and noise immunity. Radio-wave interference investigation allows studying the soil down to tens of meters. It is possible to identify areas with increased conductivity (moisture) of the soil. LLC "Transient Technologies" is currently working with Shevchenko Kyiv University on a cooperation program in which the construction of a test site is one of the planned tasks. In the framework of this program, a GPR with a 300 MHz antenna was handed to the geological Faculty of the University. Employees of "Transient Technologies" held introductory lectures with a practical demonstration for students majoring in geophysics. The authors participated to GPR

  10. Means to achieve wide swath widths in synthetic aperture satellite borne radars

    Science.gov (United States)

    Cutrona, L. J.

    1978-01-01

    The radar range equation including processing gains for pulse compression and synthetic aperture generation was the starting point. System geometry considerations were introduced. For simplicity, flat earth geometry was used, although it was realized that this was not a good model for satellite-borne radars. Next, the constraints were introduced. These included those needed to avoid ambiguities in both range and azimuth, those needed to acheive the desired resolution, and those needed to achieve the desired swath width.

  11. Spectrum sharing between a surveillance radar and secondary Wi-Fi networks

    Science.gov (United States)

    Hessar, Farzad; Roy, Sumit

    2016-06-01

    Co-existence between unlicensed networks that share spectrum spatio-temporally with terrestrial (e.g. Air Traffic Control) and shipborne radars in 3-GHz band is attracting significant interest. Similar to every primary-secondary coexistence scenario, interference from unlicensed devices to a primary receiver must be within acceptable bounds. In this work, we formulate the spectrum sharing problem between a pulsed, search radar (primary) and 802.11 WLAN as the secondary. We compute the protection region for such a search radar for a) a single secondary user (initially) as well as b) a random spatial distribution of multiple secondary users. Furthermore, we also analyze the interference to the WiFi devices from the radar's transmissions to estimate the impact on achievable WLAN throughput as a function of distance to the primary radar.

  12. Detection and discrimination of fauna in the aerosphere using Doppler weather surveillance radar.

    Science.gov (United States)

    Gauthreaux, Sidney A; Livingston, John W; Belser, Carroll G

    2008-07-01

    Organisms in the aerosphere have been detected by radar since its development in the 1940s. The national network of Doppler weather radars (WSR-88D) in the United States can readily detect birds, bats, and insects aloft. Level-II data from the radar contain information on the reflectivity and radial velocity of targets and on width of the spectrum (SD of radial velocities in a radar pulse volume). Information on reflectivity can be used to quantify density of organisms aloft and radial velocity can be used to discriminate different types of targets based on their air speeds. Spectral width can also provide some useful information when organisms with very different air speeds are aloft. Recent work with dual-polarization radar suggests that it may be useful for discriminating birds from insects in the aerosphere, but more development and biological validation are required.

  13. Movement and respiration detection using statistical properties of the FMCW radar signal

    KAUST Repository

    Kiuru, Tero

    2016-07-26

    This paper presents a 24 GHz FMCW radar system for detection of movement and respiration using change in the statistical properties of the received radar signal, both amplitude and phase. We present the hardware and software segments of the radar system as well as algorithms with measurement results for two distinct use-cases: 1. FMCW radar as a respiration monitor and 2. a dual-use of the same radar system for smart lighting and intrusion detection. By using change in statistical properties of the signal for detection, several system parameters can be relaxed, including, for example, pulse repetition rate, power consumption, computational load, processor speed, and memory space. We will also demonstrate, that the capability to switch between received signal strength and phase difference enables dual-use cases with one requiring extreme sensitivity to movement and the other robustness against small sources of interference. © 2016 IEEE.

  14. Design of an Ultra-wideband Pseudo Random Coded MIMO Radar Based on Radio Frequency Switches

    Directory of Open Access Journals (Sweden)

    Su Hai

    2017-02-01

    Full Text Available A Multiple-Input Multiple-Output (MIMO ultra-wideband radar can detect the range and azimuth information of targets in real time. It is widely used for geological surveys, life rescue, through-wall tracking, and other military or civil fields. This paper presents the design of an ultra-wideband pseudo random coded MIMO radar that is based on Radio Frequency (RF switches and implements a MIMO radar system. RF switches are employed to reduce cost and complexity of the system. As the switch pressure value is limited, the peak power of the transmitting signal is 18 dBm. The ultra-wideband radar echo is obtained by hybrid sampling, and pulse compression is computed by Digital Signal Processors (DSPs embedded in an Field-Programmable Gate Array (FPGA to simplify the signal process. The experiment illustrates that the radar system can detect the range and azimuth information of targets in real time.

  15. Modulation, resolution and signal processing in radar, sonar and related systems

    CERN Document Server

    Benjamin, R; Costrell, L

    1966-01-01

    Electronics and Instrumentation, Volume 35: Modulation, Resolution and Signal Processing in Radar, Sonar and Related Systems presents the practical limitations and potentialities of advanced modulation systems. This book discusses the concepts and techniques in the radar context, but they are equally essential to sonar and to a wide range of signaling and data-processing applications, including seismology, radio astronomy, and band-spread communications.Organized into 15 chapters, this volume begins with an overview of the principal developments sought in pulse radar. This text then provides a

  16. Analysis of measured radar data for specific emitter identification

    CSIR Research Space (South Africa)

    Conning, M

    2010-05-01

    Full Text Available and can be used more efficiently to determine the exact times when a pulse starts and ends [3]. Other statistical methods are also available, as mentioned below. To determine the start of a signal, [4] and [5] used a variance fractal dimension... measure together with a Bayesian step change detector. Temporal, nonstationary signals’ fractal dimensions change over time. Multifractals can be used with such signals, e.g. radar pulses that have time-varying fractal dimensions [4], [6] and [7]. A...

  17. Compressive CFAR Radar Processing

    OpenAIRE

    Anitori, Laura; Baraniuk, Richard; Maleki, Arian; Otten, Matern; van Rossum, Wim

    2013-01-01

    In this paper we investigate the performance of a combined Compressive Sensing (CS) Constant False Alarm Rate (CFAR) radar processor under different interference scenarios using both the Cell Averaging (CA) and Order Statistic (OS) CFAR detectors. Using the properties of the Complex Approximate Message Passing (CAMP) algorithm, we demonstrate that the behavior of the CFAR processor is independent of the combination with the non-linear recovery and therefore its performance can be predicted us...

  18. Comet radar explorer

    Science.gov (United States)

    Farnham, Tony; Asphaug, Erik; Barucci, Antonella; Belton, Mike; Bockelee-Morvan, Dominique; Brownlee, Donald; Capria, Maria Teresa; Carter, Lynn; Chesley, Steve; Farnham, Tony; Gaskell, Robert; Gim, Young; Heggy, Essam; Herique, Alain; Klaasen, Ken; Kofman, Wlodek; Kreslavsky, Misha; Lisse, Casey; Orosei, Roberto; Plaut, Jeff; Scheeres, Dan

    The Comet Radar Explorer (CORE) is designed to perform a comprehensive and detailed exploration of the interior, surface, and inner coma structures of a scientifically impor-tant Jupiter family comet. These structures will be used to investigate the origins of cometary nuclei, their physical and geological evolution, and the mechanisms driving their spectacular activity. CORE is a high heritage spacecraft, injected by solar electric propulsion into orbit around a comet. It is capable of coherent deep radar imaging at decameter wavelengths, high resolution stereo color imaging, and near-IR imaging spectroscopy. Its primary objective is to obtain a high-resolution map of the interior structure of a comet nucleus at a resolution of ¿100 elements across the diameter. This structure shall be related to the surface geology and morphology, and to the structural details of the coma proximal to the nucleus. This is an ideal complement to the science from recent comet missions, providing insight into how comets work. Knowing the structure of the interior of a comet-what's inside-and how cometary activity works, is required before we can understand the requirements for a cryogenic sample return mission. But more than that, CORE is fundamental to understanding the origin of comets and their evolution in time. The mission is made feasible at low cost by the use of now-standard MARSIS-SHARAD reflec-tion radar imaging hardware and data processing, together with proven flight heritage of solar electric propulsion. Radar flight heritage has been demonstrated by the MARSIS radar on Mars Express (Picardi et al., Science 2005; Plaut et al., Science 2007), the SHARAD radar onboard the Mars Reconnaissance Orbiter (Seu et al., JGR 2007), and the LRS radar onboard Kaguya (Ono et al, EPS 2007). These instruments have discovered detailed subsurface structure to depths of several kilometers in a variety of terrains on Mars and the Moon. A reflection radar deployed in orbit about a comet

  19. Radar gun hazards

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-20

    Radar guns - hand-held units used by the law to nail speeders - have been in use since the early '60s. Now they've been accused of causing cancer. Police officers in several states have so far filed eight suits against the manufacturer, claiming that they have contracted rare forms of cancer, such as of the eyelid and the testicle, from frequent proximity to the devices. Spurred by concerns expressed by police groups, researchers at the Rochester Institute of Technology are conducting what they believe to be the first research of its kind in the nation. Last month psychologist John Violanti, an expert in policy psychology and health, sent out a one-page survey to 6,000 active and retired police officers in New York State, asking them about their health and their use of radar guns. Violanti says melanoma, leukemia, and lymph node cancer may be linked to these as well as other electromagnetic devices. The Food and Drug Administration earlier this year issued a warning about radar guns, telling users not to operate them closer than 6 inches from the body. But this may not be a sufficient safeguard since the instruments can give off crisscrossing wave emissions within a police vehicle. The survey will be used to help determine if it would be safer to mount the guns, which are currently either hand-held or mounted on dashboards, outside troopers' cars.

  20. A fully photonics-based coherent radar system.

    Science.gov (United States)

    Ghelfi, Paolo; Laghezza, Francesco; Scotti, Filippo; Serafino, Giovanni; Capria, Amerigo; Pinna, Sergio; Onori, Daniel; Porzi, Claudio; Scaffardi, Mirco; Malacarne, Antonio; Vercesi, Valeria; Lazzeri, Emma; Berizzi, Fabrizio; Bogoni, Antonella

    2014-03-20

    The next generation of radar (radio detection and ranging) systems needs to be based on software-defined radio to adapt to variable environments, with higher carrier frequencies for smaller antennas and broadened bandwidth for increased resolution. Today's digital microwave components (synthesizers and analogue-to-digital converters) suffer from limited bandwidth with high noise at increasing frequencies, so that fully digital radar systems can work up to only a few gigahertz, and noisy analogue up- and downconversions are necessary for higher frequencies. In contrast, photonics provide high precision and ultrawide bandwidth, allowing both the flexible generation of extremely stable radio-frequency signals with arbitrary waveforms up to millimetre waves, and the detection of such signals and their precise direct digitization without downconversion. Until now, the photonics-based generation and detection of radio-frequency signals have been studied separately and have not been tested in a radar system. Here we present the development and the field trial results of a fully photonics-based coherent radar demonstrator carried out within the project PHODIR. The proposed architecture exploits a single pulsed laser for generating tunable radar signals and receiving their echoes, avoiding radio-frequency up- and downconversion and guaranteeing both the software-defined approach and high resolution. Its performance exceeds state-of-the-art electronics at carrier frequencies above two gigahertz, and the detection of non-cooperating aeroplanes confirms the effectiveness and expected precision of the system.

  1. Coherent Doppler Laser Radar: Technology Development and Applications

    Science.gov (United States)

    Kavaya, Michael J.; Arnold, James E. (Technical Monitor)

    2000-01-01

    NASA's Marshall Space Flight Center has been investigating, developing, and applying coherent Doppler laser radar technology for over 30 years. These efforts have included the first wind measurement in 1967, the first airborne flights in 1972, the first airborne wind field mapping in 1981, and the first measurement of hurricane eyewall winds in 1998. A parallel effort at MSFC since 1982 has been the study, modeling and technology development for a space-based global wind measurement system. These endeavors to date have resulted in compact, robust, eyesafe lidars at 2 micron wavelength based on solid-state laser technology; in a factor of 6 volume reduction in near diffraction limited, space-qualifiable telescopes; in sophisticated airborne scanners with full platform motion subtraction; in local oscillator lasers capable of rapid tuning of 25 GHz for removal of relative laser radar to target velocities over a 25 km/s range; in performance prediction theory and simulations that have been validated experimentally; and in extensive field campaign experience. We have also begun efforts to dramatically improve the fundamental photon efficiency of the laser radar, to demonstrate advanced lower mass laser radar telescopes and scanners; to develop laser and laser radar system alignment maintenance technologies; and to greatly improve the electrical efficiency, cooling technique, and robustness of the pulsed laser. This coherent Doppler laser radar technology is suitable for high resolution, high accuracy wind mapping; for aerosol and cloud measurement; for Differential Absorption Lidar (DIAL) measurements of atmospheric and trace gases; for hard target range and velocity measurement; and for hard target vibration spectra measurement. It is also suitable for a number of aircraft operations applications such as clear air turbulence (CAT) detection; dangerous wind shear (microburst) detection; airspeed, angle of attack, and sideslip measurement; and fuel savings through

  2. Detection of Weather Radar Clutter

    DEFF Research Database (Denmark)

    Bøvith, Thomas

    2008-01-01

    Weather radars provide valuable information on precipitation in the atmosphere but due to the way radars work, not only precipitation is observed by the weather radar. Weather radar clutter, echoes from non-precipitating targets, occur frequently in the data, resulting in lowered data quality....... Especially in the application of weather radar data in quantitative precipitation estimation and forecasting a high data quality is important. Clutter detection is one of the key components in achieving this goal. This thesis presents three methods for detection of clutter. The methods use supervised...... and precipitating and non-precipitating clouds. Another method uses the difference in the motion field of clutter and precipitation measured between two radar images. Furthermore, the direction of the wind field extracted from a weather model is used. The third method uses information about the refractive index...

  3. A review of array radars

    Science.gov (United States)

    Brookner, E.

    1981-10-01

    Achievements in the area of array radars are illustrated by such activities as the operational deployment of the large high-power, high-range-resolution Cobra Dane; the operational deployment of two all-solid-state high-power, large UHF Pave Paws radars; and the development of the SAM multifunction Patriot radar. This paper reviews the following topics: array radars steered in azimuth and elevation by phase shifting (phase-phase steered arrays); arrays steered + or - 60 deg, limited scan arrays, hemispherical coverage, and omnidirectional coverage arrays; array radars steering electronically in only one dimension, either by frequency or by phase steering; and array radar antennas which use no electronic scanning but instead use array antennas for achieving low antenna sidelobes.

  4. Radar Image, Hokkaido, Japan

    Science.gov (United States)

    2000-01-01

    The southeast part of the island of Hokkaido, Japan, is an area dominated by volcanoes and volcanic caldera. The active Usu Volcano is at the lower right edge of the circular Lake Toya-Ko and near the center of the image. The prominent cone above and to the left of the lake is Yotei Volcano with its summit crater. The city of Sapporo lies at the base of the mountains at the top of the image and the town of Yoichi -- the hometown of SRTM astronaut Mamoru Mohri -- is at the upper left edge. The bay of Uchiura-Wan takes up the lower center of the image. In this image, color represents elevation, from blue at the lowest elevations to white at the highest. The radar image has been overlaid to provide more details of the terrain. Due to a processing problem, an island in the center of this crater lake is missing and will be properly placed when further SRTM swaths are processed. The horizontal banding in this image is a processing artifact that will be removed when the navigation information collected by SRTM is fully calibrated. This image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on February 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense (DoD), and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Earth Science Enterprise, Washington, DC. Size: 100 by 150 kilometers (62

  5. Radar studies of bird migration

    Science.gov (United States)

    Williams, T. C.; Williams, J. M.

    1974-01-01

    Observations of bird migration with NASA radars were made at Wallops Island, Va. Simultaneous observations were made at a number of radar sites in the North Atlantic Ocean in an effort to discover what happened to those birds that were observed leaving the coast of North America headed toward Bermuda, the Caribbean and South America. Transatlantic migration, utilizing observations from a large number of radars is discussed. Detailed studies of bird movements at Wallops Island are presented.

  6. Remote monitoring by impulse radar

    OpenAIRE

    Taghimohammadi, Ensieh

    2015-01-01

    This master thesis is centered on development of signal processing algorithms for an Ultra - Wideband (UWB) Radar system. The goal of signal processing algorithms is to identify components of radar received signal. Moreover, implementing algorithms for checking both static and moving objects, estimating the distance from an object, and tracking the moving object. In this thesis we use a new type of Novelda UWB radar for indoor applications. It consists of two compact directional UWB antennas ...

  7. Photonic based marine radar demonstrator

    OpenAIRE

    Laghezza, Francesco; Scotti, Filippo; Ghelfi, Paolo; Bogoni, Antonella; Banchi, Luca; Malaspina, Vincenzo; Serafino, Giovanni

    2015-01-01

    This paper presents the results obtained during the field trial experiments of the first photonic-based radar system demonstrator, in a real maritime environment. The developed demonstrator exploits photonic technologies for both the generation and the detection of radar RF signals, allowing increased performance even in term of system flexibility. The photonic radar performance have been compared with a state of the art commercial system for maritime applications provide...

  8. Warship radar cross section determination and reduction, and hindrances in optimizing radar cross section reduction on warships

    Science.gov (United States)

    Khan, Jawad; Duan, WenYang

    2011-06-01

    From the begining of military warfare, it has always been extremely important to know the enemy position and hide oneself to capitalize on elements of surprise and initiative, and same is true for naval warfare. Radar is the primary instrument used for detecting enemy platforms today.Radar detects a target by clocking time taken by a known pulse of electromagnetic energy to get to the target and return. Radar cross section (RCS) is the measure of reflective strength of a target. Reducing the RCS of a platform implies its late detection, used to capitalize on surprise and initiative. RCS is also important for survivability evaluation since most modern weapons use installed radars during final engagement phase. As a result, RCS of a warship has transformed into a very important design factor for stealth to achieve surprise, initiative and survivability. Thus accurate RCS determination and RCS reduction are matters of extreme importance. The purpose of this study is to provide an understanding RCS reduction and RCS determination methods used on warships today. In doing so, this study will discuss importance of RCS, radar fundamentals and RCS basics, RCS reduction and RCS determination methods. It will also present hindrances in optimizing RCSR on warships, impact of these hindrances on navies around the world, and comment on possible remedies to these hindrances.

  9. Reconfigurable L-Band Radar

    Science.gov (United States)

    Rincon, Rafael F.

    2008-01-01

    The reconfigurable L-Band radar is an ongoing development at NASA/GSFC that exploits the capability inherently in phased array radar systems with a state-of-the-art data acquisition and real-time processor in order to enable multi-mode measurement techniques in a single radar architecture. The development leverages on the L-Band Imaging Scatterometer, a radar system designed for the development and testing of new radar techniques; and the custom-built DBSAR processor, a highly reconfigurable, high speed data acquisition and processing system. The radar modes currently implemented include scatterometer, synthetic aperture radar, and altimetry; and plans to add new modes such as radiometry and bi-static GNSS signals are being formulated. This development is aimed at enhancing the radar remote sensing capabilities for airborne and spaceborne applications in support of Earth Science and planetary exploration This paper describes the design of the radar and processor systems, explains the operational modes, and discusses preliminary measurements and future plans.

  10. Simulation model study of limitation on the locating distance of a ground penetrating radar; Chichu tansa radar no tansa kyori genkai ni kansuru simulation model no kochiku

    Energy Technology Data Exchange (ETDEWEB)

    Nakauchi, T.; Tsunasaki, M.; Kishi, M.; Hayakawa, H. [Osaka Gas Co. Ltd., Osaka (Japan)

    1996-10-01

    Various simulations were carried out under various laying conditions to obtain the limitation of locating distance for ground penetrating radar. Recently, ground penetrating radar has been remarked as location technology of obstacles such as the existing buried objects. To enhance the theoretical model (radar equation) of a maximum locating distance, the following factors were examined experimentally using pulse ground penetrating radar: ground surface conditions such as asphalt pavement, diameter of buried pipes, material of buried pipes, effect of soil, antenna gain. The experiment results well agreed with actual field experiment ones. By adopting the antenna gain and effect of the ground surface, the more practical simulation using underground models became possible. The maximum locating distance was more improved by large antenna than small one in actual field. It is assumed that large antenna components contributed to improvement of gain and reduction of attenuation during passing through soil. 5 refs., 12 figs.

  11. SHORT-PULSE ELECTROMAGNETIC TRANSPONDER FOR HOLE-TO-HOLE USE.

    Science.gov (United States)

    Wright, David L.; Watts, Raymond D.; Bramsoe, Erik

    1983-01-01

    Hole-to-hole observations were made through nearly 20 m of granite using an electromagnetic transponder (an active reflector) in one borehole and a single-hole short-pulse radar in another. The transponder is inexpensive, operationally simple, and effective in extending the capability of a short-pulse borehole radar system to allow hole-to-hole operation without requiring timing cables. A detector in the transponder senses the arrival of each pulse from the radar. Each pulse detection triggers a kilovolt-amplitude pulse for retransmission. The transponder 'echo' may be stronger than that of a passive reflector by a factor of as much as 120 db. The result is an increase in range capability by a factor which depends on attenuation in the medium and hole-to-hole wavepath geometry.

  12. Efficient Estimation of Spectral Moments and the Polarimetric Variables on Weather Radars, Sonars, Sodars, Acoustic Flow Meters, Lidars, and Similar Active Remote Sensing Instruments

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A method for estimation of Doppler spectrum, its moments, and polarimetric variables on pulsed weather radars which uses over sampled echo components at a rate...

  13. Broadview Radar Altimetry Toolbox

    Science.gov (United States)

    Garcia-Mondejar, Albert; Escolà, Roger; Moyano, Gorka; Roca, Mònica; Terra-Homem, Miguel; Friaças, Ana; Martinho, Fernando; Schrama, Ernst; Naeije, Marc; Ambrózio, Américo; Restano, Marco; Benveniste, Jérôme

    2017-04-01

    The universal altimetry toolbox, BRAT (Broadview Radar Altimetry Toolbox) which can read all previous and current altimetry missions' data, incorporates now the capability to read the upcoming Sentinel3 L1 and L2 products. ESA endeavoured to develop and supply this capability to support the users of the future Sentinel3 SAR Altimetry Mission. BRAT is a collection of tools and tutorial documents designed to facilitate the processing of radar altimetry data. This project started in 2005 from the joint efforts of ESA (European Space Agency) and CNES (Centre National d'Etudes Spatiales), and it is freely available at http://earth.esa.int/brat. The tools enable users to interact with the most common altimetry data formats. The BratGUI is the frontend for the powerful command line tools that are part of the BRAT suite. BRAT can also be used in conjunction with MATLAB/IDL (via reading routines) or in C/C++/Fortran via a programming API, allowing the user to obtain desired data, bypassing the dataformatting hassle. BRAT can be used simply to visualise data quickly, or to translate the data into other formats such as NetCDF, ASCII text files, KML (Google Earth) and raster images (JPEG, PNG, etc.). Several kinds of computations can be done within BRAT involving combinations of data fields that the user can save for posterior reuse or using the already embedded formulas that include the standard oceanographic altimetry formulas. The Radar Altimeter Tutorial, that contains a strong introduction to altimetry, shows its applications in different fields such as Oceanography, Cryosphere, Geodesy, Hydrology among others. Included are also "use cases", with step-by-step examples, on how to use the toolbox in the different contexts. The Sentinel3 SAR Altimetry Toolbox shall benefit from the current BRAT version. While developing the toolbox we will revamp of the Graphical User Interface and provide, among other enhancements, support for reading the upcoming S3 datasets and specific

  14. Radar foundations for imaging and advanced concepts

    CERN Document Server

    Sullivan, Roger

    2004-01-01

    Through courses internally taught at IDA, Dr. Roger Sullivan has devised a book that brings readers fully up to speed on the most essential quantitave aspects of general radar in order to introduce study of the most exciting and relevant applications to radar imaging and advanced concepts: Synthetic Aperture Radar (4 chapters), Space-time Adaptive Processing, moving target indication (MTI), bistatic radar, low probability of intercept (LPI) radar, weather radar, and ground-penetrating radar. Whether you're a radar novice or experienced professional, this is an essential refer

  15. Pulse plating

    CERN Document Server

    Hansal, Wolfgang E G; Green, Todd; Leisner, Peter; Reichenbach, Andreas

    2012-01-01

    The electrodeposition of metals using pulsed current has achieved practical importance in recent years. Although it has long been known that changes in potential, with or without polarity reversal, can significantly affect the deposition process, the practical application of this has been slow to be adopted. This can largely be explained in terms of the complex relationship between the current regime and its effect on the electrodeposition process. In order to harness these effects, an understanding of the anodic and cathodic electrochemical processes is necessary, together with the effects of polarity reversal and the rate of such reversals. In this new monograph, the basics of metal electrodeposition from solution are laid out in great detail in seven distinct chapters. With this knowledge, the reader is able to predict how a given pulse train profile can be adopted to achieve a desired outcome. Equally important is the choice of a suitable rectifier and the ancillary control circuits to enable pulse platin...

  16. Integrating a Microwave Radiometer into Radar Hardware for Simultaneous Data Collection Between the Instruments

    Science.gov (United States)

    McLinden, Matthew; Piepmeier, Jeffrey

    2013-01-01

    The conventional method for integrating a radiometer into radar hardware is to share the RF front end between the instruments, and to have separate IF receivers that take data at separate times. Alternatively, the radar and radiometer could share the antenna through the use of a diplexer, but have completely independent receivers. This novel method shares the radar's RF electronics and digital receiver with the radiometer, while allowing for simultaneous operation of the radar and radiometer. Radars and radiometers, while often having near-identical RF receivers, generally have substantially different IF and baseband receivers. Operation of the two instruments simultaneously is difficult, since airborne radars will pulse at a rate of hundreds of microseconds. Radiometer integration time is typically 10s or 100s of milliseconds. The bandwidth of radar may be 1 to 25 MHz, while a radiometer will have an RF bandwidth of up to a GHz. As such, the conventional method of integrating radar and radiometer hardware is to share the highfrequency RF receiver, but to have separate IF subsystems and digitizers. To avoid corruption of the radiometer data, the radar is turned off during the radiometer dwell time. This method utilizes a modern radar digital receiver to allow simultaneous operation of a radiometer and radar with a shared RF front end and digital receiver. The radiometer signal is coupled out after the first down-conversion stage. From there, the radar transmit frequencies are heavily filtered, and the bands outside the transmit filter are amplified and passed to a detector diode. This diode produces a DC output proportional to the input power. For a conventional radiometer, this level would be digitized. By taking this DC output and mixing it with a system oscillator at 10 MHz, the signal can instead be digitized by a second channel on the radar digital receiver (which typically do not accept DC inputs), and can be down-converted to a DC level again digitally. This

  17. Measuring human behaviour with radar

    NARCIS (Netherlands)

    Dorp, Ph. van

    2001-01-01

    The paper presents human motion measurements with the experimental Frequency Modulated Continuous Wave(FMCW) radar at TNO-FEL. The aim of these measurements is to analyse the Doppler velocity spectrum of humans. These analysis give insight in measuring human behaviour with radar for security

  18. Performance indicators modern surveillance radar

    NARCIS (Netherlands)

    Nooij, P.N.C.; Theil, A.

    2014-01-01

    Blake chart computations are widely employed to rank detection coverage capabilities of competitive search radar systems. Developed for comparable 2D radar systems with a mechanically rotating reflector antenna, it was not necessary to regard update rate and plot quality in Blake's chart. To

  19. Behavior Subtraction applied to radar

    NARCIS (Netherlands)

    Rossum, W.L. van; Caro Cuenca, M.

    2014-01-01

    An algorithm developed for optical images has been applied to radar data. The algorithm, Behavior Subtraction, is based on capturing the dynamics of a scene and detecting anomalous behavior. The radar application is the detection of small surface targets at sea. The sea surface yields the expected

  20. Imaging with Synthetic Aperture Radar

    CERN Document Server

    Massonnet, Didier

    2008-01-01

    Describing a field that has been transformed by the recent availability of data from a new generation of space and airborne systems, the authors offer a synthetic geometrical approach to the description of synthetic aperture radar, one that addresses physicists, radar specialists, as well as experts in image processing.  

  1. Millimeter radar improves target identification

    Science.gov (United States)

    McAulay, Alastair D.

    2011-06-01

    Recently developed millimeter wave radar has advantages for target identification over conventional microwave radar which typically use lower frequencies. We describe the pertinent features involved in the construction of the new millimeter wave radar, the pseudo-optical cavity source and the quasi-optical duplexer. The long wavelength relative to light allows the radar beam to penetrate through most weather because the wavelength is larger than the particle size for dust, drizzle rain, fog. Further the mm wave beam passes through an atmospheric transmission window that provides a dip in attenuation. The higher frequency than conventional radar provides higher Doppler frequencies, for example, than X-band radar. We show by simulation that small characteristic vibrations and slow turns of an aircraft become visible so that the Doppler signature improves identification. The higher frequency also reduces beam width, which increases transmit and receive antenna gains. For the same power the transmit beam extends to farther range and the increase in receive antenna gain increases signal to noise ratio for improved detection and identification. The narrower beam can also reduce clutter and reject other noise more readily. We show by simulation that the radar can be used at lower elevations over the sea than conventional radar.

  2. Improvement of antenna decoupling in radar systems

    Science.gov (United States)

    Anchidin, Liliana; Topor, Raluca; Tamas, Razvan D.; Dumitrascu, Ana; Danisor, Alin; Berescu, Serban

    2015-02-01

    In this paper we present a type of antipodal Vivaldi antenna design, which can be used for pulse radiation in UWB communication. The Vivaldi antenna is a special tapered slot antenna with planar structure which is easily to be integrated with transmitting elements and receiving elements to form a compact structure. When the permittivity is very large, the wavelength of slot mode is so short that the electromagnetic fields concentrate in the slot to form an effective and balanced transmission line. Due to its simple structure and small size the Vivaldi antennas are one of the most popular designs used in UWB applications. However, for a two-antenna radar system, there is a high mutual coupling between two such antennas due to open configuration. In this paper, we propose a new method for reducing this effect. The method was validated by simulating a system of two Vivaldi antennas in front of a standard target.

  3. 100 years of radar

    CERN Document Server

    Galati, Gaspare

    2016-01-01

    This book offers fascinating insights into the key technical and scientific developments in the history of radar, from the first patent, taken out by Hülsmeyer in 1904, through to the present day. Landmark events are highlighted and fascinating insights provided into the exceptional people who made possible the progress in the field, including the scientists and technologists who worked independently and under strict secrecy in various countries across the world in the 1930s and the big businessmen who played an important role after World War II. The book encourages multiple levels of reading. The author is a leading radar researcher who is ideally placed to offer a technical/scientific perspective as well as a historical one. He has taken care to structure and write the book in such a way as to appeal to both non-specialists and experts. The book is not sponsored by any company or body, either formally or informally, and is therefore entirely unbiased. The text is enriched by approximately three hundred ima...

  4. Bi-alphabetic pulse compression radar signal design

    Indian Academy of Sciences (India)

    sequences for obtaining good merit factor or discrimination (Barker 1953; Turyn 1963,. 1968; Baumert 1971; Golay 1972, 1977, 1982, 1983; Moharir 1975; Beenker et al 1985;. Kerdock et al 1986; Bernasconi 1987, 1988; Hoholdt et al 1985, 1988; Golay & Harris. 1990; Newmann & Byrnes 1990; Jensen et al 1991; DeGroot ...

  5. a computer controlled pulse generator for an st radar system

    African Journals Online (AJOL)

    antennas such as the one described by Balsley and Ecklund (4). The same antenna is used both for transmitting and receiving. During transmission, the antenna is connected to the transmitter and the receiver is disa_bled or blanked. On the other hand, during reception, the antenna is connected to the receiver and the ...

  6. System feasibility study of a microwave/millimeter-wave radar for space debris tracking

    Science.gov (United States)

    Chang, Kai; Pollock, Michael A.; Skrehot, Michael K.; Arndt, G. Dickey; Suddath, Jerry

    1989-01-01

    A 35 GHz millimeter-wave radar system has been studied for space debris tracking. The objective is to track the particles ranging in size from 4 mm to 80 mm up to a range of 25 km. The system requires various state-of-the-art technologies including phased arrays, monopulse tracking, pulse compression, high power transmitters, low noise receivers, and pulse integration signal processing techniques.

  7. Considerations for Choosing Microwave Transistors in High Power Shipboard Search Radars.

    Science.gov (United States)

    1983-09-30

    EMVNr PROjECT. TASK AREA & WORK W NIT’ NUMBERS Naval Research Laboratory 22NSF2116; Washington, DC 20375 53-0615-0-0 MI CONTROLLING OFFICE N AME AND...addressed. Internal Impedance Matching The ED manufacturer who supplies devices for radar trasmitters must determine the length of emitter periphery...Frequency Range o Instaneous Bandwidth o Peak Power o Average Power o Max Pulse Width o Pulse Modes o Efficiency o AM to PM Conversion o Reliability

  8. Heterogeneous System-on-a-Chip Design for Self-Powered Wireless Sensor Networks in Non-Benign Environments

    Science.gov (United States)

    2008-03-01

    junction transistor ( BJT ) structure is the primary reason for selecting this technology, as it provides a semi-isolated p-n junction at the surface...broadened over the past decade with the introduction of processes optimized for radio frequency (RF), optical sensors, integrated bipolar transistors ... transistor in 1947, crude photovoltaic cells have been in use before 1900. The basis of a modern photovoltaic cell is the p-n junction of a

  9. Reliability and performance of a system-on-a-chip by predictive wear-out based activation of functional components

    Science.gov (United States)

    Cher, Chen-Yong; Coteus, Paul W; Gara, Alan; Kursun, Eren; Paulsen, David P; Schuelke, Brian A; Sheets, II, John E; Tian, Shurong

    2013-10-01

    A processor-implemented method for determining aging of a processing unit in a processor the method comprising: calculating an effective aging profile for the processing unit wherein the effective aging profile quantifies the effects of aging on the processing unit; combining the effective aging profile with process variation data, actual workload data and operating conditions data for the processing unit; and determining aging through an aging sensor of the processing unit using the effective aging profile, the process variation data, the actual workload data, architectural characteristics and redundancy data, and the operating conditions data for the processing unit.

  10. POLCAL - POLARIMETRIC RADAR CALIBRATION

    Science.gov (United States)

    Vanzyl, J.

    1994-01-01

    Calibration of polarimetric radar systems is a field of research in which great progress has been made over the last few years. POLCAL (Polarimetric Radar Calibration) is a software tool intended to assist in the calibration of Synthetic Aperture Radar (SAR) systems. In particular, POLCAL calibrates Stokes matrix format data produced as the standard product by the NASA/Jet Propulsion Laboratory (JPL) airborne imaging synthetic aperture radar (AIRSAR). POLCAL was designed to be used in conjunction with data collected by the NASA/JPL AIRSAR system. AIRSAR is a multifrequency (6 cm, 24 cm, and 68 cm wavelength), fully polarimetric SAR system which produces 12 x 12 km imagery at 10 m resolution. AIRSTAR was designed as a testbed for NASA's Spaceborne Imaging Radar program. While the images produced after 1991 are thought to be calibrated (phase calibrated, cross-talk removed, channel imbalance removed, and absolutely calibrated), POLCAL can and should still be used to check the accuracy of the calibration and to correct it if necessary. Version 4.0 of POLCAL is an upgrade of POLCAL version 2.0 released to AIRSAR investigators in June, 1990. New options in version 4.0 include automatic absolute calibration of 89/90 data, distributed target analysis, calibration of nearby scenes with calibration parameters from a scene with corner reflectors, altitude or roll angle corrections, and calibration of errors introduced by known topography. Many sources of error can lead to false conclusions about the nature of scatterers on the surface. Errors in the phase relationship between polarization channels result in incorrect synthesis of polarization states. Cross-talk, caused by imperfections in the radar antenna itself, can also lead to error. POLCAL reduces cross-talk and corrects phase calibration without the use of ground calibration equipment. Removing the antenna patterns during SAR processing also forms a very important part of the calibration of SAR data. Errors in the

  11. Signal processing for airborne doppler radar detection of hazardous wind shear as applied to NASA 1991 radar flight experiment data

    Science.gov (United States)

    Baxa, Ernest G., Jr.

    1992-01-01

    Radar data collected during the 1991 NASA flight tests have been selectively analyzed to support research directed at developing both improved as well as new algorithms for detecting hazardous low-altitude windshear. Analysis of aircraft attitude data from several flights indicated that platform stability bandwidths were small compared to the data rate bandwidths which should support an assumption that radar returns can be treated as short time stationary. Various approaches at detection of weather returns in the presence of ground clutter are being investigated. Non-coventional clutter rejection through spectrum mode tracking and classification algorithms is a subject of continuing research. Based upon autoregressive modeling of the radar return time sequence, this approach may offer an alternative to overcome errors in conventional pulse-pair estimates. Adaptive filtering is being evaluated as a means of rejecting clutter with emphasis on low signal-to-clutter ratio situations, particularly in the presence of discrete clutter interference. An analysis of out-of-range clutter returns is included to illustrate effects of ground clutter interference due to range aliasing for aircraft on final approach. Data are presented to indicate how aircraft groundspeed might be corrected from the radar data as well as point to an observed problem of groundspeed estimate bias variation with radar antenna scan angle. A description of how recorded clutter return data are mixed with simulated weather returns is included. This enables the researcher to run controlled experiments to test signal processing algorithms. In the summary research efforts involving improved modelling of radar ground clutter returns and a Bayesian approach at hazard factor estimation are mentioned.

  12. The use of radar for bathymetry assessment

    NARCIS (Netherlands)

    Aardoom, J.H.; Greidanus, H.S.F.

    1998-01-01

    The bottom topography in shallow seas can be observed by air- and spaceborne imaging radar. Bathymetric information derived from radar data is limited in accuracy, but radar has a good spatial coverage. The accuracy can be increased by assimilating the radar imagery into existing or insitu gathered

  13. Status and Prospects of Radar Polarimetry Techniques

    OpenAIRE

    Wang Xuesong

    2016-01-01

    Radar polarimetry is an applied fundamental science field that is focused on understanding interaction processes between radar waves and targets and disclosing their mechanisms. Radar polarimetry has significant application prospects in the fields of microwave remote sensing, earth observation, meteorological measurement, battlefield reconnaissance, anti-interference, target recognition, and so on. This study briefly reviews the development history of radar polarization theory and technology....

  14. Radar signal analysis and processing using Matlab

    CERN Document Server

    Mahafza, Bassem R

    2008-01-01

    Offering radar-related software for the analysis and design of radar waveform and signal processing, this book provides comprehensive coverage of radar signals and signal processing techniques and algorithms. It contains numerous graphical plots, common radar-related functions, table format outputs, and end-of-chapter problems. The complete set of MATLAB[registered] functions and routines are available for download online.

  15. Under the Radar

    CERN Document Server

    Goss, WM

    2010-01-01

    This is the biography of Ruby Payne-Scott (1912 to 1981). As the first female radio astronomer (and one of the first people in the world to consider radio astronomy), she made classic contributions to solar radio physics. She also played a major role in the design of the Australian government's Council for Scientific and Industrial Research radars, which were in turn of vital importance in the Southwest Pacific Theatre in World War II and were used by Australian, US and New Zealand personnel. From a sociological perspective, her career also offers many examples of the perils of being a female academic in the first half of the 20th century. Written in an engaging style and complemented by many historical photographs this book gives a fascinating insight into the beginning of radio astronomy and the role of a pioneering woman in astronomy.

  16. Air and spaceborne radar systems an introduction

    CERN Document Server

    Lacomme, Philippe; Hardange, Jean-Philippe; Normant, Eric

    2001-01-01

    A practical tool on radar systems that will be of major help to technicians, student engineers and engineers working in industry and in radar research and development. The many users of radar as well as systems engineers and designers will also find it highly useful. Also of interest to pilots and flight engineers and military command personnel and military contractors. """"This introduction to the field of radar is intended for actual users of radar. It focuses on the history, main principles, functions, modes, properties and specific nature of modern airborne radar. The book examines radar's

  17. Incoherent Scatter Radar User Workshop

    Science.gov (United States)

    Richmond, A. D.

    1984-04-01

    The incoherent scatter radar technique has developed over the years into one of the most powerful tools for investigating physical processes in the upper atmosphere. The National Science Foundation (NSF) now supports a chain of four incoherent scatter facilities at Sondrestromfjord (Greenland), Millstone Hill (Massachusetts), Arecibo (Puerto Rico), and Jicamarca (PERU). Six European nations support the EISCAT facility in northern Scandinavia, and France also has a radar at St. Santin. Recently, the organizations reponsible for each of the six radars agreed to participate in a centralized data base being established at the National Center for Atmospheric Research (NCAR) to make their data more readily accessible to the scientific community at large.

  18. Introduction to radar target recognition

    CERN Document Server

    Tait, P

    2006-01-01

    This new text provides an overview of the radar target recognition process and covers the key techniques being developed for operational systems. It is based on the fundamental scientific principles of high resolution radar, and explains how the techniques can be used in real systems, taking into account the characteristics of practical radar system designs and component limitations. It also addresses operational aspects, such as how high resolution modes would fit in with other functions such as detection and tracking. Mathematics is kept to a minimum and the complex techniques and issues are

  19. Environment-Adaptive Radar Techniques.

    Science.gov (United States)

    1981-02-01

    as the mathematics and computer pro - grams are concer.ned we can now develop the design by considering one antenna searching a 2w/3 azimuth sector...Griffis Air Force am*, Now York 13441 8140-6 102 15~ VhAS xpg IAS bed XOWANO 00 the .WAC aU* Affsftz OffU. (PA) an4 to *elesseb). to 00e matsa b"oals uoaf...no@sesp Uast fdSRIIIV by bloti nobi Radar Automated Radar Design Adaptive Radar Environmental Sensor Blind Speed Avoidance S. AVISTRACT ’CauM....o

  20. Gyroklystron-Powered WARLOC Radar

    Science.gov (United States)

    Danly, B. G.; Cheung, W. J.; Gregers-Hansen, V.; Linde, G.; Ngo, M.

    2003-12-01

    A high-power, coherent, W-band (94 GHz) millimeter-wave radar has been developed at the Naval Research Laboratory. This radar, named WARLOC, employs a 100 kW peak power, 10 kW average power gyro-klystron as the final power amplifier, an overmoded transmission line system, and a quasi-optical duplexer, together with a high gain antenna, four-channel receiver, and state-of-the-art signal processing. The gyro-amplifiers and the implementation in the WARLOC radar will be described.

  1. Material integrity verification radar

    International Nuclear Information System (INIS)

    Koppenjan, S.K.

    1999-01-01

    The International Atomic Energy Agency (IAEA) has the need for verification of 'as-built' spent fuel-dry storage containers and other concrete structures. The IAEA has tasked the Special Technologies Laboratory (STL) to fabricate, test, and deploy a stepped-frequency Material Integrity Verification Radar (MIVR) system to nondestructively verify the internal construction of these containers. The MIVR system is based on previously deployed high-frequency, ground penetrating radar (GPR) systems that have been developed by STL for the U.S. Department of Energy (DOE). Whereas GPR technology utilizes microwave radio frequency energy to create subsurface images, MTVR is a variation for which the medium is concrete instead of soil. The purpose is to nondestructively verify the placement of concrete-reinforcing materials, pipes, inner liners, and other attributes of the internal construction. The MIVR system underwent an initial field test on CANDU reactor spent fuel storage canisters at Atomic Energy of Canada Limited (AECL), Chalk River Laboratories, Ontario, Canada, in October 1995. A second field test at the Embalse Nuclear Power Plant in Embalse, Argentina, was completed in May 1996. The DOE GPR also was demonstrated at the site. Data collection and analysis were performed for the Argentine National Board of Nuclear Regulation (ENREN). IAEA and the Brazilian-Argentine Agency for the Control and Accounting of Nuclear Material (ABACC) personnel were present as observers during the test. Reinforcing materials were evident in the color, two-dimensional images produced by the MIVR system. A continuous pattern of reinforcing bars was evident and accurate estimates on the spacing, depth, and size were made. The potential uses for safeguard applications were jointly discussed. The MIVR system, as successfully demonstrated in the two field tests, can be used as a design verification tool for IAEA safeguards. A deployment of MIVR for Design Information Questionnaire (DIQ

  2. Innovative operating modes and techniques for the spaceborne imaging radar-C instrument

    Science.gov (United States)

    Huneycutt, Bryan L.

    1990-01-01

    The operation of the spaceborne imaging radar-C (SIR-C) is discussed. The SIR-C instrument has been designed to obtain simultaneous multifrequency and simultaneous multipolarization radar images from a low earth orbit. It is a multiparameter imaging radar which will be flown during at least two different seasons. The instrument has been designed to operate in innovative modes such as the squint alignment mode, the extended aperture mode, the scansar mode, and the interferometry mode. The instrument has been designed to demonstrate innovative engineering techniques such as beam nulling for echo tracking, pulse-repetition frquency hopping for Doppler centroid tracking, generating the frequency step chirp for radar parameter flexibility, block floating point quantizing for data rate compression, and elevation beamwidth broadening for increasing the swath illumination.

  3. Pulsed power

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    The key element of our pulsed power program is concentration of power in time and space by suppression of breakdown in dielectrics and in vacuum. Magnetically insulated vacuum transmission lines and magnetic suppression of insulator flashover have continued as the main reserch directions. Vacuum insulated line studies at Physics International have been expanded and a test bed at Sandia, called MITE (Magnetically Insulated Transmission Experiment), is under development. The choice for the baseline EBFA design will depend on the outcome of these studies and should be made in July 1977. The slow and intermediate speed pulsed power approaches to EBFA will be based on Proto I and Proto II results and several of the projected EBFA subsystems are presently being tested in Proto II. A further stage of power concentration, within the vacuum diode itself, would considerably ease the burden on dielectrics; methods of power multiplication involving magnetically imploded plasmas are being considered and tests have begun using the Ripple III apparatus

  4. Bistatic radar system analysis and software development

    OpenAIRE

    Teo, Ching Leong

    2003-01-01

    Approved for public release, distribution is unlimited Bistatic radar has some properties that are distinctly different from monostatic radar. Recently bistatic radar has received attention for its potential to detect stealth targets due to enhanced target forward scatter. Furthermore, the feasibility of hitchhiker radar has been demonstrated, which allows passive radar receivers to detect and track targets. This thesis developed a software simulation package in Matlab that provides a conv...

  5. Effects of Tunable Data Compression on Geophysical Products Retrieved from Surface Radar Observations with Applications to Spaceborne Meteorological Radars

    Science.gov (United States)

    Gabriel, Philip M.; Yeh, Penshu; Tsay, Si-Chee

    2013-01-01

    This paper presents results and analyses of applying an international space data compression standard to weather radar measurements that can easily span 8 orders of magnitude and typically require a large storage capacity as well as significant bandwidth for transmission. By varying the degree of the data compression, we analyzed the non-linear response of models that relate measured radar reflectivity and/or Doppler spectra to the moments and properties of the particle size distribution characterizing clouds and precipitation. Preliminary results for the meteorologically important phenomena of clouds and light rain indicate that for a 0.5 dB calibration uncertainty, typical for the ground-based pulsed-Doppler 94 GHz (or 3.2 mm, W-band) weather radar used as a proxy for spaceborne radar in this study, a lossless compression ratio of only 1.2 is achievable. However, further analyses of the non-linear response of various models of rainfall rate, liquid water content and median volume diameter show that a lossy data compression ratio exceeding 15 is realizable. The exploratory analyses presented are relevant to future satellite missions, where the transmission bandwidth is premium and storage requirements of vast volumes of data, potentially problematic.

  6. Improved Micro Rain Radar snow measurements using Doppler spectra post-processing

    Directory of Open Access Journals (Sweden)

    M. Maahn

    2012-11-01

    Full Text Available The Micro Rain Radar 2 (MRR is a compact Frequency Modulated Continuous Wave (FMCW system that operates at 24 GHz. The MRR is a low-cost, portable radar system that requires minimum supervision in the field. As such, the MRR is a frequently used radar system for conducting precipitation research. Current MRR drawbacks are the lack of a sophisticated post-processing algorithm to improve its sensitivity (currently at +3 dBz, spurious artefacts concerning radar receiver noise and the lack of high quality Doppler radar moments. Here we propose an improved processing method which is especially suited for snow observations and provides reliable values of effective reflectivity, Doppler velocity and spectral width. The proposed method is freely available on the web and features a noise removal based on recognition of the most significant peak. A dynamic dealiasing routine allows observations even if the Nyquist velocity range is exceeded. Collocated observations over 115 days of a MRR and a pulsed 35.2 GHz MIRA35 cloud radar show a very high agreement for the proposed method for snow, if reflectivities are larger than −5 dBz. The overall sensitivity is increased to −14 and −8 dBz, depending on range. The proposed method exploits the full potential of MRR's hardware and substantially enhances the use of Micro Rain Radar for studies of solid precipitation.

  7. Program of the Antarctic Syowa MST/IS radar (PANSY)

    Science.gov (United States)

    Sato, Kaoru; Tsutsumi, Masaki; Sato, Toru; Nakamura, Takuji; Saito, Akinori; Tomikawa, Yoshihiro; Nishimura, Koji; Kohma, Masashi; Yamagishi, Hisao; Yamanouchi, Takashi

    2014-10-01

    The PANSY radar is the first Mesosphere-Stratosphere-Troposphere/Incoherent Scatter (MST/IS) radar in the Antarctic region. It is a large VHF monostatic pulse Doppler radar operating at 47 MHz, consisting of an active phased array of 1045 Yagi antennas and an equivalent number of transmit-receive (TR) modules with a total peak output power of 500 kW. The first stage of the radar was installed at Syowa Station (69°00‧S, 39°35‧E) in early 2011, and is currently operating with 228 antennas and modules. This paper reports the project's scientific objectives, technical descriptions, and the preliminary results of observations made to date. The radar is designed to clarify the role of atmospheric gravity waves at high latitudes in the momentum budget of the global circulation in the troposphere, stratosphere and mesosphere, and to explore the dynamical aspects of unique polar phenomena such as polar mesospheric clouds (PMC) and polar stratospheric clouds (PSC). The katabatic winds as a branch of Antarctic tropospheric circulation and as an important source of gravity waves are also of special interest. Moreover, strong and sporadic energy inputs from the magnetosphere by energetic particles and field-aligned currents can be quantitatively assessed by the broad height coverage of the radar which extends from the lower troposphere to the upper ionosphere. From engineering points of view, the radar had to overcome restrictions related to the severe environments of Antarctic research, such as very strong winds, limited power availability, short construction periods, and limited manpower availability. We resolved these problems through the adoption of specially designed class-E amplifiers, light weight and tough antenna elements, and versatile antenna arrangements. Although the radar is currently operating with only about a quarter of its full designed system components, we have already obtained interesting results on the Antarctic troposphere, stratosphere and

  8. Air Defense Radar Operations Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Facility consists of laboratories, experimental test equipment including state-of-theart test bed radar, and test ranges. The facilities are used to design, develop,...

  9. MIMO Radar - Diversity Means Superiority

    National Research Council Canada - National Science Library

    Li, Jian

    2007-01-01

    We consider a multiple-input multiple-output (MIMO) radar system where both the transmitter and receiver have multiple well-separated subarrays with each subarray containing closely-spaced antennas...

  10. Efficient two-dimensional compressive sensing in MIMO radar

    Science.gov (United States)

    Shahbazi, Nafiseh; Abbasfar, Aliazam; Jabbarian-Jahromi, Mohammad

    2017-12-01

    Compressive sensing (CS) has been a way to lower sampling rate leading to data reduction for processing in multiple-input multiple-output (MIMO) radar systems. In this paper, we further reduce the computational complexity of a pulse-Doppler collocated MIMO radar by introducing a two-dimensional (2D) compressive sensing. To do so, we first introduce a new 2D formulation for the compressed received signals and then we propose a new measurement matrix design for our 2D compressive sensing model that is based on minimizing the coherence of sensing matrix using gradient descent algorithm. The simulation results show that our proposed 2D measurement matrix design using gradient decent algorithm (2D-MMDGD) has much lower computational complexity compared to one-dimensional (1D) methods while having better performance in comparison with conventional methods such as Gaussian random measurement matrix.

  11. Radar Methods in Urban Environments

    Science.gov (United States)

    2016-10-26

    Jointly optimal design for MIMO radar frequency-hopping waveforms using game theory,” IEEE Trans. on Aerospace and Electronic Systems, Vol. 52...appear in IEEE Trans. on Signal Processing. J9. J. Li and A. Nehorai, “Distributed particle filtering via optimal fusion of Gaussian mixtures ,” in...scatterers," IEEE Trans. Antennas Propag., Vol. 64, pp. 988-997, Mar. 2016. 28. K. Han and A. Nehorai, "Jointly optimal design for MIMO radar frequency

  12. Radar interferometry persistent scatterer technique

    CERN Document Server

    Kampes, Bert M

    2014-01-01

    This volume is devoted to the Persistent Scatterer Technique, the latest development in radar interferometric data processing. It is the only book on Permanent Scatterer (PS) technique of radar interferometry, and it details a newly developed stochastic model and estimator algorithm to cope with possible problems for the application of the PS technique. The STUN (spatio-temporal unwrapping network) algorithm, developed to cope with these issues in a robust way, is presented and applied to two test sites.

  13. Step-frequency radar applied on thin road layers

    Science.gov (United States)

    Dérobert, X.; Fauchard, C.; Côte, Ph.; Le Brusq, E.; Guillanton, E.; Dauvignac, J. Y.; Pichot, Ch.

    2001-07-01

    In the field of road construction and maintenance, the need for information on the thickness of very thin road layers is not satisfied by means of commercial pulse GPR, due to the inability of such devices to operate over ranges of several gigahertz. As a result, research has focused on the design of a step-frequency radar technique, able to work with very high-frequency synthetic pulses. An ultrawide band antenna, belonging to the family of Vivaldi antennas, has been developed for road applications. It has been created using stripline technology and yields a band width greater than one decade. During an initial step, this antenna was tested on various bituminous concrete samples with a network analyzer. Different parameters were studied, including band width, offset between antennas, and height and shape of the frequency-dependent pulse. A second step involved GPR dynamic measurements. A customized software program enabled recording data from the network analyzer. Several radar profiles were developed from selected road construction and maintenance test sites (e.g. the Circular Pavement Fatigue Test Track, composed of a number of known structures). Results show improved resolution when compared to a commercial impulse GPR system.

  14. Pulse radiolysis

    International Nuclear Information System (INIS)

    Greenshields, H.; Seddon, W.A.

    1982-03-01

    This supplement to two bibliographies published in 1970 and 1972 lists 734 references to the literature of pulse radiolysis, arranged under eight broad subject headings. The references were compiled by searching Biological Abstracts, Chemical Abstracts, Nuclear Science Abstracts and the Weekly List of Papers in Radiation Chemistry issued by the Radiation Chemistry Data Center of Notre Dame University. Full bibliographic data is given for papers published in the period 1971 to 1974. A personal author index listing more than 600 authors and a similar number of co-authors is included

  15. PULSE COLUMN

    Science.gov (United States)

    Grimmett, E.S.

    1964-01-01

    This patent covers a continuous countercurrent liquidsolids contactor column having a number of contactor states each comprising a perforated plate, a layer of balls, and a downcomer tube; a liquid-pulsing piston; and a solids discharger formed of a conical section at the bottom of the column, and a tubular extension on the lowest downcomer terminating in the conical section. Between the conical section and the downcomer extension is formed a small annular opening, through which solids fall coming through the perforated plate of the lowest contactor stage. This annular opening is small enough that the pressure drop thereacross is greater than the pressure drop upward through the lowest contactor stage. (AEC)

  16. Optical synthetic aperture radar

    Science.gov (United States)

    Ilovitsh, Asaf; Zach, Shlomo; Zalevsky, Zeev

    2013-06-01

    A method is proposed for increasing the resolution of an object and overcoming the diffraction limit of an optical system installed on top of a moving imaging system, such as an airborne platform or satellite. The resolution improvement is obtained via a two-step process. First, three low resolution differently defocused images are captured and the optical phase is retrieved using an improved iterative Gershberg-Saxton based algorithm. The phase retrieval allows numerical back propagation of the field to the aperture plane. Second, the imaging system is shifted and the first step is repeated. The obtained optical fields at the aperture plane are combined and a synthetically increased lens aperture is generated along the direction of movement, yielding higher imaging resolution. The method resembles a well-known approach from the microwave regime called the synthetic aperture radar in which the antenna size is synthetically increased along the platform propagation direction. The proposed method is demonstrated via Matlab simulation as well as through laboratory experiment.

  17. Processing of High Resolution, Multiparametric Radar Data for the Airborne Dual-Frequency Precipitation Radar APR-2

    Science.gov (United States)

    Tanelli, Simone; Meagher, Jonathan P.; Durden, Stephen L.; Im, Eastwood

    2004-01-01

    Following the successful Precipitation Radar (PR) of the Tropical Rainfall Measuring Mission, a new airborne, 14/35 GHz rain profiling radar, known as Airborne Precipitation Radar - 2 (APR-2), has been developed as a prototype for an advanced, dual-frequency spaceborne radar for a future spaceborne precipitation measurement mission. . This airborne instrument is capable of making simultaneous measurements of rainfall parameters, including co-pol and cross-pol rain reflectivities and vertical Doppler velocities, at 14 and 35 GHz. furthermore, it also features several advanced technologies for performance improvement, including real-time data processing, low-sidelobe dual-frequency pulse compression, and dual-frequency scanning antenna. Since August 2001, APR-2 has been deployed on the NASA P3 and DC8 aircrafts in four experiments including CAMEX-4 and the Wakasa Bay Experiment. Raw radar data are first processed to obtain reflectivity, LDR (linear depolarization ratio), and Doppler velocity measurements. The dataset is then processed iteratively to accurately estimate the true aircraft navigation parameters and to classify the surface return. These intermediate products are then used to refine reflectivity and LDR calibrations (by analyzing clear air ocean surface returns), and to correct Doppler measurements for the aircraft motion. Finally, the the melting layer of precipitation is detected and its boundaries and characteristics are identifIed at the APR-2 range resolution of 30m. The resulting 3D dataset will be used for validation of other airborne and spaceborne instruments, development of multiparametric rain/snow retrieval algorithms and melting layer characterization and statistics.

  18. Radar Mosaic of Africa

    Science.gov (United States)

    1999-01-01

    This is an image of equatorial Africa, centered on the equator at longitude 15degrees east. This image is a mosaic of almost 4,000 separate images obtained in 1996 by the L-band imaging radar onboard the Japanese Earth Resources Satellite. Using radar to penetrate the persistent clouds prevalent in tropical forests, the Japanese Earth Resources Satellite was able for the first time to image at high resolution this continental scale region during single flooding seasons. The area shown covers about 7.4 million square kilometers (2.8 million square miles) of land surface, spans more than 5,000 kilometers(3,100 miles) east and west and some 2,000 kilometers (1,240 miles) north and south. North is up in this image. At the full resolution of the mosaic (100 meters or 330 feet), this image is more than 500 megabytes in size, and was processed from imagery totaling more than 60 gigabytes.Central Africa was imaged twice in 1996, once between January and March, which is the major low-flood season in the Congo Basin, and once between October and November, which is the major high-flood season in the Congo Basin. The red color corresponds to the data from the low-flood season, the green to the high-flood season, and the blue to the 'texture' of the low-flood data. The forests appear green as a result, the flooded and palm forests, as well as urban areas, appear yellow, the ocean and lakes appear black, and savanna areas appear blue, black or green, depending on the savanna type, surface topography and other factors. The areas of the image that are black and white were mapped only between January and March 1996. In these areas, the black areas are savanna or open water, the gray are forests, and the white areas are flooded forests or urban areas. The Congo River dominates the middle of the image, where the nearby forests that are periodically flooded by the Congo and its tributaries stand out as yellow. The Nile River flows north from Lake Victoria in the middle right of the

  19. Radar rainfall image repair techniques

    Directory of Open Access Journals (Sweden)

    Stephen M. Wesson

    2004-01-01

    Full Text Available There are various quality problems associated with radar rainfall data viewed in images that include ground clutter, beam blocking and anomalous propagation, to name a few. To obtain the best rainfall estimate possible, techniques for removing ground clutter (non-meteorological echoes that influence radar data quality on 2-D radar rainfall image data sets are presented here. These techniques concentrate on repairing the images in both a computationally fast and accurate manner, and are nearest neighbour techniques of two sub-types: Individual Target and Border Tracing. The contaminated data is estimated through Kriging, considered the optimal technique for the spatial interpolation of Gaussian data, where the 'screening effect' that occurs with the Kriging weighting distribution around target points is exploited to ensure computational efficiency. Matrix rank reduction techniques in combination with Singular Value Decomposition (SVD are also suggested for finding an efficient solution to the Kriging Equations which can cope with near singular systems. Rainfall estimation at ground level from radar rainfall volume scan data is of interest and importance in earth bound applications such as hydrology and agriculture. As an extension of the above, Ordinary Kriging is applied to three-dimensional radar rainfall data to estimate rainfall rate at ground level. Keywords: ground clutter, data infilling, Ordinary Kriging, nearest neighbours, Singular Value Decomposition, border tracing, computation time, ground level rainfall estimation

  20. Bistatic synthetic aperture radar

    Science.gov (United States)

    Yates, Gillian

    Synthetic aperture radar (SAR) allows all-weather, day and night, surface surveillance and has the ability to detect, classify and geolocate objects at long stand-off ranges. Bistatic SAR, where the transmitter and the receiver are on separate platforms, is seen as a potential means of countering the vulnerability of conventional monostatic SAR to electronic countermeasures, particularly directional jamming, and avoiding physical attack of the imaging platform. As the receiving platform can be totally passive, it does not advertise its position by RF emissions. The transmitter is not susceptible to jamming and can, for example, operate at long stand-off ranges to reduce its vulnerability to physical attack. This thesis examines some of the complications involved in producing high-resolution bistatic SAR imagery. The effect of bistatic operation on resolution is examined from a theoretical viewpoint and analytical expressions for resolution are developed. These expressions are verified by simulation work using a simple 'point by point' processor. This work is extended to look at using modern practical processing engines for bistatic geometries. Adaptations of the polar format algorithm and range migration algorithm are considered. The principal achievement of this work is a fully airborne demonstration of bistatic SAR. The route taken in reaching this is given, along with some results. The bistatic SAR imagery is analysed and compared to the monostatic imagery collected at the same time. Demonstrating high-resolution bistatic SAR imagery using two airborne platforms represents what I believe to be a European first and is likely to be the first time that this has been achieved outside the US (the UK has very little insight into US work on this topic). Bistatic target characteristics are examined through the use of simulations. This also compares bistatic imagery with monostatic and gives further insight into the utility of bistatic SAR.

  1. NAMMA TOGA RADAR DATA V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The NAMMA TOGA Radar Data dataset consists of a collection of products derived from the NASA TOGA radar observations that were collected in the Republic of Cape...

  2. Extended Target Recognition in Cognitive Radar Networks

    Directory of Open Access Journals (Sweden)

    Xiqin Wang

    2010-11-01

    Full Text Available We address the problem of adaptive waveform design for extended target recognition in cognitive radar networks. A closed-loop active target recognition radar system is extended to the case of a centralized cognitive radar network, in which a generalized likelihood ratio (GLR based sequential hypothesis testing (SHT framework is employed. Using Doppler velocities measured by multiple radars, the target aspect angle for each radar is calculated. The joint probability of each target hypothesis is then updated using observations from different radar line of sights (LOS. Based on these probabilities, a minimum correlation algorithm is proposed to adaptively design the transmit waveform for each radar in an amplitude fluctuation situation. Simulation results demonstrate performance improvements due to the cognitive radar network and adaptive waveform design. Our minimum correlation algorithm outperforms the eigen-waveform solution and other non-cognitive waveform design approaches.

  3. Weather radar rainfall data in urban hydrology

    DEFF Research Database (Denmark)

    Thorndahl, Søren; Einfalt, Thomas; Willems, Patrick

    2017-01-01

    Application of weather radar data in urban hydrological applications has evolved significantly during the past decade as an alternative to traditional rainfall observations with rain gauges. Advances in radar hardware, data processing, numerical models, and emerging fields within urban hydrology...

  4. ASTEROID RADAR V18.0

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set is intended to include all published groundbased asteroid radar detections. The file is based on the collection of asteroid radar detections...

  5. ASTEROID RADAR V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — This dataset is intended to include all asteroid radar detections. An entry for each detection reports radar cross-section and circular polarization, if known, as...

  6. ASTEROID RADAR V17.0

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set is intended to include all published groundbased asteroid radar detections. The file is based on the collection of asteroid radar detections...

  7. ASTEROID RADAR V15.0

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set is intended to include all published groundbased asteroid radar detections. The file is based on the collection of asteroid radar detections...

  8. ASTEROID RADAR V16.0

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set is intended to include all published groundbased asteroid radar detections. The file is based on the collection of asteroid radar detections...

  9. NOAA NEXt-Generation RADar (NEXRAD) Products

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset consists of Level III weather radar products collected from Next-Generation Radar (NEXRAD) stations located in the contiguous United States, Alaska,...

  10. Design of multi-frequency CW radars

    CERN Document Server

    Jankiraman, Mohinder

    2007-01-01

    This book deals with the basic theory for design and analysis of Low Probability of Intercept (LPI) radar systems. The design of one such multi-frequency high resolution LPI radar, PANDORA, is covered.

  11. Overview of on-line data processing for MST radars (keynote paper), part 7

    Science.gov (United States)

    Farley, D. T.

    1984-01-01

    The most important aspects of the processing of MST radar data are discussed. The important points of on-line data processing for MST radar are reviewed. The goals of the on-line and now almost exclusively digital processing, procedures are to achieve good altitude resolution and coverage, good frequency (Doppler shift) resolution, and good time resolution, while avoiding, the problems of range and frequency ambiguity (aliasing), ground clutter, and interference. Achieving optimum results requires pulse compression and some coherent integration. The first allows full utilization of the average power capability of the transmitter and the second reduces the computing requirements.

  12. Radar Observation of Insects - Mosquitoes

    Science.gov (United States)

    Frost, E.; Downing, J.

    1979-01-01

    Tests were conducted at several sites over the coastal lowlands of New Jersey and over a region of high plains and low mountains in Oklahoma. In one area, a salt marsh in New Jersey, extensive ground tests were combined with laboratory data on expected insect backscatter to arrive at an extremely convincing model of the insect origin of most Dot Angels. A great deal of insight was studied from radar on the buildup and dispersal of insect swarms, since radar can follow where other means of trapping and observation cannot. Data on large-scale behavior as a function of wind and topography are presented. Displayed techniques which show individual or small swarm motion within some larger cloud or mass, or which can show the overall motion over great distances were developed. The influence of wind and terrain on insect motion and dispersal is determined from radar data.

  13. Shaping the spectrum of random-phase radar waveforms

    Science.gov (United States)

    Doerry, Armin W.; Marquette, Brandeis

    2017-05-09

    The various technologies presented herein relate to generation of a desired waveform profile in the form of a spectrum of apparently random noise (e.g., white noise or colored noise), but with precise spectral characteristics. Hence, a waveform profile that could be readily determined (e.g., by a spoofing system) is effectively obscured. Obscuration is achieved by dividing the waveform into a series of chips, each with an assigned frequency, wherein the sequence of chips are subsequently randomized. Randomization can be a function of the application of a key to the chip sequence. During processing of the echo pulse, a copy of the randomized transmitted pulse is recovered or regenerated against which the received echo is correlated. Hence, with the echo energy range-compressed in this manner, it is possible to generate a radar image with precise impulse response.

  14. A Theory of Radar Scattering by the Moon

    Science.gov (United States)

    Senior, T. B. A.; Siegel, K. M.

    1959-01-01

    A theory is described in which the moon is regarded as a "quasi-smooth" scatterer at radar frequencies. A scattered pulse is then composed of a number of individual returns each of which is provided by a single scattering area. In this manner it is possible to account for all the major features of the pulse, and the evidence in favor of the theory is presented. From a study of the measured power received at different frequencies, it is shown that the scattering area nearest to the earth is the source of a specular return, and it is then possible to obtain information about the material of which the area is composed. The electromagnetic constants are derived and their significance discussed.

  15. Microwave emissions from police radar.

    Science.gov (United States)

    Fink, J M; Wagner, J P; Congleton, J J; Rock, J C

    1999-01-01

    This study evaluated police officers' exposures to microwaves emitted by traffic radar units. Exposure measurements were taken at approximated ocular and testicular levels of officers seated in patrol vehicles. Comparisons were made of the radar manufacturers' published maximum power density specifications and actual measured power densities taken at the antenna faces of those units. Four speed-enforcement agencies and one transportation research institute provided 54 radar units for evaluation; 17 different models, encompassing 4 frequency bands and 3 antenna configurations, were included. Four of the 986 measurements taken exceeded the 5 mW/cm2 limit accepted by the International Radiation Protection Association and the National Council on Radiation Protection and Measurement, though none exceeded the American Conference of Governmental Industrial Hygienists, American National Standards Institute, Institute of Electrical and Electronic Engineers, or Occupational Safety and Health Administration standard of 10 mW/cm2. The four high measurements were maximum power density readings taken directly in front of the radar. Of the 812 measurements taken at the officers' seated ocular and testicular positions, none exceeded 0.04 mW/cm2; the highest of these (0.034 mW/cm2) was less than 1% of the most conservative current safety standards. High exposures in the limited region directly in front of the radar aperture are easily avoided with proper training. Results of this study indicate that police officer exposure to microwave radiation is apparently minimal. However, because of uncertainty in the medical and scientific communities concerning nonionizing radiation, it is recommended that law enforcement agencies implement a policy of prudent avoidance, including purchasing units with the lowest published maximum power densities, purchasing dash/rear deck-mounted units with antennae mounted outside the patrol vehicle, and training police officers to use the "stand-by" mode

  16. Radar mutual information and communication channel capacity of integrated radar-communication system using MIMO

    Directory of Open Access Journals (Sweden)

    Renhui Xu

    2015-12-01

    Full Text Available Integrated radar-communication system based on multiple input and multiple output (MIMO shares the hardware resource and spectrum to fulfill radar and communication functions, simultaneously. The baseband signal models of the MIMO radar and the integrated radar-communication system are set up. Then, the radar mutual information and the communication channel capacity are derived accordingly. Radar mutual information is used to evaluate the radar performance; communication channel capacity is one of the methods used to measure the communication capability. The influences of signal-to-noise ratio and the number of antennas, on the mutual information and channel capacity are presented through simulations.

  17. Radar research at The Pennsylvania State University Radar and Communications Laboratory

    Science.gov (United States)

    Narayanan, Ram M.

    2017-05-01

    The Radar and Communications Laboratory (RCL) at The Pennsylvania State University is at the forefront of radar technology and is engaged in cutting edge research in all aspects of radar, including modeling and simulation studies of novel radar paradigms, design and development of new types of radar architectures, and extensive field measurements in realistic scenarios. This paper summarizes the research at The Pennsylvania State University's Radar and Communications Laboratory and relevant collaborative research with several groups over the past 15 years in the field of radar and related technologies, including communications, radio frequency identification (RFID), and spectrum sensing.

  18. Goldstone solar system radar signal processing

    Science.gov (United States)

    Jurgens, R. F.; Satorius, E.; Sanchez, O.

    1992-01-01

    A performance analysis of the planetary radar data acquisition system is presented. These results extend previous computer simulation analysis and are facilitated by the development of a simple analytical model that predicts radar system performance over a wide range of operational parameters. The results of this study are useful to both the radar systems designer and the science investigator in establishing operational radar data acquisition parameters which result in the best systems performance for a given set of input conditions.

  19. Radar operation in a hostile electromagnetic environment

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin Walter

    2014-03-01

    Radar ISR does not always involve cooperative or even friendly targets. An adversary has numerous techniques available to him to counter the effectiveness of a radar ISR sensor. These generally fall under the banner of jamming, spoofing, or otherwise interfering with the EM signals required by the radar sensor. Consequently mitigation techniques are prudent to retain efficacy of the radar sensor. We discuss in general terms a number of mitigation techniques.

  20. Wind Turbine Radar Cross Section

    Directory of Open Access Journals (Sweden)

    David Jenn

    2012-01-01

    Full Text Available The radar cross section (RCS of a wind turbine is a figure of merit for assessing its effect on the performance of electronic systems. In this paper, the fundamental equations for estimating the wind turbine clutter signal in radar and communication systems are presented. Methods of RCS prediction are summarized, citing their advantages and disadvantages. Bistatic and monostatic RCS patterns for two wind turbine configurations, a horizontal axis three-blade design and a vertical axis helical design, are shown. The unique electromagnetic scattering features, the effect of materials, and methods of mitigating wind turbine clutter are also discussed.

  1. Compressive sensing for urban radar

    CERN Document Server

    Amin, Moeness

    2014-01-01

    With the emergence of compressive sensing and sparse signal reconstruction, approaches to urban radar have shifted toward relaxed constraints on signal sampling schemes in time and space, and to effectively address logistic difficulties in data acquisition. Traditionally, these challenges have hindered high resolution imaging by restricting both bandwidth and aperture, and by imposing uniformity and bounds on sampling rates.Compressive Sensing for Urban Radar is the first book to focus on a hybrid of two key areas: compressive sensing and urban sensing. It explains how reliable imaging, tracki

  2. Tracking radar studies of bird migration

    Science.gov (United States)

    Williams, T. C.; Williams, J. M.; Teal, J. M.; Kanwisher, J. W.

    1972-01-01

    The application of tracking radar for determining the flight paths of migratory birds is discussed. The effects produced by various meteorological parameters are described. Samples of radar scope presentations obtained during tracking studies are presented. The characteristics of the radars and their limitations are examined.

  3. Comparison of radar data versus rainfall data.

    Science.gov (United States)

    Espinosa, B; Hromadka, T V; Perez, R

    2015-01-01

    Doppler radar data are increasingly used in rainfall-runoff synthesis studies, perhaps due to radar data availability, among other factors. However, the veracity of the radar data are often a topic of concern. In this paper, three Doppler radar outcomes developed by the United States National Weather Service at three radar sites are examined and compared to actual rain gage data for two separate severe storm events in order to assess accuracy in the published radar estimates of rainfall. Because the subject storms were very intense rainfall events lasting approximately one hour in duration, direct comparisons between the three radar gages themselves can be made, as well as a comparison to rain gage data at a rain gage location subjected to the same storm cells. It is shown that topographic interference with the radar outcomes can be a significant factor leading to differences between radar and rain gage readings, and that care is needed in calibrating radar outcomes using available rain gage data in order to interpolate rainfall estimates between rain gages using the spatial variation observed in the radar readings. The paper establishes and describes•the need for "ground-truthing" of radar data, and•possible errors due to topographic interference.

  4. Comparison of mimo radar concepts: Detection performance

    NARCIS (Netherlands)

    Rossum, W.L. van; Huizing, A.G.

    2007-01-01

    In this paper, four different array radar concepts are compared: pencil beam, floodlight, monostatic MIMO, and multistatic MIMO. The array radar concepts show an increase in complexity accompanied by an increase in diversity. The comparison between the radar concepts is made by investigating the

  5. Efficient Ways to Learn Weather Radar Polarimetry

    Science.gov (United States)

    Cao, Qing; Yeary, M. B.; Zhang, Guifu

    2012-01-01

    The U.S. weather radar network is currently being upgraded with dual-polarization capability. Weather radar polarimetry is an interdisciplinary area of engineering and meteorology. This paper presents efficient ways to learn weather radar polarimetry through several basic and practical topics. These topics include: 1) hydrometeor scattering model…

  6. Principles of modern radar advanced techniques

    CERN Document Server

    Melvin, William

    2012-01-01

    Principles of Modern Radar: Advanced Techniques is a professional reference for practicing engineers that provides a stepping stone to advanced practice with in-depth discussions of the most commonly used advanced techniques for radar design. It will also serve advanced radar academic and training courses with a complete set of problems for students as well as solutions for instructors.

  7. Realization of a scalable airborne radar

    NARCIS (Netherlands)

    Otten, M.P.G.; Vermeulen, B.C.B.; Liempt, L.J. van; Halsema, D. van; Jongh, R.V. de; Es, J. van

    2008-01-01

    Modern airborne ground surveillance radar systems are increasingly based on Active Electronically Scanned Array (AESA) antennas. Efficient use of array technology and the need for radar solutions for various airborne platforms, manned and unmanned, leads to the design of scalable radar systems. The

  8. Localization Capability of Cooperative Anti-Intruder Radar Systems

    Directory of Open Access Journals (Sweden)

    Mauro Montanari

    2008-06-01

    Full Text Available System aspects of an anti-intruder multistatic radar based on impulse radio ultrawideband (UWB technology are addressed. The investigated system is composed of one transmitting node and at least three receiving nodes, positioned in the surveillance area with the aim of detecting and locating a human intruder (target that moves inside the area. Such systems, referred to also as UWB radar sensor networks, must satisfy severe power constraints worldwide imposed by, for example, the Federal Communications Commission (FCC and by the European Commission (EC power spectral density masks. A single transmitter-receiver pair (bistatic radar is considered at first. Given the available transmitted power and the capability of the receiving node to resolve the UWB pulses in the time domain, the surveillance area regions where the target is detectable, and those where it is not, are obtained. Moreover, the range estimation error for the transmitter-receiver pair is discussed. By employing this analysis, a multistatic system is then considered, composed of one transmitter and three or four cooperating receivers. For this multistatic system, the impact of the nodes location on area coverage, necessary transmitted power and localization uncertainty is studied, assuming a circular surveillance area. It is highlighted how area coverage and transmitted power, on one side, and localization uncertainty, on the other side, require opposite criteria of nodes placement. Consequently, the need for a system compromising between these factors is shown. Finally, a simple and effective criterion for placing the transmitter and the receivers is drawn.

  9. Beam Propagator for Weather Radars, Modules 1 and 2

    Energy Technology Data Exchange (ETDEWEB)

    2013-10-08

    This program simulates the beam propagation of weather radar pulses under particular and realistic atmospheric conditions (without using the assumption of standard refraction conditions). It consists of two modules: radiosondings_refract_index_many.pro (MAIN MODULE) beam_propagation_function.pro(EXTERNAL FUNCTION) FOR THE MAIN MODULE, THE CODE DOES OUTPUT--INTO A FILE--THE BEAM HEIGHT AS A FUNCTION OF RANGE. THE RADIOSONDE INPUT FILES SHOULD BE ALREADY AVAILABLE BY THE USER. FOR EXAMPLE, RADIOSONDE OBSERVATION FILES CAN BE OBTAINED AT: RADIOSONDE OBSERVATIONS DOWNLOADED AT "http://weather.uwyo.edu/upperair/soounding.html" OR "http://jervis.pyr.ec.gc.ca" THE EXTERNAL FUNCTION DOES THE ACTUAL COMPUTATION OF BEAM PROPAGATION. IT INCLUDES CONDITIONS OF ANOMALOUS PROPAGATION AND NEGATIVE ELEVATION ANGLES. THE EQUATIONS USED HERE WERE DERIVED BY EDWIN CAMPOS, BASED ON THE SNELL-DESCARTES LAW OF REFRACTION, CONSIDERING THE EARTH CURVATURE. THE PROGRAM REQUIRES A COMPILER FOR THE INTERACTIVE DATA LANGUAGE (IDL). DESCRIPTION AND VALIDATION DETAILS HAVE BEEN PUBLISHED IN THE PEER-REVIEWED SCIENTIFIC LITERATURE, AS FOLLOWS: Campos E. 2012. Estimating weather radar coverage over complex terrain, pp.26-32, peer reviewed, in Weather Radar and Hydrology, edited by Moore RJ, Cole SJ and Illingworth AJ. International Association of Hydrological Sciences (IAHS) Press, IAHS Publ. 351. ISBN 978-1-907161-26-1.

  10. 7th conference on ultra-wideband, short-pulse electromagnetics

    CERN Document Server

    Schenk, Uwe; Nitsch, Daniel; Sabath, Frank; Ultra-Wideband, Short-Pulse Electromagnetics 7; UWBSP7

    2007-01-01

    Ultra-wideband (UWB), short-pulse (SP) electromagnetics are now being used for an increasingly wide variety of applications, including collision avoidance radar, concealed object detection, and communications. Notable progress in UWB and SP technologies has been achieved by investigations of their theoretical bases and improvements in solid-state manufacturing, computers, and digitizers. UWB radar systems are also being used for mine clearing, oil pipeline inspections, archeology, geology, and electronic effects testing. Ultra-Wideband Short-Pulse Electromagnetics 7 presents selected papers of deep technical content and high scientific quality from the UWB-SP7 Conference, including wide-ranging contributions on electromagnetic theory, scattering, UWB antennas, UWB systems, ground penetrating radar (GPR), UWB communications, pulsed-power generation, time-domain computational electromagnetics, UWB compatibility, target detection and discrimination, propagation through dispersive media, and wavelet and multi-res...

  11. 10th and 11th conference on Ultra-Wideband Short-Pulse Electromagnetics

    CERN Document Server

    Mokole, Eric; UWB SP 10; UWB SP 11

    2014-01-01

    This book presents contributions of deep technical content and high scientific quality in the areas of electromagnetic theory, scattering, UWB antennas, UWB systems, ground penetrating radar (GPR), UWB communications, pulsed-power generation, time-domain computational electromagnetics, UWB compatibility, target detection and discrimination, propagation through dispersive media, and wavelet and multi-resolution techniques. Ultra-wideband (UWB), short-pulse (SP) electromagnetics are now being used for an increasingly wide variety of applications, including collision avoidance radar, concealed object detection, and communications. Notable progress in UWB and SP technologies has been achieved by investigations of their theoretical bases and improvements in solid-state manufacturing, computers, and digitizers. UWB radar systems are also being used for mine clearing, oil pipeline inspections, archeology, geology, and electronic effects testing. Like previous books in this series, Ultra-Wideband Short-Pulse Electrom...

  12. Coherent Performance Analysis of the HJ-1-C Synthetic Aperture Radar

    Directory of Open Access Journals (Sweden)

    Li Hai-ying

    2014-06-01

    Full Text Available Synthetic Aperture Radar (SAR is a coherent imaging radar. Hence, coherence is critical in SAR imaging. In a coherent system, several sources can degrade performance. Based on the HJ-1-C SAR system implementation and sensor characteristics, this study evaluates the effect of frequency stability and pulse-to-pulse timing jitter on the SAR coherent performance. A stable crystal oscillator with short-term stability of 10×1.0−10 / 5 ms is used to generate the reference frequency by using a direct multiplier and divider. Azimuth ISLR degradation owing to the crystal oscillator phase noise is negligible. The standard deviation of the pulse-to-pulse timing jitter of HJ-1-C SAR is lower than 2ns (rms and the azimuth random phase error in the synthetic aperture time slightly degrades the side lobe of the azimuth impulse response. The mathematical expressions and simulation results are presented and suggest that the coherent performance of the HJ-1-C SAR system meets the requirements of synthetic aperture radar imaging.

  13. Pulse pile-up. II: Tailed pulses

    International Nuclear Information System (INIS)

    Wilkinson, D.H.

    1990-07-01

    The considerations of the preceding paper are extended to the case of pulses having infinite (exponential) tails. Exact solutions are presented for pure exponential pulses all of the same height; ruin theory is applied for pulses of more realistic form. (Author) (2 refs., 9 figs.)

  14. Electromagnetic energy deposition rate in the polar upper thermosphere derived from the EISCAT Svalbard radar and CUTLASS Finland radar observations

    Directory of Open Access Journals (Sweden)

    H. Fujiwara

    2007-11-01

    Full Text Available From simultaneous observations of the European incoherent scatter Svalbard radar (ESR and the Cooperative UK Twin Located Auroral Sounding System (CUTLASS Finland radar on 9 March 1999, we have derived the height distributions of the thermospheric heating rate at the F region height in association with electromagnetic energy inputs into the dayside polar cap/cusp region. The ESR and CUTLASS radar observations provide the ionospheric parameters with fine time-resolutions of a few minutes. Although the geomagnetic activity was rather moderate (Kp=3+~4, the electric field obtained from the ESR data sometimes shows values exceeding 40 mV/m. The estimated passive energy deposition rates are also larger than 150 W/kg in the upper thermosphere over the ESR site during the period of the enhanced electric field. In addition, enhancements of the Pedersen conductivity also contribute to heating the upper thermosphere, while there is only a small contribution for thermospheric heating from the direct particle heating due to soft particle precipitation in the dayside polar cap/cusp region. In the same period, the CUTLASS observations of the ion drift show the signature of poleward moving pulsed ionospheric flows with a recurrence rate of about 10–20 min. The estimated electromagnetic energy deposition rate shows the existence of the strong heat source in the dayside polar cap/cusp region of the upper thermosphere in association with the dayside magnetospheric phenomena of reconnections and flux transfer events.

  15. Electromagnetic energy deposition rate in the polar upper thermosphere derived from the EISCAT Svalbard radar and CUTLASS Finland radar observations

    Directory of Open Access Journals (Sweden)

    H. Fujiwara

    2007-11-01

    Full Text Available From simultaneous observations of the European incoherent scatter Svalbard radar (ESR and the Cooperative UK Twin Located Auroral Sounding System (CUTLASS Finland radar on 9 March 1999, we have derived the height distributions of the thermospheric heating rate at the F region height in association with electromagnetic energy inputs into the dayside polar cap/cusp region. The ESR and CUTLASS radar observations provide the ionospheric parameters with fine time-resolutions of a few minutes. Although the geomagnetic activity was rather moderate (Kp=3+~4, the electric field obtained from the ESR data sometimes shows values exceeding 40 mV/m. The estimated passive energy deposition rates are also larger than 150 W/kg in the upper thermosphere over the ESR site during the period of the enhanced electric field. In addition, enhancements of the Pedersen conductivity also contribute to heating the upper thermosphere, while there is only a small contribution for thermospheric heating from the direct particle heating due to soft particle precipitation in the dayside polar cap/cusp region. In the same period, the CUTLASS observations of the ion drift show the signature of poleward moving pulsed ionospheric flows with a recurrence rate of about 10–20 min. The estimated electromagnetic energy deposition rate shows the existence of the strong heat source in the dayside polar cap/cusp region of the upper thermosphere in association with the dayside magnetospheric phenomena of reconnections and flux transfer events.

  16. Improved Estimates of Moments and Winds from Radar Wind Profiler

    Energy Technology Data Exchange (ETDEWEB)

    Helmus, Jonathan [Argonne National Lab. (ANL), Argonne, IL (United States); Ghate, Virendra P. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-01-02

    The U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility (ACRF) operates nine radar wind profilers (RWP) across its sites. These RWPs operate at 915 MHz or 1290 MHz frequency and report the first three moments of the Doppler spectrum. The operational settings of the RWP were modified in summer, 2015 to have single pulse length setting for the wind mode and two pulse length settings for the precipitation mode. The moments data collected during the wind mode are used to retrieve horizontal winds. The vendor-reported winds are available at variable time resolution (10 mins, 60 mins, etc.) and contain a significant amount of contamination due to noise and clutter. In this data product we have recalculated the moments and the winds from the raw radar Doppler spectrum and have made efforts to mitigate the contamination due to instrument noise in the wind estimates. Additionally, the moments and wind data has been reported in a harmonized layout identical for all locations and sites.

  17. FMWC Radar for Breath Detection

    DEFF Research Database (Denmark)

    Suhr, Lau Frejstrup; Tafur Monroy, Idelfonso; Vegas Olmos, Juan José

    breathing through walls. Other remote breath tracking systems has been presented that are based on the Ultra-wideband radar technique. However, these systems have two drawbacks. Firstly, they penetrate walls. It is therefore harder to contain the emitted radiation and they could be used for unsolicited...

  18. Fractal radar scattering from soil

    Science.gov (United States)

    Oleschko, Klaudia; Korvin, Gabor; Figueroa, Benjamin; Vuelvas, Marco Antonio; Balankin, Alexander S.; Flores, Lourdes; Carreón, Dora

    2003-04-01

    A general technique is developed to retrieve the fractal dimension of self-similar soils through microwave (radar) scattering. The technique is based on a mathematical model relating the fractal dimensions of the georadargram to that of the scattering structure. Clear and different fractal signatures have been observed over four geosystems (soils and sediments) compared in this work.

  19. Future of synthetic aperture radar

    Science.gov (United States)

    Barath, F. T.

    1978-01-01

    The present status of the applications of Synthetic Aperture Radars (SARs) is reviewed, and the technology state-of-the art as represented by the Seasat-A and SIR-A SARs examined. The potential of SAR applications, and the near- and longer-term technology trends are assessed.

  20. UWB radar multipath propagation effects

    Czech Academy of Sciences Publication Activity Database

    Čermák, D.; Schejbal, V.; NĚMEC, Z.; Bezoušek, P.; Fišer, Ondřej

    2005-01-01

    Roč. 11, - (2005), --- ISSN 1211-6610 R&D Projects: GA MPO FT-TA2/030 Institutional research plan: CEZ:AV0Z30420517 Keywords : UWB radar * multipath propagation Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  1. Research relative to weather radar measurement techniques

    Science.gov (United States)

    Smith, Paul L.

    1992-01-01

    Research relative to weather radar measurement techniques, which involves some investigations related to measurement techniques applicable to meteorological radar systems in Thailand, is reported. A major part of the activity was devoted to instruction and discussion with Thai radar engineers, technicians, and meteorologists concerning the basic principles of radar meteorology and applications to specific problems, including measurement of rainfall and detection of wind shear/microburst hazards. Weather radar calibration techniques were also considered during this project. Most of the activity took place during two visits to Thailand, in December 1990 and February 1992.

  2. Synthetic aperture radar capabilities in development

    Energy Technology Data Exchange (ETDEWEB)

    Miller, M. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    The Imaging and Detection Program (IDP) within the Laser Program is currently developing an X-band Synthetic Aperture Radar (SAR) to support the Joint US/UK Radar Ocean Imaging Program. The radar system will be mounted in the program`s Airborne Experimental Test-Bed (AETB), where the initial mission is to image ocean surfaces and better understand the physics of low grazing angle backscatter. The Synthetic Aperture Radar presentation will discuss its overall functionality and a brief discussion on the AETB`s capabilities. Vital subsystems including radar, computer, navigation, antenna stabilization, and SAR focusing algorithms will be examined in more detail.

  3. The MU radar now partly in operation

    Science.gov (United States)

    Kato, S.; Ogawa, T.; Tsuda, T.; Sato, T.; Kimura, I.; Fukao, S.

    1984-01-01

    The MU radar (middle- and upper-atmosphere radar) of RASC (Radio Atmospheric Science Center, Kyoto University) is now partly in operation, although the facility will be completed in 1985. The active array system of the radar makes it possible to steer the radar beam as fast as in each interpulse period. Various sophisticated experiments are expected to be performed by the system. A preliminary observation was successful to elucidate atmospheric motions during Typhoon No. 5 which approached the radar site in August, 1983.

  4. Planetary Radars Operating Centre PROC

    Science.gov (United States)

    Catallo, C.; Flamini, E.; Seu, R.; Alberti, G.

    2007-12-01

    Planetary exploration by means of radar systems, mainly using Ground Penetrating Radars (GPR) plays an important role in Italy. Numerous scientific international space programs are currently carried out jointly with ESA and NASA by Italian Space Agency, the scientific community and the industry. Three important experiments under Italian leadership ( designed and manufactured by the Italian industry), provided by ASI either as contribution to ESA programs either within a NASA/ASI joint venture framework, are now operating: MARSIS on-board Mars Express, SHARAD on-board Mars Reconnaissance Orbiter and CASSINI Radar on-board Cassini spacecraft. In order to support all the scientific communities, institutional customers and experiment teams operation three Italian dedicated operational centers have been realized, namely SHOC, (Sharad Operating Centre), MOC (Marsis Operating Center) and CASSINI PAD ( Processing Altimetry Data). Each center is dedicated to a single instrument management and control, data processing and distribution. Although they had been conceived to operate autonomously and independently one from each other, synergies and overlaps have been envisaged leading to the suggestion of a unified center, the Planetary Radar Processing Center (PROC). PROC is conceived in order to include the three operational centers, namely SHOC, MOC and CASSINI PAD, either from logistics point of view and from HW/SW capabilities point of view. The Planetary Radar Processing Center shall be conceived as the Italian support facility to the scientific community for on-going and future Italian planetary exploration programs. Therefore, scalability, easy use and management shall be the design drivers. The paper describes how PROC is designed and developed, to allow SHOC, MOC and CASSINI PAD to operate as before, and to offer improved functionalities to increase capabilities, mainly in terms of data exchange, comparison, interpretation and exploitation. Furthermore, in the frame of

  5. Ultrawideband radar imaging system for biomedical applications

    International Nuclear Information System (INIS)

    Jafari, H.M.; Liu, W.; Hranilovic, S.; Deen, M.J.

    2006-01-01

    Ultrawideband (UWB) (3-10 GHz) radar imaging systems offer much promise for biomedical applications such as cancer detection because of their good penetration and resolution characteristics. The underlying principle of UWB cancer detection is a significant contrast in dielectric properties, which is estimated to be greater than 2:1 between normal and cancerous tissue, compared to a few-percent contrast in radiographic density exploited by x rays. This article presents a feasibility study of the UWB imaging of liver cancer tumors, based on the frequency-dependent finite difference time domain method. The reflection, radiation, and scattering properties of UWB pulses as they propagate through the human body are studied. The reflected and back-scattered electromagnetic energies from cancer tumors inside the liver are also investigated. An optimized, ultrawideband antenna was designed for near field operation, allowing for the reduction of the air-skin interface. It will be placed on the fat-liver tissue phantom with a malignant tumor stimulant. By performing an incremental scan over the phantom and removing early time artifacts, including reflection from the antenna ends, images based on the back-scattered signal from the tumor can be constructed. This research is part of our effort to develop a UWB cancer detection system with good detection and localization properties

  6. Enhanced Weather Radar (EWxR) System

    Science.gov (United States)

    Kronfeld, Kevin M. (Technical Monitor)

    2003-01-01

    An airborne weather radar system, the Enhanced Weather Radar (EWxR), with enhanced on-board weather radar data processing was developed and tested. The system features additional weather data that is uplinked from ground-based sources, specialized data processing, and limited automatic radar control to search for hazardous weather. National Weather Service (NWS) ground-based Next Generation Radar (NEXRAD) information is used by the EWxR system to augment the on-board weather radar information. The system will simultaneously display NEXRAD and on-board weather radar information in a split-view format. The on-board weather radar includes an automated or hands-free storm-finding feature that optimizes the radar returns by automatically adjusting the tilt and range settings for the current altitude above the terrain and searches for storm cells near the atmospheric 0-degree isotherm. A rule-based decision aid was developed to automatically characterize cells as hazardous, possibly-hazardous, or non-hazardous based upon attributes of that cell. Cell attributes are determined based on data from the on-board radar and from ground-based radars. A flight path impact prediction algorithm was developed to help pilots to avoid hazardous weather along their flight plan and their mission. During development the system was tested on the NASA B757 aircraft and final tests were conducted on the Rockwell Collins Sabreliner.

  7. Status and Prospects of Radar Polarimetry Techniques

    Directory of Open Access Journals (Sweden)

    Wang Xuesong

    2016-04-01

    Full Text Available Radar polarimetry is an applied fundamental science field that is focused on understanding interaction processes between radar waves and targets and disclosing their mechanisms. Radar polarimetry has significant application prospects in the fields of microwave remote sensing, earth observation, meteorological measurement, battlefield reconnaissance, anti-interference, target recognition, and so on. This study briefly reviews the development history of radar polarization theory and technology. Next, the state of the art of several key technologies within radar polarimetry, including the precise acquisition of radar polarization information, polarization-sensitive array signal processing, target polarization characteristics, polarization antiinterference, and target polarization classification and recognition, is summarized. Finally, the future developments of radar polarization technology are considered.

  8. Analysis of the extinction effect on precipitation measurements with C-Band Radar by means of simulation and measurement; Analyse des Extinktionseffektes bei Niederschlagsmessungen mit einem C-Band Radar anhand von Simulation und Messung

    Energy Technology Data Exchange (ETDEWEB)

    Blahak, U.

    2005-02-01

    The extinction of microwave energy by hydrometeors is an error source when interpreting radar precipitation measurements quantitatively. Energy is constantly detracted from a travelling radar pulse, which ultimately leeds to an underestimation of the precipitation intensity. Correction procedures proposed in literature mostly rely on the assumption of a well-defined relation between radar reflectivity and extinction which is valid on average for rain; those algorithms often proof to be unstable. With regard to that, the present thesis deals with the variability of extinction for given radar reflectivity (taking into account different precipitation types, including melting particles), since this can be an important source of the abovementioned instability. First, theoretical methods are applied (Mie-scattering, effective complex refractive index for melting hydrometeors). Those calculations suffer from a lot of uncertainties. Therefore, extinction parameters are derived experimentally as well, using measurements of two radars whose measuring volumes overlap. To this end, a new dual radar method was developed, which tries to take into account the various error sources in the best possible way. As a result, it is found that the extinction of microwaves by hydrometeors is extremely variable for given radar reflectivity, which has important consequences for the development of correction procedures. (orig.)

  9. Random pulse generator

    International Nuclear Information System (INIS)

    Guo Ya'nan; Jin Dapeng; Zhao Dixin; Liu Zhen'an; Qiao Qiao; Chinese Academy of Sciences, Beijing

    2007-01-01

    Due to the randomness of radioactive decay and nuclear reaction, the signals from detectors are random in time. But normal pulse generator generates periodical pulses. To measure the performances of nuclear electronic devices under random inputs, a random generator is necessary. Types of random pulse generator are reviewed, 2 digital random pulse generators are introduced. (authors)

  10. Programmable pulse generator

    International Nuclear Information System (INIS)

    Xue Zhihua; Lou Binqiao; Duan Xiaohui

    2002-01-01

    The author introduces the design of programmable pulse generator that is based on a micro-controller and controlled by RS232 interface of personal computer. The whole system has good stability. The pulse generator can produce TTL pulse and analog pulse. The pulse frequency can be selected by EPLD. The voltage amplitude and pulse width of analog pulse can be adjusted by analog switches and digitally-controlled potentiometers. The software development tools of computer is National Instruments LabView5.1. The front panel of this virtual instrumentation is intuitive and easy-to-use. Parameters can be selected and changed conveniently by knob and slide

  11. Time-dependent Second Order Scattering Theory for Weather Radar with a Finite Beam Width

    Science.gov (United States)

    Kobayashi, Satoru; Tanelli, Simone; Im, Eastwood; Ito, Shigeo; Oguchi, Tomohiro

    2006-01-01

    Multiple scattering effects from spherical water particles of uniform diameter are studied for a W-band pulsed radar. The Gaussian transverse beam-profile and the rectangular pulse-duration are used for calculation. An second-order analytical solution is derived for a single layer structure, based on a time-dependent radiative transfer theory as described in the authors' companion paper. When the range resolution is fixed, increase in footprint radius leads to increase in the second order reflectivity that is defined as the ratio of the second order return to the first order one. This feature becomes more serious as the range increases. Since the spaceborne millimeter-wavelength radar has a large footprint radius that is competitive to the mean free path, the multiple scattering effect must be taken into account for analysis.

  12. Penn State Radar Systems: Implementation and Observations

    Science.gov (United States)

    Urbina, J. V.; Seal, R.; Sorbello, R.; Kuyeng, K.; Dyrud, L. P.

    2014-12-01

    Software Defined Radio/Radar (SDR) platforms have become increasingly popular as researchers, hobbyists, and military seek more efficient and cost-effective means for radar construction and operation. SDR platforms, by definition, utilize a software-based interface for configuration in contrast to traditional, hard-wired platforms. In an effort to provide new and improved radar sensing capabilities, Penn State has been developing advanced instruments and technologies for future radars, with primary objectives of making such instruments more capable, portable, and more cost effective. This paper will describe the design and implementation of two low-cost radar systems and their deployment in ionospheric research at both low and mid-latitudes. One radar has been installed near Penn State campus, University Park, Pennsylvania (77.97°W, 40.70°N), to make continuous meteor observations and mid-latitude plasma irregularities. The second radar is being installed in Huancayo (12.05°S, -75.33°E), Peru, which is capable of detecting E and F region plasma irregularities as well as meteor reflections. In this paper, we examine and compare the diurnal and seasonal variability of specular, non- specular, and head-echoes collected with these two new radar systems and discuss sampling biases of each meteor observation technique. We report our current efforts to validate and calibrate these radar systems with other VHF radars such as Jicamarca and SOUSY. We also present the general characteristics of continuous measurements of E-region and F-region coherent echoes using these modern radar systems and compare them with coherent radar events observed at other geographic mid-latitude radar stations.

  13. Pulsed Raman fiber laser and multispectral imaging in three dimensions

    DEFF Research Database (Denmark)

    Andersen, Joachim F.; Busck, Jens; Heiselberg, Henning

    2006-01-01

    are then constructed with submillimeter accuracy for all visible colors. The generation of a series of Stokes peaks by Raman scattering in a Si fiber is discussed in detail and the laser radar technique is demonstrated. The data recording takes only a few seconds, and the high accuracy 3D color imaging works at ranges......Raman scattering in single-mode optical fibers is exploited to generate multispectral light from a green nanolaser with high pulse repetition rate. Each pulse triggers a picosecond camera and measures the distance by time-of-flight in each of the 0.5 Mpixels. Three-dimensional images...

  14. Pulsed water jet generated by pulse multiplication

    Czech Academy of Sciences Publication Activity Database

    Dvorský, R.; Sitek, Libor; Sochor, T.

    2016-01-01

    Roč. 23, č. 4 (2016), s. 959-967 ISSN 1330-3651 R&D Projects: GA MŠk(CZ) LO1406; GA MŠk ED2.1.00/03.0082 Institutional support: RVO:68145535 Keywords : high-pressure pulses * pulse intensifier * pulsed water jet * water hammer effect Subject RIV: JQ - Machines ; Tools Impact factor: 0.723, year: 2016 http://hrcak.srce.hr/163752?lang=en

  15. Application of Coupled-Wave Wentzel-Kramers-Brillouin Approximation to Ground Penetrating Radar

    OpenAIRE

    Igor Prokopovich; Alexei Popov; Lara Pajewski; Marian Marciniak

    2017-01-01

    This paper deals with bistatic subsurface probing of a horizontally layered dielectric half-space by means of ultra-wideband electromagnetic waves. In particular, the main objective of this work is to present a new method for the solution of the two-dimensional back-scattering problem arising when a pulsed electromagnetic signal impinges on a non-uniform dielectric half-space; this scenario is of interest for ground penetrating radar (GPR) applications. For the analytical description of the s...

  16. Apodization of Spurs in Radar Receivers Using Multi-Channel Processing

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin Walter [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). ISR Mission Engineering; Bickel, Douglas Lloyd [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). ISR Analysis and Applications

    2014-03-01

    Spurious energy in received radar data is a consequence of nonideal component and circuit behavior. This might be due to I/Q imbalance, nonlinear component behavior, additive interference (e.g. cross-talk, etc.), or other sources. The manifestation of the spurious energy in a range-Doppler map or image can be influenced by appropriate pulse-to-pulse phase modulation. Comparing multiple images having been processed with the same data but different signal paths and modulations allows identifying undesired spurs and then cropping or apodizing them.

  17. Detecting and classifying low probability of intercept radar

    CERN Document Server

    Pace, Philip E

    2008-01-01

    This revised and expanded second edition brings you to the cutting edge with new chapters on LPI radar design, including over-the-horizon radar, random noise radar, and netted LPI radar. You also discover critical LPI detection techniques, parameter extraction signal processing techniques, and anti-radiation missile design strategies to counter LPI radar.

  18. Radar based autonomous sensor module

    Science.gov (United States)

    Styles, Tim

    2016-10-01

    Most surveillance systems combine camera sensors with other detection sensors that trigger an alert to a human operator when an object is detected. The detection sensors typically require careful installation and configuration for each application and there is a significant burden on the operator to react to each alert by viewing camera video feeds. A demonstration system known as Sensing for Asset Protection with Integrated Electronic Networked Technology (SAPIENT) has been developed to address these issues using Autonomous Sensor Modules (ASM) and a central High Level Decision Making Module (HLDMM) that can fuse the detections from multiple sensors. This paper describes the 24 GHz radar based ASM, which provides an all-weather, low power and license exempt solution to the problem of wide area surveillance. The radar module autonomously configures itself in response to tasks provided by the HLDMM, steering the transmit beam and setting range resolution and power levels for optimum performance. The results show the detection and classification performance for pedestrians and vehicles in an area of interest, which can be modified by the HLDMM without physical adjustment. The module uses range-Doppler processing for reliable detection of moving objects and combines Radar Cross Section and micro-Doppler characteristics for object classification. Objects are classified as pedestrian or vehicle, with vehicle sub classes based on size. Detections are reported only if the object is detected in a task coverage area and it is classified as an object of interest. The system was shown in a perimeter protection scenario using multiple radar ASMs, laser scanners, thermal cameras and visible band cameras. This combination of sensors enabled the HLDMM to generate reliable alerts with improved discrimination of objects and behaviours of interest.

  19. Terahertz radar cross section measurements

    DEFF Research Database (Denmark)

    Iwaszczuk, Krzysztof; Heiselberg, Henning; Jepsen, Peter Uhd

    2010-01-01

    We perform angle- and frequency-resolved radar cross section (RCS) measurements on objects at terahertz frequencies. Our RCS measurements are performed on a scale model aircraft of size 5-10 cm in polar and azimuthal configurations, and correspond closely to RCS measurements with conventional rad...... information and also allows for identification of scattering points such as weaponry attached to the aircraft. The shapes of the models and positions of reflecting parts are retrieved by the filtered back projection algorithm....

  20. Radar-based hail detection

    Czech Academy of Sciences Publication Activity Database

    Skripniková, Kateřina; Řezáčová, Daniela

    2014-01-01

    Roč. 144, č. 1 (2014), s. 175-185 ISSN 0169-8095 R&D Projects: GA ČR(CZ) GAP209/11/2045; GA MŠk LD11044 Institutional support: RVO:68378289 Keywords : hail detection * weather radar * hail damage risk Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 2.844, year: 2014 http://www.sciencedirect.com/science/article/pii/S0169809513001804

  1. Radar imaging using statistical orthogonality

    Science.gov (United States)

    Falconer, David G.

    2000-08-01

    Statistical orthogonality provides a mathematical basis for imaging scattering data with an inversion algorithm that is both robust and economic. The statistical technique is based on the approximate orthogonality of vectors whose elements are exponential functions with imaginary arguments and random phase angles. This orthogonality allows one to image radar data without first inverting a matrix whose dimensionality equals or exceeds the number of pixels or voxels in the algorithmic image. Additionally, statistical-based methods are applicable to data sets collected under a wide range of operational conditions, e.g., the random flight paths of the curvilinear SAR, the frequency-hopping emissions of ultra- wideband radar, or the narrowband data collected with a bistatic radar. The statistical approach also avoids the often-challenging and computationally intensive task of converting the collected measurements to a data format that is appropriate for imaging with a fast Fourier transform (FFT) or fast tomography algorithm (FTA), e.g., interpolating from polar to rectangular coordinates, or conversely.

  2. Design of a Handheld Pseudo Random Coded UWB Radar for Human Sensing

    Directory of Open Access Journals (Sweden)

    Xia Zheng-huan

    2015-10-01

    Full Text Available This paper presents the design of a handheld pseudo random coded Ultra-WideBand (UWB radar for human sensing. The main tasks of the radar are to track the moving human object and extract the human respiratory frequency. In order to achieve perfect penetrability and good range resolution, m sequence with a carrier of 800 MHz is chosen as the transmitting signal. The modulated m-sequence can be generated directly by the high-speed DAC and FPGA to reduce the size of the radar system, and the mean power of the transmitting signal is 5 dBm. The receiver has two receiving channels based on hybrid sampling, the first receiving channel is to sample the reference signal and the second receiving channel is to obtain the radar echo. The real-time pulse compression is computed in parallel with a group of on-chip DSP48E slices in FPGA to improve the scanning rate of the radar system. Additionally, the algorithms of moving target tracking and life detection are implemented using Intel’s micro-processor, and the detection results are sent to the micro displayer fixed on the helmet. The experimental results show that the moving target located at less than 16 m far away from the wall can be tracked, and the respiratory frequency of the static human at less than 14 m far away from the wall can be extracted.

  3. IceBridge Snow Radar L1B Geolocated Radar Echo Strength Profiles V002

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains radar echograms taken from the Center for Remote Sensing of Ice Sheets (CReSIS) ultra wide-band snow radar over land and sea ice in the Arctic...

  4. IceBridge Accumulation Radar L1B Geolocated Radar Echo Strength Profiles

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains radar echograms taken over Greenland and Antarctica using the Center for Remote Sensing of Ice Sheets (CReSIS) Accumulation Radar instrument....

  5. Simulation of a weather radar display for over-water airborne radar approaches

    Science.gov (United States)

    Clary, G. R.

    1983-01-01

    Airborne radar approach (ARA) concepts are being investigated as a part of NASA's Rotorcraft All-Weather Operations Research Program on advanced guidance and navigation methods. This research is being conducted using both piloted simulations and flight test evaluations. For the piloted simulations, a mathematical model of the airborne radar was developed for over-water ARAs to offshore platforms. This simulated flight scenario requires radar simulation of point targets, such as oil rigs and ships, distributed sea clutter, and transponder beacon replies. Radar theory, weather radar characteristics, and empirical data derived from in-flight radar photographs are combined to model a civil weather/mapping radar typical of those used in offshore rotorcraft operations. The resulting radar simulation is realistic and provides the needed simulation capability for ongoing ARA research.

  6. Improving Weather Radar Precipitation Estimates by Combining two Types of Radars

    DEFF Research Database (Denmark)

    Nielsen, Jesper Ellerbæk; Thorndahl, Søren Liedtke; Rasmussen, Michael R.

    2014-01-01

    This paper presents a demonstration of how Local Area Weather Radar (LAWR) X-band measurements can be combined with meteorological C–band measurements into a single radar product. For this purpose, a blending method has been developed which combines the strengths of the two radar systems. Combining...... the two radar types achieves a radar product with both long range and high temporal resolution. It is validated that the blended radar product performs better than the individual radars based on ground observations from laser disdrometers. However, the data combination is challenged by lower performance...... of the LAWR. Although both radars benefits from the data combination, it is also found that advection based temporal interpolation is a more favourable method for increasing the temporal resolution of meteorological C–band measurements....

  7. IceBridge Snow Radar L1B Geolocated Radar Echo Strength Profiles

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains radar echograms taken from the Center for Remote Sensing of Ice Sheets (CReSIS) ultra wide-band snow radar over land and sea ice in the Arctic...

  8. IceBridge Accumulation Radar L1B Geolocated Radar Echo Strength Profiles

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains radar echograms taken over Greenland using the Center for Remote Sensing of Ice Sheets (CReSIS) Accumulation Radar instrument. The data were...

  9. Automotive Radar Sensors in Silicon Technologies

    CERN Document Server

    Jain, Vipul

    2013-01-01

    This book presents architectures and design techniques for mm-wave automotive radar transceivers. Several fully-integrated transceivers and receivers operating at 22-29 GHz and 77-81 GHz are demonstrated in both CMOS and SiGe BiCMOS technologies. Excellent performance is achieved indicating the suitability of silicon technologies for automotive radar sensors.  This book bridges an existing gap between information available on dependable system/architecture design and circuit design.  It provides the background of the field and detailed description of recent research and development of silicon-based radar sensors.  System-level requirements and circuit topologies for radar transceivers are described in detail. Holistic approaches towards designing radar sensors are validated with several examples of highly-integrated radar ICs in silicon technologies. Circuit techniques to design millimeter-wave circuits in silicon technologies are discussed in depth.  Describes concepts and fundamentals of automotive rada...

  10. The Comet Radar Explorer Mission

    Science.gov (United States)

    Asphaug, Erik; Belton, Mike; Bockelee-Morvan, Dominique; Chesley, Steve; Delbo, Marco; Farnham, Tony; Gim, Yonggyu; Grimm, Robert; Herique, Alain; Kofman, Wlodek; Oberst, Juergen; Orosei, Roberto; Piqueux, Sylvain; Plaut, Jeff; Robinson, Mark; Sava, Paul; Heggy, Essam; Kurth, William; Scheeres, Dan; Denevi, Brett; Turtle, Elizabeth; Weissman, Paul

    2014-11-01

    Missions to cometary nuclei have revealed major geological surprises: (1) Global scale layers - do these persist through to the interior? Are they a record of primary accretion? (2) Smooth regions - are they landslides originating on the surface? Are they cryovolcanic? (3) Pits - are they impact craters or sublimation pits, or rooted in the interior? Unambiguous answers to these and other questions can be obtained by high definition 3D radar reflection imaging (RRI) of internal structure. RRI can answer many of the great unknowns in planetary science: How do primitive bodies accrete? Are cometary nuclei mostly ice? What drives their spectacular activity and evolution? The Comet Radar Explorer (CORE) mission will image the detailed internal structure of the nucleus of 10P/Tempel 2. This ~16 x 8 x 7 km Jupiter Family Comet (JFC), or its parent body, originated in the outer planets region possibly millions of years before planet formation. CORE arrives post-perihelion and observes the comet’s waning activity from safe distance. Once the nucleus is largely dormant, the spacecraft enters a ~20-km dedicated Radar Mapping Orbit (RMO). The exacting design of the RRI experiment and the precise navigation of RMO will achieve a highly focused 3D radar reflection image of internal structure, to tens of meters resolution, and tomographic images of velocity and attenuation to hundreds of meters resolution, tied to the gravity model and shape. Visible imagers will produce maps of the surface morphology, albedo, color, texture, and photometric response, and images for navigation and shape determination. The cameras will also monitor the structure and dynamics of the coma, and its dusty jets, allowing their correlation in 3D with deep interior structures and surface features. Repeated global high-resolution thermal images will probe the near-surface layers heated by the Sun. Derived maps of thermal inertia will be correlated with the radar boundary response, and photometry and

  11. Radar range measurements in the atmosphere.

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin Walter

    2013-02-01

    The earths atmosphere affects the velocity of propagation of microwave signals. This imparts a range error to radar range measurements that assume the typical simplistic model for propagation velocity. This range error is a function of atmospheric constituents, such as water vapor, as well as the geometry of the radar data collection, notably altitude and range. Models are presented for calculating atmospheric effects on radar range measurements, and compared against more elaborate atmospheric models.

  12. Reduction of Stationary Clutter in Radar,

    Science.gov (United States)

    1980-10-30

    coded passive interference (which consists of indivi- dual dipole packets dropped at certain intervals [2.30] and other stationary clutter present in...1958. 2.9. Cliquot, R. The band L radars of "type Orly". L’Onde Electrique , May 1961. 2.10. Decca Air Surveillance Radar DASR-! (Company catalogue...artificial obstacles in the form of a cloud of dipoles tuned 104 to the radar wavelength. As in the previous paragraph we will limit ourselves to a brief

  13. Spectrum Sharing Radar: Coexistence via Xampling

    OpenAIRE

    Cohen, Deborah; Mishra, Kumar Vijay; Eldar, Yonina C.

    2016-01-01

    This paper presents a spectrum sharing technology enabling interference-free operation of a surveillance radar and communication transmissions over a common spectrum. A cognitive radio receiver senses the spectrum using low sampling and processing rates. The radar is a cognitive system that employs a Xampling-based receiver and transmits in several narrow bands. Our main contribution is the alliance of two previous ideas, CRo and cognitive radar (CRr), and their adaptation to solve the spectr...

  14. Laser pulse stacking method

    Science.gov (United States)

    Moses, E.I.

    1992-12-01

    A laser pulse stacking method is disclosed. A problem with the prior art has been the generation of a series of laser beam pulses where the outer and inner regions of the beams are generated so as to form radially non-synchronous pulses. Such pulses thus have a non-uniform cross-sectional area with respect to the outer and inner edges of the pulses. The present invention provides a solution by combining the temporally non-uniform pulses in a stacking effect to thus provide a more uniform temporal synchronism over the beam diameter. 2 figs.

  15. [Metrology of pulse modulated electromagnetic fields with diode-type meters].

    Science.gov (United States)

    Kubacki, Roman; Kieliszek, Jarosław; Sobiech, Jaromir; Puta, Robert

    2007-01-01

    Electromagnetic field meters used for occupational and general public health protection are commonly calibrated in the continuous wave conditions, but a large number of medical devices, mobile base station antennas and radars generate pulse modulated fields. The results of an analysis of additional errors of pulse fields measurements by diode-type meters (EMR 200/300, PMM and MEH) are presented in this paper.

  16. Metrology of Pulse Modulated Electromagnetic Fields with Diode-Type Meters

    International Nuclear Information System (INIS)

    Kubacki, R.; Kieliszek, J.; Sobiech, J.; Puta, R.

    2007-01-01

    Electromagnetic field meters used for occupational and general public health protection are commonly calibrated in the continuous wave conditions, but a large number of medical devices, mobile base station antennas and radars generate pulse modulated fields. The results of an analysis of additional errors of pulse fields measurements by diode-type meters (EMR 200/300, PMM and MEH) are presented in this paper. (author)

  17. Radar reflection off extensive air showers

    Directory of Open Access Journals (Sweden)

    Werner F.

    2013-06-01

    Full Text Available We investigate the possibility of detecting extensive air showers by the radar technique. Considering a bistatic radar system and different shower geometries, we simulate reflection of radio waves off the static plasma produced by the shower in the air. Using the Thomson cross-section for radio wave reflection, we obtain the time evolution of the signal received by the antennas. The frequency upshift of the radar echo and the power received are studied to verify the feasibility of the radar detection technique.

  18. Resonance and aspect matched adaptive radar (RAMAR)

    CERN Document Server

    Barrett, Terence William

    2012-01-01

    The book describes a new form of radar for which the target response is frequency, i.e., resonance-dependent. The book provides both prototype designs and empirical results collected from a variety of targets. The new form of radar, called RAMAR (Resonance and Aspect Matched Adaptive Radar) advances radar - mere ranging and detection - to the level of RF spectroscopy, and permits an advance of spectroscopic methods from optical, through infra-red and into the RF spectral range. The book will describe how a target's response can be a function of frequency components in the transmitted signal's

  19. Robust Sparse Sensing Using Weather Radar

    Science.gov (United States)

    Mishra, K. V.; Kruger, A.; Krajewski, W. F.; Xu, W.

    2014-12-01

    The ability of a weather radar to detect weak echoes is limited by the presence of noise or unwanted echoes. Some of these unwanted signals originate externally to the radar system, such as cosmic noise, radome reflections, interference from co-located radars, and power transmission lines. The internal source of noise in microwave radar receiver is mainly thermal. The thermal noise from various microwave devices in the radar receiver tends to lower the signal-to-noise ratio, thereby masking the weaker signals. Recently, the compressed sensing (CS) technique has emerged as a novel signal sampling paradigm that allows perfect reconstruction of signals sampled at frequencies lower than the Nyquist rate. Many radar and remote sensing applications require efficient and rapid data acquisition. The application of CS to weather radars may allow for faster target update rates without compromising the accuracy of target information. In our previous work, we demonstrated recovery of an entire precipitation scene from its compressed-sensed version by using the matrix completion approach. In this study, we characterize the performance of such a CS-based weather radar in the presence of additive noise. We use a signal model where the precipitation signals form a low-rank matrix that is corrupted with (bounded) noise. Using recent advances in algorithms for matrix completion from few noisy observations, we reconstruct the precipitation scene with reasonable accuracy. We test and demonstrate our approach using the data collected by Iowa X-band Polarimetric (XPOL) weather radars.

  20. Ground Penetrating Radar : Ultra-wideband radars for improvised explosive devices and landmine detection

    NARCIS (Netherlands)

    Yarovoy, A.

    2008-01-01

    For last two decades Ultra-Wideband Ground Penetrating Radars seemed to be a useful tool for detection and classification of landmines and improvised explosive devices (IEDs). However limitations of radar technology considerably limited operational use of these radars. Recent research at TU Delft

  1. Radar Spectrum Engineering and Management (Ingenierie et gestion du spectre radar)

    Science.gov (United States)

    2017-04-01

    industry, and academic experts in various facets of radar technology is needed to address the spectrum problems facing current (legacy) and future radar...Radar Applications”, IEEE International RF and Microwave Conference 2013, pp. 258-262, Penang, Malaysia , 9-11 December 2013. [88] A.A. Salah, R.S.A

  2. Pulse to pulse klystron diagnosis system

    International Nuclear Information System (INIS)

    Nowak, J.; Davidson, V.; Genova, L.; Johnson, R.; Reagan, D.

    1981-03-01

    This report describes a system used to study the behavior of SLAC high powered klystrons operating with a twice normal pulse width of 5 μs. At present, up to eight of the klystrons installed along the accelerator can be operated with long pulses and monitored by this system. The report will also discuss some of the recent findings and investigations

  3. Radar network communication through sensing of frequency hopping

    Science.gov (United States)

    Dowla, Farid; Nekoogar, Faranak

    2013-05-28

    In one embodiment, a radar communication system includes a plurality of radars having a communication range and being capable of operating at a sensing frequency and a reporting frequency, wherein the reporting frequency is different than the sensing frequency, each radar is adapted for operating at the sensing frequency until an event is detected, each radar in the plurality of radars has an identification/location frequency for reporting information different from the sensing frequency, a first radar of the radars which senses the event sends a reporting frequency corresponding to its identification/location frequency when the event is detected, and all other radars in the plurality of radars switch their reporting frequencies to match the reporting frequency of the first radar upon detecting the reporting frequency switch of a radar within the communication range. In another embodiment, a method is presented for communicating information in a radar system.

  4. Guided radar system for arc detection: Initial results at DIIID

    Science.gov (United States)

    Salvador, S. M.; Maggiora, R.; Goulding, R. H.; Moore, J. A.; Pinsker, R. I.; Nagy, A.

    2014-02-01

    A guided radar arc detection and localization system has been designed, fabricated, installed in the feed line to one of the resonant loops on the 285/300 FW antenna, and successfully tested during vacuum conditioning. The system injects a train of binary phase-modulated pulses at a carrier frequency of 25 MHz up-shifted to around 450MHz into the main high power transmission line connected to the antenna through a septate coupler and a circulator. The pulses are reflected by arcs, and the time delay provides the distance to the arc. The reflected signals are analyzed in real time, with a time response sufficient to provide active arc detection as well as localization. RF pulses have been injected into the antenna at a power level of up to 650kW. The arc location was varied by either puffing gas into the vacuum vessel, in which case arcs always occurred in the antenna, or injecting RF without a gas puff, in which case the arcs almost always occurred in the transmission line feeding the antenna. The localization obtained during these initial tests had a relatively low resolution of about 2 m, but arcs occurring inside or outside the antenna could clearly be differentiated and corresponded with the expected location. The septate coupler proved fully compatible with the antenna feed and matching network and improved performance significantly in comparison to the use of directional couplers.

  5. Three dimensional numerical modeling for ground penetrating radar using finite difference time domain (FDTD) method; Jikan ryoiki yugen sabunho ni yoru chika radar no sanjigen suchi modeling

    Energy Technology Data Exchange (ETDEWEB)

    Sanada, Y.; Ashida, Y.; Sassa, K. [Kyoto University, Kyoto (Japan)

    1996-10-01

    3-D numerical modeling by FDTD method was studied for ground penetrating radar. Radar radiates electromagnetic wave, and determines the existence and distance of objects by reflection wave. Ground penetrating radar uses the above functions for underground surveys, however, its resolution and velocity analysis accuracy are problems. In particular, propagation characteristics of electromagnetic wave in media such as heterogeneous and anisotropic soil and rock are essential. The behavior of electromagnetic wave in the ground could be precisely reproduced by 3-D numerical modeling using FDTD method. FDTD method makes precise analysis in time domain and electric and magnetic fields possible by sequentially calculating the difference equation of Maxwell`s equation. Because of the high calculation efficiency of FDTD method, more precise complicated analysis can be expected by using the latest advanced computers. The numerical model and calculation example are illustrated for surface type electromagnetic pulse ground penetrating radar assuming the survey of steel pipes of 1m deep. 4 refs., 3 figs., 1 tab.

  6. A Parallel, High-Fidelity Radar Model

    Science.gov (United States)

    Horsley, M.; Fasenfest, B.

    2010-09-01

    Accurate modeling of Space Surveillance sensors is necessary for a variety of applications. Accurate models can be used to perform trade studies on sensor designs, locations, and scheduling. In addition, they can be used to predict system-level performance of the Space Surveillance Network to a collision or satellite break-up event. A high fidelity physics-based radar simulator has been developed for Space Surveillance applications. This simulator is designed in a modular fashion, where each module describes a particular physical process or radar function (radio wave propagation & scattering, waveform generation, noise sources, etc.) involved in simulating the radar and its environment. For each of these modules, multiple versions are available in order to meet the end-users needs and requirements. For instance, the radar simulator supports different atmospheric models in order to facilitate different methods of simulating refraction of the radar beam. The radar model also has the capability to use highly accurate radar cross sections generated by the method of moments, accelerated by the fast multipole method. To accelerate this computationally expensive model, it is parallelized using MPI. As a testing framework for the radar model, it is incorporated into the Testbed Environment for Space Situational Awareness (TESSA). TESSA is based on a flexible, scalable architecture, designed to exploit high-performance computing resources and allow physics-based simulation of the SSA enterprise. In addition to the radar models, TESSA includes hydrodynamic models of satellite intercept and debris generation, orbital propagation algorithms, optical brightness calculations, optical system models, object detection algorithms, orbit determination algorithms, simulation analysis and visualization tools. Within this framework, observations and tracks generated by the new radar model are compared to results from a phenomenological radar model. In particular, the new model will be

  7. Array-Based Ultrawideband through-Wall Radar: Prediction and Assessment of Real Radar Abilities

    Directory of Open Access Journals (Sweden)

    Nadia Maaref

    2013-01-01

    Full Text Available This paper deals with a new through-the-wall (TTW radar demonstrator for the detection and the localisation of people in a room (in a noncooperative way with the radar situated outside but in the vicinity of the first wall. After modelling the propagation through various walls and quantifying the backscattering by the human body, an analysis of the technical considerations which aims at defining the radar design is presented. Finally, an ultrawideband (UWB frequency modulated continuous wave (FMCW radar is proposed, designed, and implemented. Some representative trials show that this radar is able to localise and track moving people behind a wall in real time.

  8. GPM Ground Validation Cloud Radar System (CRS) OLYMPEX V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validation Cloud Radar System (CRS) OLYMPEX dataset provides radar reflectivity and Doppler velocity data collected during the Olympic Mountain...

  9. Pocket radar guide key facts, equations, and data

    CERN Document Server

    Curry, G Richard

    2010-01-01

    ThePocket Radar Guideis a concise collection of key radar facts and important radar data that provides you with necessary radar information when you are away from your office or references. It includes statements and comments on radar design, operation, and performance; equations describing the characteristics and performance of radar systems and their components; and tables with data on radar characteristics and key performance issues.It is intended to supplement other radar information sources by providing a pocket companion to refresh memory and provide details whenever you need them such a

  10. Analysis of intra-pulse frequency-modulated, low probability of ...

    Indian Academy of Sciences (India)

    In this paper, we investigate the problem of analysis of low probability of interception (LPI) radar signals with intra-pulse frequency modulation (FM) under low signal-to-noise ratio conditions from the perspective of an airborne electronic warfare (EW) digital receiver. EW receivers are designed to intercept andanalyse threat ...

  11. Radar Imaging and Target Identification

    Science.gov (United States)

    2009-02-09

    charged to this contract for two years; in the last year only stipend and registration-in-absentia fees were charged. • Yi Fang, citizen of China ...Ferrara, Ph.D. May 2006, now in RYAT. Thesis title: "Radar Signal Process- ing". • Postdoc supported by China Scholarship Council: Dr. Ling Wang...on tt, so arc RT(X, X) and Rc{x, x). Furthermore, it follows that Ry, RT and Re are all supported on tt x fi. We use the notation RT and Tlc for

  12. Microwave remote sensing: Active and passive. Volume 2 - Radar remote sensing and surface scattering and emission theory

    Science.gov (United States)

    Ulaby, F. T.; Moore, R. K.; Fung, A. K.

    1982-01-01

    The fundamental principles of radar backscattering measurements are presented, including measurement statistics, Doppler and pulse discrimination techniques, and associated ambiguity functions. The operation of real and synthetic aperture sidelooking airborne radar systems is described, along with the internal and external calibration techniques employed in scattering measurements. Attention is given to the physical mechanisms responsible for the scattering emission behavior of homogeneous and inhomogeneous media, through a discussion of surface roughness, dielectric properties and inhomogeneity, and penetration depth. Simple semiempirical models are presented. Theoretical models involving greater mathematical sophistication are also given for extended ocean and bare soil surfaces, and the more general case of a vegetation canopy over a rough surface.

  13. Study of atmospheric parameters measurements using MM-wave radar in synergy with LITE-2

    Science.gov (United States)

    Andrawis, Madeleine Y.

    1994-01-01

    The Lidar In-Space Technology Experiment, (LITE), has been developed, designed, and built by NASA Langley Research Center, to be flown on the space shuttle 'Discovery' on September 9, 1994. Lidar, which stands for light detecting and ranging, is a radar system that uses short pulses of laser light instead of radio waves in the case of the common radar. This space-based lidar offers atmospheric measurements of stratospheric and tropospheric aerosols, the planetary boundary layer, cloud top heights, and atmospheric temperature and density in the 10-40 km altitude range. A study is being done on the use, advantages, and limitations of a millimeterwave radar to be utilized in synergy with the Lidar system, for the LITE-2 experiment to be flown on a future space shuttle mission. The lower atmospheric attenuation, compared to infrared and optical frequencies, permits the millimeter-wave signals to penetrate through the clouds and measure multi-layered clouds, cloud thickness, and cloud-base height. These measurements would provide a useful input to radiation computations used in the operational numerical weather prediction models, and for forecasting. High power levels, optimum modulation, data processing, and high antenna gain are used to increase the operating range, while space environment, radar tradeoffs, and power availability are considered. Preliminary, numerical calculations are made, using the specifications of an experimental system constructed at Georgia Tech. The noncoherent 94 GHz millimeter-wave radar system has a pulsed output with peak value of 1 kW. The backscatter cross section of the particles to be measured, that are present in the volume covered by the beam footprint, is also studied.

  14. Analysis of Ion Composition Estimation Accuracy for Incoherent Scatter Radars

    Science.gov (United States)

    Martínez Ledesma, M.; Diaz, M. A.

    2017-12-01

    The Incoherent Scatter Radar (ISR) is one of the most powerful sounding methods developed to estimate the Ionosphere. This radar system determines the plasma parameters by sending powerful electromagnetic pulses to the Ionosphere and analyzing the received backscatter. This analysis provides information about parameters such as electron and ion temperatures, electron densities, ion composition, and ion drift velocities. Nevertheless in some cases the ISR analysis has ambiguities in the determination of the plasma characteristics. It is of particular relevance the ion composition and temperature ambiguity obtained between the F1 and the lower F2 layers. In this case very similar signals are obtained with different mixtures of molecular ions (NO2+ and O2+) and atomic oxygen ions (O+), and consequently it is not possible to completely discriminate between them. The most common solution to solve this problem is the use of empirical or theoretical models of the ionosphere in the fitting of ambiguous data. More recent works take use of parameters estimated from the Plasma Line band of the radar to reduce the number of parameters to determine. In this work we propose to determine the error estimation of the ion composition ambiguity when using Plasma Line electron density measurements. The sensibility of the ion composition estimation has been also calculated depending on the accuracy of the ionospheric model, showing that the correct estimation is highly dependent on the capacity of the model to approximate the real values. Monte Carlo simulations of data fitting at different signal to noise (SNR) ratios have been done to obtain valid and invalid estimation probability curves. This analysis provides a method to determine the probability of erroneous estimation for different signal fluctuations. Also it can be used as an empirical method to compare the efficiency of the different algorithms and methods on when solving the ion composition ambiguity.

  15. Lunar radar mapping: Correlation between radar reflectivity and stratigraphy in north-western mare imbrium

    Science.gov (United States)

    Schaber, G.G.; Eggleton, R.E.; Thompson, T.W.

    1970-01-01

    DELAY-DOPPLER radar maps of the Moon obtained with the 430 MHz (70 cm wavelength) radar of the Arecibo Ionospheric Observatory in Puerto Rico (Thompson, unpublished) are at present being studied to correlate geological information with the radar reflexion characteristics of the lunar surface. Preliminary evaluation of the radar data for the Sinus Iridum quadrangle (32??-48?? N; 14??-38?? W) has revealed that the lowest values of radar reflectivity are closely correlated with the mare materials of lowest albedo mapped by Schaber1 as of most recent volcanic origin. These radar data were obtained with a surface resolution of 50 to 100 km2 on January 24 and April 17, 1967. A detailed account of the delay-doppler radar mapping technique can be found in unpublished reports by Thompson. ?? 1970 Nature Publishing Group.

  16. Ranger© - An Affordable, Advanced, Next-Generation, Dual-Pol, X-Band Weather Radar

    Science.gov (United States)

    Stedronsky, Richard

    2014-05-01

    The Enterprise Electronics Corporation (EEC) Ranger© system is a new generation, X-band (3 cm), Adaptive Polarization Doppler Weather Surveillance Radar that fills the gap between high-cost, high-power traditional radar systems and the passive ground station weather sensors. Developed in partnership with the University of Oklahoma Advanced Radar Research Center (ARRC), the system uses relatively low power solid-state transmitters and pulse compression technology to attain nearly the same performance capabilities of much more expensive traditional radar systems. The Ranger© also employs Adaptive Dual Polarization (ADP) techniques to allow Alternating or Simultaneous Dual Polarization capability with total control over the transmission polarization state using dual independent coherent transmitters. Ranger© has been designed using the very latest technology available in the industry and the technical and manufacturing experience gained through over four decades of successful radar system design and production at EEC. The entire Ranger© design concept emphasizes precision, stability, reliability, and value using proven solid state technology combined with the most advanced motion control system ever conceived for weather radar. Key applications include meteorology, hydrology, aviation, offshore oil/gas drilling, wind energy, and outdoor event situational awareness.

  17. A Proposal for an Operational HF Radar

    National Research Council Canada - National Science Library

    Gager, F. M; Guthrie, R. C; Headrick, J. M; Page, I. H; Zettle, E. N

    1963-01-01

    ... the USSR and the secondary purpose of detection of missile and ESV launchings. The radar system being proposed is based on the design of the Madre radar and the experience gained with the Madre installation at the NRL Chesapeake Bay Annex...

  18. Integration and Validation of Avian Radars (IVAR)

    Science.gov (United States)

    2011-08-01

    organize its target data into an SQL database while relaying to user. Using same setup at ARTI as for PC3.1, demonstrate the RDS can, except for a...tracks from two radars with overlapping coverage The time references for two independent radars can be kept sufficiently in sync to support fusion

  19. Ultra-wideband radar sensors and networks

    Energy Technology Data Exchange (ETDEWEB)

    Leach, Jr., Richard R; Nekoogar, Faranak; Haugen, Peter C

    2013-08-06

    Ultra wideband radar motion sensors strategically placed in an area of interest communicate with a wireless ad hoc network to provide remote area surveillance. Swept range impulse radar and a heart and respiration monitor combined with the motion sensor further improves discrimination.

  20. 46 CFR 184.404 - Radars.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Radars. 184.404 Section 184.404 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS (UNDER 100 GROSS TONS) VESSEL CONTROL AND MISCELLANEOUS SYSTEMS AND EQUIPMENT Navigation Equipment § 184.404 Radars. (a) A vessel must be fitted with a...

  1. Synthetic aperture radar: principles and applications

    International Nuclear Information System (INIS)

    Khan, N.A.; Yahya, K.M.

    2003-01-01

    In this paper an introduction to synthetic aperture radar is presented. Synthetic aperture radar is a relatively new remote sensing platform and the technology has matured a lot in the last two decades. This paper introduces the concepts behind SAR principles as well as the major areas where this new technology has shown additional information. (author)

  2. Wind energy applications of synthetic aperture radar

    DEFF Research Database (Denmark)

    Badger, Merete

    Synthetic aperture radars (SAR), mounted on satellites or aircraft, have proven useful for ocean wind mapping. Wind speeds at the height 10 m may be retrieved from measurements of radar backscatter using empirical model functions. The resulting windfields are valuable in offshore wind energy...

  3. High-precision positioning of radar scatterers

    NARCIS (Netherlands)

    Dheenathayalan, P.; Small, D.; Schubert, A.; Hanssen, R.F.

    2016-01-01

    Remote sensing radar satellites cover wide areas and provide spatially dense measurements, with millions of scatterers. Knowledge of the precise position of each radar scatterer is essential to identify the corresponding object and interpret the estimated deformation. The absolute position accuracy

  4. Weather radar rainfall data in urban hydrology

    NARCIS (Netherlands)

    Thorndahl, Søren; Einfalt, Thomas; Willems, Patrick; Ellerbæk Nielsen, Jesper; ten Veldhuis, J.A.E.; Arnbjerg-Nielsen, Karsten; Rasmussen, Michael R.; Molnar, Peter

    2017-01-01

    Application of weather radar data in urban hydrological applications has evolved significantly during the past decade as an alternative to traditional rainfall observations with rain gauges. Advances in radar hardware, data processing, numerical models, and emerging fields within urban hydrology

  5. Radar geology: Technology and program overview

    Science.gov (United States)

    Barath, F. T.

    1980-01-01

    The state-of-the-art of active microwave remote sensors (altimeters, scatterometers and imagers) used in geologic applications is assessed and the ongoing radar geology activities within NASA, government agencies, industry, universities and foreign organizations is summarized. Plans for radar geology research and development and space flight missions are also outlined.

  6. A Scanning Microwave Radar and Radiometer

    DEFF Research Database (Denmark)

    Skou, Niels

    1995-01-01

    The Scanning Microwave Radar and Radiometer (SMRR) is a line scanner featuring a combined radar and radiometer system operating around 35 and 94 GHz. The layout of the SMRR is shown. The 2 offset antenna parabolas scan in synchronism, the receiver antenna has the highest gain in order to ensure...

  7. Quantitative Analysis of Radar Returns from Insects

    Science.gov (United States)

    Riley, J. R.

    1979-01-01

    When a number of flying insects is low enough to permit their resolution as individual radar targets, quantitative estimates of their aerial density are developed. Accurate measurements of heading distribution using a rotating polarization radar to enhance the wingbeat frequency method of identification are presented.

  8. Fundamental of ground penetrating radar in environmental and engineering applications

    Directory of Open Access Journals (Sweden)

    L. Rivero

    2000-06-01

    Full Text Available Ground Penetrating Radar (GPR is a high frequency electromagnetic sounding technique that has been developed to investigate the shallow subsurface using the contrast of dielectric properties. The method operates on the simple principle that electromagnetic waves, emitted from a transmitter antenna, are reflected from buried objects and detected at another antenna, acting as receiver. GPR data is presented in the form of time-distance plots that are analogous to conventional reflection seismic records, and in fact the method has many similarities to seismic reflection method with a pulse of electromagnetic energy substituting for the elastic (seismic energy. Nevertheless, the principles and theory of the method are based on the wave equation derived from Maxwell's equations for electromagnetic wave propagation. This paper has been written for tutorial purposes, and it is hoped that it will provide the reader with a good outline of GPR presenting an overview of its theoretical basis, guidelines for interpretation and some practical field examples.

  9. ±25ppm repeatable measurement of trapezoidal pulses with 5MHz bandwidth

    CERN Document Server

    AUTHOR|(SzGeCERN)712364; Arpaia, Pasquale; Cerqueira Bastos, Miguel; Martino, Michele

    2015-01-01

    High-quality measurements of pulses are nowadays widely used in fields such as radars, pulsed lasers, electromagnetic pulse generators, and particle accelerators. Whilst literature is mainly focused on fast systems for nanosecond regime with relaxed metrological requirements, in this paper, the high-performance measurement of slower pulses in microsecond regime is faced. In particular, the experimental proof demonstration for a 15 MS/s,_25 ppm repeatable acquisition system to characterize the flat-top of 3 ms rise-time trapezoidal pulses is given. The system exploits a 5MHz bandwidth circuit for analogue signal processing based on the concept of flat-top removal. The requirements, as well as the conceptual and physical designs are illustrated. Simulation results aimed at assessing the circuit performance are also presented. Finally, an experimental case study on the characterization of a pulsed power supply for the klystrons modulators of the Compact Linear Collider (CLIC) under study at CERN is reported. In ...

  10. Radar observations of asteroid 1986 JK

    Science.gov (United States)

    Ostro, S. J.; Yeomans, D. K.; Chodas, P. W.; Goldstein, R. M.; Jurgens, R. F.; Thompson, T. W.

    1989-01-01

    The asteroid 1986 JK was observed with a 3.5 cm-wavelength radar in May and June, 1986, at less than 0.029 AU; its radar echo power circular polarization ratio indicates single backscattering from smooth surface elements. A working model constructed for the asteroid in light of these radar data postulates a 1-2 km object whose shape has little elongation and some polar flattening. Orbital and physical characteristics are rather cometlike. The radar astrometric data obtained are noted to be extremely powerful for orbit-improvement, so that a search ephemeris whose uncertainty is an order-of-magnitude smaller than that based on relevant optical data alone can be prepared by combining optical and radar data.

  11. Radar and sensor netting - Present and future

    Science.gov (United States)

    Farina, A.; Studer, F. A.

    1986-01-01

    It is pointed out that a natural evolution of radar systems leads to the netting of radars dispersed on a certain portion of the surveillance space. The motivation for this evolution was provided by the possibility of fusing a great amount of data taken by radars operating independently. Multiradar tracking (MRT) represents a well-known system employed in civilian and military applications. The multistatic radar system is another well known netting concept. The present paper has the objective to provide some information regarding the potential of the netted system concepts. The netting of sensors other than radars is also promising, taking into account lasers, TV, radiometer, and acoustic devices. Attention is given to details concerning the multiradar system concept (the present), the multistatic system concept, wideband netting (the future), the multisensor system concept (the future), and artificial intelligence.

  12. Numerical simulation of imaging laser radar system

    Science.gov (United States)

    Han, Shaokun; Lu, Bo; Jiang, Ming; Liu, Xunliang

    2008-03-01

    Rational and effective design of imaging laser radar systems is the key of imaging laser radar system research. Design must fully consider the interrelationship between various parameters. According to the parameters, choose suitable laser, detector and other components. To use of mathematical modeling and computer simulation is an effective imaging laser radar system design methods. This paper based on the distance equation, using the detection statistical methods, from the laser radar range coverage, detection probability, false-alarm rate, SNR to build the laser radar system mathematical models. In the process of setting up the mathematical models to fully consider the laser, atmosphere, detector and other factors on the performance that is to make the models be able to respond accurately the real situation. Based on this using C# and Matlab designed a simulation software.

  13. Weather radar rainfall data in urban hydrology

    DEFF Research Database (Denmark)

    Thorndahl, Søren; Einfalt, Thomas; Willems, Patrick

    2017-01-01

    Application of weather radar data in urban hydrological applications has evolved significantly during the past decade as an alternative to traditional rainfall observations with rain gauges. Advances in radar hardware, data processing, numerical models, and emerging fields within urban hydrology...... necessitate an updated review of the state of the art in such radar rainfall data and applications. Three key areas with significant advances over the past decade have been identified: (1) temporal and spatial resolution of rainfall data required for different types of hydrological applications, (2) rainfall...... estimation, radar data adjustment and data quality, and (3) nowcasting of radar rainfall and real-time applications. Based on these three fields of research, the paper provides recommendations based on an updated overview of shortcomings, gains, and novel developments in relation to urban hydrological...

  14. First upper limits on the radar cross section of cosmic-ray induced extensive air showers

    Science.gov (United States)

    Abbasi, R. U.; Abe, M.; Abou Bakr Othman, M.; Abu-Zayyad, T.; Allen, M.; Anderson, R.; Azuma, R.; Barcikowski, E.; Belz, J. W.; Bergman, D. R.; Besson, D.; Blake, S. A.; Byrne, M.; Cady, R.; Chae, M. J.; Cheon, B. G.; Chiba, J.; Chikawa, M.; Cho, W. R.; Farhang-Boroujeny, B.; Fujii, T.; Fukushima, M.; Gillman, W. H.; Goto, T.; Hanlon, W.; Hanson, J. C.; Hayashi, Y.; Hayashida, N.; Hibino, K.; Honda, K.; Ikeda, D.; Inoue, N.; Ishii, T.; Ishimori, R.; Ito, H.; Ivanov, D.; Jayanthmurthy, C.; Jui, C. C. H.; Kadota, K.; Kakimoto, F.; Kalashev, O.; Kasahara, K.; Kawai, H.; Kawakami, S.; Kawana, S.; Kawata, K.; Kido, E.; Kim, H. B.; Kim, J. H.; Kim, J. H.; Kitamura, S.; Kitamura, Y.; Kunwar, S.; Kuzmin, V.; Kwon, Y. J.; Lan, J.; Lim, S. I.; Lundquist, J. P.; Machida, K.; Martens, K.; Matsuda, T.; Matsuyama, T.; Matthews, J. N.; Minamino, M.; Mukai, K.; Myers, I.; Nagasawa, K.; Nagataki, S.; Nakamura, T.; Nonaka, T.; Nozato, A.; Ogio, S.; Ogura, J.; Ohnishi, M.; Ohoka, H.; Oki, K.; Okuda, T.; Ono, M.; Oshima, A.; Ozawa, S.; Park, I. H.; Prohira, S.; Pshirkov, M. S.; Rezazadeh-Reyhani, A.; Rodriguez, D. C.; Rubtsov, G.; Ryu, D.; Sagawa, H.; Sakurai, N.; Sampson, A. L.; Scott, L. M.; Schurig, D.; Shah, P. D.; Shibata, F.; Shibata, T.; Shimodaira, H.; Shin, B. K.; Smith, J. D.; Sokolsky, P.; Springer, R. W.; Stokes, B. T.; Stratton, S. R.; Stroman, T. A.; Suzawa, T.; Takai, H.; Takamura, M.; Takeda, M.; Takeishi, R.; Taketa, A.; Takita, M.; Tameda, Y.; Tanaka, H.; Tanaka, K.; Tanaka, M.; Thomas, S. B.; Thomson, G. B.; Tinyakov, P.; Tkachev, I.; Tokuno, H.; Tomida, T.; Troitsky, S.; Tsunesada, Y.; Tsutsumi, K.; Uchihori, Y.; Udo, S.; Urban, F.; Vasiloff, G.; Venkatesh, S.; Wong, T.; Yamane, R.; Yamaoka, H.; Yamazaki, K.; Yang, J.; Yashiro, K.; Yoneda, Y.; Yoshida, S.; Yoshii, H.; Zollinger, R.; Zundel, Z.

    2017-01-01

    TARA (Telescope Array Radar) is a cosmic ray radar detection experiment colocated with Telescope Array, the conventional surface scintillation detector (SD) and fluorescence telescope detector (FD) near Delta, Utah, U.S.A. The TARA detector combines a 40 kW, 54.1 MHz VHF transmitter and high-gain transmitting antenna which broadcasts the radar carrier over the SD array and within the FD field of view, towards a 250 MS/s DAQ receiver. TARA has been collecting data since 2013 with the primary goal of observing the radar signatures of extensive air showers (EAS). Simulations indicate that echoes are expected to be short in duration (∼ 10 μs) and exhibit rapidly changing frequency, with rates on the order 1 MHz/μs. The EAS radar cross-section (RCS) is currently unknown although it is the subject of over 70 years of speculation. A novel signal search technique is described in which the expected radar echo of a particular air shower is used as a matched filter template and compared to waveforms obtained by triggering the radar DAQ using the Telescope Array fluorescence detector. No evidence for the scattering of radio frequency radiation by EAS is obtained to date. We report the first quantitative RCS upper limits using EAS that triggered the Telescope Array Fluorescence Detector. The transmitter is under the direct control of experimenters, and in a radio-quiet area isolated from other radio frequency (RF) sources. The power and radiation pattern are known at all times. Forward power up to 40 kW and gain exceeding 20 dB maximize energy density in the radar field. Continuous wave (CW) transmission gives 100% duty cycle, as opposed to pulsed radar. TARA utilizes a high sample rate DAQ (250 MS/s). TARA is colocated with a large state-of-the-art conventional CR observatory, allowing the radar data stream to be sampled at the arrival times of known cosmic ray events. Each of these attributes of the TARA detector has been discussed in detail in the literature [8]. A map

  15. ELECTRICAL PULSE COUNTER APPARATUS

    Science.gov (United States)

    Kaufman, W.M.; Jeeves, T.A.

    1962-09-01

    A progressive electrical pulse counter circuit rs designed for the counting of a chain of input pulses. The circuit employs a series of direct connected bistable counting stages simultaneously pulsed by each input pulse and a delay means connected between each of the stages. Each bistable stage has two d-c operative states, which stage, when in its initial state, prevents the next succeeding stage from changing its condition when the latter stage is pulsed. Since the delay circuits between the stages prevents the immediate decay of the d-c state of each stage when the stages are pulsed, only one stage will change its state for each input pulse, thereby providing progressive stage-by-stage counting. (AEC)

  16. Multifunction Radar for Airborne Applications.

    Science.gov (United States)

    1986-07-01

    shown o Fiso of A1 %uba t array elements is selected for adaptation elements k n k nd k3 i iI. > apa - receivers are required for the main array output and...Tiefeunyproduct - 0. Time-frequenlcy product - 0. Time-frequency Product too,0 Iomlie repetitio tim - . Nrai eeiion time I Norma loa reptit.I. tme I Oftus...Iiton time - I Norma lie reeito tim i Nomlie reeito tme - # of pulse repeti tioms " of pulse repetitions IS 0 ofepulse rspetitiont Conmtdnt delay - 0

  17. Space Radar Image of Bahia

    Science.gov (United States)

    1994-01-01

    This is a color composite image of southern Bahia, Brazil, centered at 15.22 degree south latitude and 39.07 degrees west longitude. The image was acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar aboard the space shuttle Endeavour on its 38th orbit of Earth on October 2, 1994. The image covers an area centered over the Una Biological Reserve, one the largest protected areas in northeastern Brazil. The 7,000-hectare reserve is administered by the Brazilian Institute for the Environment and is part of the larger Atlantic coastal forest, a narrow band of rain forest extending along the eastern coast of Brazil. The Atlantic coastal forest of southern Bahia is one of the world's most threatened and diverse ecosystems. Due to widespread settlement, only 2 to 5 percent of the original forest cover remains. Yet the region still contains an astounding variety of plants and animals, including a large number of endemic species. More than half of the region's tree species and 80 percent of its animal species are indigenous and found nowhere else on Earth. The Una Reserve is also the only federally protected habitat for the golden-headed lion tamarin, the yellow-breasted capuchin monkey and many other endangered species. In the past few years, scientists from Brazilian and international conservation organizations have coordinated efforts to study the biological diversity of this region and to develop practical and economically viable options for preserving the remaining primary forests in southern Bahia. The shuttle imaging radar is used in this study to identify various land uses and vegetation types, including remaining patches of primary forest, cabruca forest (cacao planted in the understory of the native forest), secondary forest, pasture and coastal mangrove. Standard remote-sensing technology that relies on light reflected from the forest canopy cannot accurately distinguish between cabruca and undisturbed forest. Optical remote sensing is also

  18. Space Radar Image of Chernobyl

    Science.gov (United States)

    1994-01-01

    This is an image of the Chernobyl nuclear power plant and its surroundings, centered at 51.17 north latitude and 30.15 west longitude. The image was acquired by the Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar aboard the space shuttle Endeavour on its 16th orbit on October 1, 1994. The area is located on the northern border of the Ukraine Republic and was produced by using the L-band (horizontally transmitted and received) polarization. The differences in the intensity are due to differences in vegetation cover, with brighter areas being indicative of more vegetation. These data were acquired as part of a collaboration between NASA and the National Space Agency of Ukraine in Remote Sensing and Earth Sciences. NASA has included several sites provided by the Ukrainian space agency as targets of opportunity during the second flight of SIR-C/X-SAR. The Ukrainian space agency also plans to conduct airborne surveys of these sites during the mission. The Chernobyl nuclear power plant is located toward the top of the image near the Pripyat River. The 12-kilometer (7.44-mile)-long cooling pond is easily distinguishable as an elongated dark shape in the center near the top of the image. The reactor complex is visible as the bright area to the extreme left of the cooling pond and the city of Chernobyl is the bright area just below the cooling pond next to the Pripyat River. The large dark area in the bottom right of the image is the Kiev Reservoir just north of Kiev. Also visible is the Dnieper River, which feeds into the Kiev Reservoir from the top of the image. The Soviet government evacuated 116,000 people within 30 kilometers (18.6 miles) of the Chernobyl reactor after the explosion and fire on April 26, 1986. Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves, allowing detailed observations at any time, regardless of weather or sunlight

  19. The Precision Expandable Radar Calibration Sphere (PERCS) With Applications for Laser Imaging and Ranging

    Science.gov (United States)

    Bernhardt, P.; Nicholas, A.; Thomas, L.; Davis, M.; Hoberman, C.; Davis, M.

    The Naval Research Laboratory will provide an orbiting calibration sphere to be used with ground-based laser imaging telescopes and HF radio systems. The Precision Expandable Radar Calibration Sphere (PERCS) is a practical, reliable, high-performance HF calibration sphere and laser imaging target to orbit at about 600 km altitude. The sphere will be made of a spherical wire frame with aspect independent radar cross section in the 3 to 35 MHz frequency range. The necessary launch vehicle to place the PERCS in orbit will be provided by the Department of Defense Space Test Program. The expandable calibration target has a stowed diameter of 1 meter and a fully deployed diameter of 10.2 meters. A separate deployment mechanism is provided for the sphere. After deployment, the Precision Expandable Radar Calibration Sphere (PERCS) with 180 vertices will be in a high inclination orbit to scatter radio pulses from a number of ground systems, including (1) over-the-horizon (OTH) radars operated by the United States and Australia; (2) high power HF facilities such as HAARP in Alaska, EISCAT in Norway, and Arecibo in Puerto Rico; (3) the chain of high latitude SuperDARN radars used for auroral region mapping; and (4) HF direction finding for Navy ships. With the PERCS satellite, the accuracy of HF radars can be periodically checked for range, elevation, and azimuth errors. In addition, each of the 360 vertices on the PERCS sphere will support an optical retro-reflector for operations with ground laser facilities used to track satellites. The ground laser systems will be used to measure the precise location of the sphere within one cm accuracy and will provide the spatial orientation of the sphere as well as the rotation rate. The Department of Defense facilities that can use the corner-cube reflectors on the PERCS include (1) the Air Force Maui Optical Site (AMOS), (2) the Starfire Optical Range (SOR), and (3) the NRL Optical Test Facility (OTF).

  20. Retrieving Vertical Air Motion and Raindrop Size Distributions from Vertically Pointing Doppler Radars

    Science.gov (United States)

    Williams, C. R.; Chandra, C. V.

    2017-12-01

    The vertical evolution of falling raindrops is a result of evaporation, breakup, and coalescence acting upon those raindrops. Computing these processes using vertically pointing radar observations is a two-step process. First, the raindrop size distribution (DSD) and vertical air motion need to be estimated throughout the rain shaft. Then, the changes in DSD properties need to be quantified as a function of height. The change in liquid water content is a measure of evaporation, and the change in raindrop number concentration and size are indicators of net breakup or coalescence in the vertical column. The DSD and air motion can be retrieved using observations from two vertically pointing radars operating side-by-side and at two different wavelengths. While both radars are observing the same raindrop distribution, they measure different reflectivity and radial velocities due to Rayleigh and Mie scattering properties. As long as raindrops with diameters greater than approximately 2 mm are in the radar pulse volumes, the Rayleigh and Mie scattering signatures are unique enough to estimate DSD parameters using radars operating at 3- and 35-GHz (Williams et al. 2016). Vertical decomposition diagrams (Williams 2016) are used to explore the processes acting on the raindrops. Specifically, changes in liquid water content with height quantify evaporation or accretion. When the raindrops are not evaporating, net raindrop breakup and coalescence are identified by changes in the total number of raindrops and changes in the DSD effective shape as the raindrops. This presentation will focus on describing the DSD and air motion retrieval method using vertical profiling radar observations from the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) central facility in Northern Oklahoma.

  1. Simulations of Aperture Synthesis Imaging Radar for the EISCAT_3D Project

    Science.gov (United States)

    La Hoz, C.; Belyey, V.

    2012-12-01

    EISCAT_3D is a project to build the next generation of incoherent scatter radars endowed with multiple 3-dimensional capabilities that will replace the current EISCAT radars in Northern Scandinavia. Aperture Synthesis Imaging Radar (ASIR) is one of the technologies adopted by the EISCAT_3D project to endow it with imaging capabilities in 3-dimensions that includes sub-beam resolution. Complemented by pulse compression, it will provide 3-dimensional images of certain types of incoherent scatter radar targets resolved to about 100 metres at 100 km range, depending on the signal-to-noise ratio. This ability will open new research opportunities to map small structures associated with non-homogeneous, unstable processes such as aurora, summer and winter polar radar echoes (PMSE and PMWE), Natural Enhanced Ion Acoustic Lines (NEIALs), structures excited by HF ionospheric heating, meteors, space debris, and others. To demonstrate the feasibility of the antenna configurations and the imaging inversion algorithms a simulation of synthetic incoherent scattering data has been performed. The simulation algorithm incorporates the ability to control the background plasma parameters with non-homogeneous, non-stationary components over an extended 3-dimensional space. Control over the positions of a number of separated receiving antennas, their signal-to-noise-ratios and arriving phases allows realistic simulation of a multi-baseline interferometric imaging radar system. The resulting simulated data is fed into various inversion algorithms. This simulation package is a powerful tool to evaluate various antenna configurations and inversion algorithms. Results applied to realistic design alternatives of EISCAT_3D will be described.

  2. Compact programmable ground-penetrating radar system for roadway and bridge deck characterization

    Science.gov (United States)

    Busuioc, Dan; Xia, Tian; Venkatachalam, Anbu; Huston, Dryver; Birken, Ralf; Wang, Ming

    2011-04-01

    A compact, high-performance, programmable Ground Penetrating Radar (GPR) system is described based on an impulse generator transmitter, a full waveform sampling single shot receiver, and high directivity antennas. The digital programmable pulse generator is developed for the transmitter circuit and both the pulse width and pulse shape are tunable to adjust for different modes of operation. It utilizes a step-recovery diode (SRD) and short-circuited microstrip lines to produce sub-nanosecond wide ultra-wideband (UWB) pulses. Sharp step signals are generated by periodic clock signals that are connected to the SRD's input node. Up to four variable width pulses (0.8, 1.0, 1.5, and 2.1 ns) are generated through a number of PIN switches controlling the selection of different microstrip lengths. A schottky diode is used as a rectifier at the output of the SRD in order to pass only the positive part of the Gaussian pulses while another group of short-circuit microstrips are used to generate amplitude-reversed Gaussian pulses. The addition of the two pulses results in a Gaussian monocycle pulse which is more energy efficient for emission. The pulse generator is connected to a number of UWB antennas. Primarily, a UWB Vivaldi antenna (500 MHz to 5 GHz) is used, but a number of other high-performance GPR-oriented antennas are investigated as well. All have linear phase characteristic, constant phase center, constant polarization and flat gain. A number of methods including resistive loading are used to decrease any resonances due to the antenna structure and unwanted reflections from the ground. The antennas exhibit good gain characteristics in the design bandwidth.

  3. Attenuation of Spurious Impulses from an Ultra-Wideband Radar: A High-Speed Switch for the Synchronous Impulse Reconstruction (SIRE) Frontend

    Science.gov (United States)

    2011-09-01

    Diagram and Performance A block diagram of the PCB containing the HMC536 switch, MAX963 comparator, 50- load, associated coupling capacitors and...pulse generator and its transmit antenna, the performance of the SIRE radar suffers from another problem: imbalance between its two transmitters...output pulses with unequal delays and frequency responses, which produce an imbalance between the two transmit channels. Sample outputs from the

  4. Radar

    DEFF Research Database (Denmark)

    Nielsen, Tom

    2009-01-01

    Bidrag til arkitektens opgørelse (baseret på en række forskellige indlæg) over hvor dansk arkitektur står, med korte bud på spørgsmålene: Kan man ud over stedsanknytningen tale om en særlig dansk arkitektur?, Hvad er dansk arkitekturs største kvalitet, vores vigtigste force? og Hvad er dansk arki...

  5. Composite technology in radar equipment. Dopler Meteo radar reflector device

    Directory of Open Access Journals (Sweden)

    A. V. Shumov

    2014-01-01

    Full Text Available The article is devoted features of the application composite materials in radar technology for example adjustment of the development technology of the reflector antenna device DMRL-S - radar for monitoring meteorological conditions.Russian and foreign analogues DMRL-S are made of aluminum, which no longer meets modern requirements for strength and weight. Also aluminum reflectors are not temperature stable. Composite materials are characterized by higher values of specific characteristics: temporary resistance, endurance limit, stiffness, elastic modulus, and less prone to cracking. The use of such materials improves the strength, rigidity and durability.For the manufacture of the DMRL-C reflector used composite materials based on epoxy resins reinforced with fiberglass (both unidirectional and woven. To increase the rigidity and weight reflector is made in the form of three-layer sandwich fiberglass panels with honeycomb core variable height. Design work was carried out in a CAD Siemens NX8.0 / Unigraphics, through which was established mathematical model layered reflector, as well as all accessories used in the manufacture. With the program NX Nastran was held strength calculation and analysis of stiffness on the finite element method.After the manufacture of the product, we measured the standard deviation of the working surface of the reflector from the theoretical surface using a three-dimensional laser scanner. Measurements were made at different angular positions of the reflector, and when loading. It is shown that the maximum strain in the operating modes of operation across the surface of the product does not exceed 4%, which will provide the most accurate operation of the product in any position of the antenna system.As a result of this work reflector design was developed, created and verified by experimental data calculation model. Reflector antenna device of the DMRL-S was manufactured and tested. The reflector was made of reinforced

  6. Pulsed radiofrequency microwave fields around a quadrupole particle accelerator: measurement and safety evaluation

    International Nuclear Information System (INIS)

    Sachdev, R.N.; Swarup, G.; Rajan, K.K.; Joseph, L.

    1996-01-01

    Pulsed radiofrequency microwave radiation (RFMR) fields occur during the use of high power microwaves in plasma heating in fusion research, plasma and solid state diagnostics, particle accelerators and colliders, pump sources in lasers, material processing as well as in high power radars. This paper describes the experimental work done at Trombay for measurement of pulsed RFMR fields in the working area of a radiofrequency quadrupole (RFQ) accelerator with the use of a meter calibrated in continuous field and interprets the observed fields in the light of existing protection criteria for pulsed RFMR fields. (author)

  7. A Kalman-tracker-based Bayesian detector for radar interference in radio astronomy

    Science.gov (United States)

    Dong, Weizhen; Jeffs, Brian D.; Fisher, J. Richard

    2005-03-01

    Radio astronomical observations of important L-band spectral lines must often be made at frequencies allocated to pulsed air surveillance radar in the 1215-1350 MHz band. Such pulsed interference must be dealt with at the Green Bank Telescope (GBT) and other observatories by "blanking" to remove corrupted data. This paper presents a new algorithm which improves aircraft echo detection by using a Kalman tracker to follow the path of a sequence of echoes. This Bayesian method enables more sensitive weak echo detection. Track information is used to form a spatial prior probability distribution for the presence of echoes in the next antenna sweep. A lower detection threshold is used in higher probability regions to pull out low level pulses without increasing the overall probability of false alarm detection.

  8. New look at radar auroral motions

    International Nuclear Information System (INIS)

    Greenwald, R.A.; Ecklund, W.L.

    1975-01-01

    During October 1974, three modifications were temporarily added to the NOAA radar auroral backscatter facility located at Anchorage, Alaska. These modifications included (1) a multiple azimuth antenna system. (2) an on-line computer for processing amplitude and mean Doppler profiles of the radar backscatter, and (3) a 13-baud Barker coder. In combination with the radar these modifications provided data relevant to understanding both the microscopic and the macroscopic nature of the radar aurora. Appreciable structure was often found in the Doppler velocity profiles of radar auroral irregularities. Doppler velocities of nearly 2000 m/s were observed. By combining scatter amplitude profiles and mean Doppler profiles from the five azimuths we have produced contour maps of the scatter intensity and the Doppler velocity. The scatter intensity maps often indicate appreciable temporal and spatial structure in the radar auroral irregularities, corroborating the results of Tsunoda et al. (1974). The mean Doppler contour maps indicate that there is also appreciable temporal and spatial structure in the flow velocities of radar auroral irregularities. At those times when there appears to be large-scale uniformity in the irregularity flow, the Doppler velocity varies with azimuth in a manner that is consistent with a cosine-dependent azimuthal variation

  9. Using phase for radar scatterer classification

    Science.gov (United States)

    Moore, Linda J.; Rigling, Brian D.; Penno, Robert P.; Zelnio, Edmund G.

    2017-04-01

    Traditional synthetic aperture radar (SAR) systems tend to discard phase information of formed complex radar imagery prior to automatic target recognition (ATR). This practice has historically been driven by available hardware storage, processing capabilities, and data link capacity. Recent advances in high performance computing (HPC) have enabled extremely dense storage and processing solutions. Therefore, previous motives for discarding radar phase information in ATR applications have been mitigated. First, we characterize the value of phase in one-dimensional (1-D) radar range profiles with respect to the ability to correctly estimate target features, which are currently employed in ATR algorithms for target discrimination. These features correspond to physical characteristics of targets through radio frequency (RF) scattering phenomenology. Physics-based electromagnetic scattering models developed from the geometrical theory of diffraction are utilized for the information analysis presented here. Information is quantified by the error of target parameter estimates from noisy radar signals when phase is either retained or discarded. Operating conditions (OCs) of signal-tonoise ratio (SNR) and bandwidth are considered. Second, we investigate the value of phase in 1-D radar returns with respect to the ability to correctly classify canonical targets. Classification performance is evaluated via logistic regression for three targets (sphere, plate, tophat). Phase information is demonstrated to improve radar target classification rates, particularly at low SNRs and low bandwidths.

  10. Considerations for human exposure standards for fast-rise-time high-peak-power electromagnetic pulses.

    Science.gov (United States)

    Merritt, J H; Kiel, J L; Hurt, W D

    1995-06-01

    Development of new emitter systems capable of producing high-peak-power electromagnetic pulses with very fast rise times and narrow pulse widths is continuing. Such directed energy weapons systems will be used in the future to defeat electronically vulnerable targets. Human exposures to these pulses can be expected during testing and operations. Development of these technologies for radar and communications purposes has the potential for wider environmental exposure, as well. Current IEEE C95.1-1991 human exposure guidelines do not specifically address these types of pulses, though limits are stated for pulsed emissions. The process for developing standards includes an evaluation of the relevant bioeffects data base. A recommendation has been made that human exposure to ultrashort electromagnetic pulses that engender electromagnetic transients, called precursor waves, should be avoided. Studies that purport to show the potential for tissue damage induced by such pulses were described. The studies cited in support of the recommendation were not relevant to the issues of tissue damage by propagated pulses. A number of investigations are cited in this review that directly address the biological effects of electromagnetic pulses. These studies have not shown evidence of tissue damage as a result of exposure to high-peak-power pulsed microwaves. It is our opinion that the current guidelines are sufficiently protective for human exposure to these pulses.

  11. Foliage penetration radar detection and characterization of objects under trees

    CERN Document Server

    Davis, Mark

    2011-01-01

    This book covers all aspects of foliage penetration (FOPEN) radar, concentrating on both airborne military radar systems as well as earth resource mapping radars. It is the first concise and thorough treatment of FOPEN, covering the results of a decade-long investment by DARPA in characterizing foliage and earth surface with ultrawideband UHF and VHF synthetic aperture radar (SAR).

  12. The use of radar for bathymetry in shallow seas

    NARCIS (Netherlands)

    Greidanus, H.

    1997-01-01

    The bottom topography in shallow seas can be observed by air- and space borne radar. The paper reviews the radar imaging mechanism, and discusses the possibilities and limitations for practical use of radar in bathymetric applications, including the types of radar instruments available for this

  13. Decision Tool for optimal deployment of radar systems

    NARCIS (Netherlands)

    Vogel, M.H.

    1995-01-01

    A Decision Tool for air defence is presented. This Decision Tool, when provided with information about the radar, the environment, and the expected class of targets, informs the radar operator about detection probabilities. This assists the radar operator to select the optimum radar parameters. n

  14. Advanced Architectures for Modern Weather/Multifunction Radars

    Science.gov (United States)

    2017-03-01

    Advanced Architectures for Modern Weather /Multifunction Radars Caleb Fulton The University of Oklahoma Advanced Radar Research Center Norman...and all of them are addressing the need to lower cost while improving beamforming flexibility in future weather radar systems that will be tasked...with multiple non- weather functions. Keywords: Phased arrays, digital beamforming, multifunction radar . Introduction and Overview As the performance

  15. Radio wave propagation in the Martian polar deposits: models and implications for radar sounding.

    Science.gov (United States)

    Ilyushin, Ya. A.

    In the present study the propagation of electromagnetic waves in the northern polar ice sheet of Mars is considered Several different scenarios of the structure of the polar deposits and composition of the ice compatible with previously published observational data are proposed Both analytical and numerical simulations of ultra wide band chirp radar pulse propagating through the cap are performed Approximate approach based on the non-coherent theory of the radiative transfer in layered media has been applied to the problem of the propagation of radar pulses in the polar caps Both 1D and 2D and 3D geometry applicable to the orbital and landed radar instruments are studied The side clutter and phase distortions of the signal are also addressed analyzed The possibilities of retrieval of the geological information depending on transparency of the polar cap for radio waves are discussed If the polar cap is relatively transparent the echo from the base of the sheet should be clearly distinctive and interpretable in terms of basal topography of the cap In the case of moderate optical thickness coherent basal echo is corrupted by strong multiple scattering in the layered structure However some conclusions about basal conditions could be made from the signals for example the subglacial lakes may be detected Finally optically thick polar caps prevent any sounding of the base so only the medium itself can be characterized by GPR measurements e g the impurity content in the ice can be found Ilyushin Y A R Seu

  16. Geometric considerations of polar mesospheric summer echoes in tilted beams using coherent radar imaging

    Science.gov (United States)

    Sommer, S.; Stober, G.; Chau, J. L.; Latteck, R.

    2014-11-01

    We present observations of polar mesospheric summer echoes (PMSE) using the Middle Atmosphere Alomar Radar System in Northern Norway (69.30° N, 16.04° E). The radar is able to resolve PMSE at high spatial and temporal resolution and to perform pulse-to-pulse beam steering. In this experiment, 81 oblique beam directions were used with off-zenith angles up to 25°. For each beam pointing direction and range gate, coherent radar imaging was applied to determine the mean backscatter location. The location of the mean scatterer in the beam volume was calculated by the deviation from the nominal off-zenith angle of the brightest pixel. It shows that in tilted beams with an off-zenith angle greater than 5°, structures appear at the altitudinal edges of the PMSE layer. Our results indicate that the mean influence of the location of the maximum depends on the tilt of the beam and on the observed area of the PMSE layer. At the upper/lower edge of the PMSE layer, the mean backscatter has a greater/smaller off-zenith angle than the nominal off-zenith angle. This effect intensifies with greater off-zenith beam pointing direction, so the beam filling factor plays an important role in the observation of PMSE layers for oblique beams.

  17. Final report of LDRD project: Electromagnetic impulse radar for detection of underground structures

    Energy Technology Data Exchange (ETDEWEB)

    Loubriel, G.; Aurand, J.; Buttram, M.; Zutavern, F.; Brown, D.; Helgeson, W.

    1998-03-01

    This report provides a summary of the LDRD project titled: Electromagnetic impulse radar for the detection of underground structures. The project met all its milestones even with a tight two year schedule and total funding of $400 k. The goal of the LDRD was to develop and demonstrate a ground penetrating radar (GPR) that is based on high peak power, high repetition rate, and low center frequency impulses. The idea of this LDRD is that a high peak power, high average power radar based on the transmission of short impulses can be utilized effect can be utilized for ground penetrating radar. This direct time-domain system the authors are building seeks to increase penetration depth over conventional systems by using: (1) high peak power, high repetition rate operation that gives high average power, (2) low center frequencies that better penetrate the ground, and (3) short duration impulses that allow for the use of downward looking, low flying platforms that increase the power on target relative to a high flying platform. Specifically, chirped pulses that are a microsecond in duration require (because it is difficult to receive during transmit) platforms above 150 m (and typically 1 km) while this system, theoretically could be at 10 m above the ground. The power on target decays with distance squared so the ability to use low flying platforms is crucial to high penetration. Clutter is minimized by time gating the surface clutter return. Short impulses also allow gating (out) the coupling of the transmit and receive antennas.

  18. Radar signal processing and its applications

    CERN Document Server

    Hummel, Robert; Stoica, Petre; Zelnio, Edmund

    2003-01-01

    Radar Signal Processing and Its Applications brings together in one place important contributions and up-to-date research results in this fast-moving area. In twelve selected chapters, it describes the latest advances in architectures, design methods, and applications of radar signal processing. The contributors to this work were selected from the leading researchers and practitioners in the field. This work, originally published as Volume 14, Numbers 1-3 of the journal, Multidimensional Systems and Signal Processing, will be valuable to anyone working or researching in the field of radar signal processing. It serves as an excellent reference, providing insight into some of the most challenging issues being examined today.

  19. Marine radar properties, analysis and applications

    OpenAIRE

    Kaspersen, Kai Magne

    2017-01-01

    In this thesis marine radars are compared with synthetic aperture radars (SAR) and the possibility of cross-over applications are investigated. A first cross-over has been demonstrated by using the TS-CFAR on marine radar images. The TS-CFAR was originally developed for SAR and is a constant false alarm rate (CFAR) detection algorithm based on truncated statistics. Detecting weak targets embedded in sea clutter is difficult because it is hard to find a model describing the sea in its various ...

  20. Radar, sonar, and holography an introduction

    CERN Document Server

    Kock, Winston E

    1974-01-01

    Radar, Sonar, and Holography: An Introduction provides an introduction to the technology of radar and sonar. Because the new science of holography is affecting both these fields quite strongly, the book includes an explanation of the fundamental principles underlying this new art (including the subjects of wave coherence, interference, and diffraction) and of the hologram process itself. Finally, numerous examples are discussed which show how holography is providing new horizons to radar and sonar systems. The book thus also provides a simple approach to the new technology of holography. The

  1. Synthetic Data for Testing TRMM Radar Algorithms

    Science.gov (United States)

    Jones, Jeffrey A.; Meneghini, Robert; Iguchi, Toshio; Tao, Wei-Kuo

    1997-01-01

    Test data are required to test algorithms for the TRMM Precipitation Radar. These data are needed to test the design of the computer codes under development for the operational phase of the mission, and also to test and evaluate alternative or improved precipitation retrieval algorithms. Over a number of years we have developed and used a 3-dimensional radar model for simulating spaceborne precipitation radars. We have adapted this code to produce data files as close as possible to the TRMM file specifications. In this paper, we will describe the model as it is currently implemented, and show some samples of the synthetic data sets.

  2. New Vacuum Electronic Devices for Radar

    Directory of Open Access Journals (Sweden)

    Hu Yinfu

    2016-08-01

    Full Text Available Vacuum Electronic Devices (VEDs which are considered as the heart of a radar system, play an important role in their development. VEDs and radar systems supplement and promote each other. Some new trends in VEDs have been observed with advancements in the simulation tools for designing VEDs, new materials, new fabrication techniques. Recently, the performance of VEDs has greatly improved. In addition, new devices have been invented, which have laid the foundation for the developments of radar detection technology. This study introduces the recent development trends and research results of VEDs from microwave and millimeter wave devices and power modules, integrated VEDs, terahertz VEDs, and high power VEDs.

  3. The Italian involvement in Cassini radar

    Science.gov (United States)

    Nirchio, F.; Pernice, B.; Borgarelli, L.; Dionisio, C.

    1991-12-01

    The Radio Frequency Electronic Subsystem (RFES) of the Cassini radar is described. The requirements of the Cassini radar are summarized. The design parameters taken into consideration in developing the RFES are described. The RFES interfaces with the High Gain Antenna (HGA) for signal transmission and reception. The operational parameters of the Cassini radar are presented. The front end electronics (FEE), microwave receiver (MR), high power amplifier (HPA), frequency generator (FG), digital chip generator (DCG), Chirp Up Converter and Amplifier (CUCA) and power supply of the RFES are described.

  4. Radar return from a continuous vegetation canopy

    Science.gov (United States)

    Bush, T. F.; Ulaby, F. T.

    1975-01-01

    The radar backscatter coefficient, sigma deg, of alfalfa was investigated as a function of both radar parameters and the physical characteristics of the alfalfa canopy. Measurements were acquired with an 8-18 GHz FM-CW mobile radar over an angular range of 0 - 70 deg as measured from nadir. The experimental data indicates that the excursions of sigma deg at nadir cover a range of nearly 18 dB during one complete growing cycle. An empirical model for sigma deg was developed which accounts for its variability in terms of soil moisture, plant moisture and plant height.

  5. A 35-GHz radar for sensing applications

    Science.gov (United States)

    Park, J. S.; Nguyen, C.

    2010-04-01

    We report a millimeter-wave stepped-frequency radar operating from 29.72 to 37.7 GHz for sensing applications. The radar is implemented using coherent super-heterodyne scheme and completely realized using microwave and millimeterwave integrated circuits. The developed radar has been demonstrated for different sensing applications with high accuracy and resolution. It can be used for various sensing applications including pavement and bridge assessment, liquid-level measurement, detection and location of buried mines and unexploded ordnance (UXO), detection of intrusion to structures including important civil facilities, detection of slow moving objects, surveillance and monitoring of hidden activities and objects.

  6. High voltage pulse conditioning

    International Nuclear Information System (INIS)

    Springfield, R.M.; Wheat, R.M.

    1990-01-01

    This patent describes an apparatus for conditioning high voltage pulses from particle accelerators in order to shorten the rise times of the pulses. Flashover switches in the cathode stalk of the transmission line hold off conduction for a determinable period of time, reflecting the early portion of the pulses. Diodes upstream of the switches divert energy into the magnetic and electrostatic storage of the capacitance and inductance inherent to the transmission line until the switches close

  7. Radar Exploration of Cometary Nuclei

    Science.gov (United States)

    Gim, Yonggyu; Heggy, E.; Belton, M.; Weissman, P.; Asphaug, E.

    2012-10-01

    We have developed a mission formulation, based on the use of previously flown planetary radar sounding techniques, to image the 3D internal structure of the nucleus of a Jupiter-family comet (JFC). Believed to originate in the outer solar system and to be delivered recently to the inner solar system from the Kuiper Belt, JFCs are among the most primitive bodies accessible by spacecraft, and are indicated in the 2010 Decadal Survey as primary targets for primitive bodies sample return. We consider a sounder design operating at dual frequencies, 5 and 15 MHz center frequencies with 1 and 10 MHz bandwidths, respectively. Operating from close orbit about the nucleus of a spinning comet nucleus, CORE obtains a dense network of echoes that are used to image its interior structure to 10 m and to map the dielectric properties inside the nucleus to better than 200 m throughout. Clear images of internal structure and dielectric composition will reveal how the nucleus was formed and how it has evolved. Radiometric tracking of the spacecraft orbit will provide an interior mass distribution that constrains the radar-based models of interior composition. High-resolution visible and infrared color images provide surface and exterior boundary conditions for interior models and hypotheses. They present the geology and morphology of the nucleus surface at meter-scales, and the time-evolving activity, structure, and composition of the inner coma. By making global yet detailed connections from interior to exterior, the data from CORE will provide answers to fundamental questions about the earliest stages of planetesimal evolution and planet formation, will be an important complement to the Rosetta mission science, and will lay the foundation for comet nucleus sample return.

  8. Ultrashort Laser Pulse Phenomena

    CERN Document Server

    Diels, Jean-Claude

    2006-01-01

    Ultrashort Laser Pulse Phenomena, 2e serves as an introduction to the phenomena of ultra short laser pulses and describes how this technology can be used to examine problems in areas such as electromagnetism, optics, and quantum mechanics. Ultrashort Laser Pulse Phenomena combines theoretical backgrounds and experimental techniques and will serve as a manual on designing and constructing femtosecond (""faster than electronics"") systems or experiments from scratch. Beyond the simple optical system, the various sources of ultrashort pulses are presented, again with emphasis on the basic

  9. Photoconductive Semiconductor Switch Technology for Short Pulse Electromagnetics and Lasers

    Energy Technology Data Exchange (ETDEWEB)

    Denison, Gary J.; Helgeson, Wesley D.; Hjalmarson, Harold P.; Loubriel, Guillermo M.; Mar, Alan; O' Malley, Martin W.; Zutavern, Fred J.

    1999-08-05

    High gain photoconductive semiconductor switches (PCSS) are being used to produce high power electromagnetic pulses foc (1) compact, repetitive accelerators, (2) ultra-wide band impulse sources, (3) precision gas switch triggers, (4) optically-activated firesets, and (5) high power optical pulse generation and control. High power, sub-nanosecond optical pulses are used for active optical sensors such as compact optical radars and range-gated hallistic imaging systems. Following a brief introduction to high gain PCSS and its general applications, this paper will focus on PCSS for optical pulse generation and control. PCSS technology can be employed in three distinct approaches to optical pulse generation and control: (1) short pulse carrier injection to induce gain-switching in semiconductor lasers, (2) electro-optical Q-switching, and (3) optically activated Q-switching. The most significant PCSS issues for these applications are switch rise time, jitter, and longevity. This paper will describe both the requirements of these applications and the most recent results from PCSS technology. Experiments to understand and expand the limitations of high gain PCSS will also be described.

  10. Solid state Ka-band pulse oscillator with frequency electronic switching

    Directory of Open Access Journals (Sweden)

    Dvornichenko V. P.

    2015-08-01

    Full Text Available Transmitting devices for small radars in the millimeter wavelength range with high resolution on range and noise immunity. The work presents the results of research and development of compact pulse oscillators with digital frequency switching from pulse to pulse. The oscillator consists of a frequency synthesizer and a synchronized amplifier on the IMPATT diode. Reference oscillator of synthesizer is synchronized by crystal oscillator with digital PLL system and contains a frequency multiplier and an amplifier operating in pulse mode. Small-sized frequency synthesizer of 8 mm wave lengths provides an output power of ~1.2 W per pulse with a frequency stability of no worse than 2•10–6. Radiation frequency is controlled by three-digit binary code in OOL levels. Synchronized amplifier made on IMPATT diodes provides microwave power up to 20 W in oscillator output with microwave pulse duration of 100—300 ns in an operating band. The oscillator can be used as a driving source for the synchronization of semiconductor and electro-vacuum devices of pulsed mode, and also as a transmitting device for small-sized radar of millimeter wave range.

  11. Pulsed-discharge carbon dioxide lasers

    Science.gov (United States)

    Willetts, David V.

    1990-01-01

    The purpose is to attempt a general introduction to pulsed carbon dioxide lasers of the kind used or proposed for laser radar applications. Laser physics is an excellent example of a cross-disciplinary topic, and the molecular spectroscopy, energy transfer, and plasma kinetics of the devices are explored. The concept of stimulated emission and population inversions is introduced, leading on to the molecular spectroscopy of the CO2 molecule. This is followed by a consideration of electron-impact pumping, and the pertinent energy transfer and relaxation processes which go on. Since the devices are plasma pumped, it is necessary to introduce a complex subject, but this is restricted to appropriate physics of glow discharges. Examples of representative devices are shown. The implications of the foregoing to plasma chemistry and gas life are discussed.

  12. Development Of Signal Detection For Radar Navigation System

    OpenAIRE

    Theingi Win Hlaing; Hla Myo Tun; Zaw Min Naing; Win Khaing Moe

    2017-01-01

    This paper aims to evaluate the performance of target detection in the presence of sea clutter. Radar detection of a background of unwanted clutter due to echoes from sea clutter or land is a problem of interest in the radar field. Radar detector has been developed by assuming the radar clutter is Gaussian distributed. However as technology emerges the radar distribution is seen to deviates from the Gaussian assumption. Thus detectors designs based on Gaussian assumption are no longer optimum...

  13. Synthetic impulse and aperture radar (SIAR) a novel multi-frequency MIMO radar

    CERN Document Server

    Chen, Baixiao

    2014-01-01

    Analyzes and discusses the operating principle, signal processing method, and experimental results of this advanced radar technology This book systematically discusses the operating principle, signal processing method, target measurement technology, and experimental results of a new kind of radar called synthetic impulse and aperture radar (SIAR). The purpose is to help readers acquire an insight into the concept and principle of the SIAR, to know its operation mode, signal processing method, the difference between the traditional radar and itself, the designing ideals, and the developing me

  14. Radar Polarimetry and Interferometry (La polarimetrie et l'interferometrie radar) (CD-ROM)

    National Research Council Canada - National Science Library

    Keydel, W; Boerner, W. M; Pottier, E; Lee, J. S; Ferro-Famil, L; Hellmann, M; Cloude, S. R

    2005-01-01

    ...: Scientists and engineers already engaged in the fields of radar surveillance, reconnaissance and scattering measurements, for instance, generally gain their specialist knowledge in both polarimetry...

  15. Opportunities in pulse combustion

    Science.gov (United States)

    Brenchley, D. L.; Bomelburg, H. J.

    1985-10-01

    In most pulse combustors, the combustion occurs near the closed end of a tube where inlet valves operate in phase with the pressure amplitude variations. Thus, within the combustion zone, both the temperature and the pressure oscillate around a mean value. However, the development of practical applications of pulse combustion has been hampered because effective design requires the right combination of the combustor's dimensions, valve characteristics, fuel/oxidizer combination, and flow pattern. Pulse combustion has several additional advantages for energy conversion efficiency, including high combustion and thermal efficiency, high combustion intensity, and high convective heat transfer rates. Also, pulse combustion can be self-aspirating, generating a pressure boost without using a blower. This allows the use of a compact heat exchanger that may include a condensing section and may obviate the need for a chimney. In the last decade, these features have revived interest in pulse combustion research and development, which has resulted in the development of a pulse combustion air heater by Lennox, and a pulse combustion hydronic unit by Hydrotherm, Inc. To appraise this potential for energy savings, a systematic study was conducted of the many past and present attempts to use pulse combustion for practical purposes. The authors recommended areas where pulse combustion technology could possibly be applied in the future and identified areas in which additional R and D would be necessary. Many of the results of the study project derived from a special workshop on pulse combustion. This document highlights the main points of the study report, with particular emphasis on pulse combustion application in chemical engineering.

  16. Radar image processing of real aperture SLAR data for the detection and identification of iceberg and ship targets

    Science.gov (United States)

    Marthaler, J. G.; Heighway, J. E.

    1979-01-01

    An iceberg detection and identification system consisting of a moderate resolution Side Looking Airborne Radar (SLAR) interfaced with a Radar Image Processor (RIP) based on a ROLM 1664 computer with a 32K core memory updatable to 64K is described. The system can be operated in high- or low-resolution sampling modes. Specifically designed algorithms are applied to digitized signal returns to provide automatic target detection and location, geometrically correct video image display and data recording. The real aperture Motorola AN/APS-94D SLAR operates in the X-band and is tunable between 9.10 and 9.40 GHz; its output power is 45 kW peak with a pulse repetition rate of 750 pulses per hour. Schematic diagrams of the system are provided, together with preliminary test data.

  17. Quasi-Coherent Noise Jamming to LFM Radar Based on Pseudo-random Sequence Phase-modulation

    Directory of Open Access Journals (Sweden)

    N. Tai

    2015-12-01

    Full Text Available A novel quasi-coherent noise jamming method is proposed against linear frequency modulation (LFM signal and pulse compression radar. Based on the structure of digital radio frequency memory (DRFM, the jamming signal is acquired by the pseudo-random sequence phase-modulation of sampled radar signal. The characteristic of jamming signal in time domain and frequency domain is analyzed in detail. Results of ambiguity function indicate that the blanket jamming effect along the range direction will be formed when jamming signal passes through the matched filter. By flexible controlling the parameters of interrupted-sampling pulse and pseudo-random sequence, different covering distances and jamming effects will be achieved. When the jamming power is equivalent, this jamming obtains higher process gain compared with non-coherent jamming. The jamming signal enhances the detection threshold and the real target avoids being detected. Simulation results and circuit engineering implementation validate that the jamming signal covers real target effectively.

  18. Ground penetrating radar (GPR) analysis : Phase I.

    Science.gov (United States)

    2009-11-01

    "The objective of this work is to evaluate the feasibility of expanding the MDT's Ground Penetrating : Radar (GPR) program to a broader range of pavement evaluation activities. Currently, MDT uses GPR in : conjunction with its Falling Weight Deflecto...

  19. Airborne Radar Search for Diesel Submarines (ARSDS)

    National Research Council Canada - National Science Library

    Pilnick, Steven E; Landa, Jose

    2005-01-01

    .... In this research, a detection rate model is developed to analyze the effectiveness of an airborne radar search for a diesel submarine assumed to be intermittently operating with periscopes or masts...

  20. Airborne Radar Search for Diesel Submarines

    National Research Council Canada - National Science Library

    Pilnick, Steven E; Landa, Jose

    2005-01-01

    .... In this research, a detection rate model is developed to analyze the effectiveness of airborne radar search for a diesel submarine assumed to be intermittently operating with periscopes or masts...

  1. Bird Migration Echoes Observed by Polarimetric Radar

    OpenAIRE

    MINDA, Haruya; FURUZAWA, Fumie A.; SATOH, Shinsuke; NAKAMURA, Kenji

    2008-01-01

    A C-band polarimetric radar on Okinawa Island successfully observed large-scale bird migrations over the western Pacific Ocean. The birds generated interesting polarimetric signatures. This paper describes the signatures and speculates bird behavior.

  2. Miniature synthetic-aperture radar system

    Science.gov (United States)

    Stockton, Wayne; Stromfors, Richard D.

    1990-11-01

    Loral Defense Systems-Arizona has developed a high-performance synthetic-aperture radar (SAR) for small aircraft and unmanned aerial vehicle (UAV) reconnaissance applications. This miniature radar, called Miniature Synthetic-Aperture Radar (MSAR), is packaged in a small volume and has low weight. It retains key features of large SAR systems, including high-resolution imaging and all-weather operation. The operating frequency of MSAR can optionally be selected to provide foliage penetration capability. Many imaging radar configurations can be derived using this baseline system. MSAR with a data link provides an attractive UAV sensor. MSAR with a real-time image formation processor is well suited to installations where onboard processing and immediate image analysis are required. The MSAR system provides high-resolution imaging for short-to-medium range reconnaissance applications.

  3. Space-qualifiable Digital Radar Transceiver Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Radar technology offers a very flexible, powerful tool for applications such as object detection, tracking, and characterization, as well as remote sensing, imaging,...

  4. Next-Generation Spaceborne Cloud Profiling Radars

    Science.gov (United States)

    Tanelli, Simone; Durden, Stephen L.; Im, Eastwood; Heymsfield, Gerald M.; Racette, Paul; Starr, Dave O.

    2009-01-01

    One of the instruments recommended for deployment on the Aerosol/Cloud/Echosystems (ACE) mission is a new advanced Cloud Profiling Radar (ACE-CPR). The atmospheric sciences community has initiated the effort to define the scientific requirements for this instrument. Initial studies focusing on system configuration, performance and feasibility start from the successful experience of the Cloud Profiling Radar on CloudSat Mission (CS-CPR), the first 94-GHz nadir-looking spaceborne radar which has been acquiring global time series of vertical cloud structure since June 2, 2006. In this paper we address the significance of CloudSat's accomplishments in regards to the design and development of radars for future cloud profiling missions such as EarthCARE and ACE.

  5. Space Compatible Radar Absorbing Materials Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase 1 project shall investigate novel radar absorbing materials (RAM) for use in space or simulated space environments. These materials are lightweight...

  6. Radar Mapping of Surface Soil Moisture

    Science.gov (United States)

    Ulaby, F. T.; Dubois, P. C.; van Zyl, J.

    1997-01-01

    Intended as an overview aimed at potential users of remotely sensed spatial distributions and temporal variations of soil moisture, this paper begins with an introductory section on the fundamentals of radar imaging and associated attributes.

  7. ASTEROID RADAR V6.0

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set is intended to include all groundbased asteroid radar detections. These entries were collected by Steven J. Ostro, and selected data have been provided...

  8. ASTEROID RADAR V12.0

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set is intended to include all published groundbased asteroid radar detections. The entries were collected by Steven J. Ostro, and selected data have been...

  9. ASTEROID RADAR V4.0

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set is intended to include all groundbased asteroid radar detections. These data were collected from the published literature by Steven J. Ostro (1989)...

  10. ASTEROID RADAR V11.0

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set is intended to include all published groundbased asteroid radar detections. The entries were collected by Steven J. Ostro, and selected data have been...

  11. ASTEROID RADAR V3.0

    Data.gov (United States)

    National Aeronautics and Space Administration — This dataset is intended to include all groundbased asteroid radar detections. These data were collected from the published literature by Dr. Steven J. Ostro....

  12. ASTEROID RADAR V5.0

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set is intended to include all groundbased asteroid radar detections. These entries were collected by Steven J. Ostro (1989) [OSTRO1989] and selected data...

  13. ASTEROID RADAR V10.0

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set is intended to include all published groundbased asteroid radar detections. The entries were collected by Steven J. Ostro, and selected data have been...

  14. ASTEROID RADAR V13.0

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set is intended to include all published groundbased asteroid radar detections. The entries were collected by Steven J. Ostro, and selected data have been...

  15. ASTEROID RADAR V9.0

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set is a compilation of all groundbased asteroid radar detections. The collection is maintained and updated by Steven Ostro. It is updated annually.

  16. ASTEROID RADAR V14.0

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set is intended to include all published groundbased asteroid radar detections. The entries were collected by Steven J. Ostro, and selected data have been...

  17. Ground penetrating radar evaluation and implementation.

    Science.gov (United States)

    2014-07-01

    Six commercial ground penetrating radar (GPR) : systems were evaluated to determine the state-of-the-art of GPR technologies for railroad track : substructure inspection. : Phase 1 evaluated GPR ballast inspection : techniques by performing testing a...

  18. GEOGRAPHOS RADAR V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — Goldstone radar observations of 1620 Geographos from August 28 through Sept. 2, 1994 yield delay-Doppler images whose linear spatial resolutions range from ~75 to...

  19. Greenland Radar Ice Sheet Thickness Measurements

    Data.gov (United States)

    National Aeronautics and Space Administration — Two 150-MHz coherent radar depth sounders were developed and flown over the Greenland ice sheet to obtain ice thickness measurements in support of PARCA...

  20. Simulating lightning tests to radar system

    NARCIS (Netherlands)

    Blaj, M.A.; Buesink, Frederik Johannes Karel; Leferink, Frank Bernardus Johannes

    2010-01-01

    The risk of destruction due to lightning makes simulating the effects of lightning strikes a necessity. We modeled a radar enclosure and simulated the effect of a lightning strike. The results have been validated using full threat lightning current tests.

  1. Three Band Cloud and Precipitation Radar

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to design and demonstrate key enabling technologies for Cloud and Precipitation radars capable of closing the observational gaps left by current and...

  2. Space-Qualifiable Digital Radar Transceiver Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Historically, radar systems have tended to be either large, complex, power-hungry, purpose-built systems, or extremely simple systems of limited capability. More...

  3. TCSP CLOUD RADAR SYSTEM (CRS) V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The Cloud Radar System (CRS) provides vertically profiled reflectivity and Doppler velocity at aircraft nadir along the flight track. The CRS is a 94 GHz (W-band; 3...

  4. NAMMA TOGA RADAR DATA V1

    Data.gov (United States)

    National Aeronautics and Space Administration — This dataset consists of a collection of products derived from the NASA TOGA radar observations that were collected in the Republic of Cape Verde during the NAMMA...

  5. Advancing Radar Technologies for Space Exploration

    Data.gov (United States)

    National Aeronautics and Space Administration — Remote sensing technologies remain the primary means by which scientific knowledge about the surrounding universe is gathered in lieu of human exploration. Radar...

  6. Technical guidance and analytic services in support of SEASAT-A. [radar altimeters for altimetry and ocean wave height

    Science.gov (United States)

    Brooks, W. L.; Dooley, R. P.

    1975-01-01

    The design of a high resolution radar for altimetry and ocean wave height estimation was studied. From basic principles, it is shown that a short pulse wide beam radar is the most appropriate and recommended technique for measuring both altitude and ocean wave height. To achieve a topographic resolution of + or - 10 cm RMS at 5.0 meter RMS wave heights, as required for SEASAT-A, it is recommended that the altimeter design include an onboard adaptive processor. The resulting design, which assumes a maximum likelihood estimation (MLE) processor, is shown to satisfy all performance requirements. A design summary is given for the recommended radar altimeter, which includes a full deramp STRETCH pulse compression technique followed by an analog filter bank to separate range returns as well as the assumed MLE processor. The feedback loop implementation of the MLE on a digital computer was examined in detail, and computer size, estimation accuracies, and bias due to range sidelobes are given for the MLE with typical SEASAT-A parameters. The standard deviation of the altitude estimate was developed and evaluated for several adaptive and nonadaptive split-gate trackers. Split-gate tracker biases due to range sidelobes and transmitter noise are examined. An approximate closed form solution for the altimeter power return is derived and evaluated. The feasibility of utilizing the basic radar altimeter design for the measurement of ocean wave spectra was examined.

  7. Fully Adaptive Radar Modeling and Simulation Development

    Science.gov (United States)

    2017-04-01

    AFRL-RY-WP-TR-2017-0074 FULLY ADAPTIVE RADAR MODELING AND SIMULATION DEVELOPMENT Kristine L. Bell and Anthony Kellems Metron, Inc...SMALL BUSINESS INNOVATION RESEARCH (SBIR) PHASE I REPORT. Approved for public release; distribution unlimited. See additional restrictions...2017 4. TITLE AND SUBTITLE FULLY ADAPTIVE RADAR MODELING AND SIMULATION DEVELOPMENT 5a. CONTRACT NUMBER FA8650-16-M-1774 5b. GRANT NUMBER 5c

  8. Coding Theory Information Theory and Radar

    Science.gov (United States)

    2005-01-01

    libraries of waveforms, or more generally libraries of radar modalities, for detection, identification and tracking application. When different waveforms can...Moran, he has provided rigorous methods for the design of libraries of waveforms, or more generally libraries of radar modalities, for detection...Reliable diagnosis of dementia by the naive credal classifier inferred from incomplete congnitive data. ArtificialIntelligence in Medicine, 29:61- 79, 2003

  9. Radar Location Equipment Development Program: Phase I

    International Nuclear Information System (INIS)

    Sandness, G.A.; Davis, K.C.

    1985-06-01

    The work described in this report represents the first phase of a planned three-phase project designed to develop a radar system for monitoring waste canisters stored in a thick layer of bedded salt at the Waste Isolation Pilot Plant near Carlsbad, New Mexico. The canisters will be contained in holes drilled into the floor of the underground waste storage facility. It is hoped that these measurements can be made to accuracies of +-5 cm and +-2 0 , respectively. The initial phase of this project was primarily a feasibility study. Its principal objective was to evaluate the potential effectiveness of the radar method in the planned canister monitoring application. Its scope included an investigation of the characteristics of radar signals backscattered from waste canisters, a test of preliminary data analysis methods, an assessment of the effects of salt and bentonite (a proposed backfill material) on the propagation of the radar signals, and a review of current ground-penetrating radar technology. A laboratory experiment was performed in which radar signals were backscattered from simulated waste canisters. The radar data were recorded by a digital data acquisition system and were subsequently analyzed by three different computer-based methods to extract estimates of canister location and tilt. Each of these methods yielded results that were accurate within a few centimeters in canister location and within 1 0 in canister tilt. Measurements were also made to determine the signal propagation velocities in salt and bentonite (actually a bentonite/sand mixture) and to estimate the signal attenuation rate in the bentonite. Finally, a product survey and a literature search were made to identify available ground-penetrating radar systems and alternative antenna designs that may be particularly suitable for this unique application. 10 refs., 21 figs., 4 tabs

  10. Single Bit Radar Systems for Digital Integration

    OpenAIRE

    Bjørndal, Øystein

    2017-01-01

    Small, low cost, radar systems have exciting applications in monitoring and imaging for the industrial, healthcare and Internet of Things (IoT) sectors. We here explore, and show the feasibility of, several single bit square wave radar architectures; that benefits from the continuous improvement in digital technologies for system-on-chip digital integration. By analysis, simulation and measurements we explore novel and harmonic-rich continuous wave (CW), stepped-frequency CW (SFCW) and freque...

  11. Wideband Antennas for Modern Radar Systems

    OpenAIRE

    Ren, Yu-Jiun; Lai, Chieh-Ping

    2010-01-01

    In this chapter, the basics of the antenna and phased array are reviewed and different wideband antennas for modern radar systems are presented. The concepts of the radome and frequency selective surface are also reviewed. The main contents include important parameters of the antenna, and theory and design consideration of the array antenna. Various wideband antennas are introduced and their performances are demonstrated, including: (1) for the phased array radar, the slotted waveguide array ...

  12. Radar Location Equipment Development Program: Phase I

    Energy Technology Data Exchange (ETDEWEB)

    Sandness, G.A.; Davis, K.C.

    1985-06-01

    The work described in this report represents the first phase of a planned three-phase project designed to develop a radar system for monitoring waste canisters stored in a thick layer of bedded salt at the Waste Isolation Pilot Plant near Carlsbad, New Mexico. The canisters will be contained in holes drilled into the floor of the underground waste storage facility. It is hoped that these measurements can be made to accuracies of +-5 cm and +-2/sup 0/, respectively. The initial phase of this project was primarily a feasibility study. Its principal objective was to evaluate the potential effectiveness of the radar method in the planned canister monitoring application. Its scope included an investigation of the characteristics of radar signals backscattered from waste canisters, a test of preliminary data analysis methods, an assessment of the effects of salt and bentonite (a proposed backfill material) on the propagation of the radar signals, and a review of current ground-penetrating radar technology. A laboratory experiment was performed in which radar signals were backscattered from simulated waste canisters. The radar data were recorded by a digital data acquisition system and were subsequently analyzed by three different computer-based methods to extract estimates of canister location and tilt. Each of these methods yielded results that were accurate within a few centimeters in canister location and within 1/sup 0/ in canister tilt. Measurements were also made to determine the signal propagation velocities in salt and bentonite (actually a bentonite/sand mixture) and to estimate the signal attenuation rate in the bentonite. Finally, a product survey and a literature search were made to identify available ground-penetrating radar systems and alternative antenna designs that may be particularly suitable for this unique application. 10 refs., 21 figs., 4 tabs.

  13. Pulse duration discriminator

    International Nuclear Information System (INIS)

    Kosakovskij, L.F.

    1980-01-01

    Basic circuits of a discriminator for discrimination of pulses with the duration greater than the preset one, and of a multifunctional discriminator allowing to discriminate pulses with the duration greater (tsub(p)>tsub(s)) and lesser (tsub(p) tsub(s) and with the duration tsub(p) [ru

  14. PULSE HEIGHT ANALYZER

    Science.gov (United States)

    Johnstone, C.W.

    1958-01-21

    An anticoincidence device is described for a pair of adjacent channels of a multi-channel pulse height analyzer for preventing the lower channel from generating a count pulse in response to an input pulse when the input pulse has sufficient magnitude to reach the upper level channel. The anticoincidence circuit comprises a window amplifier, upper and lower level discriminators, and a biased-off amplifier. The output of the window amplifier is coupled to the inputs of the discriminators, the output of the upper level discriminator is connected to the resistance end of a series R-C network, the output of the lower level discriminator is coupled to the capacitance end of the R-C network, and the grid of the biased-off amplifier is coupled to the junction of the R-C network. In operation each discriminator produces a negative pulse output when the input pulse traverses its voltage setting. As a result of the connections to the R-C network, a trigger pulse will be sent to the biased-off amplifier when the incoming pulse level is sufficient to trigger only the lower level discriminator.

  15. Sources of pulsed radiation

    International Nuclear Information System (INIS)

    Sauer, M.C. Jr.

    1981-01-01

    Characteristics of various sources of pulsed radiation are examined from the viewpoint of their importance to the radiation chemist, and some examples of uses of such sources are mentioned. A summary is given of the application of methods of physical dosimetry to pulsed sources, and the calibration of convenient chemical dosimeters by physical dosimetry is outlined. 7 figures, 1 table

  16. Pulsed neutron generator

    International Nuclear Information System (INIS)

    Bespalov, D.F.; Bykovskii, Yu.A.; Vergun, I.I.; Kozlovskii, K.I.; Kozyrev, Yu.P.; Leonov, R.K.; Simagin, B.I.; Tsybin, A.S.; Shikanov, A.Ie.

    1986-03-01

    The paper describes a new device for generating pulsed neutron fields, utilized in nuclear geophysics for carrying out pulsed neutron logging and activation analysis under field conditions. The invention employs a sealed-off neutron tube with a laser ion source which increases neutron yield to the level of 10 neutrons per second or higher. 2 refs., 1 fig

  17. Gas phase pulse radiolysis

    International Nuclear Information System (INIS)

    Jonah, C.D.; Andong Liu; Mulac, W.A.

    1987-01-01

    Gas phase pulse radiolysis, a technique which can be used to study many different phenomena in chemistry and physics, is discussed. As a source of small radicals, pulse radiolysis is important to the field of chemistry, particularly to combustion and atmospheric kinetics. The reactions of 1,3-butadiene, allene, ethylene and acetylene with OH are presented. 52 refs., 1 fig., 1 tab

  18. Space Radar Image of Phnom Phen, Cambodia

    Science.gov (United States)

    1995-01-01

    This spaceborne radar image shows the city of Phnom Penh, the capital of Cambodia. Phnom Penh lies at the confluence of the Mekong River and the Basak Sab. The city was originally established in 1434 to succeed Angkor Thom as capital of the Khmer Nation. Phnom Penh is the bright blue and orange area west of the rivers, near the center of the image. The red, light blue and purple colors indicate differences in vegetation height and structure. Radar images like this one are being used by archaeologists to investigate ruins in the Angkor area in northern Cambodia. This image was acquired by Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) onboard the space shuttle Endeavour on April 15, 1994. The image is 27 kilometers by 27 kilometers (17 miles by 17 miles) and is centered at 11.5 degrees north latitude, 105.0 degrees East longitude. North is toward the upper right. The colors are assigned to different radar frequencies and polarizations of the radar as follows: red is L-band, horizontally transmitted and received; green is L-band, horizontally transmitted and vertically received; and blue is C-band, horizontally transmitted and vertically received. SIR-C/X-SAR, a joint mission of the German, Italian, and United States space agencies, is part of NASA's Mission to Planet Earth.

  19. Radar Baseret Styringspotentiale for Vejle Spildevand

    DEFF Research Database (Denmark)

    Nielsen, Jesper Ellerbæk; Rasmussen, Michael R.

    Denne undersøgelse er initieret af Vejle Spildevands A/S som har bedt Krüger AS om at undersøge styringspotentialet i Vejle by på baggrund af Vejles LAWR radar. Aalborg Universitet har derfor fået til opgave at sammenligne LAWR radaren med både regnmålere og DMI’s Virring radar i 3 udvalgte...... er baseret på 8 SVK-regnmålerne i og omkring Vejle og er desuden sammenlignet med regn estimater fra DMI’s metrologiske C-bånds radar, der er placeret nær Virring ca. 45 km nord-øst for Vejle. De to radarer er i undersøgelsen kalibreres/justeres efter tre forskellige metoder. Det er vigtigt...... at pointere, at datagrundlaget for såvel kalibrering og validering er det samme for de to radarer. Der er således i undersøgelsen kun anvendt data hvor begge radarer har fungeret, således at radarenes kvalitet er evalueret under eksakt samme meteorologiske forhold og med de samme regnmålerdata. Følgende tre...

  20. Weather radar rainfall data in urban hydrology

    Science.gov (United States)

    Thorndahl, Søren; Einfalt, Thomas; Willems, Patrick; Ellerbæk Nielsen, Jesper; ten Veldhuis, Marie-Claire; Arnbjerg-Nielsen, Karsten; Rasmussen, Michael R.; Molnar, Peter

    2017-03-01

    Application of weather radar data in urban hydrological applications has evolved significantly during the past decade as an alternative to traditional rainfall observations with rain gauges. Advances in radar hardware, data processing, numerical models, and emerging fields within urban hydrology necessitate an updated review of the state of the art in such radar rainfall data and applications. Three key areas with significant advances over the past decade have been identified: (1) temporal and spatial resolution of rainfall data required for different types of hydrological applications, (2) rainfall estimation, radar data adjustment and data quality, and (3) nowcasting of radar rainfall and real-time applications. Based on these three fields of research, the paper provides recommendations based on an updated overview of shortcomings, gains, and novel developments in relation to urban hydrological applications. The paper also reviews how the focus in urban hydrology research has shifted over the last decade to fields such as climate change impacts, resilience of urban areas to hydrological extremes, and online prediction/warning systems. It is discussed how radar rainfall data can add value to the aforementioned emerging fields in current and future applications, but also to the analysis of integrated water systems.

  1. Development of wide band digital receiver for atmospheric radars using COTS board based SDR

    Science.gov (United States)

    Yasodha, Polisetti; Jayaraman, Achuthan; Thriveni, A.

    2016-07-01

    Digital receiver extracts the received echo signal information, and is a potential subsystem for atmospheric radar, also referred to as wind profiling radar (WPR), which provides the vertical profiles of 3-dimensional wind vector in the atmosphere. This paper presents the development of digital receiver using COTS board based Software Defined Radio technique, which can be used for atmospheric radars. The developmental work is being carried out at National Atmospheric Research Laboratory (NARL), Gadanki. The digital receiver consists of a commercially available software defined radio (SDR) board called as universal software radio peripheral B210 (USRP B210) and a personal computer. USRP B210 operates over a wider frequency range from 70 MHz to 6 GHz and hence can be used for variety of radars like Doppler weather radars operating in S/C bands, in addition to wind profiling radars operating in VHF, UHF and L bands. Due to the flexibility and re-configurability of SDR, where the component functionalities are implemented in software, it is easy to modify the software to receive the echoes and process them as per the requirement suitable for the type of the radar intended. Hence, USRP B210 board along with the computer forms a versatile digital receiver from 70 MHz to 6 GHz. It has an inbuilt direct conversion transceiver with two transmit and two receive channels, which can be operated in fully coherent 2x2 MIMO fashion and thus it can be used as a two channel receiver. Multiple USRP B210 boards can be synchronized using the pulse per second (PPS) input provided on the board, to configure multi-channel digital receiver system. RF gain of the transceiver can be varied from 0 to 70 dB. The board can be controlled from the computer via USB 3.0 interface through USRP hardware driver (UHD), which is an open source cross platform driver. The USRP B210 board is connected to the personal computer through USB 3.0. Reference (10 MHz) clock signal from the radar master oscillator

  2. Ground Penetrating Radar in Hydrogeophysics

    Energy Technology Data Exchange (ETDEWEB)

    Hubbard, Susan; Lambot, S.; Binley, A.; Slob, E.; Hubbard, S.

    2008-01-15

    To meet the needs of a growing population and to provide us with a higher quality of life, increasing pressures are being placed on our environment through the development of agriculture, industry, and infrastructures. Soil erosion, groundwater depletion, salinization, and pollution have been recognized for decades as major threats to ecosystems and human health. More recently, the progressive substitution of fossil fuels by biofuels for energy production and climate change have been recognized as potential threats to our water resources and sustained agricultural productivity. The vadose zone mediates many of the processes that govern water resources and quality, such as the partition of precipitation into infiltration and runoff , groundwater recharge, contaminant transport, plant growth, evaporation, and energy exchanges between the Earth's surface and its atmosphere. It also determines soil organic carbon sequestration and carbon-cycle feedbacks, which could substantially impact climate change. The vadose zone's inherent spatial variability and inaccessibility precludes direct observation of the important subsurface processes. In a societal context where the development of sustainable and optimal environmental management strategies has become a priority, there is a strong prerequisite for the development of noninvasive characterization and monitoring techniques of the vadose zone. In particular, hydrogeophysical approaches applied at relevant scales are required to appraise dynamic subsurface phenomena and to develop optimal sustainability, exploitation, and remediation strategies. Among existing geophysical techniques, ground penetrating radar (GPR) technology is of particular interest for providing high-resolution subsurface images and specifically addressing water-related questions. Ground penetrating radar is based on the transmission and reception of VHF-UHF (30-3000 MHz) electromagnetic waves into the ground, whose propagation is determined by

  3. Sleep stage classification by non-contact vital signs indices using Doppler radar sensors.

    Science.gov (United States)

    Kagawa, Masayuki; Suzumura, Kazuki; Matsui, Takemi

    2016-08-01

    Disturbed sleep has become more common in recent years. To improve the quality of sleep, undergoing sleep observation has gained interest as a means to resolve possible problems. In this paper, we evaluate a non-restrictive and non-contact method for classifying real-time sleep stages and report on its potential applications. The proposed system measures heart rate (HR), heart rate variability (HRV), body movements, and respiratory signals of a sleeping person using two 24-GHz microwave radars placed beneath the mattress. We introduce a method that dynamically selects the window width of the moving average filter to extract the pulse waves from the radar output signals. The Pearson correlation coefficient between two HR measurements derived from the radars overnight, and the reference polysomnography was the average of 88.3% and the correlation coefficient for HRV parameters was the average of 71.2%. For identifying wake and sleep periods, the body-movement index reached sensitivity of 76.0%, and a specificity of 77.0% with 10 participants. Low-frequency (LF) components of HRV and the LF/HF ratio had a high degree of contribution and differed significantly across the three sleep stages (REM, LIGHT, and DEEP; p 0.05). We applied a canonical discriminant analysis to identify wake or sleep periods and to classify the three sleep stages with leave-one-out cross validation. Classification accuracy was 66.4% for simply identifying wake and sleep, 57.1% for three stages (wake, REM, and NREM) and 34% for four stages (wake, REM, LIGHT, and DEEP). This is a novel system for measuring HRs, HRV, body movements, and respiratory intervals and for measuring high sensitivity pulse waves using two radar signals. It simplifies measurement of sleep stages and may be employed at nursing care facilities or by the general public to improve sleep quality.

  4. Linear FMCW Laser Radar for Precision Range and Vector Velocity Measurements

    Science.gov (United States)

    Pierrottet, Diego; Amzajerdian, Farzin; Petway, Larry; Barnes, Bruce; Lockhard, George; Rubio, Manuel

    2008-01-01

    An all fiber linear frequency modulated continuous wave (FMCW) coherent laser radar system is under development with a goal to aide NASA s new Space Exploration initiative for manned and robotic missions to the Moon and Mars. By employing a combination of optical heterodyne and linear frequency modulation techniques and utilizing state-of-the-art fiber optic technologies, highly efficient, compact and reliable laser radar suitable for operation in a space environment is being developed. Linear FMCW lidar has the capability of high-resolution range measurements, and when configured into a multi-channel receiver system it has the capability of obtaining high precision horizontal and vertical velocity measurements. Precision range and vector velocity data are beneficial to navigating planetary landing pods to the preselected site and achieving autonomous, safe soft-landing. The all-fiber coherent laser radar has several important advantages over more conventional pulsed laser altimeters or range finders. One of the advantages of the coherent laser radar is its ability to measure directly the platform velocity by extracting the Doppler shift generated from the motion, as opposed to time of flight range finders where terrain features such as hills, cliffs, or slopes add error to the velocity measurement. Doppler measurements are about two orders of magnitude more accurate than the velocity estimates obtained by pulsed laser altimeters. In addition, most of the components of the device are efficient and reliable commercial off-the-shelf fiber optic telecommunication components. This paper discusses the design and performance of a second-generation brassboard system under development at NASA Langley Research Center as part of the Autonomous Landing and Hazard Avoidance (ALHAT) project.

  5. Pulse Distortion in Saturated Fiber Optical Parametric Chirped Pulse Amplification

    DEFF Research Database (Denmark)

    Lali-Dastjerdi, Zohreh; Da Ros, Francesco; Rottwitt, Karsten

    2012-01-01

    Fiber optical parametric chirped pulse amplification is experimentally compared for different chirped pulses in the picosecond regime. The amplified chirped pulses show distortion appearing as pedestals after recompression when the amplifier is operated in saturation.......Fiber optical parametric chirped pulse amplification is experimentally compared for different chirped pulses in the picosecond regime. The amplified chirped pulses show distortion appearing as pedestals after recompression when the amplifier is operated in saturation....

  6. A Methodology for Determining Statistical Performance Compliance for Airborne Doppler Radar with Forward-Looking Turbulence Detection Capability

    Science.gov (United States)

    Bowles, Roland L.; Buck, Bill K.

    2009-01-01

    The objective of the research developed and presented in this document was to statistically assess turbulence hazard detection performance employing airborne pulse Doppler radar systems. The FAA certification methodology for forward looking airborne turbulence radars will require estimating the probabilities of missed and false hazard indications under operational conditions. Analytical approaches must be used due to the near impossibility of obtaining sufficient statistics experimentally. This report describes an end-to-end analytical technique for estimating these probabilities for Enhanced Turbulence (E-Turb) Radar systems under noise-limited conditions, for a variety of aircraft types, as defined in FAA TSO-C134. This technique provides for one means, but not the only means, by which an applicant can demonstrate compliance to the FAA directed ATDS Working Group performance requirements. Turbulence hazard algorithms were developed that derived predictive estimates of aircraft hazards from basic radar observables. These algorithms were designed to prevent false turbulence indications while accurately predicting areas of elevated turbulence risks to aircraft, passengers, and crew; and were successfully flight tested on a NASA B757-200 and a Delta Air Lines B737-800. Application of this defined methodology for calculating the probability of missed and false hazard indications taking into account the effect of the various algorithms used, is demonstrated for representative transport aircraft and radar performance characteristics.

  7. Space radar image of Mount Everest

    Science.gov (United States)

    1995-01-01

    These are two comparison images of Mount Everest and its surroundings, along the border of Nepal and Tibet. The peak of Mount Everest, the highest elevation on Earth at 8,848 meters (29,028 feet), can be seen near the center of each image. The image at the top was acquired through thick cloud cover by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the space shuttle Endeavour on April 16, 1994. The image on the bottom is an optical photograph taken by the Endeavour crew under clear conditions during the second flight of SIR-C/X-SAR on October 10, 1994. Both images show an area approximately 70 kilometers by 38 kilometers (43 miles by 24 miles) that is centered at 28.0 degrees north latitude and 86.9 degrees east longitude. North is toward the upper left. The colors in the radar image were obtained using the following radar channels: red represents the L-band (horizontally transmitted and received); green represents the L-band (horizontally transmitted and vertically received); blue represents the C-band (horizontally transmitted and vertically received). Radar illumination is from the top of the frame. The optical photograph has been geometrically adjusted to better match the area shown in the radar image. Many features of the Himalayan terrain are visible in both images. Snow covered areas appear white in the optical photograph while the same areas appear bright blue in the radar image. The radar image was taken in early spring and shows deep snow cover, while the optical photograph was taken in late summer and shows minimum snow cover. The curving and branching features seen in both images are glaciers. The two wavelengths and multiple polarizations of the SIR-C radar are sensitive to characteristics of the glacier surfaces that are not detected by conventional photography, such as the ice roughness, water content and stratification. For this reason, the glaciers show a variety of colors in the radar image (blue, purple, red

  8. The Potential of Water Vapor & Precipitation Estimation with a Differential-frequency Radar

    Science.gov (United States)

    Meneghini, Robert; Liao, Liang; Tian, Lin

    2006-01-01

    In the presence of rain, the radar return powers from a three-frequency radar, with center frequency at 22.235 GHz and upper and lower frequencies chosen with equal water vapor absorption coefficients, can be used to estimate water vapor density and parameters of the precipitation. A linear combination of differential measurements between the center and lower frequencies on one hand and the upper and lower frequencies on the other provide an estimate of differential water vapor absorption. Conversely, the difference in radar reflectivity factors (in dB) between the upper and lower frequencies is independent of water vapor absorption and can be used to estimate the median mass diameter of the hydrometeors. For a down-looking radar, path-integrated estimates of water vapor absorption may be possible under rain-free as well as raining conditions by using the surface returns at the three frequencies. Cross-talk or interference between the precipitation and water vapor estimates depends on the frequency separation of the channels as well as on the phase state and the median mass diameter of the hydrometeors. Simulations of the retrieval of water vapor absorption show that the largest source of variability arises from the variance in the measured radar return powers while the largest biases occur in the mixed-phase region. Use of high pulse repetition frequencies and signal whitening methods may be needed to obtain the large number of independent samples required. Measurements over a fractional bandwidth, defined as the ratio of the difference between the upper and lower frequencies to the center frequency, up to about 0.2 should be passible in a differential frequency mode, where a single transceiver and antenna are used. Difficulties in frequency allocation may require alternative choices of frequency where the water vapor absorptions at the low and high frequencies are unequal. We consider the degradation in the retrieval accuracy when the frequencies are not optimum.

  9. Studies on Radar Sensor Networks

    Science.gov (United States)

    2007-08-08

    obtained based on sufficient pulse response averaging iM__ E, 3 and [8] M. P. Rowe, E. N. Pugh, Jr., J. S. Tyo , and N. Engheta, "Polarization- Ej = var...20, pp. 608-610, 1995. We ran simulations for M = 30, and plot the power of [9] J. S. Tyo , M. P. Rowe, E. N. Pugh, Jr., N. Engheta, "Target detection... Speed Networks: TCP/IP and ATM Design 3 Principles, Upper Saddle River, NJ, 1998. [81 W. Willinger, M. S. Taqqu, R. Sherman, and D. V. Wilson, "Self- 2

  10. Model-Based Radar Power Calculations for Ultra-Wideband (UWB) Synthetic Aperture Radar (SAR)

    Science.gov (United States)

    2013-06-01

    rate ( CFAR ) detector. Figure 1. Description of the single-story building used in the 3-D radar image study. (a... CFAR constant false alarm rate CR compression ratio DFT discrete Fourier transform EM electromagnetic PSD power spectral density RCS radar

  11. Optical pulse compression

    International Nuclear Information System (INIS)

    Glass, A.J.

    1975-01-01

    The interest in using large lasers to achieve a very short and intense pulse for generating fusion plasma has provided a strong impetus to reexamine the possibilities of optical pulse compression at high energy. Pulse compression allows one to generate pulses of long duration (minimizing damage problems) and subsequently compress optical pulses to achieve the short pulse duration required for specific applications. The ideal device for carrying out this program has not been developed. Of the two approaches considered, the Gires--Tournois approach is limited by the fact that the bandwidth and compression are intimately related, so that the group delay dispersion times the square of the bandwidth is about unity for all simple Gires--Tournois interferometers. The Treacy grating pair does not suffer from this limitation, but is inefficient because diffraction generally occurs in several orders and is limited by the problem of optical damage to the grating surfaces themselves. Nonlinear and parametric processes were explored. Some pulse compression was achieved by these techniques; however, they are generally difficult to control and are not very efficient. (U.S.)

  12. RF Pulsed Heating

    Energy Technology Data Exchange (ETDEWEB)

    Pritzkau, David P.

    2002-01-03

    RF pulsed heating is a process by which a metal is heated from magnetic fields on its surface due to high-power pulsed RF. When the thermal stresses induced are larger than the elastic limit, microcracks and surface roughening will occur due to cyclic fatigue. Pulsed heating limits the maximum magnetic field on the surface and through it the maximum achievable accelerating gradient in a normal conducting accelerator structure. An experiment using circularly cylindrical cavities operating in the TE{sub 011} mode at a resonant frequency of 11.424 GHz is designed to study pulsed heating on OFE copper, a material commonly used in normal conducting accelerator structures. The high-power pulsed RF is supplied by an X-band klystron capable of outputting 50 MW, 1.5 {micro}s pulses. The test pieces of the cavity are designed to be removable to allow testing of different materials with different surface preparations. A diagnostic tool is developed to measure the temperature rise in the cavity utilizing the dynamic Q change of the resonant mode due to heating. The diagnostic consists of simultaneously exciting a TE{sub 012} mode to steady-state in the cavity at 18 GHz and measuring the change in reflected power as the cavity is heated from high-power pulsed RF. Two experimental runs were completed. One run was executed at a calculated temperature rise of 120 K for 56 x 10{sup 6} pulses. The second run was executed at a calculated temperature rise of 82 K for 86 x 10{sup 6} pulses. Scanning electron microscope pictures show extensive damage occurring in the region of maximum temperature rise on the surface of the test pieces.

  13. Space Radar Image of Wenatchee, Washington

    Science.gov (United States)

    1994-01-01

    This spaceborne radar image shows a segment of the Columbia River as it passes through the area of Wenatchee, Washington, about 220 kilometers (136 miles) east of Seattle. The Wenatchee Mountains, part of the Cascade Range, are shown in green at the lower left of the image. The Cascades create a 'rain shadow' for the region, limiting rainfall east of the range to less than 26 centimeters (10 inches) per year. The radar's ability to see different types of vegetation is highlighted in the contrast between the pine forests, that appear in green and the dry valley plain that shows up as dark purple. The cities of Wenatchee and East Wenatchee are the grid-like areas straddling the Columbia River in the left center of the image. With a population of about 60,000, the region produces about half of Washington state's lucrative apple crop. Several orchard areas appear as green rectangular patches to the right of the river in the lower right center. Radar images such as these can be used to monitor land use patterns in areas such as Wenatchee, that have diverse and rapidly changing urban, agricultural and wild land pressures. This image was acquired by Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) onboard the space shuttle Endeavour on October 10, 1994. The image is 38 kilometers by 45 kilometers (24 miles by 30 miles) and is centered at 47.3 degrees North latitude, 120.1 degrees West longitude. North is toward the upper left. The colors are assigned to different radar frequencies and polarizations of the radar as follows: red is L-band, horizontally transmitted and received; green is L-band, horizontally transmitted, vertically received; and blue is C-band, horizontally transmitted, vertically received. SIR-C/X-SAR, a joint mission of the German, Italian, and United States space agencies, is part of NASA's Mission to Planet Earth.

  14. Sense and avoid radar for micro/nano robots

    Science.gov (United States)

    Molchanov, Pavlo A.; Asmolova, Olha

    2014-10-01

    Revolutionary new fly eye radar sensor technologies based on an array of directional antennas is eliminating the need for a mechanical scanning antenna or complicated phase processor. Proposed sense and avoid radar based on fly eye radar technology can be very small, provides continuous surveillance of entire sky (360 degree by azimuth and elevation) and can be applied for separate or swarm of micro/nano UAS or UGS. Monopulse technology increases bearing accuracy several folds and radar can be multi-functional, multi-frequency. Fly eye micro-radars are inexpensive, can be expendable. Prototype of sense and avoid radar with two directional antennas has been designed and bench tested.

  15. Sea clutter scattering, the K distribution and radar performance

    CERN Document Server

    Ward, Keith; Watts, Simon

    2013-01-01

    Sea Clutter: Scattering, the K Distribution and Radar Performance, 2nd Edition gives an authoritative account of our current understanding of radar sea clutter. Topics covered include the characteristics of radar sea clutter, modelling radar scattering by the ocean surface, statistical models of sea clutter, the simulation of clutter and other random processes, detection of small targets in sea clutter, imaging ocean surface features, radar detection performance calculations, CFAR detection, and the specification and measurement of radar performance. The calculation of the performance of pract

  16. Radar activities of the DFVLR Institute for Radio Frequency Technology

    Science.gov (United States)

    Keydel, W.

    1983-01-01

    Aerospace research and the respective applications microwave tasks with respect to remote sensing, position finding and communication are discussed. The radar activities are directed at point targets, area targets and volume targets; they center around signature research for earth and ocean remote sensing, target recognition, reconnaissance and camouflage and imaging and area observation radar techniques (SAR and SLAR). The radar activities cover a frequency range from 1 GHz up to 94 GHz. The radar program is oriented to four possible application levels: ground, air, shuttle orbits and satellite orbits. Ground based studies and measurements, airborne scatterometers and imaging radars, a space shuttle radar, the MRSE, and follow on experiments are considered.

  17. Modular high-performance 2-μm CCD-BiCMOS process technology for application-specific image sensors and image sensor systems on a chip

    Science.gov (United States)

    Guidash, R. Michael; Lee, P. P. K.; Andrus, J. M.; Ciccarelli, Antonio S.; Erhardt, H. J.; Fischer, J. R.; Meisenzahl, Eric J.; Philbrick, Robert H.; Kenney, Timothy J.

    1995-04-01

    A 2 micrometers BiCMOS process module has been developed for incorporation into existing high performance 2-phase CCD processes, to enable integration of digital and analog circuits on- chip with the CCD image sensor. The modular process architecture allows the integration of CMOS, NPN bipolar or BiCMOS circuits without affecting the baseline CCD characteristics. A design of experiments approach was employed using process and device simulation tools and selected physical experiments, to optimize CMOS and NPN device performance and process latitude. Both enhancement and depletion mode Poly-1 and Poly-2 CMOS devices were realized and demonstrated good long channel behavior down to 1.6 micrometers drawn. A 12 V, 2.5 GHz, low collector resistance NPN was also produced. Experimental process splits were used to demonstrate and verify that the CMOS and NPN process module incorporation did not affect the CCD device characteristics or yield. CMOS circuit performance was found to be comparable to that of a standard 2 micrometers CMOS process. Finally, a trilinear sensor with on-chip timing generation and correlated double sample was designed and fabricated. To our knowledge this is the first demonstration of high performance CCD, 2 micrometers CMOS, and an isolated vertical NPN, integrated on the same chip.

  18. Instrumentation for the Development of Reconfigurable Microwave/MM-Wave FGC Passive Elements Using MEMS Switches for 'Smart' Systems on a Chip

    National Research Council Canada - National Science Library

    Papapolymerou, Ioannis

    2001-01-01

    .... These projects are of major significance to the Department of Defense and include topics such as reconfigurable tuners and band-stop filters using MEMS switches, micromachined cavity diplexers...

  19. Radiation Hardened Structured ASIC Platform for Rapid Chip Development for Very High Speed System on a Chip (SoC) and Complex Digital Logic Systems, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Radiation Hardened Application Specific Integrated Circuits (ASICs) provide the highest performance, lowest power and smallest size ICs for Space Missions. To...

  20. Radiation Hardened Structured ASIC Platform for Rapid Chip Development for Very High Speed System on a Chip (SoC) and Complex Digital Logic Systems, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Radiation Hardened Application Specific Integrated Circuits (ASICs) provide for the highest performance, lowest power and size for Space Missions. In order to...

  1. Microfluidics and photonics for Bio-System-on-a-Chip: a review of advancements in technology towards a microfluidic flow cytometry chip.

    Science.gov (United States)

    Godin, Jessica; Chen, Chun-Hao; Cho, Sung Hwan; Qiao, Wen; Tsai, Frank; Lo, Yu-Hwa

    2008-10-01

    Microfluidics and photonics come together to form a field commonly referred to as 'optofluidics'. Flow cytometry provides the field with a technology base from which both microfluidic and photonic components be developed and integrated into a useful device. This article reviews some of the more recent developments to familiarize a reader with the current state of the technologies and also highlights the requirements of the device and how researchers are working to meet these needs.

  2. Analyzing System on A Chip Single Event Upset Responses using Single Event Upset Data, Classical Reliability Models, and Space Environment Data

    Science.gov (United States)

    Berg, Melanie; LaBel, Kenneth; Campola, Michael; Xapsos, Michael

    2017-01-01

    We are investigating the application of classical reliability performance metrics combined with standard single event upset (SEU) analysis data. We expect to relate SEU behavior to system performance requirements. Our proposed methodology will provide better prediction of SEU responses in harsh radiation environments with confidence metrics. single event upset (SEU), single event effect (SEE), field programmable gate array devises (FPGAs)

  3. Characterization of System on a Chip (SoC) Single Event Upset (SEU) Responses Using SEU Data, Classical Reliability Models, and Space Environment Data

    Science.gov (United States)

    Berg, Melanie; Label, Kenneth; Campola, Michael; Xapsos, Michael

    2017-01-01

    We propose a method for the application of single event upset (SEU) data towards the analysis of complex systems using transformed reliability models (from the time domain to the particle fluence domain) and space environment data.

  4. Pulse-width discriminators

    International Nuclear Information System (INIS)

    Budyashov, Yu.G.; Grebenyuk, V.M.; Zinov, V.G.

    1978-01-01

    A pulse duration discriminator is described which is intended for processing signals from multilayer scintillators. The basic elements of the scintillator are: an input gate, a current generator, an integrating capacitor, a Schmidt trigger and an anticoincidence circuit. The basic circuit of the discriminator and its time diagrams explaining its operating are given. The discriminator is based on microcircuits. Pulse duration discrimination threshold changes continuously from 20 to 100 ns, while its amplitude threshold changes within 20 to 100 mV. The temperature instability of discrimination thresholds (both in pulse width and in amplitude) is better than 0.1 per cent/deg C

  5. Radio frequency pulse compression

    International Nuclear Information System (INIS)

    Farkas, Z.D.

    1988-12-01

    High gradients require peak powers. One possible way to generate high peak powers is to generate a relatively long pulse at a relatively low power and compress it into a shorter pulse with higher peak power. It is possible to compress before dc to rf conversion as is done for the relativistic klystron or after dc to rf conversion as is done with SLED. In this note only radio frequency pulse compression (RFPC) is considered. Three methods of RFPC will be discussed: SLED, BEC, and REC. 3 refs., 8 figs., 1 tab

  6. High performance pulse generator

    Science.gov (United States)

    Grothaus, Michael G.; Moran, Stuart L.; Hardesty, Leonard W.

    1992-06-01

    The device is a compact Marx-type generator capable of producing a high-voltage burst of pulses having risetimes less than 10 nanoseconds at repetition rates up to 10 kHz. High-pressure hydrogen switches are used as the switching elements to achieve high rep-rate. A small coaxial design provides low inductance and a fast risetime. The device may be used as a high-rep-rate high-voltage trigger generator, or as a high-voltage pulse source capable of producing up to 1 MV pulses at high repetition rates.

  7. DogPulse

    DEFF Research Database (Denmark)

    Skovgaard, Christoffer; Thomsen, Josephine Raun; Verdezoto, Nervo

    2015-01-01

    This paper presents DogPulse, an ambient awareness system to support the coordination of dog walking among family members at home. DogPulse augments a dog collar and leash set to activate an ambient shape-changing lamp and visualize the last time the dog was taken for a walk. The lamp gradually...... changes its form and pulsates its lights in order to keep the family members aware of the dog walking activity. We report the iterative prototyping of DogPulse, its implementation and its preliminary evaluation. Based on our initial findings, we present the limitations and lessons learned as well...

  8. Pulse joining cartridges

    Energy Technology Data Exchange (ETDEWEB)

    Golovashchenko, Sergey Fedorovich; Bonnen, John Joseph Francis

    2017-09-26

    A pulsed joining tool includes a tool body that defines a cavity that receives an inner tubular member and an outer tubular member and a pulse joining cartridge. The tubular members are nested together with the cartridge being disposed around the outer tubular member. The cartridge includes a conductor, such as a wire or foil, that extends around the outer tubular member and is insulated to separate a supply segment from a return segment. A source of stored electrical energy is discharged through the conductor to join the tubular members with an electromagnetic force pulse.

  9. Laser induced x-ray `RADAR' particle physics model

    Science.gov (United States)

    Lockley, D.; Deas, R.; Moss, R.; Wilson, L. A.; Rusby, D.; Neely, D.

    2016-05-01

    The technique of high-power laser-induced plasma acceleration can be used to generate a variety of diverse effects including the emission of X-rays, electrons, neutrons, protons and radio-frequency radiation. A compact variable source of this nature could support a wide range of potential applications including single-sided through-barrier imaging, cargo and vehicle screening, infrastructure inspection, oncology and structural failure analysis. This paper presents a verified particle physics simulation which replicates recent results from experiments conducted at the Central Laser Facility at Rutherford Appleton Laboratory (RAL), Didcot, UK. The RAL experiment demonstrated the generation of backscattered X-rays from test objects via the bremsstrahlung of an incident electron beam, the electron beam itself being produced by Laser Wakefield Acceleration. A key initial objective of the computer simulation was to inform the experimental planning phase on the predicted magnitude of the backscattered X-rays likely from the test objects. This objective was achieved and the computer simulation was used to show the viability of the proposed concept (Laser-induced X-ray `RADAR'). At the more advanced stages of the experimental planning phase, the simulation was used to gain critical knowledge of where it would be technically feasible to locate key diagnostic equipment within the experiment. The experiment successfully demonstrated the concept of X-ray `RADAR' imaging, achieved by using the accurate timing information of the backscattered X-rays relative to the ultra-short laser pulse used to generate the electron beam. By using fast response X-ray detectors it was possible to derive range information for the test objects being scanned. An X-ray radar `image' (equivalent to a RADAR B-scan slice) was produced by combining individual X-ray temporal profiles collected at different points along a horizontal distance line scan. The same image formation process was used to generate

  10. Space Radar Image of Randonia Rain Cell

    Science.gov (United States)

    1994-01-01

    This multi-frequency space radar image of a tropical rainforest in western Brazil shows rapidly changing land use patterns and it also demonstrates the capability of the different radar frequencies to detect and penetrate heavy rainstorms. This color image was created by combining the three separate radar frequencies into a composite image. The three black and white images below represent the individual frequencies. The lower left image, X-band vertically transmitted and received, is blue in the color image; the lower center image, C-band horizontally transmitted and vertically received is green; and the lower right image, L-band horizontally transmitted and vertically received is red. A heavy downpour in the lower center of the image appears as a black 'cloud' in the X-band image, the same area is shows up faintly in the C-band image, and is invisible in the L-band image. When combined in the color image, the rain cell appears red and yellow. Although radar can usually 'see' through clouds, short radar wavelengths (high frequency), such as X and C-band, can be changed by unusually heavy rain cells. L-band, at a 24 cm (9 inches) wavelength, is unaffected by such rain cells. By analyzing the way the radar changes, scientist can estimate rainfall rates. The area shown is in the state of Rondonia, in western Brazil. The pink areas are pristine tropical rainforest, and the blue and green patches are areas where the forest has been cleared for agriculture. Cleared areas are typically able to support intense farming for a only few years, before soil erosion renders the fields unusable. Radar imaging can be used to monitor not only the rainforest destruction, but also the rates of recovery of abandoned fields. This image is 35.2 kilometers by 21.3 kilometers (21.8 miles by 13.2 miles) and is centered at 11.2 degrees south latitude, 61.7 degrees west longitude. North is toward the upper left. The image was acquired by the Spaceborne Imaging Radar-C/X-band Synthetic

  11. Pulse holographic measurement techniques

    International Nuclear Information System (INIS)

    Kim, Cheol Jung; Baik, Seong Hoon; Hong, Seok Kyung; Kim, Jeong Moog; Kim, Duk Hyun

    1992-01-01

    With the development of laser, remote inspection techniques using laser have been growing on. The inspection and measurement techniques by pulse holography are well-established technique for precise measurement, and widely used in various fields of industry now. In nuclear industry, this technology is practically used because holographic inspection is remote, noncontact, and precise measurement technique. In relation to remote inspection technology in nuclear industry, state-of-the art of pulse HNDT (Holographic non-destructive testing) and holographic measurement techniques are examined. First of all, the fundamental principles as well as practical problems for applications are briefly described. The fields of pulse holography have been divided into the HNDT, flow visualization and distribution study, and other application techniques. Additionally holographic particle study, bubble chamber holography, and applications to other visualization techniques are described. Lastly, the current status for the researches and applications of pulse holography to nuclear industry which are carried out actively in Europe and USA, is described. (Author)

  12. IAE pulsed electrostatic accelerator

    International Nuclear Information System (INIS)

    Afanas'ev, V.P.; Ganzhelyuk, M.L.; Kozlov, L.D.; Koltypin, E.A.; Molchanov, Yu.D.; Otroshchenko, G.A.; Yan'kov, G.B.

    1976-01-01

    The modernized pulse electrostatic accelerator using the klystron ion grouping and the beam interruption system prior to acceleration is described. The accelerator is modernized in order to improve parameters of a current pulse and to decrease the background in the measurement room. The ion beam of needed dimensions is obtained with the help of a high-frequency source and a beam grouping and deflection system. The general view of the beam grouping and deflection system is shown. The ion beam forming process is considered in detail. The modernized electrostatic accelerator permits to obtain a pulse current with a pulse length of 1.5 ns and an amplitude of 1.5 - 2 μA. With the repetition frequency of 2 MHz, the average target current is about 6 μA

  13. Pulsed Lorentz Accelerator

    Data.gov (United States)

    National Aeronautics and Space Administration — The Pulsed Lorentz Accelerator (PLA) is proposed to fill the propulsion gap for 6U and smaller satellites. The primary objective is to demonstrate the basic...

  14. Mars radar clutter and surface roughness characteristics from MARSIS data

    Science.gov (United States)

    Campbell, Bruce A.; Schroeder, Dustin M.; Whitten, Jennifer L.

    2018-01-01

    Radar sounder studies of icy, sedimentary, and volcanic settings can be affected by reflections from surface topography surrounding the sensor nadir location. These off-nadir ;clutter; returns appear at similar time delays to subsurface echoes and complicate geologic interpretation. Additionally, broadening of the radar echo in delay by surface returns sets a limit on the detectability of subsurface interfaces. We use MARSIS 4 MHz data to study variations in the nadir and off-nadir clutter echoes, from about 300 km to 1000 km altitude, R, for a wide range of surface roughness. This analysis uses a new method of characterizing ionospheric attenuation to merge observations over a range of solar zenith angle and date. Mirror-like reflections should scale as R-2, but the observed 4 MHz nadir echoes often decline by a somewhat smaller power-law factor because MARSIS on-board processing increases the number of summed pulses with altitude. Prior predictions of the contributions from clutter suggest a steeper decline with R than the nadir echoes, but in very rough areas the ratio of off-nadir returns to nadir echoes shows instead an increase of about R1/2 with altitude. This is likely due in part to an increase in backscatter from the surface as the radar incidence angle at some round-trip time delay declines with increasing R. It is possible that nadir and clutter echo properties in other planetary sounding observations, including RIME and REASON flyby data for Europa, will vary in the same way with altitude, but there may be differences in the nature and scale of target roughness (e.g., icy versus rocky surfaces). We present global maps of the ionosphere- and altitude-corrected nadir echo strength, and of a ;clutter; parameter based on the ratio of off-nadir to nadir echoes. The clutter map offers a view of surface roughness at ∼75 m length scale, bridging the spatial-scale gap between SHARAD roughness estimates and MOLA-derived parameters.

  15. Colocated MIMO Radar: Beamforming, Waveform design, and Target Parameter Estimation

    KAUST Repository

    Jardak, Seifallah

    2014-04-01

    Thanks to its improved capabilities, the Multiple Input Multiple Output (MIMO) radar is attracting the attention of researchers and practitioners alike. Because it transmits orthogonal or partially correlated waveforms, this emerging technology outperformed the phased array radar by providing better parametric identifiability, achieving higher spatial resolution, and designing complex beampatterns. To avoid jamming and enhance the signal to noise ratio, it is often interesting to maximize the transmitted power in a given region of interest and minimize it elsewhere. This problem is known as the transmit beampattern design and is usually tackled as a two-step process: a transmit covariance matrix is firstly designed by minimizing a convex optimization problem, which is then used to generate practical waveforms. In this work, we propose simple novel methods to generate correlated waveforms using finite alphabet constant and non-constant-envelope symbols. To generate finite alphabet waveforms, the proposed method maps easily generated Gaussian random variables onto the phase-shift-keying, pulse-amplitude, and quadrature-amplitude modulation schemes. For such mapping, the probability density function of Gaussian random variables is divided into M regions, where M is the number of alphabets in the corresponding modulation scheme. By exploiting the mapping function, the relationship between the cross-correlation of Gaussian and finite alphabet symbols is derived. The second part of this thesis covers the topic of target parameter estimation. To determine the reflection coefficient, spatial location, and Doppler shift of a target, maximum likelihood estimation yields the best performance. However, it requires a two dimensional search problem. Therefore, its computational complexity is prohibitively high. So, we proposed a reduced complexity and optimum performance algorithm which allows the two dimensional fast Fourier transform to jointly estimate the spatial location

  16. Space Radar Image of Taipei, Taiwan

    Science.gov (United States)

    1994-01-01

    The northern end of the island country of Taiwan, including the capital city of Taipei, is shown in this spaceborne radar image. Taipei is the bright blue and red area in the lower center of the image. A portion of the city sits on an island surrounded by the Keelung and Freshwater Rivers. The main channel of the Freshwater River is to the right of the island and appears dark in the image. The channel to the left of the island is no longer active and appear slighter. Rugged, heavily vegetated mountains surround the city and are shown in green. The runways of the Chiang Kai Shek International Airport are seen as dark parallel strips in the upper left of the image. This image was acquired by Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) onboard the space shuttle Endeavour on April 10, 1994. The image is 50 kilometers by 33 kilometers (31 miles by 20 miles) and is centered at 25.1 degrees north latitude, 121.5 degrees east longitude. North is toward the upper right. The colors are assigned to different radar frequencies and polarizations of the radar as follows: red is L-band, horizontally transmitted and received; green is L-band, horizontally transmitted, vertically received; and blue is C-band, horizontally transmitted, vertically received. SIR-C/X-SAR, a joint mission of the German, Italian and United States space agencies, is part of NASA's Mission to Planet Earth program.

  17. Ground penetrating radar for asparagus detection

    Science.gov (United States)

    Seyfried, Daniel; Schoebel, Joerg

    2016-03-01

    Ground penetrating radar is a promising technique for detection of buried objects. Recently, radar has more and more been identified to provide benefits for a plurality of applications, where it can increase efficiency of operation. One of these fields is the industrial automatic harvesting process of asparagus, which is performed so far by cutting the soil ridge at a certain height including all the asparagus spears and subsequently sieving the latter out of the soil. However, the height where the soil is cut is a critical parameter, since a wrong value leads to either damage of the roots of the asparagus plants or to a reduced crop yield as a consequence of too much biomass remaining in the soil. In this paper we present a new approach which utilizes ground penetrating radar for non-invasive sensing in order to obtain information on the optimal height for cutting the soil. Hence, asparagus spears of maximal length can be obtained, while keeping the roots at the same time undamaged. We describe our radar system as well as the subsequent digital signal processing steps utilized for extracting the information required from the recorded radar data, which then can be fed into some harvesting unit for setting up the optimal cutting height.

  18. Online measurement method for pulse amplitude in pulsed extraction columns

    International Nuclear Information System (INIS)

    Wang Xinghai; Li Shichang; Chen Jing

    2009-01-01

    Online measurement of pulse amplitude by air purge was studied. The pulse amplitude in a pulsed extraction column was calculated online by measurement of characteristic parameters of the signal's curve. The method can be used for calculation of different pulsed extraction columns. (authors)

  19. Realtime aspects of pulse-to-pulse modulation

    International Nuclear Information System (INIS)

    Steiner, R.; Riedel, C.; Roesch, W.

    1992-01-01

    The pulse-to-pulse modulation of the SIS-ESR control system is described. Fast response to operator interaction and to changes in process conditions is emphasized as well as the essential part played by the timing system in pulse-to-pulse modulation. (author)

  20. Pulsed spallation neutron sources

    International Nuclear Information System (INIS)

    Carpenter, J.M.

    1996-01-01

    This paper reviews the early history of pulsed spallation neutron source development ar Argonne and provides an overview of existing sources world wide. A number of proposals for machines more powerful than currently exist are under development, which are briefly described. The author reviews the status of the Intense Pulsed Neutron Source, its instrumentation, and its user program, and provide a few examples of applications in fundamental condensed matter physics, materials science and technology